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In Praise of Computer Organization and Design: The Hardware/
Software Interface, Fifth Edition

“Textbook selection is often a frustrating act of compromise—pedagogy, content
coverage, quality of exposition, level of rigor, cost. Computer Organization and
Design is the rare book that hits all the right notes across the board, without
compromise. It is not only the premier computer organization textbook, it is a
shining example of what all computer science textbooks could and should be”

—DMichael Goldweber, Xavier University

“I have been using Computer Organization and Design for years, from the very
first edition. The new Fifth Edition is yet another outstanding improvement on an
already classic text. The evolution from desktop computing to mobile computing
to Big Data brings new coverage of embedded processors such as the ARM, new
material on how software and hardware interact to increase performance, and
cloud computing. All this without sacrificing the fundamentals”

—Ed Harcourt, St. Lawrence University

“To Millennials: Computer Organization and Design is the computer architecture
book you should keep on your (virtual) bookshelf. The book is both old and new,
because it develops venerable principles—Moore's Law, abstraction, common case
fast, redundancy, memory hierarchies, parallelism, and pipelining—but illustrates
them with contemporary designs, e.g., ARM Cortex A8 and Intel Core i7”

—Mark D. Hill, University of Wisconsin-Madison

“The new edition of Computer Organization and Design keeps pace with advances
in emerging embedded and many-core (GPU) systems, where tablets and
smartphones will are quickly becoming our new desktops. This text acknowledges
these changes, but continues to provide a rich foundation of the fundamentals
in computer organization and design which will be needed for the designers of
hardware and software that power this new class of devices and systems.”

—Dave Kaeli, Northeastern University

“The Fifth Edition of Computer Organization and Design provides more than an
introduction to computer architecture. It prepares the reader for the changes necessary
to meet the ever-increasing performance needs of mobile systems and big data
processing at a time that difficulties in semiconductor scaling are making all systems
power constrained. In this new era for computing, hardware and software must be co-
designed and system-level architecture is as critical as component-level optimizations.”

—Christos Kozyrakis, Stanford University

“Patterson and Hennessy brilliantly address the issues in ever-changing computer
hardware architectures, emphasizing on interactions among hardware and software
components at various abstraction levels. By interspersing I/O and parallelism concepts
with a variety of mechanisms in hardware and software throughout the book, the new
edition achieves an excellent holistic presentation of computer architecture for the
PostPC era. This book is an essential guide to hardware and software professionals
facing energy efficiency and parallelization challenges in Tablet PC to cloud computing”

—TJae C. Oh, Syracuse University
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Award from the University of California, the Karlstrom Award from ACM, and the
Mulligan Education Medal and Undergraduate Teaching Award from IEEE. Patterson
received the IEEE Technical Achievement Award and the ACM Eckert-Mauchly Award
for contributions to RISC, and he shared the IEEE Johnson Information Storage Award
for contributions to RAID. He also shared the IEEE John von Neumann Medal and
the C & C Prize with John Hennessy. Like his co-author, Patterson is a Fellow of the
American Academy of Arts and Sciences, the Computer History Museum, ACM,
and IEEE, and he was elected to the National Academy of Engineering, the National
Academy of Sciences, and the Silicon Valley Engineering Hall of Fame. He served on
the Information Technology Advisory Committee to the U.S. President, as chair of the
CS division in the Berkeley EECS department, as chair of the Computing Research
Association, and as President of ACM. This record led to Distinguished Service Awards
from ACM and CRA.

At Berkeley, Patterson led the design and implementation of RISC I, likely the first
VLSI reduced instruction set computer, and the foundation of the commercial
SPARC architecture. He was a leader of the Redundant Arrays of Inexpensive Disks
(RAID) project, which led to dependable storage systems from many companies.
He was also involved in the Network of Workstations (NOW) project, which led to
cluster technology used by Internet companies and later to cloud computing. These
projects earned three dissertation awards from ACM. His current research projects
are Algorithm-Machine-People and Algorithms and Specializers for Provably Optimal
Implementations with Resilience and Efficiency. The AMP Lab is developing scalable
machine learning algorithms, warehouse-scale-computer-friendly programming
models, and crowd-sourcing tools to gain valuable insights quickly from big data in
the cloud. The ASPIRE Lab uses deep hardware and software co-tuning to achieve the
highest possible performance and energy efficiency for mobile and rack computing
systems.

John L. Hennessy is the tenth president of Stanford University, where he has been
a member of the faculty since 1977 in the departments of electrical engineering and
computer science. Hennessy is a Fellow of the IEEE and ACM; a member of the
National Academy of Engineering, the National Academy of Science, and the American
Philosophical Society; and a Fellow of the American Academy of Arts and Sciences.
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to
RISC technology, the 2001 Seymour Cray Computer Engineering Award, and the 2000
John von Neumann Award, which he shared with David Patterson. He has also received
seven honorary doctorates.

In 1981, he started the MIPS project at Stanford with a handful of graduate students.
After completing the project in 1984, he took a leave from the university to cofound
MIPS Computer Systems (now MIPS Technologies), which developed one of the first
commercial RISC microprocessors. As of 2006, over 2 billion MIPS microprocessors have
been shipped in devices ranging from video games and palmtop computers to laser printers
and network switches. Hennessy subsequently led the DASH (Director Architecture
for Shared Memory) project, which prototyped the first scalable cache coherent
multiprocessor; many of the key ideas have been adopted in modern multiprocessors.
In addition to his technical activities and university responsibilities, he has continued to
work with numerous start-ups both as an early-stage advisor and an investor.

M.al litebooks. cor_rl


http://www.allitebooks.org

F I FTH EDITION

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE

David A. Patterson
University of California, Berkeley

John L. Hennessy
Stanford University

With contributions by
Perry Alexander
The University of Kansas

Peter ]. Ashenden
Ashenden Designs Pty Ltd

Jason D. Bakos

University of South Carolina

Javier Bruguera

Universidade de Santiago de Compostela

Jichuan Chang
Hewlett-Packard

Matthew Farrens

David Kaeli
Northeastern University

Nicole Kaiyan
University of Adelaide

David Kirk
NVIDIA

James R. Larus
School of Computer and

Communications Science at EPFL

Jacob Leverich
Hewlett-Packard

Kevin Lim
Hewlett-Packard

John Nickolls
NVIDIA

John Oliver
Cal Poly, San Luis Obispo

Milos Prvulovic
Georgia Tech

Partha Ranganathan
Hewlett-Packard

University of California, Davis

AMSTERDAM « BOSTON « HEIDELBERG « LONDON
NEW YORK « OXFORD « PARIS « SAN DIEGO
SAN FRANCISCO « SINGAPORE « SYDNEY « TOKYO

Morgan Kaufmann is an imprint of Elsevier

MK

M.al litebooks. cogl


http://www.allitebooks.org

Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Lisa Jones
Designer: Russell Purdy

Morgan Kaufmann is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2014 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how
to seek permission, further information about the Publisher’s permissions policles and our arrangements with organizations such as the
Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted
herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in
research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own experience
and knowledge 1n evaluating and using any information or methods described herein. In using such information or methods they should be
mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the publisher nor the authors, contributors, or editors, assume any liability for any injury and/
or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Patterson, David A.
Computer organization and design: the hardware/software interface/David A. Patterson, John L. Hennessy. — 5th ed.
p. cm. — (The Morgan Kaufmann series in computer architecture and design)
Rev. ed. of: Computer organization and design/John L. Hennessy, David A. Patterson. 1998.
Summary: “Presents the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining, memory hierarchies
and I/0”— Provided by publisher.
ISBN 978-0-12-407726-3 (pbk.)
1. Computer organization. 2. Computer engineering. 3. Computer interfaces. I. Hennessy, John L. II. Hennessy, John L. Computer
organization and design. III. Title.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-407726-3

For information on all MK publications visit our
website at www.mkp.com

Printed and bound in the United States of America

13141516 10987654321

Hh Working together
to grow libraries in
Book Aid developing countries

www.elsevier.com ¢ www.bookaid.org

M.al litebooks. cogl


http://www.allitebooks.org

To Linda,
who has been, is, and always will be the love of my life

M.al litebooks. cor_rl


http://www.allitebooks.org

ACKNOWLEDGMENTS

Figures 1.7, 1.8 Courtesy of iFixit (www.ifixit.com).
Figure 1.9 Courtesy of Chipworks (www.chipworks.com).
Figure 1.13 Courtesy of Intel.

Figures 1.10.1, 1.10.2, 4.15.2 Courtesy of the Charles Babbage
Institute, University of Minnesota Libraries, Minneapolis.

Figures 1.10.3, 4.15.1, 4.15.3, 5.12.3, 6.14.2 Courtesy of IBM.

Figure 1.10.4 Courtesy of Cray Inc.

Figure 1.10.5 Courtesy of Apple Computer, Inc.

Figure 1.10.6 Courtesy of the Computer History Museum.
Figures 5.17.1, 5.17.2 Courtesy of Museum of Science, Boston.
Figure 5.17.4 Courtesy of MIPS Technologies, Inc.

Figure 6.15.1 Courtesy of NASA Ames Research Center.

M.al litebooks. cogl


http://www.allitebooks.org

Contents

Preface xv
CHAPTERS

n Computer Abstractions and Technology 2

1.1 Introduction 3

12 Eight Great Ideas in Computer Architecture 11

1.3 Below Your Program 13

1.4  Under the Covers 16

1.5 Technologies for Building Processors and Memory 24

1.6 Performance 28

1.7 The Power Wall 40

1.8 The Sea Change: The Switch from Uniprocessors to
Multiprocessors 43

1.9  Real Stuff: Benchmarking the Intel Corei7 46

1.10 Fallacies and Pitfalls 49

1.11 Concluding Remarks 52

1.12 Historical Perspective and Further Reading 54

1.13 Exercises 54

E Instructions: Language of the Computer 60

2.1 Introduction 62

2.2 Operations of the Computer Hardware 63

2.3 Operands of the Computer Hardware 66

2.4 Signed and Unsigned Numbers 73

2.5 Representing Instructions in the Computer 80

2.6 Logical Operations 87

2.7 Instructions for Making Decisions 90

2.8 Supporting Procedures in Computer Hardware 96
2.9 Communicating with People 106

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 111
2.11 Parallelism and Instructions: Synchronization 121
2.12 Translating and Starting a Program 123

2.13 A C Sort Example to Put It All Together 132

2.14 Arrays versus Pointers 141

M.al litebooks. cogl


http://www.allitebooks.org

Contents

2.15 Advanced Material: Compiling C and Interpreting Java 145
2.16 Real Stuft: ARMv7 (32-bit) Instructions 145

2.17 Real Stuff: x86 Instructions 149

2.18 Real Stuft: ARMv8 (64-bit) Instructions 158

2.19 Fallacies and Pitfalls 159

220 Concluding Remarks 161

2.21 Historical Perspective and Further Reading 163

2.22 Exercises 164

Arithmetic for Computers 176

3.1 Introduction 178

3.2 Addition and Subtraction 178

3.3 Multiplication 183

3.4 Division 189

3.5 Floating Point 196

3.6 Parallelism and Computer Arithmetic: Subword Parallelism 222

3.7 Real Stuff: Streaming SIMD Extensions and Advanced Vector
Extensions inx86 224

3.8 Going Faster: Subword Parallelism and Matrix Multiply 225

3.9 Fallacies and Pitfalls 229

3.10 Concluding Remarks 232

3.11 Historical Perspective and Further Reading 236

3.12 Exercises 237

The Processor 242

41 Introduction 244

42 Logic Design Conventions 248

4.3 Building a Datapath 251

44 A Simple Implementation Scheme 259

4.5 An Overview of Pipelining 272

4.6 Pipelined Datapath and Control 286

4.7  Data Hazards: Forwarding versus Stalling 303

48 Control Hazards 316

49 Exceptions 325

4.10 Parallelism via Instructions 332

4.11 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Pipelines 344

4.12 Going Faster: Instruction-Level Parallelism and Matrix
Multiply 351

4.13 Advanced Topic: An Introduction to Digital Design Using a Hardware
Design Language to Describe and Model a Pipeline and More Pipelining
IMlustrations 354



Contents

xi

4.14 Fallacies and Pitfalls 355

4.15 Concluding Remarks 356

4.16 Historical Perspective and Further Reading 357
4.17 Exercises 357

Large and Fast: Exploiting Memory Hierarchy 372

51 Introduction 374

52 Memory Technologies 378

5.3 The Basics of Caches 383

5.4  Measuring and Improving Cache Performance 398

5.5 Dependable Memory Hierarchy 418

5.6  Virtual Machines 424

5.7  Virtual Memory 427

58 A Common Framework for Memory Hierarchy 454

5.9  Usinga Finite-State Machine to Control a Simple Cache 461

5.10 Parallelism and Memory Hierarchies: Cache Coherence 466

5.11 Parallelism and Memory Hierarchy: Redundant Arrays of
Inexpensive Disks 470

5.12 Advanced Material: Implementing Cache Controllers 470

5.13 Real Stuff: The ARM Cortex-A8 and Intel Core i7 Memory
Hierarchies 471

5.14 Going Faster: Cache Blocking and Matrix Multiply 475

5.15 Fallacies and Pitfalls 478

5.16 Concluding Remarks 482

5.17 Historical Perspective and Further Reading 483

5.18 Exercises 483

Parallel Processors from Client to Cloud 500

6.1 Introduction 502

6.2  The Difficulty of Creating Parallel Processing Programs 504

6.3 SISD, MIMD, SIMD, SPMD, and Vector 509

6.4 Hardware Multithreading 516

6.5 Multicore and Other Shared Memory Multiprocessors 519

6.6 Introduction to Graphics Processing Units 524

6.7  Clusters, Warehouse Scale Computers, and Other
Message-Passing Multiprocessors 531

6.8 Introduction to Multiprocessor Network Topologies 536

6.9 Communicating to the Outside World: Cluster Networking 539

6.10 Multiprocessor Benchmarks and Performance Models 540

6.11 Real Stuft: Benchmarking Intel Core i7 versus NVIDIA Tesla
GPU 550



xii Contents

6.12 Going Faster: Multiple Processors and Matrix Multiply 555
6.13 Fallacies and Pitfalls 558

6.14 Concluding Remarks 560

6.15 Historical Perspective and Further Reading 563

6.16 Exercises 563

APPENDICES

u Assemblers, Linkers, and the SPIM Simulator A-2

Al Introduction A-3

A2 Assemblers A-10

A3 Linkers A-18

A4 Loading A-19

A5 Memory Usage A-20

A.6 Procedure Call Convention A-22
A7 Exceptions and Interrupts A-33
A8 Inputand Output A-38

A9 SPIM A-40

A.10 MIPS R2000 Assembly Language A-45
A.11 Concluding Remarks A-81

A.12 Exercises A-82

B The Basics of Logic Design B-2

B.1 Introduction B-3
B2 Gates, Truth Tables, and Logic Equations B-4
B.3 Combinational Logic B-9
B4 Usinga Hardware Description Language B-20
B.5 Constructing a Basic Arithmetic Logic Unit B-26
B.6  Faster Addition: Carry Lookahead B-38
B.7 Clocks B-48
B.8 Memory Elements: Flip-Flops, Latches, and Registers B-50
B9 Memory Elements: SRAMs and DRAMs B-58
B.10 Finite-State Machines B-67
B.11 Timing Methodologies B-72
B.12 Field Programmable Devices B-78
B.13 Concluding Remarks B-79
B.14 Exercises B-80
Index I-1



Contents

Xiii

ONLINE

CONTENT

Graphics and Computing GPUs C-2

Cl1
C2
C3
C4
C5
C6
C7
C8
C9

Introduction  C-3

GPU System Architectures C-7

Programming GPUs C-12

Multithreaded Multiprocessor Architecture C-25
Parallel Memory System C-36

Floating Point Arithmetic C-41

Real Stuft: The NVIDIA GeForce 8800 C-46
Real Stuff: Mapping Applications to GPUs  C-55
Fallacies and Pitfalls C-72

C.10 Concluding Remarks C-76

C11

Historical Perspective and Further Reading C-77

Mapping Control to Hardware D-2

D1
D.2
D3
D4
D5
D.6
D.7

Introduction D-3

Implementing Combinational Control Units D-4
Implementing Finite-State Machine Control D-8
Implementing the Next-State Function with a Sequencer D-22
Translating a Microprogram to Hardware D-28

Concluding Remarks D-32

Exercises D-33

A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers E-2

El
E2
E3
E4
E5

Ee6
E7
E8
E9
E.10
Ell
E12
E13
E.14

Introduction  E-3

Addressing Modes and Instruction Formats E-5

Instructions: The MIPS Core Subset  E-9

Instructions: Multimedia Extensions of the Desktop/Server RISCs  E-16
Instructions: Digital Signal-Processing Extensions of the Embedded
RISCs E-19

Instructions: Common Extensions to MIPS Core  E-20
Instructions Unique to MIPS-64  E-25

Instructions Unique to Alpha  E-27

Instructions Unique to SPARCv9  E-29

Instructions Unique to PowerPC ~ E-32

Instructions Unique to PA-RISC2.0 E-34

Instructions Unique to ARM  E-36

Instructions Unique to Thumb  E-38

Instructions Unique to SuperH  E-39



xiv

Contents

E.15 Instructions Uniqueto M32R E-40
E.16 Instructions Unique to MIPS-16 E-40
E.17 Concluding Remarks E-43

Glossary G-1

Further Reading FR-1



Preface

The most beautiful thing we can experience is the mysterious. It is the
source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect
the current state of the field, as well as introduce the principles that are shaping
computing. We also feel that readers in every specialty of computing need
to appreciate the organizational paradigms that determine the capabilities,
performance, energy, and, ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing
specialty to understand both hardware and software. The interaction between
hardware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and silicon
engineers to make their programs run faster or be more energy-efficient without
change, that era is over. For programs to run faster, they must become parallel.
While the goal of many researchers is to make it possible for programmers to be
unaware of the underlying parallel nature of the hardware they are programming,
it will take many years to realize this vision. Our view is that for at least the next
decade, most programmers are going to have to understand the hardware/software
interface if they want programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.



Xvi

Preface

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
often called Patterson and Hennessy.) Our motivation in writing the earlier book
was to describe the principles of computer architecture using solid engineering
fundamentals and quantitative cost/performance tradeoffs. We used an approach
that combined examples and measurements, based on commercial systems, to
create realistic design experiences. Our goal was to demonstrate that computer
architecture could be learned using quantitative methodologies instead of a
descriptive approach. It was intended for the serious computing professional who
wanted a detailed understanding of computers.

A majority of the readers for this book do not plan to become computer
architects. The performance and energy efficiency of future software systems will
be dramatically affected, however, by how well software designers understand the
basic hardware techniques at work in a system. Thus, compiler writers, operating
system designers, database programmers, and most other software engineers need
a firm grounding in the principles presented in this book. Similarly, hardware
designers must understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions of
Computer Architecture were revised to remove most of the introductory material;
hence, there is much less overlap today than with the first editions of both books.

Changes for the Fifth Edition

We had six major goals for the fifth edition of Computer Organization and Design:
demonstrate the importance of understanding hardware with a running example;
highlight major themes across the topics using margin icons that are introduced
early; update examples to reflect changeover from PC era to PostPC era; spread the
material on I/O throughout the book rather than isolating it into a single chapter;
update the technical content to reflect changes in the industry since the publication
of the fourth edition in 2009; and put appendices and optional sections online
instead of including a CD to lower costs and to make this edition viable as an
electronic book.

Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5, and
6 are found on both paths, no matter what the experience or the focus. Chapter 1
discusses the importance of energy and how it motivates the switch from single
core to multicore microprocessors and introduces the eight great ideas in computer
architecture. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming
languages. Chapter 3 is for readers interested in constructing a datapath or in
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learning more about floating-point arithmetic. Some will skip parts of Chapter 3,
either because they don’t need them or because they offer a review. However, we
introduce the running example of matrix multiply in this chapter, showing how
subword parallels offers a fourfold improvement, so don’t skip sections 3.6 to 3.8.
Chapter 4 explains pipelined processors. Sections 4.1, 4.5, and 4.10 give overviews
and Section 4.12 gives the next performance boost for matrix multiply for those with
a software focus. Those with a hardware focus, however, will find that this chapter
presents core material; they may also, depending on their background, want to read
Appendix C on logic design first. The last chapter on multicores, multiprocessors,
and clusters, is mostly new content and should be read by everyone. It was
significantly reorganized in this edition to make the flow of ideas more natural
and to include much more depth on GPUs, warehouse scale computers, and the
hardware-software interface of network interface cards that are key to clusters.

The first of the six goals for this firth edition was to demonstrate the importance
of understanding modern hardware to get good performance and energy efficiency
with a concrete example. As mentioned above, we start with subword parallelism
in Chapter 3 to improve matrix multiply by a factor of 4. We double performance
in Chapter 4 by unrolling the loop to demonstrate the value of instruction level
parallelism. Chapter 5 doubles performance again by optimizing for caches using
blocking. Finally, Chapter 6 demonstrates a speedup of 14 from 16 processors by
using thread-level parallelism. All four optimizations in total add just 24 lines of C
code to our initial matrix multiply example.

The second goal was to help readers separate the forest from the trees by
identifying eight great ideas of computer architecture early and then pointing out
all the places they occur throughout the rest of the book. We use (hopefully) easy
to remember margin icons and highlight the corresponding word in the text to
remind readers of these eight themes. There are nearly 100 citations in the book.
No chapter has less than seven examples of great ideas, and no idea is cited less than
five times. Performance via parallelism, pipelining, and prediction are the three
most popular great ideas, followed closely by Moore’s Law. The processor chapter
(4) is the one with the most examples, which is not a surprise since it probably
received the most attention from computer architects. The one great idea found in
every chapter is performance via parallelism, which is a pleasant observation given
the recent emphasis in parallelism in the field and in editions of this book.

The third goal was to recognize the generation change in computing from the
PC era to the PostPC era by this edition with our examples and material. Thus,
Chapter 1 dives into the guts of a tablet computer rather than a PC, and Chapter 6
describes the computing infrastructure of the cloud. We also feature the ARM,
which is the instruction set of choice in the personal mobile devices of the PostPC
era, as well as the x86 instruction set that dominated the PC Era and (so far)
dominates cloud computing.

The fourth goal was to spread the I/O material throughout the book rather
than have it in its own chapter, much as we spread parallelism throughout all the
chapters in the fourth edition. Hence, I/O material in this edition can be found in
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Sections 1.4,4.9,5.2,5.5,5.11, and 6.9. The thought is that readers (and instructors)
are more likely to cover I/O if it’s not segregated to its own chapter.

This is a fast-moving field, and, as is always the case for our new editions, an
important goal is to update the technical content. The running example is the ARM
Cortex A8 and the Intel Core i7, reflecting our PostPC Era. Other highlights include
an overview the new 64-bit instruction set of ARMvS, a tutorial on GPUs that
explains their unique terminology, more depth on the warehouse scale computers
that make up the cloud, and a deep dive into 10 Gigabyte Ethernet cards.

To keep the main book short and compatible with electronic books, we placed
the optional material as online appendices instead of on a companion CD as in
prior editions.

Finally, we updated all the exercises in the book.

While some elements changed, we have preserved useful book elements from
prior editions. To make the book work better as a reference, we still place definitions
of new terms in the margins at their first occurrence. The book element called
“Understanding Program Performance” sections helps readers understand the
performance of their programs and how to improve it, just as the “Hardware/Software
Interface” book element helped readers understand the tradeoffs at this interface.
“The Big Picture” section remains so that the reader sees the forest despite all the
trees. “Check Yourself” sections help readers to confirm their comprehension of the
material on the first time through with answers provided at the end of each chapter.
This edition still includes the green MIPS reference card, which was inspired by the
“Green Card” of the IBM System/360. This card has been updated and should be a
handy reference when writing MIPS assembly language programs.

Changes for the Fifth Edition

We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture slides, and other
materials are available to adopters from the publisher. Check the publisher’s Web
site for more information:

textbooks.elsevier.com/9780124077263

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod5bugs@mkp.
com or by low-tech mail using the address found on the copyright page.

This edition is the second break in the long-standing collaboration between
Hennessy and Patterson, which started in 1989. The demands of running one of
the world’s great universities meant that President Hennessy could no longer make
the substantial commitment to create a new edition. The remaining author felt
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once again like a tightrope walker without a safety net. Hence, the people in the
acknowledgments and Berkeley colleagues played an even larger role in shaping
the contents of this book. Nevertheless, this time around there is only one author
to blame for the new material in what you are about to read.
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various versions of matrix multiply and supplied the performance numbers as well.
As T worked with his father while I was a graduate student at UCLA, it was a nice
symmetry to work with Rimas at UCB.

I also wish to thank my longtime collaborator Randy Katz of UC Berkeley, who
helped develop the concept of great ideas in computer architecture as part of the
extensive revision of an undergraduate class that we did together.

Id like to thank David Kirk, John Nickolls, and their colleagues at NVIDIA
(Michael Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm,
Paulius Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov)
for writing the first in-depth appendix on GPUs. Id like to express again my
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with regard to using the simulator he developed and maintains.

I am also very grateful to Jason Bakos of the University of South Carolina,
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prepared for the fourth edition by Perry Alexander (The University of Kansas);
Javier Bruguera (Universidade de Santiago de Compostela); Matthew Farrens
(University of California, Davis); David Kaeli (Northeastern University); Nicole
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Civilization advances

by extending the
number of important
operations which we
can perform without
thinking about them.

Alfred North Whitehead,
An Introduction to Mathematics, 1911
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Introduction

Welcome to this book! We're delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Computers
are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s Law. This unusual
industry embraces innovation at a breath-taking rate. In the last 30 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception
of electronic computing in the late 1940s. Had the transportation industry kept
pace with the computer industry, for example, today we could travel from New
York to London in a second for a penny. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in San
Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change.
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Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolutions.
The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications that
were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fiction.”

m Computers in automobiles: Until microprocessors improved dramatically
in price and performance in the early 1980s, computer control of cars was
ludicrous. Today, computers reduce pollution, improve fuel efficiency via
engine controls, and increase safety through blind spot warnings, lane
departure warnings, moving object detection, and air bag inflation to protect
occupants in a crash.

m Cell phones: Who would have dreamed that advances in computer
systems would lead to more than half of the planet having mobile phones,
allowing person-to-person communication to almost anyone anywhere in
the world?

B Human genome project: The cost of computer equipment to map and analyze
human DNA sequences was hundreds of millions of dollars. It’s unlikely that
anyone would have considered this project had the computer costs been 10
to 100 times higher, as they would have been 15 to 25 years earlier. Moreover,
costs continue to drop; you will soon be able to acquire your own genome,
allowing medical care to be tailored to you.

m World Wide Web: Not in existence at the time of the first edition of this book,
the web has transformed our society. For many, the web has replaced libraries
and newspapers.

B Search engines: As the content of the web grew in size and in value, finding
relevant information became increasingly important. Today, many people
rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our
society. Hardware advances have allowed programmers to create wonderfully
useful software, which explains why computers are omnipresent. Today’s science
fiction suggests tomorrow’s killer applications: already on their way are glasses that
augment reality, the cashless society, and cars that can drive themselves.
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Classes of Computing Applications and Their
Characteristics

Although a common set of hardware technologies (see Sections 1.4 and 1.5) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have different design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Personal computers (PCs) are possibly the best known form of computing,
which readers of this book have likely used extensively. Personal computers
emphasize delivery of good performance to single users at low cost and usually
execute third-party software. This class of computing drove the evolution of many
computing technologies, which is only about 35 years old!

Servers are the modern form of what were once much larger computers, and
are usually accessed only via a network. Servers are oriented to carrying large
workloads, which may consist of either single complex applications—usually a
scientific or engineering application—or handling many small jobs, such as would
occur in building a large web server. These applications are usually based on
software from another source (such as a database or simulation system), but are
often modified or customized for a particular function. Servers are built from the
same basic technology as desktop computers, but provide for greater computing,
storage, and input/output capacity. In general, servers also place a greater emphasis
on dependability, since a crash is usually more costly than it would be on a single-
user PC.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of tens of thousands of
processors and many terabytes of memory, and cost tens to hundreds of millions
of dollars. Supercomputers are usually used for high-end scientific and engineering
calculations, such as weather forecasting, oil exploration, protein structure
determination, and other large-scale problems. Although such supercomputers
represent the peak of computing capability, they represent a relatively small fraction
of the servers and a relatively small fraction of the overall computer market in
terms of total revenue.

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the
microprocessors found in your car, the computers in a television set, and the
networks of processors that control a modern airplane or cargo ship. Embedded
computing systems are designed to run one application or one set of related
applications that are normally integrated with the hardware and delivered as a
single system; thus, despite the large number of embedded computers, most users
never really see that they are using a computer!

personal computer
(PC) A computer
designed for use by

an individual, usually
incorporating a graphics
display, a keyboard, and a

mouse.

server A computer

used for running

larger programs for
multiple users, often
simultaneously, and
typically accessed only via
a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and typically
cost tens to hundreds of
millions of dollars.

terabyte (TB) Originally
1,099,511,627,776

(2*) bytes, although
communications and
secondary storage

systems developers
started using the term to
mean 1,000,000,000,000
(10") bytes. To reduce
confusion, we now use the
term tebibyte (TiB) for
2% bytes, defining terabyte
(TB) to mean 10" bytes.
Figure 1.1 shows the full
range of decimal and
binary values and names.

embedded computer

A computer inside another
device used for running
one predetermined
application or collection of
software.
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Decimal Binary
term Abbreviation Value term Abbreviation Value % Larger
KB 10° KiB 21 2%

kilobyte kibibyte
megabyte MB 108 mebibyte MiB 2% 5%
gigabyte GB 10¢ gibibyte GiB 2% 7%
terabyte B 10*2 tebibyte TiB 2% 10%
petabyte PB 10 pebibyte PiB 2% 13%
exabyte EB 10 exbibyte EiB 2% 15%
zettabyte ZB 102 zebibyte ZiB 270 18%
yottabyte YB 102 yobibyte YiB 2% 21%

FIGURE 1.1 The 2* vs. 10" bytes ambigulty was resolved by adding a binary notation for
all the common slze terms. In the last column we note how much larger the binary term is than its
corresponding decimal term, which is compounded as we head down the chart. These prefixes work for bits
as well as bytes, so gigabit (Gb) is 10° bits while gibibits (G1b) is 2 bits.

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary
to handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer ina
plane or cargo ship crashes). In consumer-oriented embedded applications, such as
a digital home appliance, dependability is achieved primarily through simplicity—
the emphasis is on doing one function as perfectly as possible. In large embedded
systems, techniques of redundancy from the server world are often employed.
Although this book focuses on general-purpose computers, most concepts apply
directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a
processor written in a hardware description language, such as Verilog or VHDL (see
Chapter 4). The core allows a designer to integrate other application-specific hardware
with the processor core for fabrication on a single chip.

Welcome to the PostPC Era

The continuing march of technology brings about generational changes in
computer hardware that shake up the entire information technology industry.
Since the last edition of the book we have undergone such a change, as significant
in the past as the switch starting 30 years ago to personal computers. Replacing the
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FIGURE 1.2 The number manufactured per year of tablets and smart phones, which
reflect the PostPC era, versus personal computers and traditional cell phones. Smart phones
represent the recent growth in the cell phone industry, and they passed PCs in 2011. Tablets are the fastest
growing category, nearly doubling between 2011 and 2012. Recent PCs and traditional cell phone categories
are relatively flat or declining.

PC is the personal mobile device (PMD). PMDs are battery operated with wireless
connectivity to the Internet and typically cost hundreds of dollars, and, like PCs,
users can download software (“apps”) to run on them. Unlike PCs, they no longer
have a keyboard and mouse, and are more likely to rely on a touch-sensitive screen
or even speech input. Today’s PMD is a smart phone or a tablet computer, but
tomorrow it may include electronic glasses. Figure 1.2 shows the rapid growth time
of tablets and smart phones versus that of PCs and traditional cell phones.

Taking over from the traditional server is Cloud Computing, which relies upon
giant datacenters that are now known as Warehouse Scale Computers (WSCs).
Companies like Amazon and Google build these WSCs containing 100,000 servers
and then let companies rent portions of them so that they can provide software
services to PMDs without having to build WSCs of their own. Indeed, Software as
aService (SaaS) deployed via the cloud is revolutionizing the software industry just
as PMDs and WSCs are revolutionizing the hardware industry. Today’s software
developers will often have a portion of their application that runs on the PMD and
a portion that runs in the Cloud.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the

M.al litebooks. cogl

Personal mobile
devices (PMDs) are
small wireless devices to
connect to the Internet;
they rely on batteries for
power, and software is
installed by downloading
apps. Conventional
examples are smart
phones and tablets.

Cloud Computing refers
to large collections of
servers that provide services
over the Internet; some
providers rent dynamically
varying numbers of servers
as a utility.

Software as a Service
(SaaS) delivers software
and data as a service over
the Internet, usually via

a thin program such as a
browser that runs on local
client devices, instead of
binary code that must be
installed, and runs wholly
on that device. Examples
include web search and
social networking.
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multicore
microprocessor

A microprocessor
containing multiple
processors (“cores”) in a
single integrated circuit.

last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature
of processors and the hierarchical nature of memories. Moreover, as we explain
in Section 1.7, today’s programmers need to worry about energy efficiency of
their programs running either on the PMD or in the Cloud, which also requires
understanding what is below your code. Programmers who seek to build
competitive versions of software will therefore need to increase their knowledge of
computer organization.

Weare honored to have the opportunity to explain what’s inside this revolutionary
machine, unraveling the software below your program and the hardware under the
covers of your computer. By the time you complete this book, we believe you will
be able to answer the following questions:

B How are programs written in a high-level language, such as C or Java,
translated into the language of the hardware, and how does the hardware
execute the resulting program? Comprehending these concepts forms the
basis of understanding the aspects of both the hardware and software that
affect program performance.

B What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

B What determines the performance of a program, and how can a programmer
improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s
language, and the effectiveness of the hardware in executing the program.

m What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

m What techniques can be used by hardware designers to improve energy
efficiency? What can the programmer do to help or hinder energy efficiency?

B What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 6).

B Since the first commercial computer in 1951, what great ideas did computer
architects come up with that lay the foundation of modern computing?
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Without understanding the answers to these questions, improving the
performance of your program on a modern computer or evaluating what features
might make one computer better than another for a particular application will be
a complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and energy, introduces
integrated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the
terminology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted definition
of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCle, SATA, and many others.

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

acronym A word
constructed by taking the
initial letters of a string
of words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

The performance of a program depends on a combination of the effectiveness of the
algorithms used in the program, the software systems used to create and translate
the program into machine instructions, and the effectiveness of the computer in
executing those instructions, which may include input/output (I/O) operations.
This table summarizes how the hardware and software affect performance.

Hardware or software Where Is this
component How this component affects performance | toplc covered?

Algorithm Other books!

Determines both the number of source-level
statements and the number of |/0 operations
executed

Programming language,
compiler, and architecture
Processor and memory
system

1/0 system (hardware and
operating system)

Determines the number of computer instructions
for each source-level statement

Determines how fast instructions can be executed

Chapters 2 and 3

Chapters 4,5, and 6

Determines how fast /0 operations may be
executed

Chapters 4, 5, and 6

Understanding
Program
Performance
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Check
Yourself

To demonstrate the impact of the ideas in this book, we improve the performance
of a C program that multiplies a matrix times a vector in a sequence of
chapters. Each step leverages understanding how the underlying hardware
really works in a modern microprocessor to improve performance by a factor
of 200!

B In the category of data level parallelism, in Chapter 3 we use subword
parallelism via C intrinsics to increase performance by a factor of 3.8.

B In the category of instruction level parallelism, in Chapter 4 we use loop
unrolling to exploit multiple instruction issue and out-of-order execution
hardware to increase performance by another factor of 2.3.

B In the category of memory hierarchy optimization, in Chapter 5 we use
cache blocking to increase performance on large matrices by another factor
of 2.5.

B In the category of thread level parallelism, in Chapter 6 we use parallel for
loops in OpenMP to exploit multicore hardware to increase performance by
another factor of 14.

Check Yourself sections are designed to help readers assess whether they
comprehend the major concepts introduced in a chapter and understand the
implications of those concepts. Some Check Yourself questions have simple answers;
others are for discussion among a group. Answers to the specific questions can
be found at the end of the chapter. Check Yourself questions appear only at the
end of a section, making it easy to skip them if you are sure you understand the
material.

1. The number of embedded processors sold every year greatly outnumbers
the number of PC and even PostPC processors. Can you confirm or deny
this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of conventional computers in your home?

2. Asmentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

m The algorithm chosen

m The programming language or compiler
m The operating system

m The processor

|

The I/O system and devices
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Eight Great Ideas in Computer
Architecture

We now introduce eight great ideas that computer architects have been invented in
the last 60 years of computer design. These ideas are so powerful they have lasted
long after the first computer that used them, with newer architects demonstrating
their admiration by imitating their predecessors. These great ideas are themes that
we will weave through this and subsequent chapters as examples arise. To point
out their influence, in this section we introduce icons and highlighted terms that
represent the great ideas and we use them to identify the nearly 100 sections of the
book that feature use of the great ideas.

Design for Moore’s Law

The one constant for computer designers is rapid change, which is driven largely by
Moore’s Law. It states that integrated circuit resources double every 18-24 months.
Moore’s Law resulted from a 1965 prediction of such growth in IC capacity made
by Gordon Moore, one of the founders of Intel. As computer designs can take years,
the resources available per chip can easily double or quadruple between the start
and finish of the project. Like a skeet shooter, computer architects must anticipate
where the technology will be when the design finishes rather than design for where
it starts. We use an “up and to the right” Moore’s Law graph to represent designing
for rapid change.

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew by Moore’s Law. A major productivity technique for
hardware and software is to use abstractions to represent the design at different
levels of representation; lower-level details are hidden to offer a simpler model at
higher levels. We'll use the abstract painting icon to represent this second great
idea.

Make the Common Case Fast

Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the
rare case and hence is often easier to enhance. This common sense advice implies
that you know what the common case is, which is only possible with careful
experimentation and measurement (see Section 1.6). We use a sports car as the
icon for making the common case fast, as the most common trip has one or two
passengers, and it’s surely easier to make a fast sports car than a fast minivan!

MOORE’'S LAW

ABSTRACTION

o

COMMON CASE FAST
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PARALLELISM

PIPELINING

>

PREDICTION

HIERARCHY

ﬂm

DEPENDABILITY

Performance via Parallelism

Since the dawn of computing, computer architects have offered designs that get
more performance by performing operations in parallel. We'll see many examples
of parallelism in this book. We use multiple jet engines of a plane as our icon for
parallel performance.

Performance via Pipelining

A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining. For example, before fire engines, a “bucket
brigade” would respond to a fire, which many cowboy movies show in response to
a dastardly act by the villain. The townsfolk form a human chain to carry a water
source to fire, as they could much more quickly move buckets up the chain instead
of individuals running back and forth. Our pipeline icon is a sequence of pipes,
with each section representing one stage of the pipeline.

Performance via Prediction

Following the saying that it can be better to ask for forgiveness than to ask for
permission, the final great idea is prediction. In some cases it can be faster on
average to guess and start working rather than wait until you know for sure,
assuming that the mechanism to recover from a misprediction is not too expensive
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

Hierarchy of Memories

Programmers want memory to be fast, large, and cheap, as memory speed often
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is often the majority of computer cost. Architects have found
that they can address these conflicting demands with a hierarchy of memories, with
the fastest, smallest, and most expensive memory per bit at the top of the hierarchy
and the slowest, largest, and cheapest per bit at the bottom. As we shall see in
Chapter 5, caches give the programmer the illusion that main memory is nearly
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of
the hierarchy. We use a layered triangle icon to represent the memory hierarchy.
The shape indicates speed, cost, and size: the closer to the top, the faster and more
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

Dependability via Redundancy

Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our icon, since the dual tires on each side of its rear axels allow the truck to continue
driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the flat tire can be fixed, thereby restoring redundancy!)
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Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions, an example of the great idea of abstraction.

Figure 1.3 shows that these layers of software are organized primarily in a
hierarchical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software
are central to every computer system today: an operating system and a compiler.
An operating system interfaces between a user’s program and the hardware
and provides a variety of services and supervisory functions. Among the most
important functions are:

B Handling basic input and output operations
B Allocating storage and memory

B Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, iOS, and Windows.

FIGURE 1.3 A simplified view of hardware and software as hlerarchical layers, shown as
concentric circles with hardware In the center and applications software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which In turn runs on top of the
database.

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

Mark Twain, The
Innocents Abroad, 1869

ABSTRACTION

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.
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compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C+ +, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and in Appendix A.

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off, and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. The first of
these programs was named an assembler. This program translates a symbolic version
of an instruction into the binary version. For example, the programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

Thisinstruction tells the computer to add the two numbers A and B. The name coined
for this symbolic language, still used today, is assembly language. In contrast, the
binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer
to write one line for every instruction that the computer will follow, forcing the
programmer to think like the computer.
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The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers
that translate programs in such languages into instructions. Figure 1.4 shows the
relationships among these programs and languages, which are more examples of
the power of abstraction.

High-level swap(int v[], int k)
language {int temp;

program temp = v[k];

(in C) v[k] = v[k+1];

v[k+1] = temp;

Assembly swap:

language multi $2, $5,4

program add $2, $4,%2
(for MIPS) Tw $15, 0(%2)

Tw $16, 4(%$2)
SwW $16, 0(%$2)
sw $15, 4(%2)
jr $31

Assembler

Binary machine  00000000101000100000000100011000

language 00000000100000100001000000100001
program 10001101111000100000000000000000
(for MIPS) 10001110000100100000000000000100

10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

FIGURE 1.4 C program complled Into assembly language and then assembled Into binary
machine language. Although the translation from high-level language to binary machine language is
shown In two steps, some compilers cut out the middleman and produce binary machine language directly.
These languages and this program are examined in more detail in Chapter 2.

ABSTRACTION

high-level
programming

language A portable
language such as C, C++,
Java, or Visual Basic that
is composed of words

and algebraic notation
that can be translated by

a compiler into assembly

language.
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input device

A mechanism through
which the computer is
fed information, such as a
keyboard.

output device

A mechanism that
conveys the result of a
computation to a user,
such as a display, or to
another computer.

A compiler enables a programmer to write this high-level language expression:

A+ B

The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software development
is that it takes less time to develop programs when they are written in languages
that require fewer lines to express an idea. Conciseness is a clear advantage of high-
level languages over assembly language.

The final advantage is that programming languages allow programs to be
independent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions of
any computer. These three advantages are so strong that today little programming
is done in assembly language.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important that
we hope you will remember it forever, we emphasize it by identifying it as a Big
Picture item. We have about a dozen Big Pictures in this book, the first being the
five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

Two key components of computers are input devices, such as the microphone,
and output devices, such as the speaker. As the names suggest, input feeds the
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computer, and output is the result of computation sent to the user. Some devices,
such as wireless networks, provide both input and output to the computer.

Chapters 5 and 6 describe input/output (I/O) devices in more detail, but let’s
take an introductory tour through the computer hardware, starting with the
external I/O devices.

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these five
categories. To help you keep all this in perspective, the five components of
a computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

Compiler

Interface

Computer

Evaluating
performance

Processor Memory

FIGURE 1.5 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data from
memory. Control sends the signals that determine the operations of the datapath, memory, input, and output.

the BIG

Picture
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liquid crystal display

A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

active matrix display

A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture
element. Screens are
composed of hundreds
of thousands to millions
of pixels, organized in a
matrix.

Through computer
displays I have landed
an airplane on the
deck of a moving
carriet, observed a
nuclear particle hit a
potential well, flown
in a rocket at nearly
the speed of light and
watched a computer
reveal its innermost
workings.

Ivan Sutherland, the
“father” of computer
graphics, Scientific
American, 1984

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Most personal
mobile devices use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three-
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can
be represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix in a typical tablet ranges in size from
1024 X 768 to 2048 X 1536. A color display might use 8 bits for each of the three
colors (red, blue, and green), for 24 bits per pixel, permitting millions of different
colors to be displayed.

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen
is stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Frame buffer

Raster scan CRT display

1 1
Xo X Xo X4

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X, Y ) contains
the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X, Y)).
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Touchscreen

While PCs also use LCD displays, the tablets and smartphones of the PostPC era
have replaced the keyboard and mouse with touch sensitive displays, which has
the wonderful user interface advantage of users pointing directly what they are
interested in rather than indirectly with a mouse.

While there are a variety of ways to implement a touch screen, many tablets
today use capacitive sensing. Since people are electrical conductors, if an insulator
like glass is covered with a transparent conductor, touching distorts the electrostatic
field of the screen, which results in a change in capacitance. This technology can
allow multiple touches simultaneously, which allows gestures that can lead to
attractive user interfaces.

Opening the Box

Figure 1.7 shows the contents of the Apple iPad 2 tablet computer. Unsurprisingly,
of the five classic components of the computer, I/O dominates this reading device.
The list of I/O devices includes a capacitive multitouch LCD display, front facing
camera, rear facing camera, microphone, headphone jack, speakers, accelerometer,
gyroscope, Wi-Fi network, and Bluetooth network. The datapath, control, and
memory are a tiny portion of the components.

The small rectangles in Figure 1.8 contain the devices that drive our advancing
technology, called integrated circuits and nicknamed chips. The A5 package seen
in the middle of in Figure 1.8 contains two ARM processors that operate with a
clock rate of 1 GHz. The processor is the active part of the computer, following the
instructions of a program to the letter. It adds numbers, tests numbers, signals I/O
devices to activate, and so on. Occasionally, people call the processor the CPU, for
the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a
microprocessor. The processor logically comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

The A5 package in Figure 1.8 also includes two memory chips, each with
2 gibibits of capacity, thereby supplying 512 MiB. The memory is where the
programs are kept when they are running; it also contains the data needed by the
running programs. The memory is built from DRAM chips. DRAM stands for
dynamic random access memory. Multiple DRAMs are used together to contain
the instructions and data of a program. In contrast to sequential access memories,
such as magnetic tapes, the RAM portion of the term DRAM means that memory
accesses take basically the same amount of time no matter what portion of the
memory is read.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache memory.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

central processor unit
(CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/0 devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and I/O
devices according to

the instructions of the
program.

memory The storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location. Access times
are 50 nanoseconds and
cost per gigabyte in 2012
was $5 to $10.
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FIGURE 1.7 Components of the Apple iPad 2 A1395. The metal back of the iPad (with the reversed
Apple logo in the middle) is in the center. At the top is the capacitive multitouch screen and LCD display. To
the far right is the 3.8V, 25 watt-hour, polymer battery, which consists of three Li-ion cell cases and offers
10 hours of battery life. To the far left is the metal frame that attaches the LCD to the back of the iPad. The
small components surrounding the metal back in the center are what we think of as the computer; they
are often L-shaped to fit compactly inside the case next to the battery. Figure 1.8 shows a close-up of the
L-shaped board to the lower left of the metal case, which is the logic printed circuit board that contains the
processor and the memory. The tiny rectangle below the logic board contains a chip that provides wireless
communication: Wi-Fi, Bluetooth, and FM tuner. It fits into a small slot in the lower left corner of the logic
board. Near the upper left corner of the case is another L-shaped component, which is a front-facing camera
assembly that includes the camera, headphone jack, and microphone. Near the right upper corner of the case
is the board containing the volume control and silent/screen rotation lock button along with a gyroscope and
accelerometer. These last two chips combine to allow the iPad to recognize 6-axis motion. The tiny rectangle
next to it is the rear-facing camera. Near the bottom right of the case is the L-shaped speaker assembly. The
cable at the bottom is the connector between the logic board and the camera/volume control board. The
board between the cable and the speaker assembly is the controller for the capacitive touchscreen. (Courtesy
iFixit, www.ifixit.com)

FIGURE 1.8 The logic board of Apple iPad 2 in Figure 1.7. The photo highlights five integrated circuits.
The large integrated circuit in the middle is the Apple A5 chip, which contains a dual ARM processor cores
that run at 1 GHz as well as 512 MB of main memory inside the package. Figure 1.9 shows a photograph of
the processor chip inside the A5 package. The similar sized chip to the left is the 32 GB flash memory chip
for non-volatile storage. There is an empty space between the two chips where a second flash chip can be
installed to double storage capacity of the iPad. The chips to the right of the A5 include power controller and
1/0 controller chips. (Courtesy iFixit, www.ifixit.com)
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FIGURE 1.9 The processor integrated circuit inside the A5 package. The size of chip is 12.1 by 10.1 mm, and
it was manufactured originally in a 45-nm process (see Section 1.5). It has two identical ARM processors or
cores in the middle left of the chip and a PowerVR graphical processor unit (GPU) with four datapaths in the
upper left quadrant. To the left and bottom side of the ARM cores are interfaces to main memory (DRAM).

(Courtesy Chipworks, www.chipworks.com)

Cache memory consists of a small, fast memory that acts as a buffer for the DRAM
memory. (The nontechnical definition of cache is a safe place for hiding things.)
Cache is built using a different memory technology, static random access memory
(SRAM). SRAM is faster but less dense, and hence more expensive, than DRAM
(see Chapter 5). SRAM and DRAM are two layers of the memory hierarchy.

cache memory A small,
fast memory that acts as a
buffer for a slower, larger

memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

A

HIERARCHY
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ABSTRACTION

instruction set
architecture Also
called architecture. An
abstract interface between
the hardware and the
lowest-level software

that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, I/O, and
so on.

application binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
It defines a standard for
binary portability across
computers.

the BIG

Picture

implementation
Hardware that obeys the
architecture abstraction.

volatile memory
Storage, such as DRAM,
that retains data only if it
is receiving power.

nonvolatile memory

A form of memory that
retains data even in the
absence of a power source
and that is used to store
programs between runs.

A DVD disk is nonvolatile.

As mentioned above, one of the great ideas to improve design is abstraction.
One of the most important abstractions is the interface between the hardware
and the lowest-level software. Because of its importance, it is given a special
name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the
details of doing I/O, allocating memory, and other low-level system functions
so that application programmers do not need to worry about such details. The
combination of the basic instruction set and the operating system interface
provided for application programmers is called the application binary interface
(ABI).

An instruction set architecture allows computer designers to talk about
functions independently from the hardware that performs them. For example,
we can talk about the functions of a digital clock (keeping time, displaying the
time, setting the alarm) independently from the clock hardware (quartz crystal,
LED displays, plastic buttons). Computer designers distinguish architecture from
an implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

Both hardware and software consist of hierarchical layers using abstraction,
with each lower layer hiding details from the level above. One key interface
between the levels of abstraction is the instruction set architecture—the
interface between the hardware and low-level software. This abstract
interface enables many implementations of varying cost and performance
to run identical software.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a DVD disk doesn't forget the movie when you turn off the
power to the DVD player, and is thus a nonvolatile memory technology.
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To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and
programs between runs, the term main memory or primary memory is used for
the former, and secondary memory for the latter. Secondary memory forms the
next lower layer of the memory hierarchy. DRAMs have dominated main memory
since 1975, but magnetic disks dominated secondary memory starting even earlier.
Because of their size and form factor, personal Mobile Devices use flash memory,
a nonvolatile semiconductor memory, instead of disks. Figure 1.8 shows the chip
containing the flash memory of the iPad 2. While slower than DRAM, it is much
cheaper than DRAM in addition to being nonvolatile. Although costing more per
bit than disks, it is smaller, it comes in much smaller capacities, it is more rugged,
and it is more power eflicient than disks. Hence, flash memory is the standard
secondary memory for PMDs. Alas, unlike disks and DRAM, flash memory bits
wear out after 100,000 to 1,000,000 writes. Thus, file systems must keep track of
the number of writes and have a strategy to avoid wearing out storage, such as by
moving popular data. Chapter 5 describes disks and flash memory in more detail.

Communicating with Other Computers

We've explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new personal mobile device
or server without a network interface would be ridiculed. Networked computers
have several major advantages:

m Communication: Information is exchanged between computers at high
speeds.

B Resource sharing: Rather than each computer having its own I/O devices,
computers on the network can share I/O devices.

m Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at up to 40 gigabits per second. Its length and
speed make Ethernet useful to connect computers on the same floor of a building;

A
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main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

secondary memory
Nonvolatile memory
used to store programs
and data between runs;
typically consists of flash
memory in PMDs and
magnetic disks in servers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material. Because they

are rotating mechanical
devices, access times are
about 5 to 20 milliseconds
and cost per gigabyte in
2012 was $0.05 to $0.10.

flash memory

A nonvolatile semi-
conductor memory. It

is cheaper and slower
than DRAM but more
expensive per bit and
faster than magnetic disks.
Access times are about 5
to 50 microseconds and
cost per gigabyte in 2012
was $0.75 to $1.00.
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local area network
(LAN) A network
designed to carry data
within a geographically
confined area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the web. They are typically based on optical fibers and are
leased from telecommunication companies.

Networks have changed the face of computing in the last 30 years, both by
becoming much more ubiquitous and by making dramatic increases in performance.
In the 1970s, very few individuals had access to electronic mail, the Internet and
web did not exist, and physically mailing magnetic tapes was the primary way to
transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology,
developed about 30 years ago, was a version of Ethernet that had a maximum capacity
(also called bandwidth) of 10 million bits per second, typically shared by tens of, if
not a hundred, computers. Today, local area network technology offers a capacity
of from 1 to 40 gigabits per second, usually shared by at most a few computers.
Optical communications technology has allowed similar growth in the capacity of
wide area networks, from hundreds of kilobits to gigabits and from hundreds of
computers connected to a worldwide network to millions of computers connected.
This combination of dramatic rise in deployment of networking combined with
increases in capacity have made network technology central to the information
revolution of the last 30 years.

For the last decade another innovation in networking is reshaping the way
computers communicate. Wireless technology is widespread, which enabled
the PostPC Era. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmission
rates from 1 to nearly 100 million bits per second. Wireless technology is quite a bit
different from wire-based networks, since all users in an immediate area share the
airwaves.

m Semiconductor DRAM memory, flash memory, and disk storage differ
significantly. For each technology, list its volatility, approximate relative
access time, and approximate relative cost compared to DRAM.

Technologies for Building Processors
and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.10 shows the technologies that have
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Technology used in computers Relative performance/unit cost

1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit 900
1995 | Very large-scale integrated circuit 2,400,000
2013 | Ultra large-scale integrated circuit 250,000,000,000

FIGURE 1.10 Relative performance per unlt cost of technologles used In computers over
time. Source: Computer Museum, Boston, with 2013 extrapolated by the authors. See [::::] Section 1.12.

been used over time, with an estimate of the relative performance per unit cost for
each technology. Since this technology shapes what computers will be able to do
and how quickly they will evolve, we believe all computer professionals should be
familiar with the basics of integrated circuits.

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. When
Gordon Moore predicted the continuous doubling of resources, he was predicting
the growth rate of the number of transistors per chip. To describe the tremendous
increase in the number of transistors from hundreds to millions, the adjective very
large scale is added to the term, creating the abbreviation VLSI, for very large-scale
integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.11 shows
the growth in DRAM capacity since 1977. For decades, the industry has consistently
quadrupled capacity every 3 years, resulting in an increase in excess of 16,000 times!

To understand how manufacture integrated circuits, we start at the beginning.
The manufacture of a chip begins with silicon, a substance found in sand. Because
silicon does not conduct electricity well, it is called a semiconductor. With a special
chemical process, it is possible to add materials to silicon that allow tiny areas to
transform into one of three devices:

B Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

10,000,000
1,000,000
1G
2 100,000 - 512M
K+ 16M 28M256M
g 64M
8 10,000 4M
2 M
2 1000 256K 2
100 4 64K
16K

transistor An on/oft
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device
containing hundreds of
thousands to millions of
transistors.

silicon A natural
element that isa
semiconductor.

semiconductor
A substance that does not
conduct electricity well.

4G
2G

1976 1978 1980 1982 1984 1986 1988 1990 1992 1904 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

FIGURE 1.11 Growth of capaclty per DRAM chilp over time. The y-axis is measured in kibibits (2'° bits). The DRAM industry
quadrupled capacity almost every three years, a 60% Increase per year, for 20 years. In recent years, the rate has slowed down and s somewhat

closer to doubling every two years to three years.
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silicon crystal ingot

A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more than
0.1 inches thick, used to
create chips.

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the
die containing that defect.

B Excellent insulators from electricity (like plastic sheathing or glass)
B Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of
combinations of conductors, insulators, and switches manufactured in a single
small package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.12 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8-12 inches in diameter and about 12-24 inches long. An ingot
is finely sliced into wafers no more than 0.1 inches thick. These wafers then go
through a series of processing steps, during which patterns of chemicals are placed
on each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

Blank
Silicon ingot wafers
D — =] — QD) — [
processing steps
Tested dies Tested Patterned wafers
oo wafer TN
Bond die to D%EDDDED Wafer ( N
package OOoXOO Dicer tester \5“ )
oooo £ /
od \
\\=,
Packaged dies Tested packaged dies
_lpat | OB | shipto
]| ] tester | o ) customers

FIGURE 1.12 The chlp manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are
then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies (see
Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.)
The yield of good dles in this case was 17/20, or 85%. These good dies are then bonded into packages and
tested one more time before shipping the packaged parts to customers. One bad packaged part was found
in this final test.

A single microscopic flaw in the wafer itself or in one of the dozens of patterning
steps can result in that area of the wafer failing. These defects, as they are called,
make it virtually impossible to manufacture a perfect wafer. The simplest way to
cope with imperfection is to place many independent components on a single
wafer. The patterned wafer is then chopped up, or diced, into these components,
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FIGURE 1.13 A 12-inch (300 mm) wafer of Intel Core i7 (Courtesy Intel). The number of
dies on this 300 mm (12 inch) wafer at 100% yield is 280, each 20.7 by 10.5 mm. The several dozen partially
rounded chips at the boundaries of the wafer are useless; they are included because it’s easier to create the
masks used to pattern the silicon. This die uses a 32-nanometer technology, which means that the smallest
features are approximately 32 nm in size, although they are typically somewhat smaller than the actual feature
size, which refers to the size of the transistors as “drawn” versus the final manufactured size.

called dies and more informally known as chips. Figure 1.13 shows a photograph
of a wafer containing microprocessors before they have been diced; earlier, Figure
1.9 shows an individual microprocessor die.

Dicing enables you to discard only those dies that were unlucky enough to
contain the flaws, rather than the whole wafer. This concept is quantified by the
yield of a process, which is defined as the percentage of good dies from the total
number of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fit on a wafer. To reduce the
cost, using the next generation process shrinks a large die as it uses smaller sizes for
both transistors and wires. This improves the yield and the die count per wafer. A
32-nanometer (nm) process was typical in 2012, which means essentially that the
smallest feature size on the die is 32 nm.

M.al I itebookscogl

die The individual
rectangular sections that
are cut from a wafer, more
informally known as
chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.
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Check
Yourself

Once you've found good dies, they are connected to the input/output pins of a
package, using a process called bonding. These packaged parts are tested a final time,
since mistakes can occur in packaging, and then they are shipped to customers.

Elaboration: The cost of an integrated circuit can be expressed in three simple

equations:
Cost per die = — Cost per wafer.
Dies per wafer X yield
i Wafer area
Dies per wafer ~ —————
Die area

1
(1 + (Defects per area X Die area/2))2

Yield =

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.13). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in the die area.

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. Ttisless work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of performance
improvement techniques employed by hardware designers, have made performance
assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to
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purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.14
lists some typical passenger airplanes, together with their cruising speed, range,
and capacity. If we wanted to know which of the planes in this table had the best
performance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed was the Concorde (retired from service in 2003), the plane with the longest
range is the DC-8, and the plane with the largest capacity is the 747.

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (miles) (m.p.h.) (passengers x m.p.h.)
610

Boeing 777 375 4630 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.14 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

Let’s suppose we define performance in terms of speed. This still leaves two
possible definitions. You could define the fastest plane as the one with the highest
cruising speed, taking a single passenger from one point to another in the least time.
If you were interested in transporting 450 passengers from one point to another,
however, the 747 would clearly be the fastest, as the last column of the figure shows.
Similarly, we can define computer performance in several different ways.

If you were running a program on two different desktop computers, youd say
that the faster one is the desktop computer that gets the job done first. If you were
running a datacenter that had several servers running jobs submitted by many
users, youd say that the faster computer was the one that completed the most
jobs during a day. As an individual computer user, you are interested in reducing
response time—the time between the start and completion of a task—also referred

response time Also
called execution time.
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/0 activities,
operating system
overhead, CPU execution
time, and so on.
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throughput Also called
bandwidth. Another
measure of performance,
it is the number of tasks
completed per unit time.

to as execution time. Datacenter managers are often interested in increasing
throughput or bandwidth—the total amount of work done in a given time. Hence,
in most cases, we will need different performance metrics as well as different sets
of applications to benchmark personal mobile devices, which are more focused on
response time, versus servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the web

Decreasing response time almost always improves throughput. Hence, in case
1, both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost
as large as the throughput, the system might force requests to queue up. In
this case, increasing the throughput could also improve response time, since
it would reduce the waiting time in the queue. Thus, in many real computer
systems, changing either execution time or throughput often affects the other.

In discussing the performance of computers, we will be primarily concerned with
response time for the first few chapters. To maximize performance, we want to
minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

1

Execution timey

Performancey =

This means that for two computers X and Y, if the performance of X is greater than
the performance of Y, we have

Performancey > Performancey

1 1
>

Execution timey ~ Execution timey

Execution timey > Execution timey

That is, the execution time on Y is longer than that on X, if X is faster than Y.
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In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase “X is # times faster than
Y”—or equivalently “X is n times as fast as Y”—to mean

Performancey

Performancey

If X is n times as fast as Y, then the execution time on Y is » times as long as it is
on X:

Performancey  Execution timey

Performancey  Execution timey

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times as fast as B if

Performance,  Execution timep

Performance,  Execution time,

Thus the performance ratio is

and A is therefore 1.5 times as fast as B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance, L5
Performancey
means that
Performance
—————4 = Performance,

1.5
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CPU execution

time Also called CPU
time. The actual time the
CPU spends computing
for a specific task.

user CPU time The
CPU time spent in a
program itself.

system CPU time The
CPU time spent in

the operating system
performing tasks on
behalf of the program.

For simplicity, we will normally use the terminology as fast as when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count. The most straightforward definition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (1/0)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize throughput
rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time over which the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult to
do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

Understanding
Program
Performance

Different applications are sensitive to different aspects of the performance of a
computer system. Many applications, especially those running on servers, depend
as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In
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some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details
of a computer it'’s convenient to think about performance in other metrics. In
particular, computer designers may want to think about a computer by using a
measure that relates to how fast the hardware can perform basic functions. Almost
all computers are constructed using a clock that determines when events take
place in the hardware. These discrete time intervals are called clock cycles (or
ticks, clock ticks, clock periods, clocks, cycles). Designers refer to the length of a
clock period both as the time for a complete clock cycle (e.g., 250 picoseconds, or
250 ps) and as the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the
clock period. In the next subsection, we will formalize the relationship between the
clock cycles of the hardware designer and the seconds of the computer user.

1. Suppose we know that an application that uses both personal mobile
devices and the Cloud is limited by network performance. For the following
changes, state whether only the throughput improves, both response time
and throughput improve, or neither improves.

a. An extra network channel is added between the PMD and the Cloud,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput.

¢. More memory is added to the computer.

2. Computer C’s performance is 4 times as fast as the performance of computer
B, which runs a given application in 28 seconds. How long will computer C
take to run that application?

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU

clock cycle Also called
tick, clock tick, clock
period, clock, or cycle.
The time for one clock
period, usually of the
processor clock, which
runs at a constant rate.

clock period The length
of each clock cycle.

Check
Yourself



34

Chapter 1 Computer Abstractions and Technology

execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time _ CPU clock cycles )
foraprogram = foraprogram X Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time  CPU clock cycles for a program
for a program Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

Let’s first find the number of clock cycles required for the program on A:

CPU clock cycles
CPU time, = YA
Clock rate,
CPU clock cycles
10 seconds = ac\
o cycles
2X107 ——
second

1
¢ VB _ 0% 10° cycles

CPU clock cycles, = 10 seconds X 2 X 10
second
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CPU time for B can be found using this equation:

_ 1.2 X CPU clock cycles 4

CPU timep =
Clock rateg
2 X % 10°
6 seconds = 1.2 X 20 X 10" cycles
Clock ratey
2 X X 9 2% . 0 y ,
Clock ratey, = 12X 20 X10” cycles _ 02X 20 X 10 cycles _ 4 X10” cycles _ ..
6 seconds second second

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of
instructions needed for the program. However, since the compiler clearly generated
instructions to execute, and the computer had to execute the instructions to run
the program, the execution time must depend on the number of instructions in a
program. One way to think about execution time is that it equals the number of
instructions executed multiplied by the average time per instruction. Therefore, the
number of clock cycles required for a program can be written as

) Average clock cycles
CPU clock cycles = Instructions for a program X per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CP1I. Since different
instructions may take different amounts of time depending on what they do, CPI is
an average of all the instructions executed in the program. CPI provides one way of
comparing two different implementations of the same instruction set architecture,
since the number of instructions executed for a program will, of course, be the
same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architecture.
Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program,
and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same
program. Which computer is faster for this program and by how much?

clock cycles

per instruction

(CPI) Average number
of clock cycles per
instruction for a program
or program fragment.
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instruction count The
number of instructions
executed by the program.

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cycles, = I x 2.0
CPU clock cyclesy = I x 1.2

Now we can compute the CPU time for each computer:
CPU time, = CPU clock cycles, X Clock cycle time
=1 X 2.0 X250 ps =500 X I ps
Likewise, for B:
CPU timep = I X 1.2 X 500 ps = 600 X I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance,  Execution timey; _ 600 X Ips

CPU performance,  Execution time, 500 X Ips

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count X CPI X Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

_ Instruction count X CPI
Clock rate

CPU time

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.
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Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a
particular computer. The hardware designers have supplied the following facts:

-
For a particular hlgh-level language statement, the compiler writer is

I I 3 |
considering two code sequences that require the following instruction counts:

Instruction counts for each Instruction class
Code sequence

2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes 4 + 1 +
1 = 6 instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

n
CPU clock cycles = Z(CPI,. X C;)
i=1

This yields
CPU clock cycles; = (2X 1)+ (1 X2)+(2X3) =242+ 6 =10 cycles
CPU clock cycles, = (4 X 1)+ (1X2)+ (1X3)=4+2+ 3 =9 cycles

Socode sequence 2 is faster, even though it executes one extra instruction. Since
code sequence 2 takes fewer overall clock cycles but has more instructions, it
must have a lower CPI. The CPI values can be computed by

CPI = CPU clock cycles
Instruction count
cpI, = CPU clc.>ck cycles, _10 _ 20
Instruction count; 5
CPI, = CPU clc?ck cycles, _ 9 _ L5
Instruction count, 6
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the BIG

Picture

Figure 1.15 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

Instructions ; Clock cycles > Seconds
Program Instruction  Clock cycle

Time = Seconds/Program =

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

Componnts ofpotormance

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

FIGURE 1.15 The baslic components of performance and how each Is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI,
and often, the sources of performance loss. Since the instruction count depends
on the architecture, but not on the exact implementation, we can measure the
instruction count without knowing all the details of the implementation. The CPI,
however, depends on a wide variety of design details in the computer, including
both the memory system and the processor structure (as we will see in Chapter 4
and Chapter 5), as well as on the mix of instruction types executed in an application.
Thus, CPI varies by application, as well as among implementations with the same
instruction set.
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The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.10, we'll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix

A measure of the dynamic
frequency of instructions
across one or many
programs.

The performance of a program depends on the algorithm, the language, the
compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.

Hardware
or software
component Affects what?
Algorithm Instruction count, | The algorithm determines the number of source program
possibly CPI instructions executed and hence the number of processor

instructions executed. The algorithm may also affect the CPI,
by favoring slower or faster instructions. For example, if the
algorithm uses more divides, it will tend to have a higher CPI.

Programming | Instruction count, | The programming language certainly affects the instruction
language CPI count, since statements in the language are translated to
processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for
example, a language with heavy support for data abstraction
(e.g., Java) will require indirect calls, which will use higher CPI
instructions.

Compiler Instruction count, | The efficiency of the compiler affects both the instruction

CPI count and average cycles per instruction, since the compiler
determines the translation of the source language instructions
into computer instructions. The compiler’s role can be very
complex and affect the CPI in complex ways.

Instruction set | Instruction count, | The instruction set architecture affects all three aspects of
architecture clock rate, CPI CPU performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To
reflect that approach, some designers invert CPI to talk about IPC, or instructions per
clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CPI of 0.5.

Understanding
Program
Performance
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Check
Yourself

Elaboration: Although clock cycle time has traditionally been fixed, to save energy
or temporarily boost performance, today’s processors can vary their clock rates, so we
would need to use the average clock rate for a program. For example, the Intel Core i7
will temporarily increase clock rate by about 10% until the chip gets too warm. Intel calls

this Turbo mode.

A given application written in Java runs 15 seconds on a desktop processor. A new
Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler? Pick the right answer from the three

choices below:

X 0.
15X06 = 8.2 sec
1.1
b. 15X 0.6 X 1.1 =99sec

The Power Wall

Figure 1.16 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 30 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.
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FIGURE 1.16 Clock rate and Power for Intel x86 microprocessors over elght generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance. The
Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a simpler
pipeline with lower clock rates and multiple processors per chip. The Core 15 pipelines follow in its footsteps.
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Although power provides a limit to what we can cool, in the PostPC Era the
really critical resource is energy. Battery life can trump performance in the personal
mobile device, and the architects of warehouse scale computers try to reduce the
costs of powering and cooling 100,000 servers as the costs are high at this scale. Just
as measuring time in seconds is a safer measure of program performance than a
rate like MIPS (see Section 1.10), the energy metric joules is a better measure than
a power rate like watts, which is just joules/second.

The dominant technology for integrated circuits is called CMOS (complementary
metal oxide semiconductor). For CMOS, the primary source of energy consumption
is so-called dynamic energy—that is, energy that is consumed when transistors
switch states from 0 to 1 and vice versa. The dynamic energy depends on the
capacitive loading of each transistor and the voltage applied:

Energy o Capacitive load X Voltage®

This equation is the energy of a pulse during the logic transition of 0 — 1 — 0 or
1 — 0 — 1. The energy of a single transition is then

Energy o 1/2 X Capacitive load X Voltage®

The power required per transistor is just the product of energy of a transition and
the frequency of transitions:

Power o 1/2 X Capacitive load X Voltage® X Frequency switched

Frequency switched is a function of the clock rate. The capacitive load per transistor
is a function of both the number of transistors connected to an output (called the
fanout) and the technology, which determines the capacitance of both wires and
transistors.

With regard to Figure 1.16, how could clock rates grow by a factor of 1000
while power grew by only a factor of 302 Energy and thus power can be reduced by
lowering the voltage, which occurred with each new generation of technology, and
power is a function of the voltage squared. Typically, the voltage was reduced about
15% per generation. In 20 years, voltages have gone from 5V to 1V, which is why
the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it has adjustable
voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?
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(Capacitive load X 0.85) X (Voltage X 0.85)* X (Frequency switched X 0.85)
Power, Capacitive load X Voltage* X Frequency switched

Power,,,,

Thus the power ratio is

0.85* = 0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut oft. Even
today about 40% of the power consumption in server chips is due to leakage. If
transistors started leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used in
a given clock cycle. Although there are many more expensive ways to cool chips
and thereby raise their power to, say, 300 watts, these techniques are generally
too expensive for personal computers and even servers, not to mention personal
mobile devices.

Since computer designers slammed into a power wall, they needed a new way
forward. They chose a different path from the way they designed microprocessors
for their first 30 years.

Elaboration: Although dynamic energy is the primary source of energy consumption
in CMOS, static energy consumption occurs because of leakage current that flows even
when a transistor is off. In servers, leakage is typically responsible for 40% of the energy
consumption. Thus, increasing the number of transistors increases power dissipation,
even if the transistors are always off. A variety of design techniques and technology
innovations are being deployed to control leakage, but it’s hard to lower voltage further.

Elaboration: Power is a challenge for integrated circuits for two reasons. First, power
must be brought in and distributed around the chip; modern microprocessors use
hundreds of pins just for power and ground! Similarly, multiple levels of chip interconnect
are used solely for power and ground distribution to portions of the chip. Second, power
is dissipated as heat and must be removed. Server chips can burn more than 100 watts,
and cooling the chip and the surrounding system is a major expense in Warehouse Scale
Computers (see Chapter 6).
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The Sea Change: The Switch from
Uniprocessors to Multiprocessors

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.17 shows the improvement in response time of programs for desktop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program
running on the single processor, as of 2006 all desktop and server companies are
shipping microprocessors with multiple processors per chip, where the benefit is
often more on throughput than on response time. To reduce confusion between the
words processor and microprocessor, companies refer to processors as “cores,” and
such microprocessors are generically called multicore microprocessors. Hence, a
“quadcore” microprocessor is a chip that contains four processors or four cores.

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get significant
improvement in response time, they need to rewrite their programs to take
advantage of multiple processors. Moreover, to get the historic benefit of running
faster on new microprocessors, programmers will have to continue to improve
performance of their code as the number of cores increases.

To reinforce how the software and hardware systems work hand in hand, we use
a special section, Hardware/Software Interface, throughout the book, with the first
one appearing below. These elements summarize important insights at this critical
interface.

Up to now, most
software has been like
music written for a
solo performer; with
the current generation
of chips we're getting a
little experience with
duets and quartets and
other small ensembles;
but scoring a work for
large orchestra and
chorus is a different
kind of challenge.
Brian Hayes, Computing
in a Parallel Universe,
2007.

PARALLELISM

Parallelism has always been critical to performance in computing, but it was
often hidden. Chapter 4 will explain pipelining, an elegant technique that runs
programs faster by overlapping the execution of instructions. This is one example of
instruction-level parallelism, where the parallel nature of the hardware is abstracted
away so the programmer and compiler can think of the hardware as executing
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly
rewrite their programs to be parallel had been the “third rail” of computer
architecture, for companies in the past that depended on such a change in behavior
failed (see [ Section 6.15). From this historical perspective, it’s startling that the
whole IT industry has bet its future that programmers will finally successfully
switch to explicitly parallel programming.

Hardware/
Software
Iinterface

PIPELINING
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Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
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Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
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FIGURE 1.17 Growth In processor performance since the mld-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.10). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The Increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. The higher annual performance improvement of 52% since the mid-1980s meant performance was about a factor of seven
higher in 2002 than it would have been had it stayed at 25%. Since 2002, the limits of power, available instruction-level parallelism, and long
memory latency have slowed uniprocessor performance recently, to about 22% per year.

Why has it been so hard for programmers to write explicitly parallel programs?
The first reason is that parallel programming is by definition performance
programming, which increases the difficulty of programming. Not only does the
program need to be correct, solve an important problem, and provide a useful
interface to the people or other programs that invoke it, the program must also be
fast. Otherwise, if you don’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer
must divide an application so that each processor has roughly the same amount to
do at the same time, and that the overhead of scheduling and coordination doesn’t
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To achieve
this increased speed, one would need to break up the task so that each reporter had
something to do at the same time. Thus, we must schedule the sub-tasks. If anything
went wrong and just one reporter took longer than the seven others did, then the
benefits of having eight writers would be diminished. Thus, we must balance the
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load evenly to get the desired speedup. Another danger would be if reporters had to
spend a lot of time talking to each other to write their sections. You would also fall
short if one part of the story, such as the conclusion, couldn’t be written until all of
the other parts were completed. Thus, care must be taken to reduce communication
and synchronization overhead. For both this analogy and parallel programming, the
challenges include scheduling, load balancing, time for synchronization, and overhead
for communication between the parties. As you might guess, the challenge is stiffer with
more reporters for a newspaper story and more processors for parallel programming,

To reflect this sea change in the industry, the next five chapters in this edition of the
book each have a section on the implications of the parallel revolution to that chapter:

B Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually
independent parallel tasks need to coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multicore processors to synchronize tasks.

B Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Subword
Parallelism. Perhaps the simplest form of parallelism to build involves
computing on elements in parallel, such as when multiplying two vectors.
Subword parallelism takes advantage of the resources supplied by Moore’s
Law to provider wider arithmetic units that can operate on many operands
simultaneously.

B Chapter 4, Section 4.10: Parallelism via Instructions. Given the difficulty of
explicitly parallel programming, tremendous effort was invested in the 1990s
in having the hardware and the compiler uncover implicit parallelism, initially
via pipelining. This chapter describes some of these aggressive techniques, PIPELINING
including fetching and executing multiple instructions simultaneously and
guessing on the outcomes of decisions, and executing instructions speculatively
using prediction.

N

MOORE’'S LAW

B Chapter 5, Section 5.10: Parallelism and Memory Hierarchies: Cache
Coherence. One way to lower the cost of communication is to have all
processors use the same address space, so that any processor can read or
write any data. Given that all processors today use caches to keep a temporary
copy of the data in faster memory near the processor, it’s easy to imagine that
parallel programming would be even more difficult if the caches associated ;.5 cri0wn
with each processor had inconsistent values of the shared data. This chapter
describes the mechanisms that keep the data in all caches consistent.

B Chapter 5, Section 5.11: Parallelism and Memory Hierarchy: Redundant
Arrays of Inexpensive Disks. This section describes how using many disks
in conjunction can offer much higher throughput, which was the original
inspiration of Redundant Arrays of Inexpensive Disks (RAID). The real
popularity of RAID proved to be to the much greater dependability offered  HIERARCHY
by including a modest number of redundant disks. The section explains the
differences in performance, cost, and dependability between the different
RAID levels.
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PARALLELISM

I thought [computers]
would be a universally
applicable idea, like

a book is. But I didn’t
think it would develop
as fast as it did, because
I didn’t envision wed
be able to get as many
parts on a chip as

we finally got. The
transistor came along
unexpectedly. It all
happened much faster
than we expected.

J. Presper Eckert,
coinventor of ENIAC,
speaking in 1991

workload A set of
programs run on a
computer that is either
the actual collection of
applications run by a user
or constructed from real
programs to approximate
such a mix. A typical
workload specifies both
the programs and the
relative frequencies.

COMMON CASE FAST

benchmark A program
selected for use in
comparing computer
performance.

In addition to these sections, there isa full chapter on parallel processing. Chapter 6
goes into more detail on the challenges of parallel programming; presents the
two contrasting approaches to communication of shared addressing and explicit
message passing; describes a restricted model of parallelism that is easier to
program; discusses the difficulty of benchmarking parallel processors; introduces
a new simple performance model for multicore microprocessors; and, finally,
describes and evaluates four examples of multicore microprocessors using this
model.

As mentioned above, Chapters 3 to 6 use matrix vector multiply as a running
example to show how each type of parallelism can significantly increase performance.

[ Appendix C describes an increasingly popular hardware component that
is included with desktop computers, the graphics processing unit (GPU). Invented
to accelerate graphics, GPUs are becoming programming platforms in their
own right. As you might expect, given these times, GPUs rely on parallelism.

[ Appendix C describes the NVIDIA GPU and highlights parts of its parallel
programming environment.

Real Stuff: Benchmarking the
Intel Core 17

Each chapter has a section entitled “Real Stuft” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern computers. For this first “Real Stuff” section, we look at
how integrated circuits are manufactured and how performance and power are
measured, with the Intel Core i7 as the example.

SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
a workload. To evaluate two computer systems, a user would simply compare
the execution time of the workload on the two computers. Most users, however,
are not in this situation. Instead, they must rely on other methods that measure
the performance of a candidate computer, hoping that the methods will reflect
how well the computer will perform with the user’s workload. This alternative is
usually followed by evaluating the computer using a set of benchmarks—programs
specifically chosen to measure performance. The benchmarks form a workload that
the user hopes will predict the performance of the actual workload. As we noted
above, to make the common case fast, you first need to know accurately which case
is common, so benchmarks play a critical role in computer architecture.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of benchmarks
for modern computer systems. In 1989, SPEC originally created a benchmark
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Execution | Reference

Instruction Clock cycle time Time Time

Description Count x 10° (seconds x 10-%) | (seconds) | (seconds)
Interpreted string processing | perl 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression
GNU C compiler gee 794 1.20 0.376 358 8050 225
Combinatorial optimization mcf 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 659 0.44 0.376 109 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalancbmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

FIGURE 1.18 SPECINTC2006 benchmarks running on a 2.66 GHz Intel Core i7 920. As the equation on page 35 explains,
execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and clock cycle time in
nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time. The single number
quoted as SPECINTC2006 is the geometric mean of the SPECratios.

set focusing on processor performance (now called SPEC89), which has evolved
through five generations. The latest is SPEC CPU2006, which consists of a set of 12
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The floating-point benchmarks include structured
grid codes for finite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.18 describes the SPEC integer benchmarks and their execution time
on the Intel Core i7 and shows the factors that explain execution time: instruction
count, CPI, and clock cycle time. Note that CPI varies by more than a factor of 5.

To simplify the marketing of computers, SPEC decided to report a single number
to summarize all 12 integer benchmarks. Dividing the execution time of a reference
processor by the execution time of the measured computer normalizes the execution
time measurements; this normalization yields a measure, called the SPECratio, which
has the advantage that bigger numeric results indicate faster performance. That is,
the SPECratio is the inverse of execution time. A CINT2006 or CFP2006 summary
measurement is obtained by taking the geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.
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The formula for the geometric mean is

n
’\’/H Execution time ratio;
i=1

where Execution time ratio/. is the execution time, normalized to the reference computer,
for the ith program of a total of n in the workload, and

n
[ [ 2 means the producta; X a, X ... X a,
i=1

SPEC Power Benchmark

Given the increasing importance of energy and power, SPEC added a benchmark
to measure power. It reports power consumption of servers at different workload
levels, divided into 10% increments, over a period of time. Figure 1.19 shows the
results for a server using Intel Nehalem processors similar to the above.

Performance Average Power
Target Load % (ssj_ops) (watts)

100% 865,618 258

90% 786,688 242

80% 698,051 224

70% 607,826 204

60% 521,391 185

50% 436,757 170

40% 345,919 157

30% 262,071 146

20% 176,061 135

10% 86,784 121

0% 0 80

Overall Sum 4,787,166 1922
Y'ssj_ops / X.power = 2490

FIGURE 1.19 SPECpower_ssj2008 running on a dual socket 2.66 GHz Intel Xeon X5650
with 16 GB of DRAM and one 100GB SSD disk.

SPECpower started with another SPEC benchmark for Java business applications
(SPECJBB2005), which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operating
system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC
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boils these numbers down to a single number, called “overall ssj_ops per watt.” The
formula for this single summarizing metric is

10 10
overall ssj_ops per watt = [Zssj_ops,] / [Z power,-]
i=0

i=0

where ssj_ops, is performance at each 10% increment and power, is power
consumed at each performance level.

Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call them fallacies. When discussing a fallacy, we try to give a
counterexample. We also discuss pitfalls, or easily made mistakes. Often pitfalls are
generalizations of principles that are only true in a limited context. The purpose
of these sections is to help you avoid making these mistakes in the computers you
may design or use. Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement.

The great idea of making the common case fast has a demoralizing corollary
that has plagued designers of both hardware and software. It reminds us that the
opportunity for improvement is affected by how much time the event consumes.

A simple design problem illustrates it well. Suppose a program runs in 100
seconds on a computer, with multiply operations responsible for 80 seconds of this
time. How much do I have to improve the speed of multiplication if I want my
program to run five times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl’s Law:

Execution time after improvement

Execution time affected by improvement . .
= yump + Execution time unaffected

Amount of improvement

For this problem:

80 d
Execution time after improvement = S Seconds (100 — 80 seconds)

n

Science must begin
with myths, and the
criticism of myths.

Sir Karl Popper, The
Philosophy of Science,
1957

COMMON CASE FAST

Amdahl’s Law

A rule stating that

the performance
enhancement possible
with a given improvement
is limited by the amount
that the improved feature
is used. It is a quantitative
version of the law of
diminishing returns.
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Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

20 seconds = SOLOHdS + 20 seconds
n
0= 80 seconds
n

That is, there is no amount by which we can enhance-multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload. The
performanceenhancementpossiblewithagivenimprovementislimitedbytheamount
that the improved feature is used. In everyday life this concept also yields what we call
the law of diminishing returns.

We can use Amdahl’s Law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl’s
Law, together with the CPU performance equation, is a handy tool for evaluating
potential enhancements. Amdahl’s Law is explored in more detail in the exercises.

Amdahl’s Law is also used to argue for practical limits to the number of parallel
processors. We examine this argument in the Fallacies and Pitfalls section of
Chapter 6.

Fallacy: Computers at low utilization use little power.

Power efliciency matters at low utilizations because server workloads vary.
Utilization of servers in Google’s warehouse scale computer, for example, is
between 10% and 50% most of the time and at 100% less than 1% of the time. Even
given five years to learn how to run the SPECpower benchmark well, the specially
configured computer with the best results in 2012 still uses 33% of the peak power
at 10% of the load. Systems in the field that are not configured for the SPECpower
benchmark are surely worse.

Since servers” workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Hoélzle [2007] argue that we should redesign hardware to achieve
“energy-proportional computing” If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO, emissions.

Fallacy: Designing for performance and designing for energy efficiency are
unrelated goals.

Since energy is power over time, it is often the case that hardware or software
optimizations that take less time save energy overall even if the optimization takes
a bit more energy when it is used. One reason is that all of the rest of the computer is
consuming energy while the program is running, so even if the optimized portion
uses a little more energy, the reduced time can save the energy of the whole system.

Pitfall: Using a subset of the performance equation as a performance metric.

We have already warned about the danger of predicting performance based on
simply one of clock rate, instruction count, or CPI. Another common mistake
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is to use only two of the three factors to compare performance. Although using
two of the three factors may be valid in a limited context, the concept is also
easily misused. Indeed, nearly all proposed alternatives to the use of time as the
performance metric have led eventually to misleading claims, distorted results, or
incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given
program, MIPS is simply

Instruction count

MIPS = :
Execution time X 10

Since MIPS is an instruction execution rate, MIPS specifies performance inversely
to execution time; faster computers have a higher MIPS rating. The good news
about MIPS is that it is easy to understand, and faster computers mean bigger
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing computers.
First, MIPS specifies the instruction execution rate but does not take into account
the capabilities of the instructions. We cannot compare computers with different
instruction sets using MIPS, since the instruction counts will certainly differ.
Second, MIPS varies between programs on the same computer; thus, a computer
cannot have a single MIPS rating. For example, by substituting for execution time,
we see the relationship between MIPS, clock rate, and CPIL:

Instruction count _ Clock rate

MIPS = : -
Instruction count X CPI w106 CPIX 10°

Clock rate

The CPI varied by a factor of 5 for SPEC CPU2006 on an Intel Core i7 computer
in Figure 1.18, so MIPS does as well. Finally, and most importantly, if a new
program executes more instructions but each instruction is faster, MIPS can vary
independently from performance!

Consider the following performance measurements for a program:

Computer A Computer B

Instruction count 10 billion 8 billion
Clock rate 4 GHz 4 GHz
CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

million instructions
per second (MIPS)

A measurement of
program execution speed
based on the number of
millions of instructions.
MIPS is computed as the
instruction count divided
by the product of the
execution time and 10°.

Check
Yourself
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Where ... the ENIAC
is equipped with
18,000 vacuum tubes
and weighs 30 tons,
computers in the
future may have 1,000
vacuum tubes and
perhaps weigh just 1%
tons.

Popular Mechanics,
March 1949

ABSTRACTION

the BIG

Picture

Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance computers
will have in the future, it's a safe bet that they will be much better than they are
today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardwareand software designers construct computer systemsin hierarchical
layers, with each lower layer hiding details from the level above. This great idea
of abstraction is fundamental to understanding today’s computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintaining
the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innovations
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

Seconds _ Instructions 5 Clock cycles Seconds
Program Program Instruction  Clock cycle

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of
performance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting
execution time; other times a metric that is valid in a limited context
is extended and used beyond that context or without the additional
clarification needed to make it valid.
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The key hardware technology for modern processors is silicon. Equal in
importance toan understandingofintegrated circuittechnologyisan understanding
of the expected rates of technological change, as predicted by Moore’s Law. While
silicon fuels the rapid advance of hardware, new ideas in the organization of
computers have improved price/performance. Two of the key ideas are exploiting
parallelism in the program, typically today via multiple processors, and exploiting
locality of accesses to a memory hierarchy, typically via caches.

Energy efficiency has replaced die area as the most critical resource of
microprocessor design. Conserving power while trying to increase performance
has forced the hardware industry to switch to multicore microprocessors, thereby
forcing the software industry to switch to programming parallel hardware.
Parallelism is now required for performance.

Computer designs have always been measured by cost and performance, as well
as other important factors such as energy, dependability, cost of ownership, and
scalability. Although this chapter has focused on cost, performance, and energy,
the best designs will strike the appropriate balance for a given market among all
the factors.

Road Map for This Book

At the bottom of these abstractions are the five classic components of a computer:
datapath, control, memory, input, and output (refer to Figure 1.5). These five
components also serve as the framework for the rest of the chapters in this book:

B Datapath: Chapter 3, Chapter 4, Chapter 6, and [] Appendix C
B Control: Chapter 4, Chapter 6, and [

Appendix C
B Memory: Chapter 5

B Input: Chapters 5 and 6

B Output: Chapters 5 and 6

As mentioned above, Chapter 4 describes how processors exploit implicit
parallelism, Chapter 6 describes the explicitly parallel multicore microprocessors
that are at the heart of the parallel revolution, and [&] Appendix C describes
the highly parallel graphics processor chip. Chapter 5 describes how a memory
hierarchy exploits locality. Chapter 2 describes instruction sets—the interface
between compilers and the computer—and emphasizes the role of compilers and
programming languages in using the features of the instruction set. Appendix A
provides a reference for the instruction set of Chapter 2. Chapter 3 describes how
computers handle arithmetic data. Appendix B introduces logic design.

vl

MOORE’'S LAW

HIERARCHY

PARALLELISM
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An active field of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tumbling over
each other, carrying
information from place
to place, passing it
around at the speed of
light.

Lewis Thomas, “Natural

Science,” in The Lives of
a Cell, 1974

AN
im Historical Perspective and Further

For each chapter in the text, a section devoted to a historical perspective can be
found online on a site that accompanies this book. We may trace the development
of an idea through a series of computers or describe some important projects, and
we provide references in case you are interested in probing further.

The historical perspective for this chapter provides a background for some of the
key ideas presented in this opening chapter. Its purpose is to give you the human
story behind the technological advances and to place achievements in their historical
context. By understanding the past, you may be better able to understand the forces
that will shape computing in the future. Each Historical Perspective section online
ends with suggestions for further reading, which are also collected separately online
under the section “Further Reading” The rest of & Section 1.12 is found online.

Exercises

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <§1.4> means you should have read
Section 1.4, Under the Covers, to help you solve this exercise.

1.1 [2] <§1.1> Aside from the smart cell phones used by a billion people, list and
describe four other types of computers.

1.2 [5] <§1.2> The eight great ideas in computer architecture are similar to ideas
from other fields. Match the eight ideas from computer architecture, “Design for

» o« » @

Moore’s Law”, “Use Abstraction to Simplify Design”, “Make the Common Case

» o«

Fast”, “Performance via Parallelism”, “Performance via Pipelining”, “Performance
via Prediction”, “Hierarchy of Memories”, and “Dependability via Redundancy” to
the following ideas from other fields:

a. Assembly lines in automobile manufacturing
b. Suspension bridge cables
c. Aircraft and marine navigation systems that incorporate wind information

d. Express elevators in buildings
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e. Library reserve desk
f. Increasing the gate area on a CMOS transistor to decrease its switching time

g. Adding electromagnetic aircraft catapults (which are electrically-powered
as opposed to current steam-powered models), allowed by the increased power
generation offered by the new reactor technology

h. Building self-driving cars whose control systems partially rely on existing sensor
systems already installed into the base vehicle, such as lane departure systems and
smart cruise control systems

1.3 [2] <§1.3> Describe the steps that transform a program written in a high-level
language such as C into a representation that is directly executed by a computer
processor.

1.4 [2] <§1.4> Assume a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel and a frame size of 1280 X 1024.

a. What is the minimum size in bytes of the frame bulffer to store a frame?

b. How long would it take, at a minimum, for the frame to be sent over a 100
Mbit/s network?

1.5 [4] <§1.6> Consider three different processors P1, P2, and P3 executing
the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a
2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI
of 2.2.

a. Which processor has the highest performance expressed in instructions per second?

b. If the processors each execute a program in 10 seconds, find the number of
cycles and the number of instructions.

c. We are trying to reduce the execution time by 30% but this leads to an increase
of 20% in the CPI. What clock rate should we have to get this time reduction?

1.6 [20] <$§1.6> Consider two different implementations of the same instruction
set architecture. The instructions can be divided into four classes according to
their CPI (class A, B, C, and D). P1 with a clock rate of 2.5 GHz and CPIs of 1, 2, 3,
and 3, and P2 with a clock rate of 3 GHz and CPIs of 2, 2, 2, and 2.

Given a program with a dynamic instruction count of 1.0E6 instructions divided
into classes as follows: 10% class A, 20% class B, 50% class C, and 20% class D,
which implementation is faster?

a. What is the global CPI for each implementation?
b. Find the clock cycles required in both cases.
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1.7 [15] <$§1.6> Compilers can have a profound impact on the performance
of an application. Assume that for a program, compiler A results in a dynamic
instruction count of 1.0E9 and has an execution time of 1.1 s, while compiler B
results in a dynamic instruction count of 1.2E9 and an execution time of 1.5 s.

a. Find the average CPI for each program given that the processor has a clock cycle
time of 1 ns.

b. Assume the compiled programs run on two different processors. If the execution
times on the two processors are the same, how much faster is the clock of the
processor running compiler As code versus the clock of the processor running
compiler B’s code?

c. A new compiler is developed that uses only 6.0E8 instructions and has an
average CPI of 1.1. What is the speedup of using this new compiler versus using
compiler A or B on the original processor?

1.8 The Pentium 4 Prescott processor, released in 2004, had a clock rate of 3.6
GHz and voltage of 1.25 V. Assume that, on average, it consumed 10 W of static
power and 90 W of dynamic power.

The Core i5 Ivy Bridge, released in 2012, had a clock rate of 3.4 GHz and voltage
of 0.9 V. Assume that, on average, it consumed 30 W of static power and 40 W of
dynamic power.

1.8.1 [5] <$§1.7> For each processor find the average capacitive loads.

1.8.2 [5] <§1.7> Find the percentage of the total dissipated power comprised by
static power and the ratio of static power to dynamic power for each technology.

1.8.3 [15] <§1.7> If the total dissipated power is to be reduced by 10%, how much
should the voltage be reduced to maintain the same leakage current? Note: power
is defined as the product of voltage and current.

1.9 Assume for arithmetic, load/store, and branch instructions, a processor has
CPIsof 1, 12, and 5, respectively. Also assume that on a single processor a program
requires the execution of 2.56E9 arithmetic instructions, 1.28E9 load/store
instructions, and 256 million branch instructions. Assume that each processor has
a 2 GHz clock frequency.

Assume that, as the program is parallelized to run over multiple cores, the number
of arithmetic and load/store instructions per processor is divided by 0.7 x p (where
p is the number of processors) but the number of branch instructions per processor
remains the same.

1.9.1 [5] <§1.7> Find the total execution time for this program on 1, 2, 4, and 8
processors, and show the relative speedup of the 2, 4, and 8 processor result relative
to the single processor result.
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1.9.2 [10] <§$1.6, 1.8> If the CPI of the arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?

1.9.3 [10] <§§1.6, 1.8> To what should the CPI of load/store instructions be
reduced in order for a single processor to match the performance of four processors
using the original CPI values?

1.10 Assume a 15 cm diameter wafer has a cost of 12, contains 84 dies, and has
0.020 defects/cm?. Assume a 20 cm diameter wafer has a cost of 15, contains 100
dies, and has 0.031 defects/cm?.

1.10.1 [10] <$1.5> Find the yield for both wafers.
1.10.2 [5] <§1.5> Find the cost per die for both wafers.

1.10.3 [5] <$§1.5> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, find the die area and yield.

1.10.4 [5] <§1.5> Assume a fabrication process improves the yield from 0.92 to
0.95. Find the defects per area unit for each version of the technology given a die
area of 200 mm?®.

1.11 The results of the SPEC CPU2006 bzip2 benchmark running on an AMD
Barcelona has an instruction count of 2.389E12, an execution time of 750 s, and a
reference time of 9650 s.

1.11.1 [5] <§§1.6, 1.9> Find the CPI if the clock cycle time is 0.333 ns.
1.11.2 [5] <§1.9> Find the SPECratio.

1.11.3 [5]<§§1.6,1.9> Find theincrease in CPU time if the number of instructions
of the benchmark is increased by 10% without affecting the CPI.

1.11.4 [5]<§$§1.6,1.9> Find theincrease in CPU time if the number of instructions
of the benchmark is increased by 10% and the CPI is increased by 5%.

1.11.5 [5] <§§1.6, 1.9> Find the change in the SPECratio for this change.

1.11.6 [10] <$1.6> Suppose that we are developing a new version of the AMD
Barcelona processor with a 4 GHz clock rate. We have added some additional
instructions to the instruction set in such a way that the number of instructions
has been reduced by 15%. The execution time is reduced to 700 s and the new
SPECratio is 13.7. Find the new CPIL

1.11.7 [10] <§1.6> This CPI value is larger than obtained in 1.11.1 as the clock
rate was increased from 3 GHz to 4 GHz. Determine whether the increase in the
CPI is similar to that of the clock rate. If they are dissimilar, why?

1.11.8 [5] <$§1.6> By how much has the CPU time been reduced?
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1.11.9 [10] <$1.6> For a second benchmark, libquantum, assume an execution
time of 960 ns, CPI of 1.61, and clock rate of 3 GHz. If the execution time is
reduced by an additional 10% without affecting to the CPI and with a clock rate of
4 GHz, determine the number of instructions.

1.11.10 [10] <$1.6> Determine the clock rate required to give a further 10%
reduction in CPU time while maintaining the number of instructions and with the
CPI unchanged.

1.11.11 [10] <$1.6> Determine the clock rate if the CPI is reduced by 15% and
the CPU time by 20% while the number of instructions is unchanged.

1.12 Section 1.10 cites as a pitfall the utilization of a subset of the performance
equation as a performance metric. To illustrate this, consider the following two
processors. P1 has a clock rate of 4 GHz, average CPI of 0.9, and requires the
execution of 5.0E9 instructions. P2 has a clock rate of 3 GHz, an average CPI of
0.75, and requires the execution of 1.0E9 instructions.

1.12.1 [5] <§§1.6, 1.10> One usual fallacy is to consider the computer with the
largest clock rate as having the largest performance. Check if this is true for P1 and
p2.

1.12.2 [10] <§$1.6,1.10> Another fallacy is to consider that the processor executing
the largest number of instructions will need a larger CPU time. Considering that
processor P1 is executing a sequence of 1.0E9 instructions and that the CPI of
processors P1 and P2 do not change, determine the number of instructions that P2
can execute in the same time that P1 needs to execute 1.0E9 instructions.

1.12.3 [10] <§§1.6, 1.10> A common fallacy is to use MIPS (millions of
instructions per second) to compare the performance of two different processors,
and consider that the processor with the largest MIPS has the largest performance.
Check if this is true for P1 and P2.

1.12.4 [10] <§1.10> Another common performance figure is MFLOPS (millions
of floating-point operations per second), defined as

MFLOPS = No. FP operations / (execution time X 1E6)

but this figure has the same problems as MIPS. Assume that 40% of the instructions
executed on both P1 and P2 are floating-point instructions. Find the MFLOPS
figures for the programs.

1.13 Another pitfall cited in Section 1.10 is expecting to improve the overall
performance of a computer by improving only one aspect of the computer. Consider
a computer running a program that requires 250 s, with 70 s spent executing FP
instructions, 85 s executed L/S instructions, and 40 s spent executing branch
instructions.

1.13.1 [5] <§1.10> By how much is the total time reduced if the time for FP
operations is reduced by 20%?
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1.13.2 [5] <§1.10> By how much is the time for INT operations reduced if the
total time is reduced by 20%?

1.13.3 [5] <§1.10> Can the total time can be reduced by 20% by reducing only
the time for branch instructions?

1.14 Assume a program requires the execution of 50 x 106 FP instructions,
110 x 106 INT instructions, 80 x 106 L/S instructions, and 16 x 106 branch
instructions. The CPI for each type of instruction is 1, 1, 4, and 2, respectively.
Assume that the processor has a 2 GHz clock rate.

1.14.1 [10] <$1.10> By how much must we improve the CPI of FP instructions if
we want the program to run two times faster?

1.14.2 [10] <§1.10> By how much must we improve the CPI of L/S instructions
if we want the program to run two times faster?

1.14.3 [5] <$§1.10> By how much is the execution time of the program improved
if the CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and
Branch is reduced by 30%?

1.15 [5] <§1.8> When a program is adapted to run on multiple processors in
a multiprocessor system, the execution time on each processor is comprised of
computing time and the overhead time required for locked critical sections and/or
to send data from one processor to another.

Assume a program requires t = 100 s of execution time on one processor. When run
P processors, each processor requires t/p s, as well as an additional 4 s of overhead,
irrespective of the number of processors. Compute the per-processor execution
time for 2, 4, 8, 16, 32, 64, and 128 processors. For each case, list the corresponding
speedup relative to a single processor and the ratio between actual speedup versus
ideal speedup (speedup if there was no overhead).

§1.1, page 10: Discussion questions: many answers are acceptable.

§1.4, page 24: DRAM memory: volatile, short access time of 50 to 70 nanoseconds,
and cost per GB is $5 to $10. Disk memory: nonvolatile, access times are 100,000
to 400,000 times slower than DRAM, and cost per GB is 100 times cheaper than
DRAM. Flash memory: nonvolatile, access times are 100 to 1000 times slower than
DRAM, and cost per GB is 7 to 10 times cheaper than DRAM.

§1.5, page 28: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn't have to be true.

§1.6, page 33: 1. a: both, b: latency, c: neither. 7 seconds.

§1.6, page 40: b.

§1.10, page 51: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to
Check Yourself
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Chapter 2 Instructlons: Language of the Computer

instruction set The
vocabulary of commands
understood by a given
architecture.

Introduction

To command a computer’s hardware, you must speak its language. The words of a
computer’slanguage are called instructions, and its vocabulary is called an instruction
set. In this chapter, you will see the instruction set of a real computer, both in the form
written by people and in the form read by the computer. We introduce instructions in
a top-down fashion. Starting from a notation that looks like a restricted programming
language, we refine it step-by-step until you see the real language of a real computer.
Chapter 3 continues our downward descent, unveiling the hardware for arithmetic
and the representation of floating-point numbers.

You might think that the languages of computers would be as diverse as those of
people, but in reality computer languages are quite similar, more like regional dialects
than like independent languages. Hence, once you learn one, it is easy to pick up others.

The chosen instruction set comes from MIPS Technologies, and is an elegant
example of the instruction sets designed since the 1980s. To demonstrate how
easy it is to pick up other instruction sets, we will take a quick look at three other
popular instruction sets.

1. ARMv7 is similar to MIPS. More than 9 billion chips with ARM processors
were manufactured in 2011, making it the most popular instruction set in
the world.

2. The second example is the Intel x86, which powers both the PC and the
cloud of the PostPC Era.

3. The third example is ARMvS, which extends the address size of the ARMv7
from 32 bits to 64 bits. Ironically, as we shall see, this 2013 instruction set is
closer to MIPS than it is to ARMv7.

This similarity of instruction sets occurs because all computers are constructed
from hardware technologies based on similar underlying principles and because
there are a few basic operations that all computers must provide. Moreover,
computer designers have a common goal: to find a language that makes it easy
to build the hardware and the compiler while maximizing performance and
minimizing cost and energy. This goal is time honored; the following quote
was written before you could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets] that are in abstract adequate to control and cause the execution of any
sequence of operations. .. . The really decisive considerations from the present
point of view, in selecting an [instruction set], are more of a practical nature:
simplicity of the equipment demanded by the [instruction set], and the clarity of
its application to the actually important problems together with the speed of its
handling of those problems.

Burks, Goldstine, and von Neumann, 1947
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The “simplicity of the equipment” is as valuable a consideration for today’s
computers as it was for those of the 1950s. The goal of this chapter is to teach
an instruction set that follows this advice, showing both how it is represented
in hardware and the relationship between high-level programming languages
and this more primitive one. Our examples are in the C programming language;
[ Section 2.15 shows how these would change for an object-oriented language
like Java.

By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover, you will exercise your “foreign
language” skills by writing programs in the language of the computer and running
them on the simulator that comes with this book. You will also see the impact of
programming languages and compiler optimization on performance. We conclude
with a look at the historical evolution of instruction sets and an overview of other
computer dialects.

We reveal our first instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making the computer’s language more
palatable. Figure 2.1 gives a sneak preview of the instruction set covered in this
chapter.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, ¢

instructs a computer to add the two variables b and ¢ and to put their sumin a.
This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and must always have exactly three variables. For example, suppose
we want to place the sum of four variables b, c, d, and e into variable a. (In this
section we are being deliberately vague about what a “variable” is; in the next
section we'll explain in detail.)
The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and ¢ is placed in a
add a, a, d # The sum of b, ¢, and d is now in a
add a, a, e # The sum of b, ¢, d, and e is now in a

Thus, it takes three instructions to sum the four variables.

The words to the right of the sharp symbol (#) on each line above are comments
for the human reader, so the computer ignores them. Note that unlike other
programming languages, each line of this language can contain at most one

stored-program
concept The idea that
instructions and data of
many types can be stored
in memory as numbers,
leading to the stored-
program computer.

There must certainly
be instructions

for performing

the fundamental
arithmetic operations.

Burks, Goldstine, and
von Neumann, 1947
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MIPS operands

32 registers

$s0-$s7,

$a0-$a3, $vO-$vl,
$ra,

$sp,

$t0-$t9, $zero,

$at

$gp, $fp,

Fast locations for data. In MIPS, data must be in registers to perform arithmetic,
register $zero always equals 0, and register$at is reserved by the assembler to
handle large constants.

239 memory
words

Memory[ 0], Memory[4], . . .,
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so
sequential word addresses differ by 4. Memory holds data structures, arrays, and
spilled registers.

MIPS assembly language
e |_msmctin | _promie T weone | ____comnens ___
add $s1,$s2,$s3 |$sl=9$s2+ §s3 Three register operands
Arithmetic subtract sub  $s1,$s52,$s3 [$s1 =952 -$s3 Three register operands
add immediate addi $s1,$s2,20 $s1 =9$s2+20 Used to add constants
load word Tw $s51,20($s2) | $s1=Memory[$s2 + 20] Word from memory to register
store word sw  $51,20($s2) |[Memory[$s2 + 20] =$s1 Word from register to memory
load half Th $s1,20($s2) |$s1=Memory[$s2 + 20] Halfword memory to register
load half unsigned | Thu $s1,20($s2) | $s1 = Memory[$s2 + 20] Halfword memory to register
store half sh  $s1,20($s2) |Memory[$s2+20] =4$s1 Halfword register to memory
R:\tnasfer load byte b $s1,20(%$s2) $s1 =Memory[$s2 + 20] Byte from memory to register
load byte unsigned | 1bu $s1,20($s2) | $s1 =Memory[$s2 + 20] Byte from memory to register
store byte sb  $s51,20($s2) |[Memory[$s2 +20] =$sl Byte from register to memory
load linked word 11 $s1,20(%$s2) $s1 =Memory[$s2 + 20] Load word as 1st half of atomic swap
store condition. word | sc  $s51,20($s2) | Memory[$s2+20]=$s1;$s1=0 or 1 | Store word as 2nd half of atomic swap
load upper immed. |Tui $s1,20 $s1 =20 * 26 Loads constant in upper 16 bits
and and  $s1,$s2,$s3 [ $s1 =952 & $s3 Three reg. operands; bit-by-bit AND
or or $s51,$s2,$s3 | $s1 =$s2| $s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,$s3|$sl=~($s2| $s3) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,$s2,20 |$sl=4%s2& 20 Bit-by-bit AND reg with constant
or immediate ori $s1,$s2,20 |$s1=9s2|20 Bit-by-bit OR reg with constant
shift left logical s11 $s1,$s2,10 [$s1l=9%s2<<10 Shift left by constant
shift right logical srl $s1,$s2,10 |[$sl=9$s2>>10 Shift right by constant
branch on equal beq $s1,$s52,25 |[if($s]l==9s2)¢goto Equal test; PC-relative branch
PC + 4 + 100
branch on not equal |bne $s1,$s52,25 |if($sll= $s2)goto Not equal test; PC-relative
PC + 4 + 100
set on less than st $s1,$s2,$s3 [if ($s2 < $s3) $s1=1; Compare less than; for beq, bne
Conditional else $s1=0
branch set on less than sltu  $s1,9$s2,$s3 [if ($s2 < $53) $s1=1; Compare less than unsigned
unsigned else $s1 =0
set less than sTti $s1,$s2,20 |if($s2<20) $s1=1 Compare less than constant
immediate else $s1=0
set less than sltiu $s1,$52,20 |if($52<20)$sl=1 Compare less than constant
immediate unsigned else $s1=0 unsigned
. jump J 2500 go to 10000 Jump to target address
pncondltlonal jump register jr $ra gotosra For switch, procedure return
Jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call
FIGURE 2.1 MIPS assembly language revealed In this chapter. This information is also found in Column 1 of the MIPS Reference

Data Card at the front of this book.
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instruction. Another difference from C is that comments always terminate at the
end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of three underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of programs
written in higher-level programming languages to programs in this more primitive
notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, ¢, d, and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a =b+ c;
d=a - e;

The translation from C to MIPS assembly language instructions is performed
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, ¢
sub d, a, e

Compiling a Complex C Assignment into MIPS
A somewhat complex statement contains the five variables f, g, h, 1, and j:

f=(g+h - (+J);

What might a C compiler produce?
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Check
Yourself

word The natural unit
of access in a computer,
usually a group of 32 bits;
corresponds to the size
of a register in the MIPS
architecture.

The compiler must break this statement into several assembly instructions,
since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of g and h. We must place the result somewhere,
so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of 1 and
J before we can subtract. Thus, the second instruction places the sum of 1 and
J in another temporary variable created by the compiler, called t1:

add tl1,1,j # temporary variable tl1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

sub f,t0,tl # f gets t0 - t1, which is (g + h) - (i + j)

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java
2. C
3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes
(see [#] Section 2.15), which is quite different from the MIPS instruction set. To get
performance close to the equivalent C program, Java systems today typically compile
Java bytecodes into the native instruction sets like MIPS. Because this compilation is
normally done much later than for C programs, such Java compilers are often called Just
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers
in the start-up process, and Section 2.13 shows the performance consequences of
compiling versus interpreting Java programs.

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built directly
in hardware called registers. Registers are primitives used in hardware design that
are also visible to the programmer when the computer is completed, so you can
think of registers as the bricks of computer construction. The size of a register in
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are
given the name word in the MIPS architecture.
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One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers,
like MIPS. (See [ Section 2.21 for the history of the number of registers.) Thus,
continuing in our top-down, stepwise evolution of the symbolic representation of
the MIPS language, in this section we have added the restriction that the three
operands of MIPS arithmetic instructions must each be chosen from one of the 32
32-bit registers.

The reason for the limit of 32 registers may be found in the second of our three
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of
programs for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;
as we shall see in this chapter, effective use of registers is critical to program
performance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.8 will explain the reasons behind these names. For
now, wewilluse $s0, $s1, ...for registers that correspond to variables in C and
Java programs and $t0, $t1, ... for temporary registers needed to compile the
program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler’ job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f=(0+h) -0 +]);

The variables f, g, h, 1, and j are assigned to the registers $s0, $s1, $s2,
$s3, and $s4, respectively. What is the compiled MIPS code?
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data transfer
instruction A command
that moves data between
memory and registers.

address A value used to
delineate the location of
a specific data element
within a memory array.

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $tl1,$s3,$s4 # register $tl1 contains i + j
sub $s0,$t0,$t1 # f gets $t0 - $tl1, which is (g + h)-(i + j)

Memory Operands

Programming languages have simple variables that contain single data elements,
as in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated
on page 61. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory [2] is 10.

3 100
2 10
1 101
0 1
Address Data
Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

The data transfer instruction that copies data from memory to a register is
traditionally called Joad. The format of the load instruction is the name of the
operation followed by the register to be loaded, then a constant and register used to
access memory. The sum of the constant portion of the instruction and the contents
of the second register forms the memory address. The actual MIPS name for this
instruction is lw, standing for load word.
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Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $s1 and $s2 as before.
Let’s also assume that the starting address, or base address, of the array is in
$s3. Compile this C assignment statement:

g=nh+ A[8];

Although there is a single operation in this assignment statement, one of
the operands is in memory, so we must first transfer A[8] to a register. The
address of this array element is the sum of the base of the array A, found in
register $53, plus the number to select element 8. The data should be placed
in a temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

Tw $t0,8($s3) #f Temporary reg $t0 gets A[8]

(We'll be making a slight adjustment to this instruction, but we’ll use this
simplified version for now.) The following instruction can operate on the value
in $t0 (which equals A[8]) since it is in a register. The instruction must add
h (contained in $52) to AL8] (contained in $t0) and put the sum in the
register corresponding to g (associated with $s1):

add  $s1,%$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction (8) is called the offset, and the
register added to form the address ($ S 3) is called the base register.

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can then
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, virtually all architectures today
address individual bytes. Therefore, the address of a word matches the address of
one of the 4 bytes within the word, and addresses of sequential words differ by 4.
For example, Figure 2.3 shows the actual MIPS addresses for the words in Figure
2.2; the byte address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This requirement
is called an alignment restriction, and many architectures have it. (Chapter 4
suggests why alignment leads to faster data transfers.)

Hardware/
Software
Interface

alignment restriction
A requirement that data
be aligned in memory on
natural boundaries.
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12 100
8 10
4 101
0 1

Byte Address Data

Processor Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of 4: there are 4 bytes in a word.

Computers divide into those that use the address of the leftmost or “big end” byte
as the word address versus those that use the rightmost or “little end” byte. MIPS is
in the big-endian camp. Since the order matters only if you access the identical data
both as a word and as four bytes, few need to be aware of the endianess. (Appendix
A shows the two options to number bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in the
code above, the offset to be added to the base register $53 must be 4 X 8, or 32, so
that the load address will select AL8 ] and not A[L8/4 ]. (See the related pitfall on
page 160 of Section 2.19.)

The instruction complementary to load is traditionally called store; it copies data
from a register to memory. The format of a store is similar to that of a load: the
name of the operation, followed by the register to be stored, then offset to select
the array element, and finally the base register. Once again, the MIPS address is
specified in part by a constant and in part by the contents of a register. The actual
MIPS name is SW, standing for store word.

Hardware/
Software
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As the addresses in loads and stores are binary numbers, we can see why the
DRAM for main memory comes in binary sizes rather than in decimal sizes. That
is, in gebibytes (2*) or tebibytes (2*°), not in gigabytes (10°) or terabytes (10'%); see
Figure 1.1.
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Compiling Using Load and Store

Assume variable h is associated with register $52 and the base address of
the array A is in $$3. What is the MIPS assembly code for the C assignment
statement below?

AL12] = h + AL[81;

Although there is a single operation in the C statement, now two of the
operands are in memory, so we need even more MIPS instructions. The first
two instructions are the same as in the prior example, except this time we use
the proper offset for byte addressing in the load word instruction to select
A[8], and the add instruction places the sum in $t0:

Tw  $t0,32($s3) 4 Temporary reg $t0 gets A[8]
add $t0,$s2,$t0 4 Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[ 12 ], using 48 (4 X 12) as the offset
and register $S 3 as the base register.

sw  $t0,48($s3) 4 Stores h + A[8] back into A[1l2]

Load word and store word are the instructions that copy words between
memory and registers in the MIPS architecture. Other brands of computers use
other instructions along with load and store to transfer data. An architecture with
such alternatives is the Intel x86, described in Section 2.17.

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and places
the rest in memory, using loads and stores to move variables between registers and
memory. The process of putting less commonly used variables (or those needed
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers, since there are fewer registers. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruction
can read two registers, operate on them, and write the result. A MIPS data transfer
instruction only reads one operand or writes one operand, without operating on it.

Thus, registers take less time to access and have higher throughput than memory,
making data in registers both faster to access and simpler to use. Accessing registers
also uses less energy than accessing memory. To achieve highest performance and
conserve energy, an instruction set architecture must have a sufficient number of
registers, and compilers must use registers efficiently.

Hardware/
Software
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COMMON CASE FAST

Check
Yourself

Constant or Inmediate Operands

Many times a program will use a constant in an operation—for example,
incrementing an index to point to the next element of an array. In fact, more than
half of the MIPS arithmetic instructions have a constant as an operand when
running the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant
from memory to use one. (The constants would have been placed in memory when
the program was loaded.) For example, to add the constant 4 to register $53, we
could use the code

Il

Tw $t0, AddrConstant4($sl) 4 $t0 = constant 4
add $s3,%$s3,%t0 # $s3 = $s3 + $t0 ($t0 = 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.

Analternative thatavoids theload instruction is to offer versions of the arithmetic
instructions in which one operand is a constant. This quick add instruction with
one constant operand is called add immediate or addi. To add 4 to register $s3,
we just write

addi $s3,$s3,4 # $s3 = $s3 + 4

Constant operands occur frequently, and by including constants inside
arithmetic instructions, operations are much faster and use less energy than if
constants were loaded from memory.

The constant zero has another role, which is to simplify the instruction set
by offering useful variations. For example, the move operation is just an add
instruction where one operand is zero. Hence, MIPS dedicates a register $zero
to be hard-wired to the value zero. (As you might expect, it is register number 0.)
Using frequency to justify the inclusions of constants is another example of the
great idea of making the common case fast.

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. [ii] Appendix E shows the differences between MIPS-32 and MIPS-64. Sections
2.16 and 2.18 show the much more dramatic difference between the 32-bit address
ARMV7 and its 64-bit successor, ARMvS.
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Elaboration: The MIPS offset plus base register addressing is an excellent match to
structures as well as arrays, since the register can point to the beginning of the structure
and the offset can select the desired element. We'll see such an example in Section
2.13.

Elaboration: The register in the data transfer instructions was originally invented to
hold an index of an array with the offset used for the starting address of an array. Thus,
the base register is also called the index register. Today's memories are much larger and
the software model of data allocation is more sophisticated, so the base address of
the array is normally passed in a register since it won't fit in the offset, as we shall see.

Elaboration: Since MIPS supports negative constants, there is no need for subtract
immediate in MIPS.

Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught
to think in base 10, but numbers may be represented in any base. For example, 123
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all
information is composed of binary digits or bifs. This fundamental building block
can be one of two values, which can be thought of as several alternatives: high or
low, on or off, true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d X Base'

where i starts at 0 and increases from right to left. This representation leads to an
obvious way to number the bits in the word: simply use the power of the base for
that bit. We subscript decimal numbers with ten and binary numbers with two. For
example,

1011,
represents
(1 x 2%) + (0 x2%) + (1 x2Y) + (1 x 29,
=(1x8) +(0x4) +(1x2) +((1x1),
8 + 0 + 2 + 1

- ten
=11

ten

binary digit Also
called binary bit. One
of the two numbers

in base 2, 0 or 1, that
are the components of
information.
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least significant bit The
rightmost bit in a MIPS

word.

most significant bit The
leftmost bit in a MIPS

word.

We number the bits 0, 1, 2, 3, ... from right to left in a word. The drawing below
shows the numbering of bits within a MIPS word and the placement of the number
1011_ :

two

31 30 29 28 27 26 2524 232221201918 1716 151413121110 9 8 7 6 5 4 3 2 1 O

‘OOOO‘OOOO‘OOOO‘OOOO‘O000‘0000‘0000‘1011‘

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 2** different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 2% —1
(4,294,967,295 ):

0000 0000 0000 0000 0000 0000 0000 00OO,
0000 0000 0000 0000 0000 0000 0000 0OO1,, =1
0000 0000 0000 0000 0000 0000 0000 0010, =2

ten
ten

ten

1111 1111 1111 1111 1111 1111 1111 1101, = 4,294,967,293
1111 1111 1111 1111 1111 1111 1111 1110, = 4,294,967,294
1111 1111 1111 1111 1111 1111 1111 1111, = 4,294,967,295

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

(231X 2°1) + (%30 X 2%%) + (x29 X 2%7°) + ... + (x1 X 2") + (x0 X 2°)

For reasons we will shortly see, these positive numbers are called unsigned numbers.
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Base 2 is not natural to human beings; we have 10 fingers and so find base 10
natural. Why didn’t computers use decimal? In fact, the first commercial computer
did offer decimal arithmetic. The problem was that the computer still used on
and off signals, so a decimal digit was simply represented by several binary digits.
Decimal proved so inefficient that subsequent computers reverted to all binary,
converting to base 10 only for the relatively infrequent input/output events.

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don't normally show leading Os.
Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred.
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It's up to the programming language, the operating system, and the program to
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a
representation that distinguishes the positive from the negative. The most obvious
solution is to add a separate sign, which conveniently can be represented in a single
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can’t know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and a negative
zero, which can lead to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of leading
0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the final solution was to pick
the representation that made the hardware simple: leading 0s mean positive, and
leading 1s mean negative. This convention for representing signed binary numbers
is called two’s complement representation:

0000 0000 0000 0000 0000 0000 0000 0000,
0000 0000 0000 0000 0000 0000 0000 0001, =1
0000 0000 0000 0000 0000 00OO 0OOCO 0010, , = 2

ten
ten

ten

0111 1111 1111 1111 1111 1111 1111 1101, = 2,147,483,645,
0111 1111 1111 1111 1111 1111 1111 1110, = 2,147,483,646
0111 1111 1111 1111 1111 1111 1111 1111, = 2,147,483,647
1000 0000 0000 0000 0000 0000 0000 0000, , = -2,147,483,648
1000 0000 0000 0000 0000 0000 0000 0001, , = -2,147,483,647,
1000 0000 0000 0000 0000 0000 0000 0010, , = -2,147,483,646,

1111 1111 1111 1111 1111 1111 1111 1101, = -3
1111 1111 1111 1111 1111 1111 1111 1110, 6 = -2
1111 1111 1111 1111 1111 1111 1111 1111, = -1

The positive half of the numbers, from 0 to 2,147,483,647_ (2% —1), use the same
representation as before. The following bit pattern (1000. .. 0000, ) represents the most
negative number —2,147,483,648 _ (—2"). It is followed by a declining set of negative
numbers: —2,147,483,647_ (1000...0001  )downto —1_ (1111...1111_).

Twos complement does have one negative number, —2,147,483,648 _, that
has no corresponding positive number. Such imbalance was also a worry to the
inattentive programmer, but sign and magnitude had problems for both the
programmer and the hardware designer. Consequently, every computer today uses
twos complement binary representations for signed numbers.



76

Chapter 2 Instructions: Language of the Computer

Two's complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only
this bit to see if a number is positive or negative (with the number 0 considered
positive). This bit is often called the sign bit. By recognizing the role of the sign bit,
we can represent positive and negative 32-bit numbers in terms of the bit value
times a power of 2:

(x31 X —231) + (x30 X 2°%) 4 (x29 X 2%) + ... + (x1 X 21) + (x0 X 2°)

The sign bit is multiplied by —2*, and the rest of the bits are then multiplied by
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two's complement number?

1111 1111 1111 1111 1111 1111 1111 1100,

Substituting the number’s bit values into the formula above:

AX=2HY+Ax2)+ax2®)+...+ax2H+ 0 x2")+(0x2%
=21 4+204+2¥ +  +2°+0+0
—2,147,483,648,  + 2,147,483,644
=—4

ten ten

ten

We'll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hardware
to represent the result, so can an operation on two's complement numbers. Overflow
occurs when the leftmost retained bit of the binary bit pattern is not the same as the
infinite number of digits to the left (the sign bit is incorrect): a 0 on the left of the bit
pattern when the number is negative or a 1 when the number is positive.
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Signed versus unsigned applies to loads as well as to arithmetic. The function of a
signed load is to copy the sign repeatedly to fill the rest of the register—called sign
extension—but its purpose is to place a correct representation of the number within
that register. Unsigned loads simply fill with Os to the left of the data, since the
number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte (1D)
treats the byte as a signed number and thus sign-extends to fill the 24 left-most bits
of the register, while load byte unsigned (1bu) works with unsigned integers. Since C
programs almost always use bytes to represent characters rather than consider bytes
as very short signed integers, 1D u is used practically exclusively for byte loads.
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Unlike the numbers discussed above, memory addresses naturally start at 0
and continue to the largest address. Put another way, negative addresses make
no sense. Thus, programs want to deal sometimes with numbers that can be
positive or negative and sometimes with numbers that can be only positive.
Some programming languages reflect this distinction. C, for example, names the
former integers (declared as int in the program) and the latter unsigned integers
(unsigned int).Some C style guides even recommend declaring the former as
signed int to keep the distinction clear.

Lets examine two useful shortcuts when working with twos complement
numbers. The first shortcut is a quick way to negate a two's complement binary
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result.
This shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 ... 111 , which represents —1. Since x + x = —1,
therefore x + x +1=0 or x +1 = —x. (We use the notation X to mean invert
every bit in x from 0 to 1 and vice versa.)

Negation Shortcut

Negate 2,_, and then check the result by negating —2,_ .

2 .= 0000 0000 0000 0000 0000 0000 0000 0010, .

te

Negating this number by inverting the bits and adding one,

111111111111 11111111 1111 1111 11012,
+ 1

two

= 111111111111 11111111 11111111 1110,

= - 2ten
Going the other direction,

1111 1111 1111 1111 1111 17111 1111 1110tw0
is first inverted and then incremented:

0000 0000000000000000000000000001,,
+ 1

two

0000 0000000000000000000000000010,,
= 2

ten

M.al litebooks. cogl

Hardware/
Software
Interface
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Our next shortcut tells us how to convert a binary number represented in 7 bits
to a number represented with more than # bits. For example, the immediate field
in the load, store, branch, add, and set on less than instructions contains a two’s
complement 16-bit number, representing —32,768 __ (—2") to 32,767, (2" — 1).
To add the immediate field to a 32-bit register, the computer must convert that 16-
bit number to its 32-bit equivalent. The shortcut is to take the most significant bit
from the smaller quantity—the sign bit—and replicate it to fill the new bits of the
larger quantity. The old nonsign bits are simply copied into the right portion of the
new word. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2 and —2__to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000 0000 0000 0010, = 2

It is converted to a 32-bit number by making 16 copies of the value in the most
significant bit (0) and placing that in the left-hand half of the word. The right
half gets the old value:

ten

0000 0000 0000 0000 0000 0000 00OO0 0010, 6 = 2

ten

Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 0010,

becomes

111111111111 1101,
- 1

two

= 111111111111 1110,

Creating a 32-bit version of the negative number means copying the sign bit
16 times and placing it on the left:

1111 1111 1111 1111 1111 1111 1111 1110, = -2

ten

This trick works because positive two's complement numbers really have an infinite
number of 0s on the left and negative two’s complement numbers have an infinite
number of 1s. The binary bit pattern representing a number hides leading bits to fit
the width of the hardware; sign extension simply restores some of them.
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Summary

The main point of this section is that we need to represent both positive and
negative integers within a computer word, and although there are pros and cons to
any option, the unanimous choice since 1965 has been two's complement.

Elaboration: For signed decimal numbers, we used “—" to represent negative
because there are no limits to the size of a decimal number. Given a fixed word size,
binary and hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do
not normally use “+” or “—" with binary or hexadecimal notation.

What is the decimal value of this 64-bit two's complement number?

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1000,

1) -4,
2) -8,
3) -16,,

4)18,446,744,073,709,551,609,

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an n-bit number and its n-bit negative is 2"; hence, the negation or complement of a
number x is 2" — x, or its “two’s complement.”

A third alternative representation to two’s complement and sign and magnitude is
called one’s complement. The negative of a one’s complement is found by inverting
each bit, from O to 1 and from 1 to O, or x. This relation helps explain its name since
the complement of x is 2" — x — 1. It was also an attempt to be a better solution
than sign and magnitude, and several early scientific computers did use the notation.
This representation is similar to two’s complement except that it also has two Os:
00 ...00,, is positive 0 and 11 ... 11 'is negative 0. The most negative number,
10 ... OOOtWO, represents —2,147,483,647ten, and so the positives and negatives are
balanced. One’s complement adders did need an extra step to subtract a number, and
hence two’s complement dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3,
is to represent the most negative value by 00 . .. 000, and the most positive value
by 11 ... 11, with O typically having the value 10 ... 00, . This is called a biased
notation, since it biases the number such that the number plus the bias has a non-
negative representation.

Check
Yourself

one’s complement

A notation that represents
the most negative value
by 10...000,  and the
most positive value by
01...11_, leaving an
equal number of negatives
and positives but ending
up with two zeros, one
positive (00...00_ )and
one negative (11...11_ ).
The term is also used to
mean the inversion of
every bit in a pattern: 0 to
land 1to 0.

biased notation

A notation that represents
the most negative value
by 00...000, and the
most positive value by 11
... 11, with 0 typically
having the value 10.. . .
00, thereby biasing

the number such that
the number plus the

bias has a non-negative
representation.
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Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by side
forms the instruction.

Since registers are referred to in instructions, there must be a convention to
map register names into numbers. In MIPS assembly language, registers $s0 to
$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8
to 15. Hence, $50 means register 16, $s1 means register 17, $s2 means register
18, ..., $t0 means register 8, $t 1 means register 9, and so on. We'll describe the
convention for the rest of the 32 registers in the following sections.

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We'll show the real MIPS language version of the instruction represented
symbolically as

add $t0,%$s1,9s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

[ 0 [ 17 [ 18 ] 8 [ 0 T

Each of these segments of an instruction is called a field. The first and
last fields (containing 0 and 32 in this case) in combination tell the MIPS
computer that this instruction performs addition. The second field gives the
number of the register that is the first source operand of the addition operation
(17 = $s1), and the third field gives the other source operand for the addition
(18 = $s2). The fourth field contains the number of the register that is to
receive the sum (8 = $t0). The fifth field is unused in this instruction, so it is
set to 0. Thus, this instruction adds register $s1 to register $ s2 and places the
sum in register $t0.

This instruction can also be represented as fields of binary numbers as
opposed to decimal:

[ oooooo | 10001 | 10010 | 01000 | 00000 | 100000 |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the
same size as a data word. In keeping with our design principle that simplicity favors
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings
of binary numbers. We avoid that tedium by using a higher base than binary that
converts easily into binary. Since almost all computer data sizes are multiples of
4, hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2,
we can trivially convert by replacing each group of four binary digits by a single
hexadecimal digit, and vice versa. Figure 2.4 converts between hexadecimal and
binary.

instruction format

A form of representation
of an instruction
composed of fields of
binary numbers.

machine

language Binary
representation used for
communication within a
computer system.

hexadecimal Numbers
in base 16.

| Hoxadecimal | Binary | Mexadocimal | Binary | Wexadecimal | Binary | Hexadecimal | Binary |

Ohex 00004y, 4hex 0100ty0 8hex 10004y, Chex 11000
Lhex 0001y Shex 0101¢yo Shex 1001y dhex 110%4y0
Zhex 0010ty,0 Bhex 0110ty0 8hex 1010y €hex 1110ty
Shex 0011¢yo "hex 011140 Phex 10114yo fhex 111340

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary digits,

and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion
we will subscript decimal numbers with ten, binary numbers with two, and
hexadecimal numbers with hex. (If there is no subscript, the default is base 10.) By
the way, C and Java use the notation Oxnnnn for hexadecimal numbers.

Binary to Hexadecimal and Back
Convert the following hexadecimal and binary numbers into the other base:

eca8 6420, ,

0001 0011 0101 0OI11 1001 1011 1101 1111,
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opcode The field that
denotes the operation and
format of an instruction.

Using Figure 2.4, the answer is just a table lookup one way:

eca8 6420

7NN

And then the other direction:
0001 0011 0101 0111 1001 1011 1101 1111

1357 9bdf,

MIPS Fields

MIPS fields are given names to make them easier to discuss:

1110 1100 1010 1000 0110 0100 0010 0000,,

‘ op ‘ rs rt rd shamt

funct

6 bits 5 bits 5 bits 5 bits 5 bits

Here is the meaning of each name of the fields in MIPS instructions:

6 bits

B op: Basic operation of the instruction, traditionally called the opcode.

m rs: The first register source operand.

rt: The second register source operand.

|
B rd: The register destination operand. It gets the result of the operation.
|

shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it
will not be used until then, and hence the field contains zero in this section.)

B funct: Function. This field, often called the function code, selects the specific

variant of the operation in the op field.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
constant within the load word instruction would be limited to only 2° or 32. This
constant is used to select elements from arrays or data structures, and it often needs

to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final

hardware design principle:
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Design Principle 3: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-format. A second type of instruction format is called I-type (for immediate)
or I-format and is used by the immediate and data transfer instructions. The fields
of I-format are

‘ op ‘ rs rt constant or address ‘

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within
a region of *2' or 32,768 bytes (£2" or 8192 words) of the address in the base
register rs. Similarly, add immediate is limited to constants no larger than *=2".
We see that more than 32 registers would be difficult in this format, as the rs and rt
fields would each need another bit, making it harder to fit everything in one word.
Let’s look at the load word instruction from page 71:

Tw  $t0,32($s3)  # Temporary reg $t0 gets A[8]

Here, 19 (for $53) is placed in the rs field, 8 (for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destination
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complexity
by keeping the formats similar. For example, the first three fields of the R-type and
I-type formats are the same size and have the same names; the length of the fourth
field in I-type is equal to the sum of the lengths of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so that
the hardware knows whether to treat the last half of the instruction as three fields
(R-type) or as a single field (I-type). Figure 2.5 shows the numbers used in each
field for the MIPS instructions covered so far.

|_instruction | Format | op | rs | rt | rd | chamt | funct | addross
add 0 reg reg reg 0 n.a

R 32ten
sub (subtract) R 0 reg reg reg 0 34en n.a.
add immediate | 8ten reg reg n.a. n.a. n.a. constant
1w (load word) | 35, | reg reg n.a. n.a. n.a. address
sw (store word) | 43y, | reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 0
and 31, “address” means a 16-bit address, and “n.a” (not applicable) means this field does not appear in this
format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct
field to decide the variant of the operation: add (32) or subtract (34).
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Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes
to what the computer executes. If $t1 has the base of the array A and $s2
corresponds to h, the assignment statement

A[300] = h + A[3001;
is compiled into

Tw  $t0,1200($tl) # Temporary reg $t0 gets A[300]
add $t0,$s2,$t0 4 Temporary reg $t0 gets h + A[300]
Sw $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

For convenience, let’s first represent the machine language instructions using
decimal numbers. From Figure 2.5, we can determine the three machine
language instructions:

address/
shamt
35 9 8

1200
0 18 8 8 \ 0 | 32
43 9 8 1200

The 1w instruction is identified by 35 (see Figure 2.5) in the first field
(op). The base register 9 ($t1) is specified in the second field (rs), and the
destination register 8 ($t0) is specified in the third field (rt). The offset to
select AL300] (1200 = 300 X 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op) and
32 in the last field (funct). The three register operands (18, 8, and 8) are found
in the second, third, and fourth fields and correspond to $s2, $t0, and $t0.

The Sw instruction is identified with 43 in the first field. The rest of this final
instruction is identical to the 1w instruction.

Since 1200, = 0000 0100 1011 0000, , the binary equivalent to the decimal
form is:

100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 ‘ 00000 ‘ 100000
101011 01001 01000 0000 0100 1011 0000
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Note the similarity of the binary representations of the first and last
instructions. The only difference is in the third bit from the left, which is
highlighted here.

The desire to keep all instructions the same size is in conflict with the desire to  Hardware/
have as many registers as possible. Any increase in the number of registers uses

o . : : : Software
up at least one more bit in every register field of the instruction format. Given
these constraints and the design princple that smaller is faster, most instruction Interface
sets today have 16 or 32 general purpose registers.

Figure 2.6 summarizes the portions of MIPS machine language described in this
section. As we shall see in Chapter 4, the similarity of the binary representations
of related instructions simplifies hardware design. These similarities are another
example of regularity in the MIPS architecture.

MIPS machine language

e Trome | bemwe 1o ___

R add $s1,$s2,49s3
sub R 0 18 19 17 0 34 sub $s1,$s2,$s3
addi | 8 18 17 100 addi $s1,$s2,100
Iw | 35 18 17 100 w $s1,100($s2)
swW | 43 18 17 100 sw $s1,100($s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format R op rs rt rd shamt funct Arithmetic instruction format
|-format | op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Sectlon 2.5. The two MIPS instruction formats so far are R and I. The first 16 bits
are the same: both contain an op field, giving the base operation; an rs field, giving one of the sources; and the rt field, which specifies the other
source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field, specifying
the destination register; the shamt field, which Section 2.6 explains; and the funct field, which specifies the specific operation of R-format
Instructions. I-format combines the last 16 bits into a single address field.
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the BIG

Picture

Today’s computers are built on two key principles:
1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like
data.

These principles lead to the stored-program concept; its invention let
the computing genie out of its bottle. Figure 2.7 shows the power of the
concept; specifically, memory can contain the source code for an editor
program, the corresponding compiled machine code, the text that the
compiled program is using, and even the compiler that generated the
machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

s

| Accounting program l

| (machine code) |

| Editor program |
| (machine code) |

-
I C compiler l
Processor | (machine code) |

| Source codeinC !
; for editor program !

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch
happens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location In memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in a
notation far more convenient for humans into code that the computer can understand.
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What MIPS instruction does this represent? Choose from one of the four options
below.

[ o | 8 | o | 20 [ o | 31 |
1. sub $t0, $tl1, $t2
2. add $t2, $t0, $tl1
3. sub $t2, $tl1, $t0O
4. sub $t2, $t0, $tl

Logical Operations

Although the first computers operated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which is stored as 8 bits, is one example
of such an operation (see Section 2.9). It follows that operations were added to
programming languages and instruction set architectures to simplify, among other
things, the packing and unpacking of bits into words. These instructions are called
logical operations. Figure 2.8 shows logical operations in C, Java, and MIPS.

<< <L

Shift left s11

Shift right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

FIGURE 2.8 C and Java loglcal operators and thelr corresponding MIPS Instructions. MIPS
implements NOT using a NOR with one operand being zero.

The first class of such operations is called shifts. They move all the bits in a word
to the left or right, filling the emptied bits with 0s. For example, if register $s0
contained

0000 0000 0000 0000 0000 0000 0000 1001, =9

ten

and the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 00OO,, = 144

ten

Check
Yourself

“Contrariwise,”
continued Tweedledee,
“if it was so, it might
be; and if it were so,

it would be; but as it
isn't, it ain’t. That's
logic”

Lewis Carroll,

Alice’s Adventures in
Wonderland, 1865
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AND A logical bit-
by-bit operation with two
operands that calculates
alonlyifthereisalin
both operands.

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s11) and shift right logical (sr1). The
following instruction performs the operation above, assuming that the original
value was in register $50 and the result should go in register $t 2:

s11 $t2,$s0,4 4 reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. Used in shift instructions,
it stands for shift amount. Hence, the machine language version of the instruction
above is

op rs rt rd shamt funct

The encoding of S 11 is 0 in both the op and funct fields, rd contains 10 (register
$t2), rt contains 16 (register $50), and shamt contains 4. The rs field is unused
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the same
result as multiplying by 2i, just as shifting a decimal number by i digits is equivalent
to multiplying by 10i. For example, the above S 11 shifts by 4, which gives the same
result as multiplying by 2* or 16. The first bit pattern above represents 9, and 9 X16 =
144, the value of the second bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word to
avoid confusion between the operation and the English conjunction.) AND is a bit-
by-bit operation that leaves a 1 in the result only if both bits of the operands are 1.
For example, if register $t 2 contains

0000 0000 0000 0000 0000 1101 1100 0000,
and register $t1 contains

0000 0000 0000 0000 0011 1100 0©OOO 000O,,
then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $tl & reg $t2
the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0O0OO 0000,

As you can see, AND can apply a bit pattern to a set of bits to force Os where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally
called a mask, since the mask “conceals” some bits.
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To place a value into one of these seas of 0Os, there is the dual to AND, called
OR. It is a bit-by-bit operation that places a 1 in the result if either operand bit is
a 1. To elaborate, if the registers $t1 and $t 2 are unchanged from the preceding
example, the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0:

0000 0000 0000 0000 0011 1101 1100 00OOQ,,,

The final logical operation is a contrarian. NOT takes one operand and places a 1
in the result if one operand bit is a 0, and vice versa. Using our prior notation, it
calculates Xx.

In keeping with the three-operand format, the designers of MIPS decided to
include the instruction NOR (NOT OR) instead of NOT. If one operand is zero,
then it is equivalent to NOT: A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $tl | reg $t3)

is this value in register $t0:

1111 1111 1111 1111 1100 0011 1111 1111,

Figure 2.8 above shows the relationship between the C and Java operators and the
MIPS instructions. Constants are useful in AND and OR logical operations as well
as in arithmetic operations, so MIPS also provides the instructions and immediate
(andi) and or immediate (0r1). Constants are rare for NOR, since its main use is
to invert the bits of a single operand; thus, the MIPS instruction set architecture has
no immediate version of NOR.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which
sets the bit to 1 when two corresponding bits differ, and to O when they are the same. C
allows bit fields or fields to be defined within words, both allowing objects to be packed
within a word and to match an externally enforced interface such as an |I/0 device. All
fields must fit within a single word. Fields are unsigned integers that can be as short as
1 bit. C compilers insert and extract fields using logical instructions in MIPS: and, or,
s11,and srl.

Elaboration: Logical AND immediate and logical OR immediate put Os into the upper
16 bits to form a 32-bit constant, unlike add immediate, which does sign extension.

Which operations can isolate a field in a word?
1. AND
2. A shift left followed by a shift right

OR A logical bit-by-

bit operation with two
operands that calculates
a lif thereisa 1 in either
operand.

NOT A logical bit-by-
bit operation with one
operand that inverts the
bits; that is, it replaces
every 1 with a 0, and
every O with a 1.

NOR A logical bit-by-
bit operation with two
operands that calculates
the NOT of the OR of the
two operands. That s, it
calculates a 1 only if there
is a 0 in both operands.

Check
Yourself
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The utility of an
automatic computer lies
in the possibility of using
a given sequence of
instructions repeatedly,
the number of times it is
iterated being dependent
upon the results of

the computation. . . .
This choice can be

made to depend upon
the sign of a number
(zero being reckoned

as plus for machine
purposes). Consequently,
we introduce an
[instruction] (the
conditional transfer
[instruction]) which

will, depending on the
sign of a given number,
cause the proper one

of two routines to be
executed.

Burks, Goldstine, and
von Neumann, 1947

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during computation,
different instructions execute. Decision making is commonly represented in
programming languages using the if statement, sometimes combined with go to
statements and labels. MIPS assembly language includes two decision-making
instructions, similar to an if statement with a go to. The first instruction is

beq registerl, register2, L1

This instruction means go to the statement labeled L1 if the value in registerl
equals the value in register?2. The mnemonic beq stands for branch if equal.
The second instruction is

bne registerl, register2, L1

It means go to the statement labeled L1 if the value in register] does not equal
the valuein register?2. The mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

Compiling If-then-else into Conditional Branches

In the following code segment, f, g, h, i, and J are variables. If the five
variables f through j correspond to the five registers $s0 through $s4, what
is the compiled MIPS code for this C if statement?

if (i ==3) f=9g+ h; else f =g - h;

Figure 2.9 shows a flowchart of what the MIPS code should do. The first
expression compares for equality, so it would seem that we would want the
branch if registers are equal instruction (beq). In general, the code will be
more efficient if we test for the opposite condition to branch over the code that
performs the subsequent then part of the if (the label E1se is defined below)
and so we use the branch if registers are not equal instruction (bne):

bne $s3,%$s4,E1se 4 go to Else if i = j
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The next assignment statement performs a single operation, and if all the conditional branch An

operands are allocated to registers, it is just one instruction: instruction that requires
the comparison of two
add $s0,%$s1,%$s2 ## f =g+ h (skipped if i = j) values and that allows for

a subsequent transfer of
We now need to go to the end of the if statement. This example introduces control to a new address

another kind of branch, often called an unconditional branch. This instruction  in the program based
says that the processor always follows the branch. To distinguish between on the outcome of the
conditional and unconditional branches, the MIPS name for this type of comparison.
instruction is jump, abbreviated as J (the label EX 1t is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label E1se to
this instruction. We also show the label Ex it that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f =g - h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language
programmer from the tedium of calculating addresses for branches, just as it does
for calculating data addresses for loads and stores (see Section 2.12).

Else:

f=g+h f=g—h

Exit:

FIGURE 2.9 Illlustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.
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Compilers frequently create branches and labels where they do not appear in
the programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level.

Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.

Compiling a while Loop in C
Here is a traditional loop in C:

while (savel[i]l == k)
i +=1;

Assume that 1 and k correspond to registers $s3 and $ 55 and the base of the
array save isin $56. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load save[ 7] into a temporary register. Before we can load
savel 1] into a temporary register, we need to have its address. Before we
can add i to the base of array save to form the address, we must multiply the
index 1 by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 22 or 4 (see page 88 in the
prior section). We need to add the label Lo0D to it so that we can branch back
to that instruction at the end of the loop:

Loop: s11 $t1,$s3,2 # Temp reg $t1 =1 * 4
To get the address of save[ 7], we need to add $t1 and the base of save in $ S 6:
add $t1,$t1,$s6 # $t1 = address of savel[i]

Now we can use that address to load save[ 1 ] into a temporary register:

Tw $t0,0($t1) ## Temp reg $t0 = savel[i]

The next instruction performs the loop test, exitingif save[i] # k:

bne $t0,$s5, Exit # go to Exit if save[i] = k
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The next instruction adds 1 to i:

addi $s3,%$s3,1 #i=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Ex 1t label after it, and we're done:

J Loop # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compiling  Hardware/
that they are given their own buzzword: a basic block is a sequence of instructions Software
without branches, except possibly at the end, and without branch targets or branch

labels, except possibly at the beginning. One of the first early phases of compilation Interface

is breaking the program into basic blocks.

basic block A sequence
of instructions without

. . - . branches (except possibly
The test for equality or inequality is probably the most popular test, but sometimes at the end) and without

it is useful to see if a variable is less than another variable. For example, a for loop targets or branch
may want to test to see if the index variable is less than 0. Such comparisons are  |apels (except possibly at
accomplished in MIPS assembly language with an instruction that compares two  the beginning).
registers and sets a third register to 1 if the first is less than the second; otherwise,

it is set to 0. The MIPS instruction is called set on less than, or S 1t. For example,

sit $t0, $s3, $s4  # $t0 =1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $ 53 is less than the value
in register $54; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons, so there is an immediate version
of the set on less than instruction. To test if register $52 is less than the constant
10, we can just write

slti $t0,$s2,10 # $t0 =1 if $s2 < 10

MIPS compilers use the s1t, s1t1, beq, bne, and the fixed value of 0 (always Hardware/
available by reading register $zero) to create all relative conditions: equal, not Software
equal, less than, less than or equal, greater than, greater than or equal.

Interface
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Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too complicated;
either it would stretch the clock cycle time or it would take extra clock cycles per
instruction. Two faster instructions are more useful.

Hardware/
Software
Interface

Comparison instructions must deal with the dichotomy between signed and
unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit
represents a negative number and, of course, is less than any positive number,
which must have a 0 in the most significant bit. With unsigned integers, on the
other hand, a 1 in the most significant bit represents a number that is larger than
any that begins with a 0. (We'll soon take advantage of this dual meaning of the
most significant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these
alternatives. Set on less than (S 1) and set on less than immediate (S 117) work with
signed integers. Unsigned integers are compared using set on less than unsigned
(s1tu) and set on less than immediate unsigned (S11t1u).

Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111,
and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001,

What are the values of registers $t0 and $t1 after these two instructions?

s1t $t0, $s0, $s1 # signed comparison
sltu $t1, $s0, $s1 # unsigned comparison

The value in register $s0 represents —1 __ifit is an integer and 4,294,967,295
if it is an unsigned integer. The value in register $s1 represents 1 __ in either
case. Then register $ £ 0 has the value 1, since —1 <1 _,and register $t 1 has
the value 0, since 4,294,967,295  >1 .
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Treating signed numbers as if they were unsigned gives us a low cost way of
checking if 0 < x < y, which matches the index out-of-bounds check for arrays. The
key is that negative integers in two's complement notation look like large numbers
in unsigned notation; that is, the most significant bit is a sign bit in the former
notation but a large part of the number in the latter. Thus, an unsigned comparison
of x < y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to
IndexOutOfBoundsif$s1 2 $t2orif $s1 is negative.

The checking code just uses U to do both checks:

sTtu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0
beq $t0,$zero,IndexOut0OfBounds #if bad, goto Error

Case/Switch Statement

Most programming languages have a case or switch statement that allows the
programmer to select one of many alternatives depending on a single value. The
simplest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table or
jump table, and the program needs only to index into the table and then jump to
the appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the code. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in the register. To support such situations, computers like MIPS include a jump
register instruction (j '), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction. We'll see an
even more popular use of Jr in the next section.

jump address

table Also called jump
table. A table of addresses
of alternative instruction
sequences.



96

Chapter 2 Instructlons: Language of the Computer

Hardware/
Software
Interface

Check
Yourself

ABSTRACTION

procedure A stored
subroutine that performs
a specific task based

on the parameters with
which it is provided.

Although there are many statements for decisions and loops in programming
languages like C and Java, the bedrock statement that implements them at the
instruction set level is the conditional branch.

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don't
worry: the MIPS assembler makes them invisible to the assembly language programmer.

. C has many statements for decisions and loops, while MIPS has few. Which
of the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

3. More decision statements mean fewer lines of code, which generally
reduces coding time.

4. More decision statements mean fewer lines of code, which generally
results in the execution of fewer operations.

II. Why does C provide two sets of operators for AND (& and &&) and two sets
of operators for OR (| and ||), while MIPS doesn't?

1. Logical operations AND and OR implement & and |, while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply
inherited from the programming language B, the predecessor of C.

Supporting Procedures in Computer
Hardware

A procedure or function is one tool programmers use to structure programs, both
to make them easier to understand and to allow code to be reused. Procedures
allow the programmer to concentrate on just one portion of the task at a time;
parameters act as an interface between the procedure and the rest of the program
and data, since they can pass values and return results. We describe the equivalent
to procedures in Java in[i] Section 2.15, but Java needs everything from a computer
that C needs. Procedures are one way to implement abstraction in software.
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You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his or her tracks, and then returns to the point
of origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Put parameters in a place where the procedure can access them.
Transfer control to the procedure.

Acquire the storage resources needed for the procedure.

2

3

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.
6

Return control to the point of origin, since a procedure can be called from
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention for procedure calling in allocating its 32 registers:

m $a0-%a3: four argument registers in which to pass parameters
m $v0-3$vI:two value registers in which to return values
m $ra:one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (ja 1) is simply written

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points
to the calling site to allow the procedure to return to the proper address. This “link,”
stored in register$ ra (register 31), is called the return address. The return address
is needed because the same procedure could be called from several parts of the
program.

To support such situations, computers like MIPS use jump register instruction
(Jr), introduced above to help with case statements, meaning an unconditional
jump to the address specified in a register:

jr $ra

jump-and-link
instruction An
instruction that jumps
to an address and
simultaneously saves the
address of the following
instruction in a register
($ra in MIPS).

return address A link to
the calling site that allows
a procedure to return

to the proper address;

in MIPS it is stored in
register $1a.
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caller The program that
instigates a procedure and
provides the necessary
parameter values.

callee A procedure that
executes a series of stored
instructions based on
parameters provided by
the caller and then returns
control to the caller.

program counter

(PC) The register
containing the address
of the instruction in the
program being executed.

stack A data structure
for spilling registers
organized as a last-in-
first-out queue.

stack pointer A value
denoting the most
recently allocated address
in a stack that shows
where registers should

be spilled or where old
register values can be
found. In MIPS, it is
register $Sp.

push Add element to
stack.

pop Remove element
from stack.

The jump register instruction jumps to the address stored in register $ra—
which is just what we want. Thus, the calling program, or caller, puts the parameter
values in $a0-%$a3 and uses jal X to jump to procedure X (sometimes named
the callee). The callee then performs the calculations, places the results in $v0 and
$v1, and returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this
register is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The ja 1 instruction actually saves PC + 4 in register $1a to link to the
following instruction to set up the procedure return.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission
is complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware/Software
Interface section above.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. MIPS software reserves register 29 for the stack
pointer, giving it the obvious name $ S p. Stacks are so popular that they have their
own buzzwords for transferring data to and from the stack: placing data onto the
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses.
This convention means that you push values onto the stack by subtracting from the
stack pointer. Adding to the stack pointer shrinks the stack, thereby popping values
off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 65 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j)
{

int f;

f=C0g+h) -0+ ]

return f;
}

What is the compiled MIPS assembly code?
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The parameter variables g, h, 1, and J correspond to the argument registers
$a0,%al,%a2,and $a3, and f corresponds to $50. The compiled program

starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 68, which
uses two temporary registers. Thus, we need to save three registers: $s0, $t0,
and $t1. We “push” the old values onto the stack by creating space for three
words (12 bytes) on the stack and then store them:

addi $sp, $sp, -12 4 adjust stack to make room for 3 items

sw o $tl, 8($sp) ## save register $tl1 for use afterwards
sw o $t0, 4($sp) ## save register $t0 for use afterwards
sw o $s0, 0($sp) ## save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which
follows the example on page 68:

add $t0,%$a0,%al # register $t0 contains g + h
add $t1,%$a2,$a3 # register $tl contains i + j
sub $s0,$t0,$t1 # f = $t0 - $t1, which is (g + h)-(i + J)

To return the value of f, we copy it into a return value register:

add $v0,%$s0,%$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

Tw $s0, 0($sp) # restore register $s0 for caller
Tw $t0, 4($sp) # restore register $t0 for caller
Tw $t1, 8($sp) # restore register $tl for caller
addi $sp,$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr $ra # jump back to calling routine

In the previous example, we used temporary registers and assumed their old
values must be saved and restored. To avoid saving and restoring a register whose
value is never used, which might happen with a temporary register, MIPS software
separates 18 of the registers into two groups:

m $t0-$t9: temporary registers that are not preserved by the callee (called
procedure) on a procedure call

m $s0-9$s7: saved registers that must be preserved on a procedure call (if
used, the callee saves and restores them)



100

Chapter 2 Instructions: Language of the Computer

High address

$sp4 $Sp4

Contents of register $t1

Contents of register $t0

$sp— | Contents of register $s0

Low address

(@) (b) (©

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in the
stack in this drawing.

This simple convention reduces register spilling. In the example above, since the
caller does not expect registers $t0 and $t 1 to be preserved across a procedure
call, we can drop two stores and two loads from the code. We still must save and
restore $ 50, since the callee must assume that the caller needs its value.

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be simple if
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other
spies as part of a mission, who in turn might use even more spies, so do procedures
invoke other procedures. Moreover, recursive procedures even invoke “clones” of
themselves. Just as we need to be careful when using registers in procedures, more
care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument
of 3, by placing the value 3 into register $a0 and then using ja1 A. Then suppose
that procedure A calls procedure B via jal B with an argument of 7, also placed
in $a0. Since A hasn't finished its task yet, there is a conflict over the use of register
$a0. Similarly, there is a conflict over the return address in register $ra, since it
now has the return address for B. Unless we take steps to prevent the problem, this
conflict will eliminate procedure A’ ability to return to its caller.

One solution is to push all the other registers that must be preserved onto
the stack, just as we did with the saved registers. The caller pushes any argument
registers ($a0-$a3) or temporary registers ($t0-$t9) that are needed after
the call. The callee pushes the return address register $ra and any saved registers
($50-$57) used by the callee. The stack pointer $ S p is adjusted to account for the
number of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.
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Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)
{
if (n < 1) return (1);
else return (n * fact(n - 1));
}

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $4a0:

fact:
addi  $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) { save the return address
SW $a0, 0($sp) 4 save the argument n

The first time Tact is called, Sw saves an address in the program that called
fact. The next two instructions test whether n is less than 1, going to L1 if
n 21.

s1ti  $t0,%a0,1 # test for n <1
beq  $t0,$zero,L1 # if n >=1, go to L1

If nisless than 1, fact returns 1 by putting 1 into a value register: it adds 1 to
0 and places that sum in $v0. It then pops the two saved values off the stack
and jumps to the return address:

addi  $v0,$zero,1 # return 1
addi  $sp,$sp,8 # pop 2 items off stack
jr $ra # return to caller

Before popping two items off the stack, we could have loaded $a0 and
$ra. Since $a0 and $ra don’t change when n is less than 1, we skip those
instructions.

If n is not less than 1, the argument N is decremented and then fact is
called again with the decremented value:

L1: addi $a0,%a0,-1 # n >= 1: argument gets (n - 1)
jal fact # call fact with (n -1)
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The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

Tw  $a0, 0($sp) # return from jal: restore argument n
Tw  $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and
the current value of the value register. We assume a multiply instruction is
available, even though it is not covered until Chapter 3:

mul  $v0,%$a0,$v0  # return n * fact (n - 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

Hardware/
Software
Interface

global pointer The
register that is reserved to
point to the static area.

A C variable is generally a location in storage, and its interpretation depends both
on its type and storage class. Examples include integers and characters (see Section
2.9). C has two storage classes: automatic and static. Automatic variables are local to
aprocedure and are discarded when the procedure exits. Static variables exist across
exits from and entries to procedures. C variables declared outside all procedures
are considered static, as are any variables declared using the keyword static. The
rest are automatic. To simplify access to static data, MIPS software reserves another
register, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that
several schemes preserve the stack, guaranteeing that the caller will get the same
data back on a load from the stack as it stored onto the stack. The stack above $Sp
is preserved simply by making sure the callee does not write above $sp; $sp is

Saved registers: $s0-$s7 Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-%$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the frame pointer register or on the global pointer register, discussed in the following subsections, they
are also preserved.
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itself preserved by the callee adding exactly the same amount that was subtracted
from it; and the other registers are preserved by saving them on the stack (if they
are used) and restoring them from there.

Allocating Space for New Data on the Stack

The final complexity is that the stack is also used to store variables that are local
to the procedure but do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.12 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory-references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We've been avoiding using $ f p by
avoiding changes to $ S p within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure.

High address

$fp — $fp —

$sp— $sp—

$f | saved argument

registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address

(a) (b) (c)

FIGURE 2.12 Illlustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($Sp) points to the top of the stack. The stack is adjusted to make room for
all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $Sp on a call, and $ s is restored using $ f p. This
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

procedure frame Also
called activation record.
The segment of the stack
containing a procedure’s
saved registers and local
variables.

frame pointer A value
denoting the location of
the saved registers and
local variables for a given
procedure.
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text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programmers
need space in memory for static variables and for dynamic data structures. Figure
2.13 shows the MIPS convention for allocation of memory. The stack starts in the
high end of memory and grows down. The first part of the low end of memory is
reserved, followed by the home of the MIPS machine code, traditionally called
the text segment. Above the code is the static data segment, which is the place
for constants and other static variables. Although arrays tend to be a fixed length
and thus are a good match to the static data segment, data structures like linked
lists tend to grow and shrink during their lifetimes. The segment for such data
structures is traditionally called the heap, and it is placed next in memory. Note
that this allocation allows the stack and heap to grow toward each other, thereby
allowing the efficient use of memory as the two segments wax and wane.

$sp— 7fff fffcpey Stack

f

Dynamic data
$gp— 1000 8000y Static data
1000 0000peyx
Text
pc— 0040 0000z
Reserved

0

FIGURE 2.13 The MIPS memory allocatlon for program and data. These addresses are only
a software convention, and not part of the MIPS architecture. The stack polnter is initialized to 7 fff
fffc,, and grows down toward the data segment. At the other end, the program code (“text”) starts at
0040 0000,,. The static data starts at 1000 0000, . Dynamic data, allocated by ma110oc in C and by
new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is set to
an address to make it easy to access data. It Is initialized to 1000 8000, so that it can access from 1000
0000,,t0 1000 ffff,_usingthe positive and negative 16-bit offsets from $gp. This information is also
found in Column 4 of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions. malloc()
allocates space on the heap and returns a pointer to it, and free() releases
space on the heap to which the pointer points. Memory allocation is controlled by
programs in C, and it is the source of many common and difficult bugs. Forgetting
to free space leads to a “memory leak,” which eventually uses up so much memory
that the operating system may crash. Freeing space too early leads to “dangling
pointers,” which can cause pointers to point to things that the program never
intended. Java uses automatic memory allocation and garbage collection just to
avoid such bugs.
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Figure 2.14 summarizes the register conventions for the MIPS assembly
language. This convention is another example of making the common case fast:
most procedures can be satisfied with up to 4 arguments, 2 registers for a return
value, 8 saved registers, and 10 temporary registers without ever going to memory.

Preserved on
Reglster number Usage call?

$zero The constant value O

$v0-$v1 2-3 Values for results and expression evaluation no
$a0-%$a3 4-7 Arguments no
$t0-$t7 8-15 Temporaries no
$s0-$s7 16-23 Saved yes
$t8-$t9 24-25 More temporaries no
$gp 28 Global pointer yes
$sp 29 Stack pointer yes
$fp 30 Frame pointer yes
$ra 31 Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see
Section 2.12), and registers 26-27, called $k0-$ k1, are reserved for the operating system. This information
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $a0 through $a3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because
all references to variables in the stack within a procedure will have the same offset.
The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame
pointer, but the C compiler from MIPS does not; it treats register 30 as another save
register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using
recursion. lteration can significantly improve performance by removing the overhead
associated with recursive procedure calls. For example, consider a procedure used to
accumulate a sum:

int sum (int n, int acc) {
if (n >0)
return sum(n - 1, acc + n);
else
return acc;

}

Consider the procedure call sum(3,0). This will result in recursive calls to
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four

COMMON CASE FAST
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times. This recursive call of sum is referred to as a tail call, and this example use of
tail recursion can be implemented very efficiently (assume $a0 = nand $al = acc):

sum: sl1ti $t0, $al0, 1 # test ifn<=0
bne $t0, $zero, sum_exit 4 go to sum_exit if n <=0
add$al, $al, $a0l # add n to acc
addi$a0, $al, -1 # subtract 1 fromn
J sum # go to sum
sum_exit:
add$v0, $al, $zero # return value acc
jr $ra # return to caller

Check Which of the following statements about C and Java are generally true?
Yourself 1. Cprogrammers manage data explicitly, while it's automatic in Java.

2. Cleads to more pointer bugs and memory leak bugs than does Java.
(@ | = > (wow open
tab at bar is great)
Fourth line of the

keyboard poem “Hatless
Atlas” 1991 (some

Communicating with People

Computers were invented to crunch numbers, but as soon as they became

give names to ASCII - 3

characters: “I” is “wow? ~ commercially viable they were used to process text. Most computers today offer
“(” is open, “|” is bar, 8-bit bytes torepresent characters, with the American Standard Code for Information
and so on). Interchange (ASCII) being the representation that nearly everyone follows. Figure

2.15 summarizes ASCIL

ASCIl Char- ASCIl Char- ASCIl Char- ASCIl Char- ASCIl Char- ASCII Char-
value acter value acter value acter value acter value acter value acter

space
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ! 55 7 71 G 87 W 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 X
41 ) 57 9 73 | 89 Y 105 i 121 y
42 * 58 : 74 J 90 YA 106 j 122 z
43 + 59 ; 75 K 91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 A 110 n 126 ~
a7 / 63 ? 79 [0} 95 _ 111 o 127 DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can
lead to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a
backspace, 9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses
to mark the end of a string. This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.
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ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers.
How much does storage increase if the number 1 billion is represented in
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.
Thus the storage expansion would be (10 X 8)/32 or 2.5. Beyond the expansion
in storage, the hardware to add, subtract, multiply, and divide such decimal
numbers is difficult and would consume more energy. Such difficulties explain
why computing professionals are raised to believe that binary is natural and
that the occasional decimal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store
word are sufficient for transferring bytes as well as words. Because of the popularity
of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (1b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

b $t0,0($sp) # Read byte from source
sh $t0,0($gp) # Write byte to destination

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first position
of the string is reserved to give the length of a string, (2) an accompanying variable
has the length of the string (as in a structure), or (3) the last position of a string is
indicated by a character used to mark the end of a string. C uses the third choice,
terminating a string with a byte whose value is 0 (named null in ASCII). Thus,
the string “Cal” is represented in C by the following 4 bytes, shown as decimal
numbers: 67, 97, 108, 0. (As we shall see, Java uses the first option.)
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Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string X using the null byte
termination convention of C:

void strcpy (char x[1, char y[])
{

int i;

i=0;
while ((x[1] = y[i1) != “\0’) /* copy & test byte */
i+=1;

J
What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and y are found in $a0 and $al, while iis in $s0. strcpy
adjusts the stack pointer and then saves the saved register $ 50 on the stack:

strcpy:
addi  $sp,$sp,-4 # adjust stack for 1 more item
sw $s0, 0($sp) # save $s0

To initialize 7 to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and
placing that sum in $s0:

add $s0,$zero,$zero # i =0+ 0

This is the beginning of the loop. The address of y [ 1 ] is first formed by adding
itoy[]:

L1: add $t1,$s0,%al 4 address of y[i] in $tl

Note that we don’t have to multiply 7 by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y [ 1 ], we use load byte unsigned, which puts the
character into $t2:

1bu $t2, 0($tl) 4 $t2 = y[i]

A similar address calculation puts the address of X[ 1] in $t3, and then the
character in $t 2 is stored at that address.
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add $t3,%$s0,%a0 4 address of x[i] in $t3
sh $t2, 00$t3) # x[i] = yl[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last
character of the string:

beq $t2,%$zero,L2 # if y[i]l == 0, go to L2

If not, we increment i and loop back:

addi  $s0, $s0,1  #i =1 +1
j L1 # go to L1

If we don’t loop back, it was the last character of the string; we restore $50 and
the stack pointer, and then return.

L2: Tw $s0, 0($sp) # y[i] == 0: end of string.
## Restore old $s0
addi  $sp,$sp.4 # pop 1 word off stack
jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the operations
on i in the code above. See Section 2.14 for an explanation of arrays versus
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could
allocate 1 to a temporary register and avoid saving and restoring $s0. Hence,
instead of thinking of the $ t registers as being just for temporaries, we can think of
them as registers that the callee should use whenever convenient. When a compiler
finds a leaf procedure, it exhausts all temporary registers before using registers it
must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages. Figure
2.16 gives alist of Unicode alphabets; there are almost as many alphabets in Unicode
as there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for
characters. By default, it uses 16 bits to represent a character.
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Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian | Shavian Optical Character Recognition
Aboriginal Syllabic

Guijarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols| Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16

Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,”

which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at
0370, , and Cyrillic at 0400, . The first three columns show 48 blocks that correspond to human languages
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order.
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTEF-8, keeps the ASCII
subset as eight bits and uses 16 or 32 bits for the other characters. UTF-32 uses 32 bits per character. To learn
more, see www.unicode.org.

The MIPS instruction set has explicit instructions to load and store such 16-
bit quantities, called halfwords. Load half (1h) loads a halfword from memory,
placing it in the rightmost 16 bits of a register. Like load byte, load half (1h) treats
the halfword as a signed number and thus sign-extends to fill the 16 leftmost bits
of the register, while load halfword unsigned (1 hu) works with unsigned integers.
Thus, 1hu is the more popular of the two. Store half (Sh) takes a halfword from the
rightmost 16 bits of a register and writes it to memory. We copy a halfword with
the sequence

Thu $t0,0($sp) # Read halfword (16 bits) from source
sh $t0,0($gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes a
word that gives the length of the string, similar to Java arrays.
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Elaboration: MIPS software tries to keep the stack aligned to word addresses,
allowing the program to always use 1w and sw (which must be aligned) to access the
stack. This convention means that a char variable allocated on the stack occupies 4
bytes, even though it needs less. However, a C string variable or an array of bytes will
pack 4 bytes per word, and a Java string variable or array of shorts packs 2 halfwords
per word.

Elaboration: Reflecting the international nature of the web, most web pages today
use Unicode instead of ASCII.

I. Which of the following statements about characters and strings in C and Check
Java are true? Yourself
1. Astringin C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of
charactersin C and Java.

3. Strings in Cand Java use null (0) to mark the end of a string.
4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000, takes the most
memory space?

1. intinC
2. stringinC

3. stringinJava

MIPS Addressing for 32-bit Imnmediates
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows the
optimizations for instruction addresses used in branches and jumps.
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32-Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field, sometimes they
are bigger. The MIPS instruction set includes the instruction load upper immediate
(Tui) specifically to set the upper 16 bits of a constant in a register, allowing a
subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17
shows the operation of Tui.

m Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $507?

0000 0000 0011 1101 0OOO 1001 0000 0000

m First, we would load the upper 16 bits, which is 61 in decimal, using 1ui:
Tui $s0, 61 4 61 decimal = 0000 0000 0011 1101 binary
The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

The final value in register $50 is the desired value:

0000 0000 0011 1101 0OOO 1001 0000 0000

The machine language version of Tui $t0, 255 # $t0 is register 8:

| 001111 00000 | 01000 | 0000 0000 1111 1111 |
Contents of register $t0 after executing Tui $t0, 255: /
| 0000 0000 1111 1111 | 0000 0000 0000 0000 |

FIGURE 2.17 The effect of the 1ui instruction. The instruction 1u1 transfers the 16-bit immediate constant field value into the
leftmost 16 bits of the register, filling the lower 16 bits with 0s.
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Either the compiler or the assembler must break large constants into pieces and
then reassemble them into a register. As you might expect, the immediate field’s
size restriction may be a problem for memory addresses in loads and stores as
well as for constants in immediate instructions. If this job falls to the assembler,
as it does for MIPS software, then the assembler must have a temporary register
available in which to create the long values. This need is a reason for the register
$at (assembler temporary), which is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but by whatever the creator of an assembler chooses to
include (see Section 2.12). We stick close to the hardware to explain the architecture
of the computer, noting when we use the enhanced language of the assembler that
is not found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
left-most bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word. Logical or imnmediate from Section 2.6 loads Os into the upper 16 bits and hence
is used by the assembler in conjunction with 1ui to create 32-bit constants.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field
and the rest of the bits for the address field. Thus,

j 10000 4 go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we will
see):

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify
two operands in addition to the branch address. Thus,

bne $s0,$s1,Exit 4 go to Exit if $s0 = $sli

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

Hardware/
Software
Interface
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PC-relative
addressing An
addressing regime

in which the address
is the sum of the
program counter (PC)
and a constant in the
instruction.

COMMON CASE FAST

If addresses of the program had to fit in this 16-bit field, it would mean that no
program could be bigger than 2', which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added
to the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2% and still be able to use
conditional branches, solving the branch address size problem. Then the question
is, which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
*+2'° words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 2'¢ words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point
to the next instruction. Hence, the MIPS address is actually relative to the address
of the following instruction (PC + 4) as opposed to the current instruction (PC).
It is yet another example of making the common case fast, which in this case is
addressing nearby instructions.

Like most recent computers, MIPS uses PC-relative addressing for all conditional
branches, because the destination of these instructions is likely to be close to the
branch. On the other hand, jump-and-link instructions invoke procedures that
have no reason to be near the call, so they normally use other forms of addressing.
Hence, the MIPS architecture offers long addresses for procedure calls by using the
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four
times as far by interpreting the field as a relative word address rather than as a
relative byte address. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be
careful to avoid placing a program across an address boundary of 256 MB (64 million
instructions); otherwise, a jump must be replaced by a jump register instruction preceded
by other instructions to load the full 32-bit address into a register.
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Showing Branch Offset in Machine Language

The while loop on pages 92-93 was compiled into this MIPS assembler code:

Loop:s11 $t1,$s3,2 # Temp reg $tl1 = 4 * i
add §$t1,$tl1,9s6 # $t1 = address of save[i]
Tw $t0,0(%$t1) # Temp reg $t0 = savel[i]
bne $t0,$s5, Exit # go to Exit if savel[i] = k
addi $s3,%$s3,1 Fi=19+1
Jj Loop # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is

the MIPS machine code for this loop?

The assembled instructions and their addresses are:

80000 0 0 19 9 2 0
80004 0 9 22 9 0 32
80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024

Remember that MIPS instructions have byte addresses, so addresses of
sequential words differ by 4, the number of bytes ina word. The bne instruction
on the fourth line adds 2 words or 8 bytes to the address of the following
instruction (80016), specifying the branch destination relative to that following
instruction (8 + 80016) instead of relative to the branch instruction (12 +
80012) or using the full destination address (80024). The jump instruction on
the last line does use the full address (20000 X 4 = 80000), corresponding to

the label Loop.
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Hardware/ Most conditional branches are to a nearby location, but occasionally they branch
far away, farther than can be represented in the 16 bits of the conditional branch
Software : . . g
instruction. The assembler comes to the rescue just as it did with large addresses
Interface or constants: it inserts an unconditional jump to the branch target, and inverts the
condition so that the branch decides whether to skip the jump.

Given a branch on register $ 50 being equal to register $s1,

beq $s0, $s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

m These instructions replace the short-address conditional branch:
bne $s0, $s1, L2

j L1

L2:

MIPS Addressing Mode Summary

addressing mode One  Multiple forms of addressing are generically called addressing modes. Figure 2.18
of several addressing shows how operands are identified for each addressing mode. The MIPS addressing

regimes delimited by their  13qdes are the following:
varied use of operands

and/or addresses. 1. Immediate addressing, where the operand is a constant within the instruction
itself

2. Register addressing, where the operand is a register

3. Baseor displacement addressing, where the operand is at the memory location
whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a
constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the
instruction concatenated with the upper bits of the PC
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1. Immediate addressing

‘ op ‘ rs | rt | Immediate |

2. Register addressing

’ op ‘ rs ‘ rt | rd | |funct| Registers

Register

3. Base addressing

’ op ‘ rs ‘ rt | Address | Memory

’ Register | [Byte'| Halfword Word

4. PC-relative addressing

‘ op | rs | rt | Address l Memory

PC Word
| |

5. Pseudodirect addressing

‘ op ‘ Address ‘ Memory
I

‘ 3

Word

:

FIGURE 2.18 Illlustration of the flve MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of
load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself.
Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the
PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Note that a
single operation can use more than one addressing mode. Add, for example, uses both immediate (addi)
and register (add) addressing.

Although we show MIPS as having 32-bit addresses, nearly all microprocessors
(including MIPS) have 64-bit address extensions (see ] Appendix E and Section
2.18). These extensions were in response to the needs of software for larger
programs. The process of instruction set extension allows architectures to expand in
such a way that is able to move software compatibly upward to the next generation
of architecture.

Hardware/
Software
Interface



118

Chapter 2 Instructions: Language of the Computer

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the
original assembly language. One example is when looking at “core dump.” Figure
2.19 shows the MIPS encoding of the fields for the MIPS machine language. This
figure helps when translating by hand between assembly language and machine
language.

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

00af8020hex

The first step in converting hexadecimal to binary is to find the op fields:

(Bits: 31 28 26 5 2 0)
0000 0000 1010 1111 1000 OOOO 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.19,
when bits 31-29 are 000 and bits 28-26 are 000, it is an R-format instruction.
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.20:

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.19 determines the operation of an R-format
instruction. In this case, bits 5-3 are 100 and bits 2-0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The
decimal values are 5 for the rs field, 15 for rt, and 16 for rd (shamt is unused).
Figure 2.14 shows that these numbers represent registers $al, $t7,and $s0.
Now we can reveal the assembly instruction:

add $s0,%al,$t7
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28-26 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
31-29
0(000) R-format Bltz/gez jump jump & 1ink|branch eq [branch blez bgtz
ne

1(001) add addiu set less set less andi ori xori load upper

immediate than imm. than imm. immediate

unsigned
2(010) TLB F1Pt
3(011)
4(100) load byte load half |[1wl load word |load byte |Toad Twr
unsigned |half
unsigned

5(101) store byte store half | swl store word swr
6(110) load linked |[Twcl

word
7(111) store cond. |swcl

word

0p(31:26)=010000 (TLB), rs(25:21)
23-21 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
25-24
0(00) mfc0 cfc mtcO ctcO
1(01)
2(10)
3(11)
0op(31:26)=000000 (R-format), funct(5:0)

2-0 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
5-3
0(000) shift left shift right|sra s1lv srlv srav

logical logical
1(001) jump register| jalr syscall break
2(010) mfhi mthi mflo mtlo
3(011) mult multu div divu
4(100) add addu subtract subu and or xor not or (nor)
5(101) set1.t. set1.t.

unsigned

6(110)
7(111)

FIGURE 2.19 MIPS Instructlon encoding. This notation gives the value of a field by row and by column. For example, the top portion
of the figure shows load word in row number 4 (100, for bits 31-29 of the instruction) and column number 3 (011, for bits 28-26 of the
instruction), so the corresponding value of the op field (bits 31-26) 1s 100011,, . Underscore means the field is used elsewhere. For example,
R-format in row 0 and column 0 (op = 000000, ) is defined in the bottom part of the figure. Hence, subtract in row 4 and column
2 of the bottom section means that the funct field (bits 5-0) of the instruction is 100010, and the op field (bits 31-26) 1s 000000,, . The
floating point value in row 2, column 1 is defined in Figure 3.18 in Chapter 3. B1tz/gez is the opcode for four instructions found
in Appendix A: b1tz, bgez, b1tzal, and bgezal. This chapter describes instructions given in full name using color, while Chapter 3
describes instructions given in mnemonics using color. Appendix A covers all instructions.
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Thame | mess | Commems

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits |All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct | Arithmetic instruction format

|-format op rs rt address/immediate Transfer, branch,imm. format
J-format op target address Jump instruction format

FIGURE 2.20 MIPS instruction formats.

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 64 shows
the MIPS assembly language revealed in this chapter. The remaining hidden portion
of MIPS instructions deals mainly with arithmetic and real numbers, which are
covered in the next chapter.

Check I. What is the range of addresses for conditional branches in MIPS (K = 1024)?
Yourself 1. Addresses between 0 and 64K — 1
2. Addresses between 0 and 256K — 1
3. Addresses up to about 32K before the branch to about 32K after
4. Addresses up to about 128K before the branch to about 128K after

II. What is the range of addresses for jump and jump and link in MIPS
(M = 1024K)?

1. Addresses between 0 and 64M — 1

2. Addresses between 0 and 256M — 1

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128 M after
5

. Anywhere within a block of 64M addresses where the PC supplies the
upper 6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the
upper 4 bits

III. What is the MIPS assembly language instruction corresponding to the
machine instruction with the value 0000 0000, _?

1 J
2. R-format
3. addi

4. s11

5. mfcO

6

Undefined opcode: there is no legal instruction that corresponds to 0
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Parallelism and Instructions:
Synchronization

Parallel execution is easier when tasks are independent, but often they need to
cooperate. Cooperation usually means some tasks are writing new values that
others must read. To know when a task is finished writing so that it is safe for
another to read, the tasks need to synchronize. If they don’t synchronize, there is a
danger of a data race, where the results of the program can change depending on
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page 44 of
Chapter 1. Suppose one reporter needs to read all the prior sections before writing
a conclusion. Hence, he or she must know when the other reporters have finished
their sections, so that there is no danger of sections being changed afterwards. That
is, they had better synchronize the writing and reading of each section so that the
conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level
software routines that rely on hardware-supplied synchronization instructions. In
this section, we focus on the implementation of lock and unlock synchronization
operations. Lock and unlock can be used straightforwardly to create regions
where only a single processor can operate, called a mutual exclusion, as well as to
implement more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiprocessor
is a set of hardware primitives with the ability to atomically read and modify a
memory location. That is, nothing else can interpose itself between the read and
the write of the memory location. Without such a capability, the cost of building
basic synchronization primitives will be high and will increase unreasonably as the
processor count increases.

There are a number of alternative formulations of the basic hardware primitives,
all of which provide the ability to atomically read and modify a location, together
with some way to tell if the read and write were performed atomically. In general,
architects do not expect users to employ the basic hardware primitives, but
instead expect that the primitives will be used by system programmers to build a
synchronization library, a process that is often complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to
build a basic synchronization primitive. One typical operation for building
synchronization operations is the atomic exchange or atomic swap, which inter-
changes a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that
we want to build a simple lock where the value 0 is used to indicate that the lock
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set
the lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1
if some other processor had already claimed access, and 0 otherwise. In the latter

PARALLELISM

data race Two memory
accesses form a data race
if they are from different
threads to same location,
at least one is a write,
and they occur one after
another.
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case, the value is also changed to 1, preventing any competing exchange in another
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange
simultaneously: this race is broken, since exactly one of the processors will perform
the exchange first, returning 0, and the second processor will return 1 when it does
the exchange. The key to using the exchange primitive to implement synchronization
is that the operation is atomic: the exchange is indivisible, and two simultaneous
exchanges will be ordered by the hardware. It is impossible for two processors
trying to set the synchronization variable in this manner to both think they have
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in
the design of the processor, since it requires both a memory read and a write in a
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction
returns a value showing whether the pair of instructions was executed as if the pair
were atomic. The pair of instructions is effectively atomic if it appears as if all other
operations executed by any processor occurred before or after the pair. Thus, when
an instruction pair is effectively atomic, no other processor can change the value
between the instruction pair.

In MIPS this pair of instructions includes a special load called a load linked and
a special store called a store conditional. These instructions are used in sequence:
if the contents of the memory location specified by the load linked are changed
before the store conditional to the same address occurs, then the store conditional
fails. The store conditional is defined to both store the value of a (presumably
different) register in memory and to change the value of that register to a 1 if it
succeeds and to a 0 if it fails. Since the load linked returns the initial value, and the
store conditional returns 1 only if it succeeds, the following sequence implements
an atomic exchange on the memory location specified by the contents of $s1:

again: addi $t0,$zero,1 ;copy locked value
11 $t1,0($s1) ;load Tinked
sC $t0,0($s1) ;store conditional
beq $t0,$zero,again ;branch if store fails
add $s4,%zero,$tl ;put load value in $s4

Any time a processor intervenes and modifies the value in memory between the
11 and s instructions, the SC returns 0 in $t0, causing the code sequence to try
again. At the end of this sequence the contents of $s4 and the memory location
specified by $s1 have been atomically exchanged.

Elaboration: Although it was presented for multiprocessor synchronization, atomic
exchange is also useful for the operating system in dealing with multiple processes
in a single processor. To make sure nothing interferes in a single processor, the store
conditional also fails if the processor does a context switch between the two instructions
(see Chapter 5).
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An advantage of the load linked/store conditional mechanism is that it can be used
to build other synchronization primitives, such as atomic compare and swap or atomic
fetch-and-increment, which are used in some parallel programming models. These
involve more instructions between the 11 and the sc, but not too many.

Since the store conditional will fail after either another attempted store to the load
linked address or any exception, care must be taken in choosing which instructions are
inserted between the two instructions. In particular, only register-register instructions
can safely be permitted; otherwise, it is possible to create deadlock situations where
the processor can never complete the sc because of repeated page faults. In addition,
the number of instructions between the load linked and the store conditional should be
small to minimize the probability that either an unrelated event or a competing processor
causes the store conditional to fail frequently.

When do you use primitives like load linked and store conditional?

1. When cooperating threads of a parallel program need to synchronize to get
proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for
reading and writing shared data

Translating and Starting a Program

This section describes the four steps in transforming a C program in a file on disk
into a program running on a computer. Figure 2.21 shows the translation hierarchy.
Some systems combine these steps to reduce translation time, but these are the
logical four phases that programs go through. This section follows this translation
hierarchy.

Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level language programs
take many fewer lines of code than assembly language, so programmer productivity
is much higher.

In 1975, many operating systems and assemblers were written in assembly
language because memories were small and compilers were inefficient. The
million-fold increase in memory capacity per single DRAM chip has reduced
program size concerns, and optimizing compilers today can produce assembly
language programs nearly as well as an assembly language expert, and sometimes
even better for large programs.

Check
Yourself

assembly language

A symbolic language that
can be translated into
binary machine language.
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pseudoinstruction

A common variation

of assembly language
instructions often treated
as if it were an instruction
in its own right.

| Assembly language program |

Assembler

| Object: Machine language module | | Object: Library routine (machine language)

| Executable: Machine language program |

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use
linking loaders that perform the last two steps. To identify the type of file, UNIX follows a suffix convention
for files: C source files are named X . C, assembly files are x . S, object files are named X . 0, statically linked
library routines are X . a, dynamically linked library routes are X . S0, and executable files by default are
called a . out. MS-DOS uses the suffixes . C, . ASM, .0BJ, . LIB, .DLL,and . EXE to the same effect.

Assembler

Since assembly language is an interface to higher-level software, the assembler
can also treat common variations of machine language instructions as if they
were instructions in their own right. The hardware need not implement these
instructions; however, their appearance in assembly language simplifies translation
and programming. Such instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $ zer o always
has the value 0. That is, whenever register $zero is used, it supplies a 0, and the
programmer cannot change the value of register $zero. Register $zero is used
to create the assembly language instruction that copies the contents of one register
to another. Thus the MIPS assembler accepts this instruction even though it is not
found in the MIPS architecture:

move $t0,$tl # register $t0 gets register $tl
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The assembler converts this assembly language instruction into the machine
language equivalent of the following instruction:

add $t0,$zero,$tl # register $t0 gets 0 + register $tl

The MIPS assembler also converts b1t (branch on less than) into the two
instructions S 1 t and bne mentioned in the example on page 95. Other examples
include bgt, bge, and b1e. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardware. The only cost is reserving
one register, $at, for use by the assembler. If you are going to write assembly
programs, use pseudoinstructions to simplify your task. To understand the MIPS
architecture and be sure to get best performance, however, study the real MIPS
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet
converts easily to a bit pattern. MIPS assemblers use hexadecimal.

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language
program, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions
in a symbol table. As you might expect, the table contains pairs of symbols and
addresses.

The object file for UNIX systems typically contains six distinct pieces:

m The object file header describes the size and position of the other pieces of the
object file.

m The text segment contains the machine language code.

m The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use both static data, which is allocated throughout
the program, and dynamic data, which can grow or shrink as needed by the
program. See Figure 2.13.)

m The relocation information identifies instructions and data words that depend
on absolute addresses when the program is loaded into memory.

m The symbol table contains the remaining labels that are not defined, such as
external references.

symbol table A table
that matches names of
labels to the addresses of
the memory words that
instructions occupy.
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linker Also called

link editor. A systems
program that combines
independently assembled
machine language
programs and resolves all
undefined labels into an
executable file.

executable file

A functional program in
the format of an object
file that contains no
unresolved references.

It can contain symbol
tables and debugging
information. A “stripped
executable” does not
contain that information.
Relocation information
may be included for the
loader.

B The debugging information contains a concise description of how the modules
were compiled so that a debugger can associate machine instructions with C
source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one
procedure requires compiling and assembling the whole program. Complete
retranslation is a terrible waste of computing resources. This repetition is
particularly wasteful for standard library routines, because programmers would
be compiling and assembling routines that by definition almost never change. An
alternative is to compile and assemble each procedure independently, so that a
change to one line would require compiling and assembling only one procedure.
This alternative requires a new systems program, called a link editor or linker,
which takes all the independently assembled machine language programs and
“stitches” them together.
There are three steps for the linker:

1. Place code and data modules symbolically in memory.
2. Determine the addresses of data and instruction labels.
3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instructions,
jump instructions, and data addresses, so the job of this program is much like that
of an editor: it finds the old addresses and replaces them with the new addresses.
Editing is the origin of the name “link editor,” or linker for short. The reason a
linker is useful is that it is much faster to patch code than it is to recompile and
reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.13 on page 104 shows
the MIPS convention for allocation of program and data to memory. Since the
files were assembled in isolation, the assembler could not know where a module’s
instructions and data would be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typically,
this file has the same format as an object file, except that it contains no unresolved
references. It is possible to have partially linked files, such as library routines, that
still have unresolved addresses and hence result in object files.



2.12 Translating and Starting a Program

127

Linking Object Files

Link the two object files below. Show updated addresses of the first few
instructions of the completed executable file. We show the instructions in
assembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the addresses
of data words X and Y.

Object file header
Name Procedure A
Text size 100,,,
Data size 20, .,
Text segment Address Instruction
0 Tw $a0, 0($gp)
4 jal o0
Data segment 0 (X)
Relocation information Address Instruction type Dependency
0 Tw X
4 jal B
Symbol table Label Address
X —
B _
Object file header
Name Procedure B
Text size 200, .,
Data size 30, .,
Text segment Address Instruction
0 sw$al, 0($gp)
4 jal o0
Data segment 0 )
Relocation information Address Instruction type Dependency
0 Sw Y
4 jal A
Symbol table Label Address
\( _
/_\ _
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1.

Procedure A needs to find the address for the variable labeled X to put in the
load instruction and to find the address of procedure B to place in the jal
instruction. Procedure B needs the address of the variable labeled Y for the
store instruction and the address of procedure A for its ja | instruction.

From Figure 2.13 on page 104, we know that the text segment starts
at address 40 0000,  and the data segment at 1000 0000, . The text of
procedure A is placed at the first address and its data at the second. The object
file header for procedure A says that its text is 100, bytes and its data is 20,
bytes, so the starting address for procedure B text is 40 01 00,,,, and its data
startsat 1000 0020,

Executable file header
Text size 300,
Data size 50,6
Text segment Address Instruction
0040 0000, , Tw $a0, 8000, _ ($gp)
0040 0004, _, jal 40 0100, _,
0040 0100, sw$al, 8020, _($gp)
0040 0104, _, jal 40 0000,
Data segment Address
1000 0000, (X))
1000 0020, (Y)

Figure 2.13 also shows that the text segment starts at address 40 0000,
and the data segment at 1000 0000, . The text of procedure A is placed at the
first address and its data at the second The object file header for procedure A
says that its text is 100, _bytes and its data is 20, bytes, so the starting address
for procedure B textis 40 0100, , and its data startsat 1000 0020,

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
two types here:

The jals are easy because they use pseudodirect addressing. The jal at
address 40 0004,  gets 40 0100,  (the address of procedure B) in its
address field, and the jal at 40 0104h gets 40 0000, (the address of
procedure A) in its address field.

The load and store addresses are harder because they are relative to a base
register. This example uses the global pointer as the base register. Figure 2.13
shows that $gp is initialized to 1000 8000, . To get the address 1000 0000,
(the address of word X), we place 8000, in the address field of 1w at address
40 0000, . Similarly, we place 8020, “in the address field of sw at address
4001 OO to get the address 1000 0 O ? 0,., (the address of word V).
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Elaboration: Recall that MIPS instructions are word aligned, so jal drops the right
two bits to increase the instruction’s address range. Thus, it uses 26 bits to create a
28-bit byte address. Hence, the actual address in the lower 26 bits of the ja 1 instruction
in this example is 10 0040, , rather than 40 0100, ..

X,

Loader

Now that the executable file is on disk, the operating system reads it to memory and
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data
segments.

Creates an address space large enough for the text and data.
Copies the instructions and data from the executable file into memory.

Copies the parameters (if any) to the main program onto the stack.

oo wN

Initializes the machine registers and sets the stack pointer to the first free
location.

6. Jumps to a start-up routine that copies the parameters into the argument
registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system
call.

Sections A.3 and A.4 in Appendix A describe linkers and loaders in more detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadvantages:

m The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

m It loads all routines in the library that are called anywhere in the executable,
even if those calls are not executed. The library can be large relative to the
program; for example, the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the
program and library routines keep extra information on the location of nonlocal
procedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the file to find the appropriate libraries and to
update all external references.

loader A systems
program that places an
object program in main
memory so that it is ready
to execute.

Virtually every
problem in computer
science can be solved
by another level of
indirection.

David Wheeler

dynamically linked
libraries (DLLs) Library
routines that are linked

to a program during
execution.



130

Chapter 2 Instructions: Language of the Computer

The downside of the initial version of DLLs was that it still linked all routines
of the library that might be called, versus only those that are called during the
running of the program. This observation led to the lazy procedure linkage version
of DLLs, where each routine is linked only after it is called.

Like many innovations in our field, this trick relies on a level of indirection.
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code that puts a number in a register to

Text Text

jal jal

H

Iw

RE y [

H

Data

1
I

Text

e

Text

Hj{SEl

~-{ Dynamic linker/loader
Remap DLL routine

o

Data/Text Text

DLL routine | DLL routine
! ;Lo
T T
(a) First call to DLL routine (b) Subsequent calls to DLL routine

FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the first time
a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.



2.12 Translating and Starting a Program

131

identify the desired library routine and then jumps to the dynamic linker/loader.
The linker/loader finds the desired routine, remaps it, and changes the address in
the indirect jump location to point to that routine. It then jumps to it. When the
routine completes, it returns to the original calling site. Thereafter, the call to the
library routine jumps indirectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic
linking, but do not require that whole libraries be copied or linked. They pay a good
deal of overhead the first time a routine is called, but only a single indirect jump
thereafter. Note that the return from the library pays no extra overhead. Microsoft’s
Windows relies extensively on dynamically linked libraries, and it is also the default
when executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program,
where the emphasis is on fast execution time for a program targeted to a specific
instruction set architecture, or even a specific implementation of that architecture.
Indeed, it is possible to execute Java programs just like C. Java was invented with
a different set of goals, however. One was to run safely on any computer, even if it
might slow execution time.

Figure 2.23 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled first
to instructions that are easy to interpret: the Java bytecode instruction set (see
[ Section 2.15). This instruction set is designed to be close to the Java language
so that this compilation step is trivial. Virtually no optimizations are performed.
Like the C compiler, the Java compiler checks the types of data and produces the
proper operation for each type. Java programs are distributed in the binary version
of these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. Aninterpreter isa program that simulates an instruction set architecture.

Java program

| Class files (Java bytecodes) l | Java library routines (machine language)

Just In Time Java Virtual Machine
compiler

‘ Compiled Java methods (machine language) |

FIGURE 2.23 A translation hlerarchy for Java. A Java program Is first compiled into a binary
version of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run
on the interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java
library while the program is running. To achieve greater performance, the JVM can invoke the JIT compiler,
which selectively compiles methods into the native machine language of the machine on which it is running.

Java bytecode
Instruction from an
instruction set designed
to interpret Java
programs.

Java Virtual Machine
(JVM) The program that
interprets Java bytecodes.
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Just In Time compiler
(JIT) The name
commonly given to a
compiler that operates at
runtime, translating the
interpreted code segments
into the native code of the
computer.

Check
Yourself

For example, the MIPS simulator used with this book is an interpreter. There is no
need for a separate assembly step since either the translation is so simple that the
compiler fills in the addresses or JVM finds them at runtime.

The upside of interpretation is portability. The availability of software Java virtual
machines meant that most people could write and run Java programs shortly
after Java was announced. Today, Java virtual machines are found in hundreds of
millions of devices, in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advancesin
performance of the 1980s and 1990s made interpretation viable for many important
applications, but the factor of 10 slowdown when compared to traditionally
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the “hot” methods are and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers
invent betters ways to compile Java on the fly, the performance gap between Java
and C or C++ is closing. ] Section 2.15 goes into much greater depth on the
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most
important for the designers of Java?

1. Ease of writing an interpreter
2. Better error messages
3. Smaller object code

4. Machine independence

A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have no
idea what a full assembly language program looks like. In this section, we derive
the MIPS code from two procedures written in C: one to swap array elements and
one to sort them.
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void swap(int v[], int k)
{
int temp;
temp = v[k];
vlk] = v[k+17;
vlk+1] = temp;
}

FIGURE 2.24 A C procedure that swaps two locations in memory. This subsection uses this
procedure in a sorting example.

The Procedure swap

Let’s start with the code for the procedure swap in Figure 2.24. This procedure
simply swaps two locations in memory. When translating from C to assembly
language by hand, we follow these general steps:

1. Allocate registers to program variables.
2. Produce code for the body of the procedure.
3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap

As mentioned on pages 98-99, the MIPS convention on parameter passing is to
use registers $a0, $al, $a2, and $a3. Since swap has just two parameters, v and
K, they will be found in registers $a0 and $al. The only other variable is temp,
which we associate with register $ £ 0 since swap is a leaf procedure (see page 100).
This register allocation corresponds to the variable declarations in the first part of
the swap procedure in Figure 2.24.

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
vlk] = v[k+11;
vlk+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so
words are really 4 bytes apart. Hence we need to multiply the index k by 4 before
adding it to the address. Forgetting that sequential word addresses differ by 4 instead
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of by 1 is a common mistake in assembly language programming. Hence the first step
is to get the address of v[ k ] by multiplying k by 4 via a shift left by 2:

s11 $t1, %$al,?2  reg $t1 k * 4
add $t1, $a0,%tl # reg $t1 = v + (k * 4)
# reg $t1 has the address of v[k]

Now we load v[ k] using $t1, and then v[k+1] by adding 4 to $t1:

Tw $t0, 0($tl) # reg $t0 (temp) = v[k]
Tw $t2, 4(%tl) # reg $t2 = v[k + 1]
{ refers to next element of v

Next we store $£0 and $t2 to the swapped addresses:

sw $t2, 0(%$tl) # vik] = reg $t2
sw $t0, 4(%tl) # vlk+1l] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers
used within swap. Since we are not using saved registers in this leaf procedure,
there is nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and
the return jump. To make it easier to follow, we identify in Figure 2.25 each block
of code with its purpose in the procedure.

Procedure body

swap: s11 $tl, $al, 2 #regstl=k*4

add $tl1, $a0, $tl #regstl=v+(k*4)
# reg $tl has the address of v[k]

Tw $t0, 0($t1) #reg $t0 (temp) = v[k]

Tw $t2, 4(9t1) #regst2=v[k+1]
# refers to next element of v

SW $t2, 0($tl) #vlk]=reg$t2

SW $t0, 4($tl) #v[ik+l] =reg $t0 (temp)

| ir $ra # return tocalling routine |

FIGURE 2.25 MIPS assembly code of the procedure swap In Figure 2.24.
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The Procedure sort

To ensure that you appreciate the rigor of programming in assembly language, we’ll
try a second, longer example. In this case, we’ll build a routine that calls the swap
procedure. This program sorts an array of integers, using bubble or exchange sort,
which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C version
of the program. Once again, we present this procedure in several steps, concluding
with the full procedure.

void sort (int v[], int n)

;1 <ng 1 4= 1) |
=1 -1; 7> 08& v[jl>vlj+ 115 J =1 {

FIGURE 2.26 A C procedure that performs a sort on the array v.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are in the parameter registers
$a0 and $al, and we assign register $50 to 7 and register $s1 to j.

Code for the Body of the Procedure sort

The procedure body consists of two nested for loops and a call to Swa p that includes
parameters. Let’s unwrap the code from the outside to the middle.
The first translation step is the first for loop:

for (i =0; 1 <n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and iteration
increment. It takes just one instruction to initialize i to 0, the first part of the for
statement:

move $s0, $zero #i=0

(Remember that mov e is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 124.) It also takes just
one instruction to increment 1, the last part of the for statement:

addi $s0, $s0, 1 i +=1
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The loop should be exited if i < n is not true or, said another way, should be
exited if i 2 n. The set on less than instruction sets register $t0to 1if $s0 <
$al and to 0 otherwise. Since we want to testif $S0 > $al, we branch if register
$t0 is 0. This test takes two instructions:

forltst:slt $t0, $s0, $al # reg $t0 =0 if $s0 > $al (i2n)
beq $t0, $zero,exitl # go to exitl if $s0 > $al (i>n)

The bottom of the loop just jumps back to the loop test:

j forltst # jump to test of outer Toop
exitl:

The skeleton code of the first for loop is then

move $s0, $zero #i=20
forltst:s1t $t0, $s0, $al # reg $t0 =0 if $s0 > $al (i2n)
beq $t0, $zero,exitl # go to exitl if $s0 > $al (i2n)
(body of first for loop)
addi $s0, $s0, 1 Fi+=1
j forltst # jump to test of outer Toop

exitl:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (J =1 -1;J >=0 & v[jl > vlj +11; § = 1) {
The initialization portion of this loop is again one instruction:

addi $s1, $s0, -1 # 3 =1 -1
The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, -1 #J =1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst: slti $t0, $s1, O #Freg $t0 =1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j 2 0.
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The second test exitsif v[j] > v[Jj + 11 isnottrue, orexitsif v[j] <
v[J + 11].First we create the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:

s11 $t1, $s1, 2 # reg $t1 =3 * 4

add $t2, $a0, $tl # reg $t2 =v + (j * 4)
Now we load V[ j1:

Tw $t3, 0($t2) # reg $t3 = v[j]

Since we know that the second element is just the following word, we add 4 to
the address in register $t2 toget v[j + 11

Tw $td, 4($t2) # reg $t4 = v[j + 1]

Thetestof v[j] < v[j + 1]isthesameasv[j + 1] > v[Jj],sothe
two instructions of the exit test are

s1t $t0, $t4, $t3 # reg $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3

The bottom of the loop jumps back to the inner loop test:
j for2tst  # jump to test of inner loop
Combining the pieces, the skeleton of the second for loop looks like this:
addi $s1, $s0, -1 #Fi=1-1

for2tst:slti $t0, $s1, 0 #Freg $t0 =1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
s11 $t1, $s1, 2 #reg $t1 =3 * 4
add $t2, $a0, $t1 #Freg$tz2=v+(j*4
Tw  $t3, 0($t2) # reg $t3 = v[j]

Tw  $t4, 4($t2) #f reg $t4 = v[j + 1]

s1t $t0, $t4, $t3 #f reg $t0 =0 if $t4 > $t3

beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3
(body of second for Toop)

addi $s1, $s1, -1 iy —=1

j for2tst # jump to test of inner loop

exite:

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,Jj);

Calling swap is easy enough:

jal swap
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Passing Parameters in sort

The problem comes when we want to pass parameters because the Sort procedure
needs the values in registers $a0 and $a1, yet the swap procedure needs to have its
parameters placed in those same registers. One solution is to copy the parameters
for sort into other registers earlier in the procedure, making registers $a0 and
$ a1 available for the call of swap. (This copy is faster than saving and restoring on
the stack.) We first copy $a0 and $al into $52 and $53 during the procedure:

move $s2, $a0 # copy parameter $a0 into $s2
move $s3, $al # copy parameter $al into $s3

Then we pass the parameters to Swap with these two instructions:

move $a0, $s2 # first swap parameter is v
move $al, $sl # second swap parameter is j

Preserving Registers in sort

The only remaining code is the saving and restoring of registers. Clearly, we must
save the return address in register $ra, since sort is a procedure and is called
itself. The sort procedure also uses the saved registers $50, $s1, $s2,and $53,
so they must be saved. The prologue of the Sort procedure is then

addi  $sp,$sp,-20 4 make room on stack for 5 registers
Sw $ra,16($sp) # save $ra on stack
Sw $s3,12($sp) # save $s3 on stack
Sw $s2, 8($sp) # save $s2 on stack
SwW $s1, 4($sp) # save $sl on stack
Sw $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to
return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.27, being careful to replace references
to registers $a0 and $a1 in the for loops with references to registers $s2 and $ 3.
Once again, to make the code easier to follow, we identify each block of code with
its purpose in the procedure. In this example, nine lines of the Sort procedure in
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining.
Instead of passing arguments in parameters and invoking the code with a jal instruction,
the compiler would copy the code from the body of the swap procedure where the call
to swap appears in the code. Inlining would avoid four instructions in this example. The
downside of the inlining optimization is that the compiled code would be bigger if the
inlined procedure is called from several locations. Such a code expansion might turn
into lower performance if it increased the cache miss rate; see Chapter 5.
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sort:

addi
sw
sw
sw
sw
SwW

$sp.ésp, -20 # make room on stack for 5 registers
$ra, 16($sp)# save $ra on stack
$s3,12($sp) # save $s3 on stack

$s2, 8($sp)if save $s2 on stack
$s1, 4($sp)f# save $s1 on stack
$s0, 0($sp)ff save $s0 on stack

Procedure body

move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
Mave parametera move $s3, $al # copy parameter $al into $s3 (save $al)

move $s0, $zeroffi=0
Outer loop forltst:sit $t0, $50,$s3 #reg$t0=0if$s05$s3(iSn)

beq $t0, $zero, exitlf# go toexitl if $s0 5$s3 (i Sn)

addi $s1, $s0, -1 j=1-1

for2tst:siti $t0, $s1,0  #reg$t0=1if$s1<0(j<0)

bne $t0, $zero, exit2f# go toexit2 if $s1<0 (j<0)

s11 $t1, $s1, 2#freg$tl=j*4
Inner loop add $t2, $s2, $tlffregst2=v+(j*4)

Tw $t3, 0($t2)#reg $t3 =v[j]

Tw $t4, 4($t2)f#Freg$td =v[j+1]

st $t0, $t4, $t3 #reg$t0=0if $t4 5 $t3

beq $t0, $zero, exit2# go toexit2 if $t4 5 $t3

move $a0, $s2 # 1st parameter of swap is v (o1d $a0)
Pass parameters move $al, $s1# 2nd parameter of swap is j
and call jal swap # swap code shown in Figure 2.25
Inner loop addi $s1, $s1, -1#j-=1

J for2tst # jump to test of inner loop
Outer loop exit2: addi $s0, $s0, 1 #i+=1

J forltst # jump to test of outer loop

Restoring registers

exitl:

$s0, 0($sp) # restore $s0 from stack
$s1, 4($sp)ff restore $s1 fromstack
$s2, 8($sp)# restore $s2 from stack

$s3,12(%sp) {# restore $s3 fromstack
$ra,16($sp) # restore $ra fromstack
$sp,$sp, 20 # restore stack pointer

Procedure return

$ra # return tocalling routine

FIGURE 2.27 MIPS assembly verslon of procedure sort In Figure 2.26.
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Understanding Figure 2.28 shows the impact of compiler optimization on sort program

Program performance, compile time, clock cycles, instruction count, and CPI. Note that

unoptimized code has the best CPI, and O1 optimization has the lowest instruction

Performance count, but O3 is the fastest, reminding us that time is the only accurate measure of
program performance.

Figure 2.29 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth column
shows that the unoptimized C program is 8.3 times faster than the interpreted
Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times faster than
the unoptimized C and within a factor of 1.13 of the highest optimized C code.

@] Section 2.15 gives more details on interpretation versus compilation of Java and
the Java and MIPS code for Bubble Sort.) The ratios aren’t as close for Quicksort
in Column 5, presumably because it is harder to amortize the cost of runtime
compilation over the shorter execution time. The last column demonstrates the
impact of a better algorithm, offering three orders of magnitude a performance
increases by when sorting 100,000 items. Even comparing interpreted Java in
Column 5 to the C compiler at highest optimization in Column 4, Quicksort beats
Bubble Sort by a factor of 50 (0.05 X 2468, or 123 times faster than the unoptimized
C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments
in case they need to be stored, so in reality they always decrement $sp by 16 to make
room for all four argument registers (16 bytes). One reason is that C provides a vararg
option that allows a pointer to pick, say, the third argument to a procedure. When the
compiler encounters the rare vararg, it copies the four argument registers onto the
stack into the four reserved locations.

Relative Clock cycles | Instruction count
gcc optimization performance (millions) (millions)
1.00

None 158,615 114,938 1.38

01 (medium) 2.37 66,990 37,470 1.79

02 (full) 2.38 66,521 39,993 1.66

03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.28 Comparing performance, Instructlon count, and CPl using complier
optimization for Bubble Sort. The programs sorted 100,000 words with the array initialized to random
values. These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus
with 2 GB of PC2100 DDR SDRAM. It used Linux version 2.4.20.
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Bubble Sort relative | Quicksort relative | Speedup Quicksort
I.anguago Execution method oOptimization performance performance vs. Bubble Sort

Compiler None 1.00 1.00 2468

Compiler 01 2.37 1.50 1562

Compiler 02 2.38 1.50 1555

Compiler 03 2.41 1.91 1955

Java Interpreter - 0.12 0.05 1050
JIT compiler - 2.13 0.29 338

FIGURE 2.29 Performance of two sort algorithms In C and Java using Interpretation and optimizing complliers relative
to unoptimized C verslon. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and
executlon option. These programs were run on the same system as in Figure 2.28. The JVM Is Sun version 1.3.1, and the JIT is Sun Hotspot
version 1.3.1.

Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing
assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clear a sequence of words in memory: one using
array indices and one using pointers. Figure 2.30 shows the two C procedures.

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We'll see the impact of modern
compiler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, c Tearl, focusing on the body of the loop and
ignoring the procedure linkage code. We assume that the two parameters array
and size are found in the registers $a0 and $al, and that 1 is allocated to
register $t0.

The initialization of 1, the first part of the for loop, is straightforward:

move $t0,%$zero # i =0 (register $t0 = 0)

Tosetarray[i] to0we must first get its address. Start by multiplying 1 by 4
to get the byte address:

Toopl: s11  $t1,$t0,2 #t1 =14 x4

Since the starting address of the array is in a register, we must add it to the index
to get the address of array [ 1] usingan add instruction:

add $t2,%a0,%t1 # $t2 = address of array[i]
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clearl(int array[], int size)
{

int i;

for (i = 0;

i<
array[i] =

size; 1 +=1)
0;

clear2(int *array, int size)

int *p;
for (p = &array[0]; p < &array[sizel; p =p + 1)

}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clearl uses indices,
while clear?2 uses pointers. The second procedure needs some explanation for those unfamiliar with C.
The address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The
declarations declare that array and p are pointers to integers. The first part of the for loop in clear?
assigns the address of the first element of array to the pointer p. The second part of the for loop tests to see
if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of
the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS
integer. The assignment in the loop places 0 in the object pointed to by p.

Finally, we can store 0 in that address:

sw  $zero, 0($t2) 4 arrayl[i]l =0
This instruction is the end of the body of the loop, so the next step is to increment i:
addi $t0,$t0,1 #i=1+1

The loop test checks if i is less than size:

s1t  $t3,$t0,%al # $t3 = (i < size)
bne $t3,$zero,loopl # if (i < size) go to Toopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move $t0,$zero #1i=0
Toopl: s11  $t1,$t0,2 f$t1 =i x4
add $t2,%a0,5t1 # $t2 = address of arrayl[i]
Sw $zero, 0($t2) # arrayl[i]l =0
addi $t0,$t0,1 fFi=1+1
s1t $t3,$t0,%al ff $t3 = (i < size)

bne  $t3,$zero,loopl # if (i < size) go to Toopl

(This code works as long as S ze is greater than 0; ANSI C requires a test of size
before the loop, but we'll skip that legality here.)
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Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and
Size to the registers $a0 and $a1 and allocates p to register $ 0. The code for
the second procedure starts with assigning the pointer p to the address of the first
element of the array:

move $t0,$a0 # p = address of array[0]
The next code is the body of the for loop, which simply stores 0 into p:

Toop2: sw $zero,0($t0) # Memory[pl = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next word:

addi  $t0,$t0,4 Fp=p+4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of array. Start with multiplying S ze by 4 to get its byte address:

s11 $t1,%al,? ## $t1 = size * 4

and then we add the product to the starting address of the array to get the address
of the first word after the array:

add $t2,%$a0,%tl # $t2 = address of arraylsize]

The loop test is simply to see if p is less than the last element of array:

s1t  $t3,$t0,$t2 ## $t3 = (p<&arraylsizel)
bne $t3,$zero,loop2 # if (p<&arraylsizel]) go to loop?

With all the pieces completed, we can show a pointer version of the code to zero
an array:

move $t0,$a0 # p = address of array[0]
Toop2: sw  $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 Fp=p+4

s11  $tl1,%al,2 # $t1 = size * 4

add $t2,%a0,$tl # $t2 = address of arrayl[size]
sTt $t3,$t0,%t2 ## $t3 = (p<&arrayl[sizel)
bne $t3,%$zero,loop2 # if (p<&arrayl[sizel]) go to loop?

As in the first example, this code assumes S 1 ze is greater than 0.
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Note that this program calculates the address of the end of the array in every
iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

move $t0,%$al # p = address of array[0]

s11 $t1,%al,? ¥ $tl size * 4

add $t2,%a0,$tl  $t2 = address of array[size]
loop2: sw  $zero,0($t0) # Memory[p]l = 0

addi $t0,$t0,4 fp=p+4

st $t3,%t0,9%t2 # $t3 = (p<Rlarrayl[size])

bne $t3,%$zero,loop2 # if (p<&array[sizel]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are

highlighted):

move $t0,%$zero #i=0 move $t0,%a0 #p==%&array[0]
loopl:s11  $t1,$t0,2 #ot1=1*4 s11 $t1,%al,2 # $t1 = size * 4

add $t2,%a0,$t1 # $t2 = &array[i] add $t2,%a0,$t1 4 $t2 = &array[size]

SW $zero, 0($t2) # array[i]l =0 loop2: sw $zero,0($t0) 4 Memory[p]l =0

addi $t0,$t0,1 Fi=1+1 addi $t0,$t0,4 #fp=p+4

sTt  $t3,$t0,%al  # $t3 = (i < size) st $t3,$t0,8t2 {f $t3=(p<&array[size])

bne $t3,%zero,loopl# if () go to Toopl bne $t3,$zero,loop2# if () go to loop2

The version on the left must have the “multiply” and add inside the loop because
i is incremented and each address must be recalculated from the new index. The
memory pointer version on the right increments the pointer p directly. The pointer
version moves the scaling shift and the array bound addition outside the loop,
thereby reducing the instructions executed per iteration from 6 to 4. This manual
optimization corresponds to the compiler optimization of strength reduction (shift
instead of multiply) and induction variable elimination (eliminating array address
calculations within loops). [ Section 2.15 describes these two and many other
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size
is greater than 0. One way would be to add a jump just before the first instruction of the
loop to the s 1t instruction.
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People used to be taught to use pointers in C to get greater efficiency than that Understanding
available with arrays: “Use pointers, even if you can’t understand the code” Modern

U ) . o Program
optimizing compilers can produce code for the array version that is just as good.
Most programmers today prefer that the compiler do the heavy lifting. Performance

é‘ﬁ Advanced Material: Compiling C and

rr Interpreting Java

This section gives a brief overview of how the C compiler works and how Java
is executed. Because the compiler will significantly affect the performance of a
computer, understanding compiler technology today is critical to understanding
performance. Keep in mind that the subject of compiler construction is usually
taught in a one- or two-semester course, so our introduction will necessarily only
touch on the basics.

The second part of this section is for readers interested in seeing how an object  object oriented
oriented language like Java executes on a MIPS architecture. It shows the Java language
byte-codes used for interpretation and the MIPS code for the Java version of some 4 Programming language
of the C segments in prior sections, including Bubble Sort. It covers both the Java t};:t ” orle}? ted; round
Virtual Machine and JIT compilers. 0Djects rather than

. . actions, or data versus
The rest of ] Section 2.15 can be found online. logic.

Real Stuff: ARMv7 (32-bit) Instructions

ARM is the most popular instruction set architecture for embedded devices, with
more than 9 billion devices in 2011 using ARM, and recent growth has been 2
billion per year. Standing originally for the Acorn RISC Machine, later changed
to Advanced RISC Machine, ARM came out the same year as MIPS and followed
similar philosophies. Figure 2.31 lists the similarities. The principal difference is
that MIPS has more registers and ARM has more addressing modes.

There is a similar core of instruction sets for arithmetic-logical and data transfer
instructions for MIPS and ARM, as Figure 2.32 shows.

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS,
ARM does not reserve a register to contain 0. Although MIPS has just three simple
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex
calculations. For example, ARM has an addressing mode that can shift one register
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Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR x 32 bits 31 GPR X 32 bits
1/0 Memory mapped Memory mapped

FIGURE 2.31 Simllaritles In ARM and MIPS Instruction sets.

Add add

addu, addiu

Add (trap if overflow) adds; swivs add
Subtract sub subu
Subtract (trap if overflow) subs; swivs sub
Multiply mul mult, multu
Divide —_ div, divu
And and and

Register-register or orr or
Xor eor xor
Load high part register — lui
Shift left logical Isit sllv, sll
Shift right logical Isrt srlv, srl
Shift right arithmetic asr! srav, sra
Compare cmp, cmn, tst, teq slt/i,slt/iu
Load byte signed Idrsb Ib
Load byte unsigned Idrb Ibu
Load halfword signed Idrsh lh
Load halfword unsigned Idrh lhu
Load word Idr Iw

Data transfer Store byte strb sb

Store halfword strh sh
Store word str swW
Read, write special registers mrs, msr move
Atomic Exchange swp, swpb II;sc

FIGURE 2.32 ARM reglsterteglster and data transfer Instructions equivalent to MIPS
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instructions.
If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. ARM
includes shifts as part of every data operation instruction, so the shifts with superscript 1 are just a variation

of a move instruction, such as 1sr!. Note that ARM has no divide instruction.
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by any amount, add it to the other registers to form the address, and then update
one register with this new address.

X

Register operand

Immediate operand

Register + offset (displacement or based)

Register + register (indexed)

Register + scaled register (scaled)

Register + offset and update register

Register + register and update register

Autoincrement, autodecrement

X | X | X[ X | X | X|X]|X|X

PC-relative data

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register
+ offset addressing modes, rather than just putting 0 in the offset of the latter mode. To get greater addressing
range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word.

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses the
traditional four condition code bits stored in the program status word: negative,
zero, carry, and overflow. They can be set on any arithmetic or logical instruction;
unlike earlier architectures, this setting is optional on each instruction. An
explicit option leads to fewer problems in a pipelined implementation. ARM uses
conditional branches to test condition codes to determine all possible unsigned
and signed relations.

CMP subtracts one operand from the other and the difference sets the condition
codes. Compare negative (CMN) adds one operand to the other, and the sum sets
the condition codes. TST performs logical AND on the two operands to set all
condition codes but overflow, while TEQ uses exclusive OR to set the first three
condition codes.

One unusual feature of ARM is that every instruction has the option of executing
conditionally, depending on the condition codes. Every instruction starts with a
4-bit field that determines whether it will act as a no operation instruction (nop)
or as a real instruction, depending on the condition codes. Hence, conditional
branches are properly considered as conditionally executing the unconditional
branch instruction. Conditional execution allows avoiding a branch to jump over a
single instruction. It takes less code space and time to simply conditionally execute
one instruction.

Figure 2.34 shows the instruction formats for ARM and MIPS. The principal
differences are the 4-bit conditional execution field in every instruction and the
smaller register field, because ARM has half the number of registers.
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31 28 27 20 19 16 15 12 11 43 0
Register-register 31 26 25 21 20 16 15 11 10 6 5 0
31 28 27 20 19 16 15 12 11 0

o SRS e | W [ e

Data transfer 31 26 25 21 20 16 15 0
MIPS - Rs1® | Rd® | Const'® |

31 28 27 24 23 0

Branch 31 26 25 21 20 16 15 0
MIPS Rs1® s2° Const™® |

31 28 27 24 23 0

Jump/Call 31 26 25 0

| @ Opcode [ Register [0 Constant

FIGURE 2.34 Instruction formats, ARM and MIPS. The differences result from whether the
architecture has 16 or 32 registers.

Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since
ARM does not have a dedicated register for 0, it has separate opcodes to perform
some operations that MIPS can do with $ zero. In addition, ARM has support for
multiword arithmetic.

ARM’s 12-bit immediate field has a novel interpretation. The eight least-
significant bits are zero-extended to a 32-bit value, then rotated right the number
of bits specified in the first four bits of the field multiplied by two. One advantage is
that this scheme can represent all powers of two in a 32-bit word. Whether this split
actually catches more immediates than a simple 12-bit field would be an interesting
study.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted before
being operated on. The shift options are shift left logical, shift right logical, shift
right arithmetic, and rotate right.
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T tme | oetwin | awn | wes |

Load immediate Rd = Imm mov addi $0,
Not Rd = ~(Rs1) mvn nor $0,
Move Rd = Rs1 mov or $0,
Rotate right Rd=Rsi>> i ror

Rdo. . i1 =Rsz1i.. .31
And not Rd = Rs1 & ~(Rs2) bic
Reverse subtract Rd = Rs2 - Rs1 rsb, rsc
Support for multiword CarryOut, Rd= Rd + Rs1 + adcs —
integer add OldCarryOut
Support for multiword CarryOut, Rd = Rd - Rs1 + sbcs —
integer sub OldCarryOut

FIGURE 2.35 ARM arithmetic/loglcal Instructions not found In MIPS.

ARM also has instructions to save groups of registers, called block loads and
stores. Under control of a 16-bit mask within the instructions, any of the 16 registers
can be loaded or stored into memory in a single instruction. These instructions can
save and restore registers on procedure entry and return. These instructions can
also be used for block memory copy, and today block copies are the most important
use of such instructions.

Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than
those found in ARM and MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can occur at
the cost of simplicity, increasing the time a program takes to execute because the
instructions are slower. This slowness may be the result of a slower clock cycle time
or of requiring more clock cycles than a simpler sequence.

The path toward operation complexity is thus fraught with peril. Section 2.19
demonstrates the pitfalls of complexity.

Evolution of the Intel x86

ARM and MIPS were the vision of single small groups in 1985; the pieces of these
architectures fit nicely together, and the whole architecture can be described
succinctly. Such is not the case for the x86; it is the product of several independent
groups who evolved the architecture over 35 years, adding new features to the
original instruction set as someone might add clothing to a packed bag. Here are
important x86 milestones.

Beauty is altogether in
the eye of the beholder.

Margaret Wolfe
Hungerford, Molly
Bawn, 1877
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general-purpose
register (GPR)

A register that can be
used for addresses or for
data with virtually any
instruction.

B 1978: The Intel 8086 architecture was announced as an assembly

language-compatible extension of the then successful Intel 8080, an 8-bit
microprocessor. The 8086 is a 16-bit architecture, with all internal registers
16 bits wide. Unlike MIPS, the registers have dedicated uses, and hence the
8086 is not considered a general-purpose register architecture.

1980: The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead of
using registers, it relies on a stack (see [ Section 2.21 and Section 3.7).

1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 5), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

1985: The 80386 extended the 80286 architecture to 32 bits. In addition to
a 32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium
Pro in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 6) and a conditional move instruction.

1997: After the Pentium and Pentium Pro were shipping, Intel announced that
it would expand the Pentium and the Pentium Pro architectures with MMX
(Multi Media Extensions). This new set of 57 instructions uses the floating-
point stack to accelerate multimedia and communication applications. MMX
instructions typically operate on multiple short data elements at a time, in
the tradition of single instruction, multiple data (SIMD) architectures (see
Chapter 6). Pentium II did not introduce any new instructions.

1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single precision
floating-point data type. Hence, four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE includes cache
prefetch instructions plus streaming store instructions that bypass the caches
and write directly to memory.

2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are
versions of existing MMX and SSE instructions that operate on 64 bits of data
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in parallel. Not only does this change enable more multimedia operations;
it gives the compiler a different target for floating-point operations than
the unique stack architecture. Compilers can choose to use the eight SSE
registers as floating-point registers like those found in other computers. This
change boosted the floating-point performance of the Pentium 4, the first
microprocessor to include SSE2 instructions.

2003: A company other than Intel enhanced the x86 architecture this time.
AMD announced a set of architectural extensions to increase the address
space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address
space in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also
increases the number of registers to 16 and increases the number of 128-
bit SSE registers to 16. The primary ISA change comes from adding a new
mode called Jong mode that redefines the execution of all x86 instructions
with 64-bit addresses and data. To address the larger number of registers, it
adds a new prefix to instructions. Depending how you count, long mode also
adds four to ten new instructions and drops 27 old ones. PC-relative data
addressing is another extension. AMD®64 still has a mode that is identical
to x86 (legacy mode) plus a mode that restricts user programs to x86 but
allows operating systems to use AMD64 (compatibility mode). These modes
allow a more graceful transition to 64-bit addressing than the HP/Intel IA-64
architecture.

2004: Intel capitulates and embraces AMDG64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMDG64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating-point
conversion, and thread synchronization (see Section 2.11). AMD added SSE3
in subsequent chips and the missing atomic swap instruction to AMD64 to
maintain binary compatibility with Intel.

2006: Intel announces 54 new instructions as part of the SSE4 instruction set
extensions. These extensions perform tweaks like sum of absolute differences,
dot products for arrays of structures, sign or zero extension of narrow data to
wider sizes, population count, and so on. They also added support for virtual
machines (see Chapter 5).

2007: AMD announces 170 instructions as part of SSE5, including 46
instructions of the base instruction set that adds three operand instructions
like MIPS.

2011: Intel ships the Advanced Vector Extension that expands the SSE
register width from 128 to 256 bits, thereby redefining about 250 instructions
and adding 128 new instructions.
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This history illustrates the impact of the “golden handcuffs” of compatibility on
the x86, as the existing software base at each step was too important to jeopardize
with significant architectural changes.

Whatever the artistic failures of the x86, keep in mind that this instruction set
largely drove the PC generation of computers and still dominates the cloud portion
of the PostPC Era. Manufacturing 350M x86 chips per year may seem small
compared to 9 billion ARMv7 chips, but many companies would love to control
such a market. Nevertheless, this checkered ancestry has led to an architecture that
is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section
with the care you would need to write x86 programs; the goal instead is to give you
familiarity with the strengths and weaknesses of the world’s most popular desktop
architecture.

Rather than show the entire 16-bit, 32-bit, and 64-bit instruction set, in this
section we concentrate on the 32-bit subset that originated with the 80386. We start
our explanation with the registers and addressing modes, move on to the integer
operations, and conclude with an examination of instruction encoding.

x86 Registers and Data Addressing Modes

The registers of the 80386 show the evolution of the instruction set (Figure 2.36).
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits,
prefixing an E to their name to indicate the 32-bit version. We'll refer to them
generically as GPRs (general-purpose registers). The 80386 contains only eight
GPRs. This means MIPS programs can use four times as many and ARMv7 twice
as many.

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are
two-operand instructions. There are two important differences here. The x86
arithmetic and logical instructions must have one operand act as both a source
and a destination; ARMv7 and MIPS allow separate registers for source and
destination. This restriction puts more pressure on the limited registers, since one
source register must be modified. The second important difference is that one of
the operands can be in memory. Thus, virtually any instruction may have one
operand in memory, unlike ARMv7 and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of
addresses within the instruction. These so-called displacements can be 8 bits or 32
bits.

Although a memory operand can use any addressing mode, there are restrictions
on which registers can be used in a mode. Figure 2.38 shows the x86 addressing
modes and which GPRs cannot be used with each mode, as well as how to get the
same effect using MIPS instructions.

x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (double words) in the x86. (AMDG64 adds 64-
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Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

EIP

EFLAGS

31

Use

GPRO

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR7

Cs

SS

DS

ES

FS

GS

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended

to 32 bits and could also be used as general-purpose registers.

Source/destination operand type Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

FIGURE 2.37

Instruction types for the arithmetic, logical, and data transfer instructions.

The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36
(not EIP or EFLAGS).
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Register
Description restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP | 1w $50,0($s1)
Based mode with 8- or 32-bit | Address is contents of base register plus Not ESP Tw $s0,100($sl)## <= 16-bit
displacement displacement. #displacement
Base plus scaled index The address is Base: any GPR | mul $t0,%$s2,4
Base + (25¢@€ x Index) Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,0($t0)
Base plus scaled index with The address is Base: any GPR | mul $t0,%$s2,4
8- or 32-bit displacement Base + (25°%€ x Index) + displacement Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,100($t0) #<=16-bit
#displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode
would need two more instructions: a 1u1 to load the upper 16 bits of the displacement and an add to sum the upper address with the base
register $5 1. (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are essentially identical

and we combine them here.)

bit addresses and data, called quad words; we'll stick to the 80386 in this section.)
The data type distinctions apply to register operations as well as memory accesses.

Almost every operation works on both 8-bit data and on one longer data size.
That size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386
architects provided a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominates
most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default
segment register, lock the bus to support synchronization (see Section 2.11), or
repeat the following instruction until the register ECX counts down to 0. This last
prefix was intended to be paired with a byte move instruction to move a variable
number of bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal
arithmetic operations

3. Control flow, including conditional branches, unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare
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The first two categories are unremarkable, except that the arithmetic and logic
instruction operations allow the destination to be either a register or a memory
location. Figure 2.39 shows some typical x86 instructions and their functions.

Conditional branches on the x86 are based on condition codes or flags, like
ARMyv7. Condition codes are set as a side effect of an operation; most are used
to compare the value of a result to 0. Branches then test the condition codes. PC-

je name if equal(condition code) {EIP=name};
EIP-128 <=name < EIP+128
Jjmp name EIP=name
call name SP=SP-4; M[SPJ=EIP+5; EIP=name;
movw EBX, [EDI+45] EBX=M[EDI+45]
push ESI SP=SP-4; M[SP]=ESI
pop EDI EDI=M[SP]; SP=SP+4
add EAX, #6765 EAX=EAX+6765
test EDX, 42 Set condition code (flags) with EDX and 42
movs] MLEDII=M[ESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations
appears in Figure 2.40. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

relative branch addresses must be specified in the number of bytes, since unlike
ARMv7 and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not commonly
executed in most programs. They are often slower than equivalent software routines
(see the fallacy on page 159).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions
are available in both byte and word formats.

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex, with
many different instruction formats. Instructions for the 80386 may vary from 1
byte, when there are no operands, up to 15 bytes.

Figure 2.41 shows the instruction format for several of the example instructions in
Figure 2.39. The opcode byte usually contains a bit saying whether the operand is 8 bits
or 32 bits. For some instructions, the opcode may include the addressing mode and
the register; this is true in many instructions that have the form “register = register op
immediate” Other instructions use a “postbyte” or extra opcode byte, labeled “mod, reg,
r/m,” which contains the addressing mode information. This postbyte is used for many



156

Chapter 2 Instructions: Language of the Computer

Slstrcton | Mowing

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (fordNZ), JE (for JZ) are
alternative names

jmp Unconditional jump—8-bit or 16-bit offset

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

lToop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX #0

Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill

chw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

Tods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory format,
where either the source or the destination may be memory and the other may be a register or immediate
operand.

of the instructions that address memory. The base plus scaled index mode uses a second
postbyte, labeled “sc, index, base”

Figure 2.42 shows the encoding of the two postbyte address specifiers for
both 16-bit and 32-bit mode. Unfortunately, to understand fully which registers
and which addressing modes are available, you need to see the encoding of all
addressing modes and sometimes even the encoding of the instructions.

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant
architectures, such as the Motorola 68000, and this head start led to the selection
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that
the x86 is more difficult to build than computers like ARMv7 and MIPS, but the
large market meant in the PC Era that AMD and Intel could afford more resources
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a. JE EIP + displacement

4 4 8
Jg |Condi- Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV  EBX, [EDI + 45]

6 11 8 8
r/m .
MOV [d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH |Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte.
Many instructions contain the 1-bit field w, which says whether the operation is a byte or a double word. The
d field in MOV is used in instructions that may move to or from memory and shows the direction of the move.
The ADD instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are
either 8 bits or 32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for
test in 32-bit mode. Overall, instructions may vary from 1 to 15 bytes in length. The long length comes from
extra 1-byte prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of
2 bytes, and using the scaled index mode specifier, which adds another byte.

to help overcome the added complexity. What the x86 lacks in style, it made up for
in market size, making it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural components
are not too difficult to implement, as AMD and Intel have demonstrated by rapidly
improving performance of integer programs since 1978. To get that performance,
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rog[w=0] w=1 |om| mod=o | moa=i |  mod=2 __|mod=3
16b | 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+S| | =EAX same same same same same
1 CL CX ECX 1 addr=BX+DI | =ECX addr as addr as addr as addr as as
2 DL DX EDX 2 addr=BP+SI | =EDX mod=0 mod=0 mod=0 mod=0 reg
3 BL BX EBX 3 addr=BP+SI | =EBX + disp8 + disp8 + disp16 + disp32 field
4 AH SP ESP 4 addr=SI =(sib) Sl+disp8 (sib)+disp8 | Sl+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 | DI+disp8 | EBP+disp8 |Dl+disp16 | EBP+disp32

6 DH Sl ESI 6 addr=disp16 | =ESI BP+disp8 | ESI+disp8 BP+disp16 | ESl+disp32

7 BH DI EDI 7 addr=BX =EDI BX+disp8 | EDI+disp8 BX+disp16 | EDI+disp32

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386).
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod =1
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m
= 6 when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in
Figure 2.38. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

compilers must avoid the portions of the architecture that are hard to implement
fast.

Inthe PostPCEra, however, despite considerable architecturaland manufacturing
expertise, x86 has not yet been competitive in the personal mobile device.

Real Stuff: ARMvS8 (64-bit) Instructions

Of the many potential problems in an instruction set, the one that is almost impossible
to overcome is having too small a memory address. While the x86 was successfully
extended first to 32-bit addresses and then later to 64-bit addresses, many of its
brethren were left behind. For example, the 16-bit address MOStek 6502 powered the
AppleII, but even given this headstart with the first commercially successful personal
computer, its lack of address bits condemned it to the dustbin of history.

ARM architects could see the writing on the wall of their 32-bit address
computer, and began design of the 64-bit address version of ARM in 2007. It was
finally revealed in 2013. Rather than some minor cosmetic changes to make all
the registers 64 bits wide, which is basically what happened to the x86, ARM did a
complete overhaul. The good news is that if you know MIPS it will be very easy to
pick up ARMvVS, as the 64-bit version is called.

First, as compared to MIPS, ARM dropped virtually all of the unusual features
of v7:

B Thereisno conditional execution field, as there was in nearly every instruction
inv7.
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B The immediate field is simply a 12 bit constant, rather than essentially an
input to a function that produces a constant as in v7.

B ARM dropped Load Multiple and Store Multiple instructions.

B The PC is no longer one of the registers, which resulted in unexpected
branches if you wrote to it.

Second, ARM added missing features that are useful in MIPS

B V8 has 32 general-purpose registers, which compiler writers surely love. Like
MIPS, one register is hardwired to 0, although in load and store instructions
it instead refers to the stack pointer.

B Its addressing modes work for all word sizes in ARMvS, which was not the
case in ARMv7.

B It includes a divide instruction, which was omitted from ARMv7.
B It adds the equivalent of MIPS branch if equal and branch if not equal.

As the philosophy of the v8 instruction set is much closer to MIPS than it is to
v7, our conclusion is that the main similarity between ARMv7 and ARMvS is the

name.

Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel x86 is the prefixes that can modify the execution of
the following instruction. One prefix can repeat the following instruction until a
counter counts down to 0. Thus, to move data in memory, it would seem that the
natural instruction sequence is to use move with the repeat prefix to perform 32-bit
memory-to-memory moves.

An alternative method, which uses the standard instructions found in all
computers, is to load the data into the registers and then store the registers back to
memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times as fast. A third version, which uses the
larger floating-point registers instead of the integer registers of the x86, copies at
about 2.0 times as fast than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to understand
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory
hierarchy).
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This battle between compilers and assembly language coders is another situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some old C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today’s C compilers
generally ignore such hints, because the compiler does a better job at allocation
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly
language are the longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axioms
of software engineering is that coding takes longer if you write more lines, and it
clearly takes many more lines to write a program in assembly language than in C
or Java. Moreover, once it is coded, the next danger is that it will become a popular
program. Such programs always live longer than expected, meaning that someone
will have to update the code over several years and make it work with new releases
of operating systems and new models of machines. Writing in higher-level language
instead of assembly language not only allows future compilers to tailor the code
to future machines; it also makes the software easier to maintain and allows the
program to run on more brands of computers.

Fallacy: The importance of commercial binary compatibility means successful
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86
architecture has grown dramatically. The average is more than one instruction per
month over its 35-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing
do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word can be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure
that includes a pointer to an array that is local to that procedure. Following the
stack discipline in Figure 2.12, the memory that contains the local array will be
reused as soon as the procedure returns. Pointers to automatic variables can lead
to chaos.
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FIGURE 2.43 Growth of x86 Instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also Increases the difficulty for other companies to try to build
compatible processors.

Concluding Remarks

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for programs.
These principles allow a single machine to aid environmental scientists, financial
advisers, and novelists in their specialties. The selection of a set of instructions that
the machine can understand demands a delicate balance among the number of
instructions needed to execute a program, the number of clock cycles needed by an
instruction, and the speed of the clock. As illustrated in this chapter, three design
principles guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 registers
rather than many more.

3. Good design demands good compromises. One MIPS example was the
compromise between providing for larger addresses and constants in
instructions and keeping all instructions the same length.

Less is more.

Robert Browning,
Andrea del Sarto, 1855
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COMMON CASE FAST

We also saw the great idea of making the common cast fast applied to instruction
sets as well as computer architecture. Examples of making the common MIPS
case fast include PC-relative addressing for conditional branches and immediate
addressing for larger constant operands.

Above this machine level is assembly language, a language that humans can read.
The assembler translates it into the binary numbers that machines can understand,
and it even “extends” the instruction set by creating symbolic instructions that
aren’t in the hardware. For instance, constants or addresses that are too big are
broken into properly sized pieces, common variations of instructions are given
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered

[ WiPS instructions | Namo | Format | Paoudo PS.| Name | Format
add

add R move move R
subtract sub R multiply mult R
add immediate addi | multiply immediate | multi |
load word Tw | load immediate 11 |
store word Sw | branch less than b1t |
load half Th | branch less than
load half unsigned Thu I or equal ble :
store half sh | branch greater than bgt |
load byte b | branch greater than
load byte unsigned 1bu I or equal bge :
store byte sb |
load linked 11 |
store conditional sc |
load upper immediate Tui |
and and R
or or R
nor nor R
and immediate andi |
or immediate ori |
shift left logical sl R
shift right logical srl R
branch on equal beq |
branch on not equal bne |
set less than slt R
set less than immediate sTti |
set less than immediate sltiu |
unsigned
jump j J
jump register ir R
jump and link jal J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions
on the left and the pseudoinstructions on the right. Appendix A (Section A.10) describes the
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. The
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of
the book.
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so far, both real and pseudoinstructions. Hiding details from the higher level is
another example of the great idea of abstraction.
Each category of MIPS instructions is associated with constructs that appear in
programming languages:
B Arithmetic instructions correspond to the operations found in assignment
statements.

B Transfer instructions are most likely to occur when dealing with data
structures like arrays or structures.

B Conditional branches are used in if statements and in loops.

B Unconditional jumps are used in procedure calls and returns and for case/
switch statements.

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.45 shows the popularity of each class of instructions
for SPEC CPU2006. The varying popularity of instructions plays an important role
in the chapters about datapath, control, and pipelining.

Instruction class MIPS examples HLL correspondence

ABSTRACTION

oo | Pt
16% 48%

Arithmetic add, sub, addi Operations in assignment statement s
Data transfer Tw, sw, 1b, 1bu, Th, References to data structures, such as arrays 35% 36%
Thu, sb, Tui
Logical and, or, nor, andi, ori, Operations in assignment statement s 12% 4%
s11, srl
Conditional branch beq, bne, s1t, s1ti, If statements and loops 34% 8%
sltiu
Jump J. jr, jal Procedure calls, returns, and case/switch statements 2% 0%

FIGURE 2.45 MIPS Instructlon classes, examples, correspondence to high-level program language constructs, and
percentage of MIPS Instructlons executed by category for the average Integer and floating point SPEC CPU2006
benchmarks. Figure 3.26 in Chapter 3 shows average percentage of the individual MIPS instructions executed.

After we explain computer arithmetic in Chapter 3, we reveal the rest of the
MIPS instruction set architecture.

@ Historical Perspective and Further

SV Reading

This section surveys the history of instruction set architectures (ISAs) over time,
and we give a short history of programming languages and compilers. ISAs
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include accumulator architectures, general-purpose register architectures,
stack architectures, and a brief history of ARM and the x86. We also review the
controversial subjects of high-level-language computer architectures and reduced
instruction set computer architectures. The history of programming languages
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ +, and Java,
and the history of compilers includes the key milestones and the pioneers who
achieved them. The rest of ] Section 2.21 is found online.

Exercises

Appendix A describes the MIPS simulator, which is helpful for these exercises.
Althoughthe simulatoraccepts pseudoinstructions, try notto use pseudoinstructions
for any exercises that ask you to produce MIPS code. Your goal should be to learn
the real MIPS instruction set, and if you are asked to count instructions, your
count should reflect the actual instructions that will be executed and not the
pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example, the
1 a instruction when an actual value is not known at assembly time). In many cases,
they are quite convenient and result in more readable code (for example, the 11
and move instructions). If you choose to use pseudoinstructions for these reasons,
please add a sentence or two to your solution stating which pseudoinstructions you
have used and why.

2.1 [5] <§2.2> For the following C statement, what is the corresponding MIPS
assembly code? Assume that the variables f, g, h, and i are given and could be
considered 32-bit integers as declared in a C program. Use a minimal number of
MIPS assembly instructions.

f=9g+ (h-05);

2.2 [5] <§2.2> For the following MIPS assembly instructions above, what is a
corresponding C statement?

add f, g, h
add f, i, f
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2.3 [5] <§§2.2, 2.3> For the following C statement, what is the corresponding
MIPS assembly code? Assume that the variables f, g, h, 1, and j are assigned to
registers $s0, $s1, $s2, $53, and $s4, respectively. Assume that the base address
of the arrays A and B are in registers $s6 and $s7, respectively.

BL8] = ALi-jl;

2.4 [5] <§§2.2, 2.3> For the MIPS assembly instructions below, what is the
corresponding C statement? Assume that the variables f, g, h, i, and j are assigned
toregisters $s0, $s1, $52, $53,and $s4, respectively. Assume that the base address
of the arrays A and B are in registers $s6 and $s7, respectively.

s11
add
s11
add
Tw
addi
Tw
add
SwW

$t0,
$t0,
$t1,
$t1,
$s0,
$t2,
$t0,
$t0,
$t0,

$s0, 2
$s6, $t0
$s1, 2
$s7, $tl
0(%$t0)
$t0, 4
0(%t2)
$t0, $s0
0($t1)

#$t0 =f * 4
J# $t0 = &ALT]
# $t1 =g * 4
# $t1 = &B[g]
#f = A[f]

2.5 [5] <§$§2.2, 2.3> For the MIPS assembly instructions in Exercise 2.4, rewrite
the assembly code to minimize the number if MIPS instructions (if possible)
needed to carry out the same function.

2.6 The table below shows 32-bit values of an array stored in memory.

24
38
32
36
40

Address

Data
2

4
3
6
1
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2.6.1 [5] <§§2.2, 2.3> For the memory locations in the table above, write C
code to sort the data from lowest to highest, placing the lowest value in the
smallest memory location shown in the figure. Assume that the data shown
represents the C variable called Array, which is an array of type int, and that
the first number in the array shown is the first element in the array. Assume
that this particular machine is a byte-addressable machine and a word consists
of four bytes.

2.6.2 [5] <§§2.2, 2.3> For the memory locations in the table above, write MIPS
code to sort the data from lowest to highest, placing the lowest value in the smallest
memory location. Use a minimum number of MIPS instructions. Assume the base
address of Array is stored in register $s6.

2.7 [5] <$2.3> Show how the value Oxabcdef12 would be arranged in memory
of a little-endian and a big-endian machine. Assume the data is stored starting at
address 0.

2.8 [5] <§2.4> Translate Oxabcdef12 into decimal.

2.9 [5] <§§2.2, 2.3> Translate the following C code to MIPS. Assume that the
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7, respectively. Assume that the elements of the arrays A and B are 4-byte
words:

BI8] = A[i] + A[j1;

2.10 [5] <§§2.2, 2.3> Translate the following MIPS code to C. Assume that the
variables f, g, h, 1, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7, respectively.

addi $t0, $s6, 4
add $tl1, $s6, $0
Sw $t1, 0($t0)
Tw  $t0, 0($t0)
add $s0, $t1, $t0

2.11 [5] <§§2.2, 2.5> For each MIPS instruction, show the value of the opcode
(OP), source register (RS), and target register (RT) fields. For the I-type instructions,
show the value of the immediate field, and for the R-type instructions, show the
value of the destination register (RD) field.
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2.12 Assume that registers $s0 and $s1 hold the values 0x80000000 and
0xD0000000, respectively.

2.12.1 [5] <$2.4> What is the value of $t0 for the following assembly code?
add $t0, $s0, $sl

2.12.2 [5] <§2.4> Is the result in $ 0 the desired result, or has there been overflow?

2.12.3 [5] <§2.4> For the contents of registers $s0 and $s1 as specified above,
what is the value of $t0 for the following assembly code?

sub $t0, $s0, $sli
2.12.4 [5] <§2.4> Is the result in $t0 the desired result, or has there been overflow?

2.12.5 [5] <§2.4> For the contents of registers $s0 and $s1 as specified above,
what is the value of $t0 for the following assembly code?

add $t0, $s0, $s1
add $t0, $t0, $s0

2.12.6 [5] <$2.4> Is the result in $t0 the desired result, or has there been
overflow?

2.13 Assume that $s0 holds the value 128 .

2.13.1 [5] <§2.4> For the instruction add $t0, $s0, $s1, what is the range(s) of
values for $s1 that would result in overflow?

2.13.2 [5] <§2.4> For the instruction sub $t0, $s0, $s1, what is the range(s) of
values for $s1 that would result in overflow?

2.13.3 [5] <§2.4> For the instruction sub $t0, $s1, $s0, what is the range(s) of
values for $s1 that would result in overflow?

2.14 [5] <§§2.2, 2.5> Provide the type and assembly language instruction for the
following binary value: 0000 0010 0001 0000 1000 0000 0010 0000,

2.15 [5] <§§2.2, 2.5> Provide the type and hexadecimal representation of
following instruction: sw $t1, 32($t2)
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2.16 [5] <§2.5> Provide the type, assembly language instruction, and binary
representation of instruction described by the following MIPS fields:

op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

2.17 [5] <$§2.5> Provide the type, assembly language instruction, and binary
representation of instruction described by the following MIPS fields:

op=0x23, rs=1, rt=2, const=0x4

2.18 Assume that we would like to expand the MIPS register file to 128 registers
and expand the instruction set to contain four times as many instructions.

2.18.1 [5] <§2.5> How this would this affect the size of each of the bit fields in
the R-type instructions?

2.18.2 [5] <§2.5> How this would this affect the size of each of the bit fields in
the I-type instructions?

2.18.3 [5] <§§2.5, 2.10> How could each of the two proposed changes decrease
the size of an MIPS assembly program? On the other hand, how could the proposed
change increase the size of an MIPS assembly program?

2.19 Assume the following register contents:

$t0 = OxAAAAAAAA, $t1 = 0x12345678

2.19.1 [5] <§2.6> For the register values shown above, what is the value of $t2
for the following sequence of instructions?

s11 $t2, $t0, 44
or $t2, $t2, $tl

2.19.2 [5] <§2.6> For the register values shown above, what is the value of $t2
for the following sequence of instructions?

s11T  $t2, $to, 4
andi $t2, $tz, -1

2.19.3 [5] <§2.6> For the register values shown above, what is the value of $t2
for the following sequence of instructions?

srl $t2, $t0, 3
andi $t2, $t2, OxFFEF
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2.20 [5] <§2.6> Find the shortest sequence of MIPS instructions that extracts bits
16 down to 11 from register $t0 and uses the value of this field to replace bits 31
down to 26 in register $t1 without changing the other 26 bits of register $t1.

2.21 [5] <§2.6> Provide a minimal set of MIPS instructions that may be used to
implement the following pseudoinstruction:

not $t1, $t2 // bit-wise invert

2.22 [5] <§2.6> For the following C statement, write a minimal sequence of MIPS
assembly instructions that does the identical operation. Assume $t1 = A, $t2 = B,
and $s1 is the base address of C.

A= CL[0] << 4;

2.23 [5] <$§2.7> Assume $t0 holds the value 0x00101000. What is the value of
$t2 after the following instructions?

st $tz2, $0, $tO
bne $t2, $0, ELSE
J DONE
ELSE: addi $t2, $t2, 2
DONE:

2.24 [5] <$§2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it
possible to use the jump (j) MIPS assembly instruction to set the PC to the address
as 0x4000 00007 Is it possible to use the branch-on-equal (beq) MIPS assembly
instruction to set the PC to this same address?

2.25 The following instruction is not included in the MIPS instruction set:

rpt $t2, loop # if(R[rs1>0) R[rs]=R[rs]-1, PC=PC+4+BranchAddr

2.25.1 [5] <$§2.7> If this instruction were to be implemented in the MIPS
instruction set, what is the most appropriate instruction format?

2.25.2 [5] <$2.7> What is the shortest sequence of MIPS instructions that
performs the same operation?
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2.26 Consider the following MIPS loop:

LOOP: s1t $t2, $0, $t1
beq $t2, $0, DONE
subi $t1, $t1, 1
addi $s2, $s2, 2
J LOOP

DONE:

2.26.1 [5] <§2.7> Assume that the register $t1 is initialized to the value 10. What
is the value in register $s2 assuming $s 2 is initially zero?

2.26.2 [5] <§2.7> For each of the loops above, write the equivalent C code
routine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and
temp, respectively.

2.26.3 [5] <§2.7> For the loops written in MIPS assembly above, assume that
the register $t1 is initialized to the value N. How many MIPS instructions are
executed?

2.27 [5] <$§2.7> Translate the following C code to MIPS assembly code. Use a
minimum number of instructions. Assume that the values of a, b, i, and j are in
registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds
the base address of the array D.

for(i=0; i<a; i++)
for(j=0; j<b; j++)
DL4*j1 =1 + J;

2.28 [5] <$2.7> How many MIPS instructions does it take to implement the C
code from Exercise 2.27? If the variables a and b are initialized to 10 and 1 and all
elements of D are initially 0, what is the total number of MIPS instructions that is
executed to complete the loop?

2.29 [5] <§2.7> Translate the following loop into C. Assume that the C-level
integer 1 is held in register $t1, $s2 holds the C-level integer called resul t, and
$50 holds the base address of the integer MemArray.

addi $t1, $0, $0
LOOP: Tw $s1, 0($s0)

add $s2, $s2, $sl

addi $s0, $s0, 4
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addi $t1, $tl1, 1
sTti $t2, $tl, 100
bne $t2, $s0, LOOP

2.30 [5] <§2.7> Rewrite the loop from Exercise 2.29 to reduce the number of
MIPS instructions executed.

2.31 [5] <§2.8> Implement the following C code in MIPS assembly. What is the
total number of MIPS instructions needed to execute the function?

int fib(int n){
if (n==0)
return 0;
else if (n == 1)
return 1;
else
return fib(n=-1) + fib(n-2);
2.32 [5] <§2.8> Functions can often be implemented by compilers “in-line” An
in-line function is when the body of the function is copied into the program space,
allowing the overhead of the function call to be eliminated. Implement an “in-line”
version of the C code above in MIPS assembly. What is the reduction in the total

number of MIPS assembly instructions needed to complete the function? Assume
that the C variable n is initialized to 5.

2.33 [5] <§2.8> For each function call, show the contents of the stack after the
function call is made. Assume the stack pointer is originally at address 0x7ftttffc,
and follow the register conventions as specified in Figure 2.11.

2.34 Translate function f into MIPS assembly language. If you need to use
registers $t0 through $t7, use the lower-numbered registers first. Assume the
function declaration for funcis“int f(int a, int b);” The code for function
f is as follows:

int f(int a, int b, int ¢, int d){
return func(func(a,b),c+d);
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2.35 [5] <§2.8> Can we use the tail-call optimization in this function? If no,
explain why not. If yes, what is the difference in the number of executed instructions
in f with and without the optimization?

2.36 [5] <§2.8> Right before your function f from Exercise 2.34 returns, what do
we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that
we know what the entire function f looks like, but for function func we only know
its declaration.

2.37 [5] <§2.9> Write a program in MIPS assembly language to convert an ASCII
number string containing positive and negative integer decimal strings, to an
integer. Your program should expect register $a0 to hold the address of a null-
terminated string containing some combination of the digits 0 through 9. Your
program should compute the integer value equivalent to this string of digits, then
place the number in register $v0. If a non-digit character appears anywhere in the
string, your program should stop with the value -1 in register $v0. For example,
if register $a0 points to a sequence of three bytes 50ten, 52ten, Oten (the null-
terminated string “24”), then when the program stops, register $v0 should contain
the value 24, .

2.38 [5] <§2.9> Consider the following code:

Thu $t0, 0($tl)
sw $t0, 0($t2)

Assume that the register $t 1 contains the address 0x1000 0000 and the register
$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes
big-endian addressing. Assume that the data (in hexadecimal) at address 0x1000
0000 is: 0x11223344. What value is stored at the address pointed to by register
$tee

2.39 [5] <§2.10> Write the MIPS assembly code that creates the 32-bit constant
0010 0000 0000 0001 0100 1001 0010 0100, and stores that value to
register $t1.

2.40 [5] <§§2.6, 2.10> If the current value of the PCis 0x00000000, can you use
a single jump instruction to get to the PC address as shown in Exercise 2.39?

2.41 [5] <§§2.6, 2.10> If the current value of the PCis 0x00000600, can you use
a single branch instruction to get to the PC address as shown in Exercise 2.392
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2.42 [5] <§§2.6,2.10> If the current value of the PCis 0x1FFFf000, can you use
a single branch instruction to get to the PC address as shown in Exercise 2.39?

2.43 [5] <§2.11> Write the MIPS assembly code to implement the following C
code:

Tock(Tk);
shvar=max(shvar,x);
unlock(Tk);

Assume that the address of the 1k variable is in $a0, the address of the shvar
variable is in $a1, and the value of variable x is in $a2. Your critical section should
not contain any function calls. Use 11/sc instructions to implement the Tock ()
operation, and the unlock () operation is simply an ordinary store instruction.

2.44 [5] <§2.11> Repeat Exercise 2.43, but this time use 11/sc to perform
an atomic update of the shvar variable directly, without using Tock() and
unlock(). Note that in this problem there is no variable 1k.

2.45 [5] <§2.11> Using your code from Exercise 2.43 as an example, explain what
happens when two processors begin to execute this critical section at the same
time, assuming that each processor executes exactly one instruction per cycle.

2.46 Assume for a given processor the CPI of arithmetic instructions is 1,
the CPI of load/store instructions is 10, and the CPI of branch instructions is
3. Assume a program has the following instruction breakdowns: 500 million
arithmetic instructions, 300 million load/store instructions, 100 million branch
instructions.

2.46.1 [5] <$2.19> Suppose that new, more powerful arithmetic instructions are
added to the instruction set. On average, through the use of these more powerful
arithmetic instructions, we can reduce the number of arithmetic instructions
needed to execute a program by 25%, and the cost of increasing the clock cycle
time by only 10%. Is this a good design choice? Why?

2.46.2 [5] <$§2.19> Suppose that we find a way to double the performance of
arithmetic instructions. What is the overall speedup of our machine? What if we
find a way to improve the performance of arithmetic instructions by 10 times?

2.47 Assume that for a given program 70% of the executed instructions are
arithmetic, 10% are load/store, and 20% are branch.
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Answers to
Check Yourself

2.47.1 [5] <$2.19> Given this instruction mix and the assumption that an
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and
a branch instruction takes 3 cycles, find the average CPI.

2.47.2 [5] <§2.19> For a 25% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

2.47.3 [5] <§2.19> For a 50% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

§2.2, page 66: MIPS, C, Java

§2.3, page 72: 2) Very slow

§2.4, page 79:2) =8,

§2.5, page 87:4) sub $t2, $t0, $tl

§2.6, page 89: Both. AND with a mask pattern of 1s will leaves Os everywhere but
the desired field. Shifting left by the correct amount removes the bits from the left
of the field. Shifting right by the appropriate amount puts the field into the right-
most bits of the word, with Os in the rest of the word. Note that AND leaves the
field where it was originally, and the shift pair moves the field into the rightmost
part of the word.

§2.7, page 96: 1. All are true. II. 1).

§2.8, page 106: Both are true.

§2.9, page 111: 1. 1) and 2) IL. 3)

§2.10, page 120: I. 4) +—128K. II. 6) a block of 256 M. III. 4) S 1 |

§2.11, page 123: Both are true.

§2.12, page 132: 4) Machine independence.
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Introduction

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal or
binary form, but what about the other numbers that commonly occur? For example:

B What about fractions and other real numbers?
B Whathappensifanoperation createsa number bigger than can be represented?

B And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries including representation of
real numbers, arithmetic algorithms, hardware that follows these algorithms, and
the implications of all this for instruction sets. These insights may explain quirks
that you have already encountered with computers. Moreover, we show how to use
this knowledge to make arithmetic-intensive programs go much faster.

Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

Let’s tryadding 6, to 7, in binary and then subtracting 6 from 7__ in binary.

ten

0000 0000 0000 0000 0000 0000 0000 0111py, = 7¢en
+ 0000 0000 0000 0000 0000 0000 0000 01104y, = 6pen
- 0000 0000 0000 0000 0000 0000 0000 1101y, = 13ten

The 4 bits to the right have all the action; Figure 3.1 shows the sums and
carries. The carries are shown in parentheses, with the arrows showing how
they are passed.

Subtracting 6 from 7__ can be done directly:
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ik

0 (0) 0 (0) 1 (1) 1 (1) 0 o

FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The
third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bitis 1 +
0 + 0, yielding a 1 sum and no carry.

0000 0000 0000 0000 0000 0000 0000 0111y, = 7qen
- 0000 0000 0000 0000 0000 0000 0000 01104, = 6y
0000 0000 0000 0000 0000 0000 0000 00014, = Il

or via addition using the two's complement representation of —6:

0000 0000 0000 0000 0000 0000 0000 0111y, = 7¢en
+ 1111 1111 1111 1111 1111 1111 1111 10104, = ~64en
0000 0000 0000 0000 0000 0000 0000 0001, = lien

Recall that overflow occurs when the result from an operation cannot be
represented with the available hardware, in this case a 32-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example, —10 + 4 = —6. Since the operands fit in 32 bits and the sum is no
larger than an operand, the sum must fit in 32 bits as well. Therefore, no overflow
can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it’s just the opposite principle: when the signs of the operands are the same, overflow
cannot occur. To see this, remember that c — a = ¢ + (—a) because we subtract by
negating the second operand and then add. Therefore, when we subtract operands
of the same sign we end up by adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Knowing when overflow cannot occur in addition and subtraction is all well and
good, but how do we detect it when it does occur? Clearly, adding or subtracting
two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.

The lack of a 33rd bit means that when overflow occurs, the sign bit is set with
the value of the result instead of the proper sign of the result. Since we need just one
extra bit, only the sign bit can be wrong. Hence, overflow occurs when adding two
positive numbers and the sum is negative, or vice versa. This spurious sum means
a carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. Such a ridiculous result means a
borrow occurred from the sign bit. Figure 3.2 shows the combination of operations,
operands, and results that indicate an overflow.
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Arithmetic Logic

Unit (ALU) Hardware
that performs addition,
subtraction, and usually
logical operations such as
AND and OR.

Result
Operation Operand A | Operand B indicating overflow
=0 =0 <0

A+B

A+B <0 <0 >0
A-B >0 <0 <0
A-B <0 >0 =0

FIGURE 3.2 Overflow conditions for addition and subtraction.

We have just seen how to detect overflow for two's complement numbers in a
computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

®m Add (add), add immediate (add ), and subtract (sub) cause exceptions on
overflow.

B Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu, no
matter what the type of the variables. The MIPS Fortran compilers, however, pick
the appropriate arithmetic instructions, depending on the type of the operands.

] Appendix B describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.

Elaboration: A constant source of confusion for addi u is its name and what happens
to its immediate field. The u stands for unsigned, which means addition cannot cause an
overflow exception. However, the 16-bit immediate field is sign extended to 32 bits, just
like add1i, s1t1i, and s1tiu. Thus, the immediate field is signed, even if the operation
is “unsigned.”

Hardware/
Software
Interface

exception Also

called interrupt on
many computers. An
unscheduled event

that disrupts program
execution; used to detect
overflow.

The computer designer must decide how to handle arithmetic overflows. Although
some languages like C and Java ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the programming
environment must then decide what to do when overflow occurs.

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unscheduled procedure
call. The address of the instruction that overflowed is saved in a register, and the
computer jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
can continue after corrective code is executed. (Section 4.9 covers exceptions in
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more detail; Chapter 5 describes other situations where exceptions and interrupts
occur.)

MIPS includes a register called the exception program counter (EPC) to contain
the address of the instruction that caused the exception. The instruction move from
system control (Mf O) is used to copy EPC into a general-purpose register so that
MIPS software has the option of returning to the offending instruction via a jump
register instruction.

Summary

A major point of this section is that, independent of the representation, the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don’t want to
detect overflow for address arithmetic, the most common use of natural numbers.
Two's complement presents a greater challenge, yet some software systems require
detection of overflow, so today all computers have a way to detect it.

Some programming languages allow twos complement integer arithmetic
on variables declared byte and half, whereas MIPS only has integer arithmetic
operations on full words. As we recall from Chapter 2, MIPS does have data transfer
operations for bytes and halfwords. What MIPS instructions should be generated
for byte and halfword arithmetic operations?

1. Loadwith Ibu, Thu;arithmeticwithadd, sub, mult, div;thenstoreusing

sb, sh.
2. Loadwith 1D, Th;arithmeticwithadd, sub, mult, div;then store using
sb, sh.

3. Loadwith 1b, 1h;arithmeticwithadd, sub, mult, div,using AND to mask
result to 8 or 16 bits after each operation; then store using b, sh.

Elaboration: One feature not generally found in general-purpose microprocessors is
saturating operations. Saturation means that when a calculation overflows, the result
is set to the largest positive number or most negative number, rather than a modulo
calculation as in two’s complement arithmetic. Saturation is likely what you want for media
operations. For example, the volume knob on a radio set would be frustrating if, as you
turned it, the volume would get continuously louder for a while and then immediately very
soft. A knob with saturation would stop at the highest volume no matter how far you turned
it. Multimedia extensions to standard instruction sets often offer saturating arithmetic.

Elaboration: MIPS can trap on overflow, but unlike many other computers, there is
no conditional branch to test overflow. A sequence of MIPS instructions can discover

interrupt An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all

exceptions.)

Check
Yourself
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overflow. For signed addition, the sequence is the following (see the Elaboration on page
89 in Chapter 2 for a description of the xor instruction):

addu $t0, $tl1, $t2 # $t0 = sum, but don’t trap
xor $t3, $tl1, $t2 # Check if signs differ
st $t3, $t3, $zero # $t3 =1 if signs differ
bne $t3, $zero, No_overflow # $tl1, $t2 signs =,

# so no overflow
xor $t3, $t0, $tl # signs =; sign of sum match too?

# $t3 negative if sum sign different

st $t3, $t3, $zero # $t3 =1 if sum sign different
bne $t3, $zero, Overflow # A1l 3 signs #; goto overflow

For unsigned addition ($t0 = $t1 + $t2), thetestis

addu $t0, $t1, $t2 # $t0 = sum
nor $t3, $tl, $zero # $t3 = NOT $t1

# (2’s comp - 1: 2% - $t1 - 1)
sTtu $t3, $t3, $t2 # (2% - $t1 - 1) < $t2

#=> 2% -1 < $t1 + $t2
bne $t3,%$zero,0verflow # if(2%-1<$t1+$t2) goto overflow

Elaboration: In the preceding text, we said that you copy EPC into a register via
mfcO and then return to the interrupted code via jump register. This directive leads to
an interesting question: since you must first transfer EPC to a register to use with jump
register, how can jump register return to the interrupted code and restore the original
values of all registers? Either you restore the old registers first, thereby destroying your
return address from EPC, which you placed in a register for use in jump register, or you
restore all registers but the one with the return address so that you can jump—meaning
an exception would result in changing that one register at any time during program
execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $k0 and $k1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler
can use it as a temporary register (see Hardware/Software Interface in Section 2.10),
compilers also abstain from using registers $k0 and $k1 to make them available for the
operating system. Exception routines place the return address in one of these registers
and then use jump register to restore the instruction address.

Elaboration: The speed of addition is increased by determining the carry in to the
high-order bits sooner. There are a variety of schemes to anticipate the carry so that
the worst-case scenario is a function of the log, of the number of bits in the adder.
These anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. The most popular is carry
lookahead, which Section B.6 in [ Appendix B describes.
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Multiplication

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons
that will become clear shortly, we limit this decimal example to using only the
digits 0 and 1. Multiplying 1000, by 1001 _ :

Multiplicand 100044y
Multiplier X 100144,

1000
0000
0000
1000

Product 100100044,

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right to
left, multiplying the multiplicand by the single digit of the multiplier, and shifting
the intermediate product one digit to the left of the earlier intermediate products.

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplicand or the multiplier. In fact, if we
ignore the sign bits, the length of the multiplication of an #-bit multiplicand and an
m-bit multiplier is a product that is n + m bits long. That is, n + m bits are required
to represent all possible products. Hence, like add, multiply must cope with
overflow because we frequently want a 32-bit product as the result of multiplying
two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 X multiplicand) in the proper place
if the multiplier digitis a 1, or

2. Place 0 (0 X multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication
of binary numbers must always use 0 and 1, and thus always offers only these two
choices.

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tradition
in the belief that you will gain a better understanding by seeing the evolution of
the multiply hardware and algorithm through multiple generations. For now, let’s
assume that we are multiplying only positive numbers.

Multiplication is
vexation, Division is
as bad; The rule of
three doth puzzle me,
And practice drives me
mad.

Anonymous,

Elizabethan manuscript,
1570
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e
Multiplicand
Shift left |-
64 bits
A
—
\_/ Multiplier
64-bik ALU Shift right |-

32 bits

Product

Control test
Write

64 bits

FIGURE 3.3 First version of the multiplication hardware. The Multiplicand register, ALU,
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (Appendix B
describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted left
1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts with
the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and when
to write new values into the Product register.

Sequential Version of the Multiplication Algorithm and
Hardware

This design mimics the algorithm we learned in grammar school; Figure 3.3 shows
the hardware. We have drawn the hardware so that data flows from top to bottom
to resemble more closely the paper-and-pencil method.

Let’sassume that the multiplier is in the 32-bit Multiplier register and that the 64-
bit Product register is initialized to 0. From the paper-and-pencil example above,
it’s clear that we will need to move the multiplicand left one digit each step, as it may
be added to the intermediate products. Over 32 steps, a 32-bit multiplicand would
move 32 bits to the left. Hence, we need a 64-bit Multiplicand register, initialized
with the 32-bit multiplicand in the right half and zero in the left half. This register
is then shifted left 1 bit each step to align the multiplicand with the sum being
accumulated in the 64-bit Product register.

Figure 3.4 shows the three basic steps needed for each bit. The least significant
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to
the Product register. The left shift in step 2 has the effect of moving the intermediate
operands to the left, just as when multiplying with paper and pencil. The shift right
in step 3 gives us the next bit of the multiplier to examine in the following iteration.
These three steps are repeated 32 times to obtain the product. If each step took a
clock cycle, this algorithm would require almost 100 clock cycles to multiply two
32-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program, but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Accordingly, in many applications, multiply
can take multiple clock cycles without significantly affecting performance. Yet
Amdahls Law (see Section 1.10) reminds us that even a moderate frequency for a
slow operation can limit performance.
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( Start }

A

1. Test
MultiplierO

Multiplier0 = 1 Multiplier0 = 0

Y

1a. Add multiplicand to product and
place the result in Product register

Y Y
2. Shift the Multiplicand register left 1 bit

Y
3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

FIGURE 3.4 The first multiplication algorithm, using the hardware shown in Figure 3.3. If
the least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step.
Shift the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32
times.

This algorithm and hardware are easily refined to take 1 clock cycle per step.
The speed-up comes from performing the operations in parallel: the multiplier
and multiplicand are shifted while the multiplicand is added to the product if the
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.5 shows the
revised hardware.
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Multiplicand
32 bits
A / A
N /
32-bit ALU -
e
Product Shift rlg.ht Control
Write test
64 bits

FIGURE 3.5 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.3. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
(The Product register should really be 65 bits to hold the carry out of the adder, but it's shown here as 64 bits
to highlight the evolution from Figure 3.3.)

Hardware/
Software
Interface

Replacing arithmetic by shifts can also occur when multiplying by constants. Some
compilers replace multiplies by short constants with a series of shifts and adds.
Because one bit to the left represents a number twice as large in base 2, shifting
the bits left has the same effect as multiplying by a power of 2. As mentioned in
Chapter 2, almost every compiler will perform the strength reduction optimization
of substituting a left shift for a multiply by a power of 2.

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2, X 3 _, or 0010, X 0011 .

Figure 3.6 shows the value of each register for each of the steps labeled
according to Figure 3.4, with the final value of 0000 0110__or 6 _ . Color is
used to indicate the register values that change on that step, and the bit circled
is the one examined to determine the operation of the next step.




3.3 Multiplication

187

Initial values 0013 0000 0010 0000 0000
1 la: 1 = Prod = Prod + Mcand 0011 0000 0010 0000 0010
2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 000%) 0000 0100 0000 0010
2 la: 1 = Prod = Prod + Mcand 0001 0000 0100 0000 0110
2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110
3 1: O = No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110
4 1: 0 = No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.6 Multiply example using algorithm in Figure 3.4. The bit examined to determine the
next step is circled in color.

Signed Multiplication

So far, we have dealt with positive numbers. The easiest way to understand how
to deal with signed numbers is to first convert the multiplier and multiplicand to
positive numbers and then remember the original signs. The algorithms should
then be run for 31 iterations, leaving the signs out of the calculation. As we learned
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that
we remember that we are dealing with numbers that have infinite digits, and we are
only representing them with 32 bits. Hence, the shifting steps would need to extend
the sign of the product for signed numbers. When the algorithm completes, the
lower word would have the 32-bit product.

Faster Multiplication

Moore’s Law has provided so much more in resources that hardware designers can
now build much faster multiplication hardware. Whether the multiplicand is to be
added or not is known at the beginning of the multiplication by looking at each of
the 32 multiplier bits. Faster multiplications are possible by essentially providing
one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the
right to the inputs of adders on the left, making a stack of adders 32 high. An
alternative way to organize these 32 additions is in a parallel tree, as Figure 3.7
shows. Instead of waiting for 32 add times, we wait just the log, (32) or five 32-bit
add times.

MOORE’'S LAW
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Mplier31 « Mcand Mplier30 « Mcand Mpller29 Mcand MpherZB * Mcand Mplier3 « Mcand Mplier2 « Mcand Mplier1 « Mcand Mplier0 » Mcand

1

R

32 bits

N h u/

1 bit -~ 1 bit+

Producté3 Product62

32 bits 32 bits

1bit-— 1bit
N
32 bits
Product47..16 . Product1 Product0

FIGURE 3.7 Fast multiplicatlon hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31
adders and then organizes them to minimize delay.

PIPELINING

>~

PARALLELISM

In fact, multiply can go even faster than five add times because of the use of carry
save adders (see Section B.6 in [] Appendix B) and because it is easy to pipeline
such a design to be able to support many multiplies simultaneously (see Chapter 4).

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has two
instructions: multiply (mu1t) and multiply unsigned (multu). To fetch the integer
32-bit product, the programmer uses move from lo (mf10). The MIPS assembler
generates a pseudoinstruction for multiply that specifies three general-purpose
registers, generating mf 10 and mfhi instructions to place the product into registers.

Summary

Multiplication hardware simply shifts and add, as derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions
for multiplications by powers of 2. With much more hardware we can do the adds
in parallel, and do them much faster.

Hardware/
Software
Interface

Both MIPS multiply instructions ignore overflow, so it is up to the software to
check to see if the product is too big to fit in 32 bits. There is no overflow if Hi is
0 for multu or the replicated sign of Lo for mult. The instruction move from hi
(mfhi)can be used to transfer Hi to a general-purpose register to test for overflow.
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Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even more quirky. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010, by 1000, :

Divisor 1000t e [1001010t
-1000
10
101
1010
~1000

10ten

Quotient
Dividend

Remainder

Divide’s two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend = Quotient X Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the
divide instruction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our carefully
selected decimal example uses only the numbers 0 and 1, so it’s easy to figure out
how many times the divisor goes into the portion of the dividend: it’s either 0 times
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the
quotient and the remainder are nonnegative. The division operands and both
results are 32-bit values, and we will ignore the sign for now.

A Division Algorithm and Hardware

Figure 3.8 shows hardware to mimic our grammar school algorithm. We start with
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.

Divide et impera.

Latin for “Divide and
rule;” ancient political
maxim cited by
Machiavelli, 1532

dividend A number
being divided.

divisor A number that
the dividend is divided by.

quotient The primary
result of a division;

a number that when
multiplied by the
divisor and added to the
remainder produces the
dividend.

remainder The
secondary result of

a division; a number
that when added to the
product of the quotient
and the divisor produces
the dividend.
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—_—
Divisor
Shift right |-
64 bits
v v -—
\/ Quotient
64-bit ALU Shift left |-
32 bits
Remainder Control
Write test
64 bits A

FIGURE 3.8 First version of the divislon hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with the
dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value
into the Remainder register.

Figure 3.9 shows three steps of the first division algorithm. Unlike a human, the
computer isn’t smart enough to know in advance whether the divisor is smaller
than the dividend. It must first subtract the divisor in step 1; remember that this is
how we performed the comparison in the set on less than instruction. If the result
is positive, the divisor was smaller or equal to the dividend, so we generate a 1 in
the quotient (step 2a). If the result is negative, the next step is to restore the original
value by adding the divisor back to the remainder and generate a 0 in the quotient
(step 2b). The divisor is shifted right and then we iterate again. The remainder and
quotient will be found in their namesake registers after the iterations are complete.

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7 by 2
or 00000111 by 0010, .

ten’

Figure 3.10 shows the value of each register for each of the steps, with the
quotientbeing3 _ and theremainder 1 _ . Notice that the testin step 2 of whether
the remainder is positive or negative simply tests whether the sign bit of the
Remainder register is a 0 or 1. The surprising requirement of this algorithm is

that it takes n + 1 steps to get the proper quotient and remainder.
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( Start }

\
1. Subtract the Divisor register from the

Remainder register and place the
result in the Remainder register

Remainder > 0 Remainder <0

Test Remainder

Y \
2a. Shift the Quotient register to the left, 2b. Restore the original value by adding
setting the new rightmost bit to 1 the Divisor register to the Remainder

register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

\ Y
3. Shift the Divisor register right 1 bit |

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

FIGURE 3.9 A division algorithm, using the hardware in Figure 3.8. If the remainder is positive,
the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder after
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds
the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the
divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times.

This algorithm and hardware can be refined to be faster and cheaper. The speed-
up comes from shifting the operands and the quotient simultaneously with the
subtraction. This refinement halves the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.11 shows the
revised hardware.
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I T T T

Initial values 0000 0010 0000 0000 0111
1: Rem = Rem - Div 0000 0010 0000 (1110 0111
2b: Rem < 0 = +Div, sll Q,Q0 =0 0000 0010 0000 0000 0111
3: Shift Div right 0000 0001 0000 0000 0111
1: Rem = Rem - Div 0000 0001 0000 M™M11 0111
2b: Rem < 0 = +Div, sll Q,Q0 =0 0000 0001 0000 0000 0111
3: Shift Div right 0000 0000 1000 0000 0111
1: Rem = Rem - Div 0000 0000 1000 D111 1111
2b: Rem < 0 = +Div, sll Q,Q0 =0 0000 0000 1000 0000 0111
3: Shift Div right 0000 0000 0100 0000 0111
1: Rem = Rem - Div 0000 0000 0100 @000 0011
2a: Rem=20=5sllQ,Q0=1 0001 0000 0100 0000 0011
3: Shift Div right 0001 0000 0010 0000 0011
1: Rem = Rem - Div 0001 0000 0010 ©000 0001
2a: Rem=20=sllQ,Q0=1 0011 0000 0010 0000 0001
3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.10 Dlvislon example using the algorithm In Figure 3.9. The bit examined to determine
the next step is circled in color.

Divisor
32 bits
y y
N\
32-bit ALU -
-
Shift right
Remainder Shift left
Write
64 bits

FIGURE 3.11 An Improved verslon of the divislon hardware. The Divisor register, ALU, and
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to Figure 3.8,
the ALU and Divisor registers are halved and the remainder is shifted left. This version also combines the
Quotlent register with the right half of the Remainder register. (As in Figure 3.5, the Remainder register
should really be 65 bits to make sure the carry out of the adder is not lost.)

Signed Division
So far, we have ignored signed numbers in division. The simplest solution is to

remember the signs of the divisor and dividend and then negate the quotient if the
signs disagree.
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Elaboration: The one complication of signed division is that we must also set the sign
of the remainder. Remember that the following equation must always hold:

Dividend = Quotient X Divisor + Remainder

To understand how to set the sign of the remainder, let’s look at the example of dividing
all the combinations of =7 __ by =2 _ . The first case is easy:

+7 + +2: Quotient = +3, + Remainder = +1
Checking the results:
+7=3X2+(+1)=6+1
If we change the sign of the dividend, the quotient must change as well:
—7 + +2: Quotient = -3
Rewriting our basic formula to calculate the remainder:

Remainder = (Dividend — Quotient X Divisor) = =7 — (—3x + 2)
=-7—-(-6)=-1

So,
—7 + +2: Quotient = —3, Remainder = —1
Checking the results again:
—7=-3x2+(-1)=-6-1
The reason the answer isn’t a quotient of —4 and a remainder of +1, which would also

fit this formula, is that the absolute value of the quotient would then change depending
on the sign of the dividend and the divisor! Clearly, if

—xE=y)F(=x) Ty

programming would be an even greater challenge. This anomalous behavior is avoided
by following the rule that the dividend and remainder must have the same signs, no
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

+7 + —2: Quotient = —3, Remainder = +1

—7 + —2: Quotient = +3, Remainder = —1
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MOORE’'S LAW

PREDICTION

Thus the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend.

Faster Division

Moore’s Law applies to division hardware as well as multiplication, so we would
like to be able to speed up division by throwing hardware at it. We used many
adders to speed up multiply, but we cannot do the same trick for divide. The reason
is that we need to know the sign of the difference before we can perform the next
step of the algorithm, whereas with multiply we could calculate the 32 partial
products immediately.

There are techniques to produce more than one bit of the quotient per step.
The SRT division technique tries to predict several quotient bits per step, using a
table lookup based on the upper bits of the dividend and remainder. It relies on
subsequent steps to correct wrong predictions. A typical value today is 4 bits. The
key is guessing the value to subtract. With binary division, there is only a single
choice. These algorithms use 6 bits from the remainder and 4 bits from the divisor
to index a table that determines the guess for each step.

The accuracy of this fast method depends on having proper values in the lookup
table. The fallacy on page 231 in Section 3.9 shows what can happen if the table is
incorrect.

Divide in MIPS

You may have already observed that the same sequential hardware can be used for
both multiply and divide in Figures 3.5 and 3.11. The only requirement is a 64-bit
register that can shift left or right and a 32-bit ALU that adds or subtracts. Hence,
MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide.

As we might expect from the algorithm above, Hi contains the remainder, and
Lo contains the quotient after the divide instruction completes.

To handle both signed integers and unsigned integers, MIPS has two instructions:
divide (div) and divide unsigned (divu). The MIPS assembler allows divide
instructions to specify three registers, generating the mf10 or mfhi instructions to
place the desired result into a general-purpose register.

Summary

The common hardware support for multiply and divide allows MIPS to provide a
single pair of 32-bit registers that are used both for multiply and divide. We accelerate
division by predicting multliple quotient bits and then correcting mispredictions
later, Figure 3.12 summarizes the enhancements to the MIPS architecture for the
last two sections.
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MIPS assembly language

Catogory

$51,$52,$s3 | $s1=9$s2 + $s3 Three operands; overflow detected
subtract sub $s51,$52,$s3 | $s1 =952 -$s3 Three operands; overflow detected
add immediate addi $s1,$s52,100 | $s1 = $s2 + 100 + constant; overflow detected
add unsigned addu $51,$52,$s3 | $s1=9$s2 + $s3 Three operands; overflow undetected
subtract unsigned subu $s51,$52,$s3 | $s1 =952 -$s3 Three operands; overflow undetected
add immediate unsigned | addiu $s1,$s2,100 | $s1=9$s2 + 100 + constant; overflow undetected
move from coprocessor mfcO $s1,%epc $s1 =$epc Copy Exception PC + special regs
register
Arithmetic " ol mult $52,9s3 Hi, Lo = $52 x $53 64-bit signed product in Hi, Lo
multiply unsigned multu $s2,9$s3 Hi, Lo = $52 x $53 64-bit unsigned product in Hi, Lo
divide div $s2,9$s3 Lo=$s2 / $53, Lo = quotient, Hi = remainder
Hi= $s2 mod $s3
divide unsigned divu $s2,9$s3 Lo=$s2 / $s3, Unsigned quotient and remainder
Hi= $s2 mod $s3
move from Hi mfhi $s1 $s1 =Hi Used to get copy of Hi
move from Lo mflo $s1 $sl=Lo Used to get copy of Lo
load word Tw $51,20($s2) | $s1 = Memory[$s2 + 20] Word from memory to register
store word SwW $51,20($s2) | Memory[$s52 + 20] = $sl Word from register to memory
load half unsigned Thu $51,20($s2) | $51 = Memory[$s2 + 20] Halfword memory to register
store half sh $51,20($s2) | Memory[$52 + 20] = $s1 Halfword register to memory
Data load byte unsigned 1bu $51,20($s2) | $s1 = Memory[$52 + 20] Byte from memory to register
transfer store byte sb $51,20($s2) | Memory[$s2 + 20] = $s1 Byte from register to memory
load linked word 11 $51,20($s2) | $s1 = Memory[$52 + 20] Load word as 1st half of atomic swap
store conditional word sC $s1,20($s2) Meniory[$52+20]=$sl ;$s1-0 Store word as 2nd half atomic swap
or
load upper immediate Tui $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits
AND AND $s51,$52,$s3 | $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND
OR OR $s1,$s52,$s3 [ $s]1 — $s2 | $s3 Three reg. operands; bit-by-bit OR
NOR NOR $s1,$s2,$s3 | $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR
Logical AND immediate ANDi $s1,$s2,100 | $s1 = $s2 & 100 Bit-by-bit AND with constant
OR immediate ORi $s1,$s2,100 | $s1 = $s2 | 100 Bit-by-bit OR with constant
shift left logical s11 $s1,$s2,10 |$sl = $s2 << 10 Shift left by constant
shift right logical srl $s1,$s2,10 |$sl = $s2 >> 10 Shift right by constant
branch on equal beq $s1,$s2,25 |if($s5]1 ==$52)gotoPC+ 4+ 100 | Equal test; PCrelative branch
branch on not equal bne $s1,$s2,25 |if($s1!= $52) goto PC + 4 + 100 | Not equal test; PC-relative
set on less than sit $s51,$s52,$s3 |if($s2 < $53) $s1=1 Compare less than; two's
else $s1 =0 complement
‘?°"di‘ set less than immediate | s1ti $s1,$52,100 |if ($s2 < 100) $s1=1; Compare < constant; two's
S?anri:h else $s51=0 complement
set less than unsigned sltu $s1,$52,$s3 |if ($s2 <$s3) $s1=1; Compare less than; natural numbers
else $s1=0
set less than immediate sltiu $s1,$s2,100 |if($s2 <100) $s1l=1; Compare < constant; natural numbers
unsigned else $s1 =0
Uncondi- jump A 2500 go to 10000 Jump to target address
tional jump register ir $ra goto $ra For switch, procedure return
jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

FIGURE 3.12 MIPS core archltecture. The memory and registers of the MIPS architecture are not included for space reasons, but this
section added the Hi and Lo registers to support multiply and divide. MIPS machine language is listed in the MIPS Reference Data Card at the

front of this book.
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Hardware/
Software
Interface

Speed gets you
nowhere if you're
headed the wrong way.

American proverb

scientific notation

A notation that renders
numbers with a single
digit to the left of the
decimal point.

normalized A number
in floating-point notation
that has no leading 0s.

MIPS divide instructions ignore overflow, so software must determine whether the
quotient is too large. In addition to overflow, division can also result in an improper
calculation: division by 0. Some computers distinguish these two anomalous events.
MIPS software must check the divisor to discover division by 0 as well as overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back
if the remainder is negative. It simply adds the dividend to the shifted remainder in
the following step, since (r + d) X 2 —d=r X2 +d X 2 —d=r X 2 + d. This
nonrestoring division algorithm, which takes 1 clock cycle per step, is explored further
in the exercises; the algorithm above is called restoring division. A third algorithm that
doesn’t save the result of the subtract if it's negative is called a nonperforming division
algorithm. It averages one-third fewer arithmetic operations.

Floating Point

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265... _ (pi)

2.71828... _ (e)

0.000000001,_ or 1.0, x 10~ (seconds in a nanosecond)
3,155,760,000, or 3.15576 X 10° (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading Os is called a normalized number, which is the usual way to write it. For
example, 10, X 107 is in normalized scientific notation, but 01, X 107% and
10.0_ X 107" are not.

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1.0, X2

To keep a binary number in normalized form, we need a base that we can increase
or decrease by exactly the number of bits the number must be shifted to have one
nonzero digit to the left of the decimal point. Only a base of 2 fulfills our need. Since
the base is not 10, we also need a new name for decimal point; binary point will do fine.
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Computer arithmetic that supports such numbers is called floating point
because it represents numbers in which the binary point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation, numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

l.xxxxmcxxxtw0 X 20

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in normalized form offers three
advantages. It simplifies exchange of data that includes floating-point numbers;
it simplifies the floating-point arithmetic algorithms to know that numbers will
always be in this form; and it increases the accuracy of the numbers that can be
stored in a word, since the unnecessary leading Os are replaced by real digits to the
right of the binary point.

Floating-Point Representation

A designer of a floating-point representation must find a compromise between the
size of the fraction and the size of the exponent, because a fixed word size means
you must take a bit from one to add a bit to the other. This tradeoff is between
precision and range: increasing the size of the fraction enhances the precision
of the fraction, while increasing the size of the exponent increases the range of
numbers that can be represented. As our design guideline from Chapter 2 reminds
us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The
representation of a MIPS floating-point number is shown below, where s is the sign
of the floating-point number (1 meaning negative), exponent is the value of the
8-bit exponent field (including the sign of the exponent), and fraction is the 23-bit
number. As we recall from Chapter 2, this representation is sign and magnitude,
since the sign is a separate bit from the rest of the number.

floating point
Computer arithmetic that
represents numbers in
which the binary point is
not fixed.

fraction The value,
generally between 0 and
1, placed in the fraction
field. The fraction is also
called the mantissa.

exponent In the
numerical representation
system of floating-point
arithmetic, the value that
is placed in the exponent
field.

31 30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0

S exponent fraction

1 bit 8 bits 23 bits

In general, floating-point numbers are of the form
(—1)SX F X 2F

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)
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overflow (floating-
point) A situation in
which a positive exponent
becomes too large to fit in
the exponent field.

underflow (floating-
point) A situation

in which a negative
exponent becomes too
large to fit in the exponent
field.

double precision

A floating-point value
represented in two 32-bit
words.

single precision

A floating-point value
represented in a single 32-
bit word.

These chosen sizes of exponent and fraction give MIPS computer arithmetic
an extraordinary range. Fractions almost as small as 2.0, X 107** and numbers
almost as large as 2.0, X 10 can be represented in a computer. Alas, extraordinary
differs from infinite, so it is still possible for numbers to be too large. Thus, overflow
interrupts can occur in floating-point arithmetic as well as in integer arithmetic.
Notice that overflow here means that the exponent is too large to be represented
in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as programmers
will want to know when they have calculated a number that is too large to be
represented, they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in a
program giving incorrect answers. To distinguish it from overflow, we call this
event underflow. This situation occurs when the negative exponent is too large to
fit in the exponent field.

One way to reduce chances of underflow or overflow is to offer another format
that has a larger exponent. In C this number is called double, and operations on
doubles are called double precision floating-point arithmetic; single precision
floating point is the name of the earlier format.

The representation of a double precision floating-point number takes two MIPS
words, as shown below, where s is still the sign of the number, exponent is the value
of the 11-bit exponent field, and fraction is the 52-bit number in the fraction field.

31 30|29|28|27|26|25|24|23|22|21|20|19 18|17|16|15|14|13|12|11|10| 9 | 8 | 7| 6 | 5 | 4 | 3 | 2 | 1 |0
s exponent fraction
1 bit 11 bits 20 bits

fraction (continued) |

32 bits

MIPS double precision allows numbers almost as small as 2.0, X 107°* and almost
as large as 2.0 X 10°*. Although double precision does increase the exponent
range, its primary advantage is its greater precision because of the much larger
fraction.

These formats go beyond MIPS. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard has
greatly improved both the ease of porting floating-point programs and the quality
of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1-bit
of normalized binary numbers implicit. Hence, the number is actually 24 bits long
in single precision (implied 1 and a 23-bit fraction), and 53 bits long in double
precision (1 + 52). To be precise, we use the term significand to represent the 24-
or 53-bit number that is 1 plus the fraction, and fraction when we mean the 23- or
52-bit number. Since 0 has no leading 1, it is given the reserved exponent value 0 so
that the hardware won't attach a leading 1 to it.
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Single precision Double precision Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 Nonzero 0 Nonzero + denormalized number
1-254 Anything 1-2046 Anything + floating-point number
255 0 2047 0 * infinity
255 Nonzero 2047 Nonzero NaN (Not a Number)

FIGURE 3.13 EEE 754 encoding of floating-point numbers. A separate sign bit determines the
sign. Denormalized numbers are described in the Elaboration on page 222. This information is also found in
Column 4 of the MIPS Reference Data Card at the front of this book.

Thus 00 ... 00, represents 0; the representation of the rest of the numbers uses
the form from before with the hidden 1 added:

(—=1)% X (1 + Fraction) X 2F

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s1, s2, s3, ..., then the value is

(18 X (1 + (s1 X 27) + (2 X 272) 4+ (s3 X 27%) + (s4 X 274 + ...) X 2°

Figure 3.13 shows the encodings of IEEE 754 floating-point numbers. Other
features of IEEE 754 are special symbols to represent unusual events. For example,
instead of interrupting on a divide by 0, software can set the result to a bit pattern
representing +eo or —eo; the largest exponent is reserved for these special symbols.
When the programmer prints the results, the program will print an infinity symbol.
(For the mathematically trained, the purpose of infinity is to form topological
closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0
or subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNss is to allow programmers to postpone some tests and decisions to
a later time in the program when they are convenient.

The designers of IEEE 754 also wanted a floating-point representation that could
be easily processed by integer comparisons, especially for sorting. This desire is
why the sign is in the most significant bit, allowing a quick test of less than, greater
than, or equal to 0. (It’s a little more complicated than a simple integer sort, since
this notation is essentially sign and magnitude rather than two’s complement.)

Placing the exponent before the significand also simplifies the sorting of
floating-point numbers using integer comparison instructions, since numbers with
bigger exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign.
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Negative exponents pose a challenge to simplified sorting. If we use two's
complement or any other notation in which negative exponents have a 1 in the
most significant bit of the exponent field, a negative exponent will look like a big
number. For example, 1.0, X 27" would be represented as

30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 ‘8 ‘7 ‘6 ‘5‘ 4‘ 3‘ 2‘ 1‘ 0
0j2 2221291 1 14,0 0O0O0O0O0OO0OOOOOOOOOO0OO0OO0OO0OO

3

-

(Remember that the leading 1 is implicit in the significand.) The value 1.0, X 2*!
would look like the smaller binary number

3

-

30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9 ‘8 ‘7 ‘6 ‘5 ‘4 ‘3 ‘2 ‘1 ‘O

ojo o o o oo o120 600 0000 0O 0 O0OOOOOOOOTGOTO

The desirable notation must therefore represent the most negative exponent as
00 ... 00, and the most positive as 11 ... 11__. This convention is called biased
notation, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so an exponent of —1 is
represented by the bit pattern of the value —1 + 127_, or 126 = 0111 1110,
and +1 is represented by 1 + 127, or 128 = 1000 0000,__. The exponent bias for
double precision is 1023. Biased exponent means that the value represented by a
floating-point number is really

(—1)% X (1 + Fraction) X 2(Exponent = Bias)
The range of single precision numbers is then from as small as
+1.00000000000000000000000, X 271
to as large as
LI I111111111 X 271

Let’s demonstrate.
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Floating-Point Representation
Show the IEEE 754 binary representation of the number —0.75__in single and
double precision.
The number —0.75__is also
—3/4_ or —3/2%
It is also represented by the binary fraction
—11_ /22 or —0.11__
In scientific notation, the value is
— 011, X2
and in normalized scientific notation, it is
—11_ X2
The general representation for a single precision number is
(—1)% X (1 + Fraction) X 2(Exponent=127)
Subtracting the bias 127 from the exponent of —1.1 X 27" yields
(=1)" X (1 + .1000 0000 0000 0000 0000 000, ) X 2(126-127)

The single precision binary representation of —0.75__is then

3

[

30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0

1$0 12111121012 00O0O0OOO0OO0OOOODO0ODO0OOOOOOOOOO0

1 bit 8 bits 23 bits

The double precision representation is

(—=1)" X (1 + .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000, ) X 2102271023

3

[

30‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0

1$0 1111212112121 02 00O0O0OO0OO0O0OO0OO0O0O0O0OO0ODO0OO0OOO0OSO0OOQO0OOQ

1 bit 11 bits 20 bits

‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘

32 bits
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Now let’s try going the other direction.

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?

3

iy

30‘29‘28‘27‘26‘25‘24‘23 22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0

1719 0 0 0O 000 1/012 00 O0O0OO0OOO0ODO0OOOOOOOOOODO

The sign bit is 1, the exponent field contains 129, and the fraction field contains
1 X 272 = 1/4, or 0.25. Using the basic equation,

(—1) X (1 + Praction) X 2(Bsponent=bias)

(—1)' X (1 4 0.25) X 2027127
—1X1.25X2
—-125X 4

—5.0

In the next few subsections, we will give the algorithms for floating-point
addition and multiplication. At their core, they use the corresponding integer
operations on the significands, but extra bookkeeping is necessary to handle the
exponents and normalize the result. We first give an intuitive derivation of the
algorithms in decimal and then give a more detailed, binary version in the figures.

Elaboration: Following IEEE guidelines, the IEEE 754 committee was reformed 20
years after the standard to see what changes, if any, should be made. The revised
standard IEEE 754-2008 includes nearly all the IEEE 754-1985 and adds a 16-bit format
(“half precision”) and a 128-bit format (“quadruple precision”). No hardware has yet been
built that supports quadruple precision, but it will surely come. The revised standard
also add decimal floating point arithmetic, which IBM mainframes have implemented.

Elaboration: In an attempt to increase range without removing bits from the significand,
some computers before the IEEE 754 standard used a base other than 2. For example,
the IBM 360 and 370 mainframe computers use base 16. Since changing the IBM
exponent by one means shifting the significand by 4 bits, “normalized” base 16 numbers
can have up to 3 leading bits of Os! Hence, hexadecimal digits mean that up to 3 bits must
be dropped from the significand, which leads to surprising problems in the accuracy of
floating-point arithmetic. IBM mainframes now support IEEE 754 as well as the hex format.
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Floating-Point Addition

Let’s add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999, X 10" 4+ 1.610, X 10~". Assume that we can store
only four decimal digits of the significand and two decimal digits of the exponent.

Step 1.

Step 2.

Step 3.

Step 4.

To be able to add these numbers properly, we must align the decimal
point of the number that has the smaller exponent. Hence, we need
a form of the smaller number, 1.610, X 107", that matches the
larger exponent. We obtain this by observing that there are multiple
representations of an unnormalized floating-point number in
scientific notation:

1.610, X 107" = 0.1610, X 10°= 0.01610,_ X 10'

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999,, X 10". Thus, the
first step shifts the significand of the smaller number to the right until
its corrected exponent matches that of the larger number. But we can
represent only four decimal digits so, after shifting, the number is
really

0.016 X 10*
Next comes the addition of the significands:

9.999
+ 0.016,,

10.015
The sum is 10.015_ X 10"

This sum is not in normalized scientific notation, so we need to
adjust it:

10.015,, X 10' = 1.0015_ X 107

Thus, after the addition we may have to shift the sum to put it into
normalized form, adjusting the exponent appropriately. This example
shows shifting to the right, but if one number were positive and the
other were negative, it would be possible for the sum to have many
leading Os, requiring left shifts. Whenever the exponent is increased
or decreased, we must check for overflow or underflow—that is, we
must make sure that the exponent still fits in its field.

Since we assumed that the significand can be only four digits long
(excluding the sign), we must round the number. In our grammar
school algorithm, the rules truncate the number if the digit to the
right of the desired point is between 0 and 4 and add 1 to the digit if
the number to the right is between 5 and 9. The number

1.0015_ X 102
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is rounded to four digits in the significand to
1.002_ X 102

since the fourth digit to the right of the decimal point was between 5
and 9. Notice that if we have bad luck on rounding, such as adding 1
to a string of 9s, the sum may no longer be normalized and we would
need to perform step 3 again.

Figure 3.14 shows the algorithm for binary floating-point addition that follows
this decimal example. Steps 1 and 2 are similar to the example just discussed:
adjust the significand of the number with the smaller exponent and then add the
two significands. Step 3 normalizes the results, forcing a check for overflow or
underflow. The test for overflow and underflow in step 3 depends on the precision
of the operands. Recall that the pattern of all 0 bits in the exponent is reserved and
used for the floating-point representation of zero. Moreover, the pattern of all 1 bits
in the exponent is reserved for indicating values and situations outside the scope of
normal floating-point numbers (see the Elaboration on page 222). For the example
below, remember that for single precision, the maximum exponent is 127, and the
minimum exponent is —126.

Binary Floating-Point Addition

Try adding the numbers 0.5 and —0.4375_ in binary using the algorithm in
Figure 3.14.

Let’s first look at the binary version of the two numbers in normalized scientific
notation, assuming that we keep 4 bits of precision:

0.5, =12, =1/2',
=0.1,, =01, X2° = 1.000,, X 2
—04375_ = —7/16,, = —7/2*

= —0.0111_ = —0.0111_ X 2= —1.110_ X 22

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent (—1.11
X 272) is shifted right until its exponent matches the larger number:

—1.110,,, X 272 = —0.111, X 2"

Step 2. Add the significands:

1.000, X 27"+ (—0.111_ X 27) = 0.001_ X 27!
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( Start )

Y
1. Compare the exponents of the two numbers;
shift the smaller number to the right until its
exponent would match the larger exponent

\
2. Add the significands

Y
3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

Overflow or
underflow?

Y

‘ Exception )

4. Round the significand to the appropriate
number of bits

l

Still normalized?

FIGURE 3.14 Floating-point additlon. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.
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Step 3.

Step 4.

Normalize the sum, checking for overflow or underflow:

0.001, X 27'=0.010,_ X272 =0100_ X2
= 1.000,, X 27

Since 127 = +4 = —126, there is no overflow or underflow. (The
biased exponent would be —4 + 127, or 123, which is between 1 and
254, the smallest and largest unreserved biased exponents.)

Round the sum:
1.000,_ X 274
The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding.
This sum is then

1.000, X 27* = 0.0001000, = 0.0001,
=1/2* = 1/16,, = 0.0625,,

This sum is what we would expect from adding 0.5 to —0.4375_ .

Many computers dedicate hardware to run floating-point operations as fast as possible.
Figure 3.15 sketches the basic organization of hardware for floating-point addition.

Floating-Point Multiplication

Now that we have explained floating-point addition, let’s try floating-point
multiplication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110, X 10" X 9.200,_ X 107°. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step 1.

Unlike addition, we calculate the exponent of the product by simply
adding the exponents of the operands together:

New exponent = 10 + (—5) =5

Let’s do this with the biased exponents as well to make sure we obtain
the same result: 10 + 127 = 137, and —5 + 127 = 122, so

New exponent = 137 + 122= 259

This result is too large for the 8-bit exponent field, so something is
amiss! The problem is with the bias because we are adding the biases
as well as the exponents:

New exponent = (10 + 127) + (—5 + 127) = (5 + 2 X 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers,
we must subtract the bias from the sum:
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Sign | Exponent Fraction Sign | Exponent Fraction
\ \
N Compare
Small ALU
exponents
\
Exponent
difference
Y Yv Yy Yy v
o1 D= S CIED, |—>&_1)
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Y
Shift smaller
Control Shift right number right
Big ALU Add
Y Y
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T
»- Rounding hardware Round
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Sign | Exponent Fraction

FIGURE 3.15 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.14 correspond
to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to determine which is
larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger exponent, the significand of the
smaller number, and the significand of the larger number. The smaller significand is shifted right, and then the significands are added together
using the big ALU. The normalization step then shifts the sum left or right and increments or decrements the exponent. Rounding then creates
the final result, which may require normalizing again to produce the actual final result.
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New exponent = 137 + 122 — 127 = 259 — 127 = 132 = (5 + 127)
and 5 is indeed the exponent we calculated initially.
Step 2. Next comes the multiplication of the significands:

1110,
X 9.200,

0000
0000
2220
9990
10212000,

There are three digits to the right of the decimal point for each
operand, so the decimal point is placed six digits from the right in the
product significand:

10.212000,_,

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 X 10°.

Step 3. This product is unnormalized, so we need to normalize it:

10212, X 10° = 1.0212 X 10°

Thus, after the multiplication, the product can be shifted right one digit
to put it in normalized form, adding 1 to the exponent. At this point,
we can check for overflow and underflow. Underflow may occur if both
operands are small—that is, if both have large negative exponents.

Step 4. We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

1.0212 X 10°

is rounded to four digits in the significand to

1.021,_ X 10°

Step 5. The sign of the product depends on the signs of the original operands.
If they are both the same, the sign is positive; otherwise, it’s negative.
Hence, the product is

+1.021,_ X 106
The sign of the sum in the addition algorithm was determined by

addition of the significands, but in multiplication, the sign of the
product is determined by the signs of the operands.
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1. Add the biased exponents of the two
numbers, subtracting the bias from the sum
to get the new biased exponent

Y

2. Multiply the significands

P
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3. Normalize the product if necessary, shifting
it right and incrementing the exponent
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( Exception )

4. Round the significand to the appropriate
number of bits
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5. Set the sign of the product to positive if the
signs of the original operands are the same;
if they differ make the sign negative

Y

( Done )

FIGURE 3.16 Floating-point multiplicatlon. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.
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Once again, as Figure 3.16 shows, multiplication of binary floating-point numbers
is quite similar to the steps we have just completed. We start with calculating
the new exponent of the product by adding the biased exponents, being sure to
subtract one bias to get the proper result. Next is multiplication of significands,
followed by an optional normalization step. The size of the exponent is checked
for overflow or underflow, and then the product is rounded. If rounding leads to
further normalization, we once again check for exponent size. Finally, set the sign
bit to 1 if the signs of the operands were different (negative product) or to 0 if they
were the same (positive product).

Step 1.

Step 2.

Step 3.

Step 4.

Binary Floating-Point Multiplication

Lets try multiplying the numbers 0.5  and —0.4375_, using the steps in
Figure 3.16.

In binary, the task is multiplying 1.000, X 27'by —1.110_ X 272

Adding the exponents without bias:
—1+(-2)=-3
or, using the biased representation:

(=1 +127) + (=2 + 127) — 127 = (=1 — 2) + (127 + 127 — 127)
= —34+127=124

Multiplying the significands:

1.000,
X 1110,

0000
1000
1000
1000
1110000,

The product is 1.110000, X 273, but we need to keep it to 4 bits, so it
is 1110, X 2%,

Now we check the product to make sure it is normalized, and then
check the exponent for overflow or underflow. The product is already
normalized and, since 127 = —3 = —126, there is no overflow or
underflow. (Using the biased representation, 254 = 124 = 1, so the
exponent fits.)

Rounding the product makes no change:

1.110,, % 273
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Step 5. Since the signs of the original operands differ, make the sign of the
product negative. Hence, the product is

—1.110,, X 273
Converting to decimal to check our results:

—1.110, X 27* = —0.001110, = —0.00111
= —7/2°_ = —7/32, = —0.21875

The product of 0.5 and —0.4375__isindeed —0.21875_.

Floating-Point Instructions in MIPS

MIPS supports the IEEE 754 single precision and double precision formats with
these instructions:

m Floating-point addition, single (add . s) and addition, double (add . d)
Floating-point subtraction, single (Sub . s) and subtraction, double (Sub . d)
Floating-point multiplication, single (mu | . ) and multiplication, double (mu1 . d)

Floating-point division, single (d1V . s) and division, double (diVv . d)

Floating-point comparison, single (C . X . S) and comparison, double (C . X . d),
where X may be equal (€q), not equal (neq), less than (11), less than or equal
(1e), greater than (gt), or greater than or equal (ge)

m Floating-point branch, true (bc1t) and branch, false (bc17)

Floating-point comparison sets a bit to true or false, depending on the comparison
condition, and a floating-point branch then decides whether or not to branch,
depending on the condition.

The MIPS designers decided to add separate floating-point registers—called
$0, $f1, $12, ...—used either for single precision or double precision. Hence,
they included separate loads and stores for floating-point registers: 1wcl and
swcl. The base registers for floating-point data transfers which are used for
addresses remain integer registers. The MIPS code to load two single precision
numbers from memory, add them, and then store the sum might look like this:

Twel $f4,c($sp) 4 Load 32-bit F.P. number into F4
Twel $f6,a($sp) # Load 32-bit F.P. number into F6
add.s $f2,$F4,$f6 ## F2 = F4 + F6 single precision

swcl $f2,b($sp) 4 Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers,
using the even register number as its name. Thus, the pair of single precision
registers $ T2 and $ {3 also form the double precision register named $ 2.

Figure 3.17 summarizes the floating-point portion of the MIPS architecture revealed
in this chapter, with the additions to support floating point shown in color. Similar to
Figure 2.19 in Chapter 2, Figure 3.18 shows the encoding of these instructions.



212

Chapter 3 Arithmetic for Computers

MIPS floating-point operands

32 floating- $f0, $f1, $f2, ..., $£31 | MIPS floating-point registers are used in pairs for double precision numbers.

point registers

23% memory words | Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
Memory[4], . sequential word addresses differ by 4. Memory holds data structures, such
Memory[4294967292] as arrays, and spilled registers, such as those saved on procedure calls.

MIPS floating-point assembly Ianguage

camery_|_tmiven_|__sume__]___oms__|_comene__

FP add single .5 $f2,$4,%f6 $f2 = $f4 + $f6 FP add (single precision)
FP subtract single sub.s $f2,$f4,$f6 $f2 = $f4 - $f6 FP sub (single precision)
FP multiply single mul.s $f2,$f4,$f6 $f2 = $f4 x $f6 FP multiply (single precision)
FP divide single div.s §$f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (single precision)
Arithmetic FP add double add.d $f2,$f4,$f6 [$f2 = $f4 + $f6 FP add (double precision)
FP subtract double |[sub.d $f2,$f4,$f6 $f2 = $f4 - $f6 FP sub (double precision)
FP multiply double [mul.d $f2,$f4,$f6 $f2 = $f4 x $f6 FP multiply (double
precision)
FP divide double div.d $f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (double precision)
Data load word copr. 1 Twcl $11,100($s2) |[$f1l = Memory[$s2 + 100] | 32-bit data to FP register
transfer store word copr. 1 swcl $f1,100($s2) |Memory[$s2 + 100] = §f1 32-bit data to memory
branch on FP true bclt 25 if (cond == 1) goto PC + 4 PC-relative branch if FP
+ 100 cond.
) branch on FP false |bclf 25 if (cond == 0) goto PC + 4 PC-relative branch if not
(;ond|‘ + 100 cond.
tional FP compare single [c.1t.s $f2,$f4 if ($f2 < $f4) FP compare less than
branch (eq.ne,lt,le,gt.ge) cond = 1; else cond = 0 single precision
FP compare double |c.1t.d $f2,$f4 if ($f2 < $f4) FP compare less than
(eq,ne,lt,le,gt,ge) cond = 1; else cond = 0 double precision

[Format| ____________ Example

MIPS floating-point machine language

add.s R 17 16 6 4 2 0 |add.s $f2,$f4,$f6
sub.s R 17 16 6 4 2 1 |sub.s $f2,$f4,$76
mul.s R 17 16 6 4 2 2 |mul.s $f2,$74,$f6
div.s R 17 16 6 4 2 3 |div.s $f2,$f4,$f6
add.d R 17 17 6 4 2 0 Jadd.d $f2,$f4,$f6
sub.d R 17 17 6 4 2 1 |[sub.d $f2,$f4,$f6
mul.d R 17 17 6 4 2 2 |mul.d $f2,$f4,$f6
div.d R 17 17 6 4 2 3 |div.d $f2,$f4,$f6
Twcl | 49 20 2 100 lwcl  $f2,100($s4)
swcl | 57 20 2 100 swcl  $f2,100($s4)
bclt | 17 8 1 25 bclt 25

bclf | 17 8 0 25 bclf 25

c.1t.s R 17 16 4 2 0 60 |c.lt.s $f2,$f4
c.1t.d R 17 17 4 2 0 60 |c.lt.d $f2,$f4
Field size 6 bits 5 bits 5 bits 5 bits 5 bits | 6 bits | All MIPS instructions 32 bits

FIGURE 3.17 MIPS floating-point architecture revealed thus far. See Appendix A, Section A.10, for more detail. This information
is also found in column 2 of the MIPS Reference Data Card at the front of this book.
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28-26 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
31-29

0(000) Rfmt Bltz/gez J jal beq bne blez bgtz
1(001) addi addiu slti sltiu AND1 ORi x0Ri lui
2(010) I8 ElpPt

3(011)

4(100) b Th Twl Tw Tbu Thu Twr

5(101) sh sh swl Sw swr

6(110) TwcO Twel

7(111) swc0 swcl

op(31:26) = 010001 (FIPt), (rt(16:16) = 0 => c = f, r{(16:16) = 1 => c = t), rs(25:21):

23-21 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
25-24

0(00) mfcl cfcl mtcl ctel

1(01) bel.c

2(10) f: single f= double

3(11)

op(31:26) = 010001 (FIPt), (f above: 10000 => f = s, 10001 => f = d), funct(5:0):

2-0 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

5-3
0(000) add.f sub.f mul.f div.f abs.f mov. | neg.f
1(001)
2(010)
3(011)
4(100) cvt.s.f cvt.d.f cvt.w.f
5(101)
6(110)  |c.f.f c.un.f c.eq.f c.ueq.f  |c.olt.f |c.ult.f |c.ole.f |c.ule.f
7111 Jc.sf.f c.ngle.f c.seq.f |c.ngl.f |c.1t.f c.nge.f |c.le.f c.ngt.f

FIGURE 3.18 MIPS floating-point instruction encoding. This notation gives the value of a field by row and by column. For example,
in the top portion of the figure, 1w is found in row number 4 (100, for bits 31-29 of the instruction) and column number 3 (011, for bits
28-26 of the instruction), so the corresponding value of the op field (bits 31-26) is 100011 . Underscore means the field is used elsewhere.
For example, FIPt in row 2 and column 1 (op = 010001, ) is defined in the bottom part of the figure. Hence sub. f in row 0 and column 1 of
the bottom section means that the funct field (bits 5-0) of the instruction) is 000001, _and the op field (bits 31-26) is 010001 _ . Note that the
5-bit rs field, specified in the middle portion of the figure, determines whether the operation is single precision (f = s, so rs = 10000) or double
precision (f = d, so rs = 10001). Similarly, bit 16 of the instruction determines if the bc1 . ¢ instruction tests for true (bit 16 =1 = >bcl.t)
or false (bit 16 = 0 = > bcl. f). Instructions in color are described in Chapter 2 or this chapter, with Appendix A covering all instructions.
This information is also found in column 2 of the MIPS Reference Data Card at the front of this book.
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Hardware/
Software
Interface

One issue that architects face in supporting floating-point arithmetic is whether
to use the same registers used by the integer instructions or to add a special set
for floating point. Because programs normally perform integer operations and
floating-point operations on different data, separating the registers will only
slightly increase the number of instructions needed to execute a program. The
major impact is to create a separate set of data transfer instructions to move data
between floating-point registers and memory.

The benefits of separate floating-point registers are having twice as many
registers without using up more bits in the instruction format, having twice the
register bandwidth by having separate integer and floating-point register sets, and
being able to customize registers to floating point; for example, some computers
convert all sized operands in registers into a single internal format.

Compiling a Floating-Point C Program into MIPS Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)
{
return ((5.0/9.0) *(fahr - 32.0));
}

Assume that the floating-point argument fahr is passed in $f12 and the
result should go in $ f0. (Unlike integer registers, floating-point register 0 can
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three floating-point constants in
memory within easy reach of the global pointer $gp. The first two instruc-
tions load the constants 5.0 and 9.0 into floating-point registers:

f2c:
Twcl $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)
Twcl $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

They are then divided to get the fraction 5.0/9.0:

div.s $fl6, $fl6, $f18 # $fl6 = 5.0 / 9.0
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(Many compilers would divide 5.0 by 9.0 at compile time and save the single
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next, we
load the constant 32.0 and then subtract it from fahr ($f12):

Twcl $f18, const32($gp)ff $f18 = 32.0
sub.s $f18, $fl12, $f18 # $f18 = fahr - 32.0

Finally, we multiply the two intermediate results, placing the productin $f0 as
the return result, and then return

mul.s $f0, $fl6, $f18 # $f0 = (5/9)*(fahr - 32.0)
jr $ra # return

Now let’s perform floating-point operations on matrices, code commonly
found in scientific programs.

Compiling Floating-Point C Procedure with Two-Dimensional
Matrices into MIPS

Most floating-point calculations are performed in double precision. Let’s per-
form matrix multiply of C = C + A * B. It is commonly called DGEMM,
for Double precision, General Matrix Multiply. We'll see versions of DGEMM
again in Section 3.8 and subsequently in Chapters 4, 5, and 6. Let’s assume C,
A, and B are all square matrices with 32 elements in each dimension.

void mm (double c[J1[], double all[], double b[I[1)
{

int i, j, k;

for (1 =0; i 1=32: i=1+1)
for (j =0; jJ '=32; =3+ 1)
for (k =0; k !'=32; k =5k + 1)

cliJlJj) = clillj] + alillk] *bLkILJT;
}

The array starting addresses are parameters, so they arein $a0, $al,and $a2.
Assume that the integer variables are in $s0, $s1, and $52, respectively.
What is the MIPS assembly code for the body of the procedure?

Note that c[ 1 ][ J ] is used in the innermost loop above. Since the loop index
is k, the index does not affect c[ 1 ][ J ], so we can avoid loading and storing
c[11][J] each iteration. Instead, the compiler loads c [ 1 ][ j ] into a register
outside the loop, accumulates the sum of the products of a[i]J[k] and
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bLk1[J] in that same register, and then stores the sum into C[ 1 ][ J ] upon
termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstructions
11 (which loads a constant into a register), and 1.d and s.d (which the
assembler turns into a pair of data transfer instructions, 1wcl or swcl, to a
pair of floating-point registers).

The body of the procedure starts with saving the loop termination value of
32 in a temporary register and then initializing the three for loop variables:

mm:. ..
11 $tl1, 32 4 $t1 = 32 (row size/loop end)
11 $s0, 0 4 i = 0; initialize Ist for Toop
L1: 11 $s1, 0 # j = 0; restart 2nd for Toop
L2: 11 $s2, 0 # k = 0; restart 3rd for loop

To calculate the address of c[11[ J 1, we need to know how a 32 X 32, two-
dimensional array is stored in memory. As you might expect, its layout is the
same as if there were 32 single-dimension arrays, each with 32 elements. So the
first step is to skip over the i “single-dimensional arrays,” or rows, to get the
one we want. Thus, we multiply the index in the first dimension by the size of
the row, 32. Since 32 is a power of 2, we can use a shift instead:

s11 $t2, $s0, 5 # $t2 =i * 2° (size of row of c)
Now we add the second index to select the jth element of the desired row:
addu $t2, $t2, $s1  # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix element
in bytes. Since each element is 8 bytes for double precision, we can instead shift

left by 3:

s11 $t2, $t2, 3 ## $t2 = byte offset of [i][j]

Next we add this sum to the base address of C, giving the addressof c[1 ][ ] ],
and then load the double precision number c[ 1 ][ j ] into $f4:

addu $t2, $a0, $t2 # $t2 = byte address of c[il[j]
1.d  $f4, 0($t2) # $f4 = 8 bytes of c[ill[j]

The following five instructions are virtually identical to the last five: calculate
the address and then load the double precision number b[ k][ j].

L3: s11 $t0, $s2, 5 # $t0 = k * 2° (size of row of b)
addu $t0, $t0, $s1 # $tO k * size(row) + J
s11 $t0, $t0, 3 # $t0 = byte offset of [kI[Jj]
addu $t0, $a2, $t0 # $tO byte address of b[kI[j]
1.d $f16, 0($t0) 4 $f16 = 8 bytes of b[kI[]]

Similarly, the next five instructions are like the last five: calculate the address
and then load the double precision number a[ i ][ k].
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sl $t0, $s0, 5 # $t0 =1 * 2° (size of row of a)
addu $t0, $t0, $s2 4 $t0 =1 * size(row) + k

s11 $t0, $t0, 3 # $t0 = byte offset of [{11[k]
addu $t0, $al, $t0 4 $t0 = byte address of alillk]
1.d $f18, 0($t0) 4 $f18 = 8 bytes of al[illk]

Now that we have loaded all the data, we are finally ready to do some floating-
point operations! We multiply elements of a and b located in registers $ 18
and $f16, and then accumulate the sum in $ 4.

mul.d $f16, $f18, $f16 # $f16 = alillk] * b[kI[J]
add.d $f4, $f4, $flo6 # f4=cli1[j1+alillk] * blkI[]]

The final block increments the index k and loops back if the index is not 32.
If it is 32, and thus the end of the innermost loop, we need to store the sum
accumulated in $f4 into c[ ][ J].

addiu  $s2, $s2, 1 # sk =k +1
bne $s2, $tl, L3 # if (k !'=32) go to L3
s.d $f4, 0($t2) ## clillj] = $f4

Similarly, these final four instructions increment the index variable of the
middle and outermost loops, looping back if the index is not 32 and exiting if
the index is 32.

addiu  $s1, $s1, 1 #3$i=3+1
bne $s1, $t1, L2 #if (j '= 32) go to L2
addiu  $s0, $s0, 1 #$1 =1+ 1

bne $s0, $t1, L1 #if (i !=32) go to L1

Figure 3.22 below shows the x86 assembly language code for a slightly different
version of DGEMM in Figure 3.21.

Elaboration: The array layout discussed in the example, called row-major order, is
used by C and many other programming languages. Fortran instead uses column-major
order, whereby the array is stored column by column.

Elaboration: Only 16 of the 32 MIPS floating-point registers could originally be used
for double precision operations: $f0, $f2, $f4, ..., $T30. Double precision is computed
using pairs of these single precision registers. The odd-numbered floating-point registers
were used only to load and store the right half of 64-bit floating-point numbers. MIPS-32
added 1.d and s . d to the instruction set. MIPS-32 also added “paired single” versions of
all floating-point instructions, where a single instruction results in two parallel floating-point
operations on two 32-bit operands inside 64-bit registers (see Section 3.6). For example,
add.ps $f0, $f2, $f4 is equivalent to add.s $f0, $f2, $f4 followed by add.s
$f1, $f3, $f5.
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guard The first of two
extra bits kept on the
right during intermediate
calculations of floating-
point numbers; used

to improve rounding
accuracy.

round Method to

make the intermediate
floating-point result fit
the floating-point format;
the goal is typically to find
the nearest number that
can be represented in the
format.

Elaboration: Another reason for separate integers and floating-point registers is that
microprocessors in the 1980s didn’t have enough transistors to put the floating-point unit
on the same chip as the integer unit. Hence, the floating-point unit, including the floating-
point registers, was optionally available as a second chip. Such optional accelerator
chips are called coprocessors, and explain the acronym for floating-point loads in MIPS:
Twcl means load word to coprocessor 1, the floating-point unit. (Coprocessor O deals
with virtual memory, described in Chapter 5.) Since the early 1990s, microprocessors
have integrated floating point (and just about everything else) on chip, and hence the term
coprocessor joins accumulator and core memory as quaint terms that date the speaker.

Elaboration: As mentioned in Section 3.4, accelerating division is more challenging
than multiplication. In addition to SRT, another technique to leverage a fast multiplier
is Newton’s iteration, where division is recast as finding the zero of a function to find
the reciprocal 1/c, which is then multiplied by the other operand. Iteration techniques
cannot be rounded properly without calculating many extra bits. A Tl chip solved this
problem by calculating an extra-precise reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations. Thus, the code in the first example could have well been
generated for a class method that converted Fahrenheit to Celsius.

The second example above uses multiple dimensional arrays, which are not explicitly
supported in Java. Java allows arrays of arrays, but each array may have its own length,
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version
of this second example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row access. It would also need to check
that the object reference is not null.

Accurate Arithmetic

Unlike integers, which can represent exactly every number between the smallest and
largest number, floating-point numbers are normally approximations for a number
they can’t really represent. The reason is that an infinite variety of real numbers
exists between, say, 0 and 1, but no more than 2% can be represented exactly in
double precision floating point. The best we can do is getting the floating-point
representation close to the actual number. Thus, IEEE 754 offers several modes of
rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hardware
to include extra bits in the calculation. In the preceding examples, we were vague
on the number of bits that an intermediate representation can occupy, but clearly,
if every intermediate result had to be truncated to the exact number of digits, there
would be no opportunity to round. IEEE 754, therefore, always keeps two extra bits
on the right during intermediate additions, called guard and round, respectively.
Let’s do a decimal example to illustrate their value.



3.5 Floating Point

219

Rounding with Guard Digits

Add 2.56, X 10° to 2.34 X 10% assuming that we have three significant
decimal digits. Round to the nearest decimal number with three significant
decimal digits, first with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so
2.56, X 10° becomes 0.0256, X< 10% Since we have guard and round digits,
we are able to represent the two least significant digits when we align expo-
nents. The guard digit holds 5 and the round digit holds 6. The sum is

2.3400,,
+ 0.0256,,

2.3656,,

Thus the sum is 2.3656, X 10°. Since we have two digits to round, we want
values 0 to 49 to round down and 51 to 99 to round up, with 50 being the
tiebreaker. Rounding the sum up with three significant digits yields 2.37__ X 10°.

Doing this without guard and round digits drops two digits from the
calculation. The new sum is then

234
+ 002,
236,

The answer is 2.36, X 10% off by 1 in the last digit from the sum above.

Since the worst case for rounding would be when the actual number is halfway
between two floating-point representations, accuracy in floating point is normally
measured in terms of the number of bits in error in the least significant bits of the
significand; the measure is called the number of units in the last place, or ulp. If
a number were off by 2 in the least significant bits, it would be called off by 2 ulps.
Provided there is no overflow, underflow, or invalid operation exceptions, IEEE
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply
can need two. A binary product may have one leading O bit; hence, the normalizing step
must shift the product one bit left. This shifts the guard digit into the least significant bit
of the product, leaving the round bit to help accurately round the product.

IEEE 754 has four rounding modes: always round up (toward +co), always round down
(toward —o0), truncate, and round to nearest even. The final mode determines what to
do if the number is exactly halfway in between. The U.S. Internal Revenue Service (IRS)
always rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way
would be to round up this case half the time and round down the other half. IEEE 754
says that if the least significant bit retained in a halfway case would be odd, add one;

units in the last place
(ulp) The number of
bits in error in the least
significant bits of the
significand between
the actual number and
the number that can be
represented.
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sticky bit A bit used in
rounding in addition to
guard and round that is
set whenever there are
nonzero bits to the right
of the round bit.

fused multiply add

A floating-point
instruction that performs
both a multiply and an
add, but rounds only once
after the add.

the BIG

Picture

if it's even, truncate. This method always creates a O in the least significant bit in the
tie-breaking case, giving the rounding mode its name. This mode is the most commonly
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results
as if the intermediate results were calculated to infinite precision and then rounded. To
support this goal and round to the nearest even, the standard has a third bit in addition
to guard and round; it is set whenever there are nonzero bits to the right of the round
bit. This sticky bit allows the computer to see the difference between 0.50 ... 00 and
0.50 ... 01,,, when rounding.

The sticky bit may be set, for example, during addition, when the smaller number is
shifted to the right. Suppose we added 5.01, X 107 to 2.34,_ X 102 in the example
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of
2.3450. The sticky bit would be set, since there are nonzero bits to the right. Without the
sticky bit to remember whether any 1s were shifted off, we would assume the number
is equal to 2.345000 ... 00 and round to the nearest even of 2.34. With the sticky bit
to remember that the number is larger than 2.345000 ... 00, we round instead to 2.35.

Elaboration: PowerPC, SPARC64, AMD SSE5, and Intel AVX architectures provide a
single instruction that does a multiply and add on three registers: a = a + (b X ¢).
Obviously, this instruction allows potentially higher floating-point performance for this
common operation. Equally important is that instead of performing two roundings—after
the multiply and then after the add—which would happen with separate instructions,
the multiply add instruction can perform a single rounding after the add. A single
rounding step increases the precision of multiply add. Such operations with a single
rounding are called fused multiply add. It was added to the IEEE 754-2008 standard
(see i) Section 3.11).

Summary

The Big Picture that follows reinforces the stored-program concept from Chapter 2;
the meaning of the information cannot be determined just by looking at the bits, for
the same bits can represent a variety of objects. This section shows that computer
arithmetic is finite and thus can disagree with natural arithmetic. For example, the
[EEE 754 standard floating-point representation

(—1)° X (1 + Fraction) X 2(Exponent —Bias)

is almost always an approximation of the real number. Computer systems must
take care to minimize this gap between computer arithmetic and arithmetic in the
real world, and programmers at times need to be aware of the implications of this
approximation.

Bit patterns have no inherent meaning. They may represent signed integers,
unsigned integers, floating-point numbers, instructions, and so on. What is
represented depends on the instruction that operates on the bits in the word.
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The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size and hence limited
precision; it’s possible to calculate a number too big or too small to be
represented in a word. Programmers must remember these limits and
write programs accordingly.

int int Tw. sw. 1ui addu, addiu, subu, mult, div, AND,

’ ’ ANDi, OR, ORi, NOR, slt, slti
unsianed int | — Tw. sw. lui addu, addiu, subu, multu, divu, AND,
9 ' ' ANDi, OR, ORi, NOR, sltu, sltiu
char _ 1b. sb. lui add, addi, sub, mult, div AND, ANDi,

' ' OR, ORi, NOR, slt, slti
_ char Th. sh. lui addu, addiu, subu, multu, divu, AND,
' ' ANDi, OR, ORi, NOR, sltu, sltiu
float float Twel, swel add.s, sub.s, mult.s, div.s, c.eq.s,
c.lt.s, c.le.s
double double 1.4, s.d add.d, sub.d, mult.d, div.d, c.eq.d,
c.1t.d, c.le.d

In the last chapter, we presented the storage classes of the programming language C
(see the Hardware/Software Interface section in Section 2.7). The table above shows
some of the C and Java data types, the MIPS data transfer instructions, and instructions
that operate on those types that appear in Chapter 2 and this chapter. Note that Java
omits unsigned integers.

The revised IEEE 754-2008 standard added a 16-bit floating-point format with five
exponent bits. What do you think is the likely range of numbers it could represent?

1. 1.0000 00 X 2° to L1111 111111 X 2*,0

2. *1.000000000 X 27 to =1.1111 1111 1 X 2%, *£0, oo, NaN
3. *=1.0000 000000 X 27" to =1.1111 1111 11 X 2, *£0, oo, NaN
4. *1.0000 0000 00 X 27" to =1.1111 1111 11 X 2, 0, * o, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard
includes ordered and unordered as options for compares. Hence, the full MIPS instruction
set has many flavors of compares to support NaNs. (Java does not support unordered
compares.)

Hardware/
Software
Interface

Check
Yourself
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PARALLELISM

In an attempt to squeeze every last bit of precision from a floating-point operation,
the standard allows some numbers to be represented in unnormalized form. Rather than
having a gap between O and the smallest normalized number, IEEE allows denormalized
numbers (also known as denorms or subnormals). They have the same exponent as
zero but a nonzero fraction. They allow a number to degrade in significance until it
becomes 0, called gradual underflow. For example, the smallest positive single precision
normalized number is

1.0000 0000 0000 0000 0000 000, X 272
but the smallest single precision denormalized number is
0.0000 0000 0000 0000 0000 001, X 271, 0r 1.0, X 27149

For double precision, the denorm gap goes from 1.0 X 2719220 1.0 X 271074,

The possibility of an occasional unnormalized operand has given headaches to
floating-point designers who are trying to build fast floating-point units. Hence, many
computers cause an exception if an operand is denormalized, letting software complete
the operation. Although software implementations are perfectly valid, their lower
performance has lessened the popularity of denorms in portable floating-point software.
Moreover, if programmers do not expect denorms, their programs may surprise them.

Parallelism and Computer Arithmetic:
Subword Parallelism

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9), but due to the infrequency of
arithmetic operations on these data sizes in typical integer programs, there was
little support beyond data transfers. Architects recognized that many graphics
and audio applications would perform the same operation on vectors of this data.
By partitioning the carry chains within a 128-bit adder, a processor could use
parallelism to perform simultaneous operations on short vectors of sixteen 8-bit
operands, eight 16-bit operands, four 32-bit operands, or two 64-bit operands. The
cost of such partitioned adders was small.

Given that the parallelism occurs within a wide word, the extensions are
classified as subword parallelism. It is also classified under the more general name
of data level parallelism. They have been also called vector or SIMD, for single
instruction, multiple data (see Section 6.6). The rising popularity of multimedia
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applications led to arithmetic instructions that support narrower operations that
can easily operate in parallel.

For example, ARM added more than 100 instructions in the NEON multimedia
instruction extension to support subword parallelism, which can be used either
with ARMv7 or ARMvS. It added 256 bytes of new registers for NEON that can be
viewed as 32 registers 8 bytes wide or 16 registers 16 bytes wide. NEON supports
all the subword data types you can imagine except 64-bit floating point numbers:

B 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers
B 32-bit floating point numbers

Figure 3.19 gives a summary of the basic NEON instructions.

" atatanser | annmete | Logoaycompare |

VLDR.F32

VADD.F32, VADD{L,W}{S8,U8,516,U16,532,U32}

VAND.64, VAND.128

VSTR.F32

VSUB.F32, VSUB(L,W}{S8,U8,516,U16,532,U32}

VORR.64, VORR.128

VLD({1,2,3.4}.{18,116,132}

VMUL.F32, VMULL{S8,U8,516,U16,532,U32}

VEOR.64, VEOR.128

VST{1,2,3.4}.{18,116,132}

VMLA.F32, VMLAL{S8,U8,516,U16,532,U32}

VBIC.64, VBIC.128

VMOV.{18,116,132,F32}, #imm

VMLS.F32, VMLSL{S8,U8,516,U16,532,U32}

VORN.64, VORN.128

VMVN.{I8,116,132,F32}, #imm

VMAX.{S8,U8,516,U16,532,U32,F32}

VCEQ.{I8,116,132,F32}

VMOV.{164,1128}

VMIN.{S8,U8,516,U16,532,U32,F32}

VCGE.{S8,U8,516,U16,532,U32,F32}

VMVN.{I64,1128}

VABS.{S8,516,532,F32}

VCGT{S8,U8,516,U16,532,U32,F32}

VNEG.{S8,516,5S32,F32}

VCLE.{S8,U8,516,U16,532,U32,F32}

VSHL.{S8,U8,516,U16,532,564,U64}

VCLT.{S8,U8,516,U16,532,U32,F32}

VSHR.{S8,U8,516,U16,532,564,U64}

VTST{I8,116,I132}

FIGURE 3.19 Summary of ARM NEON Instructions for subword parallelism. We use the curly brackets {} to show optional
varlations of the basic operations: {S8,U8,8} stand for signed and unsigned 8-bit integers or 8-bit data where type doesn’t matter, of which 16
fit in a 128-bit register; {S16,U16,16} stand for signed and unsigned 16-bit integers or 16-bit type-less data, of which 8 fit in a 128-bit register;
{832,U32,32} stand for signed and unsigned 32-bit integers or 32-bit type-less data, of which 4 fit in a 128-bit register; {S64,U64,64} stand for
signed and unsigned 64-bit integers or type-less 64-bit data, of which 2 fit in a 128-bit register; {F32} stand for signed and unsigned 32-bit
floating point numbers, of which 4 fit in a 128-bit register. Vector Load reads one n-element structure from memory into 1, 2, 3, or 4 NEON
registers. It loads a single n-element structure to one lane (See Section 6.6), and elements of the register that are not loaded are unchanged.

Vector Store writes one n-element structure into memory from 1, 2, 3, or 4 NEON registers.

Elaboration: In addition to signed and unsigned integers, ARM includes “fixed-point”
format of four sizes called I8, 116, 132, and 164, of which 16, 8, 4, and 2 fit in a 128-
bit register, respectively. A portion of the fixed point is for the fraction (to the right of
the binary point) and the rest of the data is the integer portion (to the left of the binary
point). The location of the binary point is up to the software. Many ARM processors do
not have floating point hardware and thus floating point operations must be performed by
library routines. Fixed point arithmetic can be significantly faster than software floating
point routines, but more work for the programmer.
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Real Stuff: Streaming SIMD Extensions
and Advanced Vector Extensions Iin x86

The original MMX (MultiMedia eXtension) and SSE (Streaming SIMD Extension)
instructions for the x86 included similar operations to those found in ARM NEON.
Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture as
part of SSE2, including double precision floating-point registers and operations. It
includes eight 64-bit registers that can be used for floating-point operands. AMD
expanded the number to 16 registers, called XMM, as part of AMD64, which
Intel relabeled EM64T for its use. Figure 3.20 summarizes the SSE and SSE2
instructions.

In addition to holding a single precision or double precision number in a
register, Intel allows multiple floating-point operands to be packed into a single
128-bit SSE2 register: four single precision or two double precision. Thus, the 16
floating-point registers for SSE2 are actually 128 bits wide. If the operands can be
arranged in memory as 128-bit aligned data, then 128-bit data transfers can load
and store multiple operands per instruction. This packed floating-point format is
supported by arithmetic operations that can operate simultaneously on four singles
(PS) or two doubles (PD).

MOV{A/U}{SS/PS/SD/ ADD{SS/PS/SD/PD} xmm,mem/xmm CMP{SS/PS/SD/PD}
PD} xmm, mem/xmm SUB{SS/PS/SD/PD} xmm,mem/xmm

MOV {H/L} {PS/PD} MUL{SS/PS/SD/PD} xmm,mem/xmm
xmm, mem/xmm

DIV{SS/PS/SD/PD} xmm,mem/xmm

SQRT{SS/PS/SD/PD} mem/xmm
MAX {SS/PS/SD/PD} mem/xmm
MIN{SS/PS/SD/PD} mem/xmm

FIGURE 3.20 The SSE/SSE2 floating-point Instructions of the x86. xmm means one operand is
a 128-bit SSE2 register, and mem/xmm means the other operand is either in memory or it is an SSE2 register.
We use the curly brackets {} to show optional variations of the basic operations: {SS} stands for Scalar Single
precision floating point, or one 32-bit operand In a 128-bit register; {PS} stands for Packed Single precision
floating point, or four 32-bit operands in a 128-bit register; {SD} stands for Scalar Double precision floating
point, or one 64-bit operand in a 128-bit register; {PD} stands for Packed Double precision floating point, or
two 64-bit operands In a 128-bit register; {A} means the 128-bit operand Is aligned in memory; {U} means
the 128-bit operand is unaligned in memory; {H} means move the high half of the 128-bit operand; and {L}
means move the low half of the 128-bit operand.
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In 2011 Intel doubled the width of the registers again, now called YMM, with
Advanced Vector Extensions (AVX). Thus, a single operation can now specify eight
32-bit floating-point operations or four 64-bit floating-point operations. The
legacy SSE and SSE2 instructions now operate on the lower 128 bits of the YMM
registers. Thus, to go from 128-bit and 256-bit operations, you prepend the letter
“v” (for vector) in front of the SSE2 assembly language operations and then use the
YMM register names instead of the XMM register name. For example, the SSE2
instruction to perform two 64-bit floating-point multiplies

addpd  %xmm0O, %xmm4

It becomes

vaddpd %ymmO, %ymm4

which now produces four 64-bit floating-point multiplies.

Elaboration: AvXalso added three address instructions to x86. For example, vaddpd
can now specify

vaddpd %ymmO, %ymml, %ymmd # Zymmd = %ymml + %ymm2
instead of the standard two address version
addpd  %xmm0, %xmmd # %xmmd = Zxmmd + %xmmO

(Unlike MIPS, the destination is on the right in x86.) Three addresses can reduce the
number of registers and instructions needed for a computation.

Going Faster: Subword Parallelism and
Matrix Multiply

To demonstrate the performance impact of subword parallelism, we’ll run the same
code on the Intel Core i7 first without AVX and then with it. Figure 3.21 shows an
unoptimized version of a matrix-matrix multiply written in C. As we saw in Section
3.5, this program is commonly called DGEMM, which stands for Double precision
GEneral Matrix Multiply. Starting with this edition, we have added a new section
entitled “Going Faster” to demonstrate the performance benefit of adapting software
to the underlying hardware, in this case the Sandy Bridge version of the Intel Core
i7 microprocessor. This new section in Chapters 3, 4, 5, and 6 will incrementally
improve DGEMM performance using the ideas that each chapter introduces.

Figure 3.22 shows the x86 assembly language output for the inner loop of Figure
3.21. The five floating point-instructions start with a v like the AVX instructions,
but note that they use the XMM registers instead of YMM, and they include sd in
the name, which stands for scalar double precision. We'll define the subword parallel
instructions shortly.
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void dgemm (int n, double* A, double* B, double* C)
{
for (int 1 =0; i < n; ++1)
for (int j = 0; j < n; ++j)
{
double cij = CLi+j*nl; /* cij = CLiILJ] */
for( int k = 0; k < n; k++ )
cij += ALi+k*n] * BLk+j*nl; /* cij += ALTJLKkI*BLKILJ] */
Cli+j*n] = cij; /* CLi1LJ] = cij */

J

FIGURE 3.21 Unoptimized C version of a double precision matrix multiply, widely known as DGEMM for
Double-precision GEneral Matrix Multiply (GEMM). Because we are passing the matrix dimension as the parameter
N, this version of DGEMM uses single dimensional versions of matrices C, A, and B and address arithmetic to get better
performance instead of using the more intuitive two-dimensional arrays that we saw in Section 3.5. The comments remind
us of this more intuitive notation.

co N o o1 BAow NN

Nej

10.
11.
12.

vmovsd (%rl10),%xmm0 # Load 1 element of C into %xmmO
mov %rsi,%rex #F register %rcx = %rsi

Xor %eax, beax # register %eax = 0

vmovsd (%rcx),%xmml # Load 1 element of B into %xmml
add %r9, %rcx #F register %rcx = %rcx + %r9

vmulsd (%r8,%rax,8),%xmml,%xmml # Multiply %xmml, element of A

add $0x1,%rax # register %rax = %rax + 1
cmp %eax,%edi # compare %eax to %edi
vaddsd %xmml,%xmmO, %xmmO # Add %xmml, %xmmO

jg 30 <dgemm+0x30> # jump if %eax > %edi

add $0x1,%rl1ld # register %rll = %rll + 1
vmovsd %xmm0, (%r10) # Store %xmm0 into C element

FIGURE 3.22 The x86 assembly language for the body of the nested loops generated by compiling the
optimized C code in Figure 3.21. Although it is dealing with just 64-bits of data, the compiler uses the AVX version of
the instructions instead of SSE2 presumably so that it can use three address per instruction instead of two (see the Elaboration
in Section 3.7).
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1. {include <x86intrin.h>

2. wvoid dgemm (int n, double* A, double* B, double* C)

3.0

4. for ( int 1 =0; i < n; i+=4 )

5. for ( int jJ =0: J < n; j++ ) |

6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[il[j] */
7. for( int k = 0; k < n; k++ )

8. c0 = _mm256_add_pd(cO, /* c0 += A[i][kI*BL[kI[j] */
9. _mm256_mul_pd(_mm256_Tload_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* CL[i1[j] = cO */

12. }

13. }

FIGURE 3.23 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel
instructions for the x86. Figure 3.24 shows the assembly language produced by the compiler for the inner loop.

While compiler writers may eventually be able to routinely produce high-
quality code that uses the AVX instructions of the x86, for now we must “cheat” by
using C intrinsics that more or less tell the compiler exactly how to produce good
code. Figure 3.23 shows the enhanced version of Figure 3.21 for which the Gnu C
compiler produces AVX code. Figure 3.24 shows annotated x86 code that is the
output of compiling using gcc with the —O3 level of optimization.

The declaration on line 6 of Figure 3.23 uses the ___m256d data type, which tells
the compiler the variable will hold 4 double-precision floating-point values. The
intrinsic _mm256_10ad_pd() also on line 6 uses AVX instructions to load 4
double-precision floating-point numbers in parallel (_pd) from the matrix C into
c0. The address calculation C+i+j*n on line 6 represents element C[i+j*n].
Symmetrically, the final step on line 11 uses the intrinsic_mm256_store_pd()
to store 4 double-precision floating-point numbers from c0 into the matrix C.
As were going through 4 elements each iteration, the outer for loop on line 4
increments 1 by 4 instead of by 1 as on line 3 of Figure 3.21.

Inside the loops, on line 9 we first load 4 elements of A again using _mmZ256_
1oad_pd (). To multiply these elements by one element of B, on line 10 we first
use the intrinsic _mm256_broadcast_sd (), which makes 4 identical copies
of the scalar double precision number—in this case an element of B—in one of the
YMM registers. We then use _mm256_mu1_pd () on line 9 to multiply the four
double-precision results in parallel. Finally, _mm256_add_pd () on line 8 adds
the 4 products to the 4 sums in c0.

Figure 3.24 shows resulting x86 code for the body of the inner loops produced
by the compiler. You can see the five AVX instructions—they all start with v and
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1. vmovapd (%rll),%ymmO # Load 4 elements of C into %ymmO
2. mov %rbx,%rcx # register %rcx = %rbx

3. xor %eax,%eax # register %eax = 0

4. vbroadcastsd (%rax,%r8,1),%ymml # Make 4 copies of B element

5. add $0x8,%rax # register %rax = %rax + 8

6. vmulpd (%rcx),%ymml,%ymml # Parallel mul %ymml,4 A elements
7. add %r9,%rcx # register %rcx = %rcx + %r9

8. cmp 5r10,%rax ## compare %rl0 to %rax

9. vaddpd %Zymml,%ymmO, %ymmO # Parallel add %ymml, %ymmO

10. jne 50 <dgemm+0x50> # jump if not %rl0 != %rax

11. add $0x1,%esi # register % esi = % esi + 1

12. vmovapd %ymm0, (%rll) # Store %ymm0 into 4 C elements

FIGURE 3.24 The x86 assembly language for the body of the nested loops generated by compiling
the optimized C code in Figure 3.23. Note the similarities to Figure 3.22, with the primary difference being that the
five floating-point operations are now using YMM registers and using the pd versions of the instructions for parallel double
precision instead of the sd version for scalar double precision.

PARALLELISM

four of the five use pd for parallel double precision—that correspond to the C
intrinsics mentioned above. The code is very similar to that in Figure 3.22 above:
both use 12 instructions, the integer instructions are nearly identical (but different
registers), and the floating-point instruction differences are generally just going
from scalar double (sd) using XMM registers to parallel double (pd) with YMM
registers. The one exception is line 4 of Figure 3.24. Every element of A must be
multiplied by one element of B. One solution is to place four identical copies of the
64-bit B element side-by-side into the 256-bit YMM register, which is just what the
instruction vbroadcastsd does.

For matrices of dimensions of 32 by 32, the unoptimized DGEMM in Figure 3.21
runs at 1.7 GigaFLOPS (FLoating point Operations Per Second) on one core of a
2.6 GHz Intel Core i7 (Sandy Bridge). The optimized code in Figure 3.23 performs
at 6.4 GigaFLOPS. The AVX version is 3.85 times as fast, which is very close to the
factor of 4.0 increase that you might hope for from performing 4 times as many
operations at a time by using subword parallelism.

Elaboration: As mentioned in the Elaboration in Section 1.6, Intel offers Turbo mode
that temporarily runs at a higher clock rate until the chip gets too hot. This Intel Core i7
(Sandy Bridge) can increase from 2.6 GHz to 3.3 GHz in Turbo mode. The results above
are with Turbo mode turned off. If we turn it on, we improve all the results by the increase
in the clock rate of 3.3/2.6 = 1.27 to 2.1 GFLOPS for unoptimized DGEMM and 8.1
GFLOPS with AVX. Turbo mode works particularly well when using only a single core of
an eight-core chip, as in this case, as it lets that single core use much more than its fair
share of power since the other cores are idle.
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Fallacies and Pitfalls

Arithmetic fallacies and pitfalls generally stem from the difference between the
limited precision of computer arithmetic and the unlimited precision of natural
arithmetic.

Fallacy: Just as a left shift instruction can replace an integer multiply by a
power of 2, a right shift is the same as an integer division by a power of 2.

Recall that a binary number ¢, where xi means the ith bit, represents the number
(X2 4 (2 X 221 (x1 X 2') + (x0 X 29)

Shifting the bits of ¢ right by n bits would seem to be the same as dividing by
2n. And this is true for unsigned integers. The problem is with signed integers. For
example, suppose we want to divide —5_ by 4 _; the quotient should be —1_ . The
twos complement representation of —5_ is

1111 1111 1111 1111 1111 1111 1111 1011
According to this fallacy, shifting right by two should divide by 4 (2%):
0011 1111 1111 1111 1111 1111 1111 1110,

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift
right is actually 1,073,741,822 _instead of —1_ .

A solution would be to have an arithmetic right shift that extends the sign bit
instead of shifting in 0s. A 2-bit arithmetic shift right of =5 __ produces

1111 1111 1111 1111 1111 1111 1111 1110

The resultis —2 _ instead of —1_; close, but no cigar.

Pitfall: Floating-point addition is not associative.

Associativity holds for a sequence of two's complement integer additions, even if the
computation overflows. Alas, because floating-point numbers are approximations
of real numbers and because computer arithmetic has limited precision, it does
not hold for floating-point numbers. Given the great range of numbers that can be
represented in floating point, problems occur when adding two large numbers of
opposite signs plus a small number. For example, let’s see if c + (a + b) = (¢ + a)
+ b. Assume c = —1.5 X 10%,a = 1.5_ X 10%, and b = 1.0, and that these are
all single precision numbers.

Thus mathematics
may be defined as the
subject in which we
never know what we
are talking about, nor
whether what we are
saying is true.
Bertrand Russell, Recent
Words on the Principles
of Mathematics, 1901
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c+(a+b)=—-15,, X10"® + (1.5, X 10°® +1.0)
= —1.5,, X10% + (1.5, X10*®)
=0.0

ct+(a+b)=(—15, xX10® +1.5,, X10"*)+1.0

= (0.0,,) + 1.0
=1.0

Since floating-point numbers have limited precision and result in approximations
of real results, L5 X 10*® is so much larger than L0, that L5 X 10% 4+ 1.01is still
L5 X 10%. That is why the sum of ¢, g, and b is 0.0 or 1.0, depending on the order
of the floating-point additions, so ¢ + (a + b) # (¢ + a) + b. Therefore, floating-
point addition is not associative.

Fallacy: Parallel execution strategies that work for integer data types also work
for floating-point data types.

Programs have typically been written first to run sequentially before being rewritten
to run concurrently, so a natural question is, “Do the two versions get the same
answer?” If the answer is no, you presume there is a bug in the parallel version that
you need to track down.

This approach assumes that computer arithmetic does not affect the results when
going from sequential to parallel. That is, if you were to add a million numbers
together, you would get the same results whether you used 1 processor or 1000
processors. This assumption holds for two's complement integers, since integer
addition is associative. Alas, since floating-point addition is not associative, the
assumption does not hold.

A more vexing version of this fallacy occurs on a parallel computer where the
operating system scheduler may use a different number of processors depending
on what other programs are running on a parallel computer. As the varying
number of processors from each run would cause the floating-point sums to be
calculated in different orders, getting slightly different answers each time despite
running identical code with identical input may flummox unaware parallel
programmers.

Given this quandary, programmers who write parallel code with floating-point
numbers need to verify whether the results are credible even if they don’t give the
same exact answer as the sequential code. The field that deals with such issues is
called numerical analysis, which is the subject of textbooks in its own right. Such
concerns are one reason for the popularity of numerical libraries such as LAPACK
and SCALAPAK, which have been validated in both their sequential and parallel
forms.

Pitfall: The MIPS instruction add immediate unsigned (addiu) sign-extends
its 16-bit immediate field.
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Despite its name, add immediate unsigned (addiu) is used to add constants to
signed integers when we don’t care about overflow. MIPS has no subtract immediate
instruction, and negative numbers need sign extension, so the MIPS architects
decided to sign-extend the immediate field.

Fallacy: Only theoretical mathematicians care about floating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see
Figure 3.25). The following is the inside story behind the headlines.

The Pentium used a standard floating-point divide algorithm that generates
multiple quotient bits per step, using the most significant bits of divisor and
dividend to guess the next 2 bits of the quotient. The guess is taken from a lookup
table containing —2, —1, 0, +1, or +2. The guess is multiplied by the divisor and
subtracted from the remainder to generate a new remainder. Like nonrestoring
division, if a previous guess gets too large a remainder, the partial remainder is
adjusted in a subsequent pass.

Evidently, there were five elements of the table from the 80486 that Intel
engineers thought could never be accessed, and they optimized the logic to return
0 instead of 2 in these situations on the Pentium. Intel was wrong: while the first 11
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FIGURE 3.25 A sampling of newspaper and magazine articles from November 1994,
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and
Infoworld. The Pentium floating-point divide bug even made the “Top 10 List” of the David Letterman
Late Show on television. Intel eventually took a $300 million write-off to replace the buggy chips.
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bits were always correct, errors would show up occasionally in bits 12 to 52, or the
4th to 15th decimal digits.

A math professor at Lynchburg College in Virginia, Thomas Nicely, discovered the
bug in September 1994. After calling Intel technical support and getting no official
reaction, he posted his discovery on the Internet. This post led to a story in a trade
magazine, which in turn caused Intel to issue a press release. It called the bug a glitch
that would affect only theoretical mathematicians, with the average spreadsheet
user seeing an error every 27,000 years. IBM Research soon counterclaimed that the
average spreadsheet user would see an error every 24 days. Intel soon threw in the
towel by making the following announcement on December 21:

“We at Intel wish to sincerely apologize for our handling of the recently publicized
Pentium processor flaw. The Intel Inside symbol means that your computer has
a microprocessor second to none in quality and performance. Thousands of Intel
employees work very hard to ensure that this is true. But no microprocessor is
ever perfect. What Intel continues to believe is technically an extremely minor
problem has taken on a life of its own. Although Intel firmly stands behind the
quality of the current version of the Pentium processot, we recognize that many
users have concerns. We want to resolve these concerns. Intel will exchange the
current version of the Pentium processor for an updated version, in which this
floating-point divide flaw is corrected, for any owner who requests it, free of
charge anytime during the life of their computer”

Analysts estimate that this recall cost Intel $500 million, and Intel engineers did not
get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fix the bug in July 1994? What was the cost to repair the
damage to Intel’s reputation? And what is the corporate responsibility in disclosing
bugs in a product so widely used and relied upon as a microprocessor?

Concluding Remarks

Over the decades, computer arithmetic has become largely standardized, greatly
enhancing the portability of programs. Two's complement binary integer arithmetic is
found in every computer sold today, and if it includes floating point support, it offers
the IEEE 754 binary floating-point arithmetic.

Computer arithmetic is distinguished from paper-and-pencil arithmetic by the
constraints of limited precision. This limit may result in invalid operations through
calculating numbers larger or smaller than the predefined limits. Such anomalies, called
“overflow” or “underflow; may result in exceptions or interrupts, emergency events
similar to unplanned subroutine calls. Chapters 4 and 5 discuss exceptions in more detail.

Floating-point arithmetic has the added challenge of being an approximation
of real numbers, and care needs to be taken to ensure that the computer number
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selected is the representation closest to the actual number. The challenges of
imprecision and limited representation of floating point are part of the inspiration
for the field of numerical analysis. The recent switch to parallelism shines the
searchlight on numerical analysis again, as solutions that were long considered
safe on sequential computers must be reconsidered when trying to find the fastest
algorithm for parallel computers that still achieves a correct result.

Data-level parallelism, specifically subword parallelism, offers a simple path to
higher performance for programs that are intensive in arithmetic operations for
either integer or floating-point data. We showed that we could speed up matrix
multiply nearly fourfold by using instructions that could execute four floating-
point operations at a time.

With the explanation of computer arithmetic in this chapter comes a description
of much more of the MIPS instruction set. One point of confusion is the instructions
covered in these chapters versus instructions executed by MIPS chips versus the
instructions accepted by MIPS assemblers. Two figures try to make this clear.

Figure 3.26 lists the MIPS instructions covered in this chapter and Chapter 2.
We call the set of instructions on the left-hand side of the figure the MIPS core. The
instructions on the right we call the MIPS arithmetic core. On the left of Figure 3.27
are the instructions the MIPS processor executes that are not found in Figure 3.26.
We call the full set of hardware instructions MIPS-32. On the right of Figure 3.27
are the instructions accepted by the assembler that are not part of MIPS-32. We call
this set of instructions Pseudo MIPS.

Figure 3.28 gives the popularity of the MIPS instructions for SPEC CPU2006
integer and floating-point benchmarks. All instructions are listed that were
responsible for at least 0.2% of the instructions executed.

Note that although programmers and compiler writers may use MIPS-32 to
have a richer menu of options, MIPS core instructions dominate integer SPEC
CPU2006 execution, and the integer core plus arithmetic core dominate SPEC
CPU2006 floating point, as the table below shows.

Instruction subset m

MIPS core 98% 31%
MIPS arithmetic core 2% 66%
Remaining MIPS-32 0% 3%

For the rest of the book, we concentrate on the MIPS core instructions—the integer
instruction set excluding multiply and divide—to make the explanation of computer
design easier. As you can see, the MIPS core includes the most popular MIPS
instructions; be assured that understanding a computer that runs the MIPS core
will give you sufficient background to understand even more ambitious computers.
No matter what the instruction set or its size—MIPS, ARM, x86—never forget that
bit patterns have no inherent meaning. The same bit pattern may represent a signed
integer, unsigned integer, floating-point number, string, instruction, and so on. In
stored program computers, it is the operation on the bit pattern that determines its
meaning.

PARALLELISM
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MIPS core instructions m MIPS arithmetic core m

FIGURE 3.26 The MIPS Instructlon set. This book concentrates on the instructions in the left column. This information is also found

in columns 1 and 2 of the MIPS Reference Data Card at the front of this book.

add add R multiply mult R
add immediate addi | multiply unsigned multu R
add unsigned addu R divide div R
add immediate unsigned addiu | divide unsigned divu R
subtract sub R move from Hi mfhi R
subtract unsigned subu R move from Lo mflo R
AND AND R move from system control (EPC) mfcO R
AND immediate ANDi | floating-point add single add.s R
OR OR R floating-point add double add.d R
OR immediate ORi | floating-point subtract single sub.s R
NOR NOR R floating-point subtract double sub.d R
shift left logical s11 R floating-point multiply single mul.s R
shift right logical srl R floating-point multiply double mul.d R
load upper immediate Tui | floating-point divide single div.s R
load word Tw | floating-point divide double div.d R
store word SwW | load word to floating-point single Twcl |
load halfword unsigned Thu | store word to floating-point single swcl |
store halfword sh | load word to floating-point double ldcl |
load byte unsigned Tbu | store word to floating-point double sdcl |
store byte sb | branch on floating-point true bclt |
load linked (atomic update) 11 | branch on floating-point false bclf |
store cond. (atomic update) sc | floating-point compare single C.X.S R
branch on equal beq | (x =eq,neq, 1t, 1e, gt, ge)

branch on not equal bne | floating-point compare double c.x.d R
jump J J (x =eq,neq, 1t, 1e, gt, ge)

jump and link jal J

jump register Jjr R

set less than st R

set less than immediate s1ti |

set less than unsigned sltu R

set less than immediate unsigned sltiu |
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exclusive or (rs @ rt) xor absolute value abs rd,rs
exclusive or immediate xori | negate (signed or unsigned) negs rd,rs
shift right arithmetic sra R rotate left rol rd,rs,rt
shift left logical variable sllv R rotate right ror rd,rs,rt
shift right logical variable srlv R multiply and don’t check oflw (signed or uns.) muls rd,rs,rt
shift right arithmetic variable srav R multiply and check oflw (signed or uns.) mulos rd,rs,rt
move to Hi mthi R divide and check overflow div rd,rs,rt
move to Lo mtlo R divide and don t check overflow divu rd,rs,rt
load halfword Th | remainder (signed or unsigned) rems rd,rs,rt
load byte b | load immediate 11 rd,imm
load word left (unaligned) Twl | load address la rd,addr
load word right (unaligned) Twr | load double 1d rd,addr
store word left (unaligned) swl | store double sd rd,addr
store word right (unaligned) SWr | unaligned load word ulw rd,addr
load linked (atomic update) 11 | unaligned store word usw rd,addr
store cond. (atomic update) e | unaligned load halfword (signed or uns.) ulhs rd,addr
move if zero movz R unaligned store halfword ush rd,addr
move if not zero movn R branch b Label
multiply and add (S or uns.) madds R branch on equal zero beqz rs,L
multiply and subtract (S or uns.) msubs | branch on compare (signed or unsigned) bxs rs,rt,L
branch on > zero and link bgezal | (x=1t, e, gt, ge)

branch on < zero and link bltzal | set equal seq rd,rs,rt
jump and link register jalr R set not equal sne rd,rs,rt
branch compare to zero bxz | set on compare (signed or unsigned) SXS rd,rs,rt
branch compare to zero likely bxz1 | (x=1t, e, gt, ge)

(x=1t, le, gt, ge) load to floating point (s or d) 1 f rd,addr
branch compare reg likely bx1 | store from floating point (s or d) S f rd,addr
trap if compare reg tx R

trap if compare immediate txi |

(x =eq,neq, 1t, Te, gt, ge)

return from exception rfe R

system call syscall |

break (cause exception) break |

move from FP to integer mfcl R

move to FP from integer mtcl R

FP move (s or d) mov f R

FP move if zero (s or d) movz f R

FP move if not zero (s or d) movn f R

FP square root (s or d) sqrt f R

FP absolute value (s or d) abs f R

FP negate (s or d) neg.f R

FP convert (w, s, or d) cvt ff R

FP compare un (s or d) Cc.Xxn f R

FIGURE 3.27 Remaining MIPS-32 and Pseudo MIPS instruction sets. f means single (s) or double (d) precision floating-point
instructions, and s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f/ msub.f),
ceiling (cei1.f), truncate (trunc.f), round (round.f), and reciprocal (recip.f). The underscore represents the letter to include to represent

that datatype.
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add add 0.0% 0.0% FP add double add. 0.0% 10.6%
add immediate addi 0.0% 0.0% FP subtract double sub.d 0.0% 4.9%
add unsigned addu 5.2% 3.5% FP multiply double mul.d 0.0% 15.0%
add immediate unsigned addiu 9.0% 7.2% FP divide double div.d 0.0% 0.2%
subtract unsigned subu 2.2% 0.6% FP add single add.s 0.0% 1.5%
AND AND 0.2% 0.1% FP subtract single sub.s 0.0% 1.8%
AND immediate AND 0.7% 0.2% FP multiply single mul.s 0.0% 2.4%
OR OR 4.0% 1.2% FP divide single div.s 0.0% 0.2%
OR immediate ORi 1.0% 0.2% load word to FP double 1.d 0.0% 17.5%
NOR NOR 0.4% 0.2% store word to FP double s.d 0.0% 4.9%
shift left logical sll 4.4% 1.9% load word to FP single 1.s 0.0% 4.2%
shift right logical srl 1.1% 0.5% store word to FP single S.S 0.0% 1.1%
load upper immediate Tui 3.3% 0.5% branch on floating-point true bclt 0.0% 0.2%
load word Tw 18.6% 5.8% branch on floating-point false bclf 0.0% 0.2%
store word SW 7.6% 2.0% floating-point compare double c.x.d 0.0% 0.6%
load byte 1bu 3.7% 0.1% multiply mul 0.0% 0.2%
store byte sb 0.6% 0.0% shift right arithmetic sra 0.5% 0.3%
branch on equal (zero) beq 8.6% 2.2% load half 1hu 1.3% 0.0%
branch on not equal (zero) | bne 8.4% 1.4% store half sh 0.1% 0.0%
jump and link jal 0.7% 0.2%

jump register jr 1.1% 0.2%

set less than st 9.9% 2.3%

set less than immediate s1ti 3.1% 0.3%

set less than unsigned sltu 3.4% 0.8%

set less than imm. uns. sltiu 1.1% 0.1%

FIGURE 3.28 The frequency of the MIPS Instructions for SPEC CPU2006 Integer and floating polnt. All instructions that
accounted for at least 0.2% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and

hence do not appear here.

Gresham’s Law (“Bad
money drives out
Good”) for computers
would say, “The Fast
drives out the Slow
even if the Fast is
wrong.”

W. Kahan, 1992

AN
Historical Perspective and Further

=77/ Reading

This section surveys the history of the floating point going back to von
Neumann, including the surprisingly controversial IEEE standards effort, plus
the rationale for the 80-bit stack architecture for floating point in the x86. See
the rest of [ Section 3.11 online.
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Exercises

3.1 [5] <§3.2> What is 5ED4 — 07A4 when these values represent unsigned 16-
bit hexadecimal numbers? The result should be written in hexadecimal. Show your
work.

3.2 [5] <§3.2> What is 5ED4 — 07A4 when these values represent signed 16-
bit hexadecimal numbers stored in sign-magnitude format? The result should be
written in hexadecimal. Show your work.

3.3 [10] <§3.2> Convert 5ED4 into a binary number. What makes base 16
(hexadecimal) an attractive numbering system for representing values in
computers?

3.4 [5] <§3.2> What is 4365 — 3412 when these values represent unsigned 12-bit
octal numbers? The result should be written in octal. Show your work.

3.5 [5] <§3.2> What is 4365 — 3412 when these values represent signed 12-bit
octal numbers stored in sign-magnitude format? The result should be written in
octal. Show your work.

3.6 [5] <§3.2> Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate
185 — 122. Is there overflow, underflow, or neither?

3.7 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in
sign-magnitude format. Calculate 185 + 122. Is there overflow, underflow, or
neither?

3.8 [5] <§3.2> Assume 185 and 122 are signed 8-bit decimal integers stored in
sign-magnitude format. Calculate 185 — 122. Is there overflow, underflow, or
neither?

3.9 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in
twos complement format. Calculate 151 + 214 using saturating arithmetic. The
result should be written in decimal. Show your work.

3.10 [10] <§3.2> Assume 151 and 214 are signed 8-bit decimal integers stored in
twos complement format. Calculate 151 — 214 using saturating arithmetic. The
result should be written in decimal. Show your work.

3.11 [10] <§3.2> Assume 151 and 214 are unsigned 8-bit integers. Calculate 151
+ 214 using saturating arithmetic. The result should be written in decimal. Show
your work.

3.12 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the octal unsigned 6-bit integers 62 and 12 using the hardware described
in Figure 3.3. You should show the contents of each register on each step.

Never give in, never
give in, never, nevet,
never—in nothing,
great or small, large or
petty—never give in.
Winston Churchill,
address at Harrow
School, 1941
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3.13 [20] <§3.3> Using a table similar to that shown in Figure 3.6, calculate the
product of the hexadecimal unsigned 8-bit integers 62 and 12 using the hardware
described in Figure 3.5. You should show the contents of each register on each step.

3.14 [10] <$§3.3> Calculate the time necessary to perform a multiply using the
approach given in Figures 3.3 and 3.4 if an integer is 8 bits wide and each step
of the operation takes 4 time units. Assume that in step la an addition is always
performed—either the multiplicand will be added, or a zero will be. Also assume
that the registers have already been initialized (you are just counting how long it
takes to do the multiplication loop itself). If this is being done in hardware, the
shifts of the multiplicand and multiplier can be done simultaneously. If this is being
done in software, they will have to be done one after the other. Solve for each case.

3.15 [10] <$§3.3> Calculate the time necessary to perform a multiply using the
approach described in the text (31 adders stacked vertically) if an integer is 8 bits
wide and an adder takes 4 time units.

3.16 [20] <§3.3> Calculate the time necessary to perform a multiply using the
approach given in Figure 3.7 if an integer is 8 bits wide and an adder takes 4 time
units.

3.17 [20] <§3.3> As discussed in the text, one possible performance enhancement
is to do a shift and add instead of an actual multiplication. Since 9 X 6, for example,
can be written (2 X 2 X 2 + 1) X 6, we can calculate 9 X 6 by shifting 6 to the left 3
times and then adding 6 to that result. Show the best way to calculate 0X33 X 0X55
using shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers.

3.18 [20] <§3.4> Using a table similar to that shown in Figure 3.10, calculate
74 divided by 21 using the hardware described in Figure 3.8. You should show
the contents of each register on each step. Assume both inputs are unsigned 6-bit
integers.

3.19 [30] <§3.4> Using a table similar to that shown in Figure 3.10, calculate
74 divided by 21 using the hardware described in Figure 3.11. You should show
the contents of each register on each step. Assume A and B are unsigned 6-bit
integers. This algorithm requires a slightly different approach than that shown in
Figure 3.9. You will want to think hard about this, do an experiment or two, or else
go to the web to figure out how to make this work correctly. (Hint: one possible
solution involves using the fact that Figure 3.11 implies the remainder register can
be shifted either direction.)

3.20 [5] <§3.5> What decimal number does the bit pattern 0X0C000000
represent if it is a two’s complement integer? An unsigned integer?

3.21 [10] <§3.5> If the bit pattern 0X0C000000 is placed into the Instruction
Register, what MIPS instruction will be executed?

3.22 [10] <§3.5> What decimal number does the bit pattern 0X0C000000
represent if it is a floating point number? Use the IEEE 754 standard.
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3.23 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 single precision format.

3.24 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming the IEEE 754 double precision format.

3.25 [10] <§3.5> Write down the binary representation of the decimal number
63.25 assuming it was stored using the single precision IBM format (base 16,
instead of base 2, with 7 bits of exponent).

3.26 [20] <§3.5> Write down the binary bit pattern to represent —1.5625 X 107!
assuming a format similar to that employed by the DEC PDP-8 (the leftmost 12
bits are the exponent stored as a two's complement number, and the rightmost 24
bits are the fraction stored as a two's complement number). No hidden 1 is used.
Comment on how the range and accuracy of this 36-bit pattern compares to the
single and double precision IEEE 754 standards.

3.27 [20] <$3.5> IEEE 754-2008 contains a half precision that is only 16 bits
wide. The leftmost bit is still the sign bit, the exponent is 5 bits wide and has a bias
of 15, and the mantissa is 10 bits long. A hidden 1 is assumed. Write down the
bit pattern to represent —1.5625 X 10! assuming a version of this format, which
uses an excess-16 format to store the exponent. Comment on how the range and
accuracy of this 16-bit floating point format compares to the single precision IEEE
754 standard.

3.28 [20] <§3.5> The Hewlett-Packard 2114, 2115, and 2116 used a format
with the leftmost 16 bits being the fraction stored in two's complement format,
followed by another 16-bit field which had the leftmost 8 bits as an extension of the
fraction (making the fraction 24 bits long), and the rightmost 8 bits representing
the exponent. However, in an interesting twist, the exponent was stored in sign-
magnitude format with the sign bit on the far right! Write down the bit pattern to
represent —1.5625 X 10! assuming this format. No hidden 1 is used. Comment on
how the range and accuracy of this 32-bit pattern compares to the single precision
IEEE 754 standard.

3.29 [20] <§3.5> Calculate the sum of 2.6125 X 10' and 4.150390625 X 107!
by hand, assuming A and B are stored in the 16-bit half precision described in
Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the
nearest even. Show all the steps.

3.30 [30] <§3.5> Calculate the product of -8.0546875 X 10° and —1.79931640625
X 107! by hand, assuming A and B are stored in the 16-bit half precision format
described in Exercise 3.27. Assume 1 guard, 1 round bit, and 1 sticky bit, and round
to the nearest even. Show all the steps; however, as is done in the example in the
text, you can do the multiplication in human-readable format instead of using the
techniques described in Exercises 3.12 through 3.14. Indicate if there is overflow
or underflow. Write your answer in both the 16-bit floating point format described
in Exercise 3.27 and also as a decimal number. How accurate is your result? How
does it compare to the number you get if you do the multiplication on a calculator?
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3.31 [30] <§3.5> Calculate by hand 8.625 X 10' divided by —4.875 X 10°. Show
all the steps necessary to achieve your answer. Assume there is a guard, a round bit,
and a sticky bit, and use them if necessary. Write the final answer in both the 16-bit
floating point format described in Exercise 3.27 and in decimal and compare the
decimal result to that which you get if you use a calculator.

3.32 [20] <$§3.9> Calculate (3.984375 X 107! + 3.4375 X 107!) + 1.771 X 10°
by hand, assuming each of the values are stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.33 [20] <§3.9> Calculate 3.984375 X 107! + (3.4375 X 107! + 1.771 X 10?)
by hand, assuming each of the values are stored in the 16-bit half precision format
described in Exercise 3.27 (and also described in the text). Assume 1 guard, 1
round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.34 [10] <§3.9> Based on your answers to 3.32 and 3.33, does (3.984375 X 107!
+ 3.4375 X 107Y) + 1.771 X 10° = 3.984375 X 107! + (3.4375 X 107! + 1.771 X
10°)?

3.35 [30] <§3.9> Calculate (3.41796875 1073 X 6.34765625 X 107%) X 1.05625
X 10% by hand, assuming each of the values are stored in the 16-bit half precision
format described in Exercise 3.27 (and also described in the text). Assume 1 guard,
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.36 [30] <$§3.9> Calculate 3.41796875 107% X (6.34765625 X 107* X 1.05625
X 10?) by hand, assuming each of the values are stored in the 16-bit half precision
format described in Exercise 3.27 (and also described in the text). Assume 1 guard,
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.37 [10] <§3.9> Based on your answers to 3.35 and 3.36, does (3.41796875 10~°
X 6.34765625 X 1073) X 1.05625 X 10 = 3.41796875 X 1073 X (6.34765625 X
1073 X 1.05625 X 10?)?

3.38 [30] <$§3.9> Calculate 1.666015625 X 10°X (1.9760 X 10* + —1.9744 X
10*) by hand, assuming each of the values are stored in the 16-bit half precision
format described in Exercise 3.27 (and also described in the text). Assume 1 guard,
1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps, and
write your answer in both the 16-bit floating point format and in decimal.

3.39 [30] <§3.9> Calculate (1.666015625 X 10° X 1.9760 X 10*) + (1.666015625
X 10° X —1.9744 X 10*) by hand, assuming each of the values are stored in the
16-bit half precision format described in Exercise 3.27 (and also described in the
text). Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even.
Show all the steps, and write your answer in both the 16-bit floating point format
and in decimal.
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3.40 [10] <$3.9> Based on your answers to 3.38 and 3.39, does (1.666015625 X
10° X 1.9760 X 10%) + (1.666015625 X 10° X —1.9744 X 10*) = 1.666015625 X
10° X (1.9760 X 10* + —1.9744 X 10%)?

3.41 [10] <$3.5> Using the IEEE 754 floating point format, write down the bit
pattern that would represent —1/4. Can you represent —1/4 exactly?

3.42 [10] <§3.5> What do you get if you add —1/4 to itself 4 times? What is —1/4
X 42 Are they the same? What should they be?

3.43 [10] <§3.5> Write down the bit pattern in the fraction of value 1/3 assuming
a floating point format that uses binary numbers in the fraction. Assume there are
24 bits, and you do not need to normalize. Is this representation exact?

3.44 [10] <$3.5> Write down the bit pattern in the fraction assuming a floating
point format that uses Binary Coded Decimal (base 10) numbers in the fraction
instead of base 2. Assume there are 24 bits, and you do not need to normalize. Is
this representation exact?

3.45 [10] <$§3.5> Write down the bit pattern assuming that we are using base 15
numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0-9
and A-F. Base 15 numbers would use 0-9 and A-E.) Assume there are 24 bits, and
you do not need to normalize. Is this representation exact?

3.46 [20] <§3.5> Write down the bit pattern assuming that we are using base 30
numbers in the fraction instead of base 2. (Base 16 numbers use the symbols 0-9
and A-F. Base 30 numbers would use 0-9 and A-T.) Assume there are 20 bits, and
you do not need to normalize. Is this representation exact?

3.47 [45] <§$3.6, 3.7> The following C code implements a four-tap FIR filter on
input array sig_in. Assume that all arrays are 16-bit fixed-point values.

for (1i=3;1<128;i++)
sig_out[iJ=sig_inli-3]1* f[0]+sig_in[i-2]* f[1]
+sig_in[i-11* f[2]+sig_in[i]* f[3];

Assume you are to write an optimized implementation this code in assembly
language on a processor that has SIMD instructions and 128-bit registers. Without
knowing the details of the instruction set, briefly describe how you would
implement this code, maximizing the use of sub-word operations and minimizing
the amount of data that is transferred between registers and memory. State all your
assumptions about the instructions you use.

§3.2, page 182: 2.
§3.5, page 221: 3.
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Chapter 4 The Processor

PIPELINING

Introduction

Chapter 1 explains that the performance of a computer is determined by three key
factors: instruction count, clock cycle time, and clock cycles per instruction (CPI).
Chapter 2 explains that the compiler and the instruction set architecture determine
the instruction count required for a given program. However, the implementation
of the processor determines both the clock cycle time and the number of clock
cycles per instruction. In this chapter, we construct the datapath and control unit
for two different implementations of the MIPS i