
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CJKV Information Processing

www.allitebooks.com

http://www.allitebooks.org

seCond edItIon

CJKV Information Processing

Ken Lunde

Běijīng · Cambridge · Farnham · Köln · Sebastopol · Táiběi · Tōkyō

www.allitebooks.com

http://www.allitebooks.org

CJKV Information Processing, second edition
by Ken Lunde

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.

A significant portion of this book previously appeared in Understanding Japanese Information Processing,
Copyright © 1993 O’Reilly Media, Inc.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472 USA.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

editor: Julie Steele
Production editors: Ken Lunde and Rachel Monaghan
Copyeditor: Mary Brady
Proofreader: Genevieve d’Entremont
Indexer: Ken Lunde

Production services: Ken Lunde
Cover designer: Karen Montgomery
Interior designer: David Futato
Illustrator: Robert Romano

Printing History:
January 1999: First Edition.
December 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. CJKV Information Processing, the image of a blowfish, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

TM

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-51447-1
[C]

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to the four incredible women who have touched—and con-
tinue to influence—my life in immeasurable ways:

My mother, Jeanne Mae Lunde, for bringing me into this world and for putting me
on the path I am on.

My mother-in-law, Sadae Kudo, for unknowingly bringing together her daughter
and me.

My wife, friend, and partner, Hitomi Kudo, for her companionship, love, and
support, and for constantly reminding me about what is truly important.

Our daughter, Ruby Mae Lunde, for showing me that actions and decisions made
today impact and influence our future generations.

I shall be forever in their debt….

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Foreword . xxi

Preface . xxv

CJKV Information Processing overview1. . 1
Writing Systems and Scripts 2
Character Set Standards 6
Encoding Methods 8

Data Storage Basics 8
Input Methods 11
Typography 13
Basic Concepts and Terminology FAQ 14

What Are All These Abbreviations and Acronyms? 14
What Are Internationalization, Globalization, and Localization? 17
What Are the Multilingual and Locale Models? 18
What Is a Locale? 18
What Is Unicode? 19
How Are Unicode and ISO 10646 Related? 19
What Are Row-Cell and Plane-Row-Cell? 19
What Is a Unicode Scalar Value? 20
Characters Versus Glyphs: What Is the Difference? 20
What Is the Difference Between Typeface and Font? 24
What Are Half- and Full-Width Characters? 25
Latin Versus Roman Characters 27
What Is a Diacritic Mark? 27
What Is Notation? 27

www.allitebooks.com

http://www.allitebooks.org

viii | Contents

What Is an Octet? 28
What Are Little- and Big-Endian? 29
What Are Multiple-Byte and Wide Characters? 30

Advice to Readers 31

Writing systems and scripts2. . 33
Latin Characters, Transliteration, and Romanization 33

Chinese Transliteration Methods 34
Japanese Transliteration Methods 37
Korean Transliteration Methods 43
Vietnamese Romanization Methods 47

Zhuyin/Bopomofo 49
Kana 51

Hiragana 52
Katakana 54
The Development of Kana 55

Hangul 58
Ideographs 60

Ideograph Readings 65
The Structure of Ideographs 66
The History of Ideographs 70
Ideograph Simplification 73

Non-Chinese Ideographs 74
Japanese-Made Ideographs—Kokuji 75
Korean-Made Ideographs—Hanguksik Hanja 76
Vietnamese-Made Ideographs—Chữ Nôm 77

Character set standards3. . 79
NCS Standards 80

Hanzi in China 80
Hanzi in Taiwan 81
Kanji in Japan 82
Hanja in Korea 84

CCS Standards 84
National Coded Character Set Standards Overview 85
ASCII 89
ASCII Variations 90

www.allitebooks.com

http://www.allitebooks.org

Contents | ix

CJKV-Roman 91
Chinese Character Set Standards—China 94
Chinese Character Set Standards—Taiwan 111
Chinese Character Set Standards—Hong Kong 124
Chinese Character Set Standards—Singapore 130
Japanese Character Set Standards 130
Korean Character Set Standards 143
Vietnamese Character Set Standards 151

International Character Set Standards 153
Unicode and ISO 10646 154
GB 13000.1-93 175
CNS 14649-1:2002 and CNS 14649-2:2003 175
JIS X 0221:2007 176
KS X 1005-1:1995 176

Character Set Standard Oddities 177
Duplicate Characters 177
Phantom Ideographs 178
Incomplete Ideograph Pairs 178
Simplified Ideographs Without a Traditional Form 179
Fictitious Character Set Extensions 179
Seemingly Missing Characters 180
CJK Unified Ideographs with No Source 180
Vertical Variants 180

Noncoded Versus Coded Character Sets 181
China 181
Taiwan 182
Japan 182
Korea 184

Information Interchange and Professional Publishing 184
Character Sets for Information Interchange 184
Character Sets for Professional and Commercial Publishing 185

Future Trends and Predictions 186
Emoji 186
Genuine Ideograph Unification 187

Advice to Developers 188
The Importance of Unicode 189

www.allitebooks.com

http://www.allitebooks.org

x | Contents

encoding Methods4. . 193
Unicode Encoding Methods 197

Special Unicode Characters 198
Unicode Scalar Values 199
Byte Order Issues 199
BMP Versus Non-BMP 200
Unicode Encoding Forms 200
Obsolete and Deprecated Unicode Encoding Forms 212
Comparing UTF Encoding Forms with Legacy Encodings 219

Legacy Encoding Methods 221
Locale-Independent Legacy Encoding Methods 221
Locale-Specific Legacy Encoding Methods 255

Comparing CJKV Encoding Methods 273
Charset Designations 275

Character Sets Versus Encodings 275
Charset Registries 276

Code Pages 278
IBM Code Pages 278
Microsoft Code Pages 281

Code Conversion 282
Chinese Code Conversion 284
Japanese Code Conversion 285
Korean Code Conversion 288
Code Conversion Across CJKV Locales 288
Code Conversion Tips, Tricks, and Pitfalls 289

Repairing Damaged or Unreadable CJKV Text 290
Quoted-Printable Transformation 290
Base64 Transformation 291
Other Types of Encoding Repair 294

Advice to Developers 295
Embrace Unicode 296
Legacy Encodings Cannot Be Forgotten 297
Testing 298

www.allitebooks.com

http://www.allitebooks.org

Contents | xi

Input Methods5. . 299
Transliteration Techniques 301

Zhuyin Versus Pinyin Input 301
Kana Versus Transliterated Input 304
Hangul Versus Transliterated Input 306

Input Techniques 308
The Input Method 309
The Conversion Dictionary 311
Input by Reading 312
Input by Structure 315
Input by Multiple Criteria 318
Input by Encoding 319
Input by Other Codes 320
Input by Postal Code 321
Input by Association 321

User Interface Concerns 322
Inline Conversion 322

Keyboard Arrays 322
Western Keyboard Arrays 323
Ideograph Keyboard Arrays 325
Chinese Input Method Keyboard Arrays 326
Zhuyin Keyboard Arrays 330
Kana Keyboard Arrays 332
Hangul Keyboard Arrays 340
Latin Keyboard Arrays for CJKV Input 342
Mobile Keyboard Arrays 346

Other Input Hardware 353
Pen Input 353
Optical Character Recognition 354
Voice Input 354

Input Method Software 355
CJKV Input Method Software 355
Chinese Input Method Software 356
Japanese Input Method Software 356
Korean Input Method Software 361

xii | Contents

Font Formats, Glyph sets, and Font tools6. . 363
Typeface Design 364
How Many Glyphs Can a Font Include? 367

Composite Fonts Versus Fallback Fonts 368
Breaking the 64K Glyph Barrier 369

Bitmapped Font Formats 370
BDF Font Format 371
HBF Font Format 374

Outline Font Formats 375
PostScript Font Formats 377
TrueType Font Formats 396
OpenType—PostScript and TrueType in Harmony 400

Glyph Sets 408
Static Versus Dynamic Glyph Sets 409
CID Versus GID 409
Std Versus Pro Designators 410
Glyph Sets for Transliteration and Romanization 411
Character Collections for CID-Keyed Fonts 412

Ruby Glyphs 427
Generic Versus Typeface-Specific Ruby Glyphs 428

Host-Installed, Printer-Resident, and Embedded Fonts 429
Installing and Downloading Fonts 429
The PostScript Filesystem 430
Mac OS X 431
Mac OS 9 and Earlier 432
Microsoft Windows—2000, XP, and Vista 437
Microsoft Windows—Versions 3.1, 95, 98, ME, and NT4 437
Unix and Linux 439
X Window System 440
Font and Glyph Embedding 442
Cross-Platform Issues 443

Font Development Tools 444
Bitmapped Font Editors 444
Outline Font Editors 445
Outline Font Editors for Larger Fonts 446
AFDKO—Adobe Font Development Kit for OpenType 447

Contents | xiii

TTX/FontTools 451
Font Format Conversion 451

Gaiji Handling 452
The Gaiji Problem 453
SING—Smart INdependent Glyphlets 455
Ideographic Variation Sequences 460
XKP, A Gaiji Handling Initiative—Obsolete 460
Adobe Type Composer (ATC)—Obsolete 461
Composite Font Functionality Within Applications 463
Gaiji Handling Techniques and Tricks 464
Creating Your Own Rearranged Fonts 466
Acquiring Gaiji Glyphs and Gaiji Fonts 470

Advice to Developers 471

typography7. . 473
Rules, Principles, and Techniques 474

JIS X 4051:2004 Compliance 475
GB/T 15834-1995 and GB/T 15835-1995 476

Typographic Units and Measurements 476
Two Important Points—Literally 477
Other Typographic Units 478

Horizontal and Vertical Layout 480
Nonsquare Design Space 482
The Character Grid 483
Vertical Character Variants 484
Dedicated Vertical Characters 492
Vertical Latin Text 493

Line Breaking and Word Wrapping 496
Character Spanning 501
Alternate Metrics 502

Half-Width Symbols and Punctuation 502
Proportional Symbols and Punctuation 505
Proportional Kana 507
Proportional Ideographs 508
Kerning 510

Line-Length Issues 512

xiv | Contents

Manipulating Symbol and Punctuation Metrics 513
Manipulating Inter-Glyph Spacing 513
JIS X 4051:2004 Character Classes 514

Multilingual Typography 516
Latin Baseline Adjustment 516
Proper Spacing of Latin and CJKV Characters 517
Mixing Latin and CJKV Typeface Designs 519

Glyph Substitution 520
Character and Glyph Variants 521
Ligatures 523

Annotations 525
Ruby Glyphs 525
Inline Notes—Warichu 529
Other Annotations 530

Typographic Applications 531
Page-Layout Applications 532
Graphics Applications 540

Advice to Developers 543

output Methods8. . 545
Where Can Fonts Live? 546
Output via Printing 547

PostScript CJKV Printers 548
Genuine PostScript 548
Clone PostScript 549
Passing Characters to PostScript 551

Output via Display 552
Adobe Type Manager—ATM 553
SuperATM 554
Adobe Acrobat and PDF 555
Ghostscript 556
OpenType and TrueType 556

Other Printing Methods 557
The Role of Printer Drivers 558

Microsoft Windows Printer Drivers 559
Mac OS X Printer Drivers 560

Contents | xv

Output Tips and Tricks 561
Creating CJKV Documents for Non-CJKV Systems 561

Advice to Developers 563
CJKV-Capable Publishing Systems 563
Some Practical Advice 564

Information Processing techniques9. . 567
Language, Country, and Script Codes 568
CLDR—Common Locale Data Repository 571
Programming Languages 571

C/C++ 572
Java 572
Perl 574
Python 575
Ruby 575
Tcl 576
Other Programming Environments 576

Code Conversion Algorithms 577
Conversion Between UTF-8, UTF-16, and UTF-32 579
Conversion Between ISO-2022 and EUC 580
Conversion Between ISO-2022 and Row-Cell 581
Conversion Between ISO-2022-JP and Shift-JIS 582
Conversion Between EUC-JP and Shift-JIS 585
Other Code Conversion Types 586

Java Programming Examples 586
Java Code Conversion 586
Java Text Stream Handling 588
Java Charset Designators 589

Miscellaneous Algorithms 590
Japanese Code Detection 591
Half- to Full-Width Katakana Conversion—in Java 593
Encoding Repair 595

Byte Versus Character Handling 597
Character Deletion 598
Character Insertion 599
Character Searching 600

xvi | Contents

Line Breaking 602
Character Attribute Detection Using C Macros 604

Character Sorting 605
Natural Language Processing 608

Word Parsing and Morphological Analysis 608
Spelling and Grammar Checking 610
Chinese-Chinese Conversion 611
Special Transliteration Considerations 612

Regular Expressions 613
Search Engines 615
Code-Processing Tools 615

JConv—Code Conversion Tool 616
JChar—Character Set Generation Tool 617
CJKV Character Set Server 618
JCode—Text File Examination Tool 619
Other Useful Tools and Resources 621

oses, text editors, and Word Processors10. . 623
Viewing CJKV Text Using Non-CJKV OSes 625

AsianSuite X2—Microsoft Windows 626
NJStar CJK Viewer—Microsoft Windows 626
TwinBridge Language Partner—Microsoft Windows 626

Operating Systems 626
FreeBSD 627
Linux 627
Mac OS X 628
Microsoft Windows Vista 632
MS-DOS 636
Plan 9 637
Solaris and OpenSolaris 637
TRON and Chokanji 638
Unix 639

Hybrid Environments 639
Boot Camp—Run Windows on Apple Hardware 640
CrossOver Mac—Run Windows Applications on Mac OS X 640
GNOME—Linux and Unix 640

Contents | xvii

KDE—Linux and Unix 641
VMware Fusion—Run Windows on Mac OS X 641
Wine—Run Windows on Unix, Linux, and Other OSes 641
X Window System—Unix 641

Text Editors 642
Mac OS X Text Editors 643
Windows Text Editors 644
Vietnamese Text Editing 645
Emacs and GNU Emacs 646
vi and Vim 647

Word Processors 648
AbiWord 649
Haansoft Hangul—Microsoft Windows 649
Ichitaro—Microsoft Windows 649
KWord 649
Microsoft Word—Microsoft Windows and Mac OS X 649
Nisus Writer—Mac OS X 650
NJStar Chinese/Japanese WP—Microsoft Windows 651
Pages—Mac OS X 652

Online Word Processors 652
Adobe Buzzword 652
Google Docs 652

Advice to Developers 653

dictionaries and dictionary software11. . 655
Ideograph Dictionary Indexes 656

Reading Index 656
Radical Index 657
Stroke Count Index 658
Other Indexes 660

Ideograph Dictionaries 664
Character Set Standards As Ideograph Dictionaries 665
Locale-Specific Ideograph Dictionaries 666
Vendor Ideograph Dictionaries and Ideograph Tables 669
CJKV Ideograph Dictionaries 670

Other Useful Dictionaries 670

xviii | Contents

Conventional Dictionaries 670
Variant Ideograph Dictionaries 671

Dictionary Hardware 671
Dictionary Software 672

Dictionary CD-ROMs 672
Frontend Software for Dictionary CD-ROMs 673
Dictionary Files 674
Frontend Software for Dictionary Files 684
Web-Based Dictionaries 685

Machine Translation Applications 686
Machine Translation Services 687

Free Machine Translation Services 687
Commercial Machine Translation Services 688

Language-Learning Aids 688

Web and Print Publishing12. . 691
Line-Termination Concerns 693
Email 694

Sending Email 695
Receiving Email 696
Email Troubles and Tricks 697
Email Clients 697

Network Domains 700
Internationalized Domain Names 701
The CN Domain 702
The HK Domain 702
The JP Domain 703
The KR Domain 703
The TW Domain 704
The VN Domain 705

Content Versus Presentation 705
Web Publishing 707

Web Browsers 707
Displaying Web Pages 709

HTML—HyperText Markup Language 709
Authoring HTML Documents 710

Contents | xix

Web-Authoring Tools 716
Embedding CJKV Text As Graphics 716

XML—Extensible Markup Language 716
Authoring XML Documents 717

CGI Programming Examples 718
Print Publishing 721

PDF—Portable Document Format 721
Authoring PDF Documents 723
PDF Eases Publishing Pains 725

Where to Go Next? 727

Code Conversion tablesA. . 729

notation Conversion tableB. . 733

Perl Code examplesC. . 737

Glossaryd. . 757

Vendor Character set standardse. . 795

Vendor encoding MethodsF. . 797

Chinese Character sets—ChinaG. . 799

Chinese Character sets—taiwanH. . 801

Chinese Character sets—Hong KongI. . 803

Japanese Character setsJ. . 805

Korean Character setsK. . 807

Vietnamese Character setsL. . 809

Miscellaneous Character setsM. . 811

Bibliography . 813

Index . 839

xxi

Foreword

The noncommittal phrase information processing covers a lot of ground, from generating
mailing lists and tabulating stock exchange transactions to editing and typesetting Lady
Murasaki’s Tale of Genji, the meditations of Lao Zi, or the poems of Han Shan. There is a
lot of information in the world, and it is stored, handled, and processed in a lot of differ-
ent ways.

The oldest human writing systems known—including Sumerian, early Egyptian, Chinese,
and early Mayan—seem to have sprung up independently. They thrived in different plac-
es, serving unrelated languages, and they look thoroughly different from one another, but
they all have something in common: they all employ large numbers of signs for meanings,
supplemented with signs for sounds. The only such script that has survived in common
use to the present day is Han Chinese. All the other scripts now in general use for writing
natural human languages are essentially confined to the writing of sounds. They are all
syllabic, consonantal, or alphabetic.

Here in the West, we often speak of Chinese as if it were a single language. Once upon a
time, perhaps it was—but for thousands of years things have been more complicated than
that. There are now more than a dozen Chinese languages, each with several dialects,
spoken in China and by people of Chinese origin living elsewhere in the world. The most
successful member of the group, often called Mandarin, is spoken as a first or second lan-
guage by roughly a billion people. Add all those who speak at least one of the other Chi-
nese languages (such as Yuè, the common language of Hong Kong, or Mǐn Nán, the most
common language in Taiwan, or Wú, which is common in Shanghai), and the total gets
closer to a billion and a half. Add also the speakers of Japanese, Korean, and Vietnamese,
whose languages belong to different families but whose scripts and literatures have a long
and rich association with Chinese, and the number is larger yet: about 25% of the human
population as a whole.

You can see from this alone why a book giving clear and thorough guidance on the han-
dling of text in Chinese, Japanese, Korean, and Vietnamese might be important. But even
if these scripts weren’t part of daily life for a quarter of humanity, there would be good
reasons to study them. Compared to the Latin alphabet, they are wonderfully complex

xxii | Foreword

and polymorphous. That human speech can be recorded and transmitted in all these dif-
ferent ways tells us something about language, something about the mind, and something
about how many different ways there are to be a human being.

There is always a certain tension between written and spoken language, because speech
continues to change while writing is used to preserve it. Wherever reading and writing
are normal parts of daily life, there are things that people know how to say but aren’t sure
how to write, and things that they know how to write, and may write fairly often, but
might never find any occasion to say. (Sincerely yours is one example.) If we wrote only
meanings and no sounds, the gulf between speech and writing would be wider, but the
tension between them would often be less. This is what happens, in fact, when we use
mathematical notation. We write basically nothing but symbols for meanings, along with
a lot of punctuation to keep the meanings from getting confused, and what we have writ-
ten can be read with equal ease, and with equal accuracy, in English, Hungarian, Arabic,
or Chinese. It is not really possible to write spoken language in this way—but it is possible
to write a close correlative. We can write (as logicians do when they use symbolic logic)
the sequence of meanings that a string of spoken sentences would carry; then we can read
what we have written by pronouncing the names of those meanings in any language we
choose and filling in the holes with whatever inflections, links, and lubricants our spoken
grammar requires. That in fact is how Japanese, Vietnamese, and Korean were first writ-
ten: using Chinese characters to represent the meanings, then reading back the meanings
of these Chinese signs in a language other than Chinese. (Most Chinese languages other
than classical Mandarin are written even now in the same way.)

In time, the Japanese devised their delicate and supple syllabic scripts (hiragana and kata-
kana) as a supplement to kanji, which are Han Chinese glyphs used to write Japanese; the
Koreans devised their ingeniously analytical Hangul script, in which alphabetic informa-
tion is nested into discrete syllabic units; and the Vietnamese, after spending a thousand
years building their own large lexicon of redefined Chinese glyphs and new glyphs on
the Chinese model, embraced a complex variant of the Latin alphabet instead. But in all
three cultures, the old associations with Chinese script and Chinese literature run deep
and have never disappeared. The connection is particularly vivid in the case of Japanese,
whose script is what a linguistic geologist would call a kind of breccia or conglomerate:
chunks of pure Chinese script and angular syllabics (and often chunks of Latin script as
well) cemented into a matrix of cursive syllabics.

Ken Lunde is an enthusiast for all these complications and an expert on their electronic
outcome—expert enough that his book is relied on by professionals and amateurs alike,
in both Asia and the West.

Many North Americans and Europeans have written books about the Orient, but very few
of those books have been translated into Asian languages, because so few of them can tell
Asians anything about themselves. Once in a while, though, outsiders really know their
stuff, and insiders see that this is so. The first edition of this book (which ran to 1,100 pag-
es) was published in California in 1999. It was recognized at once as the definitive work in

Foreword | xxiii

the field and was promptly translated into both Chinese and Japanese. Its shorter prede-
cessor, Understanding Japanese Information Processing—Ken Lunde’s first book, published
in 1993, when he was only 28—had been greeted the same way: it was recognized as the
best book of its kind and promptly published, unabridged, in Japanese. As a reader, I am
comforted by those endorsements. The subject is, after all, complex. Some would call it
daunting. I know how useful this book has been to me, and it pleases me to know that
native speakers of Chinese and Japanese have also found it useful.

Robert Bringhurst
Quadra Island, British Columbia · 21 August 2008

xxv

Preface

Close to 16 years have elapsed since Understanding Japanese Information Processing was
published, and perhaps more importantly, 10 years have gone by since CJKV Information
Processing was first published. A lot has changed in those 10 years. I should point out that
I was first inspired to undertake the initial “CJKV” expansion sometime in 1996, during
a lengthy conversation I had at a Togo’s near the UC Berkeley campus with Peter Mui, my
editor for Understanding Japanese Information Processing.

Join me in reading this thick tome of a book, which also serves as a reference book, and
you shall discover that “CJKV” (Chinese, Japanese, Korean, and Vietnamese) will become
a standard term in your arsenal of knowledge. But, before we dive into the details, allow
me to discuss some terms with which you are no doubt familiar. Otherwise, you probably
would have little need or desire to continue reading.

Known to more and more people, internationalization, globalization, and localization
seem to have become household or “buzz” words in the field of computing and software
development, and have also become very hot topics among high-tech companies and re-
searchers due to the expansion of software markets to include virtually all parts of the
planet. This book is specifically about CJKV-enabling, which is the adaptation of software
for one or more CJKV locales. It is my intention that readers will find relevant and useful
CJKV-enabling information within the pages of this book.

Virtually every book on internationalization, globalization, or localization includes infor-
mation on character sets and encodings, but this book is intended to provide much more.
In summary, it provides a brief description of writing systems and scripts, a thorough
background of the history and current state of character sets, detailed information on
encoding methods, code conversion techniques, input methods, keyboard arrays, font
formats, glyph sets, typography, output methods, algorithms with sample source code,
tools that perform useful information processing tasks, and how to handle CJKV text in
the context of email and for web and print publishing. Expect to find plenty of platform-
independent information and discussions about character sets, how CJKV text is encoded
and handled on a number of operating systems, and basic guidelines and tips for develop-
ing software targeted for CJKV markets.

xxvi | Preface

Now, let me tell you what this book is not about. Don’t expect to find out how to design
your own word-processing application, how to design your own fonts for use on a com-
puter (although I provide sources for such tools), or how to properly handle formats for
CJKV numerals, currency, dates, times, and so on. This book is not, by any stretch of the
imagination, a complete reference manual for internationalization, globalization, or local-
ization, but should serve remarkably well as a companion to such reference works, which
have fortunately become more abundant.

It is my intention for this book to become the definitive source for information related to
CJKV information processing issues.* Thus, this book focuses heavily on how CJKV text
is handled on computer systems in a very platform-independent way, with an emphasis
or bias toward Unicode and other related and matured technologies. Most important-
ly, everything that is presented in this book can be programmed, categorized, or easily
referenced.

This book was written to fill the gap in terms of information relating to CJKV information
processing, and to properly and effectively guide software developers. I first attempted to
accomplish this over the course of several years by maintaining an online document that
I named JAPAN.INF (and entitled Electronic Handling of Japanese Text). This document
had been made publicly available through a number of FTP sites worldwide, and had
gained international recognition as the definitive source for information relating to Japa-
nese text handling on computer systems. Understanding Japanese Information Process-
ing excerpted and further developed key information contained in JAPAN.INF. However,
since the publication of Understanding Japanese Information Processing in 1993, JAPAN.
INF, well, uh, sort of died. Not a horrible death, mind you, but rather to prepare for its
reincarnation as a totally revised and expanded online document that I entitled CJK.INF
(the CJK analog to JAPAN.INF). The work I did on CJK.INF helped to prepare me to write
the first edition of this book, which provided updated material plus significantly more
information about Chinese, Korean, and Vietnamese, to the extent that granting the book
a new title was deemed appropriate and necessary. The second edition, which you have
in your hands, represents a much-needed update, and I hope that it becomes as widely
accepted and enjoyed as the first edition.

Although I have expended great effort to provide sufficient amounts of information for
Chinese, Japanese, Korean, and Vietnamese computing, you may feel that some bias to-
ward Japanese still lingers in many parts of this book. Well, if your focus or interest hap-
pens to be Japanese, chances are you won’t even notice. In any case, you can feel at ease
knowing that almost everything discussed in this book can apply equally to all of these
languages. However, the details of Vietnamese computing in the context of using ideo-
graphs are still emerging, so its coverage is still somewhat limited and hasn’t changed
much since the first edition.

* The predecessor of this book, Understanding Japanese Information Processing, which had a clear focus on Japa-
nese (hence its title) apparently became the definitive source for Japanese information processing issues, and was
even translated into Japanese.

Preface | xxvii

What Changed since the First edition?
Several important events took place during the 10 years since the first edition was pub-
lished. These events could be characterized as technologies that were in the process of
maturing, and have now fully matured and are now broadly used and supported.

First and foremost, Unicode has become the preferred way in which to represent text in
digital format, meaning when used on a computer. Virtually all modern OSes and ap-
plications now support Unicode, and in a way that has helped to trivialize many of the
complexities of handling CJKV text. As you read this book, you may feel a bias toward
Unicode. This is for a good reason, because unless your software embraces Unicode, you
are going down the wrong path. This also means that if you are using an application that
doesn’t handle Unicode, chances are it is outdated, and perhaps a newer version exists that
supports Unicode.

Second, OpenType has become the preferred font format due to its cross-platform nature,
and how it allows what were once competing font formats, Type 1 and TrueType, to exist
in harmony. Of course, OpenType fonts support Unicode and have strong multilingual
capabilities. OpenType fonts can also provide advanced typographic functionality.

Third, PDF (Portable Document Format) has become the preferred way in which to pub-
lish for print, and is also preferred for the Web when finer control over presentation is de-
sired. In addition to supporting Unicode, PDF encapsulates documents in such a way that
they can be considered a reliable digital master, and the same file can be used for display-
ing and printing. In short, PDF has become the key to the modern publishing workflow.

Last but not least, the Web itself has matured and advanced in ways that could not be pre-
dicted. The languages used to build the Web, which range from languages that describe
the content and presentation of web documents, such as CSS, HTML, XHTML, and XML,
to scripting languages that enable dynamic content, have matured, and they all have one
thing in common: they all support Unicode. In case it is not obvious, Unicode will be a
recurring theme throughout this book.

Audience
Anyone interested in how CJKV text is processed on modern computers will find this
book useful, including those who wish to enter the field of CJKV information processing,
and those who are already in the field but have a strong desire for additional reference ma-
terial. This book will also be useful for people using any kind of computer and any type of
operating system, such as FreeBSD, the various Linux distributions, Mac OS X, MS-DOS,
Unix, and the various flavors of Windows.

Although this book is specifically about CJKV information processing, anyone with an in-
terest in creating multilingual software or a general interest in I18N (internationalization),
G11N (globalization), or L10N (localization) will learn a great deal about the issues in-
volved in handling complex writing systems and scripts on computers. This is particularly

xxviii | Preface

true for people interested in working with CJKV text. Thankfully, information relating to
the CJKV-enabling of software has become less scarce.

I assume that readers have little or no knowledge of a CJKV language (Chinese, Japa-
nese, Korean, or Vietnamese) and its writing system. In Chapter 2, Writing Systems and
Scripts, I include material that should serve as a good introduction to CJKV languages,
their writing systems, and the scripts that they use. If you are familiar with only one CJKV
language, Chapter 2 should prove to be quite useful for understanding the others.

Conventions Used in this Book
Kanji, hanzi, hanja, kana, hiragana, katakana, hangul, jamo, and other terms will come
up, time and time again, throughout this book. You will also encounter abbreviations and
acronyms, such as ANSI, ASCII, CNS, EUC, GB, GB/T, GBK, ISO, JIS, KS, and TCVN.
Terms, abbreviations, and acronyms—along with many others words—are usually ex-
plained in the text, and again in Appendix D, Glossary, which I encourage you to study.

When hexadecimal values are used in the text for lone or single bytes, and to remove any
ambiguity, they are prefixed with 0x, such as 0x80. When more than one byte is speci-
fied, hexadecimal values are instead enclosed in angled brackets and separated by a space,
such as <80 80> for two instances of 0x80. Unicode scalar values follow the convention of
using the U+ prefix followed by four to six hexadecimal digits. Unicode encoding forms
are enclosed in angled brackets and shown as hexadecimal code units, except when the
encoding form specifies byte order, in which case the code units are further broken down
into individual bytes. U+20000, for example, is expressed as <D840 DC00> in UTF-16, but
as <D8 40 DC 00> in UTF-16BE (UTF-16 big-endian) and as <40 D8 00 DC> in UTF-16LE
(UTF-16 little-endian). Its UTF-8 equivalent is <F0 A0 80 80>. The angled brackets are
generally omitted when such values appear in a table. Furthermore, Unicode sequences
are expressed as Unicode scalar values separated by a comma and enclosed in angled
brackets, such as <U+304B, U+309A>.

Decimal values are almost always clearly identified as such, and when used, appear as
themselves without a prefix, and unenclosed. For those who prefer other notations, such
as binary or octal, Appendix B, Notation Conversion Table, can be consulted to convert
between all four notations.

Throughout this book I generically use short suffixes such as “J,” “K,” “S,” “T,” “V,” and
“CJKV” to denote locale-specific or CJKV-capable versions of software products. I use
these suffixes for the sake of consistency, and because software manufacturers often change
the way in which they denote CJKV versions of their products. In practice, you may in-
stead encounter the suffix 日本語版 (nihongoban, meaning “Japanese version”), the prefix
“Kanji,” or the prefix 日本語 (nihongo, meaning “Japanese”) in Japanese product names.
For Chinese software, 中文 (zhōngwén, meaning “Chinese”) is a common prefix. I also
refrain from using version numbers for software described in this book (as you know, this
sort of information becomes outdated very quickly). I use version numbers only when
they represent a significant advancement or development stage in a product.

Preface | xxix

References to “China” in this book refer to the People’s Republic of China (PRC; 中华人民
共和国 zhōnghuá rénmín gònghé guó), also commonly known as Mainland China. Refer-
ences to “Taiwan” in this book refer to the Republic of China (ROC; 中華民國 zhōnghuá
mínguó). Quite often this distinction is necessary.

Name ordering in this book, when transliterated in Latin characters, follows the conven-
tion that is used in the West—the given name appears first, followed by the surname.
When the name is written using CJKV characters—in parentheses following the translit-
erated version—the surname appears first, followed by the given name.

“ISO 10646” and “Unicode” are used interchangeably throughout this book. Only in some
specific contexts are they different.

Italic is used for pathnames, filenames, program names, new terms where they are de-
fined, newsgroup names, and web addresses, such as domain names, URLs, and email
addresses.

Constant width is used in examples to illustrate output from commands, the contents of
files, or the text of email messages.

Constant width bold is used in examples to indicate commands or other text that should
be typed literally by the user; occasionally it is also used to distinguish parts of an ex-
ample.

The % (percent) character is used to represent the Unix shell prompt for Unix and similar
command lines.

Footnotes are used for parenthetical remarks and for providing URLs. Sometimes what is
written in the text proper has been simplified or shortened for the purpose of easing the
discussion or for practical reasons (especially in Chapter 2 where I introduce the many
CJKV writing systems), and the footnotes—usually, but not always—provide additional
details.

How this Book Is organized
Let’s now preview the contents of each chapter in this book. Don’t feel compelled to read
this book linearly, but feel free to jump around from section to section. Also, the index is
there for you to use.

Chapter 1, CJKV Information Processing Overview, provides a bird’s eye overview of the
issues that are addressed by this book, and is intended to give readers an idea of what they
can expect to learn. This chapter establishes the context in which this book will become
useful in your work or research.

Chapter 2, Writing Systems and Scripts, contains information directly relating to CJKV
writing systems and their scripts. Here you will learn about the various types of charac-
ters that compose CJKV texts. This chapter is intended for readers who are not familiar
with the Chinese, Japanese, Korean, or Vietnamese languages (or who are familiar with

xxx | Preface

only one or two of those languages). Everyone is bound to learn something new in this
chapter.

Chapter 3, Character Set Standards, describes the two classes of CJKV character set stan-
dards: coded and noncoded. Coded character set standards are further divided into two
classes: national and international. Comparisons are also drawn between CJKV character
set standards, and the coverage of Unicode is extensive.

Chapter 4, Encoding Methods, contains information on how the character set standards
described in Chapter 3 are encoded on computer systems. Emphasis is naturally given to
the encoding forms of Unicode, but information about legacy encoding methods is also
provided. Encoding is a complex but important step in representing and manipulating
human-language text in a computer. Other topics include software for converting from
one CJKV encoding to another, and instructions on how to repair damaged CJKV text
files.

Chapter 5, Input Methods, contains information on how CJKV text is input. First I dis-
cuss CJKV input in general terms, and then describe several specific methods for enter-
ing CJKV characters on computer systems. Next, we move on to the hardware necessary
for CJKV input, specifically keyboard arrays. These range from common keyboard ar-
rays, such as the QWERTY array, to ideograph tablets containing thousands of individual
keys.

Chapter 6, Font Formats, Glyph Sets, and Font Tools, contains information about bitmapped
and outline font formats as they relate to CJKV, with an emphasis toward OpenType. The
information presented in this chapter represents my daily work at Adobe Systems, so
some of its sections may suffer from excruciating detail, which explains the length of this
chapter.

Chapter 7, Typography, contains information about how CJKV text is properly laid out on
a line and on a printed page. Merely having CJKV fonts installed is not enough—there are
rules that govern where characters can and cannot be used, and how different character
classes behave, in terms of spacing, when in proximity. The chapter ends with a descrip-
tion of applications that provide advanced page composition functionality.

Chapter 8, Output Methods, contains information about how to display, print, or other-
wise output CJKV text. Here you will find information relating to the latest printing and
display technologies.

Chapter 9, Information Processing Techniques, contains information and algorithms relat-
ing to CJKV code conversion and text-handling techniques. The actual mechanics are
described in detail, and, where appropriate, include algorithms written in C, Java, and
other programming languages. Though somewhat dated, the chapter ends with a brief
description of three Japanese code-processing tools that I have written and maintained
over a period of several years. These tools demonstrate how the algorithms can be applied
in the context of Japanese.

Preface | xxxi

Chapter 10, OSes, Text Editors, and Word Processors, contains information about operat-
ing systems, text editors, and word processors that are CJKV-capable, meaning that they
support one or more CJKV locale.

Chapter 11, Dictionaries and Dictionary Software, contains information about dictionar-
ies, both printed and electronic, that are useful when dealing with CJKV text. Also in-
cluded are tips on how to more efficiently make use of the various indexes used to locate
ideographs in dictionaries.

Chapter 12, Web and Print Publishing, contains information on how CJKV text is best
handled electronically over networks, such as when using email clients. Included are tips
on how to ensure that what you send is received intact, as well as information about the
Internet domains that cover the CJKV locales. Web and print publishing, through the use
of HTML (HyperText Markup Language), XML (Extensible Markup Language), and PDF
(Portable Document Format) are also discussed in detail.

Appendix A, Code Conversion Tables, provides a code conversion table between deci-
mal Row-Cell, hexadecimal ISO-2022, hexadecimal EUC, and hexadecimal Shift-JIS
(Japanese-specific) codes. Also included is an extension that handles the Shift-JIS user-
defined range.

Appendix B, Notation Conversion Table, lists all 256 8-bit byte values in the four common
notations: binary, octal, decimal, and hexadecimal.

Appendix C, Perl Code Examples, provides Perl equivalents of many algorithms found in
Chapter 9—along with other goodies.

Appendix D, Glossary, defines many of the concepts and terms used throughout this book
(and other books).

Finally, the Bibliography lists many useful references, many of which were consulted while
writing this book.

Although not included in the printed version of this book, the following appendixes are
provided as downloadable and printable PDFs. This book does include placeholder pages
for them, which serve to specify their URLs.

Appendix E, Vendor Character Set Standards, is reference material for those interested in
vendor-specific extensions to CJKV character set standards. To a great extent, Unicode
has effectively deprecated these standards.

Appendix F, Vendor Encoding Methods, is reference material for those interested in how
the vendor character sets in Appendix E are encoded.

Appendix G, Chinese Character Sets—China, provides character set tables, character lists,
mapping tables, and indexes that relate to standards from China.

Appendix H, Chinese Character Sets—Taiwan, provides character set tables, character
lists, mapping tables, and indexes that relate to standards from Taiwan.

www.allitebooks.com

http://www.allitebooks.org

xxxii | Preface

Appendix I, Chinese Character Sets—Hong Kong, provides character set tables and charac-
ter lists that relate to standards from Hong Kong.

Appendix J, Japanese Character Sets, provides character set tables, character lists, mapping
tables, and indexes that relate to standards from Japan.

Appendix K, Korean Character Sets, provides character set tables, character lists, mapping
tables, and indexes that relate to standards from Korea, specifically South Korea.

Appendix L, Vietnamese Character Sets, provides character set tables that relate to stan-
dards from Vietnam.

Appendix M, Miscellaneous Character Sets, provides character set tables for standards
such as ASCII, ISO 8859, EBCDIC, and EBCDIK.

Using Code examples
This book is here to help you get your job done. In general, you may use the code in this
book in your programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example, writing a pro-
gram that uses several chunks of code from this book does not require permission. Selling
or distributing a CD-ROM or DVD of examples from this book does require permission.
Answering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “CJKV Information Processing, Second Edition,
by Ken Lunde. Copyright 2009 O’Reilly Media, Inc., 978-0-596-51447-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
USA
800-998-9938 (in the United States or Canada)
+1-707-829-0515 (international/local)
+1-707-829-0104 (facsimile)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596514471/

Preface | xxxiii

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

safari® Books online
When you see a Safari Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters, and
find quick answers when you need the most accurate, current information. Try it for free
at http://safari.oreilly.com/.

Acknowledgments
To write a book or reference work this thick requires interaction with and cooperation
from people across our planet. It is not possible for me to list all the people who have
helped or guided me over the years—there are literally hundreds.

In some cases, people simply come to me for help on a particular subject (that’s what hap-
pens, I guess, when people are aware of your email address—to ensure that I will receive
a ton of email, in various parts of this book you will find that my email address is lunde@
adobe.com). Sometimes I may not know the answer, but the question usually inspires me
to seek out the truth. The truth is out there.

The year 2008 marks 17 wonderful years at Adobe Systems, a company that provides me
with daily CJKV-related challenges. Its always-advancing technologies and commitment
to customers is what initially attracted me, and these are the qualities and values that keep
me here. Besides, they let me display on the wall of my office the antelopes that I have har-
vested* annually in Wyoming since 2003. I firmly believe that “diversity in the workforce”
is a door that swings both ways, and the antelopes that I display in my office serve as a
tribute to that belief. Speaking of tributes, all aspects of the production of this book are a
tribute to Adobe Systems’ publishing technologies.

To all the people who have read and criticized my previous writings, tolerated my some-
times dull but otherwise charming personality at work, pointed out errors in my work, ex-
changed email with me for whatever reason, or otherwise helped me to grow and become
a better person: thank you! You should know who you are.

Special thanks go to Tim O’Reilly (the president and founder of O’Reilly Media) and Peter
Mui for believing in my first book, Understanding Japanese Information Processing, and
to Peter for serving as its editor. It was Peter who encouraged me to expand it to cover
the complete CJKV framework. Thanks go to Edie Freedman for sticking with my idea

* Harvesting is another way to express hunting.

xxxiv | Preface

of a blowfish for the cover.* Ron Bilodeau graciously helped me through the layout of the
book, and nurtured my desire to embrace Adobe InDesign’s particular paradigm. Robert
Romano also deserves a lot of credit for the work he did on the figures that are found
throughout this book. Julie Steele, my editor, continually pushed and prodded me to get
this book done as close to schedule as possible. Mary Brady performed the copyedit, ex-
posing various errors and oddities that crept from my fingers to the keyboard. Genevieve
d’Entremont proofread the entire book, and discovered additional gems. Rachel Mon-
aghan reviewed the index, and also provided production assistance.

Attempting to write a book of any length, while holding down a day job and doing so as an
activity above and beyond it, takes a lot of effort and perseverance. I’d like to specifically
thank David Lemon, Karen Catlin, and Digby Horner for their support and encourage-
ment while writing this book. My colleagues and coworkers at Adobe Systems, especially
those in Type Development, deserve the same recognition. Miguel Sousa, a coworker in
Type Development, needs to be singled out and especially thanked for providing to me
custom versions of the Minion Pro and Myriad Pro fonts that include the glyphs neces-
sary for Pinyin transliteration and for implementing tabular hexadecimal digits, both of
which are used extensively throughout this book. The tabular headecimal digits are espe-
cially nice, especially for a book such as this one.

The following individuals were incredibly helpful by reviewing various parts of this book,
from specific pages to entire chapters, during the various stages of its prolonged devel-
opment: Tom Bishop, Jim Breen, Robert Bringhurst, Seong Ah Choi (최성아), Rich-
ard Cook, Gu Hua (顾华), Paul Hackett, Jerry Hall, Taichi Kawabata (川幡太一), John
Knightley, Tatsuo Kobayashi (小林龒生), Mark Leisher, David Lemon, Lu Qin (陸勤),
Nat McCully, Dirk Meyer, Charles Muller, Eric Muller, Mihai Nita, Thomas Phinney, Read
Roberts, Markus Scherer, Jungshik Shin (신정식), Miguel Sousa, Frank Tang (譚永鋒),
Margie Vogel, Taro Yamamoto (山本太郎), and Retarkgo Yan (甄烱輝). I am indebted to
each and every one of them for providing me with useful insights and inspirational ideas,
and in some deserving cases, sharp criticism. I am, of course, ultimately responsible for
any errors, omissions, or oddities that you may encounter while reading this book.

Finally, I wish to thank my wonderful parents, Vernon Delano Lunde and Jeanne Mae
Lunde, for all of their support throughout the years; my son, Edward Dharmputra Lunde;
my step-son, Ryuho Kudo (工藤龍芳); my beautiful daughter, Ruby Mae Lunde (工藤瑠
美); and my beloved and caring wife, Hitomi Kudo (工藤仁美). I treasure the time that I
spend with my parents, which includes varmint and larger game hunting with my father.
Having my own family has great rewards.

* Michael Slinn made the astute observation that the Babel Fish would have been more appropriate as a cover
creature for this book—according to Douglas Adams’ The Hitchhiker’s Guide to the Galaxy, you simply stick a
Babel Fish in your ear, it connects with your brain, and you can suddenly understand all languages.

1

CHAPter 1

CJKV Information Processing overview

Here I begin this book by stating that a lot of mystique and intrigue surrounds how
CJKV—Chinese, Japanese, Korean, and Vietnamese—text is handled on computer sys-
tems, ranging from handheld mobile devices to mainframe computers. Although I agree
with there being sufficient intrigue, there is far too much mystery in my opinion and ex-
perience. Much of this is due to a lack of information, or perhaps simply due to a lack of
information written in a language other than Chinese, Japanese, Korean, or Vietnamese.
Nevertheless, many fine folks, such as you, the reader of this book, would like to know
how this all works. To confirm some of your worst fears and speculations, CJKV text does
require special handling on computer systems. However, it should not be very mysterious
after having read this book. In my experience, you merely need to break the so-called one-
byte-equals-one-character barrier—most CJKV characters are represented by more than a
single byte (or, to put it in another way, more than eight bits).*

English information processing was a reality soon after the introduction of early computer
systems, which were first developed in England and the United States. Adapting software
to handle more complex scripts, such as those used to represent CJKV text, is a more re-
cent phenomenon. This adaptation developed in various stages and continues today.

Listed here are several key issues that make CJKV text a challenge to process on computer
systems:

CJKV writing systems use a mixture of different, but sometimes related, scripts.•	

CJKV character set standards enumerate thousands or tens of thousands of charac-•	
ters, which is orders of magnitude more than used in the West—Unicode now includes
more than 100,000 characters, adequately covering CJKV needs.

There is no universally recognized or accepted CJKV character set standard such as •	
ASCII for writing English—I would claim that Unicode has become such a character
set, hence its extensive coverage in this book.

* For a greater awareness of, and appreciation for, some of the complexities of dealing with multiple-byte text,
you might consider glancing now at the section entitled “Byte Versus Character Handling” in Chapter 9.

2 | Chapter 1: CJKV Information Processing overview

There is no universally recognized or accepted CJKV encoding method such as ASCII •	
encoding—again, the various Unicode encoding forms have become the most widely
used encodings, for OSes, applications, and for web pages.

There is no universally recognized or accepted input device such as the •	 QWERTY
keyboard array—this same keyboard array, through a method of transliteration, is
frequently used to input most CJKV text through reading or other means.

CJKV text can be written horizontally or vertically, and requires special typograph-•	
ic rules not found in Western typography, such as spanning tabs and unique line-
breaking rules.

Learning that the ASCII character set standard is not as universal as most people think
is an important step. You may begin to wonder why so many developers assume that
everyone uses ASCII. This is okay. For some regions, ASCII is sufficient. Still, ASCII has
its virtues. It is relatively stable, and it forms the foundation for many character sets and
encodings. UTF-8 encoding, which is the most common encoding form used for today’s
web pages, uses ASCII as a subset. In fact, it is this characteristic that makes its use pre-
ferred over the other two Unicode encoding forms, specifically UTF-16 and UTF-32.

Over the course of reading this chapter, you will encounter several sections that explain
and illustrate some very basic, yet important, computing concepts, such as notation and
byte order, all of which directly relate to material that is covered in the remainder of this
book. Even if you consider yourself a seasoned software engineer or expert programmer,
you may still find value in those sections, because they carry much more importance in
the context of CJKV information processing. That is, how these concepts relate to CJKV
information processing may be slightly different than what you had previously learned.

Writing systems and scripts
CJKV text is typically composed of a mixture of different scripts. The Japanese writing
system, as an example, is unique in that it uses four different scripts. Others, such as Chi-
nese and Korean, use fewer. Japanese is one of the few, if not the only, languages whose
writing system exhibits this characteristic of so many scripts being used together, even in
the same sentence (as you will see very soon). This makes Japanese quite complex, ortho-
graphically speaking, and poses several problems.*

Unicode’s definitions of script and writing system are useful to consider. Script is defined
as a collection of letters and other written signs used to represent textual information in
one or more writing systems. For example, Russian is written with a subset of the Cyrillic
script; Ukranian is written with a different subset. The Japanese writing system uses sev-
eral scripts. Writing system is defined as a set of rules for using one or more scripts to write
a particular language. Examples include the American English writing system, the British
English writing system, the French writing system, and the Japanese writing system.

* Orthography is a linguistic term that refers to the writing system of a language.

Writing systems and scripts | 3

The four Japanese scripts are Latin characters, hiragana, katakana, and kanji (collectively
referred to as ideographs regardless of the language). You are already familiar with Latin
characters, because the English language is written with these. This script consists of the
upper- and lowercase Latin alphabet, which consists of the characters often found on
typewriter keys. Hiragana and katakana are native Japanese syllabaries (see Appendix D
for a definition of “syllabary”). Both hiragana and katakana represent the same set of
syllables and are collectively known as kana. Kanji are ideographs that the Japanese bor-
rowed from China over 1,600 years ago. Ideographs number in the tens of thousands and
encompass meaning, reading, and shape.

Now let’s look at an example sentence composed of these four scripts, which will serve to
illustrate how the different Japanese scripts can be effectively mixed:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

In case you are curious, this sentence means “Encoding methods such as EUC can sup-
port texts that mix Japanese and English.” Let’s look at this sentence again, but with the
Latin characters underlined:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

In this case, there is a single abbreviation, EUC (short for Extended Unix Code, which
refers to a locale-independent encoding method, a topic covered in Chapter 4). It is quite
common to find Latin characters used for abbreviations in CJKV texts. Latin characters
used to transliterate Japanese text are called ローマ字 (rōmaji) or ラテン文字 (raten
moji) in Japanese.

Now let’s underline the katakana characters:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

Each katakana character represents one syllable, typically a lone vowel or a consonant-
plus-vowel combination. Katakana characters are commonly used for writing words bor-
rowed from other languages, such as English, French, or German. Table 1-1 lists these
three underlined katakana words, along with their meanings and readings.

Sample katakanaTable 1-1.

Katakana Meaning readinga

エンコーディング encoding enkōdingu

テキスト text tekisuto

サポート support sapōto

The macron is used to denote long vowel sounds.a.

4 | Chapter 1: CJKV Information Processing overview

Note how their readings closely match that of their English counterparts, from which they
were derived. This is no coincidence: it is common for the Japanese readings of borrowed
words to be spelled out with katakana characters to closely match the original.

Next we underline the hiragana characters:

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

Hiragana characters, like katakana as just described, represent syllables. Hiragana char-
acters are mostly used for writing grammatical words and inflectional endings. Table 1-2
illustrates the usage or meaning of the hiragana in the preceding example.

Sample hiraganaTable 1-2.

Hiragana Meaning or usage reading

の Possessive marker no

は Topic marker waa

と and (conjunction) to

が Subject marker ga

している doing… (verb) shite-iru

を Object marker o

します do… (verb) shimasu

This hiragana character is normally pronounced a. ha, but when used as a topic marker, it becomes wa.

That’s a lot of grammatical stuff! Japanese is a postpositional language, meaning that
grammatical markers, such as the equivalent of prepositions as used in English, come
after the nouns that they modify. These grammatical markers are called particles (助詞
joshi) in Japanese.

Finally, we underline the ideographs (called hànzì in Chinese, kanji in Japanese, hanja in
Korean, and chữ Hán and chữ Nôm in Vietnamese):

EUC 等のエンコーディング方法は日本語と英語が混交しているテキストをサポートします。

At first glance, ideographs appear to be more complex than the other characters in the
sentence. This happens to be true most of the time. Ideographs represent meanings and
are often called Chinese characters, Han characters, pictographs, or logographs.* Ideographs
are also assigned one or more readings (pronunciations), each of which is determined by
context. While their readings differ depending on the language (meaning Chinese, Japa-
nese, Korean, or Vietnamese), ideographs often have or convey the same or similar mean-
ing. This makes it possible for Japanese to understand—but not necessarily pronounce—

* Being a widespread convention, this is beyond critique. However, linguists use these terms for different classes
of ideographs, depending on their etymology.

Writing systems and scripts | 5

some very basic Chinese, Korean, and Vietnamese texts. Table 1-3 provides a listing of
the underlined ideographs and ideograph compounds (words composed of two or more
ideographs) from our example sentence, and supplies their meanings and readings.

Sample ideographs and ideograph compoundsTable 1-3.

Ideographs Meaning reading

等 such as… nado

方法 method hōhō

日本語 Japanese (language) nihongo

英語 English (language) eigo

混交 (to) mix konkō

Of course, this example includes only those types of characters that are used in Japanese—
other locales use different types of characters. Table 1-4 lists the four CJKV locales, along
with what scripts their writing systems use.

CJKV locales and their scriptsTable 1-4.

Locale scripts

China Latin and hanzi (simplified)

Taiwan Latin, zhuyin, and hanzi (traditional)

Japan Latin, hiragana, katakana, and kanji

Koreaa Latin, jamo, hangul, and hanja

Vietnam Latin (Quốc ngữ), chữ Nôm, and chữ Hán

Jamo are the alphabet-like components that make up hangul.a.

Table 1-5 lists some sample characters from each of the scripts used in CJKV locales. We
discuss the scripts of these writing systems in much greater detail in Chapter 2.

Sample CJKV charactersTable 1-5.

script sample characters

Latin characters ＡＢＣＤＥＦＧＨＩＪ … ｑｒｓｔｕｖｗｘｙｚ
Zhuyin ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎ … ㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩ
Hiragana ぁあぃいぅうぇえぉお … りるれろゎわゐゑをん
Katakana ァアィイゥウェエォオ … ロヮワヰヱヲンヴヵヶ
Jamo ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺ … ㆅㆆㆇㆈㆉㆊㆋㆌㆍㆎ

Hangul syllables 가각간갇갈갉갊감갑값 … 흽힁히힉힌힐힘힙힛힝

6 | Chapter 1: CJKV Information Processing overview

Sample CJKV charactersTable 1-5.

script sample characters

Hanzi (simplified) 啊阿埃挨哎唉哀皑癌蔼 … 黪黯鼢鼬鼯鼹鼷鼽鼾齄

Hanzi (traditional) 一乙丁七乃九了二人儿 … 驫鱺鸝灩灪爩麤齾齉龘
Kanji 亜唖娃阿哀愛挨姶逢葵 … 齶龕龜龠堯槇遙瑤凜熙
Hanja 伽佳假價加可呵哥嘉嫁 … 晞曦熙熹熺犧禧稀羲詰

But, how frequently are each of these scripts used? Given an average sampling of Japanese
writing, one normally finds 30% kanji, 60% hiragana, and 10% katakana. Actual percent-
ages depend on the nature of the text. For example, you may find a higher percentage of
kanji in technical literature, and a higher percentage of katakana in fields such as fashion
and cosmetics, which make extensive use of loan words written in katakana. Most Korean
texts consist of nothing but hangul syllables, and most Chinese texts are composed of only
hanzi.* Latin characters are used the least, except in Vietnam, where they represent the
primary script.

So, how many characters do you need to learn in order to read and write CJKV languages
effectively? Here are some very basic guidelines:

You must learn hiragana and katakana if you plan to deal with Japanese—this consti-•	
tutes approximately 200 characters.

Learning hangul is absolutely necessary for Korean, but you can get away with not •	
learning hanja.

You need to have general knowledge of about 1,000 kanji to read over 90% of the kanji •	
in typical Japanese texts—more are required for reading Chinese texts because only
hanzi are used.

If you have not already learned Chinese, Japanese, Korean, or Vietnamese, I encourage
you to learn one of them so that you can better appreciate the complexity of their writing
systems. Although I discuss character dictionaries, and learning aids to a lesser extent, in
Chapter 11, they are no substitute for a human teacher.

Character set standards
A character set simply provides a common bucket, repertoire, or collection of characters.
You may have never thought of it this way, but the English alphabet is an example of a
character set standard. It specifies 52 upper- and lowercase letters. Character set standards
are used to ensure that we learn a minimum number of characters in order to commu-
nicate with others in society. In effect, they limit the number of characters we need to

* Well, you will also find symbol-like characters, such as punctuation marks.

Character set standards | 7

learn. There are only a handful of characters in the English alphabet, so nothing is really
being limited, and as such, there really is no character set standard per se. In the case of
languages that use ideographs, however, character set standards play an especially vital
role. They specify which ideographs—out of the tens of thousands in existence—are the
most important to learn for each locale. The current Japanese set, called Jōyō Kanji (常用
漢字 jōyō kanji), although advisory, limits the number of ideographs to 1,945.* There are
similar character sets in China, Taiwan, and Korea. These character set standards were
designed with education in mind, and are referred to as noncoded character sets.

Character set standards designed for use on computer systems are almost always larger
than those used for the purpose of education, and are referred to as coded character sets.
Establishing coded character set standards for use with computer systems is a way to en-
sure that everyone is able to view documents created by someone else. ASCII is a Western
character set standard, and ensures that their computer systems can communicate with
each other. But, as you will soon learn, ASCII is not sufficient for the purpose of profes-
sional publishing (neither is its most common extension, ISO 8859-1:1998).

Coded character set standards typically contain characters above and beyond those found
in noncoded ones. For example, the ASCII character set standard contains 94 printable
characters—42 more than the upper- and lowercase alphabet. In the case of Japanese,
there are thousands of characters in the coded character sets in addition to the 1,945 in
the basic noncoded character set. The basic coded Japanese character set standard, in its
most current form, enumerates 6,879 characters and is designated JIS X 0208:1997. There
are four versions of this character set, each designated by the year in which it was estab-
lished: 1978, 1983, 1990, and 1997. There are two typical compatibility problems that you
may encounter when dealing with different versions of the same character set standard:

Some of these versions contain different numbers of characters—later versions gen-•	
erally add characters.

Some of these versions are not 100% compatible with each other due to changes.•	

In addition, there may be an extended character set standard, such as Japan’s JIS X 0212-
1990, that defines 6,067 additional characters, most of which are kanji, or China’s GB
18030-2005, which adds tens of thousands of characters to its original GB 2312-80
standard.

Additional incompatibility has occurred because operating system (OS) developers took
these coded character set standards one step further by defining their own extensions.
These vendor character set standards are largely, but not completely, compatible, and al-
most always use one of the national standards as their base. When you factor in vendor
character set standards, things appear to be a big mess. Fortunately, the broad adoption of
Unicode has nearly brought the development of vendor-specific character sets to a halt.
This book documents these character sets, primarily for historical purposes.

* The predecessor of this character set, Tōyō Kanji (当用漢字 tōyō kanji), was prescriptive.

8 | Chapter 1: CJKV Information Processing overview

encoding Methods
Encoding is the process of mapping a character to a numeric value, or more precisely,
assigning a numeric value to a character. By doing this, you create the ability to uniquely
identify a character through its associated numeric value. The more unique a value is
among different encoding methods, the more likely that character identification will be
unambiguous. Ultimately, the computer needs to manipulate the character as a numeric
value. Independent of any CJKV language or computerized implementations thereof, in-
dexing encoded values allows a numerically enforced ordering to be mapped onto what
might otherwise be a randomly ordered natural language.

While there is no universally recognized encoding method, many have been commonly
used—for example, ISO-2022-KR, EUC-KR, Johab, and Unified Hangul Code (UHC) for
Korean. Although Unicode does not employ a single encoding form, it is safe to state that
the encoding forms for Unicode—UTF-8, UTF-16, and UTF-32—have become univer-
sally recognized. In addition, each one has become the preferred encoding form for spe-
cific uses. For the Web, UTF-8 is the most common encoding form. Applications prefer to
use the UTF-16 encoding form internally for its overall space-efficiency for the majority
of multilingual text. OpenType fonts, when they include glyphs that map from characters
outside the Basic Multilingual Plane (BMP), make use of and prefer the UTF-32 encoding
form.

data storage Basics
First, before describing these encoding methods, here’s a short explanation of how mem-
ory is allocated on computer systems. Computer systems process data called bits. These
are the most basic units of information, and they can hold or store one of two possible
values: on or off. These are usually mapped to the values 1 or 0, respectively. Bits are strung
together into units called bytes. Bytes are usually composed of 7 or 8 bits. Seven bits allow
for up to 128 unique combinations, or values; 8 bits allow for up to 256. While these num-
bers are sufficient for representing most characters in Western writing systems, it does
not even come close to accommodating large character sets whose characters number in
the thousands, such as those required by the CJKV locales. It is also possible to use more
than 8 bits, and some encoding methods use 16 or 32 bits as their code units, which are
equivalent to 2 and 4 bytes, respectively.

The first attempt to encode an Asian language script on computer systems involved the
use of Japanese half-width katakana characters. This is a limited set of 63 characters that
constitutes a minimal set for representing Japanese text. But there was no support for
kanji. The solution to this problem, at least for Japanese, was formalized in 1978, and em-
ployed the notion of using 2 bytes to represent a single character. This did not eliminate
the need for one-byte characters, though. The Japanese solution was to extend the notion
of one-byte character encoding to include two-byte characters. This allows for text with
mixed one- and two-byte characters. How one- and two-byte characters are distinguished
depends on the encoding method. Two bytes equal 16 bits, and thus can provide up to

encoding Methods | 9

65,536 unique values. This is best visualized as a 256×256 matrix. See Figure 1-1 for an
illustration of such a matrix.

���

�
����

256×256 encoding matrixFigure 1-1.

However, not all of these 65,536 cells can be used for representing displayable characters.
To enable the mixture of one- and two-byte characters within a single text stream, some
characters needed to be reserved as control characters, some of which then serve as the
characters that signify when a text stream shifts between one- and two-byte modes. In the
case of ISO-2022-JP encoding, the upper limit of displayable characters was set at 8,836,
which is the size of the code space made from a 94×94 matrix.*

But why do you need to mix one- and two-byte characters anyway? It is to support exist-
ing one-byte encoding standards, such as ASCII, within a two-byte (or sometimes larger)
encoding system. One-byte encoding methods are here to stay, and it is still a rather effi-
cient means to encode the characters necessary to write English and many other languag-
es. The most common encoding method for web pages, a mixed one- through four-byte
encoding form called UTF-8, includes ASCII as its one-byte portion. However, languages
with large character sets—those spoken in the CJKV locales—require two or more bytes
to encode characters. Some encoding methods treat all characters, including ASCII, the
same, meaning that they consume or require the same amount of encoding space. UTF-16
and UTF-32 use 16- and 32-bit code units, meaning that ASCII “A” (0x41) is represented
by 16 or 32 bits: <0041> or <00000041>.

Along with discussions about character sets and encodings, you will encounter the terms
“row” and “cell” again and again throughout this book. These refer to the axes of a matrix

* Code space refers to the area within the (usual) 256×256 encoding matrix that is used for encoding characters.
Most of the figures in Chapter 4 and Appendix F illustrate code spaces that fall within this 256×256 matrix.

10 | Chapter 1: CJKV Information Processing overview

used to hold and encode characters. A matrix is made up of rows, and rows are made up
of cells. The first byte specifies the row, and the second specifies the cell of the row. Figure
1-2 illustrates a matrix and how characters’ positions correspond to row and cell values.

��
��
��
��
��
��
��

��

��

�� ������

��
�

�
�
�

�
�

�

����

��
�

��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

� � � � � � �

�� ��
��

�� �� �� ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��������� ��� ����

� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��
� �� ��

�����������

Indexing an encoding matrix by row and cellFigure 1-2.

Input Methods | 11

In an attempt to allow for a mixture of one- and two-byte characters, several CJKV encod-
ing methods have been developed. As you will learn in Chapter 4, these encoding meth-
ods are largely, but not completely, compatible. You will also see that there are encoding
methods that use three or even four bytes to represent a single character!

The most common Japanese encoding methods are ISO-2022-JP, Shift-JIS, and EUC-JP.
ISO-2022-JP, the most basic, uses seven-bit bytes (or, seven bits of a byte) to represent
characters, and requires special characters or sequences of characters (called shifting char-
acters or escape sequences) to shift between one- and two-byte modes. Shift-JIS and EUC-
JP encodings make generous use of eight-bit characters, and use the value of the first byte
as the way to distinguish one- and multiple-byte characters. Now, Unicode has become
the most common encoding for Japanese.

Input Methods
Those who type English text have the luxury of using keyboards that can hold all the keys
to represent a sufficient number of characters. CJKV characters number in the thousands,
though, so how does one type CJKV text? Large keyboards that hold thousands of indi-
vidual keys exist, but they require special training and are difficult to use. This has led to
software solutions: input methods and the conversion dictionaries that they employ.

Most Chinese and Japanese text is typically input in two stages:

The user types raw keyboard input, which the computer interprets by using the input 1.
method and the conversion dictionary to display a list of candidate characters (the
word “candidate” here refers to the character or characters that are mapped to the
input string in the conversion dictionary).

The user selects one choice from the list of candidate characters, or requests more 2.
choices.

How well each stage of input is handled on your computer depends greatly on the quality
(and vintage) of the input software you are using. Typical Korean and Vietnamese input is
much more direct, and it varies by the keyboard layout that is used.

Software called an input method handles both of these input stages. It is so named because
it grabs the user’s keyboard input before any other software can use it (specifically, it is the
first software to process keyboard input).

The first stage of input requires keyboard input, and can take one of two usual forms:

Transliteration using Latin characters (type “k” plus “a” to get •	 か, and so on), which is
common for Chinese and Japanese, but relatively rare for Korean.

Native-script input—•	 zhuyin for Chinese as used in Taiwan, hiragana for Japanese,
hangul for Korean, and so on.

The form used depends on user preference and the type of keyboard in use. For Japanese,
the input method converts transliterated Japanese into hiragana on-the-fly, so it doesn’t

12 | Chapter 1: CJKV Information Processing overview

really matter which keyboard you are using. In fact, studies show that over 70% of Japa-
nese computer users prefer transliterated Japanese input.

Once the input string is complete, it is then parsed in one of two ways: either by the
user during input or by a parser built into the input method. Finally, each segment is
run through a conversion process that consists of a lookup into a conversion dictionary.
This is very much like a key-value lookup. Typical conversion dictionaries have tens of
thousands of entries. It seems that the more entries, the better the conversion quality.
However, if the conversion dictionary is too large, users are shown a far too lengthy list of
candidates. This reduces input efficiency.

Can ideographs be input one at a time? While single-ideograph input is possible, there are
three basic units that can be used. These units allow you to limit the number of candidates
from which you must choose. Typically, the larger the input unit, the fewer candidates.
The units are as follows:

Single ideograph•	

Ideograph compound•	

Ideograph phrase•	

Early input programs required that each ideograph be input individually, as single ideo-
graphs. Nowadays it is much more efficient to input ideographs as they appear in com-
pounds or even phrases. This means that you may input two or more ideographs at once
by virtue of inputting their combined reading. For example, the ideograph compound 漢
字 (the two ideographs for writing the word meaning “ideograph”) can be input as two
separate characters, 漢 (pronounced kan in Japanese) and 字 (pronounced ji in Japanese).
Table 1-6 shows the two target ideographs, along with other ideographs that share the
same reading.

Single ideograph input—JapaneseTable 1-6.

Character reading Ideographs with identical readings

漢 K A N 乾侃冠寒刊勘勧巻喚堪姦完官寛干幹患感慣憾換敢柑桓棺款
歓汗漢澗潅環甘監看竿管簡緩缶翰肝艦莞観諌貫鑑鑑間閑関
陥韓館舘

字 J I 事似侍児字寺慈持時次滋治爾璽痔磁示而耳自蒔辞

You can see that there are many other ideographs with the same readings, so you may
have to wade through a long list of candidate ideographs before you find the correct one.
A more efficient way is to input them as one unit, called an ideograph compound. This
produces a much shorter list of candidates from which to choose. Table 1-7 illustrates the
two ideographs input as a compound, along with candidate compounds with the same
reading.

typography | 13

Ideograph compound input—JapaneseTable 1-7.

Compound reading Compounds with identical readings

漢字 K A N J I 漢字 感じ 幹事 監事 完司

Note how the list of ideograph compounds is much shorter in this case. There is an even
higher-level input unit called an ideograph phrase. This is similar to inputting two or more
ideographs as a single compound, but it adds another element, similar to a preposition in
English, that makes the whole string into a phrase. An example of an ideograph phrase is
漢字は, which means “the ideograph” in Japanese. Because Chinese-language text is com-
posed solely of hanzi, ideograph phrases apply only to Japanese, and possibly Korean.

Some of you may know of input software that claims to let you convert whole sentences
at once. This is not really true. Such software allows you to input whole sentences, but the
sentence is then parsed into smaller units, usually ideograph phrases, and then converted.
Inputting whole sentences before any conversion is merely a convenience for the user.

Korean input has some special characteristics that are related to how their most widely
used script, hangul syllables, is composed. Whether input is by a QWERTY or a Korean
keyboard array, Korean input involves entering hangul elements called jamo. As the jamo
are input, the operating system or input software attempts to compose hangul syllables
using an automaton. Because of how hangul syllables are composed of jamo, the user may
have up to three alternatives for deleting characters:

Delete entire hangul syllable•	

Delete by jamo•	

Delete by word•	

This particular option is specific to Korean, and depends on whether the input method
supports it.

typography
Typography is a broad topic, and covers the way in which characters are set together, or
composed, to form words, lines, and pages. What makes CJKV text different from West-
ern text is the fact that it can usually be written or set in one of two orientations, described
as follows:

Left to right, top to bottom—horizontal setting, as in this book•	

Top to bottom, right to left—•	 vertical setting

Chapter 7 provides plenty of examples of horizontal versus vertical writing. More often
than not, vertical writing orientation causes problems with Western-language applica-
tions. This is because vertical writing does not come for free, and some nontrivial amount
of effort is required to implement this support in applications. Luckily, it is generally

14 | Chapter 1: CJKV Information Processing overview

acceptable to set CJKV text in the same horizontal orientation as most Western languages.
Traditional novels and short stories are often set vertically, but technical materials, such as
science textbooks and the like, are set horizontally.

Vertically set CJKV text is not a simple matter of changing writing direction. Some char-
acters require special handling, such as a different orientation (90˚ clockwise rotation) or
a different position within the em-square.* Chapter 7 provides some sample text set both
horizontally and vertically, and it illustrates the characters that require special treatment.

In addition to the two writing directions for CJKV text, there are other special layout or
composition considerations, such as special rules for line breaking, special types of justifi-
cation, metrics adjustments, methods for annotating characters, and so on.

Basic Concepts and terminology FAQ
Now I’ll define some basic concepts which will help carry you through this entire book.
These concepts are posed as questions because they represent questions you might raise as
you read this book. If at any time you encounter a new term, please glance at the glossary
toward the back of the book: new terms are included and explained there.

What Are All these Abbreviations and Acronyms?
Most technical fields are flooded with abbreviations and acronyms, and CJKV informa-
tion processing is no exception. Some of the more important, and perhaps confusing,
ones are explained in the following section, but when in doubt, consult Appendix D.

What is the difference between GB and GB/t? What about GBK?
Most references to “GB” refer to the GB 2312-80 character set standard, which represents
the most widely implemented character set for Chinese. Now, of course, a much larger
character set, designated GB 18030-2005, is considered the standard character set.

GB stands for Guo Biao (国标 guóbiāo), which is short for Guojia Biaozhun (国家标准
guójiā biāozhǔn), and simply means “National Standard.”

Because GB/T character set standards are traditional analogs of existing GB character
set standards, some naturally think that the “T” stands for Traditional. This represents
yet another myth to expose as untrue. The “T” in “GB/T” actually stands for Tui (推 tuī),
which is short for Tuijian (推荐 tuījiàn) and means “recommended” in the sense that it is
the opposite of “forced” or “mandatory.”

The “K” in GBK (an extension to GB 2312-80) comes from the Chinese word 扩展
(kuòzhǎn), which means “extension.” As you will learn in Chapter 3, while GBK is an

* The term em-square refers to a square-shaped space whose height and width roughly correspond to the width
of the letter “M.” The term design space is actually a more accurate way to represent this typographic concept.

Basic Concepts and terminology FAQ | 15

extension to GB 2312-80, and thus appropriately named, GBK itself was extended to be-
come GB 18030-2005.

What are JIs, JIsC, and JsA? How are they related?
In much of the literature in the field of Japanese information processing, you will quite
often see references to JISC, JIS, and JSA. The most common of these is JIS; the least is
JISC. What these refer to can sometimes be confusing and is often contradicted in refer-
ence works.

JIS stands for Japanese Industrial Standard (日本工業規格 nihon kōgyō kikaku), the name
given to the standards used in Japanese industry.* The character 〄 is the original symbol
for JIS, which was used through September 30, 2008. The character � is the new symbol
for JIS, which was issued on October 1, 2005, and its use became mandatory on October
1, 2008. JIS can refer to several things: the character set standards established by JISC, the
encoding method specified in these character set standards, and even the keyboard arrays
described in specific JIS standards. Context should usually make its meaning clear. Of
course, JIS appears frequently in this book.

JISC stands for Japanese Industrial Standards Committee (日本工業標準調査会 nihon
kōgyō hyōjun chōsakai).† This is the name of the governing body that establishes JIS stan-
dards and publishes manuals through JSA. The committee that develops and writes each
JIS manual is composed of people from Japanese industry who have a deep technical
background in the topic to be covered by the manual. Committee members are listed at
the end of each JIS manual.

JSA stands for Japanese Standards Association (日本規格協会 nihon kikaku kyōkai).‡ This
organization publishes the manuals for the JIS standards established by JISC, and gener-
ally oversees the whole process.

JIS is often used as a blanket term covering JIS, JISC, and JSA, but now you know what
they genuinely mean.

Several JIS “C” series standards changed designation to “X” series standards on March 1,
1987. Table 1-8 lists the JIS standards—mentioned in this book—that changed designa-
tion from “C” to “X” series.

* There is even a JIS standard for manufacturing toilet paper! It is designated JIS P 4501:2006 and is entitled
トイレットペーパー (toiretto pēpā). Its English title is Toilet tissue papers. The “P” series JIS standards are for
the pulp and paper industries.

† http://www.jisc.go.jp/
‡ http://www.jsa.or.jp/

16 | Chapter 1: CJKV Information Processing overview

JIS standard designation changesTable 1-8.

JIs “C” series JIs “X” series

JIS C 6220 JIS X 0201

JIS C 6228 JIS X 0202

JIS C 6225 JIS X 0207

JIS C 6226 JIS X 0208

JIS C 6233 JIS X 6002

JIS C 6235 JIS X 6003

JIS C 6236 JIS X 6004

JIS C 6232 JIS X 9051

JIS C 6234 JIS X 9052

Because these changes took place well over two decades ago, they have long been reflected
in software and other documentation.

What is Ks?
KS simply stands for Korean Standard (한국 공업 규격/韓國工業規格 hanguk gongeop
gyugyeok). All Korean character set standard designations begin with the two uppercase
letters “KS.” The character ㉿ is the symbol for KS.

All KS standards also include another letter in their designation. Those that are dis-
cussed in this book all include the letter “X,” which now indicates electric or electronic
standards.*

Several KS “C” series standards changed designation to “X” series standards on August 20,
1997. Table 1-9 lists the KS standards—mentioned in this book—that changed designa-
tion from the “C” to “X” series.

KS standard designation changesTable 1-9.

Ks “C” series Ks “X” series

KS C 5601 KS X 1001

KS C 5657 KS X 1002

KS C 5636 KS X 1003

KS C 5620 KS X 1004

KS C 5700 KS X 1005

* Other letter designations for KS standards include “B” (mechanical), “D” (metallurgy), and “A” (general
guidelines).

Basic Concepts and terminology FAQ | 17

KS standard designation changesTable 1-9.

Ks “C” series Ks “X” series

KS C 5861 KS X 2901

KS C 5715 KS X 5002

It took several years until these new KS standard designations were consistently reflected
in software and documentation. Especially for KS X 1001, its original designation, KS C
5601, is still seen often.

Are VIsCII and VsCII identical? What about tCVn?
Although both VISCII and VSCII are short for Vietnamese Standard Code for Information
Interchange, they represent completely different character sets and encodings. VISCII is
defined in RFC 1456,* and VSCII is derived from TCVN 5712:1993 (specifically, VN2),
which is a Vietnamese national standard. VSCII is also known as ISO IR 180. The differ-
ences among VISCII and VSCII are described in Chapter 3. Appendix L provides com-
plete encoding tables for VISCII and VSCII, which better illustrate their differences.

TCVN stands for Tiêu Chuẩn Việt Nam, which translates into English as “Vietnamese
Standard.” Like CNS, GB, JIS, and KS, it represents the first portion of Vietnamese stan-
dard designations.

What Are Internationalization, Globalization, and Localization?
Internationalization—often abbreviated as I18N, composed of the initial letter “I” fol-
lowed by the middle eighteen (18) letters followed by the final letter “N”—is a term that
usually refers to the process of preparing software so that it is ready to be used by more
than one culture, region, or locale.† Internationalization is thus what engineers do.

Globalization, similarly abbreviated as G11N, is often used synonymously with interna-
tionalization, but encompasses the business aspects, such as entering a foreign market,
conducting market research, studying the competition, strategizing, becoming aware of
legal restrictions, and so on.‡ Globalization is thus what companies as a whole do.

Localization—often abbreviated as L10N under the same auspices as I18N and G11N—is
the process of adapting software for a specific culture, region, or locale. Japanization—
often abbreviated as J10N—is thus a locale-specific instance of L10N. While this book
does not necessarily address all of these issues, you will find information pertinent to
internationalization and localization within its pages.

* http://www.ietf.org/rfc/rfc1456.txt
† Quiz time. Guess what CJKV6N, C10N, K11N, M17N, S32S, and V12N stand for.
‡ But, globalization should not be confused with global domination, which is an entirely different matter.

www.allitebooks.com

http://www.allitebooks.org

18 | Chapter 1: CJKV Information Processing overview

Internationalization and localization are different processes. For example, it is possible to
develop an application that properly handles the various scripts of the world, and is thus
internationalized, but provides an English-language user interface (UI), and is thus not
localized. The converse is also possible, specifically an application with a UI that has been
translated into a large number of languages, and is thus localized, but fails to properly
handle the various scripts of the world, and is thus not internationalized.

In any case, market demand forces or encourages developers to embrace I18N, G11N,
and L10N, because doing so results in the functionality that their customers demand, or
it provides menus and documentation written in the language of the target locale. They
often require special handling because many non-Latin writing systems include a large
number of characters, have complex rendering issues, or both.

What Are the Multilingual and Locale Models?
There have been two basic models for internationalization: the locale model and the multi-
lingual model. The locale model was designed to implement a set of attributes for specific
locales. The user must explicitly switch from one locale to another. The character sets
implemented by the locale model were specific to a given culture or region, thus locale.

The multilingual model, on the other hand, was designed or expected to go one step fur-
ther by not requiring the user to flip or switch between locales. Multilingual systems thus
implement a character set that includes all the characters necessary for several cultures
or regions. But still, there are cases when it is impossible to correctly render characters
without knowing the target locale.

For the reasons just pointed out, a combination of these two models is ideal, which is
precisely what has happened in the field of software internationalization. Unicode is the
ideal character set because it is truly multilingual, and it effectively bridges and spans the
world’s writing systems. Of course, Unicode is not perfect. But then again, nothing made
by man, by definition, can be perfect. Still, no other character set spans the world’s writing
systems as effectively and broadly as Unicode has done. This is why it is wise to embrace
Unicode, and I encourage you to do so. Embracing Unicode also requires that its data be
tagged with locale attributes so that the characters behave accordingly and appropriately
for each culture or region. The Common Locale Data Repository (CLDR) is the most com-
plete and robust source for locale data, and will be explored in Chapter 9.*

Thus, both of these models for internationalization have succeeded, not by competing, but
rather by combining into a single solution that has proven to work well.

What Is a Locale?
Locale is a concept for specifying the language and country or region, and is significant
in that it affects the way in which an OS, application, or other software behaves. A locale,

* http://www.unicode.org/cldr/

Basic Concepts and terminology FAQ | 19

as used by software, typically consists of a language identifier and a country or region
identifier.

What Is Unicode?
Unicode is the first truly successful multilingual character set standard, and it is sup-
ported by three primary encoding forms, UTF-8, UTF-16, and UTF-32. Unicode is also a
major focus of this book.

Conceived 20 years ago by my friend Joe Becker, Unicode has become the preferred char-
acter set and has been successful in enabling a higher level of internationalization. In
other words, Unicode has trivialized many aspects of software internationalization.

How Are Unicode and Iso 10646 related?
Make no mistake, Unicode and ISO 10646 are different standards.* The development of
Unicode is managed by The Unicode Consortium, and that of ISO 10646 is managed by the
International Organization for Standardization (ISO). But, what is important is that they
are equivalent, or rather kept equivalent, through a process that keeps them in sync.

ISO 10646 increases its character repertoire through new versions of the standard, ad-
ditionally designated by year, along with amendments. Unicode, on the other hand, does
the same through new versions. It is possible to correlate Unicode and ISO 10646 by indi-
cating the version of the former, and the year and amendments of the latter.

More detailed coverage of Unicode can be found in Chapter 3, and details of the various
Unicode encoding forms can be found in Chapter 4.

What Are row-Cell and Plane-row-Cell?
Row-Cell is the translated form of the Japanese word 区点 (kuten), which literally means
“ward [and] point,” or more intuitively as “row [and] cell.”† This notation serves as an
encoding-independent method for referring to characters in most CJKV character set
standards. A Row-Cell code usually consists of four decimal digits. The “Row” portion
consists of a zero-padded, two-digit number with a range from 01 to 94. Likewise, the
“Cell” portion also consists of a zero-padded, two-digit number with a range from 01 to
94. For example, the first character in most CJKV character set standards is represented
as 01-01 in Row-Cell notation, and is more often than not a full-width “space” character,
which is typically referred to as an ideographic space.

Bear in mind that some character sets you will encounter include or span more than a
single 94×94 matrix, each of which is referred to as a plane. CNS 11643-2007 and JIS X

* http://unicode.org/faq/unicode_iso.html
† In Chinese, Row-Cell is expressed as 区位 (qūwèi); in Korean, as 행렬/行列 (haengnyeol). Note that if the

“Cell” portion of “Row-Cell” is in isolation in Korean, then it is expressed instead with the hangul 열 (yeol), not
렬 (nyeol).

20 | Chapter 1: CJKV Information Processing overview

0213:2004 are examples of legacy character set standards that include two or more planes.
Obviously, Row-Cell notation must be expanded to include the notion of plane, meaning
Plane-Row-Cell. In Japanese, this is expressed as 面区点 (menkuten) and is used as the
preferred notation for referencing the characters in JIS X 0213:2004.

When I provide lists of characters throughout this book, I usually include Row-Cell (or
Plane-Row-Cell) codes. These are useful for future reference of these data, and so that
you don’t have to hunt for the codes yourself. Now that Unicode plays an important
role in today’s software development efforts, I also provide Unicode scalar values when
appropriate.

What Is a Unicode scalar Value?
Like Row-Cell notation, Unicode scalar values serve as an encoding-independent method
of referring to specific Unicode characters, or sequences of Unicode characters. It is a no-
tation, but instead of using decimal values such as Row-Cell notation, hexadecimal values
are used due to the larger 256×256 encoding space afforded by Unicode. Still, Unicode
scalar values are not tied to a specific encoding, such as UTF-8, UTF-16, nor UTF-32.

The syntax for Unicode scalar values is simple and consists of a prefix followed by four
to six hexadecimal digits. The prefix is “U+,” and the length of the hexadecimal digits var-
ies by whether the character is in the Basic Multilingual Plane (BMP) or in one of the 16
supplementary planes. I prefer to think of Unicode scalar values as equivalent to UTF-32
encoding when expressed in hexadecimal notation, but zero-padded to four digits. The
ASCII “space” is thus represented as U+0020 (not U+20), and the last code point in Plane
16 is represented as U+10FFFF.

Unicode scalar values are incredibly useful. When their prefix is removed and replaced
with the appropriate Numeric Character Reference (NCR) syntax, such as 一 for
U+4E00, they become immediately usable in contexts that support HTML or XML.* They
can also be used within angled brackets and separated with a comma to indicate standard-
ized Unicode sequences, such as <U+528D, U+E0101>.

Unicode scalar values are used throughout this book and are provided for your
convenience.

Characters Versus Glyphs: What Is the difference?
Now here’s a topic that is usually beaten to death! The term character is an abstract notion
indicating a class of shapes declared to have the same meaning or abstract shape. The term
glyph refers to a specific instance of a character.

* NCRs are SGML constructs that have carried through into SGML derivations, such as HTML and XML. I can-
not guarantee that all HTML and XML implementations support NCRs, but the vast majority do.

Basic Concepts and terminology FAQ | 21

Interestingly, more than one character can constitute a single glyph, such as the two char-
acters f and i, which can be fused together as the single entity fi. This fi glyph is called a
ligature. The dollar currency symbol is a good example of a character with several glyphs.
There are at least four distinct glyphs for the dollar currency symbol, described and il-
lustrated here:

An “S” shape with a single vertical bar: •	 $
An “S” shape with a single broken vertical bar: •	 �
An “S” shape with two vertical bars: •	 �
An “S” shape with two broken vertical bars: •	 �

The differences among these four glyphs are minor, but you cannot deny that they still
represent the same character, specifically the dollar currency symbol. More often than
not, you encounter a difference in this glyph as a difference in typeface.

However, there are some characters that have a dozen or more variant forms. Consider the
kanji 辺 (hen, used in the common Japanese family name 渡辺 watanabe), which has only
two variant forms that are included in JIS X 0208:1997, and are thus included in Unicode:
邉 (U+9089) and 邊 (U+908A). These are considered the traditional forms of the kanji
辺. Table 1-10 lists the additional variant forms that are included in the Adobe-Japan1-6
character collection, which will be covered in Chapter 6.

Standard versus variant formsTable 1-10.

standard Form Variant forms Additional variant forms

辺 邉 邉邉邉邉邉邉邉邉邉邉邉邉邉邉
邊 邉邉邉邉邉邉邉

Clearly, these variant forms all appear to represent that same character, but are simply
different glyphs.

You will discover that CJKV character set standards do not define the glyphs for the char-
acters contained within their specifications. Unfortunately (or, fortunately, as the case
may be), many think that the glyphs that appear in these manuals are the official ones, and
to some extent they become the default, or prototypical, glyphs for the characters.

Note, however, that the official Jōyō Kanji Table does define the glyph shape, at least for
the 1,945 kanji contained within its specification. Interestingly, JSA at one time published
two standards that did, in fact, define glyphs for characters by virtue of specifying precise
bitmap patterns for every character: JIS X 9051-1984* and JIS X 9052-1983.† The glyphs

* Previously designated JIS C 6232-1984
† Previously designated JIS C 6234-1983

22 | Chapter 1: CJKV Information Processing overview

set forth in these two standards were designed for the JIS X 0208-1983 standard, which
was current at the time. However, these glyphs have not been widely accepted in industry,
mainly due to the introduction of outline fonts. It seems as though JSA has no intention
of ever revising these documents, and some speculate that this may be their way of not
enforcing glyphs.

The one Japanese organization that established a definitive Japanese glyph standard in
Japan is the now-defunct FDPC, which is an abbreviation for Font Development and Pro-
motion Center (文字フォント開発・普及センター moji fonto kaihatsu fukyū sentā). FDPC
was a MITI (Ministry of International Trade and Industry—通商産業省 tsūshō sangyō
shō)-funded organization, and has since been folded in with JSA. This government or-
ganization, with the help of members, developed a series of Japanese outline fonts called
Heisei (平成 heisei) typefaces. The first two Heisei typefaces that were released were Heisei
Mincho W3 (平成明朝 W3 heisei minchō W3) and Heisei Kaku (squared) Gothic W5 (平
成角ゴシック W5 heisei kaku goshikku W5). In fact, the standard Japanese typeface used
in the production of the first edition of this book was Heisei Mincho W3. A total of seven
weights of both designs were produced, ranging from 3 (W3) to 9 (W9). Two weights of
Heisei Maru (rounded) Gothic (平成丸ゴシック heisei maru goshikku), specifically 4 and
8, also were developed. The Heisei typefaces have become somewhat commonplace in the
Japanese market.

stability versus correctness
I have learned that changes to prototypical glyphs are inevitable and unavoidable. There
are two forces or notions at work. One is stability, and the other is the notion of cor-
rectness. Unfortunately, the notion of correctness can—and ultimately will—change over
time. Languages and their writing systems change, which is part of their nature. In Japan,
the first series of prototypical glyph changes took place in 1983, when JIS X 0208-1983
was published. Bear in mind that the first version of the standard was published in 1978.
Somewhat subtle prototypical glyph changes took place when it was revised in 1990 and
designated JIS X 0208-1990. Stability ruled the day when the 1997 revision, designated JIS
X 0208:1997, was published, along with its extension in 2000, designated JIS X 0213:2000.
A new set of 1,022 kanji, called NLC Kanji (表外漢字 hyōgai kanji), introduced a new
notion of correctness, and directly influenced prototypical glyph changes that were intro-
duced in 2004, as a revision to the existing standard, designated JIS X 0213:2004. I have
found it interesting that some of these prototypical glyph changes have caused the glyphs
for some characters to come full circle, meaning that they reverted to their original forms
as found in the 1978 version of the standard. Table 1-11 provides but one example of a
JIS X 0208:1997 kanji that came full circle—specifically 36-52. Its Unicode code point,
regardless of glyph, is U+8FBB.

Basic Concepts and terminology FAQ | 23

Prototypical glyph changes over time—JapanTable 1-11.

Code point 1978 1983 1990 1997 2000 2004

36-52 辻 辻 辻 辻 辻 辻

China takes glyph issues very seriously and expended the effort to develop a series of
standards, published in a single manual entitled 32×32 Dot Matrix Font Set and Data
Set of Chinese Ideograms for Information Interchange (信息交换用汉字 32×32 点阵字模
集及数据集 xìnxī jiāohuàn yòng hànzì 32×32 diǎnzhèn zìmújí jí shújùjí). This explicitly
defined glyphs for the GB 2312-80 character set standard in various typeface styles. These
standards are listed in Table 1-12.

Chinese glyph standardsTable 1-12.

standard Pages title (in english)

GB 6345.1-86 1–27 32×32 Dot Matrix Font Set of Chinese Ideograms for Information Interchange

GB 6345.2-86 28–31 32×32 Dot Matrix Font Data Set of Chinese Ideograms for Information Interchange

GB 12034-89 32–55 32×32 Dot Matrix Fangsongti Font Set and Data Set of Chinese Ideograms for Information
Interchange

GB 12035-89 56–79 32×32 Dot Matrix Kaiti Font Set and Data Set of Chinese Ideograms for Information Interchange

GB 12036-89 80–103 32×32 Dot Matrix Heiti Font Set and Data Set of Chinese Ideograms for Information Interchange

Song (specified in GB 6345.1-86), Fangsong, Kai, and Hei are the most common typeface
styles used in Chinese. When the number of available pixels is reduced, it is impossible to
completely represent all of an ideograph’s strokes. These standards are useful because they
establish bitmapped patterns that offer a compromise between accuracy and legibility.
The GB 16794.1-1997 standard (信息技术—通用多八位编码字符集 48 点阵字形 xìnxī
jìshù—tōngyòng duōbāwèi biānmǎ zìfùjí 48 diǎnzhèn zìxíng) is similar to the GB standards
listed in Table 1-12, but covers the complete GBK character set and provides 48×48 bit-
mapped patterns for every character. An older set of GB standards, GB 5007.1-85 (信息交
换用汉字 24×24 点阵字模集 xìnxī jiāohuàn yòng hànzì 24×24 diǎnzhèn zìmújí) and GB
5007.2-85 (信息交换用汉字 24×24 点阵字模数据集 xìnxī jiāohuàn yòng hànzì 24×24
diǎnzhèn zìmú shújùjí), provided 24×24 bitmapped patterns for a single design, and obvi-
ously covered GB 2312-80, not GBK, given that they were published in 1985, long before
GBK was developed.

Exactly how the terms character and glyph are defined can differ depending on the source.
Table 1-13 provides the ISO and The Unicode Consortium definitions for the terms ab-
stract character, character, glyph, glyph image, and grapheme.

24 | Chapter 1: CJKV Information Processing overview

Abstract character, character, glyph, glyph image, and grapheme definitionsTable 1-13.

terminology Iso Unicodea

Abstract character n/a A unit of information used for the organization, control, or
representation of textual data. (See definition D7 in Section
3.4, Characters and Encoding.)

Character A member of a set of elements used
for the organization, control, or
representation of data.b

An atom of information with an
individual meaning, defined by a
character repertoire.c

(1) The smallest component of written language that has
semantic value; refers to the abstract meaning and/or shape,
rather than a specific shape (see also glyph), though in code
tables some form of visual representation is essential for the
reader’s understanding. (2) Synonym for abstract character.
(3) The basic unit of encoding for the Unicode character
encoding. (4) The English name for the ideographic written
elements of Chinese origin. [See ideograph (2).]

Glyph A recognizable abstract graphical
symbol which is independent of any
specific design.c

(1) An abstract form that represents one or more glyph im-
ages. (2) A synonym for glyph image. In displaying Unicode
character data, one or more glyphs may be selected to
depict a particular character. These glyphs are selected by a
rendering engine during composition and layout processing.
(See also character.)

Glyph image An image of a glyph, as obtained from
a glyph representation displayed on a
presentation surface.c

The actual, concrete image of a glyph representation having
been rasterized or otherwise imaged onto some display
surface.

Grapheme n/a (1) A minimally distinctive unit of writing in the context
of a particular writing system. For example, ‹b› and ‹d› are
distinct graphemes in English writing systems because there
exist distinct words like big and dig. Conversely, a lowercase
italiform letter a and a lowercase Roman letter a are not
distinct graphemes because no word is distinguished on the
basis of these two different forms. (2) What a user thinks of
as a character.

The Unicode Standard, Version 5.0a. (Addison-Wesley, 2006)

ISO 10646:2003b.

ISO 9541-1:1991c.

As usual, the standards—in this case ISO 10646 and Unicode—provide clear and precise
definitions for otherwise complex and controversial terms. Throughout this book, I use
the terms character and glyph very carefully.

What Is the difference Between typeface and Font?
The term typeface refers to the design characteristics of a collection of glyphs, and is often
comprised of multiple fonts. Thus, a font refers to a single instance of a typeface, such as a
specific style, relative weight, relative width, or other design attributes, and in the case of
bitmapped fonts, point size. This is why the commonly used term outline font is somewhat
of a misnomer—the mathematical outlines are, by definition, scalable, which means that
they are not specific to a point size. A better term is outline font instance. But, I digress.

Basic Concepts and terminology FAQ | 25

Western typography commonly uses serif, sans serif, and script typeface styles. Table 1-14
lists the common CJKV typeface styles, along with correspondences across locales.

Western versus CJKV typeface stylesTable 1-14.

Western Chinesea Japanese Korean

Serif b Ming (明體 míngtǐ)
Song (宋体 sòngtǐ)

Mincho (明朝体 minchōtai) Batang (바탕 batang)c

Sans serif Hei (黑体 hēitǐ) Gothic (ゴシック体 goshikkutai) Dotum (돋움 dotum)d

Script Kai (楷体 kǎitǐ) Kaisho (楷書体 kaishotai)
Gyosho (行書体 gyōshotai)
Sosho (草書体 sōshotai)

Haeseo (해서체/楷書體
haeseoche)
Haengseo (행서체/行書體
haengseoche)
Choseo (초서체/草書體
choseoche)

Other Fangsong (仿宋体 fǎngsòngtǐ) Kyokasho (教科書体 kyōkashotai)

Replace a. 体 with 體 in these typeface style names for Traditional Chinese.

The convention has been that Ming is used for Traditional Chinese, and Song is used for Simplified Chinese.b.

In the mid-1990s, the Korean Ministry of Culture specified this term, replacing c. Myeongjo (명조체/明朝體 myeongjoche).

In the mid-1990s, the Korean Ministry of Culture specified this term, replacing d. Gothic (고딕체/고딕體 godikche).

Table 1-14 by no means constitutes a complete list of CJKV typeface styles—there are nu-
merous typeface styles for hangul, for example. To provide a sample of typeface variation
within a locale, consider the four basic typeface styles used for Chinese, as illustrated in
Table 1-15.

Chinese typeface styles—examplesTable 1-15.

song Hei Kai Fangsong

中文简体字 中文简体字 中文简体字 中文简体字

Clearly, the glyphs shown in Table 1-15 represent the same characters, in that they convey
identical meanings, and differ only in that their glyphs are different by virtue of having
different typeface designs.

What Are Half- and Full-Width Characters?
The terms half- and full-width refer to the relative glyph size of characters. These are
referred to as hankaku (半角 hankaku) and zenkaku (全角 zenkaku), respectively, in

26 | Chapter 1: CJKV Information Processing overview

Japanese.* Half-width is relative to full-width. Full-width refers to the glyph size of stan-
dard CJKV characters, such as zhuyin, kana, hangul syllables, and ideographs. Latin char-
acters, which appear to take up approximately half the display width of CJKV characters,
are considered to be half-width by this standard. The very first Japanese characters to
be processed on computer systems were half-width katakana. They have the same ap-
proximate display width as Latin characters. There are now full-width Latin and katakana
characters. Table 1-16 shows the difference in display width between half- and full-width
characters (the katakana character used as the example is pronounced ka).

Half- and full-width charactersTable 1-16.

Width Katakana Latin

Half ｶｶｶｶｶ 12345
Full カカカカカ １２３４５

As you can see, full-width characters occupy twice the display width as their half-width
versions. At one point in time there was a clear-cut relationship between the display width
of a glyph and the number of bytes used to encode it (the encoding length)—the number of
bytes simply determined the display width. Half-width katakana characters were original-
ly encoded with one byte. Full-width characters were encoded with two bytes. Now that
there is a much richer choice of encoding methods available, this relationship no longer
holds true. Table 1-17 lists several popular encoding methods, along with the number of
bytes required to represent half- and full-width characters.

Half- and full-width character representations—JapaneseTable 1-17.

Width script AsCII Iso-2022-JP shift-JIs eUC-JP UtF-8 UtF-16

Fu
ll Katakana n/a 2 bytes 2 bytes 2 bytes 3 bytes 16 bits

Latin n/a 2 bytes 2 bytes 2 bytes 3 bytes 16 bits

Ha
lf Katakana n/a 1 byte 1 byte 2 bytes 3 bytes 16 bits

Latin 1 byte 1 byte 1 byte 1 byte 1 byte 16 bits

I should also point out that in some circumstances, half-width may also mean not full-
width, and can refer to characters that are intended to be proportional.

* In Chinese, specifically in Taiwan, these terms are 半形 (bànxíng) and 全形 (quánxíng), respectively. But, in
China, they are the same as those used for Japanese, specifically 半角 (bànjiǎo) and 全角 (quánjiǎo), respec-
tively. In Korean, these terms are 반각/半角 (bangak) and 전각/全角 (jeongak), respectively.

Basic Concepts and terminology FAQ | 27

Latin Versus roman Characters
To this day, many people debate whether the 26 letters of the English alphabet should be
referred to as Roman or Latin characters. While some standards, such as those published
by ISO, prefer the term Latin, other standards prefer the term Roman. In this book, I
prefer to use Latin over Roman, and use it consistently, but readers are advised that they
should treat both terms synonymously.

When speaking of typeface designs, the use of the term Roman is used in contrast with the
term italic, and refers to the upright or nonitalic letterforms.

What Is a diacritic Mark?
A diacritic mark is an attachment to a character that typically serves as an accent, or in-
dicates tone or other linguistic information. Diacritic marks are important in the scope
of this book, because many transliteration and Romanization systems make use of them.
Japanese long vowels, for example, are indicated through the use of the diacritic mark
called a macron. Vietnamese makes extensive use of multiple diacritic marks, meaning
that some characters can include more than one diacritic mark. Many non-Latin scripts,
such as Japanese hiragana and katakana, also use diacritic marks. In the case of Japanese
kana, one such diacritic mark serves to indicate the voicing of consonants.

What Is notation?
The term notation refers to a method of representing units. A given distance, whether
expressed in miles or kilometers, is, after all, the same physical distance. In computer sci-
ence, common notations for representing the value of bit arrays, bytes, and larger units are
listed in Table 1-18, and all correspond to a different numeric base.

Decimal 100 in common notationsTable 1-18.

notation Base Value range example

Binary 2 0 and 1 01100100

Octal 8 0–7 144

Decimal 10 0–9 100

Hexadecimal 16 0–9 and A–F 64

While the numbers in the Example column all have the same underlying value, specifi-
cally 100 (in decimal), they have been expressed using different notations, and thus take
on a different form. Most people—that is, non-nerds—think in decimal notation, because
that is what we were taught. However, computers—and some nerds—process information

28 | Chapter 1: CJKV Information Processing overview

using binary notation.* As discussed previously, computers process bits, which have two
possible values. In the next section, you will learn that hexadecimal notation does, how-
ever, have distinct advantages when dealing with computers.

What Is an octet?
We have already discussed the terms bits and bytes. But what about the term octet? At a
glance, you can tell it has something to do with the number eight. An octet represents
eight bits, and is thus an eight-bit byte, as opposed to a seven-bit one. This becomes con-
fusing when dealing with 16-bit encodings. Sixteen bits can be broken down into two
eight-bit bytes, or two octets. Thirty-two bits, likewise, can be broken down into four
eight-bit bytes, or four octets.

Given 16 bits in a row:
0110010001011111

this string of bits can be broken down into two eight-bit units, specifically octets (bytes):
01100100
01011111

The first eight-bit unit represents decimal 100 (0x64), and the second eight-bit unit repre-
sents decimal 95 (0x5F). All 16 bits together as a single unit are usually equal to 25,695 in
decimal, or <645F> in hexadecimal (it may be different depending on a computer’s specif-
ic architecture). Divide 25,695 by 256 to get the first byte’s value as a decimal octet, which
results in 100 in this case; the remainder from this division is the value of the second byte,
which, in this case, is 95. Table 1-19 lists representations of two octets (bytes), along with
their 16-bit unit equivalent. This is done for you in the four different notations.

Octets and 16-bit units in various notationsTable 1-19.

notation First octet second octet 16-bit unit

Binary 01100100 01011111 01100100 01011111

Octal 144 137 62137

Decimal 100 95 25,695

Hexadecimal 64 5F 64 5F

Note how going from two octets to a 16-bit unit is a simple matter of concatenation in the
case of binary and hexadecimal notation. This is not true with decimal notation, which
requires multiplication of the first octet by 256, followed by the addition of the second
octet. Thus, the ease of converting between different representations—octets versus
16-bit units—depends on the notation that you are using. Of course, string concatenation

* Now that I think about it, the Bynars, featured in the Star Trek: The Next Generation episode entitled “11001001,”
represent an entire race that processes information in binary form.

Basic Concepts and terminology FAQ | 29

is easier than two mathematical operations. This is precisely why hexadecimal notation is
used very frequently in computer science and software development.

In some cases, the order in which byte concatenation takes place matters, such as when
the byte order (also known as endianness) differs depending on the underlying computing
architecture. Guess what the next section is about?

What Are Little- and Big-endian?
There are two basic computer architectures when it comes to the issue of byte order: little-
endian and big-endian. That is, the order in which the bytes of larger-than-byte storage
units—such as integers, floats, doubles, and so on—appear.* One-byte storage units, such
as char in C/C++, do not need this special treatment. That is, unless your particular ma-
chine or implementation represents them with more than one byte. The following is a
synopsis of little- and big-endian architectures:

Little-endian machines use computing architectures supported by Vax and Intel pro-•	
cessors. Historically, MS-DOS and Windows machines are little-endian.

Big-endian machines use computing architectures supported by Motorola and Sun •	
processors. Historically, Mac OS and most Unix workstations are big-endian. Big-
endian is also known as network byte order.

Linux, along with Apple’s rather recent switch to Intel processors, has blurred this distinc-
tion, to the point that platform or OS are no longer clear indicators of whether little- or
big-endian byte order is used. In fact, until the 1970s, virtually all processors used big-
endian byte order. The introduction of microprocessors with their (initially) simple logic
circuits and use of byte-level computations led to the little-endian approach. So, from the
viewpoint of history, the mainframe versus microprocessor distinction gave birth to byte
order differences. I should also point out that runtime detection of byte order is much
more robust and reliable than guessing based on OS.

Table 1-20 provides an example two-byte value as encoded on little- and big-endian
machines.

Little- and big-endian representationTable 1-20.

notation High byte Low byte Little-endian Big-endian

Binary 01100100 01011111 01011111 01100100 01100100 01011111

Hexadecimal 64 5F 5F 64 64 5F

A four-byte example, such as 0x64, 0x5F, 0x7E, and 0xA1, becomes <A1 7E 5F 64> on
little-endian machines, and <64 5F 7E A1> on big-endian machines. Note how the bytes

* A derivation of little- and big-endian came from Gulliver’s Travels, in which there were civil wars fought over
which end of a boiled egg to crack.

30 | Chapter 1: CJKV Information Processing overview

themselves—not the underlying bits of each byte—are reversed depending on endianness.
This is precisely why endianness is also referred to as byte order. The term endian is used
to describe what impact the byte at the end has on the overall value. The UTF-16 value
for the ASCII “space” character, U+0020, is <00 20> for big-endian machines and <20 00>
for little-endian ones.

Now that you understand the concept of endianness, the real question that needs answer-
ing is when endianness matters. Please keep reading….

What Are Multiple-Byte and Wide Characters?
If you have ever read comprehensive books and materials about ANSI C, you more than
likely came across the terms multiple-byte and wide characters. Those documents typi-
cally don’t do those terms justice, in that they are not fully explained. Here you’ll get a
definitive answer.

When dealing with encoding methods that are processed on a per-byte basis, endianness
or byte order is irrelevant. The bytes that compose each character have only one order, re-
gardless of the underlying architecture. These encoding methods support what are known
as multiple-byte characters. In other words, these encoding methods use the byte as their
code unit.

So, what encoding methods support multiple-byte characters? Table 1-21 provides an in-
complete yet informative list of encoding methods that support multiple-byte characters.
Some encoding methods are tied to a specific locale, and some are tied to CJKV locales
in general.

Multiple-byte characters—encoding methodsTable 1-21.

encoding encoding length Locale

ASCII One-byte n/a

ISO-2022 One- and two-byte CJKV

EUC One- through four-byte, depending on locale CJKV

GBK One- and two-byte China

GB 18030 One-, two-, and four-byte China

Big Five One- and two-byte Taiwan and Hong Kong

Shift-JIS One- and two-byte Japan

Johab One- and two-byte Korea

UHC One- and two-byte Korea

UTF-8 One- through four-byte n/a

There are some encodings that require special byte order treatment, and thus cannot be
treated on a per-byte basis. These encodings use what are known as wide characters, and

Advice to readers | 31

almost always provide a facility for indicating the byte order. Table 1-22 lists some encod-
ing methods that make use of wide characters, all of which are encoding methods for
Unicode.

Wide characters—encoding methodsTable 1-22.

encoding encoding length

UCS-2 16-bit fixed

UTF-16 16-bit variable-length

UTF-32 32-bit fixed

Sometimes the encodings listed in Table 1-22 are recommended to use the Byte Order
Mark (BOM) at the beginning of a file to explicitly indicate the byte order. The BOM is
covered in greater detail in Chapter 4.

It is with endianness or byte order that we can more easily distinguish multiple-byte from
wide characters. Multiple-byte characters have the same byte order, regardless of the un-
derlying processor architecture. The byte order of wide characters is determined by the
underlying processor architecture and must be flagged or indicated in the data itself.

Advice to readers
This chapter serves as an introduction to the rest of this book, and is meant to whet your
appetite for what lies ahead in the pages that follow. When reading the chapters of this
book, I suggest that you focus on the sections that cover or relate to Unicode, because they
are likely to be of immediate value and benefit. Information about legacy character sets
and encodings is still of great value because it relates to Unicode, often directly, and also
serves to chronicle how we got to where we are today.

In any case, I hope that you enjoy reading this book as much as I enjoyed writing the
words that are now captured within its pages.

33

CHAPter 2

Writing systems and scripts

Reading the introductory chapter provided you with a taste of what you can expect to
learn about CJKV information processing in this book. Let’s begin the journey with a
thorough description of the various CJKV writing systems that serve as the basis for the
characters set standards that will be covered in Chapter 3.

Mind you, we have already touched upon this subject, though briefly, in the introductory
chapter, but there is a lot more to learn! After reading this chapter, you should have a firm
grasp of the types of characters, or character classes, used to write CJKV text, specifically
the following:

Latin characters—including transliteration and romanization systems•	

Zhuyin—also called •	 bopomofo

Kana—•	 hiragana and katakana

Hangul syllables—including •	 jamo, the elements from which they’re made

Ideographs—originating in China•	

Non-Chinese ideographs—originating in Japan, Korea, and Vietnam•	

Knowing that each of these character classes exhibits its own special characteristics and
often has locale-specific usages is important to grasp. This information is absolutely cru-
cial for understanding discussions elsewhere in this book. After all, many of the problems
and issues that caused you to buy this book are the result of the complexities of these writ-
ing systems. This is not a bad thing: the complexities and challenges that we face are what
make our lives interesting, and to some extent, unique from one another.

Latin Characters, transliteration, and romanization
Latin characters (拉丁字母 lādīng zìmǔ in Chinese, ラテン文字 raten moji or ローマ字
rōmaji in Japanese, 로마자 romaja in Korean, and Quốc ngữ/國語 in Vietnamese) used
in the context of CJKV text are the same as those used in Western text, specifically the 52
upper- and lowercase letters of the Latin alphabet, sometimes decorated with accents to

34 | Chapter 2: Writing systems and scripts

indicate length, tone, or other phonetic attributes, and sometimes set with full-width met-
rics. Also included are the 10 numerals 0 through 9. Accented characters, usually vowels,
are often required for transliteration or Romanization purposes. Table 2-1 lists the basic
set of Latin characters.

Latin charactersTable 2-1.

Character class Characters

Lowercase abcdefghijklmnopqrstuvwxyz
Uppercase ABCDEFGHIJKLMNOPQRSTUVWXYZ
Numerals 0123456789

There is really nothing special about these characters. Latin characters are most often
used in tables (numerals), in abbreviations and acronyms (alphabet), or for transcription
or transliteration purposes, sometimes with accented characters to account for tones or
other phonetic attributes.

Transliteration systems are distinguished from Romanization systems in that they are not
the primary way to write a language, and serve as a proununciation aid for those who are
not familiar with the primary scripts of the language.

Commonly used transliteration systems for CJKV text that use characters beyond the
standard set of Latin characters illustrated in Table 2-1 include Pinyin (Chinese), Hepburn
(Japanese), Kunrei (Japanese), and Ministry of Education (Korean). These and other CJKV
transliteration systems are covered in the following sections. Quốc ngữ, on the other hand,
is a Romanization system, because it is the accepted way to write Vietnamese.

Special cases of transliteration are covered in Chapter 9, specifically in the section entitled
“Special Transliteration Considerations.”

Chinese transliteration Methods
Chinese uses two primary transliteration methods: Pinyin (拼音 pīnyīn) and Wade-Giles
(韋氏 wéishì). There is also the Yale method, which is not covered in this book. There are
many similarities between these two transliteration methods; they mainly differ in where
they are used. Pinyin is used in China, whereas Wade-Giles is popular in Taiwan. His-
torically speaking, Wade-Giles was the original Chinese transliteration system recognized
during the nineteenth century.

Table 2-2 lists the consonant sounds as transliterated by Pinyin and Wade-Giles—zhuyin/
bopomofo symbols, also a transliteration system, and described later in this chapter, are
included for the purpose of cross-reference.

Latin Characters, transliteration, and romanization | 35

Chinese transliteration—consonantsTable 2-2.

Zhuyin/bopomofo Pinyin Wade-Giles

ㄅ B P

ㄆ P P’

ㄇ M M

ㄈ F F

ㄉ D T

ㄊ T T’

ㄋ N N

ㄌ L L

ㄍ G K

ㄎ K K’

ㄏ H H

ㄐ J CHa

ㄑ Q CH’a

ㄒ X HSa

ㄓ ZH CH

ㄔ CH CH’

ㄕ SH SH

ㄖ R J

ㄗ Z TS

ㄘ C TS’

ㄙ S S

Only before a. i or ü

Table 2-3 lists the vowel sounds as transliterated by Pinyin—zhuyin/bopomofo are again
included for reference. Note that this table is constructed as a matrix that indicates what
zhuyin vowel combinations are possible and how they are transliterated. The two axes
themselves serve to indicate the transliterations for single zhuyin vowels.

Chinese transliteration—vowelsTable 2-3.

ㄧ I ㄨ U ㄩ Ü

ㄚ A ㄧㄚ IA ㄨㄚ UA

ㄛ o ㄨㄛ UO

36 | Chapter 2: Writing systems and scripts

Chinese transliteration—vowelsTable 2-3.

ㄧ I ㄨ U ㄩ Ü

ㄜ e ㄧㄝ IE ㄩㄝ ÜE

ㄞ AI ㄨㄞ UAI

ㄟ eI ㄨㄟ UEI

ㄠ Ao ㄧㄠ IAO

ㄡ oU ㄧㄡ IOU

ㄢ An ㄧㄢ IAN ㄨㄢ UAN ㄩㄢ ÜAN

ㄣ en ㄧㄣ IN ㄨㄣ UEN ㄩㄣ ÜN

ㄤ AnG ㄧㄤ IANG ㄨㄤ UANG

ㄥ enG ㄧㄥ ING ㄨㄥ UENG or ONG ㄩㄥ IONG

The zhuyin character ㄦ, which deserves separate treatment from the others, is usually
transliterated er.

It is sometimes necessary to use an apostrophe to separate the Pinyin readings of in-
dividual hanzi when the result can be ambiguous. Consider the transliterations for the
words 先 and 西安, which are xiān and xī’ān, respectively. Note the use of the apostrophe
to distinguish them.

More details about the zhuyin characters themselves appear later in this chapter. Po-Han
Lin (林伯翰 lín bóhàn) has developed a Java applet that can convert between the Pinyin,
Wade-Giles, and Yale transliteration systems.* He also provides additional details about
Chinese transliteration.†

Chinese tone marks
Also of interest is how tone marks are rendered when transliterating Chinese text. Basi-
cally, there are two systems for indicating tone. One system, which requires the use of
special fonts, employs diacritic marks that serve to indicate tone. The other system uses
the numerals 1 through 4 immediately after each hanzi transliteration—no special fonts
are required. Pinyin transliteration generally uses diacritic marks, but Wade-Giles uses
numerals.

Table 2-4 lists the names of the Chinese tone marks, along with an example hanzi for each.
Note that there are cases in which no tone is required.

* http://www.edepot.com/java.html
† http://www.edepot.com/taoroman.html

Latin Characters, transliteration, and romanization | 37

Chinese tone mark examplesTable 2-4.

tone tone name numbera example Meaning

None 轻声/輕聲 (qīngshēng) None ma (吗) Question particle

Flat 阴平/陰平 (yīnpíng) 1 ma1 or mā (妈) mother

Rising 阳平/陽平 (yángpíng) 2 ma2 or má (麻) hemp, flax

Falling-Rising 上声/上聲 (shǎngshēng) 3 ma3 or mǎ (马) horse

Falling 去声/去聲 (qùshēng) 4 ma4 or mà (骂) cursing, swearing

Microsoft’s Pinyin input method uses the numeral 5 to indicate no tone.a.

It is also common to find reference works in which Pinyin readings have no tone marks at
all—that is, no numerals and no diacritic marks. I have observed that tone marks can be
effectively omitted when the corresponding hanzi are in proximity, such as on the same
page; the hanzi themselves can be used to remove any ambiguity that arises from no in-
dication of tones. Pinyin readings provided throughout this book use diacritic marks to
indicate tone.

Japanese transliteration Methods
There are four Japanese transliteration systems worth exploring in the context of this
book:

The Hepburn system (ヘボン式 hebon shiki)
Popularized by James Curtis Hepburn, an American missionary, in 1887 in the third
edition of his dictionary, this is considered the most widely used system. This trans-
literation system was developed two years earlier, in 1885, by the Roman Character
Association (羅馬字会 rōmajikai).

The Kunrei system (訓令式 kunrei shiki)
Developed in 1937, this is considered the official transliteration system by the Japa-
nese government.

The Nippon system (日本式 nippon shiki)
Developed by Aikitsu Tanakadate (田中館愛橘 tanakadate aikitsu) in 1881—nearly
identical to the Kunrei system, but the least used.

The Word Processor system (ワープロ式 wāpuro shiki)
Developed in a somewhat ad hoc fashion over recent years by Japanese word proces-
sor and input method manufacturers. Whereas the other three transliteraton systems
are largely phonemic, the Word Processor system more closely adheres to a one-to-
one transcription of the kana.

The Japanese transliterations in this book adhere to the Hepburn system. Because the
Word Processor system allows for a wide variety of transliteration possibilities, which is
the nature of input methods, it is thus a topic of discussion in Chapter 5.

38 | Chapter 2: Writing systems and scripts

Table 2-5 lists the basic kana syllables (shown here and in other tables of this section us-
ing hiragana), transliterated according to the three transliteration systems. Those that are
transliterated differently in the three systems have been highlighted for easy differentia-
tion. Table 2-18 provides similar information, but presented in a different manner.

Single syllable Japanese transliterationTable 2-5.

Kana Hepburn Kunrei nippon

あ A A A

い I I I

う U U U

え E E E

お O O O

か KA KA KA

が GA GA GA

き KI KI KI

ぎ GI GI GI

く KU KU KU

ぐ GU GU GU

け KE KE KE

げ GE GE GE

こ KO KO KO

ご GO GO GO

さ SA SA SA

ざ ZA ZA ZA

し SHI SI SI

じ JI ZI ZI

す SU SU SU

ず ZU ZU ZU

せ SE SE SE

ぜ ZE ZE ZE

Latin Characters, transliteration, and romanization | 39

Single syllable Japanese transliterationTable 2-5.

Kana Hepburn Kunrei nippon

そ SO SO SO

ぞ ZO ZO ZO

た TA TA TA

だ DA DA DA

ち CHI TI TI

ぢ JI ZI DI

つ TSU TU TU

づ ZU ZU DU

て TE TE TE

で DE DE DE

と TO TO TO

ど DO DO DO

な NA NA NA

に NI NI NI

ぬ NU NU NU

ね NE NE NE

の NO NO NO

は HA HA HA

ば BA BA BA

ぱ PA PA PA

ひ HI HI HI

び BI BI BI

ぴ PI PI PI

ふ FU HU HU

ぶ BU BU BU

ぷ PU PU PU

へ HE HE HE

40 | Chapter 2: Writing systems and scripts

Single syllable Japanese transliterationTable 2-5.

Kana Hepburn Kunrei nippon

べ BE BE BE

ぺ PE PE PE

ほ HO HO HO

ぼ BO BO BO

ぽ PO PO PO

ま MA MA MA

み MI MI MI

む MU MU MU

め ME ME ME

も MO MO MO

や YA YA YA

ゆ YU YU YU

よ YO YO YO

ら RA RA RA

り RI RI RI

る RU RU RU

れ RE RE RE

ろ RO RO RO

わ WA WA WA

ゐ WI WI WI

ゑ WE WE WE

を O O WO

ん N or Ma N N

An a. m was once used before the consonants b, p, or m—an n is now used in all contexts.

Table 2-6 lists what are considered to be the palatalized syllables—although they signify a
single syllable, they are represented with two kana characters. Those that are different in
the three transliteration systems are highlighted.

Latin Characters, transliteration, and romanization | 41

Japanese transliteration—palatalized syllablesTable 2-6.

Kana Hepburn Kunrei nippon

きゃ KYA KYA KYA

ぎゃ GYA GYA GYA

きゅ KYU KYU KYU

ぎゅ GYU GYU GYU

きょ KYO KYO KYO

ぎょ GYO GYO GYO

しゃ SHA SYA SYA

じゃ JA ZYA ZYA

しゅ SHU SYU SYU

じゅ JU ZYU ZYU

しょ SHO SYO SYO

じょ JO ZYO ZYO

ちゃ CHA TYA TYA

ぢゃ JA ZYA DYA

ちゅ CHU TYU TYU

ぢゅ JU ZYU DYU

ちょ CHO TYO TYO

ぢょ JO ZYO DYO

にゃ NYA NYA NYA

にゅ NYU NYU NYU

にょ NYO NYO NYO

みゃ MYA MYA MYA

みゅ MYU MYU MYU

みょ MYO MYO MYO

ひゃ HYA HYA HYA

びゃ BYA BYA BYA

ぴゃ PYA PYA PYA

42 | Chapter 2: Writing systems and scripts

Japanese transliteration—palatalized syllablesTable 2-6.

Kana Hepburn Kunrei nippon

ひゅ HYU HYU HYU

びゅ BYU BYU BYU

ぴゅ PYU PYU PYU

ひょ HYO HYO HYO

びょ BYO BYO BYO

ぴょ PYO PYO PYO

りゃ RYA RYA RYA

りゅ RYU RYU RYU

りょ RYO RYO RYO

Table 2-7 lists what are considered to be long (or doubled) vowels. The first five rows are
hiragana, and the last five are katakana. Note that only the long hiragana i—written い
い, and transliterated ii—is common to all three systems, and that the Kunrei and Nippon
systems are identical in this regard.

Japanese transliteration—long vowelsTable 2-7.

Kana Hepburn Kunrei nippon

ああ Ā Â Â

いい II II II

うう Ū Û Û

ええ Ē Ê Ê

えい EI EI EI

おう Ō Ô Ô

アー Ā Â Â

イー Ī Î Î

ウー Ū Û Û

エー Ē Ê Ê

オー Ō Ô Ô

Latin Characters, transliteration, and romanization | 43

The only difference among these systems’ long vowel transliterations is the use of a ma-
cron (Hepburn) versus a circumflex (Kunrei and Nippon). Almost all Latin fonts include
circumflexed vowels, but those with macroned vowels are still relatively rare.

Finally, Table 2-8 shows some examples of how to transliterate Japanese double conso-
nants, all of which use a small つ or ツ (tsu).

Japanese transliteration—double consonantsTable 2-8.

example transliteration

かっこ kakko

いっしょ issho

ふっそ fusso

ねっちゅう netchū

しって shitte

ビット bitto

ベッド beddo

バッハ bahha

Korean transliteration Methods
There are now four generally accepted methods for transliterating Korean text: The Re-
vised Romanization of Korean* (국어의 로마자 표기법/國語의 로마字 表記法 gugeoui
romaja pyogibeop), established on July 7, 2000; Ministry of Education (문교부/文敎部
mungyobu, derived from and sometimes referred to as McCune-Reischauer), established
on January 13, 1984;† Korean Language Society (한글 학회/한글 學會 hangeul hakhoe),
established on February 21, 1984;‡ and ISO/TR 11941:1996 (Information Documentation—
Transliteration of Korean Script into Latin Characters), established in 1996. The transliter-
ated Korean text in this book adheres to the RRK transliteration method because it repre-
sents the official way in which Korean text is transliterated, at least in South Korea.§ Other
transliteration methods, not covered in this book, include Yale, Lukoff, and Horne.

Table 2-9 lists the jamo that represent consonants, along with their representation in these
three transliteration methods. Also included are the ISO/TR 11941:1996 transliterations
when these jamo serve as the final consonant of a syllable. ISO/TR 11941:1996 Method 1

* http://www.mct.go.kr/english/roman/roman.jsp
† http://www.hangeul.or.kr/24_1.htm
‡ http://www.hangeul.or.kr/hnp/hanroma.hwp
§ Notable exceptions include words such as hangul, which should really be transliterated as hangeul.

44 | Chapter 2: Writing systems and scripts

is used for North Korea (DPRK), and Method 2 is used for South Korea (ROK). Upper-
case is used solely for clarity.

Korean transliteration—consonantsTable 2-9.

Jamo rrKa Moe KLs Iso (dPrK) Final Iso (roK) Final

ㄱ G/Kb—G K/G G K K G G

ㄴ N N N N N N N

ㄷ D/T c—D T/D D T T D D

ㄹ R/Ld—L R/L L R L R L

ㅁ M M M M M M M

ㅂ B/P e—B P/B B P P B B

ㅅ S S/SH S S S S S

ㅇ None/NG None/NG None/NG None NG None NG

ㅈ J CH/J J C C J J

ㅊ CH CH’ CH CH CH C C

ㅋ K K’ K KH KH K K

ㅌ T T’ T TH TH T T

ㅍ P P’ P PH PH P P

ㅎ H H H H H H H

ㄲ KK KK GG KK KK GG GG

ㄸ TT TT DD TT n/a DD n/a

ㅃ PP PP BB PP n/a BB n/a

ㅆ SS SS SS SS SS SS SS

ㅉ JJ TCH JJ CC n/a JJ n/a

When Clause 8 of this system is invoked, the character shown after the dash shall be used.a.

Gb. is used before vowels, and K is used when followed by another consonant or to form the final sound of a word.

Dc. is used before vowels, and T is used when followed by another consonant or to form the final sound of a word.

Rd. is used before vowels, and L is used when followed by another consonant or to form the final sound of a word.

Be. is used before vowels, and P is used when followed by another consonant or to form the final sound of a word.

Note that some of the double jamo do not occur at the end of syllables. Also, some of
these transliteration methods, most notably the Ministry of Education system, have a
number of rules that dictate how to transliterate certain jamo depending on their context.

Latin Characters, transliteration, and romanization | 45

This context dependency arises because the MOE and RRK (without Clause 8 invoked)
are transcription systems and not transliteration systems, and because the hangul script
is morphophonemic (represents the underlying root forms) and not phonemic (repre-
sents the actual sounds). If a one-to-one correspondence and round-trip conversion are
desired, invoking Clause 8 of the RRK system accomplishes both. ICU’s Hangul-Latin
transliteration function does this.*

For example, the ㄱ jamo is transliterated as k when voiceless (such as at the beginning
of a word or not between two voiced sounds), and as g when between two voiced sounds
(such as between two vowels, or between a vowel and a voiced consonant). Thus, ㄱ in
강물 is pronounced k because it is voiceless, but the same ㄱ in 한강 is pronounced g
because it is between a voiced consonant (ㄴ) and a vowel (ㅏ), and becomes voiced
itself.

Clause 8 of RRK states that when it is necessary to convert transliterated Korean back into
hangul for special purposes, such as for academic papers, transliteration is done accord-
ing to hangul spelling and not by pronunciation. The jamo ㄱ, ㄷ, ㅂ, and ㄹ are thus
always written as g, d, b, and l. Furthermore, when ㅇ has no phonetic value, it is replaced
by a hyphen, which may also be used to separate or distinguish syllables.

ISO/TR 11941:1996 also defines transliterations for compound consonant jamo that ap-
pear only at the end of hangul syllables, all of which are listed in Table 2-10.

ISO/TR 11941:1996 compound jamo transliterationTable 2-10.

Jamo dPrK roK

ㄳ KS GS

ㄵ NJ NJ

ㄶ NH NH

ㄺ LK LG

ㄻ LM LM

ㄼ LP LB

ㄽ LS LS

ㄾ LTH LT

ㄿ LPH LP

ㅀ LH LH

ㅄ PS BS

* http://icu-project.org/userguide/Transform.html

46 | Chapter 2: Writing systems and scripts

Table 2-11 lists the jamo that represent vowels and diphthongs, along with their repre-
sentations in the three transliteration methods. Again, uppercase is used for clarity, and
differences have been highlighted.

Korean transliteration—vowelsTable 2-11.

Jamo rrK Moe KLs Iso (dPrK and roK)

ㅏ A A A A

ㅑ YA YA YA YA

ㅓ EO Ŏ EO EO

ㅕ YEO YŎ YEO YEO

ㅗ O O O O

ㅛ YO YO YO YO

ㅜ U U U U

ㅠ YU YU YU YU

ㅡ EU Ŭ EU EU

ㅣ I I I I

ㅐ AE AE AE AE

ㅒ YAE YAE YAE YAE

ㅔ E E E E

ㅖ YE YE YE YE

ㅘ WA WA WA WA

ㅙ WAE WAE WAE WAE

ㅚ OE OE OE OE

ㅝ WO WŎ WEO WEO

ㅞ WE WE WE WE

ㅟ WI WI WI WI

ㅢ UI ŬI EUI YI

Note that the ISO/TR 11941:1996 transliteration method is identical for both North and
South Korea (DPRK and ROK, respectively).

As with most transliteration methods, there are countless exceptions and special cases.
Tables 2-9 and 2-11 provide only the basic transliterations for jamo. It is when you start

Latin Characters, transliteration, and romanization | 47

combining consonants and vowels that exceptions and special cases become an issue. In
fact, a common exception is the transliteration of the hangul used for the Korean surname
“Lee.” I suggest that you try Younghong Cho’s Korean Transliteration Tools.*

Vietnamese romanization Methods
Writing Vietnamese using Latin characters—called Quốc ngữ (國語)—is considered the
most acceptable method for expressing Vietnamese today. As a result, Quốc ngữ is not
considered a transliteration method. As with using Latin characters to represent Chinese,
Japanese, and Korean text, it is the currently acceptable means to express Vietnamese in
writing. Quốc ngữ is thus a Romanization system.

This writing system is based on Latin script, but is decorated with additional characters
and many diacritic marks. This complexity serves to account for the very rich Vietnamese
sound system, complete with tones.

In addition to the upper- and lowercase English alphabet, Quốc ngữ requires two addi-
tional consonants and 12 additional base characters (that is, characters that do not indi-
cate tone), as shown in Table 2-12.

Additional Quốc ngữ consonants and base charactersTable 2-12.

Character class Consonants Base characters

Lowercase đ ăâêôơư
Uppercase Đ ĂÂÊÔƠƯ

The modifiers that are used for the base vowels, in the order shown in Table 2-12, are
called breve or short (trăng or mũ ngược in Vietnamese), circumflex (mũ in Vietnamese),
and horn (móc or râu in Vietnamese).

While these additional base characters include diacritic marks and other attachments,
they do not indicate tone. There are six tones in Vietnamese, five of which are written with
a tone mark. Every Vietnamese word must have a tone. The diacritic marks for these six
tones are shown in Table 2-13, along with their names.

The six Vietnamese tonesTable 2-13.

tone mark name in Vietnamese name in english

none Không dấu none

` Huyền Grave

* http://www.sori.org/hangul/conv2kr.cgi

48 | Chapter 2: Writing systems and scripts

The six Vietnamese tonesTable 2-13.

tone mark name in Vietnamese name in english

� Hỏi Hook above, curl, or hoi

˜ Ngã Tilde

́ Sắc Acute

� Nặng Dot below, underdot, or nang

All of the diacritic-annotated characters that are required for the Quốc ngữ writing sys-
tem, which are combinations of base characters plus tones, are provided in Table 2-14.

Quốc ngữ base characters and tone marksTable 2-14.

Base characters

a A ă Ă â Â e e ê Ê i I o o ô Ô ơ Ơ u U ư Ư y Y

to
ne

 m
ar

ks

` à À ằ Ằ ầ Ầ è È ề Ề ì Ì ò Ò ồ Ồ ờ Ờ ù Ù ừ Ừ ỳ Ỳ

� ả Ả ẳ Ẳ ẩ Ẩ ẻ Ẻ ể Ể ỉ Ỉ ỏ Ỏ ổ Ổ ở Ở ủ Ủ ử Ử ỷ Ỷ

˜ ã Ã ẵ Ẵ ẫ Ẫ ẽ Ẽ ễ Ễ ĩ Ĩ õ Õ ỗ Ỗ ỡ Ỡ ũ Ũ ữ Ữ ỹ Ỹ

́ á Á ắ Ắ ấ Ấ é É ế Ế í Í ó Ó ố Ố ớ Ớ ú Ú ứ Ứ ý Ý

� ạ Ạ ặ Ặ ậ Ậ ẹ Ẹ ệ Ệ ị Ị ọ Ọ ộ Ộ ợ Ợ ụ Ụ ự Ự ỵ Ỵ

In summary, Quốc ngữ requires 134 additional characters beyond the English alphabet.
Fourteen are additional base characters (see Table 2-12), and the remaining 120 include
diacritic marks that indicate tone (see Table 2-14). Although the U+1Exx block of Unicode
provides the additional characters necessary for Vietnamese in precomposed form, they
can still be represented as sequences that are composed of a base character followed by
one or more diacritic marks. Windows Code Page 1258 includes some, but not all, of these
precomposed characters.

AsCII-based Vietnamese transliteration methods
When only the ASCII character set is available, it is still possible to represent Vietnamese
text using well-established systems. The two most common ASCII-based transliteration
methods are called VIetnamese Quoted-Readable (VIQR) and VSCII MNEMonic (VSCII-
MNEM). The VIQR system is documented in RFC 1456.* Table 2-15 illustrates how Quốc
ngữ base characters and tones are represented in these two systems.

* http://www.ietf.org/rfc/rfc1456.txt

Zhuyin/Bopomofo | 49

VIQR and VSCII-MNEM transliteration methodsTable 2-15.

Quốc ngữ VIQr VsCII-MneM
Ba

se
 ch

ar
ac

te
rs

ă Ă a(A(a< A<

â Â a^ A^ a> A>

ê Ê e^ E^ e> E>

ô Ô o^ O^ o> O>

ơ Ơ o+ O+ o* O*

ư Ư u+ U+ u* U*

đ Đ dd DD dd DD

to
ne

s

à À a` A` a! A!

ả Ả a? A? a? A?

ã Ã a~ A~ a" A"

á Á a' A' a' A'

ạ Ạ a. A. a. A.

Table 2-16 illustrates how base characters and tones are combined in each system. Note
how the base character’s ASCII-based annotation comes before the ASCII-based tone
mark.

Base character plus tones using VIQR and VSCII-MNEM methodsTable 2-16.

Quốc ngữ VIQr VsCII-MneM

ờ Ờ o+` O+` o*! O*!

ở Ở o+? O+? o*? O*?

ỡ Ỡ o+~ O+~ o*" O*"

ớ Ớ o+' O+' o*' O*'

ợ Ợ o+. O+. o*. O*.

Zhuyin/Bopomofo
Zhuyin, developed in the early part of the 20th century, is a method for transcribing Chi-
nese text using ideograph elements for their reading value. In other words, it is a translit-
eration system. It is also known as the National Phonetic System (注音符号 zhùyīn fúhào)
or bopomofo. The name bopomofo is derived from the readings of the first four characters
in the character set: b, p, m, and f. There are a total of 37 characters (representing 21

50 | Chapter 2: Writing systems and scripts

consonants and 16 vowels), along with five symbols to indicate tone (one of which has no
glyph) in the zhuyin character set.

Table 2-17 illustrates each of the zhuyin characters, along with the ideograph from which
they were derived, and their reading. Those that represent vowels are at the end of the
table.

Zhuyin charactersTable 2-17.

Zhuyin Ideograph reading—Pinyin

ㄅ 勹 B

ㄆ 攵 P

ㄇ 𠘨 M

ㄈ 匚 F

ㄉ 𠚣 D

ㄊ 𠫓 T

ㄋ 𠄎 N

ㄌ 𠠲 L

ㄍ 巜 G

ㄎ 丂 K

ㄏ 厂 H

ㄐ 丩 J

ㄑ 𡿨 Q

ㄒ 丅 X

ㄓ 㞢 ZH

ㄔ 彳 CH

ㄕ 𡰣 SH

ㄖ 日 R

ㄗ 卩 Z

ㄘ 𠀁 C

ㄙ 厶 S

ㄚ 丫 A

Kana | 51

Zhuyin charactersTable 2-17.

Zhuyin Ideograph reading—Pinyin

ㄛ 𠀀 O

ㄜ 左 E

ㄝ 也 EI

ㄞ 𠀅 AI

ㄟ 乁 EI

ㄠ 幺 AO

ㄡ 又 OU

ㄢ 𢎘 AN

ㄣ 𠃑 EN

ㄤ 尢 ANG

ㄥ 𠃋 ENG

ㄦ 儿 ER

ㄧ or � 丨 I

ㄨ 㐅 U

ㄩ 凵 IU

The zhuyin character set is included in character sets developed in China (GB 2312-80
and GB/T 12345-90, Row 8) and Taiwan (CNS 11643-2007, Plane 1, Row 5). This set
of characters is identical across these two Chinese locales, with one exception, which is
indicated in Table 2-17 with two different characters: “ㄧ” is used in China, and “�” is
used in Taiwan.

Kana
The most frequently used script found in Japanese text is kana. It is a collective term for
two closely related scripts, as follows:

Hiragana•	

Katakana•	

Although one would expect to find kana characters only in Japanese character sets, they
are, in fact, part of some Chinese and Korean character sets, in particular GB 2312-80 and
KS X 1001:2004. In fact, kana are encoded at the same code points in the case of GB 2312-
80! Why in the world would Chinese and Korean character sets include kana? Most likely

52 | Chapter 2: Writing systems and scripts

for the purposes of creating Japanese text using a Chinese or Korean character set.* After
all, many of the ideographs are common across these locales.

The following sections provide detailed information about kana, along with how they
were derived from ideographs.

Hiragana
Hiragana (平仮名 hiragana) are characters that represent sounds, specifically syllables.
A syllable is generally composed of a consonant plus a vowel—sometimes a single vowel
will do. In Japanese, there are five vowels: a, i, u, e, and o; and 14 basic consonants: k, s, t,
n, h, m, y, r, w, g, z, d, b, and p. It is important to understand that hiragana is a syllabary,
not an alphabet: you cannot decompose a hiragana character into a part that represents
the vowel and a part that represents the consonant. Hiragana (and katakana, covered in
the next section) is one of the only true syllabaries still in common use today. Table 2-18
illustrates a matrix containing the basic and extended hiragana syllabary.

The hiragana syllabaryTable 2-18.

K s t n H M Y r W G Z d B P

A あ か さ た な は ま や ら わ が ざ だ ば ぱ
I い き し ち に ひ み り ゐ ぎ じ ぢ び ぴ
U う く す つ ぬ ふ む ゆ る ぐ ず づ ぶ ぷ
e え け せ て ね へ め れ ゑ げ ぜ で べ ぺ
o お こ そ と の ほ も よ ろ を ご ぞ ど ぼ ぽ
n ん

The following are some notes to accompany Table 2-18:

Several hiragana have smaller versions, and are as follows (the standard version is in •	
parentheses): ぁ (あ), ぃ (い), ぅ (う), ぇ (え), ぉ (お), っ (つ), ゃ (や), ゅ (ゆ), ょ (よ),
and ゎ (わ).

Two hiragana, •	 ゐ and ゑ, are no longer commonly used.

The hiragana •	 を is read as o, not wo.

The hiragana •	 ん is considered an independent syllable and is pronounced approxi-
mately ng.

* There is, however, one fatal flaw in the Chinese and Korean implementations of kana. They omitted five sym-
bols used with kana, all of which are encoded in row 1 of JIS X 0208:1997 (Unicode code points also provided):

 ヽ(01-19; U+30FD), ヾ (01-20; U+30FE), ゝ (01-21; U+309D), ゞ (01-22; U+309E), and ー (01-28; U+30FC).

Kana | 53

Notice that some cells do not contain any characters. These sounds are no longer used in
Japanese, and thus no longer need a character to represent them. Also, the first block of
characters is set in a 5×10 matrix. This is sometimes referred to as the 50 Sounds Table
(50 音表 gojūon hyō), so named because it has a capacity of 50 cells. The other blocks of
characters are the same as those in the first block, but with diacritic marks.

Diacritic marks serve to annotate characters with additional information—usually a
changed pronunciation. In the West you commonly see accented characters such as á, à,
â, ä, ã, and å. The accents are called diacritic marks.

In Japanese there are two diacritic marks: dakuten (also called voiced and nigori) and
handakuten (also called semi-voiced and maru). The dakuten (濁点 dakuten) appears as
two short diagonal strokes ()゙ in the upper-right corner of some kana characters. The da-
kuten serves to voice the consonant portion of the kana character to which it is attached.*
Examples of voiceless consonants include k, s, and t. Their voiced counterparts are g, z,
and d, respectively. Hiragana ka (か) becomes ga (が) with the addition of the dakuten.
The b sound is a special voiced version of a voiced h in Japanese.

The handakuten (半濁点 handakuten) appears as a small open circle ()゚ in the upper-
right corner of kana characters that begin with the h consonant. It transforms this h sound
into a p sound.

Hiragana were derived by cursively writing kanji, but no longer carry the meaning of the
kanji from which they were derived. Table 2-22 lists the kanji from which the basic hira-
gana characters were derived.

In modern Japanese, hiragana are used to write grammatical words, inflectional end-
ings for verbs and adjectives, and some nouns.† They can also be used as a fallback (read
“crutch”) in case you forget how to write a kanji—the hiragana that represent the reading
of a kanji are used in this case. In summary, hiragana are used to write some native Japa-
nese words.

Table 2-19 enumerates the hiragana characters that are included in the JIS X 0208:1997
and JIS X 0213:2004 character set standards. For both character set standards, all of these
characters are in Row 4.

* Voicing is a linguistic term referring to the vibration of the vocal bands while articulating a sound.
† Prior to the Japanese writing system reforms that took place after World War II, hiragana and katakana were

used interchangeably, and many legal documents used katakana for inflectional endings and for purposes now
used exclusively by hiragana.

54 | Chapter 2: Writing systems and scripts

Hiragana characters in JIS standardsTable 2-19.

standard Characters

JIS X 0208:1997

ぁあぃいぅうぇえぉおかがきぎくぐけげこごさざし
じすずせぜそぞただちぢっつづてでとどなにぬねの
はばぱひびぴふぶぷへべぺほぼぽまみむめもゃやゅ
ゆょよらりるれろゎわゐゑをん

JIS X 0213:2004 ゔゕゖか゚き゚く゚け゚こ゚

Note how these characters have a cursive or calligraphic look to them (cursive and cal-
ligraphic refer to a smoother, handwritten style of characters). Keep these shapes in mind
while we move on to katakana.

Katakana
Katakana (片仮名 katakana), like hiragana, is a syllabary, and with minor exceptions,
they represent the same set of sounds as hiragana. Their modern usage, however, dif-
fers from hiragana. Where hiragana are used to write native Japanese words, katakana
are primarily used to write words of foreign origin, called gairaigo (外来語 gairaigo), to
write onomatopoeic words,* to express “scientific” names of plants and animals, or for
emphasis—similar to the use of italics to represent foreign words and to express emphasis
in English. For example, the Japanese word for bread is written パン and is pronounced
pan. It was borrowed from the Portuguese word pão, which is pronounced sort of like
pown. Katakana are also used to write foreign names. Table 2-20 illustrates the basic and
extended katakana syllabary.

The katakana syllabaryTable 2-20.

K s t n H M Y r W G Z d B P

A ア カ サ タ ナ ハ マ ヤ ラ ワ ガ ザ ダ バ パ
I イ キ シ チ ニ ヒ ミ リ ヰ ギ ジ ヂ ビ ピ
U ウ ク ス ツ ヌ フ ム ユ ル グ ズ ヅ ブ プ
e エ ケ セ テ ネ ヘ メ レ ヱ ゲ ゼ デ ベ ペ
o オ コ ソ ト ノ ホ モ ヨ ロ ヲ ゴ ゾ ド ボ ポ
n ン

* Onomatopoeic refers to words that serve to describe a sound, such as buzz or hiss in English. In Japanese, for
example, ブクブク (bukubuku) represents the sound of a balloon expanding.

Kana | 55

The following are some notes to accompany Table 2-20:

Several katakana have smaller versions, and are as follows (the standard version is in •	
parentheses): ァ (ア), ィ (イ), ゥ (ウ), ェ (エ), ォ (オ), ヵ (カ), ヶ (ケ), ッ (ツ), ャ (ヤ),
ュ (ユ), ョ (ヨ), and ヮ (ワ).

Two katakana, •	 ヰ and ヱ, are no longer commonly used.

The katakana •	 ヲ is read as o, not wo.

The katakana •	 ン is considered an independent syllable, and is pronounced approxi-
mately ng.

Katakana were derived by extracting a single portion of a whole kanji, and, like hiragana,
no longer carry the meaning of the kanji from which they were derived. If you compare
several of these characters to some kanji, you may recognize common shapes. Table 2-20
lists the basic katakana characters, along with the kanji from which they were derived.

Table 2-21 enumerates the katakana characters that are included in the JIS X 0208:1997
and JIS X 0213:2004 character set standards. As shown in the table, those in JIS X
0208:1997 are in Row 5, and those in JIS X 0213:2004 are in Plane 1, but spread across
Rows 5 through 7.

Katakana characters in JIS standardsTable 2-21.

standard row Characters

JIS X 0208:1997 5

ァアィイゥウェエォオカガキギクグケゲコゴサ
ザシジスズセゼソゾタダチヂッツヅテデトドナ
ニヌネノハバパヒビピフブプヘベペホボポマミ
ムメモャヤュユョヨラリルレロヮワヰヱヲンヴ
ヵヶ

JIS X 0213:2004

5 カ゚キ゚ク゚ケ゚コ゚セ゚ツ゚ト゚
6 ㇰㇱㇲㇳㇴㇵㇶㇷㇸㇹㇷ゚ㇺㇻㇼㇽㇾㇿ
7 ヷヸヹヺ

Katakana, unlike hiragana, have a squared, more rigid feel to them. Structurally speaking,
they are quite similar in appearance to kanji, which we discuss later.

the development of Kana
You already know that kana were derived from kanji, and Table 2-22 provides a complete
listing of kana characters, along with the kanji from which they were derived.

56 | Chapter 2: Writing systems and scripts

The ideographs from which kana were derivedTable 2-22.

Katakana Ideograph Hiragana

ア 阿 安 あ
イ 伊 以 い
ウ 宇 う
エ 江 衣 え
オ 於 お
カ 加 か
キ 幾 き
ク 久 く
ケ 介 計 け
コ 己 こ
サ 散 左 さ
シ 之 し
ス 須 寸 す
セ 世 せ
ソ 曽 そ
タ 多 太 た
チ 千 知 ち
ツ 川 つ
テ 天 て
ト 止 と
ナ 奈 な
ニ 二 仁 に
ヌ 奴 ぬ
ネ 祢 ね
ノ 乃 の
ハ 八 波 は
ヒ 比 ひ

Kana | 57

The ideographs from which kana were derivedTable 2-22.

Katakana Ideograph Hiragana

フ 不 ふ
ヘ 部 へ
ホ 保 ほ
マ 万 末 ま
ミ 三 美 み
ム 牟 武 む
メ 女 め
モ 毛 も
ヤ 也 や
ユ 由 ゆ
ヨ 與 与 よ
ラ 良 ら
リ 利 り
ル 流 留 る
レ 礼 禮 れ
ロ 呂 ろ
ワ 和 わ
ヰ 井 為 ゐ
ヱ 恵 ゑ
ヲ 乎 遠 を
ン 尓 无 ん

Note how many of the kanji from which katakana and hiragana characters were derived
are the same, and how the shapes of several hiragana/katakana pairs are similar. In fact,
many katakana are nearly identical to kanji and can usually be distinguished by their
smaller size and also by the fact that they are typically found in strings containing other
katakana. Table 2-23 shows some examples of this phenomenon.

58 | Chapter 2: Writing systems and scripts

Katakana and kanji with similar formsTable 2-23.

Katakana Kanji

エ 工
カ 力
タ 夕
ト 卜
ニ 二
ネ 礻
ハ 八
ヒ 匕
ム 厶
メ 乄
ロ 口

Hangul
Hangul (한글 hangeul) syllables are the characters that are used to express contemporary
Korean texts in writing.* Unlike Japanese kana, hangul is not a syllabic script, but rather
a script that is composed of elements that represent a pure alphabet and are composed as
syllables. How does one make the distinction between an alphabet and syllabary? Each
hangul syllable can be easily decomposed into hangul elements, which in turn represent
individual sounds (that is, consonants and vowels), not syllables. Hangul elements, which
do not carry any meaning, are commonly referred to as jamo (자모/字母 jamo), meaning
“alphabet.”†

King Sejong (世宗 sejong) of the Yi Dynasty completed the development of what is now
referred to as hangul back in the year 1443, and the work was officially announced in
1446.‡ Hangul is considered to be one of the most scientific—or, at least, one of the most
well-designed—writing systems due to its extremely regular and predictable structure.

Jamo are typically combined with one or two additional jamo to form a hangul syllable.
Table 2-24 lists a handful of hangul syllables, along with the jamo used to build them.

* The word hangul was coined sometime around 1910, and means “Korean script.”
† Sometimes referred to as jaso (자소/字素 jaso).
‡ The result of this work was a book entitled 訓民正音 (훈민정음 hunmin jeongeum) in which 17 consonants

and 11 vowels were announced, rather than tens of thousands of syllables that can be made with them.

Hangul | 59

Decomposition of hangul syllables into jamoTable 2-24.

Hangul reading Jamo transliterated

가 GA ㄱ plus ㅏ g plus a

갈 GAL ㄱ plus ㅏ plus ㄹ g plus a plus l

갉 GALG ㄱ plus ㅏ plus ㄹ plus ㄱ g plus a plus l plus g

There are exactly six ways to combine simple jamo into modern hangul syllables, as illus-
trated in Figure 2-1, along with examples (“C” stands for consonant, “V” stands for vowel,
and the order in which consonants and vowels are read is indicated with numerals).

� �

� �
�

�

�
�

�

V

� �

� �

�

�

�

�

�

�

�

�

�

�

�� ��

�

�

�
�

��

Six ways to compose jamo into modern hangul syllablesFigure 2-1.

Korean has special terms for the jamo that are used to construct hangul, depending on
where in the syllable they appear:

•	 Choseong (초성/初聲 choseong) for the initial sound, usually a consonant

•	 Jungseong (중성/中聲 jungseong) for the middle sound, usually a vowel

•	 Jongseong (종성/終聲 jongseong) for the final sound, usually a consonant

60 | Chapter 2: Writing systems and scripts

Table 2-25 provides the complete set of 93 jamo as included in the basic Korean character
set standard, specifically KS X 1001:2004. The first 51 of these jamo are considered mod-
ern and are used in combination to form modern hangul syllables. The remaining 42 jamo
are considered ancient. Also from KS X 1001:2004, the first of its many rows of modern
hangul syllables, each of which includes 94 characters, is included in Table 2-25 as well.

Jamo and hangul syllables in KS X 1001:2004Table 2-25.

row Characters

4

ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅃㅄㅅㅆㅇㅈㅉㅊ
ㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣㅥ
ㅦㅧㅨㅩㅪㅫㅬㅭㅮㅯㅰㅱㅲㅳㅴㅵㅶㅷㅸㅹㅺㅻㅼㅽㅾㅿ
ㆀㆁㆂㆃㆄㆅㆆㆇㆈㆉㆊㆋㆌㆍㆎ

16

가각간갇갈갉갊감갑값갓갔강갖갗같갚갛개객갠갤갬갭갯갰
갱갸갹갼걀걋걍걔걘걜거걱건걷걸걺검겁것겄겅겆겉겊겋게
겐겔겜겝겟겠겡겨격겪견겯결겸겹겻겼경곁계곈곌곕곗고곡
곤곧골곪곬곯곰곱곳공곶과곽관괄괆

Appendix K provides a complete code table, annotated with readings, for all 2,350 hangul
syllables in the KS X 1001:2004 character set standard. This appendix is potentially useful
for those who do not yet have a good command of hangul, or who do not have access to
a Korean-capable OS.* Also, Wikipedia provides excellent information about the hangul
script.†

Ideographs
Ideographs, the single most complex type of character used in CJKV texts, are also called
Chinese characters, due to their origin in China. Unicode refers to them as CJK Unified
Ideographs as a way to better distinguish them from other characters, and to emphasize
the unified nature of its character set. They are referred to as hanzi (汉字/漢字 hànzì) in
Chinese, as kanji (漢字 kanji) in Japanese, as hanja (한자/漢字 hanja) in Korean, and as
chữ Hán/𡨸漢 in Vietnamese. To grasp the concept of ideographs, one must first under-
stand the magnitude of such a writing system. The 26 characters of the English alphabet
(52 characters, if one counts both upper- and lowercase) seem quite limiting compared
to the tens of thousands of ideographs in current use by the CJKV locales. It is well docu-
mented that the Japanese borrowed the Chinese script over the course of a millennium.
What is not well known is that while the Japanese were borrowing ideographs from the

* Given the extent to which modern OSes have matured, globalization-wise, encountering an OS that is not
Korean-capable clearly requires taking a step back to earlier OSes.

† http://en.wikipedia.org/wiki/Hangul

Ideographs | 61

Chinese, the Chinese were, themselves, adding to the total number of characters in their
language by continuing to coin new ideographs.* This means that the Japanese were able,
in essence, to capture and freeze a segment of Chinese history every time they borrowed
from the Chinese. The same can be said of Korean and Vietnamese, both of whom also
borrowed ideographs.

Before we begin discussing the history of ideographs and how they are composed, let’s
take some time to illustrate some ideographs. Table 2-26 exemplifies the ideographs that
are included in the major CJKV character set standards, and covers the first logical row of
each plane of each standard. For Unicode, the first 256 ideographs in CJK Unified Ideo-
graphs URO (Unified Repertoire and Ordering) and CJK Unified Ideographs Extension A
are covered.

Ideographs in various character set standardsTable 2-26.

standard row Characters

GB 2312-80 16

啊阿埃挨哎唉哀皑癌蔼矮艾碍爱隘鞍氨安俺
按暗岸胺案肮昂盎凹敖熬翱袄傲奥懊澳芭捌
扒叭吧笆八疤巴拔跋靶把耙坝霸罢爸白柏百
摆佰败拜稗斑班搬扳般颁板版扮拌伴瓣半办
绊邦帮梆榜膀绑棒磅蚌镑傍谤苞胞包褒剥

GB/T 12345-90 16

啊阿埃挨哎唉哀皚癌藹矮艾礙愛隘鞍氨安俺
按暗岸胺案骯昂盎凹敖熬翱襖傲奥懊澳芭捌
扒叭吧笆八疤巴拔跋靶把耙壩霸罷爸白柏百
擺佰敗拜稗斑班搬扳般頒板版扮拌伴瓣半辦
絆邦幫梆榜膀綁棒磅蚌鎊傍謗苞胞包褒剥

CNS 11643-2007 Plane 1 36

一乙丁七乃九了二人儿入八几刀刁力匕十卜
又三下丈上丫丸凡久么也乞于亡兀刃勺千叉
口土士夕大女子孑孓寸小尢尸山川工己已巳
巾干廾弋弓才丑丐不中丰丹之尹予云井互五
亢仁什仃仆仇仍今介仄元允內六兮公冗凶

CNS 11643-2007 Plane 2 1

乂乜凵匚厂万丌乇亍囗屮彳丏冇与丮亓仂仉
仈冘勼卬厹圠夃夬尐巿旡殳毌气爿丱丼仨仜
仩仡仝仚刌刉匜卌圢圣夗夯宁宄尒尻屴屳帄
庀庂忉戉扐氕氶汃氿氻犮犰玊禸肊阞伎优伬
仵伔仱伀价伈伝伂伅伢伓伄仴伒冱刓刐劦

* The Chinese are still coining new ideographs in some locales, especially Hong Kong.

62 | Chapter 2: Writing systems and scripts

Ideographs in various character set standardsTable 2-26.

standard row Characters

CNS 11643-2007 Plane 3 1

丨丶丿亅丅丄冂冖匸卩厶个亇义凢乆亏亼亾
兦凣刄劜卄夂夊宀巛幺广廴彐彑彡阝𠀋乣乢
亣内仅仏从仌冄円冗㓅凤刅办劝勽匀区㔹卆
卝历厷㕕双㕛収圡㞢帀弌户戸攴攵无㸦玍亗
仠㐲𠆩仧㐳仦㐴㚢㐱㒰囘冋册写凥切刋㓜

CNS 11643-2007 Plane 4 1

𠂆乀乁乚𡿨丂丩𠄎𠘧刂㔾巜𠔼𠙵勺卂卪孒𡤼
尢屮忄扌犭丒丯亖仐兂冃仌𠚥𠚪𠤏𠨎厃厸𠮜
𠮛𡈼夨𡯂尣币开𣎴㲸灬爫冈艹辶丗𠁥㐌𠆲㐰
仢仛𠑷𠕂冭𠘳凷㓚𠚯𠠶㔓匛厈厇𠬢叏叽㕣叧
囜𡆣囙圥圧夳尓𡰥𡰤屵𢁒𢆉𢒿㧄㧃曱𣎵𥝌

CNS 11643-2007 Plane 5 1

𠃑𠃋𠃉𠄌𠀀𠂇𠄍𠄏凵𢎘𠃒𠄑𠁾𠫓𡕒𡳾𢖩𣥂𠀉
𠃖𠓝𠓜𠔂𠕳𠙶𠚧𠚨𠠳𠣌𠨍𠨬𠬛㕚𠬝𠮙𡈾𡴭𡴯
𢎙𣎳𣦶𣬛𤓯𤣩𠀔𠂔𠃡𠔆𠕊𠕄𠘱𠙺𠚭𠚮𠚱𠠸𠠷
𠥽𠥾𠨭𠨲𠬣𠬦叱𠮠𡚨𡤿𡦼𡯄𡴻𢀙𢀘𢆳𢎪𢒾𢖬
𢨥𢩦𢩫𣥃𣦵𣫬𣱶㲼𤘔𡗜𤜜𤜝𦓐𦘒𦫳𨙩䦹𨸑

CNS 11643-2007 Plane 6 1

乁𠁢㐅𠂈𠃐𠃏𠄞𠄟𠄠𠤎𠤬𠁡𠀄𠀅𠀃㐄丸𠁽𠂍
𠆣𠆤𠓛𠔀刃𠚣𠠲㔿𠫔𠫕𡰣𢌬𢍺𠔃𠀇𠀈𠂏𠂜𠃕
𠄒𠄓𠄔𠄡𠆨𠆦𠑶𠔁𠔽內𠔾𠘩𠙷𠙸𠚦𠚩𠚬𠠴𠔄
𠥻𠨐𠘯𠫗𠬜𠬟𠬚及𠬞𠮞𠮚𡆠𡆡𡗒𡗓𡦹𡬝𡭕𡳿
𡿧㠪𢀑𢀓𢀒𢆯𢆱廾𢌭𢍻𢎝𢎚㢧𢎟𢎠𢎜𢒽㣺

CNS 11643-2007 Plane 7 1

𠁕𠆂𠆉𠆇𠎾𠎽𠏊𠏔𠎼𠏄𠏁𠏂𠏗𠍰𠎺𠏣𠎻𠒱𠒶
𠒰𠕬𠘍𠘇𠟱𠟵𠟭𠟯𠟫𠟬𠟮𠠇𠧄𠨈𠪳𠪭𠪰𠬑𠆊
𠾃𠽺𠾂𠽨𠽱𠾰𠾯㗶𠽬𠽯𠽢𠽥𠾁𠽿𠽤𠽳𠽮𠽧𠽴
𠽽𠽸𠾅𠾪𠾈𠾦噑𠾊𠾄噕𡈤𡈢𡈣𡐲𡑛𡑏㙧𡐦𡐾
𡑂𡑇𡐢𠚛𡑊𡐟𡑉𡐫𡐳墬𡐪𡐨𡔽𡔼𡖿𡙹𡚀𡙼

CNS 11643-2007 Plane 15 1

𠀂𠂌𠃔𠆥𠂒𠂓𠃘𠃙𠆧𠘫𠘬𠘭𠘰𠘮𠚫匁𠤭𠥭𠨬
𠨏  𠮝𡆢𡗔𡭖𡯃𢀔  𤜚𠀏𠀐𠂚𠂛  𠆬㐶𠂗𠕆
䍏𠕶𠕷𠖮𠘺𠙽𡯅𠮨  叺𡉁𡉂𡗘𡗙𡚪𡚫𡥂𡥁龙
𡯆  𡴵𡴶𡴷㠯𦍍  𢆵𢌗𢒂𣎶汉𣱲𤕜𤖨辷𡗣㐆
 𠃦𠅄𠅅伩㐾𠇄𠇅𠇆𠇇𠇈𠇉𠇊𠇔𠕽𦉲𠖲𠖴

Ideographs | 63

Ideographs in various character set standardsTable 2-26.

standard row Characters

JIS X 0208:1997 16

亜唖娃阿哀愛挨姶逢葵茜穐悪握渥旭葦芦鯵
梓圧斡扱宛姐虻飴絢綾鮎或粟袷安庵按暗案
闇鞍杏以伊位依偉囲夷委威尉惟意慰易椅為
畏異移維緯胃萎衣謂違遺医井亥域育郁磯一
壱溢逸稲茨芋鰯允印咽員因姻引飲淫胤蔭

JIS X 0213:2004 Plane 1 14

俱𠀋㐂丨丯丰亍仡份仿伃伋你佈佉佖佟佪佬
佾侊侔侗侮俉俠倁倂倎倘倧倮偀倻偁傔僌僲
僐僦僧儆儃儋儞儵兊免兕兗㒵冝凃凊凞凢凮
刁㓛刓刕剉剗剡劓勈勉勌勐勖勛勤勰勻匀匇
匜卑卡卣卽厓厝厲吒吧呍咜呫呴呿咈咖咡

JIS X 0213:2004 Plane 2 1

𠂉丂丏丒丩丫丮乀乇么𠂢乑㐆𠂤乚乩亝㐬㐮
亹亻𠆢亼仃仈仐仫仚仱仵伀伖佤伷伾佔佘𠈓
佷佸佺佽侂侅侒侚俦侲侾俅俋俏俒㑪俲倀倐
倓倜倞倢㑨偂偆偎偓偗偣偦偪偰傣傈傒傓傕
傖傜傪𠌫傱傺傻僄僇僳𠎁僎𠍱僔僙僡僩㒒

JIS X 0212-1990 16

丂丄丅丌丒丟丣两丨丫丮丯丰丵乀乁乄乇乑
乚乜乣乨乩乴乵乹乿亍亖亗亝亯亹仃仐仚仛
仠仡仢仨仯仱仳仵份仾仿伀伂伃伈伋伌伒伕
伖众伙伮伱你伳伵伷伹伻伾佀佂佈佉佋佌佒
佔佖佘佟佣佪佬佮佱佷佸佹佺佽佾侁侂侄

KS X 1001:2004 42

伽佳假價加可呵哥嘉嫁家暇架枷柯歌珂痂稼
苛茄街袈訶賈跏軻迦駕刻却各恪慤殼珏脚覺
角閣侃刊墾奸姦干幹懇揀杆柬桿澗癎看磵稈
竿簡肝艮艱諫間乫喝曷渴碣竭葛褐蝎鞨勘坎
堪嵌感憾戡敢柑橄減甘疳監瞰紺邯鑑鑒龕

KS X 1002:2001 55

仮傢咖哿坷宊斝榎檟珈笳耞舸葭謌卻咯埆搉
擱桷偘慳栞榦玕秆茛衎赶迀齦噶楬秸羯蠍鶡
坩埳嵁弇憨撼欿歛泔淦澉矙轗酣鹻韐傋僵壃
忼扛杠橿殭矼穅繈罡羗羫茳豇韁剴匃揩槩玠
磕闓硜賡鏗呿昛秬筥籧胠腒苣莒蕖蘧袪裾

64 | Chapter 2: Writing systems and scripts

Ideographs in various character set standardsTable 2-26.

standard row Characters

TCVN 6056:1995 42

一丁七万丈三上下不与丐丑且丕世丘丙丞丢
丫中丰串丸丹主丿乂乃久之乍乎乏乖乘乙九
乞也乱乳乾亂了予事二亍于云互五井亙些亟
亡亢交亥亨享京亭人什仁仃仄仆仇今介仍仔
仕他仗付仙仝代令仰件价任份仿企伊伍伎

Unicode—URO 4E

一丁丂七丄丅丆万丈三上下丌不与丏丐丑丒
专且丕世丗丘丙业丛东丝丞丟丠両丢丣两严
並丧丨丩个丫丬中丮丯丰丱串丳临丵丶丷丸
丹为主丼丽举丿乀乁乂乃乄久乆乇么义乊之
乌乍乎乏乐乑乒乓乔乕乖乗乘乙乚乛乜九乞
也习乡乢乣乤乥书乧乨乩乪乫乬乭乮乯买乱
乲乳乴乵乶乷乸乹乺乻乼乽乾乿亀亁亂亃亄
亅了亇予争亊事二亍于亏亐云互亓五井亖亗
亘亙亚些亜亝亞亟亠亡亢亣交亥亦产亨亩亪
享京亭亮亯亰亱亲亳亴亵亶亷亸亹人亻亼亽
亾亿什仁仂仃仄仅仆仇仈仉今介仌仍从仏仐
仑仒仓仔仕他仗付仙仚仛仜仝仞仟仠仡仢代
令以仦仧仨仩仪仫们仭仮仯仰仱仲仳仴仵件
价仸仹仺任仼份仾仿

Unicode—Extension A 34

㐀㐁㐂㐃㐄㐅㐆㐇㐈㐉㐊㐋㐌㐍㐎㐏㐐㐑㐒
㐓㐔㐕㐖㐗㐘㐙㐚㐛㐜㐝㐞㐟㐠㐡㐢㐣㐤㐥
㐦㐧㐨㐩㐪㐫㐬㐭㐮㐯㐰㐱㐲㐳㐴㐵㐶㐷㐸
㐹㐺㐻㐼㐽㐾㐿㑀㑁㑂㑃㑄㑅㑆㑇㑈㑉㑊㑋
㑌㑍㑎㑏㑐㑑㑒㑓㑔㑕㑖㑗㑘㑙㑚㑛㑜㑝㑞
㑟㑠㑡㑢㑣㑤㑥㑦㑧㑨㑩㑪㑫㑬㑭㑮㑯㑰㑱
㑲㑳㑴㑵㑶㑷㑸㑹㑺㑻㑼㑽㑾㑿㒀㒁㒂㒃㒄
㒅㒆㒇㒈㒉㒊㒋㒌㒍㒎㒏㒐㒑㒒㒓㒔㒕㒖㒗
㒘㒙㒚㒛㒜㒝㒞㒟㒠㒡㒢㒣㒤㒥㒦㒧㒨㒩㒪
㒫㒬㒭㒮㒯㒰㒱㒲㒳㒴㒵㒶㒷㒸㒹㒺㒻㒼㒽
㒾㒿㓀㓁㓂㓃㓄㓅㓆㓇㓈㓉㓊㓋㓌㓍㓎㓏㓐
㓑㓒㓓㓔㓕㓖㓗㓘㓙㓚㓛㓜㓝㓞㓟㓠㓡㓢㓣
㓤㓥㓦㓧㓨㓩㓪㓫㓬㓭㓮㓯㓰㓱㓲㓳㓴㓵㓶
㓷㓸㓹㓺㓻㓼㓽㓾㓿

Ideographs | 65

As you can clearly see from Table 2-26, there is quite a wide variety of character set stan-
dards available that include ideographs. Chapter 3 will make sense of all these character
set standards.

A noteworthy characteristic of ideographs is that they can be quite complex. Believe it or
not, they can get much more complex than the sets of 94 or 256 characters just illustrated!
Ideographs are composed of radicals and radical-like elements, which can be thought of
as building blocks of sorts. Radicals are discussed later in this chapter, in the section “The
Structure of Ideographs.”

Ideograph readings
In Japanese, the typical ideograph has at least two readings, and some have more. A read-
ing is simply the pronunciation of a character. For example, the ideograph 生, whose
meaning relates to “life,” has over 200 readings in Japanese—most of which are used for
Japanese given names, which are known for their unusual readings.

Ideograph readings typically come from two sources:

Language-specific reading•	

Borrowed—and usually approximated—reading•	

The native Japanese reading was how the Japanese pronounced a word before the Chinese
influenced their language and writing system. The native Japanese reading is called the
Kun reading (訓読み kun yomi).

The borrowed Chinese reading is the Japanese-language approximation of the original
Chinese reading of an ideograph. These borrowed approximate readings are called On
readings (音読み on yomi), On being the word for “sound.” If a particular ideograph was
borrowed more than once, multiple readings can result. Table 2-27 lists several ideo-
graphs, along with their respective readings.

Ideographs and their readings—JapaneseTable 2-27.

Ideograph Meaning on readings Kun readings

剣 sword ken akira, haya, tsurugi, tsutomu

窓 window sō mado

車 car sha kuruma

万 10,000 ban, man katsu, kazu, susumu, taka, tsumoru, tsumu, yorozu

生 life, birth sei, shō ari, bu, fu, fuyu, haeru, hayasu, i, ikasu, ikeru, ikiru, iku, ki, mi, nama,
nari, nori, o, oki, ou, susumu, taka, ubu, umareru, umu, yo, and so on

店 store, shop ten mise

66 | Chapter 2: Writing systems and scripts

So, how does one go about deciding which reading to use? Good question! As you learned
earlier, the Japanese mostly borrowed kanji as compounds of two or more kanji, and often
use the On reading for such compounds. Conversely, when these same kanji appear in
isolation, the Kun reading is often used. Table 2-28 provides some examples of individual
kanji and kanji compounds.

Kanji and kanji compounds—JapaneseTable 2-28.

Kanji compound Meaning readings

自動車 automobile jidōsha—On readings

車 car kuruma—Kun reading

剣道 Kendo kendō—On readings

剣 sword tsurugi—Kun reading

As with all languages, there are always exceptions to rules! Sometimes you find kanji com-
pounds that use Kun readings for one or all kanji. You may also find kanji in isolation that
use On readings. Table 2-29 lists some examples.

Mixed uses of kanji readings—JapaneseTable 2-29.

Kanji compound Meaning reading

重箱 nest of boxes jūbako—On plus Kun reading

湯桶 bath ladle yutō—Kun plus On reading

窓口 ticket window madoguchi—Kun plus Kun reading

単 simple, single tan—On reading

Japanese personal names tend to use the Kun readings even though they are in com-
pounds. For example, 藤本 is read fujimoto rather than tōhon.

the structure of Ideographs
Ideographs are composed of smaller, primitive units called radicals, and other non-
radical elements, which are used as building blocks. These elements serve as the most
basic units for building ideographs. There are 214 radicals used for indexing ideographs.
Several radicals stand alone as single, meaningful ideographs. Table 2-30 provides some
examples of radicals, along with several ideographs that can be written with them (ex-
amples are taken from Japanese).

Ideographs | 67

Radicals and ideographs made from themTable 2-30.

radical Variants standalone? Meaning examples

木 Yes tree 本札朴朶李材条杲林枦栞棚森樢
火 灬 Yes fire 灯灰灸災炎点無然熊熟熱燃燭爛
水 氵⺢ Yes water 氷永汁江汲沢泉温測港源溢澡濯
辵 辶辶 No running 辷込辻辺辿迄迅迎近返迚連週還

Note how each radical is placed within ideographs—they are stretched or squeezed so that
all of the radicals that constitute an ideograph fit into the general shape of a square. Also
note how radicals are positioned within ideographs, specifically on the left, right, top, or
bottom.

Radicals and radical-like elements, in turn, are composed of smaller units called strokes.
A radical can consist of one or more strokes. Sometimes a single stroke is considered a
radical. There exists one stroke that is considered a single ideograph: 一, the ideograph
that represents the number one. Figure 2-2 shows how a typical ideograph is composed
of radicals and strokes.

��������
��������������������������

�������

Decomposition of ideographs into radicals and strokesFigure 2-2.

There are many classifications of ideographs, but four are the most common: pictographs,
simple ideographs, compound ideographs, and phonetic ideographs. Pictographs, the

www.allitebooks.com

http://www.allitebooks.org

68 | Chapter 2: Writing systems and scripts

most basic of the ideographs, are little pictures and usually look much like the object they
represent.* Table 2-31 lists examples of pictographs.

PictographsTable 2-31.

Ideograph Meaning

日 sun

月 moon

山 mountain

火 fire

木 tree

車 car, cart

口 mouth, opening

Whereas pictographs represent concrete objects, simple ideographs represent abstract
concepts or ideas (as its name suggests), such as numbers and directions.† Table 2-32 lists
examples of simple ideographs.

Simple ideographsTable 2-32.

Ideograph Meaning

上 up

下 down

中 center, middle

一 one

二 two

三 three

Pictographs and simple ideographs can be combined to represent more complex charac-
ters and usually reflect the combined meaning of its individual elements. These are called
compound ideographs.‡ Table 2-33 lists examples of compound ideographs.

* Written as 象形文字 (xiàngxíng wénzì) in Chinese, 象形文字 (shōkei moji) in Japanese, and 상형문자/象形文
字 (sanghyeong munja) in Korean.

† Written as 指事文字 (zhǐshì wénzì) in Chinese, 指事文字 (shiji moji) in Japanese, and 지사문자/指事文字
(jisa munja) in Korean.

‡ Written as 会意文字/會意文字 (huìyì wénzì) in Chinese, 会意文字 (kaii moji) in Japanese, and 회의문자/
會意文字 (hoeui munja) in Korean.

Ideographs | 69

Compound ideographsTable 2-33.

Ideograph Components Meaning

林 木 + 木 woods

森 木 + 木 + 木 forest

明 日 + 月 clear, bright

Phonetic ideographs account for more than 90% of all ideographs.* They typically have
two components: one to indicate reading, and the other to denote etymological meaning.
Table 2-34 provides examples that all use the same base reading component, which is the
right-side element.

Phonetic ideographs with common reading component—JapaneseTable 2-34.

Ideograph Meaning reading Meaning component reading component

銅 copper dō 金 metal 同 dō

洞 cave dō 氵 water 同 dō

胴 torso dō 肉 organ 同 dō

恫 threat dō 忄 heart 同 dō

Note that each ideograph uses the 同 component (dō) as its reading component. Table
2-35 lists several ideographs that use the same base meaning component.

Phonetic ideographs with common meaning component—JapaneseTable 2-35.

Ideograph Meaning reading Meaning component reading component

雰 fog fun 雨 rain 分 fun

雲 cloud un 雨 rain 云 un

震 shake shin 雨 rain 辰 shin

霜 frost sō 雨 rain 相 sō

Note that each uses the 雨 (“rain”) component for its meaning component, which also
serves as the indexing radical. The 雨 component is another example of a radical that can
stand alone as a single ideograph.

* Written as 形声文字/形聲文字 (xíngshēng wénzì) in Chinese, 形声文字 (keisei moji) in Japanese, and 형성문
자/形聲文字 (hyeongseong munja) in Korean.

70 | Chapter 2: Writing systems and scripts

Ideographs are subsequently combined with other ideographs as words to form more
complex ideas or concepts. These are called compounds (熟語 jukugo in Japanese) or ideo-
graph compounds (漢語 kango in Japanese). Table 2-36 lists a few examples. Note that
you can decompose words into pieces, each piece being a single ideograph with its own
meaning.

Ideograph compoundsTable 2-36.

Compound Meaning Component ideographs and their meanings

日本 Japan 日 means sun, and 本 means origin—where the sun rises.

短刀 short sword 短 means short, and 刀 means sword.

酸素 oxygen 酸 means acid, and 素 means element—the acid element.

曲線 curve 曲 means curved, and 線 means line—curved line.

剣道 Kendo 剣 means sword, and 道 means path—the way of the sword.

自動車 automobile 自 means self, 動 means moving, and 車 means car.

火山 volcano 火 means fire, and 山 means mountain—fire mountain.

That should give you a sense of how ideographs are constructed and how they are com-
bined with other ideographs to form compounds. But how did they come to be used in
Korea and Japan? These and other questions are answered next.

the History of Ideographs
This section provides some brief historical context to explain the development of ideo-
graphs and how they came to be used in other regions or cultures, such as Korea, Japan, and
Vietnam.

the development of ideographs
Ideographs, believe it or not, share a history similar to that of the Latin alphabet. Both
writing systems began thousands of years ago as pictures that encompassed meanings.
Whereas the precursors to the Latin alphabet eventually gave up any (nonphonological)
semantic association with the characters’ shapes, ideographs retained (and further ex-
ploited) this feature. Table 2-37 lists several Chinese reference works whose publication
dates span a period of approximately 2,000 years.

Ideographs | 71

The number of ideographs during different periodsTable 2-37.

Year (Ad) number of ideographs reference work

100 9,353 說文解字

227–239 11,520 聲類

480 18,150 廣雅

543 22,726 玉編

751 26,194 唐韻

1066 31,319 類編

1615 33,179 字彙

1716 47,021 康熙字典

1919 44,908 中華大字典

1969 49,888 中文大辭典

1986 56,000 汉语大字典

1994 85,000 中华字海

Note the nearly ten-fold increase in the number of hanzi over this 2,000-year period.
The majority of the ideographs that sprang into existence during this time were phonetic
ideographs (see Tables 2-34 and 2-35).

Ideographs in Korea—hanja
One of the earliest cultures to adapt ideographs for their own language was Korea. Al-
though ideographs—called hanja—were extensively used in years past, most Korean writ-
ing today is completely done using hangul syllables.

South Korea never abolished hanja entirely, though their use has gradually diminished
over time. Keep in mind that the Korean writing system functions well with only hangul
syllables and punctuation, which effectively means that hanja are optional. There are some
conservative groups within South Korea who would like hanja to be taught more broadly
and used throughout society.

The definitive Korean hanja reference is a dictionary entitled 大字源 (대자원 daejawon),
first published in 1972.

Ideographs in Japan—kanji
There is no evidence to suggest that there was any writing system in place in Japan prior
to the introduction of the Chinese script. In fact, it is quite common for writing systems
to develop relatively late in the history of languages. A writing system as complex as that
used in Chinese is not really an ideal choice for borrowing, but perhaps this was the only
writing system from which the Japanese could choose at the time.

72 | Chapter 2: Writing systems and scripts

The Japanese borrowed ideographs between 222 AD and 1279 AD. During this millen-
nium of borrowing, the Chinese increased their inventory of characters nearly three-fold.
Table 2-37 illustrated the number of ideographs that were documented in Chinese at dif-
ferent periods. That table clearly indicated that the Chinese, over a period of about 2,000
years, increased their inventory of characters by roughly a factor of 10 (from 9,353 to
85,000). As you can see, the Japanese were borrowing from the Chinese even while the
Chinese were still creating new characters.

The Japanese began borrowing the Chinese script over 16 centuries ago. This massive
borrowing took place in three different waves. Several kanji were borrowed repeatedly at
different periods, and the reading of each kanji was also borrowed again. This led to dif-
ferent readings for a given kanji depending on which word or words it appeared in, due to
dialectal and diachronic differences in China.

The first wave of borrowing took place sometime between 222 and 589 AD by way of
Korea, during the Six Dynasties Period in China. Characters borrowed during this period
were those used primarily in Buddhist terminology. During this time, the Chinese had
between 11,520 and 22,726 hanzi.

The second wave took place between 618 and 907 AD, during the Tang Dynasty in China.
Characters borrowed during this period were those used primarily for government and
in Confucianism terminology. During this time, the Chinese had between 22,726 and
26,194 hanzi.

The third wave occurred somewhere between 960 and 1279 AD, during the Song Dynasty
in China. Characters borrowed during this time were those used in Zen terminology. The
Chinese had between 31,319 and 33,179 hanzi by this period.

During all three waves of borrowing, most ideographs were borrowed as compounds of
two or more kanji, rather than as isolated characters. It is in this context that you find
differences in reading of a particular kanji depending on what word it appears in. For ex-
ample, the kanji 万, meaning “10,000,” can be found in kanji compounds with either the
reading man or ban, such as 万一 (man + ichi) and 万歳 (ban + zai—yes, the actual kanji
compound for banzai!). This (m/b)an alternation would indicate to a trained linguist that
these two words were probably borrowed at different periods.

The first two waves of borrowing had the most significant impact on the Japanese lexicon,
which accounts for dual On readings for many kanji (lexicon simply refers to the indi-
vidual words that constitute a language). The third wave of borrowing had very little effect
on the Japanese lexicon.

I suggest the frontmatter of Jack Halpern’s New Japanese-English Character Dictionary
(Kenkyusha, 1990) as additional reference material on the history and development of the
Japanese writing system, more specifically, pages 50a through 60a of that reference. The
definitive Japanese kanji reference is a 13-volume dictionary entitled 大漢和辭典 (dai
kanwa jiten), first published in 1955.

Ideographs | 73

Ideographs in Vietnam—chữ Hán
Vietnam also adopted ideographs for their language, but in a unique way. There are two
ways to represent Vietnamese using ideographs. One way is equivalent to Chinese it-
self (but with approximated readings when pronounced in Vietnamese) and uses char-
acters called chữ Hán (genuine ideographs). The other way involves characters that look
and feel like ideographs, but were created by the Vietnamese. These are called chữ Nôm
(𡨸喃). These methods of writing Vietnamese are unique in that they are never used
together in the same text: you write using either chữ Hán (Chinese) or chữ Nôm
(Vietnamese). More details about chữ Nôm are provided at the end of this chapter.

Both chữ Hán and chữ Nôm were replaced by Quốc ngữ in 1920. Today, chữ Hán and chữ
Nôm are still being used—not for the purpose of common or everyday communication,
but rather for specialized, religious, or historical purposes.

Ideograph simplification
Over time, frequently used and complex ideographs tend to simplify. Simplified ideo-
graphs are a class of variant. Such simplifications have been different depending on the
locale using them. For example, ideographs in their traditional form are still being used in
Taiwan. The same holds true for Korea. Also, ideographs in an even more simplified form
than that found in Japanese are being used in China and Singapore, although there are
some exceptions to this rule. A large number of ideographs are used in an almost identical
form in all CJKV locales. Table 2-38 illustrates several ideographs in both traditional and
simplified form.

Traditional and simplified ideographsTable 2-38.

traditional simplified—Japan simplified—China

廣 広 广

兒 児 儿

兩 両 两

氣 気 气

豐 豊 丰

邊 辺 边

國 国 国

學 学 学

點 点 点

黑 黒 黑

74 | Chapter 2: Writing systems and scripts

Traditional and simplified ideographsTable 2-38.

traditional simplified—Japan simplified—China

佛 仏 佛

骨 骨 骨

Both the simplified and traditional forms of ideographs sometimes coexist within the same
character set standard, and some of the pairs from Table 2-38 are such examples—most
of them are part of the basic Japanese character set standard, specifically JIS X 0208:1997.
You can also see that some simplifications are more extreme than others.

Such simplifications in Japan have led to variants of many characters, and in some char-
acter sets both the simplified and traditional forms are included (the examples given ear-
lier are such cases). As an extreme example, let’s examine the JIS X 0208:1997 kanji 剣
(Row-Cell 23-85), whose five variant kanji are also encoded within the same character set
standard. These variants are listed in Table 2-39 (JIS X 0208:1997 Row-Cell and Unicode
scalar values are given).

Ideograph variants in the same character setTable 2-39.

Ideograph Character code—JIs X 0208:1997 Character code—Unicode

劍 49-88 U+528D

劔 49-89 U+5294

劒 49-90 U+5292

剱 49-91 U+5271

釼 78-63 U+91FC

I should also point out that almost all simplified ideographs have a corresponding tradi-
tional form. Some so-called simplified ideographs have been coined as simplified forms,
meaning that although they are considered simplified ideographs, there is no correspond-
ing traditional form. Clearly, not all traditional forms have a corresponding simplified
form, either because its form is sufficiently simple so as to not require simplification, or
its use is not frequent enough to justify simplifcation. Interestingly, a small number of
simplified ideographs have more than one traditional form.

non-Chinese Ideographs
What in the world is a non-Chinese ideograph? Simple. Characters that look, feel, and be-
have like ideographs, but were not borrowed from China and instead were coined in other
regions. The following sections describe this interesting and remarkable phenomenon as
it has manifested in Japan, Korea, and Vietnam. Examples are also provided.

non-Chinese Ideographs | 75

Japanese-Made Ideographs—Kokuji
The Japanese have created their own ideographs known as kokuji (国字 kokuji), literally
meaning “national characters,” or, more descriptively, “Japanese-made ideographs.” Kokuji
behave like true ideographs, following the same rules of structure. Specifically, they are
composed of radicals, radical-like elements, and strokes, and can be combined with one
or more ideographs to form compounds or words. These ideographs were created out of
a need for characters not borrowed from China.* Most kokuji are used to represent the
names of indigenous Japanese plants and fish. They are also used quite frequently in Japa-
nese place and personal names.

Approximately 200 kokuji have been identified in the basic Japanese character set stan-
dard, specifically JIS X 0208:1997. There are even more in the supplemental character sets,
specifically JIS X 0212-1990 and JIS X 0213:2004. Table 2-40 provides a few examples of
kokuji, and also lists their JIS X 0208:1997 Row-Cell and Unicode scalar values for refer-
ence purposes.

Kokuji examplesTable 2-40.

Kokuji readings Meanings

鰯 16-83 U+9C2F iwashi sardine

粂 23-09 U+7C82 kume Used in personal names

込 25-94 U+8FBC komu (to) move inward

榊 26-71 U+698A sakaki A species of tree called sakaki

働 38-15 U+50CD hataraku, dō a (to) work

峠 38-29 U+5CE0 tōge mountain pass

畑 40-10 U+7551 hata, hatake dry field

枠 47-40 U+67A0 waku frame

凩 49-62 U+51E9 kogarashi cold, wintry wind

Considered an On reading.a.

Additional kokuji were created when the Japanese isolated themselves from the rest of the
world for approximately 250 years: from the mid-1600s to the late 1800s. Without direct
influence from China, the Japanese resorted to creating their own ideographs as neces-
sary. There is at least one kokuji that was subsequently borrowed by China, specifically 腺
(JIS X 0208:1997 Row-Cell 33-03, which is read sen, and means “gland”). In Chinese this

* In fact, some kokuji were even borrowed back by the Chinese as genuine ideographs, which I discuss later.

76 | Chapter 2: Writing systems and scripts

ideograph is read xiàn (GB 2312-80 Row-Cell 47-57). The Unicode scalar value for this
ideograph is U+817A.

Seven kokuji have made their way into the standard set of 1,945 kanji called Jōyō Kanji,
and four are in Jinmei-yō Kanji (Chapter 3 provides a full treatment of these and other
related character sets). Those in Jōyō Kanji are 込 (25-94), 働 (38-15), 峠 (38-29), 畑 (40-
10), 塀 (42-29), 匁 (44-72), and 枠 (47-40). Those in Jinmei-yō Kanji are 笹 (26-91), 凪
(38-68), 柾 (43-79), and 麿 (43-91). Nozomu Ohara (大原望 ōhara nozomu) has com-
piled a list of kokuji, which includes those that are listed in the JIS X 0208:1997 and JIS X
0212-1990 character set standards, along with links to other kokuji-related websites.*

Korean-Made Ideographs—Hanguksik Hanja
Like the Japanese, the Koreans have had the opportunity to create their own ideographs.
These are known as hanguksik hanja (한국식 한자/韓國式漢字 hanguksik hanja). Al-
though you’d expect to find hanguksik hanja only in Korean character set standards, there
are approximately 100 hanguksik hanja included in a Chinese character set standard des-
ignated GB 12052-89 (you’ll understand why after reading about this character set stan-
dard in Chapter 3).

Hanguksik hanja—unlike kokuji in Japanese—have many tell-tale signs of their status as
non-Chinese ideographs. Table 2-41 lists elements of hanguksik hanja that are used to
indicate a final consonant.

Hanguksik hanja reading elementsTable 2-41.

Hanguksik hanja element reading

乙 L

ㄱ G

叱 D

ㅇ NG

Many other hanguksik hanja look and feel like genuine ideographs. It is only after you
explore their etymology that you may discover their true Korean origins.

The basic Korean character set standard for use on computers, KS X 1001:2004, includes
many hanguksik hanja. The supplemental Korean character set standard, KS X 1002:2001,
includes even more hanguksik hanja. Table 2-42 provides some examples of hanguksik
hanja, along with their readings and meanings. KS X 1001:2004 Row-Cell and Unicode
scalar values are provided for reference purposes.

* http://homepage2.nifty.com/TAB01645/ohara/

non-Chinese Ideographs | 77

Hanguksik hanja examplesTable 2-42.

Hanguksik hanja reading Meaning

乫 42-65 U+4E6B 갈 gal Used in personal names

畓 51-44 U+7553 답 dap paddy, wet field

乭 52-44 U+4E6D 돌 dol Used in personal and place names

唜 56-37 U+551C 말 mal Used in place names

鐥 64-54 U+9425 선 seon Used in place names

筽 72-04 U+7B7D 오 o Used in place names

岾 79-32 U+5CBE 점 jeom mountain passa

Compare this hanguksik hanja with the (Japanese) kokuji a. 峠 (tōge) in Table 2-40. I find it fascinating that Japan and Korea independently
coined their own ideograph meaning “mountain pass.”

Only one hanguksik hanja, 畓 (답 dap), is known to be included in Korea’s standard set of
1,800 hanja called Hanmun Gyoyukyong Gicho Hanja. This hanguksik hanja is not in the
middle school subset of 900 hanja, though.

Vietnamese-Made Ideographs—Chữ nôm
Unlike Japanese and Korean, in which non-Chinese ideographs are used together with
genuine ideographs—a sort of mixing of scripts—Vietnamese has three distinct ways to
express its language through writing:

Latin script (called •	 Quốc ngữ)

Ideographs (called •	 chữ Hán)

Vietnamese-made ideographs (called •	 chữ Nôm)

Writing Vietnamese using chữ Hán is considered equivalent to writing in Chinese, not
Vietnamese. Using Quốc ngữ or chữ Nôm is considered writing in Vietnamese, not
Chinese. For some chữ Nôm characters, there is a corresponding chữ Hán character with
the same meaning. Table 2-43 provides a handful of chữ Nôm characters, along with
their chữ Hán equivalents (TCVN 5773:1993 and TCVN 6056:1995 Row-Cell codes are
provided for chữ Nôm and chữ Hán characters, respectively).

Chữ Nôm and chữ Hán examplesTable 2-43.

Chữ nôm reading Chữ Hán reading Meaning

𠀧 21-47 U+20027 ba 三 42-06 U+4E09 tam three

𡧲 29-55 U+219F2 giữa 中 42-21 U+4E2D trung center, middle

78 | Chapter 2: Writing systems and scripts

Chữ Nôm and chữ Hán examplesTable 2-43.

Chữ nôm reading Chữ Hán reading Meaning

𡨸 34-02 U+21A38 chữ 字 50-30 U+5B57 tự character

𤾓 35-77 U+24F93 trăm 百 64-02 U+767E bá hundred

There are times when chữ Hán characters are used in chữ Nôm context (that is, with
chữ Nôm characters). Table 2-44 lists two types of chữ Hán characters: those that have
different readings depending on context (chữ Nôm versus chữ Hán), and those that have
identical readings regardless of context. TCVN 6056:1995 Row-Cell and Unicode scalar
values are provided for reference purposes.

Chữ Hán characters used in chữ Nôm contextsTable 2-44.

Character Chữ nôm reading Chữ Hán reading Meaning

Un
iq

ue

主 42-26 U+4E3B chúa chủ main, primary

印 45-85 U+5370 in ấn printing

急 53-14 U+6025 cấp kíp fast, rapid

所 54-35 U+6240 thửa sở place, location

Id
en

tic
al

文 56-16 U+6587 văn văn sentence

武 59-22 U+6B66 vũ vũ weapon

爭 62-44 U+722D tranh tranh war

香 76-23 U+9999 hương hương fragrant

Chữ Nôm was the accepted method for writing Vietnamese since the 10th century AD. It
was not until the 1920s when chữ Nôm was replaced by Quốc ngữ.

The Vietnamese Nôm Preservation Foundation (會保存遺産喃 Hội Bảo tồn Di sản Nôm)
was established in 1999 as an effort to preserve this important part of Vietnamese culture,
specifically the chữ Nôm characters.*

* http://nomfoundation.org/

79

CHAPter 3

Character set standards

I must first state that achieving a rock-solid understanding of and a deep appreciation for
CJKV character set standards—what character classes they include, how many characters
they enumerate, how they evolved, which ones are in common use, and so on—forms the
foundation on which the remainder of this book is based. Without such a basic under-
standing, it would be pointless to discuss topics such as encoding methods, input meth-
ods, font formats, and typography. This chapter thus represents what I consider to be the
core or absolutely essential material of this book.

Note that all CJKV character sets can be classified into two basic types, depending on
their intended purpose and reason for establishment:

Noncoded Character Sets—NCSes•	

Coded Character Sets—CCSes•	

For clarification, noncoded refers to a character set established without regard to how it
would be processed on computer systems, if at all, and coded refers to being electronically
encoded or computerized. In other words, coded character sets were specifically designed
for processing on computer systems. You will soon realize that the characters enumer-
ated in NCSes generally constitute a subset of the characters contained in CCSes, and
affect their development. And, to some extent, CCSes can even affect the development of
NCSes.

In reading this chapter, I am confident that you will develop a firm understanding about
which character classes constitute a given character set, along with information funda-
mental to dealing with CJKV-related issues. If you discover that you are especially inter-
ested in one or more particular CJKV character sets covered in this chapter, either due
to a personal interest or to your job requirements, I strongly encourage you to obtain
the corresponding character set standard documentation. While this chapter sometimes
provides some insights and details not found in the original standard documents, it does
not (and, quite frankly, cannot) duplicate or replicate all of the details and information
that those documents contain. Still, typical character set standards do not make the most
exciting reading material, and they’re typically available only in the language used in the

80 | Chapter 3: Character set standards

locale for which the character set standard is intended. Much of what is included in their
pages, out of necessity, is somewhat mundane. This is simply the nature of standards. To
further refine my bluntness, standards can be boring. I have made a concerted effort not
to be so in this chapter.

Some character set standards discussed in this chapter may not yet be
established—they are in draft form, which means that their designations
may change, and in some cases may never be published in final form. Such
character sets are indicated by a trailing “X” in the portion of their designa-
tion used to specify the year of establishment. As of this writing, affected
standards include China’s GB/T 13131-2XXX and GB/T 13132-2XXX.

nCs standards
Long before any CCS standards existed in the CJKV locales (or even before the concept
of a CCS standard existed!), several NCS standards were established for pedagogical pur-
poses. These are considered to be the first attempts to limit the number of ideographs in
common use.

The NCSes that are described in this chapter include only ideographs. Everyone is expect-
ed to learn hiragana and katakana (in Japan) or hangul (in Korea). Only for ideographs,
which number in the tens of thousands, is there a need to define a set (and thus, limit the
number) of characters that are taught in school or used elsewhere within society.

Chapter 2 provided a brief description and development history of ideographs. If you
skipped or missed that chapter and are unfamiliar with ideographs, I strongly suggest go-
ing back to read at least that section.

Hanzi in China
The educational system in China requires that students master 3,500 hanzi during their
first years of instruction. These hanzi form a subset from a standardized list of 7,000 hanzi
defined in 现代汉语通用字表 (xiàndài hànyǔ tōngyòngzì biǎo), published on March 25,
1988. We can call this large list Tōngyòng Hànzì. Two other hanzi lists further define this
3,500-hanzi subset. The first list, 现代汉语常用字表 (xiàndài hànyǔ chángyòngzì biǎo),
defines the 2,500 hanzi that are taught during primary school. The second list, 现代汉语
次常用字表 (xiàndài hànyǔ cìchángyòngzì biǎo), defines an additional 1,000 hanzi that
are taught during middle school. We can call these character sets Chángyòng Hànzì and
Cìchángyòng Hànzì. These hanzi lists are commonly abbreviated as 常用字 (chángyòngzì)
and 次常用字 (cìchángyòngzì), respectively, and were published on January 26, 1988. Ap-
pendix G provides a complete listing of the 3,500 hanzi defined in 现代汉语常用字表 and
现代汉语次常用字表. The dictionary entitled 汉字写法规范字典 (hànzì xiěfǎ guīfàn
zìdiǎn) is useful in that it includes both sets of hanzi, and differentiates them through the
use of annotations.

nCs standards | 81

In addition, the Chinese government published a document entitled Simplified Charac-
ter Table (简化字总表 jiǎnhuàzì zǒngbiǎo) that enumerates 2,249 simplified hanzi (and
illustrates the traditional forms from which they were derived—some simplified hanzi
were derived from more than one traditional hanzi). This document is divided into three
tables, the descriptions of which are listed in Table 3-1.

Simplified character table contentsTable 3-1.

table Characters description

1 350 Independently simplified hanzi

2 146 Simplified components used in other hanzia

3 1,753 Hanzi simplified by using simplified components from “Table 2” of the Simplified Character Table

Among these, 132 are also used as standalone hanzi.a.

There has been more than one version of this document, the most recent of which was
published in 1986. It is important to note that its development has not been static. Some
minor corrections and adjustments have been made over the years, one of which is known
to have caused an error in a coded character set, specifically in GB/T 12345-90 (to be cov-
ered later in this chapter). As you will learn in this chapter, the propagation of errors from
one character set to another—whether coded, noncoded, or both—is something that can
and does occur.

Be aware that there are many hanzi used in China that do not require further simplifica-
tion—only those that were deemed frequently used and complex were simplified.

Hanzi in taiwan
The basic set of hanzi in Taiwan is listed in a table called 常用國字標準字體表 (chángyòng
guózì biāozhǔn zìtǐ biǎo), which enumerates 4,808 hanzi. An additional set of 6,341 han-
zi is defined in a table called 次常用國字標準字體表 (cìchángyòng guózì biāozhǔn zìtǐ
biǎo), 18,480 rare hanzi are defined in a table called 罕用字體表 (hǎnyòng zìtǐ biǎo), and
18,609 hanzi variants are defined in a table called 異體國字字表 (yìtǐ guózì zìbiǎo). All of
these hanzi tables were established by Taiwan’s Ministry of Education (教育部 jiàoyùbù).
Like with the similarly named hanzi lists used in China, the first two of these character
sets used in Taiwan can be referred to as Chángyòng Hànzì and Cìchángyòng Hànzì.

Table 3-2 lists these standards, along with their dates of establishment. These tables, when
added together, create a set of 48,238 hanzi.

Hanzi lists in TaiwanTable 3-2.

standard nickname date of establishment number of hanzi

常用國字標準字體表 甲表 (jiǎbiǎo) September 2, 1982 4,808

次常用國字標準字體表 乙表 (yǐbiǎo) December 20, 1982 6,341

82 | Chapter 3: Character set standards

Hanzi lists in TaiwanTable 3-2.

standard nickname date of establishment number of hanzi

罕用字體表 丙表 (bǐngbiǎo) October 10, 1983 18,480

異體國字字表 none March 29, 1984 18,609

These hanzi lists will become useful when discussing the CNS 11643-2007 and CCCII
coded character set standards from Taiwan later in this chapter. Appendix H provides a
complete listing of the hanzi that make up the first two lists, specifically Chángyòng Hànzì
and Cìchángyòng Hànzì.

Compared to other CJKV locales, Taiwan has clearly established NCSes with the most
characters. In fact, the total number of their hanzi is very close to the total number of
hanzi in one of the largest CCSes from Taiwan, specifically CNS 11643-2007, which in-
cludes 69,134 hanzi in 13 planes.

Kanji in Japan
Noncoded Japanese character sets include Gakushū Kanji (formerly Kyōiku Kanji)—the
1,006 kanji formally taught during the first six grades in Japanese schools; Jōyō Kanji (for-
merly Tōyō Kanji)—the 1,945 kanji designated by the Japanese government as the ones to
be used in public documents such as newspapers; Jinmei-yō Kanji—the 983 kanji sanc-
tioned by the Japanese government for use in writing personal names; and NLC Kanji*—
the 1,022 kanji beyond Jōyō Kanji that have been deemed useful. The growth and develop-
ment of these character sets are listed in Table 3-3 (note that some were renamed).

Evolving kanji lists in JapanTable 3-3.

Year Kyōiku Kanji tōyō Kanji Jinmei-yō Kanji nLC Kanji

1946 1,850a

1948 881

1951 92

1976 120

1977 996—Gakushū Kanji

1981 1,945—Jōyō Kanji 166

1990 284

1992 1,006b

1997 285

* NLC stands for National Language Council.

nCs standards | 83

Evolving kanji lists in JapanTable 3-3.

Year Kyōiku Kanji tōyō Kanji Jinmei-yō Kanji nLC Kanji

2000 1,022

2004 983c

The corresponding glyph table (a. 当用漢字字体表 tōyō kanji jitai hyō) was published in 1949, and likewise, the corresponding reading
table (当用漢字音訓表 tōyō kanji onkun hyō) was published in 1948.

This set was established in 1989, but not fully implemented until 1992.b.

One kanji was added in 02/2004, one in 06/2004, three in 07/2004, and 488 in 09/2004. In addition, there were 205 Jōyō Kanji variant forms c.
added, in 09/2004, that were deemed acceptable for use in personal names. It was a busy year.

There is some overlap among these character sets. Gakushū Kanji is a subset of Jōyō Kanji
(likewise, Kyōiku Kanji was a subset of Tōyō Kanji).

Table 3-4 shows how you write the names of these character sets in native Japanese or-
thography, and indicates their meaning.

The meanings of noncoded Japanese character set standardsTable 3-4.

Character set In Japanese Meaning number of kanji

Kyōiku Kanji 教育漢字 Instructional kanji 881

↳ Gakushū Kanji 学習漢字 Educational kanji 1,006

Tōyō Kanji 当用漢字 Common use kanji 1,850

↳ Jōyō Kanji 常用漢字 Everyday use kanji 1,945

Jinmei-yō Kanji 人名用漢字 Personal name use kanji 983

NLC Kanji 表外漢字a Beyond (the Jōyō Kanji) table kanji 1,022

This is an abbreviated name. The full name is a. 常用漢字表以外の漢字 (jōyō kanji hyō igai-no kanji).

While Table 3-3 appears to show that the Gakushū Kanji list gained only 10 kanji between
1977 and 1992, the list also experienced some internal shifts. Gakushū Kanji and Kyōiku
Kanji can be decomposed into six sets, each corresponding to the grade of school during
which they are formally taught. Table 3-5 indicates the six grade levels on the left, along
with the number of kanji taught during each one—this is done for Kyōiku Kanji and both
versions of Gakushū Kanji.

The development of Gakushū KanjiTable 3-5.

Grade 1958—881 kanjia 1977 —996 kanji 1992—1,006 kanji

1 46 76 80

2 105 145 160

3 187 195 200

4 205 195 200

84 | Chapter 3: Character set standards

The development of Gakushū KanjiTable 3-5.

Grade 1958—881 kanjia 1977 —996 kanji 1992—1,006 kanji

5 194 195 185

6 144 190 181

Kyōiku Kanji was not divided into the six grade levels until 1958.a.

The general trend shown by Table 3-5 is that more kanji, although not significantly more,
are now taught in the earlier grades. The Jōyō Kanji character set is currently under revi-
sion and is expected to grow.

Appendix J provides complete listings of the Jōyō Kanji, Gakushū Kanji, Jinmei-yō Kanji,
and NLC Kanji character sets.

Hanja in Korea
Korea has defined a list of hanja called Hanmun Gyoyukyong Gicho Hanja (한문 교육용
기초 한자/漢文敎育用基礎漢字 hanmun gyoyukyong gicho hanja), and enumerates the
1,800 hanja that students are expected to learn during their school years.* The first 900 of
these hanja are expected to be learned by students during middle school; the remaining
900 are expected to be learned through high school. These hanja lists were established
on August 16, 1972. Forty-four of the 1,800 hanja were replaced on December 30, 2000,
which kept the number of hanja steady at 1,800.

Appendix K provides a complete printout of the 1,800 Hanmun Gyoyukyong Gicho Han-
ja (expanded to accommodate the KS X 1001:2004 character set standard—later in this
chapter, you’ll learn and appreciate why this expansion is necessary).

The Korean Supreme Court (대법원/大法院 daebeobwon) also defined, at various peri-
ods, lists of hanja that are considered acceptable for use in writing Korean names—these
lists are called Inmyeong-yong Hanja (인명용 한자/人名用漢字 inmyeongyong hanja).
The latest list enumerates 2,964 hanja and was established in July of 1994. Previous ver-
sions of this list were established in January and March of 1991.

CCs standards
Proliferation of computer systems necessitated the creation of coded character set stan-
dards. Initially, each vendor (such as IBM, Fujitsu, Hitachi, and so on) established their
own corporate standard for use only with their products. But, a computer in isolation
is not terribly useful. Interoperability or interchange with other computers became a
necessity.

* In 1967, the Korean Newspaper Association defined a set of 2,000 hanja that was referred to as Sangyong Hanja
(상용 한자/常用漢字 sangyong hanja).

CCs standards | 85

The first multiple-byte national coded character set standard among the CJKV locales
was established by the Japanese Standards Association (JSA) on January 1, 1978 and was
designated JIS C 6226-1978. Without a doubt, the birth of this character set standard sent
waves throughout the CJKV locales.

Other CJKV locales, such as Korea and China, inspired by the success of JIS C 6226-1978,
followed soon after by imitating the Japanese standard, and in some cases copied more
than merely the encoding method or arrangement of characters. It has been claimed, for
example, that Taiwan’s Big Five character set borrowed many kanji forms from Japan’s JIS
C 6226-1978 character set.

At the beginning of each subsection, which generally corresponds to each region, I indi-
cate what character sets are the most important. Some character sets come and go, some
are useful for historical purposes, but one or two are generally considered more impor-
tant, either because they are the most commonly used character sets or are mandated by
that region’s government.

In addition, because of the extreme importance of Unicode today, almost all of the fol-
lowing sections will include a subsection about Unicode compatibility with one or more
important standards that are covered. These subsections will indicate what version of Uni-
code provides full support for their character sets, and also will point out any peculiarities
or corner cases that deserve mentioning. This book is written to be part book and part
reference material. Although Unicode is thoroughly covered in the latter part of this chap-
ter, it is mentioned early on due to the important nature of Unicode compatibility with
respect to each region’s character set standards. Some of the information I will provide in
the sections about Unicode compatibility is not available elsewhere, because it was discov-
ered through my own work or research or may be cleverly or unintentionally obfuscated
to prevent detection.

national Coded Character set standards overview
The CCSes described in this section constitute those maintained by a government or
a government-sanctioned organization within a given country and are considered the
standard character sets for the locale. In addition, some character set standards form the
foundation from which other character set standards are derived, such as international or
vendor character set standards. (Note that vendor character set standards are covered in
Appendix E.)

Tables 3-6 through 3-12 summarize the national character sets described in this chapter,
along with the number and classes of characters enumerated by each. I have decided to
use separate tables for each locale because one large table would have been overwhelm-
ing. Also note the use of levels in these tables. Some of the early CCSes separated their
ideographs into two levels, or sometimes planes. Given the current state of CCSes in use
today, noting the first two levels or planes is primarily of historical interest.

86 | Chapter 3: Character set standards

Table 3-6. Chinese character set standards—China

Character set Level 1 Level 2 Additional hanzi symbols Control codes

GB 1988-89a 94 34

GB 2312-80 3,755 3,008 682

GB 6345.1-86 3,755 3,008 814

GB 8565.2-88 3,755 3,008 636 751

ISO-IR-165:1992 3,755 3,008 775 905

GB/T 12345-90b 3,755 3,008 103 843

GB 7589-87 7,237

GB/T 13131-2XXX 7,237

GB 7590-87 7,039

GB/T 13132-2XXX 7,039

GBK 3,755 3,008 14,240 883

GB 18030-2000 3,755 3,008 20,770 894

GB 18030-2005 3,755 3,008 63,481c 6,184d

Also known as a. GB-Roman.

Although the number of Level 1 and 2 hanzi suggests that the content is identical to GB 2312-80, GB/T 12345-90 includes traditional forms b.
at the same code point as simplified forms.

GB 18030-2005 acknowledges for the first time Unicode’s CJK Unified Ideographs c. Extension B, and includes glyphs for its 42,711 characters.

d. GB 18030-2005 acknowledges for the first time six regional scripts: Korean, Mongolian, Tai Le, Tibetan, Uyghur, and Yi. For these six regional
scripts, 5,290 glyphs are printed in the GB 18030-2005 manual proper, and are thus included in this figure.

Chinese character set standards—Table 3-7. Taiwan

Character set Level 1 Level 2 Additional hanzi symbols Control codes

Big Five 5,401 7,652 441

Big Five Plus 5,401 7,652 7,619 913

CNS 5205-1989a 94 34

CNS 11643-1986 5,401 7,650 13,488b 684

CNS 11643-1992 5,401 7,650 34,976c 684

CNS 11643-2007 5,401 7,650 56,083d 1,605

CCCIIe 75,684

Also known as a. CNS-Roman.

Planes 14 and 15.b.

Planes 3 through 7.c.

Planes 3 through 7, and 10 through 15.d.

The “Level 1” figure represents the total number of characters.e.

CCs standards | 87

Chinese character set standards—Table 3-8. Hong Kong

Character set Base character set Additional hanzi other characters

Hong Kong GCCS Big Five 3,049 0

Hong Kong SCS-1999 Big Five 4,261 441

Hong Kong SCS-2001 Big Five 4,377 441

Hong Kong SCS-2004 Big Five 4,500 441

Hong Kong SCS-2008 Big Five 4,568 441

Table 3-9. Japanese character set standards

Character set Level 1 Level 2 Additional kanji symbols Control codes

JIS X 0201-1997a 157b 34

JIS C 6226-1978 2,965 3,384 453

JIS X 0208-1983 2,965 3,384 4c 524

JIS X 0208-1990 2,965 3,384 6c 524

JIS X 0208:1997 2,965 3,384 6c 524

JIS X 0212-1990 5,801 266

JIS X 0213:2000 1,249d 2,436e 659

JIS X 0213:2004 1,249d 2,436e 10f 659

Part of this standard includes a. JIS-Roman.

This figure includes 94 JIS-Roman characters plus 63 half-width katakana characters.b.

These additional kanji are considered part of JIS Level 2, because they immediately follow its 3,384 kanji. It is thus common to see in other c.
reference works the figures 3,388 or 3,390 as the number of JIS Level 2 kanji, depending on its vintage (1983 versus 1990 or 1997).

JIS Level 3.d.

JIS Level 4.e.

These 10 additional kanji are considered part of JIS Level 3, because they are all in Plane 1. It is thus common to see in other reference works f.
the figures 1,249 or 1,259 as the number of JIS Level 3 kanji, depending on its vintage (2000 versus 2004).

Table 3-10. Korean character set standards

Character set Country Hangul Hanja symbols Control codes

KS X 1003:1993a South Korea 94 34

KS X 1001:1992 South Korea 2,350 4,888 986

KS X 1001:1998 South Korea 2,350 4,888 988

KS X 1001:2002 South Korea 2,350 4,888 989

KS X 1001:2004 South Korea 2,350 4,888 989

KS X 1002:1991 South Korea 3,605b 2,856 1,188

KS X 1002:2001 South Korea 3,605b 2,856 1,188

KPS 9566-97 North Korea 2,679 4,653 927

88 | Chapter 3: Character set standards

Table 3-10. Korean character set standards

Character set Country Hangul Hanja symbols Control codes

KPS 10721-2000c‚ North Korea 19,469

GB 12052-89 China 5,203d 94 682

Also known as a. KS-Roman.

These 3,605 hangul are split into two levels, enumerating 1,930 and 1,675 characters, respectively. The second set of hangul (1,675 charac-b.
ters) are considered to be ancient hangul.

The exact number of characters in this standard is unknown, but what is known is that 19,469 of its hanja map to Unicode.c.

These 5,203 hangul are split into three levels, enumerating 2,068, 1,356, and 1,779 characters each.d.

Table 3-11. Vietnamese character set standards

Character set Ideographs symbols Control codes

TCVN 5712:1993a 233b 34

TCVN 5773:1993 2,357

TCVN 6056:1995 3,311

Also known as a. TCVN-Roman.

This figure includes 94 ASCII characters plus 139 additional (mostly accented) characters, 5 of which are combining marks.b.

Other national character set standardsTable 3-12.

Character set Country total characters Control codes

ASCII USA 94 34

ANSI Z39.64-1989 USA 15,686

What a list of standards, huh? Of course, for Table 3-12, there are many more character
set standards than those listed—only those that relate to this book are shown. In any case,
after you have carefully read this chapter, Tables 3-6 through 3-12 will no longer seem
overwhelming. They are also useful for general reference purposes, so be sure to dog-ear
or bookmark these pages.

The national standards that are based on ISO 10646—specifically GB 13000.1-93,
CNS 14649-1:2002, CNS 14649-2:2003, JIS X 0221-1995, JIS X 0221-1:2001, JIS X
0221:2007, and KS X 1005-1:1995—are covered in the section entitled “International
Character Set Standards.” The terms Level 1 and Level 2 have not yet been described. They
simply refer to the two such groups of ideographs usually defined within each CJKV char-
acter set standard. Level 1 typically contains frequently used ideographs, whereas Level 2
contains less–frequently used ideographs. Some character sets, such as JIS X 0212-1990
and CNS 11643-2007, contain only a single block of ideographs or consist of multiple
planes.

CCs standards | 89

AsCII
Most readers of this book are familiar with the ASCII character set, so it is a good place to
begin our discussion of coded character set standards and will serve as a common point
of reference.

The ASCII character set is covered in this book because it is quite often mixed with CJKV
characters within text. Note, however, that the ASCII character set standard is not specific
to any CJKV locale.

ASCII stands for American Standard Code for Information Interchange. The ASCII char-
acter set standard is described in the standard designated ANSI X3.4-1986;* it is the U.S.
version and at the same time the International Reference Version (IRV) of ISO 646:1991,†
which defines the framework for related national standards.

The ASCII character set is composed of 128 characters, 94 of which are considered print-
able. There are also 34 other characters, which include a space character and many control
characters, such as Tab, Escape, Shift-in, and so on, which are defined in ISO 6429:1992,
entitled Information Technology—Control Functions for Coded Character Sets. The control
codes are technically not part of ASCII nor ISO 646:1991. Table 3-13 lists the 94 printable
ASCII characters.

The ASCII character setTable 3-13.

Character class Characters

Lowercase Latin abcdefghi jk lmnopqrstuv wx yz
Uppercase Latin ABCDEFGHIJKLMNOPQRSTUVWX YZ
Numerals 0123456789
Symbols !”#$%&’()*+,- ./ : ;<=>?@[\]^_`{|}~

Most of these printable characters are also used in EBCDIC, one of the encoding methods
covered in Chapter 4. The binary nature of computers allows these 128 characters to be
represented using 7 bits, but because computers evolved through processing information
in 8-bit segments (a typical byte), these 128 ASCII characters are usually represented by
8-bit units in which the 8th bit (also known as the highest-order bit) is set to 0 (zero).
Other character sets often incorporate the characters of the ASCII character set, some-
times with minor locale-specific adjustments.

* ANSI is short for American National Standards Institute; an earlier version of this standard was designated
ANSI X3.4-1977.

† ISO is short for International Organization for Standardization; an earlier version of this standard was desig-
nated ISO 646:1983.

90 | Chapter 3: Character set standards

AsCII Variations
There are, as of this writing, 15 extensions of the ASCII character sets, all approved by and
published through ISO. These character sets contain the ASCII character set as their com-
mon base, plus additional characters. Extended ASCII character sets are used to represent
other writing systems, such as Arabic, Cyrillic, Greek, Hebrew, and Thai. There is also an
extensive collection of additional Latin characters, which are usually additional symbols
and accented versions of other Latin characters.

Eight-bit representations can handle 128 more characters than 7-bit representations—
the reality is that they handle only up to 94 or 96 additional characters. The documents
ISO 8859 Parts 1 through 16 (Information Processing—8-Bit Single-Byte Coded Graphic
Character Sets) describe character sets that can be encoded in the additional 128 positions
when an 8-bit representation is used.* Table 3-14 lists the contents of each of the 15 parts
of ISO 8859, indicating what languages are supported by each.

The 15 parts of ISO 8859Table 3-14.

Part Year Contents Languages

1 1998 Latin alphabet No. 1 Danish, Dutch, English, Faeroese, Finnish, French, German, Icelandic,
Irish, Italian, Norwegian, Portuguese, Spanish, Swedish

2 1999 Latin alphabet No. 2 Albanian, Czech, English, German, Hungarian, Polish, Romanian,
Serbo-Croatian, Slovak, Slovene

3 1999 Latin alphabet No. 3 Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish

4 1998 Latin alphabet No. 4 Danish, English, Estonian, Finnish, German, Greenlandic, Lappish,
Latvian, Lithuanian, Swedish, Norwegian

5 1999 Latin/Cyrillic alphabet Bulgarian, Byelorussian, English, Macedonian, Russian, Serbo-
Croatian, Ukrainian

6 1999 Latin/Arabic alphabet Arabic

7 2003 Latin/Greek alphabet Greek

8 1999 Latin/Hebrew alphabet Hebrew

9 1999 Latin alphabet No. 5 Danish, Dutch, English, Finnish, French, German, Irish, Italian,
Norwegian, Portuguese, Spanish, Swedish, Turkish

10 1998 Latin alphabet No. 6 Danish, English, Estonian, Finnish, German, Greenlandic, Lappish,
Latvian, Lithuanian, Swedish, Norwegian

11 2001 Latin/Thai alphabet Thai

13 1998 Latin alphabet No. 7 Baltic Rim

14 1998 Latin alphabet No. 8 Celtic

* Note that Part 12 does not exist, at least as of this writing. It was reserved for Indic scripts, and at this point will
never be used due to Unicode.

CCs standards | 91

The 15 parts of ISO 8859Table 3-14.

Part Year Contents Languages

15 1999 Latin alphabet No. 9 Part 1 revision

16 2001 Latin alphabet No. 10 Albanian, Croatian, Finnish, French, German, Hungarian, Irish Gaelic,
Italian, Polish, Romanian, Slovenian

Table 3-15 lists the 95 additional non-ASCII characters from ISO 8859-1:1998 (also
known as ISO Latin-1 or ISO-8859-1). Appendix M provides a complete ISO 8859-1:1998
code table.

ISO 8859-1:1998 character samplesTable 3-15.

Character class Characters

Lowercase Latin àáâãäåæçèéêë ì í î ïðñòóôõöøùúûüýþÿ
Uppercase Latin ÀÁÂÃÄÅÆÇÈÉÊË Ì Í Î ÏÐÑÒÓÔÕÖØÙÚÛÜÝÞß
Symbols ¡¢£¤¥¦§¨©ª«¬-®¯°±²³´μ¶•¸¹º»¼½¾¿×÷

These characters, as you can probably guess, are not that useful when working with CJKV
text. In fact, many of them are not found in CJKV CCSes. This table simply illustrates
the types of characters available in the ISO 8859 series. Note again that these additional
ASCII character sets require a full 8 bits per character for encoding because they contain
far more than 128 characters.

CJKV-roman
The Chinese, Japanese, Koreans, and Vietnamese have developed their own variants of
the ASCII character set, known as GB-Roman (from GB 1988-89), CNS-Roman (from
CNS 5205-1989), JIS-Roman (from JIS X 0201-1997), KS-Roman (from KS X 1003:1993),
and TCVN-Roman (from TCVN 5712:1993), respectively. Or, these can be collectively
referred to as CJKV-Roman. These character sets, like ASCII, consist of 94 printable char-
acters, but there are some minor differences.* The characters that differ are indicated in
Table 3-16.

Special CJKV-Roman charactersTable 3-16.

Character code AsCIIa GB-roman Cns-romanb JIs-roman Ks-roman

0x24 $ (dollar) ¥ (yuan) $ $ $
0x5C \ (backslash) \ \ ¥ (yen) ₩ (won)

* But one, specifically TCVN 5712:1993, contains more than these 94 characters.

92 | Chapter 3: Character set standards

Special CJKV-Roman charactersTable 3-16.

Character code AsCIIa GB-roman Cns-romanb JIs-roman Ks-roman

0x7E ~ (tilde)c ‾ (overline) ‾ ‾ ‾
TCVN-Roman is identical to ASCII as far as these three characters are concerned.a.

CNS-Roman is ambiguous with regard to glyphs. The glyphs shown in this column were made consistent with the other CJKV-Roman char-b.
acter sets.

The vertical positioning of the tilde may vary depending on the implementation.c.

Because the difference between ASCII and the CJKV-Roman character sets is minor, they
are usually treated as the same throughout this book. You will also find that most terminal
software supports only one of these character sets. This means that terminals that support
only JIS-Roman display the ASCII backslash as the JIS-Roman “yen” currency symbol.
For systems that require the backslash, such as MS-DOS for indicating directory hierar-
chy, the yen symbol is used instead. Stranger yet, Perl programs displayed on a terminal
that supports GB-Roman would have variables prefixed with “yuan” currency symbols
(instead of the customary “dollar” currency symbol). You will also find that most CJKV
software supports CJKV-Roman instead of ASCII. It is possible that the computer sup-
ports both ASCII and CJKV-Roman. Changing the display from CJKV-Roman to ASCII
(and vice versa), though, may be as simple as changing the display font. You will learn in
the next chapter that this is because ASCII and CJKV-Roman almost always occupy the
same encoding space, which can actually lead to code conversion problems when dealing
with Unicode.

It is important to realize that character set standards do not prescribe the widths of char-
acters—it is simply customary to associate characters with specific widths, usually half-
and full-width.

The standard designated GB 1988-89, entitled Information Processing—7-Bit Coded Char-
acter Set for Information Interchange (信息处理—信息交换用七位编码字符集 xìnxī
chǔlǐ—xìnxī jiāohuàn yòng qīwèi biānmǎ zìfújí), and established on July 1, 1990, contains
the definition of the GB-Roman character set.* This manual is virtually identical to ISO
646:1991, except that it is written in Chinese.

The standard designated CNS 5205-1989, entitled Information Processing—7-Bit Coded
Character Set for Information Interchange (資訊處理及交換用七數元碼字元集 zīxùn
chǔlǐ jí jiāohuàn yòng qīshùyuán mǎzìyuánjí), contains the definition of the CNS-Roman
character set.† This manual is virtually identical to ISO 646:1991, except that it is written
in Chinese.

The standard designated JIS X 0201-1997, entitled 7-Bit and 8-Bit Coded Character Sets
for Information Interchange (7 ビット及び 8 ビットの情報交換用符号化文字集合

* The original version of this standard was designated GB 1988-80.
† Earlier versions of this standard were dated 1980, 1981, and 1983.

CCs standards | 93

nana-bitto oyobi hachi-bitto no jōhō kōkan yō fugōka moji shūgō), and established on Janu-
ary 20, 1997, provides the definition for the JIS-Roman character set.* Like GB 1988-89,
this manual is virtually identical to ISO 646:1991, except that it is written in Japanese and
defines the extensions for half-width katakana.

The standard designated KS X 1003:1993, entitled Code for Information Interchange (정보
교환용 부호 (로마 문자) jeongbo gyohwanyong buho (roma munja)), and established on
January 6, 1993, contains the definition of the KS-Roman character set.† Like GB 1988-89,
this manual is identical to ISO 646:1991, except that it is written in Korean.

The standard designated TCVN 5712:1993, Công Nghệ Thông Tin—Bộ Mã Chuẩn 8-Bit Kí
Tự Việt Dùng Trong Trao Đổi Thông Tin (Information Technology—Vietnamese 8-Bit Stan-
dard Coded Character Set for Information Interchange), established on May 12, 1993, con-
tains the definition of the TCVN-Roman character set. TCVN-Roman contains the basic
94 ASCII characters, plus up to 139 additional characters, most of which are adorned
with diacritic marks (and represent all possible Quốc ngữ characters). Five of these 139
additional characters are combining marks that indicate tone.

Common CJKV-roman issues
The glyph differences that are shown in Table 3-16 have caused more problems than one
could imagine, especially when Unicode is involved. The best example, which is also the
most commonly encountered problem with regard to this issue, is how 0x5C is handled in
Japanese. According to JIS-Roman, 0x5C is the “yen” currency symbol. For contexts that
require the use of the “backslash” symbol, which is the corresponding glyph for ASCII at
the same code point, 0x5C, it is expected that the “yen” currency symbol be used as the
glyph. The semantics of the “yen” currency and “backslash” symbols couldn’t be more
different. What is being interpreted in such contexts is the code point, not the glyph. In a
non-Unicode context, there are no issues, except for the lack of a code point that displays
a “backslash” glyph. Some vendor extensions of JIS X 0208:1997, such as the Shift-JIS
encoding for Apple’s Mac OS, encodes the “backslash” symbol at 0x80.

In a Unicode context, however, the “yen” currency symbol is more properly encoded at
U+00A5, which corresponds to ISO 8859-1:1998 0xA5. The “backslash” character is en-
coded at U+005C.

Because there are legacy issues with which developers must grapple, some Unicode-based
font implementations may continue to map both U+005C and U+00A5 to the “yen” cur-
rency symbol. Unfortunately there is no easy solution to this seemingly complex problem
other than knowing that it exists.

One possible way to work around this issue, when one must explicitly use one of these
glyphs but not the other, is to use the Unicode code points that have no such legacy

* JIS X 0201-1997 was previously designated JIS X 0201-1976 (which itself was reaffirmed in 1984 and in 1989).
† This standard was previously designated KS C 5636-1993. The original version, KS C 5636-1989, was estab-

lished on April 22, 1989.

94 | Chapter 3: Character set standards

issues, such as the full-width “yen” currency and “backslash” symbols, which are encoded
at U+FFE5 and U+FF3C, respectively. Of course, if everything is done using Unicode, there
is no ambiguity.

Chinese Character set standards—China
As you learned earlier in this chapter, Japan was the first to develop and implement a
multiple-byte national character set. The other major CJKV locales—China, Taiwan, and
Korea—soon followed by developing their own. This section describes the character set
standards established by China, or more specifically, the People’s Republic of China, or
PRC (中华人民共和国 zhōnghuá rénmín gònghé guó).

All Chinese character set standards begin with the designator GB, which stands for
“Guo Biao” (国标 guóbiāo), which itself is short for “Guojia Biaozhun” (国家标准 guójiā
biāozhǔn) and means “National Standard.” Some GB standards have a “/T” tacked onto
the “GB” to form “GB/T.” The “T” here stands for “Tui” (推 tuī), which is short for “Tui-
jian” (推荐 tuījiàn) and means “recommended” (as opposed to “forced” or “mandatory”).
Contrary to popular belief, the “T” does not stand for “traditional” (as in “traditional
hanzi”).

The two most important Chinese character set standards are GB 2312-80 and GB 18030-
2005. The former forms the foundation for all Chinese character sets that followed, and the
latter’s support has been declared mandatory by the Chinese government. While reading
the following sections, please pay special attention to these two character set standards.

GB 2312-80—where it all began
This character set standard, established on May 1, 1981 by the People’s Republic of China
(PRC), enumerates 7,445 characters. Its official title is Code of Chinese Graphic Charac-
ter Set for Information Interchange Primary Set (信息交换用汉字编码字符集—基本集
xìnxī jiāohuàn yòng hànzì qīwèi biānmǎ zìfújí—jīběnjí). Table 3-17 lists how characters are
allocated to each row.

The GB 2312-80 character setTable 3-17.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, paren-
thesized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)

4 83 Hiragana

5 86 Katakana

6 48 Upper- and lowercase Greek alphabet

7 66 Upper- and lowercase Cyrillic alphabet

CCs standards | 95

The GB 2312-80 character setTable 3-17.

row Characters Content

8 63 26 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10–15 0 Unassigned

16–55 3,755 Level 1 hanzi (last is 55-89)

56–87 3,008 Level 2 hanzi (last is 87-94)

88–94 0 Unassigned

Level 1 hanzi (第一级汉字 dìyījí hànzì) are arranged by reading. Level 2 hanzi (第二级汉
字 dì’èrjí hànzì) are arranged by radical, and then by total number of strokes. To give you
a feel for the GB 2312-80 character set, Table 3-18 briefly illustrates the types of characters
in GB 2312-80.

GB 2312-80 character samplesTable 3-18.

Character class sample characters

Miscellaneous symbols 　、。·ˉˇ¨〃々—　…　□■△▲※→←↑↓〓

Annotated numerals ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑　…　ⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ

Full-width GB-Roman ！＂＃￥％＆＇（）＊　…　ｕｖｗｘｙｚ｛｜｝￣

Hiragana ぁあぃいぅうぇえぉお　…　りるれろゎわゐゑをん

Katakana ァアィイゥウェエォオ　…　ロヮワヰヱヲンヴヵヶ

Greek characters ΑΒΓΔΕΖΗΘΙΚ　…　οπρστυφχψω

Cyrillic characters АБВГДЕЁЖЗИ　…　цчшщъыьэюя

Full-width Pinyin āáǎàēéěèīí　…　ǚǜüêɑḿńňǹɡ

Zhuyin (bopomofo) ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎ　…　ㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩ

Line-drawing elements ─━│┃┄┅┆┇┈┉　…　┸┹┺┻┼┽┾┿╀╁

Level 1 hanzi 啊阿埃挨哎唉哀皑癌蔼　…　尊遵昨左佐柞做作坐座

Level 2 hanzi 亍丌兀丐廿卅丕亘丞鬲　…　黪黯鼢鼬鼯鼹鼷鼽鼾齄

Encoding methods that cover GB 2312-80—and its extensions, described shortly—in-
clude ISO-2022-CN, ISO-2022-CN-EXT, and EUC-CN. GBK, GB 18030, and the vari-
ous encoding forms of Unicode are compatible with GB 2312-80 in that they are able to
encode all of its characters.

CJKV font developers should be aware that early printings of the GB 2312-80 manual had
the code points of two uppercase Cyrillic characters (in row 7) swapped. Table 3-19 illus-
trates the incorrect and correct order of these characters in GB 2312-80. Note the different
ordering of the two uppercase Cyrillic characters Ф (Row-Cell 07-22) and Х (Row-Cell
07-23), both of which have been underlined.

96 | Chapter 3: Character set standards

Uppercase Cyrillic character ordering in GB 2312-80Table 3-19.

Character sequence

Incorrect АБВГДЕЁЖЗИЙКЛМНОПРСТУХФЦЧШЩЪЫЬЭЮЯ

Correct АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ

I have encountered at least one Chinese type foundry whose font data propagates the
character-ordering error illustrated in Table 3-19.

There are three common extensions to GB 2312-80, one of which was used to issue two
corrections. Table 3-20 illustrates the number of characters in GB 2312-80 and its three
extensions.

GB 2312-80 and its three extensionsTable 3-20.

Character set Characters Characters added number of corrections

GB 2312-80 7,445

GB 6345.1-86 7,577 132 2

GB 8565.2-88 8,150 705

ISO-IR-165:1992 8,443 998

These minor extensions to the GB 2312-80 character set standard are described in the
following sections.

GB 6345.1-86—corrections and extensions to GB 2312-80
Corrections for and additions to GB 2312-80 have been issued through a separate charac-
ter set standard that is designated GB 6345.1-86, which was established on December 1,
1986. This standard is entitled 32 × 32 Dot Matrix Font Set of Chinese Ideograms for
Information Interchange (信息交换用汉字 32×32 点阵字模集 xìnxī jiāohuàn yòng hànzì
32×32 diǎnzhèn zìmújí), and it resulted in 132 additional characters for a new total of
7,577 characters (6,763 hanzi plus 814 non-hanzi). Table 3-21 highlights the additional
characters for GB 2312-80 specified by GB 6345.1-86.

The GB 6345.1-86 character setTable 3-21.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, parenthe-
sized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)

4 83 Hiragana

5 86 Katakana

6 48 Upper- and lowercase Greek alphabet

CCs standards | 97

The GB 6345.1-86 character setTable 3-21.

row Characters Content

7 66 Upper- and lowercase Cyrillic alphabet

8 69 32 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10 94 Half-width GB 1988-89 (GB-Roman; equivalent to ASCII)

11 32 Half-width Pinyin characters

12–15 0 Unassigned

16–55 3,755 Level 1 hanzi (last is 55-89)

56–87 3,008 Level 2 hanzi (last is 87-94)

88–94 0 Unassigned

While Table 3-21 clearly shows what characters were added to GB 2312-80, it does not
list the corrections. Table 3-22 shows the two corrections to GB 2312-80 mandated by GB
6345.1-86.

GB 6345.1-86 correctionsTable 3-22.

row-Cell GB 2312-80 GB 6345.1-86

03-71 ɡ ｇ

79-81 鍾 锺

The GB 2312-80 character form for Row-Cell 79-81 happens to be the same as that found
in the GB/T 12345-90 standard—that is, the traditional form, and at the same code point.
GB/T 12345-90 is described shortly. This error is still found in recent publications that
list all GB 2312-80 hanzi, so evidently information about this correction is not yet widely
known.

GB 8565.2-88—another extension to GB 2312-80
The GB 8565.2-88 standard, established on July 1, 1988, defines additions to the GB 2312-
80 character set. This standard is entitled Information Processing—Coded Character Sets
for Text Communication—Part 2: Graphic Characters (信息处理—文本通信用编码字
符集—第二部分—图形字符集 xìnxī chǔlǐ—wénběn tōngxìn yòng biānmǎ zìfújí—dì’èr
bùfen—túxíng zìfújí). These additions, however, are independent from those specified by
GB 6345.1-86. The number of additional characters totals 705, bringing the total number
of characters to 8,150 (7,399 hanzi plus 751 non-hanzi).

Table 3-23 provides a listing of characters in GB 8565.2-88, and those above and beyond
GB 2312-80 are highlighted.

98 | Chapter 3: Character set standards

The GB 8565.2-88 character setTable 3-23.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, paren-
thesized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)

4 83 Hiragana

5 86 Katakana

6 48 Upper- and lowercase Greek alphabet

7 66 Upper- and lowercase Cyrillic alphabet

8 63 26 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10–12 0 Unassigned

13 50 Hanzi from GB 7589-87 (last is 13-50)

14 92 Hanzi from GB 7590-87 (last is 14-92)

15 93 69 non-hanzi plus 24 hanzi (last is 15-93)

16–55 3,755 Level 1 hanzi (last is 55-89)

56–87 3,008 Level 2 hanzi (last is 87-94)

88–89 0 Unassigned

90–94 470 Hanzi from GB 7589-87 (last is 94-94)

Note how GB 8565.2-88 does not include the additions specified by GB 6345.1-86. But, it
does include its corrections as shown in Table 3-22.

Iso-Ir-165:1992—yet another extension to GB 2312-80
ISO-IR-165:1992, also known as the Consultative Committee on International Telephone
and Telegraph (CCITT) Chinese Set, enumerates 8,443 characters.* It is based on the
GB 2312-80 character set, and it includes all modifications and additions specified in
GB 6345.1-86 and GB 8565.2-88. That is, it contains 7,445 characters from GB 2312-80,
132 added due to GB 6345.1-86, 705 added due to GB 8565.2-88, plus 161 added by
ISO-IR-165:1992.

Table 3-24 provides a listing of characters in ISO-IR-165:1992, and those rows that have
content above and beyond GB 2312-80 are highlighted.

* ISO-IR-165:1992 is short for ISO International Registry #165, established on July 13, 1992.

CCs standards | 99

The ISO-IR-165:1992 character setTable 3-24.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, parenthe-
sized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)

4 83 Hiragana

5 86 Katakana

6 70 48 upper- and lowercase Greek alphabet, 22 background (shading) characters

7 66 Upper- and lowercase Cyrillic alphabet

8 69 32 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10 94 Half-width GB 1988-89 (GB-Roman; equivalent to ASCII)

11 32 Half-width Pinyin characters

12 94 94 hanzi (last is 12-94)

13 94 50 hanzi from GB 7589-87 plus 44 hanzi (last is 13-94)

14 92 Hanzi from GB 7590-87 (last is 14-92)

15 94 69 non-hanzi plus 25 hanzi (last is 15-94)

16–55 3,755 Level 1 hanzi (last is 55-89)

56–87 3,008 Level 2 hanzi (last is 87-94)

88–89 0 Unassigned

90–94 470 Hanzi from GB 7589-87 (last is 94-94)

ISO-IR-165:1992 is, as you can see, a superset of GB 2312-80 and all previous extensions
thereof.

GB/t 12345-90—the traditional analog of GB 2312-80
This character set standard, established on December 1, 1990 by the People’s Republic of
China, enumerates 7,709 characters (6,866 hanzi plus 843 non-hanzi). Its official name is
Code of Chinese Ideogram Set for Information Interchange Supplementary Set (信息交换用
汉字编码字符集—辅助集 xìnxī jiāohuàn yòng hànzì biānmǎ zìfújí—fǔzhùjí). Table 3-25
lists how characters are allocated to each row. Note the similarities to GB 2312-80, and
that the GB 6345.1-86 additions are included.

100 | Chapter 3: Character set standards

The GB/T 12345-90 character setTable 3-25.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, parenthe-
sized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)

4 83 Hiragana

5 86 Katakana

6 77 48 upper- and lowercase Greek alphabet, 29 vertical-use characters

7 66 Upper- and lowercase Cyrillic alphabet

8 69 32 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10 94 Half-width GB 1988-89 (GB-Roman; equivalent to ASCII)

11 32 Half-width Pinyin characters

12–15 0 Unassigned

16–55 3,755 Level 1 hanzi (last is 55-89)

56–87 3,008 Level 2 hanzi (last is 87-94)

88–89 103 Additional hanzi (last is 89-09)

90–94 0 Unassigned

As was the case with GB 2312-80, Level 1 hanzi are arranged by reading, and Level 2 hanzi
are arranged by radical, and then by number of remaining strokes. The 103 additional
hanzi are arranged by the order in which their counterparts from Levels 1 and 2 hanzi
appear. Table 3-26 briefly illustrates the types of characters in GB/T 12345-90.

GB/T 12345-90 character samplesTable 3-26.

Character class sample characters

Miscellaneous symbols 　、。·ˉˇ¨〃々—　…　□■△▲※→←↑↓〓

Annotated numerals ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑　…　ⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ

Full-width GB-Roman ！＂＃￥％＆＇（）＊　…　ｕｖｗｘｙｚ｛｜｝￣

Hiragana ぁあぃいぅうぇえぉお　…　りるれろゎわゐゑをん

Katakana ァアィイゥウェエォオ　…　ロヮワヰヱヲンヴヵヶ

Greek characters ΑΒΓΔΕΖΗΘΙΚ　…　οπρστυφχψω

Vertical-use characters ，。、：；！？︵︶︹　…　〖〗︻︼︷︸︱…︳︴

Cyrillic characters АБВГДЕЁЖЗИ　…　цчшщъыьэюя

Full-width Pinyin āáǎàēéěèīí　…　ǚǜüêɑḿńňǹɡ

Zhuyin (bopomofo) ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎ　…　ㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩ

CCs standards | 101

GB/T 12345-90 character samplesTable 3-26.

Character class sample characters

Line-drawing elements ─━│┃┄┅┆┇┈┉　…　┸┹┺┻┼┽┾┿╀╁

Half-width GB-Roman !"#￥%&'()*　…　uvwxyz{|}￣

Half-width Pinyin ����������　…　����������

Level 1 hanzi 啊阿埃挨哎唉哀皚癌藹　…　尊遵昨左佐柞做作坐座

Level 2 hanzi 亍丌兀丐廿卅丕亘丞鬲　…　黲黯鼢鼬鼯鼹鼷鼽鼾齄

Additional hanzi 襬闆錶彆蔔纔厂冲丑齣　…　髒症隻只緻製种硃筑准

Compare Levels 1 and 2 hanzi in Table 3-26 with those for GB 2312-80 in Table 3-18, and
note how the same hanzi are used, but that a handful are in the traditional form. In fact,
there are 2,180 traditional hanzi forms in GB/T 12345-90 when compared to GB 2312-80,
most of which are replacements for simplified hanzi.

The 2,180 hanzi that are used to transform GB 2312-80 into GB/T 12345-90 can be di-
vided into the two classes, as indicated in Table 3-27.

GB/T 12345-90 characters not in GB 2312-80Table 3-27.

Characters Character class

2,118 Traditional hanzi replacements—rows 16 through 87

62 Additional hanzi—scattered throughout rows 88 and 89

In addition to the replacements and additions in Table 3-27, 41 hanzi from GB 2312-80
rows 16 through 87 are scattered throughout GB/T 12345-90 rows 88 and 89, and four
pairs of hanzi between Levels 1 and 2 hanzi were swapped. Appendix G provides more
details about the four pairs of swapped hanzi and the mappings for hanzi in rows 88 and
89—it also includes a long and complete listing of the 2,118 traditional hanzi replace-
ments, which is something that even the GB/T 12345-90 does not provide.

Like other character set standards, GB/T 12345-90 is not without errors. Chinese type
foundries should take note that the GB/T 12345-90 manual has at least two (but, unfortu-
nately, generally not known) printing errors, as indicated in Table 3-28.

GB/T 12345-90 correctionsTable 3-28.

original Corrected row-Cell original in Unicode original in GB 18030
隷 隸 33-05 U+96B7 EB 5F

鳧 鳬 57-76 U+9CE7 F8 44

In addition, there is often some misunderstanding of the scope and content of the GB/T
12345-90 character set standard. Some printouts of the GB/T 12345-90 character set use
slightly different glyphs from the official standard. One specific instance of GB/T 12345-
90 provided to The Unicode Consortium used 22 different glyphs, each of which has a

102 | Chapter 3: Character set standards

different Unicode code point. This causes lots of confusion. Table 3-29 lists these charac-
ters, along with their (incorrect) Unicode mappings and GB 18030 cross-references. For
all 22 of these characters, their glyphs in GB/T 12345-90 are intended to be identical to
those in GB 2312-80.

Incorrect mappings between GB/T 12345-90 and UnicodeTable 3-29.

Correct GB 2312-80 and GB/t 12345-90 Incorrect Unicode GB 18030
叠 21-94 疊 U+758A AF 42

换 27-27 換 U+63DB 93 51

唤 27-29 喚 U+559A 86 BE

痪 27-30 瘓 U+7613 AF 88

焕 27-32 煥 U+7165 9F A8

涣 27-33 渙 U+6E19 9C 6F

晋 29-90 晉 U+6649 95 78

静 30-18 靜 U+975C EC 6F

净 30-27 凈 U+51C8 83 F4

栖 38-60 棲 U+68F2 97 AB

弃 38-90 棄 U+68C4 97 89

潜 39-17 潛 U+6F5B 9D 93

挣 53-85 掙 U+6399 92 EA

睁 53-86 睜 U+775C B1 A0

狰 53-88 猙 U+7319 AA 62

争 53-89 爭 U+722D A0 8E

伫 56-89 佇 U+4F47 81 D0

陧 58-77 隉 U+9689 EA 9F

奂 59-28 奐 U+5950 8A 4A

峥 65-31 崢 U+5D22 8D 98

戬 74-15 戩 U+6229 91 EC

筝 83-61 箏 U+7B8F B9 7E

In summary, GB/T 12345-90 is the traditional analog of GB 2312-80. Because of this re-
lationship, we can say that the scope of GB/T 12345-90 is to include all traditional forms
of hanzi in GB 2312-80. This brings us to one last error that is in GB/T 12345-90. There is
one hanzi in GB/T 12345-90, 囉 (88-51), which actually should not be included because
its corresponding simplified form, 啰 (U+5570), is not in GB 2312-80! This hanzi is in both
GB 7589-87 (22-51) and GB 8565.2-88 (15-93). The reason why the hanzi 囉 was included
in GB/T 12345-90 is due to an error in the 1956 draft version of 简化字总表 (jiǎnhuàzì
zǒngbiǎo; later corrected in the 1964 version), whereby the two hanzi 羅 and 囉 were mis-
takenly labeled as traditional forms of the simplified hanzi 罗 (34-62 in GB2312-80)—see

CCs standards | 103

Table 3-1 at the beginning of this chapter. Only the hanzi 羅 is the true traditional form
of the simplified hanzi 罗.

In the next section, you learn that there are two more Chinese character set standards,
GB 7589-87 and GB 7590-87, and that both of them, like GB 2312-80, have traditional
analogs. Their traditional analogs, GB/T 13131-2XXX and GB/T 13132-2XXX, have not yet
been published, and probably never will be.

other Chinese character set standards
There are many other character set standards developed by China, each of which is com-
monly referred to as a GB standard. All of these GB standards share several common
characteristics:

For every GB standard that includes simplified hanzi, there is a corresponding GB •	
standard that replaces simplified forms by their government–sanctioned traditional
forms. GB 2312-80 and GB/T 12345-90, which you read about earlier, represent one
such pair of character set standards.

Every GB standard is also referred to by a numeric designation, with the most basic •	
character set being zero (that is, “GB0” for GB 2312-80).

Table 3-30 lists the relevant GB character set standards in a way that indicates their re-
lationship with one another, along with their assigned numeric designation. Note how
simplified character sets are indicated by even-numbered designations, and traditional
character sets by odd.

GB character set standards—simplified and traditionalTable 3-30.

simplified character set Hanzi traditional character set Additional hanzi

GB 2312-80—GB0 6,763 GB/T 12345-90—GB1 103a

GB 7589-87—GB2 7,237 GB/T 13131-2XXX—GB3

GB 7590-87—GB4 7,039 GB/T 13132-2XXX—GB5

These 103 additional hanzi occupy all of row 88 (94 hanzi) and the first part of row 89 (9 hanzi).a.

An oddball character set standard in this regard is GB 8565.2-88, which is sometimes
referred to as GB8.

The hanzi in GB 7589-87 and GB 7590-87 (this also applies, of course, to their traditional
analogs, specifically GB/T 13131-2XXX and GB/T 13132-2XXX) are ordered by radical, and
then by total number of strokes, and then begin allocating characters at row 16. GB 7589-
87 was established on December 1, 1987 and is entitled Code of Chinese Ideograms Set
for Information Interchange—the Second Supplementary Set (信息交换用汉字编码字符
集—第二辅助集 xìnxī jiāohuàn yòng hànzì biānmǎ zìfújí—dì’èr fǔzhùjí). GB 7590-87 was
established on the same date and is entitled Code of Chinese Ideograms Set for Informa-
tion Interchange—the Fourth Supplementary Set (信息交换用汉字编码字符集—第四辅

104 | Chapter 3: Character set standards

助集 xìnxī jiāohuàn yòng hànzì biānmǎ zìfújí—dìsì fǔzhùjí). Tables 3-31 and 3-32 list the
character allocation for GB 7589-87 and GB 7590-87, respectively.

The GB 7589-87 character setTable 3-31.

row Characters Content

0–15 0 Unassigned

16–92 7,237 Hanzi (last is 92-93)

The GB 7590-87 character setTable 3-32.

row Characters Content

0–15 0 Unassigned

16–90 7,039 Hanzi (last is 90-83)

It is interesting to note that all the hanzi specified in GB 7589-87 and GB 7590-87 are
handwritten. Needless to say, fonts that support these character set standards are scarce.

Note that not all hanzi in the simplified character set standards are replaced by a corre-
sponding traditional hanzi. In the case of the GB 2312-80 and GB/T 12345-90 pair, 2,180
additional hanzi are needed to transform GB 2312-80 into GB/T 12345-90. The majority
are simple one-to-one replacements, but some are hanzi that swap code points or split
into two or more separate hanzi (some simplified hanzi were derived from two or more
traditional hanzi).

Appendix G provides complete GB 2312-80 and GB/T 12345-90 code tables. An inad-
equate supply of fonts precluded the inclusion of code tables for the other GB character
set standards that were mentioned thus far. This volume also includes a reading index for
Level 1 hanzi and a radical index for Level 2 hanzi. But note that the GB 2312-80 standard
itself, as a printed manual, includes many useful indexes.

GBK—extended GB 2312-80
Another well-known GB character set is very closely aligned to ISO 10646-1:1993 (equiv-
alent to Unicode version 1.1) and is designated GB 13000.1-93. It is, for all practical
purposes, the Chinese translation of ISO 10646-1:1993. What is interesting about GB
13000.1-93 is the Chinese-specific subset called GBK. GBK, known as the Chinese Inter-
nal Code Specification (汉字内码扩展规范 hànzì nèimǎ kuòzhǎn guīfàn), is simply an
extension to GB 2312-80 that accommodates the remaining ideographs in ISO 10646-
1:1993 (GB 13000.1-93). From a character-allocation point of view, GBK is composed of
the following characters:

GB 2312-80 base (with some corrections/additions specified in GB 6345.1-86)•	

Non-hanzi from GB/T 12345-90•	

CCs standards | 105

14,240 additional hanzi•	

166 additional symbols•	

Ten of the 29 non-hanzi specific to GB/T 12345-90 that are mostly vertical variants, along
with the half-width characters, are not included in GBK. Lowercase Roman numerals 1
through 10 have been added. GBK is logically arranged in five parts, as listed in Table
3-33.

The five parts of GBKTable 3-33.

Part Characters Content

GBK/1 717 GB 2312-80 and GB/T 12345-90 non-hanzi

GBK/2 6,763 GB 2312-80 hanzi

GBK/3 6,080 Hanzi from ISO 10646-1:1993

GBK/4 8,160 8,059 hanzi from ISO 10646-1:1993 plus 101 additional hanzi

GBK/5 166 Non-hanzi from Big Five and other characters

The number of hanzi in GBK/2 through GBK/4 is 21,003, which is 101 more than are
found in the CJK Unified Ideographs block of ISO 10646-1:1993. The 101 additional han-
zi in GBK/4 account for this difference.

From a compatibility point of view, there is comfort in knowing that every character in
GB 2312-80 is at the same code point in GBK. Chapter 4 provides more details about
GBK, including its encoding specifications.

The Simplified Chinese version of Microsoft Windows 95 and later uses GBK; this char-
acter set is also known as Microsoft Code Page 936.

GB 18030-2005—further extending GB 2312-80 to encompass all of Unicode
The latest and greatest character set standard established by China is designated GB
18030-2005. Its official title is Information Technology—Chinese Coded Character Set
(信息技术 中文编码字符集 xìnxī jìshù zhōngwén biānmǎ zìfújí). Its initial version was
designated GB 18030-2000. What makes GB 18030-2005 important is the fact that its sup-
port has been declared mandatory by the Chinese government for products sold within
China. An organization called CESI (China Electronics Standardization Institute; 中国
电子技术标准化研究所 zhōngguó diànzǐ jìshù biāozhǔn huà yánjiū suǒ) publishes GB
18030 certification guidelines, and performs GB 18030 certification testing.*

Some of the details in this section are truthfully a description of GB 18030-2000, but be-
cause the 2005 revision needs to be emphasized, such details are included here. Additional
details about GB 18030-2000 can be found in its own section, which immediately follows
this one.

* http://www.cesi.cn/ or http://www.cesi.com.cn/

106 | Chapter 3: Character set standards

GB 18030-2005, simply put, is a superset of all Chinese character set standards described
thus far, and it is also code-point–compatible with Unicode. Just as GBK is an extended
version of GB 2312-80, GB 18030-2005 is an extended version of GBK. The code-point–
compatible nature of GB 18030-2005 shall be covered in depth in Chapter 4.

So, what changed between GBK and GB 18030-2005 in terms of additional characters?
Ignoring the additional characters printed in the GB 18030-2005—for the six regional
scripts (to be discussed later in this section) and the tens of thousands of ideographs in
CJK Unified Ideographs Extension B—Table 3-34 lists the characters added to GBK to
create GB 18030-2000.

Characters specific to GB 18030-2000—not present in GBKTable 3-34.

number of characters description encoding

10 Lowercase Roman numerals 1–10 <A2 A1> through <A2 AA>

1 Euro currency symbol <A2 E3>

6,530 CJK Unified Ideographs Extension A <81 39 EE 39> through <82 35 87 38>

Interestingly, like GBK, GB 18030 is divided into parts—that is clearly the best way to
think about the structure of this relatively large character set. Table 3-35 lists the five parts
of GB 18030’s two-byte region, along with the number of characters in each. Please com-
pare this with the contents of Table 3-33.

The five parts of GB 18030’s two-byte regionTable 3-35.

Part Characters Content

1 728a GBK/1 plus lowercase Roman numerals 1–10 and the euro currency symbol

2 6,763 GB 2312-80 hanzi

3 6,080 Hanzi from ISO 10646-1:1993

4 8,160 8,059 hanzi from ISO 10646-1:1993 plus 101 additional hanzi

5 166 Non-hanzi from Big Five and other characters

Table 2 of GB 18030 (on page 8 of GB 18030-2000, and on page 5 of GB 18030-2005) states that Part 1 contains 718 characters, but if you a.
actually count them, the total number of characters is 728. I am convinced that the 10-character discrepancy is due to an oversight of 10 of the
29 non-hanzi that are specific to GB/T 12345-90. These 10 characters are not included in GBK and could be easily overlooked.

You will learn later in this chapter that CJK Unified Ideographs Extension A contains
6,582 characters, all of which are ideographs. However, GB 18030 seems to include only
6,530 of these ideographs. So, what happened to 52 of its ideographs? Why would GB
18030 exclude them? Put simply, these 52 ideographs were already included in GBK, spe-
cifically in GBK/4, as part of the 101 additional hanzi in that region. Table 3-36 shows
how these 52 characters are mapped, from GB 18030 code points to Unicode CJK Unified
Ideographs Extension A code points.

CCs standards | 107

Fifty-two special-case mappings for CJK Unified Ideographs Extension ATable 3-36.

Hanzi GB 18030 Unicode
㑳 FE 55 U+3473

㑇 FE 56 U+3447

㖞 FE 5A U+359E

㘚 FE 5B U+361A

㘎 FE 5C U+360E

㥮 FE 5F U+396E

㤘 FE 60 U+3918

㧏 FE 62 U+39CF

㧟 FE 63 U+39DF

㩳 FE 64 U+3A73

㧐 FE 65 U+39D0

㭎 FE 68 U+3B4E

㱮 FE 69 U+3C6E

㳠 FE 6A U+3CE0

䁖 FE 6F U+4056

䅟 FE 70 U+415F

䌷 FE 72 U+4337

䎱 FE 77 U+43B1

䎬 FE 78 U+43AC

䏝 FE 7A U+43DD

䓖 FE 7B U+44D6

䙡 FE 7C U+4661

䙌 FE 7D U+464C

䜣 FE 80 U+4723

䜩 FE 81 U+4729

䝼 FE 82 U+477C

䞍 FE 83 U+478D

䥇 FE 85 U+4947

䥺 FE 86 U+497A

䥽 FE 87 U+497D

䦂 FE 88 U+4982

䦃 FE 89 U+4983

䦅 FE 8A U+4985

䦆 FE 8B U+4986

108 | Chapter 3: Character set standards

Fifty-two special-case mappings for CJK Unified Ideographs Extension ATable 3-36.

Hanzi GB 18030 Unicode
䦟 FE 8C U+499F

䦛 FE 8D U+499B

䦷 FE 8E U+49B7

䦶 FE 8F U+49B6

䲣 FE 92 U+4CA3

䲟 FE 93 U+4C9F

䲠 FE 94 U+4CA0

䲡 FE 95 U+4CA1

䱷 FE 96 U+4C77

䲢 FE 97 U+4CA2

䴓 FE 98 U+4D13

䴔 FE 99 U+4D14

䴕 FE 9A U+4D15

䴖 FE 9B U+4D16

䴗 FE 9C U+4D17

䴘 FE 9D U+4D18

䴙 FE 9E U+4D19

䶮 FE 9F U+4DAE

Note that while the Unicode values generally are in ascending order, there are a small
number of exceptions.

One major concern with GB 18030 has been Private Use Area (PUA) usage with regard to
Unicode mappings. Although PUA mappings for 24 characters are still printed in the GB
18030-2005 standard proper, it is important to note that as long as Unicode version 4.1
or greater is used, all 24 of these characters can be safely mapped or otherwise handled
without resorting to PUA code points. This means that GB 18030-2005 can be represented
in its entirety using Unicode, without the use of PUA code points. This is important to
realize, and it is a very good thing. Table 3-37 lists these 24 mappings, showing their PUA
and non-PUA (Unicode version 4.1) mappings.

PUA code points in GB 18030-2005 versus Unicode version 4.1Table 3-37.

Character GB 18030-2005 PUA Unicode 4.1 (non-PUA)
︐ A6 D9 U+E78D U+FE10

︒ A6 DA U+E78E U+FE12

︑ A6 DB U+E78F U+FE11

CCs standards | 109

PUA code points in GB 18030-2005 versus Unicode version 4.1Table 3-37.

Character GB 18030-2005 PUA Unicode 4.1 (non-PUA)
︓ A6 DC U+E790 U+FE13

︔ A6 DD U+E791 U+FE14

︕ A6 DE U+E792 U+FE15

︖ A6 DF U+E793 U+FE16

︗ A6 EC U+E794 U+FE17

︘ A6 ED U+E795 U+FE18

︙ A6 F3 U+E796 U+FE19

𠂇 FE 51 U+E816 U+20087

𠂉 FE 52 U+E817 U+20089

𠃌 FE 53 U+E818 U+200CC

龴 FE 59 U+E81E U+9FB4

龵 FE 61 U+E826 U+9FB5

龶 FE 66 U+E82B U+9FB6

龷 FE 67 U+E82C U+9FB7

𡗗 FE 6C U+E831 U+215D7

龸 FE 6D U+E832 U+9FB8

𢦏 FE 76 U+E83B U+2298F

龹 FE 7E U+E843 U+9FB9

龺 FE 90 U+E854 U+9FBA

𤇾 FE 91 U+E855 U+241FE

龻 FE A0 U+E864 U+9FBB

These 24 PUA mappings are printed in the GB 18030-2005 standard proper because it was
prepared in 2003, prior to Unicode version 4.1. GB 18030-2005 is obviously dated in 2005,
but was printed in 2006. Considering the code-point–compatible nature of GB 18030-
2005 with Unicode, mapping these 24 characters to Unicode version 4.1 code points
(meaning to non-PUA code points) is clearly the prudent thing to do.

Note that 6 of the 24 Unicode 4.1 mappings are non-BMP, specifically into CJK Unified
Ideographs Extension B, which is in Plane 2. These have been highlighted in Table 3-37.
It is because of these six characters and their appropriate mappings that beyond-BMP
support is necessary for GB 18030 compliance in the context of Unicode version 4.1 or
greater.

GB 18030-2005 silently corrected four prototypical glyphs used for printing the standard.
GB standards have a demonstrated history of making silent corrections, or corrections set
forth through new standards. Table 3-38 lists the four prototypical glyph corrections that
were implemented in GB 18030-2005.

110 | Chapter 3: Character set standards

GB 18030-2005 prototypical glyph correctionsTable 3-38.

Hanzi (Correct) GB 18030 Unicode Glyph error description
㙥 82 30 AD 37 U+3665 The 13th stroke was missing.

㿐 82 32 A1 39 U+3FD0 The 10th stroke was missing.

䱪 82 34 E6 31 U+4C6A The left-side component was simplified, but should be traditional.

䳽 82 34 F4 32 U+4CFD The right-side component was simplified, but should be traditional.

The main focus of the 2005 revision of the GB 18030 standard is clearly in two areas,
which are best described as follows:

Acknowledgment of CJK Unified Ideographs Extension B—42,711 hanzi•	

Acknowledgment of the •	 six regional scripts: Korean, Mongolian, Tai Le, Tibetan, Uy-
ghur, and Yi

All 42,711 characters of CJK Unified Ideographs Extension B are printed in the GB 18030-
2005 manual, on pages 240 through 443. The characters for the six regional scripts are
printed in the standard as well. All of these newly acknowledged characters are supported
through the use of GB 18030’s four-byte region.

GB 18030 compliance guidelines
Because GB 18030 support has been mandated by the Chinese government for software
sold in that region, knowing what constitutes GB 18030 compliance thus becomes critical
to any business that deals with encoded text.

Given GB 18030’s close relationship with Unicode, combined with the fact that Unicode is
supported by today’s OSes, the simplest way to support GB 18030 is through Unicode. In
other words, as long as your application correctly handles arbitrary Unicode text, chances
are it is already GB 18030–compliant. Or, at least, the amount of additional work that is
necessary for GB 18030 compliance should be minimal, possibly even trivial.

As stated earlier in this section, an organization called CESI performs GB 18030 certifica-
tion testing. Because CESI is physically located in China, and because the testers are Chi-
nese, I strongly suggest to anyone outside of China who plans to have his software tested
for GB 18030 compliance that he partner with a company located in China to facilitate
the testing and certification process. I suggest this for a couple of reasons. First, there is an
obvious language barrier for software companies that do not have presence in China, and
the Chinese companies help to break this barrier. Second, the Chinese companies typi-
cally have experience working with CESI, specifically related to GB 18030 certification.

There are two areas of GB 18030-2005 for which certification may seem problematic or
otherwise nontrivial:

Supporting the six regional scripts•	

Supporting CJK Unified Ideographs Extension B•	

CCs standards | 111

For both of these areas, support is not necessary in order to achieve certification, at least
at the time of this writing. While it is necessary for the code points for these characters
to be correctly processed, such as converting to and from Unicode and GB 18030’s native
encoding, correctly rending the characters is not necessary.

Finally, if your software has specific areas that may be lacking in terms of GB 18030 sup-
port, it is best to identify those areas in a “ReadMe” file or other documentation that is
submitted to CESI. I want to point out that CESI would rather know about deficient areas
beforehand, rather than discover them through testing.

GB 18030-2000
The original version of GB 18030, designated GB 18030-2000, was published on March
17, 2000. Its title is more complex than its 2005 revision: Information Technology—Chi-
nese Ideograms Code Character Set for Information Interchange—Extension for the Basic
Set (信息技术 信息交换用汉字编码字符集 基本集的扩充 xìnxī jìshù xìnxī jiāohuàn
yòng hànzì biānmǎ zìfújí jīběnjí de kuòchōng).

Table 3-39 lists the only character whose encoding was changed for the 2005 revision.

GB 18030 encoding changesTable 3-39.

Character GB 18030 Unicode (2000) Unicode (2005)
ḿ A8 BC U+E7C7 (PUA) U+1E3F

Effectively, the change is from PUA to non-PUA, which is a very good thing, and similar
treatment is expected for 24 additional characters (see Table 3-37).

Unicode compatibility with GB standards
The three most important GB standards with regard to Unicode compatibility are GB
2312-80, GBK, and GB 18030. Full support for GB 2312-80 is in the earliest versions of
Unicode. GBK made use of some PUA code points. The 2000 and 2005 versions of GB
18030 specify PUA code points to some extent, but as long as Unicode version 4.1 or
greater is used, PUA usage is not necessary. But, as I pointed out earlier in this chapter,
in lieu of PUA usage, six GB 18030 hanzi require Plane 2 support because their non-PUA
mappings are in CJK Unified Ideographs Extension B.

Given the code-point compatibility between GB 18030 and Unicode, which is at the en-
coding level, the likelihood of continued compatibility between these standards is very
high. This is a good thing.

Chinese Character set standards—taiwan
Taiwan (臺灣 táiwān), or more officially, the Republic of China or ROC (中華民國
zhōnghuá mínguó), represents another standards-producing Chinese locale. Taiwan does

112 | Chapter 3: Character set standards

not use simplified ideographs, and typically uses a larger number of characters than all
other CJKV locales combined.

Big Five
Big Five (大五 dàwǔ) is the most widely implemented character set standard used in
Taiwan and was established on May 1st, 1984 by the Institute for Information Industry of
Taiwan through the publishing of Computer Chinese Glyph and Character Code Mapping
Table (電腦用中文字型與字碼對照表 diànnǎoyòng zhōngwén zìxíngyù zìmǎ duìzhào
biǎo), Technical Report (技術通報 jìshù tōngbào) C-26. Its name refers to the five compa-
nies that collaborated in its development.

Unlike the other CJKV character set standards, Big Five’s character space is set in a dis-
joint 94×157 matrix, for a maximum capacity of 14,758 cells. The Big Five character set
standard specifies 13,494 standard characters (13,053 hanzi plus 441 non-hanzi), but
some vendor-specific implementations often have a larger repertoire.

I feel compelled to warn you that Big Five is not a national standard, but is used much
more widely than the national character set standard for Taiwan, specifically CNS 11643-
2007, described next. In other words, Big Five has become a de facto standard for Taiwan.
Table 3-40 lists the character allocation of the Big Five character set.

The Big Five character setTable 3-40.

row Characters Content

1 157 Two abbreviations, 155 miscellaneous symbols

2 157 Nine hanzi for measurements, 9 abbreviations, 21 full-width line-drawing elements, numerals
0–9, uppercase Roman numerals 1–10, Chinese numerals 1–12, upper- and lowercase Latin
characters (except for w–z), 38 miscellaneous symbols

3 127 Lowercase Latin characters w–z, 48 upper- and lowercase Greek characters, 37 zhuyin (bopo-
mofo) characters, 5 tone marks, 33 abbreviations for control characters

4–38 5,401 Level 1 hanzi (last is 38-63)

39–40 0 Unassigned

41–89 7,652 Level 2 hanzi (last is 89-116)a

90–94 0 Unassigned

CNS 11643-2007, discussed shortly, has only 7,650 characters in Level 2 hanzi—Big Five has two duplicate hanzi that the designers of CNS a.
11643-2007 decided not to include.

The hanzi in each of the two levels are arranged by increasing total number of strokes, and
then by radical (the inverse of the ordering criteria used for Level 2 of both GB 2312-80
and JIS X 0208:1997; their ideographs are ordered by radical then by increasing number
of strokes).

Table 3-41 illustrates examples for each of the character classes that compose the Big Five
character set.

CCs standards | 113

Big Five character samplesTable 3-41.

Character class sample characters

Miscellaneous symbols ,、。.·;:?! … ㏕㎜㎝㎞㏎㎡㎎㎏㏄°

Hanzi for measurements 兙兛兞兝兡兣嗧瓩糎

Line-drawing elements ▁▂▃▄▅▆▇█▏▎ … ╞╪╡◢◣◥◤╱╲╳

Numerals 0123456789

Roman numerals ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩ … ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

Short forms for numerals 〡〢〣〤〥〦〧〨〩％＠�

Latin ABCDEFGHIJ … qrstuvwxyz

Greek ΑΒΓΔΕΖΗΘΙΚ … οπρστυφχψω

Zhuyin (bopomofo) ㄅㄆㄇㄈㄉㄊㄋㄌㄍㄎ … ㄠㄡㄢㄣㄤㄥㄦㄧㄨㄩ

Tone marksa ˙ ˊˇˋ

Control characters ␀␁␂␃␄␅␆␇␈␉ … ␗␘␙␚␛␜␝␞␟␡

Level 1 hanzi 一乙丁七乃九了二人儿 … 黷豔鑿鸚爨驪鬱鸛鸞籲

Level 2 hanzi 乂乜凵匚厂万丌乇亍囗 … 癵驫鱺鸝灩灪麤齾齉龘

Note that the second tone mark has no form—it is blank.a.

Table 3-42 illustrates the two hanzi that are duplicately encoded in Big Five. This duplica-
tion is a result of an error in design.

Duplicate hanzi in Big FiveTable 3-42.

Hanzi Code points Unicode

兀 <A4 61> and <C9 4A> U+5140 and U+FA0C

嗀 <DC D1> and <DD FC> U+55C0 and U+FA0D

CNS 11643-2007, to be discussed soon, corrects this error by eliminating the second in-
stance of each of these two hanzi, specifically <C9 4A> and <DD FC>. Big Five <A4 61>
and <C9 4A> are the same as CNS 11643-2007 Plane 1’s 36-34, and Big Five <DC D1> and
<DD FC> are the same as CNS 11643-2007 Plane 2’s 33-86.

The authors of An Introduction to Chinese, Japanese and Korean Computing (World Sci-
entific Publishing, 1989), Jack Huang (黃克東 huáng kèdōng) and Timothy Huang (黃大
一 huáng dàyī), claim that the designers of the Big Five character set simply copied many
kanji from JIS C 6226-1978. Many of the same ideographs are used in Chinese, Japanese,
and Korean, but there are often subtle character-form differences between them. The Big
Five character set contains many non-Chinese forms of hanzi (one could go so far as to
say that they are actually kanji, not hanzi!), and no attempt was ever made to remedy this
problem (although CNS 11643-2007 can be considered a cure). Appendix H provides a
complete Big Five code table.

114 | Chapter 3: Character set standards

Big Five Plus
An extension to Big Five known as Big Five Plus (or Big5+ as a shortened form) was de-
veloped by a number of companies in close collaboration and cooperation. Although the
specification for Big Five Plus is finalized, it has yet to be fully implemented in any OS. It
has, however, been implemented in TwinBridge Chinese Partner, beginning with version
4.98.*

Big Five Plus includes a total of 21,585 characters (and 2,355 user-defined characters),
which come from three distinct sources, indicated as follows:

13,463 total characters, consisting of the Big Five character set•	

4,670 total characters, consisting of CNS 11643-2007 Plane 3 hanzi in Unicode •	
(3,875), CNS 11643-2007 Plane 1 characters (88), the 214th radical (missing from
CNS 11643-2007), Japanese kana (177), ETen full-width line-drawing elements (34),
hanzi “zero” (〇), Unicode “shape” characters (5), and CNS 11643-2007 Plane 4 hanzi
in Unicode (489)

3,452 total characters, consisting of additional CNS 11643-2007 Plane 4 hanzi in •	
Unicode (402), CNS 11643-2007 Plane 5 hanzi in Unicode (61), CNS 11643-2007
Plane 6 hanzi in Unicode (29), CNS 11643-2007 Plane 7 hanzi in Unicode (16), CNS
11643-2007 Plane 15 hanzi in Unicode (152), additional hanzi in Unicode (247), PRC
simplified hanzi (2,105), and Japanese kanji and Korean hanja (440)

The end result of Big Five Plus is a character set comparable to GBK in terms of including
all of Unicode’s first block of 20,902 CJK Unified Ideographs, which are referred to as the
Unified Repertoire and Ordering (URO). In fact, their encoding definitions, at a high level,
are the same. Table 3-43 shows how these 21,585 Big Five Plus characters, along with user-
defined characters, are grouped in terms of encoding ranges.

The Big Five Plus character setTable 3-43.

encoding Characters Content

A4 40–C6 7E 5,401 Big Five Level 1

C9 40–F9 FE 7,693 Big Five Level 2 and 41 ETen characters from row 0xF9

A1 40–A3 FE 471 Big Five non-hanzi

C6 A1–C8 FE 408 ETen characters from rows 0xC6 through 0xC8

81 80–FE A0 4,158 Hanzi

81 40–83 FE 471 Hanzi and hanzi variants

8E 40–A0 FE 2,983 Hanzi, simplified hanzi, kanji, and hanja

FA 40–FE FE 785 User-defined characters

84 40–8D FE 1,570 User-defined characters

* http://www.twinbridge.com/

CCs standards | 115

For the sake of compatibility with Big Five, Big Five Plus still includes the two duplicately
encoded hanzi that are listed in Table 3-42. Given the extent to which Unicode is used in
today’s software, the likelihood of Big Five Plus becoming widely used is relatively low.

Cns 11643-2007
The roots of CNS 11643-2007, by far the largest legacy CJKV character set standard in
current use, can be traced back to Big Five. For this reason, I often consider CNS 11643-
2007 to be a corrected and supplemented version of Big Five, and you will soon under-
stand why.

CNS 11643-2007, established on August 9, 2007, enumerates a staggering 69,134 hanzi,
and 70,939 total characters when its 1,605 non-hanzi are factored in.* CNS 11643-2007
is entitled Chinese Standard Interchange Code (中文標準交換碼 zhōngwén biāozhǔn
jiāohuànmǎ). CNS stands for Chinese National Standard (中國國家標準 zhōngguó guójiā
biāozhǔn).

As was the case with the Big Five character set, all of the hanzi in CNS 11643-2007 planes
(字面 zì miàn) are ordered by total number of strokes, then by radical.† Table 3-44 details
the characters allocated to the 13 occupied planes of CNS 11643-2007, specifically Planes
1 through 7 and 10 through 15.

The CNS 11643-2007 character setTable 3-44.

Plane row Characters Content

1

1–6 443 Symbols

7–18 1,127 213 classical radicals, extended zhuyin, kana, Church Latin characters

19–33 0 Unassigned

34 35 Graphic representations of control characters, Euro, ideographic zero

35 0 Unassigned

36–93 5,401 Hanzi (last is 93-43)

94 0 Unassigned

2
1–82 7,650 Hanzi (last is 82-36)

83–94 0 Unassigned

3

1–66 6,148 Hanzi (last is 66-38)

67 0 Unassigned

68–71 128 Hanzi (68-40 through 71-10)

72–94 0 Unassigned

* http://www.cns11643.gov.tw/
† The only exceptions to this basic rule are CNS 11643-2007 Planes 7 and 11, which are actually a continuation

of Planes 6 and 10, respectively.

116 | Chapter 3: Character set standards

The CNS 11643-2007 character setTable 3-44.

Plane row Characters Content

4
1–78 7,298 Hanzi (last is 78-60)

79–94 0 Unassigned

5
1–92 8,603 Hanzi (last is 92-49)

93–94 0 Unassigned

6
1–68 6,388 Hanzi (last is 68-90)

69–94 0 Unassigned

7
1–70 6,539 Hanzi (last is 70-53)

71–94 0 Unassigned

10 1–94 8,836 Hanzi (last is 94-94)

11
1–40 3,698 Hanzi (last is 40-32)

41–94 0 Unassigned

12
1–65 443 Hanzi (last is 65-54)

66–94 0 Unassigned

13
1–82 763 Hanzi (last is 82-78)

83–94 0 Unassigned

14
1–43 408 Hanzi (last is 43-73)

44–94 0 Unassigned

15
1–77 6,831 Hanzi (last is 77-25)

78–94 0 Unassigned

Ideograph devotees will no doubt wonder why there are only 213 of the 214 classical radi-
cals in CNS 11643-2007 Plane 1. Good question! First off, the missing radical is the 34th
one, specifically 夂, which is very similar in shape to the 35th radical, specifically 夊. A
conscious decision was made by the Ministry of Education to drop the 34th radical due
to its similarity—in appearance—with the 35th one. The designers of CNS 11643 were
simply following the guidelines set forth by the standard list of 4,808 hanzi, published
by the Ministry of Education. This missing 34th radical is available elsewhere in CNS
11643-2007, specifically in Plane 3 at Row-Cell 01-25. Also consider that 210 of these 213
classical radicals are identical to hanzi found in Planes 1 through 3. 167 of them map to
Plane 1 hanzi, 20 map to Plane 2 hanzi, and 23 map to Plane 3 hanzi. Three are found only
in the radical block of Plane 1.

Planes 3 and 12 through 15 deserve special mention or attention, because their hanzi are
not in contiguous blocks. In other words, there are gaps. For Plane 3, only the 128 hanzi
in rows 68 through 71 are not contiguous, meaning that there are gaps within that small
block. The primary block of hanzi in Plane 3, meaning rows 1 through 66, are contiguous.
Planes 12 through 14 are very sparse, meaning that each row contains very few char-
acters. Plane 15 has gaps, but very few when compared to Planes 12 through 14. Plane

CCs standards | 117

15 originated in CNS 11643-1986 and was established in 1990. The section about CNS
11643-1986 will provide additional details about Plane 15 and how it changed for the 2007
version of the standard.

While the 13 planes of CNS 11643-2007 are fairly autonomous, meaning that they are
considered separate collections of characters when it comes to ordering them by total
number of strokes, Planes 6 and 7 actually form a continuous set of characters, as do
Planes 10 and 11. Also of potential interest is that Plane 6 contains hanzi with 1 to 14 total
strokes, and Plane 7 contains those with 15 or more total strokes. The stroke-count index
in Appendix H illustrates this point well.

Table 3-45 illustrates the character classes that make up the CNS 11643-2007 character
set. Because the rows containing symbols are not broken up—across rows—by character
class, they are lumped together in Table 3-45. You can reference Table 3-41, which pro-
vides sample Big Five characters, to see a more complete breakdown of CNS 11643-2007’s
symbol class. Only the hanzi in the first seven planes are shown.

CNS 11643-2007 character samples—Planes 1 through 7Table 3-45.

Character class sample characters

Symbols ,、。.·;:?! … ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

Classical radicals 一丨丶丿乙亅二亠人儿 … 黽鼎鼓鼠鼻齊齒龍龜龠

Control characters ␀␁␂␃␄␅␆␇␈␉ … ␗␘␙␚␛␜␝␞␟␡

Plane 1 hanzi 一乙丁七乃九了二人儿 … 黷豔鑿鸚爨驪鬱鸛鸞籲

Plane 2 hanzi 乂乜凵匚厂万丌乇亍囗 … 驫鱺鸝灩灪爩麤齾齉龘

Plane 3 hanzi 丨丶丿亅丅丄冂冖匸卩 … 䡿䴐麣䨊鱻龗䴒䨺靐䨻

Plane 4 hanzi 𠂆乀乁乚𡿨丂丩𠄎𠘧刂 … 𪗁𩰉龖𪛕䯂䰱䴑䶫䲜𩇔

Plane 5 hanzi 𠃑𠃋𠃉𠄌𠀀𠂇𠄍𠄏凵𢎘 … 𪈿𧆓𪓉𧟞𩎑𪚎𪚍𧆘𦧅𪚥

Plane 6 hanzi 乁𠁢㐅𠂈𠃐𠃏𠄞𠄟𠄠𠤎 … 𩾟𩾣𩾤𩾥𪌂𪐗𪐛𪐙𪓑𡔷

Plane 7 hanzi 𠁕𠆂𠆉𠆇𠎾𠎽𠏊𠏔𠎼𠏄 … 𪛖𧟟𩇒𡔚𧮩𩇓𪓊𦧄𧢱𩙤

Pages 501 through 524 of the CNS 11643-2007 standard is a list of 639 hanzi whose glyphs
changed, in subtle ways, from the CNS 11643-1992 standard. These, of course, cover only
Planes 1 through 7. The prototypical glyphs shown in the CNS 11643-1992 standard were
rather coarse bitmaps, and those in the CNS 11643-2007 standard appear to be generated
from outlines.

Encoding methods for CNS 11643-2007 include ISO-2022-CN, ISO-2022-CN-EXT, and
and EUC-TW. The encoding forms of Unicode are able to encode most of its characters.
Big Five can be considered an alternate encoding for CNS 11643-2007 Planes 1 and 2.

In terms of overall structure, CNS 11643-2007 is composed of 80 planes, each of which
is a 94×94 matrix capable of encoding up to 8,836 characters. The original 1986 version,

118 | Chapter 3: Character set standards

which will be covered in a later section, was composed of only 16 such planes. Its 1992
instance, described next, encodes characters only in its first seven planes.

Cns 11643-1992
CNS 11643-1992, established on May 21, 1992, enumerated a still-staggering 48,027 han-
zi, and 48,711 total characters when its 684 non-hanzi are included. CNS 11643-1992
was entitled Chinese Standard Interchange Code (中文標準交換碼 zhōngwén biāozhǔn
jiāohuànmǎ), which is the same as CNS 11643-2007. Unlike CNS 11643-2007, its 1992
version includes characters only in its first seven planes. Table 3-46 lists the characters
that are included in CNS 11643-1992’s seven planes.

The CNS 11643-1992 character setTable 3-46.

Plane row Characters Content

1

1–6 438 Symbols

7–9 213 213 classical radicals

10–33 0 Unassigned

34 33 Graphic representations of control characters

35 0 Unassigned

36–93 5,401 Hanzi (last is 93-43)

94 0 Unassigned

2
1–82 7,650 Hanzi (last is 82-36)

83–94 0 Unassigned

3
1–66 6,148 Hanzi (last is 66-38)

67–94 0 Unassigned

4
1–78 7,298 Hanzi (last is 78-60)

79–94 0 Unassigned

5
1–92 8,603 Hanzi (last is 92-49)

93–94 0 Unassigned

6
1–68 6,388 Hanzi (last is 68-90)

69–94 0 Unassigned

7
1–70 6,539 Hanzi (last is 70-53)

71–94 0 Unassigned

Although Planes 2, 4, 5, 6, and 7 are identical to CNS 11643-2007, note the subtle differ-
ence in Planes 1 and 3 when comparing Tables 3-44 and 3-46.

There were some known errors in CNS 11643-1992, all of which are errors in calculating
the total number of strokes. These errors are provided on page 318 of the CNS 11643-1992
manual. Table 3-47 shows how many such errors are indicated in the CNS 11643-1992
manual.

CCs standards | 119

Stroke-count errors in CNS 11643-1992Table 3-47.

Plane number number of errors

1 1

2 6

3 20

Appendix H provides CNS 11643-1992 code tables for all of its seven planes. The same
appendix also provides their stroke-count indexes.

Cns 11643-1986
The original version of the CNS 11643-2007 standard was established on August 4, 1986,
and enumerated far fewer characters. Its title was also different: Standard Interchange Code
for Generally Used Chinese Characters (通用漢字標準交換碼 tōngyòng hànzì biāozhǔn
jiāohuànmǎ). There were only two planes with assigned characters: Planes 1 and 2. Plane
14 was published in June of 1988 as 通用漢字標準交換碼—使用者加字區交換碼
(tōngyòng hànzì biāozhǔn jiāohuànmǎ—shǐyòngzhě jiāzìqū jiāohuànmǎ).* Plane 15—also
known as 戶政用字 hùzhèngyòngzì—was published in June or July of 1990. Table 3-48
shows the character allocation for CNS 11643-1986, including Planes 14 and 15.

The CNS 11643-1986 character setTable 3-48.

Plane row Characters Content

1

1–6 438 Symbols

7–9 213 213 classical radicals

10–33 0 Unassigned

34 33 Graphic representations of control characters

35 0 Unassigned

36–93 5,401 Hanzi (last is 93-43)

94 0 Unassigned

2
1–82 7,650 Hanzi (last is 82-36)

83–94 0 Unassigned

14
1–68 6,319 Hanzi (last is 68-21)

69–94 0 Unassigned

15
1–77 7,169 Hanzi (last is 77-25)

78–94 0 Unassigned

* Sometimes CNS 11643-1986 Plane 14 is referred to as Plane E. Why is this? The letter “E” is the hexadecimal
equivalent of decimal 14. Likewise, CNS 11643-1986 Plane 15 is often referred to as Plane F for the same
reason.

120 | Chapter 3: Character set standards

So, what happened to Planes 14 and 15 when CNS 11643-1992 was established? The hanzi
in CNS 11643-1986 Plane 14 were divided into multiple planes of CNS 11643-1992, and
for a good reason: Plane 14 was composed of two independent collections of hanzi, both
of which were independently ordered by total number of strokes. The first 6,148 hanzi in
this plane (01-01 through 66-38) became CNS 11643-1992 Plane 3; the remaining 171
hanzi (66-39 through 68-21) were scattered throughout CNS 11643-1992 Plane 4, along
with thousands of additional hanzi. Exactly where within CNS 11643-1992 Plane 4 these
171 hanzi were scattered is documented in a table on page 317 of the CNS 11643-1992
standard, and this same information is provided in Appendix H.

Plane 15 never became part of CNS 11643-1992 proper, but 338 of its hanzi are among
those in CNS 11643-1992 Planes 4 through 7. When CNS 11643-2007 was established,
Plane 15 was restored, and 6,831 of its original 7,169 hanzi are included in their original
code points. This is precisely the reason why CNS 11643-2007 Plane 15 includes gaps.

Big Five versus Cns 11643-2007
Although the Big Five and CNS 11643-2007 character sets share many qualities, they
are, in fact, different character sets. The following is an enumeration of some facts to
consider:

CNS 11643-2007 Plane 1 enumerates 5,401 hanzi, as does Big Five.•	

CNS 11643-2007 Plane 2 enumerates 7,650 hanzi, but Big Five has two additional •	
hanzi—both duplicately encoded.

CNS 11643-2007 includes several additional planes of hanzi. Big Five has only two •	
levels.

Big Five does not enumerate the 213 classical radicals of CNS 11643-2007. Remem-•	
ber that 187 of these 213 classical radicals are identical to hanzi found in CNS 11643-
2007 Planes 1 and 2, which correspond to Big Five Levels 1 and 2.

A handful of character forms are different, such as CNS 11643-2007 Plane 1’s •	 01-26
through 01-29 compared to Big Five’s <A1 59> through <A1 5C>.

A handful of characters are in a slightly different order, due to corrected stroke counts •	
in CNS 11643-2007: two non-hanzi and six hanzi instances between Big Five Level 1
hanzi and CNS 11643-2007 Plane 1, and 17 hanzi instances between Big Five Level 2
hanzi and CNS 11643-2007 Plane 2.

Big Five had become a •	 de facto standard due to its long-standing use on Mac OS and
Windows.

Consider these facts well when comparing and contrasting these two character sets from
Taiwan. The mere fact that Big Five has become a de facto standard is often the best reason
to adopt its use.

Table 3-49 lists the two non-hanzi and six hanzi that are in a different order in Big Five
Level 1 and CNS 11643-2007 Plane 1.

CCs standards | 121

Different ordering—Big Five Level 1 versus CNS 11643-2007 Plane 1Table 3-49.

Character Big Five Level 1 Cns 11643-2007 Plane 1

← A1 F6 02-56

→ A1 F7 02-55

耄 AC FE 55-51

銬 BE 52 75-48

薦 C2 CB 85-21

羅 C3 B9 88-69

繳 C3 BA 88-68

嚨 C4 56 88-13

Table 3-50 lists the 17 hanzi that are in a different order in Big Five Level 2 and CNS
11643-2007 Plane 2.

Different ordering—Big Five Level 2 versus CNS 11643-2007 Plane 2Table 3-50.

Hanzi Big Five Level 2 Cns 11643-2007 Plane 2

刉 C9 BE 01-44

攷 CA F7 02-45

筇 D6 CC 30-67

莚 D7 7A 31-74

笻 DA DF 23-79

錥 EB F1 53-43

徻 EC DE 55-02

鎀 EE EB 68-15

磿 F0 56 61-84

螤 F0 CB 58-08

鎥 F1 6B 71-65

瀪 F2 68 73-20

舋 F4 B5 70-45

鐼 F6 63 74-43

鬮 F9 C4 81-70

鸙 F9 C5 82-20

爩 F9 C6 82-32

I urge you to compare the code points in Tables 3-49 and 3-50 with the complete Big
Five and CNS 11643-2007 code tables in Appendix H to verify that their ordering is

122 | Chapter 3: Character set standards

indeed different. Although these characters are ordered differently in these two character
set standards established in Taiwan, this trivia is effectively rendered moot, or perhaps
flattened, when these characters are encoded according to Unicode.

CCCII
One of the most well thought-out character set standards from Taiwan is known as CCCII
(Chinese Character Code for Information Interchange; 中文資訊交換碼 zhōngwén zīxùn
jiāohuànmǎ), which was developed by the Chinese Character Analysis Group (CCAG; 國
字整理小組 guózì zhěnglǐ xiǎozǔ) in Taiwan. Its first version was published in 1980, fol-
lowed by substantial revisions in 1982 and 1987.

CCCII is structured as 16 layers, each of which is composed of up to six consecutive
94×94 planes (there are a total of 94 planes). This results in a 94×94×94 cube for encoding
characters. Each layer is allocated for a particular class of character. Table 3-51 lists what
character classes are allocated to what layers.

The structure of CCCIITable 3-51.

Layer Planes Content

1 1–6 Non-hanzi and hanzi

2 7–12 Simplified hanzi (as used in China)

3–12 13–72 Variant forms of hanzi in Layer 1

13 73–78 Japanese kana and kanji

14 79–84 Korean jamo, hangul, and hanja

15 85–90 Reserved

16 91–94 Other characters

The hanzi in CCCII are arranged according to radical, and then by total number of strokes,
in ascending order, of course. Table 3-52 illustrates the contents of CCCII Layer 1.

The structure of CCCII Layer 1Table 3-52.

Plane row Characters Content

1 1 0 Reserved for control codes

1 2–3

1 4–10 0 Unassigned

1 11 35 Chinese punctuation

1 12–14 214 Classical radicals

1 15 78 Chinese numerals and phonetic symbols (zhuyin)

1 16–67 4,808 Most frequently used hanzi

1–3 68–64a 17,032 Next most frequently used hanzi

CCs standards | 123

The structure of CCCII Layer 1Table 3-52.

Plane row Characters Content

3–6 65–5b 20,583 Other hanzi

6 6–94 0 Unassigned

This range spans Plane 1, row 68 through Plane 3, row 64.a.

This range spans Plane 3, row 65 through Plane 6, row 5.b.

CCCII Layer 1 thus provides the basic (but very large) set of hanzi. The remaining lay-
ers are used for variant forms of characters found in Layer 1. The relationship between
the layers is very important to understand. Table 3-53 illustrates the relationship be-
tween variant forms in CCCII. CNS 11643-2007 references are provided for the sake of
comparison.

The relationship between CCCII layersTable 3-53.

Hanzi Layer Plane row-Cell status Cns 11643-2007

來 1 1 17-44 Standard form 1-43-84

来 2 7 17-44 Simplified form 4-04-38

倈 3 13 17-44 Variant form 3-15-47

徠 4 19 17-44 Variant form 1-58-26

Note how the four hanzi in Table 3-53 all share the same Row-Cell value, and differ only
in which layer they exist (although the plane numbers appear to differ, they are all the first
plane within each layer). This mechanism provides a very convenient and logical method
to access simplified or otherwise variant forms of hanzi. The same cannot be said of CNS
11643-2007.

The latest nondraft version of CCCII, dated February of 1987, defines a total of 53,940
characters. A subsequent revision may have 75,684 characters (44,167 orthographics plus
31,517 variants). Professor Chang, one of the primary CCCII contributors, sadly passed
away in 1997, and he left behind some unfinished work, including the finalization of these
75,684 characters. Professor Ching-Chun Hsieh (謝清俊 xiè qīngjùn) and other research-
ers are working to complete the next CCCII revision. Table 3-54 details the history of
CCCII.

The history of CCCIITable 3-54.

Year Characters description

1980 4,808 4,808 most frequently used hanzi

1982 17,032 17,032 next most frequently used hanzi—first revision

1985 33,357 Combined 1980 and 1982 sets plus revision

1985 11,517 11,517 additional variants

124 | Chapter 3: Character set standards

The history of CCCIITable 3-54.

Year Characters description

1987 53,940 Volume III—combined and revision

1989 75,684 First variant revision draft

ANSI Z39.64-1989 (entitled East Asian Character Code For Bibliographic Use, or EACC as
an abbreviated form) is a derivative work of CCCII that contains a total of 15,686 char-
acters. Some consider EACC to effectively be an historical “snapshot” of CCCII, but it is
actually a fairly important precursor to the development of Unicode, and it is still exten-
sively used for bibliographic purposes.

While the structure of CCCII is something to be truly admired in that it establishes re-
lationships between characters, such as simplified and other variants, contemporary font
technologies—such as OpenType, which is covered in Chapter 6—provide the same level
of glyph substitution functionality at a level beyond encoding.

Unicode compatibility with Big Five and Cns standards
The most important characters in Big Five and CNS 11643 are included in Unicode. All
of Big Five Levels 1 and 2, along with CNS 11643-1986 Planes 1 and 2, are included in
the very early versions of Unicode. A small number of their non-hanzi do not yet map
directly to Unicode.

Table 3-42 listed the two hanzi in Big Five that are duplicately encoded. In order to main-
tain round-trip conversion capability, these two duplicate hanzi are mapped to Unicode’s
CJK Compatibility Ideographs block.

All seven planes of CNS 11643-1992 have almost complete coverage in Unicode’s CJK
Unified Ideographs, specifically the URO, Extension A, and Extension B. A small number
of edge cases are not yet mapped to Unicode.

Chinese Character set standards—Hong Kong
Hong Kong (香港 xiānggǎng), considered a part of China since 1997 as a Special Admin-
istrative Region (SAR), uses many hanzi that are specific to its locale. Of the two most
common Chinese character set standards in use today, China’s GB 2312-80 and Taiwan’s
Big Five, Hong Kong has standardized on Big Five. But, Big Five was not sufficient for
their needs. Several companies, such as DynaComware and Monotype Imaging, have de-
veloped their own—and conflicting—Hong Kong extensions for Big Five. These vendor-
specific Hong Kong extensions are covered in Appendix E.

The Hong Kong character set standards described in this section are distinct from other
CJKV character set standards in that the characters are not ordered in any meaningful
way, such as by reading, by indexing radical, or by number of total or remaining strokes.
In addition, their logical encoding “rows” exhibit difficult-to-explain gaps.

CCs standards | 125

Hong Kong sCs-2008
Hong Kong SCS (Hong Kong Supplementary Character Set, sometimes further abbreviated
as HKSCS) is an extension to Big Five, and a subset of Unicode, that currently includes
5,009 characters, 4,568 of which are hanzi. Its current version is referred to as Hong Kong
SCS-2008 (Hong Kong Supplementary Character Set, 2008 Revision).*

The first version of Hong Kong SCS was published in September of 1999, as Hong Kong
SCS-1999, and included 4,702 characters, 4,261 of which were hanzi. Its 2001, 2004, and
2008 revisions added only hanzi: 116, 123, and 68, respectively.

Table 3-55 details the number of characters in each version of Hong Kong SCS, along with
the number of hanzi that map to CJK Unified Ideographs Extensions B and C, meaning
that they include Unicode mappings that are beyond the BMP.

The history of Hong Kong SCSTable 3-55.

Year Hanzi other characters total characters extension B extension C

1999 4,261 441 4,702 1,623 0

2001 4,377 441 4,818 1,652 0

2004 4,500 441 4,941 1,693 0

2008 4,568 441 5,009 1,712 1

Of the mainstream character sets, Hong Kong SCS has the greatest number of mappings
to CJK Unified Ideographs Extension B, meaning non-BMP characters. This effectively
means that BMP-only Unicode support is insufficient for handling Hong Kong SCS, re-
gardless of its version.

Hong Kong SCS has a process in place for adding new hanzi. In addition, effective March
31, 2008, the principles for the inclusion of new hanzi stipulate that the proposed hanzi
already be in Unicode. Given that Unicode is clearly the preferred way in which characters
are encoded in today’s OSes and applications, this stipulation is a good thing. Any new
characters will thus be in Unicode, and will not be assigned a Big Five code point.

Appendix I provides a complete code table for the Hong Kong SCS-2008 character set,
specifically the characters that are beyond Big Five.

Hong Kong GCCs
In 1994, as a precursor to Hong Kong SCS-1999, Hong Kong’s Special Administrative Re-
gion (SAR) Government published a set of 3,049 hanzi that were above and beyond those
available in Big Five. This character set is called Hong Kong GCCS (Hong Kong Govern-
ment Chinese Character Set). Tze-loi Yeung’s dictionary entitled 標準中文輸入碼大字典
(biāozhǔn zhōngwén shūrùmǎ dà zìdiǎn, literally meaning “Big Dictionary of Standard

* http://www.ogcio.gov.hk/ccli/eng/hkscs/introduction.html

126 | Chapter 3: Character set standards

Chinese Input Codes”; Juxian Guan, 1996) provides full coverage of both Big Five (13,053
hanzi) plus this set of 3,049 hanzi published by the Hong Kong government.

Some implementations of Hong Kong GCCS also include an additional set of 145 hanzi
specified by Hong Kong’s Department of Judiciary, which are encoded in rows 0x8A (132
hanzi) and 0x8B (13 hanzi) of Big Five encoding. A small number of these 145 hanzi are
still not in Unicode.

Hong Kong sCs-2008 versus Hong Kong GCCs
For the most part, Hong Kong SCS-2008 (and the original Hong Kong SCS-1999) is a
superset of Hong Kong GCCS. However, Hong Kong SCS-1999 explicitly excludes 106
hanzi found in Hong Kong GCCS, either because they were unified with hanzi in Big Five
proper or in Hong Kong SCS, or because their sources could not be verified. And, a small
number of hanzi were changed in terms of their prototypical glyphs.

Table 3-56 lists 84 of the 106 Hong Kong GCCS hanzi that were excluded from Hong Kong
SCS, specifically those that were unified. The hanzi that is shown is rendered according
to Hong Kong SCS. Also provided in this table are the corresponding CNS 11643-2007
and Unicode code points. Note that some of these hanzi map to CNS 11643-2007 Plane 3,
which serves as an indicator that they are outside the definition of Big Five proper, at least
when unification is ignored.

Eighty-four Hong Kong GCCS hanzi excluded from Hong Kong SCSTable 3-56.

Hanzi Hong Kong GCCs Hong Kong sCs Cns 11643-2007 Unicode

箸 8E 69 BA E6 1-74-15 U+7BB8

簆 8E 6F ED CA 2-62-23 U+7C06

糎 8E 7E A2 61 1-03-03 U+7CCE

緒 8E AB BA FC 1-74-37 U+7DD2

縝 8E B4 BF A6 1-81-78 U+7E1D

者 8E CD AA CC 1-47-15 U+8005

耨 8E D0 BF AE 1-81-86 U+8028

菁 8F 57 B5 D7 1-65-61 U+83C1

蒨 8F 69 E3 C8 2-45-47 U+84A8

萏 8F 6E DB 79 2-31-62 U+840F

覦 8F CB BF CC 1-82-22 U+89A6

覩 8F CC A0 D4 3-46-68 U+89A9

起 8F FE B0 5F 1-56-36 U+8D77

都 90 6D B3 A3 1-61-71 U+90FD

銹 90 7A F9 D7 3-47-48 U+92B9

靜 90 DC C0 52 1-82-91 U+975C

CCs standards | 127

Eighty-four Hong Kong GCCS hanzi excluded from Hong Kong SCSTable 3-56.

Hanzi Hong Kong GCCs Hong Kong sCs Cns 11643-2007 Unicode

響 90 F1 C5 54 1-91-32 U+97FF

鼖 91 BF F1 E3 2-69-15 U+9F16

蔃 92 44 92 42 3-46-44 U+8503

兙 92 AF A2 59 1-02-89 U+5159

兛 92 B0 A2 5A 1-02-90 U+515B

兝 92 B1 A2 5C 1-02-92 U+515D

兞 92 B2 A2 5B 1-02-91 U+515E

鍮 92 C8 A0 5F 3-54-65 U+936E

瑹 92 D1 E6 AB 2-50-19 U+7479

浧 94 47 D2 56 2-16-25 U+6D67

禛 94 CA E6 D0 2-50-56 U+799B

邗 95 D9 CA 52 2-02-82 U+9097

靝 96 44 9C E4 3-57-47 U+975D

瀞 96 ED 96 EE 3-58-50 U+701E

嬨 96 FC E9 59 2-54-67 U+5B28

爁 9B 76 EF F9 2-66-07 U+7201

矗 9B 78 C5 F7 1-92-67 U+77D7

纇 9B 7B F5 E8 2-75-86 U+7E87

駖 9B C6 E8 CD 2-53-86 U+99D6

釔 9B DE D0 C0 2-13-65 U+91D4

惞 9B EC FD 64 3-21-89 U+60DE

澶 9B F6 BF 47 1-81-17 U+6FB6

輶 9C 42 EB C9 2-58-85 U+8F36

侻 9C 53 CD E7 2-09-09 U+4FBB

營 9C 62 C0 E7 1-84-18 U+71DF

鄄 9C 68 DC 52 2-32-87 U+9104

鷰 9C 6B F8 6D 2-79-91 U+9DF0

菏 9C 77 DB 5D 2-31-34 U+83CF

尐 9C BC C9 5C 2-01-28 U+5C10

秣 9C BD AF B0 1-55-19 U+79E3

婧 9C D0 D4 D1 2-20-52 U+5A67

輋 9D 57 E0 7C 2-40-04 U+8F0B

筑 9D 5A B5 AE 1-65-20 U+7B51

拐 9D C4 A9 E4 1-45-70 U+62D0

128 | Chapter 3: Character set standards

Eighty-four Hong Kong GCCS hanzi excluded from Hong Kong SCSTable 3-56.

Hanzi Hong Kong GCCs Hong Kong sCs Cns 11643-2007 Unicode

恢 9E A9 AB EC 1-49-16 U+6062

痹 9E EF DE CD 2-37-19 U+75F9

汊 9E FD C9 FC 2-02-61 U+6C4A

鬮 9F 60 F9 C4 2-81-70 U+9B2E

鼗 9F 66 91 BE 3-60-16 U+9F17

僭 9F CB B9 B0 1-71-86 U+50ED

弌 9F D8 93 61 3-01-68 U+5F0C

蠏 A0 63 8F B6 3-59-11 U+880F

拎 A0 77 A9 F0 1-45-82 U+62CE

瑨 A0 D5 94 7A 3-40-02 U+7468

煢 A0 DF DE 72 2-36-56 U+7162

牐 A0 E4 94 55 3-34-60 U+7250

倩 FA 5F AD C5 1-52-08 U+5029

偽 FA 66 B0 B0 1-56-83 U+507D

包 FA BD A5 5D 1-37-93 U+5305

卄 FA C5 A2 CD 1-04-31 U+5344

卿 FA D5 AD EB 1-52-46 U+537F

嘅 FB 48 9D EF 3-38-22 U+5605

婷 FB B8 B4 40 1-62-69 U+5A77

幵 FB F3 C9 DB 2-02-27 U+5E75

廐 FB F9 9D FB 3-38-64 U+5ED0

彘 FC 4F D8 F4 2-27-56 U+5F58

悤 FC 6C A0 DC 3-21-82 U+60A4

撐 FC B9 BC B5 1-76-93 U+6490

晴 FC E2 B4 B8 1-63-61 U+6674

杞 FC F1 A7 FB 1-42-61 U+675E

沜 FD B7 CB 58 2-04-56 U+6C9C

渝 FD B8 B4 FC 1-64-35 U+6E1D

港 FD BB B4 E4 1-64-11 U+6E2F

煮 FD F1 B5 4E 1-64-52 U+716E

猪 FE 52 99 75 3-29-09 U+732A

瑜 FE 6F B7 EC 1-69-20 U+745C

瓩 FE AA A2 60 1-03-02 U+74E9

砉 FE DD CF F1 2-12-51 U+7809

CCs standards | 129

Table 3-57 lists the 22 Hong Kong GCCS hanzi that could not be verified, and were thus
excluded from Hong Kong SCS.

Twenty-two unverifiable Hong Kong GCCS hanziTable 3-57.

Hanzi Hong Kong GCCs

 9E AC

 9E C4

 9E F4

 9F 4E

 9F AD

 9F B1

 9F C0

 9F C8

 9F DA

 9F E6

 9F EA

 9F EF

 A0 54

 A0 57

 A0 5A

 A0 62

 A0 72

 A0 A5

 A0 AD

 A0 AF

 A0 D3

 A0 E1

The fact that these 22 Hong Kong GCCS hanzi could not be verified and were thus ex-
cluded from Hong Kong SCS does not mean that they do not exist. At some point, they
may become verified and included in a future version of Hong Kong SCS, or may become
part of Unicode through another source.

Unicode compatibility with Hong Kong standards
The entity that is charged with the development of Hong Kong SCS has stated that all
future character submissions must be in Unicode, or will be submitted to the Ideographic
Rapporteur Group (IRG). In terms of Unicode compatibility, this is a good thing, and
means that Hong Kong will take an active role in submitting new characters to Unicode,
as appropriate, as they are discovered.

130 | Chapter 3: Character set standards

Chinese Character set standards—singapore
Singapore (新加坡 xīnjiāpō) does not have its own character set standard, and simply
uses China’s GB 2312-80 as its character set. However, 226 of the 6,582 ideographs in CJK
Unified Ideographs Extension A, introduced in Unicode version 3.0, map to a Singapore
source. The source is not named and is simply referred to as Singapore characters. To what
extent these 226 characters are ad-hoc, or codified by a Singapore national standard, is
unknown, at least to me. My suspicion is that they are ad-hoc simply for the apparent lack
of any Singapore national standard.

Japanese Character set standards
Six CCSes are widely used in Japan. These character sets are ASCII, JIS-Roman, half-width
katakana, JIS X 0208:1997 (and its predecessors), JIS X 0212-1990, and JIS X 0213:2004.
ASCII and JIS-Roman were already discussed. JIS-Roman and half-width katakana* are
described in JIS X 0201-1997. The most common of these CCSes is JIS X 0208:1997,
which includes JIS Levels 1 and 2. The sixth standard, JIS X 0213:2004, defines JIS Levels
3 and 4.

This section includes a description of the latest character set standards established by
Japan. The two most common Japanese character set standards are JIS X 0208:1997 and
JIS X 0213:2004. JIS X 0221:2007, which is directly aligned with and equivalent to ISO
10646:2003 (with Amendments 1 and 2), is described in the section “International Char-
acter Set Standards,” found later in this chapter.

Half-width katakana
Japan’s first attempted to adapt their writing system to computer systems through the
creation of half-width katakana. This formed a limited set of characters that could be
easily encoded on early computer systems because they could be displayed in the same
space as typical ASCII/JIS-Roman characters.† This collection of 63 half-width katakana
characters is defined in the document JIS X 0201-1997, and consists of the basic katakana
characters, along with enough punctuation marks and symbols to write Japanese text—
but the result is not very readable.‡ Table 3-58 illustrates all the characters found in this
relatively small character set.

* http://www.ryukyu.ad.jp/~shin/jdoc/hankaku-kana.html
† Also known as hankaku (半角 hankaku) katakana. Furthermore, some folks refer to these as half-wit katakana,

either as a result of a typo, or for humorous purposes to colorfully describe their apparent lack of typographic
usefulness.

‡ One could therefore argue that katakana is somewhat of a write-only writing system when used to completely
express Japanese.

CCs standards | 131

The half-width katakana character setTable 3-58.

Character class Characters

Katakana ｦｱｲｳｴｵｶｷｸｹｺｻｼｽｾｿﾀﾁﾂﾃﾄﾅﾆﾇﾈﾉﾊﾋﾌﾍﾎﾏﾐﾑﾒﾓﾔﾕﾖﾗﾘﾙﾚﾛﾜﾝ
Small katakana ｧｨｩｪｫｬｭｮｯ
Symbols ｡｢｣､･ﾞﾟｰ

Sometimes a half-width space character is considered part of this character set, encoded
at 0xA0, which brings the total to 64 characters.

Half-width katakana occupy half the display width of the equivalent full-width katakana
found in JIS X 0208:1997 (described in the following section). The katakana characters
enumerated in JIS X 0208:1997 are known as full-width characters.* Full-width, in this
case, translates to roughly a square space, meaning that the width and the height of the
character are the same. Half-width characters have the same height as full-width charac-
ters, but occupy half their width.

The dakuten- and handakuten-annotated counterparts of katakana are not included in
the half-width katakana character set. The dakuten ()゙ and the handakuten ()゚ are used
to create additional katakana characters. The dakuten and handakuten are treated as sepa-
rate characters in the half-width katakana character set. Table 3-59 illustrates the relation-
ship between half- and full-width katakana characters, and how dakuten and handakuten
marks are treated as separate characters.

Dakuten versus handakuten and full- versus half-widthTable 3-59.

Character class ka ga—dakuten ha pa—handakuten

Full-width カカカカカ ガガガガガ ハハハハハ パパパパパ
Half-width ｶｶｶｶｶ ｶﾞｶﾞｶﾞｶﾞｶﾞ ﾊﾊﾊﾊﾊ ﾊﾟﾊﾟﾊﾟﾊﾟﾊﾟ

When the ASCII/JIS-Roman and half-width katakana character set standards are com-
bined into a single collection of characters, this newly formed character set is often re-
ferred to as ANK, short for Alphabet, Numerals, and Katakana.

JIs X 0208:1997—formerly JIs X 0208-1990
The first attempt by the Japanese to create a coded character set standard that better rep-
resented their written language bore fruit in 1978 with the establishment of JIS C 6226-
1978. The work that eventually became JIS C 6226-1978 actually began as early as 1969.
JIS C 6226-1978 represented the very first national coded character set standard to in-
clude ideographs, and is also significant in that it broke the one-byte-equals-one-character

* Also known as zenkaku (全角 zenkaku).

132 | Chapter 3: Character set standards

barrier. JIS C 6226-1978 went through three revisions to eventually become JIS X
0208:1997 on January 20, 1997.

The official title of the JIS X 0208:1997 standard is 7-Bit and 8-Bit Double Byte Coded
Kanji Sets for Information Interchange (7 ビット及び 8 ビットの 2 バイト情報交換用符
号化漢字集合 nana bitto oyobi hachi bitto no ni baito jōhō kōkan yō fugōka kanji shūgō).
The current version of this standard, JIS X 0208:1997, is considered the most basic Japa-
nese coded character set. This character set standard enumerates 6,879 characters, most
of which are kanji. The character space is arranged in a 94×94 matrix. Rows 1 through
8 are reserved for non-kanji, rows 9 through 15 are unassigned, rows 16 through 84 are
reserved for kanji, and rows 85 through 94 are unassigned. Table 3-60 provides a much
more detailed description of the characters allocated to each row (note that character al-
location is identical to that of JIS X 0208-1990, but older versions are slightly different).

The JIS X 0208:1997 character setTable 3-60.

row Characters Content

1 94 Miscellaneous symbols

2 53 Miscellaneous symbols

3 62 Numerals 0–9, upper- and lowercase Latin alphabeta

4 83 Hiragana

5 86 Katakana

6 48 Upper- and lowercase Greek alphabet

7 66 Upper- and lowercase Cyrillic alphabet

8 32 Full-width line-drawing elements

9–15 0 Unassigned

16–47 2,965 JIS Level 1 kanji (last is 47-51)

48–83 3,384 JIS Level 2 kanji (last is 83-94)

84 6 Additional kanji (last is 84-06)b

85–94 0 Unassigned

Usually implemented as full-width characters.a.

The 6 kanji in row 84 are usually considered part of JIS Level 2 kanji, so the total number of kanji b.
that one would see for JIS Level 2 is 3,390, which includes row 84.

There are 6,355 kanji in this character set. The kanji are broken into two distinct sections.
The first section is called JIS Level 1 kanji (JIS 第一水準漢字 JIS daiichi suijun kanji), and
the kanji within it are arranged by On (old Chinese) reading.* The second section of kanji,

* Some kanji do not have an On reading. In these cases, they are arranged by their Kun (Japanese) reading. Also,
there is one instance of an incorrectly ordered kanji in JIS X 0208:1997 Level 1 kanji. The kanji 馨 (kaori; 19-30)
falls between 浬 (kairi; 19-29) and 蛙 (kaeru; 19-31), but this reading should come after that of 蛙 (19-31). This
means that the sequence 浬馨蛙 should have been 浬蛙馨.

CCs standards | 133

called JIS Level 2 kanji (JIS 第二水準漢字 JIS daini suijun kanji), are arranged by radical,
and then by total number of strokes.* The six additional kanji in row 84 are arranged by
radical, and then by number of strokes, like JIS Level 2 kanji. JIS Levels 1 and 2 kanji are
mutually exclusive—each level contains no kanji found in the other. Together they consti-
tute a set of 6,355 unique kanji.†

A complete code table for the characters that constitute JIS X 0208:1997 can be found in
Appendix J, along with a reading index for JIS Level 1 kanji and a radical index for JIS
Level 2 kanji.

Table 3-61 provides a graphic representation for the first and last characters from each
of the character classes (note that the complete set for numerals and additional kanji is
provided).

JIS X 0208:1997 character samplesTable 3-61.

Character class sample characters

Miscellaneous symbols  、。，．・：；？！ … ∬Å‰♯♭♪†‡¶◯
Numerals ０１２３４５６７８９
Latin ＡＢＣＤＥＦＧＨＩＪ … ｑｒｓｔｕｖｗｘｙｚ
Hiragana ぁあぃいぅうぇえぉお … りるれろゎわゐゑをん
Katakana ァアィイゥウェエォオ … ロヮワヰヱヲンヴヵヶ
Greek ΑΒΓΔΕΖΗΘΙΚ … οπρστυφχψω
Cyrillic АБВГДЕЁЖЗИ … цчшщъыьэюя
Line-drawing elements ─│┌┐┘└├┬┤┴ … ┠┯┨┷┿┝┰┥┸╂
JIS Level 1 kanji 亜唖娃阿哀愛挨姶逢葵 … 亙亘鰐詫藁蕨椀湾碗腕
JIS Level 2 kanji 弌丐丕个丱丶丼丿乂乖 … 齦齧齬齪麸齲齶龕龜龠
Additional kanji 堯槇遙瑤凜熙

Symbols include punctuation marks, mathematical symbols, and various types of paren-
theses. Numerals and Latin characters are what one would normally find in the ASCII
character set (less the ASCII/JIS-Roman symbols, which are scattered throughout
row 1)—these are full-width, not half-width. The hiragana and katakana characters, too,
are full-width, not half-width. Cyrillic and Greek characters are included, perhaps because
Japanese technical works include occasional Russian or Greek words. The full-width line-
drawing elements are used for building charts on a per-character basis—not terribly use-
ful in this day and age of applications with built-in support for graphics and tables.

* Actually, the ordering is based on the order of entries in the kanji dictionary entitled 新字源 (shinjigen). Com-
pare 闊 (79-72) and 濶 (79-73), whose indexing radicals are 門 and 氵 (水), respectively. Their 新字源 (1994
edition) index numbers are 8831 and 8832, respectively.

† This is true only if you count character variants as separate entities.

134 | Chapter 3: Character set standards

This character set standard was first established on January 1, 1978 as JIS C 6226-1978,
modified for the first time on September 1, 1983 as JIS X 0208-1983, modified again on
September 1, 1990 as JIS X 0208-1990, and finally became JIS X 0208:1997 on January
20, 1997.* It is widely implemented on a variety of platforms. Encoding methods for JIS
X 0208:1997 include ISO-2022-JP, EUC-JP, and Shift-JIS. The encoding forms of Unicode
can also be used to represent these characters. These encodings are covered in Chapter 4.

JIS X 0208:1997, although it did not add any characters to the character set, does offer
some significant improvements to the standard itself, described as follows:

Explicitly describes ISO-2022-JP and Shift-JIS encodings. Previous installments of •	
this standard, specifically the JIS C 6226 and JIS X 0208 series, included no such
specifications.

More clearly defines the kanji unification rules and principles, and applies them to •	
the standard.

Provides an extremely thorough treatment of kanji variant forms using these well-•	
established unification principles.

You may sometimes encounter systems and documentation that are based on earlier ver-
sions of JIS X 0208:1997, the most likely of which is JIS X 0208-1983. That standard was
originally known as JIS C 6226-1983. On March 1, 1987, JSA decided to rename many JIS
standards from a “C” to an “X” designation (don’t ask me why). JIS C 6226-1983, with no
substantive changes, was renamed to JIS X 0208-1983. Table 3-62 illustrates this evolution
of the JIS X 0208 series.

The evolution of JIS X 0208Table 3-62.

Year designation status

1978 JIS C 6226-1978 Establishment

1983 JIS C 6226-1983 Update

1987 JIS X 0208-1983 Designation change

1990 JIS X 0208-1990 Update

1997 JIS X 0208:1997 Update, but no change in number of characters

Since its conception in 1978, this character set standard has experienced a slight increase
in the total number of characters. Table 3-63 lists how characters are allocated to each row
in the 1978, 1983, and 1990 (same as 1997) versions.

* It is common practice to review standards every five years or so, and reissue them, if necessary.

CCs standards | 135

Comparing different versions of JIS X 0208Table 3-63.

row 1978 1983 1990 Content

1 94 94 94 Miscellaneous symbols

2 14 53 53 Miscellaneous symbols

3 62 62 62 Numerals 0–9, upper- and lowercase Latin alphabet

4 83 83 83 Hiragana

5 86 86 86 Katakana

6 48 48 48 Upper- and lowercase Greek alphabet

7 66 66 66 Upper- and lowercase Cyrillic alphabet

8 0 32 32 Full-width line-drawing elements

9–15 0 0 0 Unassigned

16–47 2,965 2,965 2,965 JIS Level 1 kanji (last is 47-51)

48–83 3,384 3,384 3,384 JIS Level 2 kanji (last is 83-94)

84 0 4 6 Additional kanji

85–94 0 0 0 Unassigned

More detailed information about the differences between JIS C 6226-1978, JIS X 0208-
1983, JIS X 0208-1990, and JIS X 0208:1997 can be found in Appendix J.

Some of the similarities between JIS X 0208:1997 and GB 2312-80 (Chinese) are quite
close. First, note how the allocation of rows 4 through 7 (hiragana, katakana, Greek, and
Cyrillic characters) is identical in both character sets. Also, rows 1 through 15 are reserved
for nonideographs. And finally, the ideographs are divided into two levels, with the first
level being the most frequently used and arranged by reading, and the second level being
more rarely used and arranged by radical, and then by total number of strokes.

JIs X 0212-1990—a supplemental character set
A supplemental Japanese character set standard, JIS X 0212-1990, was established by
JISC on October 1, 1990, and specified 6,067 characters (5,801 kanji plus 266 non-kanji).
These characters are in addition to those found in JIS X 0208:1997, but like that char-
acter set standard, JIS X 0212-1990 is also composed of a 94×94 character space. Also
like JIS X 0208:1997, rows 1 through 15 are reserved for non-kanji, rows 9 through 15
are unassigned, rows 16 through 84 are reserved for kanji, and rows 85 through 94 are
unassigned.

The official title of JIS X 0212-1990 is Code of the Supplementary Japanese Graphic Charac-
ter Set for Information Interchange (情報交換用漢字符号—補助漢字 jōhō kōkan yō kan-
ji fugō—hojo kanji). Table 3-64 lists how characters are allocated to each of its 94 rows.

136 | Chapter 3: Character set standards

The JIS X 0212-1990 character setTable 3-64.

row Characters Content

1 0 Unassigned

2 21 Diacritics and miscellaneous symbols

3–5 0 Unassigned

6 21 Greek characters with diacritics

7 26 Eastern European characters

8 0 Unassigned

9–11 198 Miscellaneous alphabetic characters

12–15 0 Unassigned

16–77 5,801 Supplemental kanji (last is 77-67)

78–94 0 Unassigned

The 5,801 kanji are arranged by radical, and then total number of strokes (like JIS Level
2 kanji of JIS X 0208:1997). When these data are merged with JIS X 0208:1997, you see
that there are now 12,156 unique standard kanji, and 12,946 total characters. However,
very few software systems can use these 6,067 supplemental characters. The latest version
of GNU Emacs, now a powerful multilingual text editor, is an example of a program that
supports the encoding of the JIS X 0212-1990 character set standard. The Unix/Linux
kterm terminal console program has supported JIS X 0212-1990 for years. Much of the
difficulty in supporting JIS X 0212-1990 is the poor availability of fonts that include its
characters.

Table 3-65 illustrates the first and last 10 characters in each class of characters listed
previously.

JIS X 0212-1990 character samplesTable 3-65.

Character class sample characters

Miscellaneous symbols ˘ˇ¸˙˝¯˛˚~΄ … ¡¦¿ºª©®™¤№
Greek ΆΈΉΊΪΌΎΫΏά … ήίϊΐόςύϋΰώ
Eastern European ЂЃЄЅІЇЈЉЊЋ … ѕіїјљњћќўџ
Alphabetic ÆĐĦĲŁĿŊØŒŦ … ǜǚǖŵýÿŷźžż
Supplemental kanji 丂丄丅丌丒丟乹两丨丫 … 龑龒龔龖龗龞龡龢龣龥

A complete code table for the characters that make up JIS X 0212-1990 can be found in
Appendix J, as can a radical index for the 5,801 kanji of JIS X 0212-1990.

At one point, JISC considered the possibility of adding four katakana characters to JIS X
0212-1990, as listed in Table 3-66.

CCs standards | 137

Four characters that could have been added to JIS X 0212-1990Table 3-66.

Katakana reading

ヷ va

ヸ vi

ヹ ve

ヺ vo

These four characters, although rarely used, are employed for writing foreign words, and
can already be found in at least one vendor character set standard—specifically Apple’s
Mac OS-J, which is covered in Appendix E. Encoding space for these four characters has
been allocated in JIS X 0212-1990—if they had been accepted for inclusion into this char-
acter set standard, they would have been encoded in row 5, beginning at cell 87 (in other
words, from 05-87 through 05-90).* Table 3-67 illustrates these possible changes.

Proposed change to the JIS X 0212-1990 character setTable 3-67.

row Characters Content

1 0 Unassigned

2 21 Diacritics and miscellaneous symbols

3–4 0 Unassigned

5 4 Katakana

6 21 Greek characters with diacritics

7 26 Eastern European characters

8 0 Unassigned

9–11 198 Miscellaneous alphabetic characters

12–15 0 Unassigned

16–77 5,801 Supplemental kanji (last is 77-67)

78–94 0 Unassigned

It would seem natural that JIS X 0213:2000 would incorporate these four additional kata-
kana characters. Well, it did, but not at 05-87 through 05-90, but rather at 07-82 through
07-85, immediately following the lowercase Cyrillic characters. Of course, these four
characters are included in Unicode, from U+30F7 through U+30FA.

Incorporating the 6,067 characters of JIS X 0212-1990 into ISO-2022-JP encoding was
trivial: a new two-byte character escape sequence (explained in Chapter 4) for this new

* There is significance to this starting point. If one were to overlay the non-kanji portions of JIS X 0208:1997 and
JIS X 0212-1990 (that is, rows 1 through 16), there would be zero instances of characters in one character set
occupying the code point of characters in the other. The katakana in JIS X 0208:1997 end at 05-86, so using
05-87 as the starting code point for these four additional katakana seems like a logical thing to do.

138 | Chapter 3: Character set standards

character set was registered. ISO-2022-JP-2 encoding was subsequently born. It is not
possible to encode JIS X 0212-1990 in Shift-JIS encoding because there is not enough en-
coding space left to accommodate its characters. EUC-JP encoding does not suffer from
this problem of limited encoding space, and in Chapter 4 you will learn how JIS X 0212-
1990 is supported by EUC-JP encoding. In the end, though, what matters most today is
how the characters are encoded according to Unicode. The importance of Unicode com-
patibility is especially true for JIS X 0213:2004, which is described in the next section.

JIs X 0213:2004
JSA has developed a new character set standard, whose designation is JIS X 0213:2000,
and defines JIS Levels 3 and 4.* Its title is 7-bit and 8-bit double byte coded extended KANJI
sets for information interchange (7 ビット及び 8 ビットの 2 バイト情報交換用符号化拡
張漢字集合 nana bitto oyobi hachi bitto no ni baito jōhō kōkan yō fugōka kakuchō kanji
shūgō). JIS Level 3 contains 1,249 kanji, JIS contains 2,436 kanji, and there are also 659
symbols—for a grand total of 4,344 characters.

This standard was revised in 2004, and in terms of additional characters, there are only 10,
all of which are kanji. These became part of JIS Level 3 by virtue of being in Plane 1, which
now has 1,259 kanji. The total number of characters in the standard is now 4,354.

When JIS X 0213:2004 is combined with JIS X 0208:1997 and encoded according to Shift-
JIS encoding, all but 47 of its code points are used. That is, out of the possible 11,280 Shift-
JIS code points, 11,233 are filled by JIS X 0208:1997 and JIS X 0213:2004 characters.†

Many JIS X 0212-1990 non-kanji and kanji are included in JIS X 0213:2004, which effec-
tively means that JIS X 0212-1990 may no longer be maintained by JSA. However, the fact
that JIS X 0212-1990 has complete coverage in Unicode from its earliest versions means
that there is a legacy issue that JSA must accept. This basically means that JIS X 0212-1990
will live on for many years to come.

The best way to think of JIS X 0213:2004 is as an add-on or supplement to JIS X 0208:1997,
or as a superset. In fact, that is how it is intended to be used. Tables 3-68 and 3-69 list the
characters, on a per-row basis, for JIS X 0208:1997 and JIS X 0213:2004 when combined
into a larger set of characters.

The JIS X 0213:2004 character set, Plane 1—combined with JIS X 0208Table 3-68.

row X 0208 X 0213 Content

1 94 0 Miscellaneous symbols

2 53 41 Miscellaneous symbols

* Some people (mistakenly) referred to JIS X 0212-1990 as JIS Level 3 kanji, but the establishment of JIS X
0213:2000 has set the record straight once and for all.

† Interestingly, Shift-JIS encoding for JIS X 0213 is Informative, not Normative. The official way in which JIS X
0213 is encoded is Unicode.

CCs standards | 139

The JIS X 0213:2004 character set, Plane 1—combined with JIS X 0208Table 3-68.

row X 0208 X 0213 Content

3 62 32 Numerals 0–9, upper- and lowercase Latin alphabet, miscellaneous symbols

4 83 8 Hiragana

5 86 8 Katakana

6 48 46 Upper- and lowercase Greek alphabet, katakana, miscellaneous symbols

7 66 28 Upper- and lowercase Cyrillic alphabet, miscellaneous symbols

8 32 52 Full-width line-drawing elements, miscellaneous symbols

9–10 0 188 Additional Latin characters

11 0 94 IPA

12 0 85 Annotated

13 0 77 NEC Row 13

14 0 94 JIS Level 3 kanji (04-01 added in 2004)

15 0 94 JIS Level 3 kanji (15-94 added in 2004)

16–46 2,914 0 JIS Level 1 kanji

47 51 43 JIS Level 1 kanji (47-01 through 47-51), JIS Level 3 kanji (47-52 through 47-94;
47-52 and 47-94 added in 2004)

48–83 3,384 0 JIS Level 2 kanji (last is 83-94)

84 6 88 Additional JIS X 0208 kanji (84-01 through 84-06), JIS Level 3 kanji (84-07
through 84-94; 84-07 added in 2004)

85–94 0 940 JIS Level 3 kanji (last is 94-94; 94-90 through 94-94 added in 2004)

The JIS X 0213:2004 character set, Plane 2Table 3-69.

row Characters Content

1 94 JIS Level 4 kanji

2 0 Unassigned

3–5 282 JIS Level 4 kanji

6–7 0 Unassigned

8 94 JIS Level 4 kanji

9–11 0 Unassigned

12–15 376 JIS Level 4 kanji

16–77 0 Unassigned

78–94 1,590 JIS Level 4 kanji (last is 94-86)

Note how the unassigned rows in JIS X 0213:2004 Plane 2 correspond to the rows in JIS
X 0212-1990 that have characters assigned. This is so that the EUC-JP implementation of

140 | Chapter 3: Character set standards

JIS X 0213:2004 does not trample on JIS X 0212-1990, effectively allowing the standards
to coexist.

Table 3-70 lists the 10 kanji that were added to JIS Level 3 in JIS X 0213:2004.

Ten kanji added to JIS Level 3 in 2004Table 3-70.

Kanji row-Cell related kanji row-Cell

俱 14-01 倶 22-70

剝 15-94 剥 39-77

𠮟 47-52 叱 28-24

吞 47-94 呑 38-61

噓 84-07 嘘 17-19

姸 94-90 妍 53-11

屛 94-91 屏 54-02

幷 94-92 并 54-85

瘦 94-93 痩 33-73

繫 94-94 繋 23-50

relationships among Japanese character set standards
You already read about the slight difference between the ASCII and JIS-Roman charac-
ter sets. With only one exception, the character set standards JIS X 0208:1997 and JIS X
0212-1990 contain no characters found in the other—together they are designed to form
a larger collection of characters (12,156 kanji plus 790 non-kanji). These two duplicate
characters are illustrated in Table 3-71.

Duplicate characters in JIS X 0208:1997 and JIS X 0212-1990Table 3-71.

standard Kanji row-Cell Unicode

JIS X 0208:1997 〆 01-26 U+3006

JIS X 0212-1990 乄 16-17 U+4E44

The characters are the same, have identical meanings, and are used in the same contexts—
it is really only a character-classification difference. In JIS X 0208:1997, this character is
treated as a non-kanji (in a row of symbols), but in JIS X 0212-1990, it is treated as a full-
fledged kanji. This character, in both instances, is read shime, and means “deadline,” “(to)
sum up,” or “seal,” depending on context.

The internal structures of JIS X 0208:1997 and JIS X 0212-1990 share several unique qual-
ities, the most notable being that they are both composed of a 94×94 character space for a
maximum number of 8,836 characters. Thus, they both occupy the same character space.
Furthermore, the non-kanji characters of both standards are allocated to rows 1 through

CCs standards | 141

15, and the kanji characters are allocated to rows 16 through 84 (that is not to say that all
those rows are currently filled, but rather that they have been allocated for those character
classes). Chapter 4 discusses how computer systems can distinguish between these two
character sets using different encoding methods.

Another interesting aspect of these character set standards is how the non-kanji are ar-
ranged so that if one superimposed one set onto the other, there would be absolutely
no overlap of assigned character positions. This would make it possible to merge rows 1
through 15 of both standards with no assigned character positions overlapping. In fact,
the four katakana characters that may eventually be added to JIS X 0212-1990 are posi-
tioned in such a way that they would appear immediately after the katakana assigned to
JIS X 0208:1997.*

There is one last tidbit of information to mention about the relationship between these
two character set standards. There are 28 kanji in JIS X 0212-1990 that were in JIS C 6226-
1978, but were replaced with different glyphs in JIS X 0208-1983. In essence, 28 kanji that
were lost during the transition from JIS C 6226-1978 to JIS X 0208-1983 were restored in
JIS X 0212-1990. Table 3-72 lists these 28 kanji pairs.

Twenty-eight JIS C 6226-1978 kanji in JIS X 0212-1990Table 3-72.

JIs C 6226-1978 JIs X 0208:1997 JIs X 0212-1990

俠 22-02 侠 22-02 俠 17-34

啞 16-02 唖 16-02 啞 21-64

嚙 19-90 噛 19-90 嚙 22-58

囊 39-25 嚢 39-25 囊 22-76

塡 37-22 填 37-22 塡 24-20

屢 28-40 屡 28-40 屢 26-90

搔 33-63 掻 33-63 搔 32-43

摑 36-47 掴 36-47 摑 32-59

攢 58-25 攅 58-25 攢 33-34

潑 40-14 溌 40-14 潑 40-53

瀆 38-34 涜 38-34 瀆 41-12

焰 17-75 焔 17-75 焰 41-79

瘦 33-73 痩 33-73 瘦 45-87

禱 37-88 祷 37-88 禱 48-80

繡 29-11 繍 29-11 繡 52-55

繫 23-50 繋 23-50 繫 52-58

* This would be difficult to implement because numerous vendors have effectively filled these open rows of JIS X
0208:1997.

142 | Chapter 3: Character set standards

Twenty-eight JIS C 6226-1978 kanji in JIS X 0212-1990Table 3-72.

JIs C 6226-1978 JIs X 0208:1997 JIs X 0212-1990

萊 45-73 莱 45-73 萊 56-39

蔣 30-53 蒋 30-53 蔣 57-22

蠟 47-25 蝋 47-25 蠟 59-88

軀 22-77 躯 22-77 軀 64-52

醬 30-63 醤 30-63 醬 66-83

醱 40-16 醗 40-16 醱 66-87

Unicode compatibility with JIs standards
JIS X 0208:1997 and JIS X 0212-1990 are compatible with the earliest versions of Unicode,
specifically version 1.0.1 and greater. JIS X 0213:2004 is compatible with Unicode version
3.2 and greater. In other words, all three JIS standards are fully supported in the context
of Unicode version 3.2.

Interestingly, a small number of characters in JIS X 0213:2004 (25 to be exact) cannot be
represented in Unicode using a single code point, and instead require a sequence of two
Unicode code points. Table 3-73 lists these 25 characters, along with their singular JIS X
0213:2004 Row-Cell values (they are all in Plane 1) and the sequence of two code points
necessary to represent them in Unicode.

Special Unicode handling of 25 JIS X 0213:2004 charactersTable 3-73.

Character row-Cell Unicode sequence

か゚ 04-87 <U+304B, U+309A>

き゚ 04-88 <U+304D, U+309A>

く゚ 04-89 <U+304F, U+309A>

け゚ 04-90 <U+3051, U+309A>

こ゚ 04-91 <U+3053, U+309A>

カ゚ 05-87 <U+30AB, U+309A>

キ゚ 05-88 <U+30AD, U+309A>

ク゚ 05-89 <U+30AF, U+309A>

ケ゚ 05-90 <U+30B1, U+309A>

コ゚ 05-91 <U+30B3, U+309A>

セ゚ 05-92 <U+30BB, U+309A>

ツ゚ 05-93 <U+30C4, U+309A>

ト゚ 05-94 <U+30C8, U+309A>

ㇷ゚ 06-88 <U+31F7, U+309A>

CCs standards | 143

Special Unicode handling of 25 JIS X 0213:2004 charactersTable 3-73.

Character row-Cell Unicode sequence

æ̀ 11-36 <U+00E6, U+0300>

ɔ̀ 11-40 <U+0254, U+0300>

ɔ́ 11-41 <U+0254, U+0301>

ʌ̀ 11-42 <U+028C, U+0300>

ʌ́ 11-43 <U+028C, U+0301>

ə̀ 11-44 <U+0259, U+0300>

ə́ 11-45 <U+0259, U+0301>

ɚ̀ 11-46 <U+025A, U+0300>

ɚ́ 11-47 <U+025A, U+0301>

˩˥ 11-69 <U+02E9, U+02E5>

˥˩ 11-70 <U+02E5, U+02E9>

In addition, 303 kanji in JIS X 0213:2004 are mapped to CJK Unified Ideographs Exten-
sion B, which necessitates beyond-BMP support. JIS X 0213:2000 had only 302 kanji that
mapped beyond the BMP, and one of the 10 kanji added during the 2004 revision effec-
tively became the 303rd kanji to map beyond the BMP.

Also of significance is that 82 kanji of JIS X 0213:2004 map to Unicode’s CJK Compat-
ibility Ideographs block in the BMP.

Korean Character set standards
Korean character set standards have been developed by South Korea, North Korea,
and China, and some of them demonstrate some very unique attributes, such as the
following:

Contain thousands of hangul syllables•	

Hanja (ideographs) with multiple readings are encoded more than once•	

In essence, hangul are treated as though they were ideographs as far as character-
allocation is concerned. This is quite natural, because hangul play an important role in the
Korean writing system.

Ks X 1001:2004
The most commonly used Korean character set standard, specified in the document KS
X 1001:2004 and entitled Code for Information Interchange (Hangeul and Hanja) (정보
교환용 부호계 (한글 및 한자) jeongbo gyohwanyong buhogye (hangeul mich hanja)),

144 | Chapter 3: Character set standards

enumerates 8,227 characters.* This standard was established on December 28, 2004 by the
Korean Standards Association (also known as the Korean Bureau of Standards) of South
Korea (Republic of Korea or ROK; 대한민국/大韓民國 daehan minguk).

The KS X 1001:2004 standard contains 4,888 hanja and 2,350 hangul syllables, both ar-
ranged by reading. The older KS X 1001:1992 standard contained 986 symbols, but KS X
1001:2004 now includes 989 symbols. The euro currency symbol and registered trademark
symbol were added in KS X 1001:1998 at Row-Cell positions 02-70 and 02-71, respectively.
KS X 1001:2002 added only the new Korean postal code symbol, written �, at Row-Cell
position 02-72 (its Unicode code point is U+327E). Table 3-74 lists the characters that
constitute KS X 1001:2004.

The KS X 1001:2004 character setTable 3-74.

row Characters Content

1 94 Miscellaneous symbols

2a 72 6 abbreviations, 66 miscellaneous symbols

3 94 Full-width KS X 1003:1993 (KS-Roman; equivalent to ASCII)

4 94 Jamo (hangul elements)

5 68 Upper- and lowercase Roman numerals 1–10, 48 upper- and lowercase Greek alphabet

6 68 Full-width line-drawing elements

7 79 Abbreviations

8 91 13 alphabetic characters, 28 encircled jamo and hangul, encircled lowercase Latin characters,
encircled numerals 1–15, 9 fractions

9 94 16 alphabetic characters, 28 parenthesized jamo and hangul, parenthesized lowercase Latin
characters, parenthesized numerals 1–15, 5 superscripts, 4 subscripts

10 83 Hiragana

11 86 Katakana

12 66 Upper- and lowercase Cyrillic alphabet

13–15 0 Unassigned

16–40 2,350 Hangul syllables (last is 40-94)

41 0 Unassigned

42–93 4,888 Hanja (last is 93-94)

94 0 Unassigned

KS X 1001:1992 included only 69 characters in this row, and KS X 1001:1998 included only 71 characters in this row.a.

Due to the multiple readings for some hanja, 268 of the 4,888 hanja in KS X 1001:2004
are genuine duplicate characters—most of these duplicate characters are single instances
of repeated characters, meaning that there are two instances of the same character in the

* Previously designated KS C 5601-1992

CCs standards | 145

character set, but a small number of hanja are repeated more than once! This effectively
means that there are 4,620 unique hanja in KS X 1001:2004, not 4,888. Table 3-75 provides
three example hanja from KS X 1001:2004, each repeated a different number of times.
Their corresponding Unicode code points are also provided.

Repeated hanja in KS X 1001:2004—examplesTable 3-75.

Hanja row-Cell Unicode

賈 42-25, 45-47 U+8CC8, U+F903

龜 47-47, 48-02, 48-24 U+9F9C, U+F907, U+F908

樂 49-66, 53-05, 68-37, 72-89 U+F914, U+F95C, U+6A02, U+F9BF

KS X 1001:2004 is the only CJKV character set that multiply encodes ideographs due to
multiple readings. Big Five includes two duplicate hanzi, but that was due to an error in
design, not by design.

Appendix K provides a complete KS X 1001:2004 code table, along with a complete list-
ing of its 268 duplicate hanja. The same appendix provides reading indexes for the hangul
and hanja in KS X 1001:2004. Table 3-76 illustrates the many character classes in KS X
1001:2004.

KS X 1001:2004 character samplesTable 3-76.

Character class sample characters

Miscellaneous symbols 、。·‥…¨〃–—‖　…　♪♬㉿㈜№㏇™㏂㏘℡

Full-width KS-Roman 　！＂＃＄％＆＇（）　…　ｕｖｗｘｙｚ｛｜｝￣

Jamo ㄱㄲㄳㄴㄵㄶㄷㄸㄹㄺ　…　ㆅㆆㆇㆈㆉㆊㆋㆌㆍㆎ

Roman numerals ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ　…　ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩ

Greek ΑΒΓΔΕΖΗΘΙΚ　…　οπρστυφχψω

Line-drawing elements ─│┌┐┘└├┬┤┴　…　╀╁╃╄╅╆╇╈╉╊

Latin ligatures ㎕㎖㎗ℓ㎘㏄㎣㎤㎥㎦　…　㎪㎫㎬㏝㏐㏓㏃㏉㏜㏆

Alphabetic characters ÆÐªĦĲĿŁØŒº　…　ĸŀłøœßþŧŋŉ

Encircled jamo/hangul ㉠㉡㉢㉣㉤㉥㉦㉧㉨㉩　…　㉲㉳㉴㉵㉶㉷㉸㉹㉺㉻

Annotated Latin/numerals ⓐⓑⓒⓓⓔⓕⓖⓗⓘⓙ　…　⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮

Fractions ½⅓⅔¼¾⅛⅜⅝⅞

Parenthesized jamo/hangul ㈀㈁㈂㈃㈄㈅㈆㈇㈈㈉　…　㈒㈓㈔㈕㈖㈗㈘㈙㈚㈛

Parenthesized Latin/numerals ⒜⒝⒞⒟⒠⒡⒢⒣⒤⒥　…　⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂

Superscripts and subscripts ¹²³⁴ⁿ₁₂₃₄

Hiragana ぁあぃいぅうぇえぉお　…　りるれろゎわゐゑをん

Katakana ァアィイゥウェエォオ　…　ロヮワヰヱヲンヴヵヶ

Cyrillic АБВГДЕЁЖЗИ　…　цчшщъыьэюя

146 | Chapter 3: Character set standards

KS X 1001:2004 character samplesTable 3-76.

Character class sample characters

Hangul syllables 가각간갇갈갉갊감갑값　…　흽힁히힉힌힐힘힙힛힝

Hanja 伽佳假價加可呵哥嘉嫁　…　晞曦熙熹熺犧禧稀羲詰

The hanja specified in KS X 1001:2004 are considered to be in the traditional form. Some
examples of simplified versus traditional ideographs are listed in Chapter 2.

Encoding methods that support the KS X 1001:2004 character set include ISO-2022-KR,
EUC-KR, Johab, and Unified Hangul Code (UHC). Of course, the encoding forms of
Unicode also support these characters.

This Korean character set standard is similar to JIS X 0208:1997 and GB 2312-80 in that
it contains the same set of hiragana, katakana, Greek, and Cyrillic characters (but in dif-
ferent rows). And, although hangul are not considered the same as hanja, they do begin at
row 16, like the ideographs in JIS X 0208:1997 and friends.

Earlier versions of this standard were designated KS C 5601-1987 and KS C 5601-1989
(the latter was established on April 22, 1989)—their character set being identical. The dif-
ferences between versions are the annexes and their contents.

Historically speaking, there was a standard designated KS C 5601-1982, but it enumerated
only the 51 basic jamo in a one-byte, 7- and 8-bit encoding. This information is still part
of the KS X 1001 series in the form of an annex (Annex 4 of KS X 1001:2004).

In the very early days of Korean information processing, there were character set stan-
dards known as KS C 5619-1982 and KIPS (Korean Information Processing System). KS
C 5619-1982 enumerated only 51 jamo (modern jamo), 1,316 hangul syllables, and 1,672
hanja. KIPS, on the other hand, enumerated 2,058 hangul syllables and 2,392 hanja. Both
of these standards were rendered obsolete by KS C 5601-1987, which is currently desig-
nated KS X 1001:2004.

Ks X 1001:2004—an alternate plane
Annex 3 of the KS X 1001:2004 standard describes an extension whereby all possible
modern hangul syllables, 11,172 of them built up using the basic set of 51 jamo, are en-
coded.* This alternate plane of KS X 1001:2004, which also enumerates the same set of
symbols and hanja (but at different code points), is known as Johab (조합/組合 johap),
which means “combining.” The standard plane of KS X 1001:2004—the one that enu-
merates only 2,350 hangul—is known as Wansung (완성/完成 wanseong), which means
“precomposing.”

* Encoding all 11,172 possible modern hangul syllables is almost like encoding all possible three-letter words in
English—while all combinations are possible, only a fraction represent real words.

CCs standards | 147

Hangul can be composed of two or three jamo (some jamo are considered compound).
Johab uses 19 initial jamo (consonants), 21 medial jamo (vowels), and 27 final jamo (con-
sonants; there are 28 when you include the “fill” character for hangul containing only 2
jamo). Multiplying these numbers (19×21×28) results in the figure 11,172, which matches
the total number of modern hangul syllables in Johab.

Johab is best explained in the context of encoding methods, so any further discussion is
deferred until Chapter 4.

Ks X 1002:2001
South Korea (Republic of Korea) developed an extended character set designated KS X
1002:2001, entitled Extension Code for Information Interchange (정보 교환용 부호 확
장 세트 jeongbo gyohwanyong buho hwakjang seteu).* This character set, originally estab-
lished on December 31, 1991, and revised on December 6, 2001, provides an additional
3,605 hangul syllables (all of which, by the way, are covered by Johab, Unified Hangul
Code, and Unicode version 2.0; you will learn about these later in the book), 2,856 hanja
(ordered by reading), and 1,188 other characters, for a total of 7,649 characters. These
2,856 hanja are listed in Appendix K. Table 3-77 lists the characters in KS X 1002:2001.

The KS X 1002:2001 character setTable 3-77.

row Characters Content

1–7 613 Lower- and uppercase Latin characters with diacritics

8–10 273 Lower- and uppercase Greek characters with diacritics

11–13 275 Miscellaneous symbols

14 27 Compound jamo

15 0 Unassigned

16–36 1,930 Hangul syllables (last is 36-50)

37–54 1,675 Yesgeulja (last is 54-77)a

55–85 2,856 Hanja (last is 85-36)

86–94 0 Unassigned

Written a. 옛글자 (yesgeulja), meaning “old hangul.”

It is interesting to note that the 2,856 hanja enumerated by this standard are handwritten
in the official KS X 1002:2001 manual (as was the case in China’s GB 7589-87 and GB

* Previously designated KS C 5657-1991

148 | Chapter 3: Character set standards

7590-87). I have encountered the following errors and inconsistencies during my perusal
of the KS X 1002:2001 manual:

Page 2 of the manual states that rows 1 through 7 enumerate 615 characters, but I •	
counted only 613. Page 19 of the standard seems to include 2 duplicate characters at
Row-Cell values 01-23 (<21 37>) and 01-90 (<21 7A>): “X” and “TM.”

Page 2 of the manual also states that rows 37 through 54 contain 1,677 hangul, but I •	
counted only 1,675.

I have not heard of a revised version of KS X 1002:2001, so I assume that these errors and
inconsistencies are still present in the standard, as well as its handwritten hanja. Although
this character set standard is not encoded according to any legacy encoding, its hanja did
serve as one of the many sources for Unicode’s URO.

KPs 9566-97
North Korea (officially, Democratic People’s Republic of Korea, or DPRK; 조선 민주 주
의 인민 공화국/朝鮮民主主義人民共和國 joseon minju juui inmin gonghwaguk) de-
veloped their own character set standard in April of 1997 that enumerates hangul syl-
lables and hanja, designated KPS 9566-97 and entitled DPRK Standard Korean Graphic
Character Set for Information Interchange.* It is similar to South Korea’s KS X 1001:2004 in
many respects, but also different in several ways. This standard enumerates a total of 8,259
characters. Table 3-78 lists the characters that make up KPS 9566-97.

The KPS 9566-97 character setTable 3-78.

row Characters Content

1 83 55 punctuation symbols plus 28 vertical variants

2 94 Miscellaneous symbols

3 62 Numerals 0–9, upper- and lowercase Latin alphabet

4 71 65 jamo (hangul elements), 6 hangul

5 66 Upper- and lowercase Cyrillic alphabet

6 68 48 upper- and lowercase Greek alphabet, upper- and lowercase Roman numerals 1–10

7 88 Encircled numerals 1–30, 28 encircled jamo and hangul, 10 superscripts 0–9, 10 subscripts 0–9,
10 fractions

8 94 Unit symbols and Latin ligatures

9 68 Full-width line-drawing elements

10 83 Hiragana

11 86 Katakana

12 64 Miscellaneous symbols

* KPS 9566-97 is also known as ISO-IR-202:1998.

CCs standards | 149

The KPS 9566-97 character setTable 3-78.

row Characters Content

13–15 0 Unassigned

16–44 2,679 Hangul (last is 44-47)

45–94 4,653 Hanja (last is 94-47)

The designers of KPS 9566-97 appear to have been inspired by KS X 1001:2004, but chose
not to multiply encode hanja with multiple readings. They also decided to directly encode
vertical variants in row 1, which has a total of 28 vertical-use characters.

Interestingly, row 4 includes six multiply encoded hangul (not jamo). 04-72 through 04-74
are the three hangul 김일성 (gim il seong), which represent the name of the former leader
of DPRK, Kim Il Sung. 04-75 through 04-77 are the three hangul 김정일 (gim cheong il),
which represent the name of the current leader of DPRK, Kim Jong Il (Kim Il Sung’s son).
This was clearly done as a tribute to the past and present leaders of DPRK.

The user-defined region of KPS 9566-97 includes a total of 188 code points and is com-
prised of all of row 15 (94 code points), the last half of row 44 (47 code points), and the
last half of row 94 (47 code points).

There is one particular hangul in KPS 9566-97 that is not in KS X 1001:2004 and is used
to render the name of a famous Korean literary work. The hangul 똠 (ttom), as used in
the book entitled 똠방각하 (ttom bang gak ha), is encoded as KPS 9566-97 38-02, Johab
<99 B1>, and Unicode U+B620. This represents a classic example that illustrates why KS X
1001:2004’s 2,350 hangul syllables are not sufficient.

KPs 10721-2000—additional hanja
North Korea developed a second character set standard, designated KPS 10721-2000, that
includes at least 19,469 hanja. I am unable to obtain additional details of this character set,
and the only information that I have managed to unearth are the mappings to Unicode up
through version 5.0. It is entitled Code of the supplementary Korean Hanja Set for Informa-
tion Interchange.

Ks X 1001:2004 versus KPs 9566-97

Although KS X 1001:2004 and KPS 9566-97 are developed in different Korean-speaking
locales, it is useful to explicitly draw attention to their differences and similarities. In
terms of similarities, both contain roughly the same number of hangul and hanja.

The differences between these standards are perhaps more interesting, and can be enu-
merated as follows:

Whereas KS X 1001:2004 multiply-encodes hanja with multiple readings, KPS 9566-•	
97 does not.

KPS 9566-97 includes 28 vertical variants, but KS X 1001:2004 includes none.•	

150 | Chapter 3: Character set standards

KPS 9566-97 multiply-encodes four hangul, to represent the names of North Korea’s •	
past and present leaders at separate and unique code points.

Although these two standards exhibit differences that seem to preclude interoperability,
as long as they are expressed in Unicode, both standards can be completely expressed on
today’s OSes.

GB 12052-89
What is a GB standard doing in a section about Korean character sets? Consider this.
There is a rather large Korean population in China (there have been border disputes with
China for thousands of years; many Koreans escaped Japanese colonization, during the
period 1910–1945, by moving to Manchuria, which is a northeastern part of China), and
they need a character set standard for communicating with each other using hangul.

This character set standard, designated GB 12052-89 and entitled Korean Character Cod-
ed Character Set for Information Interchange (信息交换用朝鲜文字编码字符集 xìnxī
jiāohuàn yòng cháoxiān wénzì biānmǎ zìfújí), is a Korean character set standard estab-
lished by China on July 1, 1990, and enumerates a total of 5,979 characters. GB 12052-89
has no relationship nor compatibility with Korea’s KS X 1001:2004. Table 3-79 lists the
characters in GB 12052-89.

The GB 12052-89 character setTable 3-79.

row Characters Content

1 94 Miscellaneous symbols

2 72 Numerals 1–20 with period, parenthesized numerals 1–20, encircled numerals 1–10, paren-
thesized hanzi numerals 1–20, uppercase Roman numerals 1–12

3 94 Full-width GB 1988-89 (GB-Roman; equivalent to ASCII)a

4 83 Hiragana

5 86 Katakana

6 48 Upper- and lowercase Greek alphabet

7 66 Upper- and lowercase Cyrillic alphabet

8 63 26 full-width Pinyin characters, 37 zhuyin (bopomofo) characters

9 76 Full-width line-drawing elements

10–15 0 Unassigned

16–37 2,068 Level 1 hangul, Part 1 (last is 37-94)

38–52 1,356 Level 1 hangul, Part 2 (last is 52-40)

53–72 1,873 Level 2 hangul (71-88 is unassigned; last is 72-88)b

73–94 0 Unassigned

The first 1,779 of these characters are hangul (a. 53-01 through 71-87), and the remainder are 94 hanja (71-89 through 72-88).

CCs standards | 151

Rows 1 through 9 look a lot like GB 2312-80, huh? Well, they’re identical, except for
03-04, which is a “dollar” currency symbol (＄) instead of GB 2312-80’s “yuan” currency
symbol (￥).

I have noted the following errors and inconsistencies during my ventures into the GB
12052-89 manual:

Page 1 of the manual correctly states that a total of 5,979 characters are enumerated •	
(682 symbols plus 5,297 hangul and hanja). However, page 3 of the manual states that
rows 53 through 72 enumerate 1,876 characters, but I counted only 1,873—rows 53
through 71 enumerate 1,779 hangul, and rows 71 and 72 enumerate 94 hanja.

I have not heard of a revised version of GB 12052-89, so I can only assume that these er-
rors and inconsistencies are still present in the standard.

Unicode compatibility with Ks and KPs standards
The most interesting aspects of the KS and KPS standards, in terms of Unicode compat-
ibility, is the extent to which their hanja map to its various CJK Unified Ideographs and
CJK Compatibility Ideographs blocks.

The 4,888 hanja in KS X 1001:2004 map as follows: 4,620 map to the Unified Repertoire
and Ordering (URO, which represent the initial block of CJK Unified Ideographs), and
the remaining 268 map to the CJK Compatibility Ideographs block in the BMP. All 2,856
hanja of KS X 1002:2001 also map to the URO.

The 4,653 hanja in KPS 9566-97 map as follows: 4,652 map to the URO, and the single
remaining hanja maps to CJK Unified Ideographs Extension A.

Although all of the hanja in KPS 10721-2000 do not yet map to Unicode, 10,358 map to
the URO, 3,187 map to CJK Unified Ideographs Extension A, 5,767 map to CJK Unified
Ideographs Extension B, 107 map to the CJK Compatibility Ideographs in the BMP, and
50 map to the CJK Compatibility Ideographs in Plane 2.

All of the modern hangul that are encoded in the KS and KPS standards are clearly in
Unicode, as of version 2.0, given its complete coverage of 11,172 hangul syllables.

Vietnamese Character set standards
Although not widely known, Vietnam (Việt Nam) is one of the locales that has developed
character set standards enumerating thousands of Chinese and Chinese-like characters.
They have thus far established two character set standards that enumerate ideographs. All
Vietnamese standard designations begin with TCVN, which stands for Tiêu Chuẩn Việt
Nam (meaning “Vietnamese Standard”).

Both standards covered in this section enumerate only Chinese and Chinese-like characters
(chữ Hán and chữ Nôm) and are encoded in a single 94×94 matrix as two separate levels.
Table 3-80 illustrates the allocation of characters by row.

152 | Chapter 3: Character set standards

The TCVN 5773:1993 and TCVN 6056:1995 character setsTable 3-80.

row Characters Content

1–15 0 Unassigned; reserved for symbols

16–41 2,357 TCVN 5773:1993 (last is 41-07)

42–77 3,311 TCVN 6056:1995 (last is 77-21)

78–94 0 Unassigned

Note how both character sets are included in one superset—they are more or less treated
as separate levels.

tCVn 5773:1993
Vietnam’s very first character set that enumerates ideographs is designated TCVN
5773:1993, Công Nghệ Thông Tin—Bộ Mã Chuẩn 16-Bit Chữ Nôm Dùng Trong Trao
Đổi Thông Tin (Information Technology—Nom 16-Bit Standard Code Set for Information
Interchange), and was established on December 31, 1993.

TCVN 5773:1993 enumerates 2,357 ideographs, most of which are considered to be
“Nom proper” (chữ Nôm) characters. That is, they are characters that appear to be of
Chinese origin, but are in fact of Vietnamese origin. Think of them as Vietnamese-made
ideographs.* The ordering of the characters is by radical, and then by total number of
strokes. Approximately 600 are considered to be of genuine Chinese origin (chữ Hán).

TCVN 5773:1993 provides mappings to ISO 10646—equivalent for these purposes to
Unicode—for every character, as follows:

587 characters are included in the standard set of 20,902 ideographs in Unicode•	

1,770 characters map to the •	 PUA region of ISO 10646, beginning at U+A000 and end-
ing at U+A6E9

TCVN 5773:1993 distinguishes these two types of mappings implicitly by the reference
ISO 10646 code points. This standard also explicitly distinguishes these two types of
mappings by using one of two encoding prefixes:

U+•	 (for example, U+4EC9) refers to mappings into ISO 10646’s standard set of 20,902
ideographs—the 587 characters just noted in the preceding list.

V+•	 (for example, V+A000) refers to mappings into ISO 10646’s PUA region—the 1,770
characters just noted in the preceding list.

* Chữ Nôm are different from Japanese kokuji in that they are never used in texts that are written using characters
strictly of Chinese origin. See Chapter 2 for more details.

International Character set standards | 153

tCVn 6056:1995
A second Vietnamese character set standard, designated TCVN 6056:1995, Công nghệ
thông tin—Bộ Mã Chuẩn 16-Bit Chữ Nôm Dùng Trong Trao Đổi Thông Tin—Chữ Nôm
Hán (Information Technology—Nom 16-Bit Standard Code for Information Interchange—
Han Nom Character), enumerates an additional 3,311 ideographs. The original TCVN
6056:1995 enumerated 3,349 characters, but it has since been revised. Thirty-eight
duplicate characters—duplicates of characters in both TCVN 5773:1993 and TCVN
6056:1995 itself—have been removed from the character set.

Whereas TCVN 5773:1993 included both Chinese (chữ Hán) and “Nom proper” (chữ
Nôm) characters, this standard includes only chữ Hán (characters of true Chinese origin).
Appendix L provides a complete TCVN 6056:1995 code table.

As was the case with TCVN 5773:1993, these characters are ordered by radical, and then
by total number of strokes, and references to ISO 10646 code points are provided for
reference. All 3,311 of these characters map to ISO 10646 BMP code points. Remember
that TCVN 5773:1993 mapped most of its characters into ISO 10646’s PUA region.

Unicode compatibility with tCVn standards
While all 3,311 ideographs in TCVN 6056:1995 are included in Unicode, all of which are
in the URO, only 2,246 of the 2,357 ideographs in TCVN 5773:1993 are in Unicode, up
through version 5.1.

International Character set standards
Many organizations, corporations, and researchers have been actively involved in the
development of international character set standards in an attempt to encode most of the
world’s written languages in a single repertoire of characters. One early effort was Xerox’s
XCCS (Xerox Character Code Standard). CCCII can also be considered such an attempt.
In any case, these character sets should be of interest to you because they include tens of
thousands of ideographs and thousands of hangul syllables. The only standards that will
be covered in this section are ISO 10646 and Unicode, and any national standard that is
based on them.

Table 3-81 lists the international character set standards covered in this section, all of
which are based on different versions of Unicode.

International character set standardsTable 3-81.

standard Ideographs Hangul other charactersa PUA total

Unicode version 1.0—1991 0 2,350 4,746 5,632 7,096

Unicode version 1.0.1—1992 20,902 2,350 5,042 6,144 28,294

Unicode version 1.1—1993 20,902 6,656b 6,610 6,400 34,168

Unicode version 2.0—1996 20,902 11,172 6,811 6,400 38,885

154 | Chapter 3: Character set standards

International character set standardsTable 3-81.

standard Ideographs Hangul other charactersa PUA total

Unicode version 2.1—1998 20,902 11,172 6,813 6,400 38,887

Unicode version 3.0—1999 27,484 11,172 10,538 137,468 49,194

Unicode version 3.1—2001 70,195 11,172 12,773 137,468 94,140

Unicode version 3.2—2002 70,195 11,172 13,789 137,468 95,156

Unicode version 4.0—2003 70,195 11,172 15,015 137,468 96,382

Unicode version 4.1—2005 70,217 11,172 16,266 137,468 97,655

Unicode version 5.0—2006 70,217 11,172 17,635 137,468 99,024

Unicode version 5.1—2008 70,225 11,172 19,251 137,468 100,648

ISO 10646-1:1993c Equivalent to Unicode version 1.1

ISO 10646-1:2000 Equivalent to Unicode version 3.0d

ISO 10646-2:2001 Part of Unicode version 3.1 (Supplementary Planes)d

ISO 10646:2003e Equivalent to Unicode version 4.0

GB 13000.1-93 Equivalent to ISO 10646-1:1993

CNS 14649-1:2002 Equivalent to ISO 10646-1:2000

CNS 14649-2:2003 Equivalent to ISO 10646-2:2001

JIS X 0221-1995 Equivalent to ISO 10646-1:1993

JIS X 0221-1:2001 Equivalent to ISO 10646-1:2000

JIS X 0221:2007 Equivalent to ISO 10646:2003 with Amendments 1 and 2 (Unicode version 5.0)

KS X 1005-1:1995 Equivalent to ISO 10646-1:1993 with Amendments 1 through 7 (Unicode version 2.0)

These figures include a. CJK Compatibility Ideographs.

This figure is composed of 2,350 basic hangul (from KS X 1001:2004), 1,930 Supplemental Hangul A (from KS X 1002:2001), and 2,376 b.
Supplemental Hangul B (source unknown to this author).

ISO 10646-1:1993 with Amendments 1 through 7 is equivalent to Unicode version 2.0. Amendment 8 makes it equivalent to Unicode version c.
2.1.

ISO 10646-1:2000 with two characters from Amendment 1 and ISO 10646-2:2001 are equivalent to Unicode version 3.1. ISO 10646-1:2000 d.
with Amendment 1 and ISO 10646-2:2001 are equivalent to Unicode version 3.2.

ISO 10646:2003 with Amendment 1 is equivalent to Unicode version 4.1. ISO 10646:2003 with Amendments 1 and 2, along with four Singhi e.
characters from Amendment 3, is equivalent to Unicode version 5.0.

It is useful to take note that Unicode version 1.0 never became a national or international
standard—it is obsolete.

Unicode and Iso 10646
The International Organization for Standardization (ISO) and The Unicode Consortium
have jointly developed—and continue to jointly develop—a multilingual character
set designed to combine the majority of the world’s writing systems and character set
standards into a significantly larger repertoire of characters.

International Character set standards | 155

ISO designated their standard ISO 10646, and The Unicode Consortium named their
standard Unicode. These standards started out separately, were wildly different, and wisely
merged their work into what can be treated as a single standard. Both of these standards
can be represented by the same encoding forms, specifically UTF-8, UTF-16, and UTF-32.
All three will be covered in detail in Chapter 4, along with variants thereof. Both standards
began with characters encoded only in the area that is called the Basic Multilingual Plane
(BMP). It is called the BMP because ISO 10646-1:1993 was composed of groups of planes.
The first characters to be encoded outside the BMP were in Unicode version 3.1, which is
equivalent to ISO 10646-1:2000 and ISO 10646-2:2001.

Unicode approached the CJKV problem by attempting to unify all ideographs from the
many CJKV national character set standards into a single set of ideographs. This effort
became incorrectly known as Han Unification. “Han” comes from the Chinese reading of
the ideograph 漢—in Chinese, Korean, and Vietnamese it is read han, and in Japanese it is
read kan. Note that this effort does not represent true or genuine unification of ideographs
due to the Source Separation Rule (to be explained shortly) and other factors. So, why is
Han Unification not an appropriate way to describe the process that took place to create
this character set?

If we consider the evolutionary processes that have affected ideographs over the course of
history, we see that they have diversified into a number of locale-specific variations. That
is, they were adapted by several non-Chinese cultures, such as Japan, Korea, and Vietnam.
With any borrowing, whether it is from the lexicon (that is, words) or the orthography
(that is, the writing system), there is a certain amount of change that is almost always
guaranteed to take place over time. As Joe Becker so succinctly stated, diversification and
variation are the real historical processes that actually took place, but the so-called Han
Unification is not a real process. Rather, it has been called diversification and variation as
seen through a mirror.

The real goal of those who compiled the ideographs in Unicode was to simply provide
coverage for the major CJKV character set standards existing at the time, so that every
ideograph in these standards would have an equivalent code point in Unicode. This goal
effectively provides users and developers with two very important and real benefits:

A much larger repertoire of characters than found in other CJKV character set •	
standards

Compatibility with the characters in existing CJKV character set standards—this is •	
perhaps more important than you think

Unicode, when encoded according to the original UCS-2 encoding, provides only 65,536
16-bit code points. When the first edition of this book was written, at the end of 1998,
38,887 of these code points had been assigned characters for Unicode version 2.1, 38,885
for version 2.0, 34,168 for version 1.1, 28,294 for version 1.0.1, and a mere 7,096 for
version 1.0. The character-encoding space for Unicode is now set in 17 planes, each of
which is a 256×256 matrix.

156 | Chapter 3: Character set standards

For a historical perspective, Table 3-82 details, by version, how many ideographs, radicals,
and strokes are included in Unicode. Those that are lightly shaded have been accepted
as part of ISO 10646:2003 Amendment 5, but as of this writing are not yet included in
Unicode. Similarly, those that are shaded darker have also been accepted, but as part of
Amendment 6, and also are not yet included in Unicode.

Unicode ideographs, radicals, and strokesTable 3-82.

Version number of characters added Code point ranges total number of characters

CJK Unified Ideographs

1.1 20,902 U+4E00–U+9FA5 (URO) 20,902

3.0 6,582 U+3400–U+4DB5 (Extension A) 27,484

3.1 42,711 U+20000–U+2A6D6 (Extension B) 70,195

4.1 22 U+9FA6–U+9FBB 70,217

5.1 8 U+9FBC–U+9FC3 70,225

3 U+9FC4–U+9FC6 70,228

4,149 U+2A700–U+2B734 (Extension C) 74,377

5 U+9FC7–U+9FCB 74,382

CJK Compatibility Ideographsa

1.1 302 U+F900–U+FA2D 302

3.1 542 U+2F800–U+2FA1D 844

3.2 59 U+FA30–U+FA6A 903

4.1 106 U+FA70–U+FAD9 1,009

3 U+FA6B–U+FA6D 1,012

CJK radicals supplement

3.0 115 U+2E80–U+2E99, U+2E9B–U+2EF3 115

Kangxi radicals

3.0 214 U+2F00–U+2FD5 214

CJK strokes

4.1 16 U+31C0–U+31CF 16

5.1 20 U+31D0–U+31E3 36

a. Note that the following 12 code points within the CJK Compatibility Ideographs block are actually CJK Unified Ideographs: U+FA0E, U+FA0F,
U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21, U+FA23, U+FA24, and U+FA27 through U+FA29.

International Character set standards | 157

Unicode version 5.1, issued a decade after version 2.1, pushes the total number of assigned
characters over the 100,000 mark for the first time. To see what code points have been
newly assigned for each version of Unicode, the DerivedAge.txt file that is provided on the
Unicode website is very useful.*

As mentioned earlier, the original block of CJK Unified Ideographs, consisting of 20,902
ideographs, are the result of merging many character set standards into one larger
repertoire through the process of Han Unification. This block of CJK Unified Ideographs
is referred as the URO (Unified Repertoire and Ordering). According to The Unicode
Standard, version 2.0, most of the ideographs contained in the character set standards
listed in Table 3-83 have been included.

Source character sets of the UROTable 3-83.

Character set standard Country Ideographs

ANSI Z39.64-1989 (EACC) USA 13,481

Xerox Chinese USA 9,776

GB 2312-80 China 6,763

GB/T 12345-90 China 2,180

GB 7589-87 China 4,835

GB 7590-87 China 2,842

General Use Characters for Modern Chinesea China 41

GB 8565.2-88 China 290

GB 12052-89 China 94

PRC Telegraph Code China ≈8,000

Big Fiveb Taiwan 13,053

CCCII, Level 1 Taiwan 4,808

CNS 11643-1986 Plane 1 Taiwan 5,401

CNS 11643-1986 Plane 2 Taiwan 7,650

CNS 11643-1986 Plane 14c Taiwan 4,198

Taiwan Telegraph Code Taiwan 9,040

JIS X 0208-1990 (equivalent to JIS X 0208:1997)d Japan 6,356

JIS X 0212-1990 Japan 5,801

KS X 1001:1992 (equivalent to KS X 1001:2004) Korea 4,620

* http://www.unicode.org/Public/UNIDATA/DerivedAge.txt

158 | Chapter 3: Character set standards

Source character sets of the UROTable 3-83.

Character set standard Country Ideographs

KS X 1002:1991 (equivalent to KS X 1002:2001) Korea 2,856

TCVN 6056:1995 Vietnam 3,311

Better known as a. 现代汉语通用字表 (xiàndài hànyǔ tōngyòngzì biǎo).

Two of these hanzi are duplicately encoded, and are mapped into Unicode’s b. CJK Compatibility Ideographs block.

CNS 11643-1986 Plane 14 contains 6,319 hanzi.c.

There are normally considered to be 6,355 kanji in JIS X 0208:1997. The extra character, d. 仝 (01-24), is in its non-kanji region.

Table 3-83 lists approximately 121,000 ideographs in total, but when they were merged
according to the rules and principles of Han Unification, they became 20,902 unique
characters. These ideographs are subsequently arranged by radical, followed by the
number of additional strokes (this is similar to the ordering of GB 2312-80 Level 2 and
JIS X 0208:1997 Level 2). Redundant characters —considered to be duplicate characters
across the source character sets—among the approximately 121,000 ideographs that are
represented in Table 3-83 were effectively removed to form the final set of 20,902.

The two ideographs in Table 3-84 have similar structure—similar enough, in fact, to justify
unifying them. However, they have completely unrelated etymologies and meanings, so
merging did not take place. In other words, they are noncognate.

Nonunified ideographs —exampleTable 3-84.

Ideograph Meaning Unicode

土 earth U+571F

士 scholar, knight U+58EB

As illustrated in Table 3-84, the relative lengths of strokes in ideographs can change their
meaning. However, ideographs such as those in Table 3-85 have been unified because
their difference lies in their glyphs, which can be thought of as a simple typeface style
issue. In other words, they are cognate and share the same abstract shape.

Unified ideographs—exampleTable 3-85.

Ideograph Meaning source character set row-Cell Unicode

父 father JIS X 0208-1983 41-67 U+7236

父 father JIS X 0208-1990 41-67 U+7236

Note how these are microscopic variations of the same structure, and that they have the
same meaning. They also share the same encoding, but come from different versions or
vintages of the JIS X 0208 character set standard. The earlier versions of JIS X 0208-1990
are not considered part of the Japanese sources for Unicode—only JIS X 0208-1990 (now
designated JIS X 0208:1997) and JIS X 0212-1990 were used.

International Character set standards | 159

The glyphs for ideographs can be compared using a three-dimensional model. The X-axis
(semantic) separates characters by their meaning. The Y-axis (abstract shape) separates
a character on the X-axis into its abstract shapes. Traditional and simplified forms of a
particular ideograph fall into the same X-axis position, but have different positions along
the Y-axis. The Z-axis (typeface) separates a character into glyph differences. Only Z-axis
differences were merged or unified in Unicode. Table 3-85 provided an example of a Z-axis
difference. Glyph differences are usually found when using different typefaces to produce
the same character. The same character in different languages may also appear differently
because of locale differences that have resulted from diversification. Figure 3-1 illustrates
the three-axis model used for comparing the glyphs for ideographs.

��
���

��
��

��
��

��
��

��

���
���

���
��
���
��
��
�

�������������

Three-axis model for comparing glyphs for ideographsFigure 3-1.

Unfortunately, early standards were inconsistent in their encoding models for ideographs,
and some still are, resulting in separately encoded Z-axis variants.

There were four sets of national standards from which Unicode’s first CJK Unified
Ideographs block, the URO, was derived, specifically character sets from China, Taiwan,
Japan, and Korea. For example, there were two Japanese character sets in the Japanese
source set: JIS X 0208-1990 (now JIS X 0208:1997) and JIS X 0212-1990. Unification of
two characters cannot take place if they have unique encoded positions within a single
source set. Table 3-86 lists the kanji 剣 (meaning “sword,” and read ken or tsurugi) and its
five variants—all of these characters have unique code points in JIS X 0208:1997 and are
thus not unified.* This effectively guarantees that round-trip conversion is possible. This
is also why the two duplicately encoded hanzi of Big Five and the 268 multiply encoded
hanja of KS X 1001:2004 are in Unicode’s first CJK Compatibility Ideographs block

* Another variant of 剣 is 剑 (jiàn), but that is outside the context of this Japanese-specific discussion.

160 | Chapter 3: Character set standards

(version 1.1 in Table 3-82). JIS X 0208:1997 and JIS X 0212-1990 contain many kanji that
could potentially be unified, and the kanji in Table 3-86 represent but a single collective
example.

Six kanji from JIS X 0208:1997 that are not unifiedTable 3-86.

Kanji JIs X 0208:1997 Unicode

剣 23-85 U+5263

劍 49-88 U+528D

劔 49-89 U+5294

劒 49-90 U+5292

剱 49-91 U+5271

釼 78-63 U+91FC

Each of these six ideographs has a unique code point, both in the source character set,
specifically JIS X 0208:1997, and in Unicode. This is by design.

The result of all this effort was a collection of ideographs whose ordering can be considered
culturally neutral. How ideographs are ordered by radical is often locale-specific, and
devising an ordering that would please all locales that use ideographs was a very difficult
task. We could call this pancultural. The CJK Joint Research Group (CJK-JRG), an ad-
hoc committee of ISO/IEC JTC1/SC2/WG2 (Joint Technical Committee 1, Sub Committee
2, Working Group 2), selected four ideograph dictionaries, reflecting ideograph usage in
CJKV locales:

Common traditional—•	 康熙字典 (kāngxī zìdiǎn)

Japan—•	 大漢和辭典 (dai kanwa jiten)

China—•	 汉语大字典 (hànyǔ dà zìdiǎn)

Korea—•	 大字源 (daejawon)

These four dictionaries were subsequently checked, in the order just given, for each
ideograph. If the first dictionary checked did not include the ideograph, the next dictionary
was checked, and so on until each of the 20,902 ideographs was found. Not a simple task.
Truthfully, it’s quite daunting.

The CJK-JRG is now known as the Ideographic Rapporteur Group (IRG), and continues
to operate under the auspices of WG2.* The IRG meets twice a year, for a full week of
sometimes heated discussions. Much of what the IRG does takes place between meetings,
and the meetings are used to make important decisions or to otherwise perform work that
requires the presence of its national body members.

* http://www.cs.cuhk.edu.hk/~irg/

International Character set standards | 161

For additional information regarding the Unicode character set or Han Unification,
please refer to the book entitled The Unicode Standard, Version 5.0 or to The Unicode
Consortium’s website.* The ISO 10646:2003, GB 13000.1-93, JIS X 0221:2007, and KS
X 1005-1:1995 manuals are also available and contain similar information. The most
inexpensive of these four standards is GB 13000.1-93, followed by KS X 1005-1:1995, but
they are also the most difficult to obtain, at least where I live. Among them, the Unicode
book is the easiest to obtain because the latest version is made available in PDF on The
Unicode Consortium’s website.†

Annex s—unification rules and principles
Annex S, introduced in ISO 10646-1:2000, details and describes the unification rules and
principles that are used to compile the CJK Unified Ideograph and CJK Compatibility
Ideographs blocks. Annex S is informative and entitled “Procedure for the unification
and arrangement of CJK Ideographs.” It serves as the guide for determining whether a
new character is to be unified with an existing character or treated as a separate character.
Table 3-87 details one way to think about the basic principles used by Annex S for ideo-
graph pairs or triplets that are considered cognate.

To unify or not to unify…Table 3-87.

Actual shape
exact match different

same abstract shape
Unify

Unify

different abstract shape Do Not Unify

Of course, what is considered abstract shape, or whether the character pairs (or triplets,
in some cases) being considered are cognate, are sometimes not easily understood and
require further research. Still, the Annex S principles hold true and are genuinely useful.

extending Unicode beyond the BMP—UtF-16 encoding
The well-established Surrogates Area, U+D800 through U+DFFF, provides a method for
extending Unicode to accommodate 1,048,576 additional code points. This is better
known as UTF-16 encoding, which is described in Chapter 4. The following is a brief
description of how the Surrogates Area functions:

The High Surrogates, •	 U+D800 through U+DBFF, represent the first element in a sur-
rogate pair

The Low Surrogates, •	 U+DC00 through U+DFFF, represent the second element in a sur-
rogate pair

* http://www.unicode.org/
† http://www.unicode.org/standard/standard.html

162 | Chapter 3: Character set standards

For example, U+D800 plus U+DC00 and U+DBFF plus U+DFFF represent the first and last
characters in the Surrogates area, respectively.

In essence, characters encoded in the Surrogates Area are represented by four bytes (or
two 16-bit values). 2,048 code points within the BMP are effectively sacrificed to create an
additional 1,048,576 code points. That’s not a bad trade-off!

One benefit of this technique may not be immediately obvious: one always knows whether
a particular 16-bit unit represents the first or second element of a surrogate pair, by virtue
of each element using a different encoding range. This scheme allows software processing
to be simpler than if the two ranges overlap.

131,068 of the code points in the Surrogates Area are reserved as PUA code points. This
effectively means that Unicode now provides 137,468 PUA code points (6,400 plus 131,068).
More information about PUA code points is presented in the following section.

Some people mistakenly use the word Surrogates to refer to any character or code
point outside of the BMP. I need to clearly point out that the direct UTF-8 and UTF-32
representations of the High and Low Surrogates are illegal and invalid in those encoding
forms, and that in the UTF-8 and UTF-32 encoding forms, non-BMP code points are not
given any special treatment and are directly encoded in those encoding forms. In other
words, Surrogates are specific to UTF-16 encoding. If one wants to refer to non-BMP
code points in an encoding-independent fashion, using the word Surrogates is not the
right way and is misleading. Simply using non-BMP or referring to specific planes beyond
the BMP, such as Plane 2, is the preferred and correct way in which to refer to characters
or code points that are encoded beyond the BMP.

Private Use Area
As mentioned in the previous section, Unicode includes 137,468 Private Use Area (PUA)
code points. These are encoded in three separate ranges, as specified in Table 3-88.

Unicode Private Use Area rangesTable 3-88.

Code point range number of characters Plane

U+E000 through U+F8FF 6,400 0 —BMP

U+F0000 through U+FFFFD 65,534 15

U+100000 through U+10FFFD 65,534 16

One would normally think that Planes 15 and 16 would provide 65,536 PUA code points
each, but the last two code points in every plane have noncharacter status, and thus cannot
be used for any purpose whatsoever. This means that U+FFFFE, U+FFFFF, U+10FFFE, and
U+10FFFF are explicitly excluded from the PUA.

The use of PUA code points should be avoided at all costs, because their interpretation, in
terms of character properties, and their interaction with legacy character set standards (in
other words, interoperability) cannot be guaranteed.

International Character set standards | 163

Planes and encoding forms
Although Chapter 4 will cover encodings in detail, I will take the opportunity to present
here the structure of Unicode, along with a very brief introduction to its encoding forms,
because drawing a comparison between its structure, from a character set point of view,
and its encoding forms can be intriguing and enlightening.

Unicode is composed of 17 planes. The Basic Multilingual Plane (BMP) represents the
first plane, and because everything in the computer world begins at zero, it is also known
as Plane 0. The remaining 16 planes are referred to as the Supplementary Planes, and are
referred to by number, specifically Planes 1 through 16.

Unicode is encoded according to three basic encoding forms, called UTF-8, UTF-16, and
UTF-32.

Table 3-89 lists each of the 17 planes of Unicode, along with their encoding-independent
ranges indicated through the use of Unicode scalar values.

Unicode’s 17 planes and their rangesTable 3-89.

Plane name scalar value range

0 BMP (Basic Multilingual Plane) U+0000–U+FFFF

1 SMP (Supplementary Multilingual Plane) U+10000–U+1FFFF

2 SIP (Supplementary Ideographic Plane) U+20000–U+2FFFF

3 U+30000–U+3FFFF

4 U+40000–U+4FFFF

5 U+50000–U+5FFFF

6 U+60000–U+6FFFF

7 U+70000–U+7FFFF

8 U+80000–U+8FFFF

9 U+90000–U+9FFFF

10 U+A0000–U+AFFFF

11 U+B0000–U+BFFFF

12 U+C0000–U+CFFFF

13 U+D0000–U+DFFFF

14 SSP (Supplementary Special-purpose Plane) U+E0000–U+EFFFF

15 SPUA-A or PUP (Supplementary Private Use Area-A or Private Use Plane) U+F0000–U+FFFFF

16 SPUA-B or PUP (Supplementary Private Use Area-B or Private Use Plane) U+100000–U+10FFFF

164 | Chapter 3: Character set standards

Next, Table 3-90 presents the same 17 planes of Unicode with the Unicode scalar value
ranges, along with the encoding ranges as specified by more specific UTF-8, UTF-16, and
UTF-32 encoding forms.*

Unicode’s 17 planes and their encoding rangesTable 3-90.

Plane scalar value range UtF-8 UtF-16 UtF-32

0 U+0000–U+FFFF 00–EF BF BFa 0000–FFFFb 00000000–0000FFFF

1 U+10000–U+1FFFF F0 90 80 80–F0 9F BF BF D800 DC00–D83F DFFF 00010000–0001FFFF

2 U+20000–U+2FFFF F0 A0 80 80–F0 AF BF BF D840 DC00–D87F DFFF 00020000–0002FFFF

3 U+30000–U+3FFFF F0 B0 80 80–F0 BF BF BF D880 DC00–D8BF DFFF 00030000–0003FFFF

4 U+40000–U+4FFFF F1 80 80 80–F1 8F BF BF D8C0 DC00–D8FF DFFF 00040000–0004FFFF

5 U+50000–U+5FFFF F1 90 80 80–F1 9F BF BF D900 DC00–D93F DFFF 00050000–0005FFFF

6 U+60000–U+6FFFF F1 A0 80 80–F1 AF BF BF D940 DC00–D97F DFFF 00060000–0006FFFF

7 U+70000–U+7FFFF F1 B0 80 80–F1 BF BF BF D980 DC00–D9BF DFFF 00070000–0007FFFF

8 U+80000–U+8FFFF F2 80 80 80–F2 8F BF BF D9C0 DC00–D9FF DFFF 00080000–0008FFFF

9 U+90000–U+9FFFF F2 90 80 80–F2 9F BF BF DA00 DC00–DA3F DFFF 00090000–0009FFFF

10 U+A0000–U+AFFFF F2 A0 80 80–F2 AF BF BF DA40 DC00–DA7F DFFF 000A0000–000AFFFF

11 U+B0000–U+BFFFF F2 B0 80 80–F2 BF BF BF DA80 DC00–DABF DFFF 000B0000–000BFFFF

12 U+C0000–U+CFFFF F3 80 80 80–F3 8F BF BF DAC0 DC00–DAFF DFFF 000C0000–000CFFFF

13 U+D0000–U+DFFFF F3 90 80 80–F3 9F BF BF DB00 DC00–DB3F DFFF 000D0000–000DFFFF

14 U+E0000–U+EFFFF F3 A0 80 80–F3 AF BF BF DB40 DC00–DB7F DFFF 000E0000–000EFFFF

15 U+F0000–U+FFFFF F3 B0 80 80–F3 BF BF BF DB80 DC00–DBBF DFFF 000F0000–000FFFFF

16 U+100000–U+10FFFF F4 80 80 80–F4 8F BF BF DBC0 DC00–DBFF DFFF 00100000–0010FFFF

The complete one-, two-, and three-byte encoding ranges are <a. 00>–<7F>, <C2 80>–<DF BF>, and <E0 A0 80>–<EF BF BF>.

U+D800b. through U+DFFF are excluded from this range because they represent the High and Low Surrogates, which are used to encode the 16
Supplementary Planes.

The big take-away from Table 3-90 is that as soon as one goes beyond the BMP, every
character must be represented by four effective bytes, regardless of the encoding form,
whether it is four bytes (UTF-8), two 16-bit units (UTF-16), or a single 32-bit unit (UTF-
32). In addition, the most human-readable Unicode encoding form is clearly UTF-32,
which simply looks like a zero-padded version of the Unicode scalar values that use the
U+XXXX notation.

Of course, there is much more to the Unicode encoding forms than is captured in this
table, or even in this chapter, and Chapter 4 will provide the details that you need.

* Note that this table does not address the important issue of byte order, which affects the UTF-16 and UTF-32
encoding forms. The values are in big-endian byte order. Technically, the UTF-16 column specifies the UTF-
16BE (UTF-16 Big-Endian) encoding form, and likewise, the UTF-32 column specifies the UTF-32BE (UTF-32
Big-Endian) encoding form.

International Character set standards | 165

Kangxi radicals, CJK radicals supplement, and CJK strokes
Characters that represent radicals and strokes, the building blocks of ideographs, are
included in Unicode. The Kangxi Radicals block, U+2F00 through U+2FD5, includes
characters that represent the complete set of 214 classical radicals as used by the vast
majority of ideograph dictionaries. All of these characters have corresponding CJK Unified
Ideograph code points. For example, it is obvious that the Kangxi Radical U+2F00 (一)
should be visually identical to CJK Unified Ideograph U+4E00 (一), and under almost all
conditions should be rendered the same. In fact, for what I consider to be well-designed
fonts, both code points are rendered using the same underlying glyph, meaning that both
code points map to the same glyph.

115 radical variants, consisting primarily of those for Simplified Chinese, are in the CJK
Radicals Supplement block, encoded from U+2E80 through U+2EF3 (note that U+2E9A is
unassigned). This collection of radical variants appears to be somewhat ad-hoc, simply
because it is.

Sixteen strokes are currently encoded in the CJK Strokes region, encoded from U+31C0
through U+31CF. These were added in Unicode version 4.1. Twenty additional strokes have
been recently approved and added to Unicode, encoded from U+31D0 through U+31E3
and included in version 5.1. That means that 36 primitive strokes are now available in
Unicode.

CJK Unified Ideographs Uro—Unified repertoire and ordering
Unicode’s original block of 20,902 ideographs is referred to as the URO, which stands for
Unified Repertoire and Ordering. Its range is U+4E00 through U+9FA5. Note that additional
CJK Unified Ideographs have been appended to this block, and as of version 5.0, U+9FA6
through U+9FBB (22 code points) have been assigned. These 22 CJK Unified Ideographs
were introduced in version 4.1 for the purpose of more completely supporting GB 18030-
2000 and Hong Kong SCS-2004. An additional 16 ideographs were more recently ap-
pended to this block, encoded from U+9FBC through U+9FCB. Until U+9FFF is assigned, we
can expect additional characters to be added to this seemingly small region, as long as the
number of characters to be added is relatively small.

CJK Unified Ideographs extension A
The IRG has compiled an additional set of ideographs, 6,582 total, that became part of
Unicode as of version 3.0. This second block of ideographs is called CJK Unified Ideographs
Extension A.* These additional 6,582 characters are encoded in the region left vacant from
the 6,656 hangul that were in Unicode version 1.1, specifically U+3400 through U+4DB5.

Some preliminary mapping data was made available for this set of 6,582 characters, and
Table 3-91 lists CJKV character set standards, along with the number of mappings. (The

* The original proposal included 6,585 ideographs, but three were found to be duplicates of characters among the
CJK Compatibility Ideographs and were rightfully excised.

166 | Chapter 3: Character set standards

number of mappings are according to material dated from February 25, 1997, when there
were 6,584 characters in this set, so consider the numbers to be approximate figures.)

Table 3-91. Mappings for Unicode’s CJK Unified Ideographs Extension A

Character set standard number of mappings

GB/T 13131-2XXX 2,391

GB/T 13132-2XXX 1,226

General Use Characters for Modern Chinesea 120

Singapore characters 226

CNS 11643-1992 Plane 3 2,178

CNS 11643-1992 Plane 4 2,912

CNS 11643-1992 Plane 5 392

CNS 11643-1992 Plane 6 194

CNS 11643-1992 Plane 7 133

CNS 11643-1986 Plane 15 71

Unified Japanese IT Vendors Contemporary Ideographs, 1993 660

PKS C 5700-2 1994b 1,834

TCVN 5773:1993 128

Better known as a. 现代汉语通用字表 (xiàndài hànyǔ tōngyòngzì biǎo).

This could be a draft of Part 2 of KS X 1005-1:1995.b.

This set of 6,582 ideographs represents the last large repertoire of ideographs to be added
to Unicode’s BMP. Any further large repertoires of ideographs must be assigned to code
points outside of the BMP. As the next section describes, Unicode version 3.1 introduced
CJK Unified Ideographs Extension B, which is encoded outside the BMP, specifically in
Plane 2.

CJK Unified Ideographs extension B
Unicode version 3.1 introduced CJK Unified Ideographs Extension B, which contains
42,711 characters. Due to the staggering number of characters, they were necessarily
placed outside the BMP. They are in Plane 2. The first character is encoded at U+20000,
and the block continues to U+2A6D6. Also, 542 additional CJK Compatibility Ideographs
were added and are also in Plane 2, encoded from U+2F800 through U+2FA1D.

Who makes use of Extension B characters? Several character sets map into Extension
B, and in order for an implementation to be compliant, without resorting to PUA code
points, it must be supported, but not necessarily in its entirety. Table 3-92 lists com-
mon locale-specific character sets, along with the number of Extension B mappings that
they use.

International Character set standards | 167

Locale-specific character sets that map to Extension BTable 3-92.

Character set number of extension B mappings

GB 18030-2005 6 or 42,711a

CNS 11643-1992 30,713

Hong Kong SCS-2008 1,712

JIS X 0213:2004 303

KPS 10721-2000 5,767

TCVN 5773:1993 1,515

The number of mappings depends on whether the glyphs printed in the 2000 or 2005 manual are used as the basis. There are a mere six for a.
the former and a staggering 42,711 for the latter.

CJK Unified Ideographs extensions C and d
The IRG has been working on further blocks of CJK Unified Ideographs. CJK Unified
Ideographs Extension C was declared final in April of 2008, and its characters are now en-
coded in Plane 2, immediately following Extension B. Its final form includes 4,149 char-
acters, encoded from U+2A700 through U+2B734.

CJK Unified Ideographs Extension D is still in process. And, at some point, CJK Unified
Ideographs Extension E will become a reality. These and future extensions come about as
the result of IRG efforts. National bodies submit new ideographs, which are prioritized
and categorized. Those that are determined to be new CJK Unified Ideographs eventually
make their way into an extension. Those that are unified with an existing CJK Unified
Ideograph are thus rejected.

IICore
Ideographic International Core (IICore), defined by the IRG in 2005, is a subset of the CJK
Unified Ideographs in Unicode that have been deemed to be frequently used across lo-
cales, and are useful for implementations that require a minimum number of characters.
IICore includes 9,810 CJK Ideographs, and are identified as a separate field in the Unihan
Database. These ideographs are spread throughout the BMP and Plane 2. Forty-two of
them are in Extension A, 62 are in Extension B, and the remaining 9,706 are in the URO.

CJK Compatibility Ideographs
There are currently two blocks of CJK Compatibility Ideographs in Unicode, one of
which is in the BMP, and the other is outside the BMP, specifically in Plane 2. Twelve of
the characters in the BMP’s CJK Compatibility Ideographs block are considered to be
CJK Unified Ideographs. They are as follows: U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14,
U+FA1F, U+FA21, U+FA23, U+FA24, and U+FA27 through U+FA29. Some CJK Compatibility
Ideographs are genuine duplicate characters according to their source character sets, such
as those from Big Five and KS X 1001:2004.

168 | Chapter 3: Character set standards

To what extent are CJK Compatibility Ideographs treated differently than CJK Unified
Ideographs? Most importantly, Normalization can be applied to CJK Compatibility
Ideographs. Normalization is a well-established process whereby the representation of
characters is made uniform. For example, accented characters can be represented by a
single code point or by multiple code points, such as its Base Character followed by one
or more separate characters that represent accents or other adornments. Furthermore,
in the case of multiple accents, the ordering of the accents is made uniform through the
application of Normalization.

There are different levels or types of Normalization. In the context of CJK Compatibility
Ideographs, Normalization simply means that a CJK Compatibility Ideograph may be
converted to its Canonical Equivalent, which is the corresponding CJK Unified Ideograph,
and it is done at the sole discretion of the application.

If the distinction of a CJK Compatibility Ideograph is important for your needs, I strongly
advise a representation that preserves the distinction. Today’s software interoperates,
and because one cannot control the extent to which software applies Normalization, the
probability of Normalization being applied is very high and, more significantly, may not
be under your direct control. In other words, any attempt to prevent Normalization from
taking place is futile. I claim that Normalization can be prevented only in completely
closed environments. But then again, such closed environments are not very interesting.
Software interaction is what makes the current generation of applications useful, and this
claim is likely to become stronger as the years pass.

I have observed that among the hundreds of CJK Compatibility Ideographs in Unicode, at
least through version 5.0, that none of them map to any character set standard developed
in China. In other words, of the seven primary sources or locales—China, Taiwan, Hong
Kong, Japan, South Korea, North Korea, and Vietnam—all but China have mappings in
the CJK Compatibility Ideograph blocks. What does this mean? Nothing. It is merely an
observation of the data and nothing more.

normalization and Canonical equivalents
As stated in the previous section, the process called Normalization can be applied to CJK
Compatibility Ideographs, and the result is that they are converted into their Canonical
Equivalents. Normalization effectively flattens differences when it is possible to represent
the same character in Unicode in multiple ways. This obviously applies to accented char-
acters. Table 3-93 provides some examples of CJK Compatibility Ideographs and their
Canonical Equivalents.

CJK Compatibility Ideographs and their Canonical Equivalents—examplesTable 3-93.

CJK Compatibility Ideograph Canonical equivalent Locale Comments

U+F907 龜 U+9F9C 龜 Korea Identical

U+F907 龜 U+9F9C 龜 Hong Kong Different in Hong Kong SCS-2008

International Character set standards | 169

CJK Compatibility Ideographs and their Canonical Equivalents—examplesTable 3-93.

CJK Compatibility Ideograph Canonical equivalent Locale Comments

U+F908 龜 U+9F9C 龜 Korea Identical

U+F914 樂 U+6A02 樂 Korea Identical

U+F95C 樂 U+6A02 樂 Korea Identical

U+F9BF 樂 U+6A02 樂 Korea Identical

U+F9D0 類 U+985E 類 Korea Identical

U+F9D0 類 U+985E 類 Japan Different in JIS X 0213:2004

U+FA0C 兀 U+5140 兀 Taiwan Identical

U+FA0D 嗀 U+55C0 嗀 Taiwan Identical

U+FA47 漢 U+6F22 漢 Japan Different in JIS X 0213:2004

U+FA66 辶 U+8FB6 辶 Japan Different in JIS X 0213:2004

Note that for some locales and for some code points, the application of Normalization
effectively removes distinctions.

Interestingly, dakuten- and handakuten-adorned kana are also subject to Normalization,
as is the distinction between half- and full-width katakana. Those adornments are consid-
ered to be accents in the context of Normalization.

There are four types or levels of Normalization, as described in Table 3-94. The Normal-
ization that is applied to CJK Compatibility Ideographs takes place regardless of the Nor-
malization type. However, the Kangxi Radicals and CJK Radicals Supplement blocks are
subject to Normalization, but only for the NFKD and NFKC types.

The four Normalization typesTable 3-94.

normalization type Full name description

NFD Normalization Form D Canonical Decomposition

NFC Normalization Form C Canonical Decomposition, followed by Canonical Composition

NFKD Normalization Form KD Compatibility Decomposition

NFKC Normalization Form KC Compatibility Decomposition, followed by Canonical Composition

Table 3-95 uses katakana ガ (pronounced ga) in both full- and half-width forms, along
with the CJK Compatibility Ideograph 漢 (U+FA47) and Kangxi Radical 一 (U+2F00), to
exemplify the differences between the four types of Normalization and how they are ap-
plied to typical Japanese text.

170 | Chapter 3: Character set standards

The four types of Normalization—Japanese examplesTable 3-95.

Character Unicode nFd nFC nFKd nFKC

ガ U+30AC <U+30AB, U+3099> U+30AC <U+30AB, U+3099> U+30AC

ガ (カ +)゙ <U+30AB, U+3099> <U+30AB, U+3099> U+30AC <U+30AB, U+3099> U+30AC

ガ (ｶ +)゙ <U+FF76, U+FF9E> <U+FF76, U+FF9E> <U+FF76, U+FF9E> <U+30AB, U+3099> U+30AC

漢 U+FA47 U+6F22 U+6F22 U+6F22 U+6F22

一 U+2F00 U+2F00 U+2F00 U+4E00 U+4E00

Korean hangul are also subject to Normalization, and NFD and NFKD result in decompo-
sition into their component jamo. Compound jamo, however, do not further decompose.
Table 3-96 provides examples of Normalization of Korean text, using the hangul syllable
갃 (pronounced gaks) and the hanja 樂 (pronounced nak, rak, ak, or yo) as examples.

The four types of Normalization—Korean examplesTable 3-96.

Character Unicode nFd nFC nFKd nFKC

갃 U+AC03 <U+1100, U+1161, U+11AA> U+AC03 <U+1100, U+1161, U+11AA> U+AC03

樂 U+F914 U+6A02 U+6A02 U+6A02 U+6A02

樂 U+F95C U+6A02 U+6A02 U+6A02 U+6A02

樂 U+F9BF U+6A02 U+6A02 U+6A02 U+6A02

More details about how Normalization of hangul syllables is handled, including some
useful historical information, can be found online.*

The complexity of Normalization is clearly beyond the scope of this book, and I encourage
you to explore Unicode resources if what is presented here does not satisfy your needs.†

other CJK-related characters
U+3000 through U+33FF is a region for encoding additional CJKV-related characters, such
as CJKV-specific punctuation, hiragana, katakana, zhuyin, jamo, kanbun, CJK strokes,
CJK-specific annotated forms, katakana ligatures, and so on.

There is one code point within this region that deserves some historical mention. U+332C is
a katakana ligature meaning “parts” (パーツ pātsu). The original intent of the submission
was to represent the Thai currency symbol “Baht” (see U+0E3F), which is expressed in
Japanese by バーツ (bātsu). Unfortunately, this パ (pa) versus バ (ba) error was present
in Unicode for so long that a correction was neither viable nor practical, and would
likely cause compatibility issues in some environments. To some extent, U+332C can be
considered a “phantom” character.

* http://www.i18nl10n.com/korean/jamo.html
† http://www.unicode.org/charts/normalization/

International Character set standards | 171

Ideographic Variation sequences—the encoding of otherwise unified glyphs
Unicode version 4.0 introduced 240 Variation Selectors (VSes), encoded in Plane 14, from
U+E0100 through U+E01EF. These are named VS17 through VS256. If you’re wondering
about VS1 through VS16, they are encoded in the BMP, from U+FE00 through U+FE0F.
Only VS17 through VS256 are used within the context of Ideographic Variation Sequenc-
es (IVSes).

Put simply, an IVS is a sequence of two Unicode characters, specifically a Base Char-
acter followed by a VS (meaning VS17 through VS256). A Base Character is any valid
CJK Unified Ideograph, including Extensions A and B, but excluding CJK Compatibility
Ideographs (with the exception of the 12 that are considered CJK Unified Ideographs,
specifically U+FA0E, U+FA0F, U+FA11, U+FA13, U+FA14, U+FA1F, U+FA21, U+FA23, U+FA24,
and U+FA27 through U+FA29), CJK Radicals Supplement (U+2E80 through U+2EF3), and
Kangxi Radicals (U+2F00 through U+2FD5).

Furthermore, an IVS must be registered, to guarantee uniqueness and interoperability.
The registration process is described in Unicode Technical Standard (UTS) #37, entitled
Ideographic Variation Database.* The registration process involves a 90-day Public Review
Issue period, and also recommends that the glyphs assigned to each Base Character ad-
here to Annex S unification principles.

The 14,665 ideographs found in the Adobe-Japan1-6 character collection (Adobe Systems’
Japanese glyph set, which will be covered in depth when we reach Chapter 6) are the first
glyphs for which IVSes were assigned. Its registration process started in mid-December
of 2006, it went through two 90-day Public Review Issue periods (PRI 98 and PRI 108),
and final form was declared on December 14, 2007.† Of the 14,665 ideographs in Adobe-
Japan1-6, 14,647 now have IVSes assigned and registered, and all but 20 remain without
an IVS and are categorized as follows:

One was found in •	 Extension C at U+2A9E6 (CID+14145). Its IVS can be registered
now that Extension C has been declared final.

Nineteen were submitted to Unicode as new characters. Any determined to fall un-•	
der Annex S unification principles, meaning that they are to be treated as variants of
existing CJK Unified Ideographs, shall be registered as IVSes.

In terms of text processing, IVSes represent a new challenge for applications and OSes.
Using UTF-16 encoding as an example, the Base Character component requires 16 bits
(BMP) or two 16-bit units (Plane 2), and the Variation Selector component requires two
16-bit units (Plane 14). This means that 48 or 64 effective bits are required to represent an
IVS, depending on whether the Base Character is encoded in the BMP or in Plane 2.

* http://www.unicode.org/reports/tr37/
† http://www.unicode.org/ivd/

172 | Chapter 3: Character set standards

Ideographic description Characters and Ideographic description sequences
The 12 Ideographic Description Characters (IDCs), encoded from U+2FF0 through
U+2FFB, are used to visually describe the structure of ideographs by enumerating their
components and arrangement.* Ideographic Description Sequences (IDSes) are useful for
determining whether two characters are the same, or even visually similar. In other words,
one practical application of IDSes is to detect potential duplicate characters and to prevent
them from being introduced into Unicode. It should be noted that Taichi Kawabata (川幡
太一 kawabata taichi) has developed and manages extensive and extremely useful IDS da-
tabases.† The first attempt to create an IDS database for all Unicode ideographs was done
by Kyoto University’s CHaracter Information Service Environment (CHISE) project.‡

Given that there are locale-specific character form differences, multiple IDSes can be de-
fined for single code points. In fact any new ideographs to be proposed for Unicode must
include IDSes. Given the large number of characters in Unicode’s CJK Unified Ideographs
blocks, the IDS requirement for new submissions is a very prudent measure.

Table 3-97 lists the 12 IDCs that are in Unicode, their Unicode code points, and examples
of their usage in single-operator, non-recursive IDSes.

Ideographic Description Characters and example Ideographic Description SequencesTable 3-97.

IdC Unicode Ids examples

⿰ U+2FF0 瑠 = ⿰⺩留
⿱ U+2FF1 美 = ⿱𦍌大
⿲ U+2FF2 粥 = ⿲弓米弓
⿳ U+2FF3 壱 = ⿳士冖匕
⿴ U+2FF4 圏 = ⿴囗巻
⿵ U+2FF5 閏 = ⿵門王
⿶ U+2FF6 凶 = ⿶凵㐅
⿷ U+2FF7 医 = ⿷匚矢
⿸ U+2FF8 厭 = ⿸厂猒
⿹ U+2FF9 気 = ⿹气㐅
⿺ U+2FFA 越 = ⿺走戉
⿻ U+2FFB 衍 = ⿻行氵

* The use of U+2FFB (⿻) is strongly discouraged. However, it seems that some cases clearly require its use.
† http://kanji-database.sourceforge.net/
‡ http://kanji.zinbun.kyoto-u.ac.jp/projects/chise/ids/

International Character set standards | 173

Each IDC must be followed by two or three elements (the exact number depends on the
IDC). In addition, many characters require multiple IDCs, which results in IDSes with a
hierarchical structure. Table 3-98 illustrates examples of such IDSes. The parentheses that
are used in the “IDS Hierarchy” column serve to better illustrate the parsing and are not
considered part of an IDS.

Hierarchical Ideographic Description Sequences—examplesTable 3-98.

Ideograph Ids Ids hierarchy

隠 ⿰阝⿳爫彐心 ⿰阝 (⿳爫彐心)
穎 ⿰⿱匕禾頁 ⿰ (⿱匕禾) 頁
慧 ⿱⿱⿰丰丰彐心 ⿱ (⿱ (⿰丰丰) 彐) 心
鬱 ⿳⿲木缶木冖⿰鬯彡 ⿳ (⿲木缶木) 冖 (⿰鬯彡)
蠧 ⿱⿱士冖⿱石⿰虫虫 ⿱ (⿱士冖) (⿱石 (⿰虫虫))

The ordering of IDS elements does not necessarily represent the correct stroke-order se-
quence for the ideograph, even ignoring those cases when the stroke-order of an ideo-
graph is locale-dependent.

In terms of statistics, the IDC that is used the most frequently as the first IDC in an IDS is
U+2FF0 (⿰), which describes a left-right or side-by-side arrangement of elements. Of the
70K or so ideographs in Unicode, approximately 50K use this as the first IDC. The next
most frequently used IDC is U+2FF1 (⿱), which describes a top-bottom arrangement; ap-
proximately 20K of Unicode’s ideographs use this as the first IDC in their IDSes.

In terms of their history, IDCs were originally included in the GBK character set, in which
they were encoded from <A9 8A> through <A9 95>. Temporary Unicode mappings were
assigned, from U+E7E8 through U+E7F3, and then Unicode version 3.0 subsequently added
them from U+2FF0 through U+2FFB. The GB 18030-2000 character set standard specifies
the Unicode version 3.0 mappings for these characters.

Character description Language
Tom Bishop of Wenlin Institute invented what is now known as the Character Description
Language (CDL), which is best described as an XML application for visually describing
ideographs. Between him and Richard Cook of UC Berkeley, CDL descriptors for tens of
thousands of ideographs, covering Unicode’s CJK Unified Ideographs blocks, have been
created.

The CDL was originally conceived as a way to synthesize the glyphs for a font to be used in
Wenlin Institute’s own application called Wenlin.* In addition to its ability to fully describe
any ideograph in a visual manner, comparable to an IDS, its 128×128 design space is

* http://www.wenlin.com/

174 | Chapter 3: Character set standards

sufficient to render subtle details, and also has the ability to capture the writing order of
each stroke, along with the writing direction of the stroke.

CDL descriptors can be nested, meaning that a CDL descriptor can refer to another CDL
descriptor for one or more of its components. The CDL also has a mechanism for specify-
ing variant forms.

More information about the CDL can be found on Wenlin Institute’s website.*

CJKV locale-specific character form differences
The result of the processes that took place when developing Unicode, from a practical
point of view, is a set of 20,902 partially unified ideographs. This has certain implications
for those who feel that they can build a single typeface that will satisfy the character-form
criteria for all CJKV locales.

Table 3-99 illustrates several ideographs contained in Unicode, along with example
representations in four of the CJKV locales.

CJKV character form differencesTable 3-99.

Unicode code point China taiwan Japan Korea

U+4E00 一 一 一 一
U+4E0E 与 与 与 与
U+5224 判 判 判 判
U+5668 器 器 器 器
U+5B57 字 字 字 字
U+6D77 海 海 海 海
U+9038 逸 逸 逸 逸
U+9AA8 骨 骨 骨 骨

Note how U+4E00 can use the same character form (glyph) across all four CJKV locales,
but that the others are slightly different across locales, though some forms are shared by
more than one locale. This is not a criticism of Unicode, but rather the reality one must
deal with when building products based on Unicode that are designed to cover more than
one CJKV locale. In terms of font products, they are referred to as Pan-CJKV fonts.

* http://www.wenlin.com/cdl/

International Character set standards | 175

If you look carefully at the glyphs in Table 3-99, there are clear cases of locale-specific
differences that would persist regardless of typeface design, such as 骨 versus 骨. The
top element appears to be simply mirrored, but the former glyph is considered to be one
stroke less, thus simplified.

Unicode versus vendor character sets
Prior to Unicode effectively becoming the default or de facto way in which text is handled
in modern OSes and applications, vendor character sets were quite common. A vendor
character set is typically built on top of a national character set. For example, there are
at least a dozen vendor character sets that have been built on top of Japan’s JIS X 0208
character set standard. What made vendor character sets problematic is that they often
conflicted with one another.

Interestingly, and for the greater good, Unicode has all but made the need for vendor
character sets go away. The fact that characters are added to Unicode on a somewhat regu-
lar basis, thanks to the process that is in place to do so, means that vendors who would
otherwise resort to defining their own character set extensions can now find the necessary
characters somewhere within Unicode. If they cannot find the characters that they need,
they can take the necessary steps to propose them as new characters.

GB 13000.1-93
The Chinese translation of ISO 10646-1:1993 is designated GB 13000.1-93 (信息技术—
通用多八位编码字符集 (UCS)—第一部分: 体系结构与基本多文种平面 xìnxī jìshù—
tōngyòng duōbāwèi biānmǎ zìfùjí (UCS)—dìyī bùfen: tǐxì jiégòu yǔ jīběn duōwénzhǒng
píngmiàn), and established on August 1, 1994. GB 13000.1-93 appears to be a verbatim
translation. As indicated in Table 3-81, the GB 13000.1-93 standard is aligned with
Unicode version 1.1.

Given GB 18030-2000 and its 2005 update, along with the extent to which they are closely
aligned to Unicode and ISO 10646, the need to update GB 13000.1-93, specifically to keep
it aligned with the latest versions of Unicode and ISO 10646, has clearly diminished.

Cns 14649-1:2002 and Cns 14649-2:2003
Like China, Taiwan has also developed its own national standard that is effectively a
translation of ISO 10646. These translations are designated CNS 14649-1:2002 and CNS
14649-2:2003, and are entitled 資訊技術─廣用多八位元編碼字元集 (UCS)─第 1 部:
架構及基本多語文字面 (zīxùn jìshù—guǎngyòngduō bā wèiyuán biānmǎ zìyuánjí
(UCS)—dìyībù: jiàgòu jí jīběn duōyǔ wénzìmiàn) and 資訊技術─廣用多八位元編碼
字元集 (UCS)─第 2 部: 輔助字面 (zīxùn jìshù—guǎngyòngduō bā wèiyuán biānmǎ
zìyuánjí (UCS)—dìèrbù: fǔzhù zìmiàn), respectively. Due to the versions of the two ISO
10646 parts to which they are aligned, CNS 14649-1:2002 and CNS 14649-2:2003 are
aligned with Unicode versions 3.0 and 3.1, respectively.

176 | Chapter 3: Character set standards

JIs X 0221:2007
The first Japanese translation of the ISO 10646-1:1993 standard was designated JIS X
0221-1995 (国際符号化文字集合 (UCS)—第１部：体系及び基本多言語面 kokusai
fugōka moji shūgō (UCS)—daiichibu: taikei oyobi kihon tagengomen), and was established
on January 1, 1995. JIS X 0221-1995 contained additional sections, on pages 799–1027,
that listed Japanese-specific information. The most interesting of these are the following:

A table that provides the Chinese •	 康熙字典 (kāngxī zìdiǎn) and Japanese 大漢和辭
典 (dai kanwa jiten) index numbers for all 20,902 ideographs

A section that describes the Japanese subsets•	

The Japanese subsets as discussed in JIS X 0221-1995 are listed in Table 3-100. The subsets
are described in terms of seven parts.

JIS X 0221-1995’s Japanese subrepertoiresTable 3-100.

subrepertoire Characters description

Basic Japanese 6,884 JIS X 0208:1997, JIS X 0201-1997

Japanese Non-ideographic Supplement 1,913 JIS X 0212-1990 non-kanji plus other non-kanji

Japanese Ideographic Supplement 1 918 JIS X 0212-1990 kanji

Japanese Ideographic Supplement 2 4,883 Remainder of JIS X 0212-1990

Japanese Ideographic Supplement 3 8,745 Remainder of ideographs

Full-width Alphanumeric 94 For compatibility

Half-width katakana 63 For compatibility

JIS X 0221 was updated in 2001 to bring it into alignment with ISO 10646-1:2000, and it
was redesignated JIS X 0221-1:2000. It was updated again in 2007. As indicated in Table
3-81, JIS X 0221-1995 is aligned with ISO 10646-1:1993, and JIS X 0221-1:2001 is aligned
with ISO 10646-1:2000.

Ks X 1005-1:1995
The Korean translation of ISO 10646-1:1993, designated KS X 1005-1:1995 (국제 문자
부호계 (UCS) 제１부：구조 및 기본 다국어 평면 gukje munja buhogye (UCS) je 1 bu:
gujo mich gibon dagukeo pyeongmyeon), was established on December 7, 1995.* While the
frontmatter is translated into Korean, the annexes are left untranslated. As indicated in
Table 3-81, KS X 1005-1:1995 is aligned with Unicode version 2.0.

* Previously designated KS C 5700-1995

Character set standard oddities | 177

Character set standard oddities
While the contents of character set standards are, for the most part, assumed* to be
error-free by software developers and users, many of them do exhibit some interesting
characteristics that can only be described as oddities. For example, some character set
standards contain duplicate characters, some include characters that do not or should
not exist (although one could argue that such characters now exist by virtue of being in
a character set standard), some do not contain some characters that should have been
included (because they are needed to complete character pairs, to form a known word,
or to provide the corresponding traditional form of a simplified character), and some
became endowed with fictitious extensions. The following sections detail these oddities
and draw examples from common character set standards.

duplicate Characters
The most common character set oddity is duplicate characters. In some cases, duplicate
characters are intentional. Take, for instance, the hanja in KS X 1001:2004 that are or-
dered according to their readings. For those hanja that have been classified with multiple
readings, multiple instances of the hanja have been encoded in that standard. For reasons
of compatibility, Unicode needs to propagate these duplicate characters, which it does
through the use of its CJK Compatibility Ideographs blocks.

Speaking of CJK Compatibility Ideographs, not all of them are genuine duplicate char-
acters. Many of them are intended to be different from their Canonical Equivalents,
sometimes in seemingly subtle ways, yet fall within the scope of the Annex S unification
principles.

The most intriguing cases of duplicate characters are clearly those that are not intentional.
Character sets are designed by humans, and being the imperfect creatures that we are,
things that we create are prone to having errors. The greater the number of characters with
which one is dealing, the greater the potential for the introduction of errors, to include
duplicate characters. Thus, as the number of ideographs in Unicode grows, the greater the
potential for introducing duplicate characters. Thankfully, methods have been proposed
to help prevent duplicate characters from being introduced.

From my own experience, the committees that are charged with compiling new or revised
national standards can take advantage of Unicode by mapping their characters to its latest
version, which is one way to detect duplicate characters. This method of detecting dupli-
cate characters is performed at the character code level. The introduction of IDSes is yet
another way to detect duplicate characters, and is best applied for new characters being
proposed to Unicode. Due to the nature of IDSes, this method is visual and can result in
false positives. Clearly, the use of IDSes eases the process by which duplicate characters
can be detected, in order to prevent them from being introduced into Unicode.

* In case you were not aware, the word assume is an acronym.

178 | Chapter 3: Character set standards

Phantom Ideographs
While the ideographs that are included in noncoded character set standards have been
carefully accounted for during the development process, there are documented cases of
coded character sets that include ideographs whose origins cannot be determined. These
are called phantom ideographs, written as 幽霊漢字 (yūrei kanji) in Japanese.

During the development of JIS X 0208:1997, a team of researchers lead by Kohji Shibano
(芝野耕司 shibano kōji) attempted to account for every kanji included in the standard
in terms of sources and references. While some marginal cases were discovered during
this lengthy process, which involved sifting through countless name records, at least one
phantom character was identified. It is 彁, which is JIS X 0208:1997 55-27. The description
of the team’s findings starts on page 291 of the standard document.

Interestingly, any character set standard that is in any way based on JIS X 0208:1997 (such
as vendor extensions thereof, and even Unicode) will inherit this phantom character. The
corresponding Unicode code point for 彁 is U+5F41. The same can be said about other
coded character set standards that happen to include phantom characters.

Incomplete Ideograph Pairs
Several studies of the GB 2312-80 character set standard have been conducted since its
establishment, and some of them point out the fact that for several two-hanzi words (or
ideograph pairs), only one of the component hanzi is in GB 2312-80. The most remarkable
aspect of this phenomenon is that these hanzi usually appear together—almost never
with other hanzi or in isolation. These pairs of hanzi are called 连绵字 or 联绵字 (both
transliterated liánmiánzì) in Chinese.

One such study, conducted by Dejin Wang (王德进 wáng déjìn) and Sheying Zhang (张社
英 zhāng shèyīng) in 1989, identified six such cases in which one of the component hanzi
is in GB 7589-87 (four cases), GB 7590-87 (one case), or GB 13000.1-93 (one case).* Table
3-101 provides two examples of two-hanzi compounds that contain one hanzi not present
in GB 2312-80.

Incomplete hanzi pairs—examplesTable 3-101.

Hanzi reading Meaning GB code points Unicode code points
鸺鶹 xiǔliú owlet GB 2312-80 80-28 and GB 7589-87 62-11 U+9E3A and U+9DB9

欷歔 xīxǔ to sob, sigh GB 2312-80 76-04 and GB 7590-87 48-24 U+6B37 and U+6B54

* The study appeared in a paper entitled “Amendments on the GB 2312-80” (关于修改GB 2312-80的几点意
见 guānyú xiūgǎi GB 2312-80 de jǐdiǎn yìjian), published in Proceedings Papers of International Symposium
on Standardization for Chinese Information Processing (中文信息处理标准化国际研讨会论文集 zhōngwén
xìnxī chǔlǐ biāozhǔnhuà guójì yántǎohùi lùnwénjí), 1989, also known as SCIP 89.

Character set standard oddities | 179

Since GB 18030 is so important today, because it is the most important GB standard to
date, it should be pointed out that GB 7589-87 62-11 and Unicode U+9DB9 correspond to
GB 18030 <FA 56>, and that GB 7590-87 48-24 and Unicode U+6B54 correspond to GB
18030 <9A 5B>.

Given the relative size of Unicode and GB 18030, the occurence of incomplete ideograph
pairs has clearly diminished, but given the open-ended nature of the writing system, one
clearly cannot claim that this phenomenon has been eliminated.

simplified Ideographs Without a traditional Form
Although it is obvious that all traditional ideograph forms need not have a corresponding
simplified form—either because their form is already considered simple enough, or
because its use is relatively rare (only commonly used ideographs tend to develop
simplified forms)—there are instances of simplified ideographs that lack a corresponding
traditional form. I must point out that while it is generally the case that simplified forms
have a corresponding traditional form, it is not an absolute requirement, because it is
possible to coin new characters that use simplified components.

In general, the lack of a corresponding traditional forms can be considered a limitation
of the character set, and is indeed a character set oddity. As a real-world example of this
phenomenon, consider U+4724 (䜤), which lacks a corresponding traditional form, at least
in the context of Unicode version 5.0 and earlier. Interestingly, this did not remain the
case for long, because its corresponding traditional form was proposed and subsequently
accepted for inclusion in Unicode at code point U+9FC1 (�) and is included in Unicode
version 5.1.

Fictitious Character set extensions
When the 20,902 ideographs in ISO 10646-1:1993 (Unicode version 1.1) were compiled
from numerous national standards, the respective national-standard–developing
organizations submitted character set materials to the CJK-JRG (CJK Joint Research
Group, now called the IRG, which is an abbreviation for Ideographic Rapporteur Group)
for inclusion. However, in order to ensure that certain ideographs became part of the final
set of 20,902 characters, at least two national standards included fictitious extensions.
That is, ideographs that are not part of the standard, and never likely to be, were added.
Affected character sets include China’s GB/T 12345-90 and Taiwan’s CNS 11643-1986
Plane 14 (bear in mind that CNS 11643-1992 was not yet published at that time).

For GB/T 12345-90, any code point beyond Row-Cell 89-09 should be questioned and is
likely to fall into this area. For CNS 11643-1986 Plane 14, any code point beyond Row-
Cell 68-21 should be in doubt. When dealing with CNS 11643-1992 Plane 3 (identical
to the first 6,148 hanzi in CNS 11643-1986 Plane 14; the remaining 171 hanzi became
scattered throughout CNS 11643-1992 Plane 4), any code point beyond Row-Cell 66-38
may be problematic. Well, to be perfectly honest, they will be problematic.

180 | Chapter 3: Character set standards

An alternative set of Unicode mapping tables have been developed by Koichi Yasuoka (安
岡孝一 yasuoka kōichi), which do not include these fictitious character set extensions.*

seemingly Missing Characters
As pointed out earlier in this chapter, Chinese and Korean character sets include the com-
plete set of Japanese kana, specifically hiragana and katakana. While this seems to indicate
that Chinese and Korean fonts that are based on these character sets can render arbitrary
Japanese text that includes hiragana and katakana, this is not the case. As an example
of a katakana character that is missing from most Chinese and Korean character sets
that otherwise suggest that they include all Japanese kana characters, take for instance
the Japanese long vowel mark, ー, which is JIS X 0208:1997 01-28 and maps to Unicode
U+30FC. This character is absolutely necessary to properly render arbitrary katakana text.
To less of an extent, JIS X 0208:1997 01-19 through 01-22, which correspond to Unicode
U+30FD, U+30FE, U+309D, and U+309E, respectively, are also necessary to render hiragana
and katakana text.

Some Chinese character sets have recognized these omissions and have since added these
characters. GBK, which is an extended version of GB 2312-80, added the Japanese long
vowel mark at <96 C0>. GB 18030-2000 and its 2005 revision, due to their GBK heritage,
inherit the same character at the same code point.

CJK Unified Ideographs with no source
The ideographs that are included in Unicode almost always have a source or a source
glyph, meaning that the character is included because it maps to another standard, which
is a character set standard, or in some cases, a dictionary. A very small number of CJK
Unified Ideographs Extension B characters have no source glyph, specifically the follow-
ing three code points: U+221EC, U+22FDD, and U+24FB9. Given the importance of associat-
ing or linking an ideograph with one or more sources, especially in the context of CJK
Unified Ideographs, it makes one wonder how these ideogaphs were able to get into the
standard. Still, it is pointless to argue about them, and the only concern is how to properly
design their glyphs, whether it is for one or more locales.

Vertical Variants
CJKV text can be set vertically, which can cause some characters to have slightly differ-
ent forms or different relative positions. So, some character sets have chosen to include
vertical forms as separate characters, meaning they are at separate code points from their
horizontal counterparts. Some character sets do not directly encode vertical variants, and
instead expect some higher-level functionality, such as a glyph substitution feature trig-
gered by vertical writing, to handle vertical forms. The OpenType ‘vert’ GSUB (Glyph

* http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html

noncoded Versus Coded Character sets | 181

SUBstitution) feature is an example of a well-established glyph substitution implementa-
tion that is used by a wide variety of applications that support vertical writing.

Although the JIS standards themselves do not directly encode vertical variants, some
vendor character sets that are based on them, in particular JIS X 0208:1997, do so.

Vertical forms of characters intended for horizontal writing, when compared to their par-
ent (horizontal) forms, may rotate 90˚ clockwise, rotate 90˚ clockwise then flip or be mir-
rored, change their form completely, or reposition. Parentheses and other bracket-like
characters, including arrows, rotate 90˚ clockwise. The wave dash (U+301C) and Japanese
long vowel mark (U+30FC) are examples of characters that rotate then flip or are mirrored.
Periods and commas, along the small kana that are specific to Japanese, reposition to the
upper-right corner.

Interestingly, Unicode directly encodes some, but not all, vertical variants by virtue of the
fact that some national character set standards encode them. This is merely for code-point
compatibility. The corresponding Unicode code points and code point ranges are U+FE10
through U+FE19, U+FE30 through U+FE44, U+FE47, and U+FE48.

Some characters deserve special mention because they are used strictly for vertical writ-
ing, and thus do not have a corresponding horizontal form. Some examples, used in Ja-
pan, include U+3033 through U+3035 and U+303B. In fact, U+3033 and U+3034 are intended
to be combined or fused with U+3035.

Continued discussions of horizontal versus vertical forms, to include a complete corre-
spondence table showing their forms, can be found in Chapter 7, in which typography is
covered in detail.

noncoded Versus Coded Character sets
Noncoded character sets relate to coded ones in a variety of ways, depending on the
locale. Ideally, all NCSes should be mapped to CCSes. As NCSes change or grow, CCSes
are necessarily affected. This section illustrates how CCSes attempt to follow and keep
pace with NCSes, using the situations in China, Taiwan, Japan, and Korea as examples.
You will also learn how some NCSes exert influence, sometimes quite strongly, over the
development of new and existing CCSes.

China
All 2,500 Chángyòng Hànzì are included in GB 2312-80. All but five are in Level 1 hanzi.
For the 1,000 Cìchángyòng Hànzì, 998 are in GB 2312-80. 880 are in Level 1 hanzi, 118
are in Level 2 hanzi, and 2 are in GB 7589-87. Table 3-102 indicates how these two hanzi
can be mapped.

182 | Chapter 3: Character set standards

Two Cìchángyòng Hànzì not in GB 2312-80Table 3-102.

Hanzi GB 7589-87 GB 8565.2-88 GB/t 12345-90 GBK and GB 18030 Unicode
啰 22-51 15-93 n/aa <86 AA> U+5570

瞭 58-43 93-47 88-49 <B2 74> U+77AD

Oddly enough, its traditional form, a. 囉, is at 88-51. Neither GB 2312-80 nor GB/T 12345-90 contain the simplified form.

The remaining 3,500 hanzi of the Tōngyòng Hànzì list are distributed as follows: 3,095 are
in GB 2312-80 (380 are in Level 1 hanzi, and the remaining 2,715 are in Level 2 hanzi),
404 are in GB 7589-87, and 1 is in GB 7590-87.

Appendix G includes the Chángyòng Hànzì and Cìchángyòng Hànzì hanzi lists broken
down by the character sets, and the hanzi levels that support them.

taiwan
The list of 4,808 hanzi, which can be called Taiwan’s Chángyòng Hànzì, was used as the
basis for Big Five Level 1, CNS 11643-2007 (and -1992 and -1986) Plane 1, and CCCII.
The additional hanzi lists, such as their Cìchángyòng Hànzì, were used to define the
remainder of the above coded character sets.

Japan
All of Tōyō Kanji were included in JIS Level 1 kanji of JIS C 6226-1978. When Jōyō Kanji
was introduced in 1981, the additional 95 kanji and subsequent glyph changes forced the
creation of JIS X 0208-1983 (first called JIS C 6226-1983, and then changed to the new
designation in 1987)—those extra 95 characters had to be made part of JIS Level 1 kanji
(22 simplified and traditional kanji pairs exchanged code points between JIS Levels 1 and
2 kanji). Appendix J lists the 95 kanji that were added to Tōyō Kanji in 1981 in order to
become Jōyō Kanji.

The kanji specified in Jinmei-yō Kanji, on the other hand, could appear in either JIS Levels
1 or 2 kanji, so that is why four kanji were appended to JIS X 0208-1983, and two to JIS X
0208-1990. Table 3-103 lists the four kanji appended to JIS Level 2 kanji in 1983 in order
to create JIS X 0208-1983.

Four kanji appended to JIS X 0208-1983Table 3-103.

Kanji JIs X 0208-1983 Unicode

堯 84-01 U+582F

槇 84-02 U+69C7

遙 84-03 U+9059

瑤 84-04 U+7464

noncoded Versus Coded Character sets | 183

Table 3-104 lists the two kanji that were appended to JIS Level 2 kanji in 1990 in order to
create JIS X 0208-1990.

Two kanji appended to JIS X 0208-1990Table 3-104.

Kanji JIs X 0208-1990 Unicode

凜 84-05 U+51DC

熙 84-06 U+7199

There is no direct relationship between Gakushū Kanji and CCSes, but Gakushū Kanji
is a subset of Jōyō Kanji.* Thus, Gakushū Kanji is primarily discussed in the context of
NCSes.

The NLC Kanji set, consisting of 1,022 kanji, along with the current set of 983 Jinmei-yō
Kanji, are the primary reasons for the changes made to the JIS X 0213:2004 standard—
specifically the prototypical glyph changes for 168 of its kanji, along with 10 additional
kanji. This again demonstrates that NCSes continue to be developed, and that they exert
influence, sometime heavily, on CCSes.

Another potentially interesting aspect of NCSes when compared to their coded
counterparts is that they tend to be under stricter glyph control. In other words, a
commissioned group of experts spend a significant amount of time and effort to determine
the correct form of kanji, typically for those that are more frequently used. If one compares
the number of kanji in the NCSes with those in the CCSes, one sees that the potential for
future change, in terms of prototypical glyph changes in CCSes, exists. Table 3-105 lists
the number of unique kanji in the current Japanese noncoded and coded character sets.

The number of kanji in Japanese noncoded and coded character setsTable 3-105.

Character set type Character sets number of unique kanji

NCS Jōyō Kanji + Jinmei-yō Kanji + NLC Kanji 3,506a

CCS JIS X 0208 + JIS X 0212 + JIS X 0213 13,109b

The Jinmei-yō Kanji and NLC Kanji sets significantly overlap. Of the 983 kanji in the former, and the 1,022 kanji in the latter, 444 kanji are a.
common. This means that there are 1,561 unique kanji when the two sets are combined.

The JIS X 0213 and JIS X 0212 character sets significantly overlap. Of the 3,695 kanji in the former, and the 5,801 kanji in the latter, 3,058 kanji b.
are common. This means that there are 6,753 unique kanji when the two sets are combined.

Table 3-105 draws attention to the fact that barely over 25% of the kanji in the JIS standards
are under a stricter degree of glyph control. What does this mean? Simply that there is
potential for additional prototypical glyph changes, but at the same time, the chance of
this happening is relatively low. To quote FBI Special Agent Fox Mulder, it is not outside
the realm of extreme possibilities.

* But, this means that Gakushū Kanji is a subset of JIS Level 1 kanji.

184 | Chapter 3: Character set standards

Figure 3-2 illustrates how earlier versions of the Japanese NCSes relate to each other and
to JIS Levels 1 and 2 kanji, defined in the JIS standards (specifically JIS X 0208:1997).

JIS Level 1 Kanji

Jōyō Kanji

Gakushū Kanji
JIS Level 2 Kanji

Jinmei-yō
Kanji

Noncoded versus coded Japanese character set standardsFigure 3-2.

Korea
The 1,800 hanja enumerated in Korea’s Hanmun Gyoyukyong Gicho Hanja form a subset
of the 4,888 hanja in KS X 1001:2004. But, because 268 of the hanja in KS X 1001:2004
are the result of multiple encoding due to multiple readings, these 1,800 Hanmun Gyoyu-
kyong Gicho Hanja need to be represented by more than 1,800 hanja in KS X 1001:2004.
For the same reason, the middle school subset containing 900 hanja are represented by
more than 900 hanja in KS X 1001:2004.

Information Interchange and Professional Publishing
Besides the distinction between noncoded and coded character set standards, there are
two types of character sets in use today: those for information interchange, and those for
professional and commercial publishing. The goals and intended uses of these character
sets differ. The following sections detail their characteristics and the ways in which they
are different from one another.

Character sets for Information Interchange
The majority of character set standards in use today were originally designed for
information interchange. Well, after all, look at some of their titles. The title of JIS X
0208:1997 is 7-bit and 8-bit Double Byte Coded Kanji Sets for Information Interchange, and

Information Interchange and Professional Publishing | 185

the title of ASCII (officially designated ANSI X3.4-1986) is Coded Character Set—7-bit
American National Standard Code for Information Interchange. Information interchange
can be defined as the process of moving data from one hardware or software configuration
to another with little or no loss of information. Of course, no loss of information is better
than little loss.

Unicode, although it provides a vast number of characters, was still designed with
information interchange in mind—building a superset based on national standards, which
were designed for information interchange, still results in a character set for information
interchange. This is not a bad thing. In fact, it is a very good thing. Unicode effectively
levels the playing field in terms of how characters are represented, and also serves to
simplify and ease software development.

The vast majority of today’s CJKV fonts include glyphs for characters from character set
standards designed for information interchange. While the glyphs that these fonts provide
are sufficient for most users’ needs, they are far from ideal for professional or commercial
publishing.

Character sets for Professional and Commercial Publishing
The ASCII character set, as was discussed earlier in this chapter, consists of 94 printable
characters. ISO 8859-1:1998, the most common extension to ASCII, adds another 95. But
these two character sets are still missing characters critical for professional or commercial
publishing, such as smart (or “curly”) quotes, the various dashes (such as the en dash and
em dash), and so on. Even the most basic English-language publication requires characters
not found in ISO 8859-1:1998. Most of today’s non-CJKV fonts, such as Type 1, TrueType,
and OpenType, include glyphs for professional publishing. Their glyph set specifications
evolved out of the needs of the professional and commercial publisher, and, at the same
time, still provide the basic set of characters (in other words, ASCII) for nonprofessional
users.

The same is true for the CJKV locales. JIS X 0208:1997, for example, is missing characters
that are necessary for professional publishing. In Japan, the following character classes
and features are necessary in character sets intended for professional or commercial
publishing purposes:

Proportional Latin and corresponding italic design for Latin text•	

Macron-adorned vowels—such as ā, ī, ū, ē, and ō—for transliterated Japanese text•	

Kanji variants (simplified, traditional, and other forms)•	

Additional kanji, including variant forms•	

Additional punctuation and symbols•	

Alternate metrics (half-width symbols/punctuation, proportional kana, and so on)•	

186 | Chapter 3: Character set standards

More information regarding these character classes and typographic features will be
presented in Chapter 7.

Vendors that provide professional publishing systems commonly build or supply fonts
based on character sets for information interchange, but heavily supplement such fonts
with glyphs for the character classes just listed, usually at unique code points. Why do
these character sets include characters for information interchange? Most documents that
are eventually published originate on systems that process character sets for information
interchange, so that is why character sets for professional publishing must use those
characters as their base.

Examples of character sets for professional publishing include Fujitsu’s JEF, Morisawa’s
MOR-CODE II, and Shaken’s SK78. The major disadvantage of these and other character
sets for professional publishing is that they are usually restricted to proprietary hardware
or software, and thus require a major investment.

Future trends and Predictions
There are two specific issues that I’d like to cover that represent future trends and are ef-
fectively predictions based on observations I have made over the years. The shorter-term
issue is today’s trend to use of emoji, which are character-like pictures that convey mean-
ings, including subtle emotional states. These are broadly used in Japan and are associated
with text messages sent to and from mobile devices. The longer-term issue is a prediction
that the locale-specific distinctions of ideographs, such as those shown in Table 3-99, may
some day go away.

emoji
Mobile phones have become extremely popular in Japan and other regions. In Japan, mo-
bile phones are referred to as 携帯電話 (keitai denwa). Their capabilities have become so
sophisticated that many people use them in lieu of a computer. In addition to being able to
use them for voice communication, meaning as a phone or for leaving or listening to voice
messages, they also serve to send and receive text messages. Given the necessary brevity
of text messages, the Japanese culture came up with a new class of character called emoji,
which is written 絵文字 (emoji) in Japanese.* These characters are often called emoticons,
though most emoji are not true emoticons. Of course, many simple emoticons have been
used, and continue to be used, such as the infamous smiley that is composed of three
ASCII characters, and necessarily rotated 90˚ counter-clockwise: :-).

The primary issue with emoji is that they lack standardization. There are three sets of
emoji being used in Japan, each of which is associated with a different mobile phone
provider: i-mode by NTT DoCoMo, EZweb by KDDI au, and SoftBank Mobile (formerly
Vodafone). Google also supports emoji as a fourth set. Table 3-106 lists a small number of

* http://en.wikipedia.org/wiki/Emoji

Future trends and Predictions | 187

emoji, along with the various codes associated with them, according to these four emoji
sets. The codes are Shift-JIS (user-defined region), Unicode (PUA) scalar values, and sim-
ple index numbers. Although these examples do not represent widely used emoji, they are
ones that happen to have Unicode code points, as the table indicates.

Emoji examplesTable 3-106.

emoji Meaning Unicode i-mode eZweb softBank Mobile Google

☀ sunny U+2600 F89F/U+E63E 1 F660/U+E488 44 F98B/U+E04A 74 U+FE000

☁ cloudy U+2601 F8A0/U+E63F 2 F665/U+E48D 107 F98A/U+E049 73 U+FE001

☂ rain U+2614 F8A1/U+E640 3 F664/U+E48C 95 F98C/U+E04B 75 U+FE002

☃ snow U+26C4 F8A2/U+E641 4 F65D/U+E485 191 F989/U+E048 72 U+FE003

♨ hot springs U+2668 F99C/U+E6F7 147 F695/U+E4BC 224 F763/U+E123 125 U+FE7FA

Clearly, there is a problem. There are two standardization issues that need to be solved.
First, these four sets of emoji are not completely compatible with one another, meaning
that when a text message containing emoji is sent from a cell phone from one carrier to
another, the proper treatment of emoji cannot be guaranteed. Second, these emoji are cur-
rently being exchanged through the use of Unicode PUA or Shift-JIS user-defined code
points, both of which are considered bad practice in today’s world of open systems.

In terms of their visual representation, emoji are almost always colored, often with more
than one color. Some are even animated. Given the limitations of today’s font formats,
the multicolored and animated emoji are effectively graphics with character-like attri-
butes. They can be represented through various means, but what is important is the way
in which they are conveyed in an “information interchange” environment.

Finally, I need to point out that emoji are not specific to Japan and are used throughout
the world. The first step to solving this issue is to first acknowledge that emoji are char-
acters, and to treat them as such in terms of standardization. Any standardization efforts
affecting their status as characters obviously involves Unicode.

Genuine Ideograph Unification
Table 3-99 illustrated that there are sometimes subtle, but necessary, glyph differences
that must be taken into account when representing ideographs across CJKV locales. These
glyph differences are simply an artifact of the conventions used in those regions. The ideo-
graphs themselves represent the same meaning, regardless of these subtle differences.

To some extent, the notion of Simplified Chinese is anything but simple, and instead made
the world a more complex place. As a font developer, it is interesting to note that typical
Simplified Chinese fonts include more glyphs than those for Traditional Chinese, Japa-
nese, or Korean. Simplified Chinese served to increase the repertoire of ideographs, be-
cause the original, or traditional, forms must be maintained. And, in terms of complexity,

188 | Chapter 3: Character set standards

the relationship between simplified and traditional forms, which is not always a one-to-
one relationship, must also be maintained.

I predict that within 25 years there will be an initiative to unify or normalize ideographs
across all locales that use them. To a great extent, Unicode and the way in which its CJK
Unified Ideograph blocks capture character-level distinctions are serving as the spark for
such an effort.

In other words, I predict that at some point many years into the future, a single glyph
per CJK Unified Ideograph code point will become acceptable for all CJKV locales. After
all, the Web and other globalization activities are serving as a catalyst to make the world
a smaller place, and thus forcing or enabling cultures to interact to a greater extent than
previously possible. When cultures interact, they exert influence on each other. Writ-
ing systems are easily influenced, especially if there is something to gain through their
unification.

Bear in mind that until this takes place, it is prudent to preserve locale-specific glyph
distinctions, and single fonts that are intended to support multiple locales must include
more than one glyph for many Unicode code points, along with a mechanism for switch-
ing glyphs based on locale.

Advice to developers
A difficult question often posed by developers is, “What character sets should my product
support?” The answer to that seemingly all-important question really hinges on at least
three factors, posed as the following questions:

What specific CJKV locale or locales need to be supported by the product?•	

To what extent is the developer embracing or supporting Unicode?•	

On what specific platform or platforms does the application run?•	

If your product is designed for a single CJKV locale (which really assumes two locales:
the specific CJKV locale plus non-CJKV support, meaning ASCII or the locale-specific
equivalent at a minimum), you need to decide which character set to support. As will
be explained, this is independent of supporting Unicode. If at all possible, you should
consider supporting the supplemental character sets—such as the additional planes of
CNS 11643-2007 for Taiwan, JIS X 0213:2004 for Japan, KS X 1002:2001 for Korea, and
so on—especially if there is a demand from your customers. In the case of China, the
use of GB 18030-2005 has been mandated by their government. But, at a bare minimum,
the basic character sets should be implemented or otherwise supported for each CJKV
locale that is supported. Table 3-107 lists eight major CJKV locales, along with their most
commonly used and additionally recommended CCSes.

Advice to developers | 189

The most common and recommended CJKV character setsTable 3-107.

Locale Common character set recommended character set

China GB 2312-80 GB 18030-2005

Singapore GB 2312-80 GB 2312-80

Taiwan Big Five or CNS 11643-2007 Planes 1 and 2a Additional planes of CNS 11643-2007

Hong Kong Hong Kong SCS-2008 same

Japan JIS X 0208:1997 JIS X 0213:2004b

South Korea KS X 1001:2004 same

North Korea KPS 9566-97 same

Vietnam TCVN 5773:1993 and TCVN 6056:1995 same

Which one you choose depends on the underlying operating system.a.

Its definition includes all of the characters in JIS X 0208:1997, and is thus a superset thereof.b.

One should be aware that supporting CCSes for Chinese locales, meaning China, Taiwan,
and Hong Kong, can sometimes lead to confusion or unexpected complexities. Some
products attempt to support both major Chinese locales—China and Taiwan—in a single
product (such was the case with Apple’s Chinese Language Kit), but that is not an absolute
requirement. In fact, it is sometimes beneficial to build separate products for each of these
Chinese locales, for political or other reasons.

Bear in mind that things change over time. What is current at the time of this writing
may be outdated five years later. The footnotes that are scattered throughout this book are
references to resources that are likely to provide up-to-date information, such as new or
updated character set standards.

the Importance of Unicode
But what about Unicode—and to some extent, the international and national CCSes
based on it, specifically ISO 10646:2003, GB 13000.1-93, CNS 14649-1:2002, CNS 14649-
2:2003, JIS X 0221:2007, and KS X 1005-1:1995? Unicode is here to stay and is being
used to implement real software products. In fact, Unicode has become the preferred
method by which characters are represented in today’s software. I cannot stress enough
the importance of embracing Unicode.

Some seemingly locale-specific character sets are best implemented through Unicode,
or are intended to be implemented only through it. JIS X 0213:2004 is an example of a
Japanese CCS that is intended to be implemented only through the use of Unicode. GB
18030-2005 is an example of a Chinese CCS that is best implemented through Unicode.
Regardless, the best way in which to develop software today is by embracing Unicode.

But, when embracing Unicode in terms of a character set, and when implementing only
one CJKV locale, what specific code points should be used? That’s easy. You map the
locale-specific CCS that you support to the corresponding Unicode code points. For each

190 | Chapter 3: Character set standards

locale, the work of determining which Unicode characters are the most important to
support has been done by virtue of the CCSes that have been established.

Plan 9 (experimental) by AT&T Bell Laboratories, Solaris by Sun Microsystems, and
Windows NT by Microsoft were OSes that represented very early adopters of Unicode.
Virtually all of today’s OSes, such as Linux, FreeBSD, Windows 2000/XP/Vista, and Apple’s
Mac OS X, fully support Unicode, including characters beyond the BMP. The Java, .NET,
JavaScript, and ActionScript programming languages support Unicode as their primitive
“char” type and for their “String” objects. Although these environments support Unicode
in a more or less native way, developers can still take full advantage of Unicode’s benefits
by processing Unicode internally using virtually any programming language that supports
vectors of 16-bit unsigned integers (or equivalent) as long as UTF-16 is the preferred
encoding. UTF-32 encoding obviously requires 32-bit support.

It is safe to state that unless you have a very good reason not to support Unicode in
your product, which is highly unlikely, you should. In fact, you are effectively crippling
your product by not supporting Unicode. Several Unicode-enabled applications that
have been shipping for years are excellent examples of Unicode’s success (and also serve
as examples of success by embracing Unicode). Early versions of JustSystems’ Ichitaro
(一太郎 ichitarō) Japanese word processor, for example, processed Unicode internally,
yet worked as though it were still processing Shift-JIS encoding internally. The following
is a small sampling of early software developed using Unicode in one way or another (a
complete list of current software is now obviously very large):

•	 Internet Explorer

Netscape Communicator•	

Microsoft Excel•	

Microsoft Word•	

Oracle•	

Sybase SQL Server•	

The Unicode Consortium maintains a list of Unicode-enabled products, which I encourage
you to explore.*

Those developers who need some assistance in supporting Unicode (or are developing
on a platform that does not yet support Unicode, which is a rare thing today) should
consider the many Unicode-enabling programming environments or libraries that are
now available. International Components for Unicode (ICU) is an example of a highly
respected and widely used Unicode-enabling library.† See the section entitled “Other
Programming Environments” in Chapter 9 for more details.

* http://www.unicode.org/onlinedat/products.html
† http://www.icu-project.org/

Advice to developers | 191

What follows is a bit of history that may be of interest, and that makes an important point.
When JIS C 6226-1978 was first introduced in Japan in 1978, it was not met with general
acceptance from the industry. The problem was that it did not include all the characters
found in the major Japanese vendor character set standards already in place at the time.
JIS C 6226-1978 eventually did become the standard in Japanese industry, and is now
generally accepted. The Unicode Consortium, on the other hand, made sure that all of the
characters from the major national standards were included as part of Unicode.* Unicode,
like most other character sets, is constantly growing and evolving. Perhaps more so than
other character sets given its almost universal acceptance.

* This also means that Unicode has inherited any and all errors that are in the national standards from which
it was designed. With this comes compatibility with such standards, which clearly outweighs all other
considerations.

193

CHAPter 4

encoding Methods

In this chapter you will learn how the CCSes presented in Chapter 3 are encoded for use
on computer systems. The discussions in this chapter apply only to CCSes. That is, they
do not apply to NCSes, such as Japan’s Jōyō Kanji, Gakushū Kanji, Jinmei-yō Kanji, and
their predecessors. To recap what you learned early on in this book, encoding is simply
the mapping or assignment of a numeric value to a character.

Now that we are beginning to focus on encoding methods, you should expect to acquire a
complete understanding of a large number of encoding methods, and more importantly,
how they relate to and interoperate with each other. One important goal of this book will
then have been achieved. If you happen to absorb other information, that is also a good
thing. Otherwise, please treat much of this chapter as reference material, and consult it on
an as-needed basis, being sure to bookmark or dog-ear what you feel are key pages.

Factor in that the first edition of this book was published at the end of 1998. At that time,
Unicode was not yet universally recognized, accepted, or implemented. Now it is safe to
state that Unicode’s encoding forms have become universally recognized and accepted as
the preferred encoding for text data. But, because interoperability with non-Unicode en-
codings continues to play an important role in today’s software, you will still learn about
legacy encoding methods, such as ISO-2022, EUC, Big Five, and Shift-JIS, which are still
commonly used, and are expected to be for many more years. These are referred to as the
legacy encoding methods because the word “legacy” also conveys a sense of time, as in lots
of it. Because of the importance of Unicode for today’s software, its encoding forms will be
covered first, in order to lay the foundation for describing how legacy encoding methods
compare to them and to each other.

In the first pages of this chapter, you will learn about three basic Unicode encoding forms,
two of which have variations that differ only in their byte order. These are the most impor-
tant encoding forms used today, and are expected to remain so for years to come. In other
words, their use, although already widespread today, is ever-increasing. It is important
to understand how these Unicode encoding forms work, and perhaps even more impor-
tantly, how they relate to one another.

194 | Chapter 4: encoding Methods

In essence, you will learn about the following Unicode encoding forms and how they are
related to each other:

UTF-16 (•	 UTF-16BE and UTF-16LE)

UTF-32 (UTF-32BE and UTF-32LE)•	

UTF-8•	

Because the UTF-16 and UTF-32 encoding forms are not byte-based, and because byte
order plays a critical role in the interpretation of their code units, they typically require a
beginning-of-file marker known as the Byte Order Mark (BOM) or must be specified by a
higher-level protocol. In the absence of these, UTF-16 and UTF-32 are assumed to use big-
endian byte order. There are variant forms of the UTF-16 and UTF-32 encoding forms
that explicitly indicate byte order, and thus do not require a BOM to be present, spe-
cifically UTF-16BE (UTF-16 Big-Endian) and UTF-16LE (UTF-16 Little-Endian) for the
UTF-16 encoding form, and likewise, UTF-32BE and UTF-32LE for the UTF-32 encod-
ing form. You will also learn why it is incredibly useful to use a BOM for UTF-8–encoded
text, although one is not required according to its specification.

In terms of legacy encodings, there are two encoding methods that are common to nearly
every CJKV character set, with the exception of the GB 18030-2005, Big Five, and Hong
Kong SCS-2008 character sets:

ISO-2022•	

EUC (Extended Unix Code)•	 *

As you will learn later in this chapter, the exact definition of these two very basic encoding
methods depends greatly on the locale. In other words, there are locale-specific instances
of these encodings, and they will be described in this chapter, at least the ones that are
CJKV-related.

There are also a number of locale-specific legacy encoding methods that are still in use
today, such as the following, with the locales that they support being indicated after the
dash:

GBK and GB 18030—China•	

Big Five—Taiwan and Hong Kong•	

Big Five Plus—Taiwan•	

Shift-JIS—Japan•	

Johab—Korea•	

* You will soon learn that although the “U” in EUC stands for “Unix,” this encoding is commonly used on other
platforms, such as Mac OS and Windows.

 | 195

In terms of structure and mechanics, the encoding methods described in this chapter fall
into one of four possible categories:

Modal•	

Nonmodal•	

Fixed-length•	

Hybrid (fixed-length and nonmodal)•	

Modal encoding methods require escape sequences or other special characters for the
specific purpose of switching between character sets or between different versions of the
same character set; this sometimes involves switching between one- and two-byte modes.
Modal encoding methods additionally use what I would refer to as a two-stage encod-
ing process. The first stage is the mode switching that is initiated by the escape sequence
or mode-switching characters. The second stage is the handling of the actual bytes that
represent the characters. Modal encoding methods typically use seven-bit bytes. The best
example of modal encoding is ISO-2022 encoding. UTF-7 encoding, although its use is
deprecated, is also considered a modal encoding.

Nonmodal encoding methods, on the other hand, make use of the numeric values of the
bytes themselves in order to decide when to switch between one- and two-byte modes.
And, sometimes the number of bytes per character is three or four. Nevertheless, the prin-
ciple is the same, specifically that the values of the bytes themselves drive the switching.
These encoding methods typically make liberal use of eight-bit bytes (that is, the eighth
bit of the byte is turned on or enabled) and are typically variable-length. Examples include
the various locale-specific instances of EUC encoding, along with GBK, GB 18030, Big
Five, Big Five Plus, Shift-JIS, Johab, and UTF-8 encodings. Nonmodal encodings typically
use less space—in terms of the number of bytes required per character—than modal and
fixed-length encoding methods.

Fixed-length encoding methods use the same number of bits or bytes to represent all the
characters in a character set. There is no switching between one- and two-byte modes.
This type of encoding method simplifies text-intensive operations, such as searching, in-
dexing, and sorting of text, but can waste storage space or memory. Efficiency and ease-
of-use are reasons why fixed-length encodings are often used for the purpose of internal
processing. Examples of fixed-length encoding methods include ASCII and the UTF-32
encoding form.

UTF-16 is an example of an encoding form that can be considered hybrid, in the sense
that although it is based on fixed-length, 16-bit code units, it also has a nonmodal com-
ponent that pairs these 16-bit units as an extension mechanism to encode 1,048,576 ad-
ditional code points. UTF-16 is one of the most widely used encoding forms today, so
understanding how its encoding works and how to interoperate with the other Unicode
encoding forms is important.

Table 4-1 summarizes all of the CJKV encoding methods that are covered in this chap-
ter, indicating whether they are Unicode or legacy (non-Unicode), their encoding type,

196 | Chapter 4: encoding Methods

the specific locales that they serve (if any) and the number of bytes or bits that they use.
The three obsolete and deprecated Unicode encodings are also included for the sake of
completeness.

CJKV encodingsTable 4-1.

encoding encoding type Locale number of bytes/bits

Un
ico

de
 en

co
di

ng
 fo

rm
s

UTF-7a Modal n/a Variable

UTF-8 Nonmodal n/a One- through four-byte

UCS-2a Fixed-length n/a 16-bit

UTF-16 Hybrid n/a One or two 16-bit units

UTF-16BE Hybrid n/a One or two 16-bit units

UTF-16LE Hybrid n/a One or two 16-bit units

UCS-4a Fixed-length n/a 32-bit

UTF-32 Fixed-length n/a 32-bit

UTF-32BE Fixed-length n/a 32-bit

UTF-32LE Fixed-length n/a 32-bit

Le
ga

cy
 en

co
di

ng
 m

et
ho

ds

Locale-independent

ASCII Fixed-length Multiple One-byte

EBCDIC/EBCDIK Fixed-length Multiple One-byte

ISO-2022 Modal Multiple One- and two-byte

EUC Nonmodal Multiple One- through four-byte

Locale-specific

GBK Nonmodal China One- and two-byte

GB 18030 Nonmodal China One-, two-, and four-byte

Big Five Nonmodal Taiwan and Hong Kong One- and two-byte

Big Five Plus Nonmodal Taiwan One- and two-byte

Shift-JIS Nonmodal Japan One- and two-byte

Johab Nonmodal Korea One- and two-byte

Obsolete and deprecateda.

Be aware that not all of the encodings described in this chapter have been fully imple-
mented—they have been defined by appropriate agencies, corporations, or committees so
that their implementation, once it begins, is simplified. To some extent, the introduction
and universal acceptance of the Unicode encodings has effectively stalled the develop-
ment of other legacy encodings. The only legacy encoding to have been introduced since
the first edition of this book was published (exactly 10 years ago) is GB 18030 encoding.

Unicode encoding Methods | 197

Table 4-2 enumerates all of the legacy encoding methods that are covered in this chapter,
along with the specific CCSes from Chapter 3 that they support. The ISO-2022 and EUC
encodings are clearly the richest, because they support the largest number of CCSes.

Legacy encoding methods and supported CCSesTable 4-2.

encoding supported character sets

ASCII ASCII, GB-Roman, CNS-Roman, JIS-Roman, KS-Roman

Extended ASCII ASCII, GB-Roman, CNS-Roman, JIS-Roman, half-width katakana, KS-Roman, TCVN-Roman

EBCDIC/EBCDIK ASCII, GB-Roman, CNS-Roman, JIS-Roman, half-width katakana, KS-Roman, TCVN-Roman

ISO-2022 ASCII, GB-Roman, CNS-Roman, JIS-Roman, half-width katakana, KS-Roman, TCVN-Roman,a GB 2312-80,
GB/T 12345-90,a CNS 11643-2007, JIS X 0208:1997, JIS X 0212-1990, JIS X 0213:2004, KS X 1001:2004,
KS X 1002:2001,a KPS 9566-97, TCVN 5773:1993,a TCVN 6056:1995a

EUC ASCII, GB-Roman, CNS-Roman, JIS-Roman, half-width katakana, KS-Roman, TCVN-Roman, GB 2312-80,
GB/T 12345-90, CNS 11643-2007, JIS X 0208:1997, JIS X 0212-1990, JIS X 0213:2004, KS X 1001:2004, KS
X 1002:2001, KPS 9566-97, TCVN 5773:1993, TCVN 6056:1995

GBK ASCII, GB-Roman, GB 2312-80, GB/T 12345-90,b GBK

GB 18030 ASCII, GB-Roman, GB 2312-80, GB/T 12345-90,b GBK, GB 18030-2005, Unicode

Big Five ASCII, CNS-Roman, Big Five, Hong Kong GCCS, Hong Kong SCS-2008

Big Five Plus ASCII, CNS-Roman, Big Five, Big Five Plus

Shift-JIS ASCII, JIS-Roman, half-width katakana, JIS X 0208:1997

Johab ASCII, KS-Roman, KS X 1001:2004

No escape sequence has been registered for GB/T 12345-90 (and several other character set standards), but its design fits nicely into the a.
ISO-2022 model.

All the characters specific to GB/T 12345-90, meaning its 2,180 traditional hanzi, are included in GBK and GB 18030 encoding, but at different b.
code points than in EUC-CN encoding.

As I mentioned at the very beginning of this chapter, because of the important role that
Unicode plays in the software development efforts of today, their encodings are covered
first. For those who wish to explore other encoding possibilities related to Unicode, I en-
courage you to explore Wenlin Institute’s page that describes UCS-G, UCS-E, and UCS-∞
encodings.*

Unicode encoding Methods
Prior to the introduction of Unicode, typical CJKV encoding methods supported thou-
sands or tens of thousands of code points. Unicode changed all this, somewhat by storm.
The full definition of Unicode supports up to 1,112,064 code points. And, as you learned
in Chapter 3, Unicode version 5.1 assigns characters to over 100,000 of these code points.
These figures are certainly staggering, but they should be far from overwhelming.

* http://wenlin.com/ucs-x.htm

198 | Chapter 4: encoding Methods

Before I describe each Unicode encoding form, I feel that it is useful to introduce some
new concepts that will make these encodings forms easier to understand. The sections
that follow draw attention to special characters or properties of Unicode. Knowing when
these special characters should be used, and understanding the properties, will help to
guide your way through the rest of this chapter.

special Unicode Characters
Before we dive into full descriptions and explanations of the various Unicode encod-
ing forms, I first want to draw your attention to five special characters in Unicode that
are worth mentioning in the context of this book, all of which are listed in Table 4-3,
along with their representations in the Unicode encoding forms that are covered in this
chapter.

Special Unicode charactersTable 4-3.

Character name Unicode UtF-32Be UtF-32Le UtF-16Be UtF-16Le UtF-8

Ideographic Space U+3000 00 00 30 00 00 30 00 00 30 00 00 30 E3 80 80

Geta Mark U+3013 00 00 30 13 13 30 00 00 30 13 13 30 E3 80 93

Ideographic Variation Indicator U+303E 00 00 30 3E 3E 30 00 00 30 3E 3E 30 E3 80 BE

Byte Order Mark (BOM) U+FEFF 00 00 FE FF FF FE 00 00 FE FF FF FE EF BB BF

Replacement Character U+FFFD 00 00 FF FD FD FF 00 00 FF FD FD FF EF BF BD

The Ideographic Space (U+3000) character is special in the sense that it easily confused
with the Em Space (U+2003). In terms of rendering, both characters will almost always ap-
pear the same, and one would be hard-pressed to distinguish them visually. The difference
is one of context and semantics. CJKV character sets typically include what is referred
to as a full-width space. CJKV character sets also include ideographs, and the full-width
space is used with them to maintain a grid-like text composition. This full-width space
corresponds to the Ideographic Space character. The Em Space is intended to be used in
non-CJKV contexts.

The Geta Mark (〓; U+3013; see JIS X 0208:1997 02-14) may be used to indicate an ideo-
graph that is not available in the selected font for proper rendering. “Geta” (下駄 geta)
is a Japanese word that refers to a type of wooden shoe whose sole appears as two heavy
horizontal bars, and the Geta Mark character looks remarkably similar.

The Ideographic Variation Indicator (〾; U+303E) is used to indicate that the intended
ideograph is a variant form of the ideograph that immediately follows it. The use of this
character simply means that the document author was not able to find an exact match for
the intended ideograph. It serves as a flag to indicate that the ideograph that was really
intended is not available in Unicode, but may otherwise be available in a font.

The Byte Order Mark (U+FEFF) has (or rather, had) multiple semantics. When it occurs
as the first character in a file, its purpose is to explicitly indicate the byte order (thus, its

Unicode encoding Methods | 199

appropriate name). When it occurs in all other contexts (that is, buried within a file,
stream, buffer, or string), it is used as a Zero-Width No-Break Space (ZWNBSP). However,
its use as a ZWNBSP is deprecated, and Word Joiner (U+2060) should be used instead. The
BOM is necessary only for the UTF-16 and UTF-32 encoding forms, but it is also useful
for the UTF-8 encoding form in that it serves as an indicator that the data is intended to
be Unicode, and not ASCII or a legacy encoding method that happens to include ASCII
as a subset.

The Replacement Character (◆? ; U+FFFD) is generically used for characters that cannot be
represented in Unicode, or for representing invalid or illegal input, such as invalid UTF-8
byte sequences, unpaired UTF-16 High or Low Surrogates, and so on.

Some of these special characters will be referred to throughout this chapter, and perhaps
elsewhere in this book. I know from personal experience that being aware of these char-
acters and their proper usage is extremely helpful.

Unicode scalar Values
When Unicode characters are referenced outside the context of a specific encoding form,
Unicode scalar values are used. This is a notation that serves to explicitly identify Unicode
characters and unambiguously distinguishes them from other characters, and from each
other. This notation also supports sequences of Unicode code points.

Unicode scalar values are represented by “U+” followed by four, five, or six hexadecimal
digits. Zero-padding is used for values that would otherwise be represented by one to
three hexadecimal digits. The very first and last characters in Unicode are thus repre-
sented as U+0000 and U+10FFFF, respectively. Sequences are separated by a comma and
enclosed in less-than and greater-than symbols. For example, the registered Ideographic
Variation Sequence (IVS) for the glyph 𠝏 (Adobe-Japan1 CID+14106) is represented by
<U+528D, U+E0101> as a Unicode sequence.

Byte order Issues
There are two classes of computer architectures in terms of the order in which data is in-
terpreted beyond the single-byte level: little- and big-endian. At one point, machines that
ran the DOS, Windows, and VMS Vax OSes used processors that interpret data in little-
endian byte order, and those that ran Mac OS, Mac OS X, and Unix OSes used processors
that interpret data in big-endian byte order. Thanks to the latest Mac OS X machines that
use Intel processors, and Linux systems that run on machines that also use Intel proces-
sors, the byte order distinction based on the OS has effectively become blurred. I suggest
that you refer to the section entitled “What Are Little- and Big-Endian?” in Chapter 1.

As long as you are dealing with encodings that are byte-driven, such as Shift-JIS encoding
for Japanese that is covered later in this chapter or the UTF-8 encoding form that is cov-
ered in this section, byte order makes absolutely no difference. The data is simply treated

200 | Chapter 4: encoding Methods

as an ordered sequence of bytes. For encoding forms that make use of code units that leap
beyond the single byte, such as UTF-16 and UTF-32, byte order is absolutely critical.

The Unicode encodings that are affected by this byte order issue can (and should) make
use of the important BOM, covered in the previous section, in order to explicitly indicate
the byte order of the file. Incorrect interpretation of byte order can lead to some fairly
“amusing” results. For example, consider U+4E00, the very first ideograph in Unicode’s
CJK Unified Ideographs URO. Its big-endian byte order is <4E 00>, and if it were to be
reversed to become <00 4E>, it would be treated as though it were the uppercase Latin
character “N” (U+004E or ASCII 0x4E). This is not what I would consider to be desired
behavior….

BMP Versus non-BMP
Unicode was originally designed to be represented using only 16-bit code units. This is
equivalent to and fully contained in what is now referred to as Plane 0 or the BMP. The
now obsolete and deprecated UCS-2 encoding represented a pure 16-bit form of Unicode.
Unicode version 2.0 introduced the UTF-16 encoding form, which is UCS-2 encoding
with an extension mechanism that allows 16 additional planes of 65,536 code points each
to be encoded. The code points for these 16 additional planes, because they are outside or
beyond the BMP, are considered to be non-BMP code points.

Some early implementors of Unicode built a 16-bit environment in order to support UCS-
2 encoding. When Unicode version 3.1 introduced the very first non-BMP characters,
the fate of UCS-2 encoding was effectively sealed. Although non-BMP characters became
theoretically possible as of Unicode version 2.0, non-BMP characters instantly became a
reality as of version 3.1. Today, there are tens of thousands of characters in Planes 1, 2, and
14, all of which are outside the BMP.

Readers of this book simply need to know one thing: one cannot claim to support Unicode
if non-BMP characters are not supported. There are no excuses. There are only solutions.

Unicode encoding Forms
UTF is an abbreviation for Unicode (or UCS*) Transformation Format, and refers to a se-
ries of well-established encoding forms developed for Unicode and ISO 10646. There are
three basic UTF encoding forms, designated UTF-8, UTF-16, and UTF-32. The decimal
portion of their designators refer to the smallest code unit implemented by each encoding
form, in terms of number of bits. The UTF-8 encoding form, for example, uses eight-bit
code units, meaning bytes. The UTF-16 and UTF-32 encoding forms thus use 16- and
32-bit code units, respectively.

Table 4-4 provides an overview of the UTF encoding forms, indicating their important
and noteworthy characteristics. Please take some time to study this table, and consider

* UCS stands for Universal Character Set.

Unicode encoding Methods | 201

marking the page, because this table can serve as a useful guide or overview of these all-
important encoding forms.

Unicode encoding form overviewTable 4-4.

Characteristic UtF-8 UtF-16 UtF-16Be UtF-16Le UtF-32 UtF-32Be UtF-32Le

Code unit bits 8 16 16 16 32 32 32

Byte order n/a <BOM> BE LE <BOM> BE LE

Bytes (BMP) 1–3 2 2 2 4 4 4

Bytes (>BMP) 4 4 4 4 4 4 4

U+0000 00 0000 00 00 00 00 00000000 00 00 00 00 00 00 00 00

U+10FFFF F4 8F BF BF DBFF DFFF DB FF DF FF FF DB FF DF 0010FFFF 00 10 FF FF FF FF 10 00

The U+0000 and U+10FFFF code points in Table 4-4, which represent the first and last code
points of Unicode, are presented in big-endian byte order for the UTF-16 and UTF-32
columns, despite the fact that these encoding forms require the BOM to be present.* These
encoding forms are to be interpreted in big-endian byte order if the BOM is missing or is
otherwise not present, which effectively means that big-endian is their default byte order.
Also note that regardless of which encoding form is used, non-BMP characters require
four effective bytes for representation.

One of the most significant characteristics of the UTF encoding forms is that all of them
encode the same set of 1,112,064 code points. In other words, they encode 17 planes
of 65,536 code points each, whereby the 2,048 Surrogates in Plane 0 (the BMP) are ex-
cluded from this figure because they serve only as the extension mechanism for the UTF-
16 encoding form. This is important, because these encodings are 100% interoperable.
This is why these UTF encoding forms have become so successful. Interoperability is
everything.

the UtF-32 encoding form
I consider UTF-32 to be the most fundamental of the Unicode encoding forms due to its
full-form nature, and due to the fact that its form (at least, in big-endian byte order) ap-
pears to be an eight-digit zero-extended Unicode scalar value without the tell-tale “U+”
prefix. For example, U+20000, the very first ideograph in CJK Unified Ideographs Extension
B, is represented as <00 02 00 00> according to the UTF-32 encoding form in big-endian
byte order. For this reason, describing the UTF-32 encoding form first seems to be both
practical and appropriate.

UTF-32 is a pure subset of the original (and now obsolete and deprecated) UCS-4 encod-
ing, and specifically supports only the BMP and 16 additional planes, 1 through 16. For

* Interestingly, if the BOM is missing, UTF-16 and UTF-32 encodings are assumed to use big-endian byte
order.

202 | Chapter 4: encoding Methods

historical reasons, UCS-4 encoding is described later in this chapter. Because it is useful to
draw a comparison between UCS-4 and UTF-32 encodings, specifically that the UTF-32
encoding form is a pure subset of UCS-4 encoding, Table 4-5 provides the specifications
for both encoding forms.

UCS-4 and UTF-32 encoding form specificationsTable 4-5.

encoding form decimal Hexadecimal

UCs-4

First byte range 0–127 00–7F

Second byte range 0–255 00–FF

Third byte range 0–255 00–FF

Fourth byte range 0–255 00–FF

UtF-32

First byte 0 00

Second byte range 0–16 00–10

Third byte range 0–255 00–FF

Fourth byte range 0–255 00–FF

UTF-32 is a fixed-length encoding form that uses 32-bit code units to represent any Uni-
code character. Every character thus uses the same amount of storage space, specifically
32 bits. To some extent, the UTF-32 encoding form may seem wasteful in that the last
Unicode character, U+10FFFF, requires only 21 of the 32 bits to represent it. This charac-
ter’s binary bit array is as follows:

00000000000100001111111111111111
Note how only 21 bits are used, and that it is zero-extended to 32 bits. Given that 21-bit—
or even 24-bit, if we round up to an effective 3-byte representation—code units are not
directly supported on today’s computers, and the likelihood of this happening is relatively
low, allocating 32 bits to support a 21-bit encoding is quite appropriate.

To start our exploration of the UTF encoding forms, beginning with the UTF-32 encoding
form, I will use the string 𠮷野家* as the example, which is composed of three ideographs,
the first of which is non-BMP, specifically encoded in Plane 2, and more specifically in
the CJK Unified Ideographs Extension B block. The BMP versus non-BMP distinction is
useful, especially as this example is expanded to cover the other Unicode encoding forms,
covered later in this chapter. Table 4-6 lists the Unicode scalar values for this example
string, along with their UTF-32 representations in big- and little-endian byte order.

* These three ideographs are pronounced yoshinoya in Japanese, and represent the name of a famous Japanese
noodle soup restaurant chain. Its first kanji is somewhat rare, and not found in any current JIS standard. The
JIS X 0208:1997 kanji 吉 (U+5409) is usually used instead of this somewhat rare variant form.

Unicode encoding Methods | 203

UTF encoding form example—UTF-32 encoding formTable 4-6.

encoding form string

Characters 𠮷 野 家
Scalar value U+20BB7 U+91CE U+5BB6

UTF-32BE 00 02 0B B7 00 00 91 CE 00 00 5B B6

UTF-32LE B7 0B 02 00 CE 91 00 00 B6 5B 00 00

When the UTF-32 encoding form is used or otherwise specified, a BOM is necessary to
indicate byte order. There are two variations of the UTF-32 encoding form that do not
require a BOM because they explicitly indicate the byte order. The UTF-32LE encoding
form is equivalent to the UTF-32 encoding form in little-endian byte order. Likewise, the
UTF-32BE encoding form is equivalent to the UTF-32 encoding form in big-endian byte
order. According to Unicode, if the UTF-32 encoding form is specified, and if no BOM is
present, its byte order is to be interpreted as big-endian.

the UtF-16 encoding form
The UTF-16 encoding form is an extension of the original (and now obsolete and depre-
cated) UCS-2 encoding, described elsewhere in this chapter. The extension mechanism
that is used by the UTF-16 encoding form effectively makes it a hybrid encoding, because
a portion of its encoding definition is fixed-length, and its extension mechanism is non-
modal in nature.

The UTF-16 encoding form was originally defined in Appendix C.3 of The Unicode Stan-
dard, Version 2.0 (Addison-Wesley, 1996), and in Amendment 1 of ISO 10646-1:1993.*
Unicode version 2.0 added the Surrogates that allows for expansion beyond the 16-bit
code space of the original UCS-2 encoding form. In essence, UTF-16 continues to encode
the BMP according to UCS-2 encoding, but also allows the 16 additional planes, which
were previously accessible through UCS-4 encoding, to be encoded. You get the compact-
ness of UCS-2 encoding for the most widely used characters, but also have access to the
most useful subset of UCS-4 encoding.

The UTF-16 encoding form, which is fundamentally quite simple in design and imple-
mentation, works as follows:

Two blocks of 1,024 code points, referred to as High and Low Surrogates (this is Uni-•	
code terminology; ISO terminology is different), are set aside in the BMP (in other
words, in Plane 0).

Combinations of a single High Surrogate followed by a single Low Surrogate, which •	
are referred to as Surrogate Pairs, are used to address 220 (1024×1024 or 1,048,576)
additional code points outside the BMP, which correspond to the code points for

* Originally referred to as UCS-2E or Extended UCS-2 encoding.

204 | Chapter 4: encoding Methods

Unicode Planes 1 (U+10000 through U+1FFFF) through 16 (U+100000 through
U+10FFFF).

In other words, Plane 0 (BMP) characters are represented by a single 16-bit code unit, and
Plane 1 through 16 characters are represented by two 16-bit code units. As of Unicode
version 5.1, there are characters assigned to only Planes 0, 1, 2, and 14. Unicode allo-
cates 917,504 additional non-PUA code points beyond the BMP, specifically in Planes 1
through 14, and 131,072 additional PUA code points, specifically in Planes 15 and 16.

Software that processes the UTF-16 encoding form internally must deal with issues simi-
lar to those of legacy encoding methods that use variable-length encodings. However,
UTF-16 should not be problematic, because Unicode is a single character set, and Surro-
gates do not overlap at all, so it is always clear what you’re dealing with. Table 4-7 provides
the specifications for the UTF-16 encoding form.

UTF-16 encoding form specificationsTable 4-7.

encoding decimal Hexadecimal

BM
P First byte range 0–215, 224–255 00–D7, E0–FF

Second byte range 0–255 00–FF

No
n-

BM
P

High surrogates

First byte range 216–219 D8–DB

Second byte range 0–255 00–FF

Low surrogates

First byte range 220–223 DC–DF

Second byte range 0–255 00–FF

Interestingly, in the early days of the UTF-16 encoding form, there were varying levels of
UTF-16 support. Given the extent to which UTF-16 is supported today, it seems some-
what silly to consider different levels of UTF-16 encoding form support. In any case, Table
4-8 lists the four levels of support for the UTF-16 encoding form, which were useful at
some point in the past.

Four levels of UTF-16 supportTable 4-8.

UtF-16 support level Meaning

UCS-2 Only No interpretation of Surrogate Pairs, and no pair integrity

Weak Interpretation of Surrogate Pairs, but no pair integrity

Aware No interpretation of Surrogate Pairs, but pair integrity

Strong Interpretation of Surrogate Pairs, and pair integrity

Preserving pair integrity simply means that Surrogate Pairs are treated as a single
unit when it comes to processing operations, such as deleting or inserting characters.

Unicode encoding Methods | 205

Interpreting Surrogate Pairs simply means that Surrogate Pairs are treated as UCS-4 (now
UTF-32) characters. Of course, what is expected of today’s software is the “Strong” UTF-
16 support level.

Let’s continue our exploration of the UTF encodings, adding UTF-16 to the representa-
tions for the 𠮷野家* example string. The BMP versus non-BMP distinction is especially
useful for UTF-16 encoding, because Surrogates are necessary and used for non-BMP
characters. Table 4-9 lists the Unicode scalar values for this string, along with their UTF-
32 and UTF-16 representations in big- and little-endian byte order.

UTF encoding form example—UTF-32 and UTF-16 encoding formsTable 4-9.

encoding form string

Characters 𠮷 野 家
Scalar value U+20BB7 U+91CE U+5BB6

UTF-32BE 00 02 0B B7 00 00 91 CE 00 00 5B B6

UTF-32LE B7 0B 02 00 CE 91 00 00 B6 5B 00 00

UTF-16BE D8 42 DF B7 91 CE 5B B6

UTF-16LE 42 D8 B7 DF CE 91 B6 5B

Table 4-10 provides the complete encoding ranges for Unicode Planes 1 through 16, as
encoded according to UTF-32BE and UTF-16BE encodings, the latter of which makes use
of the complete Surrogates region.

Mapping Unicode Planes 1 through 16 to UTF-32 and UTF-16 encoding formsTable 4-10.

Plane Unicode ranges UtF-32Be encoding ranges UtF-16Be encoding ranges

1 U+10000–U+1FFFF 00 01 00 00–00 01 FF FF D8 00 DC 00–D8 3F DF FF

2 U+20000–U+2FFFF 00 02 00 00–00 02 FF FF D8 40 DC 00–D8 7F DF FF

3 U+30000–U+3FFFF 00 03 00 00–00 03 FF FF D8 80 DC 00–D8 BF DF FF

4 U+40000–U+4FFFF 00 04 00 00–00 04 FF FF D8 C0 DC 00–D8 FF DF FF

5 U+50000–U+5FFFF 00 05 00 00–00 05 FF FF D9 00 DC 00–D9 3F DF FF

6 U+60000–U+6FFFF 00 06 00 00–00 06 FF FF D9 40 DC 00–D9 7F DF FF

7 U+70000–U+7FFFF 00 07 00 00–00 07 FF FF D9 80 DC 00–D9 BF DF FF

8 U+80000–U+8FFFF 00 08 00 00–00 08 FF FF D9 C0 DC 00–D9 FF DF FF

9 U+90000–U+9FFFF 00 09 00 00–00 09 FF FF DA 00 DC 00–DA 3F DF FF

10 U+A0000–U+AFFFF 00 0A 00 00–00 0A FF FF DA 40 DC 00–DA 7F DF FF

11 U+B0000–U+BFFFF 00 0B 00 00–00 0B FF FF DA 80 DC 00–DA BF DF FF

* http://www.yoshinoya.com/

206 | Chapter 4: encoding Methods

Mapping Unicode Planes 1 through 16 to UTF-32 and UTF-16 encoding formsTable 4-10.

Plane Unicode ranges UtF-32Be encoding ranges UtF-16Be encoding ranges

12 U+C0000–U+CFFFF 00 0C 00 00–00 0C FF FF DA C0 DC 00–DA FF DF FF

13 U+D0000–U+DFFFF 00 0D 00 00–00 0D FF FF DB 00 DC 00–DB 3F DF FF

14 U+E0000–U+EFFFF 00 0E 00 00–00 0E FF FF DB 40 DC 00–DB 7F DF FF

15 U+F0000–U+FFFFF 00 0F 00 00–00 0F FF FF DB 80 DC 00–DB BF DF FF

16 U+100000–U+10FFFF 00 10 00 00–00 10 FF FF DB C0 DC 00–DB FF DF FF

Likewise with UTF-32, when the UTF-16 encoding form is used or otherwise specified, a
BOM is necessary to indicate byte order and is assumed to use big-endian byte order if the
BOM is not present. There are two variations of the UTF-16 encoding form that do not
require a BOM because they explicitly indicate the byte order. The UTF-16LE encoding
form is equivalent to the UTF-16 encoding form in little-endian byte order. Likewise, the
UTF-16BE encoding form is equivalent to the UTF-16 encoding form in big-endian byte
order. According to Unicode, if the UTF-16 encoding form is specified, and if no BOM is
present, its byte order is to be interpreted as big-endian.

the UtF-8 encoding form
The UTF-8 encoding form was developed as a way to represent Unicode text as a stream
of 1 or more 8-bit code units (also known as bytes or octets) rather than as larger 16- or
32-bit code units.* In addition, it was also a goal that a stream of bytes did not contain
zeros (0x00) so that they could be handled by standard C string APIs, which terminate
strings with 0x00. UTF-8 is therefore an eight-bit, variable-length, nonmodal encod-
ing form. The UTF-8 encoding form represents Unicode characters through the use of a
mixed one- through four-byte encoding. BMP characters are represented using one, two,
or three bytes. Non-BMP characters are represented using four bytes. UTF-8 is especially
suitable for transferring text between different systems because it avoids all byte order is-
sues. The UTF-8 encoding form is fully described and defined in François Yergeau’s RFC
3629 (obsoletes RFC 2279), UTF-8, a transformation format of ISO 10646.†

To best understand the UTF-8 encoding form, we need to explore its origins and its full
definition. It was originally designed to interoperate with the now obsolete and deprecat-
ed UCS-2 and UCS-4 encodings, which were pure fixed-length 16- and 32-bit encodings,
respectively. Table 4-11 lists the six different UTF-8 representations as per-code unit bit
arrays, along with the corresponding UCS-2 and UCS-4 encoding ranges in big-endian
byte order.

* UTF-8 was once known as UTF-2, FSS-UTF (File System Safe UTF), or UTF-FSS.
† http://www.ietf.org/rfc/rfc3629.txt

Unicode encoding Methods | 207

UCS-2/UCS-4 encoding ranges and UTF-8 bit arraysTable 4-11.

encoding encoding range UtF-8 bit arrays

UCs-2

00 00–00 7F 0xxxxxxx

00 80–07 FF 110xxxxx 10xxxxxx

08 00–FF FF 1110xxxx 10xxxxxx 10xxxxxx

UCs-4

00 01 00 00–00 1F FF FF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

00 20 00 00–03 FF FF FF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

04 00 00 00–7F FF FF FF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

For all but the ASCII-compatible range (U+0000 through U+007F), the number of first-byte
high-order bits set to 1 indicates the number of bytes for the character’s byte sequence.
This sequence, of two or more bits set to 1, is followed by exactly one bit set to 0. For ex-
ample, 11110xxx indicates that the byte length must be 4 because there are four initial 1s.
The second and subsequent bytes all use 10 as their high-order bits.

In order to make the encoding ranges a bit clearer to grasp, Table 4-12 lists the specific
encoding ranges that correspond to the bit arrays listed in Table 4-11. All 2,147,483,648
UCS-4 code points can be represented using this full definition of UTF-8 encoding; note
how each encoding range excludes a range that can encode all encoding ranges with less
number of bytes—table footnotes explicitly indicate the excluded encoding ranges. Note
how the second and subsequent bytes share the same encoding range, specifically 0x80
through 0xBF.

UTF-8 encoding form specifications—full definitionTable 4-12.

encoding range decimal Hexadecimal

00 00–00 7F (128 code points)

Byte range 0–127 00–7F

00 80–07 FF (1,920 code points)a

First byte range 192–223 C0–DF

Second byte range 128–191 80–BF

08 00–FF FF (63,488 code points)b

First byte range 224–239 E0–EF

Second and third byte range 128–191 80–BF

00 01 00 00–00 1F FF FF (2,031,616 code points)c

First byte range 240–247 F0–F7

Second through fourth byte range 128–191 80–BF

00 20 00 00–03 FF FF FF (65,011,712 code points)d

First byte range 248–251 F8–FB

Second through fifth byte range 128–191 80–BF

208 | Chapter 4: encoding Methods

UTF-8 encoding form specifications—full definitionTable 4-12.

encoding range decimal Hexadecimal

04 00 00 00–7F FF FF FF (2,080,374,784 code points)e

First byte range 252–253 FC–FD

Second through sixth byte range 128–191 80–BF

<C0a. 80> through <C1 BF> (128 code points) are not available and are invalid, because the one-byte range handles them.

<E0 80 80>b. through <E0 9F BF> (2,048 code points) are not available and are invalid, because the one- and two-byte ranges handle
them.

<F0 80 80 80>c. through <F0 8F BF BF> (65,536 code points) are not available and are invalid, because the one- through three-byte ranges
handle them.

<F8 80 80 80 80>d. through <F8 87 80 80 80> (2,097,152 code points) are not available and are invalid, because the one- through four-byte
ranges handle them.

<FC 80 80 80 80 80>e. through <FC 83 80 80 80 80> (67,108,864 code points) are not available and are invalid, because the one- through
five-byte ranges handle them.

Table 4-13 details the Unicode definition of the UTF-8 encoding form, which is a small
subset of its original full definition. Because the Unicode definition of the UTF-8 encod-
ing form is designed to interoperate with all Unicode code points, Unicode scalar values
are used to represent the Unicode ranges.

UTF-8 encoding form specifications—Unicode definitionTable 4-13.

encoding range decimal Hexadecimal

U+0000–U+007F (128 code points)

Byte range 0–127 00–7F

U+0080–U+07FF (1,920 code points)a

First byte range 192–223 C0–DF

Second byte range 128–191 80–BF

U+0800–U+FFFF (63,488 code points)b

First byte range 224–239 E0–EF

Second and third byte range 128–191 80–BF

U+10000–U+10FFFF (1,048,576 code points)c

First byte range 240–244 F0–F4

Second through fourth byte range 128–191 80–BF

<C0 80>a. through <C1 BF> (128 code points) are not available and are invalid, because the one-byte range handles them.

<E0 80 80>b. through <E0 9F BF> (2,048 code points) are not available and are invalid, because the one- and two-byte ranges handle
them.

<F0 80 80 80>c. through <F0 8F BF BF> (65,536 code points) are not available and are invalid, because the one- through three-byte ranges
handle them. Also, when the first byte is 0xF4, the highest possible value for the second byte is 0x8F, not 0xBF. Thus, U+10FFFF, which is the
highest possible code point, is represented as <F4 8F BF BF>.

When applying the UTF-8 encoding form to UTF-16–encoded text, special care must
be taken when dealing with the 2,048 Surrogate code points that form the 1,048,576

Unicode encoding Methods | 209

Surrogate Pairs. When blindly converting this range (U+D800 through U+DFFF) to UTF-
8 encoding, it becomes <ED A0 80> through <ED BF BF>. The correct method for deal-
ing with a UTF-16 Surrogate Pair when converting to the UTF-8 encoding form is to
first convert them into their corresponding UTF-32 code points, and then to convert the
resulting UTF-32 code point into UTF-8 encoding, which always results in a four-byte
sequence.

There are many attractive and genuinely useful characteristics of the UTF-8 encoding
form, such as the following:

The UTF-8 encoding form does not break any of the legacy C string-manipulation •	
APIs that expect strings to be terminated by a null byte, and additionally preserves
the meaning of 0x2F (slash), which serves as the Unix path separator.

Any valid ASCII-encoded string is a valid UTF-8–encoded string—that is what I •	
would call backward compatibility! However, because many legacy encodings can
also make the same claim, this introduces ambiguity with regard to distinguishing
UTF-8 encoding from the many legacy encodings that share this property.

It is possible to probe anywhere within a UTF-8 file and still be able to determine the •	
location of character boundaries.

UTF-8 encoding, by definition, can have absolutely no instances of the bytes •	 0xFE or
0xFF, so that there is no risk of confusion with the BOM as used in the UTF-16 and
UTF-32 encoding forms. A BOM, encoded according to the UTF-8 encoding form,
specifically <EF BB BF>, is allowed in UTF-8, though not required. The next section
provides examples for when doing so results in real-world benefits.

Our exploration of the UTF encoding forms further continues by adding UTF-8 to the
representations for the 𠮷野家* example string. The BMP versus non-BMP distinction
is also useful for UTF-8 encoding, because four bytes are necessary only for non-BMP
characters. BMP characters are represented using one, two, or three bytes. CJK Unified
Ideographs in the BMP, specifically the URO and Extension A, are represented using three
bytes. Table 4-14 lists the Unicode scalar values for this string, along with their UTF-32,
UTF-16, and UTF-8 representations in big- and little-endian byte order, as appropriate.

UTF encoding form example—UTF-32, UTF-16, and UTF-8 encoding formsTable 4-14.

encoding form string

Characters 𠮷 野 家
Scalar value U+20BB7 U+91CE U+5BB6

UTF-32BE 00 02 0B B7 00 00 91 CE 00 00 5B B6

UTF-32LE B7 0B 02 00 CE 91 00 00 B6 5B 00 00

* http://www.yoshinoyausa.com/

210 | Chapter 4: encoding Methods

UTF encoding form example—UTF-32, UTF-16, and UTF-8 encoding formsTable 4-14.

encoding form string

UTF-16BE D8 42 DF B7 91 CE 5B B6

UTF-16LE 42 D8 B7 DF CE 91 B6 5B

UTF-8 F0 A0 AE B7 E9 87 8E E5 AE B6

UTF-8 is the default encoding form for XML, and the most common encoding for to-
day’s web pages. Its backward compatibility with ASCII clearly made the UTF-8 encoding
form very attractive and appealing for this purpose. The Java programming language uses
Unicode internally—initially with UCS-2 encoding, and now with the UTF-16 encoding
form—through the use of type char. But, it also provides support for the UTF-8 encod-
ing form for data import and export purposes. As an historical example, Plan 9, which is
briefly described in Chapter 10, is an experimental OS that uses the UTF-8 encoding form
to represent Unicode text.

the UtF-8 encoding form and the BoM

Although the BOM (U+FEFF) is not necessary for UTF-8–encoded text, because its eight-
bit code units are not affected by big- and little-endian byte order issues, using it at the
beginning of files, streams, buffers, or strings is useful in that doing so explicitly identifies
the encoding as UTF-8 and distinguishes it from other encodings that may share some of
UTF-8 encoding’s attributes, such as its ASCII subset.

The BOM is represented as <EF BB BF> in UTF-8 encoding. Considering the ASCII subset
of UTF-8 encoding, and that a large number of legacy encodings use the same ASCII sub-
set, the possibility of confusion seems relatively high, in terms of identifying the encoding
of arbitrary data. Naturally, including the BOM in UTF-8–encoded data eliminates any
confusion and unambiguously identifies the encoding form as UTF-8.

This means that software developers should write software that allows UTF-8 data to in-
clude the BOM, but the same software should not mandate it. Whether your software
includes the BOM in UTF-8 data that it generates is a separate consideration. Doing so
seems to be a prudent measure in contexts or situations in which ambiguity may exist.
But, keep in mind that some people feel that including a UTF-8–encoded BOM is a nui-
sance at best, and very undesireable at worst.

UtF encoding form interoperability
As mentioned earlier in this chapter, all UTF encodings can represent the same set of
1,112,064 code points. While this figure appears to be staggering, and it is, there is 100%
interoperability between these encodings.

The only special handling that is necessary is for the UTF-16 Surrogates. I have found
that the best way to handle UTF-16 Surrogates is to map each Surrogate Pair to its cor-
responding UTF-32 code point. If the destination encoding is UTF-32, then the work is

Unicode encoding Methods | 211

done. If the destination encoding is UTF-8, then the well-established UTF-32 to UTF-8
conversion algorithm is used.

numeric Character references—human-readable Unicode encoding
Of the Unicode encoding forms, only UTF-32 can be considered somewhat human-
readable in that its big-endian instance is simply a zero-padded, eight-digit version of a
Unicode scalar value. Unicode scalar values are what are typically published in reference
materials that support Unicode, such as dictionaries and related publications. The use of
little-endian byte order naturally disturbs this human-readability property.

HTML and XML support what are known as Numeric Character References (NCRs),
which is a special ASCII-based syntax that is used to reliably store and display any Uni-
code character using a human-readable form that is directly based on Unicode scalar val-
ues. NCRs have their heritage from SGML, from which HTML and XML were derived.

An NCR that specifies a Unicode character is made up of a prefix and a suffix that sur-
rounds a four-, five-, or six-digit hexadecimal value that is reminiscent of a Unicode sca-
lar value without its “U+” prefix. Decimal values can be used, but that detracts from one
of the primary advantages of NCRs, specifically their human-readability. The prefix is
&#x (<U+0026, U+0023, U+0078>), and the suffix is ; (U+003B). If decimal values are used,
the prefix becomes the one-character-shorter &# (<U+0026, U+0023>) form. Zero-padding
is optional, for both decimal and hexadecimal notations, but in my experience, zero-
extending to at least four hexadecimal digits improves human-readability.

We finish our exploration of the Unicode encodings by adding NCRs to the representa-
tions for the 𠮷野家* example string. Table 4-15 lists the Unicode scalar values for this
string, along with the values’ UTF-32, UTF-16, and UTF-8 representations in big- and
little-endian byte order, as appropriate, and their NCRs.

UTF encoding example—UTF-32, UTF-16, and UTF-8 encoding forms plus NCRsTable 4-15.

encoding form string

Characters 𠮷 野 家
Scalar value U+20BB7 U+91CE U+5BB6

UTF-32BE 00 02 0B B7 00 00 91 CE 00 00 5B B6

UTF-32LE B7 0B 02 00 CE 91 00 00 B6 5B 00 00

UTF-16BE D8 42 DF B7 91 CE 5B B6

UTF-16LE 42 D8 B7 DF CE 91 B6 5B

UTF-8 F0 A0 AE B7 E9 87 8E E5 AE B6

NCR 𠮷 野 家

* http://en.wikipedia.org/wiki/Yoshinoya

212 | Chapter 4: encoding Methods

NCRs are useful for environments that ultimately produce XML or HTML files. The char-
acters represented by NCRs are explicitly identified as Unicode characters, yet benefit
from the strength and persistence made possible by an ASCII-based notation. NCRs are
useful to represent hard-to-input characters, or characters whose underlying representa-
tion may be ambiguous when displayed in binary form. Take for instances the two Uni-
code characters “A” (U+0041) and “Ａ” (U+FF21). Both represent the same uppercase Latin
letter; however, the former is proportional, but sometimes implemented using half-width
metrics, and the latter is explicitly full-width. When it is critical to unambiguously use one
character over another, in the context of web documents, using Ａ to represent the
full-width uppercase Latin letter “A” has great value. Interestingly, differentiating Latin “A”
(U+0041), Cyrillic “A” (U+0410), and Greek “A” (U+0391) is an even greater feat, and NCRs
become especially useful when differentiating such characters becomes critical.

NCRs do, however, require up to 10 bytes for representation, so their advantages in the
contexts in which they can be used come at the expense of increased string size.

There are other NCR-like notations, often referred to as escaping, whose use should be
pointed out or described, such the \uXXXX notation as used by C/C++, Java, and JavaScript
for specifying Unicode characters, the use of \XXXX for CSS, and the use of \x{XXXX} to do
the same using Perl. These programming language notations also make use of Unicode
scalar values, meaning that their use can improve the readability of source code that uses
them. NCRs, however, are directly related to the Web, and as already stated, are imme-
diately usable in HTML and XML files. Chapter 12 will revisit the use of NCRs in the
context of authoring web documents. Richard Ishida’s “Unicode Code Converter” is an
excellent way to explore NCRs and related notations.*

obsolete and deprecated Unicode encoding Forms
Three of the original Unicode encodings, specifically UTF-7, UCS-2, and UCS-4, are now
obsolete, and their use is considered deprecated. These encodings became obsolete for
a variety of reasons. UTF-7 and UCS-2 encodings became obsolete because they were
closely tied to BMP-only implementations. UTF-7 was also a source of a lot of security is-
sues. As soon as characters were encoded outside the BMP, the usefulness of these encod-
ings significantly diminished. As of this writing, there are characters encoded in Planes 1,
2, and 14. UCS-4 encoding became obsolete because it contains vastly more code points
than in Unicode. The UTF-32 encoding form effectively took its place and is a pure subset
of UCS-4 encoding in that both encodings represent the BMP and Planes 1 through 16
in the same way.

Interestingly, the UTF-8 encoding form did not become obsolete, but was instead rede-
fined such that it became fully compatible with the UTF-16 and UTF-32 encoding forms.
Its five- and six-byte representations were eliminated for the sake of Unicode compatibil-
ity. In fact, a portion of its four-byte representation was also eliminated.

* http://rishida.net/scripts/uniview/conversion.php

Unicode encoding Methods | 213

the UCs-2 and UCs-4 encoding forms
ISO 10646-1:1993 defined two basic encoding forms. The first is the 32-bit form—actu-
ally, a 31-bit form, because only 31 bits are used—that is referred to as UCS-4 encoding.
The second is the 16-bit form, referred to as UCS-2 encoding. Note that the second form
is identical to the initial 16-bit encoding used for Unicode, to encode all of the charac-
ters in what is now referred to as the BMP. A 16-bit representation can encode up to
65,536 code points. A complete 32-bit representation, on the other hand, can encode up
to 4,294,967,296 code points.*

These encodings are fixed-length, and thus use the same number of bytes to represent
each character. All 16 or 32 bits (actually, 31 bits) are used for representing characters.
ASCII control characters—0x00 through 0x1B and 0x7F—whose use are otherwise for-
bidden in other encodings, are completely valid for encoding printable characters in the
context of UCS-2 and UCS-4 encodings.† The same statement is naturally true for the
UTF-16 and UTF-32 encoding forms. Table 4-16 details the encoding specifications for
UCS-2 and UCS-4 encodings.

UCS-2 and UCS-4 encoding form specificationsTable 4-16.

encoding form decimal Hexadecimal

UCs-2

High byte range 0–255 00–FF

Low byte range 0–255 00–FF

UCs-4

First byte range 0–127 00–7F

Second byte range 0–255 00–FF

Third byte range 0–255 00–FF

Fourth byte range 0–255 00–FF

Because Unicode and ISO 10646:2003 allocate their entire encoding space for characters,
it makes no sense to waste space by including a figure showing either their encoding space
or how it compares to that of other encoding methods.

UCS-2 encoding is severely limited in that it can represent only the characters in the BMP.
Non-BMP characters simply cannot be encoded. In fact, UCS-2 encoding and the BMP
portion of the UTF-16 encoding form are 100% compatible with one another and are
represented in the same way. UCS-2 encoding can be referred to as BMP-only UTF-16
encoding.

* Considering that UCS-4 is really a 31-bit encoding, there are a “mere” 2,147,483,648 code points available.
† Some control characters, such as 0x09 (tab), 0x0A (newline), and 0x0D (carriage return), are commonly used in

almost every textfile.

214 | Chapter 4: encoding Methods

Likewise, the UTF-32 representation for Unicode characters is identical to the UCS-4
representation. This is due to the fact that the UTF-32 encoding form is a pure subset of
UCS-4 encoding, covering only Planes 0 through 16.

Table 4-17 illustrates how the five characters My 河豚* are encoded according to UCS-2
and UCS-4 encodings, in big- and little-endian byte order. An example string that is dif-
ferent from that used for the UTF encoding form examples was selected because the first
character in the UTF encoding form example string is outside the BMP, and thus cannot
be represented in UCS-2 encoding.

UCS-2 and UCS-4 encoding form exampleTable 4-17.

encoding form string

Characters M y 河 豚
UCS-2 big-endian 00 4D 00 79 00 20 6C B3 8C 5A

UCS-2 little-endian 4D 00 79 00 20 00 B3 6C 5A 8C

UCS-4 big-endian 00 00 00 4D 00 00 00 79 00 00 00 20 00 00 6C B3 00 00 8C 5A

UCS-4 little-endian 4D 00 00 00 79 00 00 00 20 00 00 00 B3 6C 00 00 5A 8C 00 00

It is useful to note how every character in UCS-4 encoding is represented by four bytes,
and is otherwise equivalent to UCS-2 encoding, but is prefixed or suffixed with <00 00>,
depending on byte order. This prefixing or suffixing of <00 00> can be referred to as “zero-
extending to 32 bits.”

It is important to be aware that all characters have the same encoding length whether they
are encoded according to UCS-2 or UCS-4 encoding. From a computer-processing point
of view, they are treated the same for certain processing operations, such as searching.
Variable-length encodings pose difficulties for searching and other processing operations,
but at the same time this does not make the operations impossible. Because non-BMP
characters became a reality as of Unicode version 3.1, UCS-2 and UCS-4 encodings ef-
fectively became obsolete, and their use is necessarily deprecated. Now, the UTF-16 and
UTF-32 encoding forms should be used in lieu of UCS-2 and UCS-4 encodings, respec-
tively. Transitioning to the UTF-16 or UTF-32 encoding form is a trivial matter con-
sidering the compatibility between these encodings. For example, any valid UCS-2 code
point—except, of course, for the 2,048 Surrogates—is a valid UTF-16 code point.

The main point for this section is to be aware of UCS-2 and UCS-4 encodings for histori-
cal purposes, but that the UTF encoding forms should be used instead. In fact, it would
clearly be a mistake to implement software based on UCS-2 or UCS-4 encoding.

* http://en.wikipedia.org/wiki/Fugu

Unicode encoding Methods | 215

the UtF-7 encoding form
The UTF-7 encoding form, which is designed as a human-unreadable but mail-safe trans-
formation of Unicode, is remarkably similar to the Base64 transformation, which is de-
scribed near the end of this chapter. In fact, UTF-7 uses the same set of Base64 characters
except for the “pad” character (0x3D, “=”). The pad character is not necessary, because the
UTF-7 encoding form does not require padding for incomplete three-byte segments. The
UTF-7 encoding form is also different from Base64 transformation in that its Base64-like
transformation is not applied to an entire file, stream, buffer, or string, but to specific
characters only. UTF-7 encoding is described in Deborah Goldsmith and Mark Davis’
RFC 2152 (obsoletes RFC 1642), UTF-7: A Mail-Safe Transformation Format of Unicode.*

Table 4-18 lists the 64 Base64 characters that are used by the UTF-7 encoding form, along
with the ASCII characters that represent the 6-bit values to which they correspond, and
their hexadecimal equivalents.

The Base64 character setTable 4-18.

Value—decimal Bit array Base64 character—AsCII Hexadecimal

0 000000 A 41

1 000001 B 42

2 000010 C 43

3 000011 D 44

4 000100 E 45

5 000101 F 46

6 000110 G 47

7 000111 H 48

8 001000 I 49

9 001001 J 4A

10 001010 K 4B

11 001011 L 4C

12 001100 M 4D

13 001101 N 4E

14 001110 O 4F

15 001111 P 50

16 010000 Q 51

17 010001 R 52

18 010010 S 53

* http://www.ietf.org/rfc/rfc2152.txt

216 | Chapter 4: encoding Methods

The Base64 character setTable 4-18.

Value—decimal Bit array Base64 character—AsCII Hexadecimal

19 010011 T 54

20 010100 U 55

21 010101 V 56

22 010110 W 57

23 010111 X 58

24 011000 Y 59

25 011001 Z 5A

26 011010 a 61

27 011011 b 62

28 011100 c 63

29 011101 d 64

30 011110 e 65

31 011111 f 66

32 100000 g 67

33 100001 h 68

34 100010 i 69

35 100011 j 6A

36 100100 k 6B

37 100101 l 6C

38 100110 m 6D

39 100111 n 6E

40 101000 o 6F

41 101001 p 70

42 101010 q 71

43 101011 r 72

44 101100 s 73

45 101101 t 74

46 101110 u 75

47 101111 v 76

48 110000 w 77

49 110001 x 78

50 110010 y 79

51 110011 z 7A

52 110100 0 30

Unicode encoding Methods | 217

The Base64 character setTable 4-18.

Value—decimal Bit array Base64 character—AsCII Hexadecimal

53 110101 1 31

54 110110 2 32

55 110111 3 33

56 111000 4 34

57 111001 5 35

58 111010 6 36

59 111011 7 37

60 111100 8 38

61 111101 9 39

62 111110 + 2B

63 111111 / 2F

The actual binary representation for the values in Table 4-18 correspond to bit arrays of
the same values. For example, the bit array for Value 0 is “000000” (0x00), and the bit ar-
ray for Value 63 is “111111” (0x3F).

Because UTF-7 does not blindly apply Base64 transformation to an entire file, stream,
buffer, or string, there are some characters—which form a subset of the ASCII character
set—that represent themselves according to ASCII encoding. Table 4-19 lists the charac-
ters that can be directly encoded according to ASCII encoding.

UTF-7 directly encoded charactersTable 4-19.

Characters UCs-2/UtF-16Be encoding form UtF-7 encoding form

’ 00 27 27

(00 28 28

) 00 29 29

, 00 2C 2C

- 00 2D 2D

. 00 2E 2E

/ 00 2F 2F

0–9 00 30–00 39 30–39

: 00 3A 3A

? 00 3F 3F

A–Z 00 41–00 5A 41–5A

a–z 00 61–00 7A 61–7A

218 | Chapter 4: encoding Methods

Table 4-20 lists the optional directly encoded characters of the UTF-7 encoding form.
They are optional because in some contexts these characters may not be reliably transmit-
ted. It is up to the client whether they should be directly encoded or transformed accord-
ing to Base64.

UTF-7 optional directly encoded charactersTable 4-20.

Character UCs-2/UtF-16Be encoding form UtF-7 encoding form

! 00 21 21

" 00 22 22

00 23 23

$ 00 24 24

% 00 25 25

& 00 26 26

* 00 2A 2A

; 00 3B 3B

< 00 3C 3C

= 00 3D 3D

> 00 3E 3E

@ 00 40 40

[00 5B 5B

] 00 5D 5D

^ 00 5E 5E

_ 00 5F 5F

` 00 60 60

{ 00 7B 7B

| 00 7C 7C

} 00 7D 7D

The “space” character, U+0020 (ASCII 0x20), may also be directly encoded. However, the
four characters “+” (0x2B), “=” (0x3D), “\” (0x5C), and “~” (0x7E) are explicitly excluded
from these sets of directly encoded characters, optional or otherwise.

Character strings that require Base64 transformation according to UTF-7 encoding be-
gin with a “plus” character (+, 0x2B), which functions as an “escape” or “shift” to signify
the start of a Base64 sequence. What follows are the Base64 characters themselves, and
continue until a character not in the Base64 character set is encountered, including line-
termination characters. A “hyphen” (-, 0x2D) can be used to explicitly terminate a Base64
sequence. Table 4-21 provides an example of UTF-7–encoded text, with UCS-2 encoding,
in big-endian byte order. This is provided for reference and for demonstrating how the bit
arrays are segmented into six-bit segments.

Unicode encoding Methods | 219

UTF-7 encoding exampleTable 4-21.

encoding form string

Characters 河豚
UCS-2 6C B3 8C 5A

UCS-2 bit arrays 01101100 10110011 10001100 01011010

Six-bit segments 011011 001011 001110 001100 010110 10

UTF-7 2B 62 4C 4F 4D 77 67 2D

UTF-7—visual +bLOMwg-

Because UTF-7 is a seven-bit, byte-based encoding whose code units are seven-bit bytes,
there is no need to explicitly indicate byte order. This means that the BOM can effectively
be removed when converting to UTF-7 encoding. Of course, the BOM should be reintro-
duced when converting to the UCS-2, UCS-4, UTF-16, or UTF-32 encoding forms.

UTF-7 encoding, by definition, interoperates only with UCS-2 and UTF-16 encodings,
and is applied in big-endian byte order. UTF-7 encoding can obviously be converted to
UTF-8, UCS-4, or UTF-32 encoding, given that their encoding spaces are a superset of
that of UTF-7 encoding. This means that if UTF-7–encoded data is encountered, it can be
converted to a currently supported Unicode encoding form. The UTF-16 Surrogates are
treated as though they were UCS-2–encoded, meaning no special treatment.

Also note how this example necessarily spans character boundaries. This is because Base64
transformation spans byte boundaries due to the splitting of multiple bytes into six-bit
segments. UTF-7 clearly makes it challenging to perform many common text-processing
tasks, such as character deletion or insertion. Converting to another Unicode encoding
form prior to performing such text-processing tasks is obviously the prudent thing to
do.

Given everything written in this section, it is easy to understand why UTF-7 encoding
became obsolete and its use deprecated. The fact that it is limited to what is now re-
ferred to as the BMP contributed to the circumstances that helped to seal its fate, as did
its somewhat cumbersome representation. For purposes that would suggest UTF-7 as
the preferred encoding, the UTF-8 encoding form or the use of NCRs is probably more
appropriate.

Comparing UtF encoding Forms with Legacy encodings
There is no clean code conversion algorithm between Unicode and legacy CJKV encod-
ings, such as those used to encode GB 2312-80, GB 18030-2005, CNS 11643-2007, JIS
X 0208:1997, JIS X 0213:2004, KS X 1001:2004, TCVN 6056:1995, and so on. The basic
requirement for converting to and from Unicode is simply a set of mapping tables, and

220 | Chapter 4: encoding Methods

luckily, there is a reliable source for some of these tables.* The Unicode Consortium has
also developed, and continues to maintain, an incredibly useful tab-delimited database-
like file called the Unihan Database that provides mappings from the tens of thousands
of CJK Unified Ideographs and CJK Compatibility Ideographs to the major CJKV char-
acter set standards and to other references, including major dictionaries.† Still, it is best
to consider using OS-level APIs or well-established libraries for performing code conver-
sion between Unicode and legacy encodings. The important topic of code conversion is
covered later in this chapter.

Because the UTF encoding forms are simply algorithmic transformations of one another,
conversion from one UTF to another should be performed before conversion to legacy
encodings is performed. Depending on the extent of non-BMP coverage, which is really a
binary condition, BMP-only UTF-16 and the UTF-32 encoding form serve as the best en-
codings with which to interoperate with legacy encodings. This is simply common sense.

Unicode versus legacy encoding interoperability issues
When interoperating between Unicode and legacy encodings, which means that some
form of code conversion is being performed (usually through the use of mapping tables),
a small number of characters or character classes may require special attention. Or at
least, you should look closely at them when checking or validating code conversion.

Using the Japanese standards as an example, we can explore this topic in some depth. The
JIS X 0208:1997 standard includes single and double smart quotes at 01-38 through 01-41.
These are represented in Unicode as U+2018, U+2019, U+201C, and U+201D, respectively.
The issue with these characters is not the code conversion per se, but rather that font
implementations that are not Unicode-based use full-width glyphs, and those that are
Unicode-based use proportional glyphs.

JIS X 0208:1997 does include a character that can be problematic from the code con-
version point of view. It is 01-29, and it represents a full-width dash. According to JIS
standards, the Unicode mapping is U+2014 (EM DASH). Apple follows this, but Micro-
soft Windows maps this character to a different Unicode code point, specifically U+2015
(HORIZONTAL BAR).

JIS X 0213:2004 includes 25 characters that are not represented with a single Unicode
code point, but instead map to Unicode code point sequences (base character plus com-
bining mark). Code conversion software must be prepared to handle sequences, in addi-
tion to the usual one-to-one mappings.

* http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/
† http://www.unicode.org/charts/unihan.html

Legacy encoding Methods | 221

Legacy encoding Methods
The following sections describe legacy encoding methods, which include locale-
independent and locale-specific encoding methods. These encoding methods are impor-
tant, and will continue to be important. Many documents are stored according to these
encoding methods, and many systems that use these encoding methods still persist. Al-
though their use is diminishing, it will take years or decades for them to go away com-
pletely. For this reason, environments that support Unicode must still interoperate with
these legacy encoding methods.

Locale-Independent Legacy encoding Methods
This is probably one of the most important sections of this book, and it lays the founda-
tion for your complete understanding of the various CJKV encoding methods, beyond
the encodings for Unicode, so be sure to take some extra time to read and study this
material well. Some of the legacy encoding methods described here, specifically ISO-2022
and EUC, will serve as a basis for drawing comparisons between other encodings and for
discussions that appear later in this book.

AsCII and CJKV-roman encodings
ASCII and CJKV-Roman (GB-Roman, CNS-Roman, JIS-Roman, KS-Roman, and
TCVN-Roman) are considered different character set standards, but they share the same
encoding.* The definition of the encoding method for the ASCII character set is found
in the document called ISO 646:1991. The encoding method for CJKV-Roman encoding
is found in GB 1988-89 (GB-Roman), JIS X 0201-1997 (JIS-Roman), KS X 1003:1993
(KS-Roman), and TCVN 5712:1993 (TCVN-Roman). The ASCII/CJKV-Roman encod-
ing method specifies that 7 bits be used, which in turn allows for 128 uniquely encoded
characters. Of these 128 encoded characters, 94 comprise the ASCII/CJKV-Roman char-
acter set and are considered printable, meaning that they are displayed on the screen
with something other than only whitespace. The remaining 34 characters are nonprint-
ing, meaning that they are either control characters or whitespace. Whitespace refers to
characters such as tabs and spaces, which take up space but contain no graphic elements.
Table 4-22 lists the encoding ranges for the characters, both printable and nonprintable,
in ASCII/CJKV-Roman encoding.

ASCII and CJKV-Roman encoding specificationsTable 4-22.

Characters decimal Hexadecimal

Control characters 0–31 00–1F

Space character 32 20

* With the possible exception of TCVN-Roman.

222 | Chapter 4: encoding Methods

ASCII and CJKV-Roman encoding specificationsTable 4-22.

Characters decimal Hexadecimal

Graphic characters 33–126 21–7E

Delete character 127 7F

Note that these values can be represented with only seven bits; the importance of this is
explained later in this chapter. For Japanese, this allows the mixture of the JIS-Roman and
half-width katakana character sets when using eight-bit bytes. A graphic representation of
the ASCII/CJKV-Roman encoding method is provided in Figure 4-1.

���������������
����

����������������
�����

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

�������
���������� ����������������������

Printable Characters (Graphic)

ASCII/CJKV-Roman encoding tableFigure 4-1.

The extended ASCII character set encoding defined by ISO 8859 makes use of all eight
bits, so more of the possible 256 eight-bit code points are available for encoding graphic
characters. The first 128 code points are reserved for the ASCII character set and control
characters, but the additional 128 code points made possible with the eighth bit can vary
in terms of what characters are assigned to them. Precisely which characters are encoded
in the extended portion of this encoding depends on the implementation. For ISO 8859,
it depends on which of its 15 parts is being used. The extended ASCII characters specified
in each of ISO 8859’s 15 parts fall into the range 0xA1 through 0xFF. However, not all of
the code points in this extended range are used by every part of ISO 8859.

Figure 4-2 illustrates the encoding range for ASCII and extended ASCII as defined in the
15 parts of ISO 8859.

Legacy encoding Methods | 223

���������������
����

����������������
�����

�������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

�������
���������� ������

ISO 8859 encoding tableFigure 4-2.

Most of the CJKV encoding methods, especially those used as internal codes for com-
puter systems, make generous use of eight-bit characters. This makes it very difficult to
mix characters from ISO 8859’s 15 parts with CJKV text, because they all fall into the
same encoded range. Some computer platforms deal with this much better than others.
Apple’s Mac OS (before Mac OS X) handled this problem simply by changing the font,
which in turn changed the underlying script. Today, it is simply better practice to embrace
Unicode, which doesn’t exhibit this problem.

eBCdIC and eBCdIK encoding
IBM developed its own single-byte character set standard called EBCDIC (Extended Binary-
Coded-Decimal Interchange Code). The number and type of printable characters are the
same as ASCII, but the encoding for EBCDIC differs significantly. The main difference is
that EBCDIC requires eight bits for full representation, whereas ASCII and CJKV-Roman
require only seven bits. Table 4-23 lists the specifications for EBCDIC.

EBCDIC encoding specificationsTable 4-23.

Characters decimal Hexadecimal

Control characters 0–63 00–3F

Space character 64 40

Graphic characters 65–239 41–EF

Numerals 240–249 F0–F9

Undefined 250–254 FA–FE

Control character 255 FF

The EBCDIC encoding method is not used as often as the encoding for ASCII/CJKV-
Roman, and appears to be slowly becoming obsolete. Unicode has effectively sealed its
fate. Still, EBCDIC is a legacy encoding and cannot be completely forgotten. EBCDIC
is included in these pages for the sake of completeness and for historical purposes,
and because three of the encoding methods described elsewhere in this book include

224 | Chapter 4: encoding Methods

EBCDIC as a subset (they are IBM’s DBCS-Host, Fujitsu’s JEF, and Hitachi’s KEIS encod-
ing methods—all of these are vendor-specific). Figure 4-3 illustrates the encoding space
for EBCDIC encoding.

Control Characters

������������������
�������������������

�����������������������

���������������
����

������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

EBCDIC encoding tableFigure 4-3.

There is also an encoding called EBCDIK, which stands for Extended Binary-Coded-
Decimal Interchange Kana. It is an EBCDIC encoding that contains uppercase Latin char-
acters, numerals, symbols, half-width katakana, and control characters (note that there
are no lowercase Latin characters). Table 4-24 details the encoding ranges for the charac-
ters in EBCDIK encoding.

EBCDIK encoding specificationsTable 4-24.

Characters decimal Hexadecimal

Control characters 0–63 00–3F

Space character 64 40

Graphic characters (with katakana) 65–239 41–EF

Numerals 240–249 F0–F9

Undefined 250–254 FA–FE

Control character 255 FF

Note how the encoding space is identical to that of EBCDIC (see Figure 4-3). Characters
appear to be randomly scattered throughout the encoding space, and not all code points
have characters assigned to them. For a complete listing of EBCDIC and EBCDIK char-
acters and their code points, please refer to Appendix M for the former, and Appendix J
for the latter.

Half-width katakana encodings
Half-width katakana characters, specific to Japanese, have been encoded in a variety
of ways. These characters were chosen to be the first Japanese characters encoded on

Legacy encoding Methods | 225

computers because they are used for Japanese telegrams. As single-byte characters, they
are encoded using one of two methods. These two methods are described in the standard
designated JIS X 0201-1997. Table 4-25 illustrates the one-byte encoding methods for this
small collection of characters.

Half-width katakana encoding specificationsTable 4-25.

encoding type decimal Hexadecimal

Seven-bit 33–95 21–5F

Eight-bit 161–223 A1–DF

ISO-2022-JP encoding makes use of both of these encoding methods. Shift-JIS encod-
ing, specific to Japanese, makes use of only the eight-bit, half-width katakana encoding
method. EUC-JP encoding takes a different approach and encodes these characters using
two bytes. These encoding methods are discussed in detail later in this chapter. Table 4-26
provides the EUC-JP encoding specifications for half-width katakana.

Half-width katakana encoding specifications—EUC-JPTable 4-26.

encoding type decimal Hexadecimal

Packed format

First byte 142 8E

Second byte range 161–223 A1–DF

Complete two-byte format

First byte 0 00

Second byte range 161–223 A1–DF

The second byte range is identical to the eight-bit, half-width katakana encoding range in
Table 4-25—EUC-JP encoding simply prefixes the byte with the value 0x8E, also known
as EUC encoding’s SS2 (Single Shift 2) character.

Figure 4-4 illustrates the encoding space for the half-width katakana character set in the
various encodings. Now note how eight-bit, half-width katakana and seven-bit ASCII/
JIS-Roman can coexist within the same eight-bit, one-byte encoding space. When these
two character sets are mixed, the newly formed character set is called Alphabet, Numerals,
and Katakana (ANK), as illustrated in Figure 4-5.

226 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

������

��
��
���

��
��
��

��
��

������������������

����� �����

�������������������������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

Half-width katakana encoding tablesFigure 4-4.

Legacy encoding Methods | 227

��������������� �������������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

Half-width katakana plus ASCII/JIS-Roman encoding table—ANKFigure 4-5.

row-Cell notation
Before we discuss ISO-2022 and other common multiple-byte encodings, I would like
to draw your attention to Row-Cell notation. Row-Cell is simply a notational system for
indexing characters. The Japanese version of TEX, a typesetting system developed by
Donald Knuth (高德纳), is the only software I know of that can process Row-Cell codes
internally or use them directly. The term Row-Cell itself refers to the rows and cells of a
matrix. Character set standard documents commonly use Row-Cell notation to identify
each character in its specification—as do the many appendixes in this book that contain
character set tables. Row-Cell notation is used primarily as an encoding-independent
method for representing characters within a specified matrix size, usually 94×94.

The encoding methods described thus far in this chapter more or less fall into the area
of what we can safely call single-byte encodings (well, with the exception of EUC-JP–
encoded half-width katakana—I guess we sort of got ahead of ourselves). Now we enter
into the area of what are commonly referred to as multiple-byte encodings. Row-Cell
notation is important because it provides a good introduction to the concept of encoding
multiple-byte characters.

In the case of most CJKV character set standards, Row-Cell values range from 1 to 94
(using decimal notation). This constitutes a 94×94 matrix, with a total capacity of 8,836
cells. Table 4-27 provides a formal representation of the common Row-Cell ranges. Note
how Row-Cell values can be expressed in notations other than decimal, although it is not
very common to do so.

Row-Cell notation specificationsTable 4-27.

row and Cell decimal Hexadecimal

Row range 1–94 01–5E

Cell range 1–94 01–5E

Figure 4-6 illustrates the 94×94 matrix as used by Row-Cell notation. You will quite often
see this 94×94 matrix as the same dimensions of other encoding methods.

228 | Chapter 4: encoding Methods

��

��
����

Row-Cell tableFigure 4-6.

Interestingly, with some character sets expanding beyond a 94×94 matrix into multiple
planes, each of which is a 94×94 matrix, the concept of Plane-Row-Cell seems appropri-
ate. Table 4-28 expands Row-Cell notation into a more appropriate Plane-Row-Cell nota-
tion in order to handle character sets that are composed of two or more planes.

Plane-Row-Cell notation specificationsTable 4-28.

Plane, row, and cell decimal Hexadecimal

Plane range 1–94 01–5E

Row range 1–94 01–5E

Cell range 1–94 01–5E

CNS 11643-2007 and JIS X 0213:2004 are examples of character sets that contain two or
more planes, each of which is a 94×94 matrix.

The section entitled “What Is Row-Cell and Plane-Row-Cell?” in Chapter 1 provides more
details about Row-Cell and Plane-Row-Cell notation, including how they are referred to
in Chinese, Japanese, and Korean.

Iso-2022 encoding
The ISO-2022 encoding method, documented in ISO 2022:1994, Information technolo-
gy—Character code structure and extension techniques, is considered one of the most basic
encoding methods used for CJKV text. It is a modal encoding; that is, escape sequences or
other special characters are used to switch between different modes. Switching “modes”
here can refer to either switching between one- and two-byte mode, or among character
sets. Some character sets are one-byte, and some are two-byte. The character set to which
you are switching determines whether you switch into one- or two-byte mode.

Legacy encoding Methods | 229

The use of “ISO-2022 encoding” in this book is as a generic reference to ISO-2022-CN,
ISO-2022-CN-EXT, ISO-2022-JP, ISO-2022-KR, and similar encodings. The full ISO
2022:1994 standard defines a lot of machinery that is rarely used. The encodings described
in this section, as a practical matter, implement only a subset of the ISO 2022:1994 stan-
dard. Some ISO-2022 encodings are, in fact, incompatible with ISO 2022:1994.

Actually, it is somewhat misleading and ambiguous to refer to the encodings in this sec-
tion as “ISO-2022” because ISO 2022:1994 also sets the framework for EUC encoding,
which is described later in this chapter.

ISO-2022 encoding is not very efficient for internal storage or processing on computer
systems. It is used primarily as an information interchange encoding for moving text be-
tween computer systems, such as through email. This is often referred to as an external
code. ISO-2022 encoding is also often referred to as a seven-bit encoding method because
all of the bytes used to represent characters do not have their eighth-bit enabled.

There are some software environments that can process ISO-2022 encoding internally, the
most notable of which is GNU Emacs version 20 and later. Many other programs, such as
email clients, can create ISO-2022–encoded text, but do not necessarily process ISO-2022
encoding internally.

ISO-2022 encoding and Row-Cell notation are more closely related than you would think.
ISO-2022 refers to encoded values, but Row-Cell refers to an encoding-independent no-
tation for indexing characters.

There are locale-specific versions of the ISO 2022:1994 standard available, such as GB
2311-80 (China), CNS 7654-1989 (Taiwan), JIS X 0202:1998 (Japan), and KS X 1004:1995
(Korea),* but they are for the most part simply translations, and some are now outdated
and obsolete.

There are several instances of ISO-2022 encodings for representing CJKV text. Table 4-29
lists these ISO-2022 encodings, along with what character sets they are known to support,
plus a reference to the Request For Comments (RFC) in which they are officially defined
and described. Of course, these RFCs are available online.† Those encodings that have
been used extensively in the past, or continue to be used today for some purposes, have
been highlighted.

Character sets supported in ISO-2022 encodingsTable 4-29.

encoding Character sets rFC

ISO-2022-CN ASCII, GB 2312-80, CNS 11643-1992 Planes 1 and 2 1922

ISO-2022-CN-EXT ISO-2022-CN plus CNS 11643-1992 Planes 3–7 1922

ISO-2022-JPa ASCII, JIS-Roman, JIS C 6226-1978, JIS X 0208-1983 1468

* Previously designated KS C 5620-1995
† http://www.ietf.org/rfc.html

230 | Chapter 4: encoding Methods

Character sets supported in ISO-2022 encodingsTable 4-29.

encoding Character sets rFC

ISO-2022-JP-1 ISO-2022-JP plus JIS X 0212-1990 2237

ISO-2022-JP-2b ISO-2022-JP plus JIS X 0212-1990 1554

ISO-2022-KR ASCII, KS X 1001:1992 1557

Also includes implied support for JIS X 0208-1990 and JIS X 0208:1997.a.

ISO-2022-JP-2 encoding, according to the RFC in which it is defined, also supports ISO 8859-1:1998, GB 2312-80, and KS X 1001:1992. But, b.
from a practical point of view, ISO-2022-JP-2 encoding adds support for only JIS X 0212-1990, which makes it equivalent to ISO-2022-JP-1
encoding.

All of these encodings share one common attribute: the encoding ranges for one- and
two-byte characters are identical. Table 4-30 provides these encoding ranges.

One- and two-byte encoding ranges of ISO-2022 encodingTable 4-30.

encoding decimal Hexadecimal

First byte rangea 33–126 21–7E

Second byte range 33–126 21–7E

This also corresponds to the one-byte encoding range.a.

In other words, the values for all bytes used to encode characters are equivalent to the
printable ASCII range. These characters range from the exclamation point (!) at 0x21 to
the tilde (~) at 0x7E. Figure 4-7 illustrates the ISO-2022 encoding space.

All instances of ISO-2022 encoding support one or more character sets that have been
registered with ISO’s International Registry for escape sequences. Table 4-31 lists CJKV
character sets, along with their ISO International Registry numbers plus their final char-
acter (and its hexadecimal equivalent) for use in an escape or designator sequence. These
are ordered by ascending ISO International Registry number, which more or less indi-
cates the order in which these character sets were registered with ISO.

Legacy encoding Methods | 231

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

��������

ISO-2022

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

ISO-2022 encoding tablesFigure 4-7.

232 | Chapter 4: encoding Methods

ISO International Registry numbersTable 4-31.

Character set Iso International registry number Final character

ANSI X3.4-1986 (ASCII) 6 0x42 B

JIS X 0201-1997 (JIS-Roman) 13 0x4A J

JIS X 0201-1997 (half-width katakana) 14 0x49 I

JIS C 6226-1978 42 0x40 @

GB 1988-89 57 0x54 T

GB 2312-80 58 0x41 A

JIS X 0208-1983 87 0x42 B

ISO 8859-1:1998 100 0x41 A

KS X 1001:1992 149 0x43 C

JIS X 0212-1990 159 0x44 D

ISO-IR-165:1992 165 0x45 E

JIS X 0208-1990 168 0x42 B

CNS 11643-1992 Plane 1 171 0x47 G

CNS 11643-1992 Plane 2 172 0x48 H

VSCII 180 0x5A Z

CNS 11643-1992 Plane 3 183 0x49 I

CNS 11643-1992 Plane 4 184 0x4A J

CNS 11643-1992 Plane 5 185 0x4B K

CNS 11643-1992 Plane 6 186 0x4C L

CNS 11643-1992 Plane 7 187 0x4D M

KPS 9566-97 202 0x4E N

JIS X 0213:2000 Plane 1 228 0x4F O

JIS X 0213:2000 Plane 2 229 0x50 P

JIS X 0213:2004 Plane 1 233 0x51 Q

More information about these ISO-registered character sets is available, including PDF
versions of the actual ISO IR documents.*

Some references refer to GL and GR encodings, which are abbreviations for “Graphic
Left” and “Graphic Right,” respectively. What is the significance of left versus right? Figure
4-8 illustrates an eight-bit encoding table in which the GL and GR portions are shaded.
Note how the GL region is on the left, and the GR region is on the right. This is where
GL and GR come from. Apparently, the “everything is relative” expression also applies to
encoding methods.

* http://www.itscj.ipsj.or.jp/ISO-IR/

Legacy encoding Methods | 233

��
��
��
���
��
��
���

���
��

��

��
��
��
��
���
��
��
���

���
��

��

�

�

�

�

�

�

�

�

�

���

GL and GR encodingsFigure 4-8.

The GL range is 0x21 through 0x7E, which is used by ISO-2022 encodings to encode all
graphic characters, and by EUC encodings to encode the single-byte ASCII or CJKV-
Roman character sets. The GR block is 0xA1 through 0xFE, which is used by EUC
encodings to encode all two-byte graphic characters, as well as some single-byte graphic
characters, such as half-width katakana.

My convention is to use “ISO-2022” or locale-specific instances thereof to indicate GL for
one- and two-byte encodings, and “EUC” or locale-specific instances thereof to indicate
GR for two- or more-byte portions of the encoding.

234 | Chapter 4: encoding Methods

ISO-2022 encodings use special characters or sequences of characters called designator
sequences, single shift sequences, shifting characters, and escape sequences. The follow-
ing are descriptions of each:

Designator sequence
Indicates what character set should be invoked when in two-byte mode. It does not
invoke two-byte mode.

Single shift sequence
Indicated by SS2 (Single Shift 2; <1B 4E>) or SS3 (Single Shift 3; <1B 4F>), invokes
two-byte mode only for the following two bytes. Typically employed for rarely used
character sets.

Shifting characters
Indicated by SO (Shift-Out; 0x0E) or SI (Shift-In; 0x0F), switches between one- and
two-byte modes. An SO invokes two-byte mode until an SI is encountered, which
invokes one-byte mode.

Escape sequence
Indicates what character set should be invoked, and invokes it as well.

Table 4-32 indicates what special characters or character sequences each locale-specific
instance of ISO-2022 encoding uses. Note how there are two basic types of ISO-2022 en-
codings: those that use designator sequences, shifting characters, and perhaps single shift
sequences; and those that use only escape sequences.

The use of special characters or character sequences in ISO-2022 encodingsTable 4-32.

type encodings

Designator sequences ISO-2022-CN, ISO-2022-CN-EXT, ISO-2022-KR

Single shift sequences ISO-2022-CN, ISO-2022-CN-EXT

Shifting characters ISO-2022-CN, ISO-2022-CN-EXT, ISO-2022-KR

Escape sequences ISO-2022-JP, ISO-2022-JP-1, ISO-2022-JP-2

The following sections describe each of these locale-specific ISO-2022 encoding instances
in more detail, in the order of their importance, and provide illustrative examples of their
use. You will soon discover that some instances are more complex than others.

Iso-2022-JP encodings—rFCs 1468, 1554, and 2237

ISO-2022-JP encoding, defined in RFC 1468, Japanese Character Encoding for Internet
Messages, provides support for the ASCII, JIS-Roman, JIS C 6226-1978, and JIS X 0208-
1983 character sets.* ISO-2022-JP-2 encoding, defined in RFC 1554, ISO-2022-JP-2: Mul-
tilingual Extension of ISO-2022-JP, is an extension to ISO-2022-JP that adds support for

* http://www.ietf.org/rfc/rfc1468.txt

Legacy encoding Methods | 235

the GB 2312-80, JIS X 0212-1990, and KS X 1001:1992 character sets in addition to two
parts of ISO 8859 (Parts 1 and 7).* ISO-2022-JP-1, defined in RFC 2237, Japanese Charac-
ter Encoding for Internet Messages, is a modest extension to ISO-2022-JP that simply adds
support for JIS X 0212-1990.†

All three ISO-2022-JP encodings are incompatible with ISO 2022:1994 because they use
escape sequences that do not follow the standard (for JIS C 6226-1978 and JIS X 0208-
1983), and because the JIS X 0208-1983 escape sequence is used for introducing JIS X
0208-1990 (see Table 4-37).

From a practical point of view, ISO-2022-JP-2 adds support for only JIS X 0212-1990.
There are other ISO-2022 encodings better suited to support the GB 2312-80 and KS X
1001:1992 character sets, specifically ISO-2022-CN and ISO-2022-KR, respectively.

Table 4-33 lists the escape sequences supported by ISO-2022-JP encoding.

ISO-2022-JP encoding specificationsTable 4-33.

Character set decimal Hexadecimal Visual—AsCII

ASCII 27 40 66 1B 28 42 <ESC> (B

JIS-Roman 27 40 74 1B 28 4A <ESC> (J

JIS C 6226-1978 27 36 64 1B 24 40 <ESC> $ @

JIS X 0208-1983 27 36 66 1B 24 42 <ESC> $ B

Escape sequences must be fully contained within a line; they should not span newlines
or carriage returns. If the last character on a line is represented by two bytes, an ASCII
or JIS-Roman character escape sequence should follow before the line terminates. If the
first character on a line is represented by two bytes, a two-byte character escape sequence
should precede it. Not all these procedures are necessary, but they are useful because
they ensure that small communication errors do not render an entire Japanese document
unreadable—each line becomes self-contained. These escape sequences are also known as
kanji-in and kanji-out. Kanji-in corresponds to a two-byte character escape sequence, and
kanji-out corresponds to a one-byte character escape sequence.

ISO-2022-JP-1 is identical to ISO-2022-JP encoding except that it adds support for the JIS
X 0212-1990 character set. Table 4-34 provides the JIS X 0212-1990 escape sequence as
described for ISO-2022-JP-1 encoding.

ISO-2022-JP-1 encoding specificationsTable 4-34.

Character set decimal Hexadecimal Visual—AsCII

JIS X 0212-1990 27 36 40 68 1B 24 28 44 <ESC> $ (D

* http://www.ietf.org/rfc/rfc1554.txt
† http://www.ietf.org/rfc/rfc2237.txt

236 | Chapter 4: encoding Methods

ISO-2022-JP-2, on the other hand, adds support for five additional character sets. These
character sets, along with their escape sequences, are listed in Table 4-35.

ISO-2022-JP-2 encoding specificationsTable 4-35.

Character set decimal Hexadecimal Visual—AsCII

GB 2312-80 27 36 65 1B 24 41 <ESC> $ A

JIS X 0212-1990 27 36 40 68 1B 24 28 44 <ESC> $ (D

KS X 1001:1992 27 36 40 67 1B 24 28 43 <ESC> $ (C

ISO 8859-1:1998 27 46 65 1B 2E 41 <ESC> . A

ISO 8859-7:1998 27 46 70 1B 2E 46 <ESC> . F

Let’s take a look at some ISO-2022-JP–encoded material to see exactly how this encoding
method works. Table 4-36 uses the example string is かな漢字, which means “kana [and]
kanji,” and the encoded values are expressed in hexadecimal notation.

Japanese encoding example—ISO-2022-JP encodingTable 4-36.

encoding string

Characters か な 漢 字
ISO-2022-JP 1B 24 42 24 2B 24 4A 34 41 3B 7A 1B 28 4A

Escape sequences <ESC> $ B <ESC> (J

ISO-2022-JP—visual $ + $ J 4 A ; z

In this example, the first escape sequence signals a switch in mode to the JIS X 0208-1983
character set (two-byte mode); this is followed by the data for the four characters to be
displayed. To terminate the string, a one-byte character escape sequence is used (in this
case it is the one for switching to the JIS-Roman character set).

You have already learned that ISO-2022-JP encoding makes use of seven bits for repre-
senting two-byte characters. The actual encoded range corresponds to that used for repre-
senting the ASCII character set. Thus, the encoded values for the kanji in our example can
be represented with ASCII characters, as shown in the last line of the example.

the predecessor of Iso-2022-JP encoding—JIs encoding

Before RFC 1468 was introduced in June of 1993, which effectively defined ISO-2022-JP
encoding, ISO-2022–encoded Japanese text was commonly referred to as “JIS encoding”
(and is often still referred to as such in many contexts). But, what most people do not real-
ize is that what is now known as ISO-2022-JP encoding is actually a subset of what is still
known as JIS encoding. Confused? You shouldn’t be after reading this section.

Legacy encoding Methods | 237

JIS encoding can be thought of as a much richer variation of ISO-2022-JP encoding—
richer in the sense that it supports more character sets. Table 4-37 provides the specifica-
tions for JIS encoding.

JIS encoding specificationsTable 4-37.

encoding decimal Hexadecimal Visual—AsCII

one-byte characters

Byte range 33–126 21–7E

two-byte characters

First byte range 33–126 21–7E

Second byte range 33–126 21–7E

escape sequences

JIS-Roman 27 40 74 1B 28 4A <ESC> (J

JIS-Romana 27 40 72 1B 28 48 <ESC> (H

ASCII 27 40 66 1B 28 42 <ESC> (B

Half-width katakana 27 40 73 1B 28 49 <ESC> (I

JIS C 6226-1978 27 36 64 1B 24 40 <ESC> $ @

JIS X 0208-1983 27 36 66 1B 24 42 <ESC> $ B

JIS X 0208-1990 27 38 64 27 36 66 1B 26 40 1B 24 42 <ESC> & @ <ESC> $ B

JIS X 0208:1997 27 38 64 27 36 66 1B 26 40 1B 24 42 <ESC> & @ <ESC> $ B

JIS X 0212-1990 27 36 40 68 1B 24 28 44 <ESC> $ (D

JIs7 half-width katakana

Shift-out 14 0E <SO>

Byte range 33–95 21–5F

Shift-in 15 0F <SI>

JIs8 half-width katakana

Byte range 161–223 A1–DF

This is improperly used on some implementations as the one-byte character escape sequence for JIS-Roman. According to the standard des-a.
ignated JIS X 0202:1998, it is actually the one-byte character escape sequence for the Swedish character set. It is a good idea for software to
recognize, but not to generate, this one-byte character escape sequence. The correct sequence to use is <ESC> (J.

JIS encoding also supports half-width katakana, and has two different methods called
JIS7 and JIS8. JIS7 encoding has all eighth bits cleared; JIS8 does not. JIS7 and JIS8 half-
width katakana encodings are not widely used in products, so it is questionable whether
all software should necessarily generate such codes. It is, however, important that software
recognize and deal with them appropriately.

JIS7 encoding is identical to JIS encoding, but with the addition of another escape se-
quence for shifting into half-width katakana mode. This method is defined in the doc-
ument JIS X 0202:1998. This means that a document containing two-byte Japanese,

238 | Chapter 4: encoding Methods

one-byte ASCII, and half-width katakana characters may make use of at least three escape
sequences, one for shifting into each of the three modes or character sets. An alternate
method for encoding half-width katakana under JIS7 uses the ASCII Shift-Out (SO) and
Shift-In (SI) characters instead of an escape sequence. Half-width katakana sequences be-
gin with a Shift-Out character, and are terminated with a Shift-In character. This encoding
method is described in the standard designated JIS X 0201-1997.

The encoding range for JIS8 includes eight-bit bytes (its range is 0xA1 through 0xDF, and
is identical to the half-width katakana range in Shift-JIS encoding). The text stream must
be in one-byte mode. This encoding is also described in JIS X 0201-1997.

Iso-2022-Kr encoding—rFC 1557

ISO-2022-KR encoding, defined in RFC 1557, Korean Character Encoding for Internet
Messages, specifies how Korean text is to be encoded for email messages or other elec-
tronic transmission.* The ISO-2022-KR designator sequence must appear only once in a
file, at the beginning of a line, before any KS X 1001:2004 characters. This usually means
that it appears by itself on the first line of the file. ISO-2022-KR uses only two shifting
sequences (for switching between one- and two-byte modes), and involves neither the es-
cape character nor an escape sequence. Table 4-38 provides a listing of the ISO-2022-KR
designator sequence and the two shifting sequences.

ISO-2022-KR encoding specificationsTable 4-38.

encoding decimal Hexadecimal Visual—AsCII

Designator sequence 27 36 41 67 1B 24 29 43 <ESC> $) C

One-byte shift 15 0F <SI>

Two-byte shift 14 0E <SO>

Table 4-39 illustrates how Korean text is encoded according to ISO-2022-KR encoding by
using the Korean word 김치 (gimchi, meaning “kimchi”) as the example.

Korean encoding example—ISO-2022-KR encodingTable 4-39.

encoding string

Characters 김 치

ISO-2022-KR 1B 24 29 43 0E 31 68 44 21 0F

Designator sequence <ESC> $) C

Shifts <SO> <SI>

ISO-2022-KR—visual 1 h D !

* http://www.ietf.org/rfc/rfc1557.txt

Legacy encoding Methods | 239

Note the similarities with the ISO-2022-CN and ISO-2022-CN-EXT encoding methods,
specifically that a designator sequence and shifting characters are used for switching be-
tween one- and two-byte modes.

Iso-2022-Cn and Iso-2022-Cn-eXt encodings—rFC 1922

ISO-2022-CN and ISO-2022-CN-EXT encodings, defined in RFC 1922, Chinese Charac-
ter Encoding for Internet Messages, are somewhat complex in that they involve designator
sequences, single shift sequences, and shifting characters.* This is because these encodings
support a rather large number of character sets, from both China and Taiwan.

ISO-2022-CN is distinguished from ISO-2022-CN-EXT in that it supports only ASCII,
GB 2312-80, and CNS 11643-1992 Planes 1 and 2. ISO-2022-CN-EXT is equivalent to
ISO-2022-CN, plus it supports many more character sets.

Table 4-40 provides the specifications for the designator sequences used in ISO-2022-CN
and ISO-2022-CN-EXT encodings. Note how the designator sequences indicate a charac-
ter set or subset thereof (such as each plane of CNS 11643-1992).

ISO-2022-CN and ISO-2022-CN-EXT encoding specifications—Part 1Table 4-40.

Character set decimal Hexadecimal Visual—AsCII

GB 2312-80 27 36 41 65 1B 24 29 41 <ESC> $) A

CNS 11643-1992 Plane 1 27 36 41 71 1B 24 29 47 <ESC> $) G

CNS 11643-1992 Plane 2 27 36 42 72 1B 24 2A 48 <ESC> $ * H

ISO-IR-165 27 36 41 69 1B 24 29 45 <ESC> $) E

CNS 11643-1992 Plane 3 27 36 43 73 1B 24 2B 49 <ESC> $ + I

CNS 11643-1992 Plane 4 27 36 43 74 1B 24 2B 4A <ESC> $ + J

CNS 11643-1992 Plane 5 27 36 43 75 1B 24 2B 4B <ESC> $ + K

CNS 11643-1992 Plane 6 27 36 43 76 1B 24 2B 4C <ESC> $ + L

CNS 11643-1992 Plane 7 27 36 43 77 1B 24 2B 4D <ESC> $ + M

ISO-2022-CN-EXT actually provides support for additional character sets, including
GB/T 12345-90, GB 7589-87, GB 7590-87, and others, but these character sets are not
listed in the table because they are not yet ISO-registered.

Table 4-41 provides the specifications for the single shift sequences and shifting characters
used in ISO-2022-CN and ISO-2022-CN-EXT encodings.

* http://www.ietf.org/rfc/rfc1922.txt

240 | Chapter 4: encoding Methods

ISO-2022-CN and ISO-2022-CN-EXT encoding specifications—Part 2Table 4-41.

special characters decimal Hexadecimal Visual—AsCII

SS2 27 78 1B 4E <ESC> N

SS3 27 79 1B 4F <ESC> O

One-byte shift 15 0F <SI>

Two-byte shift 14 0E <SO>

Once you know the designator sequence, you then must find out what kind of shifting is
required. Table 4-42 lists the three shifting types, SO, SS2, and SS3, along with what char-
acter sets are used for each method.

ISO-2022-CN and ISO-2022-CN-EXT encoding specifications—Part 3Table 4-42.

shifting type Character sets

SO GB 2312-80, CNS 11643-1992 Plane 1, and ISO-IR-165:1992

SS2 CNS 11643-1992 Plane 2

SS3 CNS 11643-1992 Planes 3–7

The designator sequence must appear once on a line before any instance of the character
set it designates. If two lines contain characters from the same character set, both lines
must include the designator sequence (this is so that the text can be displayed correctly
when scrolled back in a window). This is different behavior from ISO-2022-KR (described
later in this chapter), where the designator sequence appears only once in the entire file
(this is because ISO-2022-KR supports only one two-byte character set—shifting to two-
byte mode is unambiguous).

the predecessor of Iso-2022-Cn encoding—HZ encoding

HZ encoding was a simplistic yet powerful system for encoding GB 2312-80 text, which
was developed by Fung Fung Lee (李枫峰 lǐ fēng fēng) for exchanging email and posting
news in Chinese. HZ encoding was commonly used when exchanging email or posting
messages to Usenet News (specifically, to alt.chinese.text).

The actual encoding ranges used for one- and two-byte characters are identical to ISO-
2022-CN and ISO-2022-CN-EXT encodings, but, instead of using designator sequenc-
es and shift characters to shift between character sets, a simple string of two printable
characters is used. Table 4-43 lists the two most important shift sequences used in HZ
encoding.

Legacy encoding Methods | 241

HZ encoding shift sequencesTable 4-43.

Character set shift sequence decimal Hexadecimal

ASCII or GB-Roman ~} 126 125 7E 7D

GB 2312-80 ~{ 126 123 7E 7B

As you can see, the overline or tilde character (0x7E) is interpreted as though it were an
escape character in HZ encoding, so it has special meaning. If an overline character is
to appear in one-byte mode, it must be doubled (so “~~” would appear as “~”). There is
also a fourth escape sequence, specifically “~” followed by a newline character. It is used
for maintaining two-byte mode while breaking lines. This effectively means that there are
four shift sequences used in HZ encoding, as shown in Table 4-44.

Meanings of HZ escape sequencesTable 4-44.

escape sequence Meaning

~~ “~” in one-byte mode

~} Shift into one-byte mode: ASCII or GB-Roman

~{ Shift into two-byte mode: GB 2312-80

~<NL> Maintain two-byte across lines

HZ encoding typically works without problems because the shift sequences, while be-
ing valid two-byte code points, represent empty code points in the very last row of the
GB 2312-80 character set’s 94×94 matrix (actually, the second- and third-from-last code
points). This effectively makes 93 of the 94 rows accessible.

The complete HZ specification is part of the HZ package,* described in Fung Fung Lee’s
RFC 1843, HZ—A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and
ASCII characters.†

In addition, RFC 1842, ASCII Printable Characters-Based Chinese Character Encoding
for Internet Messages, establishes “HZ-GB-2312” as the charset designator for MIME-
encoded email headers.‡ Its properties are identical to HZ encoding as described here and
in RFC 1843.

other possible Iso-2022 encodings

Although not even officially in existence, one could conceive of ISO-2022–style encod-
ings for North Korea’s KPS 9566-97 or Vietnam’s TCVN 5773:1993 and TCVN 6056:1995
standards. Actually, the final escape sequence character for KPS 9566-97 has been

* ftp://ftp.ifcss.org/pub/software/unix/convert/HZ-2.0.tar.gz
† http://www.ietf.org/rfc/rfc1843.txt
‡ http://www.ietf.org/rfc/rfc1842.txt

242 | Chapter 4: encoding Methods

registered with ISO, and is set to “N” (0x4E). So, the stage has been set for establishing
ISO-2022-KP encoding. If an ISO-2022-KP encoding is to spring into existence, it is likely
to be similar to that of ISO-2022-KR encoding, except that the designator sequence that is
used for KPS 9566-97 would be the four-character string <ESC> $) N (<1B 24 29 4E>).

Likewise, a reasonable encoding name for TCVN 5773:1993 and TCVN 6056:1995 would
be ISO-2022-VN, but before that can happen, ISO registration is necessary. However, the
ever-increasing adoption of Unicode makes this very unlikely. Also, the use of ISO-2022
encodings has diminished, though it is still possible to encounter them in some contexts
or for specific uses.

eUC encoding
Extended Unix Code (EUC) encoding was implemented as the internal code for most
Unix software configured to support Japanese. EUC is also known in Japan as Unixized
JIS (UJIS) and AT&T JIS. The definition of EUC, like that of ISO-2022, comes from the
standard designated ISO 2022:1994, though its implementation dates back to the early
1980s.

EUC was developed as a method for handling multiple character sets, Japanese and oth-
erwise, within a single text stream. The full definition of EUC encoding is quite rich and
supports various multiple-byte encodings, but the specific implementations used for
CJKV systems usually fall into two specific types: packed format and complete two-byte
format. The packed format was far more common. The Japanese definition (or instance)
of EUC, called EUC-JP, was standardized in 1991 by three organizations: Open Software
Foundation (OSF), Unix International (UI), and Unix System Laboratories Pacific (USLP).
This standardization has subsequently made it easier for other developers to implement
Japanese systems, and at the same time reinforced the use of EUC-JP encoding. The defi-
nitions of EUC encoding for other CJKV locales have also been defined.

There was once a trend in software development to produce systems that processed EUC-
JP—it is much more extensible than Shift-JIS. Most Unix operating systems process EUC-
JP encoding internally. However, Unicode changed all that.

CJKV implementations of EUC encoding use one specific instance of multiple-length and
one specific instance of fixed-length encoding.

The full definition of EUC encoding consists of four code sets. Code set 0 is always set to
the ASCII character set or a country’s own version thereof, such as KS-Roman for Korea.
The remaining code sets are defined as a set of variants for which each country can specify
what character sets they support. You will learn how each major CJKV locale has imple-
mented EUC encoding in the sections that follow.

There are several reserved code points in EUC that cannot be used to encode printable
characters. These code points and ranges consist of the “space” character, the “delete”
character, and two disjointed ranges of control characters. Table 4-45 shows these code
point ranges in more detail.

Legacy encoding Methods | 243

EUC reserved code ranges and positionsTable 4-45.

special characters decimal Hexadecimal

Control set 0 0–31 00–1F

Space character 32 20

Delete character 127 7F

Control set 1 128–159 80–9F

This allocation of reserved code points permits two ranges for encoding graphic charac-
ters, specifically 0x21 through 0x7E (94 characters) and 0xA0 through 0xFF (96 charac-
ters). The second range, at least for CJKV implementations, is limited to the range 0xA1
through 0xFE as a way to remain compatible with encodings that support ranges of only
94 characters, such as ISO-2022. Table 4-46 lists these two encoding ranges in decimal
and hexadecimal notations, and also indicates their GL and GR relationships.

EUC graphic character encoding rangesTable 4-46.

encoding ranges decimal Hexadecimal

First code range—GL 33–126 21–7E

Second code range—GR 160–255 A0–FF

There are also two special characters: SS2 and SS3. Like with ISO-2022 encodings, SS2
stands for Single Shift 2, and serves as a prefix for every character in code set 2. Likewise,
SS3 stands for Single Shift 3, and serves as a prefix for every character in code set 3. Table
4-47 lists these characters in decimal and hexadecimal notations. Contrast these with the
SS2 and SS3 characters used in ISO-2022-CN and ISO-2022-CN-EXT encodings in Table
4-42. These will become important later when we discuss code sets 2 and 3.

EUC encoding’s SS2 and SS3 charactersTable 4-47.

encoding decimal Hexadecimal

SS2 142 8E

SS3 143 8F

Table 4-48 illustrates the variable-length representation of the four EUC code sets, along
with some of their possible permutations (hexadecimal notation is used here for the sake
of space), as they may appear in locale-specific instances of EUC encoding. Note how
code set 0 uses GL encoding ranges, and code sets 1 through 3 use GR encoding ranges.

244 | Chapter 4: encoding Methods

EUC variable-width representationsTable 4-48.

Code set Variant 1 Variant 2 Variant 3

Code set 0 21–7E

Code set 1 A0–FF A0–FF + A0–FF A0–FF + A0–FF + A0–FF

Code set 2 8E + A0–FF 8E + A0–FF + A0–FF 8E + A0–FF + A0–FF + A0–FF

Code set 3 8F + A0–FF 8F + A0–FF + A0–FF 8F + A0–FF + A0–FF + A0–FF

The representations shown in Table 4-48 are often referred to as EUC packed format, and
represent the most commonly used instances of EUC encoding. Also, there can be as
many variants of this representation as needed to represent a given locale’s character set—
or character sets if there is more than one that requires support.

The definition of EUC encoding is thus locale-specific—each locale implements its own
instance of EUC encoding. This is also why specifying EUC encoding itself is somewhat
ambiguous. The locale-specific instances of EUC encoding are known as EUC-CN (Chi-
na), EUC-TW (Taiwan), EUC-JP (Japan), and EUC-KR (Korea). These are described in
the following sections.

There are two fixed-length EUC representations: 16- and 32-bit.* The significance of these
fixed-length representations is that all characters are represented by the same number of
bits or bytes. While this may waste space, it does make internal processing more efficient
for some text-processing tasks. Table 4-49 describes the 16-bit, fixed-length representa-
tions of EUC encoding. Be sure to note the mixed use of GL and GR encoding ranges for
code sets 2 and 3.

EUC 16-bit, fixed-length representationsTable 4-49.

Code set Variant 1 Variant 2

Code set 0 00 + 21–7E

Code set 1 80 + A0–FF A0–FF + A0–FF

Code set 2 00 + A0–FF 21–7E + A0–FF

Code set 3 80 + 21–7E A0–FF + 21–7E

This 16-bit, fixed-length representation is often referred to as EUC complete two-byte for-
mat, and is primarily used for internally processing (as opposed to external representa-
tion, such as for information interchange). Note that the SS2 and SS3 characters are not
used in this representation—they are not necessary under a fixed-length encoding model.
The 32-bit representation gets very long, and since it is not implemented for most locales,
there is no need to illustrate its code ranges here.

* Of course, these can also be thought of as two- and four-byte representations.

Legacy encoding Methods | 245

The following sections describe the locale-specific instances of EUC encoding. Be sure
to note their similarities and differences. You will find similarities in code sets 0 and 1,
and the primary differences in code sets 2 and 3. Also, sometimes code sets 2 and 3 are
unused.

eUC-Cn encoding—China

The instance of EUC encoding used for the China locale is known as EUC-CN encoding.
It is sometimes referred to as eight-bit GB or simply GB encoding outside the context
of EUC encoding. Table 4-50 lists what character set is assigned to each EUC code set.
The “Display width” column in this and similar tables in this chapter corresponds to the
number of columns occupied by each character in a code set. A display width value of 1
corresponds to half-width or proportional, depending on the glyphs in the font, and a
display width value of 2 corresponds to full-width.

EUC-CN code set allocationTable 4-50.

Code set Character set display width number of bytes

Code set 0 ASCII or GB-Roman 1 1

Code set 1 GB 2312-80 2 2

Code set 2 unused

Code set 3 unused

Note that EUC code sets 2 and 3 are unused in EUC-CN encoding. Table 4-51 lists the
EUC-CN encoding specifications.

EUC-CN encoding specificationsTable 4-51.

Code set decimal Hexadecimal

Code set 0

Byte range 33–126 21–7E

Code set 1

First byte range 161–254 A1–FE

Second byte range 161–254 A1–FE

Code set 2 unused unused

Code set 3 unused unused

EUC-CN encoding is virtually identical to EUC-KR encoding (covered in the next page
or so), except for what particular character sets are allocated to each EUC code set, spe-
cifically code sets 0 and 1. Figure 4-9 illustrates the encoding regions for EUC-CN and
EUC-KR encodings.

246 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

����������
(ASCII/KS-Roman/GB-Roman)

�������� 1
(KS X 1001:2004 or GB 2312-80)

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

EUC-CN and EUC-KR encoding tablesFigure 4-9.

eUC-tW encoding—taiwan

The instance of EUC encoding used for the Taiwan locale is known as EUC-TW en-
coding. It is by far the most complex instance of EUC encoding in terms of how many
characters it encodes, which is now approximately 75,000. Table 4-52 lists what character

Legacy encoding Methods | 247

set is assigned to what code set. In the case of CNS 11643-2007, its 80 defined planes are
implemented across EUC code sets 1 and 2.

EUC-TW code set allocationTable 4-52.

Code set Character set display width number of bytes

Code set 0 ASCII or CNS-Roman 1 1

Code set 1 CNS 11643-2007 Plane 1 2 2

Code set 2a CNS 11643-2007 Planes 1–80 2 4

Code set 3 unused

Note how CNS 11643-2007 Plane 1 is encoded in both EUC code set 1 and 2—this is by design.a.

Note that EUC code set 2 is quite overloaded (over 700,000 code points are referenced
using a 4-byte encoding), but EUC code set 3 is completely unused. Table 4-53 lists EUC-
TW’s encoding specifications.

EUC-TW encoding specificationsTable 4-53.

Code set decimal Hexadecimal

Code set 0

Byte range 33–126 21–7E

Code set 1

First byte range 161–254 A1–FE

Second byte range 161–254 A1–FE

Code set 2

First byte (SS2) 142 8E

Second byte rangea 161–240 A1–F0

Third byte range 161–254 A1–FE

Fourth byte range 161–254 A1–FE

Code set 3 unused unused

This value indicates the plane number. Subtract decimal 160 (or a. 0xA0) from the value to calculate the plane number. For example, 161 (or
0xA1) means Plane 1, and 240 (or 0xF0) means Plane 80.

Note the use of four bytes to encode characters in EUC code set 2. CNS 11643-2007 Plane
7, for example, is encoded by using 167 (0xA7) as the second byte. Figure 4-10 illustrates
the complete EUC-TW encoding regions.

248 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

����������
(ASCII/CNS-Roman)

����������
(CNS 11643-2007 Plane 1)

����������
(CNS 11643-2007 Planes 1–80)

��

��

��

��

�� �� �� ��

��
��
��
��

��
��
��

��
�

������������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

EUC-TW encoding tablesFigure 4-10.

eUC-JP encoding—Japan

The official definition of EUC-JP encoding specifies the character sets that are allocated to
each of the four EUC code sets. These allocations are illustrated in Table 4-54.

Legacy encoding Methods | 249

EUC-JP code set allocationTable 4-54.

Code set Character set display width number of bytes

Code set 0 ASCII or JIS-Roman 1 1

Code set 1 JIS X 0208:1997 2 2

Code set 2 Half-width katakana 1 2

Code set 3 JIS X 0212-1990 2 3

Note that EUC-JP encoding encodes half-width katakana using two bytes rather than
one, and that it includes a very large user-defined character space. Large enough, in fact,
that EUC-JP encoding implements the JIS X 0212-1990 character set by placing it into
this space.

Unlike other CJKV instances of EUC encoding, EUC-JP encoding makes use of all four
code sets.

As you already learned, EUC encoding consists of four code sets: the primary code set
(code set 0) to which the ASCII/CJKV-Roman character set is assigned, and three supple-
mental code sets (code sets 1, 2, and 3) that can be specified by the locale and are usually
used for non-Latin characters. Table 4-55 lists the code specifications for all the code sets
of EUC-JP encoding.

EUC-JP encoding specificationsTable 4-55.

Code set decimal Hexadecimal

Code set 0

Byte range 33–126 21–7E

Code set 1

First byte range 161–254 A1–FE

Second byte range 161–254 A1–FE

Code set 2

First byte (SS2) 142 8E

Second byte range 161–223 A1–DF

Code set 3

First byte (SS3) 143 8F

Second byte range 161–254 A1–FE

Third byte range 161–254 A1–FE

See Figure 4-11 for an illustration of the EUC-JP encoding space. Note how it requires a
three-dimensional space.

250 | Chapter 4: encoding Methods

����������
(JIS X 0208:1997)

����������
(Half-Width Katakana)

����������
(JIS X 0212-1990)

��

��
��

��

��

��

��

��

��

��

�� �� �� �� �� �� ��
��

��
��

��
��

��
��

��
��
��
���

��
��
��

��
��

��������������������
���

���
��
���

��
��

����������
(ASCII/CNS-Roman)

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

EUC-JP encoding tablesFigure 4-11.

You may have noticed that, for each byte of some of the code sets, EUC permits up to 96
characters (that is, the range 0xA0 through 0xFF). So why are the encoding ranges in the
tables of these sections slightly smaller—specifically 0xA1 through 0xFE—or 94 characters
instead of 96? As stated earlier, this is done for the sake of compatibility with character
sets and encodings (most notably, ISO-2022-JP) that are based on a 94×94 matrix. This
is not to say that code points 0xA0 or 0xFF are invalid, but that there are most likely no
characters encoded at those rows.

Let’s begin to expand our Japanese encoding example by including the EUC-JP–encoded
equivalent of the example string かな漢字, in order to see how this encoding method
works and how it compares to ISO-2022-JP encoding. Like before, the encoded values are
in hexadecimal notation and correspond to characters in the JIS X 0208:1997 character set
encoded in EUC-JP code set 1. Table 4-56 provides this encoding example.

Legacy encoding Methods | 251

Japanese encoding example—ISO-2022-JP and EUC-JP encodingsTable 4-56.

encoding string

Characters か な 漢 字
ISO-2022-JP 1B 24 42 24 2B 24 4A 34 41 3B 7A 1B 28 4A

Escape sequences <ESC> $ B <ESC> (J

ISO-2022-JP—visual $ + $ J 4 A ; z

EUC-JP A4 AB A4 CA B4 C1 BB FA

As shown in the table, there are absolutely no escape sequences or shifting sequences used
in EUC-JP encoding as there are in ISO-2022-JP encoding.

Table 4-57 illustrates why ISO-2022 and EUC encodings are referred to as seven- and
eight-bit encodings, respectively, by showing the corresponding bit arrays for the four
characters of the example string かな漢字.

Japanese encoding example—ISO-2022-JP and EUC-JP bit arraysTable 4-57.

encoding string

Characters か な 漢 字
ISO-2022-JP 24 2B 24 4A 34 41 3B 7A

ISO-2022-JP—binary 00100100 00101011 00100100 01001010 00110100 01000001 00111011 01111010

EUC-JP A4 AB A4 CA B4 C1 BB FA

EUC-JP—binary 10100100 00101011 10100100 11001010 10110100 11000001 10111011 11111010

Although hexadecimal notation may not overtly or explicitly indicate the close relation-
ship between ISO-2022 and EUC encodings (unless you are very good at working with
hexadecimal digits), their bit arrays most certainly do, because the bit arrays differ only
in that the most significant bits are set to “0” for ISO-2022 encodings, and are set to “1”
for EUC encodings.

eUC-JP encoding for JIs X 0213:2004

The EUC-JP encoding shown in the JIS X 0213:2004 standard proper, for the characters
that are outside of JIS X 0208:1997 and thus specific to JIS X 0213:2004, are Informative,
not Normative, meaning that they are not meant to be implemented. In fact, I am not
aware of any EUC-JP–based implementations of JIS X 0213:2004.

The preferred way in which JIS X 0213:2004 is to be supported is through Unicode. Uni-
code version 3.2 or greater fully supports JIS X 0213:2004, though 25 of its characters map
to a sequence of two Unicode code points.

252 | Chapter 4: encoding Methods

eUC-Kr encoding

The instance of EUC encoding used for the Korean locale is known as EUC-KR encoding
and is sometimes referred to as “KS_C_5601-1987” or “eight-bit KS” encoding, though
these are incorrect and somewhat dangerous designations in my opinion. This encoding
is defined in the standard designated KS X 2901:1992.* Table 4-58 lists what character sets
are assigned to each corresponding EUC-KR code set.

EUC-KR code set allocationTable 4-58.

Code set Character set display width number of bytes

Code set 0 ASCII or KS-Roman 1 1

Code set 1 KS X 1001:2004 2 2

Code set 2 unused

Code set 3 unused

EUC-KR encoding, like EUC-CN encoding covered earlier, does not make use of EUC
encoding’s code sets 2 and 3. This makes it virtually impossible to distinguish EUC-CN
encoding from EUC-KR encoding without the use of any language or locale attribute.
Table 4-59 details the specifications for EUC-KR encoding.

EUC-KR encoding specificationsTable 4-59.

Code set decimal Hexadecimal

Code set 0

Byte range 33–126 21–7E

Code set 1

First byte range 161–254 A1–FE

Second byte range 161–254 A1–FE

Code set 2 unused unused

Code set 3 unused unused

Note the similarities with EUC-CN encoding in Table 4-51—apart from character set
allocation, the encoding ranges are identical. EUC-KR encoding is expressed visually in
Figure 4-9.

Let’s now take a peek at some EUC-KR–encoded material, using the same example
string used for the ISO-2022-KR section from earlier in this chapter, specifically 김치.
Table 4-60 provides the EUC-KR–encoded example string and contrasts it with its ISO-
2022-KR–encoded representation. Like before, the encoded values are in hexadecimal
notation.

* Previously designated KS C 5861-1992

Legacy encoding Methods | 253

Korean encoding example—ISO-2022-KR and EUC-KR encodingsTable 4-60.

encoding string

Characters 김 치

ISO-2022-KR 1B 24 29 43 0E 31 68 44 21 0F

Designator sequence <ESC> $) C

Shifts <SO> <SI>

ISO-2022-KR—visual 1 h D !

EUC-KR B1 E8 C4 A1

This table shows that EUC-KR encoding does not use a designator sequence nor shifting
characters, which are necessary elements for ISO-2022-KR encoding.

other possible eUC encodings

Although not even officially in existence, one could conceive of EUC-style encodings for
North Korea’s KPS 9566-97 or Vietnam’s TCVN 5773:1993 and TCVN 6056:1995 stan-
dards. If an EUC-KP encoding is to spring into existence, it is likely to be similar to EUC-
KR. And, a likely encoding name for TCVN 5773:1993 and TCVN 6056:1995 is EUC-VN,
but it is unclear how the entire TCVN-Roman character set, specifically the many charac-
ters adorned with diacritic marks, would be handled. I suspect that EUC code set 2 could
be used, in a way similar to how half-width katakana are handled in EUC-JP encoding.

It needs to be explicitly pointed out that given the extent to which Unicode is used to-
day in OSes and applications, the likelihood of these encodings becoming established is
relatively low. There would be very little benefit in doing so, and would also represent a
significant step backward, meaning a step in the wrong direction.

eUC versus Iso-2022 encodings
EUC encoding is closely related to ISO-2022 encoding. In fact, every character that can
be encoded by an ISO-2022 encoding can be converted to an EUC-encoded equivalent.
This relationship leads to better information interchange. Figure 4-12 draws a comparison
between ISO-2022 and EUC encodings. It is critical to understand that the relationship
between the encoding ranges is nothing more than that of seven- versus eight-bit.

254 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

����������
(ASCII/JIS-Roman)

������������ ����������������������������������

����������
(ASCII/JIS-Roman)

����������
(Half-Width Katakana)

����������
(JIS X 0208:1997)

����������
(JIS X 0212-1990)

ISO-2022-JP

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

ISO-2022-JP and EUC-JP (complete two-byte format) encodingsFigure 4-12.

Legacy encoding Methods | 255

In most cases, EUC encoding is simply ISO-2022 encoding with the high bits set and
without escape or shift sequences of any kind.* Algorithms for code conversion are dis-
cussed in Chapter 9.

Locale-specific Legacy encoding Methods
Included here are descriptions of legacy encoding methods used for specific locales. I
find it intriguing that all five of these CJKV locales each have at least one locale-specific
encoding method. Table 4-61 lists some CJKV character set standards, along with their
locale-specific encoding methods.

Locale-specific legacy encoding methodsTable 4-61.

Character set encoding method Locale

GBK GBK China

GB 18030-2005 GB 18030 China

Big Fivea Big Five Taiwan

Big Five Plus Big Five Plus Taiwan

Hong Kong SCS-2008 Big Five Hong Kong

JIS X 0208:1997b Shift-JIS Japan

KS X 1001:2004 Johab Korea

Keep in mind that CNS 11643-2007 Planes 1 and 2 are equivalent to Big Five.a.

JIS X 0213:2004 is explicitly excluded from this table, because the Shift-JIS encoding for the characters specific to JIS X 0213:2004, meaning b.
those characters beyond JIS X 0208:1997, is Informative, not Normative. JIS X 0213:2004 is expected to be implemented through the use of
Unicode and its encodings.

The following sections cover each of these encoding methods in significant detail, and
some also provide encoding examples similar to those found in earlier sections. Compari-
sons are also drawn between these encoding methods, specifically with each other, or with
encoding methods that were already covered in this chapter.

GBK encoding—eUC-Cn extension
GBK encoding was originally planned as a Normative annex of GB 13000.1-93 as a way to
encode the Chinese subset of ISO 10646-1:1993. The “K” in “GBK” represents the letter for
the first sound of the Chinese word that means “extension,” specifically 扩展 (kuòzhǎn).
GBK encoding has been implemented as the system Code Page for the Chinese (PRC)
versions of Microsoft’s Windows 95 and IBM’s OS/2.

* Some may claim that EUC encoding’s SS2 and SS3 characters are shift characters of sorts. It is “officially okay”
to think so.

256 | Chapter 4: encoding Methods

GBK is divided into five levels as indicated in Table 4-62, which also indicates their encod-
ing ranges, the total number of code points, and the total number of characters that are
encoded.

GBK’s five levelsTable 4-62.

GBK level encoding range total code points total characters

GBK/1a A1 A1–A9 FE 846 717

GBK/2b B0 A1–F7 FE 6,768 6,763

GBK/3 81 40–A0 FE 6,080 6,080

GBK/4 AA 40–FE A0 8,160 8,160

GBK/5 A8 40–A9 A0 192 166

Equivalent to the non-hanzi found in both GB 2312-80 and GB/T 12345-90, but without 10 vertical variants found in GB/T 12345-90’s row 6. a.
Also, lowercase Roman numerals 1 through 10 were added to the beginning of GB 2312-80’s row 2.

Equivalent to GB2312-80’s two levels of hanzi.b.

GBK also supports up to 1,894 user-defined code points, separated into three encoding
ranges, as indicated in Table 4-63.

GBK’s user-defined regionsTable 4-63.

encoding range total code points

AA A1–AF FE 564

F8 A1–FE FE 658

A1 40–A7 A0 672

GBK thus includes a total of 23,940 code points, 21,886 of which have characters assigned.
Table 4-64 details the complete specifications for GBK encoding.

GBK encoding specificationsTable 4-64.

encoding decimal Hexadecimal

AsCII or GB-roman

Byte range 33–126 21–7E

GBK

First byte range 129–254 81–FE

Second byte ranges 64–126, 128–254 40–7E, 80–FE

GBK encoding was rendered obsolete by GB 18030 encoding, which is described in the
next section.

Legacy encoding Methods | 257

GB 18030 encoding—GBK extension
GB 18030 encoding is unique among the locale-specific encodings because it is the only
one that is code-point–compatible with Unicode. This compatibility is by design and is
a good thing. GB 18030 encoding is an extension of GBK encoding, and as you have
learned, GBK is an extension of EUC-CN encoding. What this effectively means is that
the way in which a character is encoded according to EUC-CN encoding is preserved in
GBK encoding, and thus in GB 18030 encoding. Likewise, the way in which a character is
encoded according to GBK encoding is preserved in GB 18030 encoding.

GB 18030 is a mixed one-, two-, and four-byte encoding method. Its one- and two-
byte regions are identical to GBK encoding. Table 4-65 details the GB 18030 encoding
specifications.

GB 18030 encoding specificationsTable 4-65.

encoding decimal Hexadecimal

AsCII or GB-roman

Byte range 33–126 21–7E

two-byte encoding—identical to GBK encoding with 23,940 code points

First byte range 129–254 81–FE

Second byte ranges 64–126, 128–254 40–7E, 80–FE

Four-byte encoding—1,587,600 code points

First byte range 129–254 81–FE

Second byte range 48–57 30–39

Third byte range 129–254 81–FE

Fourth byte range 48–57 30–39

GB 18030 thus includes a total of 1,611,668 code points. Staggering? Yes, but certainly not
overwhelming.

GB 18030 versus GBK versus eUC-Cn encodings

Note that the EUC-CN code set 1 encoding range, <A1 A1> through <FE FE>, forms a
subset of GBK encoding. This is by design and has the benefit of providing backward
compatibility with EUC-CN encoding. Figure 4-13 illustrates the relationship between
EUC-CN and GBK encodings.

Likewise, GBK’s 23,940 code points form a subset of GB 18030 encoding. Again, this is by
design and provides backward compatibility with GBK (and thus EUC-CN) encoding.

258 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

���� �����������������������

EUC-CN and GBK encodings—two-byte regionsFigure 4-13.

GB 18030 versus Unicode encoding forms

There has been some speculation as to why GB 18030 encoding has a greater number of
code points than Unicode. Consider the following facts:

GB 18030 encoding includes a total of 1,611,668 code points, specifically 128 in its •	
1-byte region, 23,940 in its two-byte region, and 1,587,600 in its four-byte region.

Unicode encoding forms support a total of 1,112,064 code points, specifically 63,488 •	
in the BMP, and 1,048,576 in its 16 additional planes.

Conspiracy theories aside, GB 18030 encoding includes more code points than Unicode
simply because its four-byte extension needed to be at least as large as Unicode in order

Legacy encoding Methods | 259

to be compatible with it. The GB 18030 code points that do not map to Unicode are con-
sidered unusable.

Table 4-66 demonstrates how GB 18030 encoding is both backward-compatible with
EUC-CN and GBK encodings, and code-point–compatible with Unicode. The table also
shows how the two- and four-byte regions of GB 18030 relate to BMP versus non-BMP
coverage when the same characters are represented in Unicode.

Chinese encoding example—EUC-CN, GBK, GB 18030, and Unicode encodingsTable 4-66.

encoding examples

Character 一 龥 㐀 𠀀

EUC-CN B0 A1 n/a n/a n/a

GBK B0 A1 FD 9B n/a n/a

GB 18030 B0 A1 FD 9B 81 39 EE 39 95 32 82 36

UTF-32BE 00 00 4E 00 00 00 9F A5 00 00 34 00 00 02 00 00

UTF-16BE 4E 00 9F A5 34 00 D8 40 DC 00

UTF-8 E4 B8 80 E9 BE A5 E3 90 80 F0 A0 80 80

This table suggests that ideographs that are in CJK Unified Ideographs Extension A map
to the four-byte region of GB 18030 encoding. But, as I pointed out in Chapter 3, of the
6,582 ideographs in Extension A, 52 were in already included in GBK. This means that
the vast majority of Extension A characters map to the four-byte region of GB 18030,
although not all do. But, all of the ideographs in CJK Unified Ideographs URO map to the
GBK-compatible two-byte region of GB 18030 encoding.

Big Five encoding
Big Five encoding has a lot in common with EUC-TW code sets 0 and 1 in terms of char-
acter repertoire. The main difference, encoding-wise, is that there is an additional encod-
ing block used by Big Five, and that Big Five uses only one plane. This additional encoding
block is required because the Big Five character set contains over 13,000 characters—
EUC-TW code set 1 simply cannot encode that many characters. Table 4-67 illustrates its
encoding specifications.

Big Five encoding specificationsTable 4-67.

encoding decimal Hexadecimal

AsCII or Cns-roman

Byte range 33–126 21–7E

Big Five

First byte range 161–254 A1–FE

Second byte ranges 64–126, 161–254 40–7E, A1–FE

260 | Chapter 4: encoding Methods

Figure 4-14 illustrates the Big Five encoding structure, which clearly shows its two sepa-
rate encoding regions.

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

���������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

Big Five encoding tablesFigure 4-14.

Big Five versus eUC-tW encodings

It seems a bit silly to compare Big Five and EUC-TW encodings because they are so differ-
ent from one another. Big Five encoding, on the one hand, is a mixed one- and two-byte

Legacy encoding Methods | 261

encoding whose second-byte values extend into the seven-bit region. EUC-TW, on the
other hand, is a mixed one-, two-, and four-byte encoding that is fundamentally made up
of planes. They are compatible only in that some parts are equivalent: Big Five Levels 1
and 2 are equivalent to CNS 11643-2007 Planes 1 and 2.

Big Five encoding—Hong Kong sCs-2008
Hong Kong SCS-2008, which is implemented as an extension to Big Five encoding, in-
cludes 5,009 characters, 4,568 of which are hanzi. The characters that are specific to Hong
Kong SCS-2008 are encoded in two separate regions within Big Five encoding, one of
which is considered a nonstandard or extended region. The portion of Hong Kong SCS-
2008 that is encoded in the standard Big Five encoding region spans rows 0xFA through
0xFE. Because this Big Five encoding extension includes a nonstandard region, specifi-
cally the range that spans rows 0x87 through 0xA0, not all OSes should be expected to
support Hong Kong SCS-2008, at least in the context of Big Five encoding.

Table 4-68 provides the specification for the Hong Kong SCS-2008 extension to Big Five
encoding. This should be added to Table 4-67 to come up with a complete encoding
definition.

Hong Kong SCS-2008 Big Five encoding specificationsTable 4-68.

encoding decimal Hexadecimal

AsCII or Cns-roman

Byte range 33–126 21–7E

Big Five—Hong Kong sCs-2008 extension

First byte range 135–254 87–FE

Second byte ranges 64–126, 161–254 40–7E, A1–FE

Be aware that Hong Kong SCS-2008 extension to Big Five encoding conflicts with Big
Five Plus encoding, which is described next. It also conflicts with some vendor-specific
instances of Big Five encoding—in particular, that used by Apple’s Mac OS-T.

Big Five Plus encoding—another Big Five extension
Due to influences from Unicode and CNS 11643-2007, the Big Five character set has re-
cently been expanded to include additional characters, mostly hanzi. This necessitated an
expansion of the encoding space. This expanded version of Big Five is known as Big Five
Plus. Table 4-69 lists the complete encoding specification for Big Five Plus encoding.

262 | Chapter 4: encoding Methods

Big Five Plus encoding specificationsTable 4-69.

encoding decimal Hexadecimal

AsCII or Cns-roman

Byte range 33–126 21–7E

Big Five Plus

First byte range 129–254 81–FE

Second byte ranges 64–126, 128–254 40–7E, 80–FE

Look familiar? We’ll draw a comparison between Big Five Plus and another encoding in
the next section. The “standard” Big Five characters (including the ETen extensions as
described in Appendix E) are encoded in the two-byte encoding range as provided in
Table 4-67.

GBK versus Big Five versus Big Five Plus encodings

While I have normally preferred to compare encodings within a single locale in this chap-
ter, this is a perfect time to draw comparisons between GBK and Big Five Plus encodings.
They share many of the same attributes, but how they were designed pinpoints their dif-
ferences. GBK began with EUC-CN code set 1 as its base, but Big Five Plus began with
Big Five as its base.

Although GBK and Big Five Plus share the same overall encoding structure, their char-
acter allocation in the two-byte region is completely different. Figure 4-15 illustrates how
Big Five encoding is a subset of Big Five Plus encoding. Compare this with Figure 4-13.

shift-JIs encoding—JIs X 0208:1997
Shift-JIS encoding, originally codeveloped by ASCII Corporation* and Microsoft Corpo-
ration, was widely implemented as the internal code for a variety of platforms, including
Japanese PCs and Mac OS-J (including the Japanese Language Kit). Shift-JIS is sometimes
referred to as MS (an abbreviation for Microsoft) Kanji, MS Code, or SJIS (an abbreviated
form of “Shift-JIS”).† Historically, Shift-JIS was so named because of the way the code
points for two-byte characters effectively “shifted” around the code points for half-width
katakana. Japanese PC users were originally restricted to only half-width katakana, so
Shift-JIS was developed in order to maintain backward compatibility with its code points.
It was not until 1997 that the definition of Shift-JIS encoding became an official part of the
JIS X 0208 standard. JIS X 0208:1997 contains its definition.

* ASCII here refers to the Japan-based company (http://www.ascii.co.jp/), not the character set.
† There are also less flattering permutations of this encoding’s name, but they are not suitable for printing in this

book.

Legacy encoding Methods | 263

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

�������������� �����������������������������������

Big Five and Big Five Plus encodings—two-byte regionsFigure 4-15.

The following list provides more examples of OSes and environments that can process
Shift-JIS code internally:

Virtually all Japanese PCs•	

Some Unix implementations, such as HP-UX, •	 AIX, and NEWS

Japanese •	 TEX (ASCII Corporation version)

Mac OS-J and Mac OS with JLK•	 *

* Japanese Language Kit

264 | Chapter 4: encoding Methods

What follows is an explanation of how Shift-JIS encoding works. A two-byte character in
Shift-JIS encoding is initiated with a byte having a decimal value of 129 through 159 or
224 through 239 (in hexadecimal, 0x81 through 0x9F or 0xE0 through 0xEF). This byte
is subsequently treated as the first byte of an expected two-byte sequence. The follow-
ing (second) byte must have a decimal value of 64 through 126 or 128 through 252 (in
hexadecimal, 0x40 through 0x7E or 0x80 through 0xFC). Note that the first byte’s range
falls entirely in the extended ASCII range—in the eight-bit encoding range with the high-
order bit turned on. Shift-JIS also encodes half-width katakana and ASCII/JIS-Roman.
Table 4-70 provides the specifications for Shift-JIS encoding.

Shift-JIS encoding specificationsTable 4-70.

encoding decimal Hexadecimal

AsCII or JIs-roman

Byte range 33–126 21–7E

Half-width katakana

Byte range 161–223 A1–DF

JIs X 0208:1997

First byte ranges 129–159, 224–239 81–9F, E0–EF

Second byte ranges 64–126, 128–252 40–7E, 80–FC

Let’s now complete our Japanese encoding example by including the Shift-JIS–encoded
equivalent of the example string かな漢字, in order to better illustrate how this encod-
ing method works, and perhaps more importantly, how it compares to ISO-2022-JP and
EUC-JP encodings; see Table 4-71. Like before, the encoded values are in hexadecimal
notation, and they correspond to characters in the JIS X 0208:1997 character set.

Japanese encoding example—ISO-2022-JP, EUC-JP, and Shift-JIS encodingsTable 4-71.

encoding string

Characters か な 漢 字
ISO-2022-JP 1B 24 42 24 2B 24 4A 34 41 3B 7A 1B 28 4A

Escape sequences <ESC> $ B <ESC> (J

ISO-2022-JP—visual $ + $ J 4 A ; z

EUC-JP A4 AB A4 CA B4 C1 BB FA

Shift-JIS 82 A9 82 C8 8A BF 8E 9A

Note that no escape sequences are used for Shift-JIS encoding. This is typical of nonmodal
encodings and produces a much tighter or smaller encoding, in terms of the total number
of bytes required to represent the entire text string. There is, however, no ASCII represen-
tation for the two bytes that constitute these Shift-JIS code points.

Legacy encoding Methods | 265

Shift-JIS encoding does not support the characters defined in JIS X 0212-1990. There is
simply not enough encoding space left in Shift-JIS to accommodate these characters, and
there is currently no plan to extend Shift-JIS in a manner such that JIS X 0212-1990 can be
accommodated. See Figure 4-16 for an illustration of the Shift-JIS encoding space.

Some definitions (in particular, corporate definitions) of Shift-JIS encoding also contain
encoding blocks for user-defined characters, or even a code point for the half-width ka-
takana “space” character. Such encoding blocks and code points are not useful if true
information interchange is desired, because they are encoded in such a way that they do
not convert to code points in other Japanese encoding methods, such as ISO-2022-JP and
EUC-JP encodings. Table 4-72 lists these nonstandard Shift-JIS encoding blocks and code
points.

Shift-JIS user-defined character encoding specificationsTable 4-72.

encoding decimal Hexadecimal

Half-width katakana

Half-width “space” character 160 A0

User-defined characters

First byte rangea 240–252 F0–FC

Second byte ranges 64–126, 128–252 40–7E, 80–FC

Some implementations of Shift-JIS encoding implement a smaller user-defined character range, such as rows a. 0xF0 through 0xF9 or 0xF0
through 0xFB.

Note how the second-byte range is unchanged from the standard definition of Shift-JIS—
only the first-byte range differs for the user-defined range.

Figure 4-17 illustrates the standard Shift-JIS encoding space, along with the user-defined
character region.

shift-JIs encoding for JIs X 0213:2004

The Shift-JIS encoding shown in the JIS X 0213:2004 standard proper, for the characters
that are outside of JIS X 0208:1997 and thus specific to JIS X 0213:2004, are Informative,
not Normative, meaning that they are not meant to be implemented. In fact, I am not
aware of any Shift-JIS–based implementations of JIS X 0213:2004.

The preferred way in which JIS X 0213:2004 is to be implemented is through Unicode.
Unicode version 3.2 or greater fully supports JIS X 0213:2004, though 25 of its characters
map to a sequence of two Unicode code points.

266 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

��������������� �������������������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

Shift-JIS encoding tablesFigure 4-16.

Legacy encoding Methods | 267

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

���������� ��������������������

Shift-JIS user-defined encoding table—two-byte regionFigure 4-17.

shift-JIs versus Iso-2022-JP versus eUC-JP encodings

The relationship between Shift-JIS and EUC-JP encodings is not very apparent and re-
quires the use of a somewhat complex code conversion algorithm, examined in detail in
Chapter 9. Figure 4-18 illustrates the two-byte Shift-JIS encoding space and how it relates
to EUC-JP and ISO-2022-JP encodings.

268 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

���������������������������� �������

������������

ISO-2022-JP, EUC-JP, and Shift-JIS encodings—two-byte regionsFigure 4-18.

Johab encoding—Ks X 1001:2004
The Korean character standard, KS X 1001:2004, is encoded very similarly to JIS X
0208:1997. It is supported by ISO-2022-KR and EUC-KR encodings, which are the
Korean analogs to ISO-2022-JP and EUC-JP encodings. KS X 1001:2004 departs from
JIS X 0208:1997 only in that we have not yet discussed an encoding method comparable
to Shift-JIS encoding. There is a comparable encoding method for KS X 1001:2004, re-
ferred to as Johab (조합/組合 johap) encoding. Johab encoding is described in the KS
X 1001:2004 standard as an alternate encoding that includes all possible modern hangul
syllables, specifically 11,172, which is 8,822 more than can be encoded according to ISO-
2022-KR or EUC-KR encodings. It’s possible to encode these remaining 8,822 hangul

Legacy encoding Methods | 269

syllables using ISO-2022-KR or EUC-KR encodings through a KS X 1001:2004 provision
that specifies them as jamo sequences, but this is not widely supported.

The Unified Hangul Code (UHC) character set and encoding—fully described in
Appendixes E and F—is character-for-character identical to Johab encoding in terms of
the character set that it supports, but its encoding is radically different. UHC encoding
is designed to be backward compatible with EUC-KR encoding and forward compat-
ible with Unicode—two good qualities. Johab is only forward compatible with Unicode.
Table 4-73 provides the Johab encoding specifications as described in the KS X 1001:2004
standard.

Johab encoding specificationsTable 4-73.

encoding decimal Hexadecimal

AsCII or Ks-roman

Byte range 33–126 21–7E

Hangul syllables and 51 modern jamoa

First byte range 132–211 84–D3

Second byte ranges 65–126, 129–254 41–7E, 81–FE

symbols, hanja, and 42 ancient jamob

First byte ranges 216–222, 224–249 D8–DE, E0–F9

Second byte ranges 49–126, 145–254 31–7E, 91–FE

These 51 modern jamo are KS X 1001:2004 a. 04-01 through 04-51.

These 42 ancient jamo are KS X 1001:2004 b. 04-53 through 04-94.

Note how the hangul encoding range is quite different from that of the symbol and hanja
encoding range. They both encode up to 188 characters per row, but the exact encoding
range that defines these 188 code points is quite different. Figure 4-19 illustrates the two
different two-byte encoding ranges of Johab encoding.

Also note how the hangul encoding range defines 15,040 code points (80 rows of 188 code
points each), which means that the encoding of the 11,172 hangul is not contiguous.

The hangul portion of Johab encoding is fundamentally based upon three five-bit seg-
ments. Five bits are used to represent the three basic positions of the jamo that constitute a
single hangul. Five bits, of course, can encode up to 32 unique entities. Knowing that there
are 19 initial jamo (consonants), 21 medial jamo (vowels), and 27 final jamo (consonants;
there are actually 28, to support the “fill” character for 2-jamo hangul), we can see that 5
bits can easily represent the number of unique jamo for each of the three positions. But
three 5-bit units become 15 bits. The 16th bit, which is the most significant bit (meaning
the first bit, not the 16th), is always set, meaning that its value is set to “1.”

270 | Chapter 4: encoding Methods

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

��������������

������� �����������

�������
�����������

������

�����
�� �� �� �� �� �� �� ��
� �� �� ����� ������

�������� �������� �������� �������� ��������

��� ��� ��� ��� ��� ��� ��� ��� ���
��

��� ���
�������� �������� �������� ��������

Johab encoding tablesFigure 4-19.

Table 4-74 lists the 32 different binary patterns (bit arrays), along with the jamo they rep-
resent in the three positions for composing hangul.

Legacy encoding Methods | 271

Johab encoding’s 5-bit binary patternsTable 4-74.

Binary pattern Initial Medial Final

00000 unused unused unused

00001 “fill” unused “fill”

00010 ㄱ “fill” ㄱ

00011 ㄲ ㅏ ㄲ

00100 ㄴ ㅐ ㄳ

00101 ㄷ ㅑ ㄴ

00110 ㄸ ㅒ ㄵ

00111 ㄹ ㅓ ㄶ

01000 ㅁ unused ㄷ

01001 ㅂ unused ㄹ

01010 ㅃ ㅔ ㄺ

01011 ㅅ ㅕ ㄻ

01100 ㅆ ㅖ ㄼ

01101 ㅇ ㅗ ㄽ

01110 ㅈ ㅘ ㄾ

01111 ㅉ ㅙ ㄿ

10000 ㅊ unused ㅀ

10001 ㅋ unused ㅁ

10010 ㅌ ㅚ unused

10011 ㅍ ㅛ ㅂ

10100 ㅎ ㅜ ㅄ

10101 unused ㅝ ㅅ

10110 unused ㅞ ㅆ

10111 unused ㅟ ㅇ

11000 unused unused ㅈ

11001 unused unused ㅊ

11010 unused ㅠ ㅋ

11011 unused ㅡ ㅌ

11100 unused ㅢ ㅍ

11101 unused ㅣ ㅎ

11110 unused unused unused

11111 unused unused unused

Table 4-75 provides some examples of hangul that are encoded according to Johab en-
coding, and it demonstrates how the binary patterns of the jamo from which they are

272 | Chapter 4: encoding Methods

composed are used to derive the complete or final encoded value. Note how individual
modern jamo are encoded using this scheme through the use of two “fill” elements—
hangul can use up to one “fill” element, for those that are composed of only two jamo.

Composing hangul syllables from jamo according to johab encodingTable 4-75.

Hangul Bit 1 Bits 2–6 Bits 7–11 Bits 12–16 Johab encoding

가 1 00010 00011 00001 88 61—10001000 01100001

김 1 00010 11101 10001 8B B1—10001011 10110001

치 1 10000 11101 00001 C3 A1—11000011 10100001

ㄱ 1 00010 00010 00001 88 41—10001000 10100001

ㅏ 1 00001 00011 00001 84 61—10000100 01100001

ㄺ 1 00001 00010 01010 84 4A—10000100 01001010

It is critical to understand that KS X 1001:2004 row 4 (the jamo) has special treatment
according to Johab encoding. The first 51 characters, specifically 04-01 through 04-51,
are encoded according to the standard Johab hangul encoding scheme, as illustrated in
the last three examples of Table 4-75. The remaining 43 characters, specifically 04-52
through 04-94, are encoded according to the mapping as described in the KS X 1001:2004
manual.

Johab versus eUC-Kr encodings

The relationship between Johab and EUC-KR encodings is an interesting one. First, their
hangul portions are incompatible in that EUC-KR encoding can encode only 2,350. Johab
encoding can encode all 11,172 hangul, which means an additional 8,822 hangul beyond
the set of 2,350 that are supported by EUC-KR encoding. Their symbol and hanja por-
tions, however, are compatible, and there is a well-understood and convenient code con-
version algorithm for converting between them. Figure 4-20 illustrates how the encoding
structure of Johab and EUC-KR encodings differ.

A complete machine-readable mapping table that provides correspondences between Jo-
hab encoding and Unicode is available.* Other mapping tables provide correspondences
with other encodings for the hangul† and non-hangul‡ portions of the Korean character
set.

* http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/KSC/JOHAB.TXT
† ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/map/hangul-codes.txt
‡ ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/map/non-hangul-codes.txt

Comparing CJKV encoding Methods | 273

��

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� ��

��
��
���

��
��
��

��
��

������������������

������������� �����������������

��

Johab and EUC-KR encodings—two-byte regionsFigure 4-20.

Comparing CJKV encoding Methods
The repertoire of characters, especially those of Chinese origin (meaning the ideographs),
in the CJKV character set standards overlap considerably, although the arrangement and
ordering of the characters is markedly different. This means that any attempt at conver-
sion between them must be done through the use of mapping tables, and there may be
cases—sometimes hundreds or thousands—when characters in one standard do not exist
in another.

274 | Chapter 4: encoding Methods

Table 4-76 lists the encoded values for the two ideographs 漢 (U+6F22 or U+FA47) and 字
(U+5B57). I am listing them under the most common encoding methods for each locale.
Note how there is no correspondence among the encodings of these two characters across
the different character sets.

Ideographs encoded according to legacy CJKV encodingsTable 4-76.

Locale—character set Iso-2022 encoding eight-bit encodings

China—GB 2312-80, GBK, and GB 18030-2005 eUC-Cn

汉 3A 3A BA BA

字 57 56 D7 D6

taiwan—Cns 11643-2007 and Big Five eUC-tW Big Five

漢 69 47 E9 C7 BA 7E

字 47 73 C7 F3 A6 72

Japan—JIs X 0208:1997 and JIs X 0213:2004 eUC-JP shift-JIs

漢 34 41 B4 C1 8A BF

漢a 77 25 F7 A5 EC 44

字 3B 7A BB FA 8E 9A

south Korea—Ks X 1001:2004 eUC-Kr Johab

漢 79 53 F9 D3 F7 D3

字 6D 2E ED AE F1 AE

north Korea—KPs 9566-97

漢 72 53 F2 D3

字 66 2F E6 AF

Vietnam—tCVn 6056:1995

漢 5D 3E DD BE

字 52 3E D2 BE

The EUC-JP and Shift-JIS encoding for this kanji, a. <F7 A5> and <EC 44>, respectively, which is specific to JIS X 0213:2004, is Informative, not
Normative, which effectively means that they are not implemented. Unicode is the preferred way in which JIS X 0213:2004 is implemented.

Although these ideographs look nearly identical across locales (except for 汉, which is the
simplified form of 漢), their character codes (in other words, their encodings) are quite
different.

Now, let us consider Unicode. There are multiple forms of 漢 to consider, specifically its
simplified form 汉 (U+6C49), and the CJK Compatibility Ideograph 漢 (U+FA47) that is
specific to Japanese. Table 4-77 shows how these ideographs are encoded according to
Unicode.

Charset designations | 275

Ideographs encoded according to UnicodeTable 4-77.

Ideograph Unicode UtF-8 UtF-16Be UtF-32Be
漢 U+6F22 E6 BC A2 6F 22 00 00 6F 22

汉 U+6C49 E6 B1 89 6C 49 00 00 6C 49

漢 U+FA47 EF A9 87 FA 47 00 00 FA 47

字 U+5B57 E5 AD 97 5B 57 00 00 5B 57

Charset designations
In this section you will learn about the difference between a character set and an encod-
ing. You will also learn why this distinction is critically important in several important
contexts, one of which is information interchange, whether in the form of email or other
electronic media. You see, in order to explicitly indicate the content of a document, such
as an email message or an HTML file, there is the notion of “charset” (character set),
which is used as an identifier.

Character sets Versus encodings
The fundamental ways in which character sets are different from encodings—which are
especially clear when in the context of CJKV—are as follows:

Character sets, especially CJKV ones, can usually be encoded in more than one way. •	
Consider ISO-2022 and EUC encodings, both of which are commonly used to en-
code most CJKV character sets.*

Most CJKV encodings support more than one character set. Consider EUC-JP for •	
Japan, which supports JIS X 0201-1997, JIS X 0208:1997, and JIS X 0212-1990 in a
mixed one-, two-, and three-byte encoding.

Table 4-78 lists several CJKV encodings, along with the characters sets that they support.
Table 4-2 provided similar information.

CJKV encodings and the character sets they supportTable 4-78.

encoding Character sets

EUC-CN GB 1988-89a and GB 2312-80

EUC-TW CNS 5205-1989a and CNS 11643-2007

EUC-JP JIS X 0201-1997,b JIS X 0208:1997, and JIS X 0212-1990

EUC-KR KS X 1003:1993a and KS X 1001:2004

* Except for ISO-2022-JP and ISO-2022-KR encodings, the other ISO-2022 encodings described in this book
were rarely used, if at all.

276 | Chapter 4: encoding Methods

CJKV encodings and the character sets they supportTable 4-78.

encoding Character sets

HZ GB 1988-89a and GB 2312-80

GBK ASCII and GBK

GB 18030 ASCII, GBK, and GB 18030-2005

Big Five ASCII, Big Five, and Hong Kong SCS-2008

Big Five Plus ASCII, Big Five, and Big Five Plus

Shift-JIS JIS X 0201-1997b and JIS X 0208:1997

Johab KS X 1003:1993,a KS X 1001:2004, and additional hangul syllables

Or ASCII.a.

Or ASCII instead of the JIS-Roman portion.b.

There are some character sets that are supported by a single encoding, such as GBK, GB
18030, Big Five, Big Five Plus, and Hong Kong SCS-2008. Their designations are unique
in that they can refer to either their character set or their encoding.

I should also point out and make clear that although “charset” obviously is a contrac-
tion of “character set,” its meaning is a combination of one or more character sets and an
encoding method.

Charset registries
Now that the distinction between a character set and an encoding has been made clear,
the question becomes what designation is appropriate for the purpose of relaying content
information for documents, such as in the context of email, HTML, XML, and so on. In
my opinion, encoding names make the best charset designators because there is little or
no ambiguity or confusion as to what character sets they can support.

There have been three primary registries for charset designators, all of which are listed
here:

The •	 European Computer Manufacturers Association (Ecma) International Registry*

The •	 Internet Assigned Numbers Authority (IANA) Registry†

The •	 Internet Corporation for Assigned Names and Numbers (ICANN) Registry‡

IANA currently maintains the registry. Registering a new charset designation, or chang-
ing one, requires that the procedures set forth in Ned Freed and Jon Postel’s RFC 2978

* http://www.ecma-international.org/
† http://www.iana.org/
‡ http://www.icann.org/

Charset designations | 277

(obsoletes RFC 2278), IANA Charset Registration Procedures, be followed.* The latest char-
set registry is available online.†

Consider the case when a character set name is used as the charset designator, as is ac-
tually done in some environments. When a charset designator is set to a string such as
“GB_2312-80” or “KS_C_5601-1987,” it is ambiguous as to what encoding it specifies.
This is because these character sets, GB 2312-80 and KS X 1001:2004, can be encoded in
at least three ways, and many more if a Unicode encoding is considered, though one could
argue that these charset designators are inappropriate for Unicode-encoded data.

Table 4-79 lists the official and preferred charset designators for the encodings covered in
this book. Note that some encodings covered in this book still lack a registered charset
designator.

Charset designatorsTable 4-79.

encoding official charset designator Preferred charset designator

ASCII ANSI_X3.4-1968 US-ASCII

ISO-2022-CN ISO-2022-CN same

ISO-2022-CN-EXT ISO-2022-CN-EXT same

HZ HZ-GB-2312 same

ISO-2022-JP ISO-2022-JP same

ISO-2022-JP-2 ISO-2022-JP-2 same

ISO-2022-KR ISO-2022-KR same

EUC-CN GB2312 same

EUC-TW none n/a

EUC-JP Extended_UNIX_Code_Packed_Format_for_Japanese EUC-JP

EUC-KR EUC-KR same

GBK GBK same

GB 18030 GB18030 same

Big Five Big5 same

Shift-JIS Shift_JIS same

Johab none n/a

UTF-7 UTF-7 same

UTF-8 UTF-8 same

UTF-16 UTF-16 same

UTF-16BE UTF-16BE same

* http://www.ietf.org/rfc/rfc2978.txt
† http://www.iana.org/assignments/character-sets

278 | Chapter 4: encoding Methods

Charset designatorsTable 4-79.

encoding official charset designator Preferred charset designator

UTF-16LE UTF-16LE same

UTF-32 UTF-32 same

UTF-32BE UTF-32BE same

UTF-32LE UTF-32LE same

UCS-2 ISO-10646-UCS-2 same

UCS-4 ISO-10646-UCS-4 same

In order to be compatible with older or poorly implemented software, it is important to
maintain an aliasing mechanism that effectively maps several known charset designa-
tions to the preferred one. The charset registry maintains known aliases for each charset
designator.

Some charset designations can withstand the test of time, and others cannot. For example,
consider Korean, for which there are two camps when it comes to charset designations.
One camp prefers to use the designation “KS_C_5601-1987” for EUC-KR encoding. The
other camp simply prefers to use “EUC-KR” for EUC-KR encoding. In case it is not obvi-
ous, I belong to the latter camp. In 1998, all KS character set standards changed designa-
tion. For example, KS C 5601-1992 became KS X 1001:1992 and is now KS X 1001:2004.
As you can clearly see, the use of “KS_C_5601-1987” as a charset designator did not with-
stand the test of time. However, the use of “EUC-KR” is still completely valid and still
preferred, and clearly has withstood the test of time.

Code Pages
In the context of IBM and Microsoft documentation, there is often mention of a Code
Page. A Code Page is somewhat analogous to charset designations in that it indicates an
encoding that supports one or more character sets.

Although some of the IBM and Microsoft Code Pages appear to be similar, they should
be treated independently of one another because they have several important differences.
Specifically, Microsoft’s Code Pages define multiple-byte encodings. IBM’s define fixed-
length encodings that support a single character set, but can combine into multiple-byte
entities. For example, IBM’s Coded Character Set Identifier (CCSID) 00932 differs from
Microsoft’s Code Page 932 in that it does not include NEC Row 13 nor IBM Selected
characters encoded in Rows 89 through 92 (that is, IBM Selected characters encoded ac-
cording to NEC).

IBM Code Pages
The best way to describe IBM Code Page designations is by first listing the individual
Single-Byte Character Set (SBCS), Double-Byte Character Set (DBCS), and Triple-Byte

Code Pages | 279

Character Set (TBCS) Code Page designations (those designated by “Host” use EBCDIC-
based encodings). The IBM terminology for “Code Page” is Code Page Global Identifier
(CPGID), which refers to a number between 00001 and 65534 (decimal) that identifies
a Code Page. Table 4-80 lists several IBM SBCS Code Pages, which are for the most part
equivalent to CJKV-Roman as described in Chapter 3.

IBM SBCS Code PagesTable 4-80.

Code Page Language encoding Additional details

00367 English SBCS-PC ASCII

00836 Simplified Chinese SBCS-Host

00903 Simplified Chinese SBCS-PC

01115 Simplified Chinese SBCS-PC

00037 Traditional Chinese SBCS-Host

00904 Traditional Chinese SBCS-PC

01043 Traditional Chinese SBCS-PC

00037 Japanese SBCS-Host

00290 Japanese SBCS-Host EBCDIC

01027 Japanese SBCS-Host EBCDIK

00897 Japanese SBCS-PC

01041 Japanese SBCS-PC

00895 Japanese SBCS-EUC EUC-JP code set 0—JIS-Roman

00896 Japanese SBCS-EUC EUC-JP code set 2—half-width katakana

00833 Korean SBCS-Host

00891 Korean SBCS-PC

01088 Korean SBCS-PC

01129 Vietnamese SBCS-PC

Table 4-81 lists some IBM DBCS Code Pages, grouped by language. Some revealing infor-
mation is provided in the “Additional details” column.

IBM DBCS Code PagesTable 4-81.

Code Page Language encoding Additional details

00837 Simplified Chinese DBCS-Host

00928 Simplified Chinese DBCS-PC

01380 Simplified Chinese DBCS-PC IBM GB

01385 Simplified Chinese DBCS-PC GBK

01382 Simplified Chinese DBCS-EUC EUC-CN

280 | Chapter 4: encoding Methods

IBM DBCS Code PagesTable 4-81.

Code Page Language encoding Additional details

00835 Traditional Chinese DBCS-Host

00927 Traditional Chinese DBCS-PC

00947 Traditional Chinese DBCS-PC IBM BIG-5

00960 Traditional Chinese DBCS-EUC EUC-TW code set 1—CNS 11643-1992 Plane 1

00300 Japanese DBCS-Host

00301 Japanese DBCS-PC

00941 Japanese DBCS-PC Windows-J character set

00952 Japanese DBCS-EUC EUC-JP code set 1—JIS X 0208:1997

00953 Japanese DBCS-EUC EUC-JP code set 3—JIS X 0212-1990

00834 Korean DBCS-Host

00926 Korean DBCS-PC

00951 Korean DBCS-PC IBM KS Code

01362 Korean DBCS-PC UHC

00971 Korean DBCS-EUC EUC-KR

Table 4-82 lists the only IBM TBCS Code Page of which I am aware. One would expect
EUC-TW code set 2 to be an IBM Four-Byte Character Set (FBCS) or Quadruple-Byte
Character Set (QBCS) Code Page, but IBM does not count the SS2 as one of the bytes in
terms of Code Page type designator. For the same reason, EUC-JP code set 3 is a DBCS,
not TBCS, Code Page.

IBM TBCS Code PagesTable 4-82.

Code Page Language encoding Additional details

00961 Traditional Chinese TBCS-EUC EUC-TW code set 2—CNS 11643-1992 Plane 2

When we combine the SBCS, DBCS, and TBCS Code Pages into Multiple-Byte Character
Set (MBCS) entities that are assigned unique CCSIDs, things may become a bit more
revealing for those familiar with Microsoft Code Page designations, as shown in Table
4-83.

IBM MBCS entitiesTable 4-83.

CCsId Language encoding Code Page composition

05031 Simplified Chinese MBCS-Host 00836 and 00837

00936 Simplified Chinese MBCS-PC 00903 and 00928

00946 Simplified Chinese MBCS-PC 01042 and 00928

01383 Simplified Chinese MBCS-EUC 00367 and 01382

Code Pages | 281

IBM MBCS entitiesTable 4-83.

CCsId Language encoding Code Page composition

05033 Traditional Chinese MBCS-Host 00037 and 00835

00938 Traditional Chinese MBCS-PC 00904 and 00927

00950 Traditional Chinese MBCS-PC 01114 and 00947

25524 Traditional Chinese MBCS-PC 01043 and 00927

00964 Traditional Chinese MBCS-EUC 00367, 00960, and 00961

00930 Japanese MBCS-Host 00290 and 00300

00939 Japanese MBCS-Host 01027 and 00300

00932 Japanese MBCS-PC 00897 and 00301

00943 Japanese MBCS-PC 01041 and 00941

00954 Japanese MBCS-EUC 00895, 00952, 00896, and 00953

00933 Korean MBCS-Host 00833 and 00834

00934 Korean MBCS-PC 00891 and 00926

00944 Korean MBCS-PC 01040 and 00926

25525 Korean MBCS-PC 01088 and 00951

00970 Korean MBCS-EUC 00367 and 00971

You will see in the next section that many of Microsoft’s Code Pages are similar, in both
content and designation, to some of these CCSIDs specified by IBM.

More detailed information about IBM Code Pages can be found in IBM’s Character Data
Representation Architecture (CDRA), and the CDRA Reference is now available online.*

Microsoft Code Pages
Table 4-84 lists Microsoft’s CJKV Code Pages, along with a brief description of their com-
position. Note how many of them have Code Page designations that are the same as IBM
CCSIDs listed in Table 4-83 (when the leading zeros are ignored).†

Microsoft Code PagesTable 4-84.

Code Page Characteristics

932 JIS X 0208:1997 character set, Shift-JIS encoding, Microsoft extensions (NEC Row 13 and IBM Selected
Characters duplicately encoded in Rows 89 through 92 and Rows 115 through 119)

936 GBK character set, GBK encoding

* http://www-306.ibm.com/software/globalization/cdra/index.jsp
† Although a hunch, this may have resulted from the fact that Microsoft Code Pages began their life as IBM Code

Pages, but then developed on their own.

282 | Chapter 4: encoding Methods

Microsoft Code PagesTable 4-84.

Code Page Characteristics

949 KS X 1001:2004 character set, Unified Hangul Code encoding, remaining 8,822 hangul as extension

950 Big Five character set, Big Five encoding, Microsoft extensions (actually, only the ETen extensions of Row
0xF9)

1258 TCVN-Roman character set

1361 Johab character set, Johab encoding

Although the Code Page designations of Microsoft Code Pages have remained the same
over the years, their contents or definitions have been expanded to cover additional char-
acters or new encodings that are true supersets of the previous version. Code Page 936,
for example, was once the GB 2312-80 character set encoded according to EUC-CN en-
coding, but is now based on GBK. Also, Code Page 949 was once the KS X 1001:2004
character set encoded according to EUC-KR, but is now defined as Unified Hangul Code
(UHC) encoding, which is detailed in Appendix F.

Code Conversion
Put simply, code conversion is interoperability between encodings. Given that encodings
must interoperate, code conversion is a necessary—and a very fundamental and basic—
task that even the simplest text-processing software must perform. And code conversion
must be done correctly, or else any subsequent processing that is performed will propa-
gate any errors that were introduced, such as incorrect or missing characters.

Conversion of CJKV text from one encoding to another requires that you alter the nu-
meric values of the bytes or code units that are used to represent each character. There is a
wide variety of CJKV-capable code conversion programs and libraries available today, and
to some extent, some software have these routines built-in. Some of these code conver-
sion programs are portable across platforms, but some are not. Software developers who
intend to introduce products into these markets must make their software as flexible and
robust as possible—meaning that software should be able to handle more than a single
CJKV encoding method. This is not to say that such software should be able to process
all possible encodings internally, but that it should at least have the ability to import and
export as many encodings as possible, which will result in better information interchange
among various platforms. This is interoperability. Adobe FrameMaker, for example,
allowed users to import EUC-JP– and ISO-2022-JP–encoded Japanese text, although it
now processes Unicode internally.*

Earlier in this chapter it was demonstrated how ISO-2022-JP encoding can support the
designation of the 1978, 1983, 1990, and 1997 vintages of the JIS X 0208 character set

* I used Adobe FrameMaker to write and typeset the first edition of this book over 10 years ago. The second edi-
tion, which you are reading right now, was written and typeset using Adobe InDesign CS3.

Code Conversion | 283

through the use of different escape sequences (although the escape sequences for the 1990
and 1997 versions are identical). In Appendix J you will find material illustrating the dif-
ferences among these versions of JIS X 0208. Should Japanese code conversion programs
account for these differences? I don’t recommend it, unless you specifically need to refer
to a particular vintage of JIS X 0208. Keep in mind that Shift-JIS and EUC-JP encodings
support the JIS X 0208 character set without any method for designating its vintage. Any
conversion from ISO-2022-JP encoding to Shift-JIS or EUC-JP encoding effectively loses
the information that indicates which vintage of JIS X 0208 was used to encode the origi-
nal text. Likewise, converting Shift-JIS or EUC-JP encoding to ISO-2022-JP encoding
requires that an arbitrary version of JIS X 0208 be selected, because a two-byte character
escape sequence must be used for properly encoding ISO-2022-JP–encoded text.

I have written a tool called JConv that is designed to convert the Japanese encoding of text
files.* JConv supports ISO-2022-JP, EUC-JP, and Shift-JIS encodings, and it is available in
a variety of platform-specific executables:

JConv (Mac OS with minimal interface)•	

JCONV-DD (Mac OS)•	

jconv.exe•	 (MS-DOS and Windows)

WinJConv (Windows)•	

I also distribute this tool as ANSI C source code so that other programmers may benefit
from the algorithms used to convert between the Japanese encodings, and so that it can
be compiled on a variety of platforms. This tool has many useful features: error checking,
the ability to automatically detect an input file’s encoding, the ability to manually specify
the input file’s encoding, selective conversion of half-width katakana to their full-width
equivalents, a help page, automatic ISO-2022-JP encoding repair, and command-line ar-
gument support. A more complete description of this tool, including its help page, can be
found at the end of Chapter 9.

Other CJKV code conversion tools are available. They all perform roughly the same tasks,
but in different ways, and some are more portable than others. Available tools are listed in
Table 4-85, though some have since become obsolete.

CJKV code conversion toolsTable 4-85.

tool name Language UrL

NCFa Chineseb http://www.edu.cn/c_resource/software.html or
ftp://ftp.net.tsinghua.edu.cn/pub/Chinese/ncf/

ConvChar Japanese http://www.asahi-net.or.jp/~VX1H-KNOY/

nkfc Japanese http://sourceforge.jp/projects/nkf/

* http://lundestudio.com/j_tools.html

284 | Chapter 4: encoding Methods

CJKV code conversion toolsTable 4-85.

tool name Language UrL

pkfd Japanese ftp://ftp.iij.ad.jp/pub/IIJ/dist/utashiro/perl/

hcode Korean ftp://ftp.kaist.ac.kr/hangul/code/hcode/

Network Chinese Filter.a.

Many additional Chinese code conversion tools are available at b. http://www.mandarintools.com/.

Network Kanji Filter.c.

A d. Perl version of nkf.

Contemporary Unix implementations often include a built-in code conversion utility
called iconv* (it is based on a GNU library called libiconv† that can be used in other pro-
grams), which is also a standard Unix C library API. There is a web implementation of
iconv available as well.‡ Perl, Python, Java, and other programming languages now provide
their own code conversion facilities. I must point out that iconv and related utilities and
APIs are important because they provide the best overall support for Unicode.

The demand for standalone CJKV code conversion tools is decreasing due to the intro-
duction of built-in code conversion facilities in most CJKV-capable text editors, word
processors, and other text-intensive applications.

Chinese Code Conversion
The only frustrating problems that arise when dealing with Chinese code conversion are
when it is between the GB 2312-80 and Big Five (or CNS 11643-2007) character sets.
There are three basic reasons for this:

GB 2312-80 contains only 6,763 hanzi, but Big Five contains 13,053—a two-fold dif-•	
ference in character complement.

Approximately one-third of the 6,763 hanzi in GB 2312-80 are considered simplified •	
forms, and these are simply not available in Big Five.

Many of the simplified hanzi in GB 2312-80 correspond to two or more traditional •	
forms. Word-level context tells you which form is appropriate.

The use of GB/T 12345-90 conversion tables can sometimes aid in this process, but it
doesn’t solve the simple fact that Big Five has approximately two times the number of
hanzi than GB 2312-80. Even ignoring the simplified/traditional issue, there are charac-
ters in GB 2312-80 that simply do not exist in Big Five.

* http://www.opengroup.org/onlinepubs/009695399/functions/iconv.html
† http://www.gnu.org/software/libiconv/
‡ http://www.iconv.com/iconv.htm

Code Conversion | 285

Network Chinese Filter (NCF), a Chinese code conversion tool that is written in C and in-
cludes APIs, represented the core technology of several projects that took place in China
(this was considered a “National Ninth Five-Year Plan Key Project”), such as:

WinNCF
A Windows version of NCF.

NCFTTY
A pseudo terminal emulator that uses NCF to handle different encodings.

NCF Proxy
A proxy for use with web browsers for automatically handling Chinese code
conversion.

NCFDT
A tool for detecting Chinese encodings that is written in C and includes APIs.

CERNET’s Network Compass (a Chinese search engine), developed by Tsinghua Univer-
sity, made use of NCF and NCFDT.* The URL for NCF and related technologies can be
found in Table 4-85.

See Chapter 9, specifically the section entitled “Chinese-Chinese Conversion,” for details
about converting between Simplified and Traditional Chinese, which is not so simple.

Japanese Code Conversion
Japanese code conversion is not problematic if you are dealing with only the JIS X
0208:1997 character set. The JIS X 0212-1990 character set, for example, cannot be encod-
ed using Shift-JIS. Interestingly, the newer JIS X 0213:2004 character set can be encoded
using Shift-JIS, but it is not. In addition, there is no single method for encoding half-width
katakana in an ISO-2022–based encoding, which causes some confusion (to the point,
in my opinion, that half-width katakana were explicitly excluded from the ISO-2022-JP
encodings as described earlier in this chapter). Shift-JIS encoding, as you’ve learned, was
the most commonly used Japanese encoding, and it is still used today in many contexts
and environments.

One issue that comes up again and again in the context of Japanese code conversion is
how to deal with the Shift-JIS user-defined region, specifically the 1,880 code points in
the range <F0 40> through <F9 FC>. ISO-2022-JP and EUC-JP encodings cannot handle
these Shift-JIS code points well, but Unicode can. In fact, a mapping between this Shift-
JIS range and Unicode’s PUA has already been defined, along with a mapping for EUC-
JP encoding. The corresponding Unicode range is U+E000 through U+E757. For EUC-JP

* http://compass.net.edu.cn/ or http://compass.net.edu.cn:8010/

286 | Chapter 4: encoding Methods

encoding, the last 10 rows of JIS X 0208:1997 and JIS X 0212-1990, meaning rows 85
through 94 of each character set standard, are used for this purpose.*

Table 4-86 provides this mapping on a per-row basis according to Shift-JIS encoding.

Conversion of Shift-JIS user-defined region to Unicode an EUC-JP encodingsTable 4-86.

shift-JIs Unicode eUC-JP

F0 40–F0 FC U+E000–U+E0BB F5 A1–F5 FE, F6 A1–F6 FE

F1 40–F1 FC U+E0BC–U+E177 F7 A1–F7 FE, F8 A1–F8 FE

F2 40–F2 FC U+E178–U+E233 F9 A1–F9 FE, FA A1–FA FE

F3 40–F3 FC U+E234–U+E2EF FB A1–FB FE, FC A1–FC FE

F4 40–F4 FC U+E2F0–U+E3AB FD A1–FD FE, FE A1–FE FE

F5 40–F5 FC U+E3AC–U+E467 8F F5 A1–8F F5 FE, 8F F6 A1–8F F6 FE

F6 40–F6 FC U+E468–U+E523 8F F7 A1–8F F7 FE, 8F F8 A1–8F F8 FE

F7 40–F7 FC U+E524–U+E5DF 8F F9 A1–8F F9 FE, 8F FA A1–8F FA FE

F8 40–F8 FC U+E5E0–U+E69B 8F FB A1–8F FB FE, 8F FC A1–8F FC FE

F9 40–F9 FC U+E69C–U+E757 8F FD A1–8F FD FE, 8F FE A1–8F FE FE

Another issue that can affect software developers who deal with Japanese encodings is
the Microsoft Windows Japanese character set in the context of Unicode. As described in
Appendix E, this character set is an amalgamation of NEC and IBM character sets with a
JIS X 0208:1997 base. This results in several duplicate characters at different code points.
The code conversion problem can be separated into two categories:

Code conversion of the 360 IBM Selected Kanji, because they are encoded at NEC •	
and IBM code points

Code conversion of the non-kanji, which affects JIS X 0208:1997 row 2, NEC Row 13, •	
and IBM Selected Non-kanji

Code conversion of the 360 IBM Selected Kanji is easiest to describe. When converting
from Unicode back into Shift-JIS encoding, the IBM code points are preferred, which
adheres to the third rule provided in the following bullet list. Code conversion of the
duplicately encoded non-kanji is not as trivial, and involves a bit of history. Keep in mind
that the NEC Kanji character set was originally based on JIS C 6226-1978, which didn’t
include a lot of the characters that are currently in JIS X 0208:1997 row 2. In general, the
following rules apply when deciding the preference during round-trip conversion:

If the character is in both JIS X 0208-1983 (and later) row 2 and NEC Row 13, the JIS •	
X 0208-1983 row 2 code point is preferred.

* It seems somewhat odd to me that 940 Shift-JIS user-defined code points, specifically <F0 40> through <F4 FC>,
map back onto JIS X 0208:1997.

Code Conversion | 287

If the character is in both NEC Row 13 and IBM Selected Non-kanji, the NEC Row •	
13 code point is preferred.

If the character is IBM Selected at both NEC and IBM code points, the IBM code •	
point is preferred.

Table 4-87 provides the non-kanji mappings for round-trip conversion of the Microsoft
Windows-J character set.

Round-trip Unicode mapping for Microsoft Windows-J character setTable 4-87.

Character shift-JIs code points to Unicode Back to shift-JIs

∪ 81 BE, 87 9C U+222A 81 BE

∩ 81 BF, 87 9B U+2229 81 BF

¬ 81 CA, EE F9, FA 54 U+FFE2 81 CA

∠ 81 DA, 87 97 U+2220 81 DA

⊥ 81 DB, 87 96 U+22A5 81 DB

≡ 81 DF, 87 91 U+2261 81 DF

≒ 81 E0, 87 90 U+2252 81 E0

√ 81 E3, 87 95 U+221A 81 E3

∵ 81 E6, 87 9A, FA 5B U+2235 81 E6

∫ 81 E7, 87 92 U+222B 81 E7

Ⅰ 87 54, FA 4A U+2160 87 54

Ⅱ 87 55, FA 4B U+2161 87 55

Ⅲ 87 56, FA 4C U+2162 87 56

Ⅳ 87 57, FA 4D U+2163 87 57

Ⅴ 87 58, FA 4E U+2164 87 58

Ⅵ 87 59, FA 4F U+2165 87 59

Ⅶ 87 5A, FA 50 U+2166 87 5A

Ⅷ 87 5B, FA 51 U+2167 87 5B

Ⅸ 87 5C, FA 52 U+2168 87 5C

Ⅹ 87 5D, FA 53 U+2169 87 5D

№ 87 82, FA 59 U+2116 87 82

℡ 87 84, FA 5A U+2121 87 84

㈱ 87 8A, FA 58 U+3231 87 8A

ⅰ EE EF, FA 40 U+2170 FA 40

ⅱ EE F0, FA 41 U+2171 FA 41

ⅲ EE F1, FA 42 U+2172 FA 42

ⅳ EE F2, FA 43 U+2173 FA 43

288 | Chapter 4: encoding Methods

Round-trip Unicode mapping for Microsoft Windows-J character setTable 4-87.

Character shift-JIs code points to Unicode Back to shift-JIs

ⅴ EE F3, FA 44 U+2174 FA 44

ⅵ EE F4, FA 45 U+2175 FA 45

ⅶ EE F5, FA 46 U+2176 FA 46

ⅷ EE F6, FA 47 U+2177 FA 47

ⅸ EE F7, FA 48 U+2178 FA 48

ⅹ EE F8, FA 49 U+2179 FA 49

￤ EE FA, FA 55 U+FFE4 FA 55

＇ EE FB, FA 56 U+FF07 FA 56

＂ EE FC, FA 57 U+FF02 FA 57

Korean Code Conversion
Korean code conversion, when dealing with only EUC-KR and ISO-2022-KR encodings,
is trivial. However, when Johab encoding is added to the mix, things become somewhat
less trivial. Converting EUC-KR and ISO-2022-KR encodings to Johab encoding results
in no loss of data, because all of their characters can be represented in Johab encoding.
However, the 8,822 additional hangul made available in Johab encoding cannot convert to
EUC-KR and ISO-2022-KR encodings, except as strings of individual jamo, all of which
are encoded in EUC-KR and ISO-2022-KR encodings. Hcode is a very popular Korean
code conversion program that supports a wide variety of Korean encodings. Its URL can
be found in Table 4-85.

Perl subroutines that illustrate algorithmic conversion to and from Johab encoding—they
apply to all KS X 1001:2004 characters, except to the 51 modern jamo and hangul sylla-
bles—are provided in Appendix C.

Code Conversion Across CJKV Locales
All of the difficult, yet very interesting, code conversion problems arise when attempting
to convert text from one CJKV locale to another. For example, consider the times when
someone sends to me some Chinese text, such as the title of a book or dictionary, that
is encoded according to a Japanese encoding method, such as Shift-JIS encoding. If I
wanted to render the title in its original Chinese form, I would be forced to deal with at
least one complex issue, specifically that Japanese does not use the same set of simplified
ideographs that are used in China for Chinese. Both languages use many of the same sim-
plified ideographs, but there are plenty of exceptions. Some simplified ideographs are spe-
cific to Japanese, meaning that Chinese, as used in China, still uses what is considered the
traditional form. Consider 黒 (U+9ED2) for Japanese, which contrasts with 黑 (U+9ED1) for
Chinese. The former is a simplified ideograph that is specific to Japanese, and the latter

Code Conversion | 289

is a traditional ideograph that is used by Chinese, as used in China, as well as in Taiwan,
Hong Kong, and Korea. There are many more examples of simplified ideographs that are
specific to Chinese, as used in China.

This simplified ideograph issue can pose a problem if you are using an intermediate rep-
resentation, such as Unicode. Using Unicode is a problem only if you are not aware of this
issue. Unicode often encodes two versions of the same ideograph, specifically the simpli-
fied and traditional forms, as exemplified by U+9ED1 and U+9ED2. In the end, chances are
that all the ideographs will convert to an appropriate form simply because the author of
the original text was able to input them.

In order to effectively handle cases of characters that do not have a direct mapping to an-
other character set according to Unicode, making use of correspondence tables, such as
for simplified/traditional ideograph pairs and ideograph variants, can dramatically help
to improve the accuracy of the conversion. But, there will always be cases of unmappable
characters. It is unavoidable.

ICU (International Components for Unicode),* Basis Technology’s RCLU (Rosette Core Li-
brary for Unicode),† available for Unix and Windows, tcs‡ (Translate Character Sets), also
available for Unix and Windows, and my own home-grown CJKVConv.pl§ (written in
Perl) are examples of tools or libraries that can perform code conversion across CJKV
locales. ICU is an incredibly mature library for Unicode and globalization support. RCLU
provides a plethora of options and features, including encoding autodetection. My own
CJKVConv.pl uses multiple database-like ideographic variant tables that assist in effec-
tively resolving unmappable characters.

Code Conversion tips, tricks, and Pitfalls
Understanding the relationships between the many CJKV encoding methods can work
to your advantage when it comes time to perform code conversion of any kind. Luckily,
though, a great many people, because of the environments that they use, are well insulated
from having to know details about code conversion. And that is the way it should be.
Software, not humans, should perform code conversion. This is typically the job of the OS
and libraries, specifically through the APIs that they make available to applications. But
someone must write these APIs. Given the critical nature of code conversion, meaning
that any errors are a very bad thing, it is important that these code conversion APIs be
written in such a way that they are robust, up-to-date, and correct.

The first determination that one must make with regard to code conversion is whether
the data that you are attempting to display or manipulate actually requires code con-
version, or is simply damaged and in need of some type of repair. If you are using a

* http://www.icu-project.org/
† http://www.basistech.com/unicode/
‡ http://swik.net/tcs/
§ ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/perl/cjkvconv.pl

290 | Chapter 4: encoding Methods

Korean-enabled OS and receive an ISO-2022-KR–encoded file, it may be difficult to de-
termine whether code conversion is necessary. Even well-formed ISO-2022-KR–encoded
files may not display on a Korean-enabled OS, because it may instead expect data to be
encoded according to EUC-KR or Johab encodings.

Consider the following past scenario. You were using a Japanese-capable operating sys-
tem, such as Mac OS-J. You received two files. One file was EUC-JP–encoded, and the
other was ISO-2022-JP–encoded, but it was damaged because its escape characters had
been stripped away. Both files displayed equally un-well when opened in a typical text
editor or other text-processing application. Until the EUC-JP–encoded file was converted
to Shift-JIS encoding, it could not be used on Mac OS-J. Likewise, until the ISO-2022-JP–
encoded file was repaired and converted to Shift-JIS encoding, it also could not be used
on Mac OS-J.

The subject of handling damaged or otherwise unreadable CJKV text, which is closely
related to code conversion, is covered in the next section.

repairing damaged or Unreadable CJKV text
CJKV text files can be damaged in different ways depending on which encoding was used
in the file. ISO-2022–encoded text is usually damaged by unfriendly email clients (and
news readers) that remove control characters, including the all-important escape and shift
characters. You will learn that this type of damage is relatively easy to repair for some ISO-
2022 encodings because the remaining characters that constitute a valid escape or desig-
nator sequence can serve as the context for properly restoring the characters that were
removed. However, EUC, GBK, GB 18030, Big Five, Shift-JIS, and Johab encodings make
generous use of eight-bit bytes, and many email clients (and news readers) used in the
past were not what many would call eight-bit clean, meaning that they effectively turned
off the eighth bit of every byte. This had the nasty and unpleasant effect of scrambling the
encoding, which rendered the text unreadable.

Some data are not damaged per se, but rather transformed or reencoded in a way that is
intended to preserve the original encoding. This reencoding refers to Quoted-Printable
and Base64 transformations. Files that contain a small amount of binary data or have few
bytes with the MSB set are usually converted to Quoted-Printable to retain some level of
human-readability, and those that contain mostly binary data or are filled with bytes that
have the MSB set are converted to Base64.

Quoted-Printable transformation
Quoted-Printable transformation simply converts nonalphanumeric characters into a
three-character form that is composed of an “equals” symbol (=, 0x3D) followed by the
two hexadecimal digits that represent the original character’s encoded value. Instances
of a genuine “equals” symbol are converted to the three-character string =3D according to
Quoted-Printable transformation rules.

repairing damaged or Unreadable CJKV text | 291

Quoted-Printable transformation is defined in Ned Freed and Nathaniel Borenstein’s RFC
2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies.* RFCs 2047, MIME (Multipurpose Internet Mail Extensions) Part Three: Message
Header Extensions for Non-ASCII Text, and 2231, MIME Parameter Value and Encoded
Word Extensions: Character Sets, Languages, and Continuations, should also be consulted.†
While most Quoted-Printable–transformed data is found in email message bodies, it can
sometimes be found in email message headers, such as in the following one that I received
(the emboldened portions represent the actual data; the rest is part of the transformation
process that is explained in Table 4-90):

Subject: =?Big5?Q?=A6=5E=C2=D0_=3A_Reply_=3A_Tze=2Dloi_Input_Method?=

The following short Perl program converts Quoted-Printable data back into its original
form:

while (defined($line = <STDIN>)) {
 $line =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
 $line =~ s/=[\n\r]+$//;
 print STDOUT $line;
}

This and many more Perl programs are provided in Appendix C to serve as examples from
which you can write your own routines, whether in Perl or your programming language
of choice.

Base64 transformation
Base64 transformation is more complex than Quoted-Printable in that it involves manip-
ulation of data at the bit level and is applied to an entire file, not only those bytes that may
represent binary data. Base64 transformation, put simply, is a method for transforming
arbitrary sequences into the safest 64-character ASCII subset, and like Quoted-Printable,
is defined in RFCs 2045 and 2047.

Base64 transformation is easy to describe. Every three bytes are transformed into a
four-byte sequence. That is, the 24 bits that constitute three bytes are split into four 6-bit
segments. Six bits can encode up to 64 unique characters. Each 6-bit segment is then con-
verted into a character in the Base64 character set. A 65th character, “=” (0x3D), functions
as a “pad” character if a full three-byte sequence is not achieved. Zero bits added to the
right are used to pad instances of incomplete six-bit segments. The Base64 character set
and mappings can be found in Table 4-18.

My name, written in Japanese and UTF-8–encoded, can serve as an example to illus-
trate the Base64 transformation. The three characters are 小林剣 (U+5C0F, U+6797, and
U+5263), and their UTF-8 values are <E5 B0 8F>, <E6 9E 97>, and <E5 89 A3>. When the

* http://www.ietf.org/rfc/rfc2045.txt
† http://www.ietf.org/rfc/rfc2047.txt and http://www.ietf.org/rfc/rfc2231.txt

292 | Chapter 4: encoding Methods

Base64 transformation is applied, the result becomes the following Base64-encoded string
consisting of 12 characters:

5bCP5p6X5Ymj

When the three characters are represented as binary strings, or bit arrays, the result is as
shown in Table 4-88.

UTF-8 encoding bit array examplesTable 4-88.

Character UtF-8 encoding Bit arrays

小 E5 B0 8F 11100101 10110000 10001111

林 E6 9E 97 11100110 10011110 10010111

剣 E5 89 A3 11100101 10001001 10100011

Splitting these bit arrays into six-bit segments results in the bit arrays and the correspond-
ing Base64 characters illustrated in Table 4-89.

Base64 transformation exampleTable 4-89.

Binary string decimal and hexadecimal equivalent Base64 character

111001 57—0x39 5

011011 27—0x1B b

000010 02—0x02 C

001111 15—0x0F P

111001 57—0x39 5

101001 41—0x29 p

111010 58—0x3A 6

010111 23—0x17 X

111001 57—0x39 5

011000 24—0x18 Y

100110 38—0x26 m

100011 35—0x23 j

Compare this with the contents of Table 4-18. The following brief Perl program decodes
Base64 data (it requires the MIME module):

use MIME::Decoder;
my $enc = 'base64';
my $decoder = new MIME::Decoder $enc or die "$enc unsupported";
$decoder->decode(*STDIN, *STDOUT);

repairing damaged or Unreadable CJKV text | 293

Base64 data is typically delivered in two forms: either embedded within an SMTP header
field or else as an attachment whereby the entire attachment has been Base64-transformed.
The following is a Base64-encoded SMTP header field:

From: lunde@adobe.com (=?UTF-8?B?5bCP5p6X5Ymj?=)

The emboldened portion represents the actual Base64-encoded segment. Table 4-90 lists
each component of the data within the parentheses (the parentheses themselves are genu-
ine and are not considered part of the Base64-encoded string).

Base64 in SMTP header fieldsTable 4-90.

Component explanation

=? Signals the start of the Base64-encoded string

UTF-8 Charset designation

? Delimiter

B Transformation type—“B” for Base64; “Q” for Quoted-Printable

? Delimiter

5bCP5p6X5Ymj Base64-encoded data

?= Signals the end of the Base64-encoded string

The following is an example of a text stream that had Base64 transformation applied:
SSBhbSB3b25kZXJpbmcgaG93IG1hbnkgcGVvcGxlIHdpbGwgYWN0dWFsbHkgdHlwZSB0aGlzIG
luIHRvIGZpbmQgb3V0CndoYXQgaXQgc2F5cy4gV2VsbCwgaXQgZG9lc24ndCBzYXkgbXVjaC4K

I have never encountered a need to Base64-encode data, because Mail User Agents (MUAs)
and Mail Transport Agents (MTAs) automatically and routinely apply Base64 transforma-
tion when required.* If you really have a strong desire to Base64-encode some data, you
can use the following Perl program (which, again, requires the MIME module):

use MIME::Base64;
undef $/;
my ($data, $encoded);
$data = <STDIN>;
$encoded = encode_base64($data);
print STDOUT $encoded;

Sendmail is an excellent example of an MTA that implements RFC 1652† faithfully in that
it handles Base64 and Quoted-Printable conversion as necessary.‡

* But frankly, I did need to apply Base64 transformation in order to create the examples for this section.
† http://www.ietf.org/rfc/rfc1652.txt
‡ http://www.sendmail.org/

294 | Chapter 4: encoding Methods

other types of encoding repair
As opposed to being reencoded by a well-understood and proven transformation, some
data can become truly damaged in the sense that information is removed, either in terms
of entire bytes, or the values of specific bits. Such data appears as garbage, meaning it is
unreadable. This is referred to as mojibake (文字化け mojibake) in Japanese.

We first discuss the repair procedure for ISO-2022-JP–encoded files as an example of how
encodings may become damaged by having key characters removed, and then repaired.
In the past, one might have received Japanese email messages or attempted to display
Japanese articles from Usenet News, which had their “escape” characters stripped out by
unfriendly email or news reading software. Sometimes the escape characters are simply
mangled—converted into a single “space” character (0x20) or into Quoted-Printable (dis-
cussed previously). This was a very annoying problem because one usually threw out such
email messages or articles, rather than suffering through the manual and the somewhat
grueling task of manually restoring the escape characters. For example, look at the ISO-
2022-JP–encoded string in Table 4-91. It is first shown as it should appear when displayed
properly, and then shown as it could appear if it were damaged, specifically with its escape
characters missing. There are certainly lots of dollar signs, but these ones clearly won’t
make you rich, and may have the opposite effect, especially if your software is expected to
correctly handle such situations but doesn’t.*

Damaged encoding example—ISO-2022-JP encodingTable 4-91.

encoding string

Original text これは和文の文章の例で、それは English の文章の例です。
ISO-2022-JP—damaged B3lOOBJ8$NJ8>O$NNc$G! $=$l$O(J English BNJ8>ONNcG$9!#(J

Many years ago, I wrote a tool that was designed to repair damaged ISO-2022-JP–encoded
files by simply scanning for the printable-character portions of the escape sequences that
were left intact, keeping track of the state of the data stream (that is, whether it is in one-
or two-byte mode), and then using this as the context for restoring the escape characters
that were removed. This tool is called JConv, which was briefly described in the previous
section—its full description is at the end of Chapter 9.

Because ISO-2022-CN, ISO-2022-CN-EXT, and ISO-2022-KR encodings use single con-
trol characters—the ASCII Shift-In and Shift-Out control characters—for switching be-
tween one- and two-byte modes, there is not sufficient context for restoring them if they
are inadvertently or mistakenly removed. So, unfortunately, there is no elegant way of
repairing these encodings.

* These dollar signs, which correspond to hexadecimal 0x24, represent the first byte of the hiragana characters in
row 2 of JIS X 0208:1997. Given that 70% of Japanese text is made up of hiragana, the number of dollar signs in
damaged ISO-2022-JP–encoded text will be relatively high.

Advice to developers | 295

Some encodings are damaged at the bit level, meaning that specific bits change value. Bits
exist in a binary condition and are either on or off. The bits that are damaged are effec-
tively switched from on to off. Eight-bit encodings that have had their eighth bits stripped
are such cases. Manual repair of EUC encoding is not terribly painful: you simply turn
on or enable the eighth bit of byte sequences that appear as garbage. The only problem
is detecting which bytes are used to compose two-byte characters—this is when human
intervention and interaction is required. Table 4-92 uses the same Japanese string as used
in the ISO-2022-JP–encoded example, but demonstrates how EUC-JP and Shift-JIS en-
codings can become damaged.

Damaged encoding example—ISO-2022-JP, EUC-JP, and Shift-JIS encodingsTable 4-92.

encoding string

Original text これは和文の文章の例で、それは English の文章の例です。
ISO-2022-JP—damaged B3lOOBJ8$NJ8>O$NNc$G! $=$l$O(J English BNJ8>ONNcG$9!#(J

EUC-JP—damaged 3l$OOBJ8$NJ8>ONNcG! $=$l$O English $NJ8>O$NNcG9!#

Shift-JIS—damaged 1 j M a 6 L 6 M L a E A ; j M English L 6 M L a E 7 B

Shift-JIS—damaged 1jMa6L6MLaEA;jM English L6MLaE7B

For EUC-JP encoding, the crucial context-forming byte sequences, specifically “$B” and
“(J” from the ISO-2022-JP encoding escape sequences, are missing. For Shift-JIS encod-
ing, the results are much different, in terms of what appears and in that it bears no re-
semblance to the damaged ISO-2022-JP– and EUC-JP–encoded string. The two examples
of damaged Shift-JIS–encoded data differ in that the second example does not contain
spaces as place holders for the bytes that had their eighth bits disabled.

The bottom line is that any encoding repair solution that deals with eight-bit encodings
with mixed single- and multiple-byte representations requires interaction with a user.
There is simply too much judgement involved, and a literate (meaning someone who has
more than simply a pulse) human is needed to guide the repair process. It is clearly better
to make a concerted effort to avoid the damage in the first place.

Advice to developers
The information presented in this chapter may have given you the impression or feeling
that CJKV encoding is a real mess. Well, to be quite frank, it can be if you don’t have a
clue what you’re doing. That’s the whole point of this book, and specifically this chapter.
Encodings are systematic, which means that they are predictable regardless of the number
of code points that they can address, and regardless of how many characters have been
assigned to its code points. Systematic simply means that it can be programmed, catego-
rized, or easily referenced.

There are three basic pieces of advice that I strongly feel should be conveyed to software
developers, as follows:

296 | Chapter 4: encoding Methods

Embrace Unicode and support its encoding forms, meaning UTF-8, UTF-16, and •	
UTF-32. Although only one of these encoding forms typically needs to be used for
internal processing, all three must be supported in terms of interoperability.

Do not forget to support the legacy encodings—the more the better—in terms of be-•	
ing able to interoperate with them.

When dealing with Unicode and legacy encodings, interoperability must be properly •	
tested. Any implementation must be properly and exhaustively tested prior to its re-
lease to its users, whether they are other developers or end users.

The following sections detail these three areas of advice and provide examples of why they
are applicable to software development.

embrace Unicode
Embracing Unicode has its rewards, and they are great, but rewards are usually the result
of dealing with challenges. Moving from a system that uses legacy encodings to one that
uses Unicode is certainly a challenge, but the rewards are significant. For example, GB
18030 certification, for software developers who wish to market their products in China,
represents a significant hurdle, but it has been demonstrated time and time again that
proper Unicode support significantly eases the path to GB 18030 compliance.

When supporting Unicode, although it is clear that only one of its encodings needs to
be supported in terms of the processing that is done within your software, it is prudent
to support all of the Unicode encodings, specifically UTF-8, UTF-16, and UTF-32, in
terms of interoperability. OpenType fonts that include glyphs that are mapped from non-
BMP code points include ‘cmap’ tables that use UTF-32 encoding. UTF-8 and UTF-16
encodings are more common for application use, meaning that at some level, the UTF-8
or UTF-16 encoding that is used in an application must interoperate with the UTF-32
encoding in OpenType fonts.

Speaking of non-BMP code points, supporting them in your application is critical in this
day and age, when roughly half of the characters in Unicode are outside the BMP, and not
all are considered rarely used. Ideographic Variation Sequence (IVS) support is another
example of why non-BMP capability is critical, because the 240 Variation Selectors (VSes)
that serve as the second component of an IVS are encoded in Plane 14. Properly support-
ing JIS X 0213:2004, Hong Kong SCS-2008, and GB 18030-2005 also requires non-BMP
support.

It is also important to reiterate the importance of byte order when using the Unicode
encodings. Proper use and interpretation of the Byte Order Mark (BOM) is critical, espe-
cially when interoperating with other encodings. The BOM is also useful, but not neces-
sary, for UTF-8 encoding in disambiguating it from legacy encodings.

Advice to developers | 297

Legacy encodings Cannot Be Forgotten
If you embrace Unicode as you should, even very tightly, legacy encodings must still be
supported at some level, in terms of interoperability. GB 18030 certification is an area that
demonstrates the need to interoperate between Unicode and legacy encodings. While em-
bracing Unicode certainly simplifies the support of GB 18030-2005, one of the GB 18030
compliance requirements is to interoperate with GB 18030 encoding. There is no escaping
this. To not support GB 18030 encoding in the context of interoperability means that your
software cannot achieve GB 18030 certification.

In terms of legacy encodings, you should have learned that there are two basic CJKV
encoding methods, specifically ISO-2022 and EUC, and a small number of locale-specific
ones. These legacy encoding methods, at least within a single locale, are designed to in-
teroperate with one another through the use of published and well-proven algorithms.
Legacy encodings also interoperate with Unicode, some better than others, through the
use of mapping tables. For the most part, Unicode is considered a superset of the legacy
encodings. This means that data can be converted from a legacy encoding to Unicode, but
mapping from Unicode back to a legacy encoding may not be possible for some charac-
ters, depending on the target legacy encoding.

How many legacy encodings should be supported? As many as possible, considering that
it is being done for the purpose of interoperability. To some extent, the OS-level APIs can
be used to support legacy encodings, in terms of interoperability with Unicode. There are
also libraries that perform the same functions. The advantage of using an OS-level API or
a library is that the work has been done and can generally be considered proven.

Because code conversion plays an absolutely critical role in encoding interoperability, en-
suring that the algorithms and mapping tables are current and correct should be a pri-
mary concern, and plenty of testing is necessary to guarantee this. This is true whether
you build the code conversion routines yourself or use OS-level APIs or libraries. The
Unicode Consortium provides a small number of useful and necessary mapping tables
that can be used for this purpose.*

Code conversion is comparable to the foundation of a building. If the foundation is weak,
the building that is built on top of it will not last long, and the bigger the building, the
sooner it will fail. As a software developer, a strong foundation should always be the goal.
In fact, it is your responsibility to your company, and more importantly, to its customers.

There are, of course, locale considerations that come into play. If the software is designed
to be used in Japan, and for handling only Japanese text, then just the Japanese-specific
legacy encodings need to be considered, in addition to embracing Unicode.

* http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/

298 | Chapter 4: encoding Methods

testing
When dealing with encodings, which almost always involves transcoding between Uni-
code and legacy encodings, I cannot emphasize enough the importance of testing. Even
if the code conversion is between the various Unicode encodings, there are pitfalls, along
with special ranges of code points that require specific treatment, such as the Surrogates
Area.

The bottom line is that if there is a flaw in the conversion table or algorithm, the result-
ing data loss can be disastrous for your customers. Developing a rigorous testing harness,
along with a clear method for verifying the results, is prudent. In fact, doing so is your
responsibility.

299

CHAPter 5

Input Methods

In earlier chapters you were introduced to the complexities of CJKV writing systems,
their character set standards, and their encoding methods. Now it is time for you to learn
something about how a user is able to input the tens of thousand of characters that are
made available in these character set standards, and which are encoded for today’s OSes.

Mainly due to the vast number of characters set forth in CJKV character set standards,
there is no simple solution for user input, such as direct keyboard input, as you would find
in the West. Instead, you will find that CJKV input methods fall into the following two
general categories:

Direct methods
Employ a unique value for the target character, usually one of its encoded values.

Indirect methods
Usually more convenient or intuitive, these obtain the encoded value of the target
character or characters, usually by typing out the reading or shape on a standard or
specialized keyboard.

Examples provided in this chapter will demonstrate that the indirect input methods are
the most commonly used, and appropriately so, because they usually involve the reading
or structure of a character, both of which are more intuitive than any other type of input.
After all, native speakers of CJKV languages learn ideographs by their readings. There
are ideographs, however, that are not commonly known, and these are typically input by
means other than their reading. Of course, direct and indirect input methods are covered
in this chapter.

To facilitate the explanations to come, at least two examples will be provided per input
method. In most cases, the two examples will be the two ideographs 漢 and 字, which
represent the two ideographs for expressing “ideograph” in most CJKV locales, specifi-
cally hanzi in Chinese, kanji in Japanese, and hanja in Korean. Other characters shall be
substituted or included as appropriate.

There is an easy explanation for why so many different input methods have been devel-
oped for entering CJKV text. First, it is obviously impossible to fit thousands of characters

300 | Chapter 5: Input Methods

on a keyboard array. Mind you, such keyboards do exist, but they are not designed for
the mortal operator, and also do not provide coverage for all the character set standards
discussed in Chapter 3. An example of this type of keyboard is provided later in this chap-
ter. This limitation effectively forced the CJKV locales to develop more efficient means of
input. Second, CJKV text, as you learned in Chapter 4, can be encoded through the use
of a variety of encoding methods, though Unicode has become the most broadly sup-
ported encoding among them. This makes using the encoded value of a character in each
encoding method a viable method for input, though it is far from being intuitive. Input
through the use of an encoded value is what I consider to be a last-resort method. There
are circumstances when this input method is useful.

Other references that either describe various input methods or list input codes for ideo-
graphs include the following books and dictionaries:

A Chinese book entitled •	 常用汉字输入法操作速成 (chángyòng hànzì shūrùfǎ
cāozuò sùchéng, meaning “Quick Input Method Operations for Frequently Used
Hanzi”) describes many contemporary Chinese input methods.

A Chinese book entitled •	 计算机汉字输入与编辑实用手册 (jìsuànjī hànzì shūrù yù
biānjí shíyòng shǒucè) also describes contemporary Chinese input methods, but in-
cludes a large appendix that has readings and input codes for all GB 2312-80 hanzi.

A Chinese dictionary entitled •	 常用汉字编码字典 (chángyòng hànzì biānmǎ zìdiǎn,
meaning “Dictionary of Codes for Frequently Used Hanzi”) lists nearly two dozen
(some obscure) input codes for all 6,763 hanzi in GB 2312-80.

The manuals for a Chinese word processor called •	 NJStar (南极星/南極星 nánjíxīng)
provide useful descriptions, including examples, for nearly two dozen different input
methods.

A Japanese dictionary entitled •	 増補改訂 JIS 漢字字典 (zōho kaitei JIS kanji jiten,
meaning “Expanded and Revised JIS Kanji Dictionary”) includes all of the kanji
found in the JIS X 0208:1997 and JIS X 0213:2004 standards, and provides their read-
ings and character codes.

A Japanese book entitled •	 中国入力方法の話 (chūgoku nyūryoku hōhō-no hanashi,
meaning “Discussions of Chinese Input Methods”) describes the principles behind
various Chinese input methods.

If you need more information about input methods than what is provided in this chap-
ter, I encourage you to explore these references and seek out additional ones. I have also
found Wikipedia to be a good source for input method information, including details
about keyboard arrays.*

* http://www.wikipedia.org/

transliteration techniques | 301

transliteration techniques
Before we can begin to discuss the basics of CJKV input, to include input methods and
keyboard arrays, it is necessary to first cover the issue of transliteration. This is because
the most broadly used input methods provide a facility to use the universally accepted
QWERTY keyboard array. In other words, all CJKV scripts can be expressed using Latin
characters or with a set of native alphabetic or native elements, through the use of trans-
literation techniques and principles.

Zhuyin Versus Pinyin Input
Zhuyin (also known as bopomofo) and Pinyin are related in that there is always a way to
represent the same set of sounds using either writing system. Both systems are phonetic,
but Pinyin is based on Latin characters.

There are three types of Pinyin input, as follows:

Half Pinyin (•	 简拼/簡拼 jiǎnpīn)

Full Pinyin (•	 全拼 quánpīn)

Double Pinyin (•	 双拼 shuāngpīn)

Fortunately, these three methods are easily accommodated using the standard QWERTY
keyboard array.

Full Pinyin functions by simply typing the Pinyin equivalent of hanzi. Note that any Pinyin-
based input methods result in a (sometimes long) list of candidate hanzi from which the
user must choose. This is the nature of most indirect input methods.

Double Pinyin functions by first dividing the Pinyin reading into two parts. Certain letter
combinations are replaced with single characters according to a set of standardized rules.
The resulting characters are used for input. The primary advantage of Double Pinyin is
that hanzi can be input using only one or two keystrokes.

Table 5-1 illustrates zhuyin and Pinyin input using both Full Pinyin and Double Pinyin
methods of transliteration. Those transliterations that are different from Full Pinyin have
been shaded.

Keystrokes for zhuyin and Pinyin charactersTable 5-1.

Zhuyin Full Pinyin Half Pinyin double Pinyin

ㄅ B B B

ㄆ P P P

ㄇ M M M

ㄈ F F F

ㄉ D D D

302 | Chapter 5: Input Methods

Keystrokes for zhuyin and Pinyin charactersTable 5-1.

Zhuyin Full Pinyin Half Pinyin double Pinyin

ㄊ T T T

ㄋ N N N

ㄌ L L L

ㄍ G G G

ㄎ K K K

ㄏ H H H

ㄐ J J J

ㄑ Q Q Q

ㄒ X X X

ㄓ ZH A A

ㄔ CH I U

ㄕ SH U I

ㄖ R R R

ㄗ Z Z Z

ㄘ C C C

ㄙ S S S

ㄚ A A A

ㄛ O O O

ㄜ E E E

ㄝ EI EI W

ㄞ AI L S

ㄟ EI EI W

ㄠ AO K D

ㄡ OU OU P

ㄢ AN J F

ㄣ EN F R

ㄤ ANG H G

ㄥ ENG G T

ㄦ ER ER Q

ㄧ I I I

ㄧㄚ IA IA B

transliteration techniques | 303

Keystrokes for zhuyin and Pinyin charactersTable 5-1.

Zhuyin Full Pinyin Half Pinyin double Pinyin

ㄧㄝ IE IE M

ㄧㄠ IAO IK K

ㄧㄡ IU IU N

ㄧㄢ IAN IJ J

ㄧㄣ IN IN L

ㄧㄤ IANG IH H

ㄧㄥ ING Y ;

ㄨ U U U

ㄨㄚ UA UA B

ㄨㄛ UO UO O

ㄨㄞ UAI UL X

ㄨㄟ UI UI V

ㄨㄢ UAN UJ C

ㄨㄣ UN UN Z

ㄨㄤ UANG UH H

ㄨㄥ ONG S Y

ㄩ V V U

ㄩㄝ UE UE V

ㄩㄥ IONG IS Y

This means that Full Pinyin requires anywhere from one to six keystrokes per hanzi, Half
Pinyin requires one to three keystrokes per hanzi, and Double Pinyin requires only one
or two keystrokes per hanzi. Table 5-2 provides some examples of Pinyin input to better
illustrate how these three types of Pinyin work.

Pinyin input examplesTable 5-2.

Hanzi Zhuyin Full Pinyin Half Pinyin double Pinyin

啊 ㄚ A A A

酷 ㄎㄨ KU KU KU

处 ㄔㄨ CHU IU UU

汆 ㄘㄨㄢ CUAN CUJ CC

304 | Chapter 5: Input Methods

Pinyin input examplesTable 5-2.

Hanzi Zhuyin Full Pinyin Half Pinyin double Pinyin

张 ㄓㄤ ZHANG AH AG

双 ㄕㄨㄤ SHUANG UUH IH

Needless to say, Pinyin input is very important for the input of ideographs in the context
of Chinese.

Kana Versus transliterated Input
There are two ways to provide reading-based input to Japanese input methods through
the keyboard array:

Transliterated using Latin characters•	

Kana•	

Ultimately, most Japanese input methods require kana input, which means that there
must be a mechanism in place for converting transliterated Japanese strings into kana on
the fly. Almost all—if not all—such software support such a mechanism, which permits
Western keyboard arrays, such as the QWERTY keyboard array, to be used to input kana
and thus Japanese text.

Table 5-3 lists the basic set of kana characters (hiragana in this case, but these are equal-
ly applicable to katakana because they represent the same sounds), along with the most
common keystroke or keystrokes that are necessary to produce them. Some Japanese in-
put methods support more than one way of entering some kana, through the use of alter-
nate keystrokes. These multiple methods for entering kana are provided in Table 5-3 and
are separated by slashes.

Keystrokes to produce kana charactersTable 5-3.

“A” row “I” row “U” row “e” row “o” row

あ A い I う U え E お O

か KA き KI く KU け KE こ KO

が GA ぎ GI ぐ GU げ GE ご GO

さ SA し SI/SHI す SU せ SE そ SO

ざ ZA じ ZI/JI ず ZU ぜ ZE ぞ ZO

た TA ち TI/CHI つ TU/TSU て TE と TO

だ DA ぢ DI づ DU/DZU で DE ど DO

な NA に NI ぬ NU ね NE の NO

は HA ひ HI ふ HU/FU へ HE ほ HO

transliteration techniques | 305

Keystrokes to produce kana charactersTable 5-3.

“A” row “I” row “U” row “e” row “o” row

ば BA び BI ぶ BU べ BE ぼ BO

ぱ PA ぴ PI ぷ PU ぺ PE ぽ PO

ま MA み MI む MU め ME も MO

や YA ゆ YU よ YO

ら RA/LA り RI/LI る RU/LU れ RE/LE ろ RO/LO

わ WA ゐ WI ゑ WE を WO

ん N/NN/N’

There are also combinations of two kana characters that require special transliteration
techniques. These consist of one of the kana in Table 5-3 plus the small versions of や (ya),
ゆ (yu), and よ (yo). These are listed in Table 5-4. Like Table 5-3, optional keystrokes are
separated by a slash.

Keystrokes to produce palatalized kana charactersTable 5-4.

small “Ya” row small “Yu” row small “Yo” row

きゃ KYA きゅ KYU きょ KYO

ぎゃ GYA ぎゅ GYU ぎょ GYO

しゃ SYA/SHA しゅ SYU/SHU しょ SYO/SHO

じゃ ZYA/JA じゅ ZYU/JU じょ ZYO/JO

ちゃ TYA/CHA ちゅ TYU/CHU ちょ TYO/CHO

ぢゃ DYA ぢゅ DYU ぢょ DYO

にゃ NYA にゅ NYU にょ NYO

ひゃ HYA ひゅ HYU ひょ HYO

びゃ BYA びゅ BYU びょ BYO

ぴゃ PYA ぴゅ PYU ぴょ PYO

みゃ MYA みゅ MYU みょ MYO

りゃ RYA りゅ RYU りょ RYO

These three small kana characters—ゃ, ゅ, and ょ—can usually be generated by either typ-
ing an “x” before their transliterated forms (for example, ゃ can be input with the three-
character string “xya”) or by pressing the Shift key while typing their transliterated forms.
Actually, all small kana characters, such as ぁ, ぃ, ぅ, ぇ, ぉ, ゕ, ゖ, っ, ゃ, ゅ, ょ, and ゎ, can
be handled in this way. Check the documentation of your Japanese input method to find
out which of these methods is supported. Chance favors that both of them are. Also check

306 | Chapter 5: Input Methods

the documentation for transliteration tables, similar to those just shown, that specify oth-
er special key combinations that can be used.

There are additional kana characters that require special transliteration techniques for in-
put, which are are illustrated in Table 5-5. They are expressed in katakana because they are
typically used for transliterating loan words, such as foreign places, names, and words.

Keystrokes to produce special katakana sequencesTable 5-5.

Katakana Latin keystrokes

ファ FA

フィ FI

フェ FE

フォ FO

ヴァ VA

ヴィ VI

ヴ VU

ヴェ VE

ヴォ VO

Japanese long vowels, while transliterated using macroned vowels, are input according to
the reading of the kana used to express them. For example, おう (ō) is entered using the
two keystrokes “ou,” not “oo.”

Writing a Latin-to-kana conversion routine is not terribly difficult. Sometimes the au-
thors of Japanese text-processing programs encourage others to use their routines, and
most Japanese input methods that are freely available come with source code that includes
conversion tables. As an example, a Perl version of a Latin-to-kana conversion library
called romkan.pl is available. It requires the Perl library file called jcode.pl to function.*

Hangul Versus transliterated Input
Like bopomofo and kana, each hangul—whether it is composed of multiple or a single ja-
mo—can be represented by equivalent Latin characters. There appears to be several ways
to transliterate hangul characters when performing keyboard input. A variety of ways to
transliterate jamo are shown in the “Keyboard input” column of Table 5-6, along with the
Ministry of Education, Korean Language Society, and both ISO/TR 11941:1996 systems
for comparison (only the syllable-initial transliterations are provided for these systems).
Note that case is significant in some instances, in particular an alternate keystroke for the
double consonants that involves the use of uppercase.

* http://srekcah.org/~utashiro/perl/scripts/?lang=en

transliteration techniques | 307

Keystrokes to produce jamo—consonantsTable 5-6.

Jamo Keyboard input Moe KLs Iso—roK Iso—dPrK

ㄱ g K/G G G K

ㄴ n N N N N

ㄷ d T/D D D T

ㄹ l/r R/L R R R

ㅁ m M M M M

ㅂ b P/B B B P

ㅅ s S/SH S S S

ㅇ ng/x none/NG none/NG none/NG none/NG

ㅈ j CH/J J J C

ㅊ c CH’ CH C CH

ㅋ k K’ K K KH

ㅌ t T’ T T TH

ㅍ p/f P’ P P PH

ㅎ h H H H H

ㄲ gg/G KK GG GG KK

ㄸ dd/D TT DD DD TT

ㅃ bb/Bh PP BB BB PP

ㅆ ss/S SS SS SS SS

ㅉ jj/J TCH JJ JJ CC

Table 5-7 illustrates the keystrokes for inputting the jamo that represent vowels. Alternate
keystrokes are separated by a slash.

Keystrokes to produce jamo—vowelsTable 5-7.

Jamo Keyboard input Moe KLs Iso—roK and dPrK

ㅏ a A A A

ㅑ ya/ia YA YA YA

ㅓ eo Ŏ EO EO

ㅕ yeo/ieo/ie YŎ YEO YEO

ㅗ o O O O

ㅛ yo/io YO YO YO

ㅜ u/oo U U U

308 | Chapter 5: Input Methods

Keystrokes to produce jamo—vowelsTable 5-7.

Jamo Keyboard input Moe KLs Iso—roK and dPrK

ㅠ yu/yw/iu YU YU YU

ㅡ eu/ew Ŭ EU EU

ㅣ i/wi I I I

ㅐ ae/ai AE AE AE

ㅒ yae/iai YAE YAE YAE

ㅔ e/ei E E E

ㅖ ye/ie/iei YE YE YE

ㅘ wa/ua/oa WA WA WA

ㅙ wae/uae/oai WAE WAE WAE

ㅚ oe/oi OE OE OE

ㅝ weo/ueo/ue WŎ WEO WEO

ㅞ we/uei WE WE WE

ㅟ wi/ui WI WI WI

ㅢ eui/yi/w ŬI EUI YI

Of course, you should always check an input method’s documentation to determine ex-
actly what keystrokes are necessary to input each jamo.

Input techniques
This chapter is intended to describe CJKV input in a platform- and software-independent
way. What you learn here can then be applied to a wider variety of CJKV input programs,
possibly even ones that have yet to be developed.

Unlike English and other Latin-based languages, to include Vietnamese, along with typi-
cal Korean text, which permits direct keyboard entry for the majority of its characters,
there are two ways to input CJKV characters, as follows:

Direct•	

Indirect•	

Input by encoded value is a direct means of input, and unambiguously allows you to ac-
cess CJKV characters.* However, this is not very intuitive. One can certainly memorize

* This is not always true. For example, when an input method can accept ISO-2022 and Row-Cell codes, there
are many ambiguous cases, such as the four-digit code 3021. In GB 2312-80, this code can result in either 啊
(hexadecimal ISO-2022-CN encoding) or 镜 (decimal Row-Cell notation). However, if one works with a single
encoding, such as Unicode, and uses Unicode scalar values, the original statement is true.

Input techniques | 309

the hexadecimal ISO-2022-JP value 0x5178 or the Unicode scalar value U+528D for the
Japanese kanji 劍 (ken or tsurugi), but imagine doing this for thousands or tens of thou-
sands of ideographs. While input by reading may yield more than one candidate character
from which to choose, it is—in a seeming paradox—the most productive and most widely
used method yet invented. Figure 5-1 illustrates the four possible stages of input: it shows
how the flow of input information travels and how different input methods and keyboards
interface at each stage.

���

������������������

�������������������� ���������� ����������� �������������

����

�����
��������

����
��������

�����
������

������
�����

Input stages and input method interaction—JapaneseFigure 5-1.

the Input Method
CJKV input software is usually referred to as an input method (or FEP, which is an abbre-
viation for front-end processor). The input method is aptly named because it captures the
keyboard input, processes it to become the intended text, and then sends it to the applica-
tion or other software. Typically, the input method runs as a separate process in its own
input window, largely independent of the underlying application. Now, thanks to OS-level
APIs, the use of input methods is much more seamless than in the past.

The input methods that were available at the time when the first edition of this book
was published was already quite rich. Microsoft Windows OSes, at least the Japanese-
enabled versions thereof, had several input methods from which to choose. These included
ATOK, egbridge, Katana (刀 katana), VJE, and Wnn. Some industrious people had even
adapted Unix-based Japanese input methods so that they could run under non-Japanese
MS-DOS systems. One such example was the adaptation of an input method called SKK
for use with MOKE, a Japanese text editor that ran on MS-DOS. Mac OS-based systems,
specifically those that ran Mac OS-J or Mac OS with the Japanese Language Kit, offered
several Japanese input methods, such as ATOK, egbridge, Katana, MacVJE, Wnn, and
ことえり (kotoeri). Kotoeri was bundled with the OS. Unix offered input methods such
as SKK, Wnn, Canna, and kinput2—these were available from a variety of online sources
or bundled with other programs. Some of these Japanese input methods are described in
more detail at the end of this chapter.

310 | Chapter 5: Input Methods

Now the landscape is different. The OS-bundled input methods have matured and offer
rich functionality. Mac OS X still provides Kotoeri as its Japanese input method, but it is
very different from earlier iterations. Windows provides Global IME. It seems that Just-
Systems’ ATOK remains as the most popular third-party Japanese input method.

Most input methods run as separate processes from the programs that ultimately use
the input, such as text editors and word processors. This allows you to use a single input
method with many programs. It can also allow the use of more than one input method
(not simultaneously, though, but by switching between them with a special keystroke,
menu item, or control panel).

Many of these Japanese input methods allow you to emulate others, at least they did so
in the past when many were available, and each enjoyed a loyal following. For example,
MacVJE for Mac OS allowed users to emulate egbridge, ATOK, Wnn, and TurboJIP key-
board commands. Some others offer the same flexibility. This seemed to be useful, espe-
cially when using multiple OSes where the Japanese input method you prefer to use is not
available on the current OS. However, the emulation was not always complete. For exam-
ple, egbridge for Mac OS could emulate MacVJE keyboard commands, but its emulation
did not have the same set of functions. One expected to find slight differences—after all,
egbridge was merely emulating the other input method.

All CJKV input methods share many similar features and functionalities. Although there
are other tasks that they must perform, sometimes specific to an input method, at a mini-
mum an input method must provide a way to perform the following basic operations:

Switch between CJKV and Latin writing modes•	

Convert the input string into one or more ideographs•	

Select from a list of candidate ideographs•	

Accept the selected or converted string, which is subsequently sent to the application •	
in which the string is to be used

The ability to switch between writing modes is necessary because CJKV text can be com-
posed of both CJKV and Latin text. Most input methods do not input ideographs directly,
so a keystroke is used to tell the input software to convert the input text and, because
many ideographs and ideograph compounds share the same reading, it is necessary to list
all the ideographs or ideograph compounds with the same reading. The user then selects
the ideograph or ideograph compound that they intended to input. Finally, the converted
input string is provided to the application, which is referred to as accepting the input
string. Table 5-8 lists several popular Japanese input methods and the keystrokes used to
perform the input tasks just described. The Xfer and Nfer keystrokes in Table 5-8 refer to
special keys sometimes found on keyboard arrays.

Input techniques | 311

Keystrokes for common input tasks—JapaneseTable 5-8.

operation Kotoeri Wnn Canna sKK

Japanese ⇒ English Cmd-space F3 Xfer or C-o l

English ⇒ Japanese Cmd-space F3 Xfer or C-o C-j

Conversion space or C-c C-w or C-z Xfer or space uppercase

Candidate selection arrows up/down arrows arrows space

Accepting return or enter C-l Nfer or return C-j

As you can clearly see from Table 5-8, the basic input tasks are common among these
various Japanese input methods, but the keystrokes used to invoke them are necessarily
different. For Korean input, the keystroke “Shift-space” is usually used to toggle between
English and Korean modes, though Windows uses a dedicated toggle key, and Mac OS X
users Command-space. These and other input methods are described at the end of this
chapter.

Our discussion will proceed from the most widely used input method to the least widely
used. Since most symbols and kana can be input directly, these discussions focus primar-
ily on the input of ideographs and the problems inherent in that process. Ideographs are
problematic because they number in the thousands or tens of thousands, and thus require
an indirect means of input.

the Conversion dictionary
While the input method provides the mechanical and algorithmic power behind the abil-
ity to enter CJKV text, it is the conversion dictionary that allows input strings to be con-
verted into ideographs, by matching user input with one or more entries in a dictionary
that contains words and other language elements.

Conversion dictionaries come in a variety of formats, and define more than simply read-
ings for ideographs. It is also possible to specify additional information to help the input
method decide how to use the entry, such as grammatical information (part of speech,
type of verb or adjective, and so on). Contemporary input methods include hundreds of
thousands of entries, and provide users with very rich a complete input experiences.

JSA, in cooperation with several Japanese input method developers, has published the
standard designated JIS X 4062:1998, Format for Information Interchange for Dictionaries
of Japanese Input Method (仮名漢字変換辞書交換形式 kana kanji henkan jisho kōkan
keishiki). This standard sets a precedent for establishing a common interchange format for
representing the contents of input methods’ conversion dictionaries.

312 | Chapter 5: Input Methods

Input by reading
The most frequently used CJKV input method is by reading, which is also referred to as
pronunciation. Input by reading is by far the most intuitive way to input CJKV text. There
are three basic units by which input readings can be converted into ideographs:

Single ideograph•	

Ideograph compound, meaning a string of two or more ideographs•	

Ideograph phrase, meaning a string of one or more ideographs, along with additional •	
nonideograph characters (this is not applicable to all CJKV locales)

You may have heard of input methods that claim to be able to convert whole sentences
at once. In fact, this is actually describing the ability to input whole sentences, which are
parsed into smaller units, usually ideograph phrases, and then converted. This often in-
troduces parsing errors, and it is up to the user to adjust each phrase.

For example, if you want to input the Japanese phrase 漢字は, pronounced kanji-wa, and
meaning “the kanji,” you have three choices: you can input each character, you can input a
phrase as a compound, or you can input a phrase as a string of characters. Table 5-9 shows
how you can input each character one at a time, and how this results in candidates from
which you may choose for each character.

Input by reading—single ideographTable 5-9.

target Latin input Kana input Candidates

漢 K A N (N)a か ん 乾 侃 冠 寒 刊 勘 勧 巻 喚 堪 姦 完 官 寛 干 幹 患 感 慣
憾 換 敢 柑 桓 棺 款 歓 汗 漢 澗 潅 環 甘 監 看 竿 管 簡
緩 缶 翰 肝 艦 莞 観 諌 貫 還 鑑 間 閑 関 陥 韓 館 舘

字 J I し ⌍゛⌌ 事 似 侍 児 字 寺 慈 持 時 次 滋 治 爾 璽 痔 磁 示 而 耳
自 蒔 辞

は H A は n/ab

Whether you need to type one or two Ns depends on the input method.a.

The character b. は resolves as itself—no conversion is necessary.

Table 5-10 illustrates how you can input this phrase as an ideograph compound plus the
following hiragana, and how a shorter list of candidates results.

Input by reading—ideograph compoundTable 5-10.

target Latin input Kana input Candidates

漢字 K A N J I か ん し ⌍゛⌌ 漢字 感じ 幹事 監事 完司
は H A は n/aa

As in Table 5-9, the character a. は resolves as itself—no conversion is necessary.

Input techniques | 313

Note how the candidate list became shorter, making selection among them much easier.
Table 5-11 shows the effect of inputting the entire phrase as a single string of charac-
ters. The ability to perform this type of conversion depends on the quality of your input
method.

Input by reading—phraseTable 5-11.

target Latin input Kana input Candidates

漢字は K A N J I H A か ん し ⌍゛⌌ は 漢字は 感じは 幹事は 監事は 完司は

For Japanese, the kana-to-kanji conversion dictionary (仮名漢字変換辞書 kana kanji
henkan jisho) makes input by reading possible. Most Japanese input systems are based
on a conversion dictionary that takes kana strings as input, and then converts them into
strings containing a mixture of kanji and kana. The conversion dictionary uses a key (the
reading) to look up possible replacement strings (candidates). Quite often a single search
key has multiple replacement strings assigned to it. Conversion dictionaries typically con-
tain tens of thousands of entries, and some now contain over 100,000.

Most kanji even have multiple readings assigned to them. How many really depends on
the conversion dictionary used by a Japanese input method. For example, the kanji 日
can have up to nine unique readings, depending on the context (and the conversion dic-
tionary!). They are び (bi), ひ (hi), に (ni), ぴ (pi), か (ka), じつ (jitsu), にち (nichi),
につ (nitsu), and たち (tachi).* While this is an extreme example, this phenomenon is not
unique.

As you just saw, the most widely used and most efficient method for inputting kanji by
reading is to handle them as kanji compounds or kanji phrases, not as single characters. If
you desire a single kanji, it is often more efficient to input it as a compound or phrase, and
then delete the unwanted character or characters.

Up to this point we have dealt primarily with ideographs. What about other characters,
such as symbols? Typical CJKV character set standards contain several hundred symbols.
As you have seen, Japanese kana and Korean hangul can be input more or less directly.
Symbols and other miscellaneous characters may also be input using the symbol’s name,
reading, or close relative on the keyboard. Table 5-12 provides examples of symbols, along
with their candidates.

* There are even more readings for this kanji if you consider readings for Japanese names.

314 | Chapter 5: Input Methods

Input by symbol name for nonideographsTable 5-12.

target Latin input Kana input Candidates

〒 Y U U B I N (N) ゆ う ひ ⌍゛⌌ ん 郵便 〒a

⌍】⌌ K A K K O か ⌍っ⌌ こ 括弧 ⌍（⌌ ⌍〔⌌ ⌍「⌌ ⌍『⌌ ⌍【⌌ ⌍）⌌ ⌍〕⌌ ⌍」⌌ ⌍』⌌ ⌍】⌌

The character a. 〒 is not an ideograph, but rather the Japanese postal code symbol.

Note how ideograph compounds are also listed as candidates. There are usually perfectly
good ideograph equivalents for these symbol names.

Chinese is unique in that its reading-based input methods provide one additional way to
reduce the amount of candidate hanzi: indication of tones. Table 5-13 lists all the hanzi
in GB 2312-80 with the reading han, followed by how they break down into candidates
for each of the four tones. Note how some hanzi have more than one reading—well, the
same reading, but a different tone. One such example has both instances underlined in
Table 5-13.

Reducing the number of hanzi candidates through tonesTable 5-13.

reading number of hanzi GB 2312-80 hanzi

han—no tone 31 顸 酣 蚶 鼾 憨 邗 邯 韩 晗 含 焓 涵 寒 函 喊 罕 阚 翰 菡 撼 捍
撖 旱 颔 憾 悍 焊 汗 瀚 汉

hān 5 酣 憨 顸 蚶 鼾

hán 10 邯 韩 含 涵 寒 函 汗 邗 晗 焓

hǎn 3 喊 罕 阚

hàn 13 翰 撼 捍 旱 憾 悍 焊 汗 汉 菡 撖 瀚 颔

Nearly all input software uses its own proprietary conversion dictionary or dictionaries.
This means that no two input programs behave the same. Luckily, such software allows
the user to create a user dictionary in which new search keys can be created and candidate
replacement strings assigned. Whether or not there is a logical ordering in a conversion
dictionary depends on the dictionary itself. Entries are typically ordered by reading (re-
member that the key for lookup is usually kana, which implies ordering by reading). The
values associated with the keys are usually ordered by their relative frequency of use—
more obscure ideographs or ideograph compounds appear further down the list of can-
didates. It is quite common to find CJKV input method programs that include a learning
function (学習機能 gakushū kinō). This learning function allows the subtle rearrange-
ment of values associated with keys. The default value for a particular key can change
depending on how often the user selects a given candidate. For example, if the default
value for the input string けん (ken) is 犬 (meaning “dog”), and if I constantly select the
candidate 剣 (the ideograph I use to write my given name), 剣 eventually becomes the
default value associated with the key けん. Exactly when the default changes depends on
the software—sometimes only one occurrence is sufficient.

Input techniques | 315

More advanced input methods implement parsers that use grammatical information for
making decisions. This allows users to input whole sentences by reading, and then lets the
software slice the input into units that are manageable for conversion. Like I mentioned
earlier, errors in parsing are quite common.

Input by structure
Input by reading, whether transliterated using Latin characters or not, is by far the most
common method for inputting CJKV text, and it is also the easiest to learn. But there are
times when input by reading fails to locate the desired ideographs, or when it is simply
not fast enough.

Ideographs, as described in Chapter 2, are composed of radicals or radical-like elements,
which in turn are composed of strokes. Ideographs with related shapes—which some-
times means that they have somewhat related meanings—can thus be grouped together.
All of the following input techniques involve the structure of the ideograph:

By indexing radical•	

By number of strokes—total or residual•	

By stroke shapes•	

By corner•	

In case it is not yet obvious, there exist input techniques that use both structure and read-
ing. Some examples are covered later in this chapter in the section entitled “Input by
Multiple Criteria.”

Input by indexing radical
The most common way to organize and arrange ideographs, other than by reading, is
by indexing radical. In the past, some input methods allowed only certain ideographs to
be input by indexing radical. This was usually because that is how the ideographs were
arranged in a character set, and it is quite trivial to slice up this collection of characters
into sets indexed by the same radical. For example, the hanzi in GB 2312-80 Level 2 and
the kanji in JIS X 0208:1997 Level 2 are ordered by radical followed by the number of re-
sidual strokes. The current trend, fortunately, is for input methods to allow users to input
all ideographs by radical, even those that are ordered differently, such as by reading (GB
2312-80 Level 1, JIS X 0208:1997 Level 1, and KS X 1001:2004) or total number of strokes
(Big Five and CNS 11643-2007). The CJK Unified Ideographs in Unicode are ordered by
indexing radical, but are arranged in different blocks, such as the URO and Extensions A
through C. The URO even includes a small number of CJK Unified Ideographs that are
not part of the URO proper, such as those after U+9FA5. There are now CJK Unified Ideo-
graphs from U+9FA6 through U+9FC3, at least through Unicode version 5.1

Table 5-14 illustrates examples of input by indexing radical, using two kanji from JIS
X 0208:1997 Level 2. Obviously, if the additional kanji in JIS X 0213:2004 were to be

316 | Chapter 5: Input Methods

considered, the lists of candidate kanji would be longer and would include the traditional
form of the kanji 漢, specifically 漢, as one of the candidates.

Input by indexing radicalTable 5-14.

target Indexing radical Candidates

漢 氵 水 氷 永 氾 汀 汁 求 汎 汐 汕 汗 汚 汝 汞 江 池 汢 汨 汪 汰 汲
汳 決 汽 汾 沁 沂 沃 沈 沌 沐 漢 滝 滞 滬 滲 滷 滸

字 子 孑 孔 孕 字 存 孚 孛 孜 孝 孟 季 孥 学 孩 孤 孫 孰 孱 孳 孵 孺

More sophisticated input methods display a graphic palette of the 214 radicals, or a re-
duced set of 186 radicals if you are using an input method based on GB 2312-80. These
214 radicals originated in a Chinese dictionary entitled 康熙字典 (kāngxī zìdiǎn), which
was published in 1716. Each of these 214 radicals has a name or number assigned to it.
Some of these radicals even have variants, most of which have unique names. The num-
ber represents the relative order within the set of radicals. For example, the last radical
is assigned the number 214. You may encounter input methods that require that radicals
be input through their names, numbers, or number of strokes. Table 5-15 provides some
examples of radicals, along with their names (in Japanese), meanings, numbers, and num-
ber of strokes.

Radical names and numbersTable 5-15.

radical name Meaning number stroke count

一 一 (ichi) one 1 1

丨 棒 (bō) bar 2 1

女 女 (onna) woman 38 3

子 子 (ko) child 39 3

疒 病垂 (yamaidare) illness enclosure 104 5

石 石 (ishi) stone 112 5

貝 貝 (kai) shell 154 7

鳥 鳥 (tori) bird 196 11

鼻 鼻 (hana) nose 209 14

Appendix J provides a complete listing of the classical 214 radicals, along with their names
in Japanese. China’s reduced set of 186 radicals, as used in the GB 2312-80 standard, is
provided in Appendix G. Other Chinese dictionaries use a different set of radicals, such as
现代汉语词典 (xiàndài hànyǔ cídiǎn), which uses a reduced set of 188 radicals.

There are some ideographs for which the indexing radical is not obvious. But it is almost
always possible to count the number of strokes. This brings us to the next input technique
that involves the number of strokes of an ideograph.

Input techniques | 317

Input by number of strokes
Almost all ideographs have a unique number of strokes, meaning that the number of
strokes for an ideograph is unambiguous. Clearly, for a given number of strokes, there
may be a large number of corresponding ideographs. The ability to count strokes paves
the way for an input technique whereby the number of strokes is entered by the user and
all the candidates are displayed for selection.

Interestingly, there are a small number of ideographs whose actual number of strokes can
be debated, sometimes due to locale differences. This difference is typically manifested as
a single stroke.* Quality input methods account for these differences in number of strokes,
and they allow the user to input characters using multiple stroke counts. Also note that
the number of strokes occasionally depends on the glyph. For example, an input method
based on the JIS C 6226-1978 character set may behave strangely if the JIS X 0208:1997
character set were to be swapped. Consider Row-Cell 16-02, whose JIS C 6226-1978 glyph
is 啞 (11 strokes), and whose JIS X 0208:1997 glyph is 唖 (10 strokes).†

Table 5-16 provides a candidate list for two different numbers of strokes, based on the two
ideographs that have been serving as our targets.

Input by stroke countTable 5-16.

target stroke count Candidates

漢 13 愛 葦 飴 暗 意 違 溢 碓 園 煙 猿 遠 鉛 塩 嫁 暇 禍 嘩 蛾 雅 解 塊
慨 碍 蓋 該 較 隔 楽 滑 褐 蒲 勧 寛 幹 感 漢 頑

字 6 旭 扱 安 伊 夷 衣 亥 芋 印 因 吋 宇 羽 迂 臼 曳 汚 仮 会 回 灰 各
汗 缶 企 伎 危 机 気 吉 吃 休 吸 朽 汲 兇 共 匡 叫 仰 曲 刑 圭 血
件 交 光 向 后 好 江 考 行 合 此 艮 再 在 旨 死 糸 至 字 寺 次 而
耳 自

Interestingly, because the traditional form of kanji 漢, specifically 漢, has 14 strokes, it is
thus not listed as one of the candidates.

Input by stroke shapes
Most users believe that input by indexing radical or by number of strokes is more than
sufficient when input by reading fails to produce the desired ideograph. One of the input
methods that allows users to enter ideographs by other shape-based criteria is known
as the Wubi Method (五笔输入法 wǔbǐ shūrùfǎ), developed by Yongmin Wang (王永民
wáng yǒngmín). The title literally means “Five-stroke Input Method.” A typical Wubi code
consists of the ideograph’s overall shape plus its first, second, and final stroke.

* Some examples of radical or radical-like elements that have an ambiguous number of strokes are provided in
Table 11-4.

† When we consider Unicode and JIS X 0213:2004, these two characters have separate and distinct code points.
The JIS C 6226-1978 glyph is in JIS X 0213:2004 at Plane-Row-Cell 1-15-08, which corresponds to U+555E in
Unicode. The JIS X 0208:1997 glyph corresponds to U+5516 in Unicode.

318 | Chapter 5: Input Methods

The Shouwei Method (首尾输入法 shǒuwěi shūrùfǎ) is an input method that specifies the
first and final strokes or shapes of an ideograph.

Input by corner
If we ignore the indexing radical and number of strokes of an ideograph, it is still possible
to input them by categorizing the shapes that are at each corner. The Four Corner Code,
which is described in Chapter 11, is typically used for locating characters in ideograph
dictionaries.

However, the Three Corner Code, invented by Jack Huang (黃克東 huáng kèdōng) and
others, is designed specifically for character input.

Input by other structures
There are ways to describe the structure of ideographs that go beyond indexing radicals,
strokes, and corners. Many Chinese input methods take advantage of the fact that ideo-
graphs can be categorized by shapes.

An input method known as the Cangjie Method (倉頡輸入法 cāngjié shūrùfǎ), developed
by Bangfu Zhu (朱邦復 zhū bāngfù), allows the user to input ideographs by radical-like
elements. More details about the Cangjie Method can be found later in this chapter when
its keyboard array is discussed. This input method is commonly used in Taiwan and Hong
Kong. In fact, many dictionaries provide Cangjie codes for hanzi.

Also, the Zheng Code Method (郑码输入法 zhèngmǎ shūrùfǎ), developed by Yili Zheng
(郑易里 zhèng yìlǐ) and Long Zheng (郑珑 zhèng lóng), also uses radical-like elements
for inputting ideographs. It is used in all Chinese locales by virtue of being included with
Microsoft Windows.

Input by Multiple Criteria
Some tools were specifically designed to input ideographs or other characters with more
than one of the input methods just described. This is very useful because a user can sig-
nificantly narrow a search by giving more than one input criterion.

Like a typical bibliographic search, the more search parameters you provide to the soft-
ware, the shorter the candidate list becomes. However, don’t expect to find very many
programs, other than dedicated CJKV character dictionary software, that accept multiple
search criteria.

As you will learn in the next section, inputting CJKV characters by their encoded value or
dictionary number is a direct method, and it always results in a single character match.

Input by structure and reading
The ultimate goal of any indirect input technique should be to reduce the number of can-
didates from which the user must choose. This is known as reducing the number of colli-
sions, that is, reducing the number of characters that share the same attributes according

Input techniques | 319

to an input technique. It is possible to combine reading and structure attributes to form a
new input technique that can effectively reduce the number of collisions.

Examples of input methods that combine reading and structure information include the
Tze-loi Method (子來輸入法 zǐlái shūrùfǎ), developed by Tze-loi Yeung (楊子來 yáng
zǐlái), and the Renzhi Code Method (认知码输入法 rènzhī mǎ shūrùfǎ). A Tze-loi code
consists of three keystrokes. The first two are based on the character’s structure (the upper-
left and lower-right corner), and the third represents the first sound in the character’s
reading. A Renzhi code, like a Tze-loi code, consists of three keystrokes. The first key-
stroke is the first character of its Pinyin reading, and the last two keystrokes are its first
and last strokes. Renzhi codes, however, can also consist of other types of elements, and
can consist of as little as two keystrokes or as many as four. Table 5-17 lists a handful of
hanzi, along with their Tze-loi input codes.

Examples of Structure Plus Reading input methods—Tze-loi MethodTable 5-17.

Hanzi tze-loi code tze-loi—QWertY

晶 日 + 日 + J JJJ

品 口 + 口 + B HHB

法 丶 + 厶 + F 6ZF

Input by encoding
This CJKV input method is based on fixed values for each character, specifically their en-
coded values. This is a direct way to input and is typically used as a last resort for inputting
characters. This means that one can unambiguously (that is, without candidates) input a
single character. Note that it is most common to use hexadecimal values when inputting
characters, with the exception of Row-Cell, which usually requires four decimal digits.

Input by encoding makes use of the encoded values of the target characters. As most
systems process only a single code internally, yet accept different encoded values, some
sort of conversion between codes is still being performed. For example, many Japanese
systems can accept both hexadecimal ISO-2022-JP and Shift-JIS codes since they can be
easily distinguished from one another—they occupy separate encoding regions.

Most input software includes character tables indexed by one or more of these encoding
methods. Some programs even have these tables built in as on-screen palettes so that you
need not ever consult the printed documentation.

Many input methods allow the user to select which encoding to use when inputting by
code, and those which are really good automatically detect which code the user has se-
lected. This is simple for ISO-2022-JP and Shift-JIS encodings because they occupy differ-
ent encoding regions, but Row-Cell notation and EUC encoding pose special problems.
Some implementations require that a period or other delimiter separate the Row from the

320 | Chapter 5: Input Methods

Cell of a Row-Cell code. Input by EUC code is quite rare for Japanese, but quite common
for Chinese (GB 2312-80) and Korean (KS X 1001:2004).

Table 5-18 lists two hanja, along with their encoded values according to a variety of Ko-
rean encodings, including Unicode.

Input by encoded value—KoreanTable 5-18.

Hanja row-Cell eUC-Kr Unicode Iso-2022-Kr Johab

漢 89-51 F9D3 6F22 7953 F7D3

字 77-14 EDAE 5B57 6D2E F1AE

Most input systems provide at least two of these input methods, usually Row-Cell and
hexadecimal ISO-2022. Sometimes the encoding method supported by the software you
are running is another option. For example, Japanese OSes that processed Shift-JIS inter-
nally, such as Mac OS-J, Windows 3.1J, and Windows 95J, provided input methods that
gave the user the ability to perform code input by Row-Cell, hexadecimal ISO-2022-JP,
and hexadecimal Shift-JIS.

If you need to convert lots of these “codes” into actual characters, you are better off writing
a quick tool for this purpose (perhaps using Perl), or else finding software that provides
this functionality. JCode, described in Chapter 9, provides this level of functionality, at
least for Japanese.

Input by other Codes
China’s Telex Code (电报码/電報碼 diànbáomǎ),* developed in 1911 for the purpose of
hanzi interchange, is yet another code that can be used to unambiguously input ideo-
graphs—sort of. A Telex Code is composed of four decimal digits, and it ranges from
0001 to 9999. The ordering of ideographs in Telex Code is by radical, and then number
of strokes.

It is important that you know that a Telex Code does not distinguish between simplified
and traditional ideographs; they have been effectively merged into a single Telex Code.
So, for example, the two related hanzi, 剑 and 劍, share the same Telex Code, specifically
0494.

Other possible codes may include numbers used to index ideographs in specific diction-
aries. The Four Corner Code is also used, but is usually restricted to indexes in ideo-
graph dictionaries. See Chapter 11’s section entitled “Four Corner Code” for a brief
description.

* Sometimes referred to as 电报明码/電報明碼 (diànbáomíngmǎ).

Input techniques | 321

Input by Postal Code
Japanese postal codes (郵便番号 yūbin bangō) consist of three or seven digits.* Some con-
version dictionaries include entries that correspond to these postal codes, and the strings
associated with those entries represent the place or places that correspond to the codes.
Table 5-19 includes some examples of three-digit postal code input.

Input by postal code—three-digitTable 5-19.

Postal code Candidate locations

001 北海道札幌市北区
500 岐阜県岐阜市

999 山形県酒田市, 山形県最上郡, 山形県上山市, 山形県飽海郡, 山形県北村山郡,
山形県尾花沢市, 山形県長井市, 山形県西置賜郡, and so on

Japanese place names, especially for nonnative speakers of Japanese, can be difficult to
learn and pronounce. Japanese addresses usually contain postal codes, and for those who
use Japanese input methods that support this type of input, much digging in dictionaries
to find out how to pronounce, and thus easily enter, each kanji can be avoided.

Input by Association
Input by association (連想入力 rensō nyūryoku) is an older Japanese input method, and
it is often referred to as the two-stroke input method (二ストローク入力方式 ni sutorōku
nyūryoku hōshiki). It is unlike input by reading in that there is only one kanji associated
with each pair of keystrokes—no candidate selection is required.

Input by association works by associating two characters, usually kana, to a single kanji.
These two kana are usually associated with the kanji by reading or meaning. For example,
the two katakana ハハ (pronounced haha) are associated with the kanji 母, whose read-
ing happens to be haha.

Needless to say, this input method has a long learning curve, but skilled text entry opera-
tors can use it quite effectively.

There are many in Japan who feel that input by unassociation (無連想入力 murensō
nyūryoku) is better. This means that the relationship between a kanji and its two key-
strokes is arbitrary. In fact, such an input method has been developed and has quite a
following. It is called T-Code, and it is available for a variety of OSes, such as Mac OS,
MS-DOS, Unix, and Windows. More information about T-Code itself is provided later
in this chapter.

* Seven-digit Japanese postal codes were introduced in early 1998.

322 | Chapter 5: Input Methods

User Interface Concerns
The ability to simply input CJKV text using a variety of input methods and techniques
is not enough to satisfy a large number of users. This is the start of ergonomic consider-
ations. For example, having the input and selection of characters take place at the cursor
position is highly desired. This is referred to as inline conversion.

Inline Conversion
CJKV input methods typically provide their own input window, because they run as a
separate process from the application in which the text will be inserted. CJKV input takes
place in the dedicated window, is then sent to the current application, and finally is set
into the current cursor position. As you can expect, this is far from ideal, because the user
must keep his eyes trained on the current cursor position and the input method’s own
UI. The solution to this UI problem is inline conversion (インライン変換 inrain henkan).
In the past, there were standard protocols developed by input method developers that
could be used in applications such that inline conversion could take place. Now, the fa-
cilities for inline conversion are provided by the OS and are used by input methods and
applications.

Many CJKV-capable word processors come bundled with their own input method, which
usually means that there is support for inline conversion, at least for the bundled input
method. Be sure to read the application manual to learn whether there is inline conver-
sion support for a particular input method. Inline conversion support is, fortunately, very
common these days, thanks to the facilities that are provided by the OS, such as Mac OS
X and Windows.

Keyboard Arrays
Our discussion continues with a description of a number of keyboard arrays in use in
CJKV locales, along with accompanying figures and tables so that comparisons can be
more easily drawn between them. The keyboard arrays that are covered in this chapter
have been divided into the following eight categories:

Two Western keyboard arrays—•	 QWERTY and Dvorak

One ideograph keyboard array—•	 kanji tablet

Two Chinese input method keyboard arrays—•	 Wubi and Cangjie

Three zhuyin keyboard arrays•	

Eight kana keyboard arrays—•	 JIS, New-JIS, Thumb-shift, two variations of 50 Sounds,
and two variations of TRON

Two hangul keyboard arrays—•	 KS and Kong

Keyboard Arrays | 323

Two Latin keyboard arrays—•	 M-style and High-speed Roman

Three mobile keyboard arrays—one for Japanese, and two for Korean•	

The market for dedicated Japanese word processors experienced enormous flux in key-
board designs and usage. It seemed that for every new computer model that a hardware
manufacturer introduced to the market, the same manufacturer introduced two or three
dedicated Japanese word processor models. These word processors are much like comput-
ers, but the basic software for word processing is usually fixed and thus not upgradable.

Genuine computer OSes are designed for more general usage, so there is far less variety
in keyboard arrays. In fact, some dedicated Japanese word processor keyboards may have
more than one keyboard array imprinted on their keys. This is done by imprinting more
than one character on each key. I once owned and used two dedicated Japanese word pro-
cessors, specifically NEC’s 文豪ミニ 5G and 7H.* On the tops of their keys were imprints
for the QWERTY and JIS keyboard arrays, and on the sides of the keys were imprints for
the 50 Sounds keyboard array.

The intent of this chapter is not to teach you how to use these keyboard arrays effectively,
but rather to tell you a little bit about them and their characteristics. I should also point
out that this book does not definitively cover all keyboard arrays. It cannot. Doing so is
well beyond the scope of this book. However, when it comes to practical usage and market
dominance, the QWERTY keyboard is still the most popular.

Western Keyboard Arrays
Western keyboard arrays are used quite commonly for CJKV input because typical CJKV
input methods allow the user to input text phonemically through the use of Latin char-
acters. This is referred to as transliterated input. The input method subsequently converts
this transliterated input into CJKV characters. In fact, one study claimed that over 70% of
Japanese computer users input Japanese through the use of Latin characters. This is not to
say that keyboard arrays designed specifically for Japanese do not exist, but as you will see
in the following sections, there are many from which to choose.

QWertY array
The most widely used keyboard on the planet is known as the QWERTY keyboard array,
so named because its first six alphabetic keys are for the characters q, w, e, r, t, and y. It
was originally developed so that frequently used keys were spaced far from each other.
In the days of mechanical typewriters, having such keys in proximity would often lead
to a mechanical jam. However, most keyboards today are not mechanical, but electrical,
so the original need for spacing out frequently used keys is no longer valid. However,
the QWERTY keyboard array is so well entrenched that it is doubtful that it will ever be

* The Japanese word 文豪 is read bungō and means “literary master.”

324 | Chapter 5: Input Methods

replaced. There have been many attempts at doing so, the most famous of which is the
Dvorak keyboard array, covered in the next section.

Although written in Japanese, Koichi and Motoko Yasuoka (安岡孝一 yasuoka kōichi and
安岡素子 yasuoka motoko) have published a comprehensive book entitled キーボード配
列 QWERTY の謎 (kībōdo hairetsu QWERTY-no nazo; NTT 出版, 2008) that details the
history of the QWERTY keyboard array.* It is the most exhaustive book on the subject
that I have ever seen. Figure 5-2 illustrates the basic QWERTY keyboard array.

��������� ����������
����������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� � � � � � � � � �
�

� � � � � � � � �
�

�

�

�

� � � � � � �
�

�

�

�

�

�

�

�

�

�

� �

The QWERTY keyboard arrayFigure 5-2.

To further demonstrate the true de facto nature of the QWERTY keyboard array, consider
mobile devices, such as mobile phones. The mobile keyboard arrays that are used for
such devices are based on a numeric keyboard, and the ability to enter nonnumeric data,
meaning text, is accomplished through the use of specialized assignments of characters
to the numeric keys. Some mobile devices do provide full keyboard arrays, sometimes in
addition to the numeric keyboard. Interestingly, when full keyboard arrays are provided,
it is based on the QWERTY keyboard array.

dvorak array
There have been attempts at replacing the QWERTY keyboard array by providing an im-
proved layout of keys, but none of them have succeeded to date. One such attempt was
called the Dvorak keyboard array, developed in the 1930s by August Dvorak and William
Dealey. Keys on the Dvorak keyboard array are positioned such that approximately 70%
of English words can be typed with the fingers in the home position. Compare this with

* http://www.nttpub.co.jp/vbook/list/detail/4176.html

Keyboard Arrays | 325

only 32% in the case of the QWERTY keyboard array. See Figure 5-3 for an illustration of
the Dvorak keyboard array.

��������� ����������
����������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� � � � � � �

� � � � � � � � �
�

�

� � � � � � � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

The Dvorak keyboard arrayFigure 5-3.

To date, the Dvorak keyboard array has not succeeded in replacing the QWERTY array.
This only goes to show that efficiency does not always make an item more appealing.

Ideograph Keyboard Arrays
The first Japanese keyboards that were able to accommodate the Japanese writing system
were called kanji tablets. These were huge keyboards that contained thousands of indi-
vidual keys.

The standard designated JIS X 6003-1989, Keyboard Layout for Japanese Text Processing
(日本語文書処理用文字盤配列 nihongo bunsho shori-yō mojiban hairetsu), defines a
keyboard array that contains a total of 2,160 individual keys.* The kanji tablet shown in
Figure 5-4 is 60 keys wide by 36 keys deep (it is also available in another orientation with
fewer keys). The 780 most frequently used kanji are in Level 1, 1,080 additional kanji are
in Level 2, and 300 non-kanji are in the remaining keys.

Some Japanese corporations have even defined their own kanji tablet layouts, but this
type of Japanese input device is quickly becoming obsolete. Japanese input methods have
developed to the point where much smaller keyboard arrays, such as those already dis-
cussed, are more efficient and easier to learn.

* Previously designated JIS C 6235-1984

326 | Chapter 5: Input Methods

�������
�����

�������
�����

� �� �� �� ��

�������
�����

���������
����������

�������
�����

�

��

The kanji tablet arrayFigure 5-4.

Chinese Input Method Keyboard Arrays
There have been dozens of keyboard arrays designed for use with specific Chinese input
methods. The keys of such keyboard arrays have imprinted on them ideographs or ideo-
graph elements (such as radicals). The two keyboard arrays that are discussed in this sec-
tion are the Wubi and Cangjie arrays, which appear to be the most popular.

Wubi array
The Wubi array is designed to be used with the Wubi Method, introduced earlier in this
chapter in the section entitled “Input by stroke shapes.” A Wubi code consists of three or
four elements, but four elements is the most common. The Wubi Method specifies five
basic categories of character roots, according to the first stroke’s shape, as shown in Table
5-20. Also provided are the key cap hanzi and their location on the QWERTY keyboard
array.

Keyboard Arrays | 327

Wubi Method character rootsTable 5-20.

row Cell Code Key cap QWertY example character roots

Ho
riz

on
ta

l

1

1 11 王 G 王主一五戋

2 12 土 F 土士二十干寸雨

3 13 大 D 大犬三古石厂

4 14 木 S 木丁西

5 15 工 A 工匚七弋戈廾廿艹

Ve
rti

ca
l

2

1 21 目 H 目丨卜上止

2 22 日 J 日曰刂早虫

3 23 口 K 口川

4 24 田 L 田甲囗四皿车力

5 25 山 M 山由冂贝几

Cu
rv

ea

3

1 31 禾 T 禾丿竹彳夂攵

2 32 白 R 白手扌斤

3 33 月 E 月舟彡衣乃用豕

4 34 人 W 人亻八

5 35 金 Q 金钅勹儿夕

Cu
rv

eb

4

1 41 言 Y 言讠亠丶广文方圭

2 42 立 U 立冫丬六辛疒门

3 43 水 I 水氵小

4 44 火 O 火灬米

5 45 之 P 之辶廴冖宀

Co
rn

er

5

1 51 已 N 已己巳乙尸心忄羽

2 52 子 B 子孑也凵了阝耳卩

3 53 女 V 巛女刀九彐臼

4 54 又 C 又厶巴马

5 55 纟 X 纟幺弓匕

Curves that extend from upper-right to lower-left.a.

Curves that extend from upper-left to lower-right.b.

Figure 5-5 illustrates the Wubi array, which demonstrates how the 25 hanzi used as key
caps are assigned to the keys of the QWERTY array—all Latin character keys except for
“Z.”

328 | Chapter 5: Input Methods

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

The Wubi keyboard arrayFigure 5-5.

Three of the principles of the Wubi Method can be summarized, in simple terms, as
follows:

If the hanzi is one that is used as a key cap (a limited set of 25 hanzi), then its Wubi •	
code is four instances of that keystroke—for example, the Wubi code for the hanzi
言 is “YYYY.”

If the hanzi is one of the character roots, as shown in the “Example character roots” •	
column of Table 5-20, its Wubi code consists of that keystroke plus the first, second,
and final strokes of the character—for example, the Wubi code for the hanzi 西 is
SGHG (“S” for the 木 key cap, “G” for the first stroke 一, “H” for the second stroke
丨, and “G” for the final stroke 一). If the number of strokes in the character root is
three, its Wubi code consists of that keystroke plus the first and final strokes of the
character—for example, the Wubi code for the hanzi 丁 is SGH (“S” for the 木 key
cap, “G” for the first stroke 一, and “H” for the final stroke 丨).

If the hanzi is not a character root, but contains more than three character roots, its •	
Wubi code is the key caps for the first, second, third, and final character roots—for
example, the Wubi code for the hanzi 照 is JVKO (“J” for the first character root 日,
“V” for the second character root 刀, “K” for the third character root 口, and “O” for
the final character root 灬). If the character is not a character root, but contains less
than four character roots, its Wubi code is the key caps for all the roots plus an extra
identification code—for example, the Wubi code for the hanzi 苗 is ALF (“A” for the

Keyboard Arrays | 329

first character root 廾, “L” for the second character root 田, and “F” for the extra
identification code).*

The Row and Cell values that make up the Code column of Table 5-20 are used for other
Wubi principles, and describing them is beyond this book’s scope.

The dictionary entitled 標準中文輸入碼大字典 (biāozhǔn zhōngwén shūrùmǎ dà zìdiǎn)
provides Wubi codes for most GB 2312-80 hanzi. Mac OS X provides two types of Wubi
input methods for Simplified Chinese.

Cangjie array
There is a special keyboard array designed for the Cangjie input method, which is one of
the most popular input methods for entering ideographs through the structure of hanzi.†
A Cangjie code can consist of as few as one keystroke or as many as five, depending on the
complexity of the hanzi. In many cases, the Cangjie code perfectly reflects the complete
structure of hanzi, as illustrated in Table 5-21.

Intuitive Cangjie codesTable 5-21.

Hanzi Cangjie code—QWertY Cangjie code—Graphic

一 M 一

二 MM 一 + 一

三 MMM 一 + 一 + 一

日 A 日

昌 AA 日 + 日

晶 AAA 日 + 日 + 日

𣊫 AAAA 日 + 日 + 日 + 日

𣊭 AAAA 日 + 日 + 日 + 日

品 RRR 口 + 口 + 口

堛 GMRW 土 + 一 + 口 + 田

畺 MWMWM 一 + 田 + 一 + 田 + 一

* Not to be confused with ALF. See http://en.wikipedia.org/wiki/ALF_(TV_series)
† Yes indeed, this is the very same keyboard array that effectively stumped British Secret Agent James Bond (007)

who always portrays himself as a know-it-all or all-around expert. Chinese Secret Agent Colonel Wai Lin, in
the 1997 film Tomorrow Never Dies, had a hideout somewhere in Vietnam where 007 was confronted with the
possibility of using this keyboard array. He threw up his hands and gave up. Too bad this book wasn’t available
in 1997—imagine 007 whipping out this blowfish-clad tome, which he then uses to learn the ins and outs of
this keyboard array within moments, just in time to save all of mankind. Curiously, this keyboard array is not
used in China, but rather Taiwan. So what was a Chinese Secret Agent doing with a keyboard array developed
in Taiwan?

330 | Chapter 5: Input Methods

Table 5-22 illustrates less-intuitive Cangjie codes, which result from the fact that some
graphic Cangjie codes can also represent simple strokes.

Less-intuitive Cangjie codesTable 5-22.

Hanzi Cangjie code—QWertY Cangjie code—Graphic

酷 MWHGR 一 + 田 + 竹 + 土 + 口

劍 OOLN 人 + 人 + 中 + 弓

Once you understand that 竹 can represent a downward curved stroke, 中 can represent
a vertical stroke, and 弓 can represent a stroke with an angle at the end, these examples
become more intuitive.

Figure 5-6 illustrates the Cangjie keyboard array, which illustrates the correspondence
between QWERTY Cangjie codes and their graphic counterparts.

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

The Cangjie keyboard arrayFigure 5-6.

The dictionary entitled 標準中文輸入碼大字典 (biāozhǔn zhōngwén shūrùmǎ dà zìdiǎn)
provides Cangjie codes for all Big Five hanzi plus the 3,049 hanzi in Hong Kong GCCS.
Mac OS X provides Cangjie as one of its many input methods for Traditional Chinese.

Zhuyin Keyboard Arrays
In order to ease the input of Chinese by reading, several keyboard arrays that include
zhuyin characters have been developed over the years. Luckily, only one of these keyboard
arrays seems to have taken on the status of being the de facto standard.

Figure 5-7 illustrates the most popular instance of a zhuyin keyboard array, which is con-
sidered the de facto standard, and used on Mac OS X and Windows.

Keyboard Arrays | 331

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

The most popular zhuyin keyboard arrayFigure 5-7.

Figure 5-8 illustrates yet another zhuyin keyboard array, specifically one that expresses
the keyboard mappings used by TwinBridge.

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

The TwinBridge zhuyin keyboard arrayFigure 5-8.

Figure 5-9 illustrates a zhuyin keyboard array that was designed for use with the Dai-E
input method (大一輸入法 dàyī shūrùfǎ), developed by Timothy Huang (黃大一 huáng
dàyī).

332 | Chapter 5: Input Methods

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

� �

� � � �

� � � �

The Dai-E zhuyin keyboard arrayFigure 5-9.

More detailed information about Dai-E can be found in a book coauthored by Timothy
Huang, entitled An Introduction to Chinese, Japanese and Korean Computing (World Sci-
entific Publishing, 1989).

Kana Keyboard Arrays
The keyboard arrays discussed in this section have kana imprinted on their keys. One
word of caution, though: simply because such keyboard arrays are considered standard
doesn’t mean that they have been widely accepted in the Japanese marketplace. Like the
QWERTY array in the West, the Japanese have a similar keyboard array called the JIS
array—one that is not very efficient, yet is the most commonly used and learned.

JIs array
The standard designated JIS X 6002-1985, Keyboard Layout for Information Processing
Using the JIS 7 Bit Coded Character Set (情報処理系けん盤配列 jōhō shori kei kenban
hairetsu), specifies what is known as the JIS keyboard array (JIS 配列 JIS hairetsu).* This
keyboard array is the most widely used in Japan (after the QWERTY array, that is) and
can be found with almost every computer system sold there. This standard also defines
that the QWERTY array be superimposed on the keys of the keyboard. Incidentally, this
is how one accesses numerals.

The JIS array is not terribly efficient for Japanese input. Keys are arranged such that all
four banks are required for it. This means that users must move their fingers a lot dur-
ing typing, and must shift mode in order to access numerals, which are imprinted on the

* Previously designated JIS C 6233-1980

Keyboard Arrays | 333

fourth bank of keys, along with kana. In addition, the keys are not logically arranged, so
it is difficult to memorize the positions. Figure 5-10 provides an illustration of the JIS
array.

��������� ����������
����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�
�

�
�

� � � � � � � � � � �
�

�
�

� � � � � � � � � �
�

�
�

� � � � � � � �
�

�
�

�
�

�
�

� �

The JIS keyboard arrayFigure 5-10.

Note that the dakuten ()゙ and handakuten ()゚ have their own keys. This means that char-
acters such as が (hiragana ga) must be input as the two keystrokes か (hiragana ka) and
⌍゛⌌ (dakuten). The same character が can be input as the two keystrokes g and a in the case
of the QWERTY and other Latin keyboard arrays.

new-JIs array
The standard designated JIS X 6004-1986, Basic Keyboard Layout for Japanese Text Process-
ing Using Kana-Kanji Translation Method (仮名漢字変換形日本文入力装置用けん盤
配列 kana kanji henkan kei nihonbun nyūryoku sōchi-yō kenban hairetsu), specifies what
is known as the New-JIS keyboard array (新 JIS 配列 shin JIS hairetsu).* This keyboard ar-
ray, too, specifies that the QWERTY array be superimposed on the keyboard keys.

The kana on the keyboard are arranged on the first three banks of keys, and each key holds
up to two kana (a Shift key is required to access all the kana). This allows the input of
numerals without the use of a mode change. Figure 5-11 illustrates the New-JIS keyboard
array.

* Previously designated JIS C 6236-1986

334 | Chapter 5: Input Methods

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�
�

� � � � � � � � � � �
�

� � � � � � � � � �
�

�
�

� � � � � � � �
�

�
�

�
�

��������� ����������
����������
����������

�

�
�

�

� �

The New-JIS keyboard arrayFigure 5-11.

Although this keyboard array seems to be an improvement over the JIS array, it has not
been widely accepted in industry. To put it mildly, it failed to replace the standard JIS ar-
ray (which I just covered). You will see that its design is similar in some ways to Fujitsu’s
Thumb-shift array, which is described in the next section.

thumb-shift array
In an attempt to improve the input of Japanese text on computers, Fujitsu developed a
keyboard known as the Thumb-shift array (親指シフト配列 oyayubi shifuto hairetsu). It
is very similar in design and concept to the New-JIS array, but it has a slightly different
keyboard arrangement and places two special modifier keys in the vicinity of the user’s
thumbs (these act to shift the keyboard to access more characters).

Like the New-JIS array, the Thumb-shift array assigns two kana characters per key for the
first three banks of keys (the fourth bank of keys is reserved for numerals and symbols),
but diverges in how the dakuten ()゙ and handakuten ()゚ are applied to kana characters.
This is where the thumb-shift keys play a vital role.

The two thumb-shift keys each serve different functions. The left thumb-shift key converts
the default character into the version that includes the dakuten. The right thumb-shift key
simply shifts the keyboard so that the second character on the key is input. Table 5-23 il-
lustrates some keys and shows how to derive all possible characters from them (secondary
characters for each are in parentheses).

Keyboard Arrays | 335

The effect of the thumb-shift keysTable 5-23.

Key no thumb-shift Left thumb-shift right thumb-shift

は (み) は ば み
と (お) と ど お
せ (も) せ ぜ も
け (ゅ) け げ ⌍ゅ⌌

The trickery used by this keyboard array is that all the characters that can be modified
by the dakuten are placed in the no thumb-shift location of each key (that is, the default
character). There is a special key used for modifying a character with a handakuten. Fig-
ure 5-12 illustrates the entire Thumb-shift keyboard array.

����������

�����������
�������

����������
���������

���

�����������

�����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�

� � � � � � � � � � �
�

� � � � � � � � � �
�

� � � � � � � �
�

�
�

�
�

� �

�
�

�
�
�

���������

The Thumb-shift keyboard arrayFigure 5-12.

The Thumb-shift keyboard array is probably one of the most widely used in Japan (behind
the QWERTY and JIS arrays, that is). In fact, other manufacturers have licensed it for use
with their own computer systems.

50 sounds array
As you may recall from discussions in Chapter 2, the term 50 Sounds (50 音 gojūon) refers
to the 5×10 matrix that holds the basic kana character set. The 50 Sounds array (50 音配

336 | Chapter 5: Input Methods

列 gojūon hairetsu) is based on this same matrix. On one side of the matrix are five vowels:
a, i, u, e, and o. On the other side are nine consonants: k, s, t, n, h, m, y, r, and w. On the
same axis as the consonants is also a place that represents no consonant, where the vowels
can stand alone. This arrangement of kana characters was used as the basis for a Japanese
keyboard array. This array is illustrated in Figure 5-13.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�
�

�
�

� � � � � � � � � � �
�

�
�

� � � � � � � � � �
�

�
�

� � � � � � � �
�

�
�

�
�

�
�

��������� ����������
����������
����������

�

The 50 Sounds keyboard arrayFigure 5-13.

Figure 5-14 illustrates a different arrangement of the 50 Sounds keyboard array. Instead
of being arranged horizontally in what is effectively a two-column layout, this alternate
arrangement of the 50 Sounds keyboard array is arranged vertically. This keyboard array,
however, requires a fifth row of keys in order to accommodate this vertical arrangement,
because most of the logical kana rows require five keys.

This arrangement of keys is not very efficient: it is almost like having a keyboard array
in which the 26 letters of the alphabet are arranged in order—most of the time is spent
searching for keys. In fact, there are Western keyboard arrays on which the keys are ar-
ranged in alphabetical order! This problem is multiplied for Japanese, which requires
nearly 50 separate keys! This keyboard array also suffers from the same problems of the
JIS array, specifically that all four banks of keys are required for kana, and that the dakuten
()゙ and handakuten ()゚ require separate keys. This keyboard array never gained wide-
spread acceptance, and is thus not very much used in Japan.

Keyboard Arrays | 337

�����
����������

�����

� �

����������������

��������� ������� ����������

������

���

�

���������

� � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � �

� � � � � � �
� � �

� � � � � � � � � �

�� �

�
�

�
�

�
�

�

�

�
�

�
�

The 50 Sounds keyboard array—alternate versionFigure 5-14.

tron arrays
Developed by Ken Sakamura (坂村健 sakamura ken), the TRON keyboard array is simi-
lar in concept to other Japanese keyboard arrays in that several ergonomic and other
optimizations were made in its design. TRON stands for The Real-time Operating system
Nucleus. More information about the TRON Project is available in Appendix E.

There are two common instances of the TRON keyboard array: TK1 and μTRON (Micro
TRON). Both instances of the TRON keyboard include the Dvorak array for accessing
Latin characters (although the figures in this chapter do not show them). The TK1 design
is laid out in an ergonomic fashion, as illustrated in Figure 5-15.

The μTRON design is more conventional in arrangement so that it can be used for note-
book computers. It is illustrated in Figure 5-16.

338 | Chapter 5: Input Methods

������
���

�����
���������

���������
������������

�����
����������

�������
�����������������

The TRON TK1 keyboard arrayFigure 5-15.

����������������

��� ������

�������������������

����������

�����
�������

���������
��������

The μTRON keyboard arrayFigure 5-16.

Like the thumb-shift keys of Fujitsu’s Thumb-shift array, the TRON keyboard arrays in-
clude two Shift keys that allow the typist to gain access to additional characters. The left
Shift key is colored red, and the right Shift key is colored blue. Table 5-24 lists the standard
characters of the TRON keyboard arrays, along with the characters that are made acces-
sible by pressing each of the two Shift keys. Keys whose imprinted characters could be

Keyboard Arrays | 339

confused due to their positioning, such as some punctuation and small kana, are enclosed
in boxes with corner reference marks to ease identification.

Characters made accessible using red and blue Shift keysTable 5-24.

Unshifted key red shift key Blue shift key

＠ ＄ ￥
⌍＿⌌ ！
１ … ⌍～⌌

２ ⌍‘⌌ ⌍’⌌

３ ⌍“⌌ ⌍”⌌

４ ⌍「⌌ ⌍」⌌

５ ⌍『⌌ ⌍』⌌

６ ⌍〈⌌ ⌍〉⌌

７ ⌍（⌌ ⌍）⌌

８ ⌍｛⌌ ⌍｝⌌

９ ⌍［⌌ ⌍］⌌

０ ＼ ｜
／ ＊ ×
＝ ＃ ％
⌍‐⌌ ？
ら ひ び
る そ ぞ
こ ⌍・⌌ ご
は ⌍ゃ⌌ ば
⌍ょ⌌ ほ ぼ
き ぎ え
の げ け
く ぐ め
あ む
れ ゐ ろ
－ ＋ ÷
ま ⌍ぇ⌌ ⌍ヵ⌌

た ぬ だ
と ね ど

340 | Chapter 5: Input Methods

Characters made accessible using red and blue Shift keysTable 5-24.

Unshifted key red shift key Blue shift key

か ⌍ゅ⌌ が
て よ で
も ふ ぶ
を ⌍゛⌌ お
い ぢ ち
う ゔ ⌍ー⌌

し じ み
ん ゑ や
⌍っ⌌ ⌍ゎ⌌ ⌍ぅ⌌

り ⌍ぉ⌌ ⌍ヶ⌌

に せ ぜ
さ ゆ ざ
な へ べ
す ず わ
つ づ ⌍ぃ⌌

⌍、⌌ ⌍，⌌ ⌍ぁ⌌

⌍。⌌ ⌍．⌌ ⌍゜⌌

Hangul Keyboard Arrays
Hangul syllables (and hanja) are input through the basic hangul elements, jamo. Up
to four jamo comprise a complete hangul syllable (also referred to as precombined or
precomposed hangul). A complete hangul syllable can also correspond to a single hanja, in
which case a hangul-to-hanja conversion dictionary is necessary. Of course, better hangul-
to-hanja conversion dictionaries also provide word-based conversion, which is much
more efficient than character-based. There are several hangul keyboard arrays available,
most of which are described and illustrated in the next sections. The most broadly used
Korean keyboard is the KS array.

Ks array
The most common hangul keyboard array, known as the KS array, is documented in the
standard designated KS X 5002:1992, Keyboard Layout for Information Processing (정보
처리용 건반 배열 jeongbo cheoriyong geonban baeyeol), which was originally established

Keyboard Arrays | 341

in the 1980s.* A total of 27 hangul elements are accessed using the three lowest banks
of keys (leaving the fourth bank open for numeral access). An additional seven hangul
elements are accessed by shifting the third bank of keys.

Figure 5-17 illustrates the KS keyboard array. Note the additional key, beside the right-
side Shift key, for switching between Korean and Latin mode (labeled 한/영, transliter-
ated han/yeong, and meaning “Korean/English”).

The KS keyboard arrayFigure 5-17.

Although this is the most commonly used hangul keyboard array, its biggest drawback
is that there is no method for distinguishing initial and final consonants. This is also
why the KS array is known as the Two-Set keyboard array, which is expressed as 두벌식
(dubeolsik) in Korean. The two sets are initial and final consonants and medial vowels.
The Kong array, described next, remedies this situation, but at the expense of additional
complexity.

Kong array
The Kong array, originally developed in the 1940s for use by Korean mechanical typewrit-
ers, is sometimes referred to as the Dvorak of hangul keyboard arrays and is considered
a three-set keyboard array. This means that all three hangul element positions—initial,
medial, and final—are easily distinguished by the keyboard itself. The KS array required
distinguishing to be done by software at the OS level.

The unshifted state provides access to 39 hangul elements using all four banks of keys,
and the shifted state provides access to 19 additional hangul elements, again using all four
banks of keys.

* Previously designated KS C 5715-1992

342 | Chapter 5: Input Methods

Figure 5-18 illustrates the Kong keyboard array. Note the position of the numerals, specif-
ically in the shift state of the second and third banks. Also note that some hangul elements
are repeated. This is because they are to distinguish between initial and final instances.

��������� ����������
����������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

� � � � � � � � � �

� � � � � � � � �
�

�
�

�

� � � � � � �
�

�
�

�
�

�

�
� �

� �
� �

� �
�

�
�

� � � � �

� � � � �

� � �
�

�
�

�

�
�

�
�

�
�

�
�

�

�

The Kong keyboard arrayFigure 5-18.

The Kong array is named after its inventor and is sometimes called the Three-Set Final
keyboard array, which is expressed as 세벌식 최종 (sebeolsik choejong) in Korean.

Latin Keyboard Arrays for CJKV Input
Keyboard arrays appearing in this section make use of Latin characters rather than ka-
na—there are a smaller number of Latin characters than kana, and these keyboard designs
take advantage of that fact. These are unlike the QWERTY and Dvorak keyboard arrays in
that they are optimized for Japanese input.

M-style array
Developed by NEC in the early 1980s, the M-style array (M 式配列 emu shiki hairetsu)
defines not only a keyboard, but also a new Japanese input method. The “M” in the name
of this keyboard array comes from the last name of its designer, Masasuke Morita (森田正
典 morita masasuke), a senior engineer at NEC. He has even written two books about this
keyboard array and input method. I had a chance to try out the M-style keyboard array
connected to two different machines while briefly visiting Japan in 1988. I was impressed
with the feel of the keyboard and the efficiency of input.

This keyboard array makes use of only 19 keys for inputting Japanese text. Five are vowels,
specifically a, i, u, e, and o. The remaining 14 are consonants, specifically k, s, t, n, h, g, z, d,
b, m, y, r, w, and p. There are, of course, additional keys for the remaining seven characters
necessary to input English text, specifically q, l, j, f, c, x, and v. Memorizing the locations

Keyboard Arrays | 343

for 19 keys is easier than trying to for 26 for English, and it is considerably easier than
the nearly 50 required for kana keyboard arrays. See Figure 5-19 for an illustration of the
M-style keyboard array.

��
�

��
�

��
�

��
�

�

��
�

��
�

��
�

�

��
�

��
�

��
�

��
�

��
�

�������������������� ����������������

��
�

��
�

��
��

��
��

��
�

��
�

��
�

��
�

��
��

��
�

��
�

��
��

��
�

��
�

��
��

The M-style keyboard arrayFigure 5-19.

At first glance you should notice that the keyboard has a unique design; this is to make it
more comfortable to use (less strain on the hands). Next, you should have noticed that the
vowels are on the left set of keys, and the consonants are on the right set of keys. Japanese
is a syllable-based language, so this vowel and consonant key arrangement provides a
right-to-left typing rhythm.

The most important feature of this keyboard array and input system is that the user de-
cides which parts of the input string are to be converted to kanji, which to hiragana, and
which to katakana. There are three banks of vowel keys, and each bank can also shift to
provide even more variations. These different banks specify the target character type for
the input segments. With conventional input method software, the user simply inputs a
string of characters then lets the software decide which parts convert to kanji and which
parts remain as hiragana—this can lead to misconversions.

There are three banks of vowel keys. Each bank contains five keys, one for each of the
five Japanese vowels. In addition, a vowel-shift key is located near the user’s right thumb.
This, in effect, gives you six banks of vowel keys with each bank having a unique purpose.
The consonant keys permit only two states, shifted by depressing the consonant-shift key
located near the user’s left thumb.

344 | Chapter 5: Input Methods

The shifted state for the consonant keys, in general, adds a “y” or palatalized element. This
is used to make combinations such as ぎょ (gyo) or しゅ (shu). Table 5-25 illustrates how
the consonant keys shift, and their purpose. Note that some of the shifted states are not
used for kanji input and are instead used for hiragana, such as っ and ん.

The M-style keyboard array’s consonant keysTable 5-25.

Unshifted Use shifted Use

G kanji or hiragana Gy kanji or hiragana

Z kanji or hiragana Zy kanji or hiragana

D kanji or hiragana Dy kanji or hiragana

⌍、⌌ comma (punctuation) ⌍。⌌ period (punctuation)

B kanji or hiragana By kanji or hiragana

K kanji or hiragana Ky kanji or hiragana

S kanji or hiragana Sy kanji or hiragana

T kanji or hiragana Ty kanji or hiragana

N kanji or hiragana Ny kanji or hiragana

H kanji or hiragana Hy kanji or hiragana

M kanji or hiragana My kanji or hiragana

Y kanji or hiragana ⌍っ⌌ hiragana

R kanji or hiragana Ry kanji or hiragana

W kanji or hiragana ⌍ん⌌ hiragana

P kanji or hiragana Py kanji or hiragana

The shifted state for the vowel keys is a bit more complex and requires more detailed
tables. Some banks of vowel keys are specifically designed to generate hiragana, not kanji.
See Tables 5-26 and 5-27 to find out how the vowel keys work, in both unshifted and
shifted states.

The M-style keyboard array’s vowel keys—unshiftedTable 5-26.

First bank Use second bank Use third bank Use

Ei kanji (long vowel) e hiragana E kanji (single vowel)

Uu kanji (long vowel) u hiragana U kanji (single vowel)

Ii kanji (long vowel) i hiragana I kanji (single vowel)

Ai kanji (long vowel) a hiragana A kanji (single vowel)

Ou kanji (long vowel) o hiragana O kanji (single vowel)

Keyboard Arrays | 345

The M-style keyboard array’s vowel keys—shiftedTable 5-27.

First bank Use second bank Use third bank Use

Et kanji (+ち/つ/っ) En kanji (+ん) Ek kanji (+き/く/っ)

Ut kanji (+ち/つ/っ) Un kanji (+ん) Uk kanji (+き/く/っ)

It kanji (+ち/つ/っ) In kanji (+ん) Ik kanji (+き/く/っ)

At kanji (+ち/つ/っ) An kanji (+ん) Ak kanji (+き/く/っ)

Ot kanji (+ち/つ/っ) On kanji (+ん) Ok kanji (+き/く/っ)

Okay, but what happened to katakana? The M-style keyboard must be shifted into a spe-
cial state for katakana input to be in effect. Katakana input is quite similar to kanji input
in that you can use different vowel keys as shortcuts. Some of the vowel keys change in
ways that speed katakana input.

Table 5-28 shows how the M-style keyboard array can be used to specify which characters
convert to kanji, and how many kanji to select during conversion. The examples all share
the same reading: daku.

Comparisons among M-style, Latin, and kana inputTable 5-28.

Word M-style input Conventional Latin inputa Conventional kana input

駄句 D A K U D A K U た ⌍゛⌌ く
諾 D Ak D A K U た ⌍゛⌌ く
抱く D A K u D A K U た ⌍゛⌌ く
だく D a K u D A K U た ⌍゛⌌ く

Case makes no difference.a.

A lot—but not all—of the ambiguity that you are likely to encounter when using conven-
tional Japanese keyboard arrays and their associated input methods is remedied by the
M-style keyboard array.

The M-style keyboard is standard equipment on many of NEC’s dedicated Japanese word-
processing systems.

High-speed roman array
NEC also developed a keyboard array, partly based on the M-style array, called the High-
speed Roman array (快速ローマ字配列 kaisoku rōmaji hairetsu). It is set into a conven-
tional keyboard shape, though. The keys are basically set into the same arrangement as
with the M-style array, but without the extra vowel keys and the special vowel and conso-
nant modifier keys for distinguishing kanji from kana during input. Figure 5-20 provides
an illustration of the High-speed Roman array.

346 | Chapter 5: Input Methods

�
�

�
� �

�
�
�

�
�
�

�
� �

�
� �

� � � � � �

� � � � � � � � �
�
�

� � � � �

�

�

�
�
�

�
� �

� � �

�
�

�
�

�
�

�

�
�

�
�

�
�

��������� ����������
����������

The High-speed Roman keyboard arrayFigure 5-20.

In the past, I have experimented with rearranging the keyboard resources within the Mac
OS “System” file by using ResEdit, the standard resource editor for Mac OS, such that this
keyboard array can be used for Japanese input. This effectively gave me an opportunity
to experiment with this keyboard array without purchasing special hardware. Modifying
keyboard arrays in software is something that almost every platform allows, and this key-
board array can be easily implemented through such means.

For those who use Mac OS X, I suggest using SIL International’s Ukelele, which is a Unicode-
based keyboard layout editor for Mac OS X.* For those who use Windows OS, Microsoft
provides the Microsoft Keyboard Layout Creator (MSKLC), which allows users to define
their own keyboard layouts.†

Mobile Keyboard Arrays
In the 10 years or so since the first edition of this book was published, mobile device use
has increased exponentially, especially in China, Japan, Korea, and Taiwan. The number
of users can be measured in the millions. Likewise, the number of text messages that are
sent increases on a yearly basis.

As common sense now dictates, mobile devices are not merely used as telephones, but
they also serve as mini-computers, allowing users to send and receive text messages and
to run some limited applications. In Japan, mobile devices are even used to access blogs
and to pay for commodities and services through the use of built-in 3D barcode scanners.

* http://scripts.sil.org/ukelele
† http://www.microsoft.com/globaldev/tools/msklc.mspx

Keyboard Arrays | 347

Clearly, for some users, a mobile device provides sufficient features and services such that
owning a standalone computer, even a laptop, is not necessary.

As mobile devices become more sophisticated, it is obvious that the applications that they
run will become less and less limited. A good look into the future is manifested in Apple’s
iPhone, which has effectively taken mobile devices to an all new level, and I suspect that
Apple is not yet done making strides and innovations in this area.*

Because of the importance of mobile devices in today’s society, and because of the signifi-
cantly reduced size of such devices, the keyboard arrays are necessarily small. Given the
average size of the human hand, and the digits that are connected to them that ultimately
manipulate keyboard keys, the keys can become only so small. There is also a minimal
spacing threshold to consider. These are issues best dealt with by ergonomics experts.

Short of being a self-proclaimed ergonomics expert, it is sufficient to state that there
are effectively four ways provide a full keyboard array for mobile devices, described as
follows:

One entire side of the mobile device is a touch panel LCD screen that can be used to •	
emulate a full keyboard array.

The mobile device opens to reveal a full keyboard array—referred to as •	 clamshell
designs because they open like a clamshell.

The mobile device is sufficiently large to barely accommodate a full keyboard array.•	

The mobile device uses a laser to project a full keyboard array onto suitable surfaces.•	

In the future, perhaps we can look forward to using holographic keyboard arrays that
project the image of the keys into the air in front of us.

Interestingly, when full keyboard arrays are implemented for mobile devices, the most
broadly supported keyboard array is QWERTY. This demonstrates once again that
QWERTY has become, or has remained, for better or for worse, the universal or de facto
keyboard array.

In terms of genuine mobile keyboard arrays, which are best described as a full keyboard
array crammed into the confines of what is effectively a numeric keypad, there are de facto
standards. In Japan, one such mobile keyboard array is dominant, and in Korean two are
dominant.

Because multiple characters are necessarily mapped to a single numeric key on mobile
keyboard arrays, a method known as multi-tap is used to access the desired character. A
single numeric key press results in the first character that is assigned to it, and a second
numeric key press results in the second character that is assigned to it, and so on. One
characteristic of the multi-tap method is that if the subsequent character is assigned to
the same numeric key, one must wait until the cursor advances before entering the next

* http://www.apple.com/iphone/

348 | Chapter 5: Input Methods

character. Consider entering the three-character string “abc” using a typical mobile phone.
These three Latin characters are mapped to the numeric key labeled “2.” The numeric key
sequence is “2” for “a,” “2 2” for “b,” and “2 2 2” for “c.” But, if you repeatedly press the “2”
numeric key six times, the result is a single character, not the three-character string “abc.”
There is a one-second or so lag until the cursor advances, thus disabling multi-tap for the
current character.

Bear in mind that the multi-tap issue affects any sequence in which two or more desired
characters are assigned to the same numeric key. There is a way to work around the multi-
tap issue, which is to use a separate cursor key to manually or explicitly advance to the
next character, thus completing the entry of the current character and resetting multi-tap
mode for the next character.

Some claim that mobile keyboard arrays hamper one’s ability to enter text. From a sheer
“number of keystrokes per character” point of view, along with the multi-tap issue, that
may be the case, and for most people it is far easier—and significantly faster—to use a
conventional keyboard array. However, an increasingly large number of books in Japan,
including novels and short stories, have been written by entering their text into a mo-
bile phone.* These books obviously weren’t typeset on a mobile phone, but the text entry,
which represents the author’s main effort in the authorship of a book, was possible at
almost any location. After all, mobile phone are mobile, and were specifically designed
to be brought and used nearly anywhere. This demonstrates that the more one practices
something, the better the skills become.

Also of interest is that I am not aware of any national or international standard for mobile
keyboard arrays. This area is still somewhat volatile, and establishing such standards may
be premature, at least for some markets, such as Korea. Clearly, innovation is still taking
place. Once a de facto standard emerges, such as what has already happened in the U.S.
and Japan, establishing a national standard makes sense and is the prudent thing to do in
order to establish consistency across the industry.

Japanese mobile keyboard arrays
In Japan, the dominant mobile keyboard array closely adheres to the 50 Sounds ordering.
For example, each logical “row” of kana characters is assigned to a single numeric key, so
the “A” row (あ行 a gyō), consisting of あ, い, う, え, and お, is assigned to the “1” numeric
key. If a row of kana characters includes any small versions, such as ぁ, ぃ, ぅ, ぇ, and ぉ for
the “A” row, they are also assigned to the same numeric key, and immediately follow all of
the standard instances. Thus, a single “1” keystroke results in あ, two “1” keystrokes result
in い, six keystrokes result in ぁ, and so on.

Figure 5-21 provides an example of a Japanese keyboard array for a mobile device. In ad-
dition to showing how hiragana characters are assigned to the numeric keys, it also shows
how Latin characters are assigned to the same keys.

* For the record, this book was not written by entering its text into a mobile phone.

Keyboard Arrays | 349

1

4

7

*

3

6

9

#

2

5

8

0

Mobile device keyboard array—JapaneseFigure 5-21.

Table 5-29 lists the 12 common mobile keyboard array keys, the same ones as illustrated
in Figure 5-21, along with how they map to the 26 characters of the Latin alphabet, and
how they map to hiragana for Japanese mobile devices.

Mobile keyboard array key assignments—JapaneseTable 5-29.

numeric key Latin Japanese key cap Characters

1 . @ あ あ い う え お ⌍ぁ⌌ ⌍ぃ⌌ ⌍ぅ⌌ ⌍ぇ⌌ ⌍ぉ⌌

2 A B C か か き く け こ

3 D E F さ さ し す せ そ

4 G H I た た ち つ て と ⌍っ⌌

5 J K L な な に ぬ ね の

6 M N O は は ひ ふ へ ほ

7 P Q R S ま ま み む め も

8 T U V や や ゆ よ ⌍ゃ⌌ ⌍ゅ⌌ ⌍ょ⌌

9 W X Y Z ら ら り る れ ろ

* ゛゚ ⌍゛⌌ ⌍゜⌌

0 わ、。 わ を ん ⌍ゎ⌌ ⌍。⌌ ⌍、⌌ ー ？ ！ ／ ￥ ＆ ＊ ＃

space

Dakuten- and handakuten-annotated kana characters are entered by first entering their
unannotated forms, followed by one or two presses of the “*” key. For those kana that
can be annotated with both, specifically the characters from the “H” row, such as は (ha),
one press of the “*” key results in the dakuten-annotated form, ば (ba), and two presses

350 | Chapter 5: Input Methods

result in the handakuten-annotated form, ぱ (pa). A third press of the “*” key causes the
character to cycle back to its unannotated form.

The assignments of the kana to the numeric keys is fairly standard, as is basic punctuation.
There are separate keys for entering katakana by switching modes or to convert hiragana
sequences into kanji.

Korean mobile keyboard arrays
Although there are well over 20 mobile keyboard arrays in use in Korea, at least as of this
writing, those developed by Samsung and LG (the leading mobile device manufacturers
in Korea) are the most popular, and are the ones that are covered in this section. Of these,
the one developed by Samsung is the most popular, and thus exhibits the broadest use in
Korea.

Samsung’s Korean mobile keyboard array is called Chonjiin Hangul* (천지인 한글 cheon-
jiin hangeul), and LG’s is called EZ Hangul (EZ 한글 EZ hangeul). Figure 5-22 illustrates
both of these mobile keyboard arrays.

1

4

7

*

3

6

9

#

2

5

8

0

1

4

7

*

3

6

9

#

2

5

8

0

Mobile device keyboard arrays—KoreanFigure 5-22.

Because hangul is alphabetic, not syllabic like Japanese kana, efficient text entry is per-
formed by entering individual jamo, or in some cases, more primitive elements. Table
5-30 again lists the 12 common mobile keyboard array keys, along with how they map to
the Latin alphabet. More importantly, it lists how they map to the jamo for Korean mobile
devices, based on the mobile keyboard arrays developed by Samsung and LG, specifically
Chonjiin Hangul and EZ Hangul, respectively. Note that the jamo and other elements that

* Chonjiin Hangul can also be written using hanja, specifically 天地人 한글 (cheonjiin hangeul). The three hanja
mean Heaven, Earth, and Man, respectively. This name comes from the design principles for vowels as de-
scribed in 훈민정음 (訓民正音). According to this book, the vowels of hangul syllables are composed of the
following three primitive elements: a dot or 천/天 (cheon), meaning “Heaven”; a horizontal bar or 지/地 (ji),
meaning “Earth”; and a vertical bar or 인/人 (in), meaning “man.”

Keyboard Arrays | 351

are provided in Table 5-30 represent what is shown or printed on the keys themselves.
See Tables 5-31 and 5-32 to find out how multiple key presses, of the same or different
numeric keys, result in the desired jamo.

Mobile keyboard array key assignments—KoreanTable 5-30.

numeric key Latina Chonjiin Hangul—samsung eZ Hangul—LG

1 . @ ㅣ ㄱ

2 A B C ㆍ ㄴ

3 D E F ㅡ ㅏㅓ

4 G H I ㄱ ㅋ ㄹ

5 J K L ㄴ ㄹ ㅁ

6 M N O ㄷ ㅌ ㅗㅜ

7 P Q R S ㅂ ㅍ ㅅ

8 T U V ㅅ ㅎ ㅇ

9 W X Y Z ㅈ ㅊ ㅣ

* Add a stroke

0 ㅇ ㅁ ㅡ

space Double the jamo

Breaking from the norm, Samsung mobile devices assign up to three Latin characters per numeric key, which affects the “7”and “9” numeric a.
keys. The Latin characters “Q” and “Z” are instead assigned to the “1” numeric key.

Table 5-31 lists complete jamo consonants, along with the Chonjiin Hangul and EZ Han-
gul key sequences that produce them. The former uses only numeric keys to enter all
consonants, but the latter requires the “*” and “#” keys to enter all consonants.

Keystrokes to produce jamo—consonantsTable 5-31.

Jamo consonant Chonjiin Hangul key sequence eZ Hangul key sequence

ㄱ 4 1

ㄴ 5 2

ㄷ 6 2 *

ㄹ 5 5 4

ㅁ 0 0 5

ㅂ 7 5 *

ㅅ 8 7

ㅇ 0 8

ㅈ 9 7 *

352 | Chapter 5: Input Methods

Keystrokes to produce jamo—consonantsTable 5-31.

Jamo consonant Chonjiin Hangul key sequence eZ Hangul key sequence

ㅊ 9 9 7 * *

ㅋ 4 4 1 *

ㅌ 6 6 2 * *

ㅍ 7 7 5 * *

ㅎ 8 8 8 *

ㄲ 4 4 4 1 #

ㄸ 6 6 6 2 * #

ㅃ 7 7 7 5 * #

ㅆ 8 8 8 7 #

ㅉ 9 9 9 7 * #

The Chonjiin Hangul mobile keyboard array distinguishes itself by how vowels are en-
tered through the use of only three keys. The first three keys, specifically 1, 2, and 3, are as-
signed to primitive elements that are used to compose complete vowels, and are dedicated
for that purpose. The key sequence corresponds to the left-to-right and top-to-bottom
arrangement of the elements, which is also the stroke order when writing them by hand.
The EZ Hangul mobile keyboard array dedicates four keys for vowels, specifically 3, 6,
9, and 0, but also requires the “*” key for some combinations. Table 5-32 lists complete
jamo vowels, along with the Chonjiin Hangul and EZ Hangul key sequences that produce
them.

Keystrokes to produce jamo—vowelsTable 5-32.

Jamo vowel Chonjiin Hangul key sequence eZ Hangul key sequence

ㅏ 1 2 3

ㅑ 1 2 2 3 *

ㅓ 2 1 3 3

ㅕ 2 2 1 3 3 *

ㅗ 2 3 6

ㅛ 2 2 3 6 *

ㅜ 3 2 6 6

ㅠ 3 2 2 6 6 *

ㅡ 3 0

ㅣ 1 9

ㅐ 1 2 1 3 9

other Input Hardware | 353

Keystrokes to produce jamo—vowelsTable 5-32.

Jamo vowel Chonjiin Hangul key sequence eZ Hangul key sequence

ㅒ 1 2 2 1 3 * 9

ㅔ 2 1 1 3 3 9

ㅖ 2 2 1 1 3 3 * 9

ㅘ 2 3 1 2 6 3

ㅙ 2 3 1 2 1 6 3 9

ㅚ 2 3 1 6 9

ㅝ 3 2 2 1 6 6 3 3

ㅞ 3 2 2 1 1 6 6 3 3 9

ㅟ 3 2 1 6 6 9

ㅢ 3 1 0 9

At some point, I hope that a single de facto Korean mobile keyboard array emerges, such
as what has happened in Japan. Given the somewhat volatile nature of the mobile device
market, along with the complexity of hangul, it may be years until a de facto Korean mo-
bile keyboard array emerges. However, if I were to guess based solely on market share,
ease and intuitiveness of input, and other factors, Samsung’s Chonjiin Hangul seems like
the best candidate for the de facto standard.

other Input Hardware
What has been described so far falls into the category of keyboard arrays—that is, keys that
are used to input kana, hangul, Latin, or other characters. Other more recent hardware
methods, such as pen input, do not require use of conventional keys. Optical Character
Recognition (OCR) is another input system that deals with the problem of transcribing
already printed information. Finally, there are voice input systems.

This area is rapidly changing. Since the first edition of this book was published, OCR
and voice recognition systems have advanced significantly. Interestingly, pen input hasn’t
quite taken off, and at this point, it may never do so.

Pen Input
GO Corporation, which has since gone out of business after being acquired by AT&T,
developed a pen-based OS and programming environment called PenPoint.* PenPoint
did not require the use of conventional keys, but instead used a tablet on which the user

* For an interesting account of GO Corporation’s rise and fall, I suggest Jerry Kaplan’s Startup: A Silicon Valley
Adventure (Penguin Books, 1994).

354 | Chapter 5: Input Methods

physically wrote what was intended. Pen input depends on another technology, specifi-
cally OCR, to be covered in the next section. Perhaps of historical interest, GO Corpora-
tion had enhanced their pen-based OS to handle Japanese through the use of Unicode.

Microsoft’s MS-IME, which was the standard input method provided with various
versions of their Windows OS, provided the user with the ability to input characters by
writing them on a special onscreen tablet.

optical Character recognition
Several OCR systems currently accept CJKV character input, although there are, of course,
limitations. The clearer and larger the typefaces, the more reliable such a system is. Some
systems do not recognize all the characters in a character set (in the case of GB 2312-80,
for example, some recognize only Level 1 hanzi), and some are restricted to certain type-
face styles.

You encounter OCR systems more frequently in the West where recognition of a much
smaller collection of characters is done. The recognition of thousands of individual char-
acters becomes much more difficult, particularly when each one is fairly complex in
structure.

NeocorTech’s KanjiScan OCR, available only for Windows, can convert printed material
that contains Japanese and English text into a form that can be manipulated as normal
text.* For those characters that it cannot recognize, there is a Kanji Search System for
looking up unrecognized kanji, which automatically suggests alternatives from which to
choose.

WinReader PRO and e.Typist, both developed by Media Drive Corporation, are exam-
ples of OCR software that handles Japanese and English text. They are available only for
Windows.†

Voice Input
Years ago, voice input systems required users to register their voice patterns so that the
voice recognition software could more predictably match the user’s voice input with cor-
rect character strings. Voice recognition systems are more sophisticated now, and many
of them include automatic-learning modes. Voice recognition is widely used on mobile
devices. Examples of voice input systems include IBM’s Embedded ViaVoice (once called
VoiceType),‡ with broad multilingual support, and Apple’s Chinese Dictation Kit.§

Voice-driven software is now becoming more widespread, so expect more sophisticated
systems to enter the market. If you think your office environment is distracting now, you

* http://www.coyer.com/neocor/kanjiscan/
† http://mediadrive.jp/
‡ http://www-306.ibm.com/software/pervasive/embedded_viavoice/
§ http://speech.apple.com/speech/cdk/cdk.html

Input Method software | 355

can look forward to the joys of entire buildings full of people in cubicles yelling at their
computers! Aren’t sound-proof walls and doors nice?

Input Method software
Input methods are the software programs that perform the actual CJKV input. A less
common name for these is FEP, which stands for front-end processor. They make use of
one or more conversion dictionaries, and often use special rules to more effectively con-
vert input strings into ideographs, or into a mixture of kana and kanji (Japanese) or han-
gul and hanja (Korean). The actual mechanics of CJKV input were described in detail
earlier in this chapter.

Here you will learn a little bit about a select few input methods. Under most environ-
ments, these programs are separate modules from the text-editing or word-processing
applications with which they are used. This allows them to be used with a variety of ap-
plications. Some of these programs are dedicated for use within a specific application. For
example, Quail is the dedicated input method for Japanese-capable versions of Emacs,
such as GNU Emacs version 20 and greater.

Virtually all input methods have a facility that allows the user to add entries to the con-
version dictionary (either to the main conversion dictionary or to a separate user conver-
sion dictionary). This allows users to create entries for difficult-to-enter ideographs or
ideograph compounds. This also allows adventurous users to create specialized or field-
specific conversion dictionaries. Adding entries to a conversion dictionary is sometimes
a simple task of providing a key in the form of a reading string (using Latin characters,
kana, or hangul) followed by one or more names that will act as candidates when the key
is encountered during the conversion process. More complex input methods require ad-
ditional grammatical information, such as part of speech (noun, verb, and so on) or other
information to assist in the conversion process.

CJKV Input Method software
Microsoft has been offering their CJKV-capable Global IME input method since the Win-
dows 95, 98, and NT time frame, and it is even more function under the Windows XP
and Vista OSes.* Likewise, Apple provides a wide range of input methods for Mac OS X.
Linux distributions provide the richest collection of CJKV-capable input methods. Smart
Common Input Method (SCIM) is the input method framework that is widely used by
Linux and Unix OSes.†

This is a significant development, because it means that it is now easier than ever before to
send CJKV email, browse CJKV web pages, or fill out web-based CJKV forms. Thanks to

* http://www.microsoft.com/windows/ie/ie6/downloads/recommended/ime/default.mspx
† http://www.scim-im.org/

356 | Chapter 5: Input Methods

the efforts of Microsoft, Apple, and the open source community, much of what was once
considered to be nontrivial is now trivialized.

Chinese Input Method software
The number of input methods available for Chinese far outnumber those available for
Japanese and Korean—combined! One source claims that well over 500 different Chinese
input methods have been developed over the years.* For this reason, it is well beyond the
scope of this book to even begin to cover them. Instead, I urge you to explore the Chinese
input methods that are included with the current versions of Windows or Mac OS X, both
of which have matured in terms of their multilingual support. Modern Linux distribu-
tions typically provide a larger number of Chinese input methods, such as those based on
SCIM. The default installations of modern OSes are fully CJKV-capable, and thus include
fully functional Chinese input methods.

nJstar
NJStar? You must be wondering why a Chinese word processor is listed as a Chinese input
method. This is because it provides the user with nearly 20 Chinese input methods, each
of which can be easily invoked through its UI.†

More information about NJStar’s use as a word processor can be found in Chapter 10.

Japanese Input Method software
Some popular Japanese input methods, such as ATOK, VJE, and Wnn, have been ported
to multiple platforms, which often means you can exchange their conversion dictionaries
among platforms.

The following are some of the commercial Japanese input methods that have been avail-
able over the years—some are bundled with OSes, some are added on as third-party soft-
ware, and some are no longer developed or offered for sale:

ATOK (JustSystems)•	

egbridge (ERGOSOFT)•	

Global IME (Microsoft)•	

Katana (SomethingGood)•	

Kotoeri (Apple)•	

OAK (Fujitsu)•	

SKK•	

* Yucheng Liu’s MS thesis entitled Chinese Information Processing (University of Nevada, Las Vegas, 1995).
† http://www.njstar.com/

Input Method software | 357

VJE (VACS)•	

Wnn (Wnn Consortium)•	

Some of the previously mentioned input methods, such as Kotoeri, Global IME, and Wnn,
are bundled as part of OSes. After all, a Japanese-capable OS is meaningless without an
input method. The other input methods were developed because some users found the
input methods bundled with their OS inadequate. Finally, some of these input methods
have been ported to multiple platforms, such as ATOK, VJE, and Wnn.

Noncommercial input methods include Canna, Quail, SKK, T-Code, Wnn (earlier than
version 6), and so on. Quail and SKK are more or less closely related to GNU Emacs.
Quail is actually part of GNU Emacs version 20 and greater, and SKK is an add-on input
method for GNU Emacs. The latest version of Quail uses SKK’s conversion dictionary.

AtoK
ATOK (エイトック ētokku), developed by JustSystems (the developer of the popular Ich-
itaro Japanese word-processing application), is one of the most powerful and popular
Japanese input methods available, and for very good reason.* ATOK stands for Advanced
Technology of Kana-Kanji transfer. It is available for both Mac OS X and Windows, as
well as for Linux, and has been adapted for mobile phone use. There are also specialized
versions of ATOK tailored toward specific markets, such as for newspaper use and for
supporting the U-PRESS character set.

It is safe to state that ATOK is the most popular third-party input method in Japan, and its
market share rivals the OS-bundled input methods. This is no small feat and is a testament
to the features and capabilities of ATOK as an input method.

Canna
Canna (かんな kanna)† is the name of a Japanese input method originally developed by
Akira Kon (今昭 kon akira) and several others at NEC, which offers features and a set of
conversion dictionaries similar to Wnn, described later in this section. It is easily custom-
ized by the user, and comes with additional utilities for performing tasks such as conver-
sion dictionary maintenance. Much of the customizing is done with LISP-like commands.
Canna was one of the first freely available Japanese input methods for Unix that used au-
tomatic conversion and provided a unified UI. Canna had become available for Windows
95J and Java. Although it hasn’t been updated for years, it is still available.

* http://www.atok.com/
† http://www.nec.co.jp/canna/

358 | Chapter 5: Input Methods

egbridge
ERGOSOFT is the developer of a popular Japanese input method called egbridge.* This
input method had been available for many years and was a close competitor to ATOK,
which is developed by JustSystems. It runs on Mac OS X, but is no longer developed or
sold.

The main conversion dictionary used by egbridge boasted over 280,000 entries. Its per-
sonal and place name conversion dictionary had nearly 300,000 entries.

Global IMe
The input method that was bundled with older versions of Windows, specifically 95J,
98J, or NT-J, was called MS-IME, which was an abbreviation for Microsoft Input Method
Editor. MS-IME provided the user with a full range of input facilities, along with the abil-
ity to input characters by writing them on a special onscreen tablet. It was also possible
to search for difficult-to-input kanji through the use of built-in radical and stroke count
indexes.

Now, contemporary versions of Windows OS, such as XP and Vista, are instead bundled
with Global IME. This is part of Microsoft’s globalization strategy, which aims to include
multilingual facilities in the standard or default installation of the OS.† This is a good thing
for users. It eliminates the need to download Language Packs. It solves the font and input
method problem.

Because of its status as the bundled input method for Windows, don’t expect to see a Mac
OS X version of Global IME anytime soon! Given the capabilities of the input method that
is bundled with Mac OS X, specifically Kotoeri, there is no need to develop a Mac OS X
version of Global IME.

Kotoeri
Kotoeri (ことえり kotoeri) is the name of the Japanese input method bundled with Mac
OS-J version 7.1 and later, which included Mac OS with the Japanese Language Kit in-
stalled. Kotoeri has obviously evolved and is still part of Mac OS X, though its functional-
ity has been merged into Apple’s strategy of bundling as many input methods as possible
in the standard or default installation of the OS.

Some might find it interesting that Kotoeri’s name during its initial development was
Akiko, which was an acronym for “Apple’s Kana In Kanji Out.” Kotoeri literally means
“word selector.” こと (koto) is an abbreviated form of the Japanese word that means
“word,” and えり (eri) means “select.” It is much improved over the input method bundled
with earlier versions of Mac OS-J, specifically 2.1 変換. The latest version of Kotoeri adds
improvements and functionality that rival third-party input methods, such as the ability

* http://www.ergo.co.jp/
† http://www.microsoft.com/windows/ie/ie6/downloads/recommended/ime/default.mspx

Input Method software | 359

to input kanji by using a special Unicode palette. It does, however, remove the ability to
input characters by ISO-2022-JP and Shift-JIS codes, but ISO-2022-JP– and Shift-JIS–
based palettes are still included. Input by code is now effectively restricted to four-digit
Row-Cell codes.

User-defined conversion dictionary entries are entered into a special user conversion dic-
tionary. The main conversion dictionary is considered fixed and thus read-only. This is
considered to be fairly standard behavior among input methods.

sKK
SKK, which is an abbreviation for Simple Kana to Kanji conversion program, is the name of
a freely available Japanese input method intended for use with Japanese-capable versions
of text editors based upon GNU Emacs, such as Demacs, GNU Emacs itself, Mule, and
NEmacs (most of these are described in Chapter 10).* This means that Japanese input un-
der SKK is restricted to using Japanese Emacs. Many people use Emacs as their working
environment. Various tasks—sending and receiving email, reading Usenet News, writing
and compiling programs, and so on—can be done from within the context of Emacs. Yes,
it is more than merely a text editor. It is really an environment, and to some extent, it can
be considered a platform.

There are four main conversion dictionaries available for SKK: S, M, ML, and L. Obvi-
ously, S, M, and L refer to Small, Medium, and Large. ML refers to a size between Medium
and Large. There is no need to install all three of these conversion dictionaries, because
they are inclusive of each other. In other words, the L conversion dictionary contains all
the entries of the M one, and so on. There are also nearly 20 specialized conversion dic-
tionaries available for SKK.

In the past, SKK and its associated files have been adapted for use on non-Unix systems.
For example, MOKE, a commercial Japanese text editor for MS-DOS systems, made use
of the SKK conversion dictionary format for its own Japanese text entry system.

The development of SKK is still being managed by Masahiko Sato† (佐藤雅彦 satō ma-
sahiko), who was also responsible for first developing it in 1987. Users can register new
words, which become part of the SKK conversion dictionaries, through a web form.‡ There
is also an interactive tutorial, invoked from within GNU Emacs, that is useful for learning
the SKK Japanese input method.

t-Code
T-Code is a freely available Japanese input method developed at Yamada Laboratory at
Tokyo University.§ T-Code has been adapted to run under a variety of platforms, such

* http://openlab.jp/skk/
† http://www.sato.kuis.kyoto-u.ac.jp/~masahiko/masahiko-e.html
‡ http://openlab.jp/skk/registdic.cgi
§ http://openlab.ring.gr.jp/tcode/

360 | Chapter 5: Input Methods

as Mac OS, Unix, and Windows, and uses a two-stroke input method. Each kanji is thus
input through the use of two arbitrary keystrokes. This is effectively the opposite of input
by association, which was an input technique described earlier in this chapter.

VJe
VJE, which is an abbreviation for VACS Japanese Entry system, is a commercial Japanese
input method that had been adapted for a variety of OSes. It is no longer developed or
sold. VJE has been available for Japanese PCs, and MacVJE was available for Mac OS. Mac
OS X required a newer version called MacVJE-Delta. VJE itself was developed by VACS,*
and MacVJE was developed by Dynaware.†

All versions of VJE came with utilities for exchanging conversion dictionaries among op-
erating systems. This was useful if you have more than one version of VJE, or want to send
someone your conversion dictionary.

MacVJE came with two conversion dictionaries. The main conversion dictionary con-
tained well over 100,000 entries. The other dictionary contained Japanese postal codes,
along with candidate place names associated with those postal codes. Only one diction-
ary could be used at a time, but utilities were included for merging dictionaries. The main
conversion dictionary could also be decompiled (that is, converted into a large text file for
viewing individual entries) with the same utility—this is a feature that many other Japa-
nese input programs do not have. User-specific entries were added directly to the main
conversion dictionary.

Wnn
Wnn, which is an abbreviation of the transliterated form of the Japanese sentence 私の
名前は中野です (watashi-no namae-wa nakano desu, which means “my name is Naka-
no”), is a freely available Japanese input method for Unix systems developed by the now-
dissolved Wnn Consortium. One of the early goals of the Wnn project was to properly
parse the Japanese sentence that Wnn represents. Wnn supports a multilingual environ-
ment—not only for Japanese, but also for Chinese, Korean, and many European scripts.

Wnn was actually the name of the conversion program that provided a consistent inter-
face between jserver (a Japanese multiclient server) and actual Japanese input methods.
Wnn also provided a set of conversion dictionaries. The Japanese input method that is
provided with Wnn is called uum—this represents the word “wnn” rotated 180˚ so that it
is upside down. Uum is the client program that is invoked by the user for Japanese input,
and it defines the keystroke combinations necessary for Japanese input. Wnn, on the other
hand, refers to the entire collection of software included in the distribution.

* http://www.vacs.co.jp/
† http://www.dynaware.co.jp/

Input Method software | 361

The conversion dictionaries included with Wnn consist of a main dictionary (about 55,000
entries), a single kanji dictionary, a personal name dictionary, a place name dictionary,
grammatical dictionaries, and several field-specific conversion dictionaries (for computer
science and biological terms, for example). All these dictionaries are used in the conver-
sion process.

The Ministry of Software—a company, not a government body in Japan—was the first
company to adapt Wnn for use with Mac OS. Yinu System has also adapted Wnn for use
with Mac OS. The best way to explore Wnn is through the FreeWnn Project.*

Korean Input Method software
Because of the hangul-only nature of contemporary Korean text, the fundamental
requirements for Korean input methods are simpler compared to those for Chinese and
Japanese. The input methods bundled with Korean-capable OSes, such as Mac OS X
and Windows, are popular with users. The Korean input methods that are bundled with
these OSes support the input of hanja through the process of hangul-hanja conversion. In
particular, Saenaru† (새나루 saenaru), developed by Wonkyu Park (박원규 pak wonkyu)
and Hye-shik “Perky” Chang (장혜식 jang hyesik), and Nalgaeset‡ (날개셋 nalgaeset),
developed by Yongmook Kim (김용묵 gim yongmuk), have become popular third-party
Korean input methods for Windows. Hanulim (하늘입 haneulim) should be pointed out
as a popular third-party Korean input method for Mac OS X.§

In addition to SCIM, Korean input methods for Linux or Unix, to include the X Window
System, include imhangul¶ for GTK+ 2.0, qimhangul** for Qt, and nabi†† (나비 nabi).
The primary developer for these Korean input methods is Hwanjin Choe (최환진 choe
hwanjin), who also developed libhangul, which is an open source, cross-platform Korean
input method library.‡‡ It needs to be pointed out that many of the Korean input methods
described in this section make use of libhangul.

Although not specifically part of the input method, Korean input does have one unique
feature not shared by Chinese and Japanese. This is the ability or option to delete hangul
as entire characters (hangul) or by element (jamo) while still in “input mode.” As soon as
the character string is inserted or set into the application, the character must be deleted
on a per-character, not per-jamo, basis. In any case, good input methods are the ones that
make these “delete” options available to the user.

* http://freewnn.sourceforge.jp/
† http://kldp.net/projects/saenaru/
‡ http://moogi.new21.org/prg4.html
§ http://code.google.com/p/hanulim/
¶ http://kldp.net/projects/imhangul/
** http://kldp.net/projects/qimhangul/
†† http://kldp.net/projects/nabi/
‡‡ http://kldp.net/projects/hangul/

363

CHAPter 6

Font Formats, Glyph sets, and Font tools

One of the most important considerations in displaying or printing CJKV text is the avail-
ability of appropriate fonts. Fonts form the most basic foundation of document writing
and text input—no matter which writing system is involved—and are available in a wide
variety of formats, though OpenType has clearly emerged as the preferred format. One
could argue that a fully functional CJKV-capable application is completely worthless and
meaningless without adequate font support.* Although the internal representation of the
glyphs in these formats, which can range from bitmapped patterns to outline descriptions,
may differ considerably, the final result, whether printed, displayed, or otherwise output-
ted, is simply an organized collection of bits or pixels. This is a very important point, so let
me reiterate: regardless of the format a font happens to be, the final result consists of nothing
but BDPs.†

Typical CJKV fonts include glyphs for the characters that correspond to the most com-
mon character set standards for a given locale. Nearly 20 years ago, for example, Japanese
fonts that included glyphs for JIS X 0208:1997 Level 2 kanji were relatively uncommon,
but now you can start expecting to find font products that include glyphs for the char-
acters in CJK Unified Ideographs Extension B. However, the 64K glyph barrier—an im-
portant issue to be addressed in this chapter—prevents one from creating a single font
instance that includes glyphs for all ideographs that are in Unicode.

First and foremost, selecting the point size of a particular font is probably one of the
most common tasks one performs within an application.‡ The size of a font is usually
described in units called points. The point is a term used in typography that represents
a measurement that is approximately 1⁄72 of an inch, or 1⁄72.27 of an inch in more precise
measurements, as standardized in the late 19th century. This means that a 72-point ideo-
graph occupies a space that is roughly one inch wide and one inch tall. Ten- and 12-point

* Now you know why I like my job at Adobe Systems so much!
† Bits, dots, or pixels
‡ One could argue that typing in the characters themselves, which are rendered using glyphs in a font, is a much

more common task.

364 | Chapter 6: Font Formats, Glyph sets, and Font tools

fonts are the most common sizes used for text. The text of this book, for example, is set in
10.2-point Minion Pro. The subject of typographic units of measurement, including other
versions or interpretations of the point, is a topic covered in Chapter 7.

This chapter covers what I consider to be the most popular font formats, either because
they are widely used or have easily obtainable specifications for developers, or both. There
are a myriad of font formats out there—bitmapped, vector, and outline—and it would be
impossible (and impractical) to describe them all in this book. One font format, specifi-
cally OpenType, stands out from the others because it has become the most widely used
and accepted. Your attention should thus be focused on the details of OpenType fonts.

Only the major CJKV type foundries have the appropriate level of design expertise and
human resources necessary to create CJKV typefaces that contain thousands or tens of
thousands of high-quality glyphs. Some of these CJKV type foundries include Adobe
Systems (U.S. and Japan), Arphic Technology (Taiwan), Biblos Font (Japan), Changzhou
SinoType Technology (China), Dainippon Screen (Japan), DynaComware (Taiwan and
Japan), Enfour Media Laboratory (Japan), Fontworks (Japan), Founder Group (China),
Hanyang Information & Communications (Korea), Hanyi Keyin (China), Jiyu-Kobo (Ja-
pan), Monotype Imaging (U.S., UK, and Hong Kong), Morisawa & Company (Japan),
Nippon Information Science (Japan), Ryobi Imagix (Japan), Sandoll (Korea), Shaken
(Japan), Type Project (Japan), TypeBank (Japan), TypeSolution (Korea), URW++ (Ger-
many), Yoon Design Institute (Korea), and many others. CJKV type was originally cast in
metal or wood, or handwritten, but of course the current trend is toward digital type that
uses mathematically defined outlines to describe the glyph contours.

I should point out that some sections of this chapter intentionally contain sections that
describe somewhat out-of-date or legacy font formats. This purpose is to encapsulate part
of history, but the more practical purpose is for comparison to contemporary font for-
mats, such as OpenType, and to demonstrate the clear progress that has been made in
this area of software development. In the past, support for CJKV fonts was restricted to
specific or specialized font formats that were supported only by specific environments or
in limited versions of OSes. OpenType has changed this for the better. Support for CJKV
fonts is now more uniform and widespread than ever before.

An excellent place to find or initiate font-related discussions is the Typophile forum.* Also
consider Thomas Phinney’s Typblography blog,† and the CCJK Type blog.‡

typeface design
A font’s life begins as a typeface design. This may begin on paper. Younger typeface
designers take advantage of computers to initiate typeface designs through the digital

* http://typophile.com/forum/
† http://blogs.adobe.com/typblography/
‡ http://blogs.adobe.com/CCJKType/

typeface design | 365

medium. A font simply cannot exist unless a typeface is designed, which is a process that
involves a lot of effort on the part of the designer or design team.

When dealing with multiple typeface designs and different relative weights, there are
many differences that may become clear. Whether or not these differences are readily
apparent depends on whether you use multiple designs or weights in a single document
and the size at which the glyphs are rendered. Of course, glyph differences become signifi-
cantly more evident as the size increases.

Figure 6-1 illustrates differences in typeface design that may be observed when transition-
ing from lighter to heavier weights, using Adobe Systems’ 小塚明朝 Pr6N EL and 小塚明
朝 Pr6N H for the example.* You should take note of two major types of differences, both
of which may appear to be somewhat subtle until pointed out:

As the relative weight increases, some vertical strokes become thinner as they pass •	
through and are enclosed by box-like elements. These instances of this characteristic
are circle-shaded in Figure 6-1.

For •	 serif designs, the horizontal strokes often decrease in weight (thickness) as the
overall weight of the typeface increases.

�����������

�����

Differences in typeface design depending on weightFigure 6-1.

At first glance, or to the untrained eye, some typeface designs might look the same, or at
least very similar. But when the same typeface designs are set at a much larger point size,
designs that looked the same or similar when set at text sizes suddenly appear to be quite

* The corresponding PostScript font names are KozMinPr6N-ExtraLight and KozMinPr6N-Heavy, respective-
ly. KozMin is short for Kozuka Mincho. It is named after its designer, Masahiko Kozuka (小塚昌彦 kozuka
masahiko).

366 | Chapter 6: Font Formats, Glyph sets, and Font tools

different. Some of the difference are in the shapes of the serifs or terminals of the strokes,
in the angle of diagonal strokes, or in the relative thickness of the horizontal and verti-
cal strokes. Let’s take a closer look at the kanji 語 set at 150-point using two typefaces,
KozMinPr6N-Heavy and HeiseiMinStd-W9, in Table 6-1.

KozMinPr6N-Heavy and HeiseiMinStd-W9 at 150-pointTable 6-1.

KozMinPr6n-Heavy HeiseiMinstd-W9

語語
Do they look identical? Of course not. At least, I hope not. Are they similar? Sure. They
represent the same character and are the same relative weight. If you look closely at the
glyphs, you will observe that KozMinPr6N-Heavy has slightly curved terminal strokes,
whereas HeiseiMinStd-W9 has squared ones. In addition, the horizontal strokes of the
KozMinPr6N-Heavy glyph are noticeably thinner than those of HeiseiMinStd-W9.

Now, carefully observe the glyphs in Table 6-2, and compare them to those in Table 6-1.

KozMinPr6N-Regular and HeiseiMinStd-W3 at 150-pointTable 6-2.

KozMinPr6n-regular HeiseiMinstd-W3

語語

How Many Glyphs Can a Font Include? | 367

Carefully note how the horizontal strokes of the KozMinPr6N-Heavy glyph are signif-
icantly thinner than those of the KozMinPr6N-Regular glyph, but that the horizontal
strokes of HeiseiMinStd-W9 and HeiseiMinStd-W3 are nearly identical in relative thick-
ness. This is merely one of many ways in which typeface designs are distinguished from
one another.

How Many Glyphs Can a Font Include?
When building fonts that include glyphs for CJKV characters, one obvious concern is file
size. Another is how many glyphs can be included, especially because Unicode version
5.1 finally breaks the 100,000-character barrier. Are there limitations on file size or the
number of glyphs? Any limitations could be exposed by using the tools that build fonts,
such as AsiaFont Studio, or by using the fonts on the clients that make use them, meaning
OSes, applications, and printers.

Being a professional CJKV font developer, the largest CIDFont resource that I have ever
built contains 55,880 CIDs (Character ID, meaning glyphs) and is approximately 40 MB
in size. It contains glyphs for all the characters in CNS 11643-1992 and CNS 11643-1986
Plane 15 and was developed specifically for printing Appendix G of the first edition of this
book. It continues to be used for this edition in the form of an OpenType font.

There was once a project in Japan whose goal was to build a font that contains approxi-
mately 64,000 kanji.* The font was to be called GT 明朝 (GT minchō) or 東大明朝 (tōdai
minchō) font. The “G” stands for 学術振興会 (gakujutsu shinkōkai), which means “So-
ciety for the Promotion of Science.” The “T” stands for 東大 (tōdai), short for 東京大
学 (tōkyō daigaku), which means “Tokyo University.” It was likely that the first operat-
ing system to act as a client for this font is TRON, probably the BTRON instantiation.†
Additional details about this project and its progress can be found at its website, and at
LineLabo’s website.‡

Today’s font formats, such as those based on PostScript and TrueType outlines, are limited
to 64K glyphs. For name-keyed PostScript fonts, the limit is 64,000 glyphs. For CID-keyed
or GID-based fonts, the limit is slightly higher, a true 64K, specifically 65,535 glyphs.
Given that the first CID or GID (Glyph ID, also meaning glyphs) is 0, this means that
the highest possible value is at index 65534. For OpenType fonts, to include TrueType,
the maximum GID is controlled by the maxp.numGlyphs value. (In other words, the
numGlyphs value in the ‘maxp’ table.) 0xFFFF (65,535) is the largest possible value for this
‘maxp’ table field; because this value represents the number of glyphs, which includes GID
at index 0, it means that the valid GID range is thus 0 through 65534 (65,535 GIDs).

* http://www.um.u-tokyo.ac.jp/DM_CD/DM_TECH/KAN_PRJ/HOME.HTM
† http://www.l.u-tokyo.ac.jp/KanjiWEB/00_cover.html
‡ http://www.linelabo.com/

368 | Chapter 6: Font Formats, Glyph sets, and Font tools

The following section dives into the issue of the 64K glyph barrier in more detail. The dif-
ference between CID and GID is discussed later in this chapter, so if you are incredibly
curious right now, please skip ahead to the section entitled “CID Versus GID.”

Composite Fonts Versus Fallback Fonts
It is important to distinguish Composite Fonts, which are carefully crafted font recipes
that are specifically designed to display glyphs from different component fonts in a har-
monious way, and Fallback Fonts, which are designed to ensure that something useful,
meaningful, or reasonable is always shown for any given character.

Composite Fonts allow developers and users to create a virtual font, which appears in
application font menus as a new and unique font instance, takes specific ranges of glyphs
from one or more component fonts, and combines those ranges to represent the glyph
repertoire of the virtual font. In order for the glyphs of the component fonts to work
harmoniously, it is sometimes necessary to adjust their relative sizes, escapements, or
baselines. The end result of the Composite Font should be typographically pleasing, and
suitable for publishing purposes.

Fallback Fonts, on the other hand, are not expected to appear in application font menus,
and are thus virtual fonts in a genuine sense. Fallback Fonts are simply intended to display
as many glyphs as possible, using fonts that are available to the OS or application, and are
typically defined by OS or application developers. Fallback Fonts are defined by specifying
a chain of fonts, listed in order of preference, and perhaps categorized by glyph coverage
or Unicode encoding ranges. As the OS or application renders text, the first font in the
Fallback Font list, appropriate for the glyph class or Unicode range, is used. If that font
does not include a glyph for a specific code point, the subsequent fonts in the Fallback
Font list are tried. Some OSes and applications make use of a last-resort font that includes
glyphs that represent character classes or display the Unicode code point, and serve to
indicate that no available font inludes an appropriate glyph. Apple has developed such a
font,* which is made available through The Unicode Consortium.†

Of course, it is possible for Composite Fonts to participate in Fallback Font recipes. Both
types of virtual fonts serve different purposes. To some extent, Fallback Fonts are like a
double-edged sword. On the one hand, they become a user convenience, especially for
purposes such as displaying or printing arbitrary web pages. As Unicode has grown, in-
cluding more characters than can be included as corresponding glyphs in a single font
resource, one could claim that Fallback Fonts have become a necessity. And, even if it were
possible to include glyphs for all of Unicode’s characters in a single font, doing so may not
seem appropriate. Building fonts based on character class is much more manageable. On
the other hand, when testing a font or application, Fallback Fonts can make it difficult to

* http://developer.apple.com/textfonts/LastResortFont/
† http://www.unicode.org/policies/lastresortfont_eula.html

How Many Glyphs Can a Font Include? | 369

know precisely what font is being used to render specific characters. Is it the font being
tested? If the font being tested is broken, is a Fallback Font being used instead?

In any case, Composite Fonts and Fallback Fonts are similar in that they can allow the
developer and user to address more code points than in standard font instances that have
a fairly hard 64K glyph limit. Composite Fonts are further explored, in terms of specific
formats, at the end of this chapter.

Breaking the 64K Glyph Barrier
Regardless of the font format, there is a very hard and fixed limit in terms of the number
of glyphs that can be addressed or included in a single font instance. OpenType and True-
Type fonts, along with the CIDFont resource, can include a maximum of 64K glyphs. For
OpenType fonts with name-keyed ‘CFF’ tables, the limit is actually 64,000 glyphs. For
TrueType fonts, OpenType fonts with ‘glyf ’ tables, OpenType fonts with CID-keyed ‘CFF’
tables, and CIDFont resources, the maximum number of glyphs is genuinely 64K, mean-
ing 65,535 glyphs.

Although this is often a point of confusion, I should point out that the 64K glyph barrier
is completely unrelated to the total number of code points that can be addressed in the
individual ‘cmap’ subtables of OpenType and TrueType fonts, and the ability to address
Unicode code points that are beyond the BMP. CMap resources, such as ‘cmap’ tables, can
address more than 64K code points, and can also address code points beyond the BMP as
long as its encoding is specified accordingly.

CFF FontSets seem to provide a mechanism for easily breaking the 64K glyph barrier, at
least in the context of OpenType fonts that include a ‘CFF’ table. Each individual FontSet is
subject to the 64K glyph barrier, but a single ‘CFF’ table can contain up to 65,535 FontSets.
At first glance, this seems to provide a trivial way for OpenType fonts with ‘CFF’ tables to
effectively support more than 64K glyphs. Unfortunately, the world is not so simple. The
other tables in an OpenType font that reference the GIDs specified in the ‘CFF’ table, such
as the ‘cmap’, ‘GPOS’, and ‘GSUB’ tables, are blissfully unaware of CFF FontSets, and would
need to be extensively revised to enable indexing into multiple CFF FontSets. While such
an effort would certainly be noble, it is an incredible amount of work, and affects not only
the fonts themselves, but clients that use the fonts. Furthermore, it would benefit only
OpenType fonts with ‘CFF’ tables. Those with ‘glyf ’ tables would still be bound to the 64K
glyph barrier. For this reason, CFF FontsSets do not represent a viable solution to break-
ing the 64K glyph barrier in a cross-platform way, and perhaps more importantly, in a way
that supports both PostScript and TrueType outlines.

Given the complex and difficult nature of forcibly breaking the 64K glyph barrier by revis-
ing the specifications of the affected tables, which involves extensive research and study,
a far easier approach would be to define a genuinely cross-platform Composite Font for-
mat. Such a Composite Font would constitute a recipe whereby a single virtual font is
established, and its description includes and depends upon one or more component fonts,
the combination of which includes more than 64K glyphs. One important consideration

370 | Chapter 6: Font Formats, Glyph sets, and Font tools

is that glyphs are not isolated objects, but rather interact with one another. For example,
glyph substitution is now common, and kerning defines a context that affects more than
one glyph. In terms of suitable language for establishing such a cross-platform composite
font mechanism, XML seems like a clear and somewhat logical choice. XML’s human-
readable property is an obvious benefit.

Should the Composite Font be instantiated as a separate file, perhaps as XML, or encap-
sulated in a new or existing OpenType table? As an XML file, its contents become more
visible to users. As an OpenType table, the Composite Font specification can become part
of the base, primary, or parent font. Also, should the component fonts be allowed to func-
tion as standalone fonts? These are all very important questions and considerations. What
must be made clear is that a major motivation for such a Composite Font format is the
ability to address more than 64K glyphs through a single selectable font instance, and any
solution needs to bear this in mind.

Bitmapped Font Formats
Let us take a step back to a time when outline fonts were not common. The first CJKV
fonts for use on computer systems were bitmapped. This meant that each glyph was con-
structed from a matrix of dots or pixels, each of which could be turned on or off—this
is referred to as a dot-matrix. The limitation of such font formats is that the resulting
bitmapped patterns are restricted to a single point (or pixel) size. Any scaling applied to a
bitmapped font almost always produces irregular-looking results, often referred to as the
“jaggies” or the “Lego* effect.” Skip ahead to Figure 8-1 in Chapter 8, which provides an
example of a scaled 12-pixel bitmapped glyph.

Obviously, the larger the dot-matrix pattern, the more memory such a bitmapped font re-
quires, especially when designing a bitmapped CJKV font that contains several thousand
glyphs, or tens of thousands of glyphs, depending on which character set or character sets
are supported. There is also the issue of needing to design a complete set of glyphs for
every pixel size that is required.

It must be stated, however, that bitmapped fonts do have their merits. More advanced font
technologies, which you will learn about later in this chapter, may produce poor-quality
results at small point sizes and on low-resolution output devices, such as computer dis-
plays or mobile devices. With bitmapped fonts, the user can take full advantage of hand-
tuned glyphs for commonly used point sizes. And, when few bitmap sizes are necessary,
bitmapped fonts can be quite compact compared to outline fonts.

There are a myriad of bitmapped font formats available, but there are two very common
formats that can be used for representing CJKV glyphs: BDF and HBF. The following sec-
tions briefly describe each of these.

* http://www.lego.com/

Bitmapped Font Formats | 371

As advanced as OpenType fonts are, they can also include bitmapped font data, in the
form of the ‘EBDT’, ‘EBLC’, and ‘EBSC’ tables whose heritage lies in TrueType fonts. AAT
fonts, which are a flavor of TrueType fonts, along with sfnt-wrapped CIDFonts, can in-
clude the ‘bdat’ and ‘bloc’ tables for specifying bitmapped font data. Interestingly, the
OpenType fonts produced by Adobe Systems do not include any bitmapped font data
whatsoever. OpenType fonts do not require any bitmapped font data.

BdF Font Format
One of the most commonly used bitmapped font formats is called BDF, short for Bitmap
Distribution Format. This was developed by Adobe Systems, and was subsequently ad-
opted by the X Consortium for use in the X Window System. (Although the latest version
of the BDF specification is version 2.2, the X Consortium has adopted version 2.1.)

A BDF file is composed of two main sections: a BDF header in which font-level attributes
are specified; and the individual BDF records, one for each glyph in the BDF file. An
example BDF header, which can be quite long, is illustrated later in this chapter, in the
section entitled “PostScript extensions for X Window System fonts.”

It is relatively easy to use and manipulate BDF fonts. In fact, many people have used freely
available CJKV BDF fonts for developing their own software, such as for the UI (user
interface) font. Figure 6-2 represents a complete BDF description for the ideograph 剣.
This BDF record corresponds to the 24×24 dot-matrix pattern that is illustrated later in
Figure 6-3.

��������������
��������������
�������������
�����������
��������������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
�������

A BDF record exampleFigure 6-2.

You must be wondering how to interpret this eye-catching BDF bitmap record data. Table
6-3 lists the BDF format keywords, along with a brief description of each.

372 | Chapter 6: Font Formats, Glyph sets, and Font tools

BDF bitmap record keyword descriptionsTable 6-3.

Keyword example description

STARTCHAR name STARTCHAR 3775 Glyph name—can be anything; 3775 is hexadecimal ISO-2022-JP

ENCODING n ENCODING 14197 Decimal encoding of glyph; 14197 is decimal ISO-2022-JP

SWIDTH x y SWIDTH 1000 0 Scalable width expressed as a vector

DWIDTH x y DWIDTH 24 0 Device width expressed as a vector

BBX w h x y BBX 24 24 0 -2 The bounding box for the character in device units

BITMAP BITMAP Beginning of bitmapped pattern

ENDCHAR ENDCHAR End of glyph description

The bitmapped data in each bitmap record of a BDF file that describes 24×24 dot-matrix
patterns consists of 24 lines of 6 characters each. Each line represents 24 pixels, thus each
character represents 4 pixels. Each of these six characters can have a value in the range
0x00 through 0x0F (that is, 0x00 through 0x09 or 0x0A through 0x0F). This allows for up
to 16 unique values, which is the total number of unique patterns that can be generated
using 4 pixels. Table 6-4 illustrates these 16 values as the value’s corresponding binary
patterns.

The 16 unique binary patterns in BDF dataTable 6-4.

Value Binary pattern

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Bitmapped Font Formats | 373

Let’s take a closer look at the beginning of the BDF bitmap record as shown in Figure 6-2,
specifically the following six hexadecimal digits:

018007
The binary pattern that is represented by these data corresponds to a pixel pattern: zeros
correspond to white pixels, and ones correspond to black pixels. Table 6-5 illustrates how
these binary patterns correspond to their equivalent pixel patterns.

Binary and pixel patterns in BDF dataTable 6-5.

BdF data 0 1 8 0 0 7

Binary pattern 0000 0001 1000 0000 0000 0111

Pixel pattern □□□□ □□□■ ■□□□ □□□□ □□□□ □■■■

Note how there are 24 pixels across, and 24 such lines. Compare this pixel pattern with
what you see in the first row of pixels in Figure 6-3. In fact, it is more efficient to read
these binary patterns two characters at a time, into a single byte. A byte can store a binary
pattern eight digits long. For example, the first two characters, 01, are stored into a single
byte, and its binary pattern is 00000001 (or, more graphically, □□□□□□□■).

BDF files can be reduced in size by converting them into binary representations, such as
Server Natural Format (SNF) or Portable Compiled Format (PCF). The standard X Win-
dow System utilities, called bdftosnf and bdftopcf, respectively, are used for this purpose.
The X Window System (X11R5 and later) prefers PCF. SNF is older, preferred by X11R4
and earlier, and skips or ignores unencoded BDF records.* PCF is obviously the newer
format, and it is considered to be superior to SNF in many respects because it uses a
more efficient representation. For a complete and authoritative description of BDF, see the
document entitled Glyph Bitmap Distribution Format (BDF) Specification (Adobe Systems
Technical Note #5005).†

Figure 6-3 illustrates example 24×24 and 16×16 dot-matrix patterns for the single ideo-
graph 剣. The 24×24 and 16×16 dot-matrix patterns illustrated in this figure were taken
directly from the JIS X 9052-1983 and JIS X 9051-1984 standards, respectively.‡ These
manuals were once useful if one’s OS or environment did not support all the characters
in JIS X 0208. This case is now extremely rare, and would arise only if one is using an an-
cient OS or a closed environment with little or no Japanese support. I once put these two
manuals to practical use when I was working with EGWord version 2.2 by ERGOSOFT
on Mac OS back in the late 1980s; that word-processing application supported only JIS

* An unencoded BDF record is one whose ENCODING field has its value set to −1.
† All of Adobe Systems’ Technical Notes that are referenced in this chapter are available as PDF (Adobe Acrobat)

files at http://www.adobe.com/devnet/font/.
‡ Note that these manuals are based on JIS X 0208-1983—they were never updated by JSA to conform to JIS X

0208-1990 or JIS X 0208:1997.

374 | Chapter 6: Font Formats, Glyph sets, and Font tools

Level 1 kanji. Interestingly, versions of EGWord beyond version 2.2 included support for
JIS Level 2 kanji by virtue of running under Mac OS-J.

��

��

����

Japanese bitmapped charactersFigure 6-3.

You can find bitmapped CJKV fonts at FTP sites, usually in the form of BDF files.* There
are easily obtainable tools that allow BDF files to be converted into other formats. Some
of these tools, such as bdftosnf or bdftopcf, may be already installed if you are running the
X Window System. You can also use Mark Leisher’s XmBDFEditor, or his newer gbdfed,
to create and edit BDF files; this X Window System tool is described later in the chapter.
The FreeType Project has developed a TrueType-to-BDF converter called ttf2bdf, which
is useful for creating CJKV BDF fonts when a suitable BDF font cannot be found, and is
based on FreeType version 1.† This tool has been surpassed by Mark’s otf2bdf tool, which
is based on FreeType version 2.‡

HBF Font Format
The Hanzi Bitmap Font (HBF) format is similar to BDF in how it describes the actual
character bitmap patterns, but it also creates a space-saving advantage by assuming that
all the characters have certain attributes in common, such as a common display and pixel
width.

* I suggest that you try ftp://etlport.etl.go.jp/pub/mule/fonts/, ftp://ftp.ifcss.org/pub/software/fonts/, or even ftp://
ftp.oreilly.com/pub/examples/nutshell/cjkv/fonts/.

† http://www.freetype.org/
‡ http://www.math.nmsu.edu/~mleisher/Software/otf2bdf/

outline Font Formats | 375

The HBF format stores the font attributes and common per-bitmap attributes in a human-
readable text file, which is based on BDF. This is called the “HBF specification file.” This
HBF-specific file introduces several new keywords not present in BDF fonts. Table 6-6
lists these new keywords, along with an example of their use.

HBF-specific keywordsTable 6-6.

Keyword example

HBF_BYTE_2_RANGE n-n HBF_BYTE_2_RANGE 0xA1-0xFE

HBF_CODE_RANGE n-n file offset HBF_CODE_RANGE 0xA1A1-0xA8FE jis97.24 0

The HBF_BYTE_2_RANGE keyword defines the valid byte-value range for the second byte of
the encoding. The HBF_CODE_RANGE keyword defines an encoding block, followed by the
font filename, then an offset value, expressed as the number of bytes, into the file. The font
filename is specified because it is possible to refer to more than one font file according to
the HBF format.

The actual bitmapped patterns are stored as a binary representation in one or more font
files. The HBF format is suitable if all the glyphs share common attributes, such as being
the same width—for example, half- or full-width. If variable-width characters are neces-
sary, HBF is not suitable for your needs.

The HBF format is further described in the article entitled “The HBF Font Format: Op-
timizing Fixed-pitch Font Support” (pages 113–123 of The X Resource, Issue 10) and in
online resources.*

outline Font Formats
During the early 1980s there was a revolution in the desktop publishing industry made
possible by the introduction of PostScript, the page-description language developed by
Adobe Systems. PostScript provides a seamless mixture of text and graphics, and, with the
development of laser printers, brought high-quality publishing capability to many more
people than ever before. Now, for very little money, anyone can purchase the necessary
hardware and software to produce high-quality CJKV text by themselves. As far as CJKV
fonts are concerned, the PostScript language supports a number of font formats that rep-
resent glyphs as scalable outlines.

In the late 1980s, Microsoft and Apple collaborated to develop a scalable font format
known as TrueType. The two companies went their separate ways (mainly due to the
fact that they also develop competing OSes), and independently enhanced the TrueType
format, but not to the point that they became completely incompatible with one another.
TrueType, of course, is fully capable of representing CJKV fonts.

* http://www.ibiblio.org/pub/packages/ccic/software/info/HBF-1.1/

376 | Chapter 6: Font Formats, Glyph sets, and Font tools

We will discuss both PostScript and TrueType font formats in greater detail later in this
chapter. However, the principles and concepts behind each of these formats have much in
common. In both cases, glyphs are constructed from outlines. This effectively means that
each glyph is described mathematically as a sequence of line segments, arcs, and curves.
This outline is scaled to the selected point size, filled, and then rendered as BDPs to the
output device.* A glyph from an outline font can be used at any conceivable point size
and resolution.† The design process is also simplified in that the designer need not worry
about the point size of the font, and thus does not need to design more than a single point
size.‡

Figure 6-4 represents an example glyph from an outline font. The outline is constructed
from line segments and curves. The anchor points that describe the outline are marked
with small black squares along the actual outline of the glyph. The offline control points
that define the Bézier curves (explained briefly in the next paragraph) are represented by
small black circles with lines drawn to their respective anchor points. In this example, the
glyph for the ideograph 剣 from FDPC’s 平成角ゴシック Std W5 (HeiseiKakuGoStd-
W5) typeface is used.

Japanese outline glyphFigure 6-4.

* In case you’re wondering, rendering (or scan converting or rasterizing) is the process of converting a scaled
outline into a bitmapped image. The outline format is only for more efficient internal representation and
storage.

† Unless, of course, the font is resolution-restricted. This means that whether you have a low- or high-resolution
device will decide what version of a font you must purchase. Needless to say, the high-resolution version costs
more. This is, of course, an artificial restriction.

‡ That is, unless the designer intends to support optical size, in which case Adobe Systems’ multiple master font
technology, described later in this chapter, comes to the rescue.

outline Font Formats | 377

Currently, the two most commonly used and encountered outline font technologies are
PostScript and TrueType. These have been effectively merged into a newer font format
know as OpenType. In terms of PostScript and TrueType outlines, specifically the way
in which the glyphs are represented, their primary difference lies in that PostScript uses
Bézier curves, which are also known as cubic splines, and TrueType uses quadratic splines.
Exactly what this means, and how they are different, is well beyond the scope of this book,
but it is useful to note that Bézier curves require fewer control points to represent the
same contours. This generally leads to fonts that are smaller, and easier to transfer, and
that require less disk storage space. Most users honestly do not care on what underlying
font technology their fonts are based, so long as they achieve the desired results. In other
words, users are happy as long as their fonts work as expected. The vast majority of users
are—and honestly should be—insulated from knowing the details of the underlying font
format.

Postscript Font Formats
PostScript is a powerful page-description language backed by a complete programming
language. As a programming language, PostScript is syntactically similar to Forth—both
are stack-based languages. As a page-description language, PostScript supports both
graphics and text, and to render text effectively, provides built-in support for a wide vari-
ety of font formats.*

The most widely used format supported by PostScript is called Type 1. Table 6-7 summa-
rizes these PostScript font formats with a brief description of their purpose.

PostScript font formatsTable 6-7.

Font type description

0 Composite font format

1 The basic and most widely used font format

2 Charstring format primarily for use with CFF—a lossless compaction of Type 1

3 User-defined font format

4 Disk-based font format—a Type 1 font stored in a way that saves RAMa

5 ROM-based font format—actually a Type 1 font stored in a special compressed format for ROM storage

9b CIDFont with Type 1 glyph procedures—equivalent to CIDFontType 0

10b CIDFont with PostScript BuildGlyph procedures, which is similar to Type 3 fonts—equivalent to CIDFontType 1

11b CIDFont with TrueType glyph procedures—equivalent to CIDFontType 2

* But I don’t recommend that you go out and use PostScript for your general programming needs. For one thing,
most PostScript interpreters are available only in PostScript printers, although Ghostscript and DPS are imple-
mented elsewhere.

378 | Chapter 6: Font Formats, Glyph sets, and Font tools

PostScript font formatsTable 6-7.

Font type description

14 Chameleon ROM font format

42 A TrueType font inside a PostScript wrapper—requires that a TrueType rasterizer be present

CFF Compact representation for fonts that use Type 1 charstrings—these charstrings can be Type 1 or 2

PostScript aficionados usually refer to RAM as VM (a. virtual memory).

Font Types 9 through 11 represent native-mode implementations of a CIDFont usable as a font resource instance, and only the “glyphshow” b.
operator can be used as their “show” operator.

The following provides a more detailed description and synopsis of each of these Post-
Script font formats:

Type 0 fonts are composite fonts, which are made up of two or more descendant •	
fonts. A composite font constitutes a hierarchical structure in which large character
sets can be supported. A descendant font can be a Type 1, Type 3, or even Type 0
font.* PostScript CJKV fonts are Type 0 fonts. CID-keyed fonts are also Type 0 fonts
(with an FMapType value of 9—FMapType is described later in this chapter).

Type 1 fonts are the most commonly used PostScript fonts. They use a special, re-•	
stricted subset of PostScript (along with additional operators), which allows for a
more compact (and faster-rendering) font. The Type 1 font format is typically used
for all Latin (that is, non-CJKV) fonts issued by Adobe Systems. It is also the for-
mat specified by the international standard designated ISO 9541:1991 (Information
Technology—Font Information Interchange), Parts 1, 2, and 3. The Japanese equivalent
of this standard has been published as a series of four manuals. Detailed information
on the Type 1 font format can be found in Adobe Systems’ Adobe Type 1 Font Format,
Version 1.1 (Addison-Wesley, 1990). Extensions to the Type 1 format are described in
The Type 1 Font Format Supplement (Adobe Systems Technical Note #5015).

Type 2 is not a font format, but rather a charstring format used within a •	 CFF (Com-
pact Font Format) structure. The word charstring (an abbreviated form or contraction
of “character string”) here means the code that forms the description of the outline—
think of it as a mini program that describes how to draw a glyph—as opposed to
the entire wrapping mechanism used to contain all the charstrings for a single font.
Type 2 operators form a superset of the Type 1 operators, which results in a smaller,
more compact and more efficient representation, and offers the opportunity for bet-
ter rendering quality than Type 1. This charstring format can also be considered as a
lossless compaction of Type 1. More information on Type 2 can be found in The Type
2 Charstring Format (Adobe Systems Technical Note #5177).

* A Type 0 font that is composed of Type 0 descendent fonts is referred to as a nested composite font.

outline Font Formats | 379

Type 3 is sometimes called a user-defined font format. Type 3 fonts are much like •	
Type 1 fonts, but allow for more complex outlines, such as logos and designs, and
permit the use of the full range of PostScript operators. Type 3 fonts are not that
common, do not work with Adobe Type Manager (ATM) software (as discussed in
Chapter 8) and are not supported natively by Mac OS X, Windows, or other OSes.
They also cannot be hinted (this is true for all practical purposes, but it is possible to
hint Type 3 charstrings if, and only if, you write your own hint procedures—but this
still means they will not work with ATM).

Type 4 fonts are Type 1 fonts, but are disk-based rather than printer-resident. Type 1 •	
fonts now have all the benefits of Type 4, such as being able to be read from disk on
an as-needed basis.

Type 5 fonts are Type 1 fonts packaged in a special way for storage within printer •	
ROM.

Type 9 fonts are CIDFonts that use Type 1 charstrings. All CIDFonts built by Adobe •	
Systems are Type 9. Type 9 is also referred to as CIDFontType 0.

Type 10 fonts are CIDFonts that use Type 3 charstrings. That is, they implement the •	
PostScript BuildGlyph procedure. Type 10 is also referred to as CIDFontType 1.

Type 11 fonts are CIDFonts that use TrueType charstrings. A TrueType rasterizer •	
must be present on the PostScript device in order to use Type 11 fonts. Type 11 is also
referred to as CIDFontType 2. More information on this TrueType CIDFont format
is available in PostScript Language Extensions for CID-Keyed Fonts (Adobe Systems
Technical Note #5213).

Type 14 fonts are so-called Chameleon fonts that were designed to represent a large •	
number of fonts in a compact fashion, in order to consume only a small amount of
storage space, such as for printer ROM. Adobe Systems never documented this font
format.

Type 42 fonts are actually TrueType fonts with a PostScript wrapper so that they can •	
reside within PostScript printers, and act much like PostScript fonts. A TrueType ras-
terizer must be present on the PostScript device in order to use Type 42 fonts.

CFF (•	 Compact Font Format) is a method that represents Type 1 and CIDFonts much
more compactly than ever before. It is a font wrapper or container designed to be
used primarily with Type 1 or Type 2 charstrings, though Type 2 charstrings are the
default and also more size-efficient. Proper tools can convert Type 1 and CIDFonts
to CFF and back again, with no loss of data, so CFF can be thought of as a way to
transform existing font formats into a more compact representation. CFF is natively
supported in PostScript 3 and higher. Information about CFF is found in The Com-
pact Font Format Specification (Adobe Systems Technical Note #5176).

380 | Chapter 6: Font Formats, Glyph sets, and Font tools

But, why the number 42? What is the significance of selecting such a seemingly high
number?*

Henry McGilton and Mary Campione’s book entitled PostScript by Example (Addison-
Wesley, 1992) is an excellent tutorial, and has a chapter on fonts, including a superb
tutorial on composite fonts. Adobe Systems’ PostScript Language Reference Manual, Third
Edition (Addison-Wesley, 1999), provides a complete description of the PostScript lan-
guage, including information on Type 0 and Type 3 fonts. The many Technical Notes
provided by Adobe Systems, several of which I have authored, provide additional infor-
mation about PostScript and related font technologies. These Technical Notes are also
freely available.†

FMaptype—for type 0 fonts
All Type 0 (composite) fonts must specify an FMapType. An FMapType is a PostScript
language key, represented by an integer, that indicates which mapping algorithm to use
when interpreting the sequence of bytes in a string. There are currently eight FMap-
Types that have been defined, all of which are described in the PostScript Language Refer-
ence Manual. Table 6-8 lists the FMapTypes, along with explanations as provided in the
PostScript Language Reference Manual.

* It has been rumored that the number 42 was chosen by an unidentified (Apple) employee who was being
humorous. In The Hitchhiker’s Guide to the Galaxy and its sequels (written by Douglas Adams and published
by Pocket Books), a god-like computer named Deep Thought is asked to calculate the answer to the Ulti-
mate Question of Life, the Universe, and Everything. After computing for seven and a half million years, Deep
Thought returns the value 42.
Reality sets in. In a September 27, 1995 post to comp.fonts that I happened to spot, Kevin Andresen revealed to
the world that he was the person who chose the number 42. I quote:

I named it, and for you conspiracy theorists out there, it did not mean TrueType was the answer to Type 1!
Maybe the real story later….

In a private email communication, Kevin conveyed the details to me:
My group back at Xerox had changed their workstation/server/printer naming theme from Mad Max to Hitch
Hiker’s Guide just before I left—our main development printer was named “Forty-Two.” I picked 42 because I
knew that Adobe couldn’t accidentally go there next, and as a wink and a nudge to my friends back in Rochester.
It was only after Adobe and Apple resumed their business relationship that I heard the “conspiracy theory” about
the answer to Type 1. By then, we had already released the spec to TrueType developers, so the name stuck.

Kevin also told me that he wrote an unimplemented specification for the disk-resident form of Type 42—simi-
lar to Type 4 fonts—called Type 44. He chose 44 because he had a cold at the time, and was guzzling Vicks
Formula 44D. Oh, and Kevin no longer works for Apple.
As a footnote to this footnote, Douglas Adams had a few words to say about the significance of 42, from an
email originally sent to Kevin:

Everybody tries to find significances for 42. In fact, it’s the other way around—many more significances have
been created than previously existed. (Of course, the number that previously existed was zero—it was just a
joke.)

Sadly, Douglas Adams passed away on May 11, 2001 at the age of 49.
Perhaps on a somewhat brighter note, almost all of the second edition of this book was written while I was 42
years of age.

† http://www.adobe.com/devnet/font/

outline Font Formats | 381

FMapTypes for Type 0 fontsTable 6-8.

FMaptype Algorithm explanation

2 8/8 mapping Two bytes are extracted from the “show” string. The first byte is the font
number, and the second byte is the character code.

3 Escape mapping One byte is extracted from the “show” string. If it is equal to the value of the
EscChar entry, the next byte is the font number, and subsequent bytes (until
the next escape code) are character codes for that font. At the beginning of a
“show” string, font 0 is selected.

4 1/7 mapping One byte is extracted from the “show” string. The most significant bit is the
font number, and the remaining seven bits are the character code.

5 9/7 mapping Two bytes are extracted from the “show” string and combined to form a 16-bit
number, high-order byte first. The most significant nine bits are the font
number, and the remaining seven bits are the character code.

6 SubsVector mapping One or more bytes are extracted from the “show” string and decoded according
to information in the SubsVector entry of the font.

7 Double escape mapping Similar to FMapType 3. When an escape code is immediately followed by a
second escape code, a third byte is extracted from the “show” string. The font
number is the value of this byte plus 256.

8 Shift mapping This mapping provides exactly two descendant fonts. A byte is extracted from
the “show” string. If it is the ShiftIn code, subsequent bytes are character codes
for font 0. If it is the ShiftOut code, subsequent bytes are character codes for
font 1. At the beginning of the “show” string, font 0 is selected.

9 CMap mapping One or more bytes are extracted from the “show” string and decoded according
to information in the font’s CMap entry.

FMapTypes 7 and 8 are available only in PostScript Level 2 implementations. FMapType 9
is available only on CID-capable PostScript devices, including PostScript 3.

FMapTypes 3, 7, and 8 support modal encodings (that is, some bytes, such as escape or
shifting characters, are used to indicate information other than characters themselves).
FMapTypes 2, 4, 5, 6, and 9 support nonmodal encodings—all the bytes are used to en-
code characters themselves.

The composite fonts that are supported in Adobe Systems’ Japanese OCF fonts use ei-
ther FMapType 2 (for strictly two-byte encodings, such as ISO-2022-JP and EUC-JP)* or
FMapType 6 (for mixed one- and two-byte encodings, such a Shift-JIS). CID-keyed fonts,
of course, use FMapType 9.

* As you’ll soon discover, Adobe Systems’ Japanese OCF fonts support only EUC code set 1 (JIS X 0208:1997).
CID-keyed fonts add support for code sets 0 and 2 (ASCII/JIS-Roman and half-width katakana, respectively).

382 | Chapter 6: Font Formats, Glyph sets, and Font tools

Composite fonts
The very first composite fonts offered by Adobe Systems are now referred to as Original
Composite Format (OCF) fonts.* Adobe Systems produced OCF fonts only for Japanese—
Chinese and Korean fonts offered by Adobe Systems were originally available only in
the newer CID-keyed font file specification.† Interestingly, the actual charstrings (that is,
outlines) of OCF fonts and CID-keyed fonts are identical, including their hinting. The
CID-keyed font file specification uses a much more compact and efficient packag-
ing mechanism and file structure and is highly extensible when it comes to supporting
additional or complex encodings.

PostScript CJKV fonts are implemented as collections of composite fonts that support
various character sets and encoding methods. They also have special naming conventions
not found in other fonts offered by Adobe Systems. A fully qualified PostScript CJKV font
name consists of several parts: family name, face name (usually indicating the weight or
other characteristic that distinguishes it from other members of the same typeface fam-
ily), character set, encoding, and writing direction. The combination of family name and
face name represents the base font name. Table 6-9 shows possible values for each of these
parts (using examples from now-obsolete OCF fonts).

PostScript CJKV font naming conventionsTable 6-9.

Base font name Character set encoding Writing direction

Ryumin-Light 83pv RKSJ H (horizontal)

GothicBBB-Medium Add EUC V (vertical)

FutoMinA101-Bold Ext and so on…

MidashiGo-MB31 NWP

HeiseiMin-W3 and so on…

and so on…

The following are notes that accompany Table 6-9:

When the “Character Set” is not specified, the default is the standard JIS character •	
set (meaning JIS X 0208-1983 or JIS X 0208:1997, depending on the vintage of the
font).

When the Encoding is not specified, the default is ISO-2022-JP encoding.•	

83pv stands for “JIS X 0208-1983 plus verticals” (or perhaps “JIS X 0208-1983 plus •	
proportional and verticals”—no one at Adobe Systems really knows for sure), and it

* Contrary to popular belief or rumor, OCF does not, I repeat, does not stand for Old Crappy Font. When they
were first conceived, OCF fonts were quite revolutionary.

† All of Adobe Systems’ Japanese OCF fonts have been upgraded to become CID-keyed fonts, most of which
conform to the Adobe-Japan1-2 character collection, described shortly.

outline Font Formats | 383

represents the KanjiTalk version 6 character set, which also contains the vertically set
characters. The writing direction is always specified as H because most of the char-
acters are horizontal.

RKSJ stands for Roman, (half-width) Kana, and Shift-JIS.•	

The Add character set represents a version of Fujitsu’s FMR Japanese character set.•	

EUC, as you might expect, stands for Extended Unix Code. The only recognized •	
EUC-JP code set for OCF fonts is code set 1, for JIS X 0208:1997. CID-keyed fonts,
described shortly, support EUC-JP code sets 0, 1, and 2.

The Ext character set represents the NEC Japanese character set.•	

The NWP character set, short for •	 NEC Word Processor, represents the NEC Japanese
character set as implemented on NEC dedicated Japanese word processors.

Note that not all combinations of Character Set and Encoding specified in Table 6-9 are
supported. The following are the fully qualified PostScript font names for the typeface
called HeiseiMin-W3, using the OCF version for the example:

HeiseiMin-W3-H
HeiseiMin-W3-V
HeiseiMin-W3-Add-H
HeiseiMin-W3-Add-V
HeiseiMin-W3-Ext-H
HeiseiMin-W3-Ext-V
HeiseiMin-W3-NWP-H
HeiseiMin-W3-NWP-V
HeiseiMin-W3-EUC-H
HeiseiMin-W3-EUC-V
HeiseiMin-W3-RKSJ-H
HeiseiMin-W3-RKSJ-V
HeiseiMin-W3-Add-RKSJ-H
HeiseiMin-W3-Add-RKSJ-V
HeiseiMin-W3-Ext-RKSJ-H
HeiseiMin-W3-Ext-RKSJ-V
HeiseiMin-W3-83pv-RKSJ-H

Compare this with Table 6-9 to find out what character sets and encoding methods each
font instance supports. There are also some special one-byte–encoded fonts that make up

384 | Chapter 6: Font Formats, Glyph sets, and Font tools

Adobe Systems’ PostScript Japanese fonts, indicated as follows (again, using the OCF ver-
sion of HeiseiMin-W3 for the example):

HeiseiMin-W3.Hankaku
HeiseiMin-W3.Hiragana
HeiseiMin-W3.Katakana
HeiseiMin-W3.Roman
HeiseiMin-W3.WP-Symbol

You may notice that the character set, encoding, and writing direction naming conven-
tions that were used for OCF fonts have carried forward to the naming conventions for
CMap resources (covered later in this chapter). In particular, the Adobe-Japan1-6 CMap
resource names that are provided in Table 6-34 reflect this heritage.

Over the years, the Adobe Type Library has included a large number of Japanese typefac-
es (designed by Adobe Systems as Adobe Originals, and licensed from FDPC,* Kamono
Design Laboratory, Morisawa, and TypeBank), a small number of Simplified Chinese
typefaces (purchased from Changzhou SinoType Technology), a small number of Tradi-
tional Chinese typefaces (licensed from Monotype Imaging and purchased from Arphic
Technology), and several Korean typefaces (originally licensed from SoftMagic, and li-
censed or purchased from Hanyang Information & Communications). Table 6-10 lists the
OpenType CJKV fonts that are designed or owned by Adobe Systems. Of course, Adobe
Systems licenses and offers additional OpenType CJKV fonts not shown in this table.† The
typefaces that Adobe Systems offers are licensed or purchased from a type foundry, then
produced by Adobe Systems or their font tools licensees to strictly conform to PostScript
font specifications. The majority of the Japanese typefaces offered by Adobe Systems are
designed by its Tokyo-based Japanese type design team.

Adobe Systems’ OpenType CJKV typefacesTable 6-10.

typeface namea Postscript name ros sample text

かづらき Std L KazurakiStd-Light Adobe-Identity-0 わ文文じもじモジ

小塚ゴシック Pr6N EL KozGoPr6N-ExtraLight Adobe-Japan1-6 和文文字もじモジ
小塚ゴシック Pr6N L KozGoPr6N-Light Adobe-Japan1-6 和文文字もじモジ
小塚ゴシック Pr6N R KozGoPr6N-Regular Adobe-Japan1-6 和文文字もじモジ
小塚ゴシック Pr6N M KozGoPr6N-Medium Adobe-Japan1-6 和文文字もじモジ
小塚ゴシック Pr6N B KozGoPr6N-Bold Adobe-Japan1-6 和文文字もじモジ
小塚ゴシック Pr6N H KozGoPr6N-Heavy Adobe-Japan1-6 和文文字もじモジ

* FDPC, if you recall, stands for Font Development and Promotion Center (文字フォント開発・普及センター
moji fonto kaihatsu fukyū sentā). FDPC is now defunct, and JSA (Japanese Standards Association) has since
taken over the licensing and development of the Heisei fonts.

† http://www.adobe.com/type/

outline Font Formats | 385

Adobe Systems’ OpenType CJKV typefacesTable 6-10.

typeface namea Postscript name ros sample text

小塚明朝 Pr6N EL KozMinPr6N-ExtraLight Adobe-Japan1-6 和文文字もじモジ
小塚明朝 Pr6N L KozMinPr6N-Light Adobe-Japan1-6 和文文字もじモジ
小塚明朝 Pr6N R KozMinPr6N-Regular Adobe-Japan1-6 和文文字もじモジ
小塚明朝 Pr6N M KozMinPr6N-Medium Adobe-Japan1-6 和文文字もじモジ
小塚明朝 Pr6N B KozMinPr6N-Bold Adobe-Japan1-6 和文文字もじモジ
小塚明朝 Pr6N H KozMinPr6N-Heavy Adobe-Japan1-6 和文文字もじモジ
りょうゴシック PlusN EL RyoGothicPlusN-ExtraLight Adobe-Japan1-3 + 144 和文文字もじモジ

りょうゴシック PlusN L RyoGothicPlusN-Light Adobe-Japan1-3 + 144 和文文字もじモジ

りょうゴシック PlusN R RyoGothicPlusN-Regular Adobe-Japan1-3 + 144 和文文字もじモジ

りょうゴシック PlusN M RyoGothicPlusN-Medium Adobe-Japan1-3 + 144 和文文字もじモジ

りょうゴシック PlusN B RyoGothicPlusN-Bold Adobe-Japan1-3 + 144 和文文字もじモジ

りょうゴシック PlusN H RyoGothicPlusN-Heavy Adobe-Japan1-3 + 144 和文文字もじモジ
りょうゴシック PlusN UH RyoGothicPlusN-UltraHeavy Adobe-Japan1-3 + 144 和文文字もじモジ
りょう Text PlusN EL RyoTextPlusN-ExtraLight Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Text PlusN L RyoTextPlusN-Light Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Text PlusN R RyoTextPlusN-Regular Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Text PlusN M RyoTextPlusN-Medium Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Disp PlusN M RyoDispPlusN-Medium Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Disp PlusN SB RyoDispPlusN-SemiBold Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Disp PlusN B RyoDispPlusN-Bold Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Disp PlusN EB RyoDispPlusN-ExtraBold Adobe-Japan1-3 + 144 和文文字もじモジ

りょう Disp PlusN H RyoDispPlusN-Heavy Adobe-Japan1-3 + 144 和文文字もじモジ

Adobe 黑体 Std R AdobeHeitiStd-Regular Adobe-GB1-5 中文简体字

Adobe 宋体 Std L AdobeSongStd-Lght Adobe-GB1-5 中文简体字

Adobe 仿宋 Std R AdobeFangsongStd-Regular Adobe-GB1-5 中文简体字

Adobe 楷体 Std R AdobeKaitiStd-Regular Adobe-GB1-5 中文简体字

Adobe 明體 Std L AdobeMingStd-Light Adobe-CNS1-5 中文繁體字

Adobe 명조 Std M AdobeMyungjoStd-Medium Adobe-Korea1-2 한글과 漢字 샘플

These are the actual font names that appear in application font menus. All of Adobe Systems’ OpenType CJKV fonts share the same menu a.
name across operating systems, though in the past there were a handful that did not when implemented using a legacy font format. These
are listed in Table 6-54.

386 | Chapter 6: Font Formats, Glyph sets, and Font tools

Companies that develop PostScript CJKV fonts, either by licensing font data or designing
font data themselves, are far too numerous to list here, though a significant sampling was
provided very early in this chapter.

There have been projects that resulted in freely available PostScript CJKV fonts. One of
these projects, at WadaLab of Tokyo University (東京大学 tōkyō daigaku), resulted in
several JIS X 0208:1997 and JIS X 0212-1990 fonts.* Another such project, sponsored by
Korea’s Ministry of Culture and Tourism (문화 관광 부/文化觀光部 munhwa gwang-
wang bu), resulted in a series of Korean fonts named “Munhwa” (문화/文化 munhwa,
meaning “culture”) that support a hangul-only subset of KS X 1001:2004, specifically
2,350 glyphs. I have since added proportional- and half-width Latin characters to these
fonts, which makes them slightly more usable. I have also heard of a similar set of free
outline fonts from Taiwan. I have built and made available CIDFonts—and sfnt-wrapped
CIDFont and OpenType versions for some of them—from the freely available PostScript
font data as time and resources have permitted.†

In any case, there has been much talk thus far about two common PostScript font formats
suitable for building CJKV fonts: OCF and CID-keyed fonts. The sections that immedi-
ately follow will set the record straight about their origins and differences. Still later in
this chapter, you will learn that OpenType trumps them both, but that CID-keyed fonts
represent a path toward OpenType.

oCF fonts—a legacy font format
As mentioned earlier, OCF fonts represent the original composite fonts offered by Adobe
Systems. The OCF specification was never published or otherwise disclosed, so nearly ev-
ery major CJKV type foundry took it upon themselves to reverse engineer (er, uh, I meant
creatively re-engineer) its format.

A typical Japanese OCF font offered by Adobe Systems is made up of nearly 100 separate
files spread throughout four directories on a PostScript filesystem. There are three reasons
for the large number of files:

Adobe Systems’ OCF fonts support a large number of character sets and encodings•	

The character set and encoding information, although common across all OCF fonts •	
offered by Adobe Systems, is duplicated for every font

The file format itself is complex•	

The more OCF fonts you install onto a PostScript filesystem, the more of a headache file
management can become. There is nothing inherently wrong or bad about OCF fonts, but
their format did not prove itself to be suitably extensible. Work then began on a simpler
file format specification: CID-keyed fonts.

* http://gps.tanaka.ecc.u-tokyo.ac.jp/wadalabfont/
† ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/

outline Font Formats | 387

CId-keyed fonts
CID-keyed fonts represent the basic underlying technology used for building today’s (and
tomorrow’s) PostScript CJKV fonts. CID stands for Character ID, and it is a character
and glyph access type for PostScript. Technically speaking, a CID-keyed font is a Type 0
(composite) font with FMapType 9. A CID-keyed font can also be CIDFontType 0, 1, or
2, depending on the type of character descriptions that are included. CIDFontType 0 is by
far the most common CID-keyed font.

There are two components that constitute a valid a CID-keyed font: a CIDFont resource
that contains the glyph descriptions (outlines), along with other data necessary to prop-
erly render them, such as hinting information; and one or more Character Map (CMap)
resources that are used to establish character-code to CID mappings. The CIDs are ulti-
mately used to index into the CIDFont resource for retrieving glyph descriptions.

A valid CID-keyed font instance consists of a CIDFont plus CMap concatenated using
one or two hyphens.* Table 6-11 lists some CIDFonts and CMaps, along with the corre-
sponding valid CID-keyed fonts.

CIDFont and CMap resources versus CID-keyed fontsTable 6-11.

CIdFont resource CMap resource CId-keyed font

Munhwa-Regular KSC-H Munhwa-Regular--KSC-H

HeiseiMin-W3 H HeiseiMin-W3-H

MSung-Light CNS-EUC-V MSung-Light--CNS-EUC-V

When is it appropriate to use one versus two hyphens as glue? For CID-keyed fonts that
were once available as OCF fonts, such as HeiseiMin-W3-H (that is, the “HeiseiMin-W3”
CIDFont resource name plus “-” plus the “H” CMap resource name), a single hyphen is
recommended for compatibility, because the OCF font machinery does not understand
two hyphens, and will fail to execute, or “find,” the font. Otherwise, two consecutive hy-
phens are recommended.

I intentionally did not label CID-keyed fonts as a legacy font format. This is because the
CIDFont and CMap resources for CID-keyed fonts still serve as fundamental source ma-
terial for building OpenType CJKV fonts, which is a topic that is fully covered later in this
chapter. Although end-user use of CID-keyed fonts is effectively deprecated and no lon-
ger encouraged, font developers are still given the option to develop CIDFont and CMap
resources in order to more easily build OpenType fonts.

The best way to learn how to use CID-keyed fonts in a conforming manner is to read CID
Font Tutorial (Adobe Systems Technical Note #5643).

* Two hyphens are recommended because it explicitly tells PostScript and other clients what portions represent
the CIDFont and CMap resources. For some CID-capable PostScript clone implementations, two hyphens are
required.

388 | Chapter 6: Font Formats, Glyph sets, and Font tools

the CIdFont resource

The CIDFont resource, which is a container for the character descriptions, assigns a
unique character ID (CID) for every glyph. This CID is independent of any normal en-
coding and is simply an enumeration beginning at zero. Table 6-12 provides an example
of a few CIDs, along with a graphic representation of the characters that are associated
with them (examples taken from the Adobe-Japan1-6 character collection).

Adobe-Japan1-6 CIDs and their graphic representations—samplesTable 6-12.

CId Glyph

0 .notdef

1 (proportional-width space)

… (thousands of CIDs omitted)

7474 堯
7475 槇
7476 遙
7477 瑤
… (hundreds of CIDs omitted)

8284 凜
8285 熙
… (thousands of CIDs omitted)

23057 龣

The CIDFont resource is constructed from two basic parts, each of which is outlined be-
low, along with a brief description:

A header
Provides global font attributes, such as the font name, number of CIDs, private dic-
tionaries, and so on.

A binary portion
Contains offsets to subroutines, the subroutines themselves, offsets to charstrings,
and the charstrings themselves.

While the header of a CIDFont resource is simply PostScript-like ASCII text, the remain-
der is binary data.

the CMap resource

The information that associates encoded values with CIDs is defined in the CMap re-
sources. In most cases, or in a perfect world, an encoding range is associated with a CID

outline Font Formats | 389

range. The following are example lines taken from a standard Adobe-Japan1-6 CMap re-
source, named simply “H,” which specifies ISO-2022-JP encoding:

18 begincidrange
… (16 CID ranges omitted)
<7421> <7424> 7474
<7425> <7426> 8284
endcidrange

The convention is to use hexadecimal values enclosed in arrow brackets for character
codes, and to use decimal values, not enclosed, for CIDs. Carefully note how the encod-
ing ranges are associated with a range of CIDs. The following describes how it works:
the encoding range is specified by two encoded values, one for each end of the encoding
range—sometimes, noncontiguous encoding or CID ranges make one-to-one mappings
necessary. In the preceding case, the two ranges are <74 21> through <74 24> and <74 25>
through <74 26>. The CID associated with each range indicates the starting point from
which encoded positions are associated with CIDs. For example, the two ranges just listed
result in the associations between encoded values and CIDs, as described in Table 6-13.

Encoded values versus CIDsTable 6-13.

encoded value CId

<7421> 7474

<7422> 7475

<7423> 7476

<7424> 7477

<7425> 8284

<7426> 8285

Note how only two lines of a CMap resource can be used to associate many code points
with their corresponding glyphs, expressed as CIDs. In the case of a complete row of
characters, such as the range <30 21> through <30 7E> (94 code points), the following
single line can be used:

<3021> <307e> 1125

For this example, the encoding range <30 21> through <30 7E> is mapped to CIDs 1125
through 1218.

The ordering of the glyphs in character collections generally favors a specific character set,
and thus adheres to its ordering. The glyphs of the Adobe-Japan1-6 character collection
that correspond to the JIS X 0208:1997 character set are ordered accordingly. This is why
it is possible to map large contiguous encoding ranges to correspondingly large contigu-
ous ranges of CIDs. When these same six CIDs are mapped from their corresponding

390 | Chapter 6: Font Formats, Glyph sets, and Font tools

Unicode code points, the following lines are the result, using the UniJIS2004-UTF32-H
CMap resource as the example:

6 begincidchar
<000051DC> 8284
<0000582F> 7474
<000069C7> 7475
<00007199> 8285
<00007464> 7477
<00009059> 7476

endcidchar

There are two very important things to note in the preceding example CMap lines:

The character codes are necessarily in ascending order, but because the Unicode or-•	
der is significantly different than that set forth in the JIS X 0208:1997 character set,
the CIDs to which they map are no longer in ascending order. There is absolutely
nothing wrong with this.

The character codes and CIDs are no longer in contiguous ranges, which necessitates •	
the use of the begincidchar and endcidchar operators that are used to specify single
mappings. The begincidrange and endcidrange operators are appropriate only when
character codes and their corresponding CIDs are in contiguous ranges.

The following is an example CMap resource, named UniCNS-UTF32-H, that maps a
single Unicode code point, specifically U+4E00 expressed in UTF-32BE encoding, to its
corresponding glyph in the Adobe-CNS1-5 character collection, specifically CID+595:

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)
%%BeginResource: CMap (UniCNS-UTF32-H)
%%Title: (UniCNS-UTF32-H Adobe CNS1 5)
%%Version: 1.006
%%EndComments
/CIDInit /ProcSet findresource begin
12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin
 /Registry (Adobe) def
 /Ordering (CNS1) def
 /Supplement 5 def
end def

/CMapName /UniCNS-UTF32-H def
/CMapVersion 1.006 def
/CMapType 1 def

/XUID [1 10 25593] def

/WMode 0 def

outline Font Formats | 391

1 begincodespacerange
<00000000> <0010FFFF>
endcodespacerange

1 beginnotdefrange
<00000000> <0000001f> 1
endnotdefrange

1 begincidchar
<00004e00> 595
endcidchar
endcmap
CMapName currentdict /CMap defineresource pop
end
end

%%EndResource
%%EOF

I have emboldened the sections that define the encoding space and the character code
to CID mappings themselves. Of course, the actual UniCNS-UTF32-H CMap resource
includes thousands of mappings. More detailed information about how to build your own
CMap resources is available in Building CMap Files for CID-Keyed Fonts (Adobe Systems
Technical Note #5099).

These sections provided merely a taste of what the CID-keyed fonts offer. This technology
was specifically designed so that font developers could make CJKV fonts much smaller,
and more easily and efficiently than ever before. CID-keyed fonts are also portable across
platforms, at least in the past. For Mac OS, ATM version 3.5J or later supported CID-
keyed fonts as did ATM version 3.8 (non-Japanese) or later. For Windows, but not Win-
dows NT or later, ATM version 3.2J (but not version 4.0!) supported CID-keyed fonts.
Contemporary versions of these OSes, meaning Mac OS X and Windows (2000, XP, and
Vista), support OpenType fonts, which can be built from CID-keyed font sources. Per-
haps more importantly, CIDFont and CMap resources represent critical raw materials
for building OpenType fonts. Any effort in building CIDFont and CMap resources is not
wasted. OpenType, covered later in this chapter, represents a truly cross-platform font
format.

The document entitled Adobe CMap and CIDFont Files Specification (Adobe Systems
Technical Note #5014) describes CID-keyed fonts in more detail and is considered to be
the engineering specification needed by font developers. A more gentle introduction is
available in the document entitle CID-Keyed Font Technology Overview (Adobe Systems
Technical Note #5092). Adobe Systems Technical Note #5213 (a PostScript version 2016
supplement) should also be of interest to developers because it more fully describes the
various CIDFontTypes. If you are a font developer, I strongly encourage you to request
a copy of the CID SDK (CID-keyed Font Technology Software Development Kit) from the
Adobe Developers Association, which is delivered on a single CD-ROM. The CID SDK
includes all the documentation and software necessary to implement CID-keyed font
technology, including sample CIDFonts.

392 | Chapter 6: Font Formats, Glyph sets, and Font tools

sfnt-wrapped CIdFonts—a legacy font format
A past twist to CID-keyed font technology was referred to as sfnt-wrapped CIDFonts.
Font geeks and nerds alike are fully aware that TrueType fonts, at least those for Mac OS,
resided within what is known as an ‘sfnt’ (scalable font) resource. But, weren’t CID-keyed
fonts the best thing since sliced bread? Well, sure they were, but….

CID-keyed font technology provides an extremely flexible mechanism for supporting
large character sets and multiple encodings, but lacks host-based support such as user-
selected and context-sensitive glyph substitution, alternate metrics (such as half-width
symbols and punctuation, proportional kana, and even proportional ideographs), and
easy vertical substitution. These types of advanced typographic features will be covered in
greater detail when we get to Chapter 7.

An sfnt-wrapped CIDFont looks, smells, and behaves as though it were a TrueType—
actually, AAT/QuickDraw GX—font, but instead of using TrueType outlines for its glyphs
in the ‘glyf ’ table, there is a CIDFont resource there instead in the ‘CID’ table that was
established by Adobe Systems. Basically, the CIDFont file itself becomes one of the many
tables within the ‘sfnt’ resource. Table 6-14 lists the additional ‘sfnt’ tables that are present
in an sfnt-wrapped CIDFont.

Additional ‘sfnt’ tables in sfnt-wrapped CIDFontsTable 6-14.

table taga description

ALMX Alternate metrics

BBOX Font bounding box

CIDb CIDFont resource

COFN AAT font name for each component in a rearranged font

COSP Code space for a rearranged font

FNAM For AAT compatibility

HFMX Horizontal font metrics

PNAM Fully qualified PostScript font name

ROTA Character rotation

SUBS Subset definition

VFMX Vertical font metrics

WDTH Set widths

Note that all of these table tags are uppercase. This was intentional because only Apple is a.
allowed to use all-lowercase table tags.

Note that this tag, like the others, consists of four characters: the three letters “CID” b.
followed by a single space.

Note that the use of all-lowercase table tags is reserved by Apple, which explains why
those table tags listed in Table 6-14 are entirely uppercase. The only exception to this

outline Font Formats | 393

policy is the ‘gasp’ table that was defined by Microsoft, which should have included at least
one uppercase letter. Gasp!

In addition, sfnt-wrapped CIDFonts typically include the ‘bdat’, ‘bloc’, ‘cmap’, ‘feat’, ‘mort’,
‘name’, ‘post’, and ‘subs’ tables, all of which are listed or described later in this chapter in
the section entitled “AAT—formerly QuickDraw GX.” The TrueType ‘cmap’ table in sfnt-
wrapped CIDFonts functions in a way comparable to the CMap resource for CID-keyed
fonts.

The first applications to recognize the advanced typographic features provided in sfnt-
wrapped CIDFonts were Adobe Illustrator version 5.5J and Adobe PageMaker version
6.0J—both for Mac OS. Macromedia FreeHand 8.0J and higher also recognized these
fonts’ advanced typographic features. AAT applications could also recognize and use
these fonts, as long as ATM version 3.9 or later was installed and enabled. More informa-
tion on sfnt-wrapped CIDFonts can be found in CID-Keyed sfnt Font File Format for the
Macintosh (Adobe Systems Technical Note #5180).

Now, it is clearly a better practice to build OpenType fonts. The good news is that the same
CIDFont resource that is used to build an sfnt-wrapped CIDFont can be used to build
an equivalent OpenType font. In fact, there are much better tools available for building
OpenType fonts than for building sfnt-wrapped CIDFonts. This makes perfect sense con-
sidering the obsolete and deprecated nature of sfnt-wrapped CIDFonts.

Multiple master—a pseudo-legacy font format
Multiple master technology is an extension to the Type 1 Font Format described earlier
in this chapter. This technology allows for the dynamic interpolation of a typeface’s attri-
butes, such as width, weight, optical size, and style. Multiple master fonts are a big design
effort and require that many master outlines be made for each character. Exactly how
many master outlines there are generally depends on the number of design axes. Table
6-15 illustrates the usual or typical relationship between design axes and master outlines.
Although it may appear that the number of design axes determines the number of master
outlines, that is not the case. The number of master outlines must be greater than or equal
to the number of axes plus one. For example, Adobe Jenson and Kepler are multiple mas-
ter fonts that do not follow the “power of two” model.

Multiple master design axes and number of corresponding master outlinesTable 6-15.

number of design axes number of master outlines

1 2

2 4

3 8

4 16

394 | Chapter 6: Font Formats, Glyph sets, and Font tools

These master outlines are interpolated to produce a particular font instance. Think of a
single axis where one end contains a light version of a character, and the other end con-
tains a bold version of the same character. Now traverse along the axis. The closer you get
to the end containing the bold version, the bolder the character becomes. Now imagine
doing this with four axes!

Let’s take a look at a two-axis multiple master character. Table 6-16 illustrates the four
master designs of the letter “A.” The two axes are for weight and width.

Sample character for a two-axis multiple master font—Table 6-16. Myriad Pro

Weight Condensed semiextended

Light A A
Black A A

The number of axes relates to the number of dimensions. For example, a typeface with
a single design axis is represented by a straight line, and a line needs two points to be
defined. Extend this all the way up to four design axes, at which time you have defined
a hypercube (four dimensions). Needless to say, designing a multiple master font is a
time-consuming task, but clearly possible. For those of you who are so inclined, the latest
versions of Fontographer and FontLab Studio allow designers to create multiple master
fonts. Fontographer is currently limited to two-axis designs, whereas FontLab supports
up to four-axis designs.

These techniques can also be applied to a CJKV font. Table 6-17 illustrates several in-
termediate instances of a kanji from a real-world, single-axis, multiple master font—the
axis is for weight. The two master designs for ExtraLight and Heavy are located at each
extreme.

Sample kanji for a one-axis multiple master font—Table 6-17. Kozuka Mincho Pr6N

extraLight Light regular Medium Bold Heavy

蛇 蛇 蛇 蛇 蛇 蛇
Unfortunately, there are no genuine multiple master CJKV fonts available as of this writ-
ing. The design used for Table 6-17 originated as multiple master, but is implemented
as individual fonts for each of its six weights. The design of a CJKV font is itself a large
project—designing a multiple master CJKV font is much more work!

outline Font Formats | 395

In terms of fonts that are used by OSes and applications and are sold, multiple master is
effectively dead, primarily because the OpenType specification was never enhanced to
support such fonts. Adobe Systems ceased selling and supporting multiple master fonts.
Although CFF, described earlier in this chapter, allows up to 16 master outlines and 15
design axes, multiple master is simply not supported in the context of OpenType fonts.

Still, multiple master continues to be an extremely effective technology for assisting the
typeface design process. Multiple weights are easily generated through interpolation
and snapshotting techniques. In fact, the vast majority of Adobe Originals are designed
through the use of multiple master, though the font instances that are released—in mul-
tiple weights, and in some cases, multiple widths—no longer carry the multiple master
baggage. This is why the title of this section states that multiple master is a pseudo-legacy
font format. It is legacy format in terms of delivering multiple master fonts to users, but it
is current font format in terms of its advantages during the typeface design process.

How can I accelerate Postscript fonts?
The publishing workflow has changed from one that made extensive use of or required
printer-resident fonts to one that uses PDF to encapsulate all of the information to display
and print documents, from simple to incredible complex, including the embedding of the
glyphs. Naturally, the way in which the performance of fonts can increase has necessarily
changed.

In the past, in the days of printer-resident fonts, there were two primary ways to acceler-
ate the speed at which Type 1 fonts—or font formats that use Type 1 charstrings, such as
Adobe Systems’ CID-keyed fonts—print, both of which are hardware-dependent:*

Purchase a PostScript printer whose fonts are stored in ROM (as opposed to being •	
resident on a hard disk, internal or external).

Purchase a PostScript printer that is equipped with the Adobe Type 1 Coprocessor •	
(such printers are typically bundled with fonts in ROM).

Fonts that are stored in printer ROM are considerably faster than those resident on a hard
disk—reading from silicon chips is inherently faster than reading from a disk drive.

The Adobe Type 1 Coprocessor (T1C), also known as Typhoon, was an ASIC (Appli-
cation Specific Integrated Circuit) developed by Adobe Systems for use under license by
their PostScript OEMs (Original Equipment Manufacturers). This chip was essentially a
hardware version of Adobe Systems’ ATM renderer, which significantly accelerated the
rasterization of Type 1 fonts. It was developed primarily to improve the performance of
PostScript output devices that support CJKV fonts by reducing the time it takes to process
their complex character descriptions.

* As far as host-based (that is, using Adobe Type Manager software) rasterization was concerned, simply using a
faster computer usually did the trick.

396 | Chapter 6: Font Formats, Glyph sets, and Font tools

The first commercial products to support the Adobe Type 1 Coprocessor were Oki Elec-
tric’s series of PostScript Level 2 Japanese printers: the ML800PSII LT, ML801PSII, and
ML801PSII+F. They were introduced to the market in January 1993. Other printer manu-
facturers have also shipped products that include the Adobe Type 1 Coprocessor. It is
important to note that T1C is no longer being developed, and as a result does not support
Type 2 charstrings as used by CFF.*

Now, given the current PDF-based document workflow that eliminates the need for printer-
resident fonts, accelerating the performance of PostScript fonts or of fonts in general can
be accomplished through the use of a faster computer or a faster network connection.

truetype Font Formats
TrueType fonts, like PostScript fonts, are described mathematically as outlines, and are
therefore fully scalable. TrueType curves are represented as quadratic splines. TrueType
fonts are able to reside on PostScript printer hard disks, or in printer RAM or ROM, be-
cause the Type 42 font format defines a PostScript wrapper for TrueType fonts.

Many TrueType fonts are also available in Type 1 format—many type vendors market
their fonts in both formats to appeal to those dedicated to a particular format.

TrueType CJKV fonts are a more recent addition to TrueType font technology, and are
currently usable on Mac OS and Windows. In fact, Mac OS-J was bundled with seven
TrueType Japanese fonts. Apple’s Language Kits (CLK, JLK, and KLK) also came bundled
with TrueType CJKV fonts—but not nearly as many as were bundled with the fully local-
ized versions of the OS. These fonts required approximately 20% to 40% more disk space
than the equivalent PostScript CJKV fonts.

A TrueType font is contained within a file resource known as ‘sfnt’ (an abbreviated form
of Scalable Font) and consists of many tables. The required and optional tables are listed
and described in Table 6-18.

Standard TrueType tablesTable 6-18.

table tag description required table?

cmapa Character to glyph mapping Yes

glyf Glyph data Yes

head Font header Yes

hhea Horizontal header Yes

hmtx Horizontal metrics Yes

loca Index to location Yes

* This is a polite way of stating that T1C is more or less dead.

outline Font Formats | 397

Standard TrueType tablesTable 6-18.

table tag description required table?

maxp Maximum profile Yes

name Naming table Yes

post PostScript information Yes

OS/2 OS/2- and Windows-specific metrics Yes

cvt Control Value Table No

EBDT Embedded bitmap data No

EBLC Embedded bitmap location data No

EBSC Embedded bitmap scaling data No

fpgm Font program No

gasp Grid-fitting and scan conversion procedure—grayscale No

hdmx Horizontal device metrics No

kern Kerning data No

LTSH Linear threshold table No

prep CVT program No

PCLT PCL5 No

VDMX Vertical device metrics table No

vhea Vertical metrics header No

vmtx Vertical metrics No

This is different from Adobe Systems’ CMap, which is a resource used for CID-keyed fonts and is instantiated as a file. This is a case when “case” a.
can make a big difference.

It is important to realize that many TrueType developments took place at Apple and Mi-
crosoft independently, leading to differences between the two formats.

More detailed information about the TrueType font format can be found in Microsoft’s
TrueType 1.0 Font Files document.*

truetype Collections
An interesting enhancement to the TrueType font format is the concept of TrueType Col-
lections (TTCs). This allows TrueType fonts to efficiently share data across similar fonts.
In short, TTCs effectively include multiple TrueType fonts within a single physical file
whereby many of the glyphs are shared by the individual font instances.

* http://www.microsoft.com/truetype/

398 | Chapter 6: Font Formats, Glyph sets, and Font tools

The following lists some of the ways in which TTCs can be (and, more importantly, have
been) used in the context of CJKV fonts:

A complete Japanese font, along with its matching kana designs (for example, five •	
matching kana designs are associated with each of TypeBank’s Japanese typeface
designs)

Two or more Korean fonts sharing a single hanja design (not all Korean fonts include •	
glyphs for hanja, because they are treated somewhat generically)

Of course, there are many other possibilities and uses for TTCs.

TTCs are implemented by including all characters (glyphs) in the ‘glyf ’ table. But, there
need to be multiple ‘cmap’ tables, one for each font that will appear in applications’ font
menus. These multiple ‘cmap’ tables refer to a different subset of the glyphs found in the
‘glyf ’ table. This process of creating a TTC is nontrivial, and it requires very precise map-
pings in the ‘cmap’ table—each ‘cmap’ subtable must refer to the appropriate subset of
glyphs in the ‘glyf ’ table.

Virtually all TrueType fonts bundled with the various localized versions of Windows Vista
are TrueType Collection fonts.

TTC files can be identified by their filename extension ttc, as opposed to ttf for standard
TrueType fonts. TrueType Collections are described in Microsoft’s TrueType 1.0 Font Files
document.

AAt—formerly Quickdraw GX
Apple was the first company to raise the proverbial “bar” with respect to providing ad-
vanced typographic features as a component or components of the fonts themselves—
their solution was originally called QuickDraw GX, also referred to as TrueType GX in
some circles. However, the font portion of QuickDraw GX functionality became known
as Apple Advanced Typography (AAT), which was used in conjunction with Apple Type
Services for Unicode Imaging (ATSUI).*

Table 6-19 lists some of the TrueType tables that Apple has created on its own for devel-
oping AAT fonts—meaning that you will not find these tables in TrueType fonts that run
under Windows. Some of these tables are specific to AAT, and some are not, as noted in
the table.

* When treated as a Japanese transliteration, the acronym ATSUI means “hot” (熱い atsui) or “thick” (厚い
atsui).

outline Font Formats | 399

AAT tablesTable 6-19.

table tag description AAt-specific?

bdata Bitmapped data No

blocb Bitmapped data locations (offsets) No

bsln Baseline adjustment information Yes

fdsc Font descriptor No

feat QuickDraw GX feature list Yes

mort QuickDraw GX features Yes

morx Extended ‘mort’ table Yes

trak Tracking information No

Microsoft’s TrueType fonts may include an ‘EBDT’ table for the same purpose—see Table 6-18.a.

Microsoft’s TrueType fonts may include an ‘EBLC’ table for the same purpose—see Table 6-18.b.

More information on AAT is still available in publications from Apple, such as QuickDraw
GX Font Formats: The TrueType Font Format Specification, Inside Macintosh—QuickDraw
GX Typography, and Inside Macintosh—Text. The latest AAT developments are available
at the Apple website.*

The use of AAT fonts has diminished, which is clearly the result of the wide adaptation
and acceptance of OpenType fonts, whose format is covered later in this chapter.

truetype open
TrueType Open was intended to be Microsoft’s answer to Apple’s AAT, and its description
is included here primarily for historical purposes. Although AAT and TrueType Open
attempt to solve the same typographic problems, their approaches were a bit different.
TrueType Open fonts are still considered valid TrueType fonts and are fully compatible
with existing applications. But, some applications may not be able to access the tables
specific to TrueType Open.

TrueType Open defines five additional tables, each of which is indicated and briefly de-
scribed in Table 6-20. These five tables became part of the OpenType specification, which
is described in the section that follows.

TrueType Open tablesTable 6-20.

table tag table name description

GSUBa Glyph SUBstitution Substitute glyphs: one to one, one to n, one from n, or n to one

GPOS Glyph POSitioning Specific position of glyphs

* http://developer.apple.com/textfonts/

400 | Chapter 6: Font Formats, Glyph sets, and Font tools

TrueType Open tablesTable 6-20.

table tag table name description

BASE BASEline Baseline adjustment information—useful when mixing different scripts, such as
Chinese and Latin characters

JSTF JuSTiFication Provides additional control over glyph substitution and positioning in justified
text—affects spacing

GDEF Glyph DEFinition Classifies the font’s glyphs, identifies attachment points, and provides positioning
data for ligature carets

Apple’s AAT fonts may include a ‘mort’ or ‘morx’ table for the same basic purpose—see Table 6-19.a.

The ‘GPOS’ table benefits scripts such as romanized Vietnamese in which the exact posi-
tioning of accents is crucial. One of the most powerful tables of TrueType Open is ‘GSUB’,
which is functionally similar to AAT’s ‘mort’ and ‘morx’ tables. The ‘GPOS’ and ‘GSUB’
tables will be discussed in greater depth later in this chapter when we learn about Open-
Type fonts.

Clearly, building a fully functional TrueType Open font provides a very powerful
mechanism for delivering advanced typographic features to applications. Microsoft has
published the TrueType Open specification in the TrueType Open Font Specification docu-
ment.* It is designed to be an open specification, hence its name, meaning that developers
can create their own typographic features.

As you will learn in the next section, most of what TrueType Open offers effectively be-
came OpenType. This is a good thing, because OpenType effectively ended the so-called
font wars, by allowing PostScript and TrueType outlines to be equally represented in the
same font format.

opentype—Postscript and truetype in Harmony
Finally. The day has arrived. Well, to be accurate, the day arrived several years ago, but it
has taken those several years for the infrastructure to mature. In any case, PostScript and
TrueType have merged into a single standard called OpenType, sometimes abbreviated as
OTF.† This effectively means that it will make absolutely no difference whether the under-
lying glyphs descriptions, which are sometimes referred to as charstrings, are PostScript
Type 1 or Type 2 (though the latter is the more common), or TrueType. Adobe Systems
and Microsoft jointly announced this font format in 1996, and its complete specification
is available online.‡ Adobe Systems, Apple, Microsoft, and other companies provide tools
that enable font developers to more easily build and test OpenType fonts.

* http://www.microsoft.com/truetype/
† The three-character filename extension for OpenType fonts is otf.
‡ http://www.microsoft.com/opentype/otspec/

outline Font Formats | 401

Compared to legacy font formats, OpenType has several key advantages, the vast majority
of which can be enumerated as follows:

Cross-platform and supported natively by the major OSes•	

Completely self-contained•	

Default encoding is Unicode•	

Supports TrueType or PostScript outlines•	

Improved encapsulation and specification of font-level and glyph metrics, which af-•	
fects vertical writing and the treatment of ideographs

Can include advanced typographic features, such as glyph substitution•	

OpenType fonts are supported natively under Windows 2000 and later, but are support-
ed in Windows 95, Windows 98, Windows NT (version 4.0), and Mac OS (versions 8.6
through 9.2 and Classic) through the use of Adobe Type Manager (ATM).* Windows 2000,
XP, and Vista, along with Mac OS X, support OpenType fonts without the need for ATM.
Because of their native status under Windows 2000 and later, OpenType fonts are encoded
according to Unicode. That is, they include a Unicode-encoded ‘cmap’ table.

For all practical purposes, OpenType is an extension to TrueType Open, which means
that all of its functionality, such as the ability to define advanced typographic features
(metrics and glyph substitutions), is available to OpenType fonts.

Up until now, all legacy font formats, such as the Mac OS ‘FOND’ resource and the Win-
dows PFM file, did not include information that specified values exclusively for handling
vertical writing. Font developers and applications were forced to overload the semantics
of available fields, such as those that represent font-level ascent and descent. OpenType
provides an elegant solution by including dedicated fields that give applications correct
and unambiguous information for vertical writing. The top and bottom of the design
space, which are critical for establishing reference points for proper vertical writing, are
stored in the ‘OS/2’ table’s sTypoAscender and sTypoDescender fields. The corresponding
fields in the ‘hhea’ table, specifically Ascender and Descender, should be set to the same
values.

Table 6-21 lists the tables that are absolutely required for an OpenType font to function
properly, along with other tables that are for other purposes or specific to some font
categories.

* More specifically, ATM version 4.1 or later for Windows, and ATM version 4.5 or later for Mac OS.

402 | Chapter 6: Font Formats, Glyph sets, and Font tools

OpenType tables and their purposesTable 6-21.

Purpose table tags

Required cmap, head, hhea, hmtx, maxp, name, OS/2, post

For TrueType cvt, fpgm, glyf, loca, prep

For PostScript CFF, VORG

For bitmaps EBDT, EBLC, EBSC

Advanced typography BASE, GDEF, GPOS, GSUB, JSTF

Vertical vhea, vmtx

Other DSIG, gasp, hdmx, kern, LTSH, PCLT, VDMX

OpenType fonts that support vertical writing should be sure to include the ‘vhea’ and
‘vmtx’ tables, and should additionally support the ‘vert’ or ‘vrt2’ GSUB features for allow-
ing applications to access the vertical variants for glyphs that require them. This effectively
means that typical OpenType CJKV fonts should include these two tables, along with the
‘vert’ and ‘vrt2’ GSUB features. For those with a ‘CFF’ table, the ‘VORG’ table should also
be included as it supplements the data that is in the ‘vmtx’ table.

The overall version number of an OpenType font is specified in its head.fontRevision field,
meaning the fontRevision field of the ‘head’ table. This version number may be reflected
elsewhere in the font, such as part of the name.ID=5 string, but it is the setting in the
‘head’ table that should ultimately be trusted. On Mac OS X and Windows, simply double-
clicking an OpenType font will either bring up a dialog that displays the version number,
or it will launch an application that can be used to display the version number.

opentype GsUB features
The ‘GSUB’ table of OpenType is inherited from TrueType Open. There is a very high
number of registered OpenType GSUB (and GPOS) features.* But, in the context of CJKV
fonts, a much smaller number of GSUB features are applicable.

Table 6-22 lists the four basic types of glyph substitution that are possible through the
use of GSUB features, along with examples of their use, the majority of which are tied to
specific GSUB features.

OpenType Glyph SUBstitution typesTable 6-22.

substitution type example

One-to-one substitution Vertical substitution—vert ～ ➡ ～
One-to-n substitution Ligature decomposition ㌕ ➡ キログラム

* http://www.microsoft.com/typography/otspec/featuretags.htm

outline Font Formats | 403

OpenType Glyph SUBstitution typesTable 6-22.

substitution type example

One-from-n substitution Glyph variants—aalt
辺 ➡ 邊, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉,
邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉,
邉, or 邉

n-to-one substitution Ligature construction—dlig キログラム ➡ ㌕

These four glyph substitution types differ in the number of entry and exit GIDs that they
specify. The simplest, of course, is the one-to-one substitution, which specifies exactly one
entry GID and results in exactly one exit GID. The GSUB features that are most applicable
to CJKV fonts are listed in Table 6-23.

GSUB feature tags for OpenType CJKV fontsTable 6-23.

GsUB feature tag Full name and description Applicable locales

aalt Access All Alternates all

afrc Alternative Fractions all

ccmp Glyph Composition/Decomposition all

cpct Centered CJK Punctuation Chinese

dlig Discretionary Ligatures all

expt Expert Forms Japanese

frac Fractions all

fwid Full Widths all

hkna Horizontal Kana Alternates Japanese

hngl Hangul Korean

hojo Hojo Kanji Forms—JIS X 0212-1990 prototypical glyphs Japanese

hwid Half Widths all

ital Italic all

jp78 JIS78 Forms—JIS C 6226-1978 prototypical glyphs Japanese

jp83 JIS83 Forms—JIS X 0208-1983 prototypical glyphs Japanese

jp90 JIS90 Forms—JIS X 0208-1990 prototypical glyphs Japanese

jp04 JIS2004 Forms—JIS X 0213:2004 prototypical glyphs Japanese

liga Standard Ligatures all

locl Localized Forms all

nalt Alternate Annotation Forms all

nlck NLC Kanji Forms Japanese

404 | Chapter 6: Font Formats, Glyph sets, and Font tools

GSUB feature tags for OpenType CJKV fontsTable 6-23.

GsUB feature tag Full name and description Applicable locales

pkna Proportional Kana Japanese

pwid Proportional Widths all

qwid Quarter Widths all

ruby Ruby Notation Forms Japanese

smpl Simplified Forms Chinese, Japanese

trad Traditional Forms Chinese, Japanese

twid Third Widths all

vert Vertical Writing all

vkna Vertical Kana Alternates Japanese

vrt2 Vertical Alternates and Rotation all

Some GSUB features are expected to be turned on or enabled by default in the applica-
tions that use them. The ‘ccmp’ and ‘liga’ GSUB features are such examples. Another ex-
ample is the use of the ‘vert’ or ‘vrt2’ GSUB features, one of which should be turned on by
default when the writing mode is vertical.

opentype GPos features
The ‘GPOS’ table of an OpenType font specifies features that alter the metrics, in terms of
set widths and positioning, of the glyphs to which they refer.

The GPOS features that are most applicable to CJKV fonts are listed in Table 6-24. Be
aware that the first three GPOS features are intended for horizontal writing, and that the
last three are vertical counterparts of these features, intended for vertical writing.

GPOS feature tags for OpenType CJKV fontsTable 6-24.

GPos feature tag Full name and description Applicable locales

halt Alternate Half Widths—make full-width forms half-width all

kern Kerning all

palt Proportional Alternate Widths—make full-width forms proportional all

vhal Alternate Vertical Half Metrics—vertical version of ‘halt’ all

vkrn Vertical Kerning—vertical version of ‘kern’ all

vpal Proportional Alternate Vertical Metrics—vertical version of ‘palt’ all

Although there is a separate ‘kern’ table, kerning is best implemented through the use of
the ‘kern’ and ‘vkrn’ GPOS features.

outline Font Formats | 405

Other ways to affect the glyph metrics in OpenType fonts can be made via other tables, the
most notable of which is the ‘vmtx’ table. Almost all CJKV character set standards include
full-width Latin, Greek, and Cyrillic characters, and the fonts that are based on these same
character set standards include full-width glyphs that correspond to the characters. When
in horizontal writing mode, these full-width glyphs are expected to use a Latin baseline.
But, if the same glyphs, positioned along the Y-axis such that they rest on a Latin baseline,
are used in vertical writing mode, the results are less than pleasing. One solution is to
include separate glyphs for these characters, for horizontal and vertical writing. A better
solution is to make adjustments to the position of these glyphs along the Y-axis, specifi-
cally to center them along the Y-axis. This means that the same glyphs can be used for
horizontal and vertical writing. When these glyphs are used in horizontal writing mode,
they rest on a Latin baseline, but when used in Vertical writing mode, they are centered
along the Y-axis. The settings of the ‘vmtx’ table are considered default behavior.

opentype ‘cmap’ tables
Although not specific to OpenType fonts, due to its TrueType heritage, the ‘cmap’ table is
composed of subtables, each of which are tagged by format, platform ID, and language ID.
Two types of Unicode encodings are supported through the various ‘cmap’ table formats,
all of which are identified by even integers. Format 4 was originally intended to support
UCS-2 encoding, but it is now best thought of as supporting BMP-only UTF-16 encoding.
Format 12 was intended to support UCS-4 encoding, but it equally supports UTF-32 en-
coding thanks to the pure superset/subset relationship of UCS-4 and UTF-32 encodings.
Those OpenType fonts that support IVSes will include a Format 14 subtable, in addition
to a Format 4 or Format 12 subtable, or both.

Format 8 supports a mixed 16- and 32-bit encoding and is obviously intended to support
UTF-16 encoding. However, it is a ‘cmap’ format that is not supported by Microsoft, and
thus best considered to be deprecated.

Note that all ‘cmap’ table formats are tagged with an even integer. The first ‘cmap’ table
format is 0 (zero), and the highest right now is 14. Thus, Formats 0, 2, 4, 6, 8, 10, 12, and 14
exist. Table 6-25 lists the current ‘cmap’ table formats, along with the types of encodings
they support. Formats 8 and higher are intended to support 32-bit or 4-byte encodings.

Current ‘cmap’ table formatsTable 6-25.

Format supported encodings examples

0 Single-byte—0x00 through 0xFF Any single-byte encoding

2 Mixed one- and two-byte EUC-CN, EUC-KR, GBK, Shift-JIS, and so on

4a 16-bit UCS-2, BMP-only UTF-16

6 16-bit—single code range UCS-2, BMP-only UTF-16

8 Mixed 16- and 32-bit UTF-16

406 | Chapter 6: Font Formats, Glyph sets, and Font tools

Current ‘cmap’ table formatsTable 6-25.

Format supported encodings examples

10 32-bit—single code range UTF-32

12a 32-bit UTF-32

14 Unicode Variation Sequences Ideographic Variation Sequences

If a Format 12 subtable is present, its contents must be a superset of the contents of the Format 4 subtable.a.

More detailed information about the ‘cmap’ table is available in the OpenType
specification.

CMap versus ‘cmap’
Font documentation may refer to CMap and ‘cmap’. Poorly written font documentation
will treat these as equivalent, and to some extent they are, because both map character
codes to glyphs in a font. However, they are certainly not equivalent. Well-written docu-
mentation will clearly distinguish CMap from ‘cmap’.

CMap refers to a PostScript resource and is used for CID-keyed fonts. A CMap resource
maps character codes to CIDs. A CID is specific to CID-keyed fonts, and it is how glyphs
in a CIDFont resource are identified and accessed.

‘cmap’ refers to an ‘sfnt’ table, and is used by OpenType, TrueType, TrueType Open, AAT,
and sfnt-wrapped CIDFonts to map character codes to glyphs in the font. A ‘cmap’ table
maps character codes to GIDs. The only exception to this are sfnt-wrapped CIDFonts in
which the character codes specified in a ‘cmap’ table map to CIDs in the ‘CID’ table. As
described in the previous section, a ‘cmap’ table can include one or more subtables.

The difference between CID and GID is also significant, and how to distinguish them is
equally important. The topic of CID versus GID is covered later in this chapter.

opentype versus truetype, type 1, and CId-keyed fonts
OpenType effectively bridges TrueType, Type 1, and CID-keyed fonts, which is a very
good thing. For TrueType fonts, the presence of OpenType-specific tables, such as ‘GPOS’
or ‘GSUB’, is what distinguishes OpenType fonts from legacy TrueType fonts. To a great
extent, not much needs to change in order for TrueType fonts to become genuine Open-
Type fonts.

For the PostScript font formats, specifically name-keyed (aka Type 1) and CID-keyed
fonts, the ‘CFF’ table supports both of these. In fact, from a font development point of
view, one still needs to build Type 1 fonts or CIDFont resources, which serve as the input
for the tools that build OpenType fonts. In other words, font developers are still expected
to build name-keyed Type 1 fonts or CIDFont resources, but the resulting files are no
longer provided to end users as is, but become one of the many source files for building

outline Font Formats | 407

an OpenType font. In addition, round-trip conversion between CFF and the legacy Post-
Script font formats is supported, and is part of the CFF specification.

name-keyed versus CId-keyed
Type 1 and some TrueType fonts are name-keyed, meaning that each glyph is assigned
a unique name. The name is a string with limitations and restrictions in terms of what
characters can and cannot be used. The first character of the name cannot be a digit, but
digits can be used elsewhere in the name. Upper- and lowercase letters can obviously be
used, along with a small number of symbols. Spaces are not allowed. What is allowed is a
subset of ASCII.

For Type 1 fonts intended to become the ‘CFF’ table of an OpenType font, there are use-
ful naming conventions. Glyphs for common characters to some extent follow the Type
1 glyph names. Those outside that scope follow other conventions. For example, “u” or
“uni” followed by the four or five uppercase hexadecimal digits that represent a Unicode
scalar value is one convention. In fact, using such glyph names helps to drive the building
of the ‘cmap’ table that maps the same Unicode scalar values to the glyphs in the ‘CFF’
table, at least when using the MakeOTF tool provided in AFDKO, which is described
later in this chapter. AFDKO includes a file called GlyphOrderAndAliasDB that provides
standard glyph names for name-keyed fonts, and that also serves to map obsolete and
deprecated glyph names to the current glyph naming convention.

Name-keyed fonts are limited to one hint dictionary. This means that a single set of hint-
ing parameters, such as alignment zones and stem widths, is applied to every glyph in the
font.

CIDFont resources, of course, are CID-keyed. Each glyph is assigned a unique integer
value. In accordance to the 64K glyph limit, the maximum number of CIDs is 65,536.
Because CIDs begin at zero, the highest possible CID is thus 65535. When building Open-
Type fonts and using a CIDFont resource for the ‘CFF’ table, the specification of an ap-
propriate CMap resource is what drives the building of the ‘cmap’ table. When a CIDFont
resource is converted to a ‘CFF’ table, its CIDs become GIDs, but the mapping between
GID and CID is retained.

CID-keyed fonts can include multiple hint dictionaries. Adobe Systems’ Adobe-Japan1-6
fonts have 15 or 16 hint dictionaries. Sixteen hint dictionaries are used only when subrou-
tine redistribution is required in order to ensure that the total number of global or local
subroutines does not exceed the subroutine limit. Table 6-26 lists each of the 15 standard
hint dictionaries used for Adobe-Japan1-6 fonts, along with the number of glyphs speci-
fied in each.

408 | Chapter 6: Font Formats, Glyph sets, and Font tools

The 15 hint dictionaries of the Adobe-Japan1-6 character collectionTable 6-26.

Hint dictionary name number of glyphs description

AlphaNum 1,700 Annotated alphanumeric glyphs

Alphabetic 223 Full-width Greek, Cyrillic, and Latin glyphs

Dingbats 1,053 Miscellaneous glyphs

DingbatsRot 38 Prerotated version of Dingbats

Generic 190 Half- and full-width generic glyphs

GenericRot 78 Prerotated version of Generic

HKana 179 Half-width kana glyphs

HKanaRot 179 Prerotated version of HKana

HRoman 175 Half-width Latin glyphs

HRomanRot 175 Prerotated version of HRoman

Kana 1,769 Kana glyphs, including annotated forms

Kanjia 14,943 Kanji glyphs, including annotated forms

Proportional 1,034 Proportional Latin glyphs

ProportionalRot 1,034 Prerotated version of Proportional

Ruby 288 Ruby glyphs

When 16 hint dictionaries are used, the Kanji hint dictionary is split into two hint dictionaries: Kanji and KanjiPlus. The Kanji hint dictionary a.
includes 10,216 glyphs, and KanjiPlus includes 4,727 glyphs.

As Table 6-26 demonstrates, the hint dictionary arrangement for Adobe-Japan1-6 effec-
tively separates or divides its glyphs according to glyph class. All of the kana glyphs, for
example, are in the Kana hint dictionary. Note how the prerotated glyphs are in their own
hint dictionaries, separated from their unrotated counterparts. This is done because the
prerotated glyphs require different hinting parameters to be specified.

Of course, it is possible to build CIDFont resources that use a single hint dictionary, and
for some fonts, this may be appropriate. Bear in mind that glyphs that do not rest on a
baseline, such as kana, hangul, and ideographs, generally require a different set of align-
ment zones than those glyphs that do rest on a baseline, such as Latin, Greek, and Cyrillic
glyphs.

Glyph sets
Regardless of the font format, and regardless of whether the glyphs are stored as bitmapped
patterns or as scalable outlines, every font is a collection of glyphs, typically based on the
same typeface style. This collection is referred to as a glyph set. These glyph sets have
no inherent encoding. The ‘cmap’ subtables of an OpenType or TrueType font, or CMap
resources that are compatible with CIDFont resources, effectively apply an encoding by
mapping character codes to the glyphs in a font.

Glyph sets | 409

Glyph sets necessarily evolve, usually due to new or expanded character set standards on
which they are based. Sometimes, changes to or expansion of glyph sets is due to Taro’s
Law.*

static Versus dynamic Glyph sets
Now that we have described today’s most widely used font formats, it is clearly useful to
write about the distinction between static and dynamic glyph sets. Today’s fonts gener-
ally differ as to whether their glyph sets are static or dynamic, and can be described as
follows:

A static glyph set
Based on a standard, meaning that any font that is based on a static glyph set is pre-
dictable and stable. Static glyph sets are advantageous when building large volumes of
fonts. The development and testing of such fonts is greatly simplified, in my opinion
and experience.

A dynamic glyph set
Allows font developers to add new glyphs on a whim.

TrueType fonts, by definition, are based on dynamic glyph sets. OpenType fonts can be
either. OpenType fonts with name-keyed ‘CFF’ tables are based on dynamic glyph sets.
Only CID-keyed fonts, including CID-keyed ‘CFF’ tables, are based on static glyph sets.
The concept of “character collection,” as used by CID-keyed fonts, is a real-world imple-
mentation of static glyph sets. Interestingly, and as you will learn in this chapter, it is
possible to build OpenType fonts with CID-keyed ‘CFF’ tables that are based on dynamic
glyph sets.

CId Versus GId
The glyphs in an OpenType or TrueType font are identified through the use of GIDs (Glyph
IDs), and those in a CIDFont resource are identified through the use of CIDs (Character
IDs). GIDs and CIDs thus perform similar functions, but are different in some contexts.

GIDs must be contiguous. The OpenType file format is based on the ‘sfnt’ file structure of
TrueType fonts, and the dynamic nature of the glyph sets of TrueType fonts necessitated
contiguous GIDs. Gaps or missing glyphs are not allowed.

CIDFont resources allow missing glyphs, which are correctly referred to as empty inter-
vals. The static nature of the glyph sets of CID-keyed fonts necessitated the use of empty
intervals in order to maintain the CID integrity of the static glyph sets on which they are
based.

* If a character set is composed of characters whose prototypical glyphs need not and should not be changed,
some of the prototypical glyphs will always be changed by the authorities.

410 | Chapter 6: Font Formats, Glyph sets, and Font tools

For an OpenType font whose ‘CFF’ table is based on a CIDFont resource, meaning that the
CIDFont resource is converted to CFF, the CIDs of the CIDFont resource are converted
to GIDs in the resulting ‘CFF’ table. The real issue is whether the GIDs in the ‘CFF’ table
correspond to the CIDs in the source CIDFont resource. As long as the source CIDFont
resource does not include any empty intervals, GID=CID in the resulting OpenType font.
If the source CIDFont resource includes any empty intervals, the point where GID≠CID
is immediately after the first instance of an empty interval.

Consider a CIDFont resource that is based on the Adobe-Japan1-6 character collection,
which defines 23,058 glyphs, from CID+0 through CID+23057. If we were to omit CIDs
15444 through 15448, the resulting CID ranges would be as follows:

0–15443
15449–23057

CIDs 15444 through 15448 would thus be treated as empty intervals. If this CIDFont
resource were to be converted to a ‘CFF’ table, the resulting GID range would be as
follows:

0–23053
When a CIDFont resource is converted to a ‘CFF’ table, the GID→CID mapping is pre-
served as part of the ‘CFF’ table. This means that a ‘CFF’ table can be converted back into
a CIDFont resource as long as it is CID-keyed.

std Versus Pro designators
Today’s fonts frequently use designators that serve to indicate the degree to which their
glyph sets cover character set standards, or extend beyond them. For OpenType fonts, the
two most common designators are Std and Pro. These two basic designators have varia-
tions, at least in the context of CJKV font implementations. These are listed and described
in Table 6-27.

Std and Pro designator variations —Japanese-specific examplesTable 6-27.

designator Base designator description

Std Std Adobe-Japan1-3

StdN Std JIS2004-savvy version of Std

Plus Std Equivalent to Std

PlusN Std JIS2004-savvy version of Plus

Pro Pro Adobe-Japan1-4

ProN Pro JIS2004-savvy version of Pro

Pr5 Pro Adobe-Japan1-5

Pr5N Pro JIS2004-savvy version of Pr5

Glyph sets | 411

Std and Pro designator variations —Japanese-specific examplesTable 6-27.

designator Base designator description

Pr6 Pro Adobe-Japan1-6

Pr6N Pro JIS2004-savvy version of Pr6

The distinction between the Std and Pro designators, in terms of which is the most ap-
propriate for a given glyph set or glyph complement, is not always easily understood, and
requires some explanation and examples.

Some type foundries seem to use the sheer number of glyphs as the basis for distinguish-
ing the use of these designators. Adobe Systems uses a more rigid set of criteria for mak-
ing the distinction. In terms of Adobe Systems’ CJKV fonts, if the glyph complement of
a font more or less adheres to character set standards, the Std designator, or a variation
thereof, is used. Although the Adobe-GB1-5 character collection, described in the next
page or so, includes a rather stunning 30,284 glyphs, the Std designator is nonetheless
used for fonts based on it. This is because the Adobe-GB1-5 character collection, more
or less, includes only the glyphs that correspond to the characters that are printed in the
GB 18030-2000 standard, along with the glyphs for the characters of one of its regional
scripts, specifically Yi.

Adobe Systems uses the Pro designator, or a variation thereof, only if the glyph comple-
ment significantly extends beyond the characters found in character set standards, and
thus includes glyphs that are intended to satisfy most professional or commercial pub-
lishing needs. The Adobe-Japan1-4 character collection represents the first glyph set that
qualified for the Pro designator. Adobe Systems has not yet defined Chinese or Korean
Pro character collections, though there are clearly plans to do so at some point.

In summary, I feel it is prudent to stress that the use of the Pro designator should be used
sparingly, and the sheer number of glyphs may not be the best criteria for determining
its use.

Glyph sets for transliteration and romanization
Another difficulty that is often faced by users and developers alike is the availability of
fonts that include the glyphs necessary for transliteration purposes, or for scripts that
are based on Romanization. This may seem like a trivial issue, but I assure you that it is
not. Up until OpenType Japanese Pro fonts were available, meaning a glyph set of Adobe-
Japan1-4 or greater, typical Japanese fonts didn’t include the glyphs necessary to transliter-
ate Japanese text, referring to macroned vowels. Consider the following three examples:

Common Japanese words, such as the place name •	 Tōkyō (東京), require macroned
vowels to properly express long vowels when using the Hepburn system, which is the
most widely accepted Japanese transliteration system. The Kunrei and Nippon trans-
literation systems, by contrast, use the more common circumflexed vowels to denote
long vowels, such as Tôkyô for the same example.

412 | Chapter 6: Font Formats, Glyph sets, and Font tools

•	 Chinese transliteration, specifically Pinyin, requires not only macroned vowels for
the first or “flat” tone, and vowels with the acute and grave diacritic marks for the sec-
ond (or “rising”) and fourth (or “falling”) tones, respectively, but also vowels adorned
with the caron diacritic mark for the third or “falling-rising” tone. The Chinese words
xìnxī chǔlǐ (信息处理) and zīxùn chǔlǐ (資訊處理), both of which mean “informa-
tion processing,” exemplify three of the four tones that require glyphs adorned with
diacritic marks. Interestingly, complete Pinyin transliteration requires additional
base forms, specifically ê (e circumflex) and ü (u umlaut), which can take on a dia-
critic mark to indicate tone, along with m and n that can do the same.

Vietnamese, specifically its Romanized script called •	 Quốc ngữ, is even more com-
plex in its use of multiple diacritic marks and additional base characters that are
exemplified by the name of the script itself. Even the Vietnamese word Việt Nam,
which means “Vietnam,” makes use of glyphs that are not found in typical Latin fonts.
Vietnamese is also unique in that some of its base forms, such as ơ (horned o) and ư
(horned u), and one of its diacritic marks, specifically the hỏi (also called hook above
or curl), are not used by any other transliteration or Romanization system.

Some fonts, such as Minion Pro and Myriad Pro, both of which are Adobe Originals
and bundled with many Adobe applications, include more glyphs than typical fonts, and
are suitable for purposes such as transliteration and Romanization. The current versions
of these two typeface families include the glyphs necessary for Japanese transliteration
and Vietnamese. Unfortunately, they are missing glyphs that correspond to vowels with
the caron diacritic mark, required for Pinyin transliteration. This book is using interim
versions that include these glyphs, and future versions are naturally expected to include
them.

Adobe Systems is in the process of documenting Adobe Latin glyph sets that detail vari-
ous levels of glyph coverage.* Adobe Latin 4 and greater, with an estimated 616 glyphs,
supports the transliteration and Romanization systems just described. I should point out
that one of Thomas Phinney’s Typblography blog entries details some of the ideas and con-
cepts that are expected to be reflected in the Adobe Latin glyph set documentation.†

Character Collections for CId-Keyed Fonts
A character collection represents a standardized set of CIDs and glyphs, meaning that two
CIDFont resources that adhere or conform to the same character collection specification
assign the same glyphs to the same CIDs. It also means that both CIDFont resources can
be used with the same set of CMap resources.

* http://www.adobe.com/type/browser/info/charsets.html
† http://blogs.adobe.com/typblography/2008/08/extended_latin.html

Glyph sets | 413

There are three /CIDSystemInfo dictionary entries that must be present in every CIDFont
and CMap resource, indicated by the following code:

/CIDSystemInfo 3 dict dup begin
 /Registry (Adobe) def
 /Ordering (CNS1) def
 /Supplement 5 def
end def

Yes, this same dictionary is present in the header of both CIDFont and CMap resources!
In order for a CIDFont and CMap resource to be used together as a valid CID-keyed font,
their respective /Registry and /Ordering strings must be identical. This compatibility
check prevents the inadvertent or intentional mixing of CIDFonts and CMaps resources
of different character collections.

A character collection is often referred to as an ROS, which is an abbreviated form of
Registry, Ordering, and Supplement.

An overview of Adobe systems’ public CJKV character collections
Adobe Systems’ CID-keyed font file specification makes it an almost trivial matter to de-
fine new or extend existing CJKV fonts. As part of my enjoyable work at Adobe Systems, I
have developed the CJKV character collections specifications listed in Table 6-28.

Adobe Systems’ CJKV character collections for CID-keyed fontsTable 6-28.

Character collection CIds Previous supplements Adobe systems technical note

Adobe-GB1-5 30,284 0 through 4 5079

Adobe-CNS1-5a 19,088 0 through 4 5080

Adobe-Japan1-6b 23,058 0 through 5 5078

Adobe-Japan2-0—deprecated 6,068 none 5097

Adobe-Korea1-2 18,352 0 and 1 5093

Adobe-Identity-0 n/a none n/a

a. Dirk Meyer designed Adobe-CNS1-1 and Adobe-CNS1-2.

b. Leo Cazares and Stephen Amerige designed Adobe-Japan1-0, but I designed all of its subsequent Supplements, specifically Adobe-Japan1-1
through Adobe-Japan1-6.

Specific Supplements of all but one of these character collections—specifically Adobe-
GB1-3, Adobe-CNS1-2, Adobe-Japan1-3, and Adobe-Korea1-2—were designed to add
only prerotated instances of all proportional- and half-width characters found in earlier
Supplements. Their purpose is to significantly improve the vertical handling of such char-
acters in the context of OpenType through the use of the ‘vrt2’ GSUB feature. As new
Supplements were added, any additional non–full-width glyphs were accompanied by
prerotated instances in order to maintain this functionality.

The Adobe-Vietnam1-0 character collection, which is intended to eventually support the
TCVN 5712:1993, TCVN 5773:1993, and TCVN 6056:1995 character set standards, is

414 | Chapter 6: Font Formats, Glyph sets, and Font tools

still, after 10 years, in the experimental stages. Its current form still supports only the
glyphs for the TCVN 6056:1995 character set standard. For those font developers wishing
to implement fonts that include only the glyphs necessary for supporting the Latin-based
script, meaning Quốc ngữ, name-keyed fonts based on the Adobe Latin 4 glyph set repre-
sent a much better solution than CID-keyed fonts.

Each of these public character collections are associated with one or more CMap resourc-
es. As you have learned, a CMap resource imposes or applies an encoding to a CIDFont
resource. As of this writing, there are a total of 178 CMap resources that correspond to the
six public character collections that are listed in Table 6-28.

Adobe strongly encourages font developers to conform to these character collection
specifications when developing their own CJKV font products. They were developed not
only for Adobe Systems to use, but also for other font developers to use. So, they are to
be treated as public character collections. Also, in order for applications to perform ad-
vanced layout or composition in a consistent manner across fonts, they must depend on
the assumption that a given CID represents the same glyph, semantically speaking, in all
fonts that are identified as sharing the same character collection. This allows advanced
layout and composition across multiple fonts using glyphs not yet encoded in Unicode.
The Adobe Systems Technical Note references in Table 6-28 can be used to obtain the
corresponding character collection specification document from Adobe.* Of course, de-
velopers are free to define their own character collections, along with their corresponding
CMap resources. They can also develop new CMap resources for these public character
collections.

The following sections describe each of these six CJKV character collections in some
detail, but please refer to the document entitled Adobe CJKV Character Collections and
CMaps for CID-Keyed Fonts (Adobe Systems Technical Note #5094), which is the offi-
cial documentation that describes the character sets and encodings supported by each of
these CJKV character collections.

the Adobe-GB1-5 character collection
The Adobe-GB1-5 character collection, which enumerates a staggering 30,284 CIDs, sup-
ports the GB 2312-80, GB 1988-89, GB/T 12345-90, GBK, and GB 18030-2005 charac-
ter sets. It also includes the corrections and additions to GB 2312-80 as specified in GB
6345.1-86. Supported encodings include ISO-2022-CN, EUC-CN, GBK, GB 18030, and
Unicode. Table 6-29 lists the six supplements of this character collection, along with the
number of CIDs defined in each one.

* http://www.adobe.com/devnet/font/

Glyph sets | 415

Adobe-GB1-5 character collection supplementsTable 6-29.

Character collection total CIds Additional CIds

Adobe-GB1-0 7,717 n/a

Adobe-GB1-1 9,897 2,180

Adobe-GB1-2 22,127 12,230

Adobe-GB1-3 22,353 226

Adobe-GB1-4 29,064 6,711

Adobe-GB1-5 30,284 1,220

Table 6-30 lists the CMap resources that are associated with the Adobe-GB1-5 character
collection specification.

Adobe-GB1-5 CMap resourcesTable 6-30.

CMap name Vertical? Character set encoding

GB-H Yes GB 2312-80 ISO-2022-CN

GB-EUC-H Yes GB 2312-80 EUC-CN

GBpc-EUC-H Yes GB 2312-80 for Mac OS-S EUC-CN

GBT-H Yes GB/T 12345-90 ISO-2022-CN

GBT-EUC-H Yes GB/T 12345-90 EUC-CN

GBTpc-EUC-H Yes GB/T 12345-90 for Mac OS-S EUC-CN

GBK-EUC-H Yes GBK GBK

GBKp-EUC-H Yes GBK GBK

GBK2K-H Yes GB 18030 GB 18030

UniGB-UCS2-Ha Yes Unicode UCS-2

UniGB-UTF8-H Yes Unicode UTF-8

UniGB-UTF16-H Yes Unicode UTF-16BE

UniGB-UTF32-H Yes Unicode UTF-32BE

Adobe-GB1-5b No All CIDs <00 00> through <76 FF>

The UniGB-UCS2-H CMap resource is obsolete and its use is deprecated. The UniGB-UTF16-H CMap resource should be used instead.a.

This CMap resource is called the Identity CMap, and encodes all glyphs at their respective CIDs.b.

Supplement 0, known as Adobe-GB1-0, supported only the GB 2312-80 and GB 1988-89
character sets by enumerating 7,717 CIDs.

The GB/T 12345-90 character set was supported through an additional 2,180 CIDs that
make up Supplement 1, specifically Adobe-GB1-1, and represent traditional hanzi re-
placements for GB 2312-80 characters plus additional hanzi found in rows 88 and 89.

416 | Chapter 6: Font Formats, Glyph sets, and Font tools

The complete set of 20,902 CJK Unified Ideographs of Unicode version 1.0.1, known as
the Unified Repertoire and Ordering, became supported in Supplement 2 by adding 12,230
glyphs, the intention of which was to support the GBK character set.*

Supplement 3 added only 226 prerotated glyphs that are expected to be accessed through
the use of the OpenType ‘vrt2’ GSUB feature.

Supplement 4 added 6,711 glyphs to support the GB 18030-2000 character set, and Sup-
plement 5 added 1,220 more glyphs to support the Yi regional script that is shown in GB
18030-2005. There are no plans to add to this glyph set the glyphs for the five remaining
GB 18030-2005 regional scripts, specifically Korean, Mongolian, Tai Le, Tibetan, and Uy-
ghur. It is best to implement support for those regional scripts through the implementa-
tion of separate fonts.

The Adobe-GB1-6 character collection is not yet in development, but may include the ap-
propriate glyphs to allow font developers to build genuine OpenType Simplified Chinese
Pro fonts.

the Adobe-Cns1-5 character collection
The Adobe-CNS1-5 character collection, which enumerates 19,088 CIDs, supports the
CNS 11643-1992 (Planes 1 and 2 only), CNS 5205-1989, Big Five, Hong Kong GCCS, and
Hong Kong SCS-2004 character sets. Given its character set coverage, the Adobe-CNS1-5
character collection thus supports the Taiwan and Hong Kong locales. This glyph set also
includes the popular ETen extension for the Big Five character set, along with the Hong
Kong extensions set forth by DynaComware and Monotype Imaging. Supported encod-
ings include ISO-2022-CN, ISO-2022-CN-EXT, EUC-TW, Big Five, and Unicode. Table
6-31 lists the six supplements of this character collection, along with the number of CIDs
defined in each one.

Adobe-CNS1-5 character collection supplementsTable 6-31.

Character collection total CIds Additional CIds

Adobe-CNS1-0 14,099 n/a

Adobe-CNS1-1 17,408 3,309

Adobe-CNS1-2 17,601 193

Adobe-CNS1-3 18,846 1,245

Adobe-CNS1-4 18,965 119

Adobe-CNS1-5 19,088 123

* This does not, however, mean that an Adobe-GB1-2 (or greater Supplement) CIDFont resource can be used for
multiple locales. In fact, its glyphs are designed with the Chinese locale in mind, making them unsuitable for
other locales.

Glyph sets | 417

Table 6-32 lists the CMap resources that are associated with the Adobe-CNS1-5 character
collection specification.

Adobe-CNS1-5 CMap resourcesTable 6-32.

CMap name Vertical? Character set encoding

B5-H Yes Big Five Big Five

B5pc-H Yes Big Five for Mac OS-T Big Five

ETen-B5-H Yes Big Five with ETen extensions Big Five

HKgccs-B5-H Yes Hong Kong GCCS Big Five—extended

HKscs-B5-H Yes Hong Kong SCS-2004 Big Five—extended

HKdla-B5-H Yes DynaComware HK A Big Five

HKdlb-B5-H Yes DynaComware HK B—665 hanzi only Big Five

HKm471-B5-H Yes Monotype Hong Kong—471 set Big Five

HKm314-B5-H Yes Monotype Hong Kong—314 set Big Five

CNS1-H Yes CNS 11643-1992 Plane 1 ISO-2022-CN

CNS2-H Yes CNS 11643-1992 Plane 2 ISO-2022-CN-EXT

CNS-EUC-H Yes CNS 11643-1992 Planes 1 and 2 EUC-TW

UniCNS-UCS2-Ha Yes Unicode UCS-2

UniCNS-UTF8-H Yes Unicode UTF-8

UniCNS-UTF16-H Yes Unicode UTF-16BE

UniCNS-UTF32-H Yes Unicode UTF-32BE

Adobe-CNS1-5b No All CIDs <00 00> through <4A FF>

The UniCNS-UCS2-H CMap resource is obsolete and its use is deprecated. The UniCNS-UTF16-H CMap resource should be used instead.a.

This CMap resource is called the Identity CMap, and encodes all glyphs at their respective CIDs.b.

Supplement 0 includes glyphs for simultaneously support of the Big Five and CNS 11643-
1992 character set, though only Planes 1 and 2 of the latter are supported. The ordering of
the hanzi glyphs in Adobe-CNS1-0 favors that which is set forth in CNS 11643-1992, not
Big Five. In addition, the two duplicately encoded hanzi in Big Five are not assigned CIDs.
Instead, the Big Five CMap resources duplicately encode them.

Supplement 1 added 3,309 glyphs to support the common Hong Kong extensions at the
time, specifically Hong Kong GCCS, along with the Hong Kong extensions to Big Five
that were defined by DynaComware and Monotype Imaging.

Supplement 2 added only 193 prerotated glyphs that are expected to be accessed through
the use of the OpenType ‘vrt2’ GSUB feature.

418 | Chapter 6: Font Formats, Glyph sets, and Font tools

Supplements 3, 4, and 5 added 1,245, 119, and 123 glyphs, respectively, to support the
Hong Kong SCS-1999, -2001, and -2004 character sets, respectively. Supplement 6 is ex-
pected to be defined to cover the 68 additional hanzi set forth in Hong Kong SCS-2008.

the Adobe-Japan1-6 character collection
The Adobe-Japan1-6 character collection, which enumerates 23,058 CIDs, supports all
vintages of the JIS X 0208:1997 character set, from JIS C 6226-1978 (aka JIS78) to JIS X
0208:1997, along with the JIS X 0201-1997, JIS X 0212-1990, and JIS X 0213:2004 char-
acter sets. It also supports the Apple KanjiTalk version 6, Apple KanjiTalk version 7, Mi-
crosoft Windows version 3.1J, Microsoft Windows version 95J, Fujitsu FMR, and NEC
vendor extensions of JIS X 0208, along with Kyodo News’ U-PRESS. Supported encodings
include ISO-2022-JP, Shift-JIS, EUC-JP (code sets 0 through 2), and Unicode. Table 6-33
lists the seven supplements of this character collection, along with the number of CIDs
defined in each one.

Adobe-Japan1-6 character collection supplementsTable 6-33.

Character collection total CIds Additional CIds

Adobe-Japan1-0 8,284 n/a

Adobe-Japan1-1 8,359 75

Adobe-Japan1-2 8,720 361

Adobe-Japan1-3 9,354 634

Adobe-Japan1-4 15,444 6,090

Adobe-Japan1-5 20,317 4,873

Adobe-Japan1-6 23,058 2,741

Table 6-34 lists all of the CMap resources that are associated with the Adobe-Japan1-6
character collection specification.

Adobe-Japan1-6 CMap resourcesTable 6-34.

CMap name Vertical? Character set encoding

H Yes JIS X 0208:1997 ISO-2022-JP

RKSJ-H Yes JIS X 0208:1997 Shift-JIS

EUC-H Yes JIS X 0208:1997 EUC-JP

78-Ha Yes JIS C 6226-1978 ISO-2022-JP

78-RKSJ-Ha Yes JIS C 6226-1978 Shift-JIS

78-EUC-Ha Yes JIS C 6226-1978 EUC-JP

83pv-RKSJ-Hb No KanjiTalk version 6 Shift-JIS

Glyph sets | 419

Adobe-Japan1-6 CMap resourcesTable 6-34.

CMap name Vertical? Character set encoding

90pv-RKSJ-Hc Yes KanjiTalk version 7 Shift-JIS

90ms-RKSJ-H Yes Windows 3.1J and Windows 95J Shift-JIS

90msp-RKSJ-Hd Yes Windows 3.1J and Windows 95J Shift-JIS

78ms-RKSJ-H Yes Windows 3.1J and Windows 95J Shift-JIS

Add-H Yes Fujitsu’s FMR Japanese ISO-2022-JP

Add-RKSJ-H Yes Fujitsu’s FMR Japanese Shift-JIS

Ext-H Yes NEC Japanese ISO-2022-JP

Ext-RKSJ-H Yes NEC Japanese Shift-JIS

NWP-H Yes NEC Word Processor ISO-2022-JP

Hankaku No Half-width Latin and katakana One-byte

Hiragana No Full-width hiragana One-byte

Katakana No Full-width katakana One-byte

Roman No Half-width Latin One-byte

WP-Symbol No Special symbols One-byte

UniJIS-UCS2-He Yes Unicode UCS-2

UniJIS-UCS2-HW-He Yes Unicode UCS-2

UniJIS-UTF8-H Yes Unicode UTF-8

UniJIS2004-UTF8-H Yes Unicode UTF-8

UniJIS-UTF16-H Yes Unicode UTF-16BE

UniJIS2004-UTF16-H Yes Unicode UTF-16BE

UniJIS-UTF32-H Yes Unicode UTF-32BE

UniJIS2004-UTF32-H Yes Unicode UTF-32BE

UniJISX0213-UTF32-H Yes Unicode UTF-32BE

UniJISX02132004-UTF32-H Yes Unicode UTF-32BE

Adobe-Japan1-6f No All CIDs <00 00> through <5A FF>

These were once available in OCF fonts, but were dropped starting with many early products. They were “brought back from the dead” under a.
CID-keyed font technology.

Unlike other CMap resources that have corresponding vertical versions, the 83pv-RKSJ-H CMap resource does not have a vertical version. In b.
other words, the 83pv-RKSJ-V CMap resource does not exist.

I chose to use 90pv-RKSJ-H in the spirit of 83pv-RKSJ-H. Still, no one really knows what the “pv” stands for, and that is officially okay.c.

90ms-RKSJ-H and 90msp-RKSJ-H differ only in that the former uses half-width Latin characters in the single-byte range (d. 0x20 through 0x7E),
and the latter uses proportional.

The UniJIS-UCS2-H and UniJIS-UCS2-HW-H CMap resources are obsolete and their use is deprecated. The UniJIS-UTF16-H or UniJIS2004-e.
UTF16-H CMap resource should be used instead.

This CMap resource is called the Identity CMap, and encodes all glyphs at their respective CIDs.f.

420 | Chapter 6: Font Formats, Glyph sets, and Font tools

Adobe-Japan1-0, the original Supplement, enumerates the same number of glyphs as
found in OCF fonts, specifically 8,284 CIDs. Supplement 0 did not support the JIS X
0208-1990, JIS X 0208:1997, Apple KanjiTalk version 7, Microsoft Windows version 3.1J,
nor Microsoft Windows 95J character sets.

Adobe-Japan1-1, or Supplement 1, added 75 glyphs to support JIS X 0208-1990 (and
thus JIS X 0208:1997 because they are identical in terms of character set and prototypi-
cal glyphs) and the Apple KanjiTalk version 7 character set, bringing the total number of
CIDs to 8,359.

Adobe-Japan1-2, or Supplement 2, added 361 glyphs to support the Microsoft Windows
versions 3.1J and 95J character sets, bringing the total number of CIDs to 8,720. 359 of
these 361 glyphs cover the IBM Selected Kanji set.

Adobe-Japan1-3, or Supplement 3, added only 634 prerotated glyphs that are expected to
be accessed through the use of the OpenType ‘vrt2’ GSUB feature.

Supplement 4 added 6,090 glyphs, with the intent to define the first Pro glyph set, in order
to satisfy most of the commercial and professional publishing needs in Japan. Among the
additional glyphs are various kanji, many of which are variant forms. JIS X 0221-1995’s
Ideographic Supplement 1, which is a set of 918 kanji from JIS X 0212-1990, are among
the 6,090 glyphs that are included in Adobe-Japan1-4.

The 4,873 glyphs added for Supplement 5 were primarily designed to support the JIS
X 0213:2000 character set, along with additional kanji variants. Like Supplement 4, this
supplement was designed to further satisfy most of the needs of commercial and profes-
sional publishing.

Supplement 6, which added 2,741 glyphs, obsoleted the Adobe-Japan2-0 character col-
lection (which is described in the section that follows) by providing complete support for
the JIS X 0212-1990 character set. Kyodo News’ U-PRESS character set is also covered
by Adobe-Japan1-6. Given the coverage of JIS X 0212-1990 in Supplements 4 and 5, the
number of additional glyphs that were necessary was relatively low.

Supplement 7 is currently in the very early stages of planning. Glyphs to support the
ARIB STD-B24 character set, along with the glyphs for additional U-PRESS characters,
are among the glyphs being considered for Adobe-Japan1-7.

the Adobe-Japan2-0 character collection—deprecated
The Adobe-Japan2-0 character collection, which enumerates 6,068 CIDs, supports the
entire JIS X 0212-1990 character set. Supported encodings include ISO-2022-JP-2 (and
thus ISO-2022-JP-1), EUC-JP (code set 3 only), and Unicode. Table 6-35 lists the CMap
resources that are associated with the Adobe-Japan2-0 character collection specification.

Glyph sets | 421

Adobe-Japan2-0 CMap resourcesTable 6-35.

CMap name Vertical? Character set encoding

Hojo-H Yes JIS X 0212-1990 ISO-2022-JP-2

Hojo-EUC-H Yes JIS X 0212-1990 EUC-JP

UniHojo-UCS2-Ha Yes Unicode UCS-2

UniHojo-UTF8-H Yes Unicode UTF-8

UniHojo-UTF16-H Yes Unicode UTF-16BE

UniHojo-UTF32-H Yes Unicode UTF-32BE

Adobe-Japan2-0b No All CIDs <00 00> through <17 FF>

The UniHojo-UCS2-H CMap resource is obsolete and its use is deprecated. The UniHojo-UTF16-H CMap resource should be used instead. But, a.
given that this entire character collection is obsoleted and its use is deprecated, this table note doesn’t mean very much.

This CMap resource is called the Identity CMap, and encodes all glyphs at their respective CIDs.b.

The Adobe-Japan2-0 character collection lacks certain key glyphs, such as the half-width
or proportional Latin sets, because it was originally intended to be used in conjunction
with Adobe-Japan1-x CIDFonts. Now that the Adobe-Japan1-6 character collection has
effectively obsoleted this character collection, this point is moot.

the Adobe-Korea1-2 character collection
The Adobe-Korea1-2 character collection, which enumerates 18,352 CIDs, supports the
KS X 1001:1992 character set, along with all possible 11,172 hangul. Supported encodings
include ISO-2022-KR, EUC-KR, UHC, Johab, and Unicode. The Mac OS extension as
used by Mac OS-KH and KLK, which totals to 1,137 additional characters, is also sup-
ported. Table 6-36 lists the three supplements of this character collection, along with the
number of CIDs defined in each one.

Adobe-Korea1-2 character collection supplementsTable 6-36.

Character collection total CIds Additional CIds

Adobe-Korea1-0 9,333 n/a

Adobe-Korea1-1 18,155 8,822

Adobe-Korea1-2 18,352 197

Table 6-37 lists the CMap resources that are associated with the Adobe-Korea1-2 charac-
ter collection specification.

422 | Chapter 6: Font Formats, Glyph sets, and Font tools

Adobe-Korea1-2 CMap resourcesTable 6-37.

CMap name Vertical? Character set encoding

KSC-H Yes KS X 1001:1992 ISO-2022-KR

KSC-EUC-H Yes KS X 1001:1992 EUC-KR

KSCpc-EUC-H Yes KS X 1001:1992 for Mac OS-KHa EUC-KRb

KSC-Johab-H Yes KS X 1001:1992—Johabc Johab

KSCms-UHC-H Yes KS X 1001:1992—Johabc UHCd

KSCms-UHC-HW-H Yes KS X 1001:1992—Johabc UHCd

UniKS-UCS2-He Yes Unicode UCS-2

UniKS-UTF8-H Yes Unicode UTF-8

UniKS-UTF16-H Yes Unicode UTF-16BE

UniKS-UTF32-H Yes Unicode UTF-32BE

Adobe-Korea1-2f No All CIDs <00 00> through <47 FF>

The Mac OS extension includes approximately 1,137 additional symbols.a.

Apple’s EUC-KR encoding includes an expanded second-byte range: b. 0x41 through 0x7D and 0x81 through 0xFE.

Includes all 11,172 hangul.c.

Unified Hangul Code. See Appendix E for more details.d.

The UniKS-UCS2-H CMap resource is obsolete and its use is deprecated. The UniKS-UTF16-H CMap resource should be used instead.e.

This CMap resource is called the Identity CMap, and encodes all glyphs at their respective CIDs.f.

Supplement 0 includes only 4,620 hanja, though KS X 1001:1992 defines 4,888 hanja.
Why is there a discrepancy? 268 of the 4,888 hanja in KS X 1001:1992 are genuine du-
plicate characters, and they appear in that character set standard multiple times because
they have multiple readings. The Adobe-Korea1-2 CMap resources thus multiply-encode
hanja as appropriate, by mapping multiple code points to a single CID. There is, of course,
a minor file size benefit, but the greatest advantage is that characters that are genuinely
duplicated in the KS X 1001:1992 standard are represented by the same glyph in a font
based on the Adobe-Korea1-2 character collection.

The 8,822 CIDs that make up Supplement 1 are entirely glyphs for hangul, and repre-
sent the difference between all 11,172 possible hangul and the 2,350 defined in KS X
1001:1992.

Supplement 2 added only 197 prerotated glyphs that are expected to be accessed through
the use of the OpenType ‘vrt2’ GSUB feature.

Note that one of the two characters added in KS X 1001:1998, along with the one added
in KS X 1001:2002, are not included in Adobe-Korea1-2. When Supplement 3 is defined,
glyphs for these two characters shall be included. In the case of the euro currency symbol
that was added in KS X 1001:1998, full-width and proportional forms are likely to be in-
cluded in Adobe-Korea1-3, along with a prerotated form of the latter.

Glyph sets | 423

the special-purpose Adobe-Identity-0 character collection
The special-purpose Adobe-Identity-0 character collection was initially used by Acrobat
and PDF for representing glyphs by their CIDs, but it can also be used for developing
OpenType CJKV fonts with special-purpose dynamic glyph sets. The Adobe-Identity-0
character collection should be used only if the character collections described in the pre-
vious sections are unsuitable for the intended glyph set.

Adobe Systems’ かづらき Std L (KazurakiStd-Light), which is an Adobe Original typeface
designed by Ryoko Nishizuka (西塚涼子 nishizuka ryōko), represents the very first Open-
Type font that was built by taking advantage of the flexibility and benefits of the Adobe-
Identity-0 character collection. Its fully proportional nature, along with its vertical-only
hiragana ligatures, effectively meant that the Adobe-Japan1-6 character collection was
unsuitable.

The document entitled Special-Purpose OpenType Japanese Font Tutorial: Kazuraki (Adobe
Technical Note #5901) describes the techniques that were used to build the KazurakiStd-
Light font, with the specific intention of guiding other font developers in the building of
similar fonts. Due to the special nature of such fonts, some applications may experience
difficulty using them, or using some of their functionality. It goes without saying that an
adequate amount of application-level testing is the prudent thing to do when developing
such fonts.

Is there a Pan-CJKV character collection?
Yes and no. Another very appropriate application of the special-purpose Adobe-Identity-0
character collection is for the building of Pan-CJKV fonts, specifically a single font in-
stance that includes the necessary glyphs to satisfy the requirements of some or all CJKV
locales. In other words, a large number of Unicode points will be associated with multiple
glyphs, and to which glyph they map depends on the selected locale. Some Unicode code
points, such as U+4E00, obviously need no more than a single glyph in order to satisfy all
CJKV locales. Other Unicode code points may require up to five distinct glyphs.

One would think that yet another static glyph set definition would be appropriate for
building OpenType Pan-CJKV fonts. Given the degree to which typeface design directly
affects how many glyphs are required per Unicode code point to support the necessary
locales, breaking free from a static glyph set is highly desirable. In addition, given the
amount of design resources that are necessary to design a Pan-CJKV font, the number of
such fonts is likely to be very low, perhaps even countable on one hand.

The biggest hurdle in developing a Pan-CJKV font is, of course, to design one or more
glyphs per Unicode code point. The URO includes 20,902 ideographs. Extensions A and
B include 6,582 and 42,711 ideographs, respectively. All of these code points potentially
require more than one glyph. Once the glyphs are designed, the preferred way in which
to implement is through the use of the OpenType ‘locl’ (Localized Forms) GSUB feature.
Table 6-38 lists the language and script tags that must be specified for the locale-specific
glyph substitutions in the ‘locl’ GSUB feature.

424 | Chapter 6: Font Formats, Glyph sets, and Font tools

Language and script tags for OpenType Pan-CJKV fontsTable 6-38.

Locale Language tag script tag

Simplified Chinese ZHS hani

Traditional Chinesea ZHT and ZHH hani

Japanese JAN kana

Korean KOR hang

Because there are separate language tags for Chinese as used in Taiwan (ZHT) and Hong Kong (ZHH), and because both tags are appropriate a.
for Traditional Chinese, both language tags should be specified.

Adobe InDesign CS3 and later, for example, recognizes and makes use of the ‘locl’ GSUB
feature. It is possible to define paragraph and character styles that specify a locale that
directly corresponds to the language and script tags that are specified in the ‘locl’ GSUB
feature.

Some fonts, such as Arial Unicode MS, which is bundled with Windows, include the ‘locl’
GSUB feature, but its script tags are set differently. Compared to what is listed in Table
6-38, this font sets the script to ‘hani’ for Korean, presumably because the scope of its ‘locl’
GSUB feature is limited to CJK Unified Ideographs. This is not necessarily a bug in the
font or in Adobe InDesign, but rather a reflection of differing philosophies about what
constitutes language tagging. Given that this is relatively new functionality, the likelihood
of change is high. Again, an adequate amount of application-level testing is the prudent
thing to do.

Another perhaps not-so-obvious consideration is which glyphs to use as the default for a
Pan-CJKV font. Given that GB 18030-2005, by definition, includes all CJK Unified Ideo-
graphs in Unicode, Simplified Chinese serves as a very suitable and appropriate default
in terms of the glyph that are directly encoded in the ‘cmap’ table. Even if the Simplified
Chinese glyphs are set as the default, it is still important to define paragraph and character
styles that specify Simplified Chinese.

Interestingly, the glyphs shown in Table 3-99, found in Chapter 3, were implemented as
a small yet fully functional “proof of concept” Pan-CJKV font and were selected through
the use of appropriately set InDesign character styles and the ‘locl’ GSUB feature.

Character collection supplements—the past, present, and future
Whenever a CJKV character collection is updated, which is always performed by defin-
ing a new Supplement, there is almost always a motivation or trigger for doing so. The
character sets used by each locale are based on national standards and common vendor
extensions thereof, and there is now influence from international character sets, specifi-
cally Unicode and ISO 10646. When these national standards, vendor extensions thereof,
or international character sets expand or otherwise change, a new Supplement sometimes
becomes necessary. Due to the static nature of character collections, this has to be done in
the form of a new Supplement.

Glyph sets | 425

As an historical example, there were two motivations for defining the Adobe-Japan1-1
character collection: the publishing of the JIS X 0208-1990 character set, which added two
kanji, and Apple’s definition of the KanjiTalk7 character set. The result was a somewhat
modest Supplement containing only 75 additional glyphs.

Sometimes, however, two sets of characters that are useful within a single locale are in-
tentionally divided or separated by placing them into two separate Supplements, whereby
the more frequently used set forms an earlier Supplement, and the other becomes a later
Supplement, or is used to define two completely independent character collections.

The Adobe-GB1-1 character collection is an example of the former scenario. Adobe-
GB1-0 defines the glyphs for supporting the GB 2312-80 character set, which represented
the most basic character set standard for China at the time of its establishment. Every
Chinese typeface design (that is, for China, not Taiwan) must minimally conform to the
GB 2312-80 character set. However, some typeface designs also include the characters for
the GB/T 12345-90 character set, which, as you learned in Chapter 3, is the traditional
analog of GB 2312-80. When comparing these two character sets in detail, one finds that
there are 2,180 hanzi in GB/T 12345-90 that are not included in GB 2312-80. So, these
2,180 hanzi became Supplement 1, specifically Adobe-GB1-1. Much of this history has
been obscured or obliterated by GBK and GB 18030, but Adobe-GB1-1 preserves it to
some extent.

The Adobe-Japan2-0 character collection is an example of the latter scenario. The JIS X
0212-1990 character set, as described in Chapter 3, enumerates 6,067 characters, 5,801
of which are kanji. But, very few typeface designs included the glyphs for these charac-
ters—FDPC’s Heisei Mincho W3 was the only design readily available with the glyphs for
the JIS X 0212-1990 for a number of years. So, these 6,067 characters became a separate
and independent character collection, specifically Adobe-Japan2-0. The Adobe-Japan1-x
character collection incrementally started to support the JIS X 0212-1990 character col-
lection, beginning with Supplement 4. Adobe-Japan1-6 served to complete the support
for JIS X 0212-1990, which also served to obsolete the Adobe-Japan2-0 character collec-
tion. Now, it is considered better practice to implement JIS X 0212-1990 support through
the use of the Adobe-Japan1-6 character collection.

Whether to divide collections of glyphs into separate Supplements of a single character
collection or to define them as independent character collections is decided by consider-
ing glyph availability for the majority of typeface designs. Forcing or obligating typeface
designers or type foundries to come up with thousands of additional glyphs per typeface
design is not a very reasonable thing to do. By defining separate Supplements, the burden
placed on typeface designers and type foundries is eased.

In some cases, the motivation for change was not triggered by any specific character set,
whether national, vendor-specific, or international. Adobe-Japan1-4, for example, was
specifically designed to leap beyond those standards, and to include the glyphs necessary
for professional and commercial publishing in Japan. A wide variety of glyph sets were
studied, and there was also close collaboration with several Japanese type foundries. The

426 | Chapter 6: Font Formats, Glyph sets, and Font tools

end result was the first “Pro” glyph set targeted toward the Japanese market. There are
plans to do the same for Chinese and Korean.

supporting Unicode in CId-keyed fonts
Because the CID-keyed font file specification is extremely flexible and extensible—pri-
marily because it effectively divorces all encoding information from the font file itself—a
large number of encodings can be supported simply by building an appropriate CMap file.
Because Unicode is intended as a single character set that provides access to all alphabets,
including CJKV characters, it is a natural candidate for one such encoding.

One typical question that is asked with regard to developing Unicode fonts is whether to
include all characters in Unicode. Given the 64K glyph limit, and the fact that Unicode
version 5.1 has surpassed the 100,000-character barrier, it is simply not possible to build
such fonts, let alone the cast typeface design resources that would be necessary to pull off
such a feat. Here are some points to consider:

Input methods, which represent the typical means by which users input characters, •	
are already restricted to a subset of the corresponding national character set standard.
Using Unicode as the underlying encoding will not magically extend the scope of an
input method.

Many characters that are used in one CJKV locale may be completely useless or su-•	
perfluous in another—consider the simplified hanzi in China, which are considered
useless in Japan.

Glyph-design principles vary greatly across CJKV locales. Even given the same type-•	
face design, many characters will need to have their glyphs constructed differently
depending on the locale.

Of course, having multiple input methods installed, one for each locale, can be useful for
users whose work extends beyond a single locale. And, for these same users, having ac-
cess to characters not normally available in a given locale has advantages in some special-
purpose situations.

The next question that people often ask deals with specifying the most useful subset of
Unicode for each CJKV locale. To a great extent, this question is already answered by
virtue of the existing national character set standards for each CJKV locale, such as GB
2312-80 for China. Simply map these CJKV character set standards to Unicode, and you
instantly have a useful font for that CJKV locale. It is really that simple. For CID-keyed
fonts, it means issuing a new set of Unicode-encoded CMap resources—the CIDFonts
themselves, which can be several megabytes in size, need not be reissued. The glyphs need
not change. Only the encoding that is imposed on the glyphs needs to change.

I have developed Unicode—specifically UCS-2–, UTF-8–, UTF-16BE–, and UTF-
32BE–encoded—CMap resources for all five of Adobe Systems’ public CJKV character

ruby Glyphs | 427

collections, and have made them available for developers or anyone else to use.* In fact,
these Unicode CMap resources, with the exception of the UCS-2 ones, are considered the
primary CMap resources today, and in general are the only ones that are updated on a
regular basis.

There are two types of events that trigger Unicode CMap resource updates. One is obvi-
ously the definition of a new Supplement for a character collection. The other is a new ver-
sion of Unicode. Unicode version 5.1, for example, allowed seven previously unencoded
kanji to be encoded, thus triggering seven additional mappings in the Adobe-Japan1-6
Unicode CMap resources.

Table 6-39 lists each of Adobe Systems’ CJKV character collections, along with the name
of each Unicode-encoded CMap resource.

Unicode CMap resourcesTable 6-39.

Character collection UCs-2a UtF-8 UtF-16Be UtF-32Be

Adobe-GB1-5 UniGB-UCS2-H UniGB-UTF8-H UniGB-UTF16-H UniGB-UTF32-H

Adobe-CNS1-5 UniCNS-UCS2-H UniCNS-UTF8-H UniCNS-UTF16-H UniCNS-UTF32-H

Adobe-Japan1-6b UniJIS-UCS2-Hc UniJIS-UTF8-H UniJIS-UTF16-H UniJIS-UTF32-Hd

Adobe-Japan2-0 UniHojo-UCS2-H UniHojo-UTF8-H UniHojo-UTF16-H UniHojo-UTF32-H

Adobe-Korea1-2 UniKS-UCS2-H UniKS-UTF8-H UniKS-UTF16-H UniKS-UTF32-H

The UCS-2 CMap resources are obsolete, and their use is deprecated. The corresponding UTF-16BE CMap resource should be used instead.a.

The Adobe-Japan1-6 character collection also includes JIS2004-savvy CMap resources for UTF-8, UTF-16BE, and UTF-32BE encodings, specifi-b.
cally UniJIS2004-UTF8-H, UniJIS2004-UTF16-H, and UniJIS2004-UTF32-H.

The UniJIS-UCS2-HW-H CMap resource also exists, but like its sibling, it is obsolete and its use is deprecated.c.

The UniJISX0213-UTF32-H and UniJISX02132004-UTF32-H CMap resources also exist, and differ in that 65 code points that correspond to d.
infrequently used symbols map to glyphs with proportional widths instead of full-width ones.

Of course, all of these Unicode-encoded CMap resources have vertical counterparts. For
example, the vertical counterpart of UniKS-UTF8-H is UniKS-UTF8-V. Simply replace
the final “H” with a “V” in the CMap resource name.

ruby Glyphs
Ruby glyphs, commonly referred to as furigana outside of publishing circles, are specific
to Japanese typography and serve to annotate kanji with readings. How ruby glyphs are
used in line-layout is deferred until Chapter 7, but here we focus on the details of the
glyphs used for ruby, such as their special design considerations.

A complete set of ruby glyphs, or a special-purpose ruby font, typically consists of hira-
gana, katakana, and a handful of symbols. When one compares the glyphs of a ruby font,

* ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/

428 | Chapter 6: Font Formats, Glyph sets, and Font tools

or the ruby glyphs in a Japanese font, with those of standard Japanese fonts, there are two
important differences to note, indicated as follows:

Small kana, such as •	 ぁ, ぃ, ぅ, ぇ, ぉ, �, っ, ゃ, ゅ, ょ, and ゎ for hiragana, are some-
times the same size as their standard-sized equivalents. This means that しょう and
しよう , specifically the ょ versus よ, cannot be distinguished.*

Small kana, when they are the same size as their standard-sized equivalents, do not •	
need special vertical-use forms.

The Adobe-Japan1-4 character collection includes a complete set of ruby glyphs, and
OpenType fonts based on them are expected to use the ‘ruby’ GSUB feature to allow ap-
plications to access these glyphs. Adobe InDesign, for example, supports the ‘ruby’ GSUB
feature in the context of its ruby functionality. The Adobe-Japan1-5 character collec-
tion includes additional ruby glyphs that correspond to somewhat more obscure kana
characters.

Generic Versus typeface-specific ruby Glyphs
Ruby glyphs can come in several varieties, depending on the typeface and the type found-
ry that designed them: generic, generic to a font family, and specific to a typeface:

Generic
Designed to be used with a variety of fonts and font families.

Generic to a particular font family
Intended for use with all weights of that font family—due to the small size at which
ruby glyphs are set, they do not always benefit from differing weights.

Specific to a particular typeface design
Although not very common, these do serve special purposes. Morisawa’s Ryumin
font family, for example, includes several ruby glyphs, one for nearly every weight.

Which variety of ruby glyphs you use depends on what is available for the font you are
using, or what glyphs are available in the font itself.

Table 6-40 illustrates the standard kana and ruby kana glyphs that are included in Adobe
Systems’ 小塚明朝 Pr6N B (KozMinPr6N-Bold) typeface design. The Adobe-Japan1-6
character collection, on which this font is based, includes a complete set of glyphs specifi-
cally designed for ruby use.

* The distinction between standard and small kana is often critical. For the examples しよう (shiyō) and しょう
(shō), the former represents the reading for the common compounds 使用 (shiyō) and 仕様 (shiyō), and the
latter can represent the reading for any one of a large number of kanji.

Host-Installed, Printer-resident, and embedded Fonts | 429

Standard versus ruby kana—KozMinPr6N-BoldTable 6-40.

Character type sample text

Standard さるもきからおちる
Ruby さるもきからおちる

Note how their designs are quite different, although they are included in the same type-
face design. In order for ruby glyphs to be legible at small sizes, they are often slightly
lighter or heavier than their standard counterparts, depending on the relative weight of
the typeface.

Chapter 7 explores the more practical aspects of ruby glyphs, such as how they are used
and typeset, and how they differ from their close cousins, pseudo-ruby glyphs.

Host-Installed, Printer-resident, and embedded Fonts
In the past, an important user and developer concern was how to map host-installed fonts
to printer-resident fonts. The host-installed font either needed to include information that
explicitly specified to which printer-resident font it corresponded, or else an OS-level da-
tabase had to exist that mapped host-installed fonts to printer-resident fonts. The sections
that follow describe how this font mapping took place on Mac OS, Windows (versions 3.1,
95, and 98), and to a limited extent, the X Window System.

The large size of typical CJKV fonts gave an advantage when mapping to printer-resident
fonts, because downloading such large fonts on a per-job basis was tedious. Subsetting
and PDF embedding have effectively resolved this issue.

Now, the preferred way in which to handle fonts in a printing workflow is to embed the
glyphs in PDF. This is a good thing, because it guarantees that the same glyphs in host-
installed fonts are used to display or print the document. The only thing that would pre-
vent the proper embedding of glyphs in a PDF, besides the document author explicitly
choosing not to do so, is if the embedding permissions of the font are set to a value that
does not permit embedding.

Installing and downloading Fonts
While there are plenty of tools and utilities for installing non-CJKV fonts, whether to the
host—Mac OS or Windows, for example—or to the printer, those designed for handling
CJKV fonts are still rare due to the added complexity. Most font developers end up devel-
oping their own font installation software or licensing it from another company.

Font developers who are serious about authoring their own font installation and down-
loading software should read Adobe Systems Technical Notes #5174 (CID-Keyed Font

430 | Chapter 6: Font Formats, Glyph sets, and Font tools

Installation for PostScript File Systems) and #5175 (CID-Keyed Font Installation for ATM
Software), which provide the necessary technical details for performing these tasks.

Given that the current PDF-based document workflow removes the font burden from the
printer, the need to download the fonts to the printer has been effectively eliminated, or
at least significantly minimized. The current workflow paradigm also has the benefit of
guaranteeing that the document prints exactly as it is displayed because the same font,
and perhaps more importantly the same version of the font, is used for both purposes.

the Postscript Filesystem
PostScript devices use a hierarchical filesystem composed of several directories, along with
some subdirectories. Exactly where font components are installed depends on the vintage
of the font format. Table 6-41 illustrates how a PostScript Japanese OCF font is distributed
across a PostScript filesystem. Note that the base font name, such as “HeiseiMin-W3,” has
been replaced by an “X” for the sake of brevity and readability.

OCF font file structureTable 6-41.

directory Contents

fonts X-83pv-RKSJ-H, X-83pv-SuppA-H, X-83pv-SuppB-H, X-Add-H, X-Add-RKSJ-H, X-Add-RKSJ-V, X-Add-SuppA-H,
X-Add-SuppA-V, X-Add-SuppB-HV, X-Add-V, X-EUC-H, X-EUC-V, X-Ext-H, X-Ext-RKSJ-H, X-Ext-RKSJ-V, X-Ext-
SuppA-H, X-Ext-SuppA-V, X-Ext-SuppB-HV, X-Ext-V, X-H, XJIS.zm_23, XJIS.zm_29, X-JIS.zm_2E, X-NWP-H,
X-NWP-V, X-PropRoman, X-RKSJ-H, XRKSJ-UserGaiji, X-RKSJ-V, X-SJ.zm_82, X-SJ.zm_82v, X-SJ.zm_85,
X-SuppA-H, X-SuppA-V, X-SuppB-HV, X-V, X.Hankaku, X.Hiragana, X.Katakana, X.Oubun, X.Oubun-Add,
X.Roman, X.Roman83pv, X.SuppK, X.WP-Symbol

fsupp X-83pv-SuppA_BDY, X-83pv-SuppB_BDY, X-Add-SuppA_BDY, X-Add-SuppB_BDY, X-Add_BDY, X-EUC_BDY,
X-Ext-SuppA_BDY, X-Ext-SuppB_BDY, X-Ext_BDY, X-NWP_BDY, X-SuppA_BDY, X-SuppB_BDY, X_BDY

pgfonts X::AlphaNum, X::Alphabetic, X::Dingbats, X::HKana, X::HRoman, X::JIS83-1Kanji, X::JIS83-2, X::Kana,
X::KanjiSupp

pgfsupp X::AlphaNum_COD, X::AlphaNum_CSA, X::Alphabetic_COD, X::Alphabetic_CSA, X::Dingbats_COD,
X::Dingbats_CSA, X::HKana_COD, X::HKana_CSA, X::HRoman_COD, X::HRoman_CSA, X::JIS83-1Kanji_COD,
X::JIS83-1Kanji_CSA, X::JIS83-2_COD, X::JIS83-2_CSA, X::Kana_COD, X::Kana_CSA, X::KanjiSupp_COD,
X::KanjiSupp_CSA

That’s certainly a lot of files! Eighty-five to be exact. And for a single font! Intimidating?
I certainly hope so. Keep in mind that all of these files were present for every PostScript
Japanese OCF font. Furthermore, the file structure of an OCF font differs depending on
its vintage—the OCF font file structure illustrated in Table 6-41 represents the structure
found in the very last Japanese OCF fonts produced by Adobe Systems.

Japanese OCF fonts produced by Adobe Systems were also dependent on a handful of
generic font files that contained, among other things, glyphs for the half- and full-width
line-drawing elements as found in row 8 of JIS X 0208:1997. The file structure for these
files is provided in Table 6-42.

Host-Installed, Printer-resident, and embedded Fonts | 431

OCF font file structure—generic componentsTable 6-42.

directory Contents

pgfonts Generic::FullWidth, Generic::HalfWidth

pgfsupp Generic::FullWidth_COD, Generic::FullWidth_CSA, Generic::HalfWidth_COD, Generic::HalfWidth_CSA

In contrast, Table 6-43 illustrates the PostScript file structure for a CIDFont resource and
its associated CMap resources. Note the simplicity.

CID-keyed font file structureTable 6-43.

directory Contents

Resource/CIDFont HeiseiMin-W3

Resource/CMap 78-EUC-H, 78-EUC-V, 78-H, 78-RKSJ-H, 78-RKSJ-V, 78-V, 78ms-RKSJ-H, 78ms-RKSJ-V, 83pv-RKSJ-H,
90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, 90pv-RKSJ-V, Add-H,
Add-RKSJ-H, Add-RKSJ-V, Add-V, Adobe-Japan1-0, Adobe-Japan1-1, Adobe-Japan1-2, Adobe-
Japan1-3, Adobe-Japan1-4, Adobe-Japan1-5, Adobe-Japan1-6, EUC-H, EUC-V, Ext-H, Ext-RKSJ-H,
Ext-RKSJ-V, Ext-V, H, Hankaku, Hiragana, Katakana, NWP-H, NWP-V, RKSJ-H, RKSJ-V, Roman, UniJIS-
UCS2-H, UniJIS-UCS2-HW-H, UniJIS-UCS2-HW-V, UniJIS-UCS2-V, UniJIS-UTF16-H, UniJIS-UTF16-V,
UniJIS-UTF32-H, UniJIS-UTF32-V, UniJIS-UTF8-H, UniJIS-UTF8-V, UniJIS2004-UTF16-H, UniJIS2004-
UTF16-V, UniJIS2004-UTF32-H, UniJIS2004-UTF32-V, UniJIS2004-UTF8-H, UniJIS2004-UTF8-V,
UniJISPro-UCS2-HW-V, UniJISPro-UCS2-V, UniJISPro-UTF8-V, UniJISX0213-UTF32-H, UniJISX0213-
UTF32-V, UniJISX02132004-UTF32-H, UniJISX02132004-UTF32-V, V, WP-Symbol

Once you install a set of CMap resources that are associated with a CJKV character col-
lection, they need not be installed for subsequent CIDFont resources that share the same
character collection—they are common across all CIDFonts resources of the same char-
acter collection.

For details on how CID-keyed fonts are installed onto a PostScript filesystem, I again sug-
gest reading the document entitled CID-Keyed Font Installation for PostScript File Systems
(Adobe Systems Technical Note #5174).

Mac os X
Mac OS X has greatly simplified the way in which fonts are installed and supported, espe-
cially compared to Mac OS 9 and earlier. Fonts that are required by Mac OS X, meaning
that they are used for purposes such as for the UI, are installed in a specific directory, as
follows:

/System/Library/Fonts/
Because these fonts are required by Mac OS X, they cannot be removed, and users cannot
install additional fonts into that directory. Other OS-bundled fonts (which are considered

432 | Chapter 6: Font Formats, Glyph sets, and Font tools

optional and can thus be removed), along with user-installed fonts, are installed in the
following public directory:

/Library/Fonts/
Users can also install fonts locally, to their own account, thus making them private when
more than one user account is present on a single machine. For example, I could install
fonts into the following directory on my computer:

/Users/lunde/Library/Fonts/
For single-user machines, there is effectively no functional difference between installing
fonts into the public or private font directory, though one concern is different versions of
the same font, one of which is installed in public directory, while the other is installed in
the private one. Of course, when such a conflict exists, the font with the higher version
number wins, as it should.

Font Book
Mac OS X includes an application called Font Book that catalogs the fonts that are cur-
rently installed, and that can also be used to install and active fonts. Double-clicking on a
font launches Font Book.

Font Book is a very convenient way in which to explore what fonts are currently installed,
and it allows each font to be previewed. Attributes of the installed fonts, such as the ver-
sion number, are also displayed. Font Book also has the ability to perform font validation,
for any font, regardless of whether it is installed. This is useful for diagnosing font issues.

Mac os 9 and earlier
Given the dominance of Mac OS X, the information in this section is more or less for
historical purposes, and it serves to demonstrate how the font situation has improved for
users who transitioned from Mac OS 9 and earlier to Mac OS X.

Mac OS utilized the style map of a resource named ‘FOND’, which is a critical part of each
font suitcase, in order to provide the mapping to a printer-resident PostScript font. If a
font suitcase includes more than one font, there are necessarily multiple instances of the
‘FOND’ resource. The style map of a ‘FOND’ resource included two important pieces of
information that were highly dependent on one another:

A string that was a fully qualified PostScript font name, such as STSong-Light-GBpc-•	
EUC-H. This string then became the argument to PostScript’s “findfont” procedure
when this font is used.

A byte that indicated the length of this PostScript font name string—this byte ap-•	
peared immediately before the string itself. This byte, for this particular example,
has a value of 0x17 (decimal 23) that corresponds to the byte-length of the string
STSong-Light-GBpc-EUC-H.

Host-Installed, Printer-resident, and embedded Fonts | 433

The ‘FOND’ resource also included other crucial font-related information, such as the
following:

Menu name (such as 华文宋体 for STSong-Light)
This is actually the name of the ‘FOND’ resource instance, not part of the ‘FOND’
resource. This is the string displayed in application font menus.

FOND ID
An internal identifier that served to indicate the script or locale of the font.

Widths table
Explicitly listed the widths, expressed in 1⁄4096 units, for glyphs encoded in the range
0x00 through 0xFF, meaning for 256 total code points.

The FOND ID ranges listed in Table 6-44 are important for CJKV font developers because
they indicated to the OS how to treat the font in terms of locale and encoding. Note that
each of these four CJKV locales was restricted to ranges that each contained 512 FOND
IDs.

FOND ID rangesTable 6-44.

Fond Id range script Character set encoding

16384–16895 Japanese JIS X 0208:1997 Shift-JIS

16896–17407 Traditional Chinese Big Five Big Five

17408–17919 Korean KS X 1001:1992 EUC-KR

28672–29183 Simplified Chinese GB 2312-80 EUC-CN

The ‘FOND’ resource, although typically small in size, provided to the OS the informa-
tion necessary to make a font available in application font menus, the font’s locale, and the
mapping to a printer-resident PostScript font.

The contents of the ‘FOND’ resource were also used by ATM (described in Chapter 8) to
decide which host-based outline font to access. It was also possible for two or more dif-
ferent ‘FOND’ resources to reference the same PostScript font name. Table 6-45 illustrates
this phenomenon.

Multiple ‘FOND’ resources with identical PostScript font namesTable 6-45.

Menu name source Postscript font name

細明朝体 Mac OS-J Ryumin-Light-83pv-RKSJ-H

L リュウミン L-KL Adobe Systems Ryumin-Light-83pv-RKSJ-H

中ゴシック体 Mac OS-J GothicBBB-Medium-83pv-RKSJ-H

M 中ゴシック BBB Adobe Systems GothicBBB-Medium-83pv-RKSJ-H

434 | Chapter 6: Font Formats, Glyph sets, and Font tools

Although outline font data can be shared by more than one ‘FOND’ resource, quite often
there are differing global metrics information—specified in the ‘NFNT’ resource—that
alter the exact placement of glyphs. One, of course, cannot install two ‘FOND’ resources
that share the same menu name.

Also of potential interest is the fact that many of the commonly used Mac OS-J fonts were
based on the same typeface designs, but were either in a different format—PostScript ver-
sus TrueType—or used a different design space. Table 6-46 lists such Mac OS-J fonts.

Identical typeface designs in different Mac OS font formatsTable 6-46.

Menu name Format design space source

L リュウミン L-KL PostScript 1000×1000 Morisawa’s Ryumin Light

リュウミンライト-KL TrueType 2048×2048 Morisawa’s Ryumin Light

M 中ゴシック BBB PostScript 1000×1000 Morisawa’s Gothic BBB Medium

中ゴシック BBB TrueType 2048×2048 Morisawa’s Gothic BBB Medium

平成明朝 W3 PostScript 1000×1000 FDPC’s Heisei Mincho W3

平成明朝 TrueType 2048×2048 FDPC’s Heisei Mincho W3

平成角ゴシック W5 PostScript 1000×1000 FDPC’s Heisei Kaku Gothic W5

平成角ゴシック TrueType 2048×2048 FDPC’s Heisei Kaku Gothic W5

Osaka TrueType 256×256 FDPC’s Heisei Kaku Gothic W5

However, these identical designs in different font formats are not compatible due to
metrics differences in the proportional Latin glyphs that are encoded in their one-byte
ranges.

Where are the bitmaps?
Latin bitmapped fonts for Mac OS are encapsulated in a font suitcase (so named because
the icon looks like a suitcase). CJKV bitmapped fonts for Mac OS are separated into two
basic components:

A font suitcase, so named because its icon looks like a suitcase•	

One or more ‘fbit’ files, so named because its file type is ‘fbit’•	 *

Legacy fonts (that is, older fonts) typically consist of a rather small—in terms of byte-
size—font suitcase plus one or two large ‘fbit’ files. Contemporary fonts consist of a large
font suitcase plus one small ‘fbit’ file. Table 6-47 provides information about legacy and
contemporary bitmapped fonts for Mac OS.

* The ‘fbit’ files are not necessary when running under QuickDraw GX or with Mac OS version 8.5 or greater.

Host-Installed, Printer-resident, and embedded Fonts | 435

Legacy Mac OS bitmapped fontsTable 6-47.

Vintage Font suitcase resourcesa ‘fbit’ resourcesa Comments

Older FOND, NFNT fbit One-byte bitmaps in ‘NFNT’ resource; two-byte
bitmaps in ‘fbit’ file’s data fork

Old FOND, NFNT, sfnt fbit, fdef, fdnm One-byte bitmaps in ‘NFNT’ resource; all
bitmaps in ‘sfnt’ resource

This file may also contain other resources, such as ‘vers’ (version).a.

The real difference between legacy and contemporary Mac OS bitmapped fonts is the ap-
pearance of the ‘sfnt’ resource. Contemporary fonts can store bitmapped data in the ‘bdat’
table (also known as the ‘sbit’ table) of the ‘sfnt’ resource. The ‘fbit’ file’s ‘fbit’ resource
contains pointers into the data fork of the ‘fbit’ file (for legacy fonts) or into the ‘bdat’ table
of the font suitcase (for contemporary fonts). The ‘sfnt’ resource can also store a complete
outline font, either TrueType, Type 1, or CIDFont. The ‘fdef ’ resource allows Mac OS to
understand the contemporary format. The ‘fdnm’ resource is described in the following
section.

Whereas the font suitcases appear the same regardless of CJKV script, the ‘fbit’ files appear
differently because they have a different creator. Table 6-48 lists the four CJKV scripts sup-
ported by Mac OS, along with the file type and creator for their ‘fbit’ files.

File type and creators for ‘fbit’ filesTable 6-48.

script File type Creator

Simplified Chinese fbit CSYS

Traditional Chinese fbit TSYS

Japanese fbit KSYS

Korean fbit hfon

Are 512 Fond Ids enough?
512 FOND IDs may seem like plenty at first glance (and, apparently to the designers
of Mac OS), but as the result of a past boom in available CJKV fonts, it was not nearly
enough. For example, Adobe Systems—as of the writing of the first edition—had over 100
different Japanese fonts in its type library, which consumes approximately one-fifth of
the entire Japanese FOND ID range. Many Korean type foundries also have well over 100
individual fonts in their type libraries. The lack of FOND IDs was indeed a problem.

Apple was forced to devise a system to handle this situation of too few FOND IDs for
non-Latin scripts, and the result was the birth of the Asian Font Arbitrator and the ‘fdnm’
resource, whose function was to dynamically harmonize FOND IDs of CJKV fonts in
situations when a user installs a new font whose FOND ID conflicts with one that is al-
ready installed.

436 | Chapter 6: Font Formats, Glyph sets, and Font tools

Mac OS power users know that FOND ID harmonization is something that was intro-
duced in System7. However, CJKV fonts do not consist of only a font suitcase—they also
use the infamous ‘fbit’ files. While the font suitcase includes single-byte bitmapped data
in the ‘NFNT’ resource, and there is one ‘NFNT’ resource instance per bitmapped size,
the ‘fbit’ files contain two-byte bitmapped data, or, for newer fonts, contain pointers into
the font suitcase’s ‘bdat’ table, which is inside the ‘sfnt’ resource. The ‘fbit’ files contain
back pointers to the font suitcase (actually, to its FOND ID). Thus, when standard Sys-
tem7 FOND ID harmonization kicks in, only the FOND ID in the font suitcase becomes
harmonized, and the back pointers in the ‘fbit’ files now point off to a nonexistent font
suitcase.

The Asian Font Arbitrator requires that an ‘fdnm’ resource exist in the ‘fbit’ files, and that
an ‘fdnm’ table exist in the corresponding ‘FOND’ resource. This “resource plus table”
combination is linked by a common attribute, which cannot be broken even if FOND
ID harmonization takes place. This common attribute is the font’s menu name. All CJKV
fonts for use on Mac OS should include a well-formed ‘fdnm’ resource and table. Contact
Apple for more information on the Asian Font Arbitrator.

Where, oh where have my vertical variants gone?
Of the CJKV locales, only Japanese had adequate vertical support on Mac OS. Most other
OSes, such as Windows, used a separate font resource to act as the vertical instance of a
font. In other words, the vertical version of a font appeared as a separate font instance
in application font menus. Unlike other OSes, Mac OS-J and JLK encoded the vertical
variants within the horizontal font instance at standard offsets from their horizontal
counterparts.

KanjiTalk6 and Mac OS-J both supported the same set of 53 vertical variants for Japanese,
but at different offsets. Thirty-one of these had their horizontal versions in row 1 (punc-
tuation and symbols) of JIS X 0208:1997, 10 in row 4 (small hiragana), and 12 in row 5
(small katakana).

Under KanjiTalk6, these 53 vertical variants were at a 10-row offset from their horizontal
code points, that is, in rows 11, 14, and 15. For example, the small hiragana “a” character
(ぁ) is normally encoded at Shift-JIS <82 9F> (Row-Cell 04-01), but its vertical version
was encoded at Shift-JIS <87 9F> (Row-Cell 14-01). As far as Shift-JIS encoding is con-
cerned, the shift value was 0x05, which is the difference between the first-byte values,
specifically 0x87 minus 0x82.

Under Mac OS-J or JLK, these same 53 vertical variants were at an 84-row offset, that is,
in rows 85, 88, and 89. Using the same example as before, small hiragana “a” (ぁ) is nor-
mally encoded at Shift-JIS <82 9F> (Row-Cell 04-01), but its vertical version was encoded
at Shift-JIS <EC 9F> (Row-Cell 88-01). As far as Shift-JIS encoding is concerned, the shift
value is 0x6A, which is the difference between the first-byte values, specifically 0xEC minus
0x82.

Host-Installed, Printer-resident, and embedded Fonts | 437

PostScript Japanese fonts have always had these 53 vertical variants at the 84-row offset.
Under KanjiTalk6, Mac OS had to further offset the vertical variants—which were already
offset by 10 rows—by 74 rows when printing to PostScript printers.

Table 6-49 summarizes the two types of offsets for handling vertical variants under
KanjiTalk, Mac OS-J, and JLK.

Vertical variant row offsetsTable 6-49.

Mac os version Vertical offset Vertical rows Value for ‘tate’ table

KanjiTalk6 10-row 11, 14, and 15 0x05

Mac OS-J and JLK 84-row 85, 88, and 89 0x6A

Japanese ‘FOND’ resources for use under Mac OS-J or JLK normally include a ‘tate’ (縦
tate, meaning “vertical”) table, which explicitly indicates which offset should be used for
vertical variants. If no ‘tate’ table exists, Mac OS assumes that a 10-row offset is desired.
PostScript Japanese fonts, therefore, must explicitly indicate an 84-row offset by using the
‘tate’ table and setting its value to 0x6A.

FONDedit, a utility provided to developers by Apple, was able to properly create and set a
‘tate’ table in ‘FOND’ resources.

Microsoft Windows—2000, XP, and Vista
Windows 2000, XP, and Vista support OpenType fonts natively. And, compared to earlier
versions of Windows OS, the overall user experience with regard to installing and han-
dling fonts is much better.

Installing one or more fonts into these contemporary versions of Windows OS is simply a
matter of selecting the Fonts control panel and following the instructions. Removing fonts
is performed through the use of the same control panel. Be sure to quit all applications
before installing fonts, particularly those applications in which you intend to immediately
use the newly installed fonts.

Microsoft Windows—Versions 3.1, 95, 98, Me, and nt4
Versions of Microsoft Windows prior to 2000, XP, and Vista, and unlike Mac OS, typically
provided two instances per CJKV font: one is horizontal, and the other is the correspond-
ing vertical instance. But, how are these font instances differentiated for the user? Have
you ever heard of the at (@, 0x40) symbol? It is prefixed to the menu name of the vertical
font instance. Table 6-50 illustrates this, and for the sake of completeness, I also included
the equivalent PostScript font name.

438 | Chapter 6: Font Formats, Glyph sets, and Font tools

Windows horizontal and vertical fontsTable 6-50.

Writing direction Menu name Postscript font name

Horizontal HY 중고딕 HYGoThic-Medium--KSCms-UHC-H

Vertical @HY 중고딕 HYGoThic-Medium--KSCms-UHC-V

The critical Windows file that maps host-based fonts to printer-resident fonts is called the
Printer Font Metrics (PFM) file. This file provides similar information to that found in the
‘FOND’ resource on Mac OS. Two PFM files are typically required for each CJKV font:
one for horizontal and the other for vertical.

Instead of using a range of FOND IDs whereby specific ranges are reserved for each lo-
cale, the PFM includes a single-integer identifier, known as the lfCharset value, to indicate
script or locale. Table 6-51 lists the lfCharset values that are important for CJKV font
development.

CJKV lfCharset valuesTable 6-51.

lfCharset script Character set encoding

128 Japanese JIS X 0208:1997 Shift-JIS

129 Korean KS X 1001:1992 EUC-KR or UHC

131 Korean KS X 1001:1992 Johab

134 Simplified Chinese GB 2312-80 EUC-CN or GBK

136 Traditional Chinese Big Five Big Five

Extreme care must be taken when creating PFMs due to byte order issues. I know this
from personal experience, mainly because I developed a CJKV PFM generator in Perl—
this tool runs on big- or little-endian machines and creates little-endian output. There
are many fields within a PFM file that specify two- and four-byte numeric values, such
as metrics and other integer-like values. The values must be represented in little-endian
byte order. Practical information on building PFM files for CJKV fonts, including this
Perl utility, can still be found in the document entitled Building PFM Files for PostScript-
Language CJK Fonts (Adobe Systems Technical Note #5178).

Installing and registering PFMs
Once you have built a well-formed PFM file, it needs to be installed and registered to the
OS. Installation of a PFM file can be anywhere on the filesystem, but is typically in the
same location as other PFMs.

Registering the PFM to the OS is a matter of visiting and editing a system-level control file
called WIN.INI. This file is where you must specify the full path to the PFM file (which is
why a PFM can be stored anywhere on the filesystem). Let’s consider that we installed two

Host-Installed, Printer-resident, and embedded Fonts | 439

PFM files in the following paths, the first of which corresponds to the horizontal PFM file,
and the second of which corresponds to its vertical counterpart:

C:\PSFONTS\STSONGLI\METRICS\GKEUC_H.PFM
C:\PSFONTS\STSONGLI\METRICS\GKEUC_V.PFM

The following is an example [PostScript] section from a WIN.INI file, and includes the
lines added for the preceding two PFM files:

[PostScript, \\SJ TW 7\panda]
softfonts=2
softfont1=C:\PSFONTS\STSONGLI\METRICS\GKEUC_H.PFM
softfont2=C:\PSFONTS\STSONGLI\METRICS\GKEUC_V.PFM

Note that the keyword “softfonts” indicates the number of softfont entries, which, in this
case, is two. Note that when you register the PFMs by editing the WIN.INI file, you are in-
forming the PostScript driver that the fonts are resident on the printer hard disk or other-
wise available on the PostScript printer. More detailed information on installing PFM files
can be found in the document entitled CID-Keyed Font Compatibility with ATM Software
(Adobe Systems Technical Note #5175).

Of course, when dealing with OpenType fonts, and given the fact that they are well sup-
ported in Windows XP and Windows Vista, the need to work with PFM files has signifi-
cantly diminished.

Unix and Linux
Unix (and Linux) have historically been plagued with relatively poor support for outline
font formats, especially when compared to Mac OS, Mac OS X, and the many flavors
of Windows (2000, XP, and Vista). FreeType has changed this.* Now, the preferred way
in which to handle fonts in Unix and Linux OSes is through the use of a portable font-
rendering engine called FreeType 2. FreeType 2 supports a wide variety of font formats,
and most importantly, it supports OpenType. It is included with virtually all Linux distri-
butions. The name “FreeType” suggests that it is free, and its usage falls under the terms of
your choice of two different open source licenses. To a great extent, FreeType is expected
to be used by application developers, and so it offers font-rendering services.

In terms of the advanced typographic functionality offered in OpenType fonts, such as
through the use of ‘GPOS’ and ‘GSUB’ tables, FreeType 2 provides no such services, but
does correctly render the glyphs. Pango is essential for text layout on modern Linux dis-
tributions due to its extensive support for OpenType features, and because it has an em-
phasis toward internationalization.†

* http://freetype.sourceforge.net/index2.html
† http://www.pango.org/

440 | Chapter 6: Font Formats, Glyph sets, and Font tools

X Window system
The X Window System* natively uses one of two font formats, both bitmapped, and both
derivable from BDF, specifically SNF and PCF. SNF (Server Natural Format) is used on
X11R4 and earlier, and PCF (Portable Compiled Format) is used on X11R5 and later. The
current version is X11R7. In the extremely unlikely event that you are running DPS (Dis-
play PostScript), you can also use PostScript CJKV fonts.† FreeType 2 is used in the X
Windows client-side XFT Font Library, which is itself used in the Qt and GTK toolkits.

X Window System font names are unique in that they are abnormally long, mainly be-
cause the name itself includes almost all of its global information. The following is an
example taken from a JIS X 0208:1997 font:

-Misc-Fixed-Medium-R-Normal--16-150-75-75-C-160-JISX0208.1997-0

Hyphens are used to separate the information specified in the font name. Table 6-52 lists
each of these fields.

X Window System font namesTable 6-52.

Field name sample value description

Foundry Misc The font developer.

Font family Fixed The font’s family name.

Weight Medium The font’s relative weight.

Slant R The font’s slant angle.

Set width Normal The font’s proportionate width.

Additional style Additional style information.

Pixels 16 The font’s size measured in pixels.

Points 150 The font’s size measured in 10ths of a point (thus, 15 points).

Horizontal resolution—dpi 75 The horizontal resolution at which the bitmapped pattern was designed.

Vertical resolution—dpi 75 The vertical resolution at which the bitmapped pattern was designed.

Spacing C The font’s spacing: P for proportional, M for monospaced, and C for charac-
ter cell (such as a box).

Average width 160 The font’s average width measured in 10ths of a pixel (thus, 16 pixels).

Character set registry JISX0208.1997 The character set designation.

Character set encoding 0 For CJKV fonts, 0 usually means ISO-2022 encoding, and 1 means EUC
encoding; for CNS 11643-1992, it is used to indicate plane number.

Luckily, the X Window System also has a convenient method for aliasing these exces-
sively long font names to shorter ones, by using a special file called fonts.alias in a font

* http://www.x.org/
† Unix systems offered by Sun and SGI were often bundled with DPS.

Host-Installed, Printer-resident, and embedded Fonts | 441

directory. An example line from this file is as follows (using the example font name used
previously):

jis97 -Misc-Fixed-Medium-R-Normal--16-150-75-75-C-160-JISX0208.1997-0

For more information on X Window System font formats, I suggest Chapter 6, “Font
Specification,” in O’Reilly Media’s X Window System User’s Guide by Valerie Quercia and
Tim O’Reilly. The article entitled “The X Administrator: Font Formats and Utilities” (The
X Resource, Issue 2, Spring 1992, pages 14–34) by Dinah McNutt and Miles O’Neal pro-
vides detailed information about X Window System font formats, including BDF, SNF,
and PCF.

Installing and registering X Window system fonts
There are several relatively easy steps that must be followed in order to install and register
X Window System fonts. These steps are outlined as follows, though the strings that will
change due to different filenames or directories have been emboldened:

Convert a BDF file to SNF or PCF, depending on what version of X Window System 1.
you are running:

% bdftopcf jiskan16-1997.bdf > k16-97.pcf
% bdftosnf jiskan16-1997.bdf > k16-97.snf

Copy the resulting SNF or PCF file to a font directory, then run the 2. mkfontdir com-
mand as follows (assuming that you are creating a directory called fonts in your home
directory) in order to create a fonts.dir file:

% mkfontdir ~/fonts

Add this font directory to your font search path by running 3. xset with the +fp
option:

% xset +fp ~/fonts

Create and edit the 4. fonts.alias file—in the same location as the corresponding fonts.dir
file. You must run xset with the fp option in order to make the X Font Server aware
of your newly created alias:

% xset fp rehash

You can now display the font using 5. xfd (X Font Displayer) with the -fn option, as
follows:

% xfd -fn k16-97

You can now use this font in other X Window System applications, such as Emacs. It is
really that simple.

Postscript extensions for X Window system fonts
Mac OS and Windows supported a mechanism whereby the OS is made aware of the
fully qualified PostScript font name that corresponds to the OS-specific font resources.
For Mac OS, it was the style map of the font suitcase’s ‘FOND’ resource that provides this

442 | Chapter 6: Font Formats, Glyph sets, and Font tools

information; for Windows, it was a field in the PFM file. The following is the BDF header
that corresponds to a PostScript font—the PostScript extensions are emboldened:

STARTFONT 2.1
FONT -Adobe-HeiseiMin-W3-R-Normal--12-120-72-72-P-115-Adobe.Japan1-3
SIZE 12 72 72
FONTBOUNDINGBOX 13 12 -2 -3
STARTPROPERTIES 23
FONTNAME_REGISTRY "Adobe"
FOUNDRY "Adobe"
FAMILY_NAME "HeiseiMin"
WEIGHT_NAME "W3"
SLANT "R"
SETWIDTH_NAME "Normal"
ADD_STYLE_NAME ""
PIXEL_SIZE 12
POINT_SIZE 120
RESOLUTION_X 72
RESOLUTION_Y 72
SPACING "P"
AVERAGE_WIDTH 115
CHARSET_REGISTRY "Adobe.Japan1"
CHARSET_ENCODING "3"
CHARSET_COLLECTIONS "Adobe-Japan1"
FONT_ASCENT 9
DEFAULT_CHAR 0
_ADOBE_PSFONT "HeiseiMin-W3-EUC-H"
_ADOBE_XFONT "-Adobe-HeiseiMin-W3-R-Normal--12-120-72-72-P-115-Adobe.Japan1-2"
_DEC_DEVICE_FONTNAMES "PS=HeiseiMin-W3-EUC-H"
COPYRIGHT "Copyright 1996 Adobe Systems Incorporated. All Rights Reserved."
ENDPROPERTIES
CHARS 8720

The fully qualified PostScript font name, HeiseiMin-W3-EUC-H, is provided in two
places. PostScript drivers can extract the fully qualified PostScript font name from the
arguments of the two fields _ADOBE_PSFONT or _DEC_DEVICE_FONTNAMES. But, in the case of
the _DEC_DEVICE_FONTNAMES field, its argument must be split so that the initial PS= does not
become part of the fully qualified PostScript font name.

Font and Glyph embedding
The most common way in which fonts, or the glyphs of fonts, are embedded is in the con-
text of Acrobat and Portable Document Format (PDF). It is also possible to embed fonts
into SWF, which is the Adobe Flash file format. Due to the typical large size of CJKV fonts,
and the fact that only a small fraction of their glyphs are referenced in a normal docu-
ment, entire CJKV fonts are not embedded. Instead, only the glyphs that are referenced in
the document in which the font is to be embedded are. This is merely common sense, is
practical, and is referred to as subsetted embedding.

Host-Installed, Printer-resident, and embedded Fonts | 443

Some fonts, however, include information about the vendor’s desired embedding behav-
ior. The ‘OS/2’ table, specifically the fsType field, specifies the embedding levels of Open-
Type and TrueType fonts.* Table 6-53 lists common OS/2.fsType values.

Common OS/2.fsType values—embedding levelsTable 6-53.

Value Meaning

0 Installable Embedding—this is the most liberal level of embedding

2 Restricted License Embedding—no embedding is permitted

4 Preview and Print Embedding—this is the minimum level of embedding

8 Editable Embedding

Back to Acrobat and PDF, as long as all of the fonts that are used are not set to Restrict-
ed License Embedding, everything that is needed to print a document—meaning the
fonts, graphics, and other page elements—can be encapsulated into a PDF file. This PDF
file subsequently serves as a complete, robust, and reliable digital representation of the
document.

Cross-Platform Issues
For purely historical reasons, seven of Adobe Systems’ PostScript Japanese fonts have dif-
ferent menu names (that is, the localized font name that appears in applications’ font
menus) between Mac OS and Windows, as far as OCF fonts are concerned. Table 6-54
illustrates these differences (note that the presence or absence of a “space” is sometimes
the only difference).

Developers who plan to support PostScript Japanese fonts and are developing cross-
platform applications need to be aware of such issues.

Mac OS and Windows font menu namesTable 6-54.

Base Postscript font name Mac os Windows

Ryumin-Light L リュウミン L-KL リュウミン L-KL

GothicBBB-Medium M 中ゴシック BBB 中ゴシック BBB

FutoMinA101-Bold B 太ミン A101 太ミン A101

FutoGoB101-Bold B 太ゴ B101 太ゴ B101

Jun101-Light L じゅん 101 じゅん 101

HeiseiMin-W3 平成明朝 W3 平成明朝W3

HeiseiKakuGo-W5 平成角ゴシック W5 平成角ゴシックW5

* http://www.microsoft.com/typography/otspec/os2.htm

444 | Chapter 6: Font Formats, Glyph sets, and Font tools

To a significant extent, OpenType has effectively solved the cross-platform issues that
have plagued the various font formats over the years. For example, an OpenType font has
identical binary content regardless of platform or OS. In my experience, the only thing
that could potentially affect the cross-platform nature of an OpenType font in a negative
fashion would be to use non-ASCII characters for its filename. To the extent that Unicode
is supported today, because OpenType fonts are files, and because files are easily moved,
copied, or transferred, it takes only a single non-Unicode client to mangle a non-ASCII
filename. Given that fonts are meant to be installed in specific directories, away from us-
ers’ eyes, using ASCII characters for their filenames is appropriate, and for the reasons just
described, also prudent.

Font development tools
If you are interested in creating your own typefaces, by all means endeavor to do so. Be
aware, however, that designing typefaces requires special skills and a lot of time, especially
for a CJKV typeface that contains thousands, if not tens of thousands, of glyphs. If you
are a font developer, the information in the sections that follow are sure to be helpful in
learning about what font development tools are available.

Designing a CJKV typeface in outline font format is almost always never an individual
task, but the result of a dedicated group effort. It would literally take several man years
for an individual to design a complete CJKV typeface of adequate quality and glyph set
coverage. This should not stop anyone from trying, though. Sometimes, you may simply
need to add a few glyphs to an existing typeface. It is also not enough to be able to design
individual glyphs: all the glyphs that you design for a typeface must also match each other
in terms of both style and weight.

Compared to 10 years ago, when the first edition of this book was published, there are now
many more font development tools available, and the vast majority are Unicode-enabled
and support OpenType. The following sections attempt to list and describe the tools that I
find the most appealing, due to their functionality and overall level of support.

In addition to the font development tools that I describe in the sections that follow, Apple*
and Microsoft† also make many of their own font development tools available. VOLT (Vi-
sual OpenType Layout Tool) and MS Font Validator, both developed by Microsoft, deserve
special mention and should be explored. In any case, I strongly encourage you to explore
and use these font development tools. That’s why they are made available.

Bitmapped Font editors
While nearly all outline font editors (described in the sections that follow) include the
ability to create and edit bitmapped fonts, even if it is by merely generating them from

* http://developer.apple.com/textfonts/Fonttools/
† http://www.microsoft.com/typography/DevToolsOverview.mspx

Font development tools | 445

their corresponding outlines, there are also dedicated bitmapped font editors. Because
outline fonts are now very common on Mac OS X and Windows and are really the pre-
ferred format for fonts, the demand or need for dedicated bitmapped font editors has
diminished to a significant extent. However, bitmapped fonts are still a big part of Unix,
Linux, and the X Windows System. Mark Leisher’s XmBDFEditor was considered a very
good bitmapped font editor for Unix, Linux, and related OSes, but has since been replaced
by his gbdfed tool.*

outline Font editors
Several high-quality font editors are commercially available and are quite useful for font
development purposes, whether it is at the personal or business level.

Historically, one of the most prominent font editors was Fontographer, originally devel-
oped by Altsys and available for Mac OS and Windows.† It then became an Aldus product,
but changed hands as part of the Adobe Systems merger, and subsequently became a Mac-
romedia product. It is now a FontLab product, which was partially due to Macromedia’s
merge with Adobe Systems in late 2005.

Fontographer allows its users to create fonts for virtually any platform—Mac OS, Mac OS
X, the various flavors of Windows, Unix, Linux, and so on—even if the version of Fontog-
rapher that is running is not designed for that specific platform or OS.‡ Fontographer also
supports TrueType fonts, and it is available in a Japanese version with a Japanese-language
interface, but it has no Japanese-specific functionality. Fontographer allows its users to
build Type 1 or TrueType fonts from the same outline data.

The outline font editor that I highly recommend is FontLab Studio, available for Windows
and Mac OS X and used by the majority of professional and commercial font developers.§
FontLab Studio surpasses Fontographer in all respects, such as offering four-axis multiple
master support and native TrueType editing, meaning that it allows the user or developer
to specify TrueType hints and quadratic splines. FontLab Studio also includes a macro
language supported by Python and provides the ability to define a subroutine library for
commonly used “parts” of glyphs. Although the number of glyphs in these font formats
cannot exceed 64K, as described earlier in this chapter, FontLab Studio limits the number
of glyphs to 6,400. This number of glyphs is more than sufficient for most non-CJKV
needs. If you need to build a font that includes more than 6,400 glyphs, consider using
AsiaFont Studio, which is described in the following section.

* http://www.math.nmsu.edu/~mleisher/Software/gbdfed/
† http://www.fontlab.com/font-editor/fontographer/
‡ The sole exceptions to this are multiple master and legacy Mac OS font support. Only the Mac OS version al-

lows users to create these complex Type 1 fonts, and it is limited to two axes, meaning up to four master designs
per glyph. Also, because legacy Mac OS fonts, called font suitcases, are not flat files, and include the Mac OS–
specific resource fork, only the Mac OS version of Fontographer can generate such fonts.

§ http://www.fontlab.com/font-editor/fontlab-studio/

446 | Chapter 6: Font Formats, Glyph sets, and Font tools

FontLab Studio provides full support for OpenType layout features, specifically those
specified in the ‘GPOS’ and ‘GSUB’ tables. This allows developers to build feature-rich
OpenType fonts. This is yet another reason why FontLab Studio is considered one of the
best, if not the best, outline font editors available today.

outline Font editors for Larger Fonts
The outline font editors described in the previous section are limited in that they can cre-
ate only single-byte–encoded fonts, or have a severe limit in terms of the maximum num-
ber of glyphs. As glyph design tools, they are of commercial quality. In fact, I had been a
devoted Fontographer user for many years, and now use FontLab Studio for much of my
work. Do not, however, underestimate the usefulness of these outline font editors: glyph
design is completely independent from the ability to create multiple-byte– or Unicode-
encoded fonts. Luckily, at least one such font editor is finally available: AsiaFont Studio.*
TTEdit is a comparable TrueType editor for Windows, and the same software developer
also make OTEdit for Mac OS X and Windows.†

AsiaFont Studio was originally called FontLab Composer, and allowed users to build
CID-keyed fonts; that is, fonts that contained thousands of characters, and were genuine
multiple-byte–encoded CJKV fonts! This was a big feat. AsiaFont Studio now supports the
building of OpenType fonts and still represents the only reasonably priced, commercially
available application that allows end users and developers alike to build CID-keyed fonts,
whether the result is simply a CIDFont resource or a complete OpenType font. AsiaFont
Studio is currently available for Windows and Mac OS X. The Windows version generates
the following files when building a CIDFont resource:

CIDFont resource•	

CID-keyed •	 AFM file‡

Two •	 PFM files: one horizontal and one vertical

AsiaFont Studio is an outline font editor that was specifically designed for creating and
manipulating multiple-byte fonts. It provides most of the capabilities found in FontLab
Studio, such as the ability to edit the outlines of the glyphs, and it adds the ability to orga-
nize and arrange huge glyph sets, such as those required for building CJKV fonts.

As an outline font editor, AsiaFont Studio provides all the usual tools and features for
working with glyphs and outlines. The glyph editing window provides layers for illustrat-
ing grids, nodes, control points, guides, hints, bitmapped templates, and glyph previews.
In addition, AsiaFont Studio includes a special palette of vector paint tools that give the
user the ability to create and edit glyphs with standard bitmap-manipulation tools that
result in vector forms.

* http://www.fontlab.com/font-editor/asiafont-studio/
† http://musashi.or.tv/ttedit.htm
‡ Built according to the latest Adobe Font Metrics (AFM) specification. See Adobe Technical Note #5004.

Font development tools | 447

AsiaFont Studio eases the pain of manipulating fonts with thousands or tens of thousands
of glyphs by subdividing them into subfonts, each of which can be viewed independently,
and its glyphs can be freely moved and rearranged. AsiaFont Studio also provides the user
with the big picture, or a bird’s eye view, called the CMap view, which displays the entire
font in a single table.

To assist in the process of building CIDFont resources or corresponding OpenType ‘CFF’
tables that conform to public glyph sets, such as those published by Adobe Systems, Asia-
Font Studio is bundled with several bitmap-based templates that correspond to each of
the five CJKV character collections that Adobe Systems has developed for building CID-
Font resources (see Table 6-28). Adobe Systems’ public CMap resources, as listed in Tables
6-30, 6-32, 6-34, 6-35, and 6-37, can be used with such fonts. Of course, users are free to
create their own character collections, if desired.

FontForge is another outline font editor that is quite capable, in terms of supporting a very
large number of glyphs up to the maximum that the formats allow, and in supporting a
wide variety of outline font formats.*

It is important to know that using an outline font editor that supports up to 64K glyphs is
not necessary in order to build such fonts. Such fonts can be managed through the build-
ing of smaller fonts in a directory structure, and put together or assembled into a single
font through the use of other tools, such as those available in AFDKO, which is described
in the next section.

AFdKo—Adobe Font development Kit for opentype
Adobe Systems released a suite of command-line–driven font development tools, called
AFDKO (Adobe Font Development Kit for OpenType), which are specifically designed to
ease or simplify the development of OpenType fonts.† These tools are updated on a regular
basis, in order to address any bugs and to provide enhancements or new functionality,
with new options for existing tools, and sometimes in the form of new tools. It is impor-
tant to note that the tools provided in AFDKO are the same tools that Adobe Systems uses
to develop its own OpenType fonts, meaning that I and other members of Type Develop-
ment at Adobe Systems use them to develop and test OpenType fonts; because they are
command-line tools, they are suitable for batch processing. The tools provided in AFDKO
are thus industrial-strength, and have a high level of support commitment by Adobe Sys-
tems. In case it is not painfully obvious, I highly recommend their use. In addition, Font-
Lab and DTL licensed portions of AFDKO as the basis for the OpenType support for their
font production applications, such as FontLab Studio and DTL FontMaster.‡

* http://fontforge.sourceforge.net/
† http://www.adobe.com/devnet/opentype/afdko/
‡ http://www.fonttools.org/

448 | Chapter 6: Font Formats, Glyph sets, and Font tools

Table 6-55 lists the majority of the font development and testing tools that are included in
AFDKO, along with a brief description of their use and whether it is intended or suitable
for development, testing, or both.

AFDKO tools, their purposes, and descriptionsTable 6-55.

tool name Purpose description

autohint Development Apply hinting to Type 1 or Type 2 charstrings

checkOutlines Development and testing Detect and fix outline issues, such as overlapping or reversed paths

compareFamily Testing Compare family-level attributes of multiple fonts

detype1 Development Decompiles a Type 1 font into human-readable form—see type1

MakeOTF Development OpenType font compiler

mergeFonts Development Merge multiple fonts, add/remove glyphs, and change glyph names

rotateFont Development Rotate/shift glyphs and change glyph names

sfntdiff Testing Compare OpenType (aka ‘sfnt’) tables

sfntedit Development and testing Add, remove, replace, or delete OpenType (aka ‘sfnt’) tables

spot Testing ‘sfnt’ resource analysis

txa Development and testing Font conversion and analysis

type1 Development Compiles a Type 1 font from human-readable form—see detype1

Short for a. Type eXchange.

Careful and effective use of the AFDKO tools can be used to establish a complete font
production workflow. The mergeFonts tool, for example, is a very rudimentary CIDFont
resource compiler, able to merge multiple name-keyed Type 1 fonts into a single CIDFont
resource. Precise use of this tool, specifically through the use of carefully written mapping
files that drive the specification of hint dictionaries and the mapping of glyph names to
CIDs, can result in a truly industrial-strength CIDFont resource compiler, as opposed to
a rudimentary one.

The document entitled AFDKO Version 2.0 Tutorial: mergeFonts, rotateFont & autohint
(Adobe Technical Note #5900), which is included in AFDKO as part of its documentation,
provides insights into making more effective use of some of its more powerful tools.

AFdKo and subroutinization
I have already pointed out that CFF has a size advantage over TrueType, given its use of
Type 2 charstrings. Given the same number of glyphs and the same typeface design, the
CFF representation is usually half the size of the equivalent TrueType representation. The
MakeOTF tool that is included in AFDKO takes this size advantage a step further and
allows a CFF to be subroutinized. Common elements, whether they are complete paths
or path segments, are detected and stored as subroutines. The algorithm to detect and col-
lect subroutines is recursive, meaning that as the number of glyphs increase, so does the

Font development tools | 449

amount of time that subroutinization takes. Subroutinization is also memory-intensive,
meaning that the more RAM you have, the better. For CJKV fonts with thousands of
glyphs, I suggest a minimum of 1 GB of RAM. More is better. Depending on the design,
subroutinization can further reduce the size of the CFF by 5 to 50%. In my experience,
Korean fonts, with thousands of glyphs for hangul, get the best subroutinization results,
close to 50% reduction in size. For ideographs, it depends on the design. Some designs
achieve only 5% reduction, and some as much as 35%.

The subroutinization that MakeOTF performs has limitations. First, there are two types
of subroutines: global and local. The global subroutines apply to the entire CFF. The lo-
cal ones are specific to each hint dictionary. For name-keyed CFFs, there is no differ-
ence between global and local subroutines, because they specify only one hint dictionary.
CID-keyed CFFs can have multiple hint dictionaries. The subroutine limit is 64K − 3,
meaning 65,533 subroutines. This limit applies to the global subroutines, and also to each
set of local subroutines in the case of CID-keyed CFFs. If the number of global or local
subroutines exceeds the subroutine limit, there are techniques for reducing the number
of subroutines, at least for CID-keyed fonts with multiple hint dictionaries. I have found
through experience that splitting the largest hint dictionary into two smaller hint diction-
aries can result in redistribution of the global and local subroutines. As an example, for
the longest time, I was unable to subroutinize a font called AdobeSongStd-Light. I was
perplexed as to why. This is an Adobe-GB1-5 font with 30,284 glyphs. Its Hanzi hint dic-
tionary included 27,701 glyphs. I separated 18,686 of its glyphs into a new hint dictionary
called HanziPlus. I was able to subroutinize this font only after splitting the Hanzi hint
dictionary. Table 6-56 details the number of subroutines that resulted, showing only the
two relevant hint dictionaries.

Global versus local subroutines—AdobeSongStd-LightTable 6-56.

subroutine type number of glyphs number of subroutines

Global 30,284 62,515

Local 9,015—Hanzi 3,502

Local 18,686—HanziPlus 35,270

As you can see, the number of global subroutines for this particular font is barely under
the 64K − 3 limit. I’d like to emphasize that without splitting the Hanzi hint dictionary
into two separate hint dictionaries, which resulted in a redistribution of the global versus
local subroutines, it was simply not possible to subroutinize this particular font.

Perhaps of interest, some earlier software cannot handle fonts with more than 32K − 3
(32,765) global or local subroutines, and some base the limit on the number of global
subroutines plus those from any one hint dictionary, meaning that any “global plus local”
subroutine pair cannot exceed the 64K − 3 limit. For this reason, there may be times when
it is best to keep the number of global and local subroutines to a minimum.

450 | Chapter 6: Font Formats, Glyph sets, and Font tools

In order to keep the number of global and local subroutines under the 32K − 3 limit, a
similar technique was applied to the Kozuka Mincho Pr6N fonts. The hint dictionary
structure for Adobe-Japan1-6 was described earlier in this chapter, specifically in Table
6-26, and the default structure assigns 14,943 glyphs to the Kanji hint dictionary. In order
to redistribute the global and local subroutines, this hint dictionary was split into two,
keeping 10,216 glyphs in the Kanji hint dictionary and assigning 4,727 to a new hint dic-
tionary called KanjiPlus. Table 6-57 lists the results of this effort for each of the six weights
of Kozuka Mincho Pr6N.

Global versus local subroutines—all six weights of KozMinPr6NTable 6-57.

Version extraLight Light regular Medium Bold Heavy

CFF size
6.001 5116775 5769975 5794548 5902144 6017616 5891456

6.002 5108840 5761185 5793722 5898303 6014263 5884416

Global
6.001 1,714 1,582 1,573 1,540 1,557 1,708

6.002 28,412 30,814 29,929 28,991 27,119 25,360

Kanji
6.001 31,869 35,151 34,070 33,279 31,206 29,271

6.002 7,189 7,418 7,147 7,117 6,892 7,124

KanjiPlus 6.002 1,862 1,876 1,787 1,713 1,695 1,801

Note how the splitting of the Kanji hint dictionary for version 6.002 significantly altered
the distribution of global and local subroutines, and moderately affected the size of the
‘CFF’ table, all in a positive way. The number of global subroutines climbed considerably,
but they managed to stay below the lower 32K − 3 limit. Likewise, the number of local
subroutines for the now-smaller Kanji hint dictionary dropped significantly.

To check for the presence of subroutines in an OpenType font with a ‘CFF’ table and to
display the number of global and local subroutines on a per–hint dictionary basis, the
following tx command line can be used (substitute the portion of the command
line with the name of a file that corresponds to an OpenType font with a CFF table or a
stand-alone CFF table instantiated as a file):

% tx -dcf -1 -T gl | grep '^--- FD|^count'

Of course, it is possible to disable subroutinization by using the MakeOTF tool’s -nS op-
tion. Unfortunately, subroutinization is a binary setting for this tool. In other words, it is
either enabled or disabled, and there are no adjustments or fine-tuning possible. Because
CFF already provides a significant size advantage, my advice is to disable subroutinization
when in doubt.

Font development tools | 451

ttX/Fonttools
Another incredibly useful font tool to which I would like to draw your attention is called
TTX.* Its name suggests a relationship to the tx tool that is included with Adobe Systems’
AFDKO, but they are entirely different. They share one thing in common, though. Both
are intended to manipulate fonts, but in completely different ways. TTX is written in Py-
thon, which is an incredibly powerful scripting language, and it is open source. TTX was
developed and is maintained by Just von Rossum of the company Letraset.

TTX allows one to convert OpenType or TrueType fonts to and from an XML represen-
tation, the purpose of which is obviously to modify the contents of such fonts. Needless
to say, this tool allows one to wield incredible power due to the richness made possible
through an XML representation, and the ability to perform round-trip conversion. In ad-
dition to the ability to modify OpenType or TrueType fonts, TTX obviously allows font
developers to create new fonts.

Font Format Conversion
There are utilities, such as FontLab’s TransType, that allow users to convert fonts from
one format to another†—for example, from TrueType to Type 1 format and vice versa.
TrueKeys, developed by Xiaolin Allen Zhao (赵小麟 zhào xiǎolín), is a shareware pro-
gram for changing the encoding of TrueType fonts.‡ For example, TrueKeys can change a
Shift-JIS–encoded TrueType Japanese font to Unicode encoding by modifying its ‘cmap’
table accordingly. Most font editors, such as FontLab Studio and AsiaFont Studio, can also
perform font format conversion tasks. Which tool is best for you honestly depends on the
nature of your needs.

There are two important issues to bear in mind before performing any level of font format
conversion:

The license agreement included with most commercial font software may state that •	
the data must not be converted to other formats—this is a legal issue.

The font format conversion process almost always strips out (or renders ineffective) •	
the “hinting” information that allows the font data to rasterize better at smaller point
sizes and at low resolutions—this is a quality issue.

These issues may be reasons for not modifying font data. Outline (as opposed to bit-
mapped) fonts are considered executable software. In other words, fonts are considered
programs—for example, the PostScript language, or a subset thereof, constitutes a com-
plete programming language—and are therefore copyrightable, at least in the U.S. So why
do these font format conversion utilities exist? Well, not all fonts include restrictions that

* http://sourceforge.net/projects/fonttools/
† http://www.fontlab.com/font-converter/transtype/
‡ http://www.unidocsys.com/TrueKeys.shtml

452 | Chapter 6: Font Formats, Glyph sets, and Font tools

prevent or preclude conversion to other formats, and there are plenty of fonts in the public
domain.

Admittedly and thankfully, the need to convert fonts from one format to another has
diminished over the years. Part of this is due to OpenType and the trend toward building
such fonts. My own font format conversion needs typically fall into the desire to convert a
font based on a legacy font format into an OpenType font.

Gaiji Handling
Gaiji,* sometimes referred to as external characters,† are best described as glyphs that the
user cannot enter. Gaiji is a Japanese word, written 外字 (gaiji), and like the Japanese
word sushi,‡ it has become somewhat internationalized due to its broad and sweeping
implications. The prototypical gaiji is an ideograph, but a gaiji can be a generic symbol, a
corporate logo, or a new currency symbol. It may or may not be in Unicode. It may be in
a known glyph set. It may be in a font, but simply not accessible due to IME limitations or
because it is simply not encoded. What is key is that the desired glyph is not available in
an installed font (meaning that it is not in the selected font) or not available in its typeface
style.

In Appendix E we will explore the vendor-specific characters that are defined within vendor-
specific character sets. I state there that these characters do not convert very well between
different encodings. These fall outside the realm of standard character sets, which we
can call system-defined characters (SDCs). Gaiji are typically used in proper names, for
logos, and for historical or technical purposes, and can be separated into two distinct
categories:

User-defined characters (UDCs)•	

System-specific characters (SSCs)•	

Gaiji are not used very frequently, but when they are needed, their support becomes criti-
cal. Because support for gaiji is not yet widespread, various solutions or techniques have
been fielded or employed over the years. The expansion of the Adobe-Japan1-x character
collection, which has become the foundation or basis for OpenType Japanese fonts, has
diminished the need for gaiji to some extent. But, given the open-ended nature of the gaiji
problem, even Adobe-Japan1-6 with its 23,058 glyphs cannot hope to solve it.

UDCs are those characters that a single user or entity creates for personal or private use.
This class of gaiji requires a solution no matter what platform is used.

* 外 (gai) means “external,” and 字 (ji) means “character.”
† What’s the opposite of external characters? You guessed it, internal characters! We can call these critters naiji

(内字 naiji) in Japanese. In case it is not clear, this footnote is intended to be mildly anecdotal.
‡ Sushi can be represented by すし, 寿司, 鮨, or even 鮨, all of which are read sushi. Interestingly, and very ap-

propriate to this discussion, the last representation, 鮨, is often treated as a gaiji. Furthermore, the word sushi,
like the word gaiji, has no plural form.

Gaiji Handling | 453

SSCs are those characters that are considered standard on one OS, but not across multiple
OSes. In a closed system or environment, there is effectively no difference between SDCs
and SSCs, but the moment one attempts to interoperate between OSes, they become very
different entities, with very different results. For example, the traditional-form kanji 黑
(meaning “black”) was considered an SDC under Windows 3.1J and Windows 95J, but
because it is also an SSC, and specific to Windows, it was not available under other OSes,
such as KanjiTalk or JLK (Mac OS). This particular kanji was a gaiji, specifically a UDC,
as far as Mac OS is concerned. This has changed with Mac OS X, and this character is now
considered standard. And, to be absolutely clear, gaiji are not limited to ideographs—
many are symbols or logos.

Both types of gaiji pose problems when information interchange is necessary. The target
encoding or character set may not support certain characters that are used in a document.
This is especially true for user-defined characters, which are usually specific to a single
person’s environment. Even JIS X 0212-1990 characters can be considered gaiji if the tar-
get system does not support their use.* Some might imagine that Unicode is a solution
to this problem. While this appears to be true at first glance (after all, there are now over
70,000 ideographs from which to pick and choose!), there are tens of thousands of CNS
11643-1992 hanzi that were not part of Unicode’s URO. But now, thanks to CJK Unified
Ideographs Extensions A and B, CNS 11643-1992 is more or less fully supported through
the use of Unicode.

The success of printing or displaying gaiji depends on the fonts you are using. If the font
that you have chosen includes a glyph for the gaiji, you should get proper output. If you
need to use a vendor character set on that vendor’s operating system, you most likely have
access to fonts that correspond to it.

A problem arises when printing user-defined characters. In the case of bitmapped fonts,
it is usually possible to create a new bitmapped character, then add it to the repertoire of
characters in the font. However, creating a new outline character is a bit more tedious as it
requires much more design skill (you may even have to create a corresponding bitmapped
character!). Font design software, such as FontLab Studio and Fontographer, are excellent
tools for creating your own bitmapped and outline fonts.

the Gaiji Problem
Solving the persistent problem of gaiji is not so trivial, primarily because the problem
involves a very broad set of issues, such as the following:

How to design or create gaiji•	

How to encode gaiji, if at all•	

* For example, in Shift-JIS encoding, which does not support the JIS X 0212-1990 character set, they are consid-
ered gaiji. Adobe Systems once released a Mac OS font product called 平成明朝 W3 外字 (heisei minchō W3
gaiji) that included glyphs for all of the characters in JIS X 0212-1990 as a series of one-byte–encoded Type 1
fonts.

454 | Chapter 6: Font Formats, Glyph sets, and Font tools

How to enter gaiji into documents or text•	

How to display or print gaiji•	

How to exchange documents or text that contain gaiji•	

How to search for gaiji in text•	

So, what can one do about solving these problems? Unfortunately, coming up with an el-
egant and working solution is tough and nontrivial. The main problem is one of portabil-
ity, and a solution would need to somehow allow for the successful transmission of UDCs
and SSCs to systems or environments that do not support them. Even large character sets
do not have complete coverage of all SSCs, and that doesn’t even touch upon the problem
of supporting UDCs. A necessary step in finding a solution is to embed glyph data, in the
form of outlines that can be scaled for different point sizes and resolutions, into the docu-
ments that use them, so when they are transmitted, they come along for the ride. Such
a solution must include a mechanism for detecting which characters are user-defined so
that it is unambiguous as to which ones need to be embedded.

The first person or company to implement a platform-independent solution to the gaiji
problem will be well rewarded by the computer industry. In my opinion, Adobe Acrobat
and OpenType were steps in this direction, but SING, which is described in the follow-
ing section, represents the one true gaiji solution, because it effectively breaks away from
the characteristics that have always bound legacy gaiji solutions to closed environments.
More information about Adobe Acrobat and PDF is available in Chapter 12. OpenType
fonts were covered earlier in this chapter.

Thanks to Unicode, which now includes over 100,000 characters, the need for gaiji has
diminished to some extent; for a small class of users, the need has been erased. But, the
open-ended or dynamic nature of the gaiji problem means that a solution is still neces-
sary, no matter how many characters are included in Unicode.

In some cases, the selected font include the desired glyph, but there may be reasons why
it cannot be entered. One obvious reason is because it may not be encoded. It may be a
variant form of character. Specific OpenType GSUB features can be used to enter such
glyphs, but only if the application is OpenType-savvy. Another not-so-obvious reason is
that the input method simply does not support the desired character. The desired glyph
may correspond to an obscure character, and the more obscure a character is, the less
chance that an input method will allow its entering, at least through convenient means
such as by reading.

Gaiji have been historically implemented as single-byte Type 1 or TrueType fonts, be-
cause for the longest time, the commonly available font editors were able to generate only
single-byte fonts. Composite font technologies then allowed these single-byte fonts to
become part of an existing font through the definition of a virtual font. Now, Unicode
offers even more possibilities. Still, all of these font-based solutions share one common
characteristic: the glyphs must encoded, by hook or by crook. Gaiji can be encoded in the
user-defined region of legacy encodings, or in the PUA of Unicode—by hook. Gaiji can

Gaiji Handling | 455

also be encoded at code points that have already been assigned to other characters, which
is a technique often referred to as poaching—by crook. Liberating gaiji from the encoding
requirement is thus key in developing a genuine solution.

sInG—smart Independent Glyphlets
SING (Smart INdependent Glyphlets) is an initiative and technology developed by Adobe
Systems that is specifically designed to solve the gaiji problem.* SING’s approach to solv-
ing the gaiji problem is to distribute and use small font-like objects that are referred to as
glyphlets. A SING glyphlet is effectively a single-glyph font that “looks and feels” much like
an OpenType font, but intentionally lacks key ‘sfnt’ tables, such as ‘name’ and ‘OS/2’, that
would otherwise enable it to appear as selectable font in application font menus. In addi-
tion, the file extension that is used, .gai, also helps to explicitly identify SING glyphlets.

A SING glyphlet includes only one meaningful glyph, at GID+1, along with the obligatory
.notdef glyph, required by today’s font formats, at GID+0. SING glyphlets that correspond
to characters that are expected to have a vertical variant should include a second func-
tional glyph, at GID+2, which is subsequently assumed to be the vertical variant.

Because a SING glyphlet includes only one meaningful glyph, it is small and lightweight.
A typical SING glyphlet, including a rich collection of metadata, is less than 5K in size.

Because a SING glyphlet is small and lightweight, it can be transmitted easily and quickly.
A SING glyphlet is thus intended to be portable, and embedded into the documents in
which it is used. In essence, SING glyphlets are sticky to the documents in which they are
used. Portability is an issue that plagues legacy gaiji solutions.

I strongly feel that SING will succeed where other legacy gaiji solutions have failed, be-
cause one of the most troubling aspects of legacy gaiji solutions happens to not be a re-
quirement for SING: the requirement or need to somehow encode the glyphs. If the glyph
that corresponds to a SING glyphlet has an appropriate code point in Unicode, but non-
PUA, it can be encoded. But, SING does not require that a glyphlet be encoded. Instead,
the metadata that is defined and encapsulated in its ‘META’ table is intended to identify
the glyph through means other than encoding. Some of these means are intended to be
used by IMEs for the purpose of easing or trivializing keyboard entry, such as reading
data and variant relationships.

The following bullet points effectively summarize the key benefits of SING:

A SING glyphlet includes only one meaningful glyph, and is therefore lightweight.•	

A SING glyphlet is portable and is designed to be embedded in the documents in •	
which it is used.

* http://www.adobe.com/products/indesign/sing_gaiji.html

456 | Chapter 6: Font Formats, Glyph sets, and Font tools

A SING glyphlet does not require an encoding to be used.•	

A SING glyphlet can include a rich collection of metadata to better identify its glyph •	
and to allow users to more easily input them into documents.

Adobe InDesign CS2 (aka InDesign version 4.0) was the very first application to support
SING, and does so through the use of a library called Tin, which augments installed fonts
with glyphlets that are designed to work with them.* There is also an application called
Adobe SING Glyphlet Manager (ASGM) that installs and manages SING glyphlets and
makes use of the SING Library.

There are two ways for applications to implement support for SING. The first and per-
haps the easiest way to implement SING is what Adobe InDesign has done, specifically to
augment installed fonts with the appropriate glyphlets, which means that the application
thinks that the SING glyphlets are genuinely included in the installed fonts and treats
them no differently. Of course, the SING glyphlets, although augmented to installed fonts
in memory, are sticky to the document and travel with it to ensure portability. The second
way does not involve font augmentation, and obviously requires that the application sup-
port a new class or type of text object. Depending on the nature and complexity of the
application, along with available resources, one of these two ways of supporting SING is
best.

In addition to the obvious application of employing SING as a powerful cross-platform
gaiji solution, SING can also be used as a mechanism for delivering updated or corrected
glyphs for existing glyphs in fonts that are already in users’ hands. This glyph update
mechanism can be effected at the glyph (GID or CID) or encoding (Unicode) levels, or
both.

‘MetA’ and ‘sInG’ tables
SING glyphlets include two tables that are not present in OpenType fonts, specifically the
‘META’ and ‘SING’ tables, briefly described as follows:

The ‘META’ table is designed to encapsulate a very rich collection of metadata that •	
can be used to identify, classify, and categorize the glyph of the SING glyphlet. For
ideographs, the metadata can include the number of strokes, the indexing radical,
dictionary references, and so on. A lot of thought went into SING, and although the
‘META’ table includes a large number of predefined fields, it has a mechanism that
allows user-defined metadata to be included.

The ‘SING’ table specifies the version number of the SING glyphlet, embedding per-•	
missions (equivalent to the OS/2.fsType field, and thus should be set to 0, the most
liberal setting) and other higher-level attributes that are not considered to be meta-
data per se.

* Note that “Tin” is neither an acronym nor abbreviation.

Gaiji Handling | 457

Table 6-58 lists some of the more important META.ID fields, along with a brief description
of their purpose.

SING META.ID fields and descriptionsTable 6-58.

MetA.Id name description

0 MojikumiX4051 JIS X 4051 composition class

1 UNIUnifiedBaseChars Unicode value, if appropriate—”a” and “v” specifiers indicate actual or
variant relationship

2 BaseFontName The font with which the glyph is to be used

3 Language The language and locale of the glyph—”ja-JP” is used for Japanese

10 StrokeCount If an ideograph, the total number of strokes

11 IndexingRadical If an ideograph, the indexing radical expressed as a Unicode character in
the range U+2F00 through U+2FD5

12 RemStrokeCount If an ideograph, the number of remaining strokes

20 CIDBaseChars Registry, Ordering, and CID value, if appropriate—”a” and “v” specifiers
indicate actual or variant relationship

21 IsUpdatedGlyph Indicates whether the glyph is a replacement at the Unicode or CID level

24 LocalizedInfo Localized equivalents of name.IDs 0, 3, 7–14, and 19

25 LocalizedBaseFontName Localized form of META.ID=2

100–114 ReadingString Readings, whether transliterated or otherwise, along with glyph names

200–202 AltIndexingRadical Alternate indexing radical systems—see META.ID=11

250–257 AltLookup Specific ideographic dictionary references

500–505 UNICODEproperty Unicode character properties, such as General Category, Bidirectional
Category, Combining Class, and so on

602 UNIDerivedByOpenType The Unicode value and OpenType GSUB feature that results in this glyph

603 UNIOpenTypeYields The Unicode value that results from this glyph when the OpenType GSUB
feature is specified

604 CIDDerivedByOpenType The Registry, Ordering, and CID value and OpenType GSUB feature that
results in this glyph

605 CIDOpenTypeYields The Registry, Ordering, and CID value that results from this glyph when
the OpenType GSUB feature is specified

20000–32767 VendorSpecific Vendor-specific metadata

Table 6-59 provides some examples, expressed as XML, for specifying META.ID fields and
their contents.

458 | Chapter 6: Font Formats, Glyph sets, and Font tools

SING META.ID fields expressed as XMLTable 6-59.

XML Interpretation

<SING:MojikumiX4051> 12 </SING:MojikumiX4051> JIS X 4051 Class #12

<SING:UNIUnifiedBaseChars> 佪󠄀;a </SING:UNIUnifiedBaseChars> U+4F6A and <U+4F6A, U+E0100>

<SING:UNIUnifiedBaseChars> 徊;v </SING:UNIUnifiedBaseChars> Variant of U+5F8A

<SING:BaseFontName> KozMinStd-Bold </SING:BaseFontName> Augment KozMinStd-Bold

<SING:BaseFontName> KozMinPro-Bold </SING:BaseFontName> Augment KozMinPro-Bold

<SING:BaseFontName> RyoDispPlusN-SemiBold </SING:BaseFontName> Augment RyoDispPlusN-SemiBold

<SING:BaseFontName> RyoDispPlusN-Bold </SING:BaseFontName> Augment RyoDispPlusN-Bold

<SING:StrokeCount> 8 </SING:StrokeCount> Eight total strokes

<SING:IndexingRadical> ⼈;2 </SING:IndexingRadical> Radical #9—two strokes

<SING:RemStrokeCount> 6;⼈ </SING:RemStrokeCount> Six remaining strokes—Radical #9

<SING:CIDBaseChars> Adobe-Japan1;16781;a </SING:CIDBaseChars> Adobe-Japan1 CID+16781

<SING:CIDBaseChars> Adobe-Japan1;4790;v </SING:CIDBaseChars> Variant of Adobe-Japan1 CID+4790

<SING:IsUpdatedGlyph> 0 </SING:IsUpdatedGlyph> 0—not an updated glyph

The examples provided in Table 6-59 serve to demonstrate that it is possible to include,
in a single SING glyphlet, multiple instances of some META.ID fields. In fact, including
multiple instances of some META.ID fields is considered good practice and leads to richer
metadata.

Building sInG glyphlets
There are two types or classifications of SING glyphlets: typeface-specific and generic.
Typeface-specific glyphlets can be associated with more than one font instance through
the use of multiple META.ID=2 (BaseFontName) and META.ID=25 (LocalizedBaseFont-
Name) fields. Generic glyphlets, defined by including a single META.ID=2 field that is
set to the string Generic, are amalgamated into a single font instance, at least in Adobe
InDesign CS2 and later. In the Japanese version of InDesign CS2 and later, this amalgam-
ated font instance is called 外字 (gaiji). For all other languages, this font instance is called
ExtraGlyphlets.

In terms of tools for building SING glyphlets, Adobe Systems provides in their Glyphlet
Development Kit* (GDK) a command-line tool called cvt2sing that serves as a very robust
and industrial-strength SING glyphlet compiler, which uses a source font and an XML file
that encapsulates the metadata and other information for the ‘META’ and ‘SING’ tables.
Adobe Illustrator CS2 (aka Adobe Illustrator version 12.0) and higher includes a plug-
in called the Glyphlet Creation Tool (GCT) for creating SING glyphlets. Interestingly,

* http://www.adobe.com/devnet/opentype/gdk/topic.html

Gaiji Handling | 459

although GCT is used by Adobe Illustrator to create SING glyphlets, the SING glyphlets
that it creates cannot be used by the application (at least, up through and including Adobe
Illustrator CS4). One of the first third-party SING glyphlet creation tools is FontLab’s
SigMaker, specifically version 3.0 and higher.* It runs on Mac OS X and Windows. Another
is a Windows application called SINGEdit, but the SING glyphlets that it creates can be
used on Mac OS X or Windows, and are effectively cross-platform.†

As soon as the Tin Library that is used by Adobe InDesign is enhanced in terms of
performance and its use is propagated to other applications, such as Adobe Acrobat, Adobe
Flash, and Adobe Illustrator, I predict that SING will become the preferred solution to the
gaiji problem.

Interestingly, Adobe Acrobat provides minimal SING support, which we can refer to as
SING-compatible, from its very early versions. When InDesign CS2 or higher is used to
create a PDF file from a document that includes one or more SING glyphlets, the glyphs
that correspond to the SING glyphlets properly embed into the PDF file. They display and
print correctly, but their metadata is lost. At some point, Acrobat clearly needs to become
SING-savvy, which means that the SING glyphlets, in their entirety, are embedded into
PDF files.

More information about building SING glyphlets can be found in the document entitled
SING Glyphlet Production: Tips, Tricks & Techniques (Adobe Technical Note #5148).

All Your PUA Are Belong to Us
One very important part of SING’s specification and its philosophy is that PUA code
points are not only discouraged, they’re not allowed. All legacy gaiji solutions share one
key characteristic, specifically that their glyphs need to be encoded, which means that in
the context of Unicode that they are encoded in its PUA. Currently occupied code points
can also be poached, which is a technique that is deemed far worse than PUA usage.‡

No one can argue that legacy gaiji solutions do not work, but they tend to work better in
closed environments. The more closed an environment is, the more reliably legacy gaiji
solutions function. The more open an environment is, the more functionality issues that
are exposed.

One important goal of SING is complete functionality in open environments. The nature
of PUA code points necessitates closed environments. Of course, supporting SING doesn’t
come for free. Applications that intend to support SING must be enhanced to either 1)
support SING glyphlets as a new type of text-like object, or 2) learn to deal with fonts that
do not have static glyph sets.

* http://www.fontlab.com/font-utility/sigmaker/
† http://musashi.or.tv/singedit.htm
‡ Poaching is a word that refers to illegal hunting or taking of game. In the context of gaiji, poaching is not illegal,

but rather inappropriate.

460 | Chapter 6: Font Formats, Glyph sets, and Font tools

Ideographic Variation sequences
To some extent, Ideographic Variation Sequences (IVSes, described at length in Chapter
3) handle what some believe to be gaiji by virtue of the fact that the IVS mechanism allows
otherwise unencoded, but somewhat standardized or common, variant forms of ideo-
graphs to be encoded through the use of a sequence of two Unicode code points, specifi-
cally a Base Character followed by a Variation Selector. For some class of applications, if a
glyph is unencoded, it cannot be represented in the documents that it creates. As long as
the glyph in question is an ideograph, considered a variant form of an encoded character,
and falls under the ISO 10646 “Annex S” unification principles, the possibility of handling
it through the use of the IVS mechanism exists. Otherwise, the IVS mechanism would be
inappropriate.

For applications and environments that require a plain-text representation or environ-
ments in which only plain-text data can persist, such as the form fields of a PDF Form
or web browsers, IVSes can handle glyphs that would otherwise require gaiji treatment
in such situations. Also, IVSes provide a means of representing the identity of glyphs in
plain text, but fall short in solving the gaiji problem, because they do not add new glyphs
to existing fonts. Some applications, such as Adobe InDesign, allow users to use and enter
any glyph in a font, regardless of whether it is encoded or not.

XKP, A Gaiji Handling Initiative—obsolete
XKP, short for Extended Kanji Processing, is a specification developed by a Microsoft-
sponsored consortium for extending operating systems so that developers can access,
define, create, display, and print user-defined characters in a standardized way. Moving
from a Shift-JIS to Unicode (UCS-2 encoding) architecture effectively increases the total
number of available UDCs from 1,880 to 6,400.*

While XKP was originally developed for Japanese-specific purposes, its techniques can be
easily adapted for use with other CJKV locales. XKP doesn’t simply provide a method to
encode user-defined characters, but provides other information to aid input and searches.
Table 6-60 lists the sort of information that can be associated with each UDC.†

XKP’s user-defined character informationTable 6-60.

Field name example description

Yomi Yomi=ケン つるぎ Readings

Busyu Busyu=18 Radical

* If the code points beyond the BMP were to be taken into account, this 6,400 PUA code point figure would
become 137,468, because Planes 15 and 16 each provide an additional 65,534 PUA code points . See Chapter 3
for more details.

† Bonus points (or extra credit) will be awarded to those who can figure out what the glyph is for the character
described in Table 6-60.

Gaiji Handling | 461

XKP’s user-defined character informationTable 6-60.

Field name example description

Kakusu Kakusu=9 Number of strokes

URP URP=0x5263 Unified Representative Pointa

FontPath FontPath=STKAIREG.TTF The filename of the UDC font

FontName FontName=华文楷体 The name of the UDC font

FontCodePoint FontCodePoint=0xBDA3 The code point in the UDC font

A code point reference that represents the “parent” or standard version of the UDC. It effectively means that the UDC will be treated as a variant a.
of the parent character for purposes such as searching.

Once you have properly registered your UDCs, you can then start making use of them in
your documents. There are two ways in which UDCs can be referenced:

As a user-defined code point, in UCS-2 encoding’s Private Use Area (PUA), such as •	
the value U+E000

As an ampersand-prefixed, eight-digit hexadecimal string, such as “&•	 00000001”

XKP also defines three character sets—Basic, Extended, and Compatibility—and three
implementation levels—1, 2, and 3—for Japanese. These are referred to as SDCs in XKP.
Two of the character sets refer to Japanese subrepertoires specified in JIS X 0221-1995.
Table 6-61 lists these implementation levels, along with references to the Japanese subrep-
ertoires specified in JIS X 0221-1995.

XKP’s JIS X 0221-1995 implementation levelsTable 6-61.

Implementation level Character set JIs X 0221-1995 reference

1 Basic 1, 6, and 7

2 Basic, Compatibility 1, 6, 7, and Windows 95J-specific characters

3 Basic, Compatibility, Extended 1, 2, 3, 4, 6, and 7

The only Japanese subrepertoire that is not covered by XKP is number 5, which represents
the 8,745 remaining CJK Unified Ideographs (aka the URO) in Unicode.

More information about XKP is available in the form of documentation and an SDK (Soft-
ware Developer Kit).*

Adobe type Composer (AtC)—obsolete
Although this is primarily of historical interest, Adobe Type Composer (ATC) is software
that allowed end users to rearrange the glyphs of Japanese typefaces, and also let them add

* http://www.xkp.or.jp/

462 | Chapter 6: Font Formats, Glyph sets, and Font tools

new glyphs to the same typefaces in the user-defined region of Shift-JIS encoding. Adobe
Type Composer was specifically designed to work only with PostScript Japanese fonts,
and included three basic functionalities:

Add new glyphs to an existing Japanese font in the user-defined region of Shift-JIS •	
encoding—<F0 41> through <FB FC>.

Substitute the glyphs that correspond to specific character classes from one Japanese •	
font for another Japanese font, such as kana and symbols.

Adjust the baseline for the built-in or substituted proportional Latin glyphs so that •	
they are better aligned with the glyphs that correspond to the kana and kanji.

The resulting font can be considered a “virtual” font that is installed at the system level,
meaning that it is available to the OS and all applications. This font is virtual in the sense
that it contains absolutely no glyphs of its own, but is simply a recipe for combining parts
of other fonts into a new font resource.

The following are descriptions of what each of Adobe Type Composer’s three primary
functions were intended to perform:

First, you could add up to a maximum of 2,256 glyphs, defined as 12 fonts contain-•	
ing up to 188 glyphs each, to installed PostScript Japanese fonts. In other words, you
could either create or purchase additional glyphs, in the form of Type 1 fonts that
include up to 188 glyphs, specifically encoded in the ranges 0x40 through 0x7E and
0x80 through 0xFC, and then add them to a font, specifically in the user-defined re-
gion of Shift-JIS encoding.*

Second, you could substitute the kana glyphs or some select symbols with those of •	
a different typeface style. Of course, this mixing of typefaces could be performed by
most word-processing software simply by selecting the kana and changing them to
another font, but this clearly is a very tedious task for longer documents. But what
about software, such as simple text editors, that allows only a single font selection
per document? That is one of those circumstances when this functionality became
useful.

Third, the relative baseline of the proportional Latin glyphs could be shifted, whether •	
they are the glyphs that are built-in or referenced from another font. The proportion-
al Latin glyph coverage was limited to ASCII, which was in turn due to the limitations
imposed by Shift-JIS encoding itself. The shifting of the baseline was intended to im-
prove the aesthetics when a different set of proportional Latin glyphs were used.

Adobe Type Composer clearly made it more feasible for type foundries, along with in-
dividual typeface designers, to design kana-only fonts that were intended to be mixed
with kanji and other symbols from a different Japanese typeface. In fact, a large number
of kana-only fonts were released by a variety of Japanese type foundries, some of which

* Note that the encoding ranges directly correspond to the second-byte encoding ranges of Shift-JIS encoding.

Gaiji Handling | 463

included prebuilt ATC fonts that serve to simplify the overall user experience. Of course,
kana-only fonts can be used standalone, but the user experience is much better if they are
combined with a font that includes a complete set of kanji, given that typical Japanese text
includes both kana and kanji.

Adobe Type Composer rearranged only 90pv-RKSJ-H– and 83pv-RKSJ-H–based Post-
Script fonts, both of which were accessible only on Mac OS. This means that the user-
defined character area corresponds to only Shift-JIS–encoded (aka “RKSJ”) fonts.

Note that Adobe Type Composer was simply a frontend to a very powerful font rearrange-
ment technology available on all PostScript devices capable of supporting CID-keyed
fonts. A PostScript ProcSet (Procedure Set—a fancy name for a PostScript program) called
AdobeTypeComposer is made available on these PostScript devices. Later in this chapter
you will learn the structure of a rearranged font resource and how to create your own.

Although Adobe Type Composer is no longer used, due to its limitations, comparable
rearranged font functionality, referred to as Composite Fonts, is now available in higher-
end applications. This is covered in the next section.

Composite Font Functionality Within Applications
Some applications provide functionality, comparable to what Adobe Type Composer of-
fered, called Composite Fonts, which are amalgamated fonts that are implemented as font
instances that are accessible only within the specific application. These Composite Fonts
appear as though they were genuine font instances, but they are virtual fonts that are de-
fined through the use of a recipe that specifies a base, primary, or parent font, along with
additional fonts.

As an example, consider that kana characters constitute over 70% of typical Japanese text,
meaning that one can dramatically change the “look and feel” of a document simply by
using an alternate set of kana glyphs from another font, and leaving the kanji as is. Many
Japanese type foundries provide kana-only font products that are specifically designed
to be used in the context of a Composite Font. This technique is a relatively economical
way to enhance the functionality of a smaller Japanese type library. Carefully observe the
Japanese text in Table 6-62. The block of text on the left is set in a single Japanese type-
face, whereas the same block of text on the right substitutes a different typeface for the
kana and punctuation glyphs. Interestingly, both blocks of text are set using proportional
metrics. The proportional nature of the kana glyphs is clearly more striking for the text
block on the right.

464 | Chapter 6: Font Formats, Glyph sets, and Font tools

The effect of changing the kana designTable 6-62.

KozMinPr6n-regular KozMinPr6n-regular and tBryokanMstd-M

普通の和文フォントは明朝体
とゴシック体ですが、スペシ
ャルなフォントもあります。例
えば、丸ゴシック体、楷書体、
毛筆体、および教科書体とい
うフォントに人気があります。

普通の和文フォントは明朝体とゴ
シック体ですが、スペシャルなフォン
トもあります。例えば、丸ゴシック体、
楷書体、毛筆体、および教科
書体というフォントに人気がありま
す。

See what I mean? The abundance of kana clearly allows you to change the “look and feel”
of a Japanese document. Of course, implementing this functionality through the defini-
tion of a Composite Font is merely a convenience mechanism. It is obviously possible,
though a somewhat tedious task, to individually change the font for each character as
appropriate.

Adobe FrameMaker, Adobe Illustrator, Adobe InDesign, Adobe PageMaker, Canon EDI-
COLOR, and QuarkXPress are examples of applications that provide users with the abil-
ity to create Composite Fonts whose recipes begin by selecting a base font, and to allow
substitution by character class, such as substituting the Latin and kana glyphs of the base
font with those of a different font. For some of these applications, the Composite Font
definitions can be exported to a file, which can then be provided to another user.

Canon EDICOLOR, perhaps as an exception, also allows the user to specify fonts for two
categories of gaiji: system and user. See the description of EDICOLOR in Chapter 7 for
more details.

Gaiji Handling techniques and tricks
When one needs to enter into documents some glyphs that are outside a supported char-
acter set or glyph set, there are several proven techniques. None of these techniques pro-
vide a high degree of information interchange, but do result in a correctly displayed or
printed page. Following are the techniques that I used to produce the first edition of this
book:

Supporting special glyphs not found in common character sets•	

Supporting multiple character sets on what is effectively a single-encoding system•	

The first technique, for supporting special glyphs, involves producing one or more stan-
dard one-byte–encoded Type 1—or TrueType, if that’s your preference—fonts contain-
ing all the special glyphs you require. This can include modifying existing fonts, such
as my modification of the ITC Garamond family to make the glyphs that correspond to

Gaiji Handling | 465

macroned vowels available. Once you have built such fonts, you then need to decide how
to access their glyphs. There are effectively two choices available to you:

Use the Type 1 (or TrueType) fonts in a standalone manner•	

Add the Type 1 (or TrueType) fonts to the user-defined region of an existing CJKV •	
font

The first choice is by far the easiest to implement, because fonts function as standalone by
default. The second choice requires a tool for adding these special characters to existing
fonts. Adobe Type Composer is such a tool designed to interact with PostScript fonts, but
is currently limited to Japanese and Mac OS. It was discussed in an earlier section of this
chapter.

The second technique, for supporting multiple character sets, offers some degree of in-
formation interchange. Suppose that you prefer to work in a single-locale environment,
such as Mac OS-J or Mac OS with JLK, but you need to produce a rather large, say book-
length, document that includes glyphs that correspond to Chinese, Korean, and Vietnam-
ese character sets.* You could obtain and install the appropriate system resources, but for
some character sets, such as JIS X 0212-1990, none exist for Mac OS. What should you
do? You should have learned in Chapter 3 that almost all legacy CJKV character sets are
fundamentally based on a 94×94 matrix with some exceptions. My solution for producing
the first edition of this book was to first acquire CIDFont resources for the desired CJKV
character sets. I then created Shift-JIS–encoded CMap resources for each character set,
sometimes separating character sets into separate planes when necessary, to be compat-
ible with Shift-JIS encoding. Table 6-63 details the character sets I needed to support the
first edition of this book, along with the CIDFont and CMap resources that I used.

Shift-JIS–encoded CJKV fontsTable 6-63.

Character set CIdFont resource CMap resource

GB 2312-80 STSong-Light GB-RKSJ-H

GB/T 12345-90 STSong-Light GBT-RKSJ-H

CNS 11643-1992 Plane 1 MingTiEG-Medium CNS01-RKSJ-H

CNS 11643-1992 Plane 2 MingTiEG-Medium CNS02-RKSJ-H

CNS 11643-1992 Plane 3 MingTiEG-Medium CNS03-RKSJ-H

CNS 11643-1992 Plane 4 MingTiEG-Medium CNS04-RKSJ-H

CNS 11643-1992 Plane 5 MingTiEG-Medium CNS05-RKSJ-H

CNS 11643-1992 Plane 6 MingTiEG-Medium CNS06-RKSJ-H

CNS 11643-1992 Plane 7 MingTiEG-Medium CNS07-RKSJ-H

* Say, er, uh, like the first edition of this book.

466 | Chapter 6: Font Formats, Glyph sets, and Font tools

Shift-JIS–encoded CJKV fontsTable 6-63.

Character set CIdFont resource CMap resource

CNS 11643-1986 Plane 15 MingTiEG-Medium CNS15-RKSJ-H

Hong Kong GCCS HKSong-Regular HK-RKSJ-H

JIS X 0212-1990 HeiseiMin-W3H Hojo-RKSJ-H

KS X 1001:1992 HYSMyeongJo-Medium KS-RKSJ-H

KS X 1002:1991 HYSMyeongJo-SMedium KS2-RKSJ-H

TCVN 6056:1995 MingTiEGV-Medium TCVN-RKSJ-H

Although this technique did not allow easy input of characters because the Mac OS-J
input methods are geared toward the JIS X 0208:1997 character set, it did help by greatly
simplifying and trivializing the building of the character set tables, such as those used in
the appendixes of the first edition. It provided for the occasional use of CJKV characters
outside of JIS X 0208:1997 throughout that book. In other words, this setup was perfect
for my needs. If you feel that this technique would be useful for your own publishing
needs, I have made these special-purpose Shift-JIS–encoded CMap resources available for
public use.* But, please be aware that these specialized CMap resources are not officially
supported nor endorsed by Adobe Systems. And, given the broad extent to which they
make use of the poaching technique, I advise against using them unless your environment
necessitates their use.

Regardless of which gaiji handling technique you choose to use, you must consider how
to input the additional or nonstandard glyphs. If you prefer to enter the glyphs through
reading, whether as individual characters or as a compound, the dictionaries that are
used by conventional CJKV input methods need to be extended, which can be a tedious
task. Otherwise, code input is mandated. But, for some special purposes, code input is
completely adequate.

Creating Your own rearranged Fonts
Although this section is included primarily for historical purposes, in order to demon-
strate how things were done in the past, there are still some environments that can take
advantage of, or leverage, rearranged fonts. Although the Adobe Type Composer applica-
tion is effectively dead, given that its use is limited in terms of supported OS, supported
font formats, and supported encodings, one can still craft rearranged fonts. After all, Ado-
be Type Composer is merely a frontend to rearranged font technology.

In order to use a newly defined rearranged font, one must ensure that the rearranged font
resource itself, along with all font components to which it refers, are installed onto the
PostScript device, whether it is a PostScript printer or an application that makes use of

* ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/rksj-cmaps.tar.Z

Gaiji Handling | 467

a PostScript interpreter, such as Adobe Acrobat Distiller. This effectively means that the
following scenarios are possible, and will result in proper execution of a rearranged font
resource:

Explicitly and forcibly download all referenced font components to the PostScript •	
device, either to its hard disk (permanently) or to RAM (temporarily).*

Download the referenced fonts, followed by the rearranged font resource, within the •	
PostScript stream—the referenced fonts and the rearranged font are available only for
the duration of the job, and vanish from memory once it is complete.

Anything else will result in failure to properly execute the rearranged font resource.

The following example is a complete and valid rearranged font resource. Note that it de-
pends on the presence of the PostScript ProcSet called AdobeTypeComposer. All CID-
capable PostScript devices include this ProcSet.

In a nutshell, this rearranged font resource defines a new PostScript font name called
HeiseiMin-W3-Fugu-RKSJ-H. This uses the HeiseiMin-W3-90ms-RKSJ-H CID-keyed
font as its template font, then adds the contents of two Type 1 fonts, named MyUDC1 and
MyUDC2. Each of these fonts contains 94 glyphs in the range 0x21 through 0x7E, and
are added to the first row of the Shift-JIS user-defined range, specifically <F0 40> through
<F0 FC>.† I have emboldened nonboilerplate information.

%%BeginResource: Font (HeiseiMin-W3-Fugu-RKSJ-H)
%%DocumentNeededResources: ProcSet (AdobeTypeComposer)
%%+ Font (HeiseiMin-W3-90ms-RKSJ-H)
%%+ Font (MyUDC1)
%%+ Font (MyUDC2)
%%IncludeResource: ProcSet (AdobeTypeComposer)
%%IncludeResource: Font (HeiseiMin-W3-90ms-RKSJ-H)
%%IncludeResource: Font (MyUDC1)
%%IncludeResource: Font (MyUDC2)
%%Version: 1.000

1 dict begin /FontName /HeiseiMin-W3-Fugu-RKSJ-H def end

/languagelevel where { pop languagelevel 2 ge } { false } ifelse

{ /CIDInit /ProcSet resourcestatus

* In the case of Distiller, the rearranged font resource, along with the font components that it references, must be
installed into its appropriate subdirectories.

† PostScript fonts, such as Type 1, typically have three names associated with them: FontName, FullName, and
FamilyName. The only one that matters to PostScript (and thus to rearranged font files) is FontName. While
FullName and FamilyName are used only for informational purposes, and contain strings as their values (Post-
Script strings are delimited by parentheses and can contain spaces), FontName contains a font object as its
value (PostScript objects are prefixed with a slash, and cannot contain any spaces). Please refer to the following
examples taken from a valid Type 1 font:

/FullName (Jeffrey Special) readonly def

/FamilyName (Jeffrey) readonly def

/FontName /JeffreySpecial def

468 | Chapter 6: Font Formats, Glyph sets, and Font tools

 { pop pop /CIDInit /ProcSet findresource }
 { /AdobeTypeComposer /ProcSet findresource }
 ifelse
}
{ AdobeTypeComposer }

ifelse

begin
%ADOStartRearrangedFont
/HeiseiMin-W3-Fugu-RKSJ-H [/HeiseiMin-W3-90ms-RKSJ-H
 /MyUDC1 /MyUDC2]
beginrearrangedfont
 1 usefont
 2 beginbfrange
 <f040> <f07e> <21>
 <f080> <f09e> <60>
 endbfrange
 2 usefont
 1 beginbfrange
 <f09f> <f0fc> <21>
 endbfrange
endrearrangedfont
end

%%EndResource
%%EOF

Note that the syntax of this resource is quite simple, and it effectively defines the following
information:

A new PostScript font name: HeiseiMin-W3-Fugu-RKSJ-H•	

A template font: HeiseiMin-W3-90ms-RKSJ-H•	

One or more component fonts: MyUDC1 and MyUDC2•	 *

The code points in the template font at which the component fonts are to be encod-•	
ed, also specifying at what code point in the component fonts to begin referencing
glyphs

The template and component fonts must be valid font instances, such as a Type 1 (or Type
42, if a TrueType rasterizer is available), OCF, or CID-keyed font. Note that a CIDFont
resource by itself, without a CMap resource with which to impose an encoding, is not
considered a valid component within the context of a rearranged font file.

* These are typically Type 1 fonts, but can be another composite font, such as a CID-keyed font (that is, a CID-
Font plus CMap combination that forms a valid font instance). You can even use the same font that was speci-
fied as the template font in order to perform cute tricks such as really rearranging the characters within the
font.

Gaiji Handling | 469

If Type 1 fonts are to be used as the component fonts, there are some special consider-
ations. Typical Type 1 fonts use what is known as StandardEncoding. The presence of the
following line in a Type 1 font header confirms that StandardEncoding is used:

/Encoding StandardEncoding def

Type 1 fonts that specify StandardEncoding can be affected by what is referred to as font
re-encoding. Font re-encoding typically affects glyphs in the extended ASCII range,
specifically those encoded at 0x7F and higher, which is the encoding range used to ac-
commodate the minor (or not so minor, in some cases) difference in encoding for some
accented glyphs and symbols on different OSes. In other words, font re-encoding can
effectively mangle Type 1 fonts that were not intended to be used as typical Type 1 fonts.

To avoid font re-encoding, most font-editing applications allows fonts to be built using
custom encodings. But, one must bear in mind that some OSes and font clients try to
be smart, ignore the fact that a font specifies a custom encoding, and base the decision
whether to re-encode by inspecting the glyph names.* This undesirable behavior can al-
most always be circumvented by using nonstandard glyph names. A convention that I
prefer to use is to name each glyph according to its encoding, or a portion of its encoding.
I do this with the character “c” (meaning “character” or “cell”) followed by a two-digit
hexadecimal code, such as “20” for 0x20. This results in glyph names that can range from
“c00” (for 0x00) through “cFF” (for 0xFF).

Let’s break apart some of these sections for further analysis and explanation. First, the sec-
tion that specifies the name of the rearranged font, its template font, and its component
fonts:

/HeiseiMin-W3-Fugu-RKSJ-H [/HeiseiMin-W3-90ms-RKSJ-H
 /MyUDC1 /MyUDC2]

The string HeiseiMin-W3-Fugu-RKSJ-H, which represents the name of the rearranged font,
is followed by an array, consisting of three elements, and delimited by brackets. The first
array element, HeiseiMin-W3-90ms-RKSJ-H, represents the template font. The rearranged
font, thus, becomes a copy of this font, and inherits any and all of its properties and attri-
butes, such as glyph complement, writing direction, and so on. The remaining elements,
specifically MyUDC1 and MyUDC2, represent the additional font components used for rear-
rangement, also know as component fonts.

Between the two keywords, beginrearrangedfont and endrearrangedfont, is the code that
performs the actual rearrangement. There is one subsection for each of the component
fonts specified in the preceding array—the first element of the array, which represents
the template font, is considered the 0th element. Thus, the following rearrangement code
refers to the MyUDC1 font, which is the 1st element of the array:

1 usefont
 2 beginbfrange

* Such OSes often peek at the names of the glyphs within the font to determine whether or not to re-encode
them.

470 | Chapter 6: Font Formats, Glyph sets, and Font tools

 <f040> <f07e> <21>
 <f080> <f09e> <60>
 endbfrange

The numeral that appears before the keyword usefont refers to an element of the font ar-
ray, which means MyUDC1 in the case of the value 1. The lines that follow describe the
rearrangement in terms of an encoding range within the template font—that is, the spe-
cific encoding range to modify in the template font—followed by a beginning code point
from which to begin referencing characters from the component font. In other words, the
encoding range <F0 40> through <F0 7E> in HeiseiMin-W3-90ms-RKSJ-H is replaced by
glyphs from MyUDC1 encoded in the range 0x21 through 0x5F. The integer value that
appears before the beginbfrange keyword specifies the number of lines of rearrangement
code that a client should expect, and it must agree with the actual number of lines of rear-
rangement code.

As you can see, once you understand the simplistic syntax of a rearranged font resource, it
becomes a trivial task to create rearranged fonts of your own, or, if you are a developer, to
build your own front-end to this somewhat powerful PostScript-based technology. How-
ever, given today’s widespread use of OpenType fonts, along with a host-based printing
model that makes extensive use of PDF, this specific implementation of rearranged fonts
has limited value.

Acquiring Gaiji Glyphs and Gaiji Fonts
While it is certainly possible to design the glyphs for your own gaiji, and to build your
own gaiji fonts, it is likely to be easier for most users to simply purchase them as com-
mercial products.* Nearly all type foundries sell gaiji packages, and some even include
what can be considered as gaiji in proprietary extensions of their font products. Some
type foundries specialize in gaiji products. Biblos Font† and Enfour Media‡ in particular
are companies that market Japanese gaiji fonts. Appendix E of this book goes into more
detail with regard to these somewhat standard gaiji character sets.

If you use Adobe InDesign, or if you are considering doing so, I strongly urge you to ex-
plore SING as a way to handle your gaiji needs. There are now plenty of tools with which
to create SING glyphlets, and any InDesign document that uses SING glyphlets can be ex-
ported to PDF, which will retain the glyphs for display and printing on any environment.

For those who wish to pursue creating their own gaiji by designing the glyphs from scratch
or by referencing existing glyphs in one or more installed fonts, any one of many tools can
be used. Earlier sections of this chapter provided the names and descriptions of suitable
tools, one or more of which are certainly up to the task, though my strong recommenda-
tion is to use FontLab Studio for these needs because it has the richest set of features.

* After all, most users, even power users, are not professional type designers.
† http://www.biblosfont.co.jp/
‡ http://www.enfour.com/

Advice to developers | 471

Advice to developers
Many application developers and users who explore what is included with OSes and ap-
plications may discover that an adequate collection of CJKV fonts may be right at their
fingertips, in the form of the fonts (almost always outline fonts these days) that were
bundled with the OS or with one or more specific applications or application suites. Mac
OS X, for example, is bundled with a rich variety of OpenType Japanese fonts. Users that
require typeface designs or glyph complements beyond the basic fonts provided by the OS
will obviously look to font developers for additional offerings.

For application developers, I have the following two points to recommend:

Take advantage of the fonts that are provided by the OS. Some are bundled for the •	
purpose of displaying UIs and are thus tuned for that, either by the nature of their
design—serif versus sans serif—or relative weight. Some are bundled for application
use. Even the OS includes a small number of applications, such as text editors and
the like.

When taking advantage of the fonts provided by the OS, bear in mind that they can •	
change over time—specifically their names, their glyph complements, and even the
fonts themselves. In lieu of referencing specific fonts by name, OSes often provide
generic APIs for this. Mac OS X, for example, provides APIs that effectively mean “get
system font” and “get application font” that serve this purpose, and are highly recom-
mended for application developers to use.

For font developers, or those developers who also build font products, there are two things
that I cannot recommend highly enough:

Embrace OpenType by building OpenType fonts.
OpenType is the most widely supported font format today, and has more benefits
than any other font format currently in use. The fact that the latest versions of the
major OSes support OpenType fonts natively should make this an easy decision.

Embrace Unicode by building OpenType fonts.
Supporting OpenType effectively forces you embrace Unicode, because the default
encoding of OpenType ‘cmap’ tables is Unicode. This is a good thing. You will not
regret making these decisions, and more importantly, your customers will thank you
for doing so.

In the end, developers need to become aware of the pros and cons of each font format
so that they can decide for themselves when it is appropriate to implement one format
versus another. Bundling an outline font with a product, for example, will require that an
appropriate rasterizer be present in order to render bitmaps from its outlines. Given the
state of today’s OSes and their capabilities in terms of supported font formats, along with
the broad extent to which Unicode is now supported, OpenType is clearly the best choice
in terms of font format. Remember, an OpenType font can include PostScript or TrueType
outlines, and effectively merges these formerly competing font formats.

472 | Chapter 6: Font Formats, Glyph sets, and Font tools

Finally, when developing fonts, one of the most critical tasks, which is often neglected
or forgotten, is that fonts must undergo thorough and rigorous testing before they are
released to users or provided to OS and application developers for bundling. Unlike ap-
plications, fonts tend to be updated less frequently, and to some extent, are treated as static
software. For this reason, it is considered best practice to detect and correct any and all
known problems prior to their release.

473

CHAPter 7

typography

The foundation for producing printed material in any language—no matter how basic—
involves typography. Typography refers to the use of type, specifically page- and line-
layout techniques, rules, and principles. It is about page composition. This chapter is
where we are finally able to apply what we have learned in earlier chapters: Chapter 3
illustrated the tens of thousands of characters at our disposal; Chapter 4 described how
these characters can be encoded; Chapter 5 provided information about the input of these
characters through software called input methods, using hardware called keyboards; and
Chapter 6 provided details about fonts and font formats. To a great extent, everything
comes together here, in this chapter. After all, the ultimate goal of processing or manipu-
lating CJKV text is to produce documents, whether printed or in electronic form.

You may have observed, perhaps even at a somewhat subconscious level, that poor ty-
pography sticks out and is easily noticed, but that good typography is almost always over-
looked and seemingly invisible. In other words, when text is poorly typeset or laid out, the
focus of the reader is on the typography, not its content. Furthermore, when text is typeset
well, the words are more directly conveyed to the reader, with less interference. Thus, for
typographers, and to some extent for the applications that perform typography, the better
they do their job, the less their efforts are noticed by those who use the end result of their
labors.

People who read this book have a fundamental understanding that CJKV text can be
writen or typeset horizontally and vertically, but there is clearly much more to CJKV ty-
pography than simply these two writing modes. There are also many formatting consider-
ations, such as line breaking, justification, inter-glyph spacing, alternate metrics, kerning,
glyphs substitution, and so on. You will soon have a deep appreciation for the extent to
which CJKV text does not follow all Western-language–style composition rules, and for
good reason, given the properties of their writing systems.

Excellent references on typography are readily available, and one of the overall best, in
my opinion and experience, is Robert Bringhurst’s The Elements of Typographic Style,
now in its Third Edition (Hartley & Marks, 2004). Seybold Publications’ The Seybold Re-
port sometimes contains information of a CJKV nature. More detailed information on

474 | Chapter 7: typography

Japanese line-layout can be found in the Japanese standard designated JIS X 4051:2004,
whose contents are described throughout this chapter. A discussion about compliance with
this standard is in the next section, and for those who read Japanese, in Mitsuo Fukawa’s
(府川充男 fukawa mitsuo) book entitled 組版原論—タイポグラフィと活字・写植・DTP
(kumihan genron—taipogurafī to katsuji, shashoku, DTP; 太田出版, 1996). Other books
about typography, some of them written in languages other than English, can be found in
this book’s bibliography.

Note that while the vast majority of the examples provided in this chapter are for Japa-
nese, almost all of the rules and principles that are described are applicable to other CJKV
locales, sometimes with minor modification. Also, most of the typographic examples pro-
vided in this chapter were created directly in Adobe InDesign, as part of the text of this
book.

rules, Principles, and techniques
When one reads information about CJKV line-layout, sets of rules and principles are often
presented, such as those outlined in the standard designated JIS X 4051:2004. And, many
page- and line-layout programs allow the user to adhere to these rules and principles,
sometimes to varying degrees, and with some amount of control of the parameters. While
page- and line-layout rules are often based on sound and proven typographic principles,
they do not always need to be followed to the letter—they can be broken when the situa-
tion or context permits. Typography is part science and part art. It is its science part that
follows the rules, and its art part that wants to break them as the situation dictates.

The most important aspect of page- and line-layout is consistency. The formation of and
adhering to page- and line-layout rules and principles results in consistency. Consistency
is a good thing, because it results in good typography. In other words, whatever rules and
principles you choose to apply, they need to be applied in a consistent manner. If a set of
predefined rules happen to work well with the document that you are typesetting, by all
means follow them. This book, for example, follows the book design rules set forth by the
book designers of O’Reilly Media.

Keep in mind while reading this chapter that typography is a genuine art form. Providing
an unskilled painter with a set of painting rules will not result in an aesthetically pleas-
ing piece of art. Likewise, putting a top-of-the-line digital SLR camera in the hands of a
photography novice does not guarantee that a good photo will result, and providing a
rifle to an unskilled hunter does not guarantee that game will be harvested. Paint brushes,
cameras, firearms, and the typographic controls of an application are merely tools. What
matters most, in terms of achieving an end result, is how these tools are used. All artists
have their own set of rules and principles—many unwritten—and they obey or break
them as the situation dictates.

rules, Principles, and techniques | 475

JIs X 4051:2004 Compliance
JIS X 4051:2004, Formatting rules for Japanese documents (日本語文書の組版方法 ni-
hongo bunshō no kumihan hōhō), is the standard that specifies the rules, principles, and
techniques that are necessary for typesetting Japanese documents.* Several publishing-
quality applications, such as Adobe FrameMaker, Adobe Illustrator, Adobe InDesign,
Adobe PageMaker-J, FreeHand MX, QuarkXPress-J, and Canon EDICOLOR now pro-
vide full or partial JIS X 4051:2004 compliance.

The JIS X 4051 standard has grown considerably since its inception in 1993. The 1993
version has 28 pages, the 1995 version has 69 pages, and the 2004 version has 206 pages
with 6 pages of frontmatter. Needless to say, JIS X 4051 is now a fully matured standard,
as evidenced by its second revision, along with the high level of acceptance throughout
the industry.

One of the most important aspects of JIS X 4051:2004 to remember is that it is the first
national standard that attempts to document the page- and line-layout rules for any type
of CJKV text. Many of the page- and line-layout rules for Japanese were either poorly or
inconsistently described in proprietary documentation, or else not documented at all.
While I wrote in the beginning of this chapter that consistency is more important than
a set of rules, you must realize that consistency arises from adhering to a set of rules
and principles. JIS X 4051:2004 provides application developers and typographers with a
starting point from which to define their own set of typographic rules. The guidance that
this standard offers is invaluable.

Many of the typographic rules described in JIS X 4051:2004 are loosely described in this
chapter. If your work, research, or interests involve Japanese typography, I strongly en-
courage you to more deeply explore what JIS X 4051:2004 has to offer by obtaining and
studying the standard.

In addition, if you are a member of a standards committee in China, Korea, Taiwan, or
Vietnam, or related organization, or have influence on such committees and organiza-
tions, I strongly encourage you to consider establishing and publishing a standard that
describes a basic set of your locale’s page- and line-layout rules and principles, similar to
Japan’s JIS X 4051:2004 standard. The publishing of JIS X 4051:2004 exerted a very posi-
tive influence on the Japanese publishing industry, and clearly served to lift application
development to the next level.

* This standard was originally designated JIS X 4051-1993, and was subsequently revised in 1995 and 2004. The
1993 and 1995 versions shared a slightly different title, in both English and Japanese: Line composition rules for
Japanese documents and 日本語文書の行組版方法 nihongo bunshō no gyō kumihan hōhō.

476 | Chapter 7: typography

GB/t 15834-1995 and GB/t 15835-1995
China has established two standards that provide some amount of line-layout guidance,
as follows:

GB/T 15834-1995, •	 Use of Punctuation Marks (标点符号用法 biāodiǎn fúhào
yòngfǎ)

GB/T 15835-1995, •	 General Rules for Writing Numerals in Publications (出版物上数
字用法的规定 chūbǎn wùshàng shùzì yòngfǎ de guīdìng)

Although these two GB standards are not even close to being as comprehensive as Japan’s
JIS X 4051:2004, they do provide general principles for composing Chinese text, in both
horizontal and vertical writing modes.

typographic Units and Measurements
Before one begins to construct lines of text for a document, there must be a consistent and
established set of units and measurements in place for the purpose of specifying the size
of text and spacing. If one is to consider only nonproprietary typesetting systems, there
is little benefit to discussing typographic units other than points. But, many proprietary
typesetting systems are still in use today, and many typographic guides still make use of
other typographic units. Knowing how to convert between them is useful.

Before the days of easily scaled type, names were associated with various and specific type
sizes. Table 7-1 lists some of these type size names, along with their corresponding sizes
expressed in points.

Historical names for type sizesTable 7-1.

name size in points

Diamond 4

Pearl 4.5

Rubya 5

Nonpareil 6

Emerald 6.5

Minion 7

Brevier 7.5

Bourgeois 8

Long primer 9

Elite 10

Small pica 11

Pica 12

typographic Units and Measurements | 477

Historical names for type sizesTable 7-1.

name size in points

English 14

Great primer 16

Paragon 18

Two-line small pica 22

Two-line pica 24

Two-line English 28

Two-line great primer 32

Three-line pica 36

Four-line pica 48

Four-line English 56

Five-line pica 60

Six-line pica 72

In case you haven’t figured it out yet, this is the origin of the typographic term a.
“ruby” that was introduced in Chapter 6. Remember that ruby glyphs are typically
set at half the size of their parent glyphs. Its corresponding point size, specifically 5
points, is half the size of a common text size, specifically the elite at 10 points.

Some of these historical names are still in use today, such as pica. Some of them are used
in somewhat specific contexts, such as ruby, which has seemingly lost its absolute type
size attribute, and instead is used for its relative type size. Because most typographic units
of measurement have long and sometimes misunderstood histories, such discussions are
obviously beyond the scope of this book. As previously written, what is important in the
context of this book is to know that there are many typographic units, and that you can
convert between them.

two Important Points—Literally
Quite literally, there are two types of points used in typography today. The point is a
unit of measurement used to specify the size of characters, and also for specifying types
of spaces, such as leading and letter spacing. Which point is being used—the DTP or
Didot—is important because they represent different sizes.

It is important to realize that the DTP point has become the predominant typographic
unit of measurement used by PostScript and related technologies.

478 | Chapter 7: typography

the dtP point
The DTP point (or simply “point”) is the most commonly used typographic unit today,
at least for American and British systems. The point is usually considered to be 1⁄72 of
one inch, which also means 0.3515 millimeters, 0.01383 inches, or 1⁄12 of one pica.* To
be exact, there are 72.27 points per inch—the result of the mathematical operation 12 ÷
0.166044 (the number of points per pica divided by the length of one pica in inches).

Some applications allow the user to alter the definition of the point. QuarkXPress, for
example, allows the user to change the definition of a point—the default is 72 points per
inch according to the PostScript imaging model. This is useful if you have been using a
different typographic scale and want to stick with it.

the didot point
The Didot point is still sometimes used in continental Europe, and is approximately 7%
larger than the DTP point. It represents 0.37597 millimeters, 0.01483 inches, or 1⁄12 of one
cicero. The cicero is similar to a pica, but like the DTP versus Didot point, it is approxi-
mately 7% larger than the pica.

other typographic Units
The two types of points are Western typographic units, but surely there must be typo-
graphic units developed in non-Western cultures. Indeed there are, and three other ty-
pographic units are still used in some proprietary typesetting systems in CJKV locales,
written as shown in Table 7-2 in the respective CJKV locales.

Other typographic unitsTable 7-2.

Abbreviated name Chinese Japanese Korean

Q 级数/級數 jíshù 級数 kyūsū 급수/級數 geupsu

H 齿数/齒數 chǐshù 歯数 hasū 치수/齒數 chisu

G 号数/號數 hàoshù 号数 gōsū 호수/號數 hosu

As suggested in Table 7-2, I will henceforth refer to these three typographic units as Q,†
H, and G, respectively. The use of Q and H as abbreviations for the first two typographic
units is actually common practice in Japan. The Q typographic unit is defined in JIS X
0207-1979‡ and in GB 3937-83.

* A pica is traditionally 4.22 millimeters or 0.166 inches, but the convention today is to consider a pica to be the
same as 1⁄6 of one inch.

† I feel obligated to point out that there is absolutely no relation between Q (the unit of typographic measure-
ment), “Q” (an omnipotent being that appeared in the Star Trek: The Next Generation series), and “Q” (007’s
personal spy-gadget technician).

‡ Previously designated JIS C 6225-1979

typographic Units and Measurements | 479

Q and H are equivalent to one-fourth of one millimeter (0.25 mm)—although both units
represent the same size, they are used for completely different purposes, as follows:

Q are used solely for specifying type size•	

H are used solely for specifying leading, escapement, line length, and spaces—every-•	
thing but type size

One may wonder about where these typographic units originated. The Q typographic
unit roughly corresponds to lens number in reference to the lenses that were used by
older photo typesetting machines, whereby each lens number corresponded to a specific
font size on the film. The H typographic unit refers to how many gear “teeth” the film is
advanced on the drum, thus being used solely for distances, and not for type size. The
ideograph 歯 (pronounced ha in Japanese), which represents the H typographic unit,
literally means “tooth” or “teeth.”

Adobe Illustrator, Adobe InDesign, Adobe FrameMaker, Founder FIT, FreeHand MX,
QuarkXPress, and Canon EDICOLOR are the few nonproprietary page-layout systems
that allow the user to specify Q for units of typographic measurement. Providing support
for Q and H in nonproprietary page-layout systems makes it easier for users of propri-
etary equipment to transition to nonproprietary software.

So, you may be wondering why there is a need for both Q and H—time for a little Q and
A (Questions and Answers). When one specifies how text is to be laid out into lines, it is
common to specify both type size and leading. The text of this book, for example, is laid
out as 10.2/12.5, which means 10.2-point type and 12.5-point leading. The leading here
refers to the distance from the baseline of one line of text to another: 10.2 points for the
characters themselves plus 2.3 points of virtual “lead” as extra space. There are other con-
ventions that specify only the additional space instead of the point size plus the additional
space. This could result in 10.2/2.3. Japanese layout is specified in terms of the spacing
between objects, and not the distance from one baseline to another. Needless to say, all
of this can become quite confusing, because it is not always clear which value represents
the type size, and which represents the leading or spacing. To some extent, the use of Q
and H helps to make this obvious, because one value is clearly indicating type size, and
the other indicates spacing of some sort. Text laid out as 10Q/13H uses 10Q (2.5 mm or
7.112-point) type size plus 13H (3.25 mm or 9.246-point) leading.

The other typographic unit, which I am calling G, is unique in that its scale is the reverse
of what one finds in the other typographic units. That is, the higher the value of G, the
smaller the size. And, like the Q unit, G is used strictly for type size. This typographic
unit, as used in Japan, was developed by Shozo Motoki (本木昌造 motoki shōzō) in 1933,
and was supposedly based on a traditional Japanese metric system called Kujira-Jaku (鯨
尺 kujira jaku). The Chinese developed a comparable system with the same name, but it
differs in that fractional, referred to as “small” (小 in Chinese), values are included within
its scale. For example, in Chinese, the 0G value is referred to as 初号, and the fractional
or “small” version is referred to as 小初.

480 | Chapter 7: typography

Various sizes on the G scale relate to one another in terms of being either half or double
the size of other sizes in the same scale. The following sizes on the G scale relate to one
another in terms of being pure or close multiples of one another:

1G and 4G•	

0•	 G (Initial G), 2G, 5G, and 7G

3G, 6G, and 8G•	

Table 7-3 provides these same G units together, as used in Japan and China, along with the
equivalent sizes in points so that it is clear how they are related. For the values as used in
China, the fractional or “small” values are provided in parentheses.

The G typographic unit—Japan and ChinaTable 7-3.

Country set A set B set C

Ja
pa

n

n/a 0G—42 points n/a

1G—27.5 points 2G—21 points 3G—16 points

4G—13.75 points 5G—10.5 points 6G—8 points

n/a 7G—5.25 points 8G—4 points

Ch
in

a

n/a 0G—42 points (small = 36) n/a

1G—26 points (small = 24) 2G—22 points (small = 18) 3G—16 points (small = 15)

4G—14 points (small = 12) 5G—10.5 points (small = 9) 6G—7.5 points (small = 6.5)

n/a 7G—5.5 points 8G—5 points

Needless to say, the G is a typographic unit of measurement whose scale limits the maxi-
mum size of a character to 42 points. It is also no longer used.

Some page-layout systems also use the notion of “character” as a typographic unit. Found-
er FIT and Canon EDICOLOR, for example, allow the user to specify dimensions in terms
of number of characters, for both the horizontal and vertical direction. For writing sys-
tems whose characters are uniform in size, which effectively means that they can be set on
a rigid grid, this has many advantages.

Horizontal and Vertical Layout
CJKV text, from a traditional point of view, is set vertically. Columns begin at the right
side of the page and work their way to the left. Also, books are read beginning from what
in the West is considered the back of the book. Fortunately, it is also acceptable to set
CJKV text horizontally and to read books in “Western” direction. There are, however, a
few punctuation marks and other characters that require special handling when set verti-
cally, such as their positioning within the design space or being placed in 90˚ clockwise
rotation.

Horizontal and Vertical Layout | 481

PostScript’s flexible text-handling capabilities allow you to set CJKV text vertically. This is
accomplished through the use of a vertical font instance.* Whether or not you can actu-
ally typeset CJKV text vertically depends greatly upon the OSes and applications you are
using—the underlying PostScript CJKV fonts have inherent vertical support. Mac OS, for
example, did not have any built-in vertical support, so application developers who wished
to provide their users with the ability to set text vertically had to implement vertical sup-
port themselves. Genuine vertical support was introduced in Mac OS X, as part of ATSUI
APIs. CoreText, which replaces ATSUI, also supports vertical text.

One critical aspect of vertical layout is the relative position of the vertical origin, nor-
mally centered over the top of the design space. As you will see in Figure 7-1, the typical
design space found in CJKV fonts is negatively offset from the baseline (Y coordinate 0)
anywhere from 120 to 200 units. This effectively means that the relative position from the
horizontal baseline—Y coordinate 0—depends on the design space of the font. Interest-
ingly, legacy font resources, such as the ‘FOND’ resource for Mac OS and the PFM file for
Windows, did not have any field in which to encapsulate such information. This is infor-
mation specific to and crucial for vertical writing, but almost all legacy font formats were
not designed with vertical writing in mind. The fields that contain values for font-level
ascent and descent are sometimes—incorrectly and dangerously, in my opinion—over-
loaded or changed to encapsulate the design space rather than the true font-level ascent
and descent values. OpenType has improved this situation, and in a cross-platform man-
ner, by providing tables and fields that are used to specify vertical writing parameters.

Another aspect of vertical layout is escapement, that is, the amount of space from one
character to the next, also referred to as a glyph’s set width. If a glyph’s set width is 1000
units—a typical CJKV glyph—then its escapement, whether in horizontal or vertical writ-
ing mode, is the same as its point size. That is, the glyph for a character set at 10 points
uses 10-point escapement. Typical Japanese typeface designs that are used to compose
newspapers, however, are set in a nonsquare design space, such as 1000×800, that is, 1000
units wide and 800 units high. The subject of nonsquare designs is covered in the next
section.

Table 7-4 provides some examples of Japanese text set horizontally and vertically, includ-
ing some of the characters that require special vertical handling.

Applications that provide the capability for vertically set CJKV text more often than not
allow users to edit text vertically—this can be a new experience for those not accustomed
to it. The cursor is usually a horizontal bar, as opposed to a vertical bar, and moves top to
bottom, and then right to left. Keyboard cursor keys, for example, behave according to the
logical direction of the text, not the physical direction. Some simpler applications permit
users to enter and edit text horizontally only, but may permit vertical printing. This is not
a particularly fine example of a WYSIWYG situation.

* That is, PostScript fonts whose /WMode value is set to 1.

482 | Chapter 7: typography

Horizontal and vertical layout—JapaneseTable 7-4.

Horizontal Vertical

普通の「DTP システム」は縦書
きレイアウトをサポートしてい
ますが、簡単なワープロやテキ
ストエディターはサポートしま
せん。縦書きのサポートの為に
はフォントも必要です。全ての
ポストスクリプト日中韓越フォ
ントには縦書きフォントも含ま
れています。

普
通
の
「DTP

シ
ス
テ
ム
」
は
縦
書

き
レ
イ
ア
ウ
ト
を
サ
ポ
ー
ト
し
て
い

ま
す
が
、
簡
単
な
ワ
ー
プ
ロ
や
テ
キ

ス
ト
エ
デ
ィ
タ
ー
は
サ
ポ
ー
ト
し
ま

せ
ん
。
縦
書
き
の
サ
ポ
ー
ト
の
為
に

は
フ
ォ
ン
ト
も
必
要
で
す
。
全
て
の

ポ
ス
ト
ス
ク
リ
プ
ト
日
中
韓
越
フ
ォ

ン
ト
に
は
縦
書
き
フ
ォ
ン
ト
も
含
ま

れ
て
い
ま
す
。

nonsquare design space
As mentioned in the previous section, there are some fonts whose design space is not
square, in particular those fonts that are used for printing newspapers. It is also possible,
using today’s page-layout systems, to artificially scale square designs so that they fit in a
nonsquare design space, but the results from such an operation are far from being aes-
thetically pleasing.

Table 7-5 provides an example of text that was set using a font with a square design space,
using Morisawa’s A-OTF リュウミン Pr6N L-KL (RyuminPr6N-Light) typeface design,
and one set with a nonsquare design space, using Morisawa’s A-OTF 毎日新聞明朝 Pro
L (MNewsMPro-Light) typeface design.

Newspaper publishers prefer to use these “compressed” typeface designs because they can
fit more text in the same amount of space. I included the generic line-drawing characters
because they illustrate that simple scaling is not used to create these designs—they are
designed in a nonsquare design space. As clearly specified on Morisawa’s website, their A-
OTF 毎日新聞明朝 Pro L (MNewsMPro-Light) typeface design is set in a 1000×800 de-
sign space, but because the font itself is implemented using the conventional 1000×1000
design space, meaning that its design has been stretched along the Y-axis by 25%, the
glyphs should be compressed to 80% when used in applications.

Although a typeface design set in a 1000×800 design space can be used for horizontal
writing, it is not very common, and the results are not very pleasing (but may be ap-
propriate under some circumstances). Some Korean typeface designs, in particular their
hangul, are set in a 800×1000 design space, giving them a compressed effect, but these are
intended for horizontal writing.

Horizontal and Vertical Layout | 483

Square and nonsquare design spacesTable 7-5.

ryuminPr6n-Light MnewsMPro-Light

あ
ぁ
い
ぃ
う
ぅ
え
ぇ
お
ぉ

か
が
き
ぎ
く
ぐ
け
げ
こ
ご

亜
唖
娃
阿
哀
愛
挨
姶
逢
葵

茜
穐
悪
握
渥
旭
葦
芦
鯵
梓

─
│
┌
┐
┘
└
├
┬
┤
┴

━
┃
┏
┓
┛
┗
┣
┳
┫
┻

あ
ぁ
い
ぃ
う
ぅ
え
ぇ
お
ぉ

か
が
き
ぎ
く
ぐ
け
げ
こ
ご

亜
啞
娃
阿
哀
愛
挨
姶
逢
葵

茜
穐
悪
握
渥
旭
葦
芦
鯵
梓

─
│
┌
┐
┘
└
├
┬
┤
┴

━
┃
┏
┓
┛
┗
┣
┳
┫
┻

the Character Grid
An essential element in CJKV typography is the ability for the user to establish a character-
based grid, if desired. Some applications, such as Adobe InDesign, Canon EDICOLOR,
and QuarkXPress, allow the user to establish a character grid, and also allow the user to
use “character” as a unit of measurement for determining line lengths and so on.

Because most CJKV characters, such as zhuyin, kana, hangul, and especially ideographs,
are typically set in a uniform design space, usually square, it is somewhat natural to want
to set the glyphs in a character-based grid. However, the inclusion of some punctuation or
Latin glyphs can cause this grid to break down and cease to be rigid.

Table 7-6 provides an example of a character-based grid. Note how punctuation is still
allowed to dangle, such as at the end of the fourth line. Details about dangling punctua-
tion can be found later in this chapter in the section entitled “Line Breaking and Word
Wrapping.”

Morisawa’s Fuzzy 完全箱組 (fajī kanzen hakogumi, meaning “fuzzy perfect-box layout”)
software, an Adobe Illustrator plug-in, performs various calculations that enable grid-like
behavior for Adobe Illustrator, but doesn’t actually set up a grid as shown in Table 7-6.
Its purpose was to do the necessary calculations in order to fill the selected text box with
the text that is inside (which may need to be stretched or otherwise enlarged in order to
fill it).

484 | Chapter 7: typography

Character grid exampleTable 7-6.

Glyph string

Vertical Character Variants
While the majority of characters appear the same regardless of writing direction, some
characters, due to their orientation or position within the design space, must somehow
change to accommodate different writing directions.

Table 7-7 illustrates how the glyphs for some characters change their orientation or posi-
tioning within their design space depending on whether they are being set horizontally or
vertically. These glyphs’ design spaces have been highlighted through the use of registra-
tion marks for much easier comparison, and to better understand the relative position of
the glyphs in their design space. Additionally, there are some glyphs that must undergo
more than one transformation in order to change from the horizontal form to its ap-
propriate vertical form. Consider the glyphs for the following two characters: ⌍～⌌ (a wave
or swung dash) and ⌍ー⌌ (long vowel mark, Japanese-specific). The corresponding vertical
forms of these characters are ⌍～⌌ and ⌍ー⌌ , respectively. Note how these two characters are
rotated 90˚ and flipped in order to become the proper vertical variants. Some font de-
velopers often forget to flip the glyphs for these characters when creating their vertical
variants—it is a very easy mistake to make, unfortunately.

Sample characters that require special vertical handling—JapaneseTable 7-7.

description Horizontal Vertical

Ideographic period ⌍。⌌ ⌍︒⌌

Ideographic comma ⌍、⌌ ⌍︑⌌

Horizontal and Vertical Layout | 485

Sample characters that require special vertical handling—JapaneseTable 7-7.

description Horizontal Vertical

Long vowel symbol ⌍ー⌌ ⌍ー⌌

Opening bracket ⌍「⌌ ⌍﹁⌌

Closing bracket ⌍」⌌ ⌍﹂⌌

Small katakana i ⌍ィ⌌ ⌍ィ⌌

Small katakana o ⌍ォ⌌ ⌍ォ⌌

Table 7-8 provides a much more complete list of characters that are known to have vertical
variants in at least one locale or implementation, listed in the order in which they appear
in Unicode. Included for reference are the Row-Cell values from the GB 2312-80, CNS
11643-2007 (Plane 1), JIS X 0213:2004, and KS X 1001:2004 character set standards, for
China, Taiwan, Japan, and Korea, respectively.

Characters and their vertical variantsTable 7-8.

Unicode China taiwan Japan Koreaa

U+00AB ⌍«⌌ ⇒ ⌍«⌌ 1-09-08

U+00B0 ⌍°⌌ 01-67 ⌍°⌌ 22-78 ⌍°⌌ ⇒ ⌍°⌌ 01-75 ⌍°⌌ 01-38

U+00BB ⌍»⌌ ⇒ ⌍»⌌ 1-09-18

U+2010 ⌍‐⌌ 03-13 ⌍‐⌌ ⇒ ⌍︲⌌ 01-30 ⌍‐⌌ ⇒ ⌍︲⌌ 01-09

U+2015 ⌍―⌌ ⇒ ⌍︱⌌ 01-10b ⌍―⌌ ⇒ ⌍︱⌌ 01-25 ⌍―⌌ ⇒ ⌍︱⌌ 01-29c ⌍―⌌ ⇒ ⌍︱⌌ 01-10

U+2016 ⌍‖⌌ ⇒ ⌍‖⌌ 01-12 ⌍‖⌌ ⇒ ⌍‖⌌ 02-61 ⌍‖⌌ ⇒ ⌍‖⌌ 01-34 ⌍‖⌌ ⇒ ⌍‖⌌ 01-11

U+2018 ⌍‘⌌ ⇒ ⌍﹁⌌ 01-14 ⌍‘⌌ 01-68 ⌍‘⌌ ⇒ ⌍‘⌌ 01-38c ⌍‘⌌ 01-14

U+2019 ⌍’⌌ ⇒ ⌍﹂⌌ 01-15 ⌍’⌌ 01-69 ⌍’⌌ ⇒ ⌍’⌌ 01-39c ⌍’⌌ 01-15

U+201C ⌍“⌌ ⇒ ⌍﹃⌌ 01-16 ⌍“⌌ 01-70 ⌍“⌌ ⇒ ⌍“⌌ 01-40c ⌍“⌌ 01-16

U+201D ⌍”⌌ ⇒ ⌍﹄⌌ 01-17 ⌍”⌌ 01-71 ⌍”⌌ ⇒ ⌍”⌌ 01-41c ⌍”⌌ 01-17

U+2025 ⌍‥⌌ ⇒ ⌍︰⌌ 01-13 ⌍‥⌌ ⇒ ⌍︰⌌ 01-37c ⌍‥⌌ ⇒ ⌍︰⌌ 01-05

U+2026 ⌍…⌌ ⇒ ⌍︙⌌ 01-13b ⌍…⌌ ⇒ ⌍︙⌌ 01-12 ⌍…⌌ ⇒ ⌍︙⌌ 01-36d ⌍…⌌ ⇒ ⌍︙⌌ 01-06

486 | Chapter 7: typography

Characters and their vertical variantsTable 7-8.

Unicode China taiwan Japan Koreaa

U+2032 ⌍′⌌ 01-68 ⌍′⌌ 01-75 ⌍′⌌ ⇒ ⌍′⌌ 01-76 ⌍′⌌ 01-39

U+2033 ⌍″⌌ 01-69 ⌍″⌌ 01-73 ⌍″⌌ ⇒ ⌍″⌌ 01-77 ⌍″⌌ 01-40

U+3001 ⌍、⌌ ⇒ ⌍︑⌌ 01-02b ⌍、⌌ 01-03 ⌍、⌌ ⇒ ⌍︑⌌ 01-02d ⌍、⌌ ⇒ ⌍︑⌌ 01-02e

U+3002 ⌍。⌌ ⇒ ⌍︒⌌ 01-03b ⌍。⌌ 01-04 ⌍。⌌ ⇒ ⌍︒⌌ 01-03d ⌍。⌌ ⇒ ⌍︒⌌ 01-03e

U+3008 ⌍〈⌌ ⇒ ⌍︿⌌ 01-20b ⌍〈⌌ ⇒ ⌍︿⌌ 01-50f ⌍〈⌌ ⇒ ⌍︿⌌ 01-50d ⌍〈⌌ ⇒ ⌍︿⌌ 01-20

U+3009 ⌍〉⌌ ⇒ ⌍﹀⌌ 01-21b ⌍〉⌌ ⇒ ⌍﹀⌌ 01-51f ⌍〉⌌ ⇒ ⌍﹀⌌ 01-51d ⌍〉⌌ ⇒ ⌍﹀⌌ 01-21

U+300A ⌍《⌌ ⇒ ⌍︽⌌ 01-22b ⌍《⌌ ⇒ ⌍︽⌌ 01-46f ⌍《⌌ ⇒ ⌍︽⌌ 01-52d ⌍《⌌ ⇒ ⌍︽⌌ 01-22

U+300B ⌍》⌌ ⇒ ⌍︾⌌ 01-23b ⌍》⌌ ⇒ ⌍︾⌌ 01-47f ⌍》⌌ ⇒ ⌍︾⌌ 01-53d ⌍》⌌ ⇒ ⌍︾⌌ 01-23

U+300C ⌍「⌌ ⇒ ⌍﹁⌌ 01-24b ⌍「⌌ ⇒ ⌍﹁⌌ 01-54f ⌍「⌌ ⇒ ⌍﹁⌌ 01-54d ⌍「⌌ ⇒ ⌍﹁⌌ 01-24

U+300D ⌍」⌌ ⇒ ⌍﹂⌌ 01-25b ⌍」⌌ ⇒ ⌍﹂⌌ 01-55f ⌍」⌌ ⇒ ⌍﹂⌌ 01-55d ⌍」⌌ ⇒ ⌍﹂⌌ 01-25

U+300E ⌍『⌌ ⇒ ⌍﹃⌌ 01-26b ⌍『⌌ ⇒ ⌍﹃⌌ 01-58f ⌍『⌌ ⇒ ⌍﹃⌌ 01-56d ⌍『⌌ ⇒ ⌍﹃⌌ 01-26

U+300F ⌍』⌌ ⇒ ⌍﹄⌌ 01-27b ⌍』⌌ ⇒ ⌍﹄⌌ 01-59f ⌍』⌌ ⇒ ⌍﹄⌌ 01-57d ⌍』⌌ ⇒ ⌍﹄⌌ 01-27

U+3010 ⌍【⌌ ⇒ ⌍︻⌌ 01-30b ⌍【⌌ ⇒ ⌍︻⌌ 01-42f ⌍【⌌ ⇒ ⌍︻⌌ 01-58d ⌍【⌌ ⇒ ⌍︻⌌ 01-28

U+3011 ⌍】⌌ ⇒ ⌍︼⌌ 01-31b ⌍】⌌ ⇒ ⌍︼⌌ 01-43f ⌍】⌌ ⇒ ⌍︼⌌ 01-59d ⌍】⌌ ⇒ ⌍︼⌌ 01-29

U+3013 ⌍〓⌌ ⇒ ⌍〓⌌ 01-94 ⌍〓⌌ 02-14 ⌍〓⌌ ⇒ ⌍〓⌌ 01-75

U+3014 ⌍〔⌌ ⇒ ⌍︹⌌ 01-18b ⌍〔⌌ ⇒ ⌍︹⌌ 01-38f ⌍〔⌌ ⇒ ⌍︹⌌ 01-44d ⌍〔⌌ ⇒ ⌍︹⌌ 01-18

U+3015 ⌍〕⌌ ⇒ ⌍︺⌌ 01-19b ⌍〕⌌ ⇒ ⌍︺⌌ 01-39f ⌍〕⌌ ⇒ ⌍︺⌌ 01-45d ⌍〕⌌ ⇒ ⌍︺⌌ 01-19

U+3016 ⌍〖⌌ ⇒ ⌍〖⌌ 01-28b ⌍〖⌌ ⇒ ⌍〖⌌ 1-02-58

U+3017 ⌍〗⌌ ⇒ ⌍〗⌌ 01-29b ⌍〗⌌ ⇒ ⌍〗⌌ 1-02-59

U+3018 ⌍〘⌌ ⇒ ⌍〘⌌ 1-02-56

U+3019 ⌍〙⌌ ⇒ ⌍〙⌌ 1-02-57

U+301C ⌍～⌌ ⇒ ⌍～⌌ 01-11 ⌍～⌌ ⇒ ⌍～⌌ 02-36 ⌍～⌌ ⇒ ⌍～⌌ 01-33d ⌍～⌌ ⇒ ⌍～⌌ 01-13

U+3041 ⌍ぁ⌌ 04-01 ⌍ぁ⌌ 09-50 ⌍ぁ⌌ ⇒ ⌍ぁ⌌ 04-01c ⌍ぁ⌌ 10-01

Horizontal and Vertical Layout | 487

Characters and their vertical variantsTable 7-8.

Unicode China taiwan Japan Koreaa

U+3043 ⌍ぃ⌌ 04-03 ⌍ぃ⌌ 09-52 ⌍ぃ⌌ ⇒ ⌍ぃ⌌ 04-03c ⌍ぃ⌌ 10-03

U+3045 ⌍ぅ⌌ 04-05 ⌍ぅ⌌ 09-54 ⌍ぅ⌌ ⇒ ⌍ぅ⌌ 04-05c ⌍ぅ⌌ 10-05

U+3047 ⌍ぇ⌌ 04-07 ⌍ぇ⌌ 09-56 ⌍ぇ⌌ ⇒ ⌍ぇ⌌ 04-07c ⌍ぇ⌌ 10-07

U+3049 ⌍ぉ⌌ 04-09 ⌍ぉ⌌ 09-58 ⌍ぉ⌌ ⇒ ⌍ぉ⌌ 04-09c ⌍ぉ⌌ 10-09

U+3063 ⌍っ⌌ 04-35 ⌍っ⌌ 09-84 ⌍っ⌌ ⇒ ⌍っ⌌ 04-35c ⌍っ⌌ 10-35

U+3083 ⌍ゃ⌌ 04-67 ⌍ゃ⌌ 10-22 ⌍ゃ⌌ ⇒ ⌍ゃ⌌ 04-67c ⌍ゃ⌌ 10-67

U+3085 ⌍ゅ⌌ 04-69 ⌍ゅ⌌ 10-24 ⌍ゅ⌌ ⇒ ⌍ゅ⌌ 04-69c ⌍ゅ⌌ 10-69

U+3087 ⌍ょ⌌ 04-71 ⌍ょ⌌ 10-26 ⌍ょ⌌ ⇒ ⌍ょ⌌ 04-71c ⌍ょ⌌ 10-71

U+308E ⌍ゎ⌌ 04-78 ⌍ゎ⌌ 10-33 ⌍ゎ⌌ ⇒ ⌍ゎ⌌ 04-78c ⌍ゎ⌌ 10-78

U+3095 ⌍ゕ⌌ ⇒ ⌍ゕ⌌ 1-04-85

U+3096 ⌍ゖ⌌ ⇒ ⌍ゖ⌌ 1-04-86

U+30A0 ⌍゠⌌ ⇒ ⌍゠⌌ 1-03-91

U+30A1 ⌍ァ⌌ 05-01 ⌍ァ⌌ 10-46 ⌍ァ⌌ ⇒ ⌍ァ⌌ 05-01c ⌍ァ⌌ 11-01

U+30A3 ⌍ィ⌌ 05-03 ⌍ィ⌌ 10-48 ⌍ィ⌌ ⇒ ⌍ィ⌌ 05-03c ⌍ィ⌌ 11-03

U+30A5 ⌍ゥ⌌ 05-05 ⌍ゥ⌌ 10-50 ⌍ゥ⌌ ⇒ ⌍ゥ⌌ 05-05c ⌍ゥ⌌ 11-05

U+30A7 ⌍ェ⌌ 05-07 ⌍ェ⌌ 10-52 ⌍ェ⌌ ⇒ ⌍ェ⌌ 05-07c ⌍ェ⌌ 11-07

U+30A9 ⌍ォ⌌ 05-09 ⌍ォ⌌ 10-54 ⌍ォ⌌ ⇒ ⌍ォ⌌ 05-09c ⌍ォ⌌ 11-09

U+30C3 ⌍ッ⌌ 05-35 ⌍ッ⌌ 10-80 ⌍ッ⌌ ⇒ ⌍ッ⌌ 05-35c ⌍ッ⌌ 11-35

U+30E3 ⌍ャ⌌ 05-67 ⌍ャ⌌ 11-18 ⌍ャ⌌ ⇒ ⌍ャ⌌ 05-67c ⌍ャ⌌ 11-67

U+30E5 ⌍ュ⌌ 05-69 ⌍ュ⌌ 11-20 ⌍ュ⌌ ⇒ ⌍ュ⌌ 05-69c ⌍ュ⌌ 11-69

U+30E7 ⌍ョ⌌ 05-71 ⌍ョ⌌ 11-22 ⌍ョ⌌ ⇒ ⌍ョ⌌ 05-71c ⌍ョ⌌ 11-71

U+30EE ⌍ヮ⌌ 05-78 ⌍ヮ⌌ 11-29 ⌍ヮ⌌ ⇒ ⌍ヮ⌌ 05-78c ⌍ヮ⌌ 11-78

U+30F5 ⌍ヵ⌌ 05-85 ⌍ヵ⌌ 11-36 ⌍ヵ⌌ ⇒ ⌍ヵ⌌ 05-85c ⌍ヵ⌌ 11-85

488 | Chapter 7: typography

Characters and their vertical variantsTable 7-8.

Unicode China taiwan Japan Koreaa

U+30F6 ⌍ヶ⌌ 05-86 ⌍ヶ⌌ 11-37 ⌍ヶ⌌ ⇒ ⌍ヶ⌌ 05-86c ⌍ヶ⌌ 11-86

U+30FC ⌍ー⌌ 11-43 ⌍ー⌌ ⇒ ⌍ー⌌ 01-28d

U+31F0 ⌍ㇰ⌌ ⇒ ⌍ㇰ⌌ 1-06-78

U+31F1 ⌍ㇱ⌌ ⇒ ⌍ㇱ⌌ 1-06-79

U+31F2 ⌍ㇲ⌌ ⇒ ⌍ㇲ⌌ 1-06-80

U+31F3 ⌍ㇳ⌌ ⇒ ⌍ㇳ⌌ 1-06-81

U+31F4 ⌍ㇴ⌌ ⇒ ⌍ㇴ⌌ 1-06-82

U+31F5 ⌍ㇵ⌌ ⇒ ⌍ㇵ⌌ 1-06-83

U+31F6 ⌍ㇶ⌌ ⇒ ⌍ㇶ⌌ 1-06-84

U+31F7 ⌍ㇷ⌌ ⇒ ⌍ㇷ⌌ 1-06-85

U+31F8 ⌍ㇸ⌌ ⇒ ⌍ㇸ⌌ 1-06-86

U+31F9 ⌍ㇹ⌌ ⇒ ⌍ㇹ⌌ 1-06-87

U+31FA ⌍ㇺ⌌ ⇒ ⌍ㇺ⌌ 1-04-85

U+31FB ⌍ㇻ⌌ ⇒ ⌍ㇻ⌌ 1-04-85

U+31FC ⌍ㇼ⌌ ⇒ ⌍ㇼ⌌ 1-04-85

U+31FD ⌍ㇽ⌌ ⇒ ⌍ㇽ⌌ 1-04-85

U+31FE ⌍ㇾ⌌ ⇒ ⌍ㇾ⌌ 1-04-85

U+31FF ⌍ㇿ⌌ ⇒ ⌍ㇿ⌌ 1-04-85

U+FF01 ⌍！⌌ ⇒ ⌍︕⌌ 03-01b ⌍！⌌ 01-10 ⌍！⌌ 01-10 ⌍！⌌ ⇒ ⌍！⌌ 03-01

U+FF08 ⌍（⌌ ⇒ ⌍︵⌌ 03-08b ⌍（⌌ ⇒ ⌍︵⌌ 01-30f ⌍（⌌ ⇒ ⌍︵⌌ 01-42d ⌍（⌌ ⇒ ⌍︵⌌ 03-08

U+FF09 ⌍）⌌ ⇒ ⌍︶⌌ 03-09b ⌍）⌌ ⇒ ⌍︶⌌ 01-31f ⌍）⌌ ⇒ ⌍︶⌌ 01-43d ⌍）⌌ ⇒ ⌍︶⌌ 03-09

U+FF0C ⌍，⌌ ⇒ ⌍︐⌌ 03-12b ⌍,⌌ 01-02 ⌍，⌌ ⇒ ⌍︐⌌ 01-04 ⌍，⌌ ⇒ ⌍︐⌌ 03-12

U+FF0E ⌍．⌌ ⇒ ⌍．⌌ 03-14 ⌍.⌌ 01-05g ⌍．⌌ ⇒ ⌍．⌌ 01-05 ⌍．⌌ ⇒ ⌍．⌌ 03-14

Horizontal and Vertical Layout | 489

Characters and their vertical variantsTable 7-8.

Unicode China taiwan Japan Koreaa

U+FF1A ⌍：⌌ ⇒ ⌍︓⌌ 03-26b ⌍：⌌ 01-08 ⌍：⌌ ⇒ ⌍：⌌ 01-07c ⌍：⌌ ⇒ ⌍：⌌ 03-26

U+FF1B ⌍；⌌ ⇒ ⌍︔⌌ 03-27b ⌍；⌌ 01-07 ⌍；⌌ 01-08 ⌍；⌌ ⇒ ⌍；⌌ 03-27

U+FF1D ⌍＝⌌ ⇒ ⌍＝⌌ 03-29 ⌍＝⌌ ⇒ ⌍＝⌌ 02-24 ⌍＝⌌ ⇒ ⌍＝⌌ 01-65d ⌍＝⌌ ⇒ ⌍＝⌌ 03-29

U+FF1F ⌍？⌌ ⇒ ⌍︖⌌ 03-31b ⌍？⌌ 01-09 ⌍？⌌ 01-09 ⌍？⌌ ⇒ ⌍？⌌ 03-31

U+FF3B ⌍［⌌ ⇒ ⌍﹇⌌ 03-59 ⌍［⌌ ⇒ ⌍﹇⌌ 01-46d ⌍［⌌ ⇒ ⌍﹇⌌ 03-59

U+FF3D ⌍］⌌ ⇒ ⌍﹈⌌ 03-61 ⌍］⌌ ⇒ ⌍﹈⌌ 01-47d ⌍］⌌ ⇒ ⌍﹈⌌ 03-61

U+FF3F ⌍＿⌌ ⇒ ⌍︳⌌ 03-63b ⌍＿⌌ 02-05 ⌍＿⌌ ⇒ ⌍︳⌌ 01-18 ⌍＿⌌ ⇒ ⌍︳⌌ 03-63

U+FF5B ⌍｛⌌ ⇒ ⌍︷⌌ 03-91b ⌍｛⌌ ⇒ ⌍︷⌌ 01-34f ⌍｛⌌ ⇒ ⌍︷⌌ 01-48d ⌍｛⌌ ⇒ ⌍︷⌌ 03-91

U+FF5C ⌍｜⌌ 03-92 ⌍｜⌌ ⇒ ⌍｜⌌ 01-24 ⌍｜⌌ ⇒ ⌍｜⌌ 01-35 ⌍｜⌌ ⇒ ⌍｜⌌ 03-92

U+FF5D ⌍｝⌌ ⇒ ⌍︸⌌ 03-93b ⌍｝⌌ ⇒ ⌍︸⌌ 01-35f ⌍｝⌌ ⇒ ⌍︸⌌ 01-49d ⌍｝⌌ ⇒ ⌍︸⌌ 03-93

U+FF5F ⌍｟⌌ ⇒ ⌍｟⌌ 1-02-54

U+FF60 ⌍｠⌌ ⇒ ⌍｠⌌ 1-02-55

U+FFE3 ⌍￣⌌ ⇒ ⌍￣⌌ 03-94 ⌍￣⌌ 02-03 ⌍￣⌌ ⇒ ⌍￣⌌ 01-17 ⌍￣⌌ ⇒ ⌍￣⌌ 03-94

Some implementations that support vertically set Korean text make use of Western-style punctuation that is simply rotated 90 .̊ This affects a.
the vertical variants for ⌍‘⌌ (U+2018), ⌍’⌌ (U+2019), ⌍“⌌ (U+201C), ⌍”⌌ (U+201D), ⌍！⌌ (U+FF01), ⌍，⌌ (U+FF0C), ⌍．⌌ (U+FF0E), ⌍：⌌ (U+FF1A), ⌍；⌌
(U+FF1B), and ⌍？⌌ (U+FF1F). Sometimes, the half- or proportional-width forms of these characters are simply rotated 90˚ clockwise.

Specified in GB/T 12345-90—vertical variants are encoded from b. 06-57 through 06-85.

Specified beginning in JIS X 0208:1997.c.

Specified beginning in JIS C 6226-1978.d.

For some implementations, the vertical form is the standard form.e.

The vertical variant of this character is encoded exactly two code points forward. For example, the vertical variant of f. 01-50 is encoded at
01-52.

One must wonder how g. ⌍.⌌ (a period) is differentiated from a centered dot—contrast ⌍.⌌ with ⌍•⌌.

Note how some characters’ vertical forms, such as Unicode U+FF1A (full-width colon), are
arranged differently among CJKV locales—shifted to the upper-right corner in China and
Korea, as is in Taiwan, and rotated 90˚ clockwise in Japan. Ligatures that are composed
of ideographs, katakana, or hangul also have vertical variants. Although few of these liga-
tures are included in national character set standards, they are commonplace in vendor
extensions (see Appendix E). Tables 7-45 and 7-46 provides some examples of these liga-
tures that require vertical variants.

490 | Chapter 7: typography

As illustrated in Table 7-8, some CJKV locales use different conventions for handling
vertical characters. Taiwan, for example, uses centered punctuation instead of left- or top-
justified ones. Contrast ⌍。⌌ with ⌍。⌌ (an ideographic period) and ⌍、⌌ with ⌍、⌌ (an ideo-
graphic comma). This technique permits the same glyph to be used for both horizontal
and vertical writing.

There are some differences between how vendors have defined vertical variants and how
they have been defined in national character sets. Using JIS X 0208:1997 as an example,
we find that the way they defined vertical variants are, by and large, the same. Apple’s
extensions to JIS X 0208:1997—both versions, used on different vintages of Mac OS-J—
share the same set of 53 vertical variants. JIS X 0208:1997 also defines a set of 53 vertical
variants. Yet, they are not the same. Table 7-9 lists the characters that are common and
specific to these two vertical variant definitions.

Common and implementation-specific vertical variants—JapaneseTable 7-9.

Category Glyphs

Co
m

m
on

26 symbols
⌍、⌌ ⌍。⌌ ⌍ー⌌ ⌍―⌌ ⌍～⌌ ⌍…⌌ ⌍‥⌌ ⌍（⌌ ⌍）⌌ ⌍〔⌌ ⌍〕⌌ ⌍［⌌ ⌍］⌌ ⌍｛⌌

⌍｝⌌ ⌍〈⌌ ⌍〉⌌ ⌍《⌌ ⌍》⌌ ⌍「⌌ ⌍」⌌ ⌍『⌌ ⌍』⌌ ⌍【⌌ ⌍】⌌ ⌍＝⌌

10 small hiragana ⌍ぁ⌌ ⌍ぃ⌌ ⌍ぅ⌌ ⌍ぇ⌌ ⌍ぉ⌌ ⌍っ⌌ ⌍ゃ⌌ ⌍ゅ⌌ ⌍ょ⌌ ⌍ゎ⌌

12 small katakana ⌍ァ⌌ ⌍ィ⌌ ⌍ゥ⌌ ⌍ェ⌌ ⌍ォ⌌ ⌍ッ⌌ ⌍ャ⌌ ⌍ュ⌌ ⌍ョ⌌ ⌍ヮ⌌ ⌍ヵ⌌ ⌍ヶ⌌

sp
ec

ifi
c JIS X 0208:1997 ⌍：⌌ ⌍‘⌌ ⌍’⌌ ⌍“⌌ ⌍”⌌

Mac OS-J ⌍￣⌌ ⌍＿⌌ ⌍‐⌌ ⌍‖⌌ ⌍｜⌌

All versions of Mac OS-J actually encode the vertical variants—very early versions of
Mac OS-J (KanjiTalk version 6 and earlier) encode them 10 rows after their horizontal
versions, and current versions (KanjiTalk version 7 and later) encode them 84 rows af-
ter their horizontal versions. This effectively means that the vertical version of Row-Cell
01-02 (ideographic comma) is encoded at either 11-02 or 85-02, depending on the vintage
of Mac OS-J.

Other implementations, such as the character set used for the Japanese versions of Mi-
crosoft Windows (versions 3.1J, 95J, 98J, and NT-J), define additional vertical variants,
including some of those listed in the Table 7-8. In addition to the identical set of 53 verti-
cal variants currently specified by Mac OS-J, the Japanese versions of Microsoft Windows
specify the use of vertical versions of the following characters: full-width comma (01-04),
full-width period (01-05), “geta” mark (02-14), and 16 katakana ligatures (not part of JIS
X 0208:1997). Furthermore, it specifies that the 4 arrows and 30 of the 32 line-drawing
elements in JIS X 0208:1997 be rearranged as shown in Table 7-10 (their corresponding
Unicode code points are provided in parentheses).

Horizontal and Vertical Layout | 491

Rearranging horizontal characters for vertical useTable 7-10.

Character code Horizontal Vertical

02-10 (U+2192) → ↓
02-11 (U+2190) ← ↑
02-12 (U+2191) ↑ →
02-13 (U+2193) ↓ ←
08-01 (U+2500) ─ │
08-02 (U+2502) │ ─
08-03 (U+250C) ┌ ┐
08-04 (U+2510) ┐ ┘
08-05 (U+2518) ┘ └
08-06 (U+2514) └ ┌
08-07 (U+251C) ├ ┬
08-08 (U+252C) ┬ ┤
08-09 (U+2524) ┤ ┴
08-10 (U+2534) ┴ ├
08-12 (U+2501) ━ ┃
08-13 (U+2503) ┃ ━
08-14 (U+250F) ┏ ┓
08-15 (U+2513) ┓ ┛
08-16 (U+251B) ┛ ┗
08-17 (U+2517) ┗ ┏
08-18 (U+2523) ┣ ┳
08-19 (U+2533) ┳ ┫
08-20 (U+252B) ┫ ┻
08-21 (U+253B) ┻ ┣
08-23 (U+2520) ┠ ┯
08-24 (U+252F) ┯ ┨
08-25 (U+2528) ┨ ┷

492 | Chapter 7: typography

Rearranging horizontal characters for vertical useTable 7-10.

Character code Horizontal Vertical

08-26 (U+2537) ┷ ┠
08-27 (U+253F) ┿ ╂
08-28 (U+251D) ┝ ┰
08-29 (U+2530) ┰ ┥
08-30 (U+2525) ┥ ┸
08-31 (U+2538) ┸ ┝
08-32 (U+2542) ╂ ┿

Note that all of the vertical forms are a result of 90˚ clockwise rotation. The line-drawing
elements at Row-Cell 08-11 (┼) and 08-22 (╋) do not require substitution for vertical
use because the same form results from 90˚ clockwise rotation. These map to Unicode
code points U+253C and U+254B, respectively.

dedicated Vertical Characters
There is another class of vertical characters, specifically those for which there is no hori-
zontal form. I refer to these as dedicated vertical characters. A small number of such char-
acters are used in Japanese. Three of them are specifically designed to be used together
and fused to one another. In other words, tracking or full-justification must not increase
their spacing. Table 7-11 lists these vertical characters and demonstrates how some of
them are used together.

Dedicated vertical characters—JapaneseTable 7-11.

U+303B U+3033 U+3034 U+3035 <U+3033, U+3035> <U+3034, U+3035>

Glyphs
〻〳〴〵 〳

〵
〴
〵

While the usual vertical forms are entered as their corresponding horizontal form, and
the invocation of a vertical substitution feature results in the appropriate glyphs, there is
no pathway for these dedicated vertical characters.

Some specialized fonts may include additional dedicated vertical glyphs. Table 7-48 pro-
vides examples from one such font, which includes a small set of two- and three-character

Horizontal and Vertical Layout | 493

hiragana ligatures that are intended only for vertical use, and for which there are no hori-
zontal forms.

Vertical Latin text
While the transformation from horizontal to vertical layout is somewhat straightforward
for most CJKV characters and involves mainly punctuation and symbols (and small kana
in the case of Japanese), handling Latin text in vertical writing mode requires special con-
siderations and has more than one option. As they say about Perl: TIMTOWTDI.*

PostScript CJKV fonts, by default, treat Latin glyphs the same as everything else when it
comes to vertical writing mode—their orientation remains the same. The preferred way in
which to vertically set Latin text, however, involves 90˚ clockwise rotation.

The following are the ways in which Latin glyphs can be set vertically, in order of relative
preference:

Rotated 90˚ clockwise.•	

Converted to full-width forms, and then set as is—most Latin glyphs used in CJKV •	
text are half- or proportional-width.

Set together horizontally in the same cell using half- or third-width forms if they con-•	
sist of only two or three characters, respectively—this is sometimes referred to as tat-
echuyoko (縦中横 tatechūyoko) in Japanese, which means “horizontal in vertical.”†

Set as is—this is rarely desirable unless you are writing a document that needs to •	
illustrate the various ways to set Latin text vertically.‡

Table 7-12 illustrates these four methods for setting Latin text vertically using the sample
Japanese text “これは JP テキストだ” (meaning “This is JP text”). Only the two uppercase
Latin characters “JP” change in the four examples.

As I wrote earlier, you will find that most users will prefer these methods in the order
presented in Table 7-12. Exactly which one is preferable may depend on the length of the
embedded Latin text. Some applications, by default, rotate these characters 90˚ clockwise.
Any other setting may require explicit direction from the user.

* The classic Perl slogan: There Is More Than One Way To Do It.
† Adobe InDesign, Adobe Illustrator (version 8.0 or greater), Founder FIT, FreeHand MX, and QuarkXPress use

this term, but Canon EDICOLOR uses 連文字 (ren moji). Adobe Illustrator version 7.0 used 組み文字 (kumi
moji).

‡ Like this book, or any book for that matter that includes information about CJKV typography. It is also the
default way in which PostScript images such glyphs.

494 | Chapter 7: typography

Vertically set Latin textTable 7-12.

90˚ clockwise Full-width Horizontal in vertical As is

こ
れ
はJP

テ
キ
ス
ト
だ

こ
れ
は
J
P
テ
キ
ス
ト
だ

こ
れ
は
JP
テ
キ
ス
ト
だ

こ
れ
は
J
P
テ
キ
ス
ト
だ

Horizontal in vertical mode—tatechuyoko
The tatechuyoko (“horizontal in vertical”) method of setting Latin text deserves fur-
ther explanation and coverage. Given the limited amount of space in which to set Latin
text within the relative width of a typical ideograph or other Japanese character, there
are limitations in terms of what can and cannot be done when taking advantage of this
functionality.

Many contemporary fonts, such as those based on the Adobe-Japan1-4 character col-
lection, or greater Supplement, provide special-purpose third- and quarter-width glyphs
that are very effective when using tatechuyoko mode.

Table 7-13 provides examples of half-, third-, and quarter-width digits being set in
tatechuyoko mode. The glyphs that are used in Table 7-13 are not artificially compressed
or synthesized, but are instead deliberately designed to be those specific widths.

Note how the half-, third-, and quarter-width glyphs fit perfectly in the same space in
which typical Japanese glyphs are set, when two, three, and four digits are used, respec-
tively. When more digits are used, the glyphs necessarily protrude on both sides, as illus-
trated when using six quarter-width glyphs.

Horizontal and Vertical Layout | 495

Additional tatechuyoko examplesTable 7-13.

Half-width third-width Quarter-width Quarter-width (six digits)

値
段
は
10
円
だ

値
段
は
100
円
だ

値
段
は
1000
円
だ

値
段
は
100000
円
だ

Full-width Latin, Greek, and Cyrillic glyph issues
When full-width Latin, Greek, or Cyrillic glyphs are set vertically, an adjustment to the
relative glyph baselines is necessary. These same glyphs, when set horizontally, rest com-
fortably on a baseline. If these glyphs were to be set vertically, there would be uneven spac-
ing between the glyphs, as illustrated in Table 7-14, along with some glyphs that overlap.

Horizontal versus vertical Latin, Greek, and Cyrillic textTable 7-14.

Metrics Latin Greek Cyrillic

Default

ｐ
ｈ
ｏ
ｔ
ｏ
ｇ
ｒ
ａ
ｐ
ｈ
ｙ

φ
ω
τ
ο
γ
ρ
α
φ
ί
α

ф
о
т
о
г
р
а
ф
и
я

496 | Chapter 7: typography

Horizontal versus vertical Latin, Greek, and Cyrillic textTable 7-14.

Metrics Latin Greek Cyrillic

Adjusted

p
h
o
t
o
g
r
a
p
hy

φ
ω
τ
ο
γ
ρ
α
φ
ί
α

ф
о
т
о
г
р
а
ф
и
я

Prior to OpenType, some fonts would provide separate glyphs for both purposes. Now,
OpenType allows the same glyphs to be used for both purposes, and ‘vmtx’ and ‘VORG’
table settings allow the desired behavior to take place. Each glyph, instead of resting on
the Latin baseline at Y coordinate 0, is centered along the Y-axis. The full-width “p” glyph
of Adobe Systems’ 小塚明朝 Pr6N L (KozMinPr6N-Light) font, for example, is adjusted
such that its vertical origin is set at 628 instead of the default value of 880. This has the
effect of raising the glyph. Likewise, the full-width “h” glyph of the same font is adjusted
such that its vertical origin is set at 885, which lowers the glyph ever so slightly. Both of
these adjustments help to ensure that these two glyphs do not collide when set vertically.

Clearly, the only way in which to further improve the result would be to apply propor-
tional metrics to the glyphs. And, some fonts provide such information.

Line Breaking and Word Wrapping
Most CJKV text requires special handling for the beginning and ends of lines, which is
commonly called line breaking, word wrapping, or sometimes hyphenation. In Japanese,
this is referred to as 禁則処理 (kinsoku shori), which literally means “prohibited (char-
acter) processing.” There are some characters, usually punctuation and enclosing charac-
ters, that should not begin a new line, and likewise, there are characters that should not
terminate a line. There are similar rules in English, but they are much more important for
CJKV text because there are no spaces between words—punctuation marks are treated
like any other character.*

Table 7-15 lists the characters that should not begin a new line. These include characters
such as punctuation marks, closing quotes, closing bracket-like characters, small kana

* Korean and any transliterated CJKV text are considered to be exceptions to this general rule—spaces are used
to delimit words.

Line Breaking and Word Wrapping | 497

(Japanese-specific), and some symbols. The characters in the first rank have priority in
processing, at least in Japanese. Some applications handle only some ranks. In general, the
more advanced or better the software, the more of these characters are supported. And,
the more characters that are supported, the stronger the treatment is considered, and
some applications, such as Adobe InDesign, allow the user to set or adjust the strength of
this feature by manipulating the set of characters that are treated in this way.

From a semantic or syntactic point of view, most of these characters act as modifiers for
or appear immediately after text. In Japanese, these characters are called 行頭禁則文字
(gyōtō kinsoku moji).

Characters prohibited from beginning linesTable 7-15.

rank Characters

1 、。，．：；？！’”）〕］｝〉》」』】
2a 々ーぁぃぅぇぉっゃゅょゎァィゥェォッャュョヮヵヶ
3 ゛゜ヽヾゝゞ―‐°′″℃℉¢％‰

Of course, almost all of the characters in this rank are Japanese-specific.a.

Table 7-16 lists the characters that should not terminate a line. These are basically open-
ing quotes, opening bracket-like characters, and some symbols, including some currency
symbols. They are ranked into two groups. From a syntactic point of view, most of these
characters appear immediately before text that they modify. In Japanese, these characters
are called 行末禁則文字 (gyōmatsu kinsoku moji).

Characters prohibited from terminating linesTable 7-16.

rank Characters

1 ‘“（〔［｛〈《「『【
2 ￥＄£€＠§〒♯

Of course, vertical variants of characters in Tables 7-15 and 7-16 are to be handled accord-
ingly. Also, whether a character is full-width or not should not affect its treatment during
line breaking—the characters illustrated in Tables 7-15 and 7-16 have been rendered as
full-width, but their non–full-width counterparts, whether they are half-width or propor-
tional, require the same treatment.

Still another category to consider are those characters that are not allowed to be broken on
either side, meaning that they cannot begin nor terminate lines, and are thus inseparable,
meaning that they cannot be spaced out by tracking or full-justification. In Japanese, these
characters are called 分離禁止文字 (bunri kinshi moji). Long dashes and dot leaders are
such characters. Table 7-17 lists the inseparable characters.

498 | Chapter 7: typography

Inseparable charactersTable 7-17.

Characters

―‥…

There are three fundamental methods used to line-break or word-wrap CJKV text. Which
one you use often depends upon the program you are using, and most high-end line-
layout–capable applications allow the user to choose which style to use in any particular
situation. Adobe FrameMaker, for example, automatically uses push-in-first or push-out-
first line breaking in order to maintain optimal spacing as the user dictated in the para-
graph designer.

The first line-breaking method is known as push-in-first (in Japanese, 追い込み禁則処
理 oikomi kinsoku shori). Push-in-first line breaking works by moving characters that are
prohibited from beginning a new line back up to the end of the previous line. It can also
shift up a character from the following line such that characters that are prohibited from
terminating a line do not. Table 7-18 provides two example texts before any line breaking
is applied.

Before line breakingTable 7-18.

Glyph strings

 □□□□□□□□□□□「□□□□□□□」□□□□□□□□□□□□□□□□
、□□□□□□□□□□□、□□□□□□□□。

 □□□□□□□□□□□□□□□□□□□□□□□□□「□□□□□□□」、「
□□□□□□□」□□□□□□□□□□□・□□□□□□□□□□□、□□□□□
□□□□□□□□□□□□。

Table 7-19 illustrates what happens after push-in-first line breaking is applied to the two
texts in Table 7-18.

After push-in-first line breakingTable 7-19.

Glyph strings

 □□□□□□□□□□□「□□□□□□□」□□□□□□□□□□□□□□□□、
□□□□□□□□□□□、□□□□□□□□。

 □□□□□□□□□□□□□□□□□□□□□□□□□「□□□□□□□」、「□
□□□□□□」□□□□□□□□□□□・□□□□□□□□□□□、□□□□□□□
□□□□□□□□□□。

Line Breaking and Word Wrapping | 499

The first text in Table 7-19 involved an ideographic comma shifting up to the end of the
previous line, and the second text involved shifting up a nonwrapping character.

A second line-breaking method is called push-out-first (in Japanese, 追い出し禁則処理
oidashi kinsoku shori). Push-out-first line breaking works by forcing characters that are
prohibited from terminating a line to shift down to the next line. It is also possible for a
character to shift down to the next line so that it precedes a character that is prohibited
from beginning a line. Table 7-20 illustrates push-out-first line breaking being applied to
the texts from Table 7-18.

After push-out-first line breakingTable 7-20.

Glyph strings

 □□□□□□□□□□□「□□□□□□□」□□□□□□□□□□□□□□□□、
□□□□□□□□□□□、□□□□□□□□。

 □□□□□□□□□□□□□□□□□□□□□□□□□「□□□□□□□」、「□
□□□□□□」□□□□□□□□□□□・□□□□□□□□□□□、□□□□□□□
□□□□□□□□□□。

Note how push-out-first line breaking can result in lines that appear to prematurely end.
While the characters used in the example text provided in Tables 7-18 through 7-20 are
set using equal set widths (full-width), other aspects of typography, specifically spacing
and alternate metrics, can help to adjust the result.

A third line-breaking technique is called push-out-only (in Japanese, it is called ぶら下が
り禁則処理 burasagari kinsoku shori). This method employs a strategy whereby a charac-
ter—almost always punctuation, such as a period or comma (Western or ideographic)—is
left hanging or otherwise dangling on the right margin, or on the bottom margin if the
writing mode is vertical.* These characters appear to hang or dangle off the end of the line,
and are sometimes referred to as dangling or hanging punctuation. Some implementa-
tions of this line-breaking method can push out more than one character. Push-out-only
is often provided as an option for push-in-first line breaking. Table 7-21 provides text in
a state before push-out-only line breaking is applied. Note how the right side of the text
block is flush, so even if only part of the punctuation character needs to hang out to fit, the
characters are spaced out so that the punctuation will hang out by its full half-em width.

* Unjustified text is considered to have a “ragged” right side.

500 | Chapter 7: typography

Before push-out-only line breakingTable 7-21.

Glyph string

 □□□□□□□□□□「□□□□□□□」、「□□□□□□□」□□□□□□□
、□□□・□□□□□□□□□□□、□□□□□□□□□□□□□□□□□。□□
□□□□□□□□「□□□□□□□」□□□□□□□□□□□□□□□□、□□□
□□□□□□□、□□□□□□□□。□□□□□□□□□□□□□□□□□□□□
□□□□□□□□□□、□□□□□□□□□□□、□□□□□□□□。

Table 7-22 illustrates the result of applying push-out-only line breaking to the text in Table
7-21.

After push-out-only line breakingTable 7-22.

Glyph string

 □□□□□□□□□□「□□□□□□□」、「□□□□□□□」□□□□□□□、
□□□・□□□□□□□□□□□、□□□□□□□□□□□□□□□□□。□□□
□□□□□□□「□□□□□□□」□□□□□□□□□□□□□□□□、□□□□
□□□□□□、□□□□□□□□。□□□□□□□□□□□□□□□□□□□□□
□□□□□□□□□、□□□□□□□□□□□、□□□□□□□□。

Very few characters are allowed to dangle, and the JIS X 4051:2004 standard specifies only
periods and commas, as shown in Table 7-23.

Push-out-only charactersTable 7-23.

Characters

、。，．

Proper application of line breaking is absolutely crucial if a program is to succeed in the
market. Some developers have implemented all the line-breaking methods just described,
and permit the user to select which one or ones to use.

After CJKV text has been properly line-broken using one or more of the methods de-
scribed in this section, there still remains the issue of how to right-justify—or bottom-
justify if in vertical writing mode—the text in case a ragged edge is not desired. This is
discussed later in this chapter in the section entitled “Line Length Issues.”

Character spanning | 501

Character spanning
In the West, we usually think of tabs in terms of the whitespace that serves as an alternate
to the use of spaces.* Common tabs include left, right, centered, and decimal. A spanning
tab is unique in that it adjusts the spacing between every character that appears before it.

Most CJKV words, with the exception of those for Korean and Vietnamese, are strung to-
gether with no intervening spaces, so adjusting the inter-character spacing becomes man-
datory. Under most implementations and conditions, CJKV characters—kana, hangul,
and ideographs—have equal set widths (that is, they are considered full-width), which
effectively means that every character occupies the same amount of typographic space.†
Latin characters are typically spaced proportionally, meaning that the widths of charac-
ters differ depending on their shape and typeface design. The Latin typeface used for the
text of this book, Adobe Minion Pro Regular, is proportionally spaced, but you will oc-
casionally find a mono-spaced font, Courier, used for code samples or other purposes.

In addition to properly span lines of text, there are special ways to span CJKV text on a
much smaller scale than the text of entire paragraphs. In Japanese, this is known as 均等
割 (kintō wari) or 均等割付 (kintō waritsuke). This technique is most often used when
listing names. Table 7-24 provides an example of a list of Japanese names justified in vari-
ous ways.

Examples of character spanningTable 7-24.

default narrow spanning Wide spanning

久保田久美子 久保田久美子 久 保 田 久 美 子

藤本みどり 藤 本 み ど り 藤 本 み ど り

山本太郎 山 本 太 郎 山 本 太 郎

小林釰 小 林 釰 小 林 釰

泉均 泉 均 泉 均

Note how the justification takes place within units such as small text blocks, and that all
the characters are adjusted such that they line up equally on both sides. You can think of
this as text-level justification as opposed to the usual page-level justification. Nisus Writer,
a CJKV-capable word processor for Mac OS X, has provided this type of text-level justifi-
cation for quite some time through the use of a special type of tab stop. Adobe InDesign

* The golden rule is that you should use a tab whenever you feel the urge to type more than one space.
† It is true that kana and a handful of ideographs benefit from proportional metrics, and typesetting systems are

moving in that direction. Proprietary typesetting systems already have this capability.

502 | Chapter 7: typography

refers to this functionality as jidori (字取り jidori), and it is used in conjunction with the
character grid.

Alternate Metrics
Most users of CJKV-capable word processors and other text-processing applications are
all too familiar with the concept of full-width characters. To a great extent, it represents
a limitation. You may have experienced a feeling of being trapped in the mind set that
CJKV-specific characters—zhuyin, kana, hangul, and ideographs—must always use equal
set widths. While this is certainly typical, it is not always true. However, bear in mind that
some CJKV locales, such as China and Taiwan, still follow the convention of setting all
characters on a very rigid grid, except perhaps punctuation and bracket-like characters.

A new twist to desktop CJKV type technology is the ability to supplement CJKV fonts
with alternate metrics—alternate in the sense that the default metrics are still preserved
as full-width, but that the user can now choose alternate widths. Alternate metrics can
encompass character classes such as punctuation, symbols, kana, and even ideographs.
Some fonts have implemented alternate metrics through additional font instances that
appear in applications’ font menus—this means that two fonts now appear in applica-
tions’ font menus where before there was only one. One is typically the fixed-width font,
and the other is the one with half-width and proportional metrics. An example of this
can be found when exploring Microsoft’s Windows (95J, 98J, NT-J, XP-J, or Vista) OS.
It includes two basic fonts, MS 明朝 (MS minchō) and MS ゴシック (MS goshikku). The
versions of these fonts that include alternate metrics—proportional kana, half-width sym-
bols and punctuation, and condensed katakana—are called MS P明朝 (MS P minchō)
and MS Pゴシック (MS P goshikku), respectively. The “P” is clearly an abbreviation for
“proportional.”

The examples that I provide in the following sections will clearly illustrate the use of al-
ternate metrics through contrast with the default (full-width) metrics. And, all of these
examples use the alternate metrics that are built into the commercially available versions
of the fonts—sfnt-wrapped CIDFonts for Mac OS. Some Mac OS QuickDraw GX fonts
and some Microsoft Windows TrueType Open fonts also provided alternate metrics.

Applications, such as Adobe FrameMaker and early versions of Adobe Illustrator, refer
to alternate or proportional metrics as tsume (詰め tsume), which is a Japanese word
meaning “squeezing” or “stuffing.” In almost all cases, alternate metrics result in either
proportional or half-width metrics. Adobe Illustrator now makes use of mojikumi tables,
such as Adobe InDesign.

Half-Width symbols and Punctuation
It turns out that most punctuation and enclosing (bracket-like) characters do not com-
pletely fill a full-width cell—they almost always occupy less than half of the cell, leaving a
lot of unused whitespace on one side, or on all sides.

Alternate Metrics | 503

Table 7-25 lists six classes of traditionally full-width characters that can be set with half-
width alternate metrics.

Half-width symbols and punctuation classesTable 7-25.

Half-width classesa example characters

50% left ⌍（⌌ ⌍〔⌌ ⌍［⌌ ⌍｛⌌ ⌍〈⌌ ⌍《⌌ ⌍「⌌ ⌍『⌌ ⌍【⌌ ⌍‘⌌ ⌍“⌌

50% right ⌍、⌌ ⌍。⌌ ⌍，⌌ ⌍．⌌ ⌍）⌌ ⌍〕⌌ ⌍］⌌ ⌍｝⌌ ⌍〉⌌ ⌍》⌌ ⌍」⌌ ⌍』⌌ ⌍】⌌ ⌍’⌌ ⌍”⌌

50% topb ⌍︵⌌ ⌍︹⌌ ⌍﹇⌌ ⌍︷⌌ ⌍︿⌌ ⌍︽⌌ ⌍﹁⌌ ⌍﹃⌌ ⌍︻⌌ ⌍‘⌌ ⌍“⌌

50% bottomb ⌍︑⌌ ⌍︒⌌ ⌍︐⌌ ⌍．⌌ ⌍︶⌌ ⌍︺⌌ ⌍﹈⌌ ⌍︸⌌ ⌍﹀⌌ ⌍︾⌌ ⌍﹂⌌ ⌍﹄⌌ ⌍︼⌌ ⌍’⌌ ⌍”⌌

25% left and right ⌍：⌌ ⌍；⌌ ⌍！⌌

25% all sides ⌍・⌌

The percentages listed in this column refer to the amount of empty space that is trimmed from the full-width design space in order to end a.
up with half-width metrics.

These are vertical variants of characters two rows above—note that some do not have vertical variants.b.

Note how some characters are specific to vertical writing, but that some characters, such
as ⌍・⌌ (centered dot), are the same regardless of writing direction.

Table 7-26 provides an example of Japanese text that uses half-width symbols and punc-
tuation in horizontal writing mode. Whether all of these modes are possible depends on
the line- or page-layout application you are using.

Full-width versus half-width symbols and punctuation—horizontalTable 7-26.

Metrics Glyph string

Full-width あっ。剣、劍、及び「ふぐ・河豚本」だ。
Half-width あっ｡剣､劍､及び｢ふぐ･河豚本｣だ｡
Combinationa あっ｡剣､劍､及び「ふぐ･河豚本」だ｡

The ideographic periods and commas, along with the center dot, are half-width, but the brackets are full-width.a.

As a side note, if the Japanese line-layout rules set forth in JIS X 4051:2004 were to be ap-
plied together with half-width metrics for the symbols and punctuation, the half-width
example Japanese text in Table 7-26 would look identical to the full-width example.

Table 7-27 provides the same example of Japanese text as found in Table 7-26, but this
time in vertical writing mode.

504 | Chapter 7: typography

Full-width versus half-width symbols and punctuation—verticalTable 7-27.

Full-width Half-width Combination

あ
っ
。
剣
、
劍
、
及
び
「
ふ
ぐ
・
河
豚
本
」
だ
。

あ
っ
。剣
、劍
、及
び「
ふ
ぐ
・
河
豚
本
」だ
。

あ
っ
。剣
、劍
、及
び
「
ふ
ぐ
・
河
豚
本
」
だ
。

According to the JIS X 4051:2004 standard, the glyphs for all of these punctuation char-
acters, by default, should use half-width metrics. But, when they come into contact with
other character classes, such as kana or kanji, they should be given additional space—
usually this is a half-width space, which in a way makes them full-width again. These
characters themselves are separated into two classes: those that are considered “opening”
(see the first line of characters in Table 7-25), and those that are considered “closing” (see
the second line of characters in Table 7-25).

If a closing character is immediately followed by an opening character—such as in the text
字典」「新漢—then half an em of space is added after the closing character, effectively
making the closing character full-width and the opening character half-width. However,
if two closing or opening characters come together—such as in the text とは秘密）、及
び—there is no additional space inserted. Table 7-28 illustrates these same two texts set
horizontally with and without the application of these rules. Adobe Systems’ 小塚明朝
Pr6N R (KozMinPr6N-Regular) typeface is used for the example.

Alternate Metrics | 505

The application of spacing rulesTable 7-28.

rule application Glyph string

No rules 字典」「新漢
With rules 字典」「新漢
No rules とは秘密）、及び
With rules とは秘密）、及び

In case it is not obvious, the glyph spacing that results from the application of spacing
rules looks much better than the glyph spacing without spacing rules. These spacing rules
were formulated for good reason.

The JIS X 4051:2004 standard includes much more detailed information about such spac-
ing rules.

Proportional symbols and Punctuation
Some of the same punctuation and symbols listed in the previous section (see Table 7-25)
can also be set with proportional widths—as opposed to fixed half-width metrics. In fact,
there are some characters that must use proportional widths because their design is too
large for half-width metrics. A prime example is the full-width Latin characters that are
typical of all CJKV fonts.

Table 7-29 illustrates the word “Typography” set horizontally using the full-width Latin
glyphs of Morisawa’s A-OTF リュウミン Pr6N L-KL (RyuminPr6N-Light) typeface de-
sign. When the same glyphs are set using proportional metrics, using the OpenType ‘palt’
(Proportional Alternate Widths) GPOS feature, the inter-glyph spacing is reduced. But,
the glyphs themselves are identical. It is also possible to substitute full-width glyphs with
those that were specifically designed to be proportional, through the use of the OpenType
‘pwid’ (Proportional Widths) GSUB feature. Depending on the typeface design, the glyphs
and relative spacing that results from applying GPOS versus GSUB features may be the
same or different. In the case of Morisawa’s A-OTF リュウミン Pr6N L-KL (RyuminPr6N-
Light) typeface design, as used in Table 7-29, the results look identical, though the under-
lying GIDs are different.

506 | Chapter 7: typography

Full-width and proportional Latin characters—horizontalTable 7-29.

Metrics Glyph string

Full-width Ｔｙｐｏｇｒａｐｈｙ
Proportional—GPOS Ｔｙｐｏｇｒａｐｈｙ
Proportional—GSUB Ｔｙｐｏｇｒａｐｈｙ

Table 7-30 illustrates the same word as Table 7-29 using the same typeface design, but this
time set vertically.

Full-width and proportional Latin characters—verticalTable 7-30.

Full-width Proportional—GPos Proportional—GsUB

Ｔ
ｙ
ｐ
ｏ
ｇ
ｒ
ａ
ｐ
ｈ
ｙ

Ｔｙ
ｐ
ｏｇ
ｒａｐ
ｈｙ

Ｔ
ｙｐｏｇｒａｐｈｙ

There are, of course, other characters that require proportional rather than half-width
metrics. Depending on the typeface design, they may include full-width versions of the
question mark (？) and kana iteration marks (ヽ , ヾ , ゝ , and ゞ).

Alternate Metrics | 507

Proportional Kana
While most Japanese users are accustomed to using full-width kana in their documents,
those who have been using proprietary typesetting equipment know that most kana
designs are inherently conducive to being set with proportional widths.

Table 7-31 illustrates a short Japanese sentence, using both full-width and alternate
(proportional, in this case) metrics for the kana. TypeBank’s タイプバンク明朝 Std M
(TypeBankMStd-M) is used in this example.

Full-width and proportional kanaTable 7-31.

Metrics Glyph string

Full-width きょう、本を買った。
Proportional きょう、本を買った。

Note how the small kana—the characters ょ and っ in this example—have undergone the
most drastic reduction in set width, which results in improved readability. While this is
typical for standard kana designs, it is by no means a steadfast rule. In other words, the
amount of reduction in set widths varies from design to design.

Table 7-32 illustrates the same Japanese sentence, but this time using an alternate kana
design, TypeBank’s TB良寛M Std M (TBRyokanMStd-M) combined with TypeBank’s タ
イプバンク明朝 Std M (TypeBankMStd-M) for the kanji.

Full-width and proportional kana—alternate kanaTable 7-32.

Metrics Glyph string

Full-width きょう、本を買った。
Proportional きょう、本を買った。

Note how the alternate kana design illustrated in Table 7-32 results in a more drastic dif-
ference in metrics between full-width and proportional. Even the standard kana (that is,
not only the small kana) have undergone a drastic reduction in set width.

Table 7-33 includes the same examples as provided in Tables 7-31 and 7-32, but set ver-
tically. This clearly demonstrates that proportional metrics also benefit kana when set
vertically.

508 | Chapter 7: typography

Full-width and proportional kana—verticalTable 7-33.

Full-width Proportional Full-width Proportional

き
ょ
う
、
本
を
買
っ
た
。

き
ょ
う
、
本
を
買
っ
た
。

き
ょ
う
、
本
を
買
っ
た
。

き
ょ
う
、
本
を
買
っ
た
。

Note how the alternate kana design provides less of a contrast than with the horizontally
set example.

Proportional Ideographs
It is a generally accepted notion that ideographs fit within a square design space. While
this notion is true most of the time, there are, of course, exceptions.

Table 7-34 illustrates a short string of ideographs, 中日韓越 (“CJKV”), set horizontally.
Note how the second character, 日 (the “J” of “CJKV”), is no longer full-width when pro-
portional metrics are applied. Morisawa’s A-OTF リュウミン Pr6N L-KL (RyuminPr6N-
Light) is used for the example.

Alternate Metrics | 509

Full-width and proportional ideographs—horizontalTable 7-34.

Metrics Glyph string

Full-width 中日韓越
Proportional 中日韓越

Similarly, there are other ideographs whose shapes benefit from proportional metrics
when set vertically. Table 7-35 illustrates a short ideograph string, 第一勧業 (dai-ichi
kangyō, the name of a famous Japanese bank), set vertically. Note how the second ideo-
graph, 一 (ichi, meaning “one”), has undergone a drastic reduction in overall set width.
Again, Morisawa’s A-OTF リュウミン Pr6N L-KL (RyuminPr6N-Light) typeface design is
used for the example.

Full-width and proportional ideographs—verticalTable 7-35.

Full-width Proportional

第
一
勧
業

第
一勧
業

The proportional ideographs shown in Tables 7-34 and 7-35 are pseudo-proportional in
that their default metrics are full-width, but that their shapes allow proportional metrics
to be applied, for horizontal or vertical use, but generally not for both. Interestingly, there

510 | Chapter 7: typography

now exists a Japanese font that includes genuine proportional ideographs, specifically that
the default metrics are proportional for both horizontal and vertical use. Additionally,
their shapes do not suggest that they are confined to the prototypical “square” design
space. This font in question is Adobe Systems’ かづらき Std L (KazurakiStd-Light), and
Table 7-36 provides some example text set with this font, in both writing directions.

Horizontal and vertical layout—proportional JapaneseTable 7-36.

Horizontal Vertical

新しい年を迎える
ことができました。
何事にも元気に
チャレンジしていき
ますので、 これか
らもよろしくお願い
申し上げます。

新
し
い
年
を
迎
え
る
こと
が
で

き
ま
し
た
。
何
事
に
も
元
気
に

チ
ャレ
ン
ジ
して
い
き
ま
す
の
で
、

これ
か
ら
も
よ
ろ
し
く
お
願
い

申
し
上
げ
ま
す
。

Believe it or not, there are times when applying proportional metrics to ideographs does
more harm than good. That is when kerning comes to the rescue….*

Kerning
While alternate metrics provide a way to escape from the trap or mind set of using only
full-width characters, it sometimes introduces new problems. Luckily, such problems are
solved through the use of kerning, which is the process of adjusting inter-glyph spacing

* This is obviously different from Kern coming to the rescue. My brother’s name is Kern. It is quite unfortunate
that he knows absolutely nothing about kerning.

Alternate Metrics | 511

according to context. The context in the case of kerning happens to be the proximity of
two glyphs. These are called kerning pairs. In Western typography using Latin characters,
the most common kerning pairs are in the uppercase set. “A” and “V” (such as in the pair-
kerned instance “JAVA,” and “JAVA” is an example of an instance of the same string that
is not pair-kerned) represent one kerning pair—when set together they appear to be too
far apart, and are thus kerned.

Kerning, like alternate metrics, is a typeface-dependent attribute. This means that the
actual kerning values change depending on the typeface design.

Table 7-37 illustrates a short kana phrase, どうして (dōshite, meaning “why”), set using
full-width and proportional metrics with Adobe Systems’ 小塚明朝 Pr6N R (KozMin-
Pr6N-Regular) typeface design, and also with kerning enabled. When this high-
frequency phrase is set using proportional metrics, the inter-glyph spacing between し
(shi) and て (te) appears to be too great. This problem is addressed through the proper
application of kerning.

Kerning kana charactersTable 7-37.

Metrics Glyph string

Full-width どうして
Proportional どうして
Kerned どうして

There are also times when negative kerning, meaning an increase in inter-glyph spacing,
is required for CJKV text. For example, consider the two-ideograph string 一二, which
represents the glyphs for the ideographs meaning “one” and “two,” respectively. When set
vertically, both of these ideographs are clear candidates for proportional metrics. How-
ever, if these two ideographs are in proximity, and in the sequence just given, they require
negative kerning. Otherwise, they may resemble 三 (the ideograph meaning “three”) or
the result may simply look bad, depending on the typeface design or the glyphs’ default
metrics. Table 7-38 illustrates this phenomenon using kanji from Morisawa’s A-OTF
リュウミン Pr6N L-KL (RyuminPr6N-Light).

512 | Chapter 7: typography

Kerning ideographsTable 7-38.

Full-width Proportional Kerned

三
年
一
二
月

三
年
一二
月

三
年
一
二
月

As you can see, the introduction of alternate metrics, along with proper kerning, can
make a world of difference in the overall appearance and quality of CJKV documents.

Morisawa & Company* developed an Adobe Illustrator plug-in called Fuzzy カーニング
(fajī kāningu, meaning “Fuzzy Kerning”) that provided the ability to kern Japanese text.
They have also developed a QuarkXPress XTension (plug-in) called Dr. カーニング (“Dr.
Kerning”). Because of the capabilities of OpenType fonts, which more easily allow kern-
ing information to be included through the use of the ‘kern’ (Kerning) and ‘vkrn’ (Vertical
Kerning) GPOS features, these plug-ins are no longer being developed. For users who are
satisfied with a pseudo-kerned look, Adobe InDesign includes the ability to adjust glyph
side bearings by a specified percentage.

Line-Length Issues
Once you begin applying alternate metrics or adjusting other spacing aspects of CJKV
text, you are then left with the problem of how to calculate line length to perform com-
mon typographic tasks, such as right-justification. When dealing with text that is set on a
rigid grid, such as Chinese, calculating line length becomes a bit more trivial.

The inclusion of Latin text—even one character—is the typical culprit for causing line-
length calculation problems in CJKV text. Another culprit is the application of line-
breaking rules—adjusting text so that certain characters do not begin or terminate lines.
The following sections provide methods for adjusting spacing so that right-justification
can be performed.

I need to emphasize the importance of this section. There is a balance, which can be de-
scribed as the proper handling of two opposing forces. One of these forces wants all glyphs
to be set onto a rigid grid. The other force introduces issues, usually in the form of glyphs

* http://www.morisawa.co.jp/

Line-Length Issues | 513

that are not full-width, and thus nonconformant to grid-like behavior. Applications must
restore the balance by performing minute calculations and adjusting inter-glyph spacing
as appropriate, taking advantage of punctuation marks and the spacing between character
classes. It is an extremely complex subject, far beyond the scope of this book. This book
merely serves as a vehicle to make developers aware of this important issue.

Manipulating symbol and Punctuation Metrics
As described earlier in this chapter, many symbols and most punctuation marks have
forms that lend themselves to being set with half-width or proportional metrics. One of
the first methods for adjusting spacing is to apply alternate metrics to one or more sym-
bols or punctuation marks. The preference is usually to apply such metrics to punctuation
marks, then symbols.

Table 7-39 illustrates an example three-line text that requires the use of half-width sym-
bols or punctuation marks due to the application of line breaking.

Adjusting symbol and punctuation metricsTable 7-39.

Glyph string

Before

 □□□□□□□□□□□、□□□□□□□、□□□□□□□□□□□□□
□□□「□□□□□□□□□□」□□□□□□□□□□。□□□□□□□
「□□□□□」□□□□□□□□□、□□□□□□□□□□□□□□□□。

After

 □□□□□□□□□□□､□□□□□□□､□□□□□□□□□□□□□□
□□「□□□□□□□□□□」□□□□□□□□□□。□□□□□□□「□
□□□□」□□□□□□□□□、□□□□□□□□□□□□□□□□。

The two ideographic commas in the first line are converted to half-width forms, which
has the side-effect of reversing the effect of line breaking by allowing another character to
terminate the second line instead of the opening bracket.

Manipulating Inter-Glyph spacing
Texts that include only full-width characters with a few punctuation, and symbols thrown
in can be set fully justified by manipulating the spacing of punctuation and symbols—as
illustrated in the previous section. However, when any proportional glyphs come into play,
inter-glyph spacing often needs to be adjusted in order to achieve right-justification.

Table 7-40 illustrates an example of inter-glyph spacing being used to help right-justify
text that includes glyphs with proportional widths.

514 | Chapter 7: typography

Adjusting inter-glyph spacingTable 7-40.

Glyph string

Before

 Japan、California、□□□ South Dakota □□□□□□□□□□□□□□□
□□□「□□□□□□□□」□□□□□□□□□□。□□□□□「□□□□
□□□□」□□□□□□□□□、□□□□□□□□□□□□□□□□□□。

After

 Japan、California、□□□ South Dakota □□□□□□□□□□□□□□□
□□□「□□□□□□□□」□□□□□□□□□□。□□□□□「□□□□
□□□□」□□□□□□□□□、□□□□□□□□□□□□□□□□□□。

Note how the inter-glyph spacing of the characters in the first line of the text is adjusted
so that it can be properly right-justified.

JIs X 4051:2004 Character Classes
The JIS X 4051:2004 standard establishes character classes for the purpose of properly
specifying inter-glyph spacing. Inter-glyph spacing is all about context, specifically when
glyphs from different character classes come into contact or are in proximity. These char-
acter classes are often referred to as mojikumi (文字組み mojikumi in Japanese) classes.
Mojikumi is the Japanese word that means “text composition,” and obviously refers to
typography.

Interestingly, the three versions of the JIS X 4051 standard specify slightly different sets
of character classes. Table 7-41 lists the character classes that are specified by the JIS X
4051:2004 standard, and additionally indicates which ones were present in the 1993 and
1995 versions of the standard through the use of the integer identifier that are used in the
standard itself.

JIS X 4051 character classesTable 7-41.

2004 character class 1993 equivalent 1995 equivalent

1—Opening parentheses and quotation marks same same

2—Closing parentheses and quotation marks same same

3—Japanese characters prohibited from starting lines 3a same

4—Hyphens and hyphen-like characters n/a n/a

5—Question and exclamation marks 4 4

6—Bullets, colons, and semicolons 5 5

7—Periods 6 6

8—Inseparable characters 7 7

9—Prefixed abbreviated symbols 8 8

10—Suffixed abbreviated symbols 9 9

Line-Length Issues | 515

JIS X 4051 character classesTable 7-41.

2004 character class 1993 equivalent 1995 equivalent

11—Ideographic space 10 10

12—Hiragana n/a 11

13—Japanese characters other than those in classes 1–12 11b 12c

14—Characters used in note references n/a n/a

15—Body characters of an attached sequence n/a 13

16—Body characters of an attached ruby other than a compound ruby n/a 14d

17—Body characters of an attached compound ruby n/a n/a

18—Characters used in numeric sequences 12 15

19—Unit symbols 13 16

20—Latin space 14 17

21—Latin characters other than a space 15 18

22—Opening parentheses for inline notes n/a 19

23—Closing parentheses for inline notes n/a 20

Full-width characters prohibited from starting lines.a.

Japanese characters other than those above.b.

Japanese characters other than those in classes 1–11.c.

Body characters of attached ruby.d.

Table 7-41 indicates that the names of some of the character classes have changed, along
with the integers associated with them. The integer identifiers are important, because
some applications refer to these JIS X 4051 character classes through the use of these in-
teger identifiers. This effectively means that the character class integer identifiers must be
tightly bound to a specific version or year of the JIS X 4051 standard.

In terms of the changes that took place in this standard, specifically referring to the assign-
ment of integer values to the character classes, ideographs are assigned to JIS X 4051:2004
Character Class 13. The same character class in the 1993 and 1995 versions of the stan-
dard are assigned the integer values 11 and 12, respectively.

In any case, once these character classes have been established, which constitutes charac-
ter properties, there are two additional properties or behaviors that need to be defined,
specifically the following:

Default glyph metrics
As an example, commas, periods, bullets, colons, semicolons, and quotation marks
are treated as though they have half-width metrics. If the glyphs that correspond
to these characters do not use half-width metrics, the application must compen-
sate appropriately. In the vast majority of Japanese fonts, these glyphs use full-width
metrics.

516 | Chapter 7: typography

Inter-glyph spacing according to character class
When the glyphs that correspond to characters of different character classes come
together in a run of text, there is spacing behavior. In other words, extra space, mea-
sured using a fraction of an em, is introduced depending on which two character
classes are in proximity.* Typical values are one-fourth and one-half of an em.

There is much more to the JIS X 4051:2004 standard than what is described in this section,
and in this chapter for that matter. I strongly encourage you to acquire and explore the JIS
X 4051:2004 standard, along with applications that implement its functionality.

Multilingual typography
Mixing together the glyphs that correspond to Latin and CJKV characters in a single
document, which can be referred to as multilingual text, requires that one take into con-
sideration many typographic issues, such as the Latin baseline, the spacing between Latin
and CJKV glyphs, and selection of appropriate typeface designs. Let us explore each of
these issues in the following sections.

Latin Baseline Adjustment
The glyphs for CJKV-specific characters, such as zhuyin, kana, hangul, and ideographs,
do not rest on a baseline as is the case for the glyphs for Latin characters. Instead, these
glyphs are optically or visually centered within the character cell.† Correct or consistent
use of a baseline is the first obstacle you are likely to encounter when mixing Latin and
CJKV text.

All of Adobe Systems’ CJKV fonts include CJKV-specific characters that are set in a
1000-unit design space that extends from the coordinates 0,−120 to 1000,880. That is,
a 1000×1000 cell that is lowered 120 units in relation to the baseline at Y coordinate 0.
Figure 7-1 illustrates this design space using glyphs from Adobe Systems’ Adobe 宋体 Std
L (AdobeSongStd-Light) typeface.

Note how the glyph for the full-width Latin character “A” is resting comfortably on the
baseline located at Y coordinate 0 (commonly referred to as the Latin baseline), but that
the hanzi 剑 (jiàn) is optically centered within the entire 1000×1000 cell without regard
to the baseline at Y coordinate 0.

* In Japanese, this extra space is referred to as aki (空き aki), which simply means “space.”
† The glyphs for some CJKV-specific characters, such as the small kana used in Japanese, are exceptions to this

general rule.

Multilingual typography | 517

��������

������

���

��������

������

���

1000×1000 character design spaceFigure 7-1.

Other type foundries, however, often use a different design space for CJKV-specific
glyphs. 0,−200 to 1000,800 has been widely used by many CJKV type foundries, such as
Changzhou SinoType Technology, Seoul Systems, SoftMagic, and Yoon Design Institute. I
have also encountered font data that used the following design spaces:

0,−110 to 1000,890—Monotype Imaging•	

0,−130 to 1000,870—EulHae•	

0,−160 to 1000,840—Fontworks•	

0,−166 to 1000,834—Hanyang Information & Communications•	

High-end, page-layout applications, such as Adobe InDesign, automatically calculate the
ideographic em-box of all fonts so that glyphs will be placed correctly relative to one an-
other on the line, and on a character grid. Such applications also allow the user to adjust
the baseline and size ratios in order to better adapt Latin fonts for use with CJKV charac-
ters, which is done in the context of defining composite fonts.

So, when does a different baseline adversely affect typography? When mixing fonts whose
glyphs are set in different design spaces. This is when it is critical that an OpenType font
includes a well-specified ‘BASE’ table that explicitly specifies the relative position of design
space. Without a well-specified ‘BASE’ table, applications are forced to use heuristics.

Proper spacing of Latin and CJKV Characters
Exactly how you space, or adjust the spacing between, Latin and CJKV glyphs that are
in proximity—that is, adjacent—very much depends on the nature of the document that
you are creating. Different types of documents have different relative quantities of these

518 | Chapter 7: typography

glyphs, which is an important aspect in the decision-making process with regard to spac-
ing and similar typographic adjustments.

If the document is primarily composed of CJKV glyphs with some Latin glyphs sprinkled
throughout, then the convention or principle is to use extra space to separate these two
classes of glyphs. Conversely, if the document is primarily composed of Latin glyphs with
CJKV glyphs sprinkled around, such as this book, then conventional Latin spaces suf-
fice, given the extent to which spaces are important in Western typography. Table 7-42
provides example text that is primarily Japanese, with Latin glyphs included, using Adobe
Systems’ 小塚明朝 Pr6N R (KozMinPr6N-Regular) typeface design.

Spacing between Latin and CJKV glyphsTable 7-42.

spacing Glyph string

Solid 誕生日は1965.08.12です。
Extra space 誕生日は 1965.08.12 です。

Note the thin spaces that are used between the Latin and CJKV glyphs—this serves to
improve overall readability, making the transition between glyph classes far less abrupt.
The use of standard spaces results in too much space between these two glyph classes.
Most CJKV-capable page-layout applications either provide the ability to use thin spac-
es—which is not desirable, because it becomes a manual operation—or else the ability to
automatically insert extra space when appropriate, based on line-layout rules and prin-
ciples, such as those set forth in JIS X 4051:2004.

According to the JIS X 4051:2004 standard, there should be a quarter-width space be-
tween Latin and CJKV glyphs, but sophisticated line-layout applications allow the user
to adjust this value as necessary. In fact, many Japanese magazine publisher “house rules”
specify a much tighter spacing amount, and thus regard the JIS standard as being too
loose. The bottom line is that some amount of space should be used to separate Latin and
CJKV glyphs so that they are not set solid. While the JIS X 4051:2004 standard provides
guidance in this regard, you are free to use whatever amount of space you see fit.

Interestingly, because Korean text is primarily composed of hangul and uses conventional
spaces as a word separator, Korean typography has more in common with Western typog-
raphy than with Chinese or Japanese typography. Korean text, for example, typically uses
Western punctuation. However, like Chinese and Japanese text, Korean words consisting
of more than one hangul can be broken across lines.

Multilingual typography | 519

Mixing Latin and CJKV typeface designs
Every CJKV font, perhaps with the exception of Vietnamese, typically includes a mini-
mally functional set of glyphs for Latin characters, usually encoded in the one-byte range
for legacy font formats. On Mac OS, these Latin glyphs were almost always proportional-
width. Although these Latin glyphs look well with the rest of the glyphs of the font, there
are times when a different Latin font should to be used. This book, for example, uses a
variety of CJKV fonts for its non-Latin content, but the Latin portion is consistently the
same: Adobe Minion Pro for body text, and Adobe Myriad Pro for headlines and inside
tables. Although the first edition of this book, which used the ITC Garamond family, re-
quired me to develop edited—meaning modified or hacked—versions of ITC Garamond
to accommodate certain typographic aspects of the book (such as the macroned vowels
used for transliterated Japanese text, for Chinese Pinyin, and for Vietnamese), the fonts
used for this edition support a much larger glyph set, and editing was not necessary.

Okay, so when do the built-in Latin glyphs suffice, and when is a separate Latin font re-
quired? It depends on the nature of the text. Documents that consist primarily of CJKV
glyphs with a few Latin glyphs sprinkled throughout typically do not require the so-called
“typographically correct” glyphs that are typically found in Latin fonts. These include
smart (or curly) quotes, the various dashes, and ligatures. CJKV fonts either have these
glyphs available—usually as full-width forms—or else have no need for them. This is why
the built-in Latin glyphs of CJKV fonts usually suffice for these types of documents. Text
that is composed primarily of Latin glyphs requires Latin fonts in order to provide typo-
graphically pleasing results.

Another consideration is whether cross-platform compatibility is an issue. Many CJKV-
capable applications these days are available for multiple OSes. Adobe FrameMaker, at
one point, was available for Mac OS, Unix, and Windows.* However, the built-in Latin
glyphs of most CJKV fonts sometimes have different metrics depending on the OS on
which they are installed. To a great extent, OpenType has solved this problem, because the
same font file is truly cross-platform, and thus provides the same metrics regardless of the
platform. However, in the past, PostScript Japanese fonts installed onto Mac OS typically
used proportional-width Latin glyphs, but the same fonts instantiated as different font
files and installed onto Windows typically used half-width Latin glyphs. Simply selecting
a separate Latin font for Latin glyphs, besides providing access to typographically correct
characters, such as the various dashes, smart quotes, and Latin ligatures, was a way to bet-
ter ensure some degree of cross-platform compatibility. The first edition of this book, for
example, was set in ITC Garamond Light, an independent Latin font. The CJKV glyphs
come from a variety of CJKV fonts, as listed in that book’s colophon.

* Unfortunately, there is no Mac OS X version of Adobe FrameMaker. There has been a petition in the works
since 2004 to convince Adobe Systems’ management of the error of their ways. See http://www.fm4osx.org/.

520 | Chapter 7: typography

Vietnamese typeface issues
A fully functional Vietnamese font, one that includes glyphs for both Latin characters and
ideographs, is an example that brings together the complexities from both worlds of typog-
raphy. While readers of this book should now be well aware of the issues that surround the
use of ideographs in typography, Latin characters used in Vietnamese, which are called
Quốc ngữ, require extensive use of diacritic marks for base characters and tones. Chinese,
Japanese, and Korean text, when transliterated, requires diacritic marks to indicate vowel
length, tone, or other phonetic attributes. However, these transliteration systems are not
considered the primary orthography for these locales, so their fonts do not require these
additional glyphs. Vietnamese or Vietnamese-enabled fonts, on the contrary, require that
these additional glyphs to be minimally functional.

It is safe to conclude that the ideal environment or basis for a fully functional Vietnamese
font is Unicode, in which all necessary characters are encoded, and thus easily accessible.
Table 7-43 illustrates the lowercase simple vowels, including “y,” along with the required
permutations for Vietnamese Quốc ngữ.

Simple vowels and their Table 7-43. Quốc ngữ permutations—lowercase

simple vowel required Quốc ngữ permutations

a à ả ã á ạ ă ằ ẳ ẵ ắ ặ â ầ ẩ ẫ ấ ậ
e è ẻ ẽ é ẹ ê ề ể ễ ế ệ
i ì ỉ ĩ í ị
o ò ỏ õ ó ọ ô ồ ổ ỗ ố ộ ơ ờ ở ỡ ớ ợ
u ù ủ ũ ú ụ ư ừ ử ữ ứ ự
y ỳ ỷ ỹ ý ỵ

That’s right, there are anywhere from 5 to 17 required permutations for a single unadorned
vowel. Uppercase requires the same set of permutations.

Glyph substitution
Glyph substitution, the act of substituting one glyph for another, is an incredibly useful
typographic feature. Given the extent to which OpenType is supported in today’s applica-
tions, glyph substitution is no longer a trick or gimmick, but rather a fairly standardized

Glyph substitution | 521

feature—at least for higher-end applications, many of which are described at the end of
this chapter.

There are four basic types of glyph substitution that benefit CJKV fonts, many of which
equally apply to any font, regardless of language or script:

Vertical substitution•	

Variant substitution•	

Ligature construction•	

Ligature decomposition•	

Vertical substitution is a form of glyph substitution that is expected to take effect when
text is typeset in vertical writing mode. It is almost always considered a functionality that
is invoked automatically when a document is being typeset in vertical mode. With the
exception of standard ligatures, such as fi and fl, the remaining types of glyph substitution
are explicitly invoked by the user.

Character and Glyph Variants
When considering the various types of characters found in CJKV text, one of the most
common types of substitution involves the ability to select different forms of a character,
such as traditional, simplified, or variant (异体字/異體字 yìtǐzì in Chinese, 異体字 itaiji
in Japanese, and 이체자/異體字 icheja in Korean) forms. Some variants can be defined
more specifically, such as JIS78 (JIS C 6226-1978) for Japanese. And, some variants do not
necessarily involve ideographs, such as annotated forms.

Table 7-44 lists several classes of glyph variants, along with appropriate examples for
each using a variety of typeface designs. When appropriate, the corresponding OpenType
GSUB feature tag is indicated.

Glyph variant examplesTable 7-44.

Glyph substitution default glyph Glyph substitution results

To traditional—trad 台 臺, 颱, 檯
To simplified—smpl 國 国

To variant—aalt 辺 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉,
邉, 邉, 邉, 邉, 邉, 邉, 邉, 邉, 邊, 邉, 邉

To JIS78—jp78 唖 啞
To hangul—hngl 樂 낙, 락, 악, 요
To annotated—nalt あ あ, あ, あ, あ, あ, あ, あ

522 | Chapter 7: typography

Note the numerous cases of one-from-n substitutions, especially the Japanese-specific ex-
ample, whose entry point to the ‘aalt’ (Access All Alternates) GSUB feature is the kanji 辺.
Yes, there exist Japanese fonts that include 23 variant forms that are associated with that
kanji. In any case, you are likely to encounter one-to-one and one-from-n substitutions,
depending on the class of variant substitution, the font you are using, and the application’s
ability to make use of glyph substitution features. Luckily, given the broad support for
OpenType, the number of applications that support glyph substitution is increasing, not
decreasing.

A good example of a Japanese phrase that clearly illustrates the benefits of applying glyph
substitution is 学校の桜並木に黒い虫. This phrase was coined by Kazuo Koike (小池
和夫 koike kazuo) on the Font-G mailing list over 10 years ago, and means “black bugs
stick on the cherry trees in the schoolyard.” This is pronounced gakkō-no sakura namiki-ni
kuroi mushi. When this phrase is rendered using alternate or variant forms made acces-
sible through glyph substitution features, the results are as shown in Table 7-45.

Glyph substitution example—JapaneseTable 7-45.

Glyph substitution Glyph string

None 学校の桜並木に黒い虫
JIS83 forms 学校の桜並木に黒い虫
Traditional forms 学校の桜並木に黑い虫
JIS83 and traditional forms 学校の桜並木に黑い虫

Interestingly, on Mac OS, meaning before Mac OS X, some of these alternate forms were
not easily accessible simply because they were not available in the character set that was
supported. These included the kanji 校 (the JIS83 form of 校) and 黑 (the traditional form
of 黒). Now, through the use of the OpenType ‘jp83’ (JIS83 Forms) and ‘trad’ (Traditional
Forms) GSUB features, these glyphs are easily accessed. The other traditional forms are
simply encoded elsewhere, and the ‘trad’ GSUB feature merely serves as a convenience
mechanism for accessing the traditional forms.

Glyph substitution | 523

Ligatures
Ligatures, single characters whose underlying glyphs are those of other characters, are
also very common, especially in Japanese.* This is also known as n-to-one substitution.
The most common types of CJKV ligatures include those composed of kana, hangul, ideo-
graphs, and Latin characters. Variants of ligatures—but not all ligatures—include abbrevi-
ated and vertical forms. Table 7-46 illustrates examples of ligatures for CJKV text.

Ligature examplesTable 7-46.

Ligature type original text Ligature form Vertical variant

Kana ligature キログラムa ㌕ ㌕
Hangul ligature 주식회사

b

주식회사 주식회사
Ideograph ligature 株式会社c ㍿ ㍿
Latin ligature FAX

d FAX n/a

Read a. kiroguramu, meaning “kilogram.”

Read b. jusik hoesa, meaning “incorporated.”

Read c. kabushiki gaisha, meaning “incorporated.”

An abbreviation for “facsimile,” in case you haven’t kept up with technology.d.

Some ligatures have abbreviated forms. That is, not all of the underlying glyphs that serve
to compose the ligature need to be in the abbreviated form—they are also enclosed. The
abbreviated ligature form of the four ideographs 株式会社, for example, is ㈱. It is also
considered to be a form of the ideograph 株 annotated with parentheses.

There have historically been two styles of katakana ligatures used for Japanese, both of
which are found in character set standards and glyph sets: justified and centered. These
two styles are distinguished only for those ligatures that consist of three elements. The
Adobe-Japan1-6 character collection includes both styles for those katakana ligatures
that have legacy issues. The preferred style, from a typographic perspective, is the justi-
fied style. Specifically, the third element is left-justified for its horizontal form, and top-
justified for its corresponding vertical form. Table 7-47 provides several examples of justi-
fied and centered katakana ligatures.

* From one perspective, ligatures are the most common in Korean, whose hangul are ligatures based on jamo.
Does this mean that the hangul ligature example in Table 7-46 is actually a nested ligature?

524 | Chapter 7: typography

Justified and centered katakana ligature examplesTable 7-47.

style original katakana text Ligature form Vertical variant

Ju
sti

fie
d

グラムa ㌘ ㌘
ページ b ㌻ ㌻
ワットc ㍗ ㍗

Ce
nt

er
ed

グラム ɡ ɡ
ページ ㌻ ㌻
ワット ㍗ ㍗

Pronounced a. guramu, meaning “gram.”

Pronounced b. pēji, meaning “page.”

Pronounced c. watto, meaning “watt.”

I should point out that the Adobe-Japan1-6 character collection includes a large number
of katakana ligatures, and the centered style is found only in Supplements 0 and 1. Those
found in Supplements 4 and 6 are only in their proper justified form.

Some fonts, such as かづらき Std L (KazurakiStd-Light), are special-purpose, and has
additional ligature forms not found in typical Japanese fonts. This font includes a small
number of hiragana ligatures that are effected only in vertical writing mode. Table 7-48
provides examples of the two- and three-character hiragana ligatures that are provided in
this font.

Vertical hiragana ligatures—examplesTable 7-48.

two-character—offa two-character—on three-character—offb three-character—on

あ
る ある し

か
し

しかし

Annotations | 525

Vertical hiragana ligatures—examplesTable 7-48.

two-character—offa two-character—on three-character—offb three-character—on

こ
と こと と

し
て

として

し
て

して な
ど
の

などの

These three two-characters hiragana strings are a. ある (aru), こと (koto), and して (shite).

These three three-characters hiragana strings are b. しかし (shikashi), として (toshite), and などの (nadono).

Ligatures are generally made accessible through the use of the ‘liga’ (Standard Ligatures)
or ‘dlig’ (Discretionary Ligatures) GSUB feature of OpenType fonts. For most applications,
the ‘liga’ GSUB feature is turned on by default, and ligatures that are expected to be used
by default, such as fi and fl for Latin fonts, or the hiragana ligatures found in the special-
purpose かづらき Std L font, should be included in this GSUB feature. Other ligatures are
more appropriate for including as part of the ‘dlig’ GSUB feature definition.

Annotations
While many of the typographic features and functionalities described thus far may have
seemed Japanese-specific due to the frequent use of Japanese examples, most apply equal-
ly well to Chinese, Korean, and Vietnamese text. And, most of the features make perfect
typographic sense, such as rules that forbid certain classes of characters from beginning
or terminating lines. But, there are some other aspects of typography that are very much
Japanese-specific. This includes compliance with the JIS X 4051:2004 standard, the use of
ruby glyphs and other annotations, and inline notes.

ruby Glyphs
Ruby (ルビ rubi) glyphs, quite simply, are reduced-size kana glyphs that appear above (or
sometimes below) one or more kanji, and act to annotate characters by indicating their
reading. This often helps readers, both native and nonnative, to understand the meaning

526 | Chapter 7: typography

or reading of rarely used characters and words.* When in vertical writing mode, ruby
glyphs typically appear to the right of the kanji to which they are associated. Ruby glyphs
are usually referred to as furigana (振り仮名 furigana) or as glosses in the academic world,
but in typographic circles are referred to as ruby.

All the genuine Japanese ruby glyphs used in the sections of this chapter that follow are
from Adobe Systems’ 小塚明朝 Pr6N R (KozMinPr6N-Regular) design, and as explained
in Chapter 6, are genuine ruby designs.

Applying ruby
There are two contexts in which ruby glyphs are used. One context is global in the sense
that all kanji are annotated with ruby to indicate their readings. Children’s books use ruby
glyphs quite extensively—Japanese children first learn kana, and then kanji in a highly
incremental fashion. These small annotations written using reduced-size kana glyphs al-
low Japanese children—and foreigners who are learning to read Japanese—to learn kanji
readings.

The other context are typical documents in which there may appear rarely used or non-
standard kanji—only words containing these kanji are annotated with ruby glyphs. Native
Japanese speakers, other than children, are expected to be able to read the unannotated
kanji, at least for frequently used ones.

Mono ruby
The simplest type of ruby are called mono ruby (モノルビ mono rubi in Japanese), aptly
named because one or more ruby glyphs serve to annotate only a single parent glyph.
Because readings for kanji can require up to as many as five kana, the number of required
ruby glyphs must match. Table 7-49 provides examples of mono ruby that consist of one
to five ruby glyphs.

Mono ruby examples—JapaneseTable 7-49.

one ruby two ruby three ruby Four ruby Five ruby

小
こ

𠝏
けん

林
はやし

予
あらかじ

志
こころざし

This brings us to another issue with regard to ruby glyphs, specifically how they are
aligned with respect to the characters that they annotate. The examples provided in Table
7-49 were all center-aligned, but Table 7-50 illustrates examples of left-, center-, and right-
alignment.

* No one can read all kanji. Well, at least those of us who are mere mortals.

Annotations | 527

Table 7-50. Mono ruby alignment variations examples—Japanese

number of ruby glyphs Left-alignment Center-alignment right-alignment

One 小
こ

小
こ

小
こ

Three 林
はやし

林
はやし

林
はやし

There is little benefit in discussing the alignment of mono ruby consisting of only two
ruby glyphs, because the glyphs obviously align in one way only.

Of course, all of these alignment principles apply equally well when the text is set vertical-
ly—the ruby glyphs appear on the right side of the glyphs that they serve to annotate.

Group ruby
One of the most common types of ruby are called group ruby (グループルビ gurūpu rubi
in Japanese). That is, they are ruby glyphs that serve to annotate two or more characters,
usually kanji. Exactly how they are aligned becomes more of an issue than with mono
ruby.

Table 7-51 provides some examples of kanji compounds annotated with ruby glyphs ac-
cording to group ruby principles. I should point out that the examples in Table 7-51 are
somewhat contrived, because using orthodox readings in group ruby violates common
“house rules.”

Group ruby examples—JapaneseTable 7-51.

example example example

漢
か ん じ

字 株
かぶしきがいしゃ

式会社 範
はんちゅう

疇
kanji kabushiki gaisha hanchū

kanji incorporated category

It is also possible to combine the two ruby principles for strings of kanji that have logi-
cal separations, such as personal names in which there is precedent to distinguish family
from given names. Table 7-52 provides two examples of applying both types of ruby prin-
ciples to Japanese names.

528 | Chapter 7: typography

Combining mono and group ruby principles—JapaneseTable 7-52.

Group and group Mono and group

山
やまもと

本太
た ろ う

郎 林
はやし

朝
と も こ

子
yamamoto tarō hayashi tomoko

The complexity of typesetting ruby glyphs goes well beyond the simplistic examples that
I have provided. To learn more about how to typeset ruby glyphs, I suggest that you study
the JIS X 4051:2004 standard, and also explore the rich ruby settings made available by
Adobe InDesign.

Pseudo ruby
There are also special-purpose ruby glyphs, which basically can mean one of two things—
or both:

The ruby glyphs are not part of a special-purpose ruby font•	

The use of glyphs for characters other than hiragana and katakana (and a few special-•	
ized ruby-specific symbols), such as glyphs for Latin characters or kanji

These are called pseudo ruby (擬似ルビ giji rubi in Japanese) glyphs. For example, words
written using katakana can be annotated with ruby glyphs that are actually reduced-size
kanji—these are most often used to indicate the Japanese equivalent of loan words. Kanji
compounds can also be annotated with ruby glyphs that are merely reduced-size Latin
glyphs. Table 7-53 provides some examples of pseudo ruby.

Pseudo ruby examples—JapaneseTable 7-53.

Kanji Kanji Latin characters

ピ
拳 銃

ストル コ
計 算 機

ンピュータ 日
N E C

本電気
pisutoru konpyūta nippon denki

pistol computer NEC

You may find that some Japanese word-processing applications support the typesetting of
ruby glyphs, but it is a much more common feature of page-layout applications. Adobe
FrameMaker version 5.5 and later, for example, includes support for ruby glyphs. Adobe
InDesign’s support for ruby is perhaps the richest among capable applications, and takes
advantage of the ‘ruby’ (Ruby Notation Forms) GSUB feature that is included in OpenType
Japanese fonts that are based on Adobe-Japan1-4 or greater Supplement.

Annotations | 529

One can imagine how ruby glyphs can be applied to Chinese, Korean, and Vietnamese.
Chinese text can be annotated with Pinyin or zhuyin, Korean text (that is, hanja) can
be annotated with hangul, and Vietnamese text (that is, chữ Hán and chữ Nôm) can be
annotated with Quốc ngữ. In fact, Chinese text annotated with zhuyin characters—as
readings—is quite common.

Inline notes—Warichu
Japanese text can be set as inline or inset notes, called warichu (割注 warichū) in Japanese.
The text for inline notes is the same as ruby glyphs (that is, half-size), but are set within
the text using two lines enclosed by a set of parentheses. Table 7-54 provides an example
of Japanese text that includes an inline note, set using Adobe Systems’ 小塚明朝 Pr6N R
(KozMinPr6N-Regular) typeface.

Inline note exampleTable 7-54.

Glyph string

情報処理（この本のテーマは
日中韓越情報処理）です。

While it is theoretically possible to fake kana, hangul, and ideograph ligatures using the
principles of inline notes, the results are far from being typographically pleasing. While
the glyphs used for inline notes are purposely and intentionally reduced in size, applying
the same technique for constructing ligatures will result in glyphs that do not match the
surrounding text, and will look more like inline notes, because that is precisely what they
are. Table 7-55 provides an example of genuine versus faked katakana ligatures in text set
using FDPC’s 平成角ゴシック Std W5 (HeiseiKakuGoStd-W5) typeface.

Genuine versus faked katakana ligaturesTable 7-55.

Ligature type Glyph string

Genuine 身長は 188 センチです。
Faked 身長は 188 センチ です。

Pay close attention to how the vertical spacing and relative weight of the two types of
ligatures differ. The ligature form in question is ㌢ (senchi, short for and meaning “centi-
meter”). The genuine ligature blends with the surrounding text while the faked one does
not. The faked ligature’s vertical spacing is such that it looks like two separate lines of
text—this is precisely what inline notes entail.

530 | Chapter 7: typography

More information about inline note composition can be found in the JIS X 4051:2004
standard. Adobe Illustrator version 7.0 and later supports inline notes.

other Annotations
In addition to annotating ideographs or other characters with readings or meanings, it is
also possible to add annotations that simply serve to add emphasis, comparable to the use
of an underline in Western text. In Japanese, these marks are called boten (傍点 bōten),
and appear above, in horizontal writing, or to the right, in vertical writing, of the char-
acters to which they add emphasis. These marks are sometimes referred to as kenten (圏
点 kenten).

Table 7-56 illustrates the most common type of boten mark used in Japanese, which is a
simple black dot, along with an alternate type, which is sometimes called a sesame dot,
both of which are typeset using Adobe Systems’ 小塚明朝 Pr6N H (KozMinPr6N-Heavy)
typeface.

Standard and alternate Japanese boten marksTable 7-56.

Boten style Glyph string

Standard このサンプルは重要
4 4

です。
Alternate このサンプルは重要

0 0

です。
Some page-composition systems, such as QuarkXPress, minimally support these two
types of boten marks. Adobe InDesign and Canon EDICOLOR provide nearly a dozen
types of these glyph annotations, and also permit the user to define and use their own
in case the supplied set is deemed to be too limited for the intended use. Table 7-57 il-
lustrates the 10 boten marks that are made available by Adobe InDesign, which are called
kenten marks in the context of that application.

InDesign kenten marksTable 7-57.

name example

Sesame dot このサンプルは重要
0 0

です。
White sesame dot このサンプルは重要

1 1

です。

typographic Applications | 531

InDesign kenten marksTable 7-57.

name example

Snake eye このサンプルは重要
2 2

です。
Black circle このサンプルは重要

3 3

です。
Small black circle このサンプルは重要

4 4

です。
Double circle このサンプルは重要

5 5

です。
Black triangle このサンプルは重要

6 6

です。
White triangle このサンプルは重要

7 7

です。
White circle このサンプルは重要

8 8

です。
Small white circle このサンプルは重要

9 9

です。

typographic Applications
Although typical word-processing applications allow the user to adequately type-
set most documents, there are often circumstances when a significantly greater degree
of typographic control is necessary, such as when composing books or other complex
documents.

Today, page-layout and some graphics applications provide the user with a high level of
typographic functionality—many also offer CJKV-specific features. What I describe next
are what I consider to be the most widely used typographic applications available today.
Some are locale-specific in that their UI is tailored for a specific language, and some are
available with a more diverse UI.

532 | Chapter 7: typography

Page-Layout Applications
Page-layout applications are considered the most complex CJKV text-processing tools
available, because they allow users to typeset text in a variety of ways, and with much
greater precision than tools such as text editors and word processors. There are many
dedicated CJKV-capable page-layout systems available, but they tend to be proprietary in
nature, and are very expensive and not easily upgraded.

Most page-layout systems—with the exception of Adobe InDesign, Adobe FrameMaker,
and perhaps QuarkXPress—are not very efficient for direct text entry. It is usually neces-
sary to first enter the text using conventional word-processing applications, such as Mi-
crosoft Word, then import the text into the page-layout application for further manipula-
tion. Adobe InCopy, the text-editing module for Adobe InDesign, is especially suited for
text entry. There are usually filters available that allow you to retain certain attributes of
the text during the import process, such as the fonts used (names, point sizes, styles, and
so on), tab settings, and line spacing. Some page-layout systems, such as Adobe Frame-
Maker, have always been effective for text entry, and for such applications, there is abso-
lutely no need to use a word processor as part of the document workflow.

You can expect to find in these applications features such as a vertical writing mode (ex-
cept for the current version of Adobe FrameMaker), multiple columns, full control over
glyph, word, and line spacing, the ability to construct tables, and rudimentary graphics
functionality.*

While my personal preference for page layout is Adobe InDesign, you will find that most
applications—not only page-layout applications—have extremely loyal followings. As the
complexity of a program increases, so does its learning curve. This is especially true of
page-layout systems that use a slightly different paradigm for laying out text. While fierce
competition in this market has led to competitive upgrades and import filters among
these applications, completely transitioning from one page-layout system to another is
not so simple and can literally take months of learning and experience. Sticking with the
system that you currently use has an advantage in that you are more likely to be aware
of its strengths and weaknesses, and more importantly, know how to compensate for its
weaknesses and take best advantage of its strengths. Learning the strengths and weak-
nesses of a new page-layout system can be a time-consuming process.

I must also point out that some word processors, such as the Japanese version of Microsoft
Word, have evolved to the point where they provide very sophisticated page-layout facili-
ties, rivaling some of those described in this section.

* Although better results typically come from creating graphics through the use of a dedicated graphics applica-
tion (such as Adobe Illustrator or Adobe Photoshop), which are subsequently imported as an EPS or PDF file,
or if supported by the application, as a native file.

typographic Applications | 533

Adobe Indesign
In my opinion and experience, Adobe InDesign is the premier page-composition applica-
tion available today, with the richest and most diverse collection of text composition and
typographic controls.* Its support for high-end Japanese typography is simply unmatched.
Although Adobe InDesign is considered by many to be an application that was originally
designed for the U.S. market, and merely localized and enhanced for Japanese and other
CJKV locales, its support for Japanese began from version 1.0.† The current version, at
least as I write this book, is version 5.0, which is better known as Adobe InDesign CS3. As
usual, fully functional trial versions of this application are available.

Composition and layout of text in Adobe InDesign is performed through the use of
single- and multiple-line text composers. In other words, the decisions for line breaking
and spacing can use varying degrees of context. For the single-line text composer, the
context is a single line. In the case of the multiple-line text composer, the entire paragraph
serves as its context and as a useful default. And, for both types of text composers, there
exist Western and Japanese versions. To enable Japanese functionality, such as vertical
writing mode behavior and JIS X 4051:2004 compliance, the Japanese composer must be
enabled for the text being manipulated, which is at the paragraph level.

One of the more powerful features of Adobe InDesign is its Glyph Panel, which allows
the user to access any glyph in any font, sorted by Glyph ID (GID) or by Unicode. When
the selected font is CID-keyed, although the glyphs are sorted by GID, the CID of a glyph
is displayed when the cursor moves over it. The Glyph Panel also represents a way in
which to access many OpenType GSUB features, many of which are specific to CJKV
fonts. The general-purpose ‘aalt’ GSUB feature is accessed directly through the glyphs that
are displayed in the Glyph Panel, indicated by a small black triangle at the bottom-right
corner of glyphs for which variant forms are available. Other GSUB features are accessible
through the Glyph Panel’s flyout menu.

Adobe InDesign supports a large number of OpenType GSUB and GPOS features that
are applicable to CJKV text and are included in CJKV fonts. Each subsequent version of
Adobe InDesign generally adds support for additional GSUB or GPOS features, though
the set of such features supported by Adobe InDesign CS3 is quite rich. Table 7-58 lists the
OpenType GSUB and GPOS features—at least the ones applicable to CJKV fonts—that
are made accessible by Adobe InDesign CS3, which is the current version while writing
this book.

* http://www.adobe.com/products/indesign/
† Much of Adobe InDesign’s Japanese functionalities and capabilities are due to the efforts of a development team

led by Nat McCully, a senior engineer at Adobe Systems, whom I have known for nearly 20 years. We knew
each other while at school, mainly due to my original JAPAN.INF document, which spawned Understanding
Japanese Information Processing (O’Reilly Media, 1993). Quite coincidentally, we both moved from the Mid-
west, where we were studying, to California at about the same time, in mid-1991. I started to work at Adobe
Systems, and Nat started at Claris, a division of Apple. Nat subsequently joined Adobe Systems over 10 years
ago, in 1998, specifically to work on InDesign from its very early planning stages, and because it represented a
unique opportunity to revolutionize DTP in Japan. Nat has been a trailblazer ever since then.

534 | Chapter 7: typography

OpenType GSUB and GPOS features supported in Adobe InDesign CS3Table 7-58.

Feature taga opentype flyout Glyph Panel Glyph Panel flyout elsewhere
Gs

UB
aalt Yes

trad Yes

expt Yes

jp78 Yes

jp83 Yes

jp90 Yes

jp04 Yes

nlck Yes

hwid Yes

twid Yes

qwid Yes

pwid Yes

fwid Yes

dlig Yes

frac Yes

hkna/vkna Yes

ital Yes

zero Yes

liga “Character” flyout

locl Language settingsb

vert In vertical text

ruby Ruby feature

GP
os palt/vpal Yes

kern/vkrn “Character” panel

Some GSUB features have horizontal and vertical versions, shown in this column together, separated by a slash. The writing direction of the a.
text determines which one is used for the affected text.

The language settings as specified by character and paragraph tags are what control the use of the ‘locl’ GSUB feature.b.

I should point out that the Glyph Panel has the ability to enumerate all OpenType GSUB
features that are included in the selected font, in the form of a filter for what the Glyph
Panel displays. In other words, when an OpenType GSUB feature is selected, only the
glyphs that result from applying the selected GSUB feature are displayed.

As Table 7-58 indicates in one of its table notes, Adobe InDesign allows users to spec-
ify a language as part of character and paragraph tag definitions, which can be directly

typographic Applications | 535

linked to behavior in OpenType features. Setting the language in InDesign actually sets
the OpenType language and script. For example, setting a character or paragraph tag to
Japanese sets the OpenType language and script tags to ‘JAN’ and ‘kana’, respectively. In
addition to obviously benefitting GSUB features, such as ‘locl’ (Localized Forms), Adobe
InDesign language settings can benefit virtually any OpenType feature, including GPOS
features such as ‘kern’ (Kerning) and ‘vkrn’ (Vertical Kerning).

One of the strengths of Adobe InDesign is its ability to use any glyph in any font, through
the use of its Glyph Panel. Although this works great for the occasional difficult-to-enter
glyph, when one needs to enter dozens, hundreds, or even thousands of specific glyphs,
the Glyph Panel suddenly becomes cumbersome. Luckily, Adobe InDesign supports a rich
Tagged Text format that allows users to enter specific glyphs through the use of tagged
text and by specifying CIDs. The following is an example of a complete tagged text file that
serves to enter into Adobe InDesign the glyph specified by CID+14106:

<SJIS-MAC>
<ParaStyle:><cSpecialGlyph:14106><001a><cSpecialGlyph:>

The first tag, <SJIS-MAC>, specifies the encoding format and the platform. Supported en-
coding formats include ASCII, ANSI, UNICODE, SJIS, GB18030, BIG5, and KSC5601.
Supported platforms include MAC and WIN.

The somewhat undocumented <cSpecialGlyph:> tag serves to specify glyphs and is the
focus of this discussion. Note the use of <001A> between the <cSpecialGlyph:> tags, which
serves to specify a Unicode code point (U+001A). In order to enter arbitrary glyphs using
this tag, this Unicode code point must be present, and it must be set to either U+001A
(<001A>) or U+FFFD (<FFFD>). If it is set to any other value, the glyph associated with the
Unicode code point will be used in lieu of the specified glyph, meaning that the glyph
that is specified by the <cSpecialGlyph:> tag will be ignored. The former Unicode value
(U+001A) is intended to be used for non-Latin glyphs, and the latter value (U+FFFD) is for
Latin or Latin-like glyphs. I should also point out that while the <cSpecialGlyph:> tag
allows arbitrary glyphs to be entered into Adobe InDesign, its use should be balanced
with its limitation that the glyphs are associated with the Unicode value that is specified,
meaning U+001A or U+FFFD. This peculiar behavior propagates to PDF files that are gen-
erated. This effectively means that such glyphs are not searchable in InDesign and in the
resulting PDFs. For more information about Adobe InDesign Tagged Text, please consult
the Adobe InDesign documentation.

Another incredibly useful feature of Adobe InDesign is the ability to use a notation for
specifying Unicode values when performing search and search/replace operations. UTF-
16BE values must be used; the notation requires UTF-16BE code units enclosed in angled
brackets and can be used in search and replace strings. For example, to search for the
ideograph 𠮷 (U+20BB7) or to use it as replacement text, <D842><DFB7> must be used.
This is the UTF-16BE encoding form.

As a side note, this book was typeset using Adobe InDesign CS3, specifically the Japanese
version running on Mac OS X.

536 | Chapter 7: typography

Adobe FrameMaker
Adobe FrameMaker is an extremely powerful page-layout system that is popular in
technical and book-making circles. It has been developed for Mac OS, Unix, and Win-
dows (95, 98, NT, XP, and Vista).* Unfortunately, there is no Mac OS X version of Adobe
FrameMaker.†

Adobe FrameMaker was designed to handle complex page layout for highly structured
documents, such as books and technical reports. But, many have found that it can also
serve well as a word processor. This is a feature not shared by other popular page-layout
applications, such as Adobe PageMaker. For many page-layout systems, one usually com-
poses the text in a word processor, and then imports that text for further page layout
refinements.

Two of the most outstanding features of Adobe FrameMaker, in my opinion, are its ability
to create and edit tables and to gracefully handle footnotes, including table notes. Some
chapters in this book have more tables than number of pages, so table support was a criti-
cal aspect in the production. Footnote support was also important.

For those who develop documents based on Standard Generalized Markup Language
(SGML), Adobe FrameMaker+SGML provides SGML facilities.

Adobe FrameMaker version 5.1 and greater for Mac OS is WorldScript-II–compatible,
which effectively means that it is CJKV-capable. The first edition of this book was created,
in terms of both text entry and page layout, using Adobe FrameMaker version 5.5, which
provided additional CJKV enhancements, such as ruby support, alternate metrics, and
nominal JIS X 4051 compliance.

Adobe PageMaker
Originally created by Aldus, Adobe Systems continued to develop a very popular page-
layout system called Adobe PageMaker, which has been enhanced to handle CJKV text as
fully localized Chinese, Japanese, and Korean versions.‡ Although no longer being devel-
oped, it is still available for both Mac OS X and Windows. One of the main enhancements
to the localized versions of this application, besides the obvious handling of Unicode-
encoded characters, is the ability to set CJKV text vertically. An example of one of its
Japanese-specific features is support for ruby glyphs.

Adobe PageMaker, in my opinion, is ideally suited for creating complex documents that
have potentially different layouts from page to page. The latest version of Adobe Page-
Maker provides text-manipulation tools, such as a search/replace function and spell-
checker—these functions are made accessible in the context of its story editor.

* Adobe FrameMaker was formerly known as simply FrameMaker—Frame Technologies merged with Adobe
Systems in late 1995. See http://www.adobe.com/products/framemaker/.

† http://www.fm4osx.org/
‡ Adobe PageMaker was formerly known as Aldus PageMaker—Aldus merged with Adobe Systems in 1994. See

http://www.adobe.com/products/pagemaker/.

typographic Applications | 537

As an historical side note, Adobe PageMaker versions 4.0J and 4.5J were used to typeset
both printings of Understanding Japanese Information Processing (O’Reilly Media, 1993).

Founder FIt
FIT (Focus on Integrated Typesetting or 飞腾 fēiténg, meaning “to soar”) is a page-
layout system developed by Peking University Founder Group (北大方正集团公司 běidà
fāngzhèng jítuán gōngsī), available for Mac OS X and Windows.* It is worth noting that it is
not based on a page-layout system originally developed for English-speaking users.

Although the original version of FIT was designed for use in China (Simplified Chinese),
it has since been made available for use in Taiwan (Traditional Chinese) and Japan (called
Founder FIT),† and there are plans for a Korean version.

Some of the more noteworthy features of FIT include the following:

•	 A ruby feature that supports zhuyin and Pinyin—the positioning options are quite
rich (top, bottom, left, or right of parent characters)

Various options for writing direction•	

Various options for punctuation marks: full-width, proportional, and even centered•	

Observation of line-breaking rules•	

Also of interest is that it provides an equation editor and table tool. Like Canon EDICOLOR
(described later in this chapter), it allows the use of “character” as a unit of measurement.
Of course, it also supports the Q typographic unit. Some interesting details about FIT are
available online.‡

QuarkXPress
QuarkXPress, developed by Quark Incorporated, is another very popular and sophisticat-
ed page-layout system available for Mac OS X and Windows.§ The latest localized versions
have the option to use English menus and dialogs.

QuarkXPress allows the user to use a wide variety of typographic units, such as the Q. It
also allows users to redefine typographic measurements such as the point (the PostScript
imaging model defines there to be 72 points per inch, but that can be easily changed in
QuarkXPress). Adobe InDesign provides comparable functionality. Other significant fea-
tures of CJKV versions of QuarkXPress include:

•	 Ruby support.

CJKV support in kerning table editor, in horizontal and vertical writing modes.•	

* http://www.founderpku.com/
† http://www.founder.co.jp/
‡ http://www.jagat.or.jp/asia/report/China3.htm
§ http://www.quark.com/

538 | Chapter 7: typography

Modification of the line-breaking character set—there are predefined weak and •	
strong sets, and the user can change their definitions or create new ones.

Definition of font sets that allow users to select a different font for different types •	
of scripts, such as ideographs, kana, Latin characters, numerals, and symbols—the
font specified for each script can be baseline-shifted or scaled at the time of the
definition.

Although not CJKV-specific, the QuarkXPress “Text to Box” feature allows the user to
convert text into an editable text box in the shape of the glyphs themselves—similar to the
text-to-outline feature available in Adobe Illustrator and FreeHand MX (both of which
are described shortly). This feature works with both PostScript and TrueType fonts, and
ATM (Adobe Type Manager) is required. Of course, this feature does not work for fonts
whose outlines are not available or are protected.

QuarkXPress provides extended functionality through third-party plug-ins called
XTensions. Quark maintains a list of XTension developers.* Note that some XTensions
may not work properly with CJKV versions of QuarkXPress. Quark’s Japanese office also
maintains a list of XTensions that can be used with QuarkXPress-J (and perhaps other
CJKV versions as well).†

Demo versions of QuarkXPress, including CJKV-capable versions, are available from
Quark.‡ This provides the potential user the ability to test drive the application before
making a purchase.

Canon edICoLor
Sumitomo Metal Industries’ (住友金属工業株式会社 sumitomo kinzoku kōgyō kabushi-
ki gaisha) Publishing Systems Division (パブリッシングシステムズ事業室 paburisshingu
shisutemu jigyōshitsu) originally developed a sophisticated page-layout application called
EDICOLOR (エディカラー edikarā), available for Mac OS and Windows. Canon now
owns EDICOLOR, and it is available for Mac OS X and Windows.§ EDICOLOR stands for
EDItors’ COLOR Layout Software. Fully functional trial versions of Canon EDICOLOR
are available at Canon’s website.

Canon EDICOLOR is unique from other common line- and page-layout systems, such as
Adobe InDesign and QuarkXPress, in two important ways:

It is not thought of as a localized version of a line- and page-layout system that was •	
originally intended for Western languages—as is the case for Adobe FrameMaker,
Adobe PageMaker, and QuarkXPress.¶

* http://www.quark.com/products/xpress/xtensions/
† http://japan.quark.com/products/xtensions/
‡ http://www.quark.com/service/desktop/downloads/ or http://japan.quark.com/service/desktop/download/
§ http://ps.canon-sol.jp/ec/
¶ Perhaps of historical interest, EDICOLOR’s line-layout engine was originally developed by Stonehand in the

U.S., and subsequently licensed and adapted to support Japanese typographic features.

typographic Applications | 539

Given that Canon EDICOLOR is targeted toward the Japanese market, it is unlikely •	
that it will ever support languages other than Japanese, such as Chinese and Korean,
although it is within the realm of extreme possibilities.

Canon EDICOLOR provides the user with a wide variety of typographic controls, includ-
ing many Japanese-specific features—such as ruby support, a character-based layout grid,
and the use of the Q typographic unit—in order to create the desired page design. Earlier
versions also included a special-purpose font, called SMI 外字 (SMI gaiji), that included
many symbol glyphs that are found in typical Gaiji font products, such as those devel-
oped by Biblos and Enfour Media. A well-integrated table editor is also part of Canon
EDICOLOR.

Canon EDICOLOR’s かな詰め (kana tsume, which is best translated as “proportional
kana”) feature makes use of glyph-level bounding box information of AFM (Adobe Font
Metrics) files to create proportional metrics for kana and a handful of additional char-
acters. AFM files for a large number of Japanese fonts are included with Canon EDI-
COLOR, which allows users to compose documents using Japanese fonts that are not
actually installed onto their system. Table 7-59 illustrates four types of proportional met-
rics for a short string of katakana glyphs that are set in Adobe Systems’ 小塚明朝 Pr6N H
(KozMinPr6N-Heavy) typeface design: the hand-tuned proportional metrics developed
by Adobe Systems that are included in the font itself, along with three levels or degrees of
proportional metrics made available in Canon EDICOLOR, each mathematically calcu-
lated from its AFM file.

Canon EDICOLOR also allows the user to define composite fonts—that is, the ability to
specify what font to use for what character class, as well as the ability to specify different
X- and Y-axis scales, along with baseline adjustment. In addition to being able to specify
separate fonts for standard character classes—kanji, kana, Latin, and numerals—Canon
EDICOLOR also allows the user to specify fonts for what it refers to as system- and user-
defined characters.* By default, the system-defined characters can be set to one of the
following bundled OpenType fonts: Edisys-OTF-Gaiji or Edisys-OTF-KAZAR. Note that
the original SMI 外字 font was renamed to “SMI 外字 plus” in version 6.0, presumably
with additional glyphs. It is now equivalent to the Edisys-OTF-Gaiji font. Also, the de-
fault user-defined characters can be set to one of the following bundled OpenType fonts:
Edigai-OTF-GoIwata or Edigai-OTF-MinIwata.

* It is possible to create fonts so that they are recognized by Canon EDICOLOR as system- or user-gaiji. If a font’s
menu name begins with ＳＭＩ外字, システム外字, or Edisys, then it is treated as a system-gaiji font. If a
font’s menu name begins with ユーザー外字, ユーザー創作, or Edigai, then it is treated as a user-gaiji font.

540 | Chapter 7: typography

Handtuned and AFM-derived proportional metricsTable 7-59.

Metrics example

Full-width

Adobe Systems

EDICOLOR Loose

EDICOLOR Standard

EDICOLOR Tight

While QuarkXPress allows the user to freely define or redefine the line-breaking charac-
ter sets, Canon EDICOLOR additionally permits the user to modify what punctuation
marks are allowed to dangle, as does Adobe InDesign.

Like Adobe InDesign, Canon EDICOLOR includes a Character Palette that allows the
user to select a glyph by Unicode encoding, Shift-JIS encoding, and GID. When accessing
glyphs by GID, it means any glyph in the font, regardless of whether it is encoded, can be
entered into documents.

Graphics Applications
Another class of application that often includes advanced typographic capabilities is
more graphics-oriented, rather than line- or page-layout–oriented. These programs are
known as graphics applications. While most word processors and page-layout applica-
tions include a very basic set of built-in graphics tools, they are not nearly as powerful as
dedicated graphics applications. Nearly all figures in this book, along with the contents
of some of its tables, required intervention by one or more graphics applications. This is
typical for most books.

Adobe dimensions
Adobe Dimensions, although no longer available, provided users with the ability to create
three-dimensional objects that can be completely constructed using the application itself,

typographic Applications | 541

or it can be exported to other applications, such as Adobe Illustrator or Adobe Photoshop,
for further editing or manipulation.*

Although it is possible to emulate three-dimensional objects using standard illustration
tools, one cannot rotate or otherwise change the orientation of such objects and still ex-
pect their perspective to appear correctly. This is what makes Adobe Dimensions useful.
Version 3.0 or later (including the standard or unlocalized version) provides the ability
to manipulate CJKV text using three dimensions. Figure 7-2 illustrates Korean text—
specifically, the characters 김치 (gimci, meaning “kimchi”) set using hangul from Adobe
Systems’ Adobe 명조 Std M (AdobeMyungjoStd-Medium) typeface design—extruded to
show three dimensions. Needless to say, Adobe Dimensions was able to provide docu-
ments with some very interesting effects.

Three-dimensional Korean textFigure 7-2.

Adobe Illustrator
One of the most well-known illustration programs is Adobe Illustrator.† It allows extreme-
ly precise layout of text and graphics objects within the context of a single page. Although
Adobe Illustrator does not constitute a full-featured page-layout or composition system, it
is very useful for short works, such as one-page advertisements, fliers, and so on. It is also
useful for creating and editing illustrations that are used in books and other documents,

* http://www.adobe.com/products/dimensions/
† http://www.adobe.com/products/illustrator/

542 | Chapter 7: typography

meaning that the results are used in a genuine page-layout or composition system, such
as Adobe InDesign.

Adobe Illustrator provides the user with the ability to set text in both horizontal and verti-
cal mode—for both CJKV and Latin text. All of the variations of setting Latin text verti-
cally, as illustrated in Table 7-12, are fully supported features of Adobe Illustrator. Also
of significance is that as of version 7.0 (which is now over 10 years old), the standard—
the unlocalized or U.S.—version of Adobe Illustrator is CJKV-capable. And, believe it or
not, you are not even required to have an underlying CJKV-capable OS to bring out this
functionality!*

Using Adobe Illustrator is very much like having the entire PostScript programming lan-
guage at your disposal through a convenient graphical interface, but its capabilities extend
far beyond what PostScript offers. Almost every attribute of every text or graphic object
you create can be modified to your heart’s content. You can even set text along a curve,
and convert text—set using either PostScript or TrueType fonts—into editable outlines.†

Like other Adobe applications, Adobe Illustrator provides the user with the ability to ad-
here to the Japanese line- and page-layout rules and principles that have been set forth
in the JIS X 4051:2004 standard. Also of importance is the ability to use a font’s built-in
alternate metrics and certain classes of glyph substitution. The latest version of Adobe
Illustrator has excellent support for OpenType glyph substitution features, and it also in-
cludes a Glyph Panel comparable to what Adobe InDesign provides.

Nearly all of the typographic examples provided in the first edition of this chapter were
produced with Adobe Illustrator using the fonts’ built-in typographic features. This was
necessary due to limitations of Adobe FrameMaker, such as its inability to support verti-
cal writing. For the second edition, nearly all of the examples were produced directly in
Adobe InDesign.

Adobe Photoshop
The most widely used bitmap-graphics–manipulation application is clearly Adobe Pho-
toshop.‡ Every aspect of a scanned or created image can be modified using this. But, you
may be wondering why it is being mentioned in this book.

Adobe Photoshop does not currently provide the user with advanced typographic func-
tionality, but does offer the ability to include CJKV text in images. This can become

* Before you get overly excited, let me warn you that one critical piece of software provided by CJKV-capable
OSes is one or more input methods. Without an input method, one cannot easily enter CJKV text, but you can
obviously display and print it. Also, you need to identify and install CJKV fonts, many of which are bundled as
part of CJKV-capable OSes. Given the mature state of today’s OSes, in terms of multilingual support, this is no
longer a concern.

† You cannot, however, convert text into editable outlines if the selected font has its outlines protected. Mori-
sawa’s Japanese fonts, for example, at one time imposed this restriction, but this has thankfully changed since
the first edition of this book was published.

‡ It is also the most widely pirated program. See http://www.adobe.com/products/photoshop/photoshop/.

Advice to developers | 543

especially useful if the client of the images does not have a CJKV-capable OS, or if the fonts
are protected in such a way that prevents access to outlines. A bitmap image of a glyph,
rendered at the final output device’s resolution, can be easily printed from any computer
running Adobe Photoshop. Adobe Photoshop version 5.0 and later provides much better
text services than earlier versions, and from version 6.0, includes a very sophisticated text
engine, which is the same one used by Adobe Illustrator.

Adobe Photoshop has eased the way in which text is handled by automatically maintain-
ing two layers. One layer is the editable text, which is not rendered into bitmaps. The other
layer contains the rendered bitmaps. This feature makes the editing of text in Photoshop
documents a much more pleasant experience. Before this functionality was available, us-
ers either had to completely re-enter the text or manually maintain these separate layers.

Adobe Photoshop is actually a family of applications. What has been described in this
section is the flagship application, the most current version of which is Adobe Photoshop
CS3. There are also Extended, Elements, and Lightroom variations of Photoshop avail-
able, all of which are described on the Adobe website. All have fully functional 30-day
trial versions available.

FreeHand MX
FreeHand MX, now owned by Adobe Systems, includes features and functionality com-
parable to those provided by Adobe Illustrator, and like Adobe Illustrator is available for
Mac OS X and Windows.* In fact, these applications were competitors for many years, and
both have loyal followings still to this day.

Additional details and information about FreeHand MX is available, including fully
functional 30-day trial versions.† Given the significant functionality overlap of FreeHand
MX and Adobe Illustrator, Adobe Systems has no plans to further develop FreeHand MX.
FreeHand MX users are thus strongly encouraged to migrate to Adobe Illustrator.

Advice to developers
For application developers, specifically for those who develop Japanese applications, I
strongly recommend that you adhere to the rules and principles set forth in the JIS X
4051:2004 standard. If necessary, explore existing applications that already provide this
functionality, which will serve as an example to guide your own efforts. Adobe InDesign
is an excellent example of an application that provides a high degree of JIS X 4051:2004
support.

* FreeHand MX was originally known as Aldus FreeHand—Altsys Corporation originally developed FreeHand,
but Aldus marketed it. When Aldus merged with Adobe Systems in 1994, FreeHand was relinquished to Altsys,
but soon after Macromedia bought Altsys. Macromedia merged with Adobe Systems in 2005, and FreeHand
became property of Adobe Systems.

† http://www.adobe.com/products/freehand/

544 | Chapter 7: typography

Regardless of what language is being manipulated in terms of line and page layout, it is
prudent to support vertical writing, proper line breaking, and proper glyph spacing. If the
rules and principles of JIS X 4051:2004 are not applicable, do your best to formulate your
own rules and principles, and adhere to them as much as possible.

Bear in mind the following guiding principle: if the result doesn’t look right, odds are it
isn’t. In other words, if something doesn’t appear to be typeset well, chances are it was
not, either due to improper settings or inadequate support on the part of the application.
For improper settings, the solution is to invoke the proper settings. For situations that
arise due to an application limitation or shortcoming, explore ways to work around the
limitation. For nearly all seemingly impossible situations, there is almost always a solu-
tion. Sometimes it presents itself easily, and sometimes more effort is required for it to be
discovered.

545

CHAPter 8

output Methods

If you consider the extent to which character sets, encoding methods, font formats, and
typography have been discussed thus far, it is clearly an appropriate time to discuss how
CJKV text can be output or displayed through the use of devices such as printers and
displays. You learned about font formats and related matters in Chapter 6, then about
typography and composition in Chapter 7, but now comes the time when you must finally
display, print, or otherwise output the CJKV text that you so carefully composed into
documents or smaller text fragments. Printers can range from low-resolution dot-matrix
printers to high-resolution photo imagesetters costing tens of thousands of dollars.* The
vast majority of advances seem to be in the area of displays. The resolution has become
quite high, to include HDTV-like quality, even for mobile devices such as cell phones.

Regardless of what output device is being used, whether it is a computer monitor, a mobile
device display, a dot-matrix printer, or even a high-resolution photo imagesetter, the most
basic unit of output is either a pixel (in the case of computer monitors or other displays)
or a dot (in the case of printers). The resolution of both types of output devices is usually
expressed in units called DPI, short for dots-per-inch. The most commonly used printers
today are 600-dpi or greater laser printers and color inkjet printers, although inexpen-
sive 1200-dpi and greater plain-paper printers have already emerged. For many years, the
most commonly-used computer displays had 72-dpi or greater resolution, specifically 72-
dpi for Mac OS, and 96- or 120-dpi for Windows. The resolution of displays are increas-
ing, and advances in rendering technology are leading to improvements without the need
to increase display resolution.

Given the wide variety of output devices that are available today, exactly what is consid-
ered high- or low-resolution is relative, and clearly changes over time. To people who use
a 1270-dpi photo imagesetter, 600-dpi and below is considered low-resolution, but those
who recently upgraded from a dot-matrix printer to a 600-dpi laser printer may think

* Or yuan, yen, or won as the case may be—actual amounts may depend on currency fluctuations and exchange
rates.

546 | Chapter 8: output Methods

that they are now the proud owner of a high-resolution printer. As you can see, it is all
relative….

Where Can Fonts Live?
Before we discuss how to print or display CJKV text, let’s discuss for a moment where
fonts live in relation to the host—meaning your computer—and the printer. Bear in mind
that the printing workflow has changed since the first edition of this book was published,
and much more of the font burden is now on the host rather than on the printer. This is a
very good thing, which will be explained in a moment.

Years ago, PostScript fonts felt at home only when resident on a printer, either in its VM
(Virtual Memory, also known as RAM), in ROM, or in a built-in or attached hard disk.
With the introduction of ATM, PostScript fonts also felt at home on the host. It was only
with the introduction of OpenType that PostScript fonts were able to share many of the
same advantages of TrueType fonts in a host environment, such as having only a single
file per font.

TrueType fonts, although they can be downloaded to and rendered on most contempo-
rary PostScript devices, feel most at home on a host. This is because their format was
specifically designed with the host environment in mind.

Non-CJKV PostScript fonts, usually in Type 1 format, could be explicitly downloaded to a
PostScript device on a permanent basis. This is still possible today, and is known as a static
download. These same fonts can also be automatically downloaded when the PostScript
printer driver senses that the PostScript device does not have one or more fonts available.
This is known as a dynamic download. It is also possible to download only those glyphs
that are referenced in the document to be printed. This is known as subsetting, or as partial
or incremental download. In the absence of incremental downloading capability, it is also
possible to send bitmaps of the appropriate resolution to PostScript devices. In fact, send-
ing bitmaps is the only course of action for some classes of printers, such as most ink-jet
devices.

Typical CJKV fonts, because they are several megabytes in size, do not lend themselves to
dynamic downloading because of the download time and the amount of printer memory
required. Instead, they have been installed through a static download. However, contem-
porary PostScript printer drivers have made it possible to incrementally download CJKV
fonts. A typical Japanese document is composed of 70% kana, so the number of kanji will
be limited for most documents, leading to a subsetted font that is considerably smaller
than the original when incrementally downloaded.*

Now that computers and the communication channel between host and printer are con-
siderably faster than only a few years ago, the advantage of having fonts resident on the

* Of course, if you are printing complete character set tables, most if not all of a CJKV font will be incrementally
downloaded.

output via Printing | 547

PostScript device is decreasing. In addition, even with the ability to incrementally down-
load fonts, some CJKV fonts may be restricted in such a way that prevents incremental
downloading. Static downloading may still be required.

As alluded to early on in this section, the printing workflow has changed, and the font
burden is now on the host rather than the printer. This new printing workflow uses Ado-
be Acrobat and Portable Document Format (PDF) as a reliable way to create a complete
digital image of a document, meaning that all of the glyphs and other page elements are
embedded into the PDF file. When printed, the embedded glyphs become part of the data
stream that is sent to the printer. Because the printer no longer has the font burden, the
chance of mismatching host- and printer-resident fonts is minimized, and to some extent,
eliminated.

output via Printing
Many years ago, one could print CJKV text using only bitmapped fonts. In fact, some
printers required that the bitmapped characters be resident in the printer hardware itself,
meaning in its ROM. As discussed in Chapter 6, bitmapped fonts are not ideal—and quite
frankly, an extremely poor choice—for printing high-quality CJKV text. Fortunately,
there are now many ways you can improve the quality of CJKV text when output to a
wide variety of devices.

Printing devices range from low-resolution dot-matrix printers to high-resolution photo
imagesetters. Some of these devices, usually printers and photo imagesetters, usually sup-
port PostScript, which means that they have a built-in PostScript interpreter—we discuss
why this is a “good thing” later in this section.

At the beginning of this chapter, I stated that any printing or displaying eventually results
in the rasterization or rendering of a font into dots or pixels. Every font, no matter what its
format, is ultimately resolved into a bitmap. For outline fonts, printing speed and perfor-
mance are heavily dependent on where the outlines are scaled and subsequently rendered
into bitmapped patterns:

The glyphs, represented as outlines, can be rendered into bitmaps on the computer, •	
and then sent to the printer or display.

The instructions for rendering the outlines into bitmaps can be sent to the printer, •	
which subsequently renders the outlines into bitmaps of the appropriate size and
resolution.

The latter is usually faster, but both result in the same printed page as long as the software
performing the rendering is the same or at least similar. Hardware and software for both
methods are described throughout this chapter.

The way in which printing is performed has changed over the years, in the form of im-
provements. Improvements in technology, such as the speed at which data can be sent to
the printer, has effectively diminished the need to have the fonts resident on the printer.

548 | Chapter 8: output Methods

In addition, Adobe Acrobat and PDF have improved the document workflow, by placing
much more of the burden on the authoring computer, where it belongs, rather than on
the printer. This ensures that the result, whether viewed on another computer or output
to a printer, is the same.

Postscript CJKV Printers
One of the very first solutions available for obtaining high-quality CJKV output was to
acquire a PostScript Japanese printer. One of the most common models was the Apple
LaserWriter II NTX-J, a PostScript Level 1 printer with built-in composite font support.
The Apple LaserWriter II NTX-J came with a 40 MB hard disk containing two PostScript
Japanese fonts, Morisawa’s Ryumin-Light and GothicBBB-Medium. There are now many
PostScript Japanese printers that come bundled with up to 26 PostScript Japanese fonts.
These fonts include the two just listed (sometimes baked into ROM rather than stored
on an internal or external hard disk—accessing ROM-based fonts is much faster) plus
additional fonts from Morisawa, the most common ones being FutoMinA101-Bold, Fu-
toGoB101-Bold, and Jun101-Light.

Companies such as Apple, Canon, Dainippon Printing, Digital, Electronics for Imaging
(EFI), Epson, Fuji-Xerox, Hewlett-Packard, Linotype-Hell, Oki Electric, Varityper, Xe-
rox, and others have manufactured PostScript CJKV printers. The products developed by
these companies ranged from laser printers to high-resolution photo imagesetters. Other
companies, such as LaserMaster Corporation and Harlequin, manufactured PostScript-
compatible CJKV printers, also called PostScript clones.

The definitive guide to PostScript is Adobe Systems’ PostScript Language Reference, Third
Edition (Addison-Wesley, 1999).*

Genuine Postscript
Adobe Systems released PostScript Level 2 to the marketplace during the latter part of
1991. PostScript Level 2 has built-in composite font support, meaning support for Type
0 fonts. Specifically, PostScript version 2011 and greater includes the complete compos-
ite font extensions—a handful of PostScript version 2010 printers exist, such as Apple’s
LaserWriter IIf and IIg, which do not have a complete implementation of the composite
font extensions.† Contrary to popular belief (or myth), having the composite font exten-
sions does not automatically give you the ability to use Japanese or other CJKV fonts.
This is because special system files must be resident in ROM or on the printer hard
disk. Having these composite font extensions does, however, make it easier for printer

* http://www.adobe.com/devnet/postscript/
† The following two-line PostScript program, when sent to any PostScript device, will echo back the specific ver-

sion number of the PostScript interpreter that is resident on the device:
%!
version ==

output via Printing | 549

manufacturers to produce PostScript CJKV printers by licensing the necessary system files
from Adobe Systems. It also makes it possible for users to CJKV-enable such PostScript
devices by downloading a contemporary CJKV font using Adobe Systems’ installer.*

Versions of PostScript prior to PostScript Level 2, now called PostScript Level 1, did not
have composite font support, exceptions being PostScript Japanese Level 1 printers, such
as Apple’s LaserWriter II NTX-J just mentioned.

No matter which version of PostScript you have in your printer, if the font with which you
are attempting to print is resident on the printer (“resident” here refers to being baked
into ROM or on the printer’s hard disk, whether internal or external), the font is rendered
on the printer. To give you an example of the size of a PostScript file compared to sending
bitmapped data to the printer from the computer, see the following code, which repre-
sents a complete PostScript file for printing my Japanese penname (小林剣) set vertically
at 200-point:

%!
/Ryumin-Light-V findfont
200 scalefont
setfont
306 720 moveto
<3E2E 4E53 3775> show
showpage

This code example provides the necessary rendering instructions to the PostScript inter-
preter resident on the printer. The printer then renders the characters per the instructions.
Compare that with a file that contains bitmapped data for three 200-point characters,
which may be a file that is more than 100 times as large. It should be rather obvious which
method is faster for sending from the computer (host) to the printer.

The latest version of PostScript is PostScript 3.†

Clone Postscript
Not everyone, especially individual users, has enough money to purchase a CJKV printer
equipped with genuine PostScript from Adobe Systems, so this opened the door for the
development of PostScript clones.

One of the most prominent—and easily obtainable—clone PostScript implementations
is called Ghostscript, developed by Aladdin Enterprises.‡ Some of the more interesting

* That is, one very useful side effect of downloading a CID-keyed font from Windows or Mac OS to a PostScript
device that is not yet CJKV-enabled (and has all the other requirements, such as PostScript version 2011 or
greater, enough RAM, and a hard disk) was the installation of the necessary system files that make the Post-
Script device CJKV-enabled.

† Note that I did not write “PostScript Level 3” here—Adobe has explicitly stated that the official designation for
this post-PostScript Level 2 is “PostScript 3.”

‡ http://www.cs.wisc.edu/~ghost/

550 | Chapter 8: output Methods

features (interesting, at least in the context of this book) include support for PDF, CFF,
and CID-keyed fonts.

Another PostScript clone is called Jaws,* originally developed by 5D Solutions Limited,
but now available from Global Graphics† (only as an OEM product). The current imple-
mentation of Jaws supports CID-keyed fonts, as well as PDF. Jaws is very similar in con-
cept to Adobe Systems’ CPSI (Configurable PostScript Interpreter), which means that it
runs on a standard computer (Mac OS, Unix, and Windows) that is attached to a printing
engine, such as an imagesetter.

Keep in mind that some PostScript clone implementations may lack features and func-
tionality that are required to support CJKV fonts, in particular CID-keyed fonts. Ghost-
script and Jaws, as exceptions to this general rule, do not appear to have this problem.

Using CId-keyed fonts in Ghostscript
It is not always obvious how to use CID-keyed fonts in Ghostscript, so the following is a
detailed outline that clearly demonstrates how to properly install and use them. Although
the following steps are for a Korean CID-keyed font, the procedure itself is generic.

Obtain a CIDFont resource. For example, you can obtain the 1. Munhwa-Regular
CIDFont resource from the following URL:

ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/
Obtain the CMap resources that correspond to the character collection of the 2.
CIDFont, which in this case is Adobe-Korea1. For example, the following URL con-
tains the Adobe-Korea1-2 CMap resources:

ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/ak12.tar.Z
Create a “font-stub” for the CID-keyed font, Munhwa-Regular-KSC-EUC-H, by 3.
making a file with the following name:

Munhwa-Regular-KSC-EUC-H.gsf
The following represents the complete contents of the newly created Munhwa-
Regular-KSC-EUC-H.gsf file:

/Munhwa-Regular-KSC-EUC-H
/Munhwa-Regular (Munhwa-Regular)
/KSC-EUC-H (KSC-EUC-H)

1 index /CMap resourcestatus
{pop pop pop}
{runlibfile} ifelse
/CMap findresource

3 1 roll
1 index /CIDFont resourcestatus

* Stands for Just Another Window Server.
† http://www.globalgraphics.com/

output via Printing | 551

{pop pop pop}
{runlibfile} ifelse
/CIDFont findresource

[exch] composefont pop

Place the 4. Munhwa-Regular-KSC-EUC-H.gsf file and KSC-EUC-H CMap resource in
the font path (such as /usr/lib/ghostscript/fonts/).

Add a “fontmap” entry for Munhwa-Regular to the 5. Fontmap file:
% CID-Keyed font
% Korean(Adobe)
/Munhwa-Regular-KSC-EUC-H (Munhwa-Regular-KSC-EUC-H.gsf);

With all of these steps completed, you can simply use PostScript commands to use the 6.
CID-keyed font. What follows demonstrates how this Korean CID-keyed font can be
used in Ghostscript (user-entered commands are emboldened):

GS> /Munhwa-Regular-KSC-EUC-H findfont 100 scalefont setfont
Loading Munhwa-Regular-KSC-EUC-H font from ./Munhwa-Regular-KSC-EUC-H.gsf... 411
7896 2702441 4104584 2791079 0 done.
GS> 100 100 moveto <B0A1 B0A2> show showpage

Passing Characters to Postscript
There is more than one method for passing characters to PostScript as an argument to
the show operator. The show operator is quite important because it is the only method to
display text using fonts. The findfont and selectfont operators are used to indicate what
font to use for the characters passed to the show operator. When handling normal ASCII
text, the standard convention is to simply pass characters as is to the show operator using
parentheses, as illustrated by the following PostScript program:

%!
/Courier findfont 12 scalefont setfont
100 100 moveto
(This is ASCII text) show
showpage

But when you are dealing with characters whose values go beyond seven-bit ASCII en-
coding, some care must be taken to do things correctly. Remember that most CJKV
encodings make generous use of eight-bit characters. The following PostScript program
illustrates two acceptable methods for passing eight-bit characters to the show operator
(using EUC-CN encoding for the three-character string 小林剑 xiǎolín jiàn):

%!
/STFangsong-Light-GB-EUC-H findfont 12 scalefont setfont
100 100 moveto
<D0A1 C1D6 BDA3> show
(\320\241\301\326\275\243) show
showpage

The first method (the fourth line of code) uses hexadecimal codes in angled brackets—
spaces are ignored, and hexadecimal digits “a” through “f ” can be upper- or lowercase.

552 | Chapter 8: output Methods

The second method (the fifth line of code) uses octal codes delimited by standard paren-
theses. If we use the same text, but specify an encoding that does not use eight-bit char-
acters, such as ISO-2022-CN, there is a third possibility: pass the characters as is. See the
sixth line of the following code:

%!
/STFangsong-Light-GB-H findfont 12 scalefont setfont
100 100 moveto
<5021 4156 3D23> show
(\120\041\101\126\075\043) show
(P!AV=#) show
showpage

While the sixth line of the above PostScript program illustrates how seven-bit CJKV char-
acter codes can be passed to the show operator as is, there are some characters that need
to be escaped with a single backslash character (\) when this is done: left parenthesis, right
parenthesis, and the backslash character itself.

output via display
Being able to output CJKV text onto a computer monitor or other display device is a very
basic requirement in order to successfully input or otherwise manipulate text. Without
the ability to display text, imagine for a moment how you would go about processing
CJKV text. You’d be virtually blind.

A computer monitor or display screen image consists of pixels, with each pixel represent-
ing the most fundamental unit of display. In the case of monochrome displays, each pixel
can be either white or black. These days there are better display technologies that offer
grayscale, color, and even anti-aliasing options. Anti-aliasing is a technique that allows
complex glyphs to be displayed at small sizes and still be legible.

As we will discuss in the next section, Adobe Type Manager (ATM) and TrueType had been
used to provide high-quality output for display devices. They were also useful for printing
to environments that did not have the fonts resident, such as non-PostScript devices, or
PostScript devices that simply did not have the necessary fonts installed.* There was also
Display PostScript (DPS), which was much like ATM but had virtually the entire range
of PostScript available. DPS provided what is known as full WYSIWYG (What You See Is
What You Get), meaning that what was displayed on the screen was what you would get
when printed. In the past, Digital, IBM, SGI, Sun, and other workstations supported DPS.
Now, one would be hard-pressed to find a modern OS that uses either ATM or DPS.

The X Window System for Unix is a Graphical User Interface (GUI), and as such, han-
dles the display of a variety of fonts. It is usually necessary to use a special window for
CJKV output, such as a kterm (Japanese-specific), exterm, or equivalent. Some X Window

* There are some printers that include all of their CJKV fonts in ROM, and have no hard disk nor hard disk port.
There is no permanent download option for such printers.

output via display | 553

System applications, such as GNU Emacs (version 20 or greater), provide their own
CJKV-capable windows.

Adobe type Manager—AtM
In 1989, Adobe Systems developed a font-rendering program called Adobe Type Manager
(ATM) for Mac OS, which could be thought of as the font-rendering software used in a
PostScript interpreter, but instead resided on the computer (often called the host), which
allowed users to effectively install printer fonts on the computer and use them with ATM
for high-quality computer monitor output. A version for Windows was released in 1990.
As mentioned previously, ATM was also used for printing to printers on which the fonts
are not resident. ATM worked with non-PostScript printers, too. In many ways, it was
revolutionary and was developed in response to TrueType. Many people claimed that the
best thing that happened to PostScript was TrueType, because it encouraged the develop-
ment of ATM, effectively putting them at the same level.

The very first versions of ATM supported only single-byte PostScript fonts, but late in 1991,
Adobe Systems released ATM-J, the Japanese version of ATM. This software package was
bundled with two PostScript Japanese fonts, Morisawa’s Ryumin-Light and GothicBBB-
Medium, which the user installed onto their computer. ATM, although not advertised,
included full CJKV font support.

If the font was resident on both the computer and printer, ATM did not render the glyphs,
but instead let the printer do it. In fact, it was the printer driver that must request bitmaps
from ATM—ATM itself did not communicate with the printer. It could not, as it didn’t
include such facilities. And for display purposes, ATM was used to render glyphs at point
sizes for which a bitmapped font was not available.

Figure 8-1 illustrates the ideograph 剣 printed at 216-point (scaled) in three ways: using
a 12-point bitmapped font (ugh!), on a screen display with ATM turned on (72-dpi), and
finally printer output with ATM turned on (300-dpi). Notice the difference ATM makes
in the output quality of the character. The same figure applies to TrueType and OpenType,
both of which are covered later in this chapter.

At one point, one was able to purchase over several hundred different PostScript Japanese
fonts that worked with ATM.

ATM was designed to run on Mac OS Windows, and there was even a deluxe version,
called ATM Deluxe, that provided font management features, such as auto-activation and
the ability to group fonts into functional sets. Now, thanks to efforts by Adobe Systems,
Apple, and Microsoft, the functionality that was made available by ATM is now integrated
into Mac OS X and in Windows 2000, XP, and Vista. Adobe Systems licensed to Apple and
Microsoft its core rasterizer, the same used by ATM.

554 | Chapter 8: output Methods

The effect of ATM on a 216-point characterFigure 8-1.

superAtM
SuperATM was an extension to ATM, and made use of the multiple master technology
described in Chapter 6. Well, to be a bit more clear, SuperATM offers font substitution
functionality, something that is part of Adobe Acrobat. So, you may ask, what problem
does SuperATM attempt to solve? Consider a case in which someone provides you with
a document, but you do not have the typefaces which were used to create it. What usu-
ally happens is that the computer substitutes Courier, a well-known monospaced font
(“this is Courier”), which completely interrupts the layout and line-breaks of most
documents. SuperATM attempted to solve this problem through the use of multiple mas-
ter font technology. Glyphs with identical metrics were synthesized on an as-needed ba-
sis, and were otherwise very close in style and appearance to those used in the original
document.

SuperATM used two generic multiple master fonts to accomplish this feat, both of which
used unusually creative names. One is a serif font, called Adobe Serif MM, and the other
is sans serif, called Adobe Sans MM.

So how are SuperATM and multiple master different? When you select a different weight,
width, optical size, or even style for a multiple master font, the interpolation ratios are
applied equally to every glyph in the typeface. In the case of SuperATM, however, the
matching of metrics is done on a per-glyph, not per-font, level. This means that every
glyph in a substituted font may have a unique interpolation ratio. SuperATM, and Adobe
Acrobat, discussed next, used a database of font metrics information to accomplish this.

Although SuperATM is dead as a separate product, its functionality was folded into ATM
Deluxe. In addition, Adobe Acrobat still makes use of SuperATM functionality, and to
accomplish this, still uses the same Adobe Serif MM and Adobe Sans MM fonts for font
substitution purposes.

output via display | 555

Adobe Acrobat and PdF
Adobe Acrobat and Portable Document Format (PDF) have clearly revolutionized the
publishing industry by significantly enhancing the document production workflow. A
PDF file represents a reliable and complete digital master for a document, whether it is a
single-page letter or a 900-page tome.* Everything that is needed to display or print the
document can and should be embedded.†

The primary goal and function of Adobe Acrobat and PDF is to achieve true document
portability, which explains Portable Document Format as a suitable name. Its code name
was Carousel while it was under development. This is more or less the same as informa-
tion interchange, but carried one step further, specifically to include highly stylized text
and graphics. This further step functions to preserve the “look and feel” of a document
across platforms. This includes the typefaces, graphics, and even color. No longer will you
need the application that created the original document, and no longer will Courier be
used to replaced missing fonts. You may have guessed that Adobe Acrobat uses Super-
ATM technology’s font metrics database to accomplish part of its goals. Although Super-
ATM itself is dead, as an independent product, its functionality is alive and well even in
the latest version of Acrobat (version 9.0 as of this writing).

Adobe Acrobat, specifically its Distiller application, works by first interpreting a
PostScript file, which can come from a variety of sources. Acrobat Distiller, which is the
work-horse application that converts PostScript files to PDF, then outputs a new file that
conforms to PDF specifications. Many applications can create PDF files without the need
to use Acrobat Distiller. Adobe applications that provide this functionality do so through
the use of a library called PDFL.

Adobe Reader, which is freely available for OSes such as Mac OS X, Windows, and even
Linux, is used to display and print PDF files.‡ Adobe Acrobat and Adobe Reader are not
the only applications that can view and print PDF files. On Mac OS X, for example, the
Preview application provides this ability. Single-page PDF files also display inline in the
Mac OS X Mail application, when an email with a PDF attachment is open.

More information on Adobe Acrobat and PDF is provided in Chapter 12, where both are
described in the context of the Web and printing publishing. The complete PDF specifica-
tion is available in the form of a document entitled PDF Reference, which, oddly enough,
is available as a PDF file that can be downloaded from Adobe Systems’ website.§

* Hint, hint….
† A note of family trivia here. My beloved wife worked on the Acrobat development team from version 3.0

through version 8.0.
‡ http://www.adobe.com/products/acrobat/
§ http://www.adobe.com/devnet/pdf/pdf_reference.html

556 | Chapter 8: output Methods

Ghostscript
Ghostscript, which was touched upon earlier in this chapter, is thought by many to simply
be clone PostScript. It is far more than that. Those who use Mac OS X or Windows as
their OS take it for granted that support for many things are built-in at the OS level, such
as support for OpenType fonts and the ability to run a wide variety of applications that
author, view, and print PDF files. Some OSes, such as Linux, do not have such capabilities
built in.

Ghostscript is an interpreter for the PostScript page-description language, with the abil-
ity to view and print PostScript files. Its latest versions include facilities for creating PDF
files from PostScript files, much like Acrobat Distiller, and to subsequently view and print
them. Ghostscript also supports a wide variety of font formats.

If you use Linux or are considering Linux as your OS, I strongly encourage you to explore
what features and functionality Ghostscript offers.*

opentype and truetype
Thanks to cooperation and collaboration by Adobe Systems, Apple, and Microsoft, the
latest OSes, specifically Mac OS X and Windows, provide equal footing for OpenType and
TrueType fonts. It is now possible to build a single font file that serves both platforms, and
potentially other platforms, such as Linux and mobile devices.

In Chapter 6 we discussed TrueType as a font format, but here we discuss TrueType as
font-rendering machinery. TrueType font-rendering technology is fundamentally the
same as used by ATM in that it renders character descriptions (glyphs or outlines) on
the computer, then uses the resulting bitmapped fonts for both display and printing.† The
TrueType font-rendering machinery has been an integral part of Mac OS since System
7, and likewise since Microsoft Windows version 3.1. The latest versions of these OSes
include ATM functionality, which effectively allows PostScript fonts to be used, but the
practical result is that OpenType fonts can be used.

Although I did not like history class during my high school years, and my grades clearly
reflected this attitude, I do enjoy historical trivia that relates to this book. Go figure. In any
case, like ATM, TrueType began as a Latin-only font-rendering technology. In mid-1992,
Apple released a package called Kanji TrueType, which included two TrueType Japanese
fonts: Ryobi’s 本明朝-M (hon minchō M) and FDPC’s 平成角ゴシック (heisei kaku gos-
hikku). Then, late in 1992, Apple subsequently released KanjiTalk version 7.1, which was
bundled with seven TrueType Japanese fonts—the two just listed plus Osaka (identical to
the Kanji TrueType font 平成角ゴシック, but instead set in a 256×256 design space, as
opposed to the more typical 2048×2048 design space of TrueType fonts), FDPC’s 平成

* http://pages.cs.wisc.edu/~ghost/
† Of course, bitmaps of different resolutions are generated to accommodate screen display and printing, both of

which require wildly different resolutions.

other Printing Methods | 557

明朝 (heisei minchō), Ryobi’s 丸ゴシック-M (maru goshikku M), Morisawa’s 中ゴシック
BBB (chū goshikku BBB), and Morisawa’s リュウミンライト-KL (ryūmin raito KL).* Chi-
nese and Korean versions of Mac OS were also bundled with TrueType fonts appropriate
for the locale.

TrueType fonts do have many merits, such as their use of an excellent font-caching mecha-
nism that makes subsequent displaying—well, to be more precise, redisplaying—of glyphs
extremely fast.

Microsoft and Apple had further developed their (at the time, incompatible) TrueType
formats in order to incorporate what most people refer to as advanced typographic func-
tionality. These technologies were known as TrueType Open and QuickDraw GX, respec-
tively. As noted in Chapter 6, QuickDraw GX subsequently became known as AAT. Also
as discussed in Chapter 6, TrueType Open effectively transitioned into OpenType.

other Printing Methods
A small number of you may not have access to the printing methods described up until
now, most likely due to the fact that you do not use an OS with built-in font rendering, or
do not own or otherwise have access to a PostScript CJKV printer. Fortunately, you will
usually find that the CJKV text-processing software you are using comes with at least a
bare-bones method for outputting CJKV text to a printer, whether it uses outline or bit-
mapped fonts.

There are freely available and dedicated CJKV printing kits, such as CNPRINT, available
for MS-DOS, Unix, and VMS, and developed by Yidao Cai (蔡依道 cài yīdào).† These
programs accept CJKV text files as input, then format the text for printing. These printing
kits often come bundled with at least a minimal set of bitmapped fonts, but you are not
always limited to using those. Some word processors that do not require an underlying
CJKV-capable OS almost always have similar printing facilities.

Besides PostScript and these printing kits, there are other typesetting and page-
description languages in use today. Examples include ditroff, triroff, troff, TEX, and LATEX.
Some of these, such as TEX and LATEX, have had CJKV-capable versions available for a
long time. In fact, there are many slightly different versions of TEX available, such as those
made available by NTT and ASCII. Japanese TEX, for example, makes use of fonts from
Dainippon Printing. There are also quite a few Korean-enabled versions of TEX and LATEX

* As discussed in Chapter 6, the localized menu names for these two Morisawa fonts were not the same as their
PostScript counterparts, and the proportional Latin characters were metrically incompatible with the same
PostScript counterparts (although some contemporary PostScript printers include a solution that allows the
TrueType version to effectively alias to the PostScript version resident on the printer, and compensates for the
metrics incompatibility).

† http://www.ywpw.com/cai/software/

558 | Chapter 8: output Methods

available.* For more general information on TEX, I suggest exploring the many books
written by its creator, Donald Knuth (高德纳).†

As sort of a section summary, the material in this chapter concentrates on PostScript be-
cause it produces a high-quality printed page on virtually any output device, and because
the most commonly available outline fonts are in PostScript format. Perhaps of more im-
portance is the fact that these other typesetting and page-description languages have the
ability to generate PostScript.

the role of Printer drivers
Whenever a document is to be printed, there is mandatory interaction with software
called a printer driver. The printer driver communicates with the printer, and whether
the printer driver can query the printer—that is, it asks the printer a question about its
configuration, such as supported paper sizes or what fonts are resident in its memory or
otherwise available for use, then expects an answer—depends on the OS on which it is
running, and perhaps the vintage of the OS. For many applications, usually simpler ones,
it is the printer driver that is responsible for generating the PostScript that is ultimately
sent to the printer for printing. For what are considered high-end applications, such as
the graphics or page-composition applications that are described at the end of Chapter 7,
the printer driver does not typically generate PostScript, but rather acts as a pass-through
agent. In other words, the printer driver accepts or receives the PostScript that is gener-
ated by an application, then merely passes it along, without modification, to the printer
so that it can be printed.

Printer drivers can also play other critical roles, such as font subsetting and embedding.
Although it is common practice to embed Type 1 fonts in PostScript files, primarily to en-
sure that the printer will use the correct fonts, or the correct version of the fonts, doing the
same for CJKV fonts is more problematic for a variety of reasons, such as the following:

CJKV fonts are typically several megabytes in terms of file size, which often exceeds •	
the RAM capacity of most printers and imagesetters. These fonts have historically
been downloaded to the printer’s hard disk.‡

Only a small fraction of the glyphs in a CJKV font are used in a typical document, •	
which makes font subsetting extremely attractive—consider that 70% of typical
Japanese text consists of kana, which represent less than 200 glyphs in a font when
totalled.

While the average size of the CJKV fonts I used to produce this book is approximately •	
5 MB, the largest is over 40 MB!

* http://www.ktug.or.kr/
† http://www-cs-staff.stanford.edu/~knuth/
‡ CJKV fonts typically require additional resources and infrastructure that may or may not be present on a given

printer.

the role of Printer drivers | 559

These are all good reasons why embedding entire CJKV fonts has been difficult to imple-
ment and is simply not practical. Some printer driver are responsible for performing font
subsetting, which consists of three basic steps:

Determine what glyphs in a given font are used in the requested document.•	

Create a new version of the font that contains only the glyphs for the characters ref-•	
erenced in the document.

Embed the newly built subsetted font into the PostScript file.•	

Adobe Acrobat, as a medium for creating, displaying, and printing PDF files, also sup-
ports font subsetting. When a PDF file is created, only the glyphs that are referenced in
the document are embedded.

Microsoft Windows Printer drivers
In the past, the availability of appropriate printer drivers on Windows was critical in get-
ting your documents to print correctly. Windows had traditionally been a platform that
did not allow the printer driver to query the printer. This is why the infamous PostScript
Printer Description (PPD) files were absolutely necessary.

PPDs contain the printer’s configuration information in a convenient (and local) form
that can be easily understood (that is, parsed) by printer drivers. PPDs are, in general,
read-only documents, but some applications retain their own set of writable PPDs in or-
der to manage fonts that have been subsequently added (that is, aftermarket fonts that
have been downloaded) to the printer.

At one point, there were three suitable printer drivers available for Windows, listed in
Table 8-1.

Windows printer drivers—historicalTable 8-1.

Printer driver developer

AdobePS Adobe Systems

PS Print EAST

PScript Microsoft

Although no longer developed nor available, Adobe Systems’ AdobePS printer driver rep-
resented effort to improve the printing architecture for Windows, and provided users and
developers alike with plug-in functionality.

Also no longer developed nor available, EAST’s PS Print printer driver was offered in a
variety of versions, depending on what version of Windows you were using, and what

560 | Chapter 8: output Methods

resolution of printer you expected to use.* One feature unique to PS Print was its crop-
mark editor.† Unfortunately, the PS Print series was available only for Japanese.

Finally, PScript is Microsoft’s version of a PostScript printer driver, codeveloped with
Adobe Systems.‡ At one point, Adobe Systems enhanced PScript’s features, and made it
available as AdobePS (previously described). PScript does not provide any sort of plug-in
functionality. The version of PScript included in Windows NT version 4.0 and earlier was
developed by Microsoft alone, but the version that is included in Windows 2000 and later,
to include Windows XP and Vista, was codeveloped with Adobe Systems once again. For
printing to non-PostScript devices, Unidrv is used instead.§

So, when considering the latest versions of Windows OS, specifically XP and Vista, there
is effectively one choice for the printer drive. In other words, no choice. The simplicity of
this is a good thing. The printer driver works well.

Mac os X Printer drivers
Now, comparable to what happened on Windows, printing on Mac OS X has become
simplified. To be more accurate, greatly simplified, when compared to the situation prior
to Mac OS X. There are no longer any choices, and thus no confusion, which is precisely
why the printing situation has become simplified.

However, prior to Mac OS X, Mac OS users were faced with the prospect of choosing
among the following PostScript printer drivers, depending on what other software hap-
pened to be installed:

AdobePS•	

LaserWriter•	

LaserWriter 8•	

PSPrinter•	

How were each different? Who developed them? When should one be chosen over an-
other? These were all good questions, because it was never clear when it was best to use
one over the other.

Both LaserWriter and LaserWriter 8 were maintained by Apple—they are different only
in that LaserWriter 8 was of more recent vintage than LaserWriter. LaserWriter 8 was
originally developed by Adobe Systems as PSPrinter.

PSPrinter, which was renamed to become AdobePS, was developed by Adobe Systems
and bundled with virtually all Adobe Systems’ applications.

* http://www.est.co.jp/psprint/ and http://www.est.co.jp/prndrv/
† Crop marks are called トンボ (tombo) in Japanese.
‡ http://msdn.microsoft.com/en-us/library/aa506075.aspx
§ http://msdn.microsoft.com/en-us/library/ms802044.aspx

output tips and tricks | 561

Historical Korean printing issues
PostScript printing of Korean text on Mac OS (meaning prior to Mac OS X), unlike for
Chinese and Japanese text, took one of two forms:

One-byte printing•	

Two-byte printing•	

The one-byte printing method assumed that the Korean fonts resident on the PostScript
printer were constructed as a series of one-byte–encoded Type 1 fonts—in other words,
not a genuine composite font. The two-byte printing method is more along the lines of
Chinese and Japanese printing, in which the Korean fonts that are resident on the Post-
Script printer are genuine composite fonts. A Control Panel, included with Mac OS-KH,
called Hangul Jojung (한글조중 hangeul jojung), controlled what printing method was to
be used. As we discovered at Adobe Systems shortly after Apple’s Korean Language Kit
was released at the end of 1996, this Control Panel was not included. The result was that
only one-byte–encoded Korean fonts on PostScript printers would work. Apple subse-
quently released this Control Panel for KLK users.

output tips and tricks
Printing CJKV documents can be problematic for some users, depending on their hard-
ware and software environment. Here I present some tips and tricks that may help some
readers to produce CJKV documents in unusual environments.*

Creating CJKV documents for non-CJKV systems
One of the most common questions I get asked is how to create a document that includes
CJKV text, but can be exported for use on non-CJKV systems, either for displaying or
printing. Fortunately, there are several ways to create these types of documents, such as
the following:

Convert CJKV text into outline graphics•	

Convert CJKV text into bitmapped graphics•	

Use CJKV-capable •	 Adobe Acrobat

A very brief introduction to Adobe Acrobat was provided in earlier sections of this chap-
ter, and other aspects of Adobe Acrobat are covered in Chapter 12. The following sections
detail methods for converting CJKV text into graphic objects, either outline objects or
bitmapped graphics.

The latest versions of many applications now support a wide variety of formats, in terms of
importing graphics for use in documents. Adobe InDesign is an excellent example. Most

* The use of the term “unusual” here usually refers to non-CJKV–capable environments.

562 | Chapter 8: output Methods

users expect that word processors and document composition software will support EPS,
JPEG, and TIFF in terms of importable graphics formats. Adobe InDesign additionally
supports PDF and the native formats of some applications, most notably those of Adobe
Illustrator and Adobe Photoshop. The ability to import the native formats of applications
serves to reduce the number of files that need to be maintained. Instead of maintaining
the original file, in native format, along with an EPS, JPEG, or TIFF file for importing into
another application, only the single native-format file needs to be maintained. Simple is
almost always better, especially if it is coupled with no loss of functionality.

Converting CJKV text into outline graphics
Converting CJKV text into outline graphics requires an application that can perform this
functionality. Adobe Illustrator is a suitable application for this task.

This operation is extremely simple. First, you compose and lay out the text as desired.
Second, you select the command for converting text into editable outlines. Explore the
menus, or consult the manual to determine exactly where in the UI this command is
provided. Finally, you save the file as an EPS (Encapsulated PostScript) file, unless you
plan to import the file into an application that supports the native file format. As already
explained, Adobe InDesign can import native Adobe Illustrator files. In any case, the end
result of this operation is an EPS or native file that can be imported into other applica-
tions, such as those that perform page composition, as graphics.

For some graphic designers and users, this functionality is necessary whether or not they
are using a CJKV-capable OS or have a CJKV-capable printer—they require access to
glyphs’ outlines so that they can make changes, sometimes quite subtle. Graphic designers
may simply want to “fill” the character’s outline with some kind of interesting pattern, or
change its shape in subtle ways for use in advertisement.

The following are some time-saving tips and tricks that are very much worth mentioning
at this time:

Creating outline graphics, as opposed to bitmapped graphics, has the advantage that •	
the EPS or native file can be scaled to almost any size.

Converting text to outline graphics results in a form that no longer contains hinting •	
information that benefits small point sizes at low resolution. However, when these
EPS or native files are output at high-resolution, one would be hard-pressed to tell
the difference.

Because text that has been converted into editable outlines can no longer be edited •	
as text, you are encouraged to save the text for possible future editing. The preferred
way in which to do this is to include two identical layers in your document whereby
one layer contains the actual text (flagged so that it does not print) and the other layer
contains the text after conversion to editable outlines (this is the layer that should be
flagged to print). Trust me, this tip alone can save you plenty of time!

Advice to developers | 563

In the past, some Japanese fonts, such as those from Morisawa, were protected in •	
such a way that their outlines were not accessible through this feature.

Keep these points in mind when creating EPS or native files containing text converted
into editable outline graphics. Fortunately, there are still ways to work with fonts that do
not allow access to their outlines, as described in the following section.

Converting CJKV text into bitmapped graphics
A technique that turns text into bitmapped graphics is desirable only under circumstanc-
es when a font’s outlines are protected in such a way that prevents applications from ac-
cessing their outlines, or when you must use text in an application that supports only
bitmapped graphics, such as earlier versions of Adobe Photoshop. Thankfully, the number
of fonts that have their outlines protected in this fashion have diminished, and are not
likely to increase. For example, I know of no OpenType fonts that have their outlines
protected this way.

Converting text into bitmapped graphics first and foremost requires an application suited
for the task—Adobe Photoshop is an appropriate tool. All of the steps outlined previ-
ously for converting text into editable outlines apply here, except that the conversion to
bitmapped graphics is more or less an automatic process as you input text. The handling
of text in Adobe Photoshop has also improved, in more than one way, as follows:

The text engine that is used by Adobe Photoshop is more advanced and produces •	
much better results than before, in terms of text composition.

When entering text, two layers are automatically maintained, one of which preserves •	
the editable text for the purpose of future editing, and one which is the rendering
layer. These layers are saved as part of the Photoshop document file.

In addition, you need to determine what the final output resolution of the document is so
that you can set the resolution of the document workspace.*

Advice to developers
This section presents some of my opinions and suggestions regarding the acquisition of a
CJKV-capable publishing system, including hardware and software. Thankfully, much of
what is needed is no longer found in dedicated hardware or software.

CJKV-Capable Publishing systems
After reading the material in this and earlier chapters, you should be well convinced that
using outline fonts for generating high-quality CJKV output is indeed the best choice all

* Note, however, that creating a full-page Adobe Photoshop document whose resolution is equivalent to that of a
photo imagesetter (1270-dpi or greater) will require several megabytes of disk space. It is not a decision to make
lightly, especially if you need to produce a large number of pages.

564 | Chapter 8: output Methods

around. Investing in a publishing system is something that should be done with great care
in order to ensure the best possible results.

Only a few years ago, you would have needed to spend tens of thousands of dollars to
produce high-quality CJKV documents. But, believe it or not, you can now purchase an
entire hardware and software system for producing high-quality CJKV documents for
well under $10,000 (U.S.). The actual price may fluctuate depending on how many CJKV
typefaces you decide to purchase, and on other factors (for example, you may already own
some of the hardware or software).

My recommendations for a basic CJKV-capable publishing system, at least when I wrote
this chapter of this book, are provided in Table 8-2.

CJKV publishing system hardware and software recommendationsTable 8-2.

Hardware/software description estimated cost

Printer Color PostScript 3 with 600-dpi or greater resolution $500–$1,000

Typefaces Serif, sans serif, and script typeface designs in text and display weights $2,000

CPU The greatest speed, memory, and capacity that you can afford $2,000

OS Mac OS X or Windows Vista $130–$320

PDF authoring Adobe Acrobat Proa $450–$700

Document composition Adobe InDesigna $700

Graphics Adobe Photoshop and Adobe Illustratora $1,300–$1,600

One way to save money is to buy the Adobe Creative Suite, either Design Standard or Design Premium, which includes this and other applica-a.
tions for $1,400 and $1,800, respectively.

Given the state of contemporary OSes—such as Mac OS X and Windows Vista—and the
large number of bundled fonts, it is possible to use only OS-bundled fonts, as long as your
font needs are not complex. Some applications, such as those offered by Adobe Systems,
are bundled with CJK fonts. Mac OS X, as an example of an OS, is bundled with a half-
dozen high-quality OpenType Japanese fonts, most of which are based on the Adobe-
Japan1-5 character collection.

some Practical Advice
You may be wondering, even after reading this chapter and earlier chapters, which outline
font format to use: PostScript or TrueType. Most of what I covered here and in Chapter
6 may have seemed focused on or biased toward PostScript fonts. The correct answer is
simple: use both. In fact, OpenType is useful in that it effectively blurs the distinction be-
tween PostScript and TrueType fonts. An OpenType font can use PostScript or TrueType
outlines, in the ‘CFF’ and ‘glyf ’ tables, respectively. In other words, a TrueType font is an
OpenType font.

Advice to developers | 565

I strongly suggest working with OpenType fonts. There are a number of reasons for this.
First, OpenType fonts work very well with Adobe Systems’ entire line of applications. Sec-
ond, OpenType fonts are cross-platform, meaning that they work with the latest versions
of OSes developed by Apple and Microsoft, and also with most Linux distributions as long
as the application uses FreeType 2 or an equivalent OpenType-savvy font rasterization
library. Third, OpenType has become the preferred font format by type foundries across
the globe. Fourth, the font development tools that support OpenType have proliferated
much broader than those tools that supported legacy font formats, which explains why
OpenType has become the preferred font format by type foundries.

Interestingly, in Understanding Japanese Information Processing, which was written way
back in 1993, I speculated that PostScript and TrueType font technologies may eventually
merge or at least become somewhat indistinguishable.* When the first edition of this book
was written, OpenType was at the very early stages of development, as a cooperative effort
between Adobe Systems and Microsoft, and its infrastructure was still being developed.
Clearly, what was speculated in 1993 has taken place in the context of OpenType, which
was discussed in Chapter 6. As already stated, OpenType has become the preferred font
format, and is well supported by the major OSes and the applications that run on them.

Finally, I strongly suggest that you embrace PDF as your preferred document format for
printing and publishing. The genuinely self-contained nature of PDF is a true blessing,
and it can be used to print and display the simplest and most complex documents on a
wide variety of devices.†

* For this sort of technology, 1993 is considered a long time ago, but not in a galaxy far, far away.
† As a tidbit of historical trivia related to this book, the first printing of the first edition of this book was done the

old-fashioned way, by sending PostScript files to a photo imagesetter and outputting photographic paper. That
was at the very end of 1998. In the latter part of 2002, Adobe Acrobat, PDF, and the publishing industry had
matured to the point that the second printing of the first edition could be published via PDF, which also paved
the way to making the first edition of this book available in PDF at the end of 2006.

567

CHAPter 9

Information Processing techniques

Remember what you have learned in earlier chapters, specifically that CJKV character set
standards and encoding methods have many characteristics that make each one unique
and distinct. But within a given locale, there is comfort in knowing that at least some
effort was made to keep its various encoding methods somewhat compatible. More im-
portantly, the various encodings for Unicode are entirely and completely compatible. In
addition, compatibility with Unicode has perhaps become even more critical, given its
widespread use in today’s OSes and application. What we are discussing, of course, is the
issue of interoperability.

Understanding that interoperability issues have become increasingly important—even
critical—when one is dealing with CJKV information processing on multiple platforms is
a prudent mind set to maintain. Not all computer systems use the same encoding method.
Using Japanese as an historic example, Shift-JIS encoding was typically used on Windows-
and Mac OS–based machines, EUC-JP encoding was used on Unix-based machines, and
ISO-2022-JP encoding was used for electronic transmission, such as email and news. Even
with Unicode, there are three basic encodings, and the possibility of needing to deal with
all three of them, in addition to interoperating with legacy encoding, is relatively high.

Because I was faced with the difficulties of converting, manipulating, and generating Japa-
nese text, I decided to develop a suite of tools for performing such tasks. Some of these
tools have been extended or enhanced to accommodate other CJKV character sets and
encoding methods, including Unicode.*

You will find that this chapter first discusses locale issues, then programming languages,
followed by algorithms for actual byte-value conversion, which represents the heart of the
CJKV code conversion process. However, that is not all that is required. Next, we move
on to text stream handling, which serves as the wrapper for the code conversion routines.

* Two of these Japanese-specific tools have been extended, but have taken on different forms: JChar is now the
CJKV Character Set Server, as described at the end of this chapter, and some of the functionality found in JConv
is available in CJKVConv.pl, as described in the section entitled “Code Conversion Across CJKV Locales,” in
Chapter 4.

568 | Chapter 9: Information Processing techniques

As you’ll soon realize, the latest Java APIs simplify this task immensely. Programming
languages such as Java can perform much of the necessary code conversion through the
use of built-in methods, which saves programmers significant time, effort, and energy.
There are, however, specialized algorithms that may or may not be available as built-in
methods or functions, such as half- to full-width katakana conversion (Japanese-specific)
and automatic code detection.* But, even implementing these algorithms in Java provides
much simplification due to the use of Unicode—the UTF-16 encoding form—internally.
This chapter continues with information about handling multiple bytes as a single unit for
operations such as text insertion, deletion, and searching. CJKV implications for sorting,
parsing, and regular expressions are covered at the end of the chapter.

In most cases, workable C or Java source code, along with an explanation of the algorithm
is given (Appendix C provides Perl equivalents of some of these algorithms). Feel free to
use these code fragments in your own programs—that is why they are included in this
book. The code samples that I provide here may not be the most efficient code, but they
do work.† Feel free to adapt what you find here to suit your own programming style or
taste. The entire source code for these algorithms and examples is available in machine-
readable form.‡

A not-so-new aspect of programming and OSes is the ability to use what is known as
the locale model. The locale model is a system that predefines many attributes that are
language- and locale-specific, such as the number of bytes per character, date formats,
time formats, currency formats, and so on. The actual attributes are located in a library
or locale object file, and are loaded when required. The locale model as originally defined
by X/Open’s XPG4 (X/Open Portability Guide 4) and IEEE’s POSIX (Portable Operating
System Interface) contained several categories of features: code set information, time and
date formats, numeric formatting, collation information, and so on. Now, the preferred
way in which to encapsulate and manage these locale properties is through the use of the
CLDR (Common Locale Data Repository).

Language, Country, and script Codes
A typical locale identifier is composed of two components, separated by an underscore.
The first part specifies a language identifier (“en” for English, “ja” for Japanese, “ko” for
Korean, “zh” for Chinese, “vi” for Vietnamese, and so on). ISO 639-1:2002, Code for the
Representation of Names of Languages, Alpha-2 Code, is the ISO standard that serves to
register these and other two-letter language identifiers.

The second part of a locale specifies a county or region. The standard designated ISO
3166-1:2006, Codes for the Representation of Names of Countries and Their Subdivisions—

* After all, before you can convert from one encoding to another, you need to know what the original encoding
is.

† If they do not work, I want to know about it!
‡ http://examples.oreilly.com/9780596514471/Ch9/

Language, Country, and script Codes | 569

Part 1: Country Codes, specifies (and thus registers) country codes, such as “US” for the
U.S., “CN” for China, “TW” for Taiwan, “HK” for Hong Kong, “SG” for Singapore, “JP”
for Japan, “KR” for South Korean (Republic of Korea), “KP” for North Korea (Democratic
People’s Republic of Korea), “VN” for Vietnam, and so on. These are the same two-letter
country codes found in many email addresses and URLs.

Note the use of upper- versus lowercase—it is intentional. Also be sure to see RFC 3066,
Tags for the Identification of Languages, for more information.*

There are now three-letter language codes as defined in ISO 639-2:1998, Codes for the
Representation of Names of Languages—Part 2: Alpha-3 Code.† Table 9-1 lists ISO lan-
guages codes that are of interest to readers of this book.

ISO 639 two- and three-letter language codesTable 9-1.

Language Iso 639 terminological (Iso 639-2/t) Bibliographic (Iso 639-2/B)

English en eng eng

Chinese zh zho chi

Japanese ja jpn jpn

Korean ko kor kor

Vietnamese vi vie vie

Note how the two types of three-letter language codes are identical except for Chinese.
Three-letter country codes have also been established. Table 9-2 lists some of them, along
with their two-letter counterparts.

Two- and three-letter country codesTable 9-2.

Country two-letter three-letter

United States US USA

China CN CHN

Taiwan TW TWN

Hong Kong HK HKG

Singapore SG SGP

Japan JP JPN

South Korea KR KOR

North Korea KP PRK

Vietnam VN VNM

* http://www.ietf.org/rfc/rfc3066.txt
† http://www.loc.gov/standards/iso639-2/

570 | Chapter 9: Information Processing techniques

As the world has become more complex, by the mere act of supporting more locales in
OSes and applications, the need to more explicitly and consistently declare locales has
increased. Thus, moving from two to three-letter identifiers makes perfect sense.

The locale “zh_CN,” for example, refers to Chinese as used in China, and would include
a Chinese code set (such as GB 2312-80 or GB 18030-2005), a yuan (￥) for the currency
symbol, and so on. The locale “zh_TW” refers to Chinese as used in Taiwan, and would
use appropriate locale attributes specific to Taiwan. For more information on the locale
model, I suggest that you obtain three X/Open CAE Specifications books (CAE stands for
Common Applications Environment) and the X/Open Guide: Internationalisation Guide.
See this book’s bibliography for more information.

Another useful technique is to be able to identify the script. A language can use mul-
tiple scripts (for example, Korean uses Latin characters, hangul, and hanja), so this tech-
nique is useful for identifying blocks of text. Table 9-3 lists scripts, along with their ISO
15924:2004 (Codes for the Representation of Names of Scripts) two-letter codes and ISO
10179:1996 (Information Technology—Processing Languages—Document Style Semantics
and Specification Language (DSSSL)) public identifiers. Note the intentional use of upper-
then lowercase for the two-letter ISO 15924 codes.

Script codes and identifiersTable 9-3.

script Iso 15924:2004 dsssL

Bopomofo Bp Script::Bopomofo

Chữ Nôm Cu none

Ideographs Hn Script::Han

Hangul Hg Script::Hangul

Hiragana Hr Script::Hiragana

Katakana Kk Script::Katakana

Latin La Script::Latin

Undetermined script Zy none

Unwritten languages Zx none

Although fonts, particularly OpenType fonts, declare and use scripts, they use a different
system as described in the OpenType specification.* OpenType fonts additionally declare
and use three-letter language tags, which are different from the three-letter ones specified
by ISO 639-2.†

When used and applied wisely, country, language, and script codes can be used to enhance
the performance and reliability of software when handling multilingual information. But

* http://www.microsoft.com/typography/otspec/scripttags.htm
† http://www.microsoft.com/typography/otspec/languagetags.htm

Programming Languages | 571

there is much more to locales than country, language, and script codes. As previously
noted, there is some inconsistency in that a common system has yet to be described. This
is the perfect time to discuss CLDR.

CLdr—Common Locale data repository
The Common Locale Data Repository (CLDR), put simply, is a repository or database of
locale data that helps to ensure consistent use of such data across OSes and applications.*
Given the extent to which languages and scripts are now implemented in today’s OSes and
applications, a framework for ensuring consistency is absolutely critical, and the CLDR
fills this important need. Why is this important? Today’s OSes and applications do not
function in a vacuum, and instead interoperate to varying degrees. When dealing with a
multitude of languages and scripts, the ability to uses a consistent set of locale data across
these OSes and applications is clearly a good thing, and leads to less frustration on the
part of the software developer and a much better experience for the end users.

CLDR is, of course, based on Unicode, and is written in XML according to LDML (Locale
Data Markup Language).† The contents of each CLDR release are based upon contribu-
tions, often by member companies and individuals of The Unicode Consortium.

Programming Languages
A short discussion of several popular programming languages—C/C++, Java, Perl, Py-
thon, Ruby, and Tcl—is necessary before we can meaningfully discuss the information
processing techniques presented in the remainder of this chapter. While what I write in
the following sections is by no means a complete description or treatment of these pro-
gramming languages, it does provide information about their salient features and virtues
as they relate to CJKV programming.

While it is easy—and, quite frankly, bordering on childish—to explore and argue about
the strengths and weaknesses of programming languages, it is ultimately the method of
deployment that usually determines what programming language is chosen for a specific
task. Like all tools, particularly those that are complex, half the battle involves knowing
their strengths and weaknesses, and the other half is subsequently knowing how to take
best advantage of their strengths and working around their weaknesses.

A programming trend that is catching on are variables and data structures that use multiple-
byte or wide characters.‡ Although C and C++ were enhanced to support these variables
and data structures, widespread support has never been achieved. That has since changed
with the introduction of the Java programming language, created by James Gosling and
Bill Joy of Sun Microsystems.

* http://www.unicode.org/cldr/
† http://www.unicode.org/reports/tr35/
‡ The issue of multiple-byte versus wide characters was first discussed in Chapter 1.

572 | Chapter 9: Information Processing techniques

Most of the algorithms and techniques provided in this chapter make use of the Java APIs,
which provides programmers with exceptional internationalization support. Providing C
or C++ examples that make use of the locale model or multiple-byte and wide character
data structures is not very useful because many compilers still do not support them (en-
suring nonportability from day one). Programmers who use C or C++ generally resort to
writing their own input and output mechanisms for handling issues such as representing
two or more bytes as a single character. If you are a programmer, I encourage you to ex-
plore the Java programming language.

C/C++
Most CJKV-capable programs today are still written in C or C++. The wide availability of
C/C++ compilers has made this possible, along with the still-stellar performance of the
executables that result. However, because of the weak or nonexistent support for interna-
tionalization in such compilers, C/C++ may no longer the best choice for some purposes
and applications.

It is important to understand, or at least appreciate, the programming paradigms and
structures offered by C/C++ because they have been instrumental in forming the founda-
tions for the seemingly more contemporary programming languages, covered next. Many
of their programming constructs, such as conditional statements and loops, have been
“borrowed” into languages such as Java, Perl, Python, and Ruby. This makes it a much
easier task for C/C++ programmers to learn and subsequently master these other pro-
gramming languages.

One pitfall of the C programming language is that it has the concept of “signed” and
“unsigned” characters (type char), and in most common implementations the default is
signed. For all meaningful string comparisons using multiple-byte encodings, the pro-
grammer must set everything to unsigned char, which can cause compiler warnings
because prototypes no longer agree. And, things won’t work correctly if unsigned char
is used. Some compiler developers, bless their hearts, give programmers the ability to
change the default to unsigned char.

Java
The first programming language that experts considered to be fully suitable for CJKV
programming is Java. Java was touted as being the first programming language to include
support for Unicode, but it was not until the version 1.1 release of the language that this
feature or capability was fully realized.

The standard Java I/O (Input/Output) package, instantiated as java.io, provides built-in
support for converting between Unicode (the UTF-16 or UTF-8 encoding forms) and
numerous non-Unicode encoding methods, such as those covered in Chapter 4 of this
book. Java’s NIO (New Input/Output) package, instantiated as java.nio, provides even
more elaborate code conversion facilities. This fact alone could effectively render most of

Programming Languages | 573

this chapter as being no longer necessary, but luckily for us, there are still some tips, tricks,
pitfalls, and caveats that developers need to be aware of before diving headfirst into Java.

A lot of thought has obviously been put into the design of Java as a programming lan-
guage. One problem that is almost always encountered when writing programs in any
language is portability. This usually results from differing data type sizes for different ar-
chitectures. Table 9-4 lists data types and their sizes as specified by Java.

Java data types and sizesTable 9-4.

data type size (in bits)

boolean 1

chara 16

byte 8

short 16

intb 32

long 64

float 32

double 64

Also known as a UTF-16 code unit.a.

Also known as a UTF-32 code unit.b.

With almost any other programming language (with C and C++ being as good examples
as any), the data type sizes listed in Table 9-4 differ depending on the underlying architec-
ture. Java is effectively a programmer’s dream come true, because it implements consistent
and cross-platform data sizes in which programmers prefer to think (with the possible
exception of type char).

Unicode characters can be directly specified in Java as UTF-16 code units through the use
of the 16-bit char data type and the \uXXXX notation, whereby the XXXX is a placeholder for
four hexadecimal digits. Characters outside the BMP, meaning UTF-16 Surrogate Pairs,
must therefore be directly represented, so that U+20000 is represented using Java char
data type as \uD840\uDC00. The 32-bit int data type is used when specifying characters
outside the BMP without using Surrogate Pairs.

An excellent guide to the Java programming language is David Flanagan’s Java in a Nut-
shell, Fifth Edition (O’Reilly Media, 2005).*

* http://oreilly.com/catalog/9780596007737/

574 | Chapter 9: Information Processing techniques

Perl
Usually described as a scripting language, Perl, developed by Larry Wall, is much, much
more than that. Perl’s main strengths include rapid development, regular expressions (de-
scribed later in this chapter),* and hashes (associative arrays). It is not so much these
individual features that provide Perl with extraordinary text-manipulation capabilities,
but rather how these features are intertwined with one another. Other programming lan-
guages offer similar features, but there is often no convenient way for them to function
together. In Perl, for example, a regular expression can be used to parse text, and at the
same time it can be used to store the resulting items into a hash for subsequent lookup.

Perl has been the programming language of choice for those who write CGI programs or
do other web-related programming (a topic that is discussed in Chapter 12), because it is
well-suited for the task.

The extent to which Perl has become Unicode-enabled is now well-documented.† How-
ever, it is strongly advised that the excellent Perl Unicode Tutorial be read before exploring
that documentation.‡ A lot of the Unicode-enabled portions are exposed when you use
the Encode module, such as including the following in your Perl program:

use Encode;

Be sure to read the documentation for the Encode module for more information about its
use and limitations.§

Ignoring the Unicode-enabling efforts for Perl, there are still clever ways to use Perl for
handling multiple-byte data, most of which make use of regular expression tricks and
techniques. The Perl code examples provided in Appendix C should be studied by any
serious Perl programmer.

Kazumasa Utashiro (歌代和正 utashiro kazumasa) has developed a useful Japanese-
enabling Perl library called jcode.pl, which includes Japanese code conversion routines.¶
Some may find the Japanese version of Perl, called JPerl,** to be useful, although I suggest
using programming techniques that avoid JPerl for optimal portability. JPerl adds Japa-
nese support to the following features: regular expressions, formats, some built-in func-
tions (chop and split), and the tr/// operator.

Unicode characters can be directly specified in Perl as scalar values through the use of the
\x{XXXX} notation, whereby the XXXX is a placeholder for up to six hexadecimal digits.

* Tom Christiansen and Nathan Torkington, in Perl Cookbook, Second Edition (O’Reilly Media, 2003), describe
Perl’s regular expression implementation in the following sentence: “It’s more like string searching with mutant
wildcards on steroids.”

† http://perldoc.perl.org/perlunicode.html
‡ http://perldoc.perl.org/perlunitut.html
§ http://perldoc.perl.org/Encode.html
¶ http://srekcah.org/jcode/
** http://www.perl.com/CPAN/authors/Hirofumi_Watanabe/

Programming Languages | 575

The definitive guide to Perl is Programming Perl, Third Edition, by Larry Wall et al.
(O’Reilly Media, 2000).* Tom Christiansen and Nathan Torkington’s Perl Cookbook, Sec-
ond Edition (O’Reilly Media, 2003) is also highly recommended as a companion volume
to Programming Perl.† The best place to find Perl and Perl-related resources is at CPAN
(Comprehensive Perl Archive Network).‡

Python
Like Perl, Python is also sometimes described as a scripting language. Python was de-
veloped by Guido van Rossum, and is a high-level programming language that provides
valuable programming features such as hashes and regular expressions.

Python uses a similar notation as Java for directly specifying Unicode scalar values, spe-
cifically \u XXXX, which also expects exactly four hexadecimal digits. If you want to specify
characters outside the BMP, you must instead use the \U XXXXXXXX notation that expects
eight hexadecimal digits. Python also makes use of the unicode() constructor for specify-
ing Unicode strings, and also the built-in unichr() function for specifying single Unicode
characters through the use of integers.

An excellent guide to Python is Mark Lutz’s Programming Python, Third Edition (O’Reilly
Media, 2006).§ There is also a Python website from which Python itself is available.¶

ruby
Ruby, which is a programming language created by Yukihiro “Matz” Matsumoto (松本行
弘 matsumoto yukihiro), has become very popular, and for many reasons.** Work on Ruby
began in 1993, and was first released in 1995. By the year 2000 it became popular, not only
in Japan, but worldwide.††

Ruby can be characterized as a purely object-oriented scripting language that is highly
productive, hence its popularity. Ruby was invented in Japan, so naturally some basic
internationalization features are built-in, but there is still work to do in that area. The
best way in which to make use of Ruby in the context of Unicode is through the UTF-8
encoding form.

* http://oreilly.com/catalog/9780596000271/
† http://oreilly.com/catalog/9780596003135/
‡ http://www.perl.com/CPAN/
§ http://oreilly.com/catalog/9780596009250/
¶ http://www.python.org/
** http://www.rubyist.net/~matz/
†† On a more personal note, the year 2000 is also significant in that my daughter, who happens to be named Ruby,

was born then. Guess what programming language she is likely to learn when she is older? (Where, oh where,
is a smiley when I need one….)

576 | Chapter 9: Information Processing techniques

I suggest that you explore the main Ruby programming language website,* which provides
an interactive tutorial so that beginners can come up to speed more quickly.† In terms of
books, I suggest The Ruby Programming Language (O’Reilly Media, 2008) by David Flana-
gan and Yukihiro Matsumoto.‡

tcl
Tcl, which stands for Tool Command Language, and often pronounced as “tickle,” is a
programming language that was originally developed by John Ousterhout while a profes-
sor at UC Berkeley.§ Like Perl, Python, and Ruby, Tcl is considered a high-level scripting
language that provides built-in facilities for hashes and regular expressions. John later
founded Scriptics Corporation where Tcl continued to be advanced.

Some important milestones in Tcl’s history include its byte-code compiler introduced for
version 8.0, and support for Unicode, in the form of the UTF-8 and UTF-16 encoding
forms, that began with version 8.1. Tcl now includes a regex package comparable to that
used by Perl. Interestingly, the lack of a byte-code compiler had always kept Tcl slower
than Perl.

Tcl is rarely used alone, but rather with its GUI (Graphical User Interface) component
called Tk (standing for Tool Kit), which is referred to as Tcl/Tk.

other Programming environments
Although it is possible to write multiple-byte–enabled programs using all of the program-
ming languages just mentioned, there are some programming environments that have
done all this work for you, meaning that you need not worry about multiple-byte enabling
your own source code because you depend on a module to do it for you. This may not
sound terribly exciting for companies with sufficient resources and multiple-byte exper-
tise, but may be a savior for smaller companies with limited resources.

An example of one such a programming environment is Visix’s Galaxy Global, a mul-
tilingual product based on their Galaxy product. (Visix Software has since gone out of
business, well over 10 years ago.)

Perhaps of greater interest is Basis Technology’s Rosette Core Library for Unicode, which
is a compact, general-purpose Unicode-based source code library.¶ When embedded
into an application, this library adds Unicode text-processing capabilities that are robust
and efficient across a variety of platforms, such as Windows, along with various flavors
of Linux and Unix. Its functions adhere to the latest Unicode specifications. Important

* http://www.ruby-lang.org/
† http://www.ruby-lang.org/en/documentation/quickstart/
‡ http://oreilly.com/catalog/9780596516178/
§ http://www.tcl.tk/
¶ http://www.basistech.com/unicode/

Code Conversion Algorithms | 577

functions include code conversion between major legacy encodings and Unicode encod-
ings, character classification (identification of a character), and character property con-
version (such as half- to full-width katakana conversion). Basis Technology also offers a
general-purpose code conversion utility, called Uniconv, built using this library.

Another well-made and well-established globalization library that deserves exploration
and strong consideration is ICU (International Components for Unicode), which is por-
table across many platforms, including Mac OS X.* ICU includes superb support for Uni-
code and works well with C/C++ and Java.

Code Conversion Algorithms
It is very important to understand that only the encoding methods for the national char-
acter sets are mutually compatible, and work quite well for round-trip conversion.† The
vendor-defined character sets often include characters that do not map to anything mean-
ingful in the national character set standards. When dealing with the Japanese ISO-2022-
JP, Shift-JIS, and EUC-JP encodings, for example, algorithms are used to perform code
conversion—this involves mathematical operations that are applied equally to every char-
acter represented under an encoding method. This is known as algorithmic conversion.

However, dealing with Unicode encoding forms such as UTF-8, UTF-16, and UTF-32,
and when mapping from one locale to another, requires the use of mapping tables.‡ (Map-
ping tables are necessary when no code conversion algorithm exists, which usually means
that character ordering is different.) This is known as table-driven, tabular, or hardcoded
conversion. Table-driven conversion deals with every character on a case-by-case basis.
Table 9-5 provides examples that illustrate algorithmic versus table-driven conversion,
specifically the first four kanji in JIS X 0208:1997 (for brevity, all code points are expressed
in hexadecimal notation).

Algorithmic versus table-driven conversionTable 9-5.

Character Algorithmic (Iso-2022-JP to eUC-JP)a table-driven (Unicode to eUC-JP)

亜 <30 21> becomes <B0 A1> U+4E9C maps to <B0 A1>

唖 <30 22> becomes <B0 A2> U+5516 maps to <B0 A2>

娃 <30 23> becomes <B0 A3> U+5A03 maps to <B0 A3>

阿 <30 24> becomes <B0 A4> U+963F maps to <B0 A4>

The algorithm used here is simply “add a. 0x80 to each byte.”

* http://www.icu-project.org/
† The only possible exceptions lie in user-defined regions, which do not exist in all encodings of a given locale,

and the JIS X 0212-1990 character set, which is not supported by Shift-JIS encoding.
‡ The conversion between Unicode and ASCII/ISO 8859-1:1998, as one exception, is algorithmic.

578 | Chapter 9: Information Processing techniques

Figure 9-1 illustrates the difference between algorithmic and table-driven conversion, us-
ing the information presented in Table 9-5. Note how algorithmic conversion alters every
character in the same way—they are in the same relative position in the new encoding.
However, table-driven conversion introduces apparent randomness—each character code
is treated as a special case.

���� ���� ���� ����

���� ���� ���� ����

������
������

������

������

��������������������

����������������������

����������������

�����������������������

���������������

���� ���� ���� ����

���������������

������������

������

������

������

���� ���� ���� ����

Algorithmic versus table-driven conversion—visuallyFigure 9-1.

One advantage of converting between legacy encodings and Unicode is that the redun-
dancy in Unicode, in the form of its CJK Compatibility Ideographs, allows for round-trip
(that is, one-to-one) conversion. In fact, this is a fundamental design feature of Unicode.

Code Conversion Algorithms | 579

However, when dealing with conversion between character sets of different locales, such
as between GB 2312-80 and Big Five, the relationship is not always one-to-one, thus
round-trip conversion is not always possible. For this reason, and given the extent to
which Unicode is supported in today’s OSes and applications, it makes sense to keep your
data in Unicode, unless you have a very good reason not to do so.

The code conversion techniques in this section cover Unicode, along with two CJKV-
specific encoding methods: ISO-2022 and EUC. The Japanese-specific Shift-JIS encoding
method is also covered, as is conversion to and from Row-Cell notation. These techniques
can be easily applied to any CJKV locale as long as their character sets are based on these
encoding methods or notations.

It is best to treat the vendor encoding methods, as described in Appendix F, as exceptional
cases. It is also best to avoid using such encoding methods and character sets if your soft-
ware requires the maximum amount of flexibility and information interchange—this is a
portability issue.

The following sections contain more detailed information about dealing with the conver-
sion of these and other encoding methods. Two of the conversion algorithms require the
use of somewhat complex functions for maximum efficiency (at least, when writing code
in a language other than Java). The other types of conversion make use of these functions,
or perform simple assignments.

Conversion Between UtF-8, UtF-16, and UtF-32
The Unicode Consortium supplies a series of C routines that perform code conversion
between the UTF-8, UTF-16, and UTF-32 encoding forms.* It is important to note that
conversion between these encoding forms is purely algorithmic. Mapping tables are not
necessary. As described previously, mapping tables are necessary only when converting
between these encoding forms and non-Unicode encodings.

In my own work in establishing a series of UTF-8, UTF-16, and UTF-32 code conversion
routines, written in Perl, I have found that the UTF-32 encoding form serves as an excel-
lent middle ground, meaning that conversion from UTF-8 to UTF-16, and vice versa, is
performed by first converting them to the UTF-32 encoding form.

As already noted in Chapter 4, regardless of the encoding, whether it is UTF-8, UTF-16,
or UTF-32, any Unicode character that is outside the BMP is represented by four effec-
tive bytes. For UTF-8, it means four code units, each of which is one byte. For UTF-16, it
means two code units, each of which is 16 bits or 2 bytes. And, for UTF-32, it means one
32-bit code unit, which is equivalent to 4 bytes.

The primary pitfall when dealing with conversion between the UTF-8, UTF-16, and
UTF-32 encoding forms is the proper handling of the Surrogates, which is the extension

* http://unicode.org/Public/PROGRAMS/CVTUTF/

580 | Chapter 9: Information Processing techniques

mechanism for the UTF-16 encoding form. The High and Low Surrogates should never
be handled individually when converting to and from the UTF-8 and UTF-32 encod-
ing forms, and instead should be used together to map directly code points in Planes 1
through 16. Table 9-6 illustrates correct and incorrect interpretation of UTF-16 High and
Low Surrogates, using the first characters of Planes 1 and 2, along with the last code point
of Plane 16 (which is classified as a noncharacter) as examples.

UTF-16 Surrogate conversion examplesTable 9-6.

scalar value UtF-16Be UtF-8 UtF-32Be UtF-8 (Incorrect) UtF-32Be (Incorrect)

U+10000 D8 00 DC 00 F0 90 80 80 00 01 00 00 ED A0 80 ED B0 80 00 00 D8 00 00 00 DC 00

U+20000 D8 40 DC 00 F0 A0 80 80 00 02 00 00 ED A1 80 ED B0 80 00 00 D8 40 00 00 DC 00

U+10FFFF DB FF DF FF F4 8F BF BF 00 10 FF FF ED AF BF ED BF BF 00 00 DB FF 00 00 DF FF

Note how the incorrect handling of the UTF-16 High and Low Surrogates is directly re-
lated to the handling of each code unit as a separate character rather than as a single unit.
If your software generates UTF-8 and UTF-32 sequences that look like the UTF-8 (Incor-
rect) or UTF-32BE (Incorrect) columns in Table 9-6, then something is clearly wrong. The
fact that the result becomes the wrong number of code units is a good indicator. In the
case of UTF-8, incorrect interpretation results in six code units, instead of the expected
four. And for UTF-32, it results in two code units, instead of the expected single code
unit.

Conversion Between Iso-2022 and eUC
EUC encoding is what I often refer to as escape sequence– or shift-less ISO-2022 encoding
with the eighth bit set. Some email transport systems (and news readers) strip the eighth
bits from email messages—if one sends an EUC-encoded file through such mailers, the
file becomes damaged (and unreadable) because it is transformed into escape sequence–
or shift-less ISO-2022. This should indicate to you that conversion between ISO-2022 and
EUC is a simple matter of subtracting or adding 128 (0x80), applied to both bytes—this
has the effect of toggling the eighth bit.* Although the conversion of bytes is a simple pro-
cess, one must properly detect and insert designator sequences, escape sequences, or shift
characters for ISO-2022–encoded text.

First, we assume two variables, one for holding each of the two bytes to be converted:
int p1,p2;

I am not showing how you go about assigning the initial values to these variables—I as-
sume that they already contain appropriate values.

* Or, if you prefer to treat both bytes as a single unit, you subtract or add 32,896 (<80 80>).

Code Conversion Algorithms | 581

Converting ISO-2022 to EUC is a simple matter of using the following two assignment
statements in C:

p1 += 128;
p2 += 128;

These assignment statements have an effect of adding 128 (0x80) to the current values of
the variables p1 and p2. These statements could also have been written as follows:

p1 = p1 + 128;
p2 = p2 + 128;

Both styles perform the same task. C (and other programming languages) has a shorthand
method for doing these sort of variable assignments. There are even shorthand methods
for turning the eighth bit on or off.

Next, converting EUC to ISO-2022 requires the following two statements (or their
equivalent):

p1 -= 128;
p2 -= 128;

These assignment statements have an effect of subtracting 128 (0x80) from the current
value of the variables p1 and p2. That’s really all there is to do.

One difficult issue to contend with is how to handle half-width katakana, which can be
represented in EUC-JP encoding using code set 2, but have no official representation in
ISO-2022-JP encoding. I suggest that they be converted into their full-width counterparts
(see the section later in this chapter entitled “Half- to Full-Width Katakana Conversion—
in Java”).

Conversion Between Iso-2022 and row-Cell
Conversion from ISO-2022 to Row-Cell is a matter of subtracting 32 (0x20) from each
of the ISO-2022 bytes.* Similarly, conversion from Row-Cell to ISO-2022 is a matter of
adding 32 (0x20) to each of the Row-Cell bytes (or, more properly, adding 32 (0x20) to
the Row and 32 (0x20) to the Cell). This may not be very useful for converting Japanese
text since Row-Cell is not typically used internally to represent characters on computer
systems—there are exceptions, of course. It may often be useful to determine the Row-
Cell value for CJKV characters, such as for indexing into a dictionary whose entries are
listed by Row-Cell code.

To convert from ISO-2022 to Row-Cell, use the following assignment statements:
p1 -= 32;
p2 -= 32;

* Or, if you prefer to treat both bytes as a single unit, use 8,224 (<20 20>) instead.

582 | Chapter 9: Information Processing techniques

The reverse conversion (Row-Cell to ISO-2022) uses the following assignment
statements:

p1 += 32;
p2 += 32;

ISO-2022 and Row-Cell are related more closely than you would think. They are different
only in the fact that ISO-2022 is the encoded value, which does not happen to begin at
value 1, and that Row-Cell represents an encoding-independent way of indexing char-
acters within the 94×94 character matrix. The only software system I know of that pro-
cesses CJKV characters by Row-Cell values is the Japanese version of TEX, a typesetting
language. For other systems it is simply not very efficient or practical to process Row-Cell
codes internally.

Conversion Between Iso-2022-JP and shift-JIs
The ability to convert between ISO-2022-JP and Shift-JIS encodings is fundamental for
most software that is designed to support Japanese. Half-width katakana, which can be
represented in Shift-JIS encoding, have no official representation in ISO-2022-JP encod-
ing. As with conversion from EUC-JP, I suggest that these characters be converted into
their full-width counterparts.

Iso-2022-JP to shift-JIs conversion
Conversion from ISO-2022-JP to Shift-JIS requires the use of the following conversion
algorithm, given in C code, or its equivalent. A call to this function must pass variables for
both bytes to be converted, and pointers are used to return the values back to the calling
statement. Following is the algorithm, represented as working C code:

void jis2sjis(int *p1, int *p2)
{
 unsigned char c1 = *p1;1
 unsigned char c2 = *p2;2
 int rowOffset = c1 < 95 ? 112 : 176;3
 int cellOffset = c1 % 2 ? (c2 > 95 ? 32 : 31) : 126;4
 *p1 = ((c1 + 1) >> 1) + rowOffset;5
 *p2 += cellOffset;6
}

Assuming that variables have been defined already, a typical call to this function may take
the following form:

jis2sjis(&p1,&p2);

Table 9-7 provides a step-by-step listing of the conversion process used in the preceding
function. The target character is 漢 (kan; the “kan” from the Japanese word 漢字 kanji). Its
ISO-2022-JP code is 52-65, and the Shift-JIS code is 138-191. Changes are highlighted.

Code Conversion Algorithms | 583

ISO-2022-JP to Shift-JIS conversion exampleTable 9-7.

Variable Line 1 Line 2 Line 3 Line 4 Line 5 Line 6

c1 52 52 52 52 52 52

c2 … 65 65 65 65 65

rowOffset … … 112 112 112 112

cellOffset … … … 126 126 126

*p1 52 52 52 52 138 138

*p2 65 65 65 65 65 191

Now for some explanation by line number:

The variable 1. c1 is assigned the value of the object to which *p1 points. In this case, it
is the value of the first byte, specifically 52.

The variable 2. c2 is assigned the value of the object to which *p2 points. In this case, it
is the value of the second byte, specifically 65.

The variable 3. rowOffset is initialized by testing a condition. This condition is whether
the value of the variable c1 is less than 95. If its value is less than 95, rowOffset is
initialized to 112. Otherwise, it is initialized to 176. Because c1 is less than 95 in the
example, rowOffset is initialized to 112.

The variable 4. cellOffset is initialized by testing one or more conditions. The first con-
dition is whether the variable c1 is odd. If this first condition is not met, cellOffset
is initialized to 126. If this first condition is met, another condition is tested. If the
variable c2 is greater than 95, cellOffset will be initialized to 32, and to 31 otherwise.
Because c1 is not odd in the example, cellOffset is initialized to 126.

The object to which 5. *p1 points is assigned the value of adding 1 to c1 (52 + 1 = 53),
performing a right-shift, which is the same as dividing a number by two and throw-
ing away the remainder (53 ÷ 2 = 26), and then finally adding rowOffset (26 + 112
= 138).

The object to which 6. *p2 points is assigned the value of adding cellOffset to itself
(126 + 65 = 191).

Besides simple code conversion, it is also very important to be able to detect the escape
sequences used in ISO-2022-JP encoding. Escape sequences signal the software when to
change modes. Good software should also keep track of the current n-byte-per-character
mode so that redundant escape sequences can be ignored (and absorbed). Remember that
Shift-JIS encoding does not use escape sequences, so you will have to make sure that they
are not written to the resulting output file.

584 | Chapter 9: Information Processing techniques

shift-JIs to Iso-2022-JP conversion
Conversion from Shift-JIS to ISO-2022-JP is not as simple as just reversing the preceding
algorithm, but requires the use of the following dedicated conversion algorithm, given
again in C code, or its equivalent. A call to this function must pass variables for both bytes
to be converted, and pointers are used to return the values back to the calling statement.
The following is the C code:

void sjis2jis(int *p1, int *p2)
{
 unsigned char c1 = *p1;1
 unsigned char c2 = *p2;2
 int adjust = c2 < 159;3
 int rowOffset = c1 < 160 ? 112 : 176;4
 int cellOffset = adjust ? (c2 > 127 ? 32 : 31) : 126;5
 *p1 = ((c1 - rowOffset) << 1) - adjust;6
 *p2 -= cellOffset;7
}

Assuming that variables have been defined already, a typical call to this function may take
the following form:

sjis2jis(&p1,&p2);

Table 9-8 provides a step-by-step table of the conversion process used in the preceding
function. The target character is 漢 again. Its Shift-JIS code is 138-191, and its ISO-2022-
JP code is 52-65. Changes are highlighted.

Shift-JIS to ISO-2022-JP conversion exampleTable 9-8.

Variable Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7

c1 138 138 138 138 138 138 138

c2 … 191 191 191 191 191 191

adjust … … 0 0 0 0 0

rowOffset … … … 112 112 112 112

cellOffset … … … … 126 126 126

*p1 138 138 138 138 138 52 52

*p2 191 191 191 191 191 191 65

Now for some explanation by line number:

The variable 1. c1 is assigned the value of the object to which *p1 points. In this case, it
is the value of the first byte, specifically 138.

The variable 2. c2 is assigned the value of the object to which *p2 points. In this case, it
is the value of the second byte, specifically 191.

The variable 3. adjust is assigned the value 0 or 1, depending on the result of a test. This
test checks whether the value of the variable c2 is less than 159. If the result of this

Code Conversion Algorithms | 585

test results in true, then the variable adjust is assigned the value 1; otherwise, it is as-
signed the value 0. In this example, the variable c2 is 191, which is not less than 159,
so the variable adjust is assigned the value 0.

The variable 4. rowOffset is initialized by testing a condition. This condition is whether
the value of the variable c1 is less than 160. If its value is less than 160, rowOffset is
initialized to 112. Otherwise, it is initialized to 176. Because c1 is less than 160 in the
example, rowOffset is initialized to 112.

The variable 5. cellOffset is initialized by testing one or more conditions. The first
condition is whether the variable adjust is equal to 1. If this first condition is not
met, the variable cellOffset is initialized to 126. If this first condition is met, another
condition is tested. If the variable c2 is greater than 127, cellOffset will be initialized
to 32, and to 31 otherwise. Because c1 is not equal to 1 in the example, cellOffset is
initialized to 126.

The object to which 6. *p1 points is assigned the value of subtracting rowOffset from c1
(138 − 112 = 26), performing a left-shift, which is equivalent to multiplying a number
by two (26 × 2 = 52), then finally subtracting adjust (52 − 0 = 52).

The object to which 7. *p2 points is assigned the value of subtracting cellOffset from
itself (191 − 126 = 65).

In addition, it is also very important to be able to properly insert escape sequences into
ISO-2022-JP–encoded text streams. Be sure that redundant escape sequences are not
written.

Conversion Between eUC-JP and shift-JIs
There is no need to elaborately explain how one goes about converting Shift-JIS to EUC-
JP here. What you have already learned is sufficient. You simply need to use ISO-2022-
JP encoding as the middle ground for JIS X 0208:1997 characters.* The only exceptional
handling that is required is for those pesky half-width katakana, which require a one-byte
representation in Shift-JIS, but a two-byte representation in EUC-JP. The relationship be-
tween them is useful to know—the second byte of EUC-JP–encoded half-width katakana
is the same as the Shift-JIS equivalent. Converting Shift-JIS half-width katakana to EUC-
JP encoding is a matter of prefixing a byte with the value of 142 (0x8E, also known as
SS2) to each half-width katakana byte. Likewise, converting EUC-JP–encoded half-width
katakana to Shift-JIS is a simple matter of removing the first byte, specifically 142 (0x8E).
Note that escape-sequence handling is not required for either encoding.

* ISO-2022-JP encoding cannot be used as the middle ground for half-width katakana, because the official defi-
nition of ISO-2022-JP encoding explicitly excludes half-width katakana.

586 | Chapter 9: Information Processing techniques

other Code Conversion types
What you have learned already is enough to guide you through additional code conver-
sion types, so we haven’t covered every type of code conversion. Table 9-9 details how
to implement other conversions, and the integer values that are provided are in decimal
notation.

Code conversion matrixTable 9-9.

Iso-2022 shift-JIs eUC row-Cell

Fr
om

Iso-2022 n/a jis2sjis +128 −32

shift-JIs sjis2jis n/a sjis2jis then +128 sjis2jis then −32

eUC −128 −128 then jis2sjis n/a −160

row-Cell +32 +32 then jis2sjis +160 n/a

The string jis2sjis refers to the ISO-2022-JP to Shift-JIS conversion algorithm; likewise,
sjis2jis refers to the Shift-JIS to ISO-2022-JP conversion algorithm—both were described
in detail earlier in this chapter. The numbers prefixed with either + (plus) or − (minus)
mean that you must add or subtract those amounts, in decimal, from both bytes. Also
note in the table how ISO-2022 is used as the middle ground for code conversion when
Shift-JIS encoding is involved—this does not mean such implementation is absolutely
necessary, but I find it efficient to do so.

Java Programming examples
The following sections illustrate, with example code, how trivial CJKV code conversion
can be when using the Java programming language. Specifically, code conversion and text
stream handling techniques are provided.

Java Code Conversion
The Java programming language, beginning with version 1.1, provides extremely useful
built-in code conversion facilities that allow the programmer to easily convert between
legacy (that is, non-Unicode) encodings and Unicode. This was a significant development
because the proper handling of multiple encodings has always been a tricky issue for pro-
grammers developing software that manipulates CJKV text or data.

Starting with version 1.4, Java now provides NIO (New Input/Output) facilities in the
java.nio package, specifically in the java.nio.charset package, which further enhances
and simplifies the handling of code conversion and related tasks.* The CharsetDecoder

* http://java.sun.com/javase/6/docs/api/

Java Programming examples | 587

(java.nio.charset.CharsetDecoder) and CharsetEncoder (java.nio.charset.CharsetEncoder)
classes perform this type of code conversion.

The Java code examples in this section demonstrate how to take advantage of Java’s built-
in code conversion facilities for handling small chunks of data, such as single characters
or short strings of characters. You will notice that these examples are short and concise,
which clearly illustrates how Java trivializes code conversion.

non-Unicode to Unicode conversion—Charsetdecoder
One of the ways in which non-Unicode data can be converted to Unicode using Java is
to simply convert byte arrays or buffers into character buffers using the CharsetDecoder
class. The following is sample code that first creates a byte array (containing the two-byte
value <B0 EC> for the EUC-JP–encoded kanji 一 ichi, meaning “one”) then converts it into
Unicode:

Charset eucjpCharset = Charset.forName("EUC-JP");
CharsetDecoder decoder = eucjpCharset.newDecoder();
byte eucjpData[] = {176, 236};
ByteBuffer eucjpBytes = ByteBuffer.wrap(eucjpData);
CharBuffer unicodeChar = null;
unicodeChar = decoder.decode(eucjpBytes);

Simply specifying a “charset” value, such as EUC-JP for EUC-JP encoding, as the argu-
ment to the Charset object creation method is sufficient to invoke code conversion on the
ByteBuffer object eucjpBytes. It is really that simple.

The CharBuffer object unicodeChar ends up containing the Unicode scalar value U+4E00
(expressed as \u4E00 in Java notation).

Unicode to non-Unicode conversion—Charsetencoder
Because the Java programming language processes Unicode internally, it may become
necessary to convert an internal Unicode representation into a legacy encoding when
dealing with non-Unicode environment. The CharsetEncoder class is used for this pur-
pose. Following is an example that performs the reverse of what the previous example did,
specifically that it converts the CharBuffer object unicodeChar, which contains the char-
acter U+4E00, into its EUC-JP–encoded equivalent, resulting in a new ByteBuffer object
neweucjpBytes that contains the values 0xB0 and 0xEC:

Charset eucjpCharset = Charset.forName("EUC-JP");
CharsetEncoder encoder = eucjpCharset.newEncoder();
ByteBuffer neweucjpBytes = null;
neweucjpBytes = encoder.encode(unicodeChar);

It is really amazing to realize how trivial code conversion can become when using Java’s
built-in facilities, as the preceding two lines of Java code demonstrate.

588 | Chapter 9: Information Processing techniques

Java text stream Handling
This section provides example code for handling text streams in Java through the under-
lying use of the standard (but private) ByteToCharConverter and CharToByteConverter
classes found in the java.io package. These algorithms fall into two basic types:

Non-Unicode to Unicode (considered a text “import”)•	

Unicode to non-Unicode (considered a text “export”)•	

None of these text stream conversion types require any special handling, such as the prop-
er handling of designator sequences, escape sequences, or shifting characters as used in
ISO-2022 encoding.

Before Java, keeping track of the current n-byte-per-character mode and current charac-
ter set was very important when dealing with ISO-2022–encoded data. Java performs the
following tasks for you:

Recognize and remove redundant escape sequences•	

Ensure that lines terminate in one-byte mode•	

Ensure that the file terminates in one-byte mode•	

This list may not seem very important to you now, but as you begin to encounter ISO-
2022–encoded files with redundant or missing escape sequences, you will soon appreciate
it.

non-Unicode to Unicode conversion—import
Converting a text stream from a non-Unicode encoding to Unicode is greatly simplified
in Java through its text stream classes. Non-Unicode encodings are treated as raw data by
Java. The following three lines of Java open a file called input and proceed to convert its
contents to Unicode as it is being read:

File i = new File("input");
FileInputStream tmpin = new FileInputStream(i);
BufferedReader in = new BufferedReader(new InputStreamReader(tmpin,"Shift_JIS"));

Once the BufferedReader object in is established, as accomplished here, data can be read
using the readLine() method. The following is an example use of this method:

inputStr = in.readLine();

Note the use of Shift_JIS as the second argument to the InputStreamReader() method.
This parameter invokes the built-in conversion to Unicode assuming Shift-JIS encoding
as input.

As you can see, Java takes away all of the pain associated with importing non-Unicode
data. This is actually a big win for programmers because what has traditionally been a
formidable task in developing CJKV-capable software is now trivialized.

Java Programming examples | 589

Unicode to non-Unicode conversion—export
Here is the Java code for converting a Unicode-encoded text stream into Shift-JIS encod-
ing. Notice that this function does not return any information to the calling statement—it
merely reads in a text stream and outputs to another text stream.

File o = new File("output.sjs");
FileOutputStream tmpout = new FileOutputStream(o);
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(tmpout,"Shift_JIS"));

After the BufferedWriter object out is established, Unicode data that is subsequently out-
put is automatically converted to Shift-JIS encoding.

out.println("\u6CB3\u8C5A");
out.close();

The two Unicode characters U+6CB3 (河) and U+8C5A (豚) that are fed to the println()
method become Shift-JIS <89 CD> and <93 D8> in the output file called output.sjs. Creat-
ing a UTF-8–encoded output file is accomplished in the same way, but the UTF-8 charset
designator should be used instead of Shift_JIS.

It is also possible to output directly in Unicode, demonstrated as follows:
PrintWriter out = new PrintWriter (
 new BufferedWriter (
 new OutputStreamWriter (
 new FileOutputStream("output.ucs"), "UTF-16BE"
)
)
);

We can then output the same Unicode characters, without any code conversion applied,
as follows:

out.println("\u6CB3\u8C5A");
out.close();

This time, the output is exactly U+6CB3 (河) and U+8C5A (豚).

Java Charset designators
In order to take advantage of Java’s built-in code conversion facilities, you need to be
aware of the valid charset designators in order to properly invoke them. While Java in-
cludes the concept of “preferred” charset designators for each meaningful character set
and encoding combination, it also supports an aliasing mechanism to support alternate
charset names.

Table 9-10 provides a partial listing of Java’s charset designators, along with the encodings
and character sets that they support. What is provided are the Java NIO charset desig-
nators, specifically for the java.nio package. The java.io and java.lang packages may use
slightly different charset designators. Alternate charset designators have been explicitly
excluded from this table, as my way of to discouraging their use. These charset designators
can be used to invoke the built-in code conversion routines. Also, those that are required
to be supported on every implementation of the Java platform have been highlighted.

590 | Chapter 9: Information Processing techniques

Java NIO charset designators—examplesTable 9-10.

Charset designator encoding Character sets

US-ASCII ASCII ASCII

ISO-8859-1 ISO 8859-1:1998 ISO 8859-1:1998

UTF-8 UTF-8 Unicode

UTF-16 UTF-16 Unicode

UTF-16BE UTF-16BE Unicode

UTF-16LE UTF-16LE Unicode

UTF-32 UTF-32 Unicode

UTF-32BE UTF-32BE Unicode

UTF-32LE UTF-32LE Unicode

ISO-2022-CN ISO-2022-CN-EXT ASCII, CNS 11643-1992

ISO-2022-JP ISO-2022-JP ASCII/JIS-Roman, half-width katakana, JIS X 0208:1997, JIS X 0212-1990

ISO-2022-KR ISO-2022-KR ASCII/KS-Roman, KS X 1001:2004

GB2312 EUC-CN ASCII/GB-Roman, GB 2312-80

EUC-JP EUC-JP ASCII/JIS-Roman, half-width katakana, JIS X 0208:1997, JIS X 0212-1990

EUC-KR EUC-KR ASCII/KS-Roman, KS X 1001:2004

x-EUC-TW EUC-TW ASCII, CNS 11643-1992

GBK GBK ASCII, GBK

GB18030 GB 18030 ASCII, GB 18030

Big5 Big Five ASCII, Big Five

Big5-HKSCS Big Five Hong Kong SCS

Shift_JIS Shift-JIS ASCII/JIS-Roman, half-width katakana, JIS X 0208:1997

A much more complete and up-to-date listing of Java charset designators is available on-
line—be sure to consult the latest Java programming language specification to ensure that
you are using the correct charset designators. This will best guarantee that your program
will function in all possible environments.*

Miscellaneous Algorithms
This section covers three miscellaneous algorithms that are useful, but are not directly
associated with either code conversion or text stream handling, as covered in the two
previous sections.

* http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

Miscellaneous Algorithms | 591

The first algorithm is for the automatic detection of the input file’s encoding. Some soft-
ware requires that you specify the encoding method used by the input file: many people
who use Japanese code conversion utilities may not be familiar with the various Japanese
encoding methods. If you do not know, all you can do is guess. The Japanese code detec-
tion algorithm examines the input file in order to determine the encoding method. This
usually makes it unnecessary to specify the input file’s encoding method. However, there
are times when the input file’s encoding may be ambiguous—the Shift-JIS and EUC-JP
encoding ranges overlap considerably, for example.

The second algorithm converts half-width katakana into their full-width counterparts.
Some environments do not provide half-width katakana support, so this algorithm con-
verts these characters into their full-width versions, which are more commonly support-
ed. This algorithm is also quite useful as a filter for outgoing email transmissions in order
to ensure that information interchange is maintained on the receiving end.

The third and final algorithm repairs damaged ISO-2022-JP–encoded files; that is, files
that had their escape sequences stripped out by unfriendly email or news reading soft-
ware. I occasionally received email in this damaged format, and spent a lot of time rein-
serting those lost escape characters. This algorithm is simply a way to automate this repair
process.

The C functions described in this section use the following C #define statements:
#define NEW 1
#define OLD 2
#define NEC 3
#define EUC 4
#define SJIS 5
#define EUCORSJIS 6
#define ASCII 7
#define SS2 142
#define ESC 27

Japanese Code detection
This algorithm is useful for automatically detecting the Japanese encoding used in a Japa-
nese text file. This is helpful when you receive Japanese text files with various encodings: it
is not always obvious what encoding a given text file uses, so it is easier to let the software
decide for you.

This C function requires only an input stream as a parameter, but returns a value to the
calling statement indicating what Japanese code, if any, was found. This value can specify
either the Japanese encoding detected or that none was detected (or was ambiguous). If
Japanese encoding is found, possible values include JIS C 6226-1978 (also called Old-JIS),
JIS X 0208-1983 (also called New-JIS), NEC Kanji (also called NEC-JIS), EUC-JP (packed
format), and Shift-JIS. It also returns special values if no Japanese encoding is detected, or
if the Japanese encoding is ambiguous (Shift-JIS and EUC-JP overlap considerably, and it
is possible to encounter text streams that may be ambiguous). I use this algorithm in two

592 | Chapter 9: Information Processing techniques

of the tools described at the end of this chapter, specifically JConv and JCode. A typical call
to this function takes the following form:

DetectCodeType(in);

Following is a C function for detecting the Japanese encoding of an input stream. Most
of the statements check encoded value ranges. The results of these checks are then used
to determine whether a particular encoding has been detected in the stream. ISO-2022
encodings are easily found by the occurrence of escape characters, along with other char-
acters that constitute a valid two-byte character escape sequence.

int DetectCodeType(FILE *in)
{
 int c = 0;
 int whatcode = ASCII; /* The detected code, set to ASCII. */
 while ((whatcode == EUCORSJIS || whatcode == ASCII) && c != EOF) {
 if ((c = fgetc(in)) != EOF) { /* Read one byte until EOF. */
 if (c == ESC) { /* Maybe ISO-2022-JP encoding. */
 c = fgetc(in);
 if (c == '$') { /* Maybe two-byte escape sequence. */
 c = fgetc(in);
 if (c == 'B')
 whatcode = NEW; /* JIS X 0208-1983 detected. */
 else if (c == '@')
 whatcode = OLD; /* JIS C 6226-1978 detected. */
 }
 else if (c == 'K')
 whatcode = NEC; /* NEC Japanese detected. */
 }
 else if ((c >= 129 && c <= 141) || (c >= 143 && c <= 159))
 whatcode = SJIS;
 else if (c == SS2) { /* Maybe EUC-JP half-width katakana. */
 c = fgetc(in);
 if ((c >= 64 && c <= 126)||(c >= 128 && c <= 160)||(c >= 224 && c <= 252))
 whatcode = SJIS; /* Shift-JIS detected. */
 else if (c >= 161 && c <= 223)
 whatcode = EUCORSJIS; /* Ambiguous (Shift-JIS or EUC-JP). */
 }
 else if (c >= 161 && c <= 223) {
 c = fgetc(in);
 if (c >= 240 && c <= 254)
 whatcode = EUC; /* EUC-JP detected. */
 else if (c >= 161 && c <= 223)
 whatcode = EUCORSJIS; /* Ambiguous (Shift-JIS or EUC-JP). */
 else if (c >= 224 && c <= 239) {
 whatcode = EUCORSJIS; /* Ambiguous (Shift-JIS or EUC-JP). */
 while (c >= 64 && c != EOF && whatcode == EUCORSJIS) {
 if (c >= 129) {
 if (c <= 141 || (c >= 143 && c <= 159))
 whatcode = SJIS; /* Shift-JIS detected. */
 else if (c >= 253 && c <= 254)
 whatcode = EUC; /* EUC-JP detected. */
 }
 c = fgetc(in);

Miscellaneous Algorithms | 593

 }
 }
 else if (c <= 159)
 whatcode = SJIS; /* Shift-JIS detected. */
 }
 else if (c >= 240 && c <= 254)
 whatcode = EUC; /* EUC-JP detected. */
 else if (c >= 224 && c <= 239) {
 c = fgetc(in); /* Read next byte to c. */
 if ((c >= 64 && c <= 126) || (c >= 128 && c <= 160))
 whatcode = SJIS; /* Shift-JIS detected. */
 else if (c >= 253 && c <= 254)
 whatcode = EUC; /* EUC-JP detected. */
 else if (c >= 161 && c <= 252)
 whatcode = EUCORSJIS; /* Ambiguous (Shift-JIS or EUC-JP). */
 }
 }
 }
 return whatcode; /* Return the detected code. */
}

Appendix C provides Perl code for a much more flexible way to automatically detect the
encoding of CJKV text files, not only those for Japanese. That Perl code shows how power-
ful regular expressions can be when used in specific contexts.

Half- to Full-Width Katakana Conversion—in Java
It sometimes is necessary to convert half-width katakana to their full-width counterparts.
This is most useful as a filter to ensure that no half-width katakana characters are included
within email messages. It is also useful when you need to move files from one platform to
another and the new platform does not support half-width katakana characters. Example
usage of this Java method is as follows:

String half = "\uFF76\uFF9E";
String full = KatakanaFilter.halfToFullWidthKatakana(half);

There is no simple conversion algorithm that you can use to accomplish this task. In fact,
such conversion requires a mapping table between half- and full-width katakana (table-
driven conversion), as well as special handling to accommodate dakuten and handakuten,
the marks that modify kana characters. You see, these marks are encoded as separate
characters in the half-width katakana character set, but in the case of full-width katakana,
they are integrated with katakana characters within the same encoded character.

The following Java class defines a method called halfToFullWidthKatakana() that repre-
sents the algorithm for converting half-width katakana to their full-width counterparts,
and includes proper handling for dakuten and handakuten marks.

public class KatakanaFilter {

 // Zero-base table for mapping half-width katakana to full-width
 private final static char FWKatakana[] = {
 '\u3002','\u300C','\u300D','\u3001','\u30FB', // U+FF61 - U+FF65

594 | Chapter 9: Information Processing techniques

 '\u30F2','\u30A1','\u30A3','\u30A5','\u30A7', // U+FF66 - U+FF6A
 '\u30A9','\u30E3','\u30E5','\u30E7','\u30C3', // U+FF6B - U+FF6F
 '\u30FC','\u30A2','\u30A4','\u30A6','\u30A8', // U+FF70 - U+FF74
 '\u30AA','\u30AB','\u30AD','\u30AF','\u30B1', // U+FF75 - U+FF79
 '\u30B3','\u30B5','\u30B7','\u30B9','\u30BB', // U+FF7A - U+FF7E
 '\u30BD','\u30BF','\u30C1','\u30C4','\u30C6', // U+FF7F - U+FF83
 '\u30C8','\u30CA','\u30CB','\u30CC','\u30CD', // U+FF84 - U+FF88
 '\u30CE','\u30CF','\u30D2','\u30D5','\u30D8', // U+FF89 - U+FF8D
 '\u30DB','\u30DE','\u30DF','\u30E0','\u30E1', // U+FF8E - U+FF92
 '\u30E2','\u30E4','\u30E6','\u30E8','\u30E9', // U+FF93 - U+FF97
 '\u30EA','\u30EB','\u30EC','\u30ED','\u30EF', // U+FF98 - U+FF9C
 '\u30F3','\u309B','\u309C' // U+FF9D - U+FF9F
 };

 // Class method for converting half-width katakana to full-width
 public static String halfToFullWidthKatakana (String string_input) {
 int ixIn = 0;
 int ixOut = 0;
 int bufferLength = string_input.length();
 char[] input = string_input.toCharArray();
 char[] output = new char[bufferLength + 1];

 while (ixIn < bufferLength) {
 if (input[ixIn] >= '\uFF61' && input[ixIn] <= '\uFF9F') {
 if (ixIn + 1 >= bufferLength) {
 output[ixOut++] = FWKatakana[input[ixIn++] - '\uFF61'];
 } else {
 if (input[ixIn + 1] == '\uFF9E' || input[ixIn + 1] == '\u3099'
 || input[ixIn + 1] == '\u309B') {
 if (input[ixIn] == '\uFF73') {
 output[ixOut++] = '\u30F4';
 ixIn += 2;
 } else if (input[ixIn] >= '\uFF76' && input[ixIn] <= '\uFF84'
 || input[ixIn] >= '\uFF8A' && input[ixIn] <= '\uFF8E') {
 output[ixOut] = FWKatakana[input[ixIn] - '\uFF61'];
 output[ixOut++]++;
 ixIn += 2;
 } else {
 output[ixOut++] = FWKatakana[input[ixIn++] - '\uFF61'];
 }
 } else if (input[ixIn + 1] == '\uFF9F'
 || input[ixIn + 1] == '\u309A' || input[ixIn + 1] == '\u309C') {
 if (input[ixIn] >= '\uFF8A' && input[ixIn] <= '\uFF8E') {
 output[ixOut] = FWKatakana[input[ixIn] - '\uFF61'];
 output[ixOut++] += 2;
 ixIn += 2;
 } else {
 output[ixOut++] = FWKatakana[input[ixIn++] - '\uFF61'];
 }
 } else {
 output[ixOut++] = FWKatakana[input[ixIn++] - '\uFF61'];
 }
 }
 } else {

Miscellaneous Algorithms | 595

 output[ixOut++] = input[ixIn++];
 }
 }
 String output_string = new String(output);
 return output_string.substring(0,ixOut);
 }
}

Appendix C provides a half- to full-width katakana conversion program written in Perl.
It is different in that it is not based on Unicode, but rather supports EUC-JP and Shift-JIS
encodings.

encoding repair
ISO-2022-JP–encoded files often become damaged or corrupt from software that strips
out escape characters. Some programs have a tendency to filter out control characters
from files; the escape character (0x1B or U+001B), which is an essential part of ISO-
2022-JP encoding, is a control character. Luckily, there are ways to repair corrupted
ISO-2022-JP–encoded files.

You can make a few assumptions before you proceed to repair damaged ISO-2022-JP–
encoded files. The first assumption is that the text stream begins, and also ends, in
one-byte mode. In addition, each line begins and ends in one-byte mode. The next as-
sumption is that the other characters that make up a complete escape sequence are still
intact. These may include such strings as $@, $B, (J, and (B. Depending on the n-byte-per-
character mode, you need to scan for different strings.

While in one-byte mode, you need only to scan for the string $B or $@, which should
signify the beginning of two-byte mode. The chances of encountering such strings of
characters while in one-byte mode are quite low (but can happen!). You need to repair
such string occurrences by inserting an escape character immediately before the string
that determined the context for it (in this case, either $B or $@). The current mode is then
shifted to two-byte.

While in two-byte mode, you need to scan for the strings (J and (B. Also, since you are
in two-byte mode, you must scan two characters, and then compare them to the search
strings. The two bytes that represent the strings (J and (B are within the ISO-2022-JP en-
coding space, but have no characters assigned to them. This means that you should never
run into those strings other than when they are part of a damaged escape sequence. Like
before, you need to insert an escape character right before the string that was found (in
this case, either (J or (B). The current mode is then shifted to one-byte.

Other processing may be necessary if you reach the end of a line, but are still in two-byte
mode. You must then insert an entire escape sequence.

The following C function represents an algorithm for automatically inserting escape
sequences into a damaged ISO-2022-JP–encoded file. Note that undamaged escape se-
quences are also recognized by this C function. A modified version of this function is

596 | Chapter 9: Information Processing techniques

used in one of the Japanese code-processing tools, specifically JConv, described at the end
of this chapter.

void repairjis(FILE *in,FILE *out)
{
 int p1; /* First byte. */
 int p2; /* Second byte. */
 int p3; /* Third byte. */
 int shifted_in = FALSE; /* The initial one-byte mode. */
 while ((p1 = getc(in)) != EOF) {
 if (shifted_in) { /* If in two-byte mode. */
 if (p1 == ESC) {
 p2 = getc(in);
 if (p2 == '(') {
 p3 = getc(in);
 switch (p3) {
 case 'J' : /* JIS-Roman. */
 case 'B' : /* ASCII. */
 case 'H' : /* False JIS-Roman. */
 shifted_in = FALSE; /* Change to one-byte mode. */
 break;
 default :
 break;
 }
 fprintf(out,"%c%c%c",p1,p2,p3); /* Print the escape sequence. */
 }
 }
 else if (p1 == '(') { /* If p1 is (. */
 p2 = getc(in);
 switch (p2) {
 case 'J' : /* JIS-Roman. */
 case 'B' : /* ASCII. */
 case 'H' : /* False JIS-Roman. */
 shifted_in = FALSE; /* Change to one-byte mode. */
 fprintf(out,"%c%c%c",ESC,p1,p2); /* Print the escape sequence. */
 break;
 default :
 fprintf(out,"%c%c",p1,p2); /* Print p1 and p2. */
 break;
 }
 }
 else {
 p2 = getc(in);
 fprintf(out,"%c%c",p1,p2); /* Print p1 and p2. */
 }
 }
 else { /* If in one-byte mode. */
 if (p1 == ESC) {
 p2 = getc(in);
 if (p2 == '$') {
 p3 = getc(in);
 switch (p3) {
 case 'B' : /* JIS X 0208-1983. */
 case '@' : /* JIS C 6226-1978. */

Byte Versus Character Handling | 597

 shifted_in = TRUE; /* Change to two-byte mode. */
 break;
 default :
 break;
 }
 fprintf(out,"%c%c%c",p1,p2,p3); /* Print the escape sequence. */
 }
 }
 else if (p1 == '$') {
 p2 = getc(in);
 switch (p2) {
 case 'B' : /* JIS X 0208-1983. */
 case '@' : /* JIS C 6226-1978. */
 shifted_in = TRUE; /* Change to two-byte mode. */
 fprintf(out,"%c%c%c",ESC,p1,p2); /* Print the escape sequence. */
 break;
 default :
 fprintf(out,"%c%c",p1,p2); /* Print p1 and p2. */
 break;
 }
 }
 else
 fprintf(out,"%c",p1); /* Print p1. */
 }
 }
}

Yep, you guessed it, Appendix C provides a similar program, but written in Perl. I encour-
age you to compare and contrast the C and Java examples in this chapter with Perl ver-
sions in Appendix C.

Byte Versus Character Handling
Most Western encoding methods have the luxury of assuming that one byte equals one
character, so inserting, deleting, and searching text becomes a simple matter of compar-
ing one byte with another. However, this is not the case with encodings that require more
than one byte to represent a single character, such as those used for representing CJKV
text. Life gets much more complex! A multiple-byte character is still a character. Consider
it an atomic unit. After all, you would gawk at Western-style software that split characters
into four-bit units for some strange design reason. What I discuss next falls into what I
would call text-processing behavior, because it is what one would expect from programs
such as text editors, word processors, and the like.

What you should learn from this section is that a multiple-byte character should nev-
er be broken down into its component bytes. This whole discussion points out the best
reason for adopting fixed 16- or 32-bit representations inside your software— you can
much more safely deal with atomic units. The topics that follow are examples of areas in
which many text-processing programs fail to handle multiple-byte characters properly.
There are several examples of programs that fall into this category—unless a program was
specifically designed to handle multiple-byte characters, it is unlikely that multiple-byte

598 | Chapter 9: Information Processing techniques

characters are handled properly. For example, the standard (that is, unlocalized) version
of Microsoft Word (for Mac OS) is one of the most popular word-processing applications
ever, but at one time failed to handle two-byte characters properly.

Character deletion
It is quite likely that you will encounter text-processing software that deletes only one byte
of a two-byte character. Those that have been properly adapted to CJKV locales are able
to detect whether the character in front of the insertion point is represented by two bytes,
and subsequently deletes both bytes. This problem can be avoided if you remember to
press the delete key twice when dealing with two-byte characters. If you are not careful,
loss or corruption of data may result.

Let’s take a closer look at this problem. Table 9-11 provides a sample Shift-JIS–encoded
Japanese text string. The first process that will be applied is the deletion of the last char-
acter. The first example deletes the last character (consisting of two bytes), and the second
deletes the last byte (more precisely, the last byte of the last character). Finally, we add
another character, 典, at the insertion point. Note how the undeleted first byte left over
from the second example affects the interpretation of the added character (the encoded
value of this added character is highlighted).

Character deletion example—Shift-JISTable 9-11.

text representation shift-JIs representation

Original string 漢字辞書
漢 字 辞 書

8A BF 8E 9A 8E AB 8F 91

Co
rre

ct

Delete 漢字辞
漢 字 辞

8A BF 8E 9A 8E AB

Add character 漢字辞典
漢 字 辞 典

8A BF 8E 9A 8E AB 93 54

In
co

rre
ct Delete 漢字辞

漢 字 辞
8A BF 8E 9A 8E AB 8F

Add character 漢字辞藷 T
漢 字 辞 藷 T

8A BF 8E 9A 8E AB 8F 93 54

A lack of sync occurs when the first byte of a two-byte character is left behind. Any
two-byte characters that follow will be interpreted incorrectly—their first byte will be
interpreted as the second byte for the previous character, and their second byte will be
interpreted as a first byte.

Byte Versus Character Handling | 599

Table 9-12 illustrates what happens with the same character string, but when EUC-JP–
encoded.

Character deletion example—EUC-JPTable 9-12.

text representation eUC-JP representation

Original string 漢字辞書
漢 字 辞 書

B4 C1 BB FA BC AD BD F1

Co
rre

ct

Delete 漢字辞
漢 字 辞

B4 C1 BB FA BC AD

Add character 漢字辞典
漢 字 辞 典

B4 C1 BB FA BC AD C5 B5

In
co

rre
ct Delete 漢字辞

漢 字 辞
B4 C1 BB FA BC AD BD

Add character 漢字辞重
漢 字 辞 重

B4 C1 BB FA BC AD BD C5 B5

This problem is fixed by keeping track of the characters at the insertion point—whether
they are represented by one or more bytes. If a byte happens to be the second byte of a
two-byte character, both bytes must be deleted with a single keystroke. In the case of
three-byte characters (for example, characters from EUC-JP code set 3—JIS X 0212-1990
characters), three bytes must be deleted. Extreme examples include EUC-TW and GB
18030 encodings, both of which have a four-byte representation. That’s a lot of bytes,
meaning that a lot can go wrong if you’re not careful. Also, anything outside of the BMP,
when dealing with the UTF-8 encoding form, is four bytes.

Character Insertion
Inserting characters is problematic only when the insertion point—that is, the cursor—is
between the two bytes that represent a two-byte character. This then splits the two-byte
character and results in data loss. This section, as you may have expected, relates to cursor
movement.

Let’s now look at some examples of inserting characters between the two bytes of a two-
byte character. The example string is 仮名漢字, and the character と is mistakenly in-
serted between the two bytes of the character 名—in an ideal world, it should be added
between the two characters 名 and 漢. Table 9-13 provides an example that is Shift-JIS–
encoded, and the byte values for the inserted character are highlighted.

600 | Chapter 9: Information Processing techniques

Character insertion example—Shift-JISTable 9-13.

text representation shift-JIs representation

Original string 仮名漢字
仮 名 漢 字

89 BC 96 BC 8A BF 8E 9A

Correct 仮名と漢字
仮 名 と 漢 字

89 BC 96 BC 82 C6 8A BF 8E 9A

Incorrect 仮魔ﾆｼ漢字
仮 魔 ﾆ ｼ 漢 字

89 BC 96 82 C6 BC 8A BF 8E 9A

Notice how the two-byte character 名 is split right down the middle, and that unexpect-
ed characters have resulted, two of which are interpreted as half-width katakana. Now
you can see why incorrect character insertion must never be allowed to happen—it leads
to corruption and data loss. Integrity is retained only with proper handling of two-byte
characters.

Table 9-14 provides this same example, but this time EUC-JP–encoded. Notice how dif-
ferent characters result from incorrect insertion—the expected 名と string becomes the
unexpected 未半.

Character insertion example—EUC-JPTable 9-14.

text representation eUC-JP representation

Original string 仮名漢字
仮 名 漢 字

B2 BE CC BE B4 C1 BB FA

Correct 仮名と漢字
仮 名 と 漢 字

B2 BE CC BE A4 C8 B4 C1 BB FA

Incorrect 仮未半漢字
仮 未 半 漢 字

B2 BE CC A4 C8 BE B4 C1 BB FA

The solution to this problem is simply to have the cursor move one or more bytes—the
number of bytes to move corresponds to the number of bytes used to represent the cur-
rent character.

Character searching
The various instances of the grep program represent the most commonly used utilities
on Unix and some other platforms—grep is short for Global Regular Expression Print.*

* Perhaps jokingly, one source suggests that grep represents the first letters of its authors’ last names: Gregior,
Ritchie, Ebersole, and Pike. I dunno. Maybe it’s not a joke.

Byte Versus Character Handling | 601

The grep program performs a search based on regular expressions, which is a topic that
is covered in greater detail later in this chapter. The standard Unix version of grep, unfor-
tunately, does not treat two or more bytes—that constitute a single character—as a single
unit. Some versions of Unix, such as IBM’s AIX, include versions of grep that recognize
multiple-byte characters.

So, you may ask, what problem does this cause? Well, take, for instance, a case when you
are searching for the kanji 剣 in a large Japanese file. Assuming Shift-JIS encoding, you
may end up with matches in quite unexpected places. In fact, some lines for which a
match is reported may not even contain the kanji 剣 because the comparison that is be-
ing performed during the searching is done on a per-byte, not per-character, basis. This
means that one byte is compared to another without regard to multiple-byte characters.
In the case of a search pattern that contains multiple-byte characters, the following condi-
tions must be met:

One or more bytes of the search string must be compared with one or more bytes in •	
the document being searched.

The current index into the text being searched must advance either one or more bytes •	
depending on whether the character at that index is represented by one or more bytes.
This simply means that the index must advance one character, which is not always
represented by one byte.

Because CJKV character sets are supported by multiple encodings, even in the con-•	
text of Unicode, the search engine must be completely aware of the encoding used in
the search string and in the document to be searched. If the encodings are different,
they must be made compatible (the easiest approach would be to convert the search
string into the same encoding used in the document to be searched).

If these conditions are not met, matches may sometimes be made with the second or
subsequent bytes of one multiple-byte character plus the first or subsequent bytes of the
next one. This, of course, produces completely undesirable results. Table 9-15 provides an
example using the kanji 剣 as the search string in a Shift-JIS–encoded file. The character
codes of successful matches, whether they are correct or not, have been highlighted for
convenience.

602 | Chapter 9: Information Processing techniques

Character searching example—Shift-JISTable 9-15.

Characters shift-JIs representation

Search string 剣
剣

8C 95

Correct 剣道
剣 道

8C 95 93 B9

Incorrect 白血病
白 血 病

94 92 8C 8C 95 61

Note how the example of an incorrect match spans two characters, specifically the second
byte of one character and the first byte of the next one. The incorrect match was made by
treating every byte as a single character. Clearly, the one-byte-equals-one-character barrier
or mind set must be overcome in order to handle CJKV text properly. This is a crucial is-
sue for those who are writing multiple-byte–capable search engines, a topic covered later
in this chapter in the section entitled “Search Engines.”

Line Breaking
Many text-processing programs allow users to break long lines into shorter ones, usually
by specifying a maximum number of columns per line. As you can expect, breaking a line
between the bytes of a two-byte character can result in a loss of information and end up
corrupting surrounding characters.

Let’s look at what may happen when ISO-2022-JP, Shift-JIS, and EUC-JP strings are bro-
ken into two lines. In the example string given in Tables 9-16 through 9-18, a line break
is inserted between the two bytes that represent the katakana character サ (sa). Note how
that character is apparently lost, and how some characters after the line break become
scrambled. Some Japanese telecommunications programs, such as the older ASLTelnet
that I once used on Mac OS, inserted their own one-byte character escape sequences at
the end of each line to ensure that no errors took place. This means when a line is broken,
the software automatically inserts a one-byte character escape sequence. However, when
the line is broken in this fashion, the lack of an additional two-byte character escape se-
quence causes the following line to be interpreted as though it were in one-byte mode.

Table 9-16 provides a sample string, along with two examples of how the sample string
can be broken when it is represented as ISO-2022-JP–encoded text. The first example,
specified as version 1 in the table, is when the software automatically inserts a one-byte
character escape sequence at the end of the broken line, which means that the subse-
quent two-byte characters are interpreted as though they were one-byte characters. The
second example, specified as version 2 in the table, demonstrates what may happen if the
software—in this case, NinjaTerm, which ran on Mac OS—does not automatically insert
one-byte character escape sequences at the ends of lines. The second byte of the split

Byte Versus Character Handling | 603

character, specifically サ (sa), is now treated as the first byte for the following two-byte
character, which causes a lack of sync. Also note how the following line does not start on
the left margin.

Examples of broken ISO-2022-JP stringsTable 9-16.

type string

Original カキクケコサシスセソタチツテト
Broken version 1 カキクケコ

5%7%9%;%=%?%A%D%F%H

Broken version 2 カキクケコ
     汽轡好札愁織船張謄

Table 9-17 provides a comparable Shift-JIS example. This time there is no lack of sync,
because there are no escape sequences with which to contend, and because of the liberal
use of seven-bit bytes in Shift-JIS encoding. The only character that is effectively lost or
destroyed is the one that was split. Its first byte, because it is in the eight-bit range, be-
comes invisible and hence not displayed, and because the second byte—at least for this
particular example, サ (sa)—falls into the seven-bit range, it is not treated as the first byte
of a two-byte character, and displays as is, as its ASCII equivalent.

Example of broken Shift-JIS stringTable 9-17.

type string

Original カキクケコサシスセソタチツテト
Broken カキクケコ

T シスセソタチツテト

Finally, Table 9-18 provides a comparable EUC-JP example. You should immediately no-
tice the lack of sync problem here again, like we did in the ISO-2022-JP–encoded example
in Table 9-16. The first byte of the split character is effectively invisible, meaning not dis-
played, due to the fact that it is a lone eight-bit byte, and its second byte is now treated as
the first byte of a two-byte character.

Example of broken EUC-JP stringTable 9-18.

type string

Original カキクケコサシスセソタチツテト
Broken カキクケコ

汽轡好札愁織船張謄

604 | Chapter 9: Information Processing techniques

As you can see from these examples, this problem varies in intensity depending on the
encoding method, and even on the software you are using—compare the two types of out-
put you get for ISO-2022 encoding, using different applications. Some encodings require
slightly more overhead than simplistically treating multiple-byte characters as an insepa-
rable unit. For example, when dealing with ISO-2022 encoding, you must also remember
to insert and perhaps even delete escape sequences.

Character Attribute detection Using C Macros
A useful function often supported in CJKV text-processing programs—or for that matter
in most text-processing systems—is the ability to determine the attributes of characters
within a file. For example, it is often convenient to obtain a listing of the numbers of Chi-
nese characters, kana, and other characters in a file. One can even break those categories
down further, such as kana into katakana and hiragana, ideographs into separate levels,
and so on.

The C programming language has a useful macro facility that allows programmers to
specify simple commands that can be used often within a program. Macros are similar in
concept to functions, but require less work, although perhaps more thought.

As an example, several C macro definitions for detecting the attributes of Japanese (JIS X
0208:1997) characters are provided. They all assume Row-Cell values as input. How you
implement this depends on the purpose of the program you are writing. You simply need
to convert the Japanese code of each character to Row-Cell values right before executing
each of these macros. The macros are as follows:

#define ISLEVEL1(A) (A >= 16 && A <= 47)
#define ISLEVEL2(A) (A >= 48 && A <= 84)
#define ISKANJI(A) (ISLEVEL1(A) || ISLEVEL2(A))
#define ISHIRAGANA(A) (A == 4)
#define ISKATAKANA(A) (A == 5)
#define ISKANA(A) (ISKATAKANA(A) || ISHIRAGANA(A))
#define ISKANAKANJI(A) (ISKANA(A) || ISKANJI(A))

Seasoned C programmers should be able to recognize what each of these macro defini-
tions does.

The first two macros:
#define ISLEVEL1(A) (A >= 16 && A <= 47)
#define ISLEVEL2(A) (A >= 48 && A <= 84)

use the first byte (row) value to determine if a character is in JIS Level 1 or 2 kanji. You may
recall that in JIS X 0208:1997, the kanji are contained in two ranges—rows 16 through 47,
and rows 48 through 84—which is exactly what the macro checks for.

The next macro:
#define ISKANJI(A) (ISLEVEL1(A) || ISLEVEL2(A))

Character sorting | 605

combines the first two macros. Quite often you won’t care whether a kanji is in JIS Level
1 or 2 kanji, but rather if it is a kanji at all. Again, it is sufficient to use only the first byte
as input to this macro.

The next three macros:
#define ISHIRAGANA(A) (A == 4)
#define ISKATAKANA(A) (A == 5)
#define ISKANA(A) (ISHIRAGANA(A) || ISKATAKANA(A))

do the same as the first three macros, but with kana. The first two detect whether a char-
acter is a hiragana or katakana, and the last one combines them. Like before, only the first
byte is used for this.

The last macro:
#define ISKANAKANJI(A) (ISKANA(A) || ISKANJI(A))

checks for a larger set of characters, kana and kanji.

Similar macros can be written to accommodate other languages, such as Korean (KS X
1001:2004):

#define ISJAMO(A) (A == 4)
#define ISHANGUL(A) (A >= 16 && A <= 40)
#define ISHANJA(A) (A >= 42 && A <= 93)
#define ISHANGULHANJA(A) (ISHANGUL(A) || ISHANJA(A))

and Chinese (GB 2312-80):
#define ISLEVEL1(A) (A >= 16 && A <= 55)
#define ISLEVEL2(A) (A >= 56 && A <= 87)
#define ISHANZI(A) (ISLEVEL1(A) || ISLEVEL2(A))

Writing such macro definitions can be carried to almost any extreme, and represents a
very useful tool in the hands of a C or C++ programmer. Of course, these macros could
have been implemented as C functions or written in yet other programming languages.

Character sorting
You can sort English text in a multitude of ways—low to high, high to low, dictionary, nu-
meric; the possibilities are seemingly endless. CJKV locales have even more possibilities
for sorting text. In English, despite all the possible variations, there are really only two ba-
sic ways to sort text. The first is case-insensitive, meaning that upper- and lowercase Latin
characters are sorted as though they were the same. The other is an ASCII sort, which
sorts by increasing value of the byte that represents each character. This has the effect of
separating upper- and lowercase Latin characters whereby uppercase is sorted first. This
is sometimes referred to as sorting ASCIIbetically.

Japanese, for example, has the equivalent of an ASCII sort, that is, characters are ordered
by the values of the bytes used to represent them. This is often called a JIS sort. In Chapter
3, you learned that JIS X 0208:1997 Level 1 kanji are arranged by reading, and that JIS X
0208:1997 Level 2 kanji are arranged by radical, and then the total number of strokes of

606 | Chapter 9: Information Processing techniques

the nonradical part. Consequently, a JIS sort produces a list of characters sorted in that
way. And although they represent the same set of sounds, hiragana and katakana are sepa-
rated when performing a JIS sort—the hiragana come first.

The iroha order is another collation sequence in addition to the 50 Sounds order. The
name of this ordering comes from its first three sounds, specifically i, ro, and ha, the
Japanese analogy to a, b, and c. The iroha collation sequence is not commonly used and is
based on the Buddhist poem listed in Table 9-19.

The iroha order as a poemTable 9-19.

Japanese transliterated

いろはにほへと i ro ha ni ho he to

ちりぬるを chi ri nu ru (w)o

わかよたれそ wa ka yo ta re so

つねならむ tsu ne na ra mu

うゐのおくやま u (w)i no o ku ya ma

けふこえて ke fu ko e te

あさきゆめみし a sa ki yu me mi shi

ゑひもせす (w)e hi mo se su

Other types of sorts include by radical, by total number of strokes, and by pronunciation.
Yes, these were listed previously in the JIS sort, but I am referring to the coverage of all
kanji. For example, a sort by radical should include JIS Level 1 kanji, too. The implementa-
tion of these various sorting methods is limited to the database of information you have.
Hiragana and katakana can also be sorted together like a case-insensitive sort of Latin
characters, but some dictionaries sort hiragana separately from katakana.

Due to the unique nature of kana, the examples provided in Table 9-20 consist of four
words written solely with kana, and will serve to illustrate some issues that arise when
sorting kana.

Sorting kanaTable 9-20.

Unordered Byte-value order desired order

バンドフ はんとう ハンド
はんとう ハントン はんとう
ハントン ハンド バンドフ
ハンド バンドフ ハントン

Character sorting | 607

All four words share several characteristics with regard to their first three characters. All
begin with the kana whose basic (unannotated) form is read ha (バ, は, or ハ), followed
by a syllabic n (ン or ん), then finally the kana whose basic form is read to (ド, と, or ト).
Note how the byte-value order—also known as the JIS order because it is also the order
in which these characters appear in JIS X 0208:1997—produces a significantly different
result from the desired order. There are two things going on here to cause these radically
different results:

The distinction between hiragana and katakana is ignored—all hiragana come before •	
any katakana in JIS X 0208:1997; this can be considered a form of case-folding.

The distinction between unannotated and annotated kana is ignored—unannotated •	
forms come before the annotated ones in JIS X 0208:1997.

Kana sorting can also be affected by small kana (which always come before the standard
forms).

JSA published the standard designated JIS X 4061-1996, Collation of Japanese Character
String (日本語文字列照合順番 nihongo mojiretsu shōgō junban), which provides de-
tailed information and suggestions for sorting characters found in the Japanese character
set standards. I suggest that you use this standard for guidance.

Chinese text, written using hanzi, is usually sorted by Pinyin reading. Pinyin translitera-
tion, because it uses Latin characters, is thus sorted according to the English alphabet.

An example that illustrates different sorting requirements for the same writing system is
Korean hangul. North and South Korea (DPRK and ROK, respectively), although they
use the same set of jamo for constructing hangul, sort them differently. Table 9-21 illus-
trates the sequence in which jamo are sorted in the two Korean locales, subcategorized
by the position in which they appear in hangul: initial (consonants), medial (vowels), and
final (consonants).

Korean jamo sorting sequencesTable 9-21.

Position Locale sorting sequence

Initial
DPRK ㄱㄴㄷㄹㅁㅂㅅㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅇ

ROK ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎ

Medial
DPRK ㅏㅑㅓㅕㅗㅛㅜㅠㅡㅣㅐㅒㅔㅖㅚㅟㅢㅘㅝㅙㅞ

ROK ㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣ

Final
DPRK ㄱㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅇㅈㅊㅋㅌㅍㅎㄲㅆ

ROK ㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄽㄾㄿㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ

In general, North Korea sorts double consonants after all other consonants. The vowels, in
medial position, are also sorted quite differently.

608 | Chapter 9: Information Processing techniques

natural Language Processing
Attempting to derive meaning from text requires natural language processing. The most
fundamental level of natural language processing is the ability to parse the text into words.
The words themselves can be further broken down through morphological analysis. Ap-
plications for this technology include spelling and grammar checkers, along with tagging
and indexing. The following sections will explore natural language-processing techniques,
along with some of its applications.

Word Parsing and Morphological Analysis
Parsing most Western-language sentences into their constituent words is a somewhat
trivial operation due to the intervening—and necessary—spaces between words. Other
than the occasional punctuation and dealing with case issues, there is very little difficulty.
Most CJKV sentences, however, offer significant challenges in this area of information
processing. The ultimate goal of parsing sentences into their component words is for com-
mon purposes such as determining the key words of a document, which is called tagging.
Tagging is useful for categorizing or indexing documents based on their content, and it is
a key function for search engines.

Most CJKV sentences, such as those for Chinese and Japanese, include no intervening
spaces between words. Korean, on the other hand, does use spaces to separate words.
Typical Chinese sentences include only hanzi, along with a select few punctuation marks
and symbols. So, how does one decide how to break up the words when there are only
hanzi with which to deal? Typical Japanese sentences include mostly kana, to the tune of
about 70%, plus some kanji. And, to make matters more interesting or challenging, some
Japanese words are combinations of kana and kanji.

In order to successfully parse any CJKV sentence, a suitable dictionary is required. The
importance of a dictionary cannot be understated. Of course, rules drive the process, but
without a dictionary, the rules mean nothing. This dictionary can be very simple, listing
only words of the language. Any parsing that is performed must result in chunks that
match entries in this dictionary. More complex parsing dictionaries may be necessary to
handle language-specific phenomena such as inflectional endings and other grammatical
components. It is safe to state that a full-blown morphological analyzer is required, and
many have been developed and are being used in real products.

Because Japanese text seems to be laced with the most difficulty, let’s examine a sample
Japanese sentence that includes some typical words that need to be identified: 漢字が含
まれているテキストは読み易い.* Table 9-22 lists the constituent words and parts-of-
speech that make up this Japanese sentence.

* This sentence can be translated into English as “Texts that include kanji are easy to read.”

natural Language Processing | 609

A parsed sentence—JapaneseTable 9-22.

Word reading Meaning

漢字 kanji kanji

が ga Subject marker

含まれている fukumarete iru included

テキスト tekisuto text

は wa Topic marker

読み yomi read

易い yasui easy

Three of the constituent words that resulted from the parsing of this sentence can be
further analyzed into other forms, such as their so-called base form. 含まれている (fuku-
marete iru), for example, is an inflected form of the verb 含む (fukumu). Likewise, 読み
(yomi) is an inflected form of the verb 読む (yomu). Finally, 易い (yasui) is the base form
of an adjective, but could have easily appeared as an inflected form, such as the form 易
かった (yasukatta) or entirely in hiragana as やすい (yasui). One of my favorite inflected
Japanese words, back from my college days during which I studied Japanese, is 片付けさ
せられませんでした (katazuke sase raremasen deshita). The base form of the verb is 片付
ける (katazukeru), and the remaining hiragana characters, させられませんでした, rep-
resent the inflectional endings. These are examples of what operations a morphological
analyzer would perform.

Some complex or compound words, such as 日本語情報処理 (nihongo jōhō shori, mean-
ing “Japanese information processing”), can cause additional potential problems or is-
sues, such as the need to determine how to break up the word into its component words,
some of which may be single ideographs. Of course, such words can also be treated as a
single unit, but doing so suggests that the dictionary includes an entry for it. In any case,
there are several ways in which this compound word can be broken up, which are best
described as levels of a hierarchy. Table 9-23 illustrates the various levels to which this
particular compound Japanese word can be parsed.

Parsing compound words—JapaneseTable 9-23.

Compound word First level parsing second level parsing

日本語情報処理
日本語 Japanese

日本 Japan

語 language

情報処理 information processing
情報 information

処理 processing

Chinese and Japanese sentences are typically laced with compound words, composed
of hanzi and kanji, respectively. Korean sentences are, too, to some extent, but they use

610 | Chapter 9: Information Processing techniques

hangul instead of hanja, and the intervening spaces help in the effort to parse them into
the constituent parts.

Fujitsu Laboratories in Japan had developed a Japanese morphological analyzer called
Breakfast that had the ability to parse Japanese text into morphemes, and had a customi-
zable POS* (part-of-speech) system. This customizable feature enabled Breakfast to use
the dictionaries of JUMAN (寿満 juman)† and ChaSen (茶筌 chasen),‡ both of which
still seem to be available in some form, though Breakfast seems to have gone away. An-
other called Sumomo (すもも sumomo), developed by NTT, also seems to have gone away.
Chances are, Breakfast and Sumomo were either sold and renamed, or simply renamed.

In addition to JUMAN and ChaSen, other more current Japanese morphological analyz-
ers include MeCab (和布蕪 mekabu)§ and KAKASI (Kanji Kana Simple Inverter).¶

Without a doubt, Basis Technology’s Rosette Base Linguistics for Asian Languages, which
provides a morphological analyzer that supports Chinese, Japanese, and Korean, is one
of the top-performing libraries of its kind.** The fact that Google and Amazon use it states
something about its effectiveness. Its abilities include segmentation, tokenization, noun
decompounding, part-of-speech tagging, sentence boundary detection, and other analyz-
ing functions. They also provide related software, such as the Rosette Japanese Orthographic
Analyzer (JOA) that detects alternate representations for Japanese words, and the Rosette
Chinese Script Converter that converts between Simplified and Traditional Chinese. Later
in this chapter you will learn that this level of conversion—or rather, translation—must
take place at many levels, not only at the individual character level.

spelling and Grammar Checking
Spelling- and grammar-checking software is extremely common for English, especially
spellchecking software. In fact, most word processors and page composition systems in-
clude spellcheckers. However, finding such software for languages spoken in CJKV locales
can be a daunting task—at least it was in the past.

SpellViser (日本語文書校正支援ライブラリ nihongo bunsho kōsei shien raiburari in Japa-
nese), originally developed by Sumitomo Metal Industries (SMI), is an example of the
Japanese equivalent of a spelling and grammar checker that was bundled with some Mac
OS and Windows applications. Although it seems to have lost its name, the current ver-
sion of EDICOLOR, which was also originally developed by SMI and is available for Mac
OS X and Windows, includes SpellViser’s functionality as part of its 文書校正支援機能

* Needless to say, at least for native English speakers, this is a very unfortunate abbreviation, because it suggests
something about the quality of the thing being discussed or debated.

† http://www-nagao.kuee.kyoto-u.ac.jp/nl-resource/juman.html
‡ http://chasen-legacy.sourceforge.jp/
§ http://mecab.sourceforge.net/
¶ http://kakasi.namazu.org/
** http://www.basistech.com/base-linguistics/asian/

natural Language Processing | 611

(bunsho kōsei shien kinō) feature. EDICOLOR, and thus SpellViser, are now owned and
developed by Canon.* Apparently, SpellViser was licensed to Microsoft for MS Word-J, to
Corel for its Japanese versions of Word Perfect and DRAW, to ERGOSOFT for EGWord,
and to Kuni Research for Eudora Pro-J.

JustSystems also developed a similar Japanese grammar-checking technology called 修太
(shūta). It is included in their Japanese word processor called 一太郎 (ichitarō), and it is
made accessible through its 文書校正 (bunsho kōsei) feature.†

Chinese-Chinese Conversion
Chinese is discussed throughout this book in the context of Simplified versus Traditional,
whereby the former is used in China and in Singapore, and the latter is used in Taiwan,
Hong Kong, and other regions where Chinese is spoken. While it is easy to fall into the
trap to think that they differ only to the degree to which Simplified Chinese uses sim-
plified ideographs, the truth is far more complex. Converting between these forms of
Chinese is more of a translation than a conversion, because it takes place on many levels:
orthographic, lexemic, and contextual.

In the past, prior to the broad adoption of Unicode, there was a fourth level to consider:
encoding. Simplified Chinese was encoded according to GB 2312-80 or a related character
set standard, and Traditional Chinese was encoded according to Big Five, and in some
cases, CNS 11643-2007. Now, through the use of a uniform character set and encoding,
specifically Unicode, at least one aspect of this issue is no longer problematic.

If we consider individual ideographs, there are hundreds of prototypical simplified/
traditional pairs for which a one-to-one conversion works without problems. Consider 门
(U+95E8) and 門 (U+9580), and 国 (U+56FD) and 國 (U+570B), as two such pairs.

The issue starts to become more complex when we consider simplified ideographs that
correspond to more than one traditional form—in other words, multiple traditional forms
collapsed into a single simplified form. In some cases, one of the traditional forms serves
as the simplified form. Consider 台 (U+53F0), which has four possible traditional forms:
itself, 檯 (U+6AAF), 臺 (U+81FA), and 颱 (U+98B1).The following simplified/traditional
word pairs exemplify correct uses of these four traditional forms: 台球/台球 (táiqiú), 球
台/球檯 (qiútái), 印台/印臺 (yìntái), and 台风/颱風 (táifēng).

Another issue that needs to be addressed in such conversions are words that effectively
transcend the simplified/traditional paradigm, and simply have different representations
in these forms of Chinese. An excellent example is the Chinese word that means “com-
puter.” In Simplified Chinese it is written 计算机 (jìsuànjī), but in Traditional Chinese it
is 電脳 (diànnǎo). One might naïvely think that 計算機 is the proper Traditional Chinese
rendering of 计算机, or that 电脑 is the proper Simplified Chinese rendering of 電脳. At

* http://ps.canon-its.jp/ec/
† http://www.ichitaro.com/

612 | Chapter 9: Information Processing techniques

the orthographic level, and in some limited contexts, these conversions may be appropri-
ate, but they do not represent current usage. In other words, 计算机 is a Simplified Chi-
nese word that must map to its lexemic equivalent in Traditional Chinese, which is 電腦.

For further reading about this topic, I suggest an enlightening article by Jack Halpern and
Jouni Kerman entitled The Pitfalls and Complexities of Chinese to Chinese Conversion.*
Much of this article led to the development of Basis Technology’s Rosette Chinese Script
Converter.

special transliteration Considerations
Although the transliteration and Romanization systems that were covered in Chapter 2
were primarily unidirectional in that Latin characters are used to represent CJKV text,
there are other transliteration issues to consider.

It is common practice to transliterate Western names in Chinese using hanzi. For ex-
ample, the name “Bush” is commonly transliterated into Chinese as 布希 (bùxī), 布什
(bùshí), or 布殊 (bùshū). In Japanese and Korean, Western names are transliterated using
katakana and hangul syllables, respectively. Our example is thus expressed as ブッシュ
(busshu) in Japanese, and as 부시 (busi) in Korean.

Some transliterations are hybrids, meaning part translation and part transliteration.
The name “Starbucks” is a good example in that its Chinese transliteration is 星巴克
(xīngbākè). The first hanzi, 星 (xīng), means “star” in English and conveys meaning, and
is thus the translated portion. The last two hanzi, 巴克 (bākè), are simply transliterations,
meaning that they convey phonemic information.

Ideographs as used in Japan and Korea can be transliterated into kana and hangul
syllables, respectively. In the case of Japanese, such transliteration is useful for indexing
purposes, or perhaps for automatically generating ruby. In Japanese, many kanji have mul-
tiple readings, and while dictionaries can usually assist in determining which readings are
appropriate or correct, there are some cases that require more sophsticated techniques.
An excellent example is the common Japanese phrase 今日は, which can correspond to
こんにちは (kon’nichi-wa) or きょうは (kyō-wa), depending on how it is used in a sentence.
The former is a greeting that means “hello” or “good day,” and the latter is a phrase that
means “today.” In Korean, many hanja also have multiple readings, so care must be taken
to use the correct reading when performing such transliterations, especially when dealing
with names. For example, the name 李明博 is transliterated as 이명박 (i myeongbak).
Although the hanja 李 has two readings in Korean, 리 (ri) and 이 (i), the latter is appro-
priate for this name.

ICU, mentioned earlier in this chapter, is a powerful internationalization library that
includes a Transforms package that is designed to manipulate Unicode text, and that

* http://www.cjk.org/cjk/c2c/c2cbasis.htm

regular expressions | 613

performs script-to-script transliteration.* CLDR, also mentioned earlier in this chapter, is
useful in that it provides transliterations and translations of country, language, and script
names.

regular expressions
Regular expressions (regexes is a short way to express this; 正規表現 seiki hyōgen in Japa-
nese) provide a very powerful mechanism to search for, replace, shred, or otherwise ma-
nipulate text or data. The most common regex engines, as found in popular Unix tools
such as awk, GNU Emacs, grep, Perl, Ruby, sed, Tcl, and so on, have no inherent CJKV-
specific capabilities. However, several CJKV-specific regex implementations have been
developed over the years. The most noteworthy of these include JPerl (Japanese Perl) and
GNU Emacs (version 20 or greater).

Adding CJKV or multiple-byte support to regex engines is a matter of being able to use
multiple-byte characters in places where one-byte characters are expected. This may sound
simple enough at first glance, but there is much complexity to consider. The character-
class feature of regexes, for example, is an immediate candidate for this sort of extension.
The following is a typical regex character class definition in Perl:

/[0-9A-Fa-f]/

This character class includes any upper- or lowercase hexadecimal digits; the entire regex
(that is, what appears between the slashes) matches exactly one character in this character
class. However, when we deal with CJKV text, the following character class would be very
useful:

/[ぁ-んァ-ヶ]/

This character class is intended to include all hiragana and katakana characters. JPerl al-
lows you to specify such character classes. Without explicit Japanese (or, multiple-byte)
support, the previous regex would be meaningless (or, at least, result in an incorrect
match).† There are, however, clever ways to fake such character classes, covered later in
this section. You may think that the following is equivalent to the previous kana character
class:

/[\xA4-\xA5][\xA1-\xFE]/

This regex should match any character in the range <A4 A1> through <A5 FE>, which
means the hiragana and katakana rows in EUC-JP encoding, right? Nope. Because stan-
dard (that is, those that are not CJKV-capable) regex engines match on a per-byte basis,
a match may be made with the second byte of a two-byte character followed by the first
byte of the next two-byte character. See the “Character Searching” section, earlier in this
chapter, for more details on why this is important to avoid at all costs.

* http://www.icu-project.org/userguide/Transform.html
† This regex, if EUC-JP–encoded, would be interpreted as /[\xA4\xA1-\xA4\xF3\xA5\xA1-\xA5\xF6]/, and

would match a single byte whose values are in the following ranges: 0xA1–0xA5, 0xF3, and 0xF6. Not what you
would expect, eh?

614 | Chapter 9: Information Processing techniques

The only reliable way to handle multiple-byte encodings using standard regex engines is
to use techniques that effectively trap all characters. You may not need to perform any
transformations on most of the trapped characters—they can be easily output as is. This
means that there are two types of operations to consider:

Process all characters or all characters of a particular class—some sort of converter •	
or filter (a side-effect of applying a regex to all characters in a file allows an encoding-
integrity check to be performed with little additional effort).

Selectively process characters—search or search/replace.•	

Other aspects of regexes that need to be extended for supporting multiple-byte characters
include the definitions of many metacharacters, such as . (dot). This metacharacter match-
es any (single) byte, and to make it useful in the context, CJKV information processing
requires that it match any (single) character.

JPerl is unique in that its regex engine provides a way to directly use Japanese characters.
Other regex engines, such as those found in GNU Emacs, predefine Japanese-specific
character classes as metacharacters. Table 9-24 provides a listing of these predefined char-
acter classes, according to the latest version of GNU Emacs, along with a definition plus
the equivalent JPerl regex.

Japanese-specific regular expression implementationsTable 9-24.

GnU emacs GnU emacs definition JPerl equivalent

\cA Alphanumeric (row 3) [０-９Ａ-Ｚａ-ｚ]

\cH Hiragana (01-11, 01-12, 01-21, 01-22, row 4) [゛゜ゝゞぁ-ん]

\cK Katakana (01-11, 01-12, 01-19, 01-20, 01-28, row 5) [゛゜ヽヾーァ-ヶ]

\cG Greek (row 6) [Α-Ωα-ω]

\cY Cyrillic (row 7) [А-Яа-я]

\cC Kanji (01-24 through 01-27, 05-86, rows 16–84) [仝-〇ヶ亜-腕弌-熙]

When running GNU Emacs in other language modes, such as Chinese or Korean, addi-
tional multiple-byte metacharacters spring into existence. In particular, \ch (matches any
KS X 1001:2004 character) and \cc (matches any GB 2312-80, CNS 11643-2007, or Big
Five character). The \cA, \cG, \cH, \cK, and \cY multiple-byte metacharacters also func-
tion for Chinese and Korean, but match characters in the appropriate rows.

In the context of Unicode, regex engine developers are strongly encouraged to read UTS
(Unicode Technical Standard) #18, entitled Unicode Regular Expressions, to get guidance
for how regex engines are to handle Unicode text.*

* http://unicode.org/reports/tr18/

Code-Processing tools | 615

I encourage you to study the Perl code examples found in Appendix C to learn more about
how regexes can be used to manipulate CJKV text.

For more information on regular expressions, I highly suggest Jeffrey Friedl’s Mastering
Regular Expressions, Third Edition (O’Reilly Media, 2006).* X/Open Guide: Internationali-
sation Guide (X/Open Company Limited, 1993) also includes a chapter on international-
ized regular expressions.

search engines
One important function of the Web is the ability to conduct searches for particular items.
While most of the popular search engines accept only ASCII characters (or regexes that
reflect ASCII text) for this task, there are now a number of CJKV-capable search engines
available.

The toughest issues faced by CJKV-capable search-engine developers include the
following:

The proper handling of multiple-byte characters that appear in the search string, in-•	
cluding multiple-byte support for regexes.

The proper handling of multiple encodings for both the search string and searched •	
text (for example, a user-entered Korean EUC-KR search string must be able to match
in documents encoded according to EUC-KR and ISO-2022-KR encodings), which
effectively means that the encodings for the search string and searched text must be
regularized (because the searched text may be large, it is much easier to regularize the
search string to match the encoding of the searched text).

Japanese-enabled search engines include the obvious Google,† but also goo‡ and Yahoo!§
Thankfully, the methodology for handling CJKV text is now well-established, and every-
thing is stored and indexed according to Unicode. And, commercial-grade morphological
analyzers are being used as the basis for indexing.

Code-Processing tools
Following you will find brief descriptions of and the printed help pages for three Japa-
nese code-processing tools that I have written and maintained until 1993: JConv, JChar,
and JCode. Also included is a description of JChar’s replacement: the CJKV Character Set
Server, available online as a web service. This section also includes some contexts in which
these tools may be useful to your work. The latest source code for these tools is available

* http://www.regex.info/
† http://www.google.co.jp/
‡ http://www.goo.ne.jp/
§ http://www.yahoo.co.jp/

616 | Chapter 9: Information Processing techniques

online.* I find it intriguing that source code that I haven’t touched in 15 years is still useful
today.

Three of these tools were written in ANSI C, and are portable on compilers that conform
to this standard. This means that their source code, without any modifications, should
compile on multiple platforms, which has been confirmed by their many users. Each of
these three tools displays its help page by using the -h option on the command line. These
same help pages are listed in the following sections, and are provided in order to illustrate
the full potential of the tools’ functionality.

JConv—Code Conversion tool
The most basic Japanese text-processing requirement is a tool that converts Japanese text
from one encoding to another. This is most important when moving Japanese text from
one platform to another, and when receiving email messages or news articles. All in all,
this is a general workhorse tool. I use it often.

This tool, called JConv, implements the routines for converting from one Japanese encod-
ing to another. The main features of JConv are as follows:

Supports the JIS X 0208:1997 character set•	

Handles ISO-2022-JP, Shift-JIS, and EUC-JP encodings•	

Lists code specifications for Japanese encoding methods•	

Filters half-width katakana by converting them to their full-width counterparts•	

Repairs damaged ISO-2022-JP•	 –encoded files

Can forcibly damage ISO-2022-JP•	 –encoded files (so they can be restored later with
the repair option)

Lets one check files for their encoding without actually performing any code •	
conversion

Includes a verbose mode option that displays more information about what the tool •	
is doing

Many of the algorithms and routines listed and explained earlier in this chapter are used
in this code-processing tool.

Here is this tool’s help page:
** jconv v3.0 (July 1, 1993) **
Written by Ken R. Lunde, Adobe Systems Incorporated
lunde@adobe.com
Usage: jconv [-options] [infile] [outfile]
Tool description: This tool is a utility for converting the Japanese code of
textfiles, and supports Shift-JIS, EUC, New-JIS, Old-JIS, and NEC-JIS for

* http://examples.oreilly.com/9780596514471/src/

Code-Processing tools | 617

both input and output. It can also display a file s input code, repair
damaged Old- or New-JIS files, and display the specifications for any of the
handled codes.
Options include:
 -c Displays the detected input code, then exits -- the types
 reported include EUC, Shift-JIS, New-JIS, Old-JIS, NEC-JIS, ASCII
 (no Japanese), ambiguous (Shift-JIS or EUC), and unknown (note
 that this option overrides "-iCODE")
 -f Converts half-width katakana to their full-width equivalents (this
 option is forced when output code is New-, Old-, or NEC-JIS)
 -h Displays this help page, then exits
 -iCODE Forces input code to be recognized as CODE
 -o[CODE] Output code set to CODE (default is Shift-JIS if this option is
 not specified, or if the specified CODE is invalid)
 -r[CODE] Repairs damaged New- and Old-JIS encoded files by restoring lost
 escape characters, then converts it to the CODE specified (the
 default is to convert the file to New-JIS if CODE is not
 specified -- cannot be used in conjunction with "-s")
 -s[f] Removes escape characters from valid escape sequences of New- and
 Old-JIS encoded files -- "f" will force all escape characters
 to be removed (default extension is .rem -- cannot be used in
 conjunction with "-r")
 -t[CODE] Prints a table listing the specifications for the specified CODE,
 then exits (all code tables will be displayed if CODE is not
 specified, or if CODE is invalid)
 -v Verbose mode -- displays information such as automatically
 generated file names, detected input code, number of escape
 characters restored/removed, etc.
NOTE: CODE has five possible values (and default outfile extensions):
 "e" = EUC (.euc); "s" = Shift-JIS (.sjs); "j" = New-JIS (.new);
 "o" = Old-JIS (.old); and "n" = NEC-JIS (.nec)

JConv has been ported to Mac OS, MS-DOS, and MS Windows. One of the Mac OS
ports was done by Natsu Sakimura, and it is called JCONV-DD (DD stands for “Drag and
Drop”).

If you are interested in cross-locale code conversion, consider using CJKVConv.pl, tcs, or
Uniconv, all of which were described in Chapter 4’s section entitled “Code Conversion
Across CJKV Locales.”

JChar—Character set Generation tool
Another general Japanese code-processing need is the ability to generate a listing of Jap-
anese character sets. Generating a file that contains a complete electronically encoded
Japanese character set can be done most effectively with the use of loops found in most
programming languages. After all, who wants to manually input several thousand char-
acters? Generating the coded character sets is trivial, as loops do all the work for you.
The problem occurs when you want to generate a list containing only the characters in a
noncoded character set, such as Jōyō Kanji. There is no algorithm you can use, since the
necessary kanji are scattered throughout JIS X 0208:1997 Level 1 kanji. The only way to
handle such a task is to key the kanji in manually, and then to be sure to save your work!

618 | Chapter 9: Information Processing techniques

I have written a tool, called JChar, that generates these problematic character sets (and
nonproblematic ones, too!). Listings of these noncoded Japanese character set standards,
as generated by JChar, are in Appendix J.

The JChar tool has many features and options that you will find useful at some time or
another—the main ones are as follows:

Supports the JIS X 0208:1997, ASCII/JIS-Roman, half-width katakana, Jōyō Kanji, •	
Gakushū Kanji, and Jinmei-yō Kanji character sets

Outputs data in ISO-2022-JP, Shift-JIS, or EUC-JP encoding•	

Wraps output lines at •	 n columns

Can suppress header information•	

Algorithms used in this tool are primarily loops (for the coded character sets) and data
structures (for the noncoded character sets). Encoding range bounds are used, though, to
generate the whole character encoding space, and not just the code positions that contain
characters. For example, when choosing to generate the JIS X 0208:1997 list, it does not
generate 6,879 code positions, but does 8,836 code positions, which is what you get from
a complete 94×94 matrix.

Here is this tool’s help page:
** jchar v3.0 (July 1, 1993) **
Written by Ken R. Lunde, Adobe Systems Incorporated
lunde@adobe.com
Usage: jchar [-options] [outfile]
Tool description: This tool is a utility for generating various Japanese
character sets in any code. This includes all the characters specified in
JIS X 0208-1990, half-width katakana (EUC and Shift-JIS output only), the
94 printable ASCII/JIS-Roman characters, the 1945 Joyo Kanji, the 284
Jinmei-yo Kanji, and the 1006 Gakushu Kanji.
Options include:
 -a Builds an ASCII/JIS-Roman list (printable characters only)
 -g Builds the Gakushu Kanji list
 -h Displays this help page, then exits
 -j Builds the Joyo Kanji list
 -k Builds the JIS X 0208-1990 list
 -o[CODE] Builds lists in CODE format (default is Shift-JIS if this option
 is not specified, if CODE is not specified, or if CODE is invalid)
 -p Builds the Jinmei-yo Kanji list
 -s Suppresses headers and row number information
 -w[NUM] Wraps output lines at NUM columns (if NUM is not specified, 78
 is used as the default value)
NOTE: CODE has five possible values: "e" = EUC; "s" = Shift-JIS;
 "j" = New-JIS; "o" = Old-JIS; and "n" = NEC-JIS

CJKV Character set server
\I decided to upgrade and enhance JChar—sometime in 1996—to support CJKV char-
acter sets and encodings. Now, instead of being available as C source code that must be

Code-Processing tools | 619

compiled and then run on specific OSes, it is a web service with a CGI program under the
hood.* The underlying CGI program is written in Perl.

Like JChar, the CJKV Character Set Server supports both coded and noncoded character
sets. And, you can decide whether you’d like a file emailed to you—automatically uuen-
coded for safety if there are any eight-bit characters used in the selected encoding—or
else display the character set directly in your web browser, which can be easily copied and
pasted.

JCode—text File examination tool
Every programmer—or even nonprogrammer types with enough interest—may occa-
sionally like to take a closer peek at Japanese codes and how they relate to each other. The
non-Japanese analogy is a hex dump of a file. However, since most Japanese characters
consist of two bytes, a normal hex dump may not be very useful. Such a tool designed for
use with Japanese text should treat two-byte characters as single entities. It should also
make use of all the routines for converting between the various encoding methods, but
instead of converting characters, it lists each character, along with its associated value in
a variety of encodings.

A tool I wrote, called JCode, fills this gap, and offers two basic functions, indicated as
follows:

Accepts actual encoded Japanese characters in a variety of encodings, and then per-•	
forms the equivalent of a hex dump

Accepts four- and five-digit codes, one per line, that represent the encoded value of •	
a character—for instance, “3021” or “k1601” for the JIS X 0208:1997 kanji 亜—then
performs the equivalent of a hex dump

Using a hex dump as the non-Japanese analogy to this tool is not entirely correct. The tool
JCode also allows you to perform an octal or decimal dump, depending on what notation
you want (the default is to use hexadecimal notation).

Now it’s time to see some sample output of JCode. First, you will see how this tool can
handle actual Japanese text. Note that the file cannot be of a mixed encoding (that is,
Shift-JIS plus EUC-JP, and so on). The following four characters serve as the example
input to JCode:

かな漢字

They characters are pronounced ka na kan ji (meaning “kana [and] kanji”). The resulting
output is shown in Table 9-25.

* http://lundestudio.com/cjkv-char.html

620 | Chapter 9: Information Processing techniques

JCode output—first exampleTable 9-25.

Character shift-JIs eUC JIs AsCII KUten

か 82-A9 A4-AB 24-2B $+ 04-11

な 82-C8 A4-CA 24-4A $J 04-42

漢 8A-BF B4-C1 34-41 4A 20-33

字 8E-9A BB-FA 3B-7A ;z 27-90

Next, you will see how this tool can handle four- and five-digit codes. To automatically
detect all the main encodings, you must add a prefix before EUC-JP and Row-Cell (called
KUTEN in its output) values, and require hexadecimal notation for ISO-2022-JP, Shift-
JIS, and EUC-JP encodings. Here is the input I used:

82A9
xa4cA
3441
k2790

The first line is a hexadecimal Shift-JIS code, the second line is a hexadecimal EUC-JP
code (note the “x” prefix), the third line is a hexadecimal ISO-2022-JP code, and the last
line is a Row-Cell (KUTEN) code (note the “k” prefix). Table 9-26 provides the resulting
output.

JCode output—second exampleTable 9-26.

Character shift-JIs eUC JIs AsCII KUten

か 82-A9 A4-AB 24-2B $+ 04-11

な 82-C8 A4-CA 24-4A $J 04-42

漢 8A-BF B4-C1 34-41 4A 20-33

字 8E-9A BB-FA 3B-7A ;z 27-90

As you can see, a completely different set of input data produced the exact same output.
Also note how the handling of the four- and five-digit codes is not case-sensitive, and how
each line can specify a different encoding.

This tool has other options, most of which allow you to better format the output, as
follows:

Supports •	 octal, decimal, and hexadecimal notations for output (the default is
hexadecimal)

Pads columns with spaces or a tab (the default is padding with spaces)•	

Shows •	 control characters

Includes a verbose mode that provides more information, such as which Japanese •	
encoding was detected

Code-Processing tools | 621

This tool, as you might expect, uses many of the code conversion algorithms and routines
described earlier in this chapter. The remainder is simply fancy formatting of the output.

Now for this tool’s help page:
** jcode v3.0 (July 1, 1993) **
Written by Ken R. Lunde, Adobe Systems Incorporated
lunde@adobe.com
Usage: jcode [-options] [infile] [outfile]
Tool description: This tool is a utility for displaying the electronic values
of Japanese characters within textfiles, and supports Shift-JIS, EUC, New-JIS,
Old-JIS, and NEC-JIS for both input and output.
Options include:
 -c[DATA] Reads codes, one per line, rather than characters as input --
 if DATA is specified, only that code is treated, then exits
 (KUTEN codes must be prefixed with "k," and EUC codes with
 "x" -- EUC, JIS, and Shift-JIS codes must be hexadecimal)
 -h Displays this help page, then exits
 -iCODE Forces input code to be recognized as CODE
 -n[NOTATION] Output notation set to NOTATION (default is hexadecimal if this
 option is not specified, if NOTATION is not specified, or if
 the specified NOTATION is invalid)
 -o[CODE] Output code set to CODE (default is Shift-JIS if this option
 is not specified, if CODE is not specified, or if the
 specified CODE is invalid)
 -p[CHOICE] Pads the columns with CHOICE whereby CHOICE can be either t
 for tabs or "s" for spaces (default is spaces if this option
 is not specified, if CHOICE is not specified, or if the
 specified CHOICE is invalid)
 -s Shows control characters (except escape sequences)
 -v Verbose mode -- displays information such as automatically
 generated file names, detected input code, etc.
NOTE: CODE has five possible values:
 "e" = EUC; "s" = Shift-JIS; "j" = New-JIS; "o" = Old-JIS;
 and "n" = NEC-JIS
NOTE: NOTATION has three possible values:
 "o" = octal; "d" = decimal; and "h" = hexadecimal

other Useful tools and resources
There are many more tools that perform very useful and time-saving tasks that are, in one
way or another, CJKV-related. The following is a brief listing of some more well-known
sources for such utilities or data:

Basis Technology’s •	 Rosette Linguistics Platform*

•	 Erik Peterson’s Chinese tools†

International Components for Unicode•	 (ICU)‡

* http://www.basistech.com/products/
† http://www.mandarintools.com/
‡ http://www.icu-project.org/

622 | Chapter 9: Information Processing techniques

•	 Jack Halpern’s The CJK Dictionary Institute*

•	 Koichi Yasuoka’s Kanji Bukuro (漢字袋 kanji bukuro)†

Koichi Yasuoka’s various CJK mapping tables•	 ‡

I encourage you to explore these URLs, along with the many books that are listed in this
book’s Bibliography, to find suitable tools or data for your needs. It goes without saying
that it is best not to reinvent the wheel.

* http://www.cjk.org/
† http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/kanjibukuro/
‡ http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/CJK.html

623

CHAPter 10

oses, text editors, and Word Processors

Here we cover basic or minimal functionality, specifically the use of OSes, text editors,
and word processors. These environments and applications completely satisfy the basic
requirements for some users, even without regard to the CJKV implications that are dis-
cussed throughout this book. One could even argue that today’s mobile devices, including
some cell phones, satisfy the needs for some users, because they provide all the features
and functionality that they desire, such as the ability to send and receive email, to browse
the Web, to keep contact information, and for recording text notes.

In this chapter, we discuss software that companies and individuals have developed,
which, when properly integrated and configured, provides the ability to create, format,
display, print, send, or receive CJKV text by electronic means. Figure 10-1 illustrates how
these various text-processing tools interact with each other.

���
��

��������������������������

������������ �����������������

������
�����

�������

The interaction of text-processing toolsFigure 10-1.

624 | Chapter 10: oses, text editors, and Word Processors

The Web, of course, is changing the way we think about software, and applications no
longer need to be tied to a specific OS or platform. The introduction of web browsers
started this trend, because they effectively act as portals for online applications. At the end
of this chapter I cover online word processors, which continue this trend. As this technol-
ogy improves, online applications are likely to become more sophisticated, even rivaling
conventional applications.

One of the goals of this chapter is to give readers, whether they are developers or users,
a basic understanding or overview of the types of CJKV text-processing utilities that are
available, and what capabilities to expect from each. This, of course, includes the OSes on
which they run. Note that certain classes of these utilities and applications have already
been discussed in earlier and more appropriate chapters: code conversion tools at the end
of Chapter 4; input methods in Chapter 5; and page composition and graphics software
in Chapter 7. Some of the code-processing tools described at the end of Chapter 9 are
relatively specialized programmer utilities that I developed, or were developed by other
creative individuals and companies. Others are discussed in later and again more ap-
propriate chapters: dictionary software and learning aids in Chapter 11; and web-related
software in Chapter 12.

Mind you, the capabilities of these types of applications range from the most basic to
very complex. With all of their differences, they share one common feature: they are all
multiple-byte–aware or multilingual. Many support Unicode. In fact, I would claim that
those that do not support Unicode are uninteresting, and thus not compelling. Not all
software has been localized for all CJKV locales, but some provide an adequate or basic
level of CJKV support, such as multiple-byte awareness. This was especially true of Mac
OS applications that were considered to be WorldScript II–compatible. Such applications
became multiple-byte–aware when the appropriate script (language) resources were in-
stalled into the OS, either due to the use of a fully localized OS or else the installation of
one of Apple’s Language Kits.

I make an effort to describe at least one example for each of the categories listed on the
first page of this chapter, and for the following platforms: Mac OS X, Unix (with a focus
on Linux), and Windows Vista. And, the fact that I list particular software in this chapter
does not mean that I necessarily prefer it over software that I have not listed. Bear in mind
that it is this chapter that is likely to become quickly outdated.

To an unprecedented extent, Unicode has changed the landscape for the better for OSes,
text editors, word processors, and other applications. Put simply, Unicode has enabled
multilingual support, and to a significant extent, has trivialized this effort. Languages and
scripts that at one time competed and conflicted with one another can now peacefully
coexist, and even flourish.

Viewing CJKV text Using non-CJKV oses | 625

Included in this chapter are terms such as freeware,* shareware,† and commercial software.‡
Open source is another term that will pop up from time to time. These terms relate to the
licensing terms of the software, and to what extent the source code is made available. This
chapter will provide you with a basic working knowledge of what functions to expect,
but stops short of providing all the information about such software. To do so is clearly
beyond the scope of this book. If you are interested in a particular OS or application, I
encourage you to obtain more detailed information on it from its creator, manufacturer,
or distributor. In some cases, the manual may be available as a downloadable PDF file, or
there may be a trial version available.

Viewing CJKV text Using non-CJKV oses
For a significant number of users, simply being able to display CJKV text is sufficient to
suit their needs. The ability to input or otherwise manipulate CJKV text may not be so
important to this class of user. If you do not fall into this category of user, I strongly en-
courage you to consider obtaining an OS or other environment that provides a full range
of CJKV support, not simply the ability to display CJKV text. As long as you are using Mac
OS X or Windows Vista as your OS, your needs will be met.

In the past, Microsoft provided, as part of their OS CD-ROMs and on their website, what
were referred to as Language Packs that enabled users to add CJKV functionality to their
earlier OSes. If you installed the appropriate Language Pack, it would enable the display—
but not input—of the corresponding CJKV text in many applications, such as Internet
Explorer. Windows 2000 changed this and effectively eliminated the need for Language
Packs. Windows Vista took this one step further through a variety of refinements and
enhancements.

Apple provided comparable functionality through the distribution of Language Kits,
which enabled not only the display of CJKV text, but also their input. The introduction of
Mac OS X eliminated the need to use Language Kits, and instead rich multilingual sup-
port was built into the OS core.

* Freeware software is free, meaning that there is no fee to use it. But it is not public domain, which means that
the developer still maintains the copyright.

† Shareware software is usually freely available, but there is a minimal fee that you must pay the developer in
order to continue using it. This effectively allows you to try-before-you-buy. If you end up regularly using
shareware programs, I strongly encourage you to pay the license fee in fairness to the software author who
spent countless hours developing it.

‡ Some commercial applications are available as demo or trial versions at no charge, which means that you are
able to try-before-you-buy, but unlike shareware, there are may be restrictions, such as the inability to print
or save files. Some trial versions are fully functional, such as those offered by Adobe Systems, and are so for 30
days. If you’re interested in a particular commercial application, I strongly encourage you to seek out a demo
or trial version, either at the company’s website, by making a telephone call, or sending an email.

626 | Chapter 10: oses, text editors, and Word Processors

Asiansuite X2—Microsoft Windows
UnionWay provides CJKV functionality on English versions of Windows, including input
methods and TrueType fonts, through their AsianSuite X2 product.* Although legacy en-
codings are supported, Unicode is also.

nJstar CJK Viewer—Microsoft Windows
Also known as NJWIN, NJStar CJK Viewer enables the display and printing of CJK text
in non-CJK versions of Windows.† For those users who also need the ability to enter CJK
text, NJStar Communicator, which additionally provides CJK input methods and other
utilities, should be explored.‡

twinBridge Language Partner—Microsoft Windows
TwinBridge provides CJKV functionality on English versions of Windows, to include in-
put methods and TrueType fonts, through their TwinBridge Language Partner products.
Although these products are specifically designed for use with English versions of Win-
dows, they will work with any version to add CJKV functionality. Of course, Unicode is
supported by these products.

Although they have separate Chinese, Japanese, and Korean versions of TwinBridge Lan-
guage Partner, they also have developed a TwinBridge CJK Partner, which presumably
includes all of their functionality in a single product.

operating systems
Many of the text-processing tools that are described in the sections that follow, or that
were described in previous chapters, may require that you are using a CJKV-capable OS
or that you add CJKV support to the OS that you are using. This may involve replacing
your OS entirely with a fully localized version, or else adding extensions to your current
OS. The latest versions of popular OSes include an adequate level of multilingual sup-
port, to the extent that they can be used as is. I am speaking, of course, of Mac OS X and
Windows Vista.

CJKV-capable—meaning multilingual—OSes typically provide two main benefits, de-
scribed as follows:

They provide multilingual text-handling capability at the OS level, which usually—•	
but not always—gives non-CJKV (or unlocalized) applications the ability to handle
multilingual text.

* http://www.unionway.com/
† http://www.njstar.com/cms/njstar-cjk-viewer/
‡ http://www.njstar.com/cms/njstar-communicator/

operating systems | 627

They provide a UI (user interface) that is tailored for a target locale (in Korea, for •	
example, in the form of a Korean OS)—this is a major convenience for users who
happen to be native speakers of the locale targeted by the OS developer.

To a great extent, the material in this section lays the foundation for the discussions that
follow in the later sections of this chapter.

There are far too many OSes and OS extensions to describe in this book. What is provid-
ed in the following sections are brief descriptions of CJKV-capable OSes and OS exten-
sions—in essence, how to add CJKV support to computers. What is not described are the
computers that are manufactured specifically for CJKV locales. Older computers required
special ROM to support CJKV locales—the fonts to support the locale, for example, were
included in the ROM. Fortunately, today’s trend is to use standard hardware.

At the end of Chapter 6 was a brief description of OS-bundled fonts, along with a strong
recommendation that software should not reference them directly. This is because they
are subject to change, either by being removed entirely in a new version of the OS, or by
being renamed. In other words, it is important that developers and users do not become
dependent on OS-bundled fonts nor the specific characteristics that they exhibit, because
both are subject to change with little or no warning.

FreeBsd
FreeBSD is yet another freeware version of Unix, similar to Linux in that it is designed
to run on PC compatibles.* As its name suggests, FreeBSD is based on BSD Unix. While
new versions of the Linux kernel are released frequently, FreeBSD’s releases are more in-
frequent. Unix is covered later in this chapter.

Linux
Linux (りぬくす rinukusu in Japanese;† 리눅스 rinukseu in Korean) is arguably the most
widely used OS today, simply because it has grown into the preferred OS for servers. It
is broadly used for personal use, embedded systems, mobile devices, and even games.‡ It
is Unix-like and Unix-compatible, and for many purposes, has effectively replaced Unix.
Linux is best described as a fully matured Unix-compatible OS that runs on ordinary
Intel-processor–powered PCs. Linux also runs on a variety of other machines and archi-
tectures, including embedded systems.

Part of the success of Linux is due to its outstanding support for Unicode. Like oth-
er Unix implementations, the UTF-8 encoding form is the preferred way in which to

* http://www.freebsd.org/
† Wikipedia claims that there are a myriad of ways in which to express Linux in Japanese, such as リーヌークス

(rīnūkusu), リナックス (rinakkusu), リヌックス (rinukkusu), リヌクス (rinukusu), ライナックス (rainakkusu),
and リーナクス (rīnakusu).

‡ http://www.linux.org/

628 | Chapter 10: oses, text editors, and Word Processors

represent Unicode on Linux. As described in Chapter 4, it is compatible with the UTF-
16 and UTF-32 encoding forms and is considered one of the three fundamental ways in
which Unicode text is represented.

The number of Linux distributions that are available today is staggering. Yet, they all share
one common attribute, specifically that they all use the Linux kernel. Linus Torvalds first
developed the Linux kernel in 1991, and remains the primary force behind Linux in that
he is still responsible for the kernel. But, there is a cast of tens of thousands performing
actual development on Linux as a whole.

Many large companies provide Linux distributions, such as IBM, SGI, and Sun Micro-
systems. Some companies, such as Red Hat, specialize in providing Linux distributions.
Linux itself is open source, meaning free. Companies charge for Linux, either for the
installation conveniences that they provide, or for the support or additional applications
and features that they provide.

Popular commercial Linux distributions include Red Hat Linux and Novell’s SUSE Linux.
Novell also provides a community version of their SUSE Linux called OpenSUSE, and Red
Hat does the same with Fedora. Ubuntu Linux and Debian Linux are other popular Linux
distributions. This list could go on and could fill a book, but we won’t do that here.

Like Unix, Linux is an OS that lacks what I would consider to be adequate built-in font
support, comparable to what Mac OS X and Windows 2000/XP/Vista provide. This
functionality gap has effectively widened when Adobe Systems licensed its ATM font-
rendering engine to Apple and Microsoft, which made PostScript-based fonts first-class
citizens on those OSes. Of course, there are libraries available that can be used by applica-
tions that run on Linux, such as FreeType 2, which is included with virtually every Linux
distribution.* But, until OpenType fonts are supported by Linux at the OS level, I consider
its font support to be inadequate.

An excellent introduction to Linux is Running Linux, Fifth Edition (O’Reilly Media,
2005),† and Linux in a Nutshell, Fifth Edition (O’Reilly Media, 2005) provides incredibly
useful reference material.‡

Mac os X
In my opinion, and perhaps due to my computing background that includes Unix and
Mac OS, Apple revolutionized the world of OSes by effectively merging Mac OS and Unix
into a single OS called Mac OS X.§ For those who are not aware, the “X” of Mac OS X
is the Roman numeral for 10. For those who needed to run applications that were not
built to run on Mac OS X, Apple provided Classic Mode, which allowed Mac OS to run

* http://freetype.sourceforge.net/index2.html
† http://oreilly.com/catalog/9780596007607/
‡ http://oreilly.com/catalog/9780596009304/
§ http://www.apple.com/macosx/

operating systems | 629

simultaneously with Mac OS X. For a while, it was a “best of both worlds” situation. As
soon as Apple started to use Intel processors in lieu of PowerPC processors, their ma-
chines could no longer run Classic Mode, and users were forced to make the complete
switch over to Mac OS X. Some applications, such as Adobe FrameMaker, were never
developed to run on Mac OS X.*

Apple has always been committed to making Macintosh a multilingual platform. Devel-
opment of a localized Japanese version of its OS, originally called KanjiTalk (漢字 Talk
kanji tōku), began very early on. KanjiTalk then changed its name to Mac OS-J, and both
versions processed Shift-JIS encoding internally. Genuine Unicode enablement was intro-
duced with Mac OS X, and with each subsequent release of Mac OS X, the extent to which
Apple’s OS supports Unicode improves.

Another development or achievement of Mac OS X, which many users (and developers)
take for granted, is that Adobe Systems licensed to Apple its ATM (Adobe Type Man-
ager) rasterizer, which effectively added support for PostScript-based fonts at the OS level.
This means that Type 1 fonts, CID-keyed fonts, sfnt-CID fonts, and OpenType fonts are
fully supported in Mac OS X, though OpenType is clearly the most important of these
PostScript-based font formats. This effectively means that ATM is no longer required and
will not run on Mac OS X.

For more information about Mac OS X, I recommend David Pogue’s witty and informa-
tive The Missing Manual book, the latest of which is entitled Mac OS X Leopard: The Miss-
ing Manual (O’Reilly Media, 2007).†

Mac os X fonts
Beginning with the very early versions of Mac OS X, Apple began bundling a somewhat
large set of OpenType Japanese fonts, all of which were developed by Dainippon Screen.
The designs themselves came from a Japanese type foundry called Jiyu-Kobo, and are part
of the now-famous Hiragino (ヒラギノ hiragino) typeface family.‡ A total of six Hiragino
fonts were bundled.

Beginning with Mac OS X version 10.5 (aka Leopard), Apple effectively doubled the num-
ber of bundled OpenType Japanese by virtue of providing JIS2004-savvy versions of the
fonts, in addition to continuing to bundle the non–JIS2004-savvy versions. As stated in
Chapter 6, the fonts required for Mac OS X are in the /System/Library/Fonts/ directory,
and those that are considered optional are in the /Library/Fonts/ directory. The required
fonts are necessary for UI or other purposes and cannot be deleted without Administrator

* http://www.fm4osx.org/
† http://oreilly.com/catalog/9780596529529/
‡ http://www.screen.co.jp/ga_product/sento/

630 | Chapter 10: oses, text editors, and Word Processors

or “root” privileges.* Tables 10-1 and 10-2 list the required and optional Chinese, Japa-
nese, and Korean fonts that are bundled with Mac OS X, current as of version 10.5.

Mac OS X version 10.5 fonts—requiredTable 10-1.

Language In /system/Library/Fonts/ type foundry Glyphs

Simplified Chinese
华文细黑.ttf
华文黑体.ttf

SinoType
37,256
32,493

Traditional Chinese 儷黑 Pro.ttf DynaComware 22,581

Japanesea

ヒラギノ角ゴ ProN W3.otf
ヒラギノ角ゴ ProN W6.otf
ヒラギノ明朝 ProN W3.otf
ヒラギノ明朝 ProN W6.otf

Dainippon Screen

20,325
20,325
20,325
20,325

Korean AppleGothic.ttf Apple 19,810

These OpenType Japanese fonts are based on the Adobe-Japan1-5 character collection, which includes 20,317 glyphs, along with 8 additional a.
glyphs from the Adobe-Japan1-6 character collection so that they are JIS2004-savvy.

Mac OS X version 10.5 fonts—optionalTable 10-2.

Language In /Library/Fonts/ type foundry Glyphs

Simplified Chinese
华文宋体.ttf
华文楷体.ttf
华文仿宋.ttf

SinoType
32,493
32,493
32,493

Traditional Chinese 儷宋 Pro.ttf DynaComware 22,581

Japanese

ヒラギノ角ゴ Pro W3.otf
ヒラギノ角ゴ Pro W6.otf
ヒラギノ明朝 Pro W3.otf
ヒラギノ明朝 Pro W6.otf
ヒラギノ角ゴ StdN W8.otf
ヒラギノ角ゴ Std W8.otf
ヒラギノ丸ゴ ProN W4.otf
ヒラギノ丸ゴ Pro W4.otf

Dainippon Screen

20,317
20,317
20,317
20,317
9,498
9,354
20,325
20,317

Korean AppleMyungjo.ttf Apple 19,745

As stated earlier in this chapter, it is strongly advised that developers and users not be-
come dependent on the fonts provided by Mac OS X, or for any other OS for that matter.

* The only time circumstance during which it may be necessary to remove a required font is to check to what
extent your application depends on the presence of any of those fonts.

operating systems | 631

The fact that the bundled Chinese and Korean fonts are TrueType is a good indicator that
OpenType fonts may one day replace them.

Mac os X versus Mac os
In the past, meaning prior to the introduction of Mac OS X, multilingual versions of Mac
OS came in two basic flavors or configurations, as follows:

Fully localized OS•	

English OS plus a Language Kit•	

Beginning with Mac OS version 7.1, which was called System 7.1, Apple introduced OS
extensions or libraries called WorldScript I and WorldScript II. Prior to that, comparable
functionality came from an OS component called ScriptManager. WorldScript I sup-
ported non-Latin, one-byte–encoded scripts, such as Arabic, Cyrillic, Hebrew, Thai, and
so on. WorldScript II supported non-Latin, two-byte–encoded scripts, such as Chinese,
Japanese, and Korean.

In terms of CJKV support through fully localized OSes, Apple provided Mac OS-S (origi-
nally named HanziTalk) for Simplified Chinese, Mac OS-T (originally named ChineseTalk)
for Traditional Chinese, Mac OS-J (originally named KanjiTalk) for Japanese, and Mac
OS-KH (originally named HangulTalk) for Korean.* These fully localized OSes provided
a localized UI, a basic set of TrueType fonts appropriate for each language and script, and
a basic set of input methods. Early versions of KanjiTalk included an input method called
2.0 変換 (2.0 henkan), which later became 2.1 変換 (2.1 henkan). This was later replaced
by ことえり (kotoeri), which remains the name of the Japanese input method used in Mac
OS X. In terms of encoding, Unicode was not yet supported, so the corresponding legacy
encodings were used, meaning Big Five for Traditional Chinese, EUC-CN for Simplified
Chinese, Shift-JIS for Japanese, and EUC-KR for Korean.

Apple also introduced a series of Language Kits that effectively added Chinese, Japanese,
or Korean support to the standard English version of Mac OS. The UI remained in Eng-
lish, but the ability to input, display, and print CJKV text was enabled through the use
of appropriate input methods and fonts. JLK (Japanese Language Kit) was the first to be
released. Simplified and Traditional Chinese were combined into a single Language Kit
called CLK (Chinese Language Kit). The last one to be released was KLK (Korean Lan-
guage Kit). These Language Kits were extremely popular with Apple’s customers and sold
quite well.

More details about the character sets and encodings used by these fully localized versions
of Mac OS, including the Language Kits, can be found in Appendixes E and F of this
book.

* Interestingly, Mac OS-KH was not developed by Apple, and was instead developed by a company called Elex
Computer.

632 | Chapter 10: oses, text editors, and Word Processors

Microsoft Windows Vista
Windows Vista represents the latest and greatest version of Microsoft’s Windows OS.* The
previous version of their OS, called Windows XP, was very popular, and from a multilin-
gual point of view, was quite robust, with strong Unicode support. Windows Vista ups
the ante by providing a fully multilingual OS, without the need to download or install
language- or script-specific components. Everything is included.

The very early versions of Windows were simply windowing environments for MS-DOS,
thus its name. Starting with Windows 95, it was a genuine OS, and did not require that
MS-DOS be running under the hood. Microsoft developed several localized versions of
Windows 95 and 98, including five for CJKV locales: Simplified Chinese, Traditional Chi-
nese, Japanese, Korean, and Vietnamese. They did the same for Windows NT, which was
the first version of Windows that supported Unicode. Prior to Windows NT, only some
components, such as the bundled fonts, supported Unicode. Looking as far back as Win-
dows 95J and 98J, their bundled Japanese fonts had absolutely no trace of Shift-JIS encod-
ing in their ‘cmap’ tables. They had only Unicode encoding in them. So, how did Shift-JIS–
based applications work with such Unicode-encoded fonts? Windows converted between
legacy encodings, such as Shift-JIS, and Unicode on-the-fly whenever necessary. This was
remarkably seamless, and users really had no idea that conversion between Unicode and
legacy encodings was even taking place. And, they didn’t need to know or care. Microsoft
had effectively insulated users from such issues.

Windows 2000 (followed by Windows XP then Windows Vista) established a new mile-
stone by providing support for PostScript-based fonts at the OS level, eliminating the need
for ATM. Adobe Systems licensed to Microsoft the ATM-rendering engine, which gives
the OS the ability to handle such fonts, to include the most important PostScript-based
font format, specifically OpenType. Because Windows now supports OpenType fonts as
first-class citizens, many users and developers alike take this for granted.

David Pogue’s Windows Vista: The Missing Manual (O’Reilly Media, 2006) is a very in-
formative book for those who are unfamiliar with Windows Vista.† And, Preston Gralla’s
Windows Vista in a Nutshell (O’Reilly Media, 2006) serves as an excellent reference.‡ De-
velopers of internationalized Windows Vista software should consult Microsoft’s website
for appropriate information.§

Windows Vista versus Windows XP
If Unicode support is included in Windows Vista and Windows XP, how do they differ?
Reports indicate that Windows XP is faster and consumes less resources than Windows
Vista.

* http://www.microsoft.com/windows/products/windowsvista/
† http://oreilly.com/catalog/9780596528270/
‡ http://oreilly.com/catalog/9780596527075/
§ http://www.microsoft.com/globaldev/vista/vistahome.mspx

operating systems | 633

Given the multilingual features of Windows Vista, it is no surprise that it consumes more
resources, because the OS itself includes more resources. For users who do not require
multilingual functionality, Windows XP remains a compelling choice.

Still, at some point in the future, Windows XP will go away, and before that, support for
Windows XP will be dropped. It is inevitable. Likewise, a new version of Windows is likely
to someday replace Windows Vista.

Windows Vista fonts
Because Windows Vista is multilingual in its standard configuration, it means that a large
number of CJKV fonts are available without the need to download or install Language
Packs. And, because Microsoft needs to address legacy issues, some of the CJKV fonts
that were bundled with earlier versions of its OS, such as Windows XP, continue to be
bundled with Windows Vista. The fonts that are considered new for Windows Vista have
been highlighted in Tables 10-3 through 10-6.

Table 10-3 lists the TrueType and TrueType Collection fonts for Simplified Chinese that
are included with Windows Vista, all of which support GB 18030. The last one, simsunb.ttf,
supports CJK Unified Ideographs Extension B. The first two were developed by Founder,
and use Microsoft’s ClearType technology for improved onscreen display.* The rest were
developed for Microsoft by ZhongYi Electronics. English and Chinese menu names are
provided, and the fonts introduced in Windows Vista are highlighted.

TrueType Chinese fonts in Windows Vista—simplifiedTable 10-3.

truetype font file Font instances Glyphs

msyh.ttf Microsoft YaHei/微软雅黑 (wéiruǎn yǎhēi) 29,126

msyhbd.ttf Microsoft YaHei Bold/微软雅黑 Bold (wéiruǎn yǎhēi Bold) 29,126

simfang.ttf FangSong/仿宋 (fǎngsòng) 28,562

simhei.ttf SimHei/黑体 (hēitǐ) 28,562

simkai.ttf KaiTi/楷体 (kǎitǐ) 28,562

simsun.ttc
SimSun/宋体 (sòngtǐ)
NSimSun/新宋体 (xīnsòngtǐ)

28,762

simsunb.ttf SimSun-ExtB 42,809

For those who are interested in GB 18030-2005 support issues, Microsoft’s Simplified Chi-
nese fonts have some interesting history that I’d like to record in these pages; otherwise, it
may be forgotten or lost. Prior to Windows Vista, Microsoft provided a GB18030 Support
Package for Windows XP users. In addition to providing OS resources that were neces-
sary to support GB 18030, a special version of simsun.ttc, named simsun18030.ttc, was

* http://www.microsoft.com/typography/ClearTypeInfo.mspx

634 | Chapter 10: oses, text editors, and Word Processors

included. It differed from the simsun.ttc that was included with the Simplified Chinese
version of Windows XP in two primary ways, as follows:

The menu names in •	 simsun18030.ttc included a “-18030” suffix, specifically “Sim-
Sun-18030” and “NSimSun-18030” in English, and 宋体-18030 and 新宋体-18030
in Chinese.

Whereas •	 simsun.ttc (on Windows XP) supported only GBK with 22,141 glyphs, sim-
sun-18030.ttc supported GB 18030 by including all of the glyphs for CJK Unified
Ideographs Extension A, along with those for four of its regional scripts, specifically
Mongolian, Tibetan, Uyghur, and Yi, for a total of 30,533 glyphs.

One immediately wonders why the simsun.ttc font on Windows Vista, which presumably
supports GB 18030, includes 1,771 fewer glyphs. Quite simply, the glyphs for the four
GB 18030 regional scripts were removed. In Windows Vista, those glyphs are available in
separate fonts. Support for Mongolian and Tibetan, for example, are available in the fonts
monbaiti.ttf (Mongolian Baiti) with 1,824 glyphs and himalaya.ttf (Microsoft Himalaya)
with 1,482 glyphs.

In addition, some of these Windows Vista fonts, such as simkai.ttf, included far fewer
glyphs in Windows XP, specifically 7,580 glyphs to cover the GB 2312-80 character set.
And, they were built by a different company for Microsoft. In the case of this example, the
Windows XP version was built by GreatWall Computer. The versions that are included in
Windows Vista now support GB 18030, as their glyph complements suggest.

Table 10-4 lists the TrueType and TrueType Collection fonts for Traditional Chinese
that are included with Windows Vista. The first three were made for Microsoft by Dyna-
Comware, and the last two were made for Microsoft by Monotype Imaging. English
and Chinese menu names are provided, and the fonts introduced in Windows Vista are
highlighted.

TrueType Chinese fonts in Windows Vista—traditionalTable 10-4.

truetype font file Font instances Glyphs

kaiu.ttf DFKai-SB/標楷體 (biāo kǎitǐ) 22,134

mingliu.ttc
MingLiU/細明體 (xìmíngtǐ)
PMingLiU/新細明體 (xīn xìmíngtǐ)
MingLiU_HKSCS/細明體_HKSCS (xìmíngtǐ_HKSCS)

33,987

mingliub.ttc
MingLiU-ExtB/細明體-ExtB (xìmíngtǐ-ExtB)
PMingLiU-ExtB/新細明體-ExtB (xīn xìmíngtǐ-ExtB)
MingLiU_HKSCS-ExtB/細明體_HKSCS-ExtB (xìmíngtǐ_HKSCS-ExtB)

44,857

msjh.ttf Microsoft JhengHei/微軟正黑體 (wéiruǎn zhèng hēitǐ) 28,969

msjhbd.ttf Microsoft JhengHei Bold/微軟正黑體 Bold (wéiruǎn zhèng hēitǐ Bold) 28,961

operating systems | 635

Table 10-5 lists the TrueType Collection fonts for Japanese that are bundled with Win-
dows Vista. C&G, Eiichi Kono, and Matthew Carter were involved with the design of
the two Meiryo fonts, and Ricoh made the rest. English and Japanese menu names are
provided, and the fonts introduced in Windows Vista are highlighted.

TrueType Japanese fonts in Windows VistaTable 10-5.

truetype font file Font instances Glyphs

meiryo.ttc
Meiryo/メイリオ (meirio)
Meiryo Italic/メイリオ イタリック (meirio itarikku)

20,684

meiryob.ttc
Meiryo Bold/メイリオ ボールド (meirio bōrudo)
Meiryo Bold Italic/メイリオ ボールド イタリック (meirio bōrudo itarikku)

20,684

msgothic.ttc
MS Gothic/MS ゴシック (MS goshikku)
MS PGothic/MS P ゴシック (MS P goshikku)
MS UI Gothic

22,213

msmincho.ttc
MS Mincho/MS 明朝 (MS minchō)
MS PMincho/MS P 明朝 (MS P minchō)

19,321

As discussed in Chapter 6, the difference between the font instances in msmincho.ttc and
msgothic.ttc is that the ones that include a “P” in their name use proportional glyphs, spe-
cifically for Latin characters, kana, punctuation, and some symbols. Even the half-width
katakana are proportional. These same TrueType Collection fonts, including their “P”
instances, were also bundled as far back as Windows 95J.

Finally, the name.ID=10 (Description) string of the meiryo.ttc and meiryob.ttc fonts states
the following:

Meiryo is a very versatile modern sans serif type designed to give an exceptionally clean ap-
pearance on screen, as well as in print. It is optimized for on-screen reading. The letterforms are
generously open and well-proportioned; legible and clear at smaller sizes, and dynamic at larger
display sizes. The beauty of this face is that it sets text lines in Japanese with Roman seamlessly
and harmoniously. The balanced inter-letter spacing enhances horizontal alignment, facilitating
smooth reading flow. Meiryo has a very large character set with Japanese and Roman combined,
fully scalable outline technology, making it extremely functional for all aspects of communica-
tion and publishing. It is a robust legible typeface yet compact enough to enable tight inter-line
spacing which is good for space economy.

In other words, a lot of effort went into the design of the Meiryo fonts in order to make
sure that they work well at a variety of point sizes and resolutions.

Table 10-6 lists the TrueType Korean fonts that are bundled with Windows Vista, and
because two of them are TrueType Collections, they include multiple font instances—
four, to be exact. These TrueType Collections were developed by HanYang. The two new
TrueType fonts were developed for Microsoft by Sandoll. Ignoring the presence of “Che”
(체 che) for the moment, note how each TrueType Collection includes two basic font
instances, both of which have different hangul designs, but share the same set of hanja

636 | Chapter 10: oses, text editors, and Word Processors

glyphs. English and Korean menu names are provided, and the fonts introduced in Win-
dows Vista are highlighted.

TrueType Korean fonts in Windows VistaTable 10-6.

truetype font file Font instances Glyphs

batang.ttc

Batang/바탕 (batang)
BatangChe/바탕체 (batangche)
Gungsuh/궁서 (gungseo)
GungsuhChe/궁서체 (gungseoche)

39,680

gulim.ttc

Gulim/굴림 (gullim)
GulimChe/굴림체 (gullimche)
Dotum/돋움 (dotum)
DotumChe/돋움체 (dotumche)

40,194

malgun.ttf Malgun Gothic/맑은 고딕 (malgeun godik) 12,747

malgunbd.ttf Malgun Gothic Bold/맑은 고딕 Bold (malgeun godik Bold) 12,740

Interestingly, these same TrueType Collections were included with Windows as far back
as Windows 95K, though obviously changes to these fonts have taken place between ver-
sions of Windows OS, such as to support additional hangul.

There is some interesting history behind these TrueType Korean font instance names,
specifically the presence or absence of the apparent suffix “Che.” The fact that these font
instances exist can be somewhat confusing, so this paragraph may help to understand why
they are named so. For example, we can see that there are pairs of related font instances,
such as Batang and BatangChe. In this case, the Batang instance uses proportional Latin
glyphs as the default, but the BatangChe instance uses half-width ones instead. The differ-
ence in their name, specifically the presence or absence of “Che” (체 che), must apparently
mean “proportional” or “half-width.” Not true. When expressing 체 using hanja, it be-
comes 體, and we can clearly see that it is simply a common suffix that means “typeface.”
Versions of these fonts that included half-width Latin glyphs were originally bundled with
Windows 3.1K, and included the “Che” suffix in their names. When instances of these
fonts that use proportional Latin glyphs by default were created, whoever was in charge of
font-naming at Microsoft decided to simply drop the final “Che” (체).

Ms-dos
MS-DOS (Microsoft Disk Operating System) is covered in this chapter primarily because it
demonstrates how far the software industry has advanced since the glory days of this OS.
MS-DOS represents the classic OS for personal computers. Long ago, in the early years
of this OS, it was necessary for the computer itself to contain special ROM that contained
CJKV fonts and CJKV text-handling routines. That requirement came to an abrupt end
with IBM’s introduction of DOS J/V, which allowed anyone to install a Japanese-capable

operating systems | 637

version of MS-DOS onto a non-Japanese IBM PC or compatible computer. IBM DOS J/V
processed Shift-JIS encoding internally.

The hardware requirements for IBM DOS J/V, as shown in the following list, are con-
sidered amazingly minimal by today’s standards, and for many, some aspects of these
requirements are unknown, and thankfully shall remain that way:

PS/55, PC/AT compatible, or PS/2 computer•	

VGA, XGA, or PS/55 display adaptor•	

80286 CPU or greater•	

A whopping 1 MB of RAM, though 4 MB was recommended•	

Today’s software runs under Windows Vista or other modern OSes, so naturally the num-
ber of users of MS-DOS has decreased significantly. In my opinion, the greatest achieve-
ment of Microsoft Windows, which was covered earlier in this chapter, is its ability to
effectively bridge incompatible hardware. For example, there were countless versions of
MS-DOS available, each of which was designed to run under a different underlying ar-
chitecture. When you purchased software that ran under MS-DOS, you had to be sure
that it was designed for the particular version of MS-DOS running on your computer.
When you buy Windows software, it will run on Windows regardless of the underlying
architecture.

Plan 9
Plan 9—originally designed in the late 1980s by Ken Thompson, Rob Pike, Dave Presotto,
and Phil Winter—is an experimental multilingual Unix-based OS under seemingly con-
stant development at Bell Laboratories. It is currently in its fourth edition.* Its four edi-
tions were released in 1992, 1995, 2000, and 2002, respectively.

Plan 9’s multilingual support is not based on the locale model, but instead simply uses
Unicode as its standard character set and the UTF-8 encoding form. No switching be-
tween locales is necessary, because all of the characters necessary for many languages,
scripts, or regions are supported by Unicode.

solaris and opensolaris
The Unix-based OS developed by Sun Microsystems is called Solaris, and there are fully
localized versions available, including those for Simplified Chinese, Traditional Chinese,
Japanese, and Korean.† There is also an open source version of Solaris called Open Solaris.‡
The latest versions of Solaris and OpenSolaris, of course, support Unicode. Because So-
laris and OpenSolaris are based on Unix, their preferred Unicode encoding form is, of

* http://plan9.bell-labs.com/plan9/
† http://www.sun.com/software/solaris/
‡ http://www.opensolaris.com/

638 | Chapter 10: oses, text editors, and Word Processors

course, UTF-8. And, its CJKV locale designators include UTF-8, such as zh_CN.UTF-8
for Simplified Chinese, zh_TW.UTF-8 for Traditional Chinese as used in Taiwan, zh_
HK.UTF-8 for Traditional Chinese as used in Hong Kong, ja_JP.UTF-8 for Japanese, and
ko_KR.UTF-8 for Korean.

Perhaps of historical interest, there are even locales established to support GBK (zh_
CN.GBK), GB 18030 (zh_CN.GB18030), and Hong Kong SCS (zh_HK.BIG5HK). Of
course, Solaris includes additional locales to support the more common legacy character
sets and encodings.

tron and Chokanji
TRON, an acronym for “The Real-time Operating system Nucleus,” was originally archi-
tected by Ken Sakamura (坂村健 sakamura ken) in Japan in 1984 as a set of interfaces
and design guidelines for creating a kernel.* This allows the specification to remain public,
yet implementations based upon it can be proprietary. There are many instantiations of
TRON, such as those listed in Table 10-7.

TRON instantiationsTable 10-7.

designation Full name Primary Purpose

BTRON Business TRON Computers and mobile devices

CTRON Central and Communications TRON Mainframe computers and telecommunications

eTRON Entity and Economy TRON Security and authentication

ITRON Industrial TRON Embedded systems

JTRON Java TRON A Java version of ITRON

MTRON Macro TRON Network-based control over other architectures

μITRONa Micro Industrial TRON Small embedded systems

Also called MITRON.a.

Personal Media Corporation in Japan had developed the BTRON OS, which was an in-
stance of TRON. BTRON is now called Chokanji (超漢字 chō kanji, which is best trans-
lated into English as “Super Kanji”).† Chokanji is designed to run directly on the same
machines that run Windows OS, and it can also run on top of Windows through the use
of VMware Player.‡

TRON was one of the first OSes to support the JIS X 0212-1990 character set in its en-
tirety. Naturally, TRON additionally supports the JIS X 0213:2004 character set, and much

* http://www.tron.org/index-e.html
† http://www.chokanji.com/
‡ http://www.vmware.com/products/player/

Hybrid environments | 639

more. Interestingly, TRON has become a very prolific OS, and its ITRON instantiation is
widely used in consumer electronics and automobiles.

The most up-to-date information about TRON can be found online* and in TRONWARE
magazine, published bimonthly in Japanese by Personal Media Corporation.†

Unix
One of the oldest OSes still in use today is Unix. While there are still two primary Unix
implementations available, specifically BSD (Berkeley Standard Distribution) and System
V, countless derivatives have been developed over the years.

Each Unix workstation manufacturer offers its own proprietary Unix variant with
manufacturer-specific enhancements. In addition, there are various “free” and “copy-
lefted” versions of Unix around. Naturally, some are more robust or more user-friendly
than others.

One aspect of Unix to be careful of—in the context of this book—is the fact that the
behavior of some of its utilities changes depending on what “language” is set by the user.
This is called the LANG environment variable. The most basic LANG setting is “C.” Using
the C shell, one can set the LANG environment variable as follows:

% setenv LANG C

When you use common Unix tools when LANG is set to “C,” such as wc, it predictably
calculates the number of words and characters based on the number of bytes in the file.‡
But, when the LANG environment variable is set to a value such as “Japanese,” this com-
mand instead calculates the number of words and characters based on the number of
characters—which may be composed of more than one byte—in the file.

I find the book entitled Unix Power Tools, Third Edition (O’Reilly Media, 2002) to be an
overall useful Unix reference, with a focus on time-saving tips.§ Arnold Robbins’ Unix in
a Nutshell, Fourth Edition (O’Reilly Media, 2005) is also a must-have reference for those
who use Unix.¶

Hybrid environments
The environments described up until now are considered to be fully functional OSes, run-
ning on their own and on what are considered to be their native machines. In other words,
they are not add-ons to existing OSes, but rather they wholly replace your current OS with

* http://tronweb.super-nova.co.jp/homepage.html
† http://www.personal-media.co.jp/book/genre/tw.html
‡ Note that wc stands for “word count,” not “water closet.”
§ http://oreilly.com/catalog/9780596003302/
¶ http://oreilly.com/catalog/9780596100292/

640 | Chapter 10: oses, text editors, and Word Processors

something entirely new. The software described in this section, however, are considered
to be hybrid OSes.

If you are a serious user or developer, I strongly suggest that you use a fully localized OS.
It is especially prudent for developers to use a fully localized OS, because that is what the
vast majority of your customers are using. If you do not feel that such an investment is
right for you, these hybrid OSes may provide an acceptable level of CJKV functionality
for your needs. There are also those who need the ability to process CJKV data, but whose
language skills are not sufficiently developed to understand a fully localized interface (in
other words, its menus or dialogs). For this class of user, these hybrid environments be-
come more enticing.

Boot Camp—run Windows on Apple Hardware
When Apple decided to abandon the PowerPC processor in favor of an Intel processor, it
opened the door to being able to run Windows, as an OS, on their machines, given that
Windows uses the same type of processor. Boot Camp, which is now a standard part of
Mac OS X, performs this through the use of the Boot Camp Assistant application.*

One potential issue is drivers, specifically Windows drivers for the Apple-specific hard-
ware, such as keyboard, trackpad, and so on. Thankfully, Apple provides the necessary
drivers. Once Windows is installed, you can simply choose at startup time which OS you
wish to use. The only problem is that both OSes cannot run simultaneously—but for many
users this is not a disadvantage.

Crossover Mac—run Windows Applications on Mac os X
As long as you are using Mac OS X with an Intel processor, you can use CrossOver Mac to
install and run Windows applications.† CodeWeavers, the developers of CrossOver Mac,
provides a list of supported Windows applications. Given that there is a trial version avail-
able, it is worth exploring if its functionality appeals to you.

GnoMe—Linux and Unix
GNOME (GNU Network Object Model Environment), developed by the GNOME Foun-
dation, is a desktop environment for Linux and Unix that provides strong multilingual
and Unicode support.‡ GnomeOffice is the application suite that is available for GNOME,
which includes a word-processing application called AbiWord.§ GNOME’s origins stem
from KDE, which is covered next.

* http://www.apple.com/macosx/features/bootcamp.html
† http://www.codeweavers.com/products/cxmac/
‡ http://www.gnome.org/
§ http://live.gnome.org/GnomeOffice/

Hybrid environments | 641

Kde—Linux and Unix
KDE (K Desktop Environment) is another desktop environment for Linux and Unix that is
worth mentioning.* In addition to its strong multilingual and Unicode support, its appli-
cation suite, KOffice, and the word-processing application that is included, KWord, have
become very popular.†

VMware Fusion—run Windows on Mac os X
Put simply, VMware Fusion allows Windows, as an OS, to run simultaneously with Mac
OS X.‡ VMware Fusion creates a Windows virtual machine that is optimized for the Mac
OS X machine on which it is installed. Interestingly, the ability to create an OS virtual
machine allows VMware Fusion to do the same for other OSes, such as Linux. It is not
limited to Windows.

Wine—run Windows on Unix, Linux, and other oses
Wine (an acronym that stands for Windows Emulator) is an open source implementation
of the Windows API.§ Because applications that run on Windows necessarily use standard
Windows APIs to interact with the OS and other applications, Wine acts as a suitable
substitute, but without the need to be running a Windows OS.¶

X Window system—Unix
The X Window System (also known as X11R7, meaning “X Window System, version 11,
Release 7,” or simply as X11), originally developed by the now disbanded MIT X Consor-
tium, is a GUI windowing system and general multilingual environment that runs on top
of Unix that has recently become available for Mac OS X and other platforms and OSes.
The X.Org Foundation now develops the X Window System, and the latest instantiation
is X11R7, meaning version 11, Release 7.** XFree86, which is developed by the XFree86
Project, is another popular derivative of the X Windows System that is commonly used
with Linux.†† Mac OS X even includes an X11 application.

Each flavor of Unix had taken its own path towards localization and internationalization,
though there is now convergence, thanks in part to Unicode by providing the encoding

* http://www.kde.org/
† http://koffice.org/
‡ http://www.vmware.com/products/fusion/
§ http://www.winehq.org/
¶ Speaking of wine, approximately 250 bottles, primarily reds, were consumed during the writing and produc-

tion of this book.
** http://www.x.org/
†† http://www.xfree86.org/

642 | Chapter 10: oses, text editors, and Word Processors

architecture, and also to some related standards developed by The Unicode Consortium,
specifically the CLDR.*

For more information on X11R7 or on the X Window System in general, I suggest explor-
ing the X.Org Foundation website.

text editors
The most basic text-processing utility is clearly the text editor. Text editors allow you to
input, manipulate, and save text. The functionality that is provided by a text editor may
seem to be very basic, but, believe it or not, there are times when one would choose a text
editor over a word processor. One such circumstance is if you are composing CJKV text
for transmission by email. Special formatting, such as you would expect from a word pro-
cessor, does not travel well over email. Still, plain text continues to be the preferred way in
which to send email and other text messages. In other words, the characters and format-
ting to which one is limited when using text editors are precisely what usually travels well
through email.

The feature set provided by text editors is limited, yet useful. Most of them come with
search and replace functions, and some even allow the user to write complex macros or to
use regular expressions. Limitations typically include lack of word wrap, inadequate line
breaking, font limitations, font-size limitations, and font-style limitations.

Of the text editors that are currently available, they can be categorized into two basic
types:

Those that require an underlying CJKV-capable OS to correctly handle CJKV data•	

Those that provide their own CJKV support independently of the underlying OS•	

My overall favorite text editor is GNU Emacs because there is no dependency on a mouse
for any editing command, and its built-in editing commands are extremely powerful and
robust and include support for regular expressions. Additionally, a fair number of Mac
OS X applications support many of the GNU Emacs keyboard commands, which makes
it even more compelling for me. I had been using its multilingual version, called Mule,
on Unix for years. Mule’s multilingual functionality was integrated back into GNU Emacs
(as of version 20). I also used a Japanese-capable version of Emacs designed for Mac OS
called Nitemacs. Now I use GNU Emacs on Mac OS X through the use of its Terminal ap-
plication. If you haven’t yet explored Emacs and its multilingual variants, I encourage you
to do so. And, if you are a fan of vi as a text editor, there are also CJKV-capable versions
available.

I would also like to point out that many contemporary text editors effectively eliminate
the need for dedicated code conversion tools in some important contexts, because they

* http://www.unicode.org/cldr/

text editors | 643

provide import and export facilities that support a broad set of character sets and encod-
ings, the most important of which are those for Unicode.

In Chapter 5, specifically in the section entitled “Mobile Keyboard Arrays,” I stated that
several books that were published in Japan were written through the use of a cell phone.
Obviously, a cell phone was not used to typeset the books, but instead served as a hand-
held or extremely portable text editor. The fact that cell phone and other mobile devices
are treated as “always with you” devices means that text can be entered or edited on a
whim.* In Japan, it is common practice for people to have their cell phones with them
when they sleep.

Mac os X text editors
In the past, before the days of Mac OS X, nearly all CJKV-capable text editors for Mac
OS required that one use either a fully localized version of Mac OS or else an appropriate
Language Kit, such as JLK. And, most Japanese text editors supported ISO-2022-JP and
EUC-JP encodings only for import or export purposes, and processed Shift-JIS encoding
internally because that is what Mac OS-J (and Mac OS plus JLK) processed internally. This
has changed, obviously for the better, with Mac OS X. Unicode is more broadly supported,
but legacy encodings are still supported for import and export purposes.

For those who spend significant time in the Terminal application, like me, standard Unix
text editors are available, such as emacs and vi, and their level of multilingual support has
increased with each subsequent version of Mac OS X. Though, instead of vi, I suggest us-
ing Vim.

textedit
TextEdit is the standard text editor for Mac OS X. It evolved from SimpleText, which was
used on Mac OS. Unlike other text editors, TextEdit allows the user to toggle between
plain and rich text (aka RTF, meaning Rich Text Format) modes, and it even provides a
keyboard shortcut for this purpose: Shift-Command-T. There is even some limited Open-
Type feature support, such as the ability to use old forms of ideographs through the use
of the ‘trad’ GSUB feature. Although this works in rich text mode, it is obviously not pre-
served in the plain text representation.

In addition, I discovered early on that many of the keyboard commands used by Emacs
function the same in TextEdit, so document navigation can be done as in Emacs, instead
of using the cursor keys, mouse, or trackpad.

Interestingly, TextEdit can open Microsoft Word documents, in rich text mode, of course.
This is mighty convenient, especially if someone sends to you a Microsoft Word docu-
ment, but you don’t have that application installed.

* But hopefully not while driving a motor vehicle for which there are safety issues and concerns.

644 | Chapter 10: oses, text editors, and Word Processors

BBedit
Programmers and developers tend to prefer BBEdit due to its powerful features, of which
there are far too many to list here.* It sufficient to state that the latest version of BBEdit
supports Unicode, meaning that its multilingual support, at least from the CJKV perspec-
tive, is adequate. In terms of Unicode encoding forms, both UTF-8 and UTF-16 are fully
supported.

Jedit X
Jedit X is the Mac OS X version of a popular Japanese text editor that was originally called
Jedit.† Jedit X provides useful editing facilities, and the ability to toggle between plain text
and rich text modes, along with import and export facilities for legacy encodings, such as
ISO-2022-JP, EUC-JP, and Shift-JIS. Of course, Jedit X supports Unicode. Its name sug-
gests that it is tailored for Japanese use.

Windows text editors
There is an incredible number of CJKV-capable text editors available for Windows, and
unlike those for Mac OS X, many do not require underlying CJKV support in the OS,
though with the availability of Language Packs for Windows XP, and the broad multilin-
gual support in Windows Vista, this is less of a concern these days.

Popular Japanese-capable Windows text editors include Hidemaru Editor (秀丸エディ
タ hidemaru edita),‡ MIFES (マイフェス maifesu; a Linux version is also available),§ and
WZ Editor (a mobile version is also available).¶ Some of these text editors offer extremely
powerful text-manipulation facilities, often through the use of regular expressions or rect-
angular selection.

notepad
Notepad is the bare-bones text editor that is include with Windows OS that supports only
plain text. Its functionality is very basic, but there are obviously times when plain text is
preferred over stylized text, and the use of Notepad helps to enforce this paradigm.

Naturally, Unicode is used by Notepad, meaning it can open and save text files that are
encoded according to Unicode.

* http://www.barebones.com/products/bbedit/
† http://www.artman21.com/jp/jedit_x/
‡ http://hide.maruo.co.jp/software/hidemaru.html
§ http://www.megasoft.co.jp/mifes/
¶ http://www.villagecenter.co.jp/soft/wz50/

text editors | 645

WordPad
To some extent, WordPad can be treated as a word processor, because it supports rich text,
meaning that font attributes can be set at the character level, as opposed to at the docu-
ment level, and there is more control over the layout of the text. Some people treat it as a
simplified version of Microsoft Word.

BabelPad
BabelPad, developed by Andrew West, deserves special mention here, not because it is
free and not because it is a text editor that supports Unicode in general and CJKV text, but
that it additionally supports a large number of complex scripts and includes a large num-
ber of input methods.* For readers of this book, I would like to point out that BabelPad
supports the regional scripts set forth in GB 18030-2005, specifically Korean, Mongolian,
Tai Le, Tibetan, Uyghur, and Yi. I should also point out that supporting complex scripts
such as Mongolian and Tibetan is no small feat and is done by calling Uniscribe, which is
Windows’ complex script text layout engine. There is a reason why they are referred to as
complex scripts.

BabelPad supports a large number of encodings, including the various encoding forms of
Unicode, whether it is for opening or saving text files.

In addition to its text-editing features, BabelPad includes many useful tools and utilities,
such as character maps, character lookup facilities, font analysis facilities, and so on.

Vietnamese text editing
In the past, before Unicode was widely supported, Vietnamese text editing—and word
processing—required the use of specialized fonts, along with applications that knew
how to support them. I am speaking, of course, about the Latin-based Vietnamese writ-
ing system called Quốc ngữ. In many ways, Unicode has trivialized the extent to which
Quốc ngữ can be used. Many fonts, such as Minion Pro and Myriad Pro that are used for
this book, now include a complete set of glyphs that support Quốc ngữ. As long as the
application supports Unicode, and as long as the selected font includes the appropriate
glyphs, Vietnamese support is facilitated. Of course, Vietnamese input methods then
become an issue, but it is comforting to know that Mac OS X and Windows Vista provide
appropriate input methods for Vietnamese.

VietPad—Cross-platform Vietnamese Unicode text editor
Although many of the text editors already described support Vietnamese, by virtue of
Unicode and the extent to which Vietnamese is supported by the OSes, VietPad is unique
in that it is truly cross-platform, because it is written in Java.† Multiple Vietnamese input

* http://www.babelstone.co.uk/Software/BabelPad.html
† http://vietpad.sourceforge.net/

646 | Chapter 10: oses, text editors, and Word Processors

methods are provided by VietPad, and it naturally uses Unicode to represent Vietnamese
text.

emacs and GnU emacs
Described in this section are several freely available variants of Emacs and GNU Emacs.
Emacs is the name of a text editor that has been ported to many OSes, and GNU Emacs
is the most widely used version. If you have more than one working environment, you
can use the software described in this section to have similar text-editing features and
functionality across them.

All of these Emacs and GNU Emacs variants depend on a CJKV-capable environment for
displaying CJKV characters on the screen—they handle only the internal manipulation of
CJKV character codes, whether they are based on a Unicode encoding form or a legacy
encoding method.

Most variants of Emacs or GNU Emacs can be extensively customized by the user. In fact,
Emacs or GNU Emacs can also constitute a complete working environment, at least on
most Unix systems—email can be sent and received, source code can be compiled, and so
on. Customizing is usually done by adding entries to its configuration file called .emacs
(“dot” emacs) or by writing Emacs LISP programs. Extensive tutorials are also included in
the complete GNU Emacs distribution.

There are a large number of Emacs and GNU Emacs variants available for a number of
OSes. While I describe only the most widely used versions, there are also Emacs variants,
such as Demacs, Han Emacs, Mg, Ng, Nitemacs, and SaLLY. At one time I was particu-
larly fond of Nitemacs, because it ran on Mac OS. Now, I use GNU Emacs on Mac OS X
through the use of its Terminal application.

For more information on GNU Emacs in general, I suggest Learning GNU Emacs, Third
Edition (O’Reilly Media, 2004),* by Debra Cameron et al., and Richard Stallman’s GNU
Emacs Manual, Sixteenth Edition (Free Software Foundation, 2007).† The latter is likely to
be most useful because it documents the multilingual features and functionality that have
been integrated into GNU Emacs since version 20. More about this in the next section.

GnU emacs, nemacs, and Mule
GNU Emacs and its variants are developed by the Free Software Foundation‡ and are
copylefted software distributed under the terms of the GNU General Public License.§ The
terms of the GNU General Public License protect software from being exploited for com-
mercial use.

* http://oreilly.com/catalog/9780596006488/
† http://www.gnu.org/software/emacs/manual/emacs.html
‡ http://www.gnu.org/
§ http://www.gnu.org/copyleft/gpl.html

text editors | 647

There have been two major CJKV-capable GNU Emacs developments over the years:
NEmacs and Mule, each of which is installed as a series of patches to the GNU Emacs
source code. NEmacs stands for Nihongo Emacs (Nihongo, written 日本語, is the Japanese
word that means “Japanese [language]”). Mule stands for MULtilingual enhancement to
GNU Emacs. While it may be obvious by their names, NEmacs was a Japanese-only ver-
sion of GNU Emacs, whereas Mule provided support for a large number of languages,
including Chinese, Japanese, and Korean.

Both NEmacs and Mule were developed by a core team made up of Ken’ichi Handa (半田
剣一 handa ken’ichi), Satoru Tomura (戸村哲 tomura satoru), and Mikiko Nishikimi (錦
見美貴子 nishikimi mikiko). Mule was also one of the very first programs to support the
characters and encoding methods for the JIS X 0212-1990 character set standard. Both
ISO-2022-JP-2 and EUC-JP encodings were supported for the encoding of this character
set in Mule. GNU Emacs version 20 and greater incorporates all functionality of Mule.
In other words, the Mule extensions were integrated back into the standard GNU Emacs
distribution as of version 20.

With GNU Emacs, it is possible to use any encoding within any given language environ-
ment. Changing the language environment affects only the following behaviors:

Which encoding is used as the default•	

The priority of encodings during automatic encoding detection•	

Another advantage of GNU Emacs, particularly for those who use Mac OS X, is that many
of its keyboard commands (such as for document navigation) function the same in other
applications. TextEdit, the standard text editor for Mac OS X, is but one example.

vi and Vim
The vi text editor is another popular editing environment, and several CJKV-capable ver-
sions have been developed over the years. Like GNU Emacs, it has Unix heritage, but un-
like GNU Emacs, it is modal in operation. Ignoring the various CJKV-capable derivatives,
there are several vi clones, such as Calvin, Elvis, Nvi, Stevie, VILE, Vim, WinVi, and xvi.
Note that all of them have “vi” somewhere in their names. Anyway, unlike GNU Emacs,
which had its multilingual extensions integrated back into its own source code, the origi-
nal vi editor still exhibits weak multilingual support and is effectively an ASCII-based
text editor. Vim (Vi iMproved) deserves special mention here, because it includes support
for Unicode, meaning that it provides a much better multilingual editing environment.*
When compared to vi, Vim is also available for more OSes, making it more compelling
than vi. For example, it is included with Mac OS X and accessible through its Terminal
application.

* http://www.vim.org/

648 | Chapter 10: oses, text editors, and Word Processors

Prior to Vim, several CJKV-capable versions of vi were developed, most of which were
based upon vi clones. For example, Jstevie and jelvis were Japanese-enabled versions of
Stevie and Elvis, respectively. There was even a Korean-enabled version of Elvis called
Hangul Elvis. Also, nvi-m17n was a multilingual version of Nvi.

For those who wish to learn more about vi, and especially about Vim, and how to use ei-
ther of them, I suggest reading Learning the vi and Vim Editors, Seventh Edition (O’Reilly
Media, 2008), by Arnold Robbins et al.*

Word Processors
Word processors or word-processing applications (ワードプロセッサ wādopurosessa or
ワープロ wāpuro in Japanese) represent the next step up from text editors in terms of
features and functionality. Supported features typically include character- or paragraph-
based font selection, multiple font styles, character-based point-size adjustment, line-
breaking, various types or levels of justification, CJKV-specific line-breaking capability,
somewhat complex formatting capabilities, the ability to use tabs, and sometimes a basic
set of graphics-building tools. Some word-processing applications even rival the features
of some page-layout applications, especially when it comes to the ability to manipulate
text. Some even include functionality that allows them to perform many of the tasks ex-
pected to be done by page-layout applications.

Of the large number of word-processing applications on the market that provide CJKV or
multilingual functionality, there are those that depend on an underlying CJKV-capable or
Unicode-enabled OS, and there are those that establish their own environment, making
them usable on English-only OSes. Given the current state of multilingual and Unicode
support in today’s OSes, the former are clearly of more importance.

Because there are far more word-processing applications available today than can con-
ceivably be described in a book such as this, this section thus provides a mere sampling of
what is currently available on the market.

In addition, I should point out that many of these word-processing applications are in-
cluded as part of software suites. Microsoft Word, for example, is included in Microsoft Of-
fice. While the sections that follow mention specific software suites, some software suites
deserve to be mentioned here, such as OpenOffice,† which is an open source version of
Microsoft Office that is available for many OSes, and NeoOffice‡ and OpenOSX Office,§
both of which are based on OpenOffice and designed for Mac OS X.

* http://oreilly.com/catalog/9780596529833/
† http://www.openoffice.org/
‡ http://www.neooffice.org/
§ http://www.openosx.com/

Word Processors | 649

AbiWord
AbiWord, designed to be an alternative to Microsoft Word, is an open source multilingual
word processing application that is available for Windows, and is included with some
Linux distributions.* GnomeOffice is a software suite that includes AbiWord as one of its
many applications. One of the goals of AbiWord is for it to become a cross-platform word
processing application.

Haansoft Hangul—Microsoft Windows
The Korean word-processing application called Haansoft Hangul (formerly HWP, which
stood for Hangul Word Processor), developed by a company called Haansoft (formerly
Hangul & Computer), provides full Korean functionality, but does not require an under-
lying Korean version of the Windows OS.†

Ichitaro—Microsoft Windows
JustSystems’ Ichitaro (一太郎 ichitarō) is one of the most widely used Japanese word-
processing applications and is currently available only for Windows.‡ It also one of the
first Japanese word processors that is now completely Unicode-based internally. Their
engineers have effectively insulated the users from ever knowing this.§

One significant benefit of Ichitaro is that it is bundled with ATOK, which is JustSystems’
powerful input method. Ichitaro is also included as part of JUST Suite, which is an appli-
cation suite comparable in functionality to Microsoft Office.

KWord
KWord is the frame-based word-processing application that is included with KOffice, the
application suite for KDE.¶ Because KWord is frame-based, it is suitable for some tasks
that are normally suited for more complex page-layout applications.

Microsoft Word—Microsoft Windows and Mac os X
One of the longest-selling word-processing applications is clearly Microsoft Word, which
is also referred to as MS Word or simply Word.** It is one of the applications included with
Microsoft Office,†† though it is also sold individually as a point product. The advantage

* http://www.abisource.com/
† http://www.haansoft.com/hnc/haansoft_en/product/Haansoft_Hangul2007.jsp
‡ http://www.ichitaro.com/
§ Well, at least until Ichitaro users read this page.
¶ http://koffice.org/kword/
** http://office.microsoft.com/word/
†† http://office.microsoft.com/

650 | Chapter 10: oses, text editors, and Word Processors

of purchasing Microsoft Office, as opposed to simply Microsoft Word, beyond the mere
savings and especially for Windows XP users, is that Microsoft makes Language Packs
available to those users who are running Microsoft Office. This means, for example, that
one can purchase the English version of Microsoft Office, then download the appropriate
Language Pack to enable the language or script of your choice. For Windows Vista users,
there is only the financial benefit of Microsoft Office.

At least for the Mac OS X version of Microsoft Word, there are still differences between
the English and localized versions of the application. The Japanese version, for example,
includes the ability to perform vertical layout. I have yet to discover this functionality in
the English version of Microsoft Word, at least for the Mac OS X version.

Microsoft Word 97 (and later), Microsoft Excel* 97 (and later), and Microsoft PowerPoint†
97 (and later) are Unicode-enabled. The Language Packs that Microsoft makes available
for Microsoft Office customers who are using Windows XP can effectively CJKV-enable
these and other Windows applications.

nisus Writer—Mac os X
Nisus Writer, currently available in Express and Pro flavors, is one of the oldest multilin-
gual word-processing applications.‡ The latest versions of Nisus Writer embraces Unicode
and runs on Mac OS X. A trial version of Nisus Writer is available, and I encourage you
to try it out.

Looking back to its earlier days, when it ran on Mac OS, Nisus Writer was one of the very
few word-processing applications that could adequately handle CJKV text, although it was
not designed for CJKV handling per se. An effort began to localize and tailor Nisus Writer
to the Japanese market, and to add extra features and functionality specific to Japanese
text handling. The resulting application was called SoloWriter, but wasn’t very successful,
perhaps for sheer marketing reasons. In any case, Nisus Software continued to develop
Nisus Writer, and it is still considered one of the top-rated multilingual word-processing
applications.

Many of Nisus Writer’s most noteworthy features are not necessarily specific to handling
CJKV text, such as the ability to open a wide variety of word processor formats, regu-
lar expression support, and so on. It has also been one of the easiest multilingual word-
processing applications to obtain outside of the CJKV locales.

Perhaps of interest is the fact that Nisus Writer, running on Mac OS, was used to pre-
pare the manuscript for Understanding Japanese Information Processing (O’Reilly Media,
1993), which was the predecessor of the first edition of this book.

* http://office.microsoft.com/excel/
† http://office.microsoft.com/powerpoint/
‡ http://www.nisus.com/

Word Processors | 651

nJstar Chinese/Japanese WP—Microsoft Windows
NJStar (南极星/南極星 nánjíxīng), which began as applications written by Hongbo Ni (倪
鸿波 ní hóngbō), who also went on to found NJStar Software Corporation, was originally
designed as a Chinese word-processing application, but was modified to handle Japanese
in a dedicated Japanese version.* This means that there are now Chinese and Japanese
versions of NJStar WP available, called NJStar Chinese WP and NJStar Japanese WP,
respectively. Its interface includes pull-down menus and mouse support, and the ability
to use an English UI. It also supports a rich set of editing functions, to include multiple-
file editing, undo, two-direction fast search, flexible search/replace, and extensive block
manipulations. NJStar WP does not require a localized OS because it establishes its own
Chinese or Japanese environment, as appropriate. The latest versions are compatible with
Windows Vista.

The lowest-price version of NJStar WP, which is the Basic, or shareware, version, includes
only bitmapped fonts, but the Pro and Pro Plus versions include TrueType fonts that can
be used for better-quality printing. NJStar Japanese WP includes two TrueType Japanese
fonts in the Pro version, and four in the Pro Plus version. NJStar Chinese WP supports
both Simplified and Traditional Chinese, and is available in a Pro version with four
TrueType Chinese fonts (two for Simplified Chinese, and two for Traditional Chinese),
along with several flavors or levels of Pro Plus that differ in the number of additional
TrueType Chinese fonts that are included.

NJStar Chinese WP supports EUC-CN, Big Five, HZ, and Unicode encodings for import
and export purposes, and provides the user with nearly 20 Chinese input methods, some
of which were described in Chapter 5 of this book. In fact, the NJStar Chinese WP manual
itself is useful for understanding these Chinese input methods. Also provided is instant
access to a Chinese-English dictionary.

NJStar Japanese WP supports ISO-2022-JP, EUC-JP, Shift-JIS, and Unicode encodings
for import and export purposes, includes approximately 10 Japanese input methods, and
provides users with instant access to a Japanese-English dictionary, specifically Jim Breen’s
EDICT, ENAMDICT, and KANJIDIC dictionary files. These and other dictionary files are
covered in Chapter 11.

For those who wish to run NJStar WP on other OSes, Wine makes it possible for Linux
users, and CrossOver Mac makes it possible for Mac OS X user. These were covered early
in this chapter.

* http://www.njstar.com/

652 | Chapter 10: oses, text editors, and Word Processors

Pages—Mac os X
Pages is the name of the powerful word-processing application that is included with Ap-
ple’s iWork application suite.* For those who use Mac OS X, it deserves exploration. Given
the broad multilingual support in Mac OS X in general, the same can be said for Pages.

online Word Processors
There has been a recent trend to move applications from the desktop, as applications that
are tied to a specific OS or architecture, to those that are accessed online, through the
use of web browsers or similar clients. While the portal through which such applications
are accessed may be tied to a specific platform, out of obvious necessity, the applications
themselves are not. Such applications effectively remove the notions of “platform” and
“OS” from the equation.

One of the touted benefits of online word processors is the ability to collaborate. Another
obvious benefit is the ability to work from anywhere, on any machine that has web access.
For developers and users alike, another compelling benefit of online word processors—
which is really a benefit of any online application—is the ability to have much shorter
release cycles. In other words, bug fixes, updates, and new versions get into customers’
hands much more quickly. This is a very good thing.

Adobe Buzzword
Adobe Systems has developed an online word processor called Adobe Buzzword.† It is
unique among other online word processors in that it performs genuine WYSIWYG text
layout, meaning that users have at their fingertips a precise layout and line-breaking para-
digm without being tied to a specific platform or OS. The current version of Adobe Buzz-
word supports high-quality English-language layout, and future versions are expected to
support many more languages and scripts, including Japanese, all with the same consis-
tent, true-to-print layout facilities. Of course, these multilingual enhancements will be
done in the context of Unicode.

Given the ability to rapidly release updates, the multilingual functionality of Adobe Buzz-
word is likely to advance very quickly.

Google docs
Google has invested heavily into its internationalization efforts, and it really shows when
you explore their website and offerings such as Google Docs, which is their online word-
processing solution.‡ In terms of Unicode support, the UTF-8 encoding form is used.

* http://www.apple.com/iwork/pages/
† http://www.adobe.com/acom/buzzword/
‡ http://docs.google.com/

Advice to developers | 653

Google Docs is more than a word processor. It provides other functionality as well, such
as the ability to make spreadsheets.

Advice to developers
First and foremost, and in case this message hasn’t been clear throughout this book, em-
brace Unicode. Much of the progress that has been made in the area of software interna-
tionalization is directly due to Unicode and the extent to which it is supported in today’s
OSes and applications.

When developing OSes and applications, in addition to supporting Unicode, bear in mind
locale-specific practices and conventions, and to the extent possible, build them into your
software. Each modern OS has its own rich support for locale conventions. CLDR now
provides a rich and consistent framework for providing and specifying locale informa-
tion, which makes it possible to trigger locale-specific behaviors in a genuinely cross-
platform manner. Deciding between using OS resources and CLDR is not necessarily a
simple task, because each one has its pros and cons. Such a discussion is clearly outside
the scope of this book.

And, as mentioned in Chapter 6 and earlier in this chapter, bear in mind that the fonts
that are bundled or otherwise included in an OS are subject to change over time. In other
words, their names, their glyph complements, and even the fonts themselves, may change
with little or no warning. Instead of referencing specific fonts by name, today’s OSes pro-
vide convenient APIs for referencing fonts in more generic ways. Mac OS X, for example,
provides APIs that effectively mean “get system font” and “get application font” that serve
this purpose, and are highly recommended for application developers to use. Explore the
OS APIs and bear in mind that new functionality is often provided through the use of new
APIs, as opposed to modifying existing APIs.

655

CHAPter 11

dictionaries and dictionary software

Everyone, or nearly everyone, reading this book may be wondering why there is even
mention of—let alone a dedicated chapter for—dictionaries in a book about information
processing. The usefulness of dictionaries should become painfully obvious once you give
it some thought: dictionaries, in a variety of forms, provide users and developers the abil-
ity to locate information about characters and words. For most CJKV locales, this usually
entails meaningful sequences of two of more ideographs in word dictionaries, and some-
times for individual ideographs in character dictionaries. Armed with the ability to rap-
idly and conveniently access information about words and the ideographs that are used to
compose them—or to be able to access this type of information at all—makes using and
developing software a much more pleasant experience.

Dictionaries play an especially important role during text input. As covered in Chapter 5,
the ability to enter ideographs is governed by the use of appropriate dictionaries, which
provide input methods with the ability to convert transliterated or other native scripts
into sequences of one or more ideographs.

Word and character dictionaries come in many forms. Traditionally, they are printed on
paper and bound into a book-like format. Some contain so much information that they
are published as several volumes. Given that we’re discussing computers in the context of
this book, machine-readable, electronic, or “digital” dictionaries are of particular interest
to its audience. These traditional dictionaries still play an important role today, such as for
researching the history and development of ideographs and the words that use them.

Applications, such as those that perform machine-aided translation or help in the study
of a language, are also related to dictionaries, because they make use of them. Some very
basic information about these related topics is covered near the end of this chapter.

Reading this chapter is clearly not enough. The number of dictionaries that are available
today is genuinely mind-boggling. I provide names, descriptions, and URLs for some of
those that I consider to be key or useful. Some dictionaries change on a daily basis.

Dive into this chapter with the understanding that there is more to learn elsewhere. Ex-
plore the URLs that are provided and take advantage of today’s search engines.

656 | Chapter 11: dictionaries and dictionary software

Ideograph dictionary Indexes
In order to begin taking advantage of the wealth of information contained within ideo-
graph dictionaries, you first need to know how to use them. The typical ideograph dic-
tionary contains two main parts:

Main entries
Provide all the useful information about the ideograph in one convenient location

One or more indexes
Provide more convenient ways with which to find the target main entry

Needless to say, the more indexes a dictionary contains, the greater chance that you can
find the target main entry—many ideographs are difficult to find in dictionaries for a
variety of reasons, such as due to rare readings, difficult-to-determine indexing radicals,
ambiguous stroke counts, and so on.

The main entries in ideograph dictionaries are typically ordered in a standard way, such
as by radical plus the number of remaining strokes, total number of strokes, or reading.
The most common of these is by indexing radical plus the number of remaining strokes.
In fact, there is usually a simple radical index right inside the front (or back) cover of most
ideograph dictionaries to aid in quick lookup.

The following sections describe these indexing methods in greater detail and provide tips
for faster lookup.

reading Index
One of the most effective ways to locate an ideograph in a dictionary is by its reading.
Once you locate the appropriate reading in the reading index, you will then usually find
the ideographs ordered by radical, number of strokes, or other well-established criteria.

However, there are some characteristics to bear in mind when making use of reading
indexes detailed as follows:

Many ideographs have multiple readings, which means that some reading indexes •	
may include multiple entries for such ideographs.

Not all ideographs have well-known or well-understood readings, which means that •	
some reading indexes may not contain a single entry for such ideographs.

The fact that ideographs often have multiple readings actually can work to your advan-
tage. In the case of Japanese, for example, kanji with multiple readings often have a read-
ing that is fairly frequent—that is, many other kanji share the same reading, and are thus
considered to be homophones—and one that is rather infrequent. In short, searching for
a ideograph using an infrequent reading is typically faster because there are less homo-
phones that are presented as candidates. Table 11-1 lists several kanji, along with their
frequent and infrequent readings.

Ideograph dictionary Indexes | 657

Kanji readings of different frequencyTable 11-1.

Kanji Frequent reading Infrequent reading

剣 ケン ken つるぎ tsurugi

中 チュウ chū なか naka

生 セイ sei, ショウ shō なま nama

犬 ケン ken いぬ inu

Many rare ideographs do not have very well-known readings. But, even if you happen to
know a reading for a particular ideograph, that doesn’t necessarily mean that all reading
indexes will include an entry for it. This is when other indexes come into play, such as
those that denote structure.

Some character set standards order ideographs according to reading. Level 1 of GB
2312-80 and JIS X 0208:1997 are good examples, as is KS X 1001:2004. Interestingly, and
as pointed out in Chapter 3, KS X 1001:2004 includes multiple instances of over 200 ideo-
graphs because they have multiple readings.

radical Index
Ideographs are most frequently categorized by radical. As discussed in Chapters 2 and 5,
indexing radicals and radical-like components are the basic building blocks of ideographs;*
they thus serve as a way to organize and categorize ideographs. Some character set stan-
dards order ideographs according to their indexing radical, such as Level 2 of GB 2312-80
and JIS X 0208:1997, JIS X 0212-1990, JIS X 0213:2004, and each of Unicode’s CJK Unified
Ideograph blocks.

The most commonly used set of indexing radicals today is the classic set of 214. This set of
indexing radicals, along with its classification system, was established in the classic ideo-
graph dictionary entitled 康熙字典 (kāngxī zìdiǎn), which is nearly 300 years old. The
radical-indexing scheme that was set forth by this dictionary is widely used in Japan, Ko-
rea, and Taiwan. China, because of its simplified hanzi, uses a reduced set of 186 radicals.
Both of these common radical systems are listed in appendixes of this book. The classic set
of 214 are listed in Appendix J, and the reduced set of 186 are in Appendix G.

Radical indexes require that the user first identify what is considered to be the indexing
radical. In most cases, this is simple. For some ideographs, determining the indexing radi-
cal can be a challenge. Consider the two ideographs 嚲 (U+56B2) and 懿 (U+61FF). The
indexing radical of the former is 口 (30), though 亠 (8) and 子 (39) seem as plausible or
possible. Likewise, the indexing radical of the latter is 心 (61), though 士 (33) and 豆 (151)

* Actually, the individual strokes that are used to compose these components are the true building blocks, but
that’s a different topic.

658 | Chapter 11: dictionaries and dictionary software

seem to be as reasonable. In any case, once the indexing radical has been determined, the
next task is to count the remaining strokes in the ideograph. Table 11-2 lists several hanzi,
along with their indexing radical and remaining strokes, using the two common indexing
radical systems: the classic 214 system and the simplified 186 system.

Identifying hanzi using different radical systemsTable 11-2.

Hanzi 214 radicals 186 radicals remaining elements and residual strokes

剑 刀 (18) 刂 (11)a 佥, 7 strokes

汉 水 (85) 氵 (55)b 又, 2 strokes

林 木 (75) 木 (72) 木, 4 strokes

边 辵 (162) 辶 (57)c 力, 2 strokes

语 言 (149) 讠 (22)d 吾, 7 strokes

A variant form of a. 刀; used as a right-side component.

A variant form of b. 水; used as a left-side component.

A variant form of c. 辵.

The simplified form of d. 言.

Appendix G provides a radical index for Level 2 of GB 2312-80, and Appendix J does the
same for Level 2 of JIS X 0208:1997, along with JIS X 0212-1990. While the two JIS stan-
dards conform to the set of 214 classical radicals, Level 2 of GB 2312-80 uses the reduced
set of 186 based on the principles of simplified hanzi.

Some ideograph dictionaries that use a reduced set of radicals provide a table that serves
as a cross-reference to equivalent radicals in the set of 214 classical radicals. Mark Spahn
and Wolfgang Hadamitzky’s The Kanji Dictionary (Charles E. Tuttle Company, 1996) uses
a significantly reduced set of only 79 indexing radicals, and does so quite effectively. Fur-
thermore, some dictionaries provide special indexes that list ideographs whose indexing
radical is not very obvious, or provide cross-references for such cases.

stroke Count Index
I consider this type of index to be the least effective of the three principal ways to locate an
ideograph. The first two methods discussed in this chapter, specifically access by reading
and radical indexes, are almost always more effective in quickly locating ideographs.

A stroke count index first separates ideographs into groups whose common characteristic
is their total number of strokes. The ideographs within each stroke-count group then need
to be ordered—otherwise, you’d sometimes need to scan several hundred (or thousand)

Ideograph dictionary Indexes | 659

characters to find the one you’re looking for. The most common ordering within each
stroke-count group is by indexing radical.*

Many character dictionaries published in China use a very useful and effective method for
ordering hanzi within each stroke-count group. The characters are ordered according to
the shape of their first strokes. This system employs a total of five such strokes, indicated
in Table 11-3, along with their names.

Five basic strokesTable 11-3.

stroke stroke names

一 横 héng

丨 竖/竪 shù

丿 撇 piě

丶 点/點 diǎn

乙 折 zhé or 横折 héngzhé

The ideograph 中 can thus be described using the following four strokes, listed in the
order in which they are used to draw the character: 丨, 乙, 一, and 丨. The convention in
the stroke-count indexes of these dictionaries is to use a single stroke to order ideographs
whose stroke counts are either small or great (because there are not that many characters
under such stroke counts), but to use two strokes for those stroke counts that include a
large number of candidate ideographs. This is obviously done for the sake of searching
efficiency.

Note that some ideographs are known to have ambiguous stroke counts, typically be-
cause there are multiple ways to write their indexing radical or radical-like components.
Table 11-4 lists some indexing radicals that have ambiguous stroke counts, either due to
variations of the indexing radical itself or different ways in which to write the indexing
radical.

Indexing radicals with ambiguous stroke countsTable 11-4.

Indexing radical stroke counts reason for discrepancy

臣 6 or 7 Different ways to write indexing radical

食 9 or 10 Different ways to write indexing radical

舛 6 or 7 Different ways to write indexing radical

* This is sort of the reverse of radical lookup whereby you first find the radical, then you count the number of
strokes or the number of remaining strokes, depending on how the dictionary is designed.

660 | Chapter 11: dictionaries and dictionary software

Indexing radicals with ambiguous stroke countsTable 11-4.

Indexing radical stroke counts reason for discrepancy

阝 2 or 3 Different ways to write indexing radical

辶, 辶 3 or 4 Different number of strokes

礻, 示 4 or 5 Variations

Good dictionaries include ideographs with ambiguous stroke counts in all applicable
stroke-count groups or, at the very least, provide adequate cross-references.

Some character set standards, specifically Big Five and the first seven planes of CNS
11643-2007, order ideographs by total number of strokes, then by indexing radical.

other Indexes
While reading, radical, and stroke count indexes are the most commonly found in ideo-
graph dictionaries, they are not necessarily the most efficient in terms of lookup speed.
Other useful or proven indexes include Jack Halpern’s SKIP, the Four Corner method, and
the character codes themselves.

sKIP
One particularly efficient ideograph index method is known as SKIP (System of Kanji In-
dexing by Patterns), developed and patented by Jack Halpern (春遍雀來 harupen jakku),
implemented in his own dictionaries for the ordering of the main entries, and included
(by permission) in Jim Breen’s KANJIDIC file (described later in this chapter). In fact,
KANJIDIC includes SKIP codes for all JIS X 0208:1997 kanji, not only those that appear
in Jack Halpern’s New Japanese-English Character Dictionary (Kenkyusha, 1990; NTC,
1993). Jim Breen’s kanji dictionary files also include SKIP codes. Jack Halpern maintains
a useful web page that provides details about SKIP.*

A SKIP code consists of three numbers separated by a hyphen. The first part represents
the basic pattern. SKIP identifies four basic patterns, and numbers them accordingly:

Left-right1.

Top-bottom2.

Enclosure3.

Solid4.

For the first three SKIP patterns, the second number in the SKIP code represents the
number of strokes in the pattern (Pattern 1: left; Pattern 2: top; Pattern 3: the enclosure).

* http://www.kanji.org/

Ideograph dictionary Indexes | 661

The third and final number in the SKIP code represents the remaining number of strokes.
Table 11-5 provides three examples.

Example SKIP codesTable 11-5.

Kanji sKIP code description

剣 1-8-2 First pattern, eight strokes in pattern, two remaining strokes

書 2-6-4 Second pattern, six strokes in pattern, four remaining strokes

国 3-3-5 Third pattern, three strokes in pattern, five remaining strokes

The fourth pattern, Solid, has four subpatterns, as follows:

Top line1.

Bottom line2.

Through line3.

Others4.

The second SKIP code for the fourth pattern is the total number of strokes. The third SKIP
part is the subpattern. An example is the kanji 下, whose SKIP code is 4-3-1 (fourth pat-
tern, three total strokes, first subpattern).

Although SKIP has thus far been used only for Japanese, it is applicable to other CJKV
locales as well. For those who wish to use SKIP in their own products, please read its
terms of use.*

Four Corner Code
The Four Corner Code has been used for many years in China and Japan as a way to
identify ideographs using exactly four digits. This system is apparently losing popularity
in China due to the now widespread use of Pinyin. There are a number of rules that ef-
fectively describe how this system works and its underlying principles:

The Four Corner Code elements are divided into 10 shapes, numbered •	 0 through 9.
These are described in Table 11-6.

The four digits that comprise a Four Corner Code are derived from the four corners •	
in a Z-shaped sequence—upper-left, upper-right, lower-left, then lower-right.

A shape is only used once. If it fills several corners, it is counted as •	 0 (zero) in subse-
quent corners.

* http://www.kanji.org/kanji/dictionaries/skip_permission.htm

662 | Chapter 11: dictionaries and dictionary software

When the upper or lower half of an ideograph is comprised of only a single shape, it •	
is, regardless of its position, counted as a left-corner code—the right corner is count-
ed as 0 (zero).

When there is no additional element to the four sides of the ideographs •	 口, 門, 鬥
(and the split form of 行), whatever is inside these ideographs is taken as the lower
two corners.

Table 11-6 lists the 10 elements that can be used to build Four Corner Codes, along with
some notes about their use.

The Four Corner Code elementsTable 11-6.

Code name example shapes description

0 头/頭 tóu 亠 Lid

1 横 héng 一 Horizontal bar

2 垂 chuí 丨丿 Vertical bar

3 点/點 diǎn 丶 Dot

4 叉 chā 十 Cross

5 插 chā 扌 Skewer

6 方 fāng 囗 Box

7 角 jiǎo 乙 Angle

8 八 bā 八人入 Eight

9 小 xiǎo 小个忄 Small

Japan’s 13-volume 大漢和辭典 (dai kanwa jiten) dictionary and China’s 辭源 (cíyuán)
dictionary are examples of dictionaries that include a Four Corner Code index.

Multiple-component
Given that an ideograph can be broken down to not only its indexing radical and strokes,
but also to all of the radical-like components that make up its structure, it becomes possi-
ble to enter ideographs by identifying two or more of its components. This is an especially
useful lookup technique for ideographs whose indexing radical is not obvious.

Jim Breen developed two files, named KRADFILE and RADKFILE, that provide such
functionality for the kanji in JIS X 0208:1997, and that also list software that uses these
files or technique.* Jim Rose developed comparable files for the kanji in JIS X 02120-1990,
called KRADFILE2 and RADKFILE2.

* http://www.csse.monash.edu.au/~jwb/kradinf.html

Ideograph dictionary Indexes | 663

The multiple-component indexing method is useful beyond cases when the indexing
radical is not obvious or cannot otherwise be easily determined. Some of the components
used in ideographs are not considered radicals, such as 龴, which looks very much like
katakana マ (ma). In addition, it becomes possible to look up ideographs with similar
components, beyond having a common indexing radical. This is a truly powerful ideo-
graph indexing method.

Character code
When dealing with ideographs across multiple locales, there are often cases when finding
an ideograph in one locale is easier than in another. For example, if you happen to be well-
versed in Japanese, it may be relatively easy to input most kanji. But, trying to input that
same ideograph in Chinese or Korean may prove to be a difficult or impossible task.* The
character code itself can serve as a cross-reference to the Chinese or Korean equivalents.

Consider the contents of Table 11-7, which provide various character codes for the ideo-
graph 中, meaning “middle” or “center.”

CJKV character code indexesTable 11-7.

Character set row-Cell Iso-2022 eUC other

JIS X 0208:1997 35-70 4366 C3E6 9286—Shift-JIS

GB 2312-80 54-48 5650 D6D0

CNS 11643-2007 1-36-67 1-4463 C4E3 A4A4—Big Five

KS X 1001:2004 81-73 7169 F1E9 F3E9—Johab

KPS 9566-97 74-27 6A3B EABB

TCVN 6056:1995 42-21 4A35 CAB5

In case it is not painfully obvious, all of the various character codes listed in Table 11-7
map to the same Unicode code points, specifically U+4E2D. This also demonstrates why
Unicode is so compelling, and why it has been embraced as the de facto standard for
encoding characters in today’s OSes and applications. A dictionary that provides cross-
references or indexes for character codes, as you can see, can be quite useful at times.

But, in order for a character code indexing system to be useful, it must also account for
character form differences across locales. Character form differences, such as the sim-
plifications used in China, can often render simplistic cross-references useless. Consider
the case as illustrated in Table 11-8. This table provides the cross-reference information
as provided by Unicode in the Traditional column, but what is considered to be the more
correct cross-reference is in the Simplified column.

* Especially if you’re trying to write a book entitled CJKV Information Processing on a Japanese-only OS with
only Japanese input methods and Shift-JIS–encoded Chinese, Korean, and Vietnamese fonts. While this state-
ment was true when the first edition was written, it is not entirely true for this edition.

664 | Chapter 11: dictionaries and dictionary software

Ideograph cross-referencing issuesTable 11-8.

Locale traditional—U+6F22 simplified—U+6C49

China 漢 GB/T 12345-90 26-26a 汉 GB 2312-80 26-26b

Taiwan 漢 CNS 11643-2007 1-73-39 汉 CNS 11643-2007 15-01-70

Japan 漢 JIS X 0213:2004 1-87-05c 漢 JIS X 0208:1997 20-33d

South Korea 漢 KS X 1001:2004 89-51 n/a

North Korea 漢 KPS 9566-97 82-51 n/a

Vietnam 漢 TCVN 6056:1995 61-30 n/a

This GB/T 12345-90 code point corresponds to GB 18030-2005 a. <9D 68>.

This GB 2312-80 code point corresponds to GB 18030-2005 b. <BA BA>.

This JIS X 0213:2004 code point corresponds to c. U+FA47, which is a CJK Compatibility Ideograph.

This JIS X 0208:1997 code point corresponds to d. U+6F22.

Note how the character code for the example from China is the same for both traditional
and simplified, but the character set designation differs. This is by design. As you learned
in Chapter 3, GB/T 12345-90 is the traditional analog of GB 2312-80.

Ideograph dictionaries
Dictionaries represent one of the most useful resources for inputting or otherwise access-
ing CJKV characters. Yep, these are usually good ol’ fashioned books!* In fact, many of
this book’s appendixes, to some extent, can fulfill this purpose. What you will find in this
book’s appendixes are complete listings of characters enumerated in the most common
CJKV character sets, followed by reading and radical indexes. The dictionaries discussed
in this section go one step further in helping you to more easily access characters from
those CJKV character set standards.

Ideograph dictionaries that are CJKV-specific typically fall into one of two categories,
described as follows:

Conventional dictionaries
Provide information such as readings, compounds, or words in which the ideograph
occurs, and perhaps even offer a short definition—these dictionaries were not neces-
sarily designed with computer users in mind.

Specialized dictionaries
Give you information, such as readings, one or more encoded values, and perhaps
other information, such as compounds or words in which the ideograph occurs.

* The nice thing about books is that you can take them virtually anywhere—often to places where computers or
other electronic devices dare not venture.

Ideograph dictionaries | 665

Needless to say, conventional dictionaries are most useful to the student or scholar of a
language, but specialized dictionaries are a valuable resource for the computer user and
software developer, and typically contain entries for all the ideographs in one or more
CJKV character set standards, such as GB 2312-80 or GB/T 12345-90 for Chinese. One
of the largest conventional ideograph dictionaries was published in Japan. It is entitled
大漢和辭典 (dai kanwa jiten), contains 50,294 kanji, and is published as a 13-volume
set.

Dictionaries that include the encoded value of ideographs prove their usefulness when
you are trying to input a particular ideograph, and the input method that you are using
simply doesn’t seem to know it exists. Mind you, there are ideographs that are not in-
cluded in any CJKV character set standard, but those ideographs are not frequently used.
There are many ideographs, such as those enumerated in JIS X 0208:1997 Level 2 kanji
and GB 2312-80 Level 2 hanzi, that typically cannot be input by reading. The user must
finally resort to unintuitive means, such as input by encoded value, which is also known
as code input.

Most input methods provide a mechanism for code input, and come with character ta-
bles—printed or available in software—arranged by encoded value. The usefulness of these
character tables is very limited. Remember that GB 2312-80 Level 1 hanzi are arranged by
reading, so forget about trying to locate a hanzi there by its indexing radical. GB 2312-80
Level 2 hanzi, on the other hand, are arranged by radical, so this makes locating hanzi
a bit easier. However, there are always circumstances when you may wish to use other
means to locate ideographs, such as by reading (or multiple readings), number of strokes,
indexing radical, or radical-like components—for both GB 2312-80 Level 1 and 2 hanzi.
This is when a specialized ideograph dictionary becomes invaluable. These dictionaries go
far beyond what CJKV character set tables offer: they provide two or more methods for
locating all ideographs in CJKV character set standards. I highly recommend purchasing
at least one of these types of dictionaries. I have purchased several such dictionaries over
the years, and they still make their way into my hands from time to time.

Character set standards As Ideograph dictionaries
The CJKV character set standards themselves—in the form of a printed manual—can
function as a limited-use ideograph dictionary strictly for the purpose of locating charac-
ters more effectively than the inherent ordering of the characters themselves.

Table 11-9 lists the major CJKV character set standards, along with information about
what type of indexes they provide.

Ideograph indexes provided by CJKV standardsTable 11-9.

Character set standard Indexes

Unicode Cross-references to character codes in CJKV national standardsa

GB 2312-80b Radical, stroke-count (limited), reading (ordered by Pinyin), and simplified versus traditional

666 | Chapter 11: dictionaries and dictionary software

Ideograph indexes provided by CJKV standardsTable 11-9.

Character set standard Indexes

CNS 11643-1992 Nonec

CNS 11643-2007 Noned

JIS X 0208:1997 Radical and reading, plus cross-references to variants, 大漢和辭典 and 新字源
JIS X 0212-1990 Radical plus cross-references to variants

JIS X 0213:2000 Radical and reading (including JIS X 0208:1997), Unicode, plus cross-references to JIS X 0212-
1990, variants, 大漢和辭典, and 新字源

JIS X 0221-1995 Cross-references to 大漢和辭典 and 康熙字典
KS X 1001:2004 Nonee

KS X 1002:2001 Nonee

TCVN 5773:1993 Reading

TCVN 6056:1995 Cross-references to Tự Diển Chữ Nôm and Bảng Tra Chữ Nôm

The Unicode Standard, Version 5.0a. (Addison-Wesley, 2006) provides a radical index.

Level 1 hanzi entries are annotated with Pinyin readings, and Level 2 hanzi entries are annotated with radicals (hanzi that represent the first b.
using a particular radical are printed in Hei style; all others are in Song style).

Each hanzi entry includes fields that indicate its total number of strokes, its indexing radical, and the number of strokes that make up the c.
indexing radical.

Part two of the standard provides a listing of components that make up the hanzi in Planes 1 and 2.d.

The hanja themselves are annotated with hangul to indicate reading.e.

I have personally found the indexes provided in the GB 2312-80 manual to be very useful
and complete. These indexes have been repeated verbatim in the appendixes of the ideo-
graph dictionary entitled 常用汉字编码字典 (described in the very next section). Kohji
Shibano’s JIS 漢字字典 includes the same indexes as in the JIS X 0208:1997 standard,
which makes obtaining the actual JIS X 0208:1997 standard, for the purpose of obtaining
its indexes, somewhat pointless.*

Locale-specific Ideograph dictionaries
Every CJKV locale has published a number of ideograph dictionaries. While most of these
dictionaries are not directly applicable to computer users and software developers, a hand-
ful have been designed with computers in mind. A handful of these computer-oriented
dictionaries are briefly described in the following list.

The specialized character dictionaries that I have used over the years provide access to
different sets of characters, offer different methods for locating characters, and provide
different information once you locate the target character:

* Besides, computer-oriented ideograph dictionaries are typically cheaper and easier to find than the character
set standards that they cover.

Ideograph dictionaries | 667

The hanzi dictionary entitled •	 常用汉字编码字典 (chángyòng hànzì biānmǎ zìdiǎn,
meaning “Character Dictionary of Codes for Frequently Used Chinese Characters”)
contains the same hanzi indexes found in the GB 2312-80 character set standard,
along with nearly two dozen assorted input codes for all 6,763 GB 2312-80 hanzi.

The hanzi dictionary entitled •	 汉字属性字典 (hànzì shǔxìng zìdiǎn, meaning “Char-
acter Dictionary of Chinese Character Properties”) is essentially a giant database of
information for all 6,763 hanzi in the GB 2312-80 character set standard. It provides
cross-references to other CJKV character set standards, such as Japan’s JIS X 0208
series and Taiwan’s CCCII.

A pocket-size Chinese dictionary entitled •	 汉字输入速查手册 (hànzì shūrù sùchá
shǒucè, meaning “Handbook of Chinese Character Input and Searching”) allows
lookup only through Pinyin readings (with no tones), and lists codes for two input
methods (Renzhi and Wubi), along with Row-Cell values.

The hanzi dictionary entitled •	 標準中文輸入碼大字典 (biāozhǔn zhōngwén shūrùmǎ
dà zìdiǎn, meaning “Big Character Dictionary of Standard Chinese Input Codes”)
provides stroke-count, reading, and radical indexes for the Big Five character set,
and also provides cross-references to the GB 2312-80 character set standard (using
EUC-CN character codes). Also included are approximately 3,000 Hong Kong hanzi
that are not part of the standard Big Five definition, but are in Hong Kong GCCS (it
is published in Hong Kong).

The kanji dictionary entitled •	 パソコンワープロ漢字辞典 (pasokon wāpuro kanji
jiten, meaning “Personal Computer and Word Processor Kanji Dictionary”) allows
users to locate all of the characters found in JIS X 0208-1983 (not the 1990 or 1997
vintages) by reading, indexing radical, and total number of strokes. It then provides
hexadecimal ISO-2022-JP, hexadecimal Shift-JIS, Row-Cell, and the two printable
ASCII characters that correspond to the two hexadecimal ISO-2022-JP bytes.

The kanji dictionary entitled •	 最新 JIS 漢字辞典 (saishin JIS kanji jiten, meaning
“New JIS Kanji Dictionary”) allows users to locate all the characters in JIS X 0208-
1990 and JIS X 0212-1990 by radical and reading. It then provides hexadecimal ISO-
2022-JP and Row-Cell values for JIS X 0208-1990 characters, and only the Row-Cell
value for JIS X 0212-1990 characters.

Although the kanji dictionary entitled •	 大漢語林 (dai kango rin, meaning “Large Chi-
nese Word Forest”) is on the expensive side due to its professional-level quality, it is
extremely authoritative, being authored by 2 students of the author of the 13-volume
大漢和辭典 (dai kanwa jiten). It includes entries for all the kanji in JIS X 0208-1990
and JIS X 0212-1990, and provides Row-Cell and hexadecimal ISO-2022-JP codes
(Row-Cell only for JIS X 0212-1990).

JSA itself published a kanji dictionary entitled JIS•	 漢字字典 (JIS kanji jiten, meaning
“JIS Kanji Dictionary”) in 1997, which provided extensive information and cross-
references based on the JIS X 0208:1997 character set standard. This dictionary

668 | Chapter 11: dictionaries and dictionary software

offered Row-Cell, GL (ISO-2022-JP), GR (EUC-JP), Shift-JIS, and CJK (Unicode)
code points for each kanji, and included a staggering amount of readings. Also in-
cluded for every entry were cross-references to 大漢和辭典 (dai kanwa jiten) and 新
字源 (shinjigen). I considered this dictionary a model for others based on national
standards to follow. It was extensively revised in 2002 to include JIS X 0213:2000,
and is now appropriately entitled 増補改訂 JIS 漢字字典 (zōho kaitei JIS kanji jiten,
meaning “Expanded and Revised JIS Kanji Dictionary”). Interestingly, the 1997 edi-
tion of this dictionary ordered kanji according to the JIS X 0208:1997 standard, but its
2002 revision changed the order to the more traditional convention of using indexing
radical and number of residual strokes.

There are a number of other computer-oriented character dictionaries available, at least
another two dozen such titles in Japan alone, most of which support some flavor of the
JIS X 0208 series (a select few cover JIS X 0212-1990 to varying degrees, and newer ones
obviously provide coverage for JIS X 0213:2004). I have found the ones listed here to be
exceptionally useful in my work. Strangely, I have not yet been able to discover a computer-
oriented hangul or hanja dictionary from Korea. Appendix K represents my attempt to
provide such a reference for hangul.

The dictionary entitled JIS 漢字字典, along with its newer version entitled 増補改
訂 JIS 漢字字典, deserve special mention. The former covered JIS X 0208:1997 in its en-
tirety, and the latter expanded coverage to include all of JIS X 0213:2000. There was a
virtual explosion of computer-oriented kanji dictionaries in the late 1980s and 1990s,
and my guess is that the broad and rich nature of these two kanji dictionaries effectively
stopped the publishing of competing dictionaries. In other words, these dictionaries were
of such broad coverage and high quality that there apparently was no point in publishing
competing dictionaries.

Interestingly, the dictionary entitled 大漢語林 (dai kango rin) and its smaller sibling 漢語
林 (kango rin) had set a precedent in Japan for conventional kanji dictionaries to include
character codes, such as Row-Cell. They were apparently the very first conventional kanji
dictionaries to do so. 新漢語林 (shin kango rin), which was written by the same authors
as 漢語林, has taken this a step further by covering the latest JIS standards, including JIS
X 0213:2004.*

Another kanji dictionary worth mentioning is entitled 新潮日本語漢字辞典 (shinchō
nihongo kanji jiten). It is noteworthy because, like 新漢語林 described previously, it
covers all of the kanji in multiple JIS standards, specifically JIS X 0208:1997 andJIS X
0213:2004.†

John Haig’s revision of Andrew Nelson’s The New Nelson Japanese-English Character
Dictionary (Charles E. Tuttle Company, 1997), a favorite among English-speaking learn-
ers of Japanese, has joined this trend. As some dictionaries demonstrate, an ideograph

* http://www.taishukan.co.jp/item/sinkangorin/
† http://www.shinchosha.co.jp/book/730215/

Ideograph dictionaries | 669

dictionary does not need to include all the characters in a character set standard (such as
JIS X 0208:1997) in order for the inclusion of character codes (such as Row-Cell) to be
useful to its readership. In fact, I have categorized conventional Japanese kanji dictionar-
ies in the five ways listed in Table 11-10.

Categories of conventional Japanese kanji dictionariesTable 11-10.

Coverage of JIs standards dictionaries

None 新字源, 大漢和辭典
Partial JIS X 0208:1997 The Kodansha Kanji Learner’s Dictionary

JIS X 0208:1997 The New Nelson Japanese-English Character Dictionary, 漢語林
Partial JIS X 0208:1997, JIS X 0212-1990 角川必携漢和辞典, 福武漢和辞典, 旺文社漢和辞典
JIS X 0208:1997, JIS X 0212-1990 大漢語林, 五十音引き講談社漢和辞典
JIS X 0208:1997, JIS X 0213:2004 新潮日本語漢字辞典
JIS X 0208:1997, JIS X 0212-1990, JIS X 0213:2004 新漢語林

Of the dictionaries listed in Table 11-10, one deserves to be singled out because it is a
hybrid dictionary, and to this day is still unique for this reason. Dictionaries in Japan typi-
cally come in two flavors. One is obviously a kanji dictionary, and it includes a main entry
for each kanji that it covers. The other is a word dictionary, and it lists words, consisting
of one or more characters, and ordered according to reading, and provides definitions.
Kodansha Kanwa Jiten (五十音引き講談社漢和辞典 gojūon biki kōdansha kanwa jiten),
published in 1997, mixes both types of dictionaries, and orders both kanji main entries
and words by reading. These two types of dictionary entries thus appear side by side. Of
course, this dictionary provides the expected stroke count and radical indexes so that
kanji main entries can be located by means other than reading.

Ever since I began working with Chinese, Korean, and Vietnamese character sets, I have
been searching for character dictionaries that span more than a single CJKV locale. There
are times when I need to quickly determine the Chinese or Korean character code for a
kanji in a Japanese character set standard. The limited indexes provided in The Unicode
Standard and ISO 10646 run out of steam far too quickly, although once you find the ideo-
graph, there are useful cross-references to various CJKV character set standards.

Vendor Ideograph dictionaries and Ideograph tables
A number of vendor character set standards are described in Appendix E. Where do they
fit into this discussion of character dictionaries? Most companies that develop their own
CJKV character set standards, such as operating system and font manufacturers, also
publish a character dictionary, or at least a set of code tables, along with some indexes,
which allow users to locate all of its special characters. I have a large collection of such
references.

670 | Chapter 11: dictionaries and dictionary software

It goes without saying that some of these references are more useful than others. For
example, a Japanese code table from Hewlett-Packard is identical to a JIS X 0208-1983
code table, except that it lists the Shift-JIS, ISO-2022-JP, and Row-Cell values for each
character—this doesn’t help you much in finding obscure characters. The set of Japanese
character dictionaries published by NEC, on the other hand, are superb, and allow users
to search by radical, reading, total number of strokes, and encoding. The point of the
paragraph is that you should examine such references before you buy, or else get a recom-
mendation from someone whose opinion you trust.

CJKV Ideograph dictionaries
What can be considered the world’s very first—and still only—CJKV character dictionary,
designed for computer users and software developers, was published by Sanseido in 2000,
and is entitled Sanseido’s Unicode Kanji Information Dictionary (ユニコード漢字情報辞
典 yunikōdo kanji jōhō jiten). Due to the year of its publication, and the work that was nec-
essary to lead up to it, its coverage is the URO, meaning the first block 20,902 ideographs,
the main entries of which provide a variety of character codes, readings, cross-references
to related characters, classification symbols, indexing radical, stroke count, and so on.
CJK Unified Ideographs Extension A is covered, but as an appendix, not as main entries.

other Useful dictionaries
Believe it or not, there are many dictionaries, some of which are nondigital, that are in
some way useful in the context of this book. In the following sections I categorize several
such dictionaries in the hope that you will also find them useful for your own work or
research.

Conventional dictionaries
In my attempts to understand Korean text, I have found a particularly useful diction-
ary: Dong-A’s Prime Korean-English Dictionary, Second Edition (Doosan Dong-A Com-
pany, 1996). This dictionary is helpful in that it illustrates the hanja that correspond to
the hangul that are conventionally used to express Korean words. Because of my experi-
ence in dealing with ideographs, once I can see the hanja that correspond to hangul, my
comprehension of Korean text increases significantly. Those of you with limited Korean
experience but with extensive Chinese or Japanese knowledge may find this and similar
dictionaries useful.

I’ll provide you with an example of what I mean. Suppose I come across the Korean phrase
정보 교환 (jeongbo gyohwan). When I look up this word in the dictionary, as two sepa-
rate words 정보 (jeongbo) and 교환 (gyohwan), I am immediately greeted with the hanja
情報 and 交換. Because I am familiar with the equivalent words in Japanese, specifically
情報 (jōhō) and 交換 (kōkan), I gain an instant understanding of the Korean text. These
two words together mean “information interchange.”

dictionary Hardware | 671

Variant Ideograph dictionaries
When working with ideographs, there is always the issue of simplified or variant charac-
ters to wrestle with. Some dictionaries, such as 汉字写法规范字典 (hànzì xiěfǎ guīfàn
zìdiǎn), illustrate the traditional forms of simplified hanzi. Still other dictionaries, such
as 漢字簡繁體字對照字典 (hànzì jiǎnfántǐzì duìzhào zìdiǎn) and 简化字 繁体字 异体
字辨析手册 (jiǎnhuàzì fántǐzì yìtǐzì biànxī shǒucè), are specialized in the sense that they
serve only to provide information on the relationship between traditional, simplified, and
variant hanzi.

For Japanese, Jack Halpern’s New Japanese-English Character Dictionary (NTC, 1993;
Kenkyusha, 1990) is a virtual gold mine of kanji variant information and cross-references.
漢字異体字典 (kanji itai jiten; Nichigai Associates, 1994) is a specialized kanji variant
dictionary. Also of interest is 誤字俗字・正字一覧表 (goji zokuji seiji ichiranhyō; Teihan,
1995), which lists kanji variants that were registered for use in Japanese names. In my
experience, however, the most useful Japanese dictionary that contains kanji variants is
entitled 角川大字源 (kadokawa daijigen; Kadokawa, 1991). This dictionary catalogs a
large number of kanji variants.

A CD-ROM–based product called 今昔文字鏡 (konjaku moji kyō) provides over 150,000
ideographs and their variants. It runs on Windows.*

The relationships among traditional, simplified, and variant ideographs are somewhat
locale-specific, especially when dealing with characters that were either created or simpli-
fied within a single locale. This is why dedicated reference materials are indispensable if
you are serious about fully understanding the relationship among ideographs and their
variants.

dictionary Hardware
Electronic dictionaries can come in the form of dedicated hardware. Obviously, these de-
vices still use software—to be more precise, dedicated software—for searching and other
purposes.

Canon, Seiko, and Sharp, among other companies, manufacture hand-held electronic
character dictionaries that support the languages used in CJKV locales. For over 20 years,
Canon’s WordTank series has been exceptionally popular with students studying Japa-
nese. I myself once owned a Canon WordTank ID 7100 in the late 1980s, and thinking
of it brings back good memories from when I was first learning the Japanese language.
The electronic dictionaries that are available today are relatively inexpensive, and include
scores of large dictionaries.

WizCom Technologies and Japan21 more recently teamed up to develop the Quicktion-
ary 2 Kanji Reader, which is a hand-held scanning device that performs OCR operations

* http://www.mojikyo.org/

672 | Chapter 11: dictionaries and dictionary software

on Japanese text, set horizontally and vertically. It translates words and phrases between
English and Japanese.* Horizontal and vertical scanning is specified by a setting. This pen
dictionary includes three of Sanseido’s Daily Concise dictionaries, which allow English
text to be translated into Japanese, Japanese text to be translated into English, and defini-
tions of Japanese text to be displayed on its LCD screen.

The primary disadvantage of dedicated dictionary hardware is that, due to its hardware
nature, it cannot be easily upgraded, though some of them allow users to install their
own CD-ROM– or DVD-based dictionaries, effectively bypassing this limitation. While
many of these devices have optional dictionaries, usually specialized, there is no way to
add entries to the main dictionary. WYBIWYG.† The nonupgradable nature of dedicated
dictionary hardware may be true of those offered in the past, but given the introduction
of mobile devices that can perform computing operations, including many cell phones, I
doubt that it will be true in the future.

dictionary software
Character dictionaries that reside in software are a more recent phenomenon. Some are
conventional, some are specialized, and some are even a combination of both. These elec-
tronic dictionaries take the form of dictionary software for your computer, acting as a
frontend to one or more dictionary files, and may or may not require that you use a CJKV-
capable OS. However, given the multilingual capabilities of today’s OSes, there is generally
an adequate level of CJKV support already built in.

dictionary Cd-roMs
Electronic dictionary software was a very useful resource for computer users. Such soft-
ware allows you to look up individual characters, words, and even phrases. This software
usually comes in two parts: the actual dictionary, which is machine-readable text in a
database-like format, and software that acts as a frontend, and thus accesses the informa-
tion and displays it to the screen. Software packages almost always include both parts.

A past market trend was to store dictionaries on a single CD-ROM. CD-ROMs can store
several hundred megabytes of data and make an excellent media for large distributions of
software (and music!). Now, DVDs have taken over, given that they are able to store nearly
10 times the amount of data of a CD-ROM.

Most of these disc-based dictionaries were originally designed to be interfaced using an
electronic book player. These are commonly referred to as electronic books (電子ブック
denshi bukku in Japanese). Creative people and companies have written software that
allows you to read these CD-ROMs on platforms such as Linux, Mac OS X, and Win-
dows using standard CD-ROM or DVD drives, and many of these dictionaries now come

* http://wizcom.jp21.jp/
† What You Buy Is What You Get.

dictionary software | 673

bundled with such software. The following is a short list of Japanese-related electronic
books that were current when the first edition of this book was published, and many of
them are still available today:

広辞苑 by 岩波書店

大辞林 by 三省堂

新英和・和英中辞典 by 研究社

漢字源 by 学研

辞書パック 10 by 三省堂

新漢英字典電子ブック版 by 日外アソシエーツ

科学技術用語大辞典 by 日外アソシエーツ

25 万語医学用語大辞典 by 日外アソシエーツ

コンピュータ用語辞典 by 日外アソシエーツ

These and other electronic books can usually be ordered through Kinokuniya and other
Japanese bookstores in the U.S. and Japan, but perhaps amazon.co.jp is the most conve-
nient place through which to order them.* They may even have certain titles in stock now
that they are becoming more popular. Prices usually begin at about $50 (U.S.). Note that
these are almost always 8cm CD-ROMs—most CD-ROM drives accept 12cm CD-ROMs.
Most music stores sell adapters that let you play 8cm CD-ROMs in 12cm CD-ROM drives.
For DVD-based electronic books, only the 12cm size is offered.

Electronic Publishing WING (EPWING) has gained acceptance, at least in Japan, as the
leading format for disk-based or other electronic dictionaries.† In fact, EPWING is now
reflected in a JIS standard, specifically JIS X 4081:2002 (日本語電子出版検索データ構
造 nihongo denshi shuppan kensaku dēta kōzō).

Frontend software for dictionary Cd-roMs
There are a number of freeware and commercial software packages that serve as front-
ends for dictionary CD-ROMs, which are obviously designed to eliminate the need for a
dedicated electronic book player.

Table 11-11 lists several popular frontends for EPWING-based electronic dictionaries, for
a variety of platforms. More, beyond what is listed in Table 11-11, are available.‡

* http://www.amazon.co.jp/
† http://www.epwing.or.jp/
‡ http://hp.vector.co.jp/authors/VA037273/viewers.htm

674 | Chapter 11: dictionaries and dictionary software

Frontend software for EPWING electronic dictionariesTable 11-11.

software Platforms Availability

CDROM2 MS-DOS and Unix http://www.nerimadors.or.jp/~jiro/cdrom2/

CeDar Mac OS and Mac OS X http://hp.vector.co.jp/authors/VA004654/cedar/

DDwin Windows http://homepage2.nifty.com/ddwin/

EBPocket/EBWin Windows http://www31.ocn.ne.jp/~h_ishida/EBPocket.html

EBView Linux and Windows http://ebview.sourceforge.net/

Jamming Mac OS X and Windows http://dicwizard.jp/jamming.html

かものす (kamonosu) Mac OS X http://homepage2.nifty.com/andom/kamonos.html

コトノコ (kotonoko) Mac OS X http://www.afternooncafe.jp/kotonoko/

One of the best is called Jamming, also available as Jamming Light, both of which serve as
a frontend not only to disk-based dictionaries, but also for dictionaries of other formats.
Both are available for Windows and Mac OS X.

dictionary Files
Jim Breen deserves extra special mention here, because he has managed and coordinated
the development of several very useful machine-readable dictionary files for Japanese:
EDICT, ENAMDICT, KANJIDIC, KANJD212, and so on. More recently, he has combined
and XML-ized some of them into newer and improved dictionary files: JMdict, JMnedict,
and KANJIDIC2. In 1999, the EDICT data was placed into a database format that was
capable of holding richer and more complex content. From this database, both EDICT
and the XML-ized JMdict are generated daily. Likewise, the kanji-related dictionary files
are also in a database format, and the text-based and XML-ized versions are generated
from it on a daily basis. These dictionary files are described in the next section, followed
by a listing of applications that act as frontends to one or more of them. Paul Denisowski
had initiated a similar effort for Chinese. His first (and only) work was CEDICT, which
is the Chinese analog of Jim Breen’s EDICT. Jim Breen’s work is copyrighted under the
Electronic Dictionary Research and Development Group, Monash University.*

A recent trend, as demonstrated by Jim Breen’s JMdict, JMnedict, and KANJIDIC2, is to
move from a text-based format to XML. While this leads to some amount of increase in
overall file size, it does provide a much better encapsulation of the data, and also increases
its usability. Given the inherent structure of an XML file and the fact that structure is an
important part of a dictionary, this is a natural and logical development. Any ambiguity
that may be present in a text-based format is effectively removed by virtue of XML.

* http://www.edrdg.org/

dictionary software | 675

In addition, another recent trend is to provide web-based interfaces for these dictionar-
ies, which effectively solves any platform-dependent issues. These web-based frontends
additionally make it easier to hide the actual dictionary files, yet does not hinder access.
In other words, web-based frontends help to protect the intellectual-property aspect of
dictionaries, but at the same time do not prevent their use. In fact, one can argue that they
encourage their use.

It goes without saying that these dictionary projects represent ongoing efforts, involv-
ing several dedicated individuals and organization. Contributions in whatever form are
always welcome.

Unihan database
Perhaps the single most useful dictionary file is the Unihan Database, which provides
a large number of cross-references, readings, and meanings for all of the ideographs in
Unicode.* It is maintained by The Unicode Consortium, and covers not only all CJK Uni-
fied Ideographs, but CJK Compatibility Ideographs as well. It is kept up to date, with new
versions being released in sync with new versions of Unicode, but also when entirely new
fields are added.

CedICt—Chinese-english dictionary
Started in the fall of 1997, CEDICT is work that was inspired by Jim Breen’s suite of Japa-
nese dictionary files.† CEDICT is a Chinese-English dictionary file whose development
was originally managed by Paul Denisowski. As of this writing, CEDICT has well over
40,000 entries, and is still expected to grow significantly over time. The following are some
example entries from CEDICT:

筆畫 笔画 [bi3 hua4] /strokes of a Chinese character/

漢字 汉字 [han4 zi4] /Chinese character, kanji/

人權 人权 [ren2 quan2] /human rights/

中華人民共和國 中华人民共和国 [zhong1 hua2 ren2 min2 gong4 he2 guo2] /The
People’s Republic of China/

中日韓越 中日韩越 [zhong1 ri4 han2 yue4] /China, Japan, Korea, and Vietnam/

字集 字集 [zi4 ji2] /character set/

自由 自由 [zi4 you2] /freedom/free/liberty/

Note how CEDICT now includes two forms for the Chinese entry, specifically the tradi-
tional form followed by the simplified form. In some cases they are the same, such as for

* http://www.unicode.org/charts/unihan.html
† http://www.mandarintools.com/cedict.html

676 | Chapter 11: dictionaries and dictionary software

the example entries 字集 and 自由 shown previously. The CEDICT file itself was origi-
nally encoded according to EUC-CN encoding, which accommodated only a limited set
of Simplified ideographs, but its current form is encoded according to UTF-8 encoding,
which accommodates any ideograph in Unicode. Its format consists of four basic fields,
detailed as follows:

One or more traditional hanzi that represent a word•	

The simplified form of the word•	

Reading in Pinyin•	

One or more English glosses•	

The objective of the CEDICT project is to create an online, downloadable (as opposed to
searchable-only) public-domain Chinese-English dictionary. For the most part, the proj-
ect was modelled after Jim Breen’s hugely successful EDICT (Japanese-English diction-
ary) project, and it is intended to be a collaborative effort, with users providing entries
and corrections to the main file. For specific limitations regarding its use, please read the
CEDICT documentation.* Also of potential interest is that CEDICT has been adapted for
NJStar use.

CEDICT forked several years ago, and the most active version is called CC-CEDICT (CC
stands for Creative Commons, and refers to its usage license), which includes nearly 75,000
entries.†

Handedict—Chinese-German dictionary
For those who are speakers of German with an interest in Chinese, HanDeDict is a web-
based dictionary that allows lookup of words in either language.‡ This dictionary serves
as an excellent reminder that English is limiting for many people and is not as universal
as some think.

edICt/JMdict—Japanese-english dictionaries
EDICT is a freeware Japanese-English dictionary in machine-readable form. It was ini-
tially intended for use with MOKE (Mark’s Own Kanji Editor) and related applications,
such as JDIC. However, this file has the potential to be used in a large number of situa-
tions. The copyright on EDICT and its documentation is held by Jim Breen; however, it
is freely available for noncommercial use. EDICT is in the EDICT format as originally
specified by MOKE, and uses EUC-JP encoding for the Japanese portions. It is a text file
with one entry per line.

* http://www.mandarintools.com/download/cedict_readme.txt
† http://cc-cedict.org/wiki/
‡ http://chdw.de/

dictionary software | 677

The following are a few example entries as found in the latest version of the EDICT dic-
tionary file:

教科書 [きょうかしょ] /(n) textbook/text book/(P)/

字体 [じたい] /(n) type/font/lettering/(P)/

字典 [じてん] /(n) character dictionary/

辞書 [じしょ] /(n) (1) dictionary/lexicon/(2) (arch) letter of resignation/(P)/

辞典 [じてん] /(n) dictionary/(P)/

電子計算機 [でんしけいさんき] /(n) (comp) computer/

日本 [にっぽん] /(n) Japan/

日本 [にほん] /(n) Japan/(P)/

日本語 [にっぽんご] /(n) Japanese (language)/

日本語 [にほんご] /(n) Japanese (language)/(P)/

和英辞典 [わえいじてん] /(n) Japanese-English dictionary/

辭典 [じてん] /(oK) (n) dictionary/

EDICT now has over 150,000 entries and is similar in size to a high-quality commercial
dictionary. The EDICT documentation that is distributed with EDICT describes its his-
tory, its lexicographical principles, and its usage license statement, and it lists its many
contributors.*

There are two main EDICT formats. One is the legacy EDICT format. The other is the
EDICT2 format that is richer, and is more like MJdict. While the legacy EDICT format
allows single readings and no cross-references, the EDICT2 format allows both. Consider
the following two EDICT entries:

行き方 [いきがた] /(n) (one's) whereabouts/

行き方 [ゆきがた] /(n) (one's) whereabouts/

The following single EDICT2 entry consolidates these two entries and provides a useful
cross-reference:

行き方 [ゆきがた;いきがた] /(n) (See 行方) (one's) whereabouts/

* http://www.csse.monash.edu.au/~jwb/edict_doc.html

678 | Chapter 11: dictionaries and dictionary software

JMdict, in addition to including German, French, Russian, and Dutch glosses, is also an
XML file, as opposed to plain text.* To provide you a better sense of the XML structure
of JMdict, when compared to EDICT, consider the following single entry, which corre-
sponds to the first sample EDICT entry shown previously:

<entry>
<ent_seq>1237020</ent_seq>
<k_ele>
<keb>教科書</keb>
<ke_pri>ichi1</ke_pri>
<ke_pri>news1</ke_pri>
<ke_pri>nf04</ke_pri>
</k_ele>
<r_ele>
<reb>きょうかしょ</reb>
<re_pri>ichi1</re_pri>
<re_pri>news1</re_pri>
<re_pri>nf04</re_pri>
</r_ele>
<sense>
<pos>&n;</pos>
<gloss>textbook</gloss>
<gloss>text book</gloss>
<gloss xml:lang="fre">livre de classe</gloss>
<gloss xml:lang="fre">manuel scolaire</gloss>
<gloss xml:lang="rus">учебник</gloss>
<gloss xml:lang="ger">Lehrbuch</gloss>
<gloss xml:lang="ger">Schulbuch</gloss>
</sense>
</entry>

Given the extent to which XML is being used by today’s OSes and applications, JMdict is
clearly the next step for EDICT’s evolution.

WadokuJt—Japanese-German dictionary
Ulrich Apel developed an online Japanese-Germany dictionary called WaDokuJT (和独
辞典 wadoku jiten).† This dictionary deserves mention, not only because it is another
example of a useful non-English resource, but also because it serves as the source of the
German-language material in Jim Breen’s JMdict.

enAMdICt/JMnedict—Japanese proper name dictionaries
ENAMDICT, which now contains over a half-million Japanese proper name entries, was
once part of EDICT, well over 10 years ago. Because this portion of EDICT caused it to
bloat considerably, Jim decided to split it into two separate entities: EDICT, which now
has the personal and place names removed; and ENAMDICT, which contains the per-
sonal and place names formerly part of EDICT.

* http://www.csse.monash.edu.au/~jwb/j_jmdict.html
† http://www.wadoku.de/

dictionary software | 679

Table 11-12 provides a list of the tags used by ENAMDICT, along with their meaning, and
the number of entries that include the tag. As you can see, the number of entries is both
staggering and impressive.

Explanations of ENAMDICT tagsTable 11-12.

tag explanation number of entries

s Surname 138,500

p Place name 99,500

u Person name, either given or surname, as yet unclassified 139,000

g Given name, as yet not classified by sex 64,600

f Female given name 106,300

m Male given name 14,500

h Full—family plus given—name of a particular person 30,500

pr Product name 55

co Company name 34

The following are sample entries from the ENAMDICT file, some of which include mul-
tiple tags:

剣 [けん] /Ken (g)/

小塚 [こづか] /Kodzuka (p,s)/

工藤 [くどう] /Kudou (p,s)/

太郎 [たろう] /Tarou (p,s,m)/

山本 [やまもと] /Yamamoto (p,s)/

瑠美 [るび] /Rubi (f)/

ENAMDICT, like EDICT, is encoded according to EUC-JP encoding. The JMnedict (Japa-
nese Multilingual Named Entity Dictionary) dictionary file is an XML form of ENAM-
DICT that is encoded according to UTF-8 encoding.

More detailed information about ENAMDICT can be found by reading its
documentation.*

* http://www.csse.monash.edu.au/~jwb/enamdict_doc.html

680 | Chapter 11: dictionaries and dictionary software

KAnJIdIC—JIs X 0208:1997 kanji
KANJIDIC is simply a kanji database file that is generated on a daily basis from a database
that also generates the XML-ized KANJIDIC2, which is covered later in this chapter.*
There are 6,355 entries, one per line, and one for each of the kanji in JIS X 0208:1997. The
first two fields of each entry are always the kanji itself (EUC-JP–encoded) followed by its
hexadecimal ISO-2022-JP code. The remaining fields correspond to additional informa-
tion. Table 11-13 lists the prefixes and the information that their values represent. Clearly,
some of these fields may not mean much unless you have a particular dictionary or refer-
ence handy.

Explanations of KANJIDIC fieldsTable 11-13.

Field Meaning

B Radical number assigned by Nelson’s kanji dictionary (from a set of 214)

C Classical radical number (from the standard set of 214) when assigned differently from Nelson’s kanji dictionary

D Dictionary-based codes, to be progressively used to support additional dictionaries and similar references

E Index number from Kenneth Henshall’s A Guide to Remembering Japanese Characters

F Frequency-of-use ranking, if present (applies only to 2,501 kanji, based on Alexandre Girardi’s analysis of word
frequencies in the Mainichi Shimbun spanning four years)

G Jōyō Kanji, Gakushū Kanji, and Jinmei-yō Kanji field (a value of 1 to 6 indicates the grade level for Gakushū Kanji;
a value of 8 indicates Jōyō Kanji; and a value of 9 indicates Jinmei-yō Kanji)

H Index number from Jack Halpern’s New Japanese-English Character Dictionary

I Index number from Mark Spahn and Wolfgang Hadamitzky’s The Kanji Dictionary and Kana & Kanji

J The Japanese Language Proficiency Test (JLPT) level in which the kanji occurs (1 through 4 are possible values)

K Gakken dictionary index number

L Index number from James Heisig’s Remembering the Kanji series

M Index number from Morohashi’s 大漢和辭典
N Index number from Andrew Nelson’s The Modern Reader’s Japanese-English Character Dictionary

O Index number from P.G. O’Neill’s Japanese Names

P SKIP pattern code

Q Four Corner Code

S Total number of strokes (more than one such field is acceptable in the case of kanji with varying stroke counts)

U Unicode scalar value

V Index number from Andrew Nelson and John Haig’s The New Nelson Japanese-English Character Dictionary

W Korean reading

* http://www.csse.monash.edu.au/~jwb/kanjidic.html

dictionary software | 681

Explanations of KANJIDIC fieldsTable 11-13.

Field Meaning

X Cross-reference code

Y Pinyin reading

Z Mis-classification code

KANJIDIC, like EDICT and ENAMDICT, has a copyright. However, Jim has made it
freely available on the same basis as EDICT. The copyright on some fields is held by oth-
ers. For example, the SKIP field was included with the permission of Jack Halpern and
his publishers.

The final fields are one or more pronunciations written in kana and English meanings.
English meanings are enclosed in curly braces. The KANJIDIC documentation explains
these fields in greater detail.*

The following are three complete sample entries taken from KANJIDIC. Compare the
information to the listing given in Table 11-13.

漢 3441 U6f22 B85 G3 S13 F1487 J3 N2662 V3281 H657 DK471 L1578 K1394 O1860
DO401 MN18068P MP7.0189 E442 IN556 DS572 DF212 DH265 DT418 DJ527
DB2.19 DG1230 P1-3-10 I3a10.17 Q3413.4 DR363 Yhan4 Whan カン T1 はん {Sino-}
{China}

剣 3775 U5263 B18 G8 S10 XJ05178 XJ05179 XJ0517A XJ0517B XJ06E5F F1305 J1
N696 V498 H1672 DK1096 L1671 K1248 O1151 DO1436 MN2076 MP2.0295 E1214
IN879 DJ791 DG198 P1-8-2 I2f8.5 Q8250.0 DR2843 Yjian4 Wgeom ケン つるぎ {sa-
bre} {sword} {blade} {clock hand}

和 4F42 U548c B115 C30 G3 S8 XJ16D61 F124 J2 N3268 V770 H1130 DK769 L897
K151 O638 DO277 MN3490 MP2.0969 E416 IN124 DS338 DF412 DH440 DT318
DC85 DJ352 DB3.5 DG326 P1-5-3 I5d3.1 Q2690.0 DR2277 Yhe2 Yhe4 Yhuo2 Yhuo4
Yhuo5 Yhai1 Yhe5 Whwa ワ オ カ やわ.らぐ やわ.らげる なご.む なご.やか T1 あい
いず かず かつ かつり かづ たけ ち とも な にぎ まさ やす よし より わだこ わっ
{harmony} {Japanese style} {peace} {soften} {Japan}

KAnJd212—JIs X 0212-1990 kanji
The KANJD212 dictionary file is best described as the JIS X 0212-1990 analog of the
KANJIDIC file, and includes 5,801 entries, one for each of the kanji enumerated in the JIS

* http://www.csse.monash.edu.au/~jwb/kanjidic_doc.html

682 | Chapter 11: dictionaries and dictionary software

X 0212-1990 character set standard.* Its format is different from that of KANJIDIC in the
following respects only:

EUC-JP encoding, code set 3, for the main entries (KANJIDIC, by comparison, uses •	
EUC-JP encoding, code set 1, for its main entries)

Includes only the following KANJIDIC fields: U, B, S, M, W, and Y (see Table 11-13 •	
for a description of these fields)

Japanese readings are also included. The following are some sample entries from the
KANJD212 file:

圕 3729 U5715 B31 S13 MN4829P P3-3-10 ショ としょかん {library}

辵 6133 U8fb5 B162 S7 XJ16134 H1945 MN38700 P2-1-6 Ychuo4 チャク T2 しんにょ
う しんにゅう {walk} {walking} {road radical (no. 162)}

辶 6134 U8fb6 B162 S3 XJ16133 H1932 MN38702 P2-1-2 Ychuo4 チャク T2 しんにょ
う しんにゅう {walk} {walking} {road radical variant (no. 162)}

Whether this dictionary file can be used in your environment depends on whether your
OS supports the JIS X 0212-1990 character set. Read the KANJD212 documentation for
more details.†

KAnJIdIC2—XML form of KAnJIdIC, KAnJd212, and more
Jim Breen has taken the necessary steps to develop an XML form of KANJIDIC, which
provided an opportunity to not only merge KANJIDIC and KANJD212 into a single file,
but also to add the additional kanji necessary to cover JIS X 0213:2004. This new dic-
tionary is called KANJIDIC2.‡ The following is an example KANJIDIC2 dictionary entry,
which is the same as the first example entry for the KANJD212 dictionary file:

<!-- Entry for Kanji: 圕 -->
<character>
<literal>圕</literal>
<codepoint>
<cp_value cp_type="ucs">5715</cp_value>
<cp_value cp_type="jis212">23-9</cp_value>
<cp_value cp_type="jis213">2-04-58</cp_value>
</codepoint>
<radical>
<rad_value rad_type="classical">31</rad_value>
</radical>
<misc>
<stroke_count>13</stroke_count>
</misc>
<dic_number>

* http://www.csse.monash.edu.au/~jwb/kanjidic.html
† http://www.csse.monash.edu.au/~jwb/kanjd212_doc.html
‡ http://www.csse.monash.edu.au/~jwb/kanjidic2/

dictionary software | 683

<dic_ref dr_type="moro">4829P</dic_ref>
</dic_number>
<query_code>
<q_code qc_type="skip">3-3-10</q_code>
</query_code>
<reading_meaning>
<rmgroup>
<reading r_type="ja_on">ショ</reading>
<reading r_type="ja_kun">としょかん</reading>
<meaning>library</meaning>
</rmgroup>
</reading_meaning>
</character>

Note how the same information is provided, but in a highly structured XML format. In
addition, the JIS X 0213:2004 code point is provided.

Lsd—Japanese-english life sciences dictionary
Although its development is not coordinated by Jim Breen, the LSD dictionary, coordi-
nated by the Life Science Dictionary (LSD) project, and led by Shuji Kaneko (金子周司
kaneko shūji), is nonetheless another useful dictionary file that has been adapted to the
same format as the previously described dictionary files. It provides a web-based interface
to its contents for easy and platform-independent access.*

This LSD dictionary file contains over 40,000 entries for terms used in the life sciences—
physiology, pharmacology, biophysics, biochemistry, organic chemistry, biology, and so
on—along with their corresponding English terms. The following are some example en-
tries—some not very suitable for discussion at the dinner table—from the LSD dictionary.
These entries are formatted according to the same conventions as used by EDICT, from
when the LSD dictionary was made available as a static file:

甲状腺機能低下症 [こうじょうせんきのうていかしょう] /hypothyroidism/

ジアスターゼ [じあすたーぜ] /diastase/†

手根管症候群 [しゅこんかんしょうこうぐん] /carpal tunnel syndrome/

虫垂炎 [ちゅうすいえん] /appendicitis/

腸 [ちょう] /intestine/intestinal/bowel/gut/entero/

Needless to say, LSD is useful for those who deal with the life sciences and Japanese.

* http://lsd.pharm.kyoto-u.ac.jp/
† $2.50

684 | Chapter 11: dictionaries and dictionary software

HAnJAdIC—Korean hanja dictionary
For those who work with ideographs in a Korean context, Dan Bravender developed
HANJADIC, which is the Korean analog of KANJIDIC.* Instead of being a static diction-
ary file, HANJADIC is a program, written in Ruby, that provides four ways with which to
search: in English, by reading, by character compound, and by the character itself.

HANJADIC is also available through a web interface, which arguably allows it to reach a
wider audience.†

Frontend software for dictionary Files
There are a variety of programs, freeware, and commercial software, that serve as excel-
lent frontends to Jim Breen’s various dictionary files: EDICT, ENAMDICT, KANJIDIC,
and KANJD212. These frontends also work with the EDICLSD3 file. There is also one,
CEL (Chinese-English Lookup), that serves as a frontend to CEDICT. Table 11-14 lists
these programs and includes information about what platform they run on, who authored
them, and so on.

Dictionary frontend softwareTable 11-14.

software Platforms Availability

CEL Windows Freeware by Richard Warmingtona

CJEDictionary Windows Freeware by Jeremy Thorpeb

Gjiten Linux Freeware by Botond Botyanszkic

JavaDict Java Freeware by Todd Rudickd

JEDict Mac OS X Commercial software by Sergey Kurkine

JquickTrans Windows Shareware by Alex Schonfeldf

JREADER MS-DOS Freeware by Jim Breen; does not require Japanese-capable OSg

Rikai Online Freeware by Todd Rudickh

Rikaichan Firefox plug-in Freeware by Jon Zaratei

StarDict Linux and Windows Freewarej

UniDict Mac OS Commercial software by Enfour Mediak

* http://www.msu.edu/~bravend2/hanjadic/
† http://hanjadic.bravender.us/

dictionary software | 685

Dictionary frontend softwareTable 11-14.

software Platforms Availability

WWWJDIC Firefox plug-in Freeware by Jim Breenl

XJDIC Unix Freeware by Jim Breenm

http://home.iprimus.com.au/richwarm/cel/cel.htma.

http://www.cjedictionary.com/b.

http://gjiten.sourceforge.net/c.

http://www.cs.arizona.edu/projects/japan/JavaDict/d.

http://www.jedict.com/e.

http://www.coolest.com/jquicktrans/f.

http://www.csse.monash.edu.au/~jwb/jreader.htmlg.

http://www.rikai.com/h.

http://www.polarcloud.com/rikaichan/i.

http://stardict.sourceforge.net/j.

http://www.enfour.co.jp/unidict/k.

http://www.csse.monash.edu.au/~jwb/wwwjdicfirefox.htmll.

http://www.csse.monash.edu.au/~jwb/xjdic/m.

Some word processors, such as NJStar, also provide support for these dictionary files as a
way for users to input text or look up unknown words.

There are other frontend software packages for dictionary files, but the dictionary files
themselves are in what I consider to be proprietary formats.

Web-Based dictionaries
There are now many dictionaries and dictionary-like resources that are accessible through
web browsers. Some of these simply act as a frontend to dictionaries that are easily acces-
sible, and some are accessible only through the Web. The following are some samples of
those that are currently available—more and more are coming online every day:

Jim Breen’s •	 WWWJDIC, which is a web frontend to his various dictionary files—
definitely a must-visit site.*

•	 Kim Ahlström’s Denshi Jisho, which is a powerful derivative of WWWJDIC.†

•	 Jeffrey Friedl’s frontend to Jim Breen’s Japanese dictionary files—such as EDICT,
KANJIDIC, and so on—long has been a mainstay on the Web.‡

* http://www.csse.monash.edu.au/~jwb/cgi-bin/wwwjdic.cgi
† http://jisho.org/
‡ http://dict.regex.info/cgi-bin/j-e/dict

686 | Chapter 11: dictionaries and dictionary software

•	 Rick Harbaugh’s Chinese Character Genealogy (based on his software called Zhongwen
Zipu)* and Chinese Characters Dictionary Web (really cool because it links together
about a dozen web dictionaries).†

•	 Charles Muller’s CJKV-English Dictionary.‡

•	 Erik Peterson’s Chinese-English Dictionary and Chinese Character Dictionary.§

KanjiBase•	 by Christian Wittern and Urs App.¶

•	 Hongjie Xin’s (忻宏杰 xīn hóngjié) Online English-Chinese and Chinese-English
Dictionary.**

StarDict•	 , which is also available through a web interface.††

•	 Richard Cook’s frontend to The Unicode Consortium’s Unihan Database.‡‡

Some of these web dictionaries—in particular, Charles Muller’s, Jim Breen’s, and Rick
Harbaugh’s—have been cross-linked at the character level. This represents an exciting de-
velopment in web-based lexicography.

Expect to find more and more dictionaries accessible through the Web as time goes on.
In many ways, web-based dictionaries provide the best of both worlds. They effective-
ly eliminate the platform issue, due to the inherent cross-platform nature of the Web.
All you need is a suitable web-browsing application that is running on a CJKV-enabled
OS, and you have a very convenient frontend to a large and growing number of useful
dictionaries.

Machine translation Applications
Machine translation (MT) applications are a bit different from electronic dictionaries
in that they handle not only single characters, words, and phrases, but entire sentences.
Machine translation applications are best used to perform the first pass translation, thus
reducing the translation burden for humans. The state of machine translation technol-
ogy is not yet to the point where human intervention is not required.§§ These applica-
tions are best referred to as machine-aided translation software—they merely assist you in
translating text faster.

* http://zhongwen.com/
† http://zhongwen.com/zi.htm
‡ http://www.buddhism-dict.net/dealt/
§ http://www.mandarintools.com/
¶ http://www.chibs.edu.tw/~chris/gwdg/kanjibas/cefintro.htm
** http://www.tigernt.com/
†† http://www.stardict.org/
‡‡ http://linguistics.berkeley.edu/~rscook/cgi/zunihan.html
§§ We can all dream about the time when there will be a “universal translator” as used in Star Trek and other sci-

ence fiction series.

Machine translation services | 687

Because these applications cannot not provide a perfect translation, pre- and post-editing
functions are usually available. Pre-editing is a form of massaging input text so that the
translation application does a better job. Post-editing is the process of correcting errors
and inconsistencies in translation that are made by the application.

One of the keys to adequate translation quality is the availability of specialized diction-
aries that contain terms specific to fields of study. Such fields include computer science,
medicine, science, and so on. Very few machine translation applications come bundled
with specialized dictionaries—they are available for additional cost.

The highest-rated and most widely-used machine translation applications are offered by
SYSTRAN, and have been used by Yahoo! and Google.* Also consider those offered by
LEC (Language Engineering Corporation), specifically their Translate and Power Transla-
tor series, all of which are available for Windows.† They even provide a web-based demo
service.‡ Babylon offers machine translation software for Windows and Mac OS X us-
ers.§ Another to consider is ATLAS by Fujitsu, which supports English to Japanese and
Japanese to English (for which demo versions are available), and is bundled with Fujitsu
laptop computers.¶ Finally, Amikai’s Amikai Enterprise is designed for business users and
is web-based.**

Machine translation services
With the explosive growth of the Web came the need to translate information on the same
medium. This market has clearly matured since the first edition of this book was written
10 years ago. As you will discover, and if you were not yet aware, there are now free ma-
chine translation services, along with commercial ones. While the “you get what you pay
for” expression certainly applies here, to what extent the free machine translation services
suit your needs depends on a variety of factors.

Free Machine translation services
Given the proliferation of web use, and the number of companies that provide useful
services within that context, it is of no surprise that the “usual suspects” provide very
useful—and free—machine translation services.

Google, as a primary player on the Web, offers a series of language tools, some of which
provide translation services.†† Blocks of text can be translated—or entire web pages if

* http://www.systransoft.com/
† http://www.lec.com/translate-software.asp
‡ http://www.lec.com/translate-demos.asp
§ http://www.babylon.com/
¶ http://www.fujitsu.com/global/services/software/translation/atlas/
** http://www.amikai.com/products/enterprise/
†† http://www.google.com/language_tools

688 | Chapter 11: dictionaries and dictionary software

the URL is provided. It is of no surprise that Yahoo! offers comparable functionality to
Google’s language tools with Babel Fish.*

While specific to Japanese, the goo search engine offers very useful dictionaries and trans-
lation tools.† Infoseek’s Japanese website offers a Japanese-English and English-Japanese
translation service, along with the very unique ability to translate standard Japanese text
into Kansai dialect (関西弁 kansai ben).‡

SDL offers their FreeTranslation website,§ and Babylon offers comparable translation
services.¶

Each of these machine translation services deserves to be explored, if for no other reason
than to determine which best suits your needs. For those who find their capabilities too
limiting, consider some of the commercial options, which are covered next.

Commercial Machine translation services
In the spirit of the “you get what you pay for” expression, some machine translation ser-
vices are commercial, meaning that you payment is via subscription or based on usage.

LEC offers machine translation subscriptions, such as Transate DotNet and Translate2Go.**
Likewise, LogoVista offers their e-Trans service.†† And SYSTRAN offers various transla-
tion services.‡‡

Language-Learning Aids
This section provides information on some of the Japanese learning aids that are avail-
able—this does not mean that similar software for Chinese, Korean, or Vietnamese does
not exist.

The learning of a foreign language can often be supplemented or reinforced through the
use of software.§§ There are many software-based learning aids available, far too many to
exhaustively list here. If you plan to study—or have already studied to some extent—a
language such as Chinese, Japanese, Korean, or Vietnamese, I encourage you to seek out
software-based learning aids.

* http://babelfish.yahoo.com/
† http://dictionary.goo.ne.jp/
‡ http://translation.infoseek.co.jp/
§ http://www.freetranslation.com/
¶ http://translation.babylon.com/
** http://www.lec.com/translation-subscriptions.asp
†† http://e-trans.logovista.co.jp/
‡‡ http://www.systransoft.com/translation/translation-products/online-services/
§§ But make no mistake, although software-based learning aids are useful in the language-learning process, they

are by no means a substitute for genuine human interaction, especially during the early stages of learning.

Language-Learning Aids | 689

Table 11-15 lists some of the language-learning aids of which I am aware, but make no
mistake, there are many, many more available. Some of these applications are much more
than simply language learning aids—some also function as electronic dictionaries or full-
featured word processors, among which Wenlin is a prime example.

Language-learning aidsTable 11-15.

software Platforms Availability

Chinese Character Tutor Windows Commercial software by Flashware Internationala

Kanji-Flash/BTJ MS-DOS Commercial software by Kanji-Flash Softworksb

ReadWrite, FlashCards, and Dictionary Windows Commercial software by Declan Softwarec

Rosetta Stone Mac OS X, Windows, and Web Commercial software by Rosetta Stoned

Wenlin Mac OS X and Windows Commercial software by Wenlin Institutee

http://www.bridgetochina.com/a.

http://ourworld.compuserve.com/homepages/KanjiFlash/b.

http://www.declan-software.com/c.

http://www.rosettastone.com/d.

http://www.wenlin.com/e.

I suggest that you also explore World Language Resources as a source for language-
learning products.*

Many readers may also require classroom study of the Japanese language. If local classes
are not available, or if there is a group within a company that wants to learn Japanese, there
are still options open. Some schools, such as The University of Wisconsin–Madison (which
I attended), offer Technical Japanese programs that cater to the working professional
through distance education.†

* http://www.worldlanguage.com/
† http://metj.engr.wisc.edu/

691

CHAPter 12

Web and Print Publishing

This chapter wraps up the book by first delving into the subject of email and its CJKV
implications, to include coverage of popular email clients. The remainder of the chapter
focuses on the topics of publishing in the contexts of the Web and in print, which means
discussions surrounding markup languages for web publishing, and Adobe Acrobat and
PDF for print publishing. All of these publishing technologies provide adequate CJKV
support, as long as they’re configured and used correctly. And, as you will discover, Ac-
robat and PDF play an important role today in the realm of print publishing. As you are
no doubt aware, there has been explosive growth of the Web in recent years. Virtually
every company has established a website for letting customers know of their products and
services, and for some companies, their web page has become their primary venue for
providing information to their customers. Television, radio, and billboard advertisements
these days often boldly include URLs. But, how do you go about displaying or creating
web pages that include CJKV text? These are good questions with reasonable and under-
standable answers.

The handling of CJKV text within the context of email clients clearly falls into the realm
of information interchange (信息交换 xìnxī jiāohuàn or 資訊交換 zīxùn jiāohuàn in Chi-
nese, 情報交換 jōhō kōkan in Japanese, and 정보교환/情報交換 jeongbo gyohwan in Ko-
rean), whereby text data is sent from one computer or mobile device to another without,
one hopes, any loss of data. How CJKV text is handled internally by a single computer
system is not necessarily the same as the external handling of the same data—these days,
it’s almost guaranteed that it is different. Here we can make a distinction between an inter-
nal and external code. An internal code is one which is most efficiently processed directly
on a computer system. Examples of internal codes include the various locale-specific in-
stances of EUC encoding, such as EUC-CN, EUC-JP, EUC-KR, and EUC-TW, and any of
the encoding forms for Unicode, specifically UTF-8, UTF-16, and UTF-32. An external
code, however, is used somewhat as a machine-independent encoding that allows for the
interoperability of data from one encoding to another—an external code is also called an
information interchange code. Examples of external codes include the various instances of
ISO-2022 encoding. Such encodings are designed to be transmitted quite reliably through
most email networks.

692 | Chapter 12: Web and Print Publishing

First, it is useful to consider an example of information interchange in action. Figure 12-1
illustrates how Japanese text data can be sent or transmitted from an OS that processes
Shift-JIS encoding to one that processes EUC-JP encoding, using ISO-2022-JP encoding
as the common encoding for electronic transmission purposes. ISO-2022-JP encoding
is thus used as the information interchange encoding. The ISO-2022-JP encoding step
may be bypassed if the Japanese data are being moved by other means, such as by a direct
connection, wireless transfer, or by removable media (such as a memory stick, CD, or
DVD).

�����

���������
��������

������
��������

������������
�����������
����������

�����������
���������
����������

���

��

�������

��

���

��������
�������������

Information interchangeFigure 12-1.

Nevertheless, true information interchange is achieved only when data is moved from
one platform to another—and perhaps even from one encoding to another—with ab-
solutely no loss of information. Of course, loss of information is considered to be a bad
thing. Naturally, preserving information is a very good thing. Information interchange is
usually a simple affair when using the ASCII character set, but in the case of CJKV text,
there are more problems and complications. Examples are different encoding methods for
the same locale—such as ISO-2022-KR, EUC-KR, Johab, and Unicode for Korean—and
multiple character sets for a single locale, though Unicode has effectively put a damper
on that issue. As you should have learned in Chapter 4, not all encodings for a specific
locale support all of its character sets. An excellent example is the lack of support for the
JIS X 0212-1990 character set in Shift-JIS encoding. All of these factors must be taken into
consideration when deciding how to best implement information interchange in your
working environment.

Line-termination Concerns | 693

And, times and technologies change. Some of the Internet applications and services that
were covered in the first edition of this book, such as News clients, have become outdated.
Some, such as FTP, are still useful from time to time, though much of FTP’s functional-
ity has been taken over by web browsers. To a great extent, web forums have effectively
replaced News as the preferred medium through which to exchange information or ideas
within an interest group.

Line-termination Concerns
No matter how complex the Web becomes, files still need to be transferred. In fact, one
can argue that file transfer is the very nature of the Web. Furthermore, each platform still
maintains its own notion of what constitutes line termination. As the Web becomes more
complex, more and more platforms interact with one another. In the past, services such
as FTP (File Transfer Protocol), rlogin, and telnet were common methods for connect-
ing to remote servers, for the purpose of transferring files or to perform tasks. To some
extent, these services are still in use today, but sftp (secure FTP) and ssh (secure shell) are
preferred by many for their added security features. I know, because I still use them as
part of my daily work.

While it is not the purpose of this book to show you how to establish an FTP connection,
nor how to transfer files using FTP, there are some valid concerns that relate to the trans-
fer of CJKV data. In case you were not aware, there are effectively two ways to use FTP:

Using the •	 ftp program itself, which is available on Mac OS X, Unix, and Windows.

Using a web browser, and specifying a URL that includes •	 ftp as the Web protocol,
instead of the more common http.

The first thing to remember is that nearly all legacy CJKV encoding methods, such as Big
Five, EUC, ISO-2022, Shift-JIS, and so on, do not constitute binary data. The same is true
of UTF-8 encoding. Of course, some of these encoding methods use generous amounts
of eight-bit data, and some even control characters. But, text data that is encoded accord-
ing to these encoding methods is still considered to be text data. In most cases, though,
transferring CJKV text through a binary FTP connection is not harmful, but will result
in the preservation of the original line termination. For those who are not aware, differ-
ent OSes use different characters or different sequences of characters to terminate lines
of text. Table 12-1 lists the three most common line-termination methods, along with the
OSes that make use of them.

Line-termination conventionsTable 12-1.

Line termination encoding oses

Carriage returna 13 (0x0D or U+000D) Mac OS and Mac OS X

Carriage return + Line feedb 13 (0x0D or U+000D) + 10 (0x0A or U+000A) MS-DOS and Windows

694 | Chapter 12: Web and Print Publishing

Line-termination conventionsTable 12-1.

Line termination encoding oses

Line feedc 10 (0x0A or U+000A) Unix and Mac OS Xd

Also expressed as CR.a.

Also expressed as CR + LF or CR + NL (b. New Line).

Also expressed as LF or NL.c.

Some aspects of Mac OS X, such as working in the d. Terminal application, prefer this line-termination convention.

A nonbinary file transfer session will convert the line-termination characters appropri-
ately. For example, if you are using Windows and connect to a Linux or Unix server to
transfer a file from Linux or Unix to Windows, a nonbinary FTP connection will change
line termination appropriately, from LF to CR+LF. For those who use Unix, or for Mac
OS X using the Terminal application, the following tr command changes line termination,
from carriage returns (CR) to line feeds (LF):

tr '\015' '\012'

And, when transferring files that were authored on Windows to Unix or Linux, the fol-
lowing tr command performs a similar function by simply removing the carriage returns
(CR):

tr -d '\015'

Files that contain real binary data must be transferred in binary transfer mode; other-
wise, their data will most certainly become corrupt. Compressed files are the most com-
monly encountered binary files. Binary data, for example, may contain byte values that
correspond to carriage-return or line-feed characters, but they are not to be interpreted
as those characters. So, when these characters are converted, the entire file becomes dam-
aged, and repair is almost always impossible.

Some encodings must be treated as binary data, such as the following two Unicode en-
codings: UTF-16 and UTF-32. UTF-8 encoding can be treated in nonbinary mode with
no worries. My recommendation is to effect FTP transfers in binary mode when there is
any doubt.

email
One of the most commonly used Internet services is, without a doubt, email, and it still
represents the most basic form of today’s electronic communication. Email, of course, is
the abbreviated form of electronic mail. Emails can range from short text messages sent
from a mobile device, such as a cell phone, to elaborate texts that include numerous at-
tachments. People often wonder how to send and receive email in languages other than
English. That is what this section is all about. As a recurring theme of this book, Unicode
has been very effective in trivializing the ability to send and receive email using characters
beyond those in ASCII. It is no different for email.

email | 695

Email is still very much a plain-text paradigm, and is likely to be so for many years. Of
course, it is possible to use stylized text in an email message, but as the message becomes
thread-like, with multiple replies or forwards, much of the “style” is stripped away. And,
for some email clients, such as mobile devices, the plain-text paradigm adds a layer of
simplicity and robustness to an otherwise complex electronic device.

sending email
Today, sending email has become trivial and is now as simple as launching your favorite
email client, typing in one or more email addresses, composing the message, and then
sending it. In the past, email clients tended to be much more text-based. The user was
once exposed to some of the nitty-gritty details, such as encoding conversion and similar
operations. The current generation of email clients have successfully insulated users from
these details, and they can instead focus on using email as a tool.

Looking back only a decade, one was forced to make a few preparations before a CJKV
text data could be reliably transmitted through email. I originally suggested that the fol-
lowing guidelines be adhered to as closely as possible:

Break long lines to less than 80 columns (75 columns or fewer was preferred).•	

Compose the document using a monospaced font, because most email clients used •	
monospaced fonts for display purposes.

Do not include any half-width katakana characters since they are not fully supported •	
in all environments (this applies only to Japanese).

Convert the text file to an ISO-2022 encoding, according to the appropriate •	 RFC.

Speaking of ISO-2022 encoding and RFCs, Jun Murai, Erik van der Poel, and Mark Crisp-
in wrote RFC (Request For Comments) 1468, Japanese Character Encoding for Internet
Messages. This RFC described how Japanese was to be encoded for use in email, and paved
the way for comparable RFCs that specified similar treatment for Chinese and Korean.*
Table 12-2 lists these RFCs, along with the encodings they defined and the languages they
supported. Those that are shaded were widely used, and in some circles are still used to-
day. The others were defined too late, and never became widely used, if used at all.

RFCs that define ISO-2022 encodingsTable 12-2.

rFC encoding Character sets

1922 ISO-2022-CN, ISO-2022-CN-EXT ASCII, GB 2312-80, CNS 11643-1992

1468 ISO-2022-JP ASCII, JIS-Roman, JIS C 6226-1978, JIS X 0208-1983a

2237 ISO-2022-JP-1 ISO-2022-JP plus JIS X 0212-1990

* http://www.ietf.org/rfc.html

696 | Chapter 12: Web and Print Publishing

RFCs that define ISO-2022 encodingsTable 12-2.

rFC encoding Character sets

1554 ISO-2022-JP-2 ISO-2022-JP plus JIS X 0212-1990b

1557 ISO-2022-KR ASCII, KS X 1001:1992

Support for JIS X 0208-1990 and JIS X 0208:1997 is also implied.a.

As you’ve read in Chapter 4, ISO-2022-JP-2 also supports GB 2312-80, KS X 1001:1992, and two parts of ISO 8859, but the GB 2312-80, KS X b.
1001:1992 character sets are better handled through RFCs 1922 and 1557, respectively.

Interestingly, although Unicode has become broadly adopted in today’s OSes and appli-
cations, ISO-2022 encoding is still used for email messages to a great extent. But, the
conversion between Unicode and the appropriate ISO-2022 encoding is handled by email
clients.

receiving email
Receiving CJKV text is considerably easier than sending it, especially using today’s email
clients. Displaying text is obviously easier than composing it. Still to this day, whether or
not CJKV text is displayed properly in your email client depends heavily on the extent to
which your OS has the ability to display CJKV text.

Some email clients, such as those that ran on VMS systems, did not allow control charac-
ters to function—that is, if they didn’t simply strip them out! This had the effect of render-
ing CJKV text unreadable within the email client even if you were using CJKV-capable
terminal-emulation software. For example, you may sometimes see some text that looks
like this:

B3lOOBJ8$NJ8>O$NNc$G!"$=lO(JEnglishBNJ8>ONNcG$9!#(J

There sure are a lot of $ (dollar) characters, which happen to represent the first byte of
hiragana characters. This should tell you that something has gone wrong.

It was possible to trick or coerce email clients into permitting control characters to per-
form their proper functions. For example, on VMS systems, you could make use of the
extract command followed by tt: (two t’s followed by a single colon) to accomplish this.
Below is an example command line within the VMS email client:

Mail> extract tt:

If this worked, and if the CJKV text had not been damaged, the previous text should have
displayed properly as a mixture of CJKV and English text, such as the following sample
Japanese text:

これは和文の文章の例で、それはEnglishの文章の例です。

If there was no method with which you could coerce your email client into displaying
CJKV text, you were then forced to save the message to a file, exit the email client, and
then attempt to view the message through other means. The most successful method al-
most always involved saving the email message as a file outside your email client, and

email | 697

then, if necessary, downloading the file to your computer. Unix newsreaders often had a
similar problem, and users had to resort to saving the article as a text file, and then view
it through other means.

We are fortunate that today’s email clients do an excellent job in sheltering and insulating
us from resorting to cumbersome methods to perform seemingly simple and trivial tasks,
such as displaying email messages.

email troubles and tricks
Thankfully, the likelihood of encountering issues when sending and receiving email with
CJKV content has diminished. With the current generation of email clients being dedi-
cated applications or web browsers, the self-contained nature of such environments has
helped to a great extent. Still, most of the problems that you are likely to encounter when
sending CJKV text through email relate to encodings becoming damaged.

When using a text-based email client, while using a terminal, there are times when an er-
ratic encoding issue makes it seem as though your terminal went nuts. And, there are times
when the escape sequences that are commonly used for Japanese text become scrambled
or corrupted, for one reason or another. This might be due to a poorly written terminal
application, or simply a problem with the integrity of the Japanese text itself, such as it
terminating in two-byte mode. This can leave you stuck in two-byte mode, meaning that
text, such as your system prompt, will be interpreted as two bytes per character and will
make no sense whatsoever. A solution to this problem is to create a short shell script that
outputs a one-byte–character escape sequence when invoked. The following two lines can
be added to your .cshrc file (if you are using the C shell on a Unix system):

set e = "`echo x | /bin/tr x \\033`"
alias ko 'echo "${e}(J"; echo "*** FORCED KANJI-OUT ***"'

The first line sets the value of the variable e to be the same as the escape character. This
variable is then used in the second line to complete the one-byte–character escape se-
quence. It is not wise to directly use an escape character in this sort of settings file—it
may be detected as a redundant escape sequence by certain CJKV-capable text editors,
and subsequently—and quite appropriately, I might add—deleted. When invoked, this
newly-established alias “ko” outputs two lines to the terminal: the first is a valid one-byte–
character escape sequence, and the second is simply a line that informs you that you have
successfully returned to one-byte mode.

email Clients
The availability of email clients always seems to be on the rise, perhaps because email is
the most widely used—and thus most frequently abused—Internet service. In case you are
not aware, an email client is also known as an Mail User Agent (MUA). Fortunately, ob-
taining an CJKV-capable email client has become an easier task than compared to several
years ago. Much of this change is due to Unicode, and the fact that supporting Unicode

698 | Chapter 12: Web and Print Publishing

helped to trivialize, or at least ease, the effort that is necessary to provide multilingual
support to customers.

Using a web browser as an email client
The advantages of using a web browser as an email client is that you can access your email
from almost any computer. And, given the high level of multilingual support in today’s
OSes and web browsers, as long as the email service you use has adequate multilingual
support, you will experience little or no problems. Google and Yahoo! are examples of
companies that offer email accounts that are easily accessed through the use of any web
browser, and they provide an excellent level of multilingual support. This is precisely why
their email services are popular: they work.

Using a mobile device as an email client
Mobile devices, including cell phones, can serve as convenient email clients. The primary
issue that you are likely to encounter is the extent to which they can—or cannot—handle
CJKV text.

Unfortunately, the current state is rather poor, which is likely due to font and input meth-
od limitations. The size of these devices necessitates that they be carefully configured and
tailored for specific markets. Those sold in Japan, for example, support Japanese well.
Those sold in the U.S. have very poor or nonexistent support for CJKV text.

Becky!—Windows
RimArts has developed a Windows-based email client called Becky!, and its standard ver-
sion includes CJKV support.* Although this email client was developed many years ago, it
is still being maintained and developed.

eudora
Eudora, developed by QUALCOMM, remains one of the most popular email clients for
Mac OS X and Windows users.† Various versions have been available, from commercial
to free or inexpensive Light versions. An open source version, currently being called Pe-
nelope, is in development, and is being coordinated with Thunderbird (which is covered
later in this section).‡

Although localized versions have been developed, Eudora’s multilingual support has been
relatively weak, especially when compared to other contemporary email clients.

* http://www.rimarts.co.jp/becky.htm
† http://www.eudora.com/
‡ http://wiki.mozilla.org/Penelope

email | 699

Mac os X Mail
The very first versions of Mac OS X included a multilingual email client that is simply
called Mail.* This happens to be the primary email client that I use, and I find its multi-
lingual features to be quite robust. It has other useful features, such as the ability to view
single-page PDFs inline, as part of email, instead of needing to open them using Acrobat
or Adobe Reader. Naturally, Mail has a home turf advantage, because it is provided as part
of Mac OS X and is thus supported by Apple.

Microsoft entourage—Mac os X
Microsoft provides an application called Entourage as the email client that is included
with Microsoft Office for Mac OS X.† Like other components of Microsoft Office, Entou-
rage provides multilingual support. And, unlike other email clients, Entourage is more
than merely an email client, and it also serves as a calendaring application for managing
schedules.

Microsoft outlook and outlook express—Windows
The Windows version of Microsoft Office includes an application called Outlook that
serves as an email client, and also as a calendaring application.‡ Interestingly, Outlook
Express, the freely available relative of Outlook, has historically provided users with better
overall multilingual support.

Mutt—Linux and Unix
Mutt is a text-based email client for Linux and Unix OSes that provides multilingual ca-
pabilities.§ This email client can even be used on Mac OS X, thanks to Unix being under
the hood. Mutt’s slogan is: All mail clients suck. This one just sucks less.

PowerMail—Mac os X
CTM Development has developed a Mac OS X email client called PowerMail.¶ Its multi-
lingual support is due to the fact that it uses Mac OS X APIs to accomplish this feat, which
is the way it should be done.

thunderbird
The same organization that developed Firefox, specifically the Mozilla Foundation, de-
veloped an equally robust email client called Thunderbird.** Like Firefox, the multilingual

* http://www.apple.com/macosx/features/mail.html
† http://www.microsoft.com/mac/products/entourage2008/
‡ http://office.microsoft.com/outlook/
§ http://www.mutt.org/
¶ http://www.ctmdev.com/powermail/
** http://www.mozilla.com/thunderbird/

700 | Chapter 12: Web and Print Publishing

support in Thunderbird is broad. Furthermore, it is available for FreeBSD, Linux, Mac OS
X, and Windows.

mh-e—GnU emacs
I have always been a fan of the GNU Emacs, and at one time used its mh-e package as my
primary email client. The mh-e package is based on, and depends on the availability of,
the MH email system. When used with GNU Emacs version 20 or later, the mh-e package
inherits its CJKV support.

network domains
The Web, as it is used today, began as a defense-funded network known as ARPANET. The
identity of each node on the network was first categorized into different domains, which
are now referred to as Top-Level Domains (TLDs). This tells users, for example, that adobe.
com represents a commercial node, and that nasa.gov is a government node. The so-called
“classic” gTLDs (generic Top-Level Domains) are listed in Table 12-3.

Classic Top-Level DomainsTable 12-3.

domain description

com Corporations

edu Educational institutions

gov Government agencies

mil Military

net Network providers

org Nonprofit organizations

In 1998 and beyond, however, additional gTLDs were established to provide a more
meaningful set of Top-Level Domains for today’s commercial web. Table 12-4 lists these
newly established web domains.

New Top-Level DomainsTable 12-4.

domain description

aero Aviation-related businesses

asia Asia-Pacific region

biz Businesses

cat Catalan language and culture

coop Cooperatives

info Informative websites

network domains | 701

New Top-Level DomainsTable 12-4.

domain description

jobs Employment-related websites

mobi Mobile devices

museum Museums

name Individuals

post Postal services

pro Professionals

tel Web-communication services

travel Travel industry

Besides these gTLDs, there are also ccTLDs (country code Top-Level Domains), which
cover specific countries, and, as its name suggests, by country code. The ccTLD for the
United States is us. The United States is also divided into regional subdomains, all of
which correspond to a state. The State of California, for example, is registered as ca.us.
The use of the classic gTLDs has traditionally been restricted to sites in the United States,
due to the initial U.S.-centricity of the Web, but that trend has changed. Now, it is almost
impossible to determine the physical location of websites that use the domains specified
in Tables 12-3 or 12-4.

Keep in mind that the networking environment throughout the world is ever changing
and improving. URLs are included for each Network Information Center (NIC) so that
more up-to-date information on each domain can be obtained.

Internationalized domain names
The widespread adoption of Unicode as the standard character set and encoding enabled
internationalization of not only OSes and applications, but of the Web’s namespace as
well. Prior to Unicode, the multitude of character sets and encodings prevented this from
happening, but Unicode leveled the proverbial playing field, and every character in Uni-
code was given the same treatment, whether it has its roots in ASCII or is deep within CJK
Unified Ideographs Extension B in Plane 2. As long as a single character set is used, IDNs
(Internationalized Domain Names) are now possible.

ICANN (Internet Corporation for Assigned Names and Numbers) has published the guide-
lines for IDNs.* Note that some countries have implemented IDNs to an extent that is not
yet recognized by ICANN, though this has opened up recently. IANA maintains a collec-
tion of IDN tables, organized by TLD and language, which indicate specific Unicode code
points that are permitted on a per-registry basis.†

* http://www.icann.org/topics/idn/
† http://www.iana.org/domains/idn-tables/

702 | Chapter 12: Web and Print Publishing

the Cn domain
The CN domain, which is a ccTLD that covers China, is managed by CNNIC (China In-
ternet Network Information Center).* This domain includes six subdomains, as indicated
in Table 12-5.

CN subdomainsTable 12-5.

subdomain description

ac Academic or scientific research institutions

com Corporations

edu Educational institutions

gov Government agencies

net Network providers

org Organizations

There are also regional subdomains that indicate the province, such as bj for Beijing. Also
of interest is that CNNIC has proposed Chinese names for these subdomains, such as
公司 for com, 网络 for net, and even 中国 for cn as a ccTLD.

the HK domain
The HK domain, which is a ccTLD, covers Hong Kong, which is now a Special Admin-
istrative Region (SAR) of China. HKDNR (Hong Kong Domain Name Registration Com-
pany) manages this domain.† Table 12-6 lists the six HK subdomains, along with their
official names in Chinese.

HK subdomainsTable 12-6.

subdomain In Chinese description

com 公司 Corporations

edu 教育 Educational institutions

gov 政府 Government agencies

idv 個人 Individuals

net 網絡 Network providers

org 組織 Organizations

* http://www.cnnic.net.cn/
† http://www.hkdnr.hk/

network domains | 703

As Table 12-6 indicates, it is possible to both register HK subdomains and represent them
in Chinese. But, bear in mind that these subdomain names, when expressed in Chinese,
are not yet officially recognized by ICANN.

the JP domain
The ccTLD that specifies websites in Japan uses the two-letter country code JP. JPNIC
(Japan Network Information Center) manages the JP domain.* Table 12-7 lists the JP
subdomains.

JP subdomainsTable 12-7.

subdomain description

ac Academic institutions

ad JPNIC members

co Corporations

ed Educational institutions for minors

go Government agencies

gr Individual entities

lg Local government agencies

ne Network providers

or Organizations

Some entities, such as NTT, originally belonged to the JP domain itself, as ntt.jp—it did
not belong to a subdomain, but rather formed its own subdomain of sorts. NTT is now
properly ntt.co.jp, under the expected co subdomain.

the Kr domain
The KR domain, which is a ccTLD that is managed by NIDA (National Internet Develop-
ment Agency of Korea), is primarily intended for websites that are located in South Korea.†
Table 12-8 lists the KR subdomains.

KR subdomainsTable 12-8.

subdomain description

ac Academic institutions

co Corporations

* http://www.nic.ad.jp/
† http://www.nida.or.kr/

704 | Chapter 12: Web and Print Publishing

KR subdomainsTable 12-8.

subdomain description

es Elementary schools

go Government agencies

hs High schools

kg Kindergarten

mil Military

ms Middle schools

ne Network providers

or Organizations

pe Personal

re Research institutes

sc Other schools

Note that geographical domains, such as seoul.kr and busan.kr, also exist, along with
IDNs, such as 한글.kr.

The KP domain also exists, which corresponds to North Korea, but as of this writing,
there are a mere two websites registered under the KP domain.

the tW domain
The TW domain is managed by TWNIC (Taiwan Network Information Center).* Table
12-9 lists the TW subdomains.

TW subdomainsTable 12-9.

subdomain description

club Clubs

com Corporations

ebiz E-businesses

edu Educational institutions

game Gaming websites

gov Government agencies

idv Individuals

mil Military

* http://www.twnic.net.tw/

Content Versus Presentation | 705

TW subdomainsTable 12-9.

subdomain description

net Network providers

org Organizations

Like China and Hong Kong, Taiwan also allows some of the subdomains to be represented
in Chinese, specifically 商業 for com, 網路 for net, and 組織 for org. Of course, ICANN
does not yet recognize these subdomains when expressed in Chinese.

the Vn domain
The VN domain is managed by VNNIC (Vietnam Internet Network Information Center).*
Table 12-10 lists the VN subdomains.

VN subdomainsTable 12-10.

subdomain description

ac Academic institutions

biz Businesses

com Corporations

edu Educational institutions

gov Government agencies

health Medical agencies

info Informative websites

int International organizations

name Individuals

net Network providers

org Organizations

pro Professionals

Content Versus Presentation
Now we turn our attention away from email and toward the area of publishing, whether
it is for the Web, for printing, or for both mediums. Everything about this book cul-
minates toward publishing, and these two forms represent the vast majority of today’s
documents.

* http://www.vnnic.vn/

706 | Chapter 12: Web and Print Publishing

HyperText Markup Language (HTML), an application of Standard Generalized Markup
Language (SGML, described in ISO 8879:1986), provides the author with full control over
the content of web documents, but it is up to the individual browser to handle presenta-
tion. HTML is effectively the publishing language of the Web. When including graphics in
your web documents, for example, you must keep in mind that text-based browsers, such
as Lynx, exist, and therefore cannot display the graphics directly.

Printed materials, to include scans, preserve the presentation of documents, but because
they are not machine-readable, they have no content per se. Content can be derived through
the use of Optical Character Recognition (OCR) or by manually entering the data.

Portable Document Format (PDF), on the other hand, provides the author with full con-
trol over both the content and presentation of web documents. Both aspects are preserved,
which effectively means that the “look and feel” of the original document is fully main-
tained. Adobe Acrobat version 3.0, based on PDF version 1.2, was the first release that
provided minimal CJKV support. It could also plug into Netscape Communicator so that
PDF files display directly in the browser window (as opposed to running Adobe Acrobat
as a separate process or application). Adobe Acrobat version 4.0, based on PDF version
1.3, provided significantly more enhanced CJKV support, such as the ability to embed
CJKV fonts.

Cascading Style Sheets (CSS) represents a language for controlling the presentation of web
pages, to include color, fonts, layout, and other aspects of how web pages display.* CSS is
used in conjunction with HTML.

Extensible Markup Language (XML), which was once thought of as a possible replacement
for HTML, provides much better control over content and also has better overall CJKV
support.

HTML, CSS, XML, and other advanced web developments are coordinated by the World
Wide Web Consortium (W3C).† I encourage you to explore the W3C website for the lat-
est information on these and related standards, because this represents an ever-changing
area.

In order to determine which publishing method is best for your needs, you first must de-
termine or decide whether it is important to preserve content, presentation, or both. You
also need to consider the delivery method and the potential readership. Also bear in mind
that the majority of web browsers can display PDF files within the application, as though
the file were a typical web page, so to some extent you can treat PDF files as though they
were normal web documents.

* http://www.w3.org/Style/CSS/
† http://www.w3.org/

Web Publishing | 707

Web Publishing
Web publishing, quite simply, is the development of web pages. The vast majority of web
pages are written using HTML, and various related technologies have been developed
to simplify the development and management of web pages, such as Active Server Pages
(ASP), JavaServer Pages (JSP), and Personal Home Page (PHP). Some technologies, such
as Adobe Flash* and Adobe AIR,† were specifically designed to deliver enhanced capabili-
ties to the Web.

Web Browsers
The most popular and utilitarian web application is the now infamous web browser. It is
hard to imagine accomplishing much of the work that I do without the conveniences and
features of a browser. Web browsers act as portals. To some extent, they act as platforms
into and of themselves. In fact, some technologies effectively use browsers as their plat-
form. Take, for instance, Adobe Buzzword and Google Docs. These online word proces-
sors use web browsers as their platform. The web browser can thus be thought of as a
portal to the Web.

Years ago, there were two major web browsers that competed for top position: Internet
Explorer and Netscape Communicator. While Internet Explorer is still very popular, other
web browsers have been developed. In other words, there are choices. The strong compe-
tition between Internet Explorer and Netscape Communicator resulted in better web-
browsing applications, and ultimately became a “win” situation for all users—especially
for those who needed to display CJKV web pages.

One common feature of a browser that is multilingual in nature is the ability to auto-
matically detect the encoding of a web page, in case one is not declared, and the ability to
manualy override the encoding in case automatic encoding detection fails for whatever
reason. The underlying OSes on which these web browsers run also include improved
multilingual support.

Chrome
Chrome is the name of Google’s own web-browsing application.‡ Although the initial re-
lease of Chrome was for Windows, clearly in an effort to compete with Microsoft’s In-
ternet Explorer, Linux and Mac OS X versions are in the works. Given Google’s strong
multilingual capabilities, I expect no less from Chrome.

* http://www.adobe.com/products/flash/
† http://www.adobe.com/products/air/
‡ http://www.google.com/chrome/

708 | Chapter 12: Web and Print Publishing

Firefox
Firefox, developed by the Mozilla Foundation, is the most popular web browser that is
not developed by an OS vendor.* Clearly, Internet Explorer and Safari have home-turf
advantages on their respective OSes, yet Firefox can still compete. Like Internet Explorer
and Safari, the multilingual functionality of Firefox is impressive. I use Firefox as my
preferred web browser, and the only functionality that I miss is the ability to display PDF
files directly in the browser.

Internet explorer
Of the web browsers in use today, Microsoft’s Internet Explorer, often abbreviated as sim-
ply IE, is one of the oldest, if not oldest.† And, because it is the standard web browser for
Windows, it is ranked as the most popular. Internet Explorer is included with Microsoft
Windows, and is also available at no charge from Microsoft’s website. At one point, Mi-
crosoft developed a Mac OS X version of Internet Explorer, but development has ceased,
most likely due to Apple’s release of their own web browser called Safari. Like Safari, In-
ternet Explorer has the ability to display PDF files directly in the browser.

Lynx
Believe it or not, the text-based web browser called Lynx is still in development.‡ Given
the extent to which graphics and other nontext elements are used in today’s web pages,
one would think that development of text-based web browsers would surely have ceased.
Lynx was initially popular for users with disabilities, such as those who are blind. But,
A11Y§ has improved significantly in GUI-based browsers, so Lynx’s use within this com-
munity has naturally decreased.

Of course, the Mac OS X version is run through the use of the Terminal application.¶ The
continued development and use of Lynx makes it clear that “plain text” still has meaning,
power, and purpose.

opera
Opera Software has developed a very popular web browser called Opera.** Unlike other
web browsers, which typically come in only one form, there are several versions of Opera
available, from the traditional web browser for desktop or laptop computers to versions
that are tailored for use on mobile devices.

* http://www.mozilla.com/firefox/
† http://www.microsoft.com/windows/products/winfamily/ie/
‡ http://lynx.browser.org/
§ An abbreviated form of accessibility.
¶ http://www.apple.com/downloads/macosx/unix_open_source/lynxtextwebbrowser.html
** http://www.opera.com/

HtML—Hypertext Markup Language | 709

safari
Not long after Apple released Mac OS X, they also released their own web browser called
Safari.* It is based on Apple’s open source WebKit.† Like other components of Mac OS X,
Safari has excellent multilingual support. One incredibly useful feature of Safari is its abil-
ity to display PDF files directly in the browser, instead of using Adobe Reader, the com-
mercial viewer, or Apple’s own Preview application.

displaying Web Pages
Today’s OSes and web browsers have, to a great extent, trivialized the displaying of web
pages. Unicode has obviously played a role in this. The Fallback Font mechanisms that the
OSes provide, which applications such as web browsers can take advantage of, also play a
role in the ability to display arbitrary text in web pages.

In the past, however, the process was more complex and required a greater level of user
intervention. The following list chronicles four common methods that were once neces-
sary to correctly display CJKV text in previous-generation web browsers:

Obtain a web browser that includes CJKV support, such as Netscape Communicator •	
or Internet Explorer. An underlying CJKV-capable OS may be required.

Patch your web browser to support CJKV text. Again, an underlying CJKV-capable •	
OS may be required.

Use a gateway that transforms CJKV text into graphic images, such as •	 Shodouka—
this technique was not terribly useful for text-based web browsers, such as Lynx.

Use an application that forcibly displays CJKV text, such as NJStar Software’s NJStar •	
CJK Viewer. This technique was also quite useful outside the context of web-browsing
applications and could be used to view CJKV text in most non-CJKV applications.

Note that the gateway method required that you use a graphics-based browser, and the
results could be painfully slow. Text-based browsers, such as Lynx, do not (and, obviously,
cannot) directly support graphics or images of any kind. It is possible, however, for Lynx
to use a “helper application,” such as xv, for displaying graphics. Worse yet, web pages that
made use of Java, such as Java Applets or JavaScript, are not usable in today’s text-based
browsers. Too bad.

HtML—Hypertext Markup Language
HTML, first documented in RFC 1866, Hypertext Markup Language—2.0,‡ is a language
used to describe the content and structure of web documents. It originally specified ISO

* http://www.apple.com/safari/
† http://www.webkit.org/
‡ http://www.ietf.org/rfc/rfc1866.txt

710 | Chapter 12: Web and Print Publishing

8859-1:1998 (also known as ISO Latin 1 or ISO-8859-1) as its default character set and
encoding. RFC 2070, Internationalization of the Hypertext Markup Language, effectively
changed the default character set for HTML to ISO 10646-1:1993 (Unicode), and also
extended HTML to be more suitable for multilingual purposes.* The latest HTML specifi-
cation is version 5.0.† W3C (World Wide Web Consortium) now manages the internation-
alization aspects of HTML, and it provides documentation, tips, and test cases.‡

In addition to HTML, there is also Extensible HyperText Markup Language (XHTML),
which is HTML reformulated using XML. Perhaps as a best of both worlds, XHTML thus
combines the strength of HTML and the flexibility of XML. The latest version of HTML,
specifically version 5.0, brings HTML and XHTML back together.

CSS provides the web page author with more control over how web pages are presented,
through the specification of color, fonts, some aspects of layout, and other presentation-
related attributes. Given the multilingual nature of many fonts, there are clearly CJKV-
related implications when such fonts are specified through CSS.

Some companies, such as Microsoft and Netscape Communications, have defined their
own extensions to HTML in the past, in the form of additional tags that were above and
beyond the HTML specification proper, at least at that time. These tags were not part of
the official HTML specification and were guaranteed to work only in specific web brows-
ers. The world has fortunately become a much better place, because today’s web browsers
are much more compliant than those developed several years ago. In other words, web-
browser development has matured.

With the large number of HTML-related books on the market, it can be difficult for the
beginner to choose an appropriate title. My favorite is Chuck Musciano and Bill Kennedy’s
HTML & XHTML: The Definitive Guide, Sixth Edition (O’Reilly Media, 2006); as its title
suggests, it covers both HTML and XHTML.§ For those who merely need a convenient
HTML reference, Jennifer Niederst Robbins’ HTML & XHTML Pocket Reference, Third
Edition (O’Reilly Media, 2006) is highly recommended.¶ For learning more about CSS, I
suggest reading David McFarland’s CSS: The Missing Manual (O’Reilly Media, 2006).**

Authoring HtML documents
The most widely used legacy CJKV encodings—EUC, ISO-2022, Big Five, Shift-JIS, and
so on—all support a mixed one- and two-byte code space.†† All of the HTML tags can be

* http://www.ietf.org/rfc/rfc2070.txt
† http://www.w3.org/TR/html5/
‡ http://www.w3.org/International/
§ http://oreilly.com/catalog/9780596527327/
¶ http://oreilly.com/catalog/9780596527273/
** http://oreilly.com/catalog/9780596526870/
†† If you have read Chapter 4 very carefully, you’d know I’m sort of lying. EUC-JP defines a mixed one-, two-, and

three-byte code space; EUC-TW defines a mixed one-, two-, and four-byte code space; and UTF-8 defines a
mixed one- through six-byte code space.

HtML—Hypertext Markup Language | 711

represented by the characters in the ASCII character set, which is fully supported by vir-
tually all CJKV encoding methods. And, for this reason, UTF-8 is the preferred encoding
for HTML documents that include Unicode content. In fact, UTF-8 is most commonly
used encoding for web pages today, and I expect its use to only increase.

The following brief example represents a minimal HTML document with no multilingual
content:

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=us-ascii">
<TITLE>Ken Lunde's Home Page</TITLE>
</HEAD>
<BODY>
<H1>Ken Lunde's Home Page</H1>
</BODY>
</HTML>

(I feel that HTML tags and attributes stand out better if they are in uppercase, but they
do not need to be—this is more important if you write your own HTML and intend it to
be human-readable; the use of uppercase becomes a way to more readily distinguish tags
from text.) The following is the same HTML document as just shown, but this time with
Japanese content, declaring EUC-JP as the encoding:

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=euc-jp">
<TITLE>小林劍のホームページ</TITLE>
</HEAD>
<BODY>
<H1>小林劍のホームページ</H1>
</BODY>
</HTML>

As you can see, creating multilingual HTML documents is actually quite simple. The real
question is how to go about creating the raw HTML. Do you prefer to use a dedicated ap-
plication, or your favorite word processor, or do you want to craft your own HTML using
a text editor? Depending on the complexity of the HTML document, which method you
use can vary.

The current HTML specification defines several attributes and tags that allow the docu-
ment author to define multilingual aspects of a document. More information about these
and other attributes and tags can be found in the HTML specification.

Character entity references
Besides the obvious method of using characters themselves in their binary forms in a
known encoding, it is also possible to use character references in HTML, XML, and
SGML. Character Entity References (CERs), known quite well to most HTML content
creators, include examples such as & for an ampersand. The use of CERs began with

712 | Chapter 12: Web and Print Publishing

SGML, and was carried over to HTML and XML. The W3C website maintains a list of the
CERs that are commonly supported.*

These character references, whether they are CERs or NCRs (to be covered next), are
delimited by an ampersand (&, U+0026) and a semicolon (;, U+003B). CERs are most com-
monly used to represent characters that could otherwise be confused with characters that
are used for syntactic purposes. The use of some CERs are more required than others.
Some are simply used as a measure of good practice. The CER for an ampersand is re-
quired, because the ampersand is used as the initial character for CERs and NCRs.

numeric Character references
In the context of this book, Numeric Character References (NCRs) are more important
than CERs, and have CJKV implications and uses. In case you recall, NCRs were a top-
ic of discussion in Chapter 4. I should point out that every CER can be represented by
an equivalent NCR. The & CER can thus be alternatively represented by &,
&, or &.

When using character codes for character references, traditional SGML allowed only dec-
imal notation. The same was true for HTML up until version 3.2. Hexadecimal is now the
preferred notation for NCRs in HTML, SGML (after a correction), and XML. Today, the
use of hexadecimal notation is widespread. Hexadecimal notation, of course, is preferred
for Unicode-encoded characters, mainly because it is the same notation as used for Uni-
code scalar values, which are conveniently encoding-independent.

The character encoded at hexadecimal 0xFF (decimal 255) can take on the following two
forms:

ÿ (hexadecimal)
ÿ (decimal)

I should also point out that regardless of the encoding of the HTML document, declared
or otherwise, when an NCR is used, it is interpreted as a Unicode character, specifically
a Unicode scalar value. The ÿ example just shown is thus treated as though it were
U+00FF. Likewise, a typical Unicode scalar value, such as U+4E00, should only be repre-
sented as 一. Likewise, the first character of Plane 2, which is also the first ideograph
in CJK Unified Ideographs Extension B, is represented as 𠀀. Even if UTF-16 or
UTF-8 were to be used as the encoding of the HTML file itself, neither ��
nor ð €€ should be used to represent U+20000.

NCRs are recommended when the binary form of the character may introduce some level
of confusion or ambiguity. Thus, the use of an NCR. While it may detract from the read-
ability aspects of more standard characters, it provides clarity to some situations. The use
of IVSes (Ideographic Variation Sequences) comes to mind. Consider the following IVS:
<U+528D, U+E0101>. The Base Character, specifically U+528D, can be conveniently used in

* http://www.w3.org/TR/REC-html40/sgml/entities.html

HtML—Hypertext Markup Language | 713

its binary form, specifically 劍, and was used in a previous HTML example as the third
ideograph:

<TITLE>小林劍のホームページ</TITLE>

Because the Variation Selector component of an IVS has no standard glyph per se, it would
be considered good practice to specify them using NCRs, as follows:

<TITLE>小林劍󠄁のホームページ</TITLE>

All current web browsers recognize NCRs. In fact, the entire Japanese string 小林劍のホー
ムページ can be represented using only NCRs, as follows:

小林劍のホームページ

Of course, readability of the string just went downhill, but to a great extent, content be-
came well-preserved through the use of this notation.

the LAnG attribute
HTML’s LANG attribute provides the ability to tag smaller portions of text with language-
specific attributes. The entire HTML file can also be tagged with the LANG attribute, by
including it as part of the <HTML> tag, as follows:

<HTML LANG="ja">

When the entire HTML document is tagged for a specific language as just shown, it means
that any text is interpreted as the language specified (unless specified otherwise through
the use of the LANG attribute within other tags). If I were to include a short Korean string
in the same HTML file, I would then include the LANG attribute with the appropriate tag,
such as illustrated in the following example:

<P LANG="ko">켄 런디의 홈페이지</P>

Although it is typically necessary to indicate the character set and encoding of the entire
document, which is a topic that is covered next, this special tag allows a similar type of
specification on a much smaller scale. This is especially critical when using a character
set and encoding that is ambiguous as to what language is being used. Unicode is the best
example.

Examples of this tag in use can be illustrated when dealing with Unicode data. A Unicode
code point by itself does not carry with it sufficient information to properly render most
CJKV texts, particularly ideographs. While such a document may be flagged as being
Unicode, the LANG attribute allows the HTML author to indicate the language of the text,
using whatever granularity is desired, thus allowing the characters to be correctly dis-
played. W3C has more information about the LANG attribute and its uses.*

* http://www.w3.org/International/articles/language-tags/

714 | Chapter 12: Web and Print Publishing

the <MetA> tag
Did you notice the <META> tag in the previous HTML sample? It is considered good prac-
tice to explicitly specify character set and encoding information between the balancing
<HEAD> and </HEAD> tags. This sequence uses the <META> tag extension, as described in the
specification for internationalizing HTML, and looks like the following, which indicates
EUC-KR encoding:

<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; CHARSET=euc-kr">
</HEAD>

I must stress that the <META> tag must be the very first tag after the <HEAD> tag in an HTML
file.

IANA (Internet Assigned Numbers Authority) is responsible for maintaining the complete
list of recognized CHARSET values that today’s web browsers recognize.*

Specifying the CHARSET tag is not only useful for HTML documents that include CJKV
text, but also for non-CJKV ones. In case an HTML document includes accented Latin
characters, such as those found in ISO 8859-1:1998, specifying iso-8859-1 as the CHAR-
SET value will ensure that the accented Latin characters are not accidentally interpreted
as though they were encoded according to a CJKV encoding. Obviously, using Unicode
makes this all go away, but it is still good practice to explicitly specify the encoding, which
makes life a much more pleasant experience for those staring at a web browser.

The CHARSET value is subsequently passed from the server to the client as part of the
HTTP negotiation. There are many other uses for the <META> tag beyond simply providing
character set and encoding information to browsers. I suggest that you consult HTML
documentation to explore these other uses.

Providing charset information—where and how?
There is a big debate about which method for indicating character set and encoding infor-
mation is best. There are two methods available:

Embed the language, character set, and encoding information using the LANG attri-•	
bute or the <META> tag, as appropriate, and as described in the previous sections.

Require that the server send the character set and encoding information separately •	
from the document itself to the client in the HTTP header—the LANG attribute may
still be necessary, depending on the character set and encoding.

Instead of arguing which method is best, why not simply support both methods whenever
possible? Consider a situation where you receive a CD or DVD that is jam-packed full
of HTML files. There is no server present that can send the character set and encoding
information to the client, because the client must open the documents as local files. You
must then rely on embedded information.

* http://www.iana.org/assignments/character-sets

HtML—Hypertext Markup Language | 715

There are three ways to specify charset information in CSS, specifically the in-file method
(similar to the use of the <META> tag in HTML), via the HTTP header, and from the refer-
ring document. Interestingly, the HTML standard states that the HTTP header has higher
precedence than the <META> tag declarations, and contemporary web browsing applica-
tions adhere to this.

Automatic encoding detection issues
Most contemporary browsers provide a feature that automatically detects what encoding
is being used, and the algorithms that perform this have improved significantly. EUC-JP
and Shift-JIS encodings used for Japanese text can often be difficult to differentiate. There
is a useful trick that can help browsers more reliably detect the encoding by including an
HTML comment near the top of the HTML file. This comment includes a single charac-
ter whose encoding is unambiguously either EUC-JP or Shift-JIS encoding. I suggest the
following two meaningful characters for this purpose: 東京 (tōkyō, meaning “Tokyo”).
The character codes for these two characters are <C5 EC> and <B5 FE> for EUC-JP, and
<93 8C> and <8B 9E> for Shift-JIS. Note how the second kanji is unambiguously either
EUC-JP or Shift-JIS. The following is an example HTML comment that includes these
two kanji:

<!--- 東京 used for correct automatic encoding detection --->

This technique provides a reliable backup for the technique of specifying the character set
and encoding using the <META> tag.

HttP language negotiation
Many websites can serve different versions of an HTML document, such as index.html
and index-ja.html, where one provides English-language content, and the other provides
Japanese-language content. The same information can be used to redirect the user to an
alternate URL. The bottom line is that it is possible, through HTTP negotiation, to serve a
specific HTML file, or to redirect to a specific URL, depending on how the client or server
is configured.

HTTP negotiation involves a conversation or dialog between a client, such as your brows-
er, and a server, such as the machine specified by the URL. It is during this negotiation
when each party informs the other of its capabilities and preferences. The client, for ex-
ample, can inform the server that it prefers Korean-language content. If the server has a
file named something such as index-ko.html, that document can be provided to the client
instead of the default index.html file, or it can be automatically redirected to the Korean-
language website.

Apache, a popular web server, automatically performs correct language negotiation of
filenames containing ISO 639 language codes, such as ja for Japanese and ko for Korean.

716 | Chapter 12: Web and Print Publishing

For more information about HTTP negotiation between clients and servers, I suggest
HTTP: The Definitive Guide, First Edition (O’Reilly Media, 2002), by David Gourley and
Brian Totty.*

Web-Authoring tools
Some of the many HTML authoring tools available today that provide a WYSIWYG para-
digm include Adobe Dreamweaver,† Apple’s iWeb,‡ Google Page Creator,§ and Microsoft
Expression.¶ Many word processors and page-layout applications, such as Microsoft Word,
Nisus Writer, and Adobe FrameMaker, include features for saving documents in web for-
mats. You compose to your heart’s delight, and then save as an HTML or XML file.

Because I maintain a single website—consisting of my home page, along with a small
number of other pages—I prefer to craft my own HTML documents and write my own
CGI programs, using GNU Emacs and Perl, respectively. This is not a WYSIWYG envi-
ronment. Learning the simple HTML syntax is really a no-brainer, and such knowledge
is downright useful when special HTML tools are not available when something goes
wrong. If I were to maintain many websites, for example, as a full-time job, I would im-
mediately start looking for tools to ease or trivialize the effort.

embedding CJKV text As Graphics
If you expect that your target audience is not equipped with the ability to display CJKV
text, which is rather doubtful these days, given the current states of today’s OSes and web
browsers, you can resort to embedding CJKV text as graphics. The most common format
to use for this purpose is Graphics Interchange Format (GIF), developed by the folks that
brought us CompuServe, along with JPEG and PNG. Most graphics applications, such as
Adobe Photoshop, can generate these graphics formats.**

XML—extensible Markup Language
XML, an abbreviation for Extensible Markup Language, put simply, makes the power and
flexibility of SGML available for web use. Unlike HTML, it does not restrict the author to
a fixed set of tags. On the contrary, it allows the author to freely define tags. And, its de-
fault character set and encoding is Unicode. This in itself allows XML to wield extraordi-
nary power, given the broad implications that Unicode support entails. Due to the highly

* http://oreilly.com/catalog/9781565925090/
† http://www.adobe.com/products/dreamweaver/
‡ http://www.apple.com/ilife/iweb/
§ http://pages.google.com/
¶ http://www.microsoft.com/Expression/
** To quote the character Johner from the movie entitled Alien Resurrection, played by Ron Perlman, “What a

waste of ammo!” Using Adobe Photoshop for the purpose of creating CJKV text as graphic images is a lot like
driving in a thumb tack through the use of a sledge hammer. But what the heck, it does the trick.

XML—extensible Markup Language | 717

structured and customizable nature of XML, it has become the preferred way in which a
wide variety of data is exchanged through the Web and related mediums. In other words,
XML’s use and functionality extends well beyond the Web.

The XML specification is available online, and I encourage you to explore it.* An excellent
printed reference for XML is XML in a Nutshell, Third Edition (O’Reilly Media, 2004), by
Elliotte Rusty Harold and W. Scott Means.† I have also found that Robert Eckstein’s XML
Pocket Reference, Third Edition (O’Reilly Media, 2005) is one of those books to have close
at hand.‡

Authoring XML documents
Authoring XML document is very much like authoring HTML documents, but there
are well-defined places in XML to encapsulate “character set” and “encoding” informa-
tion that tells the browser or other client software how to interpret the text data of the
document.

The following is a brief XML file that is a lot like the HTML example provided earlier, but
includes two additional lines at the very beginning that are for XML:

<?xml version="1.0" encoding="euc-kr"?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/
REC-html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>켄 런디의 홈페이지</TITLE>
</HEAD>
<BODY>
<H1>켄 런디의 홈페이지</H1>
</BODY>
</HTML>

The first line identifies the document as XML, and also provides encoding information. If
no encoding information is provided, UTF-8 or UTF-16 encoding is assumed. The pres-
ence of a Byte Order Mark (BOM) at the beginning of the XML file is used to identify
UTF-16 encoding. Because UTF-8 encoding includes seven-bit ASCII as part of its speci-
fication, it serves as an incredibly useful default encoding for compatibility with existing
web pages. The second line indicates the Document Type Definition (DTD), which tells the
client how to treat the document as far as information structure and tags are concerned.

* http://www.w3.org/XML/
† http://oreilly.com/catalog/9780596007645/
‡ http://oreilly.com/catalog/9780596100506/

718 | Chapter 12: Web and Print Publishing

Including these first two lines of an XML file, with meaningful values, provides the fol-
lowing three benefits:

The character set and encoding are declared, and thus unambiguous. This is manda-•	
tory in XML.

The document is unambiguously declared as an XML file. This is mandatory in •	
XML.

The DTD that the document uses is unambiguous. The DOCTYPE declaration is not •	
mandatory in XML, but W3C recommends its use, even for HTML files.

As pointed out earlier, XML is useful well beyond web pages and is used in dictionaries
and OS-level resources.

the xml:lang attribute
Similar to HMTL’s LANG attribute, XML provides the xml:lang attribute that performs a
near-identical function, and allows tags to be assigned a language attribute.* When an
XML tag is associated with data that has a clear language attribute, the xml:lang attribute
should be used and given an appropriate value.

CGI Programming examples
There is much more to the Web than simply static HTML and PDF documents. One can
dynamically provide content through what is known as Common Gateway Interface (CGI)
programming. The most common programming language that drives CGI programs is
Perl. But, virtually any programming language will do.

CGI programming involves interaction between HTML forms and a program that does
something (hopefully) intelligent with data from the forms—a prime example of a client-
server relationship. Users fill out HTML forms much like they would fill out conventional
forms. Once the form is complete, the user submits the form to the server to be processed.
This is when the CGI program takes over.

There are two ways through which the data in HTML forms are passed to a CGI program:
the GET and POST methods. The GET method provides the form data to the CGI pro-
gram on the server in a single step by simply appending the data to the URL. The POST
method uses two steps: the server is first contacted, and then the form data is supplied in
a separate transmission.

* http://www.w3.org/International/articles/language-tags/

CGI Programming examples | 719

Once you have handled some simple HTML-related parsing tasks, such as managing the
HTML form data, the remainder is simply standard programming. The following are two
functions (written in Perl) that I use for parsing HTML form data:

sub parse_form_data {
 local(*DATA) = @_;
 local($method,$query_string,@key_value_pairs,$key_value,$key,$value);

 $method = $ENV{REQUEST_METHOD};
 if ($method eq "GET") {
 $query_string = $ENV{QUERY_STRING};
 } elsif ($method eq "POST") {
 read(STDIN,$query_string,$ENV{CONTENT_LENGTH});
 } else {
 &return_error(500,"Server Error","Server uses unsupported method");
 }
 $query_string =~ tr/+/ /;
 @key_value_pairs = split(/&/,$query_string);

 foreach $key_value (@key_value_pairs) {
 ($key,$value) = split(/=/,$key_value);
 $value =~ s/%([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/eg;
 if (defined($DATA{$key})) {
 $DATA{$key} = join("\0",$DATA{$key},$value);
 } else {
 $DATA{$key} = $value;
 }
 }
}

sub return_error {
 local($status,$keyword,$message) = @_;

 print "Content-type: text/html\n";
 print "Status: $status $keyword\n\n";
 print "<TITLE>CGI Program - Unexpected Error</TITLE>\n";
 print "<H1>$keyword</H1>\n<HR>$message</HR>\n";
 print "Please contact lunde\@oreilly.com for more information.\n";
 exit(1);
}

Now for some explanations. It is not until the following line that we start manipulating the
data provided by the HTML form:

@key_value_pairs = split(/&/,$query_string);

Each key-value pair in the query string returned by the HTML form is separated by an
ampersand (&, U+0026) character, so we need to split each pair using an ampersand as the
separator. Each pair is stuffed into its own element of an array.

720 | Chapter 12: Web and Print Publishing

Next we iterate through the array that contains each key-value pair:
foreach $key_value (@key_value_pairs) {
 …
}

With each iteration of the loop, we copy the next key-value pair into the temporary vari-
able $key_value. The body of this loop is as follows:

($key,$value) = split(/=/,$key_value);
$value =~ tr/+/ /;
$value =~ s/%([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/eg;
if (defined($DATA{$key})) {
 $DATA{$key} = join("\0",$DATA{$key},$value);
} else {
 $DATA{$key} = $value;
}

While key-value pairs were separated by an ampersand, the keys and values them-
selves are separated by an equals sign (=, U+003D). Thus, we must split each key-value
pair using an equals sign as the separator. Once we have split a key-value pair into its
key and value, we must decode the result. Because most nonalphanumeric characters
are not permitted to be sent as form data through HTTP, they have been converted or
otherwise encoded to mask their true identity. Most everything that is nonalphanu-
meric is converted into a three-character string: a percent sign (%, U+0025) followed
by two hexadecimal digits (known as URL transformation). For example, a hyphen
(-, U+002D) is represented as %2D according to this method. Bytes with the MSB set that
are so commonly used for CJKV encodings, such as 0xA1, can also be passed using this
method: %A1. The following single line of Perl decodes this type of encoded data:

$value =~ s/%([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/eg;

Spaces have also been converted, either to a plus sign (+, U+002B) or according to the en-
coding described earlier, so we must convert them back:

$value =~ tr/+/ /;

This line of code must be executed before the general decoding takes place, as follows:
$value =~ tr/+/ /;
$value =~ s/%([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/eg;

The resulting keys and values are then stored in a hash (associative array) called %DATA
for subsequent lookup.

The only other aspect of CGI programming to be aware of is that sending results back to
the user requires a valid HTTP header. This effectively means that the very first data sent
back must be the text Content-type: text/html followed by not one but two newline char-
acters. The following single line of Perl code is all you need:

print STDOUT "Content-type: text/html\n\n";

Of course, if you’d like to avoid dealing with all of these CGI headaches and instead con-
centrate and focus on writing some useful CGI programs, I strongly suggest that you
consider using Lincoln Stein’s excellent CGI.pm module, which has been included in the

Print Publishing | 721

standard Perl distribution since version 5.004. This Perl module gracefully handles all
tricky aspects of CGI programming—so that you don’t have to.

There is much more to CGI programming than I cover in these few pages. The book enti-
tled CGI Programming with Perl, Second Edition (O’Reilly Media, 2000), by Scott Guelich
et al., is an excellent guide for writing CGI programs,* as is Lincoln Stein’s own book en-
titled Official Guide to Programming with CGI.pm: The Standard for Building Web Scripts
(John Wiley & Sons, 1998).

There are many URLs that provide content through the magic of CGI programming. Jef-
frey Friedl’s Japanese-English Dictionary Server† and my own CJKV Character Set Server‡
are examples that serve multilingual content. Check them out! In both cases, the Perl
programming language is being used to handle multilingual text.

Print Publishing
The last part of this chapter covers the topic of print publishing, with an obvious focus
on PDF and its advantages when used as the basis for a publishing workflow. If you’re not
embracing PDF, you are strongly encouraged to do so. It solves many of problems that
have plagued publishing workflows.

Looking back before the days of PDF, PostScript was the first technology to revolutionize
the publishing industry, which gave birth to the desktop publishing industry. Much of the
conveniences that we enjoy today, and for which we often take for granted, are the result
of PostScript. Adobe Acrobat and PDF have done so again, and have taken PostScript to
the next level, which can be thought of as removing the dependency on a printer.

PdF—Portable document Format
PDF, short for Portable Document Format, is a PostScript-derived language for describing
and structuring documents in a platform-independent manner.§ But, some of you may
have heard that PostScript itself was designed to be platform-independent. PostScript, as
a programming language, is typically generated by other software, such as high-end pub-
lishing applications and PostScript printer drivers. The quality and integrity of the result-
ing PostScript files varied greatly. There was also the issue of font availability—if the fonts
that are referenced in a PostScript file were not available to the PostScript interpreter, the
document would not print.¶ These were all motivations for developing a truly portable
and cross-platform format for interchanging and managing documents. In the beginning,
PDF was a write-only format, meaning that once you created a PDF file, you could only

* http://oreilly.com/catalog/9781565924192/
† http://linear.mv.com/cgi-bin/j-e/euc/tty/dict
‡ http://lundestudio.com/cjkv-char.html
§ http://www.adobe.com/devnet/pdf/pdf_reference.html
¶ Or it may print, but use Courier as the substitution font, which results in typographic chaos.

722 | Chapter 12: Web and Print Publishing

view, print, and search its contents. Today, many of Adobe Systems’ applications, such
as Adobe Illustrator and Adobe InDesign, can open and edit PDF files or can save them
directly in PDF format through the use of built-in PDF-generating libraries.

The primary way in which PDF files are viewed and printed is through the use of the
free Adobe Reader application.* The commercial version, called Adobe Acrobat, provides
more functionality, such as the ability to edit PDF files in various ways.† Some applica-
tions, such as Adobe InDesign, include PDF-generating libraries so that PDF files can
be made without any additional help. Some OSes, such as Mac OS X, include their own
applications and libraries for generating, displaying, and printing PDF files. The Mac OS
X Preview application, for example, can open, display, and print PDF files. After all, PDF
is based on a specification that is published for anyone to use. Planet PDF is an excellent
example of this.‡

The early versions of Adobe Acrobat, and the PDF specifications on which they were
based, did not include any CJKV support whatsoever. While some people had discovered
that there were ways to embed CJKV glyphs as graphics, this method had three serious
drawbacks:

It was not possible to search for text. The text that was converted to graphics was, •	
well, simply graphics. Thus, the “content” portion was gone, and only the “presenta-
tion” remains.

Embedding graphics required that one specify a resolution. Such documents may •	
display fine at screen resolutions, but may print horribly, or vice versa.

Embedding higher-resolution graphics takes up a lot of space. The resulting files can •	
be huge.

PDF version 1.2, which had been incorporated into Adobe Acrobat version 3.0, provided
a minimal level of CJKV support. PDF version 1.3 provided a much more enhanced level
of CJKV support, to include the ability to embed glyphs from CJKV fonts, and it was in-
corporated in Adobe Acrobat version 4.0. In other words, what I consider to be true CJKV
support began with version 4.0.

PDF was published as an open standard on July 1, 2008, as the standard designated ISO
32000-1:2008, which is entitled Document management—Portable document format—
Part 1: PDF 1.7. PDF version 1.7 corresponds to the functionality set forth in Acrobat
version 8.0.

I need to state that at some point the preferred printing workflow will be purely PDF-
based. In other words, the font burden will be on PDF files, not the printer. This effectively
means that PDF files will be expected to have the necessary fonts, subsetted and embed-
ded, as part of their content. No longer will printer-resident fonts be required or allowed.

* http://www.adobe.com/products/acrobat/readstep.html
† http://www.adobe.com/products/acrobat/
‡ http://www.planetpdf.com/

Print Publishing | 723

While printer-resident fonts have historically been in a variety of formats, such as OCF
and CID, a PDF-based workflow necessarily entails the use of OpenType fonts in order to
better guarantee cross-platform use by authoring applications. In case it is not painfully
obvious, one of the greatest advantages of a PDF-based workflow is that it better guaran-
tees that the fonts used to author documents are the same as what are used to print them,
because they are the same fonts. The Japanese market is well ahead of the curve in this
transition, with approximately 50% of printing jobs being submitted as PDF files. This is
due to the broad extent to which OpenType fonts are used in that market. Other markets
that have traditionally depended on printer-resident fonts, such as China, Taiwan, and
Korea, are expected to follow this trend.

Authoring PdF documents
PDF files can be created in a number of ways, and several options with regard to CJKV
font embedding are made available in Adobe Acrobat version 4.0 and later. Adobe Sys-
tems’ Technical Note #5641, Enabling PDF Font Embedding for CID-Keyed Fonts, illus-
trated to developers how they may enable their CID-keyed fonts, to include derivative
formats such as sfnt-CID fonts, for embedding in PDF.*

PDF files typically begin their life as documents created by using standard word-
processing or page-composition applications. My favorite happens to be Adobe InDesign
due to its high-end typographic controls. There are four basic methods for converting ap-
plication documents into PDF, listed in order of preference:

Simply save or export the document as PDF. Some applications, such as •	 Adobe
Illustrator, can include PDF as part of its native file format. Other applications, such
as Adobe InDesign, include PDF-generating libraries that enable the direct creation
of PDFs.

When Acrobat is installed, to include the free Adobe Reader, a PDF-generating print-•	
er driver is installed at the same time. If an application has the ability to print, this
special printer driver can be used. Simply select “Adobe PDF x.0” instead of a specific
printer when printing a document. The result is a PDF file that is saved to your hard
disk, instead of being output to a printer.

Use •	 TEX- or LATEX-based tools to generate PDF files, such as pdfTeX and PDFLaTeX.†
DVIPDFMx is an extended version of dvipdfm that provides CJKV support.‡ CSS-
styled HTML and XML files can be converted to PDF using Prince, which is available
for a variety of OSes.§

* http://www.adobe.com/devnet/font/pdfs/5641.CID_Embed.pdf
† http://www.tug.org/applications/pdftex/
‡ http://project.ktug.or.kr/dvipdfmx/
§ http://www.princexml.com/

724 | Chapter 12: Web and Print Publishing

Print the document to a PostScript file, and then use the Acrobat •	 Distiller application
to convert the PostScript file to PDF. In the past, this was considered the most reliable
and robust way in which to create a PDF file. Times change. If you generate your own
PostScript files with the intent to turn them into PDFs, like I do, Acrobat Distiller will
remain useful.

When using the last method, specifically the use of PostScript files, don’t be overly alarmed
or concerned by the size of the PostScript files that you plan to push through Acrobat
Distiller. The resulting PDF file is usually a fraction of the size of the original PostScript
file. Of course, YMMV.*

One of the more difficult decisions that must be made when creating PDF files is whether
or not to embed fonts.† Actually, today’s default behavior is to embed fonts, so the deci-
sion is really whether to choose not to embed fonts. In any case, there are advantages and
disadvantages of each approach, as shown in Table 12-11.

To embed or not to embed, that is the questionTable 12-11.

Font embedding Advantages disadvantages

No Reduced file size Adobe Reader and other viewers require fonts

Yes Display or print anywhere Increased file size

So, how does one decide whether or not to embed fonts in PDF files? In the latest versions
of Adobe Acrobat and the corresponding PDF-generating libraries, font embedding is
turned on by default. One thus needs to explicitly choose not to embed fonts.

Some class of fonts can be embedded in their entirety, regardless to what extent its glyphs
are referenced in the document. Other classes of fonts, such as those with large glyph sets,
are automatically subsetted prior to embedding. This is done for reasons of practicality,
considering the size of such fonts. Thus, PDF files that embed glyphs from large fonts
never include the entire font, unless, of course, every glyph in the font is referenced in
the document. This scenario is rather doubtful.‡ All the glyphs that are referenced in the
documented are subsetted prior to embedding. In Japanese, for example, 70% of running
text is composed of kana, which represents approximately 200 unique glyphs in a typical
font; the rest are kanji and other symbols, which may or may not take up much space.

The fsType field of the ‘OS/2’ table specifies the embedding permissions for OpenType
fonts, and thus controls embedding. For CIDFont resources, the corresponding field is
called FSType and is an entry in the CIDSystemInfo dictionary. Table 12-12 lists the ‘OS/2’

* Your Mileage May Vary
† As a purely historical note, the embedding of CJKV fonts in Adobe Acrobat version 3.0 was not possible. ver-

sion 4.0 and greater provide this capability.
‡ Appendix G of first edition of this book, which is now part of Appendix H of this edition, served as an excep-

tion to this general principle. The font used for that appendix included 55,880 glyphs, and all of them were
referenced in that appendix.

Print Publishing | 725

table fsType field settings that are possible, and how they control the extent to which fonts
are embedded.*

CIDFont and OpenType embedding permissionsTable 12-12.

fstype/Fstype Meaning

0 Installable embedding

2 Restricted license embedding

4 Print and preview embedding

8 Editable embedding

In other words, an fsType value of 0 is the most liberal setting, allowing the font to be
installed, and a value of 2 is the most restrictive, denying the embedding of the font.
From a practical point of view, when dealing with TrueType fonts with large glyph sets or
CID-keyed fonts, to include OpenType fonts with CID-keyed CFFs, there is no functional
difference between the values 4 and 8. Only smaller name-keyed fonts have the ability to
embed to PDF in their entirety, regardless to what extent their glyphs are referenced. The
value of 8 is useful when you want to edit the PDF and use a character that is not yet ref-
erenced in the document, but for which there is a corresponding glyph in the embedded
font. Given that larger fonts are always subsetted prior to embedding, it is clear that there
is no functional difference between the values 4 and 8 for this class of font.

Unless you can guarantee that all people who display or print your PDF file have the exact
same fonts used to create it, which also means these people will have the same versions
of the fonts, embedding the fonts is the prudent thing to do. As already stated, the cur-
rent default is to embed the fonts unless the embedding permissions dictate otherwise.
Embedding usually leads to slightly larger files, but a small and undisplayable document
is obviously useless.

PdF eases Publishing Pains
Most individuals—and many companies—do not own their own typesetting hardware,
such as a photo imagesetter, and for a very good reason: it is a huge expense and requires
frequent maintenance and attention. This is precisely when and where service bureaus live
up to the first word in their title: service.

There are many service bureaus that provide CJKV support, meaning that they accept
printing jobs that include CJKV text. Years ago, service bureaus would typically accept
“jobs” in one of only two formats:

Application files, limited to specific applications•	

PostScript files, limited to specific fonts•	

* http://www.microsoft.com/typography/otspec/os2.htm#fst

726 | Chapter 12: Web and Print Publishing

Both of these methods of submitting printing jobs to service bureaus had major disadvan-
tages, such as the following:

Submitting application files required that the service bureau have the same applica-•	
tion—and perhaps the same version of the application—installed onto at least one of
their computers, along with the same fonts. This is why some service bureaus sup-
ported only specific applications. In Japan, it was common for service bureaus to ad-
ditionally support only specific versions of applications.

Submitting PostScript files did not require the presence of the application or fonts •	
from which they were generated, but they generally cannot be previewed.* More im-
portantly, it also required that the service bureau have the same fonts installed onto
their photo imagesetter, unless they were embedded in the PostScript files. Given the
relatively high cost of using photo imagesetters, it was common to print a proof using
a lower-resolution—and cheaper—device.

Furthermore, both methods of submitting printing jobs to service bureaus suffered •	
from font-version discrepancy, between the version that the customer used to author
the document and the version that was installed onto the service bureau’s photo im-
agesetter. Minor glyph or glyph metrics changes between font versions was to blame
for any printing inconsistency.

Today, submitting documents to service bureaus in the form of PDF files suffers from
none of these problems. In short, PDF does not require that the original application and
fonts be available, and PDF files can be previewed prior to printing using freely available
viewers, such as Adobe Reader.

Some fonts, due to their licensing restrictions, are not allowed to be embedded within a
PDF file. For OpenType fonts, the fsType field in the ‘OS/2’ table controls this parameter,
and Table 12-12 detailed the possible values and their meanings. The font’s license or
documentation should indicate any such restrictions. Read or inquire before you buy. I
claim that an OpenType font is useless if PDF embedding is not allowed. Fonts are part of
a document workflow, and if they cannot be embedded into PDF, the workflow is obvi-
ously broken.

In summary, PDF functions as a reliable “digital master” if the fonts referenced in the
document are embedded, which is possible in the context of Adobe Acrobat version 4.0
and greater (PDF version 1.3), and as long as the fonts’ embedding permissions are set
appropriately. This provides service bureaus with the ability to print directly from PDF

* Some environments and applications can be used to preview PostScript files, such as Ghostscript and the Mac
OS X Preview application.

Where to Go next? | 727

to plate.* Those in the professional publishing industry will immediately recognize this
benefit.

Where to Go next?
Wow. You finished all 12 chapters. Although there are some appendixes, some of which
are available as downloadable and printable PDFs, keep in mind that this book also serves
as a reference. Be sure to use its index to find the pages that cover specific topics.

I also encourage you to explore the many URLs that have been provided throughout this
book, most of which are in footnotes. If you purchased the PDF version of this book,
you can simply click on a URL in order to open the web page using your favorite web
browser.

There are two types of web users: those who author documents, and those who view—
that is, “surf ”—them. Many, like me, are both. One of the most addicting aspects of the
Web is the ability to follow links to virtually no end. This can be good and bad. It is good
in that you may come across some incredibly useful information, which means you feel
compelled to bookmark the URL for future reference. But, it can be bad in that you prob-
ably have other—perhaps more meaningful—work you should be doing instead, such as
what you’re probably being paid to do.

An excellent way to find your way around the Web is to use a search engine, such as
Google or Yahoo! Another useful reference to explore, which is often overlooked, is Wiki-
pedia.† In addition to using Wikipedia as a resource, consider contributing to its contin-
ued development.

Anyway, now that you’re done reading this book, or at least its chapters, I encourage
you to explore my home page, which will be updated from time to time, to provide late-
breaking information about this book.‡ In addition, my home page can serve as one way to
start exploring the numerous CJKV information resources that are available.

Cheers!

* The first edition of this book was printed in late 1998 by submitting to the publisher photographic paper output
that was produced using a high-resolution photo imagesetter. The second printing of the first edition of this
book was submitted to the publisher in the latter half of 2002 as a PDF file. Guess which one was easier? It
should be quite obvious how this edition was published.

† http://www.wikipedia.org/
‡ http://lundestudio.com/

729

APPendIX A

Code Conversion tables

The first table in this appendix, which spans the following two pages, is useful when deal-
ing with material indexed by the various native CJKV encoding methods. The second
table provides the correspondences between Row-Cell rows 95 through 120 and the Shift-
JIS user-defined encoding range.

All of these columns are fairly self-explanatory, except perhaps for the two Shift-JIS col-
umns. Confusion may occur when you try to convert the first Shift-JIS byte to another
code, or when you try to convert the second byte of another code to Shift-JIS. The follow-
ing two sets of rules should help:

Row-Cell/ISO-2022/EUC to Shift-JIS
The first byte converts using both conversion tables—find the first byte value in 1.
Row-Cell/ISO-2022/EUC code, and then simply slide over to the Shift-JIS First Byte
column.

The second byte is a bit tricky. If the first byte (yes, the first byte!) of the Row-Cell/2.
ISO-2022/EUC code is odd (the hexadecimal digits B, D, and F are odd), select the
lefthand value in the Shift-JIS Second Byte column. Otherwise, select the right-hand
value.

Shift-JIS to Row-Cell/ISO-2022/EUC
If the second Shift-JIS byte is the lefthand entry in the Shift-JIS Second Byte column, 1.
use the first occurrence of the first Shift-JIS byte to determine the first byte value of
another code. Otherwise, use the second occurrence of the first Shift-JIS byte.

The second Shift-JIS byte converts unambiguously using the code conversion table.2.

730 | Appendix A: Code Conversion tables

row-Cell Iso-2022 eUC shift-JIs First Byte shift-JIs second Byte
01 21 A1 81 40 9F
02 22 A2 81 41 A0
03 23 A3 82 42 A1
04 24 A4 82 43 A2
05 25 A5 83 44 A3
06 26 A6 83 45 A4
07 27 A7 84 46 A5
08 28 A8 84 47 A6
09 29 A9 85 48 A7
10 2A AA 85 49 A8
11 2B AB 86 4A A9
12 2C AC 86 4B AA
13 2D AD 87 4C AB
14 2E AE 87 4D AC
15 2F AF 88 4E AD
16 30 B0 88 4F AE
17 31 B1 89 50 AF
18 32 B2 89 51 B0
19 33 B3 8A 52 B1
20 34 B4 8A 53 B2
21 35 B5 8B 54 B3
22 36 B6 8B 55 B4
23 37 B7 8C 56 B5
24 38 B8 8C 57 B6
25 39 B9 8D 58 B7
26 3A BA 8D 59 B8
27 3B BB 8E 5A B9
28 3C BC 8E 5B BA
29 3D BD 8F 5C BB
30 3E BE 8F 5D BC
31 3F BF 90 5E BD
32 40 C0 90 5F BE
33 41 C1 91 60 BF
34 42 C2 91 61 C0
35 43 C3 92 62 C1
36 44 C4 92 63 C2
37 45 C5 93 64 C3
38 46 C6 93 65 C4
39 47 C7 94 66 C5
40 48 C8 94 67 C6
41 49 C9 95 68 C7
42 4A CA 95 69 C8
43 4B CB 96 6A C9
44 4C CC 96 6B CA
45 4D CD 97 6C CB
46 4E CE 97 6D CC
47 4F CF 98 6E CD

 | 731

row-Cell Iso-2022 eUC shift-JIs First Byte shift-JIs second Byte
48 50 D0 98 6F CE
49 51 D1 99 70 CF
50 52 D2 99 71 D0
51 53 D3 9A 72 D1
52 54 D4 9A 73 D2
53 55 D5 9B 74 D3
54 56 D6 9B 75 D4
55 57 D7 9C 76 D5
56 58 D8 9C 77 D6
57 59 D9 9D 78 D7
58 5A DA 9D 79 D8
59 5B DB 9E 7A D9
60 5C DC 9E 7B DA
61 5D DD 9F 7C DB
62 5E DE 9F 7D DC
63 5F DF E0 7E DD
64 60 E0 E0 80 DE
65 61 E1 E1 81 DF
66 62 E2 E1 82 E0
67 63 E3 E2 83 E1
68 64 E4 E2 84 E2
69 65 E5 E3 85 E3
70 66 E6 E3 86 E4
71 67 E7 E4 87 E5
72 68 E8 E4 88 E6
73 69 E9 E5 89 E7
74 6A EA E5 8A E8
75 6B EB E6 8B E9
76 6C EC E6 8C EA
77 6D ED E7 8D EB
78 6E EE E7 8E EC
79 6F EF E8 8F ED
80 70 F0 E8 90 EE
81 71 F1 E9 91 EF
82 72 F2 E9 92 F0
83 73 F3 EA 93 F1
84 74 F4 EA 94 F2
85 75 F5 EB 95 F3
86 76 F6 EB 96 F4
87 77 F7 EC 97 F5
88 78 F8 EC 98 F6
89 79 F9 ED 99 F7
90 7A FA ED 9A F8
91 7B FB EE 9B F9
92 7C FC EE 9C FA
93 7D FD EF 9D FB
94 7E FE EF 9E FC

732 | Appendix A: Code Conversion tables

The following table provides the correspondences between Row-Cell and Shift-JIS en-
codings for the Shift-JIS user-defined region (0xF0 through 0xFC). The principles for the
previous code conversion table apply to this table.

row-Cell shift-JIs First Byte
95 F0
96 F0
97 F1
98 F1
99 F2

100 F2
101 F3
102 F3
103 F4
104 F4
105 F5
106 F5
107 F6
108 F6
109 F7
110 F7
111 F8
112 F8
113 F9
114 F9
115 FA
116 FA
117 FB
118 FB
119 FC
120 FC

733

APPendIX B

notation Conversion table

The following two-page table lists all 256 8-bit byte values in binary (base 2), octal (base
8), decimal (base 10), and hexadecimal (base 16) notations. While I commonly use deci-
mal and hexadecimal notations throughout this book, there are some readers who are
more familiar with other notations, such as octal. It is unlikely that many readers will be
converting between binary and other notations, but you never know.

Use this table as your guide for converting data throughout this book between nota-
tions. The 94 printable ASCII characters are included, when appropriate, for reference
purposes.

734 | Appendix B: notation Conversion table

Base 2 Base 8 Base 10 Base 16 AsCII
00000000 000 0 00 <NUL>
00000001 001 1 01 <SOH>
00000010 002 2 02 <STX>
00000011 003 3 03 <ETX>
00000100 004 4 04 <EOT>
00000101 005 5 05 <ENQ>
00000110 006 6 06 <ACK>
00000111 007 7 07 <BEL>
00001000 010 8 08 <BS>
00001001 011 9 09 <HT>
00001010 012 10 0A <LF>
00001011 013 11 0B <VT>
00001100 014 12 0C <FF>
00001101 015 13 0D <CR>
00001110 016 14 0E <SO>
00001111 017 15 0F <SI>
00010000 020 16 10 <DLE>
00010001 021 17 11 <DC1>
00010010 022 18 12 <DC2>
00010011 023 19 13 <DC3>
00010100 024 20 14 <DC4>
00010101 025 21 15 <NAK>
00010110 026 22 16 <SYN>
00010111 027 23 17 <ETB>
00011000 030 24 18 <CAN>
00011001 031 25 19
00011010 032 26 1A <SUB>
00011011 033 27 1B <ESC>
00011100 034 28 1C <FS>
00011101 035 29 1D <GS>
00011110 036 30 1E <RS>
00011111 037 31 1F <US>
00100000 040 32 20 <SP>
00100001 041 33 21 !
00100010 042 34 22 "
00100011 043 35 23 #
00100100 044 36 24 $
00100101 045 37 25 %
00100110 046 38 26 &
00100111 047 39 27 '
00101000 050 40 28 (
00101001 051 41 29)
00101010 052 42 2A *
00101011 053 43 2B +
00101100 054 44 2C ,
00101101 055 45 2D -
00101110 056 46 2E .
00101111 057 47 2F /
00110000 060 48 30 0
00110001 061 49 31 1
00110010 062 50 32 2
00110011 063 51 33 3
00110100 064 52 34 4
00110101 065 53 35 5
00110110 066 54 36 6
00110111 067 55 37 7
00111000 070 56 38 8
00111001 071 57 39 9
00111010 072 58 3A :
00111011 073 59 3B ;
00111100 074 60 3C <
00111101 075 61 3D =
00111110 076 62 3E >
00111111 077 63 3F ?

Base 2 Base 8 Base 10 Base 16 AsCII
01000000 100 64 40 @
01000001 101 65 41 A
01000010 102 66 42 B
01000011 103 67 43 C
01000100 104 68 44 D
01000101 105 69 45 E
01000110 106 70 46 F
01000111 107 71 47 G
01001000 110 72 48 H
01001001 111 73 49 I
01001010 112 74 4A J
01001011 113 75 4B K
01001100 114 76 4C L
01001101 115 77 4D M
01001110 116 78 4E N
01001111 117 79 4F O
01010000 120 80 50 P
01010001 121 81 51 Q
01010010 122 82 52 R
01010011 123 83 53 S
01010100 124 84 54 T
01010101 125 85 55 U
01010110 126 86 56 V
01010111 127 87 57 W
01011000 130 88 58 X
01011001 131 89 59 Y
01011010 132 90 5A Z
01011011 133 91 5B [
01011100 134 92 5C \
01011101 135 93 5D]
01011110 136 94 5E ^
01011111 137 95 5F _
01100000 140 96 60 `
01100001 141 97 61 a
01100010 142 98 62 b
01100011 143 99 63 c
01100100 144 100 64 d
01100101 145 101 65 e
01100110 146 102 66 f
01100111 147 103 67 g
01101000 150 104 68 h
01101001 151 105 69 i
01101010 152 106 6A j
01101011 153 107 6B k
01101100 154 108 6C l
01101101 155 109 6D m
01101110 156 110 6E n
01101111 157 111 6F o
01110000 160 112 70 p
01110001 161 113 71 q
01110010 162 114 72 r
01110011 163 115 73 s
01110100 164 116 74 t
01110101 165 117 75 u
01110110 166 118 76 v
01110111 167 119 77 w
01111000 170 120 78 x
01111001 171 121 79 y
01111010 172 122 7A z
01111011 173 123 7B {
01111100 174 124 7C |
01111101 175 125 7D }
01111110 176 126 7E ~
01111111 177 127 7F

 | 735

Base 2 Base 8 Base 10 Base 16 AsCII
10000000 200 128 80
10000001 201 129 81
10000010 202 130 82
10000011 203 131 83
10000100 204 132 84
10000101 205 133 85
10000110 206 134 86
10000111 207 135 87
10001000 210 136 88
10001001 211 137 89
10001010 212 138 8A
10001011 213 139 8B
10001100 214 140 8C
10001101 215 141 8D
10001110 216 142 8E
10001111 217 143 8F
10010000 220 144 90
10010001 221 145 91
10010010 222 146 92
10010011 223 147 93
10010100 224 148 94
10010101 225 149 95
10010110 226 150 96
10010111 227 151 97
10011000 230 152 98
10011001 231 153 99
10011010 232 154 9A
10011011 233 155 9B
10011100 234 156 9C
10011101 235 157 9D
10011110 236 158 9E
10011111 237 159 9F
10100000 240 160 A0
10100001 241 161 A1
10100010 242 162 A2
10100011 243 163 A3
10100100 244 164 A4
10100101 245 165 A5
10100110 246 166 A6
10100111 247 167 A7
10101000 250 168 A8
10101001 251 169 A9
10101010 252 170 AA
10101011 253 171 AB
10101100 254 172 AC
10101101 255 173 AD
10101110 256 174 AE
10101111 257 175 AF
10110000 260 176 B0
10110001 261 177 B1
10110010 262 178 B2
10110011 263 179 B3
10110100 264 180 B4
10110101 265 181 B5
10110110 266 182 B6
10110111 267 183 B7
10111000 270 184 B8
10111001 271 185 B9
10111010 272 186 BA
10111011 273 187 BB
10111100 274 188 BC
10111101 275 189 BD
10111110 276 190 BE
10111111 277 191 BF

Base 2 Base 8 Base 10 Base 16 AsCII
11000000 300 192 C0
11000001 301 193 C1
11000010 302 194 C2
11000011 303 195 C3
11000100 304 196 C4
11000101 305 197 C5
11000110 306 198 C6
11000111 307 199 C7
11001000 310 200 C8
11001001 311 201 C9
11001010 312 202 CA
11001011 313 203 CB
11001100 314 204 CC
11001101 315 205 CD
11001110 316 206 CE
11001111 317 207 CF
11010000 320 208 D0
11010001 321 209 D1
11010010 322 210 D2
11010011 323 211 D3
11010100 324 212 D4
11010101 325 213 D5
11010110 326 214 D6
11010111 327 215 D7
11011000 330 216 D8
11011001 331 217 D9
11011010 332 218 DA
11011011 333 219 DB
11011100 334 220 DC
11011101 335 221 DD
11011110 336 222 DE
11011111 337 223 DF
11100000 340 224 E0
11100001 341 225 E1
11100010 342 226 E2
11100011 343 227 E3
11100100 344 228 E4
11100101 345 229 E5
11100110 346 230 E6
11100111 347 231 E7
11101000 350 232 E8
11101001 351 233 E9
11101010 352 234 EA
11101011 353 235 EB
11101100 354 236 EC
11101101 355 237 ED
11101110 356 238 EE
11101111 357 239 EF
11110000 360 240 F0
11110001 361 241 F1
11110010 362 242 F2
11110011 363 243 F3
11110100 364 244 F4
11110101 365 245 F5
11110110 366 246 F6
11110111 367 247 F7
11111000 370 248 F8
11111001 371 249 F9
11111010 372 250 FA
11111011 373 251 FB
11111100 374 252 FC
11111101 375 253 FD
11111110 376 254 FE
11111111 377 255 FF

737

APPendIX C

Perl Code examples

This appendix provides Perl equivalents of some algorithms presented in Chapter 9 as C
or Java code. While the C and Java code examples in Chapter 9 are useful for developing
your own commercial-grade software, these Perl equivalents are helpful for internal-use
tools.

If you do not use Perl, feel free to skip this appendix. But, in the same vein, I encourage
you to explore the Perl programming language to see whether it can offer you something.
I use nothing but Perl for virtually all of my programming needs.*

A few of these Perl code examples began their life as code courtesy of regex wizard Jeffrey
Friedl, author of a most excellent book entitled Mastering Regular Expressions, Third Edi-
tion (O’Reilly Media, 2006). Tom Christiansen and Nathan Torkington’s Perl Cookbook,
Second Edition (O’Reilly Media, 2003) should also be used, because it provides a wealth
of incredibly useful Perl examples.

Japanese Code Conversion
The programs presented in the following sections perform Japanese code conversion.
Note that all of them support ASCII (JIS-Roman), JIS X 0208:1997, and half-width ka-
takana (even for ISO-2022-JP encoding, which, technically, does not support half-width
katakana).

* In retrospect, I should have instead learned the Ruby programming language, if for no other reason than my
daughter’s name is Ruby.

738 | Appendix C: Perl Code examples

Iso-2022-JP to eUC-JP Conversion
The following Perl program performs ISO-2022-JP to EUC-JP conversion, and fully sup-
ports half-width katakana:

#!/usr/local/bin/perl -w

while (defined($line = <STDIN>)) {
 $line =~ s{ # JIS X 0208:1997
 \e\$[\@B] # ESC $ plus @ or B
 ((?:[\x21-\x7E][\x21-\x7E])+) # Two-byte characters
 }{($x = $1) =~ tr/\x21-\x7E/\xA1-\xFE/, # From 7- to 8-bit
 $x
 }egx;
 $line =~ s{ # JIS X 0201-1997 half-width katakana
 \e\(I # ESC (I
 ([\x21-\x7E]+) # Half-width katakana
 }{($x = $1) =~ tr/\x21-\x7E/\xA1-\xFE/, # From 7- to 8-bit
 ($y = $x) =~ s/([\xA1-\xFE])/\x8E$1/g, # Prefix with SS2
 $y
 }egx;
 $line =~ s/\e\([BHJ]//g;
 print STDOUT $line;
}

eUC-JP to Iso-2022-JP Conversion
The following Perl program performs EUC-JP to ISO-2022-JP conversion, and fully sup-
ports half-width katakana:

#!/usr/local/bin/perl -w

while (defined($line = <STDIN>)) {
 $line =~ s{ # JIS X 0208:1997
 ((?:[\xA1-\xFE][\xA1-\xFE])+)
 }{\e\B1\e\(J}gx;
 $line =~ s{ # JIS X 0201-1997 half-width katakana
 ((?:\x8E[\xA0-\xDF])+)
 }{\e\(I$1\e\(J}gx;
 $line =~ s/\x8E//g; # Remove SS2s
 $line =~ tr/\xA1-\xFE/\x21-\x7E/; # From 8- to 7-bit
 print STDOUT $line;
}

Iso-2022-JP or eUC-JP to shift-JIs Conversion
The following Perl program performs ISO-2022-JP or EUC-JP to Shift-JIS conversion,
and fully supports half-width katakana. A single program allows this because EUC-JP

Japanese Code Conversion | 739

can be normalized to ISO-2022-JP using simple eight- to seven-bit code conversion
operations:

#!/usr/local/bin/perl -w

sub convert2sjis { # For EUC-JP and ISO-2022-JP to Shift-JIS
 my @euc = unpack("C*", $_[0]);
 my @out = ();
 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $hi &= 127; $lo &= 127;
 push(@out, (($hi + 1) >> 1) + ($hi < 95 ? 112 : 176),
 $lo + (($hi & 1) ? ($lo > 95 ? 32 : 31) : 126));
 }
 return pack("C*", @out);
}

while (defined($line = <STDIN>)) {
 $line =~ s{(# EUC-JP
 (?:[\xA1-\xFE][\xA1-\xFE])+| # JIS X 0208:1997
 (?:\x8E[\xA0-\xDF])+ # Half-width katakana
)}{substr($1,0,1) eq "\x8E" ? (($x = $1) =~ s/\x8E//g, $x) :
 &convert2sjis($1)}egx;
 $line =~ s{ # Handle ISO-2022-JP
 \e\$[\@B]
 ((?:[\x21-\x7E][\x21-\x7E])+)
 \e\([BHJ]
 }{&convert2sjis($1)}egx;
 $line =~ s{ # Handle ISO-2022-JP half-width katakana
 \e\(I
 ([\x20-\x5F]+)
 \e\([BHJ]
 }{($x = $1) =~ tr/\x20-\x5F/\xA0-\xDF/, $x}egx;
 print STDOUT $line;
}

shift-JIs to Iso-2022-JP Conversion
The following Perl program performs Shift-JIS to ISO-2022-JP conversion, and fully sup-
ports half-width katakana:

#!/usr/local/bin/perl -w

sub sjis2jis { # For Shift-JIS to ISO-2022-JP and EUC-JP
 my @ord = unpack("C*", $_[0]);
 for ($i = 0; $i < @ord; $i += 2) {
 $ord[$i] = (($ord[$i]-($ord[$i]<160?112:176))<<1)-
 ($ord[$i+1]<159?1:0);
 $ord[$i+1] -= ($ord[$i+1]<159?($ord[$i+1]>127?32:31):126);
 }
 return pack("C*", @ord);
}

while (defined($line = <STDIN>)) {
 $line =~ s{(# JIS X 0208:1997 and half-width katakana

740 | Appendix C: Perl Code examples

 (?:[\x81-\x9F\xE0-\xEF][\x40-\x7E\x80-\xFC])+|
 [\xA0-\xDF]+
)}{
 ($x=$1) !~ /^[\xA0-\xDF]/ ?
 "\e\$B" . &sjis2jis($1) . "\e\(J" :
 "\e\(I" . (($y=$x) =~ tr/\xA0-\xDF/\x20-\x5F/, $y) . "\e\(J"
 }egx;
 print STDOUT $line;
}

shift-JIs to eUC-JP Conversion
The following Perl program performs Shift-JIS to EUC-JP conversion, and fully supports
half-width katakana:

#!/usr/local/bin/perl -w

sub sjis2jis { # For Shift-JIS to ISO-2022-JP and EUC-JP
 my @ord = unpack("C*", $_[0]);
 for ($i = 0; $i < @ord; $i += 2) {
 $ord[$i] = (($ord[$i]-($ord[$i]<160?112:176))<<1)-($ord[$i+1]<159?1:0);
 $ord[$i+1] -= ($ord[$i+1]<159?($ord[$i+1]>127?32:31):126);
 }
 return pack("C*", @ord);
}

while (defined($line = <STDIN>)) {
 $line =~ s{(# JIS X 0208:1997 and half-width katakana
 (?:[\x81-\x9F\xE0-\xEF][\x40-\x7E\x80-\xFC])+|
 [\xA0-\xDF]+
)}{
 ($x = $1) !~ /^[\xA0-\xDF]/ ?
 (($y = &sjis2jis($x)) =~ tr/\x21-\x7E/\xA1-\xFE/, $y) :
 (($y = $x) =~ s/([\xA0-\xDF])/\x8E$1/g, $y)
 }egx;
 print STDOUT $line;
}

Half- to Full-Width Katakana Conversion
The following Perl program converts half-width katakana to their full-width equivalents.
The default behavior expects Shift-JIS encoding as the input, but invoking the program
with the -e option changes the behavior to expect EUC-JP encoding.

#!/usr/local/bin/perl -w

unkana.pl
#
(Version with multi-encoding support without using JPerl)
Written by Ken Lunde (lunde@adobe.com)
January 3, 1997

require 5.002;

Japanese Code Conversion | 741

$euc = "";

if (defined $ARGV[0] && $ARGV[0] eq "-e") {
 $euc = chr(142);
}

if ($euc) { # If EUC encoding
 $encoding = '[\xA1-\xFE][\xA1-\xFE]';
 $symbol_one = chr(161);
 $kana_one = chr(165);
 # Second-byte values (decimal) in EUC
 @two = (161, 163, 214, 215, 162, 166, 242, 161, 163, 165, 167, 169, 227, 229, 231,
 195, 188, 162, 164, 166, 168, 170, 171, 173, 175, 177, 179, 181, 183, 185, 187,
 189, 191, 193, 196, 198, 200, 202 .. 207, 210, 213, 216, 219, 222 .. 226, 228,
 230, 232 .. 237, 239, 243, 171, 172);
} else { # If Shift-JIS encoding
 $encoding = '[\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC]';
 $symbol_one = chr(129);
 $kana_one = chr(131);

 # Second-byte values (decimal) in Shift-JIS
 @two = (64, 66, 117, 118, 65, 69, 146, 64, 66, 68, 70, 72, 131, 133, 135, 98, 91,
 65, 67, 69, 71, 73, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 99, 101, 103,
 105 .. 110, 113, 116, 119, 122, 125, 126, 128 .. 130, 132, 134, 136 .. 141, 143,
 147, 74, 75);
}

Initialize lookup for kana substitution (stored in %char_hash)
foreach $value (160 .. 223) {
 $char_hash{chr($value)} = chr($two[$value - 160]);
}

main loop
while ($line = <STDIN>) {
 $line =~ s/([\x00-\x80]+ | # ASCII or JIS-Roman
 (?:$encoding)+ | # JIS X 0208:1997
 (?:${euc}[\xA0-\xDF])+ # Half-width katakana
)/&dostuff($1)/egox;
 print STDOUT $line;
}

sub dostuff {
 my ($str) = @_;

 if ($str =~ /^${euc}[\xA0-\xDF]/o) { # If half-width katakana
 $str =~ s/((?:$euc\xB3$euc\xDE)+ | # u + dakuten
 (?:${euc}[\xCA-\xCE]$euc\xDF)+ | # KSTH-row + dakuten
 (?:${euc}[\xB6-\xC4\xCA-\xCE]$euc\xDE)+ | # H-row
 (?:${euc}[\xA0-\xDF]) # All other cases
)/&han2zen($1)/egox;
 }
 return $str; # Returns ASCII/JIS-Roman and JIS X 0208:1997 as is
}

742 | Appendix C: Perl Code examples

sub han2zen {
 my ($hkana) = @_;

 if ($hkana =~ /^$euc\xB3$euc\xDE/o) { # Special "u + dakuten" case
 if ($euc) {
 $hkana =~ s/$euc\xB3$euc\xDE/\xA5\xF4/go;
 } else {
 $hkana =~ s/\xB3\xDE/\x83\x94/g;
 }
 } elsif ($hkana =~ /^${euc}[\xB6-\xC4\xCA-\xCE]${euc}[\xDE\xDF]/o) {
 $prefix = $kana_one; # First byte for katakana
 if ($hkana =~ /^${euc}[\xCA-\xCE]$euc\xDF/o) {
 $suffix = 2; # Increment value for handakuten
 } else {
 $suffix = 1; # Increment value for dakuten
 }
 $hkana =~ s/$euc([\xB6-\xC4\xCA-\xCE])${euc}[\xDE\xDF]/
 pack("n",unpack("n","$prefix$char_hash{$1}") +
 $suffix)/egox;
 } else {
 if ($hkana =~ /^${euc}[\xA0-\xA5\xB0\xDE\xDF]/o) {
 $prefix = $symbol_one; # First byte for symbol
 } else {
 $prefix = $kana_one; # First byte for katakana
 }
 $hkana =~ s/$euc([\xA0-\xDF])/$prefix$char_hash{$1}/go;
 }
 return $hkana;
}

Korean Code Conversion
Although this section does not include any complete Perl programs, the most difficult al-
gorithms for handling Korean encodings are included as workable subroutines that can be
used in Perl programs. The main focus of this section is Johab encoding, which requires
an algorithm for handling conversion to and from ISO-2022-KR or EUC-KR encodings,
which is strikingly similar to that used for handling conversion to and from Shift-JIS en-
coding. Because handling Johab encoding also requires mapping tables (for handling the
2,350 hangul in KS X 1001:2004) or bit-array manipulation (as an alternative for turning
these 2,350 hangul into their Johab equivalents), I do not include complete programs.

Iso-2022-Kr or eUC-Kr to Johab Conversion
The following Perl subroutine converts strings of two-byte data encoded according to
ISO-2022-KR or EUC-KR into Johab encoding:

sub convert2johab ($) { # Convert ISO-2022-KR or EUC-KR to Johab
 my @euc = unpack("C*", $_[0]);
 my ($fe_off,$hi_off,$lo_off) = (0,0,1);
 my @out = ();

Korean Code Conversion | 743

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $hi &= 127; $lo &= 127;
 $fe_off = 21 if $hi == 73;
 $fe_off = 34 if $hi == 126;
 ($hi_off,$lo_off) = ($lo_off,$hi_off) if ($hi < 74 or $hi > 125);
 push(@out, ((($hi + $hi_off) >> 1) + ($hi < 74 ? 200 : 187) - $fe_off),
 $lo + ((($hi + $lo_off) & 1) ? ($lo > 110 ? 34 : 16) : 128));
 }
 return pack("C*", @out);
}

Note that any program that includes this subroutine must not apply it to the code ranges
provided in Table C-1, which represent modern jamo and hangul syllables. These charac-
ters require completely different handling, as explained in Chapter 4.

Unaffected encode ranges—Johab code conversion algorithmTable C-1.

Character class Iso-2022-Kr eUC-Kr

Modern jamo 24 21–24 54 A4 A1–A4 D4

Hangul syllables 30 21–48 7E B0 A1–C8 FE

Johab to Iso-2022-Kr or eUC-Kr Conversion
The following Perl subroutine can be used to convert Johab-encoded symbols and hanja
into ISO-2022-KR or EUC-KR encoding. This subroutine actually returns ISO-2022-
KR–encoded characters, but the further transformation to EUC-KR encoding is a trivial
operation.

sub johab2ks ($) { # Convert Johab to ISO-2022-KR
 my @johab = unpack("C*", $_[0]);
 my ($offset,$d8_off) = (0,0);
 my @out = ();

 while (($hi, $lo) = splice(@johab, 0, 2)) {
 $offset = 1 if ($hi > 223 and $hi < 250);
 $d8_off = ($hi == 216 and ($lo > 160 ? 94 : 42));
 push(@out, (((($hi - ($hi < 223 ? 200 : 187)) << 1) -
 ($lo < 161 ? 1 : 0) + $offset) + $d8_off),
 $lo - ($lo < 161 ? ($lo > 126 ? 34 : 16) : 128));
 }
 return pack("C*", @out);
}

Like with conversion to Johab encoding, conversion from Johab encoding using the pre-
ceding subroutine affects only a limited encoding region, specifically those for encoding
symbols, including ancient jamo, and hanja. Two-byte codes whose first byte is within the
range 0x84 through 0xD3 are hangul, and are converted through other means. Those two-
byte codes whose first byte is within the range 0xD8 through 0xDE and 0xE0 through 0xF9
are handled by this subroutine.

744 | Appendix C: Perl Code examples

tron Code Conversion
The standard TRON character set, as described in Appendix E, consists of the JIS X
0208:1997, JIS X 0212-1990, GB 2312-80, and KS X 1001:2004 character sets. Conversion
between TRON encoding and those encodings for JIS X 0208:1997 and JIS X 0212-1990
is trivial, and requires minor adjustments to Perl code provided earlier in this chapter.
However, converting between TRON encoding and those encodings for GB 2312-80 and
KS X 1001:2004 is less trivial, and brings to bear a different code conversion technique,
specifically zero-base code conversion.

Zero-base code conversion is a useful technique for dealing with encodings that have dif-
ferent dimensions, but whose character ordering is identical. Put simply, zero-base code
conversion transforms one encoding into a single contiguous list of values starting at 0
(zero). For a 94×94 encoding whose encoding range is <21 21> through <7E 7E> (ISO-
2022 encoding with 8,836 code points), the result is the range 0 through 8835 (remember
that this list begins at 0, not 1). Reversing this effect, but with different parameters, can
effectively fit a 94×94 encoding block into a block of different dimensions. Consider the
following line of code:

$char = (($hi - 33) * 94) + ($lo - 33);

First we assume that we are dealing with an encoding that fits within a 94×94 matrix, and
whose byte values are in the range 0x21 through 0x7E (decimal 33 through 127). The first
byte’s value is stored in the variable $hi, and the second byte’s is in $lo. Note how the lowest
byte value is subtracted from each byte ($hi − 33 and $lo − 33). Then, the first byte’s value
is multiplied by the number of code points in the second byte’s range (in this case, 94).

tron and GB 2312-80 Code Conversion
The 8,836 2-byte code points supported by the encodings for GB 2312-80, such as ISO-
2022-CN (<21 21> through <7E 7E>) and EUC-CN (<A1 A1> through <FE FE>), fall into
the TRON encodings range <21 80> through <67 8F>. While ISO-2022-CN and EUC-CN
encodings are based on encodings rows with 94 code points each (that is, 0x21 through
0x7E or 0xA1 through 0xFE), TRON encoding, for GB 2312-80, is based on encodings
rows with 126 code points each (0x80 through 0xFD).

The following function, gb2tron(), converts ISO-2022-CN– or EUC-CN–encoded GB
2312-80 2-byte characters into TRON encoding:

sub gb2tron ($) { # EUC-CN or ISO-2022-CN to TRON
 my @euc = unpack("C*", $_[0]);
 my $char;
 my @out = ();

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $hi &= 127; $lo &= 127; # Normalize to ISO-2022-CN
 $char = (($hi - 33) * 94) + ($lo - 33); # Normalize to zero-base
 push(@out, (($char / 126) + 33), (($char % 126) + 128));
 }

tron Code Conversion | 745

 return pack("C*", @out);
}

The following function, tron2euc_cn(), converts TRON-encoded GB 2312-80 characters
back into EUC-CN encoding:

sub tron2euc_cn ($) { # TRON GB 2312-80 to EUC-CN
 my @euc = unpack("C*", $_[0]);
 my $char;
 my @out = ();

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $char = (($hi - 33) * 126) + ($lo - 128); # Normalize to zero-base
 push(@out, (($char / 94) + 161), (($char % 94) + 161));
 }
 return pack("C*", @out);
}

tron and Ks X 1001:2004 Code Conversion
The 8,836 2-byte code points supported by the encodings for KS X 1001:2004, such as
ISO-2022-KR (<21 21> through <7E 7E>) and EUC-KR (<A1 A1> through <FE FE>), fall
into the TRON encodings range <B7 80> through <FD 8F>. Whereas ISO-2022-KR and
EUC-KR encodings are based on encodings rows with 94 code points each (that is, 0x21
through 0x7E or 0xA1 through 0xFE), TRON encoding, for KS X 1001:2004, is based on
encodings rows with 126 code points each (0x80 through 0xFD), as you learned in the
previous section.

The following function, ks2tron(), converts ISO-2022-KR– or EUC-KR–encoded KS X
1001:2004 2-byte characters into TRON encoding:

sub ks2tron ($) { # EUC-KR or ISO-2022-KR to TRON
 my @euc = unpack("C*", $_[0]);
 my $char;
 my @out = ();

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $hi &= 127; $lo &= 127; # Normalize to ISO-2022-KR
 $char = (($hi - 33) * 94) + ($lo - 33); # Normalize to zero-base
 push(@out, (($char / 126) + 183), (($char % 126) + 128));
 }
 return pack("C*", @out);
}

The following function, tron2euc_kr(), converts TRON-encoded KS X 1001:2004 charac-
ters back into EUC-KR encoding:

sub tron2euc_kr ($) { # TRON KS X 1001:2004 to EUC-KR
 my @euc = unpack("C*", $_[0]);
 my $char;
 my @out = ();

 while (($hi, $lo) = splice(@euc, 0, 2)) {
 $char = (($hi - 183) * 126) + ($lo - 128); # Normalize to zero-base

746 | Appendix C: Perl Code examples

 push(@out, (($char / 94) + 161), (($char % 94) + 161));
 }
 return pack("C*", @out);
}

Unicode Code Conversion
Although conversion between Unicode and legacy encodings is table-driven, conver-
sion between the various Unicode encoding methods—UTF-8, UTF-16, and UTF-32—is
purely algorithmic. This section covers conversion between these encoding methods, and
does so by providing a complete test-bed program that implements the necessary conver-
sion algorithms as subroutines. Two of the subroutines, specifically UTF32toUTF8() and
UTF8toUTF32(), were originally adapted from code written by Gisle Aas in order to sup-
port conversion between UCS-2 and UTF-8 encodings. I should also point out that for
UTF16 and UTF-32 encodings, big-endian byte order is assumed.

#!/usr/bin/perl -w

use strict;
require 5.003;

my ($i,$o); # Variable for storing the selected input/output encodings
my ($line); # Variable for storing each input line, which is character code

while (@ARGV and $ARGV[0] =~ /^-/) {
 my $arg = shift @ARGV;
 if (lc $arg eq "-h") {
 &ShowHelp;
 exit;
 } elsif (lc $arg =~ /^-i(8|16|32)$/) {
 $i = $1;
 print STDERR "Input encoding is UTF-$i¥n";
 } elsif (lc $arg =~ /^-o(8|16|32)$/) {
 $o = $1;
 die "Identical input/output encodings!¥nExit¥n" if $i eq $o;
 print STDERR "Output encoding is UTF-$o¥n";
 } else {
 die "Invalid option: $arg! Skipping (try ¥"-h¥" for help)¥nExit¥n";
 }
}

if ($ARGV[0] =~ /^((?:[0-9A-Fa-f][0-9A-Fa-f])+)$/) {
 $line = $1;
 &DoConv($line);
} else {
 while(defined($line = <STDIN>)) {
 chomp $line;
 &DoConv($line);
 }
}

Unicode Code Conversion | 747

sub DoConv ($) {
 if ($i == 8) {
 if ($o == 16) {
 printf STDOUT "%s¥n",
 uc unpack("H*",&UTF32toUTF16(&UTF8toUTF32(pack("H*",$line))));
 } elsif ($o == 32) {
 printf STDOUT "%s¥n",uc unpack("H*",&UTF8toUTF32(pack("H*",$line)));
 }
 } elsif ($i == 16) {
 if ($o == 8) {
 printf STDOUT "%s¥n",
 uc unpack("H*",&UTF32toUTF8(&UTF16toUTF32(pack("H*",$line))));
 } elsif ($o == 32) {
 printf STDOUT "%s¥n",uc unpack("H*",&UTF16toUTF32(pack("H*",$line)));
 }
 } elsif ($i == 32) {
 if ($o == 8) {
 printf STDOUT "%s¥n",uc unpack("H*",&UTF32toUTF8(pack("H*",$line)));
 } elsif ($o == 16) {
 printf STDOUT "%s¥n",uc unpack("H*",&UTF32toUTF16(pack("H*",$line)));
 }
 }
}

sub UTF16toUTF32 ($) {
 my ($bytes) = @_;

 if ($bytes =~ /^([¥x00-¥xD7¥xE0-¥xFF][¥x00-¥xFF])$/) {
 pack("N",unpack("n",$bytes));
 } elsif ($bytes =~ /^([¥xD8-¥xDB][¥x00-¥xFF])([¥xDC-¥xDF][¥x00-¥xFF])$/) {
 pack("N",((unpack("n",$1) - 55296) * 1024) + (unpack("n",$2) - 56320) + 65536);
 } else {
 die "Whoah! Bad UTF-16 data!¥n";
 }
}

sub UTF8toUTF32 ($) {
 my ($bytes) = @_;

 if ($bytes =~ /^([¥x00-¥x7F])$/) {
 pack("N",ord($1));
 } elsif ($bytes =~ /^([¥xC0-¥xDF])([¥x80-¥xBF])$/) {
 pack("N",((ord($1) & 31) << 6) | (ord($2) & 63));
 } elsif ($bytes =~ /^([¥xE0-¥xEF])([¥x80-¥xBF])([¥x80-¥xBF])/) {
 pack("N",((ord($1) & 15) << 12) | ((ord($2) & 63) << 6) | (ord($3) & 63));
 } elsif ($bytes =~ /^([¥xF0-¥xF7])([¥x80-¥xBF])([¥x80-¥xBF])([¥x80-¥xBF])/) {
 pack("N",((ord($1) & 7) << 18) | ((ord($2) & 63) << 12) | ((ord($3) & 63) << 6)
 | (ord($4) & 63));
 } else {
 die "Whoah! Bad UTF-8 data! Perhaps outside of Unicode (5- or 6-byte).¥n";
 }
}

748 | Appendix C: Perl Code examples

sub UTF32toUTF8 ($) {
 my ($ch) = unpack("N",$_[0]);

 if ($ch <= 127) {
 chr($ch);
 } elsif ($ch <= 2047) {
 pack("C*", 192 | ($ch >> 6), 128 | ($ch & 63));
 } elsif ($ch <= 65535) {
 pack("C*", 224 | ($ch >> 12), 128 | (($ch >> 6) & 63), 128 | ($ch & 63));
 } elsif ($ch <= 1114111) {
 pack("C*", 240 | ($ch >> 18), 128 | (($ch >> 12) & 63), 128
 | (($ch >> 6) & 63), 128 | ($ch & 63));
 } else {
 die "Whoah! Bad UTF-32 data! Perhaps outside of Unicode (UCS-4).¥n";
 }
}

sub UTF32toUTF16 ($) {
 my ($ch) = unpack("N",$_[0]);

 if ($ch <= 65535) {
 pack("n", $ch);
 } elsif ($ch <= 1114111) {
 pack("n*", ((($ch - 65536) / 1024) + 55296),(($ch % 1024) + 56320));
 } else {
 die "Whoah! Bad UTF-32 data! Perhaps outside of Unicode (UCS-4).¥n";
 }
}

sub fix {
 my ($string) = @_;
 $string =~ s/^ //gm;
 return $string;
}

sub ShowHelp {
 print STDERR &fix(<<ENDHELP);
 UTFConv.pl (for Perl5)
 Written by Ken Lunde (lunde¥@adobe.com)
 Program Copyright 2001 Ken Lunde. All Rights Reserved.

 SWITCHES:
 -i = Input encoding
 -o = Output encoding

 Note that only the values 8, 16, or 32 can be used with these switches,
 and must follow without spaces.
ENDHELP
}

The UTF16toUTF32(), UTF8toUTF32(), UTF32toUTF8(), and UTF32toUTF16() subrou-
tines perform the work, and the DoConv() subroutine acts as a wrapper. When conver-
sion between UTF-8 and UTF-16 encodings is necessary, UTF-32 encoding acts as the

encoding detection | 749

middle ground. In other words, when converting from UTF-8 to UTF-16 encoding, the
UTF8toUTF32() subroutine is invoked, immediately followed by the UTF32toUTF16()
subroutine.

encoding detection
The following Perl program illustrates an effective way to automatically detect CJKV en-
codings, using Japanese encodings as an example. The two lines that have been embold-
ened are those that perform the actual detection.

This program applies encoding detection on every line of the file, and outputs the line
prefixed with information about what encoding was detected.

#!/usr/local/bin/perl -w

The function in this program, DetectJPEncoding(), checks the data
that it is given, and returns various values depending on what
encoding it detected. The return values are listed in the definition
of the %codes hash below. You can feed this function as much data as
you wish (such as single characters, lines, or the entire buffer),
but the more you give it, the better the chance it will correctly
return a single encoding (that is, not "Ambiguous"). It currently
deals with Japanese encodings through the use of encoding templates.

%codes = (
 0 => "ERROR",
 1 => "Shift-JIS",
 2 => "EUC-JP",
 3 => "Ambiguous", # Means ASCII, Shift-JIS, or EUC-JP
 4 => "ISO-2022-JP"
);

open(SJS,"<jis.sjs") or die "Cannot open Shift-JIS file!\n";
open(EUC,"<jis.euc") or die "Cannot open EUC-JP file!\n";
open(JIS,"<jis.jis") or die "Cannot open ISO-2022-JP file!\n";
open(OUT,">out") or die "Cannot open output file!\n";

while (defined($line = <SJS>)){
 print OUT $codes{&DetectJPEncoding($line)} . ": " . $line;
}
close(SJS);

while (defined($line = <EUC>)){
 print OUT $codes{&DetectJPEncoding($line)} . ": " . $line;
}
close(EUC);

while (defined($line = <JIS>)){
 print OUT $codes{&DetectJPEncoding($line)} . ": " . $line;
}
close(JIS);

750 | Appendix C: Perl Code examples

sub DetectJPEncoding ($) {
 my $data = shift;
 return 4 if $data =~ m{ # Return if ISO-2022-JP
 \e # Escape character
 (?:
 \$[\@B] # JIS X 0208 series
 | \([BHIJ] # ASCII or JIS X 0201-1997
)
 }x;
 my ($sjs_out,$euc_out) = (0,0);
 my $euc_jp = q{ # EUC-JP encoding
 [\x00-\x7F] # Code set 0
 | \x8E[\xA0-\xDF] # Code set 2
 | \x8F[\xA1-\xFE][\xA1-\xFE] # Code set 3
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1
 };
 my $sjs = q{ # Shift-JIS encoding
 [\x00-\x7F\xA0-\xDF] # ASCII and half-width katakana
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # Two-byte range
 };
 $sjs_out = 1 if $data =~ /\A (?:$sjs)+ \Z/ox;
 $euc_out = 2 if $data =~ /\A (?:$euc_jp)+ \Z/ox;

 return ($sjs_out + $euc_out);
}

Through the careful use of the encoding templates that are found later in this appendix,
the preceding code can be adapted so that it can automatically detect virtually any en-
coding, within reason. This same code can also be used to check the integrity of a file’s
encoding.

repairing Iso-2022-JP encoding
As discussed in Chapter 4, ISO-2022-JP encoding (and other ISO-2022–based encodings)
can be damaged in a number of ways. The “escape” character, for example, can be dam-
aged as follows:

Converted into a single space (•	 0x20)

URL transformation•	

Converted into Quoted-Printable encoding•	

Simply removed from the file•	

The following Perl program effectively repairs damaged ISO-2022-JP–encoded files, even
if they were damaged in multiple ways (which is usually not the case):

#!/usr/local/bin/perl -w

o Converted into a single space (0x20)
o Converted into URL transformation -- "%1B"
o Converted into quoted-printable -- "=1B"
#

other Useful transformations | 751

Or they are simply deleted.

while (defined($line = <STDIN>)) {
 $line =~ s{
 (?:\x20|[=%]1[Bb])? # Optional space or escape
 (
 (?:
 \$ [\@B] # $ plus @ or B
 (?:[\x21-\x7E][\x21-\x7E])+ # One or more two-byte characters
)
 | # Or...
 (?:
 \(I # (plus I
 [\x20-\x5F]+? # One or more half-width katakana
)
)
 (?:\x20|[=%]1[Bb])? # Optional space or escape
 (
 \([BHJ] # (plus B, H, or J
)
 }{\e$1\e$2}gx;
 print STDOUT $line;
}

other Useful transformations
There are other useful programs written in Perl, including libraries designed for CJKV
information processing. Chapter 4 provided references to some useful Perl modules and
libraries for CJKV data manipulation.

The following sections provide some simple Perl programs for performing a number of
common text-processing tasks.

UrL transformation
The following Perl program, a single line of code, is used to encode a string according to
URL transformation:

$string =~ s/([^0-9A-Za-z])/sprintf("%%%02X",ord($1))/ge;

Likewise, the following Perl program effectively reverses the effect:
$string =~ s/%([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;

Quoted-Printable transformation
To encode quoted-printable:

$string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;

To decode quoted-printable:
$string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
$string =~ s/=[\n\r]+$//;

752 | Appendix C: Perl Code examples

CJKV encoding templates
The following are some encoding specifications that can be used for handling various
CJKV encodings. In particular, they are useful in conjunction with automatically detect-
ing CJKV encodings.

eUC-Cn and eUC-Kr encodings
$euc = q{
 [\x00-\x7F] # Code set 0 (ASCII or equivalent)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (GB 2312-80 or KS X 1001:2004)
};

eUC-tW encoding
$euc_tw = q{
 [\x00-\x7F] # Code set 0 (CNS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (Plane 1)
 | \x8E[\xA1-\xF0][\xA1-\xFE][\xA1-\xFE] # Code set 2 (Planes 1-80)
};

eUC-JP encoding
$euc_jp = q{
 [\x00-\x7F] # Code set 0 (ASCII/JIS-Roman)
 | [\xA1-\xFE][\xA1-\xFE] # Code set 1 (JIS X 0208:1997)
 | \x8E[\xA0-\xDF] # Code set 2 (Half-width katakana)
 | \x8F[\xA1-\xFE][\xA1-\xFE] # Code set 3 (JIS X 0212-1990)
};

GBK and Big Five Plus encodings
$gbk = q{
 [\x00-\x7F] # ASCII or equivalent
 | [\x81-\xFE][\x40-\x7E\x80-\xFE] # Two-byte (GBK or Big Five Plus)
};

GB 18030 encoding
$gb18030 = q{
 [\x00-\x7F] # ASCII or equivalent
 | [\x81-\xFE][\x40-\x7E\x80-\xFE] # Two-byte
 | [\x81-\xFE][\x30-\x39][\x81-\xFE][\x30-\x39] # Four-byte
};

Big Five encoding
$big5 = q{
 [\x00-\x7F] # ASCII/CNS-Roman
 | [\xA1-\xFE][\x40-\x7E\xA1-\xFE] # Big Five
};

CJKV encoding templates | 753

Big Five encoding for Hong Kong sCs-2008
$big5_hkscs = q{
 [\x00-\x7F] # ASCII/CNS-Roman
 | [\x87-\xFE][\x40-\x7E\xA1-\xFE] # Big Five for Hong Kong SCS-2008
};

shift-JIs encoding
$sjs = q{
 [\x00-\x7F] # ASCII/JIS-Roman
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # JIS X 0208:1997
 | [\xA0-\xDF] # Half-width katakana
};

Johab encoding
$johab = q{
 [\x00-\x7F] # ASCII/KS-Roman
 | [\x84-\xD3][\x41-\x7E\x81-\xFE] # Modern hangul
 | [\xD8-\xDE\xE0-\xF9][\x31-\x7E\x91-\xFE] # Symbols and hanja
};

UHC encoding
$uhc = q{
 [\x00-\x7F] # One-byte
 | [\x81-\xFE][\x41-\x5A\x61-\x7A\x81-\xFE] # Two-byte
};

UCs-2 and UtF-16 encodings
The following encoding template works for UCS-2 encoding in any byte order:

$ucs2 = q{
 [\x00-\xFF][\x00-\xFF]
};

The following encoding template is for UTF-16 encoding, in big-endian byte order, and
with support for the surrogates area:

$utf16be = q{
 [\x00-\xD7\xE0-\xFF][\x00-\xFF] # One code unit
 | [\xD8-\xDB][\x00-\xFF][\xDC-\xDF][\x00-\xFF] # Two code units (Surrogates)
};

And, the following encoding template is for UTF-16 encoding, in little-endian byte order,
and with support for the surrogates area:

$utf16le = q{
 [\x00-\xFF][\x00-\xD7\xE0-\xFF] # One code unit
 | [\x00-\xFF][\xD8-\xDB][\x00-\xFF][\xDC-\xDF] # Two code units (Surrogates)
};

754 | Appendix C: Perl Code examples

UtF-32 encoding
The following encoding template is for UTF-32 encoding in big-endian byte order:

$utf32be = q{
 \x00[\x00-\x10][\x00-\xD7\xE0-\xFF][\x00-\xFF]
};

The following encoding template is for UTF-32 encoding in little-endian byte order:
$utf32le = q{
 [\x00-\xFF][\x00-\xD7\xE0-\xFF][\x00-\x10]\x00
};

Note how the 2,048 code points for the Surrogates have been excluded from the appropri-
ate byte-value ranges.

UtF-8 encoding
The following UTF-8 encoding template supports the original one- to six-byte representa-
tion of this encoding method:

$utf8_old = q{
 [\x00-\x7F] # One-byte
 | [\xC2-\xDF][\x80-\xBF] # Two-byte
 | \xE0[\xA0-\xBF][\x80-\xBF] # Three-byte
 | [\xE1-\xEF][\x80-\xBF][\x80-\xBF] # Three-byte
 | \xF0[\x90-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte
 | [\xF1-\xF7][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte
 | \xF8[\x88-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Five-byte
 | [\xF9-\xFB][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Five-byte
 | \xFC[\x84-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Six-byte
 | \xFD[\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Six-byte
};

The following UTF-8 encoding template supports the one- to four-byte representation
that is now considered standard, and is compatible with UTF-16 and UTF-32 encodings:

$utf8 = q{
 [\x00-\x7F] # One-byte
 | [\xC2-\xDF][\x80-\xBF] # Two-byte
 | \xE0[\xA0-\xBF][\x80-\xBF] # Three-byte
 | [\xE1-\xEF][\x80-\xBF][\x80-\xBF] # Three-byte
 | \xF0[\x90-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte
 | [\xF1-\xF3][\x80-\xBF][\x80-\xBF][\x80-\xBF] # Four-byte
 | \xF4[\x80-\x8F][\x80-\xBF][\x80-\xBF] # Four-byte
};

Multiple-Byte Anchoring | 755

Multiple-Byte Anchoring
The following Perl program illustrates how to apply and test multiple-byte anchoring.
This technique is critical in order to ensure that regex matches are applied according to
character, not byte, boundaries.

#!/usr/local/bin/perl -w

$search = "\x8C\x95"; # "剣"
$text1 = "Text 1 \x90\x56\x8C\x95\x93\xB9"; # "Text 1 新剣道"
$text2 = "Text 2 \x94\x92\x8C\x8C\x95\x61"; # "Text 2 白血病"
$encoding = q{ # Shift-JIS encoding
 [\x00-\x7F] # ASCII
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # Two-byte range
 | [\xA0-\xDF] # Half-width katakana
};

print "First attempt -- no anchoring\n";
print " Matched Text1\n" if $text1 =~ /$search/o;
print " Matched Text2\n" if $text2 =~ /$search/o;

print "Second attempt -- anchoring\n";
print " Matched Text1\n" if $text1 =~ /^(?:$encoding)*?$search/ox;
print " Matched Text2\n" if $text2 =~ /^(?:$encoding)*?$search/ox;

The following is the result of running the preceding program (assuming we name it
mb-anchor.pl):

% perl mb-anchor.pl
First attempt -- no anchoring
 Matched Text1
 Matched Text2
Second attempt -- anchoring
 Matched Text1

Note how anchoring causes correct matching to take place. The text in the variable $text2
does not contain the search character (<8C 95>), but its byte sequence does occur between
two characters (<8C 8C> and <95 61>).

But, unlike the conventional regex anchors used in Perl, such as ^ and $, and other regular
expression implementations, these anchors consume characters.

Multiple-Byte Processing
The following program illustrates how to break up data consisting of multiple-byte char-
acters into separate list elements, where each list element contains one character. This
particular program doesn’t do anything terribly useful, but does check whether each

756 | Appendix C: Perl Code examples

character consists of one or two bytes, and then prints out two-byte characters, along with
their hexadecimal codes.

#!/usr/local/bin/perl -w

$encoding = q{ # Shift-JIS encoding
 [\x00-\x80\xFD-\xFF] # ASCII and other one-byte
 | [\xA0-\xDF] # Half-width katakana
 | [\x81-\x9F\xE0-\xFC][\x40-\x7E\x80-\xFC] # Two-byte range
};

while (defined($line = <STDIN>)) {
 @enc = $line =~ /$encoding/gox; # One character per element
 foreach $element (@enc) {
 if (length($element) == 2) { # If two-byte character
 print STDOUT "0x" . ($x = uc unpack("H*",$element), $x);
 } else { # All others are one-byte characters
 print STDOUT "$element\n";
 }
 }
}

I find this code useful in developing code converters that make use of table-driven con-
version, such as conversion between Unicode and legacy encodings.

757

APPendIX d

Glossary

The following glossary entries provide definitions, explanations, and sometimes enter-
taining commentary for terms found throughout this book, so I suggest that you consult
it on an as-needed basis. It also makes for good reading if you have nothing else better to
do on a cloudy, rainy, or otherwise boring day.

42
The answer to the Ultimate Question of Life,
the Universe, and Everything.

50 Sounds array
50 音配列 (gojūon hairetsu). The Japanese
keyboard array whose keys follow the ar-
rangement of the 50 Sounds Table. See also 50
Sounds Table.

50 Sounds order
50音順 (gojūon jun). A Japanese collation se-
quence that follows the ordering from the 50
Sounds Table. See also 50 Sounds Table.

50 Sounds Table
50音表 (gojūon hyō). A table made up of a
5×10 matrix whose total number of possible
sounds is 50. Kana characters are set into this
table.

A11Y
Abbreviation for accessibility.

AAT
Apple Advanced Typography. The newer
name for the font portions of Apple’s Quick-
Draw GX technology, which was used in con-
junction with ATSUI. See also ATSUI.

AD
Active Duty. Abbreviated form of advertise-
ment. Also, an abbreviation for the Latin
Anno Domino.

AFDKO
Adobe Font Development Kit for OpenType.
Adobe Systems’ suite of commercial-grade,
command-line font tools that were specifi-
cally tailored to aid font developers to build
high-quality OpenType fonts.

AFM
Adobe Font Metrics. The file format, for
PostScript fonts, that encapsulates per-glyph
width and bounding box information.

AI
Artificial Intelligence (人工知能 jinkō chinō
in Japanese) or Adobe Illustrator.

AIR
What we breathe. Also, Adobe Integrated
Runtime. The name of a cross-platform run-
time environment for building rich web ap-
plications through the use of Adobe Flash,
Adobe Flex, HTML, or Ajax, and that can be
deployed as a desktop application. Its code
name during development was Apollo.

758 | Appendix d: Glossary

AT&T JIS
Another name for the Japanese instance of
the EUC encoding method. See EUC-JP.

ATC
Adobe Type Composer. Refers to a now-
obsolete frontend application for creating re-
arranged fonts for Mac OS, and to the under-
lying technology for supporting rearranged
fonts.

ATM
Asychronous Transfer Mode, Automated
Teller Machine, or Adobe Type Manager. Go
figure out which applies to this book! Actu-
ally, given the fact that Adobe Type Manager’s
functionality is now included in Mac OS X
and the latest versions of Windows, it seems
that this no longer applies, other than for his-
torical purposes.

ATSUI
Apple Type Services for Unicode Imaging.
When considered a Japanese transliteration,
it can mean “hot” (熱い atsui) or “thick” (厚
い atsui).

Base64
A method used for safely transforming non-
ASCII characters in email messages or email
message headers.

Base Character
The first—and primary or meaningful—ele-
ment of a Unicode sequence, such as an Ideo-
graphic Variation Sequence (IVS). See also
Ideographic Variation Sequence.

Basic Multilingual Plane
 See BMP.

BATAC
Badger Attack TAC.

Batang
바탕 (batang) in Korean. The current and
preferred way to refer to serif typeface de-
signs in Korean. See also dotum.

BBS
電子掲示板 (denshi keijiban) in Japanese.
Bulletin Board System.

AIX
Advanced Interactive Executive. IBM’s ver-
sion of the Unix OS.

Algorithmic conversion
A type of conversion that makes use of math-
ematical transformations to change the values
of the converted objects. See also table-driven
conversion.

America Online
An Internet service provider.

ANK
Alphabet, Numerals, and Katakana. One way
to refer to the characters defined in JIS X
0201-1997, specifically JIS-Roman and half-
width katakana.

Annex S
The informative ISO 10646 annex, entitled
Procedure for the Unification and Arrange-
ment of CJK Ideographs, which describes the
rules and principles of Han Unification. See
also Han Unification.

ANS
Amiga Nihongo System. The Japanese OS for
Amiga computers.

ANSI
American National Standards Institute.

ANSI X3.4-1986
Coded Character Set—7-Bit American Na-
tional Standard Code for Information Inter-
change. The standard that defines the ASCII
character set standard.

ANSI Z39.64-1989
 See EACC.

Antelope
Antilocapra americana. North America’s fast-
est land mammal.

AOL
 See America Online.

ASCII
American Standard Code for Information
Interchange.

Assume
An acronym.

 | 759

Bit
位 (wèi) or 位元 (wèiyuán) in Chinese, ビッ
ト (bitto) in Japanese, 비트 (biteu) in Korean.
Binary digit. The basic units of memory that
computers process.

Bitmapped font
A font whose character shapes are defined
by arrays of bits. See also parametric font and
outline font.

Bitnet
Because It’s Time NETwork. Also called
CREN.

Blowfish
河豚 (fugu) in Japanese. The animal whose
image graces the cover of this book.

BMP
Basic Multilingual Plane. Unicode’s first of 17
planes, consisting of 65,536 code points each.
The BMP includes what are considered the
most frequently used characters. Also called
Plane 0.

BOM
Byte Order Mark. U+FEFF. A Unicode char-
acter that serves to indicate the byte order (or
endianness) of the Unicode text that follows.
For the UTF-16 encoding form, it is repre-
sented as <FE FF> in big-endian byte order, or
<FF FE> in little-endian. It is also used with
the UTF-32 encoding form.

Bopomofo
ㄅㄆㄇㄈ. See zhuyin.

Boten
傍点 (bōten). A Japanese term that refers to
glyph annotations that serve to emphasize
characters, similar to the use of underlin-
ing in Western text. These annotations usu-
ally appear above the character in horizontal
writing, or to its right in vertical writing.

BTRON
Business TRON. See TRON.

Byte
字节/字節 (zìjiē) or 位元组 (wèiyuánzǔ) in
Chinese, バイト (baito) in Japanese, and 바이
트 (baiteu) in Korean. An 8-bit unit.

BC
Ballistic Coefficient. Before Christ, from the
Latin Ante Christum. Also, Base Character.
 See Base Character.

BDF
Bitmap Distribution Format. A popular bit-
mapped font format developed by Adobe
Systems.

Bézier curve
The type of curve used for representing char-
acter shape contours in the PostScript page-
description language and its supported font
formats.

Big-endian
Refers to the byte order, and pertains only to
data represented by more than 8 bits, such as
the 16- and 32-bit Unicode encoding forms
(UTF-16 and UTF-32), short (16 bits in Java),
integer (32 bits in Java), float (32 bits in Java),
long (64 bits in Java), and double (64 bits in
Java) types. True multiple-byte encodings,
such as Big Five, Shift-JIS, EUC, and ISO-
2022, and the UTF-8 encoding form, are not
affected by byte order. Using the decimal val-
ue 4660 as an example, when it is represented
using 16 bits, its big-endian form is <12 34>,
and its little-endian form is <34 12>. See also
byte order.

Big Five
大五 (dàwǔ). The name of the Chinese char-
acter set and encoding used extensively in Tai-
wan. Big Five is not a national standard, but
is roughly equivalent to the first two planes of
CNS 11643-2007. See also CNS 11643-2007.

Big Five Plus
An extension to Big Five that includes the
remaining CJK Unified Ideographs in ISO
10646-1:1993, meaning the URO, that are not
in Big Five. See also URO.

Binary
二进制/二進制 (èrjìnzhì) in Chinese, 二進
法 (nishinhō) in Japanese, and 이진법/二進
法 (ijinbeop) in Korean. Base two. A numeric
notation that uses two possible values, 0 or 1.

760 | Appendix d: Glossary

CCS
 See Coded Character Set.

CCSID
Coded Character Set Identifier. IBM termi-
nology that uniquely identifies a coded char-
acter set.

ccTLD
Country Code Top-Level Domain. See also
gTLD and TLD.

CD
Compact Disk.

CDL
Character Description Language. A powerful
XML application that was originally designed
for describing ideographs, regardless of
whether they are encoded. It has been proven
to be useful for describing any character or
glyph. CDL was developed by Tom Bishop
and Richard Cook.

CDRA
Character Data Representation Architecture.
IBM’s solution for conversion among differ-
ent character sets and encodings.

CD-ROM
Compact Disk Read Only Memory.

Cell
位 (wèi) in Chinese, 点 (ten) in Japanese, and
렬/列 (ryeol) or 열/列 (yeol) in Korean. In a
two-byte encoding, cell refers to the second
byte. In a two-dimensional matrix, cell usu-
ally represents the values along the horizontal
axis. See also row and Row-Cell.

CERNET
China Education and Research NETwork.

CEF
 See Character Encoding Form.

CER
 See Character Entity Reference.

CES
 See Character Encoding Scheme.

CESI
China Electronics Standardization Institute.

CFF
Compact Font Format.

Byte order
The order of the bytes in multiple-byte stor-
age units, which often differs depending on
the computer architecture. See also big-endian
and little-endian.

CAE
Common Applications Environment.

Calligraphic
 See cursive.

Candidate
候補 (kōho) in Japanese. During typical CJKV
input that involves ideographs, candidate
refers to the names that are associated with
keys in a conversion dictionary. Candidates
are usually presented as a list from which the
user must select. See also key and name.

Cangjie
倉頡 (cāngjié), short for 倉頡輸入法 (cāngjié
shūrùfǎ). A popular structure-based Chinese
input method.

Canonical Equivalent
Refers to the relationship between two differ-
ent Unicode code points or sequences. Nor-
malization may cause a Unicode code point
or sequence to change into the Canonical
Equivalent, which may be a different Unicode
code point or sequence. And, as the name
suggests, they are to be treated as equivalent.
 See also Normalization.

CCAG
國字整理小組 (guózì zhěnglǐ xiǎozǔ). Chi-
nese Character Analysis Group.

CCCII
中文資訊交換碼 (zhōngwén zīxùn jiāohuàn
mǎ). Chinese Character Code for Informa-
tion Interchange.

CCITT
International Telegraphy and Telephony
Consultative Committee. Comité Consultatif
International Télégraphique et Téléphonique
in French.

CCJK
Chinese (Simplified), Chinese (Traditional),
Japanese, and Korean. The two Cs refers to
the two distinct types of Chinese, specifically
Simplified and Traditional.

 | 761

CIC
Communication Intelligence Corporation.

CID
Character IDentifier. The key used to access
outline (glyph) data in CIDFont resources.

CITS
China Information Technology Standardiza-
tion Committee.

CJK
Chinese, Japanese, and Korean. CJKV with-
out the V. See CJKV.

CJK Compatibility Ideographs
The name of the ideographs of Chinese origin
that are included in Unicode for compatibil-
ity purposes, because they would otherwise
be unified with an existing CJK Unified Ideo-
graph. CJK Compatibility Ideographs are also
subject to Normalization. See also CJK Uni-
fied Ideographs and Normalization.

CJK Unified Ideographs
The name of the ideographs of Chinese ori-
gin that are included in Unicode, and divided
among various blocks, specifically the URO
and the multiple Extensions. See also URO.

CJK.INF
The online document that appeared after Un-
derstanding Japanese Information Processing
was published, but before the first edition of
this book was published. Discontinued.

CJK-JRG
 See IRG.

CJKV-Roman
A term that collectively refers to the instances
of the ASCII character set as defined by the
CJKV locales, including GB-Roman, CNS-
Roman, JIS-Roman, KS-Roman, and TCVN-
Roman. See also GB-Roman, CNS-Roman,
JIS-Roman, KS-Roman, and TCVN-Roman.

CJKV
Chinese, Japanese, Korean, and Vietnamese.
中日韩越/中日韓越 (zhōng rì hán yuè) in
Chinese, 日中韓越 (nittchūkan’etsu) in Japa-
nese, and 한중일월/韓中日越 (han jung
il wol) in Korean. Refers to the languages
that use ideographs as part of their writing
system.

CGI
Common Gateway Interface. The name given
to web programs that are executed on the
server side (as opposed to the client side).
CGI programs are typically written in Perl.

Character
文字 (wénzì) in Chinese, 文字 (moji) in Japa-
nese, and 문자/文字 (munja) in Korean. An
abstract notion denoting a class of shapes de-
clared to have the same meaning or form.

Character Encoding Form
 See encoding form.

Character Encoding Scheme
 See encoding scheme.

Character Entity Reference
An SGML-derived notation that is recognized
by HTML and XML, and serves to specify
characters by their name. For example, the
five-character string & is the CER for the
ampersand (U+0026). See also Numeric Char-
acter Reference.

Character set
文字集合 (moji shūgo) in Japanese. A collec-
tion of characters.

Character spanning
均等割付 (kintō waritsuke). A special case of
justification that is done on a much smaller
scale than in the West. Character spanning,
sometimes known as Japanese justification,
is typically used for lists of names whereby
varying numbers of characters per name are
made flush to the left and right, but not to the
margin of the printed page.

Chinese
国语/國語 (guóyǔ), 汉语/漢語 (hànyǔ), or
中文 (zhōngwén). The languages spoken in
the Chinese locales, such as China, Hong
Kong, Singapore, and Taiwan.

Chinese character
 See ideograph.

Chữ Hán
𡨸漢. Ideographs as used in Vietnam.

Chữ Nôm
𡨸喃. Vietnamese-made ideographs.

762 | Appendix d: Glossary

and 10 through 15). Previous versions were
dated 1986 and 1992 with fewer characters.
Planes 1 and 2 are roughly equivalent to Big
Five, which is used much more frequently. See
also Big Five.

CNS 14649-1:2002
Taiwan’s version of the ISO 10646 standard,
and equivalent to Unicode version 3.0. See
also ISO 10646.

CNS 14649-2:2003
Taiwan’s version of the ISO 10646 standard,
and equivalent to Unicode version 3.1. See
also ISO 10646.

CNS-Roman
The Taiwanese equivalent of the ASCII char-
acter set and encoding. The name of the stan-
dard that defines this character set is called
CNS 5205-1989. See CNS 5205-1989.

Code Page
IBM and Microsoft terminology for a char-
acter set and encoding combination. CJKV
Code Pages, because of the sheer number of
characters, rarely take up a single page.

Code position
The numeric code within an encoding meth-
od that is used to refer to a specific character.
For two-byte characters, this refers to the row
and the cell.

Code space
コード領域 (kōdo ryōiki) in Japanese. The
space in which characters can be encoded ac-
cording to the specifications of a given encod-
ing method. Code positions outside the code
space are considered invalid.

Coded Character Set
A mapping from a set of abstract characters
to a set of integers. A character set that is in-
tended to be encoded. All the character sets
described in Chapter 3 are valid CCSs. See
also Noncoded Character Set.

Compound
熟語 (jukugo) in Japanese. A word consisting
of two or more characters.

Compound ideograph
会意文字/會意文字 (huìyì wénzì) in Chi-
nese, 会意文字 (kaii moji) in Japanese, and

CJKV Information Processing
The incredibly clever title of a book that was
first published at the beginning of 1999, and
is effectively a revision of a book that was
originally published in 1993.

CJKV6N
Abbreviation for CJKVization, in keeping
with the tradition used for L10N, I18N, and
J10N. See CJKVization.

CJKVese
A collective term that refers to the languages
spoken in CJKV locales.

CJKVization
CJKV6N. The process of adapting software
for CJKV markets. See also CJKV, internation-
alization, Japanization, localization.

CLDR
Common Locale Data Repository.

cmap
Character Map. The all-lowercase four-
character tag for the ‘sfnt’ table that maps
character codes to GIDs that are specified in
the ‘glyf ’ or ‘CFF’ tables.

CMap
Character Map. The name of the resource that
maps character codes to CIDs that are speci-
fied in CIDFont resources.

CN
The two-letter country code for China.

CNNIC
China Internet Network Information Center.

CNS
中國國家標準 (zhōngguó guójiā biāozhǔn).
Chinese National Standard.

CNS 5205-1989
The standard that defines CNS-Roman,
which is the Taiwanese equivalent of ASCII.
 See CNS-Roman.

CNS 7654-1989
The Taiwanese version of ISO 2022:1994. See
ISO 2022:1994.

CNS 11643-2007
The national character set standard for Tai-
wan that encodes a staggering 70,739 charac-
ters in 13 of its 80 planes (Planes 1 through 7

 | 763

CPU
中央処理装置 (chūō shori sōchi) in Japanese.
Central Processing Unit. Usually refers to the
computer itself.

CREN
 See Bitnet.

CS
Computer Science or Chinese Simplified.

CSS
Cascading Style Sheets. A language for con-
trolling the presentation of web pages, to in-
clude color, fonts, layout, and other aspects of
how web pages display.

CT
Chinese Traditional.

CTRON
Central and Communications TRON. See
TRON.

CTS
Computerized Typesetting System.

Cubic spline curve
 See Bézier curve.

Cursive
A smoother, handwritten style of a glyph. Hi-
ragana is an example of a cursive script. Also
called calligraphic writing.

D
点/點 (diǎn) in Chinese. An abbreviation (the
first letter of diǎn) standing for the fourth of
five basic stroke types used as building blocks
for ideographs. Represents diagonal strokes
that are written left to right. See also stroke.

Dakuten
濁点 (dakuten). Refers to the diacritic mark
that serves to transform many kana characters
into their voiced counterparts. For example,
the katakana character ta (タ) is transformed
into da (ダ). Also called nigori (濁り nigori)
and the voiced mark. See also handakuten.

Dangling line breaking
 See push-out-only line breaking.

Data
An android member of the Enterprise-D and
Enterprise-E crew who constantly endeav-
ored to become more human—created by

회의문자/會意文字 (hoeui munja) in Ko-
rean. An ideograph that is built from two
or more primitive elements, which may be
pictographs or simple ideographs. The ideo-
graph 明 is an example, which is composed
of 日 and 月. See also pictograph and simple
ideograph.

CompuServe
An Internet service provider.

Computer
计算机/計算機 (jìsuànjī) or 电脑/電
腦 (diànnǎo) in Chinese, コンピュータ
(konpyūta) or 計算機 (keisanki) in Japanese,
and 컴퓨터 (keompyuteo) or 계산기/計算器
(gyesangi) in Korean.

Control character
制御文字 (seigyo moji) in Japanese. A char-
acter whose purpose is to control printing de-
vices or communication devices as opposed to
actually producing visible marks on a screen
or printer. Carriage return, for example, is a
control character, whereas the letter “A” is a
printable character.

Conversion dictionary
変換辞書 (henkan jisho) in Japanese. The
dictionary that is used by an input method
to convert input into ideographs. Each entry
in this dictionary is a key, along with one or
more names associated with it. The number
of entries in such dictionaries now measure
in the hundreds of thousands. See also input
method, kana-to-kanji conversion, key, and
name.

CP
Code Page. See Code Page.

CPAN
Comprehensive Perl Archive Network. A
huge repository of Perl documentation and
software.

CPGID
Code Page Global Identifier. IBM terminol-
ogy for Code Page. See also Code Page.

CPSI
Configurable PostScript Interpreter.

764 | Appendix d: Glossary

typically found above or below characters. In
the West it is common to see accented char-
acters such as á, à, â, ä, ã, å, and ç. Japanese
examples include the hiragana characters ば
(ba) and ぱ (pa), which are derived from the
basic hiragana character は (ha).

Dialect
A linguistics term that refers to different fla-
vors of a language that are usually spoken in
different regions.

Display PostScript
A special version of PostScript designed for
computer monitor output. It was used as
standard software on the NeXT platform. Ab-
breviated as DPS.

DOS
Disk Operating System.

Dotum
돋움 (dotum) in Korean. The current and
preferred way to refer to sans serif typeface
designs in Korean. See also batang.

DPI
Dots-per-inch. A measurement for device
resolution.

DPRK
조선 민주 주의 인민 공화국/朝鮮民主
主義人民共和國 (joseon minju juui inmin
gonghwaguk). Democratic People’s Republic
of Korea. The official name for North Korea.

DPS
 See Display PostScript.

DTD
Document Type Definition. SGML and XML
terminology that refers to a document’s type
so that it can be interpreted correctly.

DTP
Desktop Publishing.

DVD
Digital Versatile Disc or Digital Video Disc.
A popular storage media, suitable for data or
video.

Dvorak array
A Western keyboard array developed by Au-
gust Dvorak and William Dealey in the 1930s

cyberneticist Dr. Noonien Soong in the Omi-
cron Theta colony. Also, information.

DBCS
Double-Byte Character Set. A character set
whose characters are represented by two
bytes.

DBCS-EUC
A double-byte character set encoded accord-
ing to the specification of EUC.

DBCS-Host
A double-byte character set with an encoding
method designed for running on IBM host
computers.

DBCS-PC
A double-byte character set with an encoding
method designed for running on PCs.

DEC
Digital Equipment Corporation.

DEC Kanji
The Japanese character set and encoding
defined by DEC. There are two implementa-
tions: DEC Kanji and Super DEC Kanji.

Decimal
十进制/十進制 (shíjìnzhì) in Chinese, 十進
法 (jisshinhō) in Japanese, and 십진법/十進
法 (sipjinbeop) in Korean. Base 10. A numeric
notation that uses 10 possible values, ranging
from 0 to 9.

Design space
 See em-square.

Designator sequence
A sequence used by some ISO-2022–based
encodings for indicating the character sets to
use when shifting characters are used. Unlike
an escape sequence, a designator sequence
does not actually change character sets. See
also escape sequence.

Diachronic
A linguistics term that refers to linguis-
tic changes that occur between different
periods.

Diacritic mark
A mark or ornament that serves to annotate
characters with additional information, usu-
ally a variant reading. Diacritic marks are

 | 765

Em-square
A square space whose height and width
roughly corresponds to the width of the letter
“M.” Also called a mutton. “Em-box” or “de-
sign space” are sometimes thought to be bet-
ter terms because some typeface designs have
a nonsquare (rectangular) design space.

Emacs
An extremely powerful text editor that has
been ported to a variety of platforms.

en
The two-letter language code for English.
Also, half of an em. See also em.

En dash
A dash that is the half the width of an em
dash. See also em dash.

Encoding
符号化 (fugōka) in Japanese. The method
of defining the correspondence between nu-
merical character codes and the final print-
able glyphs. For instance, 0x41 is the ASCII
(JIS-Roman) code for the uppercase Latin
character “A.” U+0041 is the corresponding
Unicode code point for the same character.

Encoding form
Also called character encoding form, which
Unicode defines as the mapping from a char-
acter set definition to the actual code units
used to represent the data. Unicode’s three
encoding forms are UTF-8, UTF-16, and
UTF-32. See also UTF-8, UTF-16, and UTF-
32.

Encoding scheme
Also called character encoding scheme, which
Unicode defines as character encoding form
plus byte serialization. Unicode’s seven en-
coding schemes are UTF-8, UTF-16, UTF-
16BE, UTF-16LE, UTF-32, UTF-32BE, and
UTF-32LE. See also encoding form, UTF-8,
UTF-16, UTF-16BE, UTF-16LE, UTF-32,
UTF-32BE, and UTF-32LE.

Escape character
エスケープ文字 (esukēpu moji) in Japanese.
The control character (0x1B or U+001B) that
is used as part of an escape sequence. Escape
sequences are used in ISO-2022-JP encodings

as an improvement over the QWERTY key-
board array. See also QWERTY array.

EACC
East Asian Character Code. The common
reference to ANSI Z39.64-1989, East Asian
Character Code For Bibliographic Use. Based
on CCCII. See also CCCII.

EB
電子ブック (denshi bukku) in Japanese. Elec-
tronic book.

EBCDIC
Extended Binary-Coded-Decimal Inter-
change Code. An encoding for the ASCII
character set standard developed by IBM for
use on IBM-based computers. Used in con-
junction with several double-byte charac-
ter sets and encodings, such as DBCS-Host
(IBM), JEF (Fujitsu), and KEIS (Hitachi). Re-
quires eight bits for representation.

EBCDIK
Extended Binary-Coded-Decimal Inter-
change Kana Code. A Japanese version of
EBCDIC that includes uppercase Latin char-
acters, numerals, symbols, half-width kataka-
na, and control characters. See also EBCDIC.

Ecma
European Computer Manufacturers Associa-
tion.

Electronic Character Set
 See Coded Character Set.

Elvis
The King of Rock ’n Roll. Also, a vi clone writ-
ten by Steve Kirkendall for which Japanese
(jelvis) and Korean (Hangul Elvis) versions
exist.

em
Twice the width of an en. Refers to the width
of the uppercase “M,” which is typically the
widest glyph in a font. See also en.

Em-box
 See em-square.

Em dash
A dash that is the same width as an uppercase
“M.” See also em.

766 | Appendix d: Glossary

Unicode version 3.0. See also CJK Unified
Ideographs.

Extension B
The block of 42,711 additional CJK Unified
Ideographs that were added to Plane 2 in
Unicode version 3.1. See also CJK Unified
Ideographs.

Extension C
The block of 4,149 additional CJK Unified
Ideographs that were added to Plane 2 in
2008. See also CJK Unified Ideographs.

FAGAT
Forum of Asian Graphic Arts Technology. A
technology forum sponsored by JAGAT. See
also JAGAT.

Fangsong
仿宋 (fǎngsòng) or 仿宋体 (fǎngsòngtǐ). The
Chinese semi-script typeface style.

FAQ
Frequently Asked Questions. A document
that contains answers to frequently asked
questions. Documentation often includes a
FAQ section whose purpose is to preemptive-
ly answer a significant number of common
questions, thus serving to minimize the num-
ber of questions that are subsequently asked.

FBM
Fusion Battle Mistress.

FDPC
文字フォント開発・普及センター (moji fonto
kaihatsu fukyū sentā). Font Development and
Promotion Center. The now-defunct consor-
tium, which is part of JSA, that developed the
Heisei series of Japanese typefaces.

FEP
Front-End Processor. A common name for
early input methods, which were so named
from the way they captured keyboard key-
strokes before they were sent to the current
application. These keyboard keystrokes were
processed, converted into a mixture of kana
and kanji, and finally sent to the current ap-
plication. See also input method.

FH
FreeHand.

to switch between one- and two-byte modes.
 See also escape sequence, ISO-2022-JP, ISO-
2022-JP-1, and ISO-2022-JP-2.

Escape sequence
エスケープシーケンス (esukēpu shīkensu) in
Japanese. A string of characters that contains
one or more escape characters, and is used to
signify a shift in mode of some sort. In the
case of the Japanese character set, it is used
to shift between one- and two-byte modes,
and to shift between different character sets
or different versions of the same character set.
 See also shifting characters.

eTRON
Entity and Economy TRON. See TRON.

EUC
Extended Unix Code. There are locale-
specific instances of EUC encoding, each of
which can specify up to four code sets.

EUC-CN
The instance of EUC encoding for China,
which uses two of the four code sets, and sup-
ports the GB 1988-89 and GB 2312-80 char-
acter sets.

EUC-JP
The instance of EUC encoding for Japan,
which uses all four code sets, and supports
the JIS X 0201-1997, JIS X 0208:1997, and JIS
X 0212-1990 character sets.

EUC-KR
The instance of EUC encoding for Korea,
which uses two of the four code sets, and sup-
ports the KS X 1003:1993 and KS X 1001:2004
character sets. Sometimes called Wansung.

EUC-TW
The instance of EUC encoding for Taiwan,
which uses three of the four code sets, and
supports the CNS 5205-1989 and CNS 11643-
2007 character set standards.

External character
 See gaiji, system-defined character, system-
specific character, and user-defined character.

Extension A
The block of 6,582 additional CJK Unified
Ideographs that were added to the BMP in

 | 767

FTP
File Transfer Protocol. A common way to
move files between host computers, and
sometimes between a host computer and a
personal computer.

Full-width
全角 (quánjiǎo) or 全形 (quánxíng) in Chi-
nese, 全角 (zenkaku) in Japanese, and 전각/
全角 (jeongak) in Korean. A character whose
shape occupies a space roughly that of a
square. Most CJKV characters are considered
to be full-width. See also half-width.

Furigana
振り仮名 (furigana). See ruby.

G
ゴジラ (gojira). Godzilla. The King. The King
of the Monsters. A life form first encountered
in 1954 in Japan, and subsequently went
through nuclear meltdown in late 1995. Sur-
vived by Junior Godzilla. A leaner (and mean-
er) version of Godzilla appeared in 1998. G
sometimes refers to Gamera (ガメラ gamera),
a giant turtle-like creature. Abbreviation for
Glock (the G33, chambered in the potent .357
Sig, happens to be my favorite). Also, an old
unit of typographic measurement used strict-
ly for type size, written 号数/號數 (hàoshù)
in Chinese, 号数 (gōsū) in Japanese, and 호
수/號數 (hosu) in Korean. Unlike other typo-
graphic units of measurement, the scale is not
absolute but relative, and the larger the value
of G, the smaller the relative size. Though
similar, the systems used in Japan and China
differ in subtle ways. In Japan, for example,
0G (the largest size) is equivalent to 42 points,
and 8G is equivalent to 4 points.

G11N
Abbreviation for globalization. See globaliza-
tion.

Gaiji
外字 (gaiji). The name given to desired
glyphs that are not available in the selected
font. Sometimes called external character. See
also system-defined character, system-specific
character, and user-defined character.

FIT
Focus on Integrated Typesetting (飞腾 fēiténg;
meaning “to soar”). The name of a page-
composition system developed by Peking
University Founder Group.

Fixed-length encoding
An encoding method whereby every character
in the character set is represented by the same
number of bits or bytes. Examples include
UCS-2, UCS-4, UTF-32, and EUC complete
two-byte format. Actually, ASCII encoding, if
used by itself, is fixed-length. See also modal
encoding and non-modal encoding.

fj
From Japan. The initial two letters found in
the names of Usenet Newsgroups distributed
within Japan. These newsgroups were also
available outside of Japan.

FM
Frequency Modulation or FrameMaker.

FM-R
The name of the PC series of computers pro-
duced by Fujitsu.

FMapType
A PostScript language key (integer) that indi-
cates which mapping algorithm to use when
interpreting the sequence of bytes in a string.
All PostScript Type 0 (composite) fonts must
specify an FMapType.

Font
The instantiated form of a typeface. Unicode
defines “font” as a collection of glyphs used
for the visual depiction of character data. See
also typeface.

Fontworks
フォントワークス (fontowākusu). A major
Japanese type foundry. See also Morisawa,
Ryobi, and Shaken.

FSF
Free Software Foundation.

FSH
Fusion Steel Heart.

FSS-UTF
File System Safe UTF. See UTF-8.

768 | Appendix d: Glossary

GB 8565.2-88
The standard on which ISO-IR-165:1992 is
based. It is based on GB 2312-80, but pro-
vides additional characters. See also GB 2312-
80 and ISO-IR-165:1992.

GB 13000.1-93
China’s version of the ISO 10646 standard,
and equivalent to Unicode version 1.1. See
also ISO 10646.

GB 18030-2005
The latest version of the most widely imple-
mented character set standard in China. It
can be considered an extended version of
GBK, and is code-point–compatible with
Unicode. Its original version was dated 2000.
The 2005 version acknowledged six regional
scripts and CJK Unified Ideographs Exten-
sion B. See also GBK.

GBK
An extended version of GB 2312-80 that
includes additional hanzi to complete the
URO, and was later extended to become GB
18030-2000. The “K” in GBK represents the
first sound in the Chinese word meaning “ex-
tension” (扩展 kuòzhǎn). See also GB 18030-
2005 and URO.

GB/T
The “T” is short for “Tuijian” (推荐 tuījiàn),
which means “recommended” (as opposed to
“forced” or “mandatory”) in Chinese. See GB
for the meaning of GB.

GB/T 12345-90
The traditional analog of GB 2312-80—con-
tains 2,180 hanzi not found in GB 2312-80.
Most of these are hanzi replacements, but
some are placed into additional rows, specifi-
cally rows 88 and 89. Also known as GB1. See
also GB 2312-80.

GB/T 13131-2XXX
The traditional analog of GB 7589-87. Also
known as GB3. Not yet published. See also
GB 7589-87.

GB/T 13132-2XXX
The traditional analog of GB 7590-87. Also
known as GB5. Not yet published. See also
GB 7590-87.

Gaiji solution
A solution that makes it possible to inter-
change documents that contain nonstan-
dard glyphs to systems that do not have such
glyphs installed, and allows such glyphs to be
properly used, displayed, and printed.

Gairaigo
外来語 (gairaigo). Means “foreign word,” but
usually refers to loan words written using
katakana.

Gakushū Kanji
学習漢字 (gakushū kanji). The 1,006 kanji
that are formally taught in the Japanese edu-
cational system during the first six grades.
Originally enumerated 996 kanji in 1977.

GB
Short for “Guo Biao” (国标 guóbiāo), which
is, in turn, short for “Guojia Biaozhun” (国
家标准 guójiā biāozhǔn), and means “Na-
tional Standard” in Chinese. Also, gigabyte.
1,073,741,824 or 1,0243 bytes.

GB 1988-89
The standard that defines GB-Roman, which
is the Chinese equivalent of ASCII. Originally
designated GB 1988-80. See GB-Roman.

GB 2311-80
The Chinese version of the ISO 2022:1994
standard. See ISO 2022:1994.

GB 2312-80
The standard that describes the basic Chi-
nese character set as used in China (PRC).
Also known as GB0. It enumerates 7,445
characters.

GB 6345.1-86
The standard that details additions (132 char-
acters) and corrections for GB 2312-80. See
GB 2312-80.

GB 7589-87
The standard that enumerates 7,237 addition-
al hanzi. Also known as GB2.

GB 7590-87
The standard that enumerates 7,039 addition-
al hanzi. Also known as GB4.

 | 769

preferred way in which to refer to sans serif is
now dotum. This is roughly equivalent to the
sans serif typeface style in Western typogra-
phy. See also dotum and sans serif.

GPOS
Glyph POSitioning.

GR
Graphic Right. Usually refers to an encoding
whose bytes have the eighth bit turned on,
such as EUC.

Grep
Global regular expression print. The standard
regex-based pattern-matching utility, which
is standard on most Unix and Unix-like
systems.

GSUB
Glyph SUBstitution.

gTLD
Generic Top-Level Domain. See also ccTLD
and TLD.

GUI
Graphical User Interface.

Gukja
국자/國字 (gukja). See hanguksik hanja.

H
齿数/齒數 (chǐshù) in Chinese, 歯数 (hasū)
in Japanese, and 치수/齒數 (chisu) in Korean.
Unit of typographic measurement equivalent
to 0.25mm, and its correct usage is strictly for
measurements other than type size. Also, 横
(héng) in Chinese. An abbreviation (the first
letter of héng) standing for the first of five ba-
sic stroke types used as building blocks for
ideographs. Represents horizontal strokes.
 See also stroke.

Half-width
半角 (bànjiǎo) or 半形 (bànxíng) in Chinese,
半角 (hankaku) in Japanese, and 반각/半角
(bangak) in Korean. A character whose shape
occupies a space half that of a square. ASCII
characters as used in the West are typically
considered half-width. See also full-width.

Han Unification
The effort on the part of the Unicode Con-
sortium to collapse the Chinese, Japanese,

GB-Roman
The Chinese equivalent of the ASCII charac-
ter set and encoding. The name of the stan-
dard that defines this character set is called
GB 1988-89. See GB 1988-89.

GID
Glyph IDentifier. The key used to access out-
line (glyph) data within ‘sfnt’ resources, spe-
cifically in ‘glyf ’ (TrueType) or ‘CFF’ (Post-
Script Type 2 charstring) tables.

GIF
Graphics Interchange Format.

GL
Graphic Left. Usually refers to an encoding
whose bytes have the eighth bit turned off,
such as ISO-2022.

Globalization
Abbreviated as G11N. Equivalent to interna-
tionalization, but includes the business and
marketing aspects. Globalization is not nec-
essarily the same thing as global domination.
 See also internationalization and localization.

Gloss
 See ruby.

Glyph
A specific instance of a character. A classic
example is that “f ” and “i” are two separate
glyphs, but you can fuse these two characters
into a single glyph called a ligature: fi. See also
ligature.

GNU
Short for “GNU is Not Unix.” A series of
Unix-based software that is provided free of
charge. GNU software (and other software
that seeks protection) falls under the terms of
the GNU General Public License, which pro-
tects software from being exploited for com-
mercial uses. It ensures that there will always
be a large body of software freely available.

Gothic
ゴシック (goshikku) or ゴシック体 (goshik-
kutai) in Japanese and 고딕 (godik) or 고딕
체/고딕體 (godikche) in Korean. The name
commonly given to the Japanese typeface
style in which horizontal and vertical strokes
are of the same relative weight. In Korean, the

770 | Appendix d: Glossary

by developing members of FDPC. See also
FDPC.

Hexadecimal
十六进制/十六進制 (shíliùjìnzhì) in Chi-
nese, 十六進法 (jūrokushinhō) in Japanese,
and 십육진법/十六進法 (sipyukjinbeop) in
Korean. Base 16. A numeric notation that
uses 16 possible values, specifically 0 through
9 and A through F. The most common nota-
tion used in the computer world.

Hiragana
平仮名 (hiragana). The cursive Japanese
syllabic script. Together with katakana is
collectively called kana. See also kana and
katakana.

HK
Heckler & Koch, the name of a famous Ger-
man arms manufacturer. My wife’s initials.
Also, the two-letter country code for Hong
Kong.

HKDNR
Hong Kong Domain Name Registration
Company. The name of Hong Kong’s NIC.
 See also NIC.

HKSCS
 See Hong Kong SCS-2008.

HOG
Heavy Ordinance Grade.

Hojo Kanji
補助漢字 (hojo kanji). Supplemental kanji.
The name given to the kanji contained in JIS
X 0212-1990. These kanji are ordered by radi-
cal, then by total number of strokes.

Hong Kong
香港 (xiānggǎng). The name of a Chinese lo-
cale, which became part of China (PRC) in
1997, and is considered an SAR (Special Ad-
ministrative Region). Still considered a sepa-
rate locale from China.

Hong Kong GCCS
Hong Kong Government Chinese Character
Set. A Hong Kong character set that was de-
signed as an extension of Big Five, and was
obsoleted by Hong Kong SCS. See also Hong
Kong SCS-2008.

and Korean versions of ideographs down to
a common code set by eliminating duplica-
tion based on a set of unification rules and
principles.

Handakuten
半濁点 (handakuten). Refers to the circle-like
diacritic mark that serves to transform h-row
kana characters into their p-row counterparts.
For example, katakana ha (ハ) is transformed
into katakana pa (パ). Also called maru (丸
maru; literally means “circle.”) and the semi-
voiced mark. See also dakuten.

Hanging line breaking
 See push-out-only line breaking.

Hanguksik hanja
한국식 한자/韓國式漢字 (hanguksik han-
ja). Korean-made ideographs.

Hangul
한글 (hangeul). The name of the native Ko-
rean script. Each hangul syllable is typically
composed of two or three hangul elements
(called jamo). See also jamo.

Hankaku
半角 (hankaku). Analogous to half-width.
 See half-width.

Hanja
한자/漢字 (hanja). The Korean word for
ideograph. See also ideograph.

Hanmun Gyoyukyong Gicho Hanja
한문 교육용 기초 한자/漢文敎育用基礎
漢字 (hanmun gyoyukyong gicho hanja) in
Korean. The set of 1,800 hanja that all stu-
dents in Korea are expected to learn.

Hanzi
汉字/漢字 (hànzì). The Chinese word for
ideograph. See also ideograph.

Hei
黑 (hēi) or 黑体 (hēitǐ). The Chinese name for
the equivalent of the sans serif typeface style.
黑 literally means “black” in Chinese. See also
sans serif.

Heisei
平成 (heisei). The name of the current Japa-
nese era, which began in 1989. Also the name
of the typefaces that have been produced

 | 771

ID
IDentification, IDentity, or IDentifier. Usu-
ally refers to the user’s name as used to access
a web service or host computer, but can also
be used to identify objects.

Ideograph
汉字/漢字 (hànzì) in Chinese, 漢字 (kanji)
in Japanese, 한자/漢字 (hanja) in Korean,
and chữ Hán (𡨸漢) in Vietnamese. The char-
acters that originated in China and are used
in other East Asian locales, such as Hong
Kong, Japan, Korea, Singapore, Taiwan, and
Vietnam.

Ideographic Rapporteur Group
 See IRG.

Ideographic Variation Sequence
IVS. A registered Unicode sequence consist-
ing of a CJK Unified Ideograph, which serves
as a Base Character, followed by Variation
Selector, and corresponds to a variant form
of the Base Character. See also Unicode Varia-
tion Sequence.

IDN
Internationalized Domain Name.

IE
An abbreviation for Latin id est. Also, Inter-
net Explorer.

IEC
International Electrotechnical Commission.
Often associated with ISO standards as ISO/
IEC, meaning that the standard is a joint ef-
fort between ISO and IEC. See also ISO.

IEEE
Institute of Electrical and Electronics
Engineers.

IETF
Internet Engineering Task Force. A volunteer
organization that deals with networking is-
sues on the Internet. Also refers to the docu-
ments produced by this organization. These
are also called Internet Drafts. They are then
called RFCs when they are no longer in draft
status. See also RFC.

IIJ
Internet Initiative Japan.

Hong Kong SCS-2008
Hong Kong Supplementary Character Set,
2008 Revision. Sometimes further abbrevi-
ated as HKSCS or HKSCS-2008. The Hong
Kong character set that is designed as an
extension of Big Five and as a subset of Uni-
code. Its current 2008 version includes 5,009
characters, 4,568 of which are hanzi. Previous
versions were dated 1999, 2001, and 2004.
Superceded Hong Kong GCCS. See also Hong
Kong GCCS.

HP
Hewlett-Packard.

HP-UX
Hewlett-Packard’s version of the Unix operat-
ing system.

HTML
HyperText Markup Language. An application
of SGML, and the standard language used to
write content-specifying documents for the
Web.

I18N
Abbreviation for internationalization. See in-
ternationalization.

IANA
Internet Assigned Numbers Authority. See
ICANN.

IBM
アイ・ビー・エム (ai bī emu) in Japanese. In-
ternational Business Machines Corporation.

IBM-eucJP
A specific instance of DBCS-EUC to include
ASCII/JIS-Roman and half-width katakana.

IBM-932
A specific instance of DBCS-PC to include
ASCII/JIS-Roman and half-width katakana.

IBM Japanese
The name of the Japanese character set as de-
fined by IBM. Some implementations include
IBM-eucJP and IBM-932.

ICANN
Internet Corporation for Assigned Names
and Numbers.

ICU
International Components for Unicode.

772 | Appendix d: Glossary

Internationalization
Abbreviated as I18N. The process of architect-
ing software (or hardware) in a flexible man-
ner such that it becomes an easy task to adapt
or localize to another country with different
languages. Internationalization also makes it
possible to use more than one script on com-
puters. There are two main implementations
of internationalization: the locale model and
the multilingual model. See also globalization,
locale model, localization, and multilingual
model.

Internet
The name given to the world-wide network
of computers.

IP
Internet Protocol.

IRG
Ideographic Rapporteur Group. Formerly
called the CJK Joint Research Group (CJK-
JRG). Its full designation is ISO/IEC JTC1/
SC2/WG2/IRG, which is an abbreviated
form of ISO/IEC Joint Technical Committee
1, Subcommittee 2, Working Group 2, Ideo-
graphic Rapporteur Group.

Iroha
いろは or 伊呂波 (iroha). A Japanese col-
lation sequence based on the same sounds
from the 50 Sounds order. See also 50 Sounds
order.

IRV
International Reference Version.

ISO
国際標準化機構 (kokusai hyōjunka kikō)
in Japanese. International Organization for
Standardization.

ISO 639-1:2002
A standard that establishes two-letter lower-
case language codes, used as the first part of a
locale designation.

ISO 639-2:1998
A standard that establishes three-letter lower-
case language codes, used as the first part of a
locale designation.

IKIS
Interactive Kanji Information System. The
Japanese character set and encoding devel-
oped by Nippon Data General.

IM
Instant Messenger. Chances are it refers to in-
put method in this book. See input method.

IME
Input Method Editor. See input method.

InDesign
Adobe Systems’ page-composition applica-
tion whose Japanese version provides an
unprecedented level of support for high-end
Japanese typography.

Inline conversion
インライン変換 (inrain henkan) in Japanese.
The ability to handle Japanese input at the
cursor position rather than in a dedicated
window.

Indexing
The process of locating the encoded position
of a character, thus providing access to it.

INFI
Busse Combat’s proprietary blade steel.

Information interchange
信息交换 (xìnxī jiāohuàn) or 資訊交換
(zīxùn jiāohuàn) in Chinese, 情報交換 (jōhō
kōkan) in Japanese, and 정보교환/情報交換
(jeongbo gyohwan) in Korean. The process of
moving information from one hardware or
software configuration to another with no
loss of data.

Information processing
信息处理 (xìnxī chǔlǐ) or 資訊處理 (zīxùn
chǔlǐ) in Chinese, 情報処理 (jōhō shori) in
Japanese, and 정보처리/情報處理 (jeongbo
cheori) in Korean. The process of manipulat-
ing digitally encoded information at different
levels. Japanese code and text processing are
forms of information processing.

Input method
The software that enables users to input char-
acters from a large character set using a lim-
ited number of keyboard keys.

 | 773

ISO 3166-1:2006
A standard that establishes two-letter upper-
case country codes, used as the second part of
a locale designation.

ISO 6429:1992
A standard that describes the control charac-
ter range as used in ASCII.

ISO 8859
A standard divided in 15 parts that describes
extensions to the ASCII character set to han-
dle other European languages.

ISO 8879:1986
The standard that describes SGML. See also
SGML.

ISO 9541:1991
A set of three standards that describe the
standard digital font format. Based on the
Type 1 font format by Adobe Systems.

ISO 10646
The standard that details the ISO version of
the Unicode character set; kept in sync with
Unicode through amendments and new
versions. National analogs of this standard
include GB 13000.1-93 (China), CNS 14649-
1:2002 and CNS 14649-2:2003 (Taiwan), JIS
X 0221:2007 (Japan), and KS X 1005-1:1995
(Korea).

ISO 32000-1:2008
The ISO standard that corresponds to PDF
version 1.7. See also PDF.

ISO-IR-165:1992
An extension to the GB 2312-80 character
set that combines all other known extensions
(specifically, GB 6345.1-86 and GB 8565.2-
88). See GB 2312-80, GB 6345.1-86, and GB
8565.2-88.

ISO/TR 11941:1996
The first international standard that docu-
ments methods for transliterating Korean
text using Latin characters.

ISP
Internet Service Provider.

ITC
International Typeface Corporation.

ISO 646:1991
Identical to CJKV-Roman except for some
minor locale-specific differences, such as cur-
rency symbols. Equivalent to ASCII. See also
ASCII and CJKV-Roman.

ISO 2022:1994
The standard that details the escape
sequences used for encoding character sets
beyond ISO 646:1991 or ASCII. This standard
forms the foundation for ISO-2022 and EUC
encodings.

ISO-2022-CN
An encoding method, based on techniques
described in ISO 2022:1994, for handling
a mixture of ASCII, GB 2312-80, and CNS
11643-1992 (Planes 1 and 2). Described in
RFC 1922.

ISO-2022-CN-EXT
An encoding method, based on techniques
described in ISO 2022:1994, for handling
a mixture of ASCII, GB 2312-80, GB/T
12345-90, GB 7589-87, GB/T 13131-2XXX,
GB 7590-87, GB/T 13132-2XXX, and CNS
11643-1992 (all planes). Described in RFC
1922.

ISO-2022-JP
An encoding method, based on techniques
described in ISO 2022:1994, for handling a
mixture of ASCII and JIS X 0208:1997. De-
scribed in RFC 1468.

ISO-2022-JP-1
An encoding method, based on techniques
described in ISO 2022:1994, for handling JIS
X 0212-1990. Described in RFC 2237.

ISO-2022-JP-2
An encoding method, based on techniques
described in ISO 2022:1994, for handling JIS
X 0212-1990 and other character sets, such as
GB 2312-80, KS X 1001:1992, and two parts
of ISO 8859. Described in RFC 1554.

ISO-2022-KR
An encoding method, based on techniques
described in ISO 2022:1994, for handling a
mixture of ASCII and KS X 1001:1992. De-
scribed in RFC 1557.

774 | Appendix d: Glossary

Japanization
日本語化 (nihongoka). The localization of
software to the Japanese market. See also
localization.

Jaso
자소/字素 (jaso). See jamo.

Java
The most populous island of Indonesia, and
a popular nickname for coffee. Incidentally,
a programming language designed to be
truly cross-platform. Salient features include
object-oriented–only programming, cross-
platform execution, associative arrays, broad
Unicode support, and C-like syntax. Also ru-
mored to be 100% secure (but, as all security
specialists know, 100% security is a myth).
Developed by Sun Microsystems.

JEF
Japanese processing Extended Feature. A
character set and encoding developed by Fu-
jitsu. JIS C 6226-1978 is a subset.

Jinmei-yō Kanji
人名用漢字 (jinmei-yō kanji). The 983 kanji,
above and beyond Jōyō Kanji, specified by
the Japanese government as appropriate for
use in writing personal names. See also Jōyō
Kanji.

JIS
日本工業規格 (nihon kōgyō kikaku). Its orig-
inal symbol is 〄, and its current symbol is �.
ジス (jisu). Japanese Industrial Standard. The
name of the standards established by JISC.
Also the name of the encoding method used
for the JIS X 0208:1997 and JIS X 0212-1990
character set standards. See also JISC.

JIS78
Short for JIS C 6226-1978. See JIS C 6226-
1978.

JIS83
Short for JIS X 0208-1983. See JIS X
0208:1997.

JIS90
Short for JIS X 0208-1990. Can sometimes be
confused with JIS X 0212-1990 in some con-
texts. See JIS X 0208:1997.

ITRON
Industrial TRON. See TRON.

IVS
 See Ideographic Variation Sequence.

J10N
Abbreviation for Japanization. See Japaniza-
tion.

ja
The two-letter language code for Japanese.
Also, “yes” in German.

JAGAT
日本印刷技術協会 (nihon insatsu gijutsu
kyōkai). Japan Association of Graphic Arts
Technology. The association that sponsors
FAGAT. See also FAGAT.

Jaggies
The uneven effect when fixed-size bitmapped
fonts are scaled to large sizes and subsequent-
ly displayed or printed.

JAIN
Japanese Academic InterNetwork.

Jamo
자모/字母 (jamo). Hangul elements. Each
jamo is equivalent to a character in an alpha-
bet, either a consonant or vowel.

Japan
日本 (nihon or nippon). The country in which
the Japanese language is spoken.

JAPAN.INF
The name of the (now horribly obsolete) on-
line document on which Understanding Japa-
nese Information Processing was based. See
also CJK.INF.

Japanese
日本語 (nihongo) in Japanese. The language
spoken in Japan.

Japanese justification
 See character spanning.

Japanese line wrapping
 See line breaking.

Japanese punctuation logic
 See line breaking.

 | 775

JIS C 6228-1984
The original designation for what is now
known as JIS X 0202:1998. The name changed
on March 1, 1987. See JIS X 0202:1998.

JIS C 6232-1984
The original designation for what is now
known as JIS X 9051-1984. The name changed
on March 1, 1987. See JIS X 9051-1984.

JIS C 6233-1980
The original designation for what is now
known as JIS X 6002-1985. The name changed
on March 1, 1987. See JIS X 6002-1985.

JIS C 6234-1983
The original designation for what is now
known as JIS X 9052-1983. The name changed
on March 1, 1987. See JIS X 9052-1983.

JIS C 6235-1984
The original designation for what is now
known as JIS X 6003-1989. The name changed
on March 1, 1987. See JIS X 6003-1989.

JIS C 6236-1986
The original designation for what is now
known as JIS X 6004-1986. The name changed
on March 1, 1987. See JIS X 6004-1986.

JIS encoding
Usually equivalent to ISO-2022-JP encoding.
The most basic Japanese encoding method
that uses escape sequences to shift between
one- and two-byte modes. A modal encod-
ing method. See ISO-2022-JP and modal
encoding.

JIS Level 1 kanji
JIS 第 1 水準漢字 (JIS daiichi suijun kanji).
The name given to the 2,965 characters
that constitute the first set of kanji in JIS X
0208:1997. Ordered by reading (usually ON
reading). See also JIS X 0208:1997.

JIS Level 2 kanji
JIS 第 2 水準漢字 (JIS daini suijun kanji).
The name given to the 3,390 characters that
constitute the second set of kanji in JIS X
0208:1997. The 1978 version (JIS C 6226-
1978) had 3,384 such kanji, and the 1983 ver-
sion (JIS X 0208-1983) had 3,388 such kanji.
Ordered by radical, and then by total number
of strokes. See also JIS X 0208:1997.

JIS97
Short for JIS X 0208:1997. See JIS X
0208:1997.

JIS2000
Short for JIS X 0213:2000, referring to the
original version of the JIS X 0213 standard that
was released in 2000. See JIS X 0213:2004.

JIS2004
Short for JIS X 0213:2004, referring to the
2004 revision of the JIS X 0213 standard. See
JIS X 0213:2004.

JIS array
JIS 配列 (JIS hairetsu). The most widely used
Japanese keyboard array. Specified in the
standard JIS X 6002-1985. Like the QWERTY
keyboard array in the West, it is also the most
inefficient. Also called Old-JIS array.

JISC
日本工業標準調査会 (nihon kōgyō hyōjun
chōsakai). Japanese Industrial Standards
Committee. The name of the organization
that establishes JIS standards.

JISCII
Japanese Industrial Standard Code for Infor-
mation Interchange. An improper reference
to the Japanese character set standards estab-
lished by JIS. More correctly known as simply
JIS. See JIS.

JIS C 6220-1976
The original designation of what is now
known as JIS X 0201-1997. The name changed
on March 1, 1987. See JIS X 0201-1997.

JIS C 6225-1979
The original designation of what is now
known as JIS X 0207-1979. The name changed
on March 1, 1987. See JIS X 0207-1979.

JIS C 6226-1978
The first double-byte character set. Devel-
oped in 1978 by Japanese Industrial Stan-
dards. Three revisions followed, first in 1983,
second in 1990, and the latest in 1997. See JIS
X 0208:1997.

JIS C 6226-1983
The original designation of what is now
known as JIS X 0208-1983. The name changed
on March 1, 1987. See JIS X 0208:1997.

776 | Appendix d: Glossary

characters are enumerated, 5,801 of which are
kanji.

JIS X 0213:2004
The 2004 revision of the JIS X 0213:2000 that
added 10 kanji, bringing the total number of
characters to 4,354. Its characters are in two
planes. 1,259 of its kanji are referred to as JIS
Level 3 kanji, and the remaining 2,436 are
referred to as JIS Level 4 kanji. The original
version was dated 2000.

JIS X 0221:2007
Japan’s version of ISO 10646. Previous ver-
sions were dated 1995 and 2001. See ISO
10646.

JIS X 4051:2004
The standard that describes Japanese line-
layout rules. Originally published in 1993
as JIS X 4051-1993. A 1995 version was also
published.

JIS X 4061-1996
The standard that sets forth the rules for sort-
ing Japanese text.

JIS X 4062:1998
The standard that establishes an exchange
format for Japanese input method conversion
dictionaries.

JIS X 4161-1993
The standard (part 1 of 3) that describes the
standard digital font format. Based on the
Type 1 font format by Adobe Systems.

JIS X 4162-1993
The standard (part 2 of 3) that describes the
standard digital font format. Based on the
Type 1 font format by Adobe Systems.

JIS X 4163-1994
The standard (part 3 of 3) that describes the
standard digital font format. Based on the
Type 1 font format by Adobe Systems.

JIS X 6002-1985
The standard that describes the specifications
for the JIS keyboard array. See JIS array.

JIS X 6003-1989
The standard that describes the layout of a
kanji tablet, a large input device used to input
kanji directly. See kanji tablet.

JIS Level 3 kanji
JIS 第 3 水準漢字 (JIS daisan suijun kanji).
The first set of 1,259 kanji enumerated by JIS
X 0213:2004. Also, a name sometimes given
to the kanji in JIS X 0212-1990, though the
correct reference to JIS X 0212-1990 is Hojo
Kanji. See also Hojo Kanji, JIS X 0212-1990,
and JIS X 0213:2004.

JIS Level 4 kanji
JIS 第 4 水準漢字 (JIS daiyon suijun kanji).
The second set of kanji, 2,436 in total, enu-
merated by JIS X 0213:2004. See also JIS X
0213:2004.

JIS order
The order in which characters appear in the
Japanese character set standards published by
JSA.

JIS-Roman
The Japanese equivalent of the ASCII charac-
ter set and encoding. The name of the stan-
dard that defines this character set is called
JIS X 0201-1997. See JIS X 0201-1997.

JIS sorting
A sort done in JIS order. See also JIS order.

JIS X 0201-1997
The standard that describes the JIS-Roman
and half-width katakana character sets, along
with their encodings.

JIS X 0202:1998
The Japanese version of ISO 2022:1994. See
ISO 2022:1994.

JIS X 0207-1979
The Japanese version of ISO 6429:1992. See
ISO 6429:1992.

JIS X 0208:1997
The 1997 revision of the basic Japanese
character set standard, with no changes to
the number or allocation of characters. The
previous version, JIS X 0208-1990, enumer-
ated 6,879 characters. Originally issued as JIS
C 6226-1978. A 1983 version was also pub-
lished. Its characters are now considered part
of JIS X 0213:2004. See JIS X 0213:2004.

JIS X 0212-1990
The standard that describes the supplement
to the Japanese character set standard. 6,067

 | 777

JSA
日本規格協会 (nihon kikaku kyōkai). Japa-
nese Standards Association. The publisher of
the JIS standards.

JTRON
Java TRON. See TRON.

JUNET
Japan Unix Network. The original designa-
tion for the Internet in Japan. See also JP.

K
Kilobyte. 1,024 bytes.

Kai
楷 (kǎi) or 楷体 (kǎitǐ). The Chinese script
typeface style.

Kana
仮名 (kana). The term that collectively refers
to hiragana and katakana. See also hiragana
and katakana.

Kana-to-kanji conversion
仮名漢字変換 (kana kanji henkan). The pro-
cess of converting kana input into a mixture
of kana and kanji characters. The most com-
mon method of inputting Japanese text.

Kanji
漢字 (kanji). The ideographs that the Japanese
borrowed from the Chinese. These number in
the thousands. See also ideograph.

Kanji compound
漢語 (kango). A Japanese word consisting of
two or more kanji.

Kanji ligature
漢字合字 (kanji gōji). A character composed
of two or more kanji. Typical examples in-
clude ㍻ (平成 heisei; the name of a Japa-
nese era) and ㍿ (株式会社 kabushikigaisha;
meaning “incorporated”).

Kanji tablet
A large tablet containing thousands of indi-
vidual keys, one for each character. This al-
lows for direct kanji input.

Kanji-in
漢字イン (kanji in). The name usually given
to two-byte character escape sequences as
used in ISO-2022-JP encoding. A kanji-in

JIS X 6004-1986
The standard that describes the specificatios
for the New-JIS keyboard array. See New-JIS
array.

JIS X 9051-1984
The standard that illustrates the 16×16 dot-
matrix patterns for the characters specified in
JIS X 0208-1983. See JIS X 0208:1997.

JIS X 9052-1983
The standard that illustrates the 24×24 dot-
matrix patterns for the characters specified in
JIS X 0208-1983. See JIS X 0208:1997.

JIS7
A variation of ISO-2022-JP encoding that en-
codes half-width katakana using seven bits.
 See also ISO-2022-JP.

JIS8
A variation of ISO-2022-JP encoding that
encodes half-width katakana using eight bits.
 See also ISO-2022-JP.

JLE
Japanese Language Environment. The name
of Sun’s extension that provides a Japanese
environment.

JLS
Japanese Language System. The Japanese ex-
tensions for SGI’s Irix operating system.

Johab
조합/組合 (johap). Means “combining”
in Korean. The name of a Korean encod-
ing method that represents each hangul as a
group of three five-bit–encoded jamo. Some-
times considered the opposite of Wansung.
 See also Wansung.

Jōyō Kanji
常用漢字 (jōyō kanji). The 1,945 kanji des-
ignated by the Japanese government as the
ones to be used in public documents such as
newspapers. Superseded Tōyō Kanji in 1981.
 See also Tōyō Kanji.

JP
The two-letter country code for Japan.

JPNIC
Japan Network Information Center.

778 | Appendix d: Glossary

KEIS
Kanji processing Extended Information Sys-
tem. The Japanese character set and encoding
developed by Hitachi.

KEIS78
The version of KEIS which corresponds to JIS
C 6226-1978. See KEIS.

KEIS83
The version of KEIS which corresponds to JIS
X 0208-1983. See KEIS.

Ken
My given name that I write as 剣 (ken), 劍
(traditional form), or 𠝏 (variant form) in
Japanese. Contrary to popular belief, it is not
short for Kenneth. The name that is recorded
on my birth certificate is Ken Roger Lunde.
 See also Lunde.

Kermit
The name of the green frog on the children’s
television program called Sesame Street. Also,
a once-popular file transfer protocol.

Key
The basic text unit that is used to index into
a conversion dictionary in order to obtain the
names associated with the key. See also candi-
date, conversion dictionary, and name.

KIPS
Korean Information Processing System. One
of the original Korean character sets, which
enumerated 2,058 hangul and 2,392 hanja.

ko
The two-letter language code for Korean.

Kokuji
国字 (kokuji). Japanese-made ideographs.

Korea
한국/韓國 (hanguk). The locale or country
where the Korean language is spoken. See
DPRK and ROK.

Korean
한국어/韓國語 (hangukeo). The language
spoken in Korea.

KP
The two-letter country code for North Korea
(Democratic People’s Republic of Korea).

switches the current n-byte-per-character
mode into two-byte mode.

Kanji-out
漢字アウト (kanji auto). The name usually
given to one-byte character escape sequences
as used in JIS encoding. A kanji-out switches
the current n-byte-per-character mode into
one-byte mode.

KanjiTalk
漢字 Talk (kanji tōku). The name of the local-
ized Japanese operating system for the Apple
Macintosh computer. Later called Mac OS-J.
Made obsolete by Mac OS X.

KanjiTalk6 character set
Apple’s Japanese character set standard, used
for KanjiTalk6 and earlier. Based largely on
JIS X 0208-1983 plus NEC Row 13.

KanjiTalk7 character set
Apple’s Japanese character set standard, used
for KanjiTalk 7, which later became known as
Mac OS-J. Based largely on JIS X 0208-1990,
but with additional characters. This character
set was introduced with KanjiTalk version
7.1, and continued to be used until Mac OS X
was introduced.

Katakana
片仮名 (katakana). The square-shaped Japa-
nese syllabary. Usually used for writing recent
words of foreign origin. Together with hira-
gana is collectively called kana. See also kana
and hiragana.

Katakana ligature
片仮名合字 (katakana gōji). A glyph com-
posed of two or more katakana characters,
and for which vertical variants exist. Typi-
cal examples include ㍉ (ミリ miri, meaning
“millimeter”), ㌢ (センチ senchi, meaning
“centimeter”), ㍍ (メートル mētoru, mean-
ing “meter”), ㌕ (キログラム kiroguramu,
meaning “kilogram”), and ㌖ (キロメートル
kiromētoru, meaning “kilometer”).

KB
Kilobyte. 1,024 bytes. Usually written as K.

 | 779

KS C 5715-1992
The original designation of what is now
known as KS X 5002:1992. The name changed
on August 20, 1997. See KS X 5002:1992.

KS C 5861-1992
The original designation of what is now
known as KS X 2901:1992. The name changed
on August 20, 1997. See KS X 2901:1992.

KS-Roman
The Korean equivalent of the ASCII character
set and encoding. The name of the standard
that defines this character set is called KS X
1003:1993. See KS X 1003:1993.

KS X 1001:2004
The standard that describes the basic Korean
character set that enumerates 8,227 charac-
ters. Previously designated KS C 5601-1992.
Previous versions were dated 1987, 1989,
1992, 1998, and 2002.

KS X 1002:2001
The standard that describes the extended
Korean character set, which enumerates ad-
ditional symbols, hangul syllables (in two
blocks), and hanja. Previously designated KS
C 5657-1991. The original version was dated
1991.

KS X 1003:1993
The standard that defines KS-Roman, which
is the Korean equivalent of ASCII. Previously
designated KS C 5636-1993. The original ver-
sion was dated 1989. See KS-Roman.

KS X 1004:1995
The Korean version of ISO 2022:1994. Pre-
viously designated KS C 5620-1995. See ISO
2022:1994.

KS X 1005-1:1995
Korea’s version of ISO 10646. It differs from
ISO 10646-1:1993 in that it is based on Uni-
code version 2.0, which includes all 11,172
hangul syllables. Previously designated KS C
5700-1995. See ISO 10646.

KS X 2901:1992
The standard that describes the EUC encod-
ing for Korean text. Previously designated KS
C 5861-1992.

KPS
KP Standard. See KP.

KPS 9566-97
The first North Korean character set standard
that includes hangul and hanja.

KPS 10721-2000
A subsequent North Korean character set
standard that includes approximately 20,000
hanja.

KR
The two-letter country code for South Korea
(Republic of Korea).

KRNIC
Korea Network Information Center.

KS
한국 공업 규격/韓國工業規格 (hanguk
gongeop gyugyeok). Its symbol is ㉿. Korean
Standard.

KS C 5601-1992
The original designation of what is now
known as KS X 1001:2004. The name changed
on August 20, 1997. See KS X 1001:2004.

KS C 5619-1982
One of the original Korean character set stan-
dards, which enumerated only 51 modern
jamo, 1,316 hangul, and 1,672 hanja. Obso-
leted by KS X 1001:1992.

KS C 5620-1995
The original designation of what is now
known as KS X 1004:1995. The name changed
on August 20, 1997. See KS X 1004:1995.

KS C 5636-1993
The original designation of what is now
known as KS X 1003:1993. The name changed
on August 20, 1997. See KS X 1003:1993.

KS C 5657-1991
The original designation of what is now
known as KS X 1002:2001. The name changed
on August 20, 1997. See KS X 1002:2001.

KS C 5700-1995
The original designation of what is now known
as KS X 1005-1:1995. The name changed on
August 20, 1997. See KS X 1005-1:1995.

780 | Appendix d: Glossary

begin a new line. Also known as Japanese line
wrapping and Japanese punctuation logic.
 See also push-in-first line breaking, push-out-
first line breaking, and push-out-only line
breaking.

Linux
りぬくす (rinukusu) in Japanese and 리눅스
(rinukseu) in Korean. A popular open source
Unix-compatible OS that runs on PCs and
provides outstanding CJKV support.

LISA
Localization Industry Standards Association.
Also, the name of an early computer devel-
oped by Apple.

Little-endian
The opposite of big-endian. See big-endian.

Locale model
A model of internationalization that pre-
defined many attributes that are language- or
country-specific, such as the maximum num-
ber of bytes per character, date formats, time
formats, currency formats, and so on. The
actual attributes are located in a library or lo-
cale object file that is loaded when required.
Locale plays an important part in today’s
internationalization efforts. See also interna-
tionalization and multilingual model.

Localization
地域化 (chiikika) in Japanese. Abbreviated as
L10N. The process of adapting software (or a
product) such that it conforms to the expec-
tations and conventions of a specific coun-
try or region. This often includes translating
menus and dialogs into the target language,
but sometimes involves more complex chang-
es, such as handling special character encod-
ing methods. Other issues to be addressed are
time zones, ways of writing dates and times,
currency, culture, customs, and others. See
also globalization, internationalization, and
Japanization.

Lunde
My family name of Viking origin that can be
written 小林 (kobayashi) in Japanese. Note
that the final “e” is not silent, and is pro-
nounced like the name of the letter. See also
Ken.

KS X 5002:1992
The standard that illustrates the basic Korean
keyboard array, which is based on hangul
elements (jamo). Previously designated KS
C 5715-1992. Previous versions were dated
1982 and 1985.

Kun reading
訓読み (kun yomi). The name given to the
native Japanese reading for a kanji.

KUTEN
区点 (kuten) in Japanese. Literally means
“ward, point” (or “row, cell”). See Plane-Row-
Cell and Row-Cell.

Kyōiku Kanji
教育漢字 (kyōiku kanji). The 881 kanji that
were once formally taught during the first six
years of school in Japan. Replaced by Gakushū
Kanji in 1977. See also Gakushū Kanji.

Kyokasho
教科書 (kyōkasho) or 教科書体 (kyōkashotai).
The Japanese semi-script typeface style. Liter-
ally, it means “textbook” or “textbook-style.”

L10N
Abbreviation for localization. See localiza-
tion.

Latin character
拉丁字母 (lādīng zìmǔ) in Chinese, ラテン
文字 (raten moji) or ローマ字 (rōmaji) in
Japanese, and 로마자 (romaja) in Korean.
The 52 upper- and lowercase characters of the
Latin alphabet.

LATEX
A variation of TEX See TEX.

Ligature
A character whose glyph consists of two or
more characters fused together. An example
is fi, which is the ligature form of the letters
f and i. See also kanji ligature and katakana
ligature.

Line breaking
禁則処理 (kinsoku shori) in Japanese. The
proper handling of CJKV characters at the
beginning and at the ends of lines. Punctua-
tion, such as 「, should not terminate a line.
Likewise, punctuation, such as 」, should not

 | 781

roughly equivalent to the serif typeface style
in Western typography. See also serif.

Ming
 See Mincho.

MITI
通商産業省 (tsūshō sangyō shō). Japan’s Min-
istry of International Trade and Industry.

MITRON
 See μITRON (Micro ITRON).

MM
Multiple master or Mincho Medium.

Modal encoding
An encoding method that uses special se-
quences of one or more characters to signal
a change in mode. Mode changes can include
shifting between one- and two-byte modes,
between different character sets, and between
different versions of the same character set.
Examples include IBM DBCS-Host, ISO-
2022, JEF, KEIS, and UTF-7 encodings. See
also fixed-length encoding and non-modal
encoding.

MOE
Ministry of Education. Written 教育部
(jiàoyùbù) in Chinese, 文部省 (monbushō)
in Japanese, and 교육부/敎育部 (gyoyukbu)
in Korean.

MOR-CODE II
Morisawa’s proprietary character set and
encoding.

Morisawa
モリサワ (morisawa). A major Japanese
type foundry. See also Fontworks, Ryobi, and
Shaken.

M-style array
M 式配列 (emu shiki hairetsu). A keyboard
array designed by Masasuke Morita for NEC.
It not only specifies an ergonomic keyboard
design, but also an input method that allows
users to select what part converts to kanji and
what part does not.

MS
Microsoft Corporation.

MS-DOS
Microsoft Disk Operating System.

M
 See MB.

Machine(-aided) translation
機械 (支援) 翻訳 (kikai [shien] honyaku) in
Japanese. The process of converting text in
one language into another language. Most
software to date cannot fully perform this
task, and pre- or post-editing by a human is
usually required in order to obtain acceptable
results.

Mac OS
Macintosh Operating System.

Mac OS X
Mac OS version 10. The latest and greatest
version of Apple’s OS.

Maru
 See handakuten.

MB
Megabyte. 1,048,576 or 1,0242 bytes.

MBCS
Multiple-Byte Character Set. A character set
that contains characters of mixed encoding
lengths.

McCune-Reischauer
A Latin-based transliteration system for Ko-
rean text that was subsequently adapted by
the Korean Ministry of Education in 1984.

MCI Mail
The name of the Internet service offered by
MCI, a telecommunications company.

MENKUTEN
面区点 (menkuten) in Japanese. Literally
means “plane, ward, point” or “plane, row,
cell.” See Plane-Row-Cell.

μITRON
Micro Industrial TRON. Also called
MITRON. See TRON.

MIME
Multipurpose Internet Mail Extensions.

Mincho
明朝 (minchō) or 明朝体 (minchōtai). The
name commonly given to the Japanese
typeface style in which vertical strokes are
heavy, and horizontal strokes are thin. This is

782 | Appendix d: Glossary

NCR
 See Numeric Character Reference.

NCS
 See Noncoded Character Set.

NEC
日本電気株式会社 (nippon denki kabushiki-
gaisha). Nippon Electronics Corporation.

NEC Kanji
The Japanese character set standard and en-
coding developed by NEC. See NEC.

NEC-JIS
 See NEC Kanji.

New-JIS
新 JIS (shin JIS). A common name given to
the JIS X 0208-1983 character set standard.
Usually refers to the two-byte escape se-
quence used to designate the JIS X 0208-1990
character set in JIS encoding.

New-JIS array
新 JIS 配列 (shin JIS hairetsu). The Japanese
keyboard array that was designed to replace
the JIS keyboard array. It departs from the
JIS array in that there are two kana charac-
ters per key. It failed, and the JIS array is still
the most commonly used among the Japanese
keyboard arrays.

NFC
Normalization Form C. Canonical Decom-
position, followed by Canonical Composi-
tion. See Normalization.

NFD
Normalization Form D. Canonical Decom-
position. See Normalization.

NFKC
Normalization Form KC. Compatibility De-
composition, followed by Canonical Compo-
sition. See Normalization.

NFKD
Normalization Form KD. Compatibility De-
composition. See Normalization.

NIC
Network Information Center.

MS Kanji
Another name for Shift-JIS. See MS and Shift-
JIS.

MSB
Most Significant Bit. The bit with the most
“weight” in an eight-bit sequence (byte). This
bit is what distinguishes seven- and eight-bit
bytes.

MTA
Mail Transfer Agent.

MTRON
Macro TRON. See TRON.

MUA
Mail User Agent. Another way of expressing
an email client.

Multilingual model
A model of internationalization that used
a character set whose repertoire contains
enough characters to represent most of the
world’s scripts. No switching between char-
acter sets or code pages is required. Today’s
internationalization model uses such a char-
acter set (Unicode) along with locale tag-
ging. See also internationalization and locale
model.

Multiple-byte character
A character that is represented by more than
one byte.

Myeongjo
명조/明朝 (myeongjo) or 명조체/明朝體
(myeongjoche). The Korean serif typeface
style. Sometimes called myungjo. The pre-
ferred way in which to refer to serif is now
batang. See also batang and serif.

Naiji
内字 (naiji). The opposite of gaiji, specifically
characters that are considered to be standard
(on your operating system or environment).
 See also gaiji, system-defined character, system-
specific character, and user-defined character.

Name
One or more text strings that are associated
with a key in a conversion dictionary. These
are presented to the user as a list of candidates
from which to choose. See also candidate,
conversion dictionary, and key.

 | 783

commonly used notations are binary (base
two), octal (base eight), decimal (base ten),
and hexadecimal (base sixteen). See also bi-
nary, decimal, hexadecimal, and octal.

NTT
日本電信電話 (nippon denshin denwa). Nip-
pon Telegraph and Telephone.

NTT Kanji
The name of the Japanese character set and
encoding as developed by NTT. See NTT.

Numeral
数字 (sūji). The printed digits ranging from 0
(zero) through 9 (nine).

Numeric Character Reference
An SGML-derived notation that is recog-
nized by HTML and XML, and serves to
specify characters by their code point. For
example, the eight-character string 一
is the NCR for the ideograph 一 (U+4E00). See
also Character Entity Reference.

OASYS
Office Automation SYStem. The personal
word-processor series developed by Fujitsu.

OCR
光学的文字認識 (kōgakuteki moji ninshiki)
in Japanese. Optical Character Recognition.
A device that can scan, recognize, and con-
vert printed shapes into meaningful units,
such as characters.

Octal
八进制/八進制 (bājìnzhì) in Chinese, 八進
法 (hasshinhō) in Japanese, and 팔진법/八進
法 (paljinbeop) in Korean. Base eight. A nu-
meric notation that uses eight possible values,
ranging from 0 to 7.

Octet
An array of eight bits represented as a single
unit (a byte). See also byte.

Old-JIS
旧 JIS (kyū JIS). A common name given to
the JIS C 6226-1978 character set standard.
 See also JIS C 6226-1978.

Old-JIS array
 See JIS array.

NIDA
National Internet Development Agency of
Korea. The name of Korea’s NIC. See also
NIC.

NIFTY-Serve
The name of a Japanese service provider.

Nigori
 See dakuten.

NLIO
Native Language Input/Output.

NNTP
Network News Transfer Protocol.

Noncoded Character Set
A character set, such as Japan’s Jōyō Kanji,
that was designed without regard to how it
would be encoded, if at all. See also Coded
Character Set.

Nonelectronic Character Set
 See Noncoded Character Set.

Non-kanji
非漢字 (hikanji). Characters other than kanji,
such as Latin characters, hiragana, katakana,
punctuation, and other symbols.

Nonmodal encoding
An encoding method that does not use spe-
cial sequences of characters to switch be-
tween one- and two-byte modes. See also
fixed-length encoding and modal encoding.

Nonprinting character
A character that makes no printable marks on
an output device. These include control char-
acters and white space characters, such as a
space or tab character.

Normalization
A standard Unicode process that serves to
convert equivalent Unicode code points or
sequences into a unified form. There are four
Normalization forms: NFC, NFD, NFKC, and
NFKD. See also Canonical Equivalent, NFC,
NFD, NFKC, and NFKD.

North Korea
 See DPRK.

Notation
A method of representing units or other
values. In the world of computers, the most

784 | Appendix d: Glossary

Parametric font
A font whose shape is described as a series of
vectors. This type of font format has scalable
properties, but is not as high quality as out-
line fonts. See also bitmapped font and outline
font.

Particle
助詞 (joshi) in Japanese. Grammatical mark-
ers used in the Japanese language. They are
equivalent to prepositions in English, but
unlike English, they come after the noun or
phrase they modify. Particles are sometimes
called postpositions.

PB
Petabyte. 1,125,899,906,842,624 or 1,0245
bytes.

PC
パソコン (pasokon) in Japanese. Personal
Computer. In the past, referred to machines
that ran MS-DOS. Now, refers to computers
for personal use. Also, Politically Correct and
Purity Control.

PC-VAN
Personal Computer Value Added Network. A
Japanese ISP based in Japan.

PCF
Portable Compiled Format. A binary rep-
resentation of BDF files for use under the X
Window System. See also BDF.

PDF
Portable Document Format. The document
format that is generated by Adobe Acrobat
technology.

Pen input
ペン入力 (pen nyūryoku) in Japanese. An in-
put method that allows the user to enter text
and commands with a pen (or stylus) onto a
tablet. OCR technology is often used in the
process of interpreting handwritten text.

Perl
An acronym for Pathologically Eclectic Rub-
bish Lister or Practical Extraction and Report
Language. Which one is correct depends on
the phase of the moon or the alignment of
stars. An ideal programming language for
performing complex text-processing tasks.

On reading
音読み (on yomi). The Japanese name given
to the approximated Chinese reading for a
kanji.

Open source
The name given to the software development
methodology or design approach that offers
practical accessibility to a software’s source
code.

OpenType
A cross-platform and Unicode-savvy out-
line font format jointly developed by Adobe
Systems and Microsoft that equally supports
PostScript and TrueType outlines.

Operating system
 See OS.

Orthography
正書法 (seishohō) in Japanese. A linguistic
term that refers to the writing system of a
language.

OS
Operating System. The software that drives
the hardware associated with a computer
system.

OSF
Open Software Foundation.

OTF
Out-the-front, which refers to a mechanism,
usually spring-powered, for deploying a knife
blade through an opening in the handle. Also,
OpenType Font. The filename extension used
for OpenType fonts.

Outline font
A font whose characters are described math-
ematically in terms of lines and curves. Out-
line fonts are often referred to as scalable
fonts, because they can be scan converted on
demand to bitmaps of any desired size and
orientation.

P
撇 (piě) in Chinese. An abbreviation (the first
letter of piě) standing for the third of five ba-
sic stroke types used as building blocks for
ideographs. Represents diagonal strokes that
are written right to left. See also stroke.

 | 785

PM
Post Meridian or PageMaker.

Point
磅 (bàng) or 点/點 (diǎn) in Chinese, ポイン
ト (pointo) in Japanese, and 포인트 (pointeu)
in Korean. A unit of measure used in typogra-
phy. A DTP point is exactly 1⁄72.27 of an inch.
PostScript, on the other hand, rounds this fig-
ure to 1⁄72 of an inch.

POSIX
Portable Operating System Interface.

Postposition
 See particle.

PostScript
ポストスクリプト (posutosukuriputo) in Japa-
nese. The page description language devel-
oped by Adobe Systems.

PPP
Point-to-Point Protocol.

PRC
中华人民共和国 (zhōnghuá rénmín gònghé
guó). People’s Republic of China. The official
name for China.

Printable character
A character that makes some sort of mark
on an output devices. Also called a graphic
character.

Pronghorn
 See antelope.

Pseudo ruby
擬似ルビ (giji rubi) in Japanese. Small char-
acters, usually kanji or Latin characters, that
appear above normal-size characters, and
serve to annotate them with a reading or
meaning. Similar to ruby characters. See also
ruby.

PUA
Private Use Area. The preferred way in which
to refer to the 137,468 code points of Unicode
that are reserved for user-defined characters.
 See also user-defined character.

Push-in-first line breaking
追い込み禁則処理 (oikomi kinsoku shori)
in Japanese. A method of moving characters
up to the previous line in order to prevent

Salient features include no built-in limits,
regular expressions, associative arrays, and
C-like syntax. Developed by Larry Wall.

Phonetic ideograph
形声文字/形聲文字 (xíngshēng wénzì) in
Chinese, 形声文字 (keisei moji) in Japanese,
and 형성문자/形聲文字 (hyeongseong mu-
nja) in Korean. An ideograph constructed
from at least two radical-like elements. One
element is used for its reading, and the other
used for its meaning. Together they form a
unique character.

PHP
Personal Home Page. The name of a script-
ing language that was originally designed for
producing dynamic web pages.

Pictograph
象形文字 (xiàngxíng wénzì) in Chinese, 象形
文字 (shōkei moji) in Japanese, and 상형문
자/象形文字 (sanghyeong munja) in Korean.
A character whose shape reflects the shape
of the object that it represents. An example
of such an ideograph is 山, which means
“mountain.”

Pinyin
拼音 (pīnyīn). The most common Latin-based
transliteration method for Chinese text.

Plan 9
The name of a classic science fiction film.
Also, the multilingual Unix operating sys-
tem under development at AT&T Bell
Laboratories.

Plane
A collection of code points that are grouped
by row and cell, and typically represent a two-
byte encoding. The term “plane” is significant
for a character set standard only if there is
more than one of them.

Plane-Row-Cell
An encoding-independent notation for in-
dexing characters in multiple-plane CJKV
character set standards, such as CNS 11643-
2007 and JIS X 0213:2004. Although Unicode
is composed of 17 planes, Unicode Scalar Val-
ues are the preferred notation. See also Uni-
code Scalar Value.

786 | Appendix d: Glossary

26 letters of the Latin alphabet imprinted on
them.

Radical
部首 (bùshǒu) in Chinese, 部首 (bushu) in
Japanese, and 부수/部首 (busu) in Korean.
The building blocks of ideographs of which
the most common set contains 214 radicals.
Many CJKV character set standards arrange
ideographs by radical. For example, the hanzi
of GB 2312-80 Level 2 are arranged by radi-
cal. Radicals are subcomposed of strokes. See
also stroke.

RAM
Random Access Memory.

Regex
Short for regular expression. See regular
expression.

Regexp
Short for regular expression. See regular
expression.

Regular expression
“Have a nice day” is one example. Also, a
powerful mechanism for searching, ripping
apart, shredding, or otherwise manipulating
text (or sometimes, binary) data. Software
tools such as awk, GNU Emacs, Perl, sed, and
vi include regular expression engines. JPerl,
Mule, and lookup provide Japanese-capable
regular expression engines.

RFC
Request For Comments. The designation
given to the thousands of documents that de-
scribe the inner workings of the Internet.

RKSJ
Roman, (half-width) Katakana, and Shift-JIS.
An encoding used by PostScript Japanese
fonts.

RMK
Randall Made Knives.

ROC
中華民國 (zhōnghuá mínguó). Republic of
China. The official name for Taiwan. See also
Taiwan.

prohibited characters from ending or be-
ginning a line. Also known as wrap-up line
breaking. See also line breaking, push-out-
first line breaking, and push-out-only line
breaking.

Push-out-first line breaking
追い出し禁則処理 (oidashi kinsoku shori)
in Japanese. A method of moving characters
down to the next line in order to prevent pro-
hibited characters from ending or beginning
a line. Also known as wrap-down line break-
ing. See also line breaking, push-in-first line
breaking, and push-out-only line breaking.

Push-out-only line breaking
ぶら下がり禁則処理 (burasagari kinsoku
shori) in Japanese. A method of moving
characters up to the previous line in order to
prevent prohibited characters from ending or
beginning a line. The character or characters
that are moved appear to dangle or hang out-
side of the right margin. Also known as dan-
gling line breaking and hanging line break-
ing. See also line breaking, push-in-first line
breaking, and push-out-first line breaking.

Python
The name of a popular scripting language.

Q
级数/級數 (jíshù) in Chinese, 級数 (kyūsū) in
Japanese, and 급수/級數 (geupsu) in Korean.
Unit of typographic measurement equivalent
to 0.25mm. Its correct usage is strictly for type
size. Also, the name of an omnipotent being
from the contemporary Star Trek series.

Quadratic spline curve
The type of curve used for representing char-
acter shape contours in the TrueType font
format.

Quốc ngữ
國語. The Latin-based script used in contem-
porary Vietnam. A Romanization system.

Quoted-Printable
A method of preserving non-ASCII charac-
ters to ensure reliable transmission.

QWERTY array
The most common keyboard in use today. Its
name comes from the first six keys that have

 | 787

five basic stroke types used as building blocks
for ideographs. Represents vertical strokes.
 See also stroke.

S32S
Supercalifragilisticexpialidocious.

Sans serif
French for without serifs. Sans serif charac-
ters do not have little feet on them. Helvetica
(this is Helvetica) is a widely used sans serif
typeface. See also serif.

SAR
Special Administrative Region.

SBCS
Single-Byte Character Set.

SBCS-Host
A single-byte character set that is encoded ac-
cording to EBCDIC. See EBCDIC.

SBCS-PC
A single-byte character set that is encoded ac-
cording to ASCII. See ASCII.

SCIM
Smart Common Input Method.

Script
Unicode defines “script” as a collection of let-
ters and other written signs used to represent
textual information in one or more writing
systems. See also writing system.

SDC
 See system-defined character.

SDK
Software Development Kit. A collection of
software and documentation that is specifi-
cally designed to aid others to develop soft-
ware for a particular technology.

Serif
Characters that have little feet to act as guide
marks. Derives all the way from days when
letters were carved in stone—the serifs were
added to provide even height, and the overall
style improves legibility. Garamond, which is
used as the standard textface in this book, is
an example of a serif typeface. See also sans
serif.

SG
The two-letter country code for Singapore.

ROK
대한 민국/大韓民國 (daehan minguk). Re-
public of Korea. The official name for South
Korea.

ROM
Read Only Memory.

Roman character
 See Latin character.

Romanization
A system of using Latin characters as the pri-
mary script for a language. Vietnamese Quốc
ngữ is an example of a Romanization system.

Row
区 (qū) in Chinese, 区 (ku) in Japanese, and
행/行 (haeng) in Korean. In a two-byte en-
coding, row refers to the first byte. In a two-
dimensional matrix, row represents the val-
ues along the vertical axis. See also cell and
Row-Cell.

Row-Cell
区位 (qūwèi) in Chinese, 区点 (kuten) in
Japanese, and 행렬/行列 (haengryeol) in
Korean. An encoding-independent notation
for indexing characters in single-plane CJKV
character set standards (and the vendor char-
acter sets derived from them). See also Plane-
Row-Cell.

RRK
Revised Romanization of Korean. The offi-
cial method for transliterating or transcrib-
ing Korean text through the use of Latin
characters.

Ruby
ルビ (rubi). Small characters, usually kana,
that appear above normal-size characters,
and annotate them with a reading or mean-
ing. Some folks prefer to spell it “rubi,” but
that conflicts with its true history. Also, the
name of my daughter (瑠美).

Ryobi
リョービ (ryōbi). A major Japanese type
foundry. See also Fontworks, Morisawa, and
Shaken.

S
竖/竪 (shù) in Chinese. An abbreviation (the
first letter of shù) standing for the second of

788 | Appendix d: Glossary

Singapore
新加坡 (xīnjiāpō). A Chinese locale, located
in Southeast Asia, where simplified ideo-
graphs are used.

SJIS
An abbreviation for Shift-JIS. See Shift-JIS.

SJS
Another abbreviation for Shift-JIS. See Shift-
JIS.

SJTAC
Satin Jack TAC.

SK72
The older of Shaken’s proprietary character
sets.

SK78
The newer of Shaken’s proprietary character
sets.

SKIP
System of Kanji Indexing by Patterns. A
method for indexing kanji that divides them
geometrically, thus allowing one to find any
kanji in less than 30 seconds. It is used by
kanji dictionaries written by Jack Halpern,
and is implemented in Jim Breen’s online
kanji dictionaries.

SMI
エスエムアイ (esu emu ai). Sumitomo Metal
Industries (住友金属工業 sumitomo kinzoku
kōgyō). The original developer of Canon EDI-
COLOR.

SMTP
Simple Mail Transfer Protocol.

SNF
Server Natural Format. A binary representa-
tion of BDF files for use under the X Window
System. See also BDF.

SO
Shift-Out. 0x0E or U+000E. A control charac-
ter that often serves as a shifting character in
ISO-2022 encoding.

Solaris
The name of Sun Microsystems’ operating
system.

SGI
Silicon Graphics Incorporated.

SGML
Standard Generalized Markup Language.
Defined in ISO 8879:1986. HTML and XML
are derivatives of SGML. See also HTML and
XML.

Shaken
写研 (shaken). A major Japanese type found-
ry. See also Fontworks, Morisawa, and Ryobi.

Shift-JIS
The most common encoding method used
on Japanese PCs. So named from how the
first byte range of two-byte characters shifts
around the encoding range of single-byte
half-width katakana. Also called MS Kanji.

Shifting characters
A sequence of one or more characters that are
often used to shift between one- and two-byte
modes. See also escape sequence.

SI
Shift-In. 0x0F or U+000F. A control charac-
ter that often serves as a shifting character in
ISO-2022 encoding.

Simple ideograph
指事文字 (zhǐshì wénzì) in Chinese, 指事文
字 (shiji moji) in Japanese, and 지사문자/指
事文字 (jisa munja) in Korean. An ideograph
that represents an abstract shape. Examples
include characters such as 上 (“up”) and 下
(“down”).

Simplified ideograph
A standardized ideograph variant that is writ-
ten with fewer strokes. See traditional ideo-
graph.

SING
What some people do while showering. Also,
Smart INdependent Glyphlet. The name of
Adobe Systems’ gaiji solution that implements
gaiji as single-glyph, font-like files called
glyphlets, which are designed to be sticky to
the documents that use them, thus solving
the portability issue that plagues legacy gaiji
solutions.

 | 789

IRG, stemming from CDL work. See also
CDL, D, H, IRG, P, S, and Z.

Supplemental kanji
 See hojo kanji.

Syllabary
A script whose characters are composed of
syllables. Hiragana and katakana are exam-
ples of syllabaries. See also syllable.

Syllable
A sound sequence consisting of a consonant
plus vowel.

Synchronic
A linguistics term that is used to refer to lin-
guistic changes that exist during the same
period.

System-defined character
A character that is considered standard across
OSes.

System-specific character
A character that, while considered standard
on a given OS, is specific to that OS. That is,
it may not be generally available across all
OSes.

T1C
Adobe Type 1 Coprocessor. A now-obsolete
computer chip designed by Adobe Systems
that significantly reduced the time necessary
to render glyphs to the screen or printer.

Table-driven conversion
A type of conversion that uses mapping tables
for converting objects. See also algorithmic
conversion.

Taiwan
臺灣 (táiwān). One of the Chinese locales
in which traditional forms of hanzi are still
used. See also ROC.

TB
Terabyte. 1,099,511,627,776 or 1,0244 bytes.

TBCS
Triple-Byte Character Set. A character set
whose characters are encoded with three
bytes.

TBCS-EUC
A Triple-Byte Character Set encoded accord-
ing to the specification of EUC.

Song
宋 (sòng) or 宋体 (sòngtǐ). The Chinese serif
typeface style. Also, a musical score. See also
serif.

Sony
Standard Oil of New York. Er, uh, hmm,
I mean a famous Japanese electronics
company.

South Korea
 See ROK.

SS2
Single Shift 2. A special character or charac-
ter sequence (0x8E in EUC, and the sequence
<1B 4E> in ISO-2022) used as a prefix to char-
acters beyond the standard character set (in-
vokes code set 2 in EUC, and extended char-
acter sets in ISO-2022).

SS3
Single Shift 3. A special character or charac-
ter sequence (0x8F in EUC, and the sequence
<1B 4F> in ISO-2022) used as a prefix to char-
acters beyond the standard character set (in-
vokes code set 3 in EUC, and extended char-
acter sets in ISO-2022).

SSC
 See system-specific character.

STAMEQ
Standards, Metrology and Quality Control.
An English translation of TCVN. See TCVN.

Stroke
画/畫 (huà) in Chinese, 画 (kaku) in Japa-
nese, and 획/畵 (hoek) in Korean. The basic
building blocks of radicals and ideographs.
A single stroke is traditionally defined as an
element drawn with a single uninterrupted
movement of the writing implement. Strokes
have shapes that represent straight lines,
curves, and angles. There are five basic stroke
types, each with several subtypes: 横 (héng),
竖/竪 (shù), 撇 (piě), 点/點 (diǎn), and 折
(zhé). These basic stroke types are abbrevi-
ated in Unicode’s CJK Strokes block character
names as H, S, P, D, and Z, respectively. Uni-
code encodes 36 CJK Strokes from U+31C0
through U+31E3, which were defined by the

790 | Appendix d: Glossary

Traditional ideograph
Refers to the original, sometimes complex,
shapes of ideographs. Sometimes thought of
as the opposite of simplified ideograph. 國
is an example of a traditional ideograph. Its
simplified counterpart, as used in Japan and
China, is 国. Korea and Taiwan use tradi-
tional ideographs. Japan and China, in gen-
eral, use simplified forms. See also simplified
ideograph.

Transfer Encoding Syntax
A transformation applied to an encoding to
allow it to be safely transmitted. Examples in-
clude Base64, BinHex, Quoted-Printable, and
uuencoding.

Transliteration
A method for transcribing a script, which can
serve as a proununciation aid for those who
are not familiar with the primary scripts of
the language.

TRON
トロン (toron). The name of a 1982 Disney
science fiction film. Also, The Real-time
Operating system Nucleus. A set of inter-
faces and design guidelines for creating an
OS kernel, originally architected in 1984 by
Ken Sakamura (坂村健 sakamura ken), in
order to address the interface between humans
and computers. Variations include BTRON
(Business TRON), CTRON (Central and
Communications TRON), eTRON (Entity
and Economy TRON), ITRON (Industrial
TRON), JTRON (Java TRON), MTRON
(Macro TRON), and μITRON (Micro Indus-
trial TRON).

TrueType
An outline font format jointly developed by
Apple and Microsoft.

TrueType Collection
A special type of TrueType font that includes
multiple font instances, and represents an ef-
ficient way of encapsulating what would oth-
erwise be multiple font files that share a large
number of glyphs.

TTF
TrueType Font. The filename extension used
for TrueType fonts.

TCVN
Tiêu Chuẩn Việt Nam.

TCVN 5712:1993
A Vietnamese character set standard that de-
fines various encodings for the Latin-based
Quốc ngữ script.

TCVN 5773:1993
A Vietnamese character set standard that
enumerates 2,357 chữ Nôm characters.

TCVN 6056:1995
A Vietnamese character set standard that
enumerates 3,311 chữ Hán characters.

TCVN-Roman
The Vietnamese equivalent of the ASCII
character set and encoding, with additional
characters necessary for the Latin-based
Quốc ngữ script. The name of the standard
that defines this character set is called TCVN
5712:1993. See TCVN 5712:1993.

TES
 See Transfer Encoding Syntax.

TEX
A popular typesetting language developed by
Donald Knuth for which CJKV-capable ver-
sions exist.

Thumb-shift array
親指シフト配列 (oyayubi shifuto hairetsu).
The Japanese keyboard array developed by
Fujitsu.

TIMTOWTDI
There Is More Than One Way To Do It. The
Perl slogan.

TISN
Todai (東大 tōdai; University of Tokyo) In-
ternational Science Network.

TLD
Top-Level Domain. See also ccTLD and
gTLD.

Tōyō Kanji
当用漢字 (tōyō kanji). The 1,850 kanji desig-
nated by the Japanese government as the ones
to be used in public documents such as news-
papers. Superseded by Jōyō Kanji in 1981. See
Jōyō Kanji.

 | 791

Type 5 font
Adobe Systems’ ROM-based font format.

Type 9 font
A CIDFont that uses Type 1 glyph proce-
dures. Equivalent to CIDFontType 0.

Type 10 font
A CIDFont that uses PostScript BuildGlyph
procedures. Equivalent to CIDFontType 1.

Type 11 font
A CIDFont that uses TrueType glyph proce-
dures. Equivalent to CIDFontType 2.

Type 14 font
The Chameleon ROM font format.

Type 42 font
Adobe Systems’ font format that provides a
wrapper for a TrueType font. This allows a
TrueType font to be used in much the same
way as a Type 1 font. See also Type 1 font.

Typeface
A distinctive design for a set of visually re-
lated symbols that can come in a variety of
weights (from light to bold) and styles (up-
right and italic). Examples include Minion,
Myriad, and Kozuka Mincho.

UCS
Universal Character Set. Refers to Unicode
and ISO 10646.

UCS-2
A now-obsolete, fixed-length, 2-byte (16-bit)
encoding form for Unicode and ISO 10646.
Replaced by the UTF-16 encoding form. See
also UTF-16.

UCS-4
A now-obsolete, fixed-length, 4-byte (31-bit)
encoding form for Unicode and ISO 10646.
Replaced by the UTF-32 encoding form. See
also UTF-32.

UDC
 See user-defined character.

UHC
 See Unified Hangul Code.

UI
Unix International or User Interface.

TTC
TrueType Collection. The filename extension
used for TrueType Collections.

TW
The two-letter country code for Taiwan.

TWICS
Two-way Information Communication Sys-
tem. The name of an ISP based in Japan.

TWNIC
Taiwan Network Information Center.

Two-stroke input method
二ストローク入力方式 (ni sutorōku nyūryoku
hōshiki). A Japanese input method that asso-
ciates two key-strokes per kanji. In the case
of input by association, the two keys have
some sort of relationship to the kanji, usually
by reading or meaning. There is also input by
unassociation, which arbitrarily associates
two key-strokes per kanji.

Type 0 font
Adobe Systems’ composite font format. A
Type 0 font contains other fonts in a hier-
archical fashion, providing access to huge
character sets, such as those used in Japan. A
CIDFont is a Type 0 font that has an FMap-
Type value of 9.

Type 1 font
Adobe Systems’ format for describing out-
lines or scalable fonts. Type 1 fonts use a very
special and limited subset of PostScript, op-
timized for compactness and speed. See also
ISO 9541:1991.

Type 2 charstring
A lossless compaction of the Type 1 char-
string. See also Type 1 font.

Type 3 font
A user-defined PostScript font. Type 3 fonts
can use all of the PostScript language to ob-
tain effects—such as grayscale—not available
to Type 1 fonts.

Type 4 font
Adobe Systems’ proprietary font format. Pro-
vides no benefits over Type 1 in PostScript
Level 2 and beyond.

792 | Appendix d: Glossary

character that is not considered standard on
most operating systems or environments. See
also system-specific character.

USLP
Unix System Laboratories Pacific.

USV
 See Unicode Scalar Value.

UTC
Unicode Technical Committee.

UTF
Unicode (or UCS) Transformation Format. A
series of encoding forms for Unicode and ISO
10646. See also UTF-8, UTF-16, and UTF-32.

UTF-2
Obsolete. A UTF defined by AT&T Bell Labs
(Plan 9) and X/Open for encoding Unicode
text as a stream of bytes. Also called FSS-UTF
(File System Safe UTF), and now referred to as
UTF-8. See also Plan 9 and UTF-8.

UTF-7
A variation of Base64 encoding that trans-
forms Unicode encodings—UCS-2, UCS-4,
and UTF-16—into a form that can be safely
transmitted through 7-bit pathways. Most
ASCII characters represent themselves under
this encoding.

UTF-8
The 8-bit encoding form (and encoding
scheme) of Unicode and ISO 10646 that uses
up to four code units to represent a character.
Its original definition, which accommodated
UCS-4 encoding, used a variable-length one-
through six-byte encoding. Once called UTF-
2 and FFS-UTF (File System Safe UTF).

UTF-16
The 16-bit encoding form of Unicode and
ISO 10646. Uses 16-bit code units. Non-BMP
characters are encoded through the use of
High and Low Surrogates. Requires the BOM
to specify byte order. See also BOM.

UTF-16BE
A Unicode encoding scheme that represents
the big-endian version of the UTF-16 encod-
ing form. Does not require the BOM. See also
BOM and UTF-16.

UJIS
Short for Unixized JIS. Identical to EUC-JP.
 See EUC-JP.

Unicode
The name of the international character set
and encoding developed by the members
of the Unicode Consortium. Joe Becker,
the father of Unicode, wrote on 12/04/1991
that Unicode is an acronym for Unique Nice
International Consistent Official Desirable
Encoding.

Unicode Scalar Value
A notation for specifying a Unicode code
point without specify an encoding form. This
notation makes use of a U+ prefix to distin-
guish it from other values.

Unicode Variation Sequence
A generic way of referring to Unicode se-
quences that use a Variation Selector (VS).
An Ideographic Variation Sequence (IVS) is
a specific type of UVS. See also Ideographic
Variation Sequence and Variation Selector.

Unified Hangul Code
A character set equivalent to that of Johab,
but whose encoding is backward-compatible
with EUC-KR. See EUC-KR and Johab.

Unix
The name of the operating system that runs
on most workstations.

URL
Uniform Resource Locator. The standard by
which the locations of files on the Web are
described.

URO
Unified Repertoire and Ordering. The name
of the original block of CJK Unified Ideo-
graphs in Unicode and ISO 10646. In its
original form, it included 20,902 characters.
Since then, 38 characters have been appended
to the URO.

US
The two-letter country code for The United
States of America.

User-defined character
A character that is added to a character set
by an end user. Sometimes confused with a

 | 793

Vietnam
Việt Nam. Also written as two words: Viet
Nam. The locale where the Quốc ngữ (Latin
characters), chữ Hán (ideographs of Chinese
origin), and chữ Nôm (Vietnamese-made
ideographs) scripts are used.

VIQR
VIetnamese Quoted-Readable specification.

VISCII
Vietnamese Standard Code for Information
Interchange.

VN
The two-letter country code for Vietnam.

VNNIC
Vietnam Internet Network Information
Center.

VOLT
Visual OpenType Layout Tool.

VS
 See Variation Selector.

VSCII
Vietnamese Standard Code for Information
Interchange.

Voice input
音声入力 (onsei nyūryoku) in Japanese. An
input method that is driven by the human
voice. Such devices must usually be trained to
understand the user’s voice.

Wade-Giles
韋氏 (wéishì). Another Latin-based translit-
eration system for Chinese text.

Wansung
완성/完成 (wanseong). Means “precompos-
ing” in Korean. Another name for EUC-KR
encoding in which each hangul is encoded as
a single entity. Considered to be the opposite
of Johab. See also Johab.

Ward
 See row.

Web
A short form for World Wide Web. See
WWW.

UTF-16LE
A Unicode encoding scheme that represents
the little-endian version of the UTF-16 en-
coding form. Does not require the BOM. See
also BOM and UTF-16.

UTF-32
The 32-bit encoding form of Unicode and ISO
10646. Uses 32-bit code units. Requires the
BOM to specify byte order. See also BOM.

UTF-32BE
A Unicode encoding scheme that represents
the big-endian version of the UTF-32 encod-
ing form. Does not require the BOM. See also
BOM and UTF-32.

UTF-32LE
A Unicode encoding scheme that represents
the little-endian version of the UTF-32 en-
coding form. Does not require the BOM. See
also BOM and UTF-32.

UTF-FSS
 See FSS-UTF.

UUCP
Unix-to-Unix Copy.

Uudecode
A Unix utility for decoding a file encoded by
uuencode. See also uuencode.

Uuencode
A Unix utility for encoding a file (usually a
binary file) such that it can pass through net-
works with only seven-bit paths. Decoding is
performed by uudecode. See also uudecode.

UVS
 See Unicode Variation Sequence.

Variation Selector
The second component of an IVS or UVS. See
also IVS and UVS.

Vector font
 See parametric font.

Vendor-defined character
 See gaiji.

vi
The two-letter language code for Vietnamese.
Also, the name of a popular Unix-based text
editor.

794 | Appendix d: Glossary

Institute of Technology). The latest release is
called X11R7.

XCCS
Xerox Character Code Standard.

XHTML
Extended HTML.

XKP
Extended Kanji Processing. An initiative for
handling external characters in the context of
Windows NT.

XML
Extensible Markup Language. An implemen-
tation of SGML for the Web whose strength
is the encapsulation of data. See also HTML
and SGML.

XPG4
X/Open Portability Guide issue 4.

Y-Modem
A once-popular file transfer protocol.

YMMV
Your Mileage May Vary.

Z
折 (zhé) in Chinese. An abbreviation (the first
letter of zhé) standing for the fifth of five basic
stroke types used as building blocks for ideo-
graphs. Represents angled strokes. See also
stroke.

Z-Modem
A once-popular file transfer protocol.

Zenkaku
全角 (zenkaku). Analogous to full-width. See
full-width.

zh
The two-letter language code for Chinese.

Zhuyin
注音 (zhùyīn), short for 注音符号 (zhùyīn
fúhào). The name of the symbols used to
represent standard readings in Chinese. Also
known as bopomofo (named from its first four
sounds: b, p, m, and f).

Whitespace
Characters that produce empty space, such as
the “space” character or the “tab” character.

Wide character
A character that consists of a larger than nor-
mal byte. A byte typically consists of seven or
eight bits. A character represented by 16 or 32
bits is considered a wide character.

Windows
The somewhat generic name of Microsoft’s
OS. The three most recent instantiations are
called Windows 2000, Windows XP, and
Windows Vista.

Word processor
ワードプロセッサ (wādopurosessa) or ワー
プロ (wāpuro) in Japanese. A text-processing
application that manipulates text in such a
way that it is possible to include multiple
fonts in a single document. Sufficient format-
ting capabilities are also quite common.

Wrap-down line breaking
 See push-out-first line breaking.

Wrap-up line breaking
 See push-in-first line breaking.

Writing system
Unicode defines this as a set of rules for
using one or more scripts to write a particular
language. See also script.

Wubi
五笔 (wǔbǐ), short for 五笔输入法 (wǔbǐ
shūrùfǎ). A popular stroke-based Chinese in-
put method.

WWW
World Wide Web or simply “web.” Those with
slow modems or slow Internet connections
sometimes refer to it as World Wide Wait.

WYBIWYG
What You Buy Is What You Get.

WYSIWYG
What You See Is What You Get.

X-Modem
A once-popular file transfer protocol.

X Window System
The name of a very popular Unix window-
ing system developed at MIT (Massachusetts

795

APPendIX e

Vendor Character set standards

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appE.pdf

797

APPendIX F

Vendor encoding Methods

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appF.pdf

799

APPendIX G

Chinese Character sets—China

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appG.pdf

801

APPendIX H

Chinese Character sets—taiwan

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appH.pdf

803

APPendIX I

Chinese Character sets—Hong Kong

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appI.pdf

805

APPendIX J

Japanese Character sets

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appJ.pdf

807

APPendIX K

Korean Character sets

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appK.pdf

809

APPendIX L

Vietnamese Character sets

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appL.pdf

811

APPendIX M

Miscellaneous Character sets

This appendix is not included in the printed version of this book, and is instead available as
a downloadable and printable PDF file.* As new material becomes available, the PDF file
will be updated accordingly.

* http://examples.oreilly.com/9780596514471/cjkvip2e-appM.pdf

813

Bibliography

This bibliography provides a listing of some potentially useful reference works. They are
separated into the following categories: books (subcategorized into languages), character
dictionaries, standards, periodicals, papers and articles, and RFCs. While all of these ref-
erences are useful to some extent, it is by no means necessary to obtain them all (in fact,
some may be out of print). I have included ISBNs, ISSNs, and part numbers so that order-
ing these references becomes an easier (or, at least, somewhat possible) task.

Books
The following listings have been broken down into sections for different languages. This
will give you a better idea of whether such references would be of value to you. And
whether you’ll be able to read them!

Books in english
Adobe Systems Incorporated. Adobe Type 1 Font Format. Version 1.1. Addison-Wesley.

1990. ISBN 0-201-57044-0. Also available in PDF.

———. PostScript Language Tutorial and Cookbook. Addison-Wesley. 1985. ISBN 0-201-
10179-3.

———. PostScript Language Program Design. Addison-Wesley. 1988. ISBN 0-201-14396-8.

———. PostScript Language Reference. Third Edition. Addison-Wesley. 1999. ISBN 0-201-
37922-8. Also available in PDF.

———. PDF Reference. Sixth Edition. Adobe Portable Document Format Version 1.7.
2006. Available only in PDF.

American Electronics Association. Software Partners: The Directory of Japanese Software
Distributors. 1992.

Apple Computer. Guide to Macintosh Software Localization. Addison-Wesley. 1992. ISBN
0-201-60856-1.

814 | Bibliography

———. Inside Macintosh: QuickDraw GX Typography. Addison-Wesley. 1994. ISBN 0-201-
40679-9.

Bienz, Tim & Richard Cohen. Portable Document Format Reference Manual. Addison-
Wesley. 1993. ISBN 0-201-62628-4.

Bringhurst, Robert. The Elements of Typographic Style. Version 3.1. Hartley & Marks.
2005. ISBN 0-88179-206-5 (paper) or ISBN 0-88179-205-8 (cloth).

———. The Solid Form of Language. Gaspereau Press. 2004. ISBN 0-894031-88-1.

Cabarga, Leslie. Learn FontLab Fast. Iconoclassics Publishing. 2004. ISBN 0-9657628-5-8.

Cameron, Debra et al. Learning GNU Emacs. Third Edition. O’Reilly Media, Incorpo-
rated. 2004. ISBN 0-596-00648-9.

Christiansen, Tom & Nathan Torkington. Perl Cookbook. Second Edition. O’Reilly Media,
Incorporated. 2003. ISBN 0-596-00313-7.

Clews, John. Language Automation Worldwide: The Development of Character Set Stan-
dards. Sesame Computer Projects. 1988. ISBN 1-870095-01-4.

Conner, Kiersten & Ed Krol. The Whole Internet: The Next Generation. O’Reilly Media,
Incorporated. 1999. ISBN 1-56592-428-2.

Connolly, Dan, editor. XML: Principles, Tools, and Techniques. World Wide Web Jour-
nal, Volume 2, Number 4, Winter 1997. O’Reilly Media, Incorporated. 1997. ISBN
1-56592-349-9.

Daniels, Peter T. & William Bright, editors. The World’s Writing Systems. Oxford Univer-
sity Press. 1996. ISBN 0-19-507993-0.

Daub, Edward E. et al. Basic Technical Japanese. The University of Wisconsin Press. 1990.
ISBN 0-299-12730-3.

———. Comprehending Technical Japanese. The University of Wisconsin Press. 1975. ISBN
0-299-06680-0.

Felici, James. The Complete Manual of Typography. Adobe Press. 2003. ISBN 0-321-12730-7.

Flanagan, David. Java in a Nutshell. Fifth Edition. O’Reilly Media, Incorporated. 2005.
ISBN 0-596-00773-6.

Flanagan, David & Yukihiro Matsumoto. The Ruby Programming Language. O’Reilly Me-
dia, Incorporated. 2008. ISBN 0-596-51617-7.

Frey, Donnalyn & Rick Adams. !%@:: A Directory of Electronic Mail Addressing & Net-
works. Fourth Edition. O’Reilly Media, Incorporated. 1994. ISBN 1-56592-046-5.

Friedl, Jeffrey E.F. Mastering Regular Expressions. Third Edition. O’Reilly Media, Incorpo-
rated. 2006. ISBN 0-596-52812-4.

Gillam, Richard. Unicode Demystified. Addison-Wesley. 2003. ISBN 0-201-70052-2.

Bibliography | 815

Gottlieb, Nanette. Kanji Politics: Language Policy and Japanese Script. Kegan Paul Interna-
tional. 1995. ISBN 0-7103-0512-5.

Gourley, David et al. HTTP: The Definitive Guide. O’Reilly Media, Incorporated. 2002.
ISBN 1-56592-509-2.

Graham, Tony. Unicode: A Primer. M&T Books. 2000. ISBN 0-7645-4625-2.

Gralla, Preston. Windows Vista in a Nutshell. O’Reilly Media, Incorporated. 2006. ISBN
0-596-52707-1.

Guelich, Scott et al. CGI Programming with Perl. Second Edition. O’Reilly Media, Incor-
porated. 2000. ISBN 1-56592-419-3.

Haralambous, Yannis. Fonts & Encodings. O’Reilly Media, Incorporated. 2007. ISBN
0-596-10242-9.

Harold, Elliotte Rusty & W. Scott Means. XML in a Nutshell. Third Edition. O’Reilly Me-
dia, Incorporated. 2004. ISBN 0-596-00764-7.

Hawking, Stephen. A Brief History of Time. Bantam Books. 1988. ISBN 0-533-34614-8.

Heisig, James. Remembering the Kanji I: A Complete Course on How Not to Forget the
Meaning and Writing of Japanese Characters. Third Edition. Japan Publications Trad-
ing Company. 1985. ISBN 0-87040-739-2.

———. Remembering the Kanji II: A Systematic Guide to Reading Japanese Characters.
Japan Publications Trading Company. 1987. ISBN 0-87040-748-1.

Heisig, James with Tanya Sienko. Remembering the Kanji III: Writing and Reading Japa-
nese Characters for Upper-Level Proficiency. Japan Publications Trading Company.
1994. ISBN 0-87040-931-X.

Hensch, Kurt. IBM History of Far Eastern Languages in Computing. 2004.

Henshall, Kenneth. A Guide to Remembering Japanese Characters. Charles E. Tuttle Com-
pany. 1995. ISBN 0-8048-2038-4.

Hewlett-Packard. Japanese Input Method Guide for NLIO 8.0. 1991. Hewlett-Packard part
number B2200-90003.

———. Native Language I/O Access User’s Guide. 1991. Hewlett-Packard part number
B2200-90001 (Japanese) and B2200-90005 (English).

———. Native Language I/O System Administrator’s Guide. 1991. Hewlett-Packard part
number B2200-90002 (Japanese) and B2200-90006 (Japanese).

———. Kanji Code Book. 1989. Hewlett-Packard part number 98861-90003.

Huang, Jack & Timothy Huang. An Introduction to Chinese, Japanese and Korean Comput-
ing. World Scientific Publishing. 1989. ISBN 9971-50-664-5.

IBM Corporation. Character Data Representation Architecture Reference and Registry.
1995. IBM part number SC09-2190-00.

816 | Bibliography

———. AIX Version 3.2 for RISC System/6000: Internationalization of AIX Software—A
Programmer’s Guide. Second Edition. 1992. IBM part number SC23-2431.

———. DBCS Design Guide for DOS/V and MS Windows Programming. IBM DBCS Tech-
nical Coordination Office. 1992. IBM part number DTC 0-0012-0.

Jelliffe, Rick. The XML & SGML Cookbook: Recipes for Structured Information. Prentice-
Hall. 1998. ISBN 0-13-614223-0.

Kano, Nadine. Developing International Software for Windows 95 and Windows NT. Mi-
crosoft Press. 1995. ISBN 1-55615-840-8.

Kaplan, Jerry. Startup: A Silicon Valley Adventure. Penguin Books. 1994. ISBN 0-14-
025731-4.

Karow, Peter. Typeface Statistics. URW. 1993. ISBN 3-926515-08-2.

———. Digital Formats for Typefaces. URW. 1987. ISBN 3-926515-01-5.

Karp, David A. et al. Windows XP in a Nutshell. Second Edition. O’Reilly Media, Incorpo-
rated. 2005. ISBN 0-596-00900-3.

Kissell, Joe. The Nisus Way. MIS:Press. 1996. ISBN 1-55828-455-9.

Knuth, Donald E. Digital Typography. CSLI Publications. 1999. ISBN 1-57586-010-4 (pa-
per) and 1-57586-011-2 (cloth).

Korpela, Jukka K. Unicode Explained. O’Reilly Media, Incorporated. 2006. ISBN 0-596-
10121-X.

Lunde, Ken. Prescriptive Kanji Simplification. PhD Dissertation. University of Wisconsin–
Madison. 1994. University Microfilms International order number 9419580.

———. Understanding Japanese Information Processing. O’Reilly Media, Incorporated.
1993. ISBN 1-56592-043-0. Made obsolete by this book.

Luong, Tuoc V. et al. Internationalization: Developing Software for Global Markets. John
Wiley & Sons, Incorporated. 1995. ISBN 0-471-07661-9.

Lutz, Mark. Programming Python. Third Edition. O’Reilly Media, Incorporated. 2006.
ISBN 0-596-00925-9.

Madell, Tom et al. Developing and Localizing International Software. Prentice-Hall. 1994.
ISBN 0-13-300674-3.

McFarland, David Sawyer. CSS: The Missing Manual. O’Reilly Media, 1996. ISBN 0-596-
52687-3.

McFarland, Thomas. X Windows on the World: Developing Internationalized Software with
X, Motif, and CDE. Prentice-Hall. 1996. ISBN 0-13-359787-3.

McGilton, Henry & Mary Campione. PostScript by Example. Addison-Wesley. 1992. ISBN
0-201-63228-4.

Ministry of Culture & Tourism. The Revised Romanization of Korean. 2000.

Bibliography | 817

Moye, Stephen. Fontographer: Type by Design. MIS:Press. 1995. ISBN 1-55828-447-8.

Musciano, Chuck & Bill Kennedy. HTML & XHMTL: The Definitive Guide. Sixth Edition.
O’Reilly Media, Incorporated. 2006. ISBN 0-596-52732-2.

Niederst Robbins, Jennifer. HTML and XHTML Pocket Reference. Third Edition. O’Reilly
Media, Incorporated. 2006. ISBN 0-596-52727-6.

O’Donnell, Sandra Martin. Programming for the World: A Guide to Internationalization.
Prentice-Hall. 1994. ISBN 0-13-722190-8.

Pogue, David. Windows Vista: The Missing Manual. O’Reilly Media, Incorporated. 2006.
ISBN 0-596-52827-2.

———. Mac OS X Leopard: The Missing Manual. O’Reilly Media, Incorporated. 2007.
ISBN 0-596-52952-X.

Powers, Shelley et al. UNIX Power Tools. Third Edition. O’Reilly Media, Incorporated.
2002. ISBN 0-596-00330-7.

Pollack, David, editor. Soft Landing in Japan: A Market Entry Handbook for U.S. Software
Companies. Version 2.0J. American Electronics Association. 1992.

Reid, Glenn. Thinking in PostScript. Addison-Wesley. 1990. ISBN 0-201-52372-8.

Robbins, Arnold. Unix in a Nutshell. Fourth Edition. O’Reilly Media, Incorporated. 2005.
ISBN 0-596-10029-9.

Robbins, Arnold et al. Learning the vi and Vim Editors. Seventh Edition. O’Reilly Media,
Incorporated. 2008. ISBN 0-596-52983-X.

Sakamura, Ken. MicroITRON 3.0: An Open and Portable Real-Time Operating System
for Embedded Systems—Concept and Specification. IEEE Computer Society. ISBN
0-8186-7795-3.

Schwartz, Alan. Managing Mailing Lists. O’Reilly Media, Incorporated. 1998. ISBN
1-56592-259-X.

Schwartz, Randal L. et al. Learning Perl. Fifth Edition. O’Reilly Media, Incorporated. 2008.
ISBN 0-596-52010-7.

Searfoss, Glenn. JIS-Kanji Character Recognition: Featuring the Gaiji Method. Van Nos-
trand Reinhold. 1994. ISBN 0-442-01813-4.

Siever, Ellen et al. Linux in a Nutshell. Fifth Edition. O’Reilly Media, Incorporated. 2005.
ISBN 0-596-00930-5.

Spainhour, Stephen et al. Perl in a Nutshell. Second Edition. O’Reilly Media, Incorporated.
2002. ISBN 0-596-00241-6.

Spiekermann, Erik & E.M. Ginger. Stop Stealing Sheep & Find Out How Type Works. Ado-
be Press. 1993. ISBN 0-672-48543-5.

818 | Bibliography

St.Laurent, Simon & Michael Fitzgerald. XML Pocket Reference. Third Edition. O’Reilly
Media, Incorporated. 2005. ISBN 0-596-10050-7.

Stallman, Richard. GNU Emacs Manual. Sixteenth Edition. Free Software Foundation.
2007. ISBN 1-882114-86-8.

Stein, Lincoln. Official Guide to Programming with CGI.pm: The Standard for Building
Web Scripts. John Wiley & Sons, Incorporated. 1998. ISBN 0-471-24744-8.

Stubblebine, Tony. Regular Expression Pocket Reference. Second Edition. O’Reilly Media,
Incorporated. 2007. ISBN 0-596-51427-1.

Tuthill, Bill & David Smallberg. Creating Worldwide Software: Solaris International Devel-
oper’s Guide. Second Edition. Prentice-Hall. 1997. ISBN 0-13-494493-3.

Unger, J. Marshall. Literacy and Script Reform in Occupation Japan: Reading Between the
Lines. Oxford University Press. 1996. ISBN 0-19-510166-9.

———. The Fifth Generation Fallacy: Why Japan Is Betting Its Future on Artificial Intel-
ligence. Oxford University Press. 1987. ISBN 0-19-504939-X.

Unicode Consortium, The. The Unicode Standard: Worldwide Character Encoding. Ver-
sion 1.0, Volume 1. Addison-Wesley. 1991. ISBN 0-201-56788-1.

———. The Unicode Standard: Worldwide Character Encoding. Version 1.0, Volume 2.
Addison-Wesley. 1992. ISBN 0-201-60845-6.

———. The Unicode Standard, Version 2.0. Addison-Wesley. 1996. ISBN 0-201-48345-9.

———. The Unicode Standard, Version 3.0. Addison-Wesley. 2000. ISBN 0-201-61633-5.

———. The Unicode Standard, Version 4.0. Addison-Wesley. 2003. ISBN 0-321-18578-1.

———. The Unicode Standard, Version 5.0. Addison-Wesley. 2006. ISBN 0-321-48091-0.

Uren, Emmanuel et al. Software Internationalization and Localization: An Introduction.
Van Nostrand Reinhold. 1993. ISBN 0-442-01498-8.

Vromans, Johan. Perl Pocket Reference. Fourth Edition. O’Reilly Media, Incorporated.
2002. ISBN 0-596-00374-9.

Wall, Larry et al. Programming Perl. Third Edition. O’Reilly Media, Incorporated. 2000.
ISBN 0-596-00027-8.

Walsh, Norman. Making TEX Work. O’Reilly Media, Incorporated. 1994. ISBN 1-56592-
051-1.

Welsh, Matt & Matthias Kalle Dalheimer. Running Linux. Fifth Edition. O’Reilly Media,
Incorporated. 2005. ISBN 0-596-00760-4.

Wong, Clinton. Web Client Programming in Perl. O’Reilly Media, Incorporated. 1997.
ISBN 1-56592-214-X.

Bibliography | 819

Books in Chinese
陈建平. 『常用汉字输入法操作速成』. 福建科学技术出版社. 1996. ISBN 7-5335-1043-7.

国家语言文字工作委员会. 『简化字总表』. Second Edition. 语文出版社. 1986. ISBN
7-80006-282-1.

国家语言文字工作委员会汉字处. 『现代汉语常用字表』. 语文出版社. 1988. ISBN
7-80006-107-8.

———. 『现代汉语通用字表』. 语文出版社. 1988. ISBN 7-80006-167-1.

何根泽 & 何新, editors. 『汉字输入快易通』. 电子工业出版社. 1996. ISBN 7-5053-
3450-6.

黃大一. 『中文字碼―萬碼奔騰, 一碼當先』. Second Edition. 永麒科技股份有限公司.
1992. ISBN 957-9064-00-8.

刘之强, editor. 『简化字 繁体字 选用字 异体字对照表』. 上海辞书出版社. 1983.

苏培成 et al., editors. 『现代汉字规范化问题』. 语文出版社. 1995. ISBN 7-80006-889-7.

谢世涯. 『新中日简体字研究』. 语文出版社. 1989. ISBN 7-80006-222-8.

行政院研究發展考核委員會, editor. 『兩岸常用中文資訊名詞對照表及兩岸常用中
文資訊內碼對照轉碼表之編擬』. 行政院研究發展考核委員會. 1994. ISBN 957-
00-3422-X.

张乐之 et al., editors. 『计算机汉字输入与编辑实用手册』. 上海交通大学出版社.
1994. ISBN 7-313-01405-8.

Books in Japanese
アスキー出版技術部責任編集. 『日本語 TEX テクニカルブック I』. ASCII Corporation.

1990. ISBN 4-7561-0405-3.

Apple Computer Japan. 『Macintosh 漢字 Talk テクニカル・リファレンス』. 技術評論社.
1990. ISBN 4-87408-369-2.

泉均. 『ワープロ用語図説辞典』. 山海堂. 1988. ISBN 4-381-08071-8.

遠藤紹徳. 『早わかり中国簡体字』. 国書刊行会. 1986.

大木敦雄. 『入門 NEmacs』. ASCII Corporation. 1994. ISBN 4-7561-0287-5.

———. 『入門 Mule』. ASCII Corporation. 1994. ISBN 4-7561-0300-6.

岡本保. 『タイプ・デザインのルール 〈ゴシック体漢字編〉』. 富士通アプリコ株式会社.
1993.

———. 『タイプ・デザインのルール 〈明朝体漢字編〉』. 富士通アプリコ株式会社.
1993.

Obscure Inc., editors. 『デザイン、DTP のためのフォントの鉄則』. MYCOM. 2003. ISBN
4-8399-0892-3.

820 | Bibliography

エツコ・オバタ・ライマン. 『日本人の作った漢字』. 南雲堂. 1990. ISBN 4-523-26156-3.

樺島忠夫 et al., editors. 『事典日本の文字』. 大修館書店. 1985. ISBN 4-469-01209-2.

川俣晶. 『パソコンにおける日本語処理/文字コード ハンドブック』. 技術評論社. 1999.
ISBN 4-7741-0780-8.

『誤字俗字・正字一覧表』. テイハン. 1995. ISBN 4-924485-29-2.

共同通信社. 『記者ハンドブック』. Ninth Edition. 共同通信社. 2001. ISBN 4-7641-
0475-X.

共同通信社情報システム局通信部. 『字形と入力』. Second Edition. 共同通信社.
1995.

清兼義弘 & 末廣陽一, editors. 『国際化プログラミング― I18N ハンドブック』. 共立出
版. 1998. ISBN 4-320-02904-6.

Lunde, Ken. 『日本語情報処理』. SOFTBANK Corporation. 1995. ISBN 4-89052-708-7.

斎藤靖 et al. 『新 Perl の国へようこそ』. サイエンス社. 1996. ISBN 4-7819-0795-4.

逆井克己. 『基本日本語文字組版』. 日本印刷新聞社. 1999. ISBN 4-88884-093-8C.

坂村健. 『新版トロンヒューマンインタフェース標準ハンドブック』. Personal Media
Corporation. 1996. ISBN 4-89362-141-6.

———. 『BTRON1 プログラミング標準ハンドブック』. Personal Media Corporation.
1992. ISBN 4-89362-093-2.

佐渡秀治 & 吉田智子. 『Linux/FreeBSD 日本語環境の構築と活用』. ソフトバンク.
1997. ISBN 4-7973-0480-4.

佐藤喜代治 et al. 『漢字講座』. 10 Volumes. 大修館書店. 1987–1989.

J-PRESS. 『縦組み DTP 制作の現場』. エーアイ出版. 1997. ISBN 4-87193-524-8.

『常用漢字表』. 大蔵省印刷局. 1987. ISBN 4-17-214500-0.

真堂彬 & プロビット. 『JIS 補助漢字』. エーアイ出版. 1991. ISBN 4-87193-158-7.

菅野芩. 『中国入力方法の話』. 朝日出版社. 1991. ISBN 4-255-91006-5.

長尾真 et al., editors. 『情報科学辞典』. 岩波書店. 1990. ISBN 4-00-080074-4.

中西秀彦. 『活字が消えた日―コンピュータと印刷』. 晶文社. 1994. ISBN 4-7949-6172-3.

錦見美貴子 et al. 『マルチリンガル環境の実現: X Window/Wnn/Mule/WWW ブラウ
ザでの多国語環境』. Prentice-Hall. 1996. ISBN 4-88735-020-1.

西野嘉章. 『歴史の文字―記載・活字・活版』. 東京大学総合研究博物館. 1996.

日本エディタースクール. 『標準校正必携〈電算植字対応版〉』. Seventh Edition. 日本
エディタースクール出版部. 1995. ISBN 4-88888-235-5.

野村保惠. 『〈電算植字〉本づくり入門』. 日本エディタースクール出版部. 1995. ISBN
4-88888-231-2.

Bibliography | 821

林四郎 & 松岡栄志. 『日本の漢字・中国の漢字』. 三省堂. 1995. ISBN 4-385-35597-5.

原田種成. 『漢字小百科辞典』. 三省堂. 1990. ISBN 4-385-13590-8.

Hitachi. 『HITAC 文字コード表 (KEIS83)』. 1989. Hitachi part number 8080-2-100-10.

府川充男. 『組版原論―タイポグラフィと活字・写植・DTP』. 太田出版. 1996. ISBN
4-87233-272-5.

藤岡康隆 et al. 『DTP フォント入門 Macintosh 編』. MdN Corporation. 1999. ISBN
4-8443-5538-4.

古瀬幸広. 『ワープロここが不思議―ちょっと知的なワープロ学』. 講談社. 1994. ISBN
4-06-257018-1.

———. 『最新ワープロ用語辞典』. 実業之日本社. 1991. ISBN 4-408-10095-1.

———. 『ネットワーク通信活用ブック』. 実業之日本社. 1991. ISBN 4-408-10096-X.

三上喜貴. 『文字符号の歴史―アジア編―』. 共立出版. 2002. ISBN 4-320-12040-X.

三上吉彦 et al. 『マルチリンガル WEB ガイド』. O’Reilly Japan. 1997. ISBN 4-900900-
23-0.

文字フォント開発・普及センター. 『新フォント関連用語集―フォントと組版に関する
用語 解説』. 日本規格協会. 1993.

森浩孝. 『パソコン通信ガイドブック』. HBJ Publishing. 1986. ISBN 4-8337-8512-9.

森田正典. 『これが日本語に最適なキーボードだ』. 日本経済新聞社. 1992. ISBN
4-532-40014-7.

森田正典 & 丸山和光. 『日本語だから速く入力できる』. 日刊工業新聞社. 1988. ISBN
4-526-02310-8.

安岡孝一 & 安岡素子. 『文字コードの世界』. TDU. 1999. ISBN 4-501-53060-X.

———. 『文字符号の歴史―欧米と日本編―』. 共立出版. 2006. ISBN 4-320-12102-3.

———. 『キーボード配列 QWERTY の謎』. NTT 出版. 2008. ISBN 978-4-7571-4176-6.

吉田智子. 『UNIX の日本語処理がわかる本― 最新 Wnn 活用ガイド』. 日刊工業新
聞社. 1993. ISBN 4-526-03321-9.

𠮷目木晴彦 et al. 『電脳文化と漢字のゆくえ― 岐路に立つ日本語』. 平凡社. 1998.
ISBN 4-582-40322-0.

和田義浩 et al. 『DTP フォント完全理解！』. Works Corporation. 2002. ISBN 4-948759-
42-2.

Books in Korean
 Dong-A’s Prime Korean-English Dictionary. Second Edition. Doosan Dong-A Company,

Limited. 1996. ISBN 89-00-04440-0.

822 | Bibliography

김 경석. 『컴퓨터 속의 한글 이야기』. 영진 출판사. 1995. ISBN 89-314-0578-2.

김 진평. 『한글의 글자표현』. Second Edition. 미진사. 1997. ISBN 89-408-0109-1.

김 학성 (金學成). 『레터링 디자인』. 조형사. 1997. ISBN 89-8307-011-0.

Ideograph dictionaries
赤塚忠 et al. 『旺文社 漢和辞典』. Fifth Edition. 旺文社. 1993. ISBN 4-01-077703-6.

费锦昌 et al., editors. 『汉字写法规范字典』. 上海辞书出版社. 1992. ISBN 7-5326-
0119-6.

傅永和, editor. 『汉字属性字典』. 语文出版社. 1989. ISBN 7-80006-242-2.

Fujitsu Limited. 『FACOM JEF 文字コード索引辞書』. 1987. Fujitsu part number 99FR-
0012-3.*

Halpern, Jack, editor. The Kodansha Kanji Learner’s Dictionary. Kodansha International
Limited. 1998. ISBN 4-7700-2335-9.

———. NTC’s New Japanese-English Character Dictionary. NTC. 1993. ISBN 0-8442-
8434-3.

———. New Japanese-English Character Dictionary. Kenkyusha. 1990. ISBN 4-7674-9040-5.

飛田良文. 『国字の字典』. 東京堂出版. 1990. ISBN 4-490-10279-8.

Hitachi. 『HITAC 文字パターン辞書/コードブック (KEIS83 拡張文字セット 3)』. 1987.
Hitachi part number 8080-2-109.

———. 『HITAC 文字パターン辞書/コードブック (拡張文字セット 3)』. 1984. Hitachi
part number 8080-2-074-10.

胡双宝. 『简化字 繁体字 异体字辨析手册』. 北京大学出版社. 1996. ISBN 7-301-
03198-X.

石川忠久 et al. 『福武 漢和辞典 新装版』. Benesse. 1997. ISBN 4-8288-0435-8.

覚田正 & 米山寅太郎. 『新版 漢語林』. 大修館書店. 1994. ISBN 4-469-03107-0.

———. 『大漢語林』. 大修館書店. 1992. ISBN 4-469-03154-2.

———. 『新漢語林』. 大修館書店. 2004. ISBN 4-469-03162-3.

蓝徳康, editor. 『国际标准汉字大字典』. 电子工业出版社. 1998. ISBN: 7-5053-4481-1.

冷玉龙, editor. 『中华字海』. 中华出版社. 1994. ISBN: 7-5057-0630-6.

民志書林編輯, editors. 『活用玉篇』. 民志書林. 1983. ISBN 89-387-0110-7.

諸橋轍次. 『大漢和辭典』. Revised Second Edition. 13 Volumes. 大修館書店. 1994.

* FACOM is usually pronounced in a way that is close to a two-word obscenity.

Bibliography | 823

NEC. 『日本電気標準文字セット辞書 基本編』. 1983. NEC part number ZBB10-2.

———. 『日本電気標準文字セット辞書 拡張編』. 1983. NEC part number ZBB11-1.

Nelson, Andrew & John H. Haig. The New Nelson Japanese-English Character Dictionary
『新版ネルソン漢英辞典』. New Nelson Edition. Charles E. Tuttle Company. 1997.

ISBN 0-8048-2036-8.

日外アソシエーツ編集部. 『漢字異体字典』. 日外アソシエーツ. 1994. ISBN 4-8169-
1249-5.

小川環樹 et al. 『角川 必携漢和辞典』. 角川書店. 1996. ISBN 4-04-013300-5.

———. 『角川 新字源 改訂版』. 角川書店. 1994. ISBN 4-04-010804-3.

商務印書館編輯部. 『辭源』. 商務印書館. 1995. ISBN 7-100-00540-X.

芝野耕司, editor. 『JIS 漢字字典』. 財団法人日本規格協会. 1997. ISBN 4-542-20127-9.

———. 『増補改訂 JIS 漢字字典』. 財団法人日本規格協会. 2002. ISBN 4-542-20129-5.

新潮社, editor. 『新潮日本語漢字辞典』. 新潮社. 2007. ISBN 978-4-10-730215-1.

新村出, editor. 『広辞苑』. Fourth Edition. 岩波書店. 1991. ISBN 4-00-080101-5.

Spahn, Mark & Wolfgang Hadamitzky. The Kanji Dictionary. Charles E. Tuttle Company.
1996. ISBN 0-8048-2058-9.

蘇培成, editor. 『漢字簡繁體字對照字典』. Second Edition. 海峰出版社 & 中信出版社
(co-publishers). 1996. ISBN 962-238-213-4.

田嶋一夫. 『最新 JIS 漢字辞典』. 講談社. 1990. ISBN 4-06-123264-9.

竹田晃 & 坂梨隆三. 『五十音引き講談社漢和辞典』. 講談社. 1997. ISBN 4-06-123269-X.

上柿力. 『パソコンワープロ漢字辞典』. ナツメ社. 1987. ISBN 4-8163-0696-X.

上田万年 et al., editors. 『新大字典』. 講談社. 1993. ISBN 4-06-123140-5.

Viện Ngôn Ngữ Học. Bảng Tra Chữ Nôm. Nhà Xuất Bản Khoa Học Xã Hội. 1976. Permis-
sion number 5/KHXH 76.

Vũ Văn Kính. Tự Diển Chữ Nôm. Nhà Xuất Bản Đà Nẵng. 1996. Permission number
10/226.

『ワープロ・パソコン最新漢字辞典』. 小学館. 1994. ISBN 4-09-505121-3.

吴伟和 et al., editors. 『汉字输入速查手册』. 中国工人出版社. 1996. ISBN 7-5008-
1846-7.

許慎. 『說文解字』. 中華書局. 100. ISBN 962-231-208-X.

楊子來. 『標準中文輸入碼大字典』. 聚賢館文化有限公司. 1996. ISBN 962-436-287-4.

ユニコード漢字情報辞典編集委員会, editors. Sanseido’s Unicode Kanji Information
Dictionary (『ユニコード漢字情報辞典』). 三省堂. 2000. ISBN 4-385-13690-4.

張三植. 『大字源』. 集文堂. 1972.

824 | Bibliography

張玉書 et al. 『康熙字典』. 中華書局. 1716. ISBN 962-231-006-0.

中文社会科学院语言研究所词典编辑室, editors. 『现代汉语词典』. 商务印书馆.
1995. ISBN 7-100-00044-0.

周冰洋 et al., editors. 『常用汉字编码字典』. 宇航出版社. 1990. ISBN 7-80034-102-X.

朱文章, editor. 『字詞·成語·辨正辭典』. 文翔圖書股份有限公司. 1986.

邹华清, editor. 『汉语大字典』. 13 volumes. 四川辞书出版社 & 湖北辞书出版社.
1986.

standards
American National Standards Institute. ANSI X3.4-1986 Coded Character Set—7-Bit

American National Standard Code for Information Interchange. 1986.

———. ANSI Z39.64-1989 East Asian Character Code for Bibliographic Use. 1989. ISSN
1041-5653.

Chinese National Standard. CNS 5205-1989 Information Processing—7-Bit Coded Charac-
ter Set for Information Interchange (『資訊處理及交換用七數元碼字元集』). 1989.

———. CNS 11643-1986 Standard Interchange Code for Generally-Used Chinese Charac-
ters (『通用漢字標準交換碼』). 1986. Obsoleted by CNS 11643-1992.

———. CNS 11643-1992 Chinese Standard Interchange Code (『中文標準交換碼』). 1992.
Obsoletes CNS 11643-1986. Obsoleted by CNS 11643-2007.

———. CNS 11643-2007 Chinese Standard Interchange Code (『中文標準交換碼』). 2007.
Obsoletes CNS 11643-1992.

———. CNS 14649-1:2002 Information Technology—Universal Multiple-Octet Coded
Character Set (UCS)—Part 1: Architecture and Basic Multilingual Plane (『資訊技術
─廣用多八位元編碼字元集 (UCS) ─第 1 部: 架構及基本多語文字面』). 2002

———. CNS 14649-2:2003 Information Technology—Universal Multiple-Octet Coded
Character Set (UCS)—Part 2: Supplementary Planes (『資訊技術─廣用多八位元編
碼字元集 (UCS) ─第 2 部: 輔助字面』). 2003

Fujitsu Limited. 『富士通文字コード解説書』. 1989. Fujitsu part number 99FR-8010-1.

Hitachi. 『KEIS 概説』. 1990. Hitachi part number 6180-3-003.

IBM Corporation. Coded Character Sets: Implementation. IBM Standards Program. 1991.
IBM part number C-S 3-3220-019 1991-10.

———. Double-Byte Character Set (DBCS): Terminology and Code Scheme. IBM Standards
Program. 1992. IBM part number C-S 3-3220-102 1992-11.

———. Extended BCD Interchange Code: EBCDIC. IBM Standards Program. 1990. IBM
part number C-S 3-3220-002 1990-05.

Bibliography | 825

———. IBM Japanese Graphic Character Set, Kanji, for Open Environment, DBCS-PC
(New JIS Sequence). IBM Standards Program. 1996. IBM part number C-H 3-3220-
133 1996-08.

———. IBM Japanese Graphic Character Set for Extended UNIX Code (EUC): DBCS-EUC.
IBM Standards Program. 1993. IBM part number C-H 3-3220-127 1993-03.

———. IBM Japanese Graphic Character Set, Kanji: DBCS-Host and DBCS-PC. IBM Stan-
dards Program. 1992. IBM part number C-H 3-3220-024 1992-11.

———. IBM Korean Graphic Character Set, DBCS-Host and DBCS-PC (For Windows Envi-
ronment). IBM Standards Program. 1997. IBM part number C-H 3-3220-030 1997-09.

———. IBM Korean Graphic Character Set for Extended UNIX Code (EUC), DBCS-EUC.
IBM Standards Program. 1993. IBM part number C-H 3-3220-128 1993-11.

———. IBM Korean Graphic Character Set, DBCS-Host and DBCS-PC. IBM Standards
Program. 1992. IBM part number C-H 3-3220-125 1992-09.

———. IBM Simplified Chinese Graphic Character Set, GBK Code, DBCS-Host and DBCS-
PC. IBM Standards Program. 1997. IBM part number C-H 3-3220-020 1997-02.

———. IBM Simplified Chinese Graphic Character Set for Extended UNIX Code (EUC),
DBCS-EUC. IBM Standards Program. 1994. IBM part number C-H 3-3220-132
1994-06.

———. IBM Simplified Chinese Graphic Character Set, DBCS-Host and DBCS-PC. IBM
Standards Program. 1993. IBM part number C-H 3-3220-130 1993-11.

———. IBM Traditional Chinese Graphic Character Set for IBM BIG-5 Code, DBCS-PC.
IBM Standards Program. 1994. IBM part number C-H 3-3220-131 1994-01.

———. IBM Traditional Chinese Graphic Character Set for Extended UNIX Code (EUC),
DBCS-EUC and TBCS-EUC. IBM Standards Program. 1993. IBM part number C-H
3-3220-129 1993-11.

———. IBM Traditional Chinese Graphic Character Set, DBCS-Host and DBCS-PC. IBM
Standards Program. 1992. IBM part number C-H 3-3220-126 1992-01.

International Organization for Standardization. International Register of Coded Character
Sets to Be Used with Escape Sequences. 1996.

———. ISO 639-1:2002 Code for the Representation of Names of Languages—Part 1:
Alpha-2 Code. 2002.

———. ISO 639-2:1998 Codes for the Representation of Names of Languages—Part 2:
Alpha-3 Code. 1998.

———. ISO 646:1991 Information Technology—ISO 7-Bit Coded Character Set for Infor-
mation Interchange. 1991.

———. ISO 2022:1994 Information Technology— Character Code Structure and Extension
Techniques. 1994.

826 | Bibliography

———. ISO 3166-1:2006 Codes for the Representation of Names of Countries and Their
Subdivisions—Part 1: Country Codes. 2006.

———. ISO 3166-2:2007 Codes for the Representation of Names of Countries and Their
Subdivisions—Part 2: Country Subdivision Code. 2007.

———. ISO 6429:1992 Information Technology—Control Functions for Coded Character
Sets. 1992.

———. ISO 7098:1991 Information and Documentation—Romanization of Chinese. 1991.

———. ISO 8859 Information Processing—8-Bit Single-Byte Coded Graphic Character Sets.
Fifteen parts. 1987–2003.

———. ISO 8879:1986 Information Processing—Text and Office Systems—Standard Gener-
alized Markup Language (SGML). 1986.

———. ISO 9541:1991 Information Technology—Font Information Interchange. Three
parts. 1991–1994.

———. ISO 10179:1996 Information Technology—Processing Languages—Document Style
Semantics and Specification Language (DSSSL). 1996.

———. ISO 10646-1:1993 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane. 1993. Obsoleted
by ISO 10646-1:2000.

———. ISO 10646-1:2000 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane. 2000. Obsoletes
ISO 10646-1:1993. Obsoleted by ISO 10646:2003.

———. ISO 10646-2:2001 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 2: Supplementary Planes. 2001. Obsoleted by ISO 10646:2003.

———. ISO 10646:2003 Information Technology—Universal Multiple-Octet Coded Charac-
ter Set (UCS). 2003. Obsoletes ISO 10646-1:2000 and ISO 10646-2:2001.

———. ISO/TR 11941:1996 Information Documentation—Transliteration of Korean Script
into Latin Characters. 1996.

———. ISO 14755:1997 Information Technology—Input Methods to Enter Characters from
the Repertoire of ISO/IEC 10646 With a Keyboard or Other Input Device. 1997.

———. ISO 15924:2004 Information and Documentation—Codes for the Representation of
Names of Scripts. 2004.

———. ISO 32000-1:2008 Document Management—Portable Document Format—Part 1:
PDF 1.7. 2008.

Japanese Industrial Standards Committee. JIS C 6226-1978 Code of the Japanese Graphic
Character Set for Information Interchange (『情報交換用漢字符号』). Japanese Stan-
dards Association. 1978.

Bibliography | 827

———. JIS X 0201-1997 7-Bit and 8-Bit Coded Character Sets for Information Interchange
(『7 ビット及び 8 ビットの情報交換用符号化文字集合』). Japanese Standards As-
sociation. 1997. Originally designated JIS C 6220-1976, and obsoletes JIS X 0201-
1976.

———. JIS X 0202:1998 Information Processing—ISO 7-Bit and 8-Bit Coded Character
Sets—Code Extension Techniques (『情報技術―文字符号の構造及び拡張法』).
Japanese Standards Association. 1998. Originally designated JIS C 6228-1984, and
obsoletes JIS X 0202-1984 and JIS X 0202-1991.

———. JIS X 0207-1979 Code of the Control Character Set for Japanese Graphic Charac-
ters for Information Interchange (『情報交換用漢字符号のための制御文字符号』).
Japanese Standards Association. 1979. Obsoletes JIS C 6225-1979.

———. JIS X 0208-1983 Code of the Japanese Graphic Character Set for Information Inter-
change (『情報交換用漢字符号』). Japanese Standards Association. 1983. Originally
designated JIS C 6226-1983, and obsoletes JIS C 6226-1978.

———. JIS X 0208-1990 Code of the Japanese Graphic Character Set for Information Inter-
change (『情報交換用漢字符号』). Japanese Standards Association. 1990. Obsoletes
JIS X 0208-1983.

———. JIS X 0208:1997 7-Bit and 8-Bit Double Byte Coded Kanji Sets for Information Inter-
change (『7 ビット及び 8 ビットの 2 バイト情報交換用符号化漢字集合』). Japanese
Standards Association. 1997. Obsoletes JIS X 0208-1990.

———. JIS X 0212-1990 Code of the Supplementary Japanese Graphic Character Set for
Information Interchange (『情報交換用漢字符号―補助漢字』). Japanese Standards
Association. 1990.

———. JIS X 0213:2000 7-Bit and 8-Bit Double Byte Coded Extended Kanji Sets for Infor-
mation Interchange (『7 ビット及び 8 ビットの 2 バイト情報交換用符号化拡張漢字
集合』). Japanese Standards Association. 2000. Obsoleted by JIS X 0213:2004.

———. JIS X 0213:2004 7-Bit and 8-Bit Double Byte Coded Extended Kanji Sets for Infor-
mation Interchange (Amendment 1) (『7 ビット及び 8 ビットの 2 バイト情報交換用
符号化拡張漢字集合 (追補 1)』). Japanese Standards Association. 2004. Obsoletes
JIS X 0213:2000.

———. JIS X 0221-1995 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane (『国際符号化文
字集合 (UCS)―第 1 部: 体系及び基本多言語面』). Japanese Standards Associa-
tion. 1995. Obsoleted by JIS X 0221-1:2001.

———. JIS X 0221-1:2001 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane (『国際符号化文
字集合 (UCS)―第 1 部: 体系及び基本多言語面』). Japanese Standards Associa-
tion. 2001. Obsoletes JIS X 0221-1995. Obsoleted by JIS X 0221:2007.

828 | Bibliography

———. JIS X 0221:2007 Information Technology—Universal Multiple-Octet Coded Char-
acter Set (UCS) (『国際符号化文字集合 (UCS)』). Japanese Standards Association.
2007. Obsoletes JIS X 0221-1:2001.

———. JIS X 4051-1993 Line Composition Rules for Japanese Documents (『日本語文書
の行組版方法』). Japanese Standards Association. 1993. Obsoleted by JIS X 4051-
1995.

———. JIS X 4051-1995 Line Composition Rules for Japanese Documents (『日本語文書
の行組版方法』). Japanese Standards Association. 1995. Obsoletes JIS X 4051-1993.
Obsoleted by JIS X 4051:2004.

———. JIS X 4051:2004 Formatting Rules for Japanese Documents (『日本語文書の組版
方法』). Japanese Standards Association. 2004. Obsoletes JIS X 4051-1995.

———. JIS X 4061-1996 Collation of Japanese Character String (『日本語文字列照合順
番』). Japanese Standards Association. 1996.

———. JIS X 4062:1998 Format for Information Interchange for Dictionaries of Japanese
Input Method (『仮名漢字変換辞書交換形式』). Japanese Standards Association.
1998.

———. JIS X 4161-1993 Font Information Interchange—Architecture (『フォント情報交
換―体系』). Japanese Standards Association. 1993.

———. JIS X 4162-1993 Font Information Interchange—Interchange Format (『フォント情
報交換―交換用式』). Japanese Standards Association. 1993.

———. JIS X 4163-1994 Font Information Interchange—Glyph Shape Representation (『フォ
ント情報交換―グリフ形状表現』). Japanese Standards Association. 1994.

———. JIS X 6002-1985 Keyboard Layout for Information Processing Using the JIS 7-Bit
Coded Character Set (『情報処理系けん盤配列』). Japanese Standards Association.
1985. Originally designated JIS C 6233-1980.

———. JIS X 6003-1989 Keyboard Layout for Japanese Text Processing (『日本語文書処理
用文字盤配列』). Japanese Standards Association. 1989. Originally designated JIS C
6235-1984.

———. JIS X 6004-1986 Basic Keyboard Layout for Japanese Text Processing Using Kana-
Kanji Translation Method (『仮名漢字変換形日本文入力装置用けん盤配列』).
Japanese Standards Association. 1986. Originally designated JIS C 6236-1986.

———. JIS X 9051-1984 16-Dots Matrix Character Patterns for Display Devices (『表示装
置用 16 ドット字形』). Japanese Standards Association. 1984. Originally designated
JIS C 6232-1984.

———. JIS X 9052-1983 24-Dots Matrix Character Patterns for Dot Printers (『ドットプリ
ンタ用 24 ドット字形』). Japanese Standards Association. 1983. Originally designated
JIS C 6234-1983.

Bibliography | 829

Korean Industrial Standards Association. KS X 1001:1992 Code for Information Inter-
change (Hangul and Hanja) (『정보 교환용 부호 (한글 및 한자)』). Korean In-
dustrial Standard. 1992. Originally designated KS C 5601-1992. Obsoleted by KS X
1001:1998.

———. KS X 1001:1998 Code for Information Interchange (Hangul and Hanja) (『정보 교
환용 부호 (한글 및 한자)』). Korean Industrial Standard. 1998. Obsoletes KS X
1001:1992. Obsoleted by KS X 1001:2002.

———. KS X 1001:2002 Code for Information Interchange (Hangul and Hanja) (『정보 교
환용 부호 (한글 및 한자)』). Korean Industrial Standard. 2002. Obsoletes KS X
1001:1998. Obsoleted by KS X 1001:2004.

———. KS X 1001:2004 Code for Information Interchange (Hangul and Hanja) (『정보 교
환용 부호 (한글 및 한자)』). Korean Industrial Standard. 2004. Obsoletes KS X
1001:2002.

———. KS X 1002:1991 Code for Information Interchange Supplementary Set (『정보 교환
용 부호 확장 세트』). Korean Industrial Standard. 1991. Originally designated KS C
5657-1991. Obsoleted by KS X 1002:2001.

———. KS X 1002:2001 Code for Information Interchange Supplementary Set (『정보
교환용 부호 확장 세트』). Korean Industrial Standard. 2001. Obsoletes KS X
1002:1991.

———. KS X 1003:1993 Code for Information Interchange (Roman Characters) (『정보 교
환 용 부호 (로마 문자)』). Korean Industrial Standard. 1993. Originally designated
KS C 5636-1993.

———. KS X 1004:1995 Code Extension Techniques for Use with the Code for Information
Interchange (『정보 교환용 부호의 확장법』). Korean Industrial Standard. 1995.
Originally designated KS C 5620-1995.

———. KS X 1005-1:1995 Information technology—Universal Multiple-Octet Coded Char-
acter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane (『국제 문자 부
호계 (UCS) 제１부：구조 및 기본 다국어 평면』). Korean Industrial Standard.
1995. Originally designated KS C 5700-1995.

———. KS X 2901:1992 UNIX-Hangul Environment (『유닉스 한글 환경』). Korean In-
dustrial Standard. 1992. Originally designated KS C 5861-1992.

———. KS X 5002:1992 Keyboard Layout for Information Processing (『정보 처리용 건반
배열』). Korean Industrial Standard. 1992. Originally designated KS C 5715-1992.

People’s Republic of China, The. GB 1988-89 Information Processing—7-Bit Coded Char-
acter Set for Information Interchange (『信息处理―信息交换用七位编码字符集』).
Technical Standards Press. 1990. Obsoletes GB 1988-80.

830 | Bibliography

———. GB 2311-80 Information Processing—7-Bit and 8-Bit Coded Character Set—Code
Extension Techniques (『信息处理―七位及八位编码字符集―代码扩充技术』).
Technical Standards Press. 1980.

———. GB 2312-80 Code of Chinese Graphic Character Set for Information Interchange
Primary Set (『信息交换用汉字编码字符集―基本集』). Technical Standards Press.
1981.

———. GB 5007.1-85 24×24 Dot Matrix Font Set of Chinese Ideograms for Information
Interchange (『信息交换用汉字 24×24 点阵字模集』). Technical Standards Press.
1985.

———. GB 5007.2-85 24×24 Dot Matrix Font Data Set of Chinese Ideograms for Informa-
tion Interchange (『信息交换用汉字 24×24 点阵字模数据集』). Technical Standards
Press. 1985.

———. GB 6345.1-86 32×32 Dot Matrix Font Set of Chinese Ideograms for Information
Interchange (『信息交换用汉字 32×32 点阵字模集』). Technical Standards Press.
1986.

———. GB 6345.2-86 32×32 Dot Matrix Font Data Set of Chinese Ideograms for Informa-
tion Interchange (『信息交换用汉字 32×32 点阵字模数据集』). Technical Standards
Press. 1986.

———. GB 7589-87 Code of Chinese Ideograms Set for Information Interchange—the Sec-
ond Supplementary Set (『信息交换用汉字编码字符集―第二辅助集』). Technical
Standards Press. 1987.

———. GB 7590-87 Code of Chinese Ideograms Set for Information Interchange—the
Fourth Supplementary Set (『信息交换用汉字编码字符集―第四辅助集』). Techni-
cal Standards Press. 1987.

———. GB 8565.1-88 Information Processing—Coded Character Sets for Text Communi-
cation—Part 1: General Introduction (『信息处理―文本通信用编码字符集―第一
部分—总则』). Technical Standards Press. 1988.

———. GB 8565.2-88 Information Processing—Coded Character Sets for Text Communi-
cation—Part 2: Graphic Characters (『信息处理―文本通信用编码字符集―第二
部分―图形字符集』). Technical Standards Press. 1988.

———. GB 8565.3-88 Information Processing—Coded Character Sets for Text Communica-
tion—Part 3: Control Functions for Page-Image Format (『信息处理―文本通信用编
码字符集―第三部分―按页成象格式用控制功能』). Technical Standards Press.
1989.

———. GB 12034-89 32×32 Dot Matrix Fangsongti Font Set and Data Set of Chinese Ideo-
grams for Information Interchange (『信息交换用汉字 32×32 点阵仿宋体字模集及
数据集』). Technical Standards Press. 1990.

Bibliography | 831

———. GB 12035-89 32×32 Dot Matrix Kaiti Font Set and Data Set of Chinese Ideograms
for Information Interchange (『信息交换用汉字 32×32 点阵楷体字模集及数据
集』). Technical Standards Press. 1990.

———. GB 12036-89 32×32 Dot Matrix Heiti Font Set and Data Set of Chinese Ideograms
for Information Interchange (『信息交换用汉字 32×32 点阵黑体字模集及数据
集』). Technical Standards Press. 1990.

———. GB 12052-89 Korean Character Coded Character Set for Information Interchange
(『信息交换用朝鲜文字编码字符集』). Technical Standards Press. 1990

———. GB/T 12345-90 Code of Chinese Ideogram Set for Information Interchange Supple-
mentary Set (『信息交换用汉字编码字符集―辅助集』). Technical Standards Press.
1990.

———. GB 13000.1-93 Information Technology—Universal Multiple-Octet Coded Charac-
ter Set (UCS)—Part 1: Architecture and Basic Multilingual Plane (『信息技术―通用
多八位编码字符集 (UCS)―第一部分：体系结构与基本多文种平面』). Techni-
cal Standards Press. 1994.

———. GB/T 15834-1995 Use of Punctuation Marks (『标点符号用法』). Technical Stan-
dards Press. 1996.

———. GB/T 15835-1995 General Rules for Writing Numerals in Publications (『出版物上
数字用法的规定』). Technical Standards Press. 1996.

———. GB 16794.1-1997 (『信息技术―通用多八位编码字符集 48 点阵字形』). Tech-
nical Standards Press. 1998.

———. GB 18030-2000. Information Technology—Chinese Ideograms Code Character Set
for Information Interchange—Extension for the Basic Set (『信息技术 信息交换用汉
字编码字符集 基本集的扩充』). Technical Standards Press. 2000. Obsoleted by GB
18030-2005.

———. GB 18030-2005. Information Technology—Chinese Coded Character Set (『信息技
术 中文编码字符集』). Technical Standards Press. 2005. Obsoletes GB 18030-2000.

Vietnam Standards Institute. TCVN 5712:1993 Công Nghệ Thông Tin—Bộ Mã Chuẩn
8-Bit Kí Tự Việt Dùng Trong Trao Đổi Thông Tin (Information Technology—Vietnam-
ese 8-Bit Standard Coded Character Set for Information Interchange). 1993.

———. TCVN 5773:1993 Công Nghệ Thông Tin—Bộ Mã Chuẩn 16-Bit Chữ Nôm Dùng
Trong Trao Đổi Thông Tin (Information Technology—Nom 16-Bit Standard Code Set
for Information Interchange). 1993.

———. TCVN 6056:1995 Công nghệ thông tin—Bộ Mã Chuẩn 16-Bit Chữ Nôm Dùng
Trong Trao Đổi Thông Tin—Chữ Nôm Hán (Information Technology—Nom 16-Bit
Standard Code for Information Interchange—Han Nom Character). 1995.

832 | Bibliography

X/Open Consortium. X/Open CAE Specification: Commands and Utilities, Issue 4, Ver-
sion 2. X/Open Company Limited. 1994. ISBN 1-85912-034-2. X/Open Document
Number C436.

———. X/Open CAE Specification: File System Safe UCS Transformation Format (UTF-8).
X/Open Company Limited. 1995. ISBN 1-85912-082-2. X/Open Document Number
C501.

———. X/Open CAE Specification: System Interfaces and Headers. Issue 4, Version 2. X/
Open Company Limited. 1994. ISBN 1-85912-037-7. X/Open Document Number
C435.

———. X/Open CAE Specification: System Interface Definitions. Issue 4, Version 2. X/Open
Company Limited. 1994. ISBN 1-85912-036-9. X/Open Document Number C434.

———. X/Open Guide: Internationalisation Guide. Version 2. X/Open Company Limited.
1993. ISBN 1-85912-002-4. X/Open Document Number G304.

Xerox Corporation. Xerox Character Code Standard 2.0. Xerox Systems Institute. 1990.
Xerox part number XNSS 059003.

Periodicals
Chinese and Oriental Languages Information Processing Society (COLIPS). Journal of

Chinese Language and Computing (Communications of COLIPS). Published quarterly.
ISSN 0219-5968.

 Computing Japan. LINC Media, Incorporated. Published from 1994 until 1999. ISSN
1340-7228.

Chinese Language Computer Society (CLCS). International Journal of Computer Process-
ing of Oriental Languages (IJCPOL). World Scientific Publishing. Published quarterly.
ISSNs 0219-4279 (print) & 1793-6748 (online).

 The Globalization Insider. Localization Industry Standards Association (LISA). Published
monthly. ISSN 1420-3693.

『情報処理』. Information Processing Society of Japan. Published monthly.

『정글』 (Jungle). Yoon Design Institute. Published quarterly. Bar-2557.

 Language International. John Benjamins Publishing Company. Published bi-monthly
from 1989 until 2002. ISSN 0923-182X.

 MultiLingual. MultiLingual Computing, Incorporated. Published bimonthly. ISSN 1523-
0309.

 The Perl Journal. Published quarterly from 1994 until 1999. ISSN 1087-903X.

『最新ワープロ大百科』. 実業之日本社. Published from 1986 until 1993.

 SESAME Bulletin. Sesame Computer Projects. ISSN 0950-2025.

Bibliography | 833

 The Seybold Report. RISI. Published twice a month. ISSN 1533-9211.

TRONWARE. Personal Media Corporation. Pubished bi-monthly.

 TUGboat. TEX Users Group. Published three times per year. ISSN 0896-3207.

 U&lc Online. International Typeface Corporation. Published quarterly. ISSN 0362-6245.

 World Wide Web Journal. O’Reilly Media, Incorporated. Published quarterly. ISSN 1085-
2301.

『中文信息』 (Chinese Information Processing). Chinese Information Processing Society.
Published bi-monthly. ISSN 1003-9082.

Articles, Papers, and technical notes
Adobe Systems Incorporated. Glyph Bitmap Distribution Format (BDF) Specification.

Adobe Developer Support. Adobe Systems Technical Note #5005.

———. Adobe CMap and CIDFont Files Specification. Adobe Developer Support. Adobe
Systems Technical Note #5014.

———. The Type 1 Font Format Supplement. Adobe Developer Support. Adobe Systems
Technical Note #5015.

———. Adobe-Japan1-6 Character Collection for CID-Keyed Fonts. Adobe Developer Sup-
port. Adobe Systems Technical Note #5078.

———. Adobe-GB1-5 Character Collection for CID-Keyed Fonts. Adobe Developer Sup-
port. Adobe Systems Technical Note #5079.

———. Adobe-CNS1-5 Character Collection for CID-Keyed Fonts. Adobe Developer Sup-
port. Adobe Systems Technical Note #5080.

———. CID-Keyed Font Technology Overview. Adobe Developer Support. Adobe Systems
Technical Note #5092.

———. Adobe-Korea1-2 Character Collection for CID-Keyed Fonts. Adobe Developer Sup-
port. Adobe Systems Technical Note #5093.

———. Adobe CJKV Character Collections and CMaps for CID-Keyed Fonts. Adobe Devel-
oper Support. Adobe Systems Technical Note #5094.

———. Adobe-Japan2-0 Character Collection for CID-Keyed Fonts. Adobe Developer Sup-
port. Adobe Systems Technical Note #5097. Obsoleted by Adobe Systems Technical
Note #5078.

———. Building CMap Files for CID-Keyed Fonts. Adobe Developer Support. Adobe Sys-
tems Technical Note #5099.

———. SING Glyphlet Production: Tips, Tricks & Techniques. Adobe Developer Support.
Adobe Systems Technical Note #5148.

834 | Bibliography

———. OpenType-CID/CFF CJK Fonts: ‘name’ Table Tutorial. Adobe Developer Support.
Adobe Systems Technical Note #5149.

———. CID-Keyed Font Installation for PostScript File Systems. Adobe Developer Support.
Adobe Systems Technical Note #5174.

———. CID-Keyed Font Installation for ATM Software. Adobe Developer Support. Adobe
Systems Technical Note #5175.

———. The Compact Font Format Specification. Adobe Developer Support. Adobe Sys-
tems Technical Note #5176.

———. The Type 2 Charstring Format. Adobe Developer Support. Adobe Systems Techni-
cal Note #5177.

———. Building PFM Files for PostScript-Language CJK Fonts. Adobe Developer Support.
Adobe Systems Technical Note #5178.

———. CID-Keyed sfnt Font File Format for the Macintosh. Adobe Developer Support.
Adobe Systems Technical Note #5180.

———. PostScript Language Extensions for CID-Keyed Fonts. Adobe Developer Support.
Adobe Systems Technical Note #5213.

———. Application Support for PostScript CJK Fonts. Adobe Developer Support. Adobe
Systems Technical Note #5640.

———. Enabling PDF Font Embedding for CID-Keyed Fonts. Adobe Developer Support.
Adobe Systems Technical Note #5641.

———. CID Font Tutorial. Adobe Developer Support. Adobe Systems Technical Note
#5643.

———. AFDKO Version 2.0 Tutorial: mergeFonts, rotateFont & autohint. Adobe Developer
Support. Adobe Systems Technical Note #5900.

———. Special-Purpose OpenType Japanese Font Tutorial: Kazuraki. Adobe Developer
Support. Adobe Systems Technical Note #5901.

Breen, Jim. A Japanese Electronic Dictionary Project (Part 1: The Dictionary Files), Techni-
cal Report 93/13, Department of Robotics & Digital Technology, Monash University,
November 1993.

Dillard, Troy & Ken Lunde. “Japanese Text Processing and Electronic Mail on the IBM
PC and Macintosh.” Sesame Computer Projects. SESAME Bulletin, Summer 1992,
Volume 5, Part 2, pages 40–48.

Huang, Jack Kai-tung. Status and Font Samples of Digitized Chinese (Hanzi) Font Manu-
facturers in Taiwan, 1993. October, 1993.

Liu, Yucheng. Chinese Information Processing. MS Thesis. University of Nevada, Las Ve-
gas. 1995.

Bibliography | 835

Lunde, Ken. CJK.INF. Distributed and maintained electronically from 1995 until 1996.

———. “Cross-Locale CJKV Code Conversion.” Thirteenth International Unicode Con-
ference, San Jose, California, September 8–11, 1998.

———. “Accessibility of Unencoded Glyphs.” Thirteenth International Unicode Confer-
ence, San Jose, California, September 8–11, 1998.

———. “The Design of an Extended Japanese Character Set.” Ninth International Unicode
Conference, San Jose, California, September 4–6, 1996.

———. “Unicode/CJK Font Support in PostScript.” Seventh International Unicode Con-
ference, San Jose, California, September 14–15, 1995.

———. “The History of the Japanese Character Set and its Encoding.” CPCOL, June 1993,
Volume 7, Number 1, pages 85–94.

———. “Electronic Transfer of Japanese.” ATArashii, September/October 1990, Volume 4,
Number 5, pages 19–27.

———. “Using Electronic Mail as a Medium for Foreign Language Study and Instruction.”
 CALICO Journal, March 1990, Volume 7, Number 3, pages 68–78.

———. JAPAN.INF: Electronic Handling of Japanese Text. Distributed and maintained
electronically from 1989 until 1992.

Morita, Masasuke. “Japanese Text Input System.” IEEE Computer, May 1985, Volume 18,
Number 5, pages 29–35.

———. “Development of New Keyboard Optimized from Standpoint of Ergonomics.
Work with Computers: Organizational, Management, Stress and Health Aspects.”
Proceedings of the Third International Conference on Human-Computer Interac-
tion, September 18– 22, 1989, Volume 1, pages 595–603.

Miyazawa, Akira. “Character Code for Japanese Text Processing.” Journal of Information
Processing. 1990, Volume 13, Number 1, pages 2–9.

西村恕彦. 「漢字の JIS」. 『標準化ジャーナル』. 1978.5, pages 3–8.

野村雅昭. 「JIS C 6226 情報交換用漢字符号系の改正」. 『標準化ジャーナル』. 1984.3,
pages 4–9.

Open Software Foundation, UNIX International, and UNIX System Laboratories Pacific.
 OSF, UI, and USL Standardize on Japanese Language Support. UI-OSF-USLP Joint
Announcement. Press release dated December 12, 1991.

Schilke, Steffen. Japanization—An Introduction to Software Japanization. Thesis. Summer,
1992.

田嶋一夫. 「JIS 漢字表の利用上の問題―漢字処理システムにおける漢字のデザイン
と管理」. 『情報管理』. 1979. Volume 21, Number 10, pages 753–761.

内田富雄. 「JIS X 0212 の制定」.『標準化ジャーナル』. 1990.11.

836 | Bibliography

rFCs
Keep in mind that RFCs are easily accessed through the Web, through the use of a
convenient template URL whereby the string “XXXX” is replaced by the four-digit RFC
number.*

Alvestrand, Harald. Tags for the Identification of Languages. RFC 3066. January 2001.
Obsoletes RFC 1766. Obsoleted by RFCs 4646 & 4647.

Berners-Lee, Tim & Daniel Connolly. Hypertext Markup Language—2.0. RFC 1866.
November 1995. Obsoleted by RFC 2854.

Choi, Uhhyung et al. Korean Character Encoding for Internet Messages. RFC 1557.
December 1993.

Connolly, Daniel & Larry Masinter. The ‘text/html’ Media Type. RFC 2854. June 2000.
Obsoletes RFCs 1866 & 2070.

Freed, Ned at al. Multipurpose Internet Mail Extensions (MIME) Part Four: Registration
Procedures. RFC 2048. November 1996.

Freed, Ned & Nathaniel Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies. RFC 2045. November 1996.

———. Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. RFC 2046.
November 1996.

———. Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria
and Examples. RFC 2049. November 1996.

Freed, Ned & Jon Postel. ICANN Charset Registration Procedures. RFC 2278. January
1998. Obsoleted by RFC 2978.

Goldsmith, Deborah & Mark Davis. UTF-7: A Mail-Safe Transformation Format of
Unicode. RFC 1642. July 1994. Obsoleted by RFC 2152.

———. UTF-7: A Mail-Safe Transformation Format of Unicode. RFC 2152. May 1997.
Obsoletes RFC 1642.

Alvestrand, Harald. Tags for the Identification of Languages. RFC 1766. March 1995.

Klensin, John et al. SMTP Service Extension for 8bit-MIMEtransport. RFC 1652. July 1994.
Obsoletes RFC 1426.

Lee, Fung Fung. HZ—A Data Format for Exchanging Files of Arbitrarily Mixed Chinese
and ASCII Characters. RFC 1843. August 1995.

Levinson, Ed. SGML Media Types. RFC 1874. December 1995.

* http://www.ietf.org/rfc/rfcXXXX.txt

Bibliography | 837

Moore, Keith. Multipurpose Internet Mail Extensions (MIME) Part Three: Message Header
Extensions for Non-ASCII Text. RFC 2047. November 1996.

Murai, Jun et al. Japanese Character Encoding for Internet Messages. RFC 1468. June
1993.

Ohta, Masataka. Character Sets ISO-10646 and ISO-10646-J-1. RFC 1815. July 1995.

Ohta, Masataka & Ken’ichi Handa. ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP.
RFC 1554. December 1993.

Phillips, Addison & Mark Davis. Tags for Identifying Languages. RFC 4646. September
2006. Obsoletes RFC 3066.

———. Matching of Language Tags. RFC 4647. September 2006. Obsoletes RFC 3066.

Tamaru, Kenzaburo. Japanese Character Encoding for Internet Messages. RFC 2237.
November 1997.

Vietnamese Standardization Working Group. Conventions for Encoding the Vietnamese
Language—VISCII: VIetnamese Standard Code for Information Interchange—VIQR:
Vietnamese Quoted-Readable Specification. Revision 1.1. RFC 1456. May 1993.

Wei, Ya-Gui et al. ASCII Printable Characters-Based Chinese Character Encoding for
Internet Messages. RFC 1842. August 1995.

Whitehead, E. James Jr. & Makoto Murata. XML Media Types. RFC 2376. July 1998.

Yergeau, François. UTF-8, a transformation format of Unicode and ISO 10646. RFC 2044.
October 1996. Obsoleted by RFC 2279.

———. UTF-8, a transformation format of ISO 10646. RFC 2279. January 1998. Obsoletes
RFC 2044. Obsoleted by RFC 3629.

———. UTF-8, a transformation format of ISO 10646. RFC 3629. November 2003.
Obsoletes RFC 2279.

Yergeau, François et al. Internationalization of the Hypertext Markup Language. RFC 2070.
January 1997. Obsoleted by RFC 2854.

Zhu, Haifeng at al. Chinese Character Encoding for Internet Messages. RFC 1922. March
1996.

839

Index

numbers
007 (James Bond), 329, 478
11001001, 28, 735
42, 378–380, 757
50 Sounds array, 335–337, 757
50 Sounds order, 348, 606, 757
50 Sounds Table, 53, 757

A
A11Y (accessibility), 708, 757
Aas, Gisle, 746
AAT (Apple Advanced Typography), 392–393,

398–399, 757
AbiWord, 640, 649
abstract characters (see characters)
accessibility (see A11Y)
acknowledgments, xxxiii–xxxiv
Acrobat (see Adobe Acrobat)
ActionScript (programming language), 190
Active Server Pages (see ASP)
Adams, Douglas (RIP), xxxiv, 380
Adobe Acrobat, 423, 442–443, 454, 459, 547,

555, 559, 561, 691, 706, 721–726
Distiller application, 555, 724
font and glyph embedding, 442–443
use of Adobe-Identity-0 character

collection, 423
Adobe AIR, 707, 757
Adobe Buzzword, 652, 707
Adobe-CNS1-5, 416–418

CMap resources for, 417
Supplement 6 development, 418

Adobe Dimensions, 540–541
Adobe Dreamweaver, 716
Adobe Flash, 442, 459, 707, 757

Adobe Font Development Kit for Open-
Type (see AFDKO)

Adobe Font Metrics files (see AFM files)
Adobe FrameMaker, 464, 475, 479, 519, 536,

716
Adobe-GB1-5, 414–416

CMap resources for, 415
Supplement 6 development, 416

Adobe-Identity-0, 423
Adobe Acrobat use, 423
Kazuraki, 423

Adobe Illustrator, 459, 464, 475, 479, 493, 532,
541–542, 562–563, 723

Glyph Panel, 542
Adobe InDesign, xxxiv, 282, 424, 428, 456,

458–460, 464, 470, 474–475, 479,
483, 493, 497, 501–502, 512, 517, 528,
530–535, 540, 723, 772

Glyph Panel, 533
‘locl’ (Localized Forms) GSUB feature,

534–535
‘ruby’ (Ruby Notation Forms) GSUB

feature, 534
Tagged Text, 535

Adobe-Japan1-6, 418–420
CMap resources for, 418–419
Supplement 7 development, 420

Adobe-Japan2-0, 420–421
CMap resources for, 420–421

Adobe-Korea1-2, 421–422
CMap resources for, 421–422
Supplement 3 development, 422

Adobe PageMaker, 464, 475, 536–537
Adobe Photoshop, 532, 542–543, 562–563, 716
Adobe Reader, 555, 722–723, 726

840 | Index

Adobe Technical Notes, 373, 378–380, 387,
391, 393, 413–414, 423, 429–431,
438–439, 446, 448, 459, 723, 833–834

Adobe Type Composer (see ATC)
Adobe Type Manager (see ATM)
Advanced Interactive Executive (see AIX)
AFDKO (Adobe Font Development Kit for

OpenType), 407, 447–450, 757, 834
MakeOTF tool, 407, 448–472
mergeFonts tool, 448
rotateFont tool, 448
subroutinization, 448–450
tx tool, 448, 450

AFM files, 446, 539, 757
CID-keyed, 446
used by Canon EDICOLOR, 539

Ahlström, Kim, 685
AIX (Advanced Interactive Executive), 263,

601, 758, 816
ALF (Alien Life Form), 329
Alien Resurrection, 716
alternate metrics, 502–512

half-width symbols and punctuation,
502–505

kerning, 510–512
proportional ideographs, 508–510
proportional kana, 507–508
proportional symbols and punctuation,

505–506
Amazon, 610, 673
American Standard Code for Information

Interchange (see ASCII)
Amerige, Stephen, 413
Andresen, Kevin, 380
ANK (see JIS X 0201-1997)
Annex S (ISO 10646), 161, 171, 177, 460, 758
annotations, 525–531

boten, 530–531
inline notes, 529–530
kenten, 530–531
ruby, 525–529

ANSI X3.4-1986 (see ASCII)
ANSI Z39.64-1989, 88, 124, 758, 824
antelope, xxxiii, 758
Apple Advanced Typography (see AAT)
Apple Type Services for Unicode Imaging (see

ATSUI)
App, Urs, 686

ASCII (American Standard Code for
Information Interchange), 1–2, 7, 9,
88–91, 221–223, 605, 734–735, 758,
824

variations of, 90–91
ASCIIbetical sort, 605
AsiaFont Studio, 446–447
ASP (Active Server Pages), 707
assume (acronym), 177, 758
ATC (Adobe Type Composer), 461–463, 758
ATM (Adobe Type Manager), 379, 401, 538,

546, 553–554, 556, 628–629, 758
SuperATM, 554

ATOK, 309–310, 357, 649
ATSUI (Apple Type Services for Unicode

Imaging), 398, 481, 758
AT&T JIS (see EUC-JP encoding)
awk, 613, 786

B
Babel Fish, xxxiv, 688
BabelPad, 645
Base64 transformation, 215–219, 291–293, 758
Base Character, 168, 171, 460, 712, 758

IVS (Ideographic Variation Sequence)
component, 171, 460, 712

Basic Multilingual Plane (see BMP)
batang (see serif)
BBEdit, 644
BDF (Bitmap Distribution Format), 371–374,

441, 759
Becker, Joe, 19, 155, 792
Becky!, 698
Bézier curves, 376–377, 759

(see also PostScript font formats)
big-endian, 29–30, 194, 199–200, 210, 214, 753,

759
UTF-16BE encoding form, 194
UTF-16 encoding form default, 194, 201,

206
UTF-32BE encoding form, 194
UTF-32 encoding form default, 194, 201,

203
Big Five, 86, 112–113, 189, 194, 759

duplicate hanzi in, 113
Unicode compatibility, 124
versus CNS 11643-2007, 120–122

Big Five encoding, 259–261, 752
for Hong Kong SCS-2008, 261
versus GBK and Big Five Plus encodings,

262

Index | 841

Big Five Plus, 86, 114–115, 759
Big Five Plus encoding, 261–262, 752

versus GBK and Big Five encodings, 262
binary (notation), xxviii, 27–28, 733–736, 759
Bishop, Tom, xxxiv, 173, 760
Bitmap Distribution Format (see BDF)
bitmapped fonts, 370–375

BDF (Bitmap Distribution Format),
371–374

HBF (Hanzi Bitmap Font), 374–375
PCF (Portable Compiled Format), 373
SNF (Server Natural Format), 373

bits, 8–11, 759
blowfish, xxxiv, 214, 219, 329, 503–504, 759
BMP (Basic Multilingual Plane), 8, 20, 155,

161–164, 166–167, 171, 200–206,
209, 212–214, 219–220, 258–259, 759

BOM (Byte Order Mark), 31, 194, 198–201,
203, 206, 209–210, 219, 296, 717, 759,
792, 793

use with UTF-8 encoding form, 210
Bond, James, 329, 478
Boot Camp, 640
bopomofo (see zhuyin)
Borenstein, Nathaniel, 291
boten, 530–531, 759
Breakfast, 610
Breen, Jim, xxxiv, 651, 660, 662, 674–676, 678,

681–685, 788, 834
Bringhurst, Robert, xxi–xxiii, xxxiv, 473, 814
BTRON (see Chokanji; TRON)
bushu (see radicals)
Buzzword (see Adobe Buzzword)
Bynars, The, 28
byte order, xxviii, 2, 29–30, 193, 198–203, 206,

210, 296, 438, 753, 760
big-endian, 29–30, 199–200, 759
little-endian, 29–30, 199–200, 780

Byte Order Mark (see BOM)
bytes, 8–11, 597–605, 759

versus characters, 597–605
versus octets, 28–29
when deleting characters, 598–599
when inserting characters, 599–600
when line breaking, 602–604
when searching, 600–602

C
C/C++ (programming languages), 29, 212, 572,

577, 580–586, 591–593, 595–597,
604–605, 616

macros, 604–605
C0 (see control characters)
C1 (see control characters)
Campione, Mary, 380, 816
Cangjie array, 329–330
Cangjie Method, 318, 760
Canna, 357
Canon EDICOLOR, 464, 475, 479–480, 483,

493, 530, 538–540, 610–611
AFM file use, 539
JIS X 4051:2004 compliance, 475

Canonical Equivalents, 168, 177, 760
Cascading Style Sheets (see CSS)
Cazares, Leo, 413
CC-CEDICT (Creative Commons CEDICT),

676
CCCII (Chinese Character Code for

Information Interchange), 86,
122–124, 153, 760

CCITT Chinese Set (see ISO-IR-165:1992)
CCS (see character set standards, coded)
ccTLD (country code Top-Level Domain),

701–705, 760
CDL (Character Description Language),

173–174, 760, 789
CEDICT, 675–676
cell (see Row-Cell notation; Plane-Row-Cell

notation)
CER (Character Entity Reference), 711–712,

761
CESI (China Electronics Standardization

Institute), 105, 110–111, 760
CFF (Compact Font Format), 369, 378–379,

402, 448–449, 760
FontSets, 369
size advantage over TrueType, 448–449

CGI (Common Gateway Interface)
programming, 718–721

Chang, Hye-shik, 361
Chángyòng Hànzì (China), 80–81, 181–182
Chángyòng Hànzì (Taiwan), 81–82, 182
Character Description Language (see CDL)
Character Entity Reference (see CER)
Character ID (see CID)
characters, 20–24, 30–31, 597–605, 761

defined, 23–24
deletion, 598–599

842 | Index

characters (continued)
full- versus half-width, 25–26
insertion, 599–600
ISO’s definition, 23–24
Latin versus Roman, 27
line breaking, 602–604
multiple-byte versus wide, 30–31
searching, 600–602
Unicode’s definition, 23–24
versus bytes, 597–605
versus glyphs, 20–24

character set standards, 6–7, 22–23, 79–191,
761

ANSI Z39.64-1989, 124
as charset designations, 275–276
ASCII, 89
ASCII variations, 90–91
as ideograph dictionaries, 665–666
Big Five, 112–113
Big Five Plus, 114–115
CCCII (Chinese Character Code for

Information Interchange), 122–124
Chángyòng Hànzì (China), 80–81
Chángyòng Hànzì (Taiwan), 81–82
Chinese (China), 80–81, 86, 94–111
Chinese (Hong Kong), 87, 124–129
Chinese (Singapore), 130
Chinese (Taiwan), 81–82, 86, 111–124
Cìchángyòng Hànzì (China), 80–81
Cìchángyòng Hànzì (Taiwan), 81–82
CJKV-Roman, 91–94
CNS 5205-1989, 91–94
CNS 11643-2007, 115–118
CNS 14649-1:2002, 175
CNS 14649-2:2003, 175
CNS-Roman, 91–94
coded, 84–191

versus noncoded, 181–184
duplicate characters in, 177
fictitious extensions of, 179–180
for information interchange, 184–185
for professional and commercial publishing,

185–186
future trends and predictions, 186–188

emoji, 186–187
genuine ideograph unification, 187–188

Gakushū Kanji, 82–84
GB 1988-89, 91–94
GB 2312-80, 94–96
GB 6345.1-86, 96
GB 7589-87, 103–104

GB 7590-87, 103–104
GB 8565.2-88, 97
GB 12052-89, 150–151
GB 13000.1-93, 175
GB 18030-2005, 105–110
GBK, 104–105
GB-Roman, 91–94
GB/T 12345-90, 99–103
GB/T 13131-2XXX, 103–104
GB/T 13132-2XXX, 103–104
half-width katakana, 130–131
Hanmun Gyoyukyong Gicho Hanja, 84
Hong Kong GCCS, 125–126
Hong Kong SCS-2008, 125
Inmyeong-yong Hanja, 84
international, 153–176
ISO 8859, 90–91
ISO 10646, 153–176
ISO-IR-165:1992, 98–99
Japanese, 82–84, 87, 130–143
Jinmei-yō Kanji, 82–84
JIS-Roman, 91–94
JIS X 0201-1997, 91–94, 130–131
JIS X 0208:1997, 131–135
JIS X 0212-1990, 135–138
JIS X 0213:2004, 138–140
JIS X 0221:2007, 176
Jōyō Kanji, 82–84
Korean, 84, 87–88, 143–151
KPS 9566-97, 148–149
KPS 10721-2000, 149
KS-Roman, 91–94
KS X 1001:2004, 143–146
KS X 1002:2001, 147–148
KS X 1003:1993, 91–94
KS X 1005-1:1995, 176
national, 84–153

overview of, 85–88
NLC Kanji, 82–84
noncoded, 80–84, 181–184

China, 80–81
Japan, 82–84
Korea, 84
Taiwan, 81–82
versus coded, 181–184

oddities in, 177–181
overview, 6–7, 85–88
prototypical glyph changes, 22–23
TCVN 5712:1993, 91–94
TCVN 5773:1993, 152
TCVN 6056:1995, 153

Index | 843

TCVN-Roman, 91–94
Tōngyòng Hànzì (China), 80–81
tools for generating, 617–619
Unicode, 153–176
Vietnamese, 88, 93, 151–153

character spanning, 501–502, 761
charset designations, 275–278, 589–590,

714–715
character set versus encoding, 275–276
Ecma Registry, 276–278
IANA Registry, 276–278
ICANN Registry, 276–278
Java, 589–590
registries, 276–278

ChaSen, 610
China Electronics Standardization Insti-

tute (see CESI)
China Internet Network Information Cen-

ter (see CNNIC)
Chinese Character Code for Information Inter-

change (see CCCII)
Chinese characters (see ideographs)
Chinese-Chinese conversion, 611–612

Rosette Chinese Script Converter, 610, 612
Chinese National Standard (see CNS)
Choe, Hwanjin, 361
Chokanji, 638–639
Chonjiin Hangul array, 350–353
Cho, Younghong, 47
Christiansen, Tom, 574–575, 737, 814
Chrome, 707
chữ Hán, 4–5, 60, 73, 77–78, 151–153, 529, 761

(see also ideographs)
chữ Nôm, 4–5, 73, 77–78, 151–153, 529, 570,

761
Cìchángyòng Hànzì (China), 80–81, 181–182
Cìchángyòng Hànzì (Taiwan), 81–82, 182
CID (Character ID), 367–368, 761

versus GID, 409–410
CIDFont resources, 388, 412–427, 446–447

character collections for, 412–428
sfnt-wrapped, 392–393
Unicode support, 426–427

CID-keyed fonts (see CIDFont resources)
CJK Compatibility Ideographs, 124, 143, 151,

154, 156, 158–159, 161, 165–169,
171, 177, 220, 578, 675, 761

Twelve that are CJK Unified Ideographs,
156, 167, 171

CJK.INF, xxvi, 761, 835
CJK Joint Research Group (see IRG)

CJK-JRG (see IRG)
CJK Radicals Supplement, 156, 165, 169, 171
CJK Strokes, 156, 165, 789
CJK Unified Ideographs (see Extension A;

Extension B; Extension C; Extension
D; Extension E; URO)

CJKV Character Set Server, 618–619
CJKVConv.pl, 289, 567, 617
CJKV information processing, 1–837

overview, 1–32
techniques, 567–622

CJKV-Roman, 91–94, 221–223, 761
CLDR (Common Locale Data Repository), 18,

568, 571, 613, 642, 653, 762
clone PostScript, 549–551
CMap resources, 369, 387–391, 415, 417–422,

426–427, 446–447, 762
for Adobe-CNS1-5, 417
for Adobe-GB1-5, 415
for Adobe-Japan1-6, 418–419
for Adobe-Japan2-0, 420–421
for Adobe-Korea1-2, 421–422
Unicode, 426–427
versus ‘cmap’ tables, 406

‘cmap’ tables, 405–406, 762
versus CMap resources, 406

CNNIC (China Internet Network Information
Center), 702, 762

CNPRINT, 557
CNS (Chinese National Standard), 762
CNS 5205-1989, 86, 91–94, 762, 824
CNS 7654-1989 (see ISO 2022:1994)
CNS 11643-2007, 86, 88, 115–118, 120–122,

167, 188–189, 228, 666, 762, 824
Extension B mappings, 167
missing radical, 116
stroke count errors in, 118–119
versus Big Five, 120–122

CNS 14649-1:2002, 88, 154, 175, 189, 762, 824
CNS 14649-2:2003, 88, 154, 175, 189, 762, 824
CNS-Roman, 86, 91–94, 762
CNS standards, 115–121, 124, 824

Unicode compatibility, 124
code conversion, 282–290, 577–587, 611–612,

616–617, 729–732, 737–748
across CJKV locales, 288–289
algorithmic versus table-driven, 577–579
algorithms for, 577–586
between EUC-JP and Shift-JIS encodings,

585, 738–740

844 | Index

code conversion (continued)
between ISO-2022 and EUC encodings,

580–581, 738
between ISO-2022 encoding and Row-Cell

notation, 581–582
between ISO-2022-JP and Shift-JIS

encodings, 582–585, 738–739
Chinese, 284–285
Chinese-Chinese, 611–612

Rosette Chinese Script Converter, 610,
612

Japanese, 285–288, 737–742
Java, 586–587

non-Unicode to Unicode, 587–588
Unicode to non-Unicode, 587, 589

Korean, 288
Perl, 737–748

Japanese, 737–742
Korean, 742–743
TRON, 744–746
Unicode, 746–749

tables, 729–732
tips, tricks, and pitfalls, 289–290
tools for, 283–285, 288, 616–617

CJKVConv.pl, 289, 617
Hcode, 288
iconv, 284
libiconv, 284
NCF (Network Chinese Filter), 283–284
tcs, 289, 617
Uniconv, 577, 617

Unicode, 579–580
Code Pages, 48, 105, 278–282, 762

IBM, 278–281
Microsoft, 281–284

coffee (see Java)
Common Gateway Interface (see CGI

programming)
Common Locale Data Repository (see CLDR)
Compact Font Format (see CFF)
Composite Fonts, 368–369

versus Fallback Fonts, 368–369
within applications, 463–464

compound ideographs, 68–69, 762
Configurable PostScript Interpreter (see CPSI)
control characters, 89, 213, 221–224, 242, 290,

595, 620, 693, 696, 763
conventions, xxviii–xxix
conversion dictionary, 11–12, 311, 313, 355,

763
Cook, Richard, xxxiv, 173, 686, 760

cool (in Chinese), 303, 330
CoreText (Mac OS X), 481
country codes, 568–571
country code Top-Level Domain (see ccTLD)
CPSI (Configurable PostScript Interpreter),

550, 763
Creative Commons CEDICT (see CC-

CEDICT)
CrossOver Mac, 640, 651
CSS (Cascading Style Sheets), xxvii, 212, 706,

710, 715, 723, 763, 816
CTRON (see TRON)

d
Dai-E array, 331–332
Dai-E input method, 331–332
dakuten, 53, 131, 169, 334–337, 349–350, 593,

763
dangling line breaking (see line breaking,

push-out-only)
Data (android), 763–764
Dealey, William, 324, 764
decimal (notation), xxviii, 19, 27–28, 211, 227,

733–736, 764
Deep Thought, 380
design space, 482–483, 764

nonsquare, 482–483
diacritic marks, 27, 36–37, 47–49, 53, 93, 253,

412, 520, 764
dakuten, 53
handakuten, 53
Pinyin tone marks, 36–37
Vietnamese, 47–49

dictionaries, 655–689, 822–824
conventional, 670
ideograph, 664–670, 822–824

character set standards as, 665–666
CJKV, 670
locale-specific, 666–669
variants, 671
vendor, 669–670

indexes, 656–664
character code, 663–664
Four Corner Code, 661–662
multiple-component, 662–663
radical, 657–658
reading, 656–657
SKIP (System of Kanji Indexing with

Patterns), 660–661
stroke count, 658–660

Index | 845

dictionary files, 674–684
frontend software for, 684–685

dictionary hardware, 671–672
dictionary software, 672–686
Didot point, 478
displaying, 552–557

role of Adobe Acrobat and PDF, 555
role of ATM (Adobe Type Manager),

553–554
role of Ghostscript, 556
role of OpenType and TrueType, 556–557

Display PostScript (see DPS)
domain names, 700–705

ccTLD (country code Top-Level Domain),
701–705

CN domain, 702
gTLD (generic Top-Level Domain),

700–701
HK domain, 702–703
internationalized, 701
JP domain, 703
KP domain, 704
KR domain, 703–704
TLD (Top-Level Domain), 700–701
TW domain, 704–705
VN domain, 705

dotum (see sans serif)
DPI (dots-per-inch), 440, 545, 553, 563–564,

764
DPS (Display PostScript), 377, 440, 552, 764
Dreamweaver (see Adobe Dreamweaver)
DTP point, 478–479
Dvorak array, 324–325, 342, 764
Dvorak, August, 324, 764

e
EACC (see ANSI Z39.64-1989)
EBCDIC (Extended Binary-Coded-Decimal

Interchange Code), 223–224, 765
EBCDIK (Extended Binary-Coded-Decimal

Interchange Kana), 223–224, 765
EDICOLOR (see Canon EDICOLOR)
EDICT, 676–678
egbridge, 358
Emacs (see GNU Emacs)
email, 694–700

receiving, 696–697
sending, 695–696
troubles and tricks, 697

email clients, 697–700
Becky!, 698

Eudora, 698
Mail (Mac OS X email client), 699
mh-e, 700
Microsoft Entourage, 699
Microsoft Outlook, 699
Microsoft Outlook Express, 699
mobile devices as, 698
Mutt, 699
PowerMail, 699
Thunderbird, 699–700
web browsers as, 698

em-box (see design space)
emoji, 186–187
Em Space, 198

versus Ideographic Space, 198
em-square (see design space)
ENAMDICT, 678–679
Encapsulated PostScript (see EPS)
encoding methods, 8–11, 30–31, 193–298,

595–597, 616–617
ASCII, 221–223
Big Five, 259–261
Big Five Plus, 261–262
as charset designations, 275–276
CJKV-Roman, 221–223
compared, 273–275
EBCDIC, 223–224
EBCDIK, 223–224
EUC, 242–253
EUC-CN, 245–246
EUC-JP, 248–251
EUC-KR, 252–253
EUC-TW, 246–248
fixed-length, 195–196
GB 18030, 257–259
GBK, 255–256
half-width katakana, 224–227
hybrid, 195–196
HZ, 240–241
ISO-2022, 228–242
ISO-2022-CN, 239–240
ISO-2022-CN-EXT, 239–240
ISO-2022-JP, 234–236
ISO-2022-JP-1, 234–236
ISO-2022-JP-2, 234–236
ISO-2022-KR, 238–239
JIS, 236–238
Johab, 268–273
legacy, 221–273

locale-independent, 221–255
locale-specific, 255–273

846 | Index

encoding methods (continued)
locale-specific, 255–275
modal, 195–196
nonmodal, 195–196
overview, 8–11, 193–197
repair of, 290–295, 595–597, 616–617
Row-Cell notation, 227–228
Shift-JIS, 262–268
Unicode, 197–220

byte order issues, 199–200
endianness (see byte order)
Entourage (see Microsoft Entourage)
EPS (Encapsulated PostScript), 532, 562–563
escape sequences, 234, 766
eTRON (see TRON)
EUC encodings, 242–253, 766

code conversion table, 729–732
conversion to ISO-2022 encoding, 580–581
EUC-CN, 245–246
EUC-JP, 248–251
EUC-KR, 252–253
EUC-TW, 246–248
SS2 (Single Shift 2), 225, 243–244, 247, 249,

255, 280, 585
SS3 (Single Shift 3), 243–244, 249, 255
versus ISO-2022 encodings, 253–255

EUC-CN encoding, 245–246, 257–258, 752,
766

versus GB 18030 and GBK encodings,
257–258

EUC-JP encoding, 248–251, 752, 766
conversion to Shift-JIS encoding, 585
for JIS X 0213:2004, 251
SS2 (Single Shift 2), 249, 585
SS3 (Single Shift 3), 249
versus Shift-JIS and ISO-2022-JP encodings,

267–268
EUC-KR encoding, 252–253, 752, 766

versus Johab encoding, 272–273
EUC-TW encoding, 246–248, 599, 752, 766

SS2 (Single Shift 2), 247, 280
Eudora, 611, 698
Extended Kanji Processing (see XKP)
Extended Wansung (see UHC)
Extensible HyperText Markup Language (see

XHTML)
Extensible Markup Language (see XML)
Extension A, 64, 106–108, 151, 156, 165–166,

171, 259, 423, 670, 766
source character sets, 166

Extension B, 86, 106, 109–111, 124–125, 151,
156, 166–167, 171, 180, 201, 363, 423,
633, 701, 712, 766

CNS 11643-1992 mappings, 167
GB 18030-2005 mappings, 167
Hong Kong SCS-2008 mappings, 125, 167
JIS X 0213:2004 mappings, 167
KPS 10721-2000 mappings, 167
TCVN 5773:1993 mappings, 167
without source, 180

Extension C, 125, 156, 167, 171, 766
Hong Kong SCS-2008 mappings, 125

Extension D, 167
Extension E, 167
external characters (see gaiji)
EZ Hangul array, 350–353

F
FACOM, 822

reason not to pronounce, 822
Fallback Fonts, 368–369, 709

versus Composite Fonts, 368–369
File Transfer Protocol (see FTP)
Firefox, 684, 699, 708
fixed-length encoding methods, 195–196, 767
Flash (see Adobe Flash)
FMapType, 378, 380, 387, 767
FOND ID, 432–437
Font Book (Mac OS X application), 432
font development tools, 444–452

AFDKO (Adobe Font Development Kit for
OpenType), 447–450

bitmapped font editors, 444–445
XmBDFEditor, 445

MS Font Validator, 444
outline font editors, 445–447

AsiaFont Studio, 446–447
FontLab Studio, 445–446
Fontographer, 445–446

TTX/FontTools, 451
VOLT (Visual OpenType Layout Tool), 444

font formats, 363–472, 546–547
64K glyph barrier, 367–370
AAT (Apple Advanced Typography),

398–399
BDF (Bitmap Distribution Format),

371–374
bitmapped, 370–375

BDF (Bitmap Distribution Format),
371–374

HBF (Hanzi Bitmap Font), 374–375

Index | 847

PCF (Portable Compiled Format), 373
SNF (Server Natural Format), 373

conversion of, 374, 451–452
HBF (Hanzi Bitmap Font), 374–375
installation, 546–547
multiple master, 393–395
OCF (Original Composite Format), 386
OpenType, 400–408
outline, 375–408
PCF (Portable Compiled Format), 373
PDF embedding, 442–443
PostScript, 377–396
SNF (Server Natural Format), 373
TrueType, 396–400
TrueType Collections, 397–398
TrueType Open, 399–400

Fontographer, 445–446
fonts, 24–25, 429–444, 767

cross-platform issues, 443–444
installing and downloading, 429–430
Linux, 439
Mac OS, 432–437
Mac OS X, 431–432
Microsoft Windows, 437–439
PDF embedding, 442–443
PostsScript filesystem, 430–431
SWF embedding, 442
Unix, 439
versus typefaces, 24–25
X Window System, 440–442

Forty-two (see 42)
Founder FIT, 479–480, 493, 537, 767
Four Corner Code, 320, 661–662, 680
FreeBSD, 190, 627, 700, 820
Freed, Ned, 276, 291, 836
FreeHand MX, 475, 479, 493, 543
FreeType 2, 439–440, 565, 628
FreeWnn Project, 361
Friedl, Jeffrey, 615, 685, 721, 737, 814
FSS-UTF (see UTF-8 encoding form)
fsType, 443, 456, 724–725
FTP (File Transfer Protocol), 693–694, 767
fugu (see blowfish)
Fukawa, Mitsuo, 474, 821
full-width, 25–26, 198, 495–496, 502, 593–595,

740–742, 767
conversion from half-width katakana,

593–595, 740–742
Em Space, 198
Ideographic Space, 198

Latin, Greek, and Cyrillic, 495–496
versus half-width, 25–26

furigana (see ruby)

G
G (typographic unit), 478–480, 767
G11N (globalization), xxv–xxvii, 17–18, 767,

769
gaiji, 452–470, 767

acquiring glyphs and fonts, 470
ATC as a solution, 461–463
Composite Fonts as a solution, 463–464
IVSes as a solution, 460
problem description, 453–455
SING as a solution, 455–459
techniques and tricks, 464–466
XKP as a solution, 460–461

gairaigo, 54, 768
Gakushū Kanji, 82–84, 183–184, 193, 618, 680,

768
GB (Guo Biao or Guojia Biaozhun), 14, 768
GB0 (see GB 2312-80)
GB1 (see GB/T 12345-90)
GB2 (see GB 7589-87)
GB3 (see GB/T 13131-2XXX)
GB4 (see GB 7590-87)
GB5 (see GB/T 13132-2XXX)
GB8 (see GB 8565.2-88)
GB 1988-89, 86, 91–94, 768, 829
GB 2311-80 (see ISO 2022:1994)
GB 2312-80, 14–15, 23, 86, 94–96, 135,

178–179, 189–190, 300, 316, 570,
665, 768, 830

incomplete ideograph pairs in, 178–179
incorrect Cyrillic ordering, 95–96
reduced set of 186 radicals, 316
similarities with JIS X 0208:1997, 135

GB 3937-83, 478
GB 5007.1-85, 23, 830
GB 5007.2-85, 23, 830
GB 6345.1-86, 23, 86, 96–97, 768, 830
GB 6345.2-86, 23, 830
GB 7589-87, 86, 103–104, 178–179, 239, 768,

830
GB 7590-87, 86, 103–104, 178–179, 239, 768,

830
GB 8565.1-88, 830
GB 8565.2-88, 86, 97–98, 768, 830
GB 12034-89, 23, 830
GB 12035-89, 23, 831
GB 12036-89, 23, 831

848 | Index

GB 12052-89, 76, 88, 150–151, 831
errors and inconsistencies in, 151
hanguksik hanja in, 76

GB 13000.1-93, 88, 154, 161, 175, 189, 768, 831
GB 16794.1-1997, 23, 831
GB 18030-2005, 14–15, 86, 94, 105–111, 167,

175, 179–180, 188–189, 194, 255,
257–259, 296, 411, 414–416, 424,
570, 633–634, 645, 768, 831

compliance guidelines for, 110–111
Extension B mappings, 167
PUA usage, 108–109
regional scripts, 86, 110, 411, 416, 634, 645
support in Adobe-GB1-5, 414–416

GB 18030 encoding, 257–259, 599, 752
versus GBK and EUC-CN encodings,

257–258
versus Unicode, 258–259

GBK (Guo Biao Kuo or Guojia Biaozhun
Kuozhan), 14–15, 86, 104–105, 173,
768

IDCs defined in, 173
GBK encoding, 255–256, 752

Microsoft Code Page 936, 105
versus Big Five and Big Five Plus encodings,

262
versus GB 18030 and EUC-CN encodings,

257–258
GB-Roman, 86, 91–94, 769
GB standards, 14, 94–111, 829–831

Unicode compatibility, 111
GB/T (Guo Biao/Tui or Guojia Biaozhun/

Tuijian), 14, 768
GB/T 12345-90, 86, 99–103, 179, 239, 284,

414–415, 768, 831
support in Adobe-GB1-5, 414–415

GB/T 13131-2XXX, 80, 86, 103–104, 166, 768
GB/T 13132-2XXX, 80, 86, 103–104, 166, 768
GB/T 15834-1995, 476, 831
GB/T 15835-1995, 476, 831
GB/T standards, 14, 829–831
generic Top-Level Domain (see gTLD)
Geta Mark, 198
Ghostscript, 377, 549–551, 556, 726
GID (Glyph ID), 367–368, 769

versus CID, 409–410
GIF (Graphics Interchange Format), 716, 769
GL (Graphic Left), 232–233, 769

(see also ISO-2022 encodings)
Global IME, 310, 355, 358
globalization (see G11N)

gloss (see ruby)
Glyph ID (see GID)
glyph image (see glyphs)
Glyph Panel, 533–535, 542
glyphs, 20–24, 769

defined, 23–24
ISO’s definition, 23–24
PDF embedding, 442–443
prototypical, 22–23
SWF embedding, 442
Unicode’s definition, 23–24
versus characters, 20–24

glyph sets, 408–427
for CID-keyed fonts, 412–427
for transliteration and Romanization,

411–412
static versus dynamic, 409
Std versus Pro designators, 410–411

glyph substitution, 520–525
GNOME (GNU Network Object Model

Environment), 640
GnomeOffice, 640, 649
GNU Emacs, 136, 229, 613–614, 642–643,

646–647, 716
ISO-2022 encoding support, 229
regular expressions, 614
support for JIS X 0212-1990, 136

GNU Network Object Model Environ-
ment (see GNOME)

Goldsmith, Deborah, 215, 836
goo (search engine), 615, 688
Google, 610, 652, 687–688, 698, 707, 727
Google Docs, 652–653, 707
Google Page Creator, 716
Gosling, James, 571
gothic (see sans serif)
GPOS (Glyph POSitioning) features, 399,

404–405, 533–534, 769
supported by Adobe InDesign, 533–534

GR (Graphic Right), 232–233, 769
(see also EUC encodings)

grapheme (see glyphs)
Graphic Left (see GL; ISO-2022 encodings)
Graphic Right (see GR; EUC encodings)
graphics, 540–543, 561–563

applications, 540–543
converting text into bitmaps, 563
converting text into outlines, 562–563

Graphics Interchange Format (see GIF)
grep, 600–601, 613, 769

Index | 849

GSUB (Glyph SUBstitution) features, 399,
402–409, 533–534, 769

‘locl’ (Localized Forms), 423–424, 534–535
supported by Adobe InDesign, 533–534

gTLD (generic Top-Level Domain), 700–701,
769

gukja (see hanguksik hanja)
Gulliver’s Travels, 29
Guo Biao Kuo or Guojia Biaozhun Kuo-

zhan (see GBK)
Guo Biao or Guojia Biaozhun (see GB)
Guo Biao/Tui or Guojia Biaozhun/Tuijian (see

GB/T)

H
H (typographic unit), 478–479, 769

meaning of, 479
Haansoft Hangul, 649
Hadamitzky, Wolfgang, 658, 680, 823
Haig, John, 668, 680, 823
half-width, 25–26, 502–505, 769

versus full-width, 25–26
half-width katakana, 130–131, 224–227

encoding, 224–227
Halpern, Jack, 72, 612, 622, 660, 671, 680–681,

788, 822
Han characters (see ideographs)
Handa, Ken’ichi, 647, 837
handakuten, 53, 131, 169, 334–337, 349–350,

593, 770
HanDeDict, 676
hanging line breaking (see line breaking, push-

out-only)
hanguksik hanja, 76–77, 770

in Hanmun Gyoyukyong Gicho Hanja, 77
in KS standards, 76–77

hangul syllables, 58–60, 170, 306–308, 340–342,
350–353, 770

keyboard arrays for, 340–342
ligatures, 523–525
mobile keyboard arrays for, 350–353
Normalization of, 170
transliteration of, 306–308
versus transliteration, 306–308

hanja, 4–5, 60–74, 84, 770
Korean-made (see hanguksik hanja)
(see also ideographs)

HANJADIC, 684
hankaku (see half-width)

Hanmun Gyoyukyong Gicho Hanja, 77, 84,
184, 770

hanguksik hanja in, 77
Hanulim, 361
Han Unification, 155, 157–158, 769

Source Separation Rule, 155
hanzi, 4–5, 60–74, 80–82, 770

(see also ideographs)
Hanzi Bitmap Font (see HBF)
Harbaugh, Rick, 686
HBF (Hanzi Bitmap Font), 374–375
Hcode, 288
hei (see sans serif)
Heisei Kaku Gothic, 22, 376, 434, 443, 529
Heisei Maru Gothic, 22
Heisei Mincho, 22, 366–367, 382–384, 387, 425,

430–431, 434, 442–443, 466–470
Heisig, James, 680, 815
hello, 1–2
Henshall, Kenneth, 680, 815
Hepburn, James Curtis, 37
Hepburn system, 37–43, 411
hexadecimal (notation), xxviii, 20, 27–28, 211,

733–736, 770
Hidemaru Editor, 644
High-speed Roman array, 345–346
hiragana, 4, 52–54, 770

(see also kana)
Hitchhiker’s Guide to the Galaxy, The, xxxiv,

380
HKDNR (Hong Kong Domain Name

Registration Company), 702–703,
770

HKSCS (see Hong Kong SCS-2008)
hojo kanji (see JIS X 0212-1990)
Hong Kong Domain Name Registration Com-

pany (see HKDNR)
Hong Kong GCCS, 87, 125–126, 330, 416–418,

667, 770
Hong Kong SCS-2008, 87, 125–129, 167, 189,

194, 255, 261, 296, 416–418, 753, 771
Big Five Encoding, 261
Extension B mappings, 125, 167
Extension C mappings, 125
versus Hong Kong GCCS, 126–129

Hong Kong standards, 124–129
Unicode compatibility, 129

Hsieh, Ching-Chun (RIP), 123

850 | Index

HTML (HyperText Markup Language), xxvii,
20, 211–212, 276, 706, 709–716, 771

LANG attribute, 713
<META> tag, 714

HTTP (HyperText Transfer Protocol), 715–716,
720

Huang, Jack, 113, 318, 815, 834
Huang, Timothy, 113, 331–332, 815, 819
hybrid encoding methods, 195–196
HyperText Markup Language (see HTML)
HyperText Transfer Protocol (see HTTP)
hypothyroidism, 683
HZ encoding, 240–241

I
I18N (internationalization), xxv–xxvii, 17–18,

771–772
locale model, 18
multilingual model, 18
of domain names, 701

IANA (Internet Assigned Numbers Authority),
276, 701, 714, 771

IBM standards, 824–825
ICANN (Internet Corporation for Assigned

Names and Numbers), 276, 701, 703,
705, 771, 836

Ichitaro, 190, 357, 611, 649
iconv, 284
ICU (International Components for Unicode),

45, 190, 289, 577, 612, 621, 771
Transforms package, 612

IDC (Ideographic Description Character),
172–173

GBK origins, 173
Ideographic Description Character (see IDC)
Ideographic Description Sequence (see IDS)
Ideographic International Core (see IICore)
Ideographic Rapporteur Group (see IRG)
Ideographic Space, 198

versus Em Space, 198
Ideographic Variation Indicator, 198
Ideographic Variation Sequence (see IVS)
ideographs, 4–5, 60–78, 521–522, 771

compound ideographs, 68–69
dictionaries, 664–670, 822–824
history, 70–73
Japanese-made, 71–72
Korean-made, 71
ligatures, 523–525
non-Chinese, 74–78
phantom, 178

phonetic ideographs, 69
pictographs, 67–68
prediction of genuine unification, 187–188
readings, 65–66
simple ideographs, 68
simplification, 73–74, 179

without a traditional form, 179
structure, 66–70
tables, 669–670
variants, 521–522
Vietnamese-made, 73

IDN (Internationalized Domain Name), 701,
771

IDS (Ideographic Description Sequence),
172–173

IICore (Ideographic International Core), 167
Illustrator (see Adobe Illustrator)
IME (see input methods)
imhangul, 361
InDesign (see Adobe InDesign)
indexing radicals (see radicals)
INFI, 79, 193, 772
information interchange, 184–185, 187, 229,

253, 275, 282, 453, 555, 579, 670,
691–693, 772

character sets for, 184–185
inline conversion, 322, 772
inline notes, 529–530
Inmyeong-yong Hanja, 84
input methods, 11–13, 299–362, 772

by association, 321
Cangjie Method, 318
Dai-E, 331–332
by encoding, 319–320
Four Corner Code, 320
inline conversion, 322
by multiple criteria, 318–319

by structure and reading, 318–319
multi-tap, 347
OCR (Optical Character Recognition), 354
by other codes, 320
overview, 11–13
pen, 353–354
by postal code, 321
by reading, 312–315
Renzhi Code Method, 319
Shouwei Method, 318
by structure, 315–318

by corner, 318
by indexing radical, 315–316
by number of strokes, 317

Index | 851

by other structures, 318
by stroke shapes, 317–318

T-Code, 321
Telex Code, 320
Three Corner Code, 318
two-stroke input method, 321
Tze-loi Method, 319
by unassociation, 321
voice, 354–355
Wubi Method, 317
Zheng Code Method, 318

input method software, 309–311, 355–362
ATOK, 357
Canna, 357
Chinese, 356

SCIM (Smart Common Input Method),
356

CJKV, 355–356
Global IME, 355
SCIM (Smart Common Input Method),

355
conversion dictionary, 311
egbridge, 358
FreeWnn Project, 361
Global IME, 355, 358
Hanulim, 361
imhangul, 361
Japanese, 356–361

ATOK, 357
Canna, 357
egbridge, 358
FreeWnn Project, 361
Global IME, 358
Kotoeri, 358–359
MacVJE, 360
MacVJE-Delta, 360
SKK, 359
T-Code, 359–360
VJE, 360
Wnn, 360–361

Korean, 361–362
Hanulim, 361
imhangul, 361
nabi, 361
Nalgaeset, 361
qimhangul, 361
Saenaru, 361
SCIM (Smart Common Input Method),

361
Kotoeri, 358–359
MacVJE, 360

MacVJE-Delta, 360
nabi, 361
Nalgaeset, 361
overview, 309–311
qimhangul, 361
Saenaru, 361
SCIM (Smart Common Input Method),

355–356, 361
SKK, 359
T-Code, 321, 359–360
VJE, 360
Wnn, 360–361

International Components for Unicode (see
ICU)

internationalization (see I18N)
Internationalized Domain Name (see IDN)
International Organization for Standardiza-

tion (see ISO)
Internet Assigned Numbers Authority (see

IANA)
Internet Corporation for Assigned Names and

Numbers (see ICANN)
Internet Explorer, 190, 625, 707–709, 771
IRG (Ideographic Rapporteur Group), 129,

160, 165, 167, 179, 545, 772, 789
iroha order, 606, 772

as a poem, 606
Ishida, Richard, 212
ISO (International Organization for

Standardization), 23, 154, 772
ISO 639, 568–571, 715, 772–773, 825
ISO 646 (see ASCII)
ISO-2022 encodings, 228–242

code conversion table, 729–732
conversion to EUC encoding, 580–581
conversion to Row-Cell notation, 581–582
designator sequences, 234
escape sequences, 234
for information interchange, 229
ISO-2022-CN, 239–240
ISO-2022-CN-EXT, 239–240
ISO-2022-JP, 234–236
ISO-2022-JP-1, 234–236
ISO-2022-JP-2, 234–236
ISO-2022-KR, 238–239
RFCs for, 229–230, 695–696
shifting characters, 234
single shift sequences, 234
SS2 (Single Shift 2), 234, 240–241
SS3 (Single Shift 3), 234, 240–241
versus EUC encodings, 253–255

852 | Index

ISO 2022:1994, 228–229, 235, 242, 773, 825
ISO-2022-CN encoding, 239–240, 773

SS2 (Single Shift 2), 240–241
SS3 (Single Shift 3), 240–241

ISO-2022-CN-EXT encoding, 239–240, 773
SS2 (Single Shift 2), 240–241
SS3 (Single Shift 3), 240–241

ISO-2022-JP encoding, 234–236, 773
conversion to Shift-JIS encoding, 582–583
versus Shift-JIS and EUC-JP encodings,

267–268
ISO-2022-JP-1 encoding, 234–236, 773
ISO-2022-JP-2 encoding, 234–236, 773
ISO-2022-KR encoding, 238–239, 773
ISO 3166-1:2006, 568–569, 773, 826
ISO 8859, 7, 90–91, 93, 185, 222–223, 235, 577,

709–710, 714, 773, 826
ISO 8879 (see SGML)
ISO 10646, 19, 88, 153–176, 773, 826

Annex S, 161
Han Unification, 155, 157–158
related national standards, 175–176
relationship with Unicode, 19
versions, 153–154
(see also Unicode)

ISO/TR 11941:1996, 43–45, 306–308, 773, 826
ISO 32000-1:2008, 722, 773, 826
ISO-IR-165:1992, 86, 98–99, 773
ISO Latin 1 (see ISO 8859)
ISO standards, 825–826
ITRON (see TRON)
IVS (Ideographic Variation Sequence), 171,

199, 296, 405, 460, 712–713, 771
iWeb (Mac OS X application), 716

J
jamo, 13, 43–47, 58–60, 146–147, 170, 268–272,

288, 306–308, 340–342, 350–353,
361, 523, 607, 743, 774

choseong (initial), 59
jongseong (final), 59
jungseong (middle), 59
keyboard arrays for, 340–342
mobile keyboard arrays for, 350–353
sorting sequence of, 607
transliteration of, 43–47, 306–308

Japanese Industrial Standard (see JIS)
Japanese Industrial Standards Committee (see

JISC)
Japanese Standards Association (see JSA)
JAPAN.INF, xxvi, 533, 774, 835

Japan Network Information Center (see
JPNIC)

jaso (see jamo)
Java (programming language), 190, 212, 284,

511, 572–573, 586–590, 709, 774
charset designations, 589–590
code conversion, 586–587
examples, 586–590
text stream handling, 588–589

JavaScript (programming language), 190, 212,
709

JavaServer Pages (see JSP)
JChar, 617–618
JCode, 619–621
jcode.pl, 306, 574
JConv, 616–617
Jedit X, 644
jidori (see character spanning)
Jinmei-yō Kanji, 76, 82–84, 182–184, 193, 618,

680, 774
kokuji in, 76

JIS (Japanese Industrial Standard), 15, 774
current symbol for, 15
original symbol for, 15

JIS7 (see JIS encoding)
JIS8 (see JIS encoding)
JIS78 (see JIS X 0208:1997)
JIS83 (see JIS X 0208:1997)
JIS90 (see JIS X 0208:1997)
JIS97 (see JIS X 0208:1997)
JIS2000 (see JIS X 0213:2004)
JIS2004 (see JIS X 0213:2004)
JIS array, 332–333, 775
JIS C 6220 (see JIS X 0201-1997)
JIS C 6225 (see JIS X 0207-1979)
JIS C 6226 (see JIS X 0208:1997)
JIS C 6232 (see JIS X 9051-1984)
JIS C 6233 (see JIS X 6002-1985)
JIS C 6234 (see JIS X 9052-1983)
JIS C 6235 (see JIS X 6003-1989)
JIS C 6236 (see JIS X 6004-1986)
JISCII (see JIS)
JISC (Japanese Industrial Standards

Committee), 15, 775
JIS encoding, 236–238, 775
JIS Level 1 (see JIS X 0208:1997)
JIS Level 2 (see JIS X 0208:1997)
JIS Level 3 (see JIS X 0213:2004)
JIS Level 4 (see JIS X 0213:2004)
JIS order, 776
JIS-Roman, 87, 91–94, 130–131, 776

Index | 853

JIS sort, 605–606, 776
JIS standards, 15–16, 130–143, 826–828

designation changes, 15–16
Unicode compatibility, 142–143

JIS X 0201-1997, 87, 91–94, 130–131, 776, 827
JIS X 0202:1998 (see ISO 2022:1994)
JIS X 0207-1979, 478, 776, 827
JIS X 0208:1997, 22, 75, 87, 131–135, 178, 189,

300, 666–669, 776, 827
history of, 134–135
kokuji in, 75
phantom kanji in, 178
prototypical glyph changes, 22
similarities with GB 2312-80, 135

JIS X 0212-1990, 87–88, 135–138, 666–669,
776, 827

supported by GNU Emacs, 136
JIS X 0213:2004, 22, 87, 138–140, 167, 183,

188–189, 220, 228, 251, 265–267,
285, 296, 300, 315, 317, 418, 638, 657,
666–669, 682, 776, 827

EUC-JP encoding for, 251
Extension B mappings, 167
prototypical glyph changes, 22
Shift-JIS encoding for, 265–267

JIS X 0221:2007, 88, 154, 161, 176, 189, 420,
461, 666, 776, 828

Ideographic Supplement 1, 176, 420
JIS X 4051:2004, 475, 500, 503–505, 514–516,

518, 525, 528, 530, 533, 542–544,
776, 828

character classes, 514–516
JIS X 4061-1996, 607, 776, 828
JIS X 4062:1998, 311, 776, 828
JIS X 6002-1985, 332–333, 776, 828
JIS X 6003-1989, 325–326, 776, 828
JIS X 6004-1986, 333–334, 777, 828
JIS X 9051-1984, 21–22, 373–374, 777, 828
JIS X 9052-1983, 21–22, 373–374, 777, 828
JMdict, 676–678
JMnedict, 678–679
Johab encoding, 146–147, 268–273, 282, 288,

742–743, 753, 777
Microsoft Code Page 1361, 282
versus EUC-KR encoding, 272–273

Joint Photographic Experts Group (see JPEG)
Joy, Bill, 571
Jōyō Kanji, 7, 21, 76, 82–84, 182–184, 193,

617–618, 680, 777, 820
kokuji in, 76

JPEG (Joint Photographic Experts Group), 562,
716

JPNIC (Japan Network Information Center),
703, 777

JSA (Japanese Standards Association), 15, 384,
777

JSP (JavaServer Pages), 707
JTRON (see TRON)
JUMAN, 610

K
kai (see script)
KAKASI, 610
kana, 51–58, 304–306, 332–340, 348–350,

606–607, 777
dakuten, 53
development of, 55–58
handakuten, 53
hiragana, 52–54
katakana, 54–55
keyboard arrays for, 332–340
mobile keyboard arrays for, 348–350
sorting sequence of, 606–607
versus transliteration, 304–306

Kangxi Radicals, 156, 165, 169, 171
KANJD212, 681–682
kanji, 4–5, 60–74, 82–84, 777

Japanese-made (see kokuji)
ligatures, 523, 777
(see also ideographs)

KANJIDIC, 680–681
KANJIDIC2, 682–683
kanji ligatures, 523, 777
kanji tablet array, 325–326, 777
Kaplan, Jerry, 353, 816
katakana, 3, 26, 54–55, 170, 523–525, 778

half- versus full-width, 26
ligatures, 170, 523–525, 778
(see also kana)

katakana ligatures, 170, 523–525, 778
Kawabata, Taichi, xxxiv, 172
Kazuraki, 384, 423, 510, 524–525, 834
KDE (K Desktop Environment), 641
K Desktop Environment (see KDE)
kenten, 530–531
Kerman, Jouni, 612
kerning, 510–512
keyboard arrays, 322–353

Chinese input method, 326–330
Cangjie array, 329–330
Wubi array, 326–329

854 | Index

keyboard arrays (continued)
creating your own, 346
hangul, 340–342

Kong array, 341–342
KS array, 340–341

ideograph, 325–326
kanji tablet, 325–326

kana, 332–340
50 Sounds array, 335–337
JIS array, 332–333
μTRON (Micro TRON) array, 337–340
New-JIS array, 333–334
Thumb-shift array, 334–335
TRON TK1 array, 337–340

Latin for CJKV input, 342–346
High-speed Roman array, 345–346
M-style array, 342–345

mobile, 346–353
Chonjiin Hangul array, 350–353
EZ Hangul array, 350–353
Japanese, 348–350
Korean, 350–353

overview, 322–323
Western, 323–325

Dvorak array, 324–325
QWERTY array, 323–324

zhuyin, 330–332
Dai-E array, 331–332
TwinBridge array, 330–332

Kim, Yongmook, 361
kinsoku shori (see line breaking)
KLS (Korean Language Society), 43–45,

306–308
Knuth, Donald, 227, 558, 790, 816
KOffice, 641, 649
kokuji, 75–76, 778

borrowed by China, 75–76
Kon, Akira, 357
Kong array, 341–342
Korean Language Society (see KLS)
Korean Standard (see KS)
Kotoeri, 309–310, 358–359
Kozuka, Masahiko, 365, 679
Kozuka Gothic, 384
Kozuka Mincho, 365–367, 384–385, 394,

428–429, 450, 464, 496, 504–505,
511, 518, 526–531, 539–540, 791

KPS 9566-97, 87, 148–150, 189, 779
versus KS X 1001:2004, 149–150

KPS 10721-2000, 88, 149, 167, 779
Extension B mappings, 167

KPS standards, 148–151
Unicode compatibility, 151

KRNIC (Korea Network Information Center),
779

KS (Korean Standard), 16–17, 779
current symbol for, 16

KS array, 340–341
KS C 5601 (see KS X 1001:2004)
KS C 5636 (see KS X 1003:1993)
KS C 5657 (see KS X 1002:2001)
KS C 5700 (see KS X 1005-1:1995)
KS C 5715 (see KS X 5002:1992)
KS-Roman, 88, 91–94, 779
KS standards, 151, 829–830

designation changes, 16–17
Unicode compatibility, 151

KS X 1001:2004, 87, 143–151, 189, 268–273,
666, 779, 829

alternate plane, 146–147
duplicate hanja in, 144–145, 151
hanguksik hanja in, 76–77
Johab encoding for, 268–273
versus KPS 9566-97, 149–150

KS X 1002:2001, 87, 147–148, 666, 779, 829
hanguksik hanja in, 76

KS X 1003:1993, 87, 91–94, 779, 829
KS X 1004:1995 (see ISO 2022:1994)
KS X 1005-1:1995, 88, 154, 161, 176, 189, 779,

829
KS X 5002:1992, 340–341, 780, 829
Kudo, Hitomi, xxxiv, 623–624, 679, 770
Kudo, Ryuho, xxxiv
Kun reading, 65–66, 132, 780
Kunrei system, 37–43, 411
KUTEN (see Row-Cell notation)
KWord, 641, 649
Kyōiku Kanji (see Gakushū Kanji)

L
L10N (localization), xxv–xxvii, 17–18, 780
LANG attribute (HTML), 713
LANG environment variable (Unix), 639
language codes, 568–571
language-learning aids, 688–689
LATEX, 557–558, 723, 780
Latin characters, 27, 89–93, 493–496, 523–525,

780
in vertical writing, 493–496
ligatures, 523–525
versus Roman characters, 27

Index | 855

layout, 480–496
alternate metrics, 502–512
applications, 532–540
character spanning, 501–502
glyph substitution, 520–525
half-width symbols and punctuation,

502–505
horizontal, 480–496
kerning, 510–512
proportional ideographs, 508–510
proportional kana, 507–508
proportional symbols and punctuation,

505–506
vertical, 480–496

Lee, Fung Fung, 240–241, 836
Leisher, Mark, xxxiv, 374, 445
lfCharset, 438
libiconv, 284
Life Science Dictionary (see LSD)
ligatures, 21, 523–525, 780

kana, 170, 523–525
OpenType support for, 525

line breaking, 496–500, 780
push-in-first, 498, 785–786
push-out-first, 499, 786
push-out-only, 499–500, 786

line termination, 693–694
Lin, Po-Han, 36
Linux, 355, 361, 439, 627–628, 780

fonts, 439
little-endian, 29–30, 199–200, 210, 214, 753,

780
UTF-16LE encoding form, 194
UTF-32LE encoding form, 194

Liu, Yucheng, 356, 834
locale, 18–19
localization (see L10N)
logographs (see ideographs)
LSD (Life Science Dictionary), 683
Lunde, 527, 780
Lunde, Edward Dharmaputra, xxxiv, 655
Lunde, Jeanne Mae, xxxiv
Lunde, Ken Roger, 291, 501, 549, 551, 711, 713,

778, 816, 820, 835
birthdate, 518
email address, xxxiii
height, 529
website, 727

Lunde, Kern, 510
Lunde, Ruby Mae, xxxiv, 567, 575, 679, 737, 787
Lunde, Vernon Delano, xxxiv

Lutz, Mark, 575, 816
Lynx, 708–709

M
machine translation, 686–688, 781

applications, 686–687
services, 687–688

Mac OS, 432–437, 490, 561, 781
fonts, 432–437
Korean printing issues, 561
versus Mac OS X, 631
vertical variants, 490

Mac OS X, 431–432, 560, 628–631, 781
Boot Camp, 640
bundled fonts, 629–631
CoreText, 481
Font Book, 432
fonts, 431–432
iWeb, 716
Mail, 555, 699
Preview, 555, 709, 722, 726
printer drivers, 560–561
Safari, 709
Terminal, 642–643, 646, 694, 708
versus Mac OS, 631

MacVJE, 360
MacVJE-Delta, 360
Mail (Mac OS X application), 555, 699
Mail User Agent (see email clients)
MakeOTF (AFDKO tool), 407, 448–472
maru (see handakuten)
Matsumoto, Yukihiro, 575–576
McCully, Nat, xxxiv, 533
McGilton, Henry, 380, 816
MeCab, 610
MENKUTEN (see Plane-Row-Cell notation)
mergeFonts (AFDKO tool), 448
<META> tag (HTML), 714
Meyer, Dirk, xxxiv, 413
mh-e, 700
μITRON (see TRON)
Microsoft Entourage, 699
Microsoft Office, 648–650, 699
Microsoft Outlook, 699
Microsoft Outlook Express, 699
Microsoft Windows Vista, 559–560, 632–636

bundled fonts, 633–636
fonts, 437–439
printer drivers, 559–560
versus Microsoft Windows XP, 632–633

856 | Index

Microsoft Windows XP, 559–560, 632–636
fonts, 437–439
printer drivers, 559–560
versus Microsoft Windows Vista, 632–633

Microsoft Word, 649, 716
μTRON (Micro TRON) array, 337–340
MIFES, 644
MIME (Multipurpose Internet Mail

Extensions), 241, 291–293, 781, 836,
837

mincho (see serif)
ming (see serif)
Minion Pro, xxxiv, 364, 412, 501, 519, 645, 791

transliteration support, 412
Vietnamese support, 412, 645

Ministry of Education (Korean transliteration),
43–45, 306–308

MITRON (see TRON)
mobile devices, 186–187, 324, 346–354, 623,

643, 672, 694, 698
keyboard arrays, 346–353
use as an email client, 698

modal encoding methods, 195–196
mojibake, 294
Mongolian (regional script), 86, 110, 416, 634,

645
Morita, Masasuke, 342, 821, 835
morphological analysis, 608–610

Breakfast, 610
ChaSen, 610
JUMAN, 610
KAKASI, 610
MeCab, 610
Rosette Base Linguistics for Asian

Languages, 610
Rosette Chinese Script Converter, 610
Rosette Japanese Orthographic Analyzer,

610
Sumomo, 610

Motoki, Shozo, 479
MS Code (see Shift-JIS encoding)
MS-DOS, 29, 92, 557, 632, 636–637, 781
MS Font Validator, 444
MS Kanji (see Shift-JIS encoding)
M-style array, 342–345, 781
MS Word (see Microsoft Word)
MTRON (see TRON)
MUA (see email clients)
Mui, Peter, xxv, xxxiii
Mulder, Fox, 183
Mule, 647
Muller, Charles, xxxiv, 686

multiple master, 393–395
Multipurpose Internet Mail Extensions (see

MIME)
Murai, Jun, 695, 837
Mutt, 699
myeongjo (see serif)
Myriad Pro, xxxiv, 394, 412, 519, 645, 791

transliteration support, 412
Vietnamese support, 412, 645

myungjo (see serif)

n
nabi, 361
Nalgaeset, 361
National Internet Development Agency of

Korea (see NIDA)
natural language processing, 608–613

Chinese-Chinese conversion, 611–612
morphological analysis, 608–610

Breakfast, 610
ChaSen, 610
JUMAN, 610
KAKASI, 610
MeCab, 610
Rosette Base Linguistics for Asian

Languages, 610
Rosette Chinese Script Converter, 610
Rosette Japanese Orthographic Analyzer,

610
Sumomo, 610

transliteration, 612–613
word parsing, 608–610

NCF (Network Chinese Filter), 283–284
NCR (Numeric Character Reference), 20,

211–212, 219, 712–713, 782–783
similar notations, 212, 573–575

NCS (see character sets, noncoded)
Nelson, Andrew (RIP), 668, 680, 823
NEmacs, 647
NeoOffice, 648
.NET (programming language), 190
Netscape Communicator, 706–707
network byte order (see big-endian)
Network Chinese Filter (see NCF)
New-JIS array, 333–334, 782
New-JIS encoding (see JIS encoding)
NIDA (National Internet Development Agency

of Korea), 703–704, 783
nigori (see dakuten)
Nippon system, 37–43, 411
Nishikimi, Mikiko, 647, 820

Index | 857

Nishizuka, Ryoko, 423
Nisus Writer, 501, 650, 716
NJStar, 300, 356, 651
NLC Kanji, 22, 82–84, 183, 403
non-Chinese ideographs, 74–78
nonmodal encoding methods, 195–196, 783
Normalization, 168–170, 782–783
notation, xxviii, 2, 19–20, 27–28, 199, 733–736,

783
conversion table, 733–736
Plane-Row-Cell, 19–20
Row-Cell, 19–20
Unicode scalar values, 20, 199

Notepad, 644
Numeric Character Reference (see NCR)

o
OCF (Original Composite Format) fonts,

382–384, 386, 430–431
OCR (Optical Character Recognition), 354,

706, 783
octal (notation), xxviii, 27–28, 552, 619, 620,

733–736, 783
octets, 28–29, 783

versus bytes, 28–29
Office (see Microsoft Office)
Old-JIS encoding (see JIS encoding)
On reading, 65–66, 132, 784
OpenOffice, 648
OpenOSX Office, 648
OpenSolaris, 637–638
open source, 356, 361, 439, 451, 625, 628, 637,

641, 648, 698, 709, 780, 784
OpenType fonts, xxvii, 8, 180, 296, 400–408,

525, 556–557, 570, 784
‘cmap’ tables, 405–406
GPOS features, 404–405
GSUB features, 402–404
ligatures, 525
name-keyed versus CID-keyed, 407–408
Pan-CJKV, 423–424
vertical GPOS features, 404–405
vertical GSUB features, 404
vertical writing support, 401
vertical writing tables, 402

Opera, 708
operating systems, 626–642, 784

Chokanji, 638–639
FreeBSD, 627
hybrid environments, 639–642

Boot Camp, 640

CrossOver Mac, 640
GNOME, 640
KDE (K Desktop Environment), 641
VMware Fusion, 641
Wine, 641
X Window System, 440–442

Linux, 627–628
Mac OS X, 628–631
Microsoft Windows Vista, 632–636
MS-DOS, 636–637
OpenSolaris, 637–638
Plan 9, 637
Solaris, 637–638
TRON, 638–639
Unix, 639

Optical Character Recognition (see OCR)
O’Reilly, Tim, xxxiii, 441
Original Composite Format (see OCF fonts)
OTF (see OpenType fonts)
Ousterhout, John, 576
outline fonts, 24–25, 375–408, 784

OpenType, 400–408
PostScript, 377–396
TrueType, 396–400

Outlook (see Microsoft Outlook)
Outlook Express (see Microsoft Outlook

Express)

P
Pages (Mac OS X application), 652
Pan-CJKV fonts, 423–424
Pango, 439
Park, Wonkyu, 361
PCF (Portable Compiled Format), 373,

440–441, 784
PDF (Portable Document Format), xxvii,

442–443, 454, 547, 555, 559, 691, 706,
721–727, 784

font and glyph embedding, 442–443,
724–725

ISO standard for, 722
Penelope, 698
pen input, 353–354
Perl, 92, 212, 284, 288–289, 291–293, 306, 320,

438, 493, 568, 571–572, 574–575,
613, 716, 737–756, 784–785

CJKVConv.pl, 289, 567, 617
encoding detection, 749–750
encoding templates, 752–754
examples, 291–293, 737–756
ISO-2022-JP encoding repair, 750–751

858 | Index

Perl (continued)
Japanese code conversion, 737–742
jcode.pl, 306, 574
multiple-byte anchoring, 755
multiple-byte processing, 755–756
pkf, 284
romkan.pl, 306
slogan for, 493
Unicode notation for, 212

Perlman, Ron, 716
Personal Home Page (see PHP)
Peterson, Erik, 621, 686
PFM (Printer Font Metrics), 401, 438–439, 442,

446, 481, 834
Phinney, Thomas, xxxiv, 364
phonetic ideographs, 69, 785
Photoshop (see Adobe Photoshop)
PHP (Personal Home Page), 707, 785
pictographs, 67–68, 785
Pike, Rob, 600, 637
Pinyin, 34–37, 301–304, 412, 519, 529, 537,

607, 785
Double Pinyin, 301–304
Full Pinyin, 301–304
Half Pinyin, 301–304
tone marks, 36–37
versus zhuyin, 301–304

pkf, 284
Plan 9, 190, 210, 637, 785
plane (see Plane-Row-Cell notation)
Plane-Row-Cell notation, 19–20, 228, 785
van der Poel, Erik, 695
Pogue, David, 629, 632, 817
points (typographic unit), 363, 477–478, 785

Didot point, 478–494
DTP point, 478

Portable Compiled Format (see PCF)
Portable Document Format (see PDF)
Postel, Jon (RIP), 276, 836
PostScript, 377–396, 430–431, 548–549,

551–552, 785
clone implementations, 549–551
passing characters to, 551–552

PostScript filesystem, 430–431
PostScript font formats, 377–396

accelerating, 395–396
PowerMail, 699
Presotto, Dave, 637
Preview (Mac OS X application), 555, 709, 722,

726

printer drivers, 558–561
for Mac OS X, 560–561
for Windows, 559–560

Printer Font Metrics (see PFM)
printing, 547–552, 558–561

clone PostScript, 549–551
other methods, 557–558
PostScript, 548–549
role of printer drivers, 558–561

print publishing, 563–564, 721–727
Private Use Area (see PUA)
programming languages, 571–577

C, 572
C++, 572
Java, 572–573
Perl, 574–575
Python, 575
Ruby, 575–576
Tcl, 576

pronghorn (see antelope)
prototypical glyphs, 22–23
PUA (Private Use Area), 108–109, 111,

152–153, 162–163, 166, 187–188,
204, 285, 454–455, 459–461, 785

GB 18030-2005 mappings, 108–109
publishing, 563–564, 691–728

print, 563–564, 721–727
web, 707–709

Python, 284, 445, 451, 575, 786

Q
Q (omnipotent being), 478, 786
Q (spy-gadget technician), 478
Q (typographic unit), 478–479, 786

meaning of, 479
qimhangul, 361
quadratic spline curves, 377, 396, 445, 786

(see also TrueType font formats)
QuarkXPress, 464, 475, 478–479, 483, 493, 512,

530, 532, 537–538, 540
XTensions, 512, 538

QuickDraw GX (see AAT)
Quốc ngữ, 5, 33–34, 47–49, 73, 77–78, 93, 412,

414, 520, 529, 645, 786
diacritic marks, 47–49, 93, 520
tone marks, 47–49

Quoted-Printable transformation, 290–291,
751, 786

QWERTY array, 2, 13, 301, 304, 323–324, 326,
332–333, 335, 342, 347, 786

for mobile devices, 347

Index | 859

r
radicals, 66–67, 156, 165, 657–660, 786

with ambiguous stroke counts, 659–660
Randall Made Knives (see RMK)
regular expressions, 613–615, 786

GNU Emacs, 614
Unicode, 614

Renzhi Code Method, 319
Renzhi Method, 667
Replacement Character, 198–199
Request For Comments (see RFCs)
Revised Romanization of Korean (see RRK)
RFCs (Request For Comments), 17, 48, 206,

215, 229–230, 234–236, 238–241,
276, 291, 293, 569, 695–696,
709–710, 786, 836–837

RMK (Randall Made Knives), 33, 786
romaja (see Latin characters)
romaji (see Latin characters)
Roman characters (see Latin characters)
Romanization, 33–49, 411–412, 787

glyph sets for, 411–412
Vietnamese, 47–49

romkan.pl, 306
Rosette Base Linguistics for Asian Languages,

610
Rosette Chinese Script Converter, 610, 612
Rosette Japanese Orthographic Analyzer, 610
van Rossum, Guido, 575
von Rossum, Just, 451
rotateFont (AFDKO tool), 448
row (see Row-Cell notation; Plane-Row-Cell

notation)
Row-Cell notation, 19–20, 227–228, 581–582,

787
code conversion table, 729–732
conversion to ISO-2022 encoding, 581–582

RRK (Revised Romanization of Korean),
43–45, 787

RTF (Rich Text Format), 643
ruby (annotations), 404, 427–429, 515,

525–529, 787
Adobe FrameMaker support, 536
Adobe InDesign support, 534
Founder FIT support, 537
generic versus typeface-specific glyphs,

428–429
glyphs for, 427–429
group ruby, 527–528
GSUB (Glyph SUBstitution) feature, 404,

428, 528, 534

JIS X 4051:2004 character class, 515
mono ruby, 526–527
pseudo ruby, 528–529
QuarkXPress support, 537

Ruby (programming language), 575–576, 613,
737

ruby (type size), 476–544
Ryo Display, 385, 458
Ryo Gothic, 385
Ryo Text, 385

s
S32S (supercalifragilisticexpialidocious), 17,

787
Saenaru, 361
Safari, 709
Sakamura, Ken, 337, 638, 790, 817, 820
Sakimura, Natsu, 617
sans serif (typeface style), 25, 471, 554, 787
Sato, Masahiko, 359
SCIM (Smart Common Input Method),

355–356, 361, 787
script codes, 568–571
scripts, 2–6, 33–78, 787

hangul syllables, 58–60
ideographs, 60–74
kana, 51–58

hiragana, 52–54
katakana, 54–55

Latin, 33–49
overview, 2–6
Unicode’s definition, 2

script (typeface style), 25
search engines, 615

goo, 615
Google, 615
Yahoo!, 615

sed, 613, 786
semi-voiced mark (see handakuten)
serif (typeface style), 25, 365, 471, 554, 787
Server Natural Format (see SNF)
sfnt-wrapped CIDFonts, 392–393
SGML (Standard Generalized Markup

Language), 20, 211, 536, 706,
711–712, 716, 761, 764, 771, 773, 783,
788, 794, 816, 826, 836

Shibano, Kohji, 178, 666, 823
Shift-In (see SI)

860 | Index

Shift-JIS encoding, 255, 262–268, 729–732,
753, 788

code conversion table, 729–732
conversion to EUC-JP encoding, 585
conversion to ISO-2022-JP encoding,

584–585
for JIS X 0213:2004, 265–267
versus ISO-2022-JP and EUC-JP encodings,

267–268
Shift-Out (see SO)
ShockWave Flash (see SWF; Adobe Flash)
Shouwei Method, 318
SI (Shift-In), 234, 238–241, 294, 734, 788
simple ideographs, 68, 788
Simplified Character Table, 81, 102, 819
SING (Smart INdependent Glyphlets),

455–459, 470, 788, 833
as a gaiji solution, 455–459
Tin Library, 456, 459

SJIS (see Shift-JIS encoding)
SKIP (System of Kanji Indexing by Patterns),

660–661, 681, 788
SKK, 359
Slinn, Michael, xxxiv
Smart Common Input Method (see SCIM)
Smart INdependent Glyphlets (see SING)
SNF (Server Natural Format), 373, 440–441,

788
SO (Shift-Out), 234, 238–241, 294, 734, 788
Solaris, 637–638, 788
song (see serif)
Soong, Noonien, 764
sorting, 605–607

50 Sounds, 606
ASCII, 605
ASCIIbetical, 605
jamo, 607
JIS, 605–606
kana, 606–607

Sousa, Miguel, xxxiv
Spahn, Mark, 658, 680, 823
SS2 (Single Shift 2), 225, 234, 240–241, 243–

244, 247, 249, 255, 280, 585, 789
SS3 (Single Shift 3), 234, 240–241, 243–244,

249, 255, 789
Stallman, Richard, 646, 818
Standard Generalized Markup Language (see

SGML)
Star Trek, 686
Star Trek: The Next Generation, 28, 478, 786
Star Wars, 565

Stein, Lincoln, 720, 818
strokes, 67, 156, 165, 658–660, 789
Sumomo, 610
SuperATM, 554
supercalifragilisticexpialidocious (see S32S)
Supplementary Planes, 163–164
Surrogates, 161–162, 164, 199, 203–206,

208–210, 214, 219, 298, 579–580, 753
SWF (ShockWave Flash), 442
System of Kanji Indexing with Patterns (see

SKIP)

t
Tagged Image File Format (see TIFF)
Tai Le (regional script), 86, 110, 416, 645
Taiwan Network Information Center (see

TWNIC)
Tanakadate, Aikitsu, 37
Taro’s Law, 409
tatechuyoko, 494–495
Tcl, 576, 613
T-Code, 321, 359–360
tcs, 289, 617
TCVN (Tiêu Chuẩn Việt Nam), 17, 790
TCVN 5712:1993, 88, 91–94, 790, 831
TCVN 5773:1993, 88, 152, 167, 189, 666, 790,

831
Extension B mappings, 167

TCVN 6056:1995, 88, 153, 189, 666, 790, 831
TCVN-Roman, 88, 91–94, 790
TCVN standards, 151–153, 831

Unicode compatibility, 153
Telex Code, 320
Terminal (Mac OS X application), 642–643,

646, 694, 708
TEX, 227, 263, 557–558, 582, 723, 790
TextEdit, 643, 647
text editors, 642–648

BabelPad, 645
BBEdit, 644
GNU Emacs, 646–647
Hidemaru Editor, 644
Jedit X, 644
Mac OS X, 643–644

BBEdit, 644
Jedit X, 644
TextEdit, 643

MIFES, 644
Mule, 647
NEmacs, 647
Notepad, 644

Index | 861

TextEdit, 643
vi, 647–648
Vietnamese, 645–646

VietPad, 645–646
VietPad, 645–646
Vim, 647–648
Windows, 644–645

BabelPad, 645
Hidemaru Editor, 644
MIFES, 644
Notepad, 644
WordPad, 645
WZ Editor, 644

WordPad, 645
WZ Editor, 644

The Real-time Operating system Nucleus (see
TRON)

There Is More Than One Way To Do It (see
TIMTOWTDI)

Thompson, Ken, 637
Three Corner Code, 318
Thumb-shift array, 334–335
Thunderbird, 698–700
Tibetan (regional script), 86, 110, 416, 634, 645
Tiêu Chuẩn Việt Nam (see TCVN)
TIFF (Tagged Image File Format), 562
TIMTOWTDI (There Is More Than One Way

To Do It), 493, 790
Tin Library (SING), 456, 459
TLD (Top-Level Domain), 700–701, 790

internationalized, 701
Tomorrow Never Dies, 329
Tomura, Satoru, 647
tone marks, 36–37, 47–49, 412

Vietnamese, 47–49
Tōngyòng Hànzì, 80–81, 182
Top-Level Domain (see TLD)
Torkington, Nathan, 574–575, 737, 814
Tōyō Kanji (see Jōyō Kanji)
transliteration, 33–49, 411–412, 612–613, 790

Chinese, 34–37
Pinyin, 34–37
tone marks, 36–37
Wade-Giles, 34–37

glyph sets for, 411–412
Japanese, 37–43

Hepburn, 37–43
Kunrei, 37–43
Nippon, 37–43
Word Processor, 37–43

Korean, 43–47
ISO/TR 11941:1996, 43–45
KLS (Korean Language Society), 43–45
Ministry of Education, 43–45
RRK (Revised Romanization of Korean),

43–45
special considerations, 612–613
Vietnamese, 48–49

ASCII-based, 48–49
TRON (The Real-time Operating system

Nucleus), 337–340, 367, 638–639,
790

code conversion in Perl, 744–746
TRON TK1 array, 337–340
TrueType Collections, 397–398, 790
TrueType font formats, 396–400, 556–557, 790

AAT (Apple Advanced Typography),
398–399

TrueType Collections, 397–398
TrueType Open, 399–400

TrueType Open, 399–400
TTC (see TrueType Collections)
TTF (see TrueType fonts)
TTX/FontTools, 451
TwinBridge array, 330–332
TWNIC (Taiwan Network Information

Center), 704–705, 791
tx (AFDKO tool), 448, 450
typefaces, 24–25, 364, 384–385, 791

design, 364–367
foundries, 364
sans serif, 25
script, 25
serif, 25
versus fonts, 24–25

typographic units, 476–480
G, 478–480
H, 478–479
points, 477–478

Didot point, 478
DTP point, 478–479

Q, 478–479
typography, 13–14, 473–544

alternate metrics, 502–512
annotations, 525–531

inline notes, 529–530
ruby, 525–529

applications, 531–543
character grid, 483–484
character spanning, 501–502
glyph substitution, 520–525

862 | Index

typography (continued)
half-width symbols and punctuation,

502–505
kerning, 510–512
multilingual, 516–520
nonsquare design space, 482–483
overview, 13–14
proportional ideographs, 508–510
proportional kana, 507–508
proportional symbols and punctuation,

505–506
ruby, 525–529
units, 476–480

Typophile forum, 364
Tze-loi Method, 319

U
UCS-2 encoding form, 213–214, 753, 791
UCS-4 encoding form, 213–214, 791
UHC (Unified Hangul Code), 8, 30, 146, 269,

280, 282, 421–422, 438, 753, 791, 792
Microsoft Code Page 949, 282

UJIS (see EUC-JP encoding)
Unicode, xxvii, 19, 153–176, 197–220, 296, 792

as an acronym, 792
BMP (Basic Multilingual Plane), 163–164
byte order issues, 199–200
Canonical Equivalents, 168–170
CJK Radicals Supplement, 165
CJK Strokes, 165
CJK Unified Ideographs with no source, 180
CMap resources for, 426–427
code conversion, 579–580
encoding forms, 163–164, 200–220

interoperability, 210–211
overview, 200–201
UCS-2, 213–214
UCS-4, 213–214
UTF-7, 215–219
UTF-8, 206–210
UTF-16, 203–206
UTF-16BE, 194
UTF-16LE, 194
UTF-32, 201–203
UTF-32BE, 194
UTF-32LE, 194

encoding methods, 197–220
Han Unification, 155, 157–158
importance of, 189–191, 296
Kangxi Radicals, 165
Normalization, 168–170

regular expressions, 614
relationship with ISO 10646, 19
scalar values, 20, 199
special characters, 198–199
Supplementary Planes, 163–164
unification rules and principles, 161
versions, 153–154
versus GB 18030 encoding, 258–259
versus vendor character sets, 175
(see also CJK Compatibility Ideographs;

Extension A; Extension B; Extension
C; Extension D; Extension E; URO)

Unicode Consortium, The, 19, 23, 101, 154,
161, 190, 220, 297, 368, 571, 579, 675,
686, 818

Unicode Variation Sequence (see IVS)
Uniconv, 577, 617
Unified Hangul Code (see UHC)
Unified Repertoire and Ordering (see URO)
Unihan Database, 167, 220, 675, 686

web frontend, 686
Unix, 439, 639, 792

fonts, 439
LANG environment variable, 639

URL transformation, 720, 751
URO (Unified Repertoire and Ordering), 61,

64, 114, 124, 148, 151, 153, 156–159,
165, 167, 200, 209, 259, 315, 423, 453,
461, 670, 759, 761, 768, 792

source character sets, 157–158
Utashiro, Kazumasa, 574
UTF (see Unicode)
UTF-2 (see UTF-8 encoding form)
UTF-7 encoding form, 215–219, 792
UTF-8 encoding form, 206–210, 754, 792

full definition, 207–208
Unicode definition, 208

UTF-16BE encoding form, 194, 205–206,
209–210, 792

UTF-16 encoding form, 161–162, 203–206,
753, 792

Surrogates, 161–162, 203–206
UTF-16LE encoding form, 194, 205–206,

209–210, 793
UTF-32BE encoding form, 194, 202–203,

205–206, 209–210, 793
UTF-32 encoding form, 201–203, 754, 793
UTF-32LE encoding form, 194, 202–203, 205,

209–210, 793
UTF-FSS (see UTF-8 encoding form)
UVS (see IVS)
Uyghur (regional script), 86, 110, 416, 634, 645

Index | 863

V
Variation Selector (see VS)
vertical writing, 13, 180–181, 436–437,

480–496
characters for, 100, 105, 148–149, 180–181,

484–492
dedicated characters for, 492–493
full-width Latin, Greek, and Cyrillic,

495–496
Latin text, 493–496
ligatures, 523–525
Mac OS support, 436–437
OpenType GPOS fonts, 404–405
OpenType GSUB features, 404
OpenType support, 401
OpenType tables for, 402
SING glyphlets, 455
tatechuyoko, 494–495
Windows support, 437–439

vi, 643, 647–648, 786, 793
Vietnamese Quoted-Readable (see VIQR)
Vietnamese Standard Code for Information

Interchange (see VISCII; VSCII)
Vietnam Internet Network Information Cen-

ter (see VNNIC)
VietPad, 645–646
Vim, 643, 647–648
VIQR (VIetnamese Quoted-Readable), 48–49
VISCII (Vietnamese Standard Code for

Information Interchange), 17, 793,
837

Vista (see Microsoft Windows Vista)
Visual OpenType Layout Tool (see VOLT)
VJE, 360
VMware Fusion, 641
VNNIC (Vietnam Internet Network

Information Center), 705, 793
voiced mark (see dakuten)
voice input, 354–355
VOLT (Visual OpenType Layout Tool), 444,

793
VS (Variation Selector), 171, 296, 460, 713, 793
VSCII (Vietnamese Standard Code for

Information Interchange), 17, 232,
793

VSCII-MNEM (VSCII MNEMonic), 48–49

W
W3C (World Wide Web Consortium), 706,

710, 712–713, 717–718
Wade-Giles, 34–37
WaDokuJT, 678
Wall, Larry, 574, 818
Wang, Dejin, 178
Wang, Yongmin, 317
Wansung (see EUC-KR encoding)
warichu (see inline notes)
web browsers, 707–709

Chrome, 707
Firefox, 708
Internet Explorer, 708
Lynx, 708
Netscape Communicator, 707
Opera, 708
Safari, 709
use as an email client, 698

web publishing, 707–709
Wenlin, 173, 689
West, Andrew, 645
Wikipedia, 60, 300, 627, 727
Windows Vista (see Microsoft Windows Vista)
Windows XP (see Microsoft Windows XP)
Wine, 641, 651
wine (alcoholic beverage), 641
WIN.INI file, 438–439
Winter, Phil, 637
Wittern, Christian, 686
Wnn, 360–361
Word (see Microsoft Word)
WordPad, 645
word parsing, 608–610
word processors, 648–652, 794

AbiWord, 649
Adobe Buzzword, 652
Google Docs, 652–653
Haansoft Hangul, 649
Ichitaro, 649
KWord, 649
Microsoft Word, 649
Nisus Writer, 650
NJStar, 651
online, 652–653

Adobe Buzzword, 652
Google Docs, 652–653

Pages, 652
Word Processor system (Japanese

transliteration), 37–43
word wrapping, 496–500

864 | Index

World Wide Web Consortium (see W3C)
wrap-down line breaking (see line breaking,

push-out-first)
wrap-up line breaking (see line breaking,

push-in-first)
writing systems, 2–6, 33–78, 794

overview, 2–6
Unicode’s definition, 2

Wubi array, 326–329
Wubi Method, 317, 667, 794
WYBIWYG (What You Buy Is What You Get),

672, 794
WYSIWYG (What You See Is What You Get),

481, 552, 652, 716, 794
WZ Editor, 644

X
X11 (see X Window System)
X-Files, The, xxvi, xxxiii, 183
XFree86, 641
XHTML (Extensible HyperText Markup

Language), xxvii, 710, 794, 817
Xin, Hongjie, 686
XKP (Extended Kanji Processing), 460–461,

794
XmBDFEditor, 445
XML (Extensible Markup Language), xxvii,

20, 173, 210–212, 276, 370, 451,
457–458, 571, 674, 678–680, 682,
706, 716–718, 794

default use of UTF-8 encoding form, 210
xml:lang attribute, 718

xml:lang attribute (XML), 718
XP (see Microsoft Windows XP)
X Window System, 440–442, 641–642, 794

fonts, 440–442

Y
Yahoo!, 615, 687–688, 698, 727
Yamamoto, Taro, xxxiv, 409, 501, 528, 679

Taro’s Law, 409
Yasuoka, Koichi, 180, 324, 622, 821
Yasuoka, Motoko, 324, 821
Yergeau, François, 206, 837
Yeung, Tze-loi, 125, 319, 823
Yi (regional script), 86, 110, 411, 416, 634, 645
Yoshinoya, 202, 205, 209, 211

Z
zenkaku (see full-width)
Zhang, Sheying, 178
Zhao, Xiaolin Allen, 451
Zheng Code Method, 318
Zheng, Long, 318
Zheng, Yili, 318
Zhu, Bangfu, 318
zhuyin, 5, 11, 26, 34–36, 49–51, 95, 97–100,

112–113, 115, 122, 150, 170, 301–
304, 483, 502, 516, 529, 537, 794

keyboard arrays for, 330–332
versus Pinyin, 301–304

About the Author
Ken Lunde* was born in Madison, Wisconsin, on the 12th day of August of the year
1965, and was subsequently raised by his parents, Vernon and Jeanne, in nearby greater-
metropolitan Mount Horeb. His first post–high school educational experience was study-
ing the Russian language for the United States Army Reserve at the Defense Language
Institute–Foreign Language Center (DLI-FLC) in Monterey, California, for all but a cou-
ple of weeks of 1984. He was a member of the now disbanded 247th Military Intelligence
Detachment for all nine years of his military experience. Ken entered The University of
Wisconsin–Madison (UW–Madison) in 1985 as a freshman, graduated with a Bachelor
of Arts degree in linguistics in August of 1987, received his Master of Arts degree in lin-
guistics in May of the following year, and then finally earned his Doctor of Philosophy
degree—in linguistics yet again, but this time with a minor in Japanese—in May of 1994.
His Ph.D. dissertation was entitled Prescriptive Kanji Simplification. Ken began his career
at Adobe Systems in 1991—before even contemplating his dissertation and before writing
his first book, entitled Understanding Japanese Information Processing (O’Reilly Media,
1993)—and is currently a Senior Computer Scientist in CJKV Type Development.

Ken’s Japanese penname is 小林剣 (kobayashi ken). The surname Lunde is of Viking
origin, and means “small woods” or “grove.” Perhaps by sheer coincidence—or rather by
choice—the Japanese surname 小林 (kobayashi) conveys these same meanings. The Japa-
nese given name 剣 (ken) was chosen phonemically, and from his fondness for cutlery
and other tools with sharp edges. In retrospect, Ken is very pleased that he chose the kanji
剣 for his name because it is an excellent example of an ideograph that has many variant
forms in Japan’s JIS X 0208:1997 character set standard, specifically 劍, 劔, 劒, 剱, and
釼. His wife even coined 𠝏, which is an unencoded variant. When Ken is in a nostalgic
mood, he sometimes prefers to use the traditional form, specifically 劍 instead of 剣. And,
when visiting China he could potentially use the simplified form 剑. The possibilities
seem endless. That, after all, is the nature of ideographs.

Ken resides and works in San Jose, California. He is one of the few people who doesn’t
need to commute far to get to work. That may change when he and his family move to
the Mount Shasta area in a few years. His interests include reading, writing, photography,
firearm marksmanship, hunting, cooking, fine wine, listening to a wide variety of music,
and spending quality time with friends and his family. He very much enjoys the outdoors,
and treasures every chance he gets to hunt with his father.

Although Ken is deeply intrigued by Japanese—and obviously CJKV—computing, sea-
food is, quite astonishingly, not among his most favorite foods. This does not imply that
he hates seafood, and on the contrary, he very much enjoys shrimp and a wide variety
of fish. It deserves to be pointed out that he has never eaten blowfish. And, speaking of
blowfish….

* http://lundestudio.com/

Colophon
The animal on the cover of CJKV Information Processing is a blowfish, also known as a
globefish, swellfish, puffer, and porcupine fish. It exists in tropical waters throughout the
world. In Japan it is known as fugu (河豚 fugu), and is a treasured delicacy, usually eaten
raw in thin slices. While parts of the blowfish are deliciously narcotic, other parts contain
a deadly toxin. Because of this, only specially certified and licensed chefs are allowed to
prepare the fish for people to eat. The skin of the blowfish is often used for making lan-
terns and other decorative items.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The text
font is Adobe Systems’ Minion Pro, an Adobe Original typeface design; the heading font
is their Myriad Pro Condensed, also an Adobe Original; the code font is LucasFont’s The-
SansMonoCondensed. Unless otherwise noted, Simplified and some Traditional Chinese
text (from GB standards) are set in Adobe Systems’ Adobe 宋体 Std L (AdobeSongStd-
Light) typeface design; most Traditional Chinese text (from CNS and Big Five standards)
and Vietnamese text (from TCVN standards) are set in Arphic Technology’s 文鼎中明
CNS11643 (MingTiEG-Medium) typeface design; other Traditional Chinese text (from
the Hong Kong SCS standard) is set in Adobe Systems’ Adobe 明體 Std L (AdobeMingStd-
Light) typeface design; Japanese text (from JIS standards) is set in Adobe Systems’ 小塚
明朝 Pr6N R (KozMinPr6N-Regular) typeface design, an Adobe Original; and Korean
text (from KS standards) is set in Adobe Systems’ Adobe 명조 Std M (AdobeMyungjoStd-
Medium) typeface design. Non-standard glyphs were implemented as SING glyphlets.
Most of these typefaces are available for purchase from Adobe Systems, bundled with its
applications, or are available from their respective type foundries.

The inside layout was designed by David Futato, and implemented in Adobe InDesign by
Ron Bilodeau. The illustrations were created in FreeHand MX by Robert Romano. Addi-
tional production work was provided by Rachel Monaghan. Rachel Monaghan reviewed
the index. All aspects of book production, from text entry to page composition, including
indexing, was done by the author on an Apple MacBook Pro laptop computer running
Mac OS X and Adobe InDesign CS3-J.

	Cover
	Foreword
	Preface
	Chapter 1: CJKV Information Processing Overview
	Writing Systems and Scripts
	Character Set Standards
	Encoding Methods
	Data Storage Basics

	Input Methods
	Typography
	Basic Concepts and Terminology FAQ
	What Are All These Abbreviations and Acronyms?
	What Are Internationalization, Globalization, and Localization?
	What Are the Multilingual and Locale Models?
	What Is a Locale?
	What Is Unicode?
	How Are Unicode and ISO 10646 Related?
	What Are Row-Cell and Plane-Row-Cell?
	What Is a Unicode Scalar Value?
	Characters Versus Glyphs: What Is the Difference?
	What Is the Difference Between Typeface and Font?
	What Are Half- and Full-Width Characters?
	Latin Versus Roman Characters
	What Is a Diacritic Mark?
	What Is Notation?
	What Is an Octet?
	What Are Little- and Big-Endian?
	What Are Multiple-Byte and Wide Characters?

	Advice to Readers

	Chapter 2: Writing Systems and Scripts
	Latin Characters, Transliteration, and Romanization
	Chinese Transliteration Methods
	Japanese Transliteration Methods
	Korean Transliteration Methods
	Vietnamese Romanization Methods

	Zhuyin/Bopomofo
	Kana
	Hiragana
	Katakana
	The Development of Kana

	Hangul
	Ideographs
	Ideograph Readings
	The Structure of Ideographs
	The History of Ideographs
	Ideograph Simplification

	Non-Chinese Ideographs
	Japanese-Made Ideographs—Kokuji
	Korean-Made Ideographs—Hanguksik Hanja
	Vietnamese-Made Ideographs—Chữ Nôm

	Chapter 3: Character Set Standards
	NCS Standards
	Hanzi in China
	Hanzi in Taiwan
	Kanji in Japan
	Hanja in Korea

	CCS Standards
	National Coded Character Set Standards Overview
	ASCII
	ASCII Variations
	CJKV-Roman
	Chinese Character Set Standards—China
	Chinese Character Set Standards—Taiwan
	Chinese Character Set Standards—Hong Kong
	Chinese Character Set Standards—Singapore
	Japanese Character Set Standards
	Korean Character Set Standards
	Vietnamese Character Set Standards

	International Character Set Standards
	Unicode and ISO 10646
	GB 13000.1-93
	CNS 14649-1:2002 and CNS 14649-2:2003
	JIS X 0221:2007
	KS X 1005-1:1995

	Character Set Standard Oddities
	Duplicate Characters
	Phantom Ideographs
	Incomplete Ideograph Pairs
	Simplified Ideographs Without a Traditional Form
	Fictitious Character Set Extensions
	Seemingly Missing Characters
	CJK Unified Ideographs with No Source
	Vertical Variants

	Noncoded Versus Coded Character Sets
	China
	Taiwan
	Japan
	Korea

	Information Interchange and Professional Publishing
	Character Sets for Information Interchange
	Character Sets for Professional and Commercial Publishing

	Future Trends and Predictions
	Emoji
	Genuine Ideograph Unification

	Advice to Developers
	The Importance of Unicode

	Chapter 4: Encoding Methods
	Unicode Encoding Methods
	Special Unicode Characters
	Unicode Scalar Values
	Byte Order Issues
	BMP Versus Non-BMP
	Unicode Encoding Forms
	Obsolete and Deprecated Unicode Encoding Forms
	Comparing UTF Encoding Forms with Legacy Encodings

	Legacy Encoding Methods
	Locale-Independent Legacy Encoding Methods
	Locale-Specific Legacy Encoding Methods

	Comparing CJKV Encoding Methods
	Charset Designations
	Character Sets Versus Encodings
	Charset Registries

	Code Pages
	IBM Code Pages
	Microsoft Code Pages

	Code Conversion
	Chinese Code Conversion
	Japanese Code Conversion
	Korean Code Conversion
	Code Conversion Across CJKV Locales
	Code Conversion Tips, Tricks, and Pitfalls

	Repairing Damaged or Unreadable CJKV Text
	Quoted-Printable Transformation
	Base64 Transformation
	Other Types of Encoding Repair

	Advice to Developers
	Embrace Unicode
	Legacy Encodings Cannot Be Forgotten
	Testing

	Chapter 5: Input Methods
	Transliteration Techniques
	Zhuyin Versus Pinyin Input
	Kana Versus Transliterated Input
	Hangul Versus Transliterated Input

	Input Techniques
	The Input Method
	The Conversion Dictionary
	Input by Reading
	Input by Structure
	Input by Multiple Criteria
	Input by Encoding
	Input by Other Codes
	Input by Postal Code
	Input by Association

	User Interface Concerns
	Inline Conversion

	Keyboard Arrays
	Western Keyboard Arrays
	Ideograph Keyboard Arrays
	Chinese Input Method Keyboard Arrays
	Zhuyin Keyboard Arrays
	Kana Keyboard Arrays
	Hangul Keyboard Arrays
	Latin Keyboard Arrays for CJKV Input
	Mobile Keyboard Arrays

	Other Input Hardware
	Pen Input
	Optical Character Recognition
	Voice Input

	Input Method Software
	CJKV Input Method Software
	Chinese Input Method Software
	Japanese Input Method Software
	Korean Input Method Software

	Chapter 6: Font Formats, Glyph Sets, and Font Tools
	Typeface Design
	How Many Glyphs Can a Font Include?
	Composite Fonts Versus Fallback Fonts
	Breaking the 64K Glyph Barrier

	Bitmapped Font Formats
	BDF Font Format
	HBF Font Format

	Outline Font Formats
	PostScript Font Formats
	TrueType Font Formats
	OpenType—PostScript and TrueType in Harmony

	Glyph Sets
	Static Versus Dynamic Glyph Sets
	CID Versus GID
	Std Versus Pro Designators
	Glyph Sets for Transliteration and Romanization
	Character Collections for CID-Keyed Fonts

	Ruby Glyphs
	Generic Versus Typeface-Specific Ruby Glyphs

	Host-Installed, Printer-Resident, and Embedded Fonts
	Installing and Downloading Fonts
	The PostScript Filesystem
	Mac OS X
	Mac OS 9 and Earlier
	Microsoft Windows—2000, XP, and Vista
	Microsoft Windows—Versions 3.1, 95, 98, ME, and NT4
	Unix and Linux
	X Window System
	Font and Glyph Embedding
	Cross-Platform Issues

	Font Development Tools
	Bitmapped Font Editors
	Outline Font Editors
	Outline Font Editors for Larger Fonts
	AFDKO—Adobe Font Development Kit for OpenType
	TTX/FontTools
	Font Format Conversion

	Gaiji Handling
	The Gaiji Problem
	SING—Smart INdependent Glyphlets
	Ideographic Variation Sequences
	XKP, A Gaiji Handling Initiative—Obsolete
	Adobe Type Composer (ATC)—Obsolete
	Composite Font Functionality Within Applications
	Gaiji Handling Techniques and Tricks
	Creating Your Own Rearranged Fonts
	Acquiring Gaiji Glyphs and Gaiji Fonts

	Advice to Developers

	Chapter 7: Typography
	Rules, Principles, and Techniques
	JIS X 4051:2004 Compliance
	GB/T 15834-1995 and GB/T 15835-1995

	Typographic Units and Measurements
	Two Important Points—Literally
	Other Typographic Units

	Horizontal and Vertical Layout
	Nonsquare Design Space
	The Character Grid
	Vertical Character Variants
	Dedicated Vertical Characters
	Vertical Latin Text

	Line Breaking and Word Wrapping
	Character Spanning
	Alternate Metrics
	Half-Width Symbols and Punctuation
	Proportional Symbols and Punctuation
	Proportional Kana
	Proportional Ideographs
	Kerning

	Line-Length Issues
	Manipulating Symbol and Punctuation Metrics
	Manipulating Inter-Glyph Spacing
	JIS X 4051:2004 Character Classes

	Multilingual Typography
	Latin Baseline Adjustment
	Proper Spacing of Latin and CJKV Characters
	Mixing Latin and CJKV Typeface Designs

	Glyph Substitution
	Character and Glyph Variants
	Ligatures

	Annotations
	Ruby Glyphs
	Inline Notes—Warichu
	Other Annotations

	Typographic Applications
	Page-Layout Applications
	Graphics Applications

	Advice to Developers

	Chapter 8: Output Methods
	Where Can Fonts Live?
	Output via Printing
	PostScript CJKV Printers
	Genuine PostScript
	Clone PostScript
	Passing Characters to PostScript

	Output via Display
	Adobe Type Manager—ATM
	SuperATM
	Adobe Acrobat and PDF
	Ghostscript
	OpenType and TrueType

	Other Printing Methods
	The Role of Printer Drivers
	Microsoft Windows Printer Drivers
	Mac OS X Printer Drivers

	Output Tips and Tricks
	Creating CJKV Documents for Non-CJKV Systems

	Advice to Developers
	CJKV-Capable Publishing Systems
	Some Practical Advice

	Chapter 9: Information Processing Techniques
	Language, Country, and Script Codes
	CLDR—Common Locale Data Repository
	Programming Languages
	C/C++
	Java
	Perl
	Python
	Ruby
	Tcl
	Other Programming Environments

	Code Conversion Algorithms
	Conversion Between UTF-8, UTF-16, and UTF-32
	Conversion Between ISO-2022 and EUC
	Conversion Between ISO-2022 and Row-Cell
	Conversion Between ISO-2022-JP and Shift-JIS
	Conversion Between EUC-JP and Shift-JIS
	Other Code Conversion Types

	Java Programming Examples
	Java Code Conversion
	Java Text Stream Handling
	Java Charset Designators

	Miscellaneous Algorithms
	Japanese Code Detection
	Half- to Full-Width Katakana Conversion—in Java
	Encoding Repair

	Byte Versus Character Handling
	Character Deletion
	Character Insertion
	Character Searching
	Line Breaking
	Character Attribute Detection Using C Macros

	Character Sorting
	Natural Language Processing
	Word Parsing and Morphological Analysis
	Spelling and Grammar Checking
	Chinese-Chinese Conversion
	Special Transliteration Considerations

	Regular Expressions
	Search Engines
	Code-Processing Tools
	JConv—Code Conversion Tool
	JChar—Character Set Generation Tool
	CJKV Character Set Server
	JCode—Text File Examination Tool
	Other Useful Tools and Resources

	Chapter 10: OSes, Text Editors, and Word Processors
	Viewing CJKV Text Using Non-CJKV OSes
	AsianSuite X2—Microsoft Windows
	NJStar CJK Viewer—Microsoft Windows
	TwinBridge Language Partner—Microsoft Windows

	Operating Systems
	FreeBSD
	Linux
	Mac OS X
	Microsoft Windows Vista
	MS-DOS
	Plan 9
	Solaris and OpenSolaris
	TRON and Chokanji
	Unix

	Hybrid Environments
	Boot Camp—Run Windows on Apple Hardware
	CrossOver Mac—Run Windows Applications on Mac OS X
	GNOME—Linux and Unix
	KDE—Linux and Unix
	VMware Fusion—Run Windows on Mac OS X
	Wine—Run Windows on Unix, Linux, and Other OSes
	X Window System—Unix

	Text Editors
	Mac OS X Text Editors
	Windows Text Editors
	Vietnamese Text Editing
	Emacs and GNU Emacs
	vi and Vim

	Word Processors
	AbiWord
	Haansoft Hangul—Microsoft Windows
	Ichitaro—Microsoft Windows
	KWord
	Microsoft Word—Microsoft Windows and Mac OS X
	Nisus Writer—Mac OS X
	NJStar Chinese/Japanese WP—Microsoft Windows
	Pages—Mac OS X

	Online Word Processors
	Adobe Buzzword
	Google Docs

	Advice to Developers

	Chapter 11: Dictionaries and Dictionary Software
	Ideograph Dictionary Indexes
	Reading Index
	Radical Index
	Stroke Count Index
	Other Indexes

	Ideograph Dictionaries
	Character Set Standards As Ideograph Dictionaries
	Locale-Specific Ideograph Dictionaries
	Vendor Ideograph Dictionaries and Ideograph Tables
	CJKV Ideograph Dictionaries

	Other Useful Dictionaries
	Conventional Dictionaries
	Variant Ideograph Dictionaries

	Dictionary Hardware
	Dictionary Software
	Dictionary CD-ROMs
	Frontend Software for Dictionary CD-ROMs
	Dictionary Files
	Frontend Software for Dictionary Files
	Web-Based Dictionaries

	Machine Translation Applications
	Machine Translation Services
	Free Machine Translation Services
	Commercial Machine Translation Services

	Language-Learning Aids

	Chapter 12: Web and Print Publishing
	Line-Termination Concerns
	Email
	Sending Email
	Receiving Email
	Email Troubles and Tricks
	Email Clients

	Network Domains
	Internationalized Domain Names
	The CN Domain
	The HK Domain
	The JP Domain
	The KR Domain
	The TW Domain
	The VN Domain

	Content Versus Presentation
	Web Publishing
	Web Browsers
	Displaying Web Pages

	HTML—HyperText Markup Language
	Authoring HTML Documents
	Web-Authoring Tools
	Embedding CJKV Text As Graphics

	XML—Extensible Markup Language
	Authoring XML Documents

	CGI Programming Examples
	Print Publishing
	PDF—Portable Document Format
	Authoring PDF Documents
	PDF Eases Publishing Pains

	Where to Go Next?

	Appendix A: Code Conversion Tables
	Appendix B: Notation Conversion Table
	Appendix C: Perl Code Examples
	Appendix D: Glossary
	Appendix E: Vendor Character Set Standards
	Appendix F: Vendor Encoding Methods
	Appendix G: Chinese Character Sets—China
	Appendix H: Chinese Character Sets—Taiwan
	Appendix I: Chinese Character Sets—Hong Kong
	Appendix J: Japanese Character Sets
	Appendix K: Korean Character Sets
	Appendix L: Vietnamese Character Sets
	Appendix M: Miscellaneous Character Sets
	Bibliography
	Index

