
Creating Blogs
with Jekyll

—
Build elegant and minimalistic static blogs
—
Vikram Dhillon

T H E E X P E R T ’ S V O I C E ® I N W E B D E V E L O P M E N T

www.allitebooks.com

http://www.allitebooks.org

 Creating Blogs
with Jekyll

 Vikram Dhillon

www.allitebooks.com

http://www.allitebooks.org

 Creating Blogs with Jekyll

Vikram Dhillon
Orlando, Florida, USA

ISBN-13 (pbk): 978-1-4842-1465-7 ISBN-13 (electronic): 978-1-4842-1464-0
DOI 10.1007/978-1-4842-1464-0

Library of Congress Control Number: 2016943682

Copyright © 2016 by Vikram Dhillon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Ben-Renow Clarke
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Teresa Horton
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

 Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
http://www.apress.com/
http://www.apress.com//bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To the pioneers of the Internet: I wrote this book as requiem to you.
Hear it sing, for your work has brought freedom to the world.

 To Clara, for the tremendous mental support which kept me doing.
It should be noted that she helped me rethink about a lot of the

topics in the book, please direct complaints accordingly.

 But most of all, I dedicate this book to you, the reader,
because without you, my work would have no meaning.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Part I: History and Development ... 1

 ■Chapter 1: Static Web .. 3

 ■Chapter 2: Web 2.0 .. 11

 ■Chapter 3: Static Site Generators .. 21

 ■Part II: The Fundamentals .. 35

 ■Chapter 4: Fundamentals of Version Control ... 37

 ■Chapter 5: Fundamentals of Style ... 51

 ■Chapter 6: Fundamentals of Jekyll .. 73

 ■Part III: Projects .. 89

 ■Chapter 7: Blog-awareness ... 91

 ■Chapter 8: Git It Done .. 107

 ■Chapter 9: Photo Blogging ... 137

 ■Chapter 10: Open Debates ... 163

 ■Chapter 11: Open Research ... 195

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Chapter 12: Open Health Care.. 229

 ■Chapter 13: Open Jekyll? .. 265

 ■Appendix .. 335

Index ... 339

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Part I: History and Development ... 1

 ■Chapter 1: Static Web .. 3

Here Be Dragons .. 3

Commercial Internet: CERN .. 6

Summary .. 8

Further Reading .. 8

 ■Chapter 2: Web 2.0 .. 11

Early Web Browsers ... 11

Defi ning Web 2.0 .. 12

Boom and Bust ... 15

Connecting the Dots ... 17

Summary .. 19

Further Reading .. 19

 ■Chapter 3: Static Site Generators .. 21

The Maturing Web .. 21

Blogging in Web 2.0 .. 22

Looking Back .. 23

Components of a Static Generator .. 24

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Static Generators Showcase .. 26

Jekyll .. 26

Octopress.. 26

Hexo .. 27

Pelican .. 28

Hugo ... 28

Brunch .. 29

Middleman .. 30

Metalsmith .. 31

Nanoc ... 31

Summary .. 32

Further Reading .. 33

 ■Part II: The Fundamentals .. 35

 ■Chapter 4: Fundamentals of Version Control ... 37

Parsing Engine ... 37

Markdown .. 38

Version Control ... 43

Installing Git ... 47

Jekyll Workfl ow .. 48

Summary .. 48

Further Reading .. 49

 ■Chapter 5: Fundamentals of Style ... 51

What Is Style? .. 51

Bootstrap .. 54

Foundation ... 59

Style Sheet Management: Sass .. 62

Style Sheet Management: LESS ... 65

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Jekyll Themes .. 67

Summary .. 70

Further Reading .. 71

 ■Chapter 6: Fundamentals of Jekyll .. 73

Folders ... 73

Drafts and confi g .. 74

Includes .. 74

Layouts ... 75

Posts, data, and site ... 76

YAML .. 77

Liquid and Handlebars ... 80

Tags .. 80

Objects .. 82

Inheritance ... 84

Installing Jekyll Locally? .. 85

Summary .. 86

Further Reading .. 86

 ■Part III: Projects .. 89

 ■Chapter 7: Blog-awareness ... 91

Getting the Theme .. 91

Installing a Code Editor .. 93

A Kactus in the Desert .. 94

The _includes Folder .. 95

The _layouts Folder .. 100

The _posts Folder ... 103

Summary .. 104

Further Reading .. 105

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 8: Git It Done .. 107

Scope and Scale ... 107

Tools List .. 111

Just Do It .. 112

Font-Awesome ... 116

Navigation ... 118

Page Profi le .. 120

Pagination ... 120

Post List .. 121

Share Buttons ... 123

Archive .. 125

Comments .. 127

MailChimp ... 129

Cleaning Up .. 132

Summary .. 135

Further Reading .. 136

 ■Chapter 9: Photo Blogging ... 137

Project Specifi cation .. 138

Using GitHub ... 141

Deleting Repositories.. 142

Visual Tutorial ... 143

Dope Editing ... 144

Navigation Bar .. 145

Photography Specialties ... 146

Portfolio .. 147

The Blog .. 148

Footer ... 149

Blog Post Layout ... 151

Embedding Photography .. 153

 ■ CONTENTS

xi

Content Delivery Network (CDN) .. 155

MailChimp Campaign ... 156

Summary .. 161

Further Reading .. 161

 ■Chapter 10: Open Debates ... 163

Rules of the Game .. 163

Navigating GitHub ... 165

Repository Overview ... 166

Issues ... 166

Pull Requests .. 168

Wiki ... 168

Pulse and Graphs .. 169

GitHub Pages .. 171

Prototyping ... 174

Jekyll Collections ... 176

Theming the Debate ... 177

Phases .. 183

Summary .. 193

Further Reading .. 193

 ■Chapter 11: Open Research ... 195

A New Platform .. 195

KaTeX .. 196

Plot.ly .. 197

IPython .. 198

Reveal.js ... 199

Planning the Theme .. 200

Exploring Git ... 202

Git Internals .. 204

Distributed Development Model ... 207

 ■ CONTENTS

xii

Let’s Git Coding .. 211

Writing Equations ... 215

Adding a Graph ... 218

Writing Bibliographies .. 219

Adding Notebooks .. 222

Making Presentations ... 223

Summary .. 226

Further Reading .. 226

 ■Chapter 12: Open Health Care.. 229

Overview .. 229

Introduction to Cards .. 231

Creating Cards .. 232

Writing a Quote Card .. 237

Content Guide ... 238

Writing in Prose .. 240

Prosing Through ... 241

Material Design .. 247

Summary .. 262

Further Reading .. 263

 ■Chapter 13: Open Jekyll? .. 265

Now Open: Jekyll Design Studio ... 267

A Ruby from Japan ... 269

Playing with Ruby ... 273

Gems of Ruby ... 284

A Bucket of Gems ... 290

Build Tools .. 301

Continuous Integration ... 303

 ■ CONTENTS

xiii

Solid Studio .. 313

Fiverr and Gumroad .. 313

YouTube and Wistia ... 317

Shopping Cart ... 319

Prototyping in InVision .. 322

Customer Support ... 323

Deployment and Custom Builds .. 325

Further Reading .. 333

 ■Appendix .. 335

Custom Domain for a Root Repository ... 335

Custom Domain for a Project Page? ... 336

Confi guring Jekyll-Powered Project Pages .. 338

Domain Directory ... 338

Index ... 339

xv

 About the Author

 Vikram Dhillon is currently a research fellow in the Institute of Simulation
and Training at University of Central Florida. He holds a Bachelor of
Science degree in Molecular Biology from the University of Central Florida,
where his main focus was bioinformatics. He has published a few scientific
papers on computational genomics. He has worked as a software and
business development coach at the Blackstone Launchpad to mentor
young entrepreneurs and startups through the process of building
technology products. He was previously funded by the National Science
Foundation through the Innovation Corps program to study customer
discovery and apply it to commercialize high-risk startup ideas. He is a
member of the Linux Foundation and has been very involved in open
source projects and initiatives for the past several years.
He often speaks at local conferences and meetups about programming,
design, security, and entrepreneurship. He currently lives in Orlando and
writes a technology-focused blog at opsbug.com .

http://opsbug.com

xvii

 About the Technical Reviewer

 Massimo Nardone holds a Master of Science degree in Computing
Science from the University of Salerno, Italy. He has worked as a Project
Manager, Software Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor, and Senior Lead IT
Security/Cloud/SCADA Architect for many years. He currently works as
Chief Information Security Office for Cargotec Oyj. He has more than
22 years of work experience in IT including security, SCADA, cloud
computing, IT infrastructure, mobile, security, and Web technology areas
for both national and international projects. He worked as visiting lecturer
and supervisor for exercises at the Networking Laboratory of the Helsinki
University of Technology (Aalto University). He has been programming
and teaching how to program with Android, Perl, PHP, Java, VB, Python,
C/C++, and MySQL for more than 20 years. He holds four international
patents (PKI, SIP, SAML, and Proxy areas). He is also the co-author of
Pro Android Games (Apress, 2015).

xix

 Acknowledgments

 I want to acknowledge my editors, Ben, Mark, and Nancy, who guided me through every stage of this book.
Their patience and advice helped tremendously in shaping this book.

 I want to thank Zachary Loparo for helpful discussions about the projects included in this book and the
overall direction.

 I would like to thank Anthony Nguyen for opuning up to me and showing me the the world of puns.

 Finally, I want to thank Katelyn Rae MacKenzie for organizing those Ruby Meetups at Cloudspace.
Without that first meetup, this book might never have happened. Thank you for all the hard work that you do!

xxi

 Introduction

 This book is more than just a standard text on Jekyll. Anyone who tries to learn about Jekyll is faced with
instructions on how to set up a blog in 10 minutes and confounded with commands to type on the terminal.
What has been missing is a thorough introduction to the landscape surrounding Jekyll as a static site
generator: Where did the idea for Jekyll come from? Why did it become relevant? How can Jekyll integrate
new web technologies and tools to create functional and stylish web sites?

 This book answers those questions in a practical manner, and provides a theoritical framework to
transfer that “Jekyll thinking” to your own personal projects. A tool like Jekyll is very versatile, but you
have to think creatively to apply it toward a problem that you are trying to solve. Most problems don’t lend
themselves to easy solutions, but we will apply Jekyll features toward creating custom blogs. Sometimes, just
reformulating the problem leads to better solutions.

 This book is organized as follows. The content material has been divided into three distinct sections,
with each one focusing on a specific theme or set of questions. The first section is about the development
of static generators like Jekyll and how the Internet got started. It was a much different time then, and the
economic factors shaped what the Internet was capable of doing. The dot-com bust was one of the most
important financial crises, and it had a lasting impact on society. For the Internet to survive and make it
through, many changes were required, and a complete technical overhaul enabled exactly that. This section
answers the question of how Jekyll came about.

 The second section of this book dives into the fundamental tools required to use Jekyll appropriately.
You can think of Jekyll essentially as a collection of technologies that work together to create a static site.
To begin working with Jekyll regularly, you’ll have to learn how to use these prerequisite tools. After covering
these fundamentals, we are ready to start creating projects with Jekyll. This section answers the question of
what makes Jekyll work.

 The last section covers a variety of projects in which Jekyll is applied to create a static web site for
solving problems. These project ideas include casual or hobby web sites as well as more serious ones that
have a particular social inclination. The story behind a project mostly serves as a way to demonstrate the
application of Jekyll and related web technologies to an existing problem. The chapters actually build up and
slowly increase in complexity and application, leading up to the boss-level last chapter. This section answers
the question of how Jekyll can incorporate new web technologies as exciting features into a new personal
blog. As you go through this section, I hope that you obtain practical advice as well as potential inspiration
for your own projects.

 Stay Hungry. Stay Foolish. Keep doing more, and write about it using Jekyll. Good luck!

 PART I

 History and Development

 The first section focuses on the story of the Internet and blogging as a whole. Here, we start by
looking at how the Internet began as nothing more than a tool to connect physicists. Eventually, it
turned into more than just a toy, and today we cannot imagine life without it. We also spend some
time reviewing the economic and financial environments around the time when the Internet had
just taken off. The dot-com bust and the revival of belief in Internet startups launched the Web 2.0
movement, and improvements to the infrastructure allowed for new services and social media to
take over the Internet. We then discuss how the evolution of the Internet supercharged blogging and
how the tools that people used to blog changed with time, gradually ending up at static generators.
Finally, we end this section by talking specifically about static site generators and other options
available besides Jekyll.

3© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_1

 CHAPTER 1

 Static Web

 The journey of a thousand miles begins with a single step

 —Lao Tzu

 The world was a very different place before the Internet was around. Most of the social media and
microservices we use today would not have made sense in the past, and for very good and valid reasons.
In the past, they would have been a waste of time. Why would you use a toy like the Internet to talk to people
when you could simply meet them in person? Spending an entire Saturday looking at cat pictures would
have been considered madness! Times have changed, though. The story of blogging is perhaps the greatest
story told using the Web. It is a story of change; not just how society changed, but how the mindset of a
generation changed with time. The times have changed to such an extent that the Internet is now perceived
as a common tool, available to everyone. How did such a paradigm shift happen? Moreover, how did the
beginning of Internet become associated with blogging? What applications was the Internet supposed to
provide in the early days? These are some of the questions we explore in this chapter.

 Here Be Dragons
 CERN is often hailed as the birthplace of the Internet, but the developments leading to the foundations
of the Internet can be traced back further. The first description of connecting multiple machines in some
sort of interacting network was proposed in 1962 by J. C. R. Licklider, a scientist at MIT. He had worked on
a new aspect of networking that he called packet-based networking and wrote a series of letters explaining
his ideas in August 1962. This early concept was one of the first proposals for a connected network and
this idea eventually matured into a concept known as the galactic Network . Licklider envisioned a globally
interconnected set of computers through which everyone could quickly access data and programs from any
site. Philosophically, this concept was very much like the Internet that exists today, but the infrastructure to
make it possible did not exist at the time. The story of Internet is also a testament to heavy investments made
by the government in research that would one day connect the world.

 ■ Note The Internet essentially started as a tool to allow scientists to communicate with each other.
That’s why a historical account of developments is provided here. It is truly phenomenal to see how
investments in curiosity-based research more than 50 years ago have completely changed the world today.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1464-0_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1464-0_1

CHAPTER 1 ■ STATIC WEB

4

 Licklider was the first head of the computer research program at the Defense Advanced Research
Projects Agency (DARPA) , a military research organization that was finding practical uses for the computer.
While Licklider was at DARPA, he convinced a few MIT researchers, including Lawrence G. Roberts, of the
importance of his networking ideas. Leonard Kleinrock, also at MIT, had just published the first paper on
packet switching theory in July 1961, probably the first person in the world talking about this new idea.
Eventually he would publish a full book on the topics initially explored in that paper and the broader subject
in 1964. Kleinrock talked to Roberts about this new idea, as he really wanted to explore it further and see
what kind of information could be passed through packets. Kleinrock convinced Roberts of the theoretical
feasibility of communications using packets rather than circuits, which was a major step along the path
toward computer networking.

 Roberts joined DARPA in 1966 and continued to work on developing his computer networking ideas
further into the future. He later proposed an idea for the first “ galactic supernetwork ” that would link up
research scientists in labs. He quickly put together his plan for the network, which he called ARPANET ,
in 1967. He presented the work and his paper at an international conference. Surprisingly, at the same
conference, another paper by Donald Davies from National Physical Laboratory (NPL) in the United
Kingdom talked about a similar packet networking concept. This new group had worked on a prototype
for transmission of voice securely through a network of connected machines for the military since 1964.
Coincidentally, this work at MIT and NPL proceeded in parallel without either group knowing about the
work being done by their fellow researchers. Their subsequent collaboration would progress over time to the
point when ARPANET became NSFNET, which was an effort to connect all publicly funded supercomputers.
Even more developments would come to these networks before file transfer and sharing protocols became
stable. On the other hand, primitive versions of Transmission Control Protocol/Internet Protocol (TCP/IP)
were being developed and packet-based transfer was beginning to be well understood in the 1980s. At this
time, the Internet was still only usable in research labs, and the general public didn’t have access to it or any
application for it. Eventually, in the mid-1990s, ARPANET and NSFNET would be decommissioned and the
Internet would be opened to the public through the introduction of web browsers.

 A very interesting transition happened around the late 1980s. There were various ideas about what
the future of the Internet would look like but no one took it seriously. Most big technology companies and
the general public were thinking about a new idea called the information superhighway (Figure 1-1). This
highway was going to connect the world and make information available at super high speeds. It would be
much better than the toy that was the Internet.

CHAPTER 1 ■ STATIC WEB

5

 Figure 1-1. Depiction of the information superhighwa y that would connect the world. Photo credit to
Popular Mechanics magazine.

CHAPTER 1 ■ STATIC WEB

6

 Commercial Internet: CERN
 Thankfully, all the talk about an information superhighway turned out to be just hype and it never turned
into anything practical. The information superhighway was closed source and the intention was that only
big companies would be adding content and bringing information to the general public. The world would be
such a different place if the Internet was not as open as it is today. To understand how the Internet got into
the hands of pragmatic folks and how this transition happened, we need to spend some time exploring the
motivations behind the transition. More often than not, world-changing technologies comes to light after
years of research and development. It was expected that the Internet would achieve mass adoption, but to
accomplish that it had to be trendy and appealing. This can be done very well in existing capital markets
and this was one entry point for startups to get involved and make the Internet easily accessible. After a
certain point, a tool or a project can reach a large enough user base that a revenue model can be developed
and attached to it. The primary motivation in commercializing a research outcome and mass adoption is
having well-defined distribution and revenue models. This is the crucial evolutionary step where the tool or
a product becomes a company and the company can put more wood behind the fire, because the returns
will be that much greater. There was still more work to be done before private companies could become
interested. The first major development was a standardization of protocols that can be used to connect
machines with each other.

 It was March 1989 and a researcher at the European Nuclear Research Organization (CERN) had just
finished writing a proposal that he sent to his boss, Mike Sendall. Sendall read the proposal and wrote three
famous words: “Vague, but exciting.” That historical comment was written on a proposal called Information
Management: A Proposal , shown in Figure 1-2 . The writer was none other than Sir Tim Berners-Lee. The
proposal dealt with the complexities of information management at CERN, and ways to easily transfer data
among physicists at a faster rate. This could be applied to a much broader context, though, and Berners-Lee
recognized that. This proposal, which really was intended to result in a more effective CERN communication
network, was the birth of the World Wide Web (WWW). For a long time, it would remain just a toy that only
physicists used. We explore here how the Internet become more than just a toy and what was needed to
make it widely available.

 Figure 1-2. Information Management: A Proposal

CHAPTER 1 ■ STATIC WEB

7

 Eventually, in efforts to make the Internet more practical, the idea of web sites came into existence.
The first web site is shown in Figure 1-3 .

 Figure 1-3. A screenshot of the first web site

 The way fundamental research works is that some researchers spend time at the frontier of what they
study. They work very hard trying to push the boundaries of what we know, and as they continue moving
toward the future, they leave behind a trail of routine tasks. These routine tasks can be performed much
more efficiently by a different entity that specializes in repeating just one particular task. This is where
private enterprise takes over and capital markets show their power. The Internet also benefited from a very
similar phase: After the foundations had been fleshed out through government-funded research, private
companies such as Netscape took over to provide a commercially viable infrastructure for the Internet.

 It must be noted that the evolution of the Internet surprised everybody; no one can look at this
history and say that they expected things like JavaScript and Secure Sockets Layer (SSL) to come out as
private companies started to stabilize the Internet and make it profitable. It was eventually inevitable that
the Internet would become stable enough to allow the e-commerce economy to bloom and superstores
like Amazon would allow people to buy things from across the world. These were some of the promises
that startups were making in the early 1990s, but it would still be some time before that goal could be
accomplished and brought to fruition. Nonetheless, the beginning of privatization allowed anyone to have
access to this open protocol that connected thousands of computers and promised to connect the entire
world. This would allow incredible virtual economies to form around web sites. One example of an early
marketplace is shown in Figure 1-4 . Many other monetization ideas would spring up, like advertisements
that profoundly influence what it would mean to be an entity of this brave new world.

CHAPTER 1 ■ STATIC WEB

8

 Summary
 This chapter reviewed the beginnings of the Internet. A historical account was presented to help the reader
understand how world-changing technologies get their start, and more important, how fundamental
research has an impact felt only 30 to 40 years after it got started. The fact that the Internet was an open
platform for anyone meant that everyone could develop Internet-based things . No one had any idea what
those would be, but in hindsight, we can see the applications developing. Taking the Internet from just a toy
that physicists used to something that every person on the planet could use was a drastic paradigm shift.
The world was becoming connected and the Internet was really a very big deal. Even though the Internet had
gotten off to a great start, we are still talking about the old Internet, the static net. There were more drastic
changes to come, and the new Internet is different. How did iconic companies like Netscape completely
change how the Internet worked? How did they change what it meant to be an Internet company? We
explore these issues in the following chapters.

 Further Reading
 1. Information Management: A Proposal. Tim Berners-Lee, CERN.

 http://www.w3.org/History/1989/proposal.html

 2. 19 Key Essays on How the Internet Is Changing Our Lives. Open Mind.
 https://www.bbvaopenmind.com/en/book/19-key-essays-on-how-internet-
is-changing-our-lives/

 Figure 1-4. A screenshot of an early marketplace on the Internet, powered by America Online (AOL)

http://www.w3.org/History/1989/proposal.html
https://www.bbvaopenmind.com/en/book/19-key-essays-on-how-internet-is-changing-our-lives/
https://www.bbvaopenmind.com/en/book/19-key-essays-on-how-internet-is-changing-our-lives/

CHAPTER 1 ■ STATIC WEB

9

 REVIEW

 In this review, let us compare the old Web that was just beginning to come about to some of the latest
state-of-art technologies that will one day change what it means to connect to the Internet.

 1. Search Task: A new super-glue of sorts is emerging to connect all our devices in
a seamless manner called the Internet of Things. What is this new idea?

 2. Search Task: Google recently announced Brillo, a home automation toolkit that
would make it easier to connection home-automation devices. What are the ideas
behind Brillo?

 3. Search Task: The idea of Internet-based tasks is very intriguing. Some services
allow you to put the Internet to work for you and automate simple tasks. One such
service is IFTTT (If This, Then That). What does IFTTT allow one to do? We revisit
this service in detail later in the book.

 We end our story of the old Web and talk about how the new changes created a revolution called
Web 2.0 in the upcoming chapter.

www.allitebooks.com

http://www.allitebooks.org

11© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_2

 CHAPTER 2

 Web 2.0

 It's never the changes we want that change everything.

 —Junot Díaz

 The static world that we looked at in the last chapter was just the beginning. Once web sites became the
norm on the Internet, capturing people’s attention with interactivity and speed became necessary. A
landslide of technical updates over the next decade helped the Web mature into a stable platform for serious
development and web applications. The need for speed has changed the Internet and the people using it.
The tools and technologies that we have today enable us to communicate at such incredible speeds that our
view of the world has become instantaneous. We send a text and expect a reply back within a few minutes,
we tweet and receive tweets from the most recent events as they are happening, and live streaming has
become very popular on most social media platforms. This instantaneous environment has been enabled
by the Internet, but how did it get transformed from being slow, clunky, and static into fast, dynamic, and
responsive? These are some of the questions that we explore in this chapter.

 Early Web Browsers
 We left off the story previously at the Internet just becoming something more than a toy. The major
developments that came to the Internet were a result of commercialization, but what does commercialization
even mean? Essentially, commercialization is a process by which a tool or technology ends up in the hands
of the general public and other developers that can stretch it further into future. This is a very lengthy process
involving complicated market economics and network effects that have been the subject of entire books
themselves! Those topics are beyond the scope of our discussion, but it is worth spending a little bit of time to
discuss the economic and financial environment in which the World Wide Web got started.

 It was the early 1990s, and a group of students at the University of Illinois Urbana-Champaign had
created the first browser called Mosaic . It was a revolutionary piece of technology for its time, funded by
the National Science Foundation. This was done on a very small scale and Marc Andreessen was one of the
core developers behind that browser effort. Another key player in this story is Jim Clark, a legendary serial
entrepreneur who had just left Silicon Graphics, which he had helped create. On his last day at work, he
was looking for new avenues to explore after leaving this job when a colleague asked him to write an e-mail
to Andreessen to talk about potential ideas for a second company. The browser was actually not the first
idea they started working on together. The first project they took on was creating interactive television: The
technology needed to make it happen was nonexistent at the time and very soon the duo learned that the
interactive TV idea would not work. The next idea was to work on what would be modern-day equivalent of
the playStation or Xbox network but with the Nintendo 64 consoles. They started to crunch some numbers
to determine the type of Internet infrastructure they would need in place to accomplish their goal and the
numbers were just not feasible.

CHAPTER 2 ■ WEB 2.0

12

 They were really not sure about which direction to take, but an unexpected clue led them to the best
possible outcome. After Andreessen left the Mosaic group, the development of the browser continued and
he kept himself on the internal mailing lists. Their group had released Mosaic under a split license: It was
free for personal use but required a license and payment for commercial use. They left this statement blank,
not particularly sure about what to charge. Eventually, the commercial inquiries mailing list hit more than
1,000 messages when Andreessen and Clark realized that the browser could become an interesting and
viable startup. Following this lead, the duo started working on polishing the browser and creating a larger
suite of add-ons to complement the browser. This was the second wave of developments after the Mosaic
browser, the release of Netscape Navigator and the server-product line.

 ■ Note Netscape released its version of a browser, Netscape Navigator, first; eventually, it was made
available for free. The next line of products generated their main share of revenue and included the Netscape
Enterprise Server (web server), Netsite Communications Web server (mail, news and calendar, with SSL
included), Netsite Commerce Web Server, and Netsite Proxy Server. These products eventually were either
open source or became the foundation for future web technology. One such example is the Firefox browser.
Shortly before Netscape was acquired by AOL, it released the source code for its browser and created the
Mozilla Organization to coordinate future development. The Mozilla developers completely rewrote the Netscape
browser with the Gecko engine and provided us with the modern browser that we now use.

 Netscape completely redefined what it meant to be an Internet company, and the technology at the
core of the company would become foundational in making the Internet available to developers. It laid
the groundwork for much of the early security infrastructure, and more important, the first versions of the
JavaScript engine came out of Netscape by Brendan Eich. These were the early days of the Internet, but one
of the toughest tasks had already been accomplished: bringing the Internet to the general public. There was
still much work to be done: More people would have to be brought online to the Internet and software was
not directly available on the Internet. It seems obvious to us now that the easiest way to get a new tool or
play a new game is to download the tool or game from the Internet, but this was not at all obvious 20 years
ago. The services portion of the Internet was far from prime time, but in the past decade years or so, the
software as a service model has become much more ubiquitous. Additionally, it seems that the year 2012
has been the tipping point for Software as a Service (SaaS) , as even the largest companies in the world are
switching over to SaaS models. Interestingly, this method of recurring revenue seems to be beneficial to the
companies: As opposed to a single point of sale, they can now charge for any arbitrary time for which they
want to offer their licenses. This model has become the new standard for a host of new Internet companies
in a remarkable period of Internet history called Web 2.0.

 Defining Web 2.0
 The term Web 2.0 was popularized by Tim O’Reilly and Dale Dougherty at the O’Reilly Media Web 2.0
Conference with a great focus on user-generated content being the new web. As a result, the web sites of
the old Internet became the interactive apps that we now use. This has largely turned out to be true, as
user-generated content on the Internet has increased massively. Some examples of Web 2.0 include blogs,
forums, social media platforms, wikis, video sharing web sites, photo hosting services, and so on. The
criteria mostly remains that nearly any user-content-generating platform comes under the Web 2.0 banner.
The key difference to notice is that in Web 1.0 , there were only a few content creators. This made the vast
majority of users consumers of content. The limited number of content creators limited the scale of the old
Web. Web 2.0 is based on the principles of the Web as platform and giving independence and freedom to

CHAPTER 2 ■ WEB 2.0

13

the users. The technological standards were also updated. Initially the Web was a scattered sea of different
technologies, but Web 2.0 became more universal. A “standards-based” Web was what we were after, a place
where we could unify these wild and different ideas into one commonly usable protocol that can be used by
developers to bring more people to the Internet. We envisioned a world where integration between these
separated ideas would happen smoothly.

 One way to measure the impact this had is to just look around today to see how much content gets
created through blogs, social media, and videos. Just those three forms of media end increase the volume
of new content by large amounts. If the main objective of Web 2.0 was to make content creation widely
available, the results are overwhelmingly obvious and this goal has been accomplished. We are only fleshing
out the details and making it easier, but for the most part, we have made it incredibly easy to share pictures,
videos, and written media. The smartphones we carry have powerful enough cameras to take high-quality
pictures, and apps like Instagram now make it incredibly easy to share those pictures. Almost every big social
media outlet is now trying to approach video and make that native to the Internet. Finally, we have ever
more powerful blogging engines that power the Web like WordPress, to create and share written content very
easily. The plug-in system built around it makes life even easier.

 A better way to describe Web 2.0 is some new features that were introduced to it, although some of
those have been superseded by new technologies. Many regard syndication of web site content as a Web 2.0
feature. This is generally done through Extensible Markup Language (XML) and Really Simple Syndication
(RSS), which are both fairly new, although recently their use has become a little more niche. Syndication
uses standardized protocols to allow end users to repurpose a site's data in another context such as another
Web site or a browser plug-in. There are several protocols that permit for syndication, but the most popular
one is RSS, shown in Figure 2-1 , and Atom, all of which are XML-based formats. Web 2.0 also allows for very
interesting machine-based interactions through features such as representational state transfer (REST)
 and Simple Object Access Protocol (SOAP). Many web platforms expose the data contained and generated
within them through application programming interfaces (APIs) . These APIs come in many shapes and
forms, but all of them share one commonality: The APIs make the data stored in a platform available to
developers for processing and interesting applications. Most communication channels through APIs involve
the use of XML or JavaScript Object Notation (JSON) payloads. Different APIs exist for different use cases,
but standard APIs have also emerged to take care of common tasks, for instance posting to a blog or notifying
subscribed readers about a blog update and so on.

CHAPTER 2 ■ WEB 2.0

14

 Many of these technologies have since become standards for the Web: JSON, REST, and SOAP are just
a few examples where the underlying technology has become the foundation for entire new industries.
Medical informatics is one such example where the data being shared uses JSON and REST protocols very
frequently and in innovative ways that allow sharing of that data between hospitals at large scales. These are
all momentous achievements of the Web 2.0 and it continues to change the world in unexpected ways. In the
summary for the last chapter, we talked about this idea of the Internet of Things, which seems to be one of the
hottest trends driving the Internet forward. This is the idea of creating another network that can be used just
by our devices to connect with each other and seamlessly transmit data among each other. This is the new
cutting-edge application of networking today, the new horizons that might eventually become Web 3.0. What
set of changes will power Web 3.0? Search with context, more video-based content, secure private networks,
automation, and intelligent applications are ripe for innovation. Even though the future will be much different
from today, the technologies that power Web 3.0 will operate on principles derived from current ideas.

 Figure 2-1. An overview of the RSS protocol and feeds. Photo credit to Elliance for the RSS protocol.

CHAPTER 2 ■ WEB 2.0

15

 It must be noted that Web 2.0 did not arise in a vacuum. Just like most modern inventions, it was a
response to the events taking place at the time. There was a period in early Internet history when for the first
time, Internet companies clashed with the economy in a very real and potentially dangerous way. This was
the dot-com bust, which taught us many important lessons, some of which are worth discussing here. Let’s
spend a little bit of time talking about that time period and how it shaped Web 2.0.

 Boom and Bust
 The dot-com bubble is an important stop in our story, as much of what happened after was a direct response
to the bubble and the story of blogging is incomplete without a discussion of that time period. Let’s begin
with a rough sketch of the timeline:

• 1995–1997: Large investments in the Web and Internet companies.

• 1998: A financial crisis: Avian flu spreading, Russia defaulted, and eBay goes public.

• 1999: People are planning initial public offerings (IPOs) of their startups before the
companies are even incorporated.

• 2000: All the IPO madness comes to a screeching halt and the financial market
crashes.

 This timeline roughly shows the environment before the dot-com bust when NASDAQ crashed and the
stock market lost most of its value. This left investors in a really troublesome situation, as they lost a lot of
money and did not believe in Internet-based companies anymore. Their disbelief was justified because there
were some deep problems in the investment landscape around 1998 and 1999, where anyone could raise any
amount of money. The whole problem before the dot-com bust was that people were selling too much.
Ideas were being sold as products, products were being sold as companies, and companies were being sold
as revenue-generating entities that went public. This whole structure had no foundation, so when it was
shaken up, it crumbled and destroyed those phantom companies.

 The extent of this bust was so great that it had a significant psychological impact on society. The general
public started having huge doubts about the future of Internet-based companies. The prevailing idea at the
time was that the Internet was finished. There was nothing profitable remaining and now the entrepreneurs
and venture capitalists had to work on something else like clean technology. Even though investors became
cautious of the stock market and Internet companies, the browser was still going strong. The heavy hitters
of the technology industry continued to experiment with new features such as AJAX and ActiveX. Their
main objective was to show that the Internet was not done; in fact, it was just getting started. This was a sort
of renaissance period where all the old ideas from Web 1.0 were reexamined and the engineers started to
realize that most of them could be made to work.

 The main problem was not that the ideas were radical or impractical, but instead, most of them were
just too early. We weren’t ready for them: The general public and the markets had no idea how to interact
with those products and how to value them. All of that has changed since. The landscape has become much
more difficult for a public company today: It is much more hostile and the regulations are far more intense.
That might be why so few Internet companies have gone public in this brave new world. Then again, in Web
2.0, just as the focus on the Web changed to enabling a greater number of content creators, the focus of the
companies changed from selling products to building strong technological cores. The common advice for
companies going public now is to build a fortress before they ever think about going public, filling all the
key positions having a solid revenue trail along with predictability. Once the company can accomplish that
much, then it can think about going public.

 Interestingly, there has been plenty of research done on the idea of bubbles in the technology realm,
especially after the 2000 crash. The most influential line of research has been undertaken by Carlota Perez,
who has studied the bubbles in terms of technological revolutions and their impact on financial capital
markets. A simplified model of Perez’s research is presented in Figure 2-2 . At this point, the previous

CHAPTER 2 ■ WEB 2.0

16

discussion about the bubble and the crash might make more sense: We needed to cover some background to
talk about blogging emerging as a response to the things that went wrong with the old Web. The exponential
increase in the number of content creators, blogging engines, and new platforms is the result of the
Internet finally maturing to a very stable stage. The division between the old Web and the new Web can be
understood in terms of technology cycles, and a very brief sketch is presented here. Perez’s idea is that we
divide technological revolutions (e.g., the steam engine and the Internet) into two phases: the installation
phase and the deployment phase.

 Figure 2-2. Boom and bust cycle for technological revolutions such as the Internet. Web 2.0 has emerged in the
maturation phase of the Internet. The turning point for this revolution was the dot-com crash.

 The installation phase includes the early development and deployment of a new technology. As was the
case with the early map makers, the new technology is unstable and not well tested but we use it regardless,
in hopes that the future use will provide great benefits. Wearable technology is going through this cycle right
now. The technology starts to mature and gain widespread use, but there are still fundamental problems
with the infrastructure powering it. There is finally more capital available when investors and public realize
the importance of this new technology. This is followed by a financial bubble that propels the irrationally
rapid installation of this new technology and its early applications. Then there is a crash, followed by a
recovery and then a long period of productive growth, as the new technology is deployed throughout other
industries, as well as society more broadly. Eventually the revolution runs its course and a new technological
revolution begins. This is the general course of technological revolutions according to Perez, but let’s discuss
Figure 2-2 in a little more detail.

 Figure 2-2 describes the Perez technological surge cycle . This cycle is a model for how an idea can
become a technological revolution and eventually mature into a product used by the masses. The cycle
starts with a gestation period with a lot of promising ideas, most of which generate a lot of hype but never
make it out of this phase. The rare ideas that do make it have to pass the test of time. The first phase is

CHAPTER 2 ■ WEB 2.0

17

installation, where the basic infrastructure for a technology is rolled out. Financially, a lot of venture capital
funding and even government support fuels the development of the required infrastructure. The beginning
of the installation phase is also known as the big-bang period because high availability of funding creates
new jobs and economic progress. In this phase, a bubble is created where the hype around a technology
clouds the real progress, but money from investors keeps flowing in. Socially, this new paradigm has a lot of
opponents who are proponents of the already established ideas. This leads to the eventual downfall of the
old incumbents as the jobs and the economy flow toward the new paradigm. The installation phase is also
characterized by a forceful irruption of new ideas surrounding a new technology, followed by a frenzy of
startups and businesses trying to grab a piece of that pie.

 This frenzied chaos gains critical mass until the bubble is exposed as hype and generally dismissed; that
is, until it picks up again. This period between installation and deployment is called the turning point, which
usually indicates renewed interest. This period of collapsed recovery allows the skilled workers involved in
the installation phase to find flaws that caused the industry to collapse and determine how it can be rebuilt.
When the rebuilding starts, it involves a strong focus on the technology that was originally ignored. The
public and investors have had time to reconsider, but now they are much more cautious. They expect solid
results; when entrepreneurs deliver them, a synergistic relationship builds between the public and investors.
Socially, the new paradigm is not as strange anymore because it shows the inefficiencies of the old ideas. It
becomes widely accepted and gains more support.

 This is the second phase of a technological revolution, deployment. In this phase, new technology
is deployed on top of the infrastructure rolled out previously and the developments that have happened
since then. At this point, the technology that entered this cycle has become stable and is ready for serious
development. It reaches maturity and the cycle ends here, leaving the future of that technology to the
developers. Then, a new idea arrives on the scene and the cycle starts anew.

 The deployment phase really is the best of times and the worst of times, as Charles Dickens said in the
opening to A Tale of Two Cities . This second phase signifies maturation of the technology: It is not as risky
as it used to be, and now stable development can take place, pushing this new technology into the future. It
must be noted that a technological revolution in the deployment phase already has a critical mass, and the
users will ultimately determine the future application of this technology to their own lives. Their response
often aligns with the developers who designed the applications, but often they surprised us with the
ingenious, unintentional, and sophisticated uses for the technology.

 Connecting the Dots
 What does this all mean for blogging? How does our story of blogging as a response to the old Web fit into
this whole discussion of the bubble and technological advancements? The answer is multifaceted. Blogging
emerged as a solution to one of the biggest problems with the old Web: not having enough people to create
content. It is very difficult to get more people to follow or like a new technology if they remain consumers
and cannot personalize their experience. New ideas don’t spread far when only a small percentage of the
population or consumers can put forth those ideas.

 The freedom to express oneself in a creative manner has been a cornerstone of the Internet, and
Web 2.0 directly answers that with the advent of blogging and social media. There are a handful of social
platforms now that dominate our lives, and one perspective on this is the Twitter firehose. This term
describes the tremendous amount of content present, shared, and created among users on Twitter. It is
safe to say that the data generated by other social networks is just as vast in quantity, if not greater. Most
alternative blogging engines today have evolved in this new ecosystem where creating, sharing, and
reposting are the basic features.

 It must be noted that it was not just the different blogging software, but also the computer languages
used to program the Web itself that evolved. The dynamic nature of the web was encoded through support
for techniques like AJAX that promised to be dynamic, but a lot of work needed to be done before that
promise could be fulfilled. AJAX was a catalyst for that type of dynamic web development and in time it was

CHAPTER 2 ■ WEB 2.0

18

achieved through advancements in JavaScript. Eventually, web development accelerated with the advent
of extensions that arose as a part of the modern languages, such as Python getting new packages to develop
web applications (e.g., django and Flask).

 This new addition of web development packages has allowed developers from different backgrounds to
use the languages with which they are familiar to discover new ways of creating web sites and applications.
Additionally, the rapid pace of add-on development has allowed for an incredible number of standard
packages to become languages in their own sense. A great example of this is jQuery , which has become a
whole new language to rapidly prototype web projects, but in the end it is based on JavaScript. On that note,
JavaScript is positioned today to become the most powerful language for web development. The number of
packages and libraries in JavaScript has become so large that we need package managers, as shown in Figure 2-3 ,
just to maintain and update a directory of all the packages. With frameworks like Node.js and MEAN stack, this
dream is ever closer to being realized and we spend more time on those ideas later in the book. Jeff Atwood
at CodingHorror gave a humorous description of the relationship between the Web and JavaScript that has
become strikingly close to the reality of of JavaScript’s influence on web applications: Atwood’s Law states that
any application that can be written in JavaScript will eventually be written in JavaScript.

 Figure 2-3. The Jam package manager and Node.js: Two very interesting package managers for JavaScript
packages

 This idea of packages is not only applicable to package managers, but also to blogging in general,
a concept we discuss later on as integration. Now let’s revisit the question of the role of blogging in this
technological revolution: In the grand scheme of the Internet, which has already profoundly changed
our lives, blogging almost serves as a historical record of the changes in the era. We can very easily see
the progression of the underlying technology such as the blogging engines and protocols through time,
becoming more sophisticated and easier to use. It’s a story of not just the technology, but also the people
using it. In the beginning, there were only a few content creators and the reason was simple: The Internet
was just too difficult to use for the average Joe. Much has changed since then, though. Today, creating new
content could be as simple as taking out your phone and taking a picture. The new technology will make
creating content and engagement even easier, but both elements are needed to provide the full story: the
technology and the people growing with it.

 We will see profound changes in the blogging ecosystem in the next few years with the way blogging
engines and posting protocols are constructed, thereby making it easier to share the created content along
with easier methods of engagement. The hallmark of this paradigm shift has been the emergence of these
content repositories. These are places on the Internet that democratically sort the most read story or the
most interesting article through some sort of an upvote system. Reddit and Hacker News are both perfect
examples of this type of sorting where an incredible amount of content gets shared and then evaluated by
the users who might like reading them.

 Content repositories and easier means of engagement are massive paradigm shifts that in combination
will make it even easier to reach out to audiences and express yourself. This phase between installation
and deployment is where blogging can have incredible influence on the world, making it easier for anyone

CHAPTER 2 ■ WEB 2.0

19

to create and share good content. This is not to say that once the Internet matures, blogging will die out: It
will simply take on a new form. Storytelling is never complete, it only changes with time and those who are
telling the new story.

 Summary
 This chapter covered the big transition from the old static Web to the Web 2.0. The biggest emphasis was
on why Web 2.0 became the next big thing: It allowed more users to become content creators and not
just consumers. This made it possible for the explosion of new content and the massive adoption of the
Internet with new services and platforms that have now become content hubs of their own. A major point
of discussion was the evolution of bubbles in technological revolutions and what the place of blogging is in
the major turning point. There is more to it than just recording history, though. We have seen this happen
in numerous cases and the best ones include cases of a security vulnerability. The scenario often plays out
as follows: A vulnerability is identified and reported on some random mailing list. The world is only slowly
finding out about it when experts who blog also learn about it. They dissect the subject matter and create a
post series describing the problem in detail and what a possible fix should look like. This type of immediate
response is not something any other form of written media, such as newspapers and so on, can do.

 It seems that blogging is playing a major role in communicating the history of the world: As the Internet
matures, so do the people that use it.

 Further Reading
 1. Corporate Alliances Matter Less Thanks to APIs. https://hbr.org/2015/06/

corporate-alliances-matter-less-thanks-to-apis

 2. Are You Using APIs to Gain Competitive Advantage? https://hbr.org/2015/04/
are-you-using-apis-to-gain-competitive-advantage

 3. Web 2.0. http://www.web2summit.com/web2009/public/schedule/
detail/10194

 4. Technological Revolutions and Techno-economic Paradigms . Carlota Perez.
 http://technologygovernance.eu/files/main/2009070708552121.pdf

 REVIEW

 In this review, let us talk about the dot-com bubble and some lessons that we could learn from it.

 1. Search Task: How long did the bubble last?

 2. Search Task : What were some of the ideas from the dot-com bubble era that work
very well today?

 3. Search Task: When did the first wave of Web 2.0 companies come on the scene?

 4. Search Task: What programming languages were prevalent as the static Web was
transitioning into the dynamic Web 2.0?

 We end our story of the changes in the Web and pick it up in the next chapter, which covers in detail the
particular focus on blogging and the evolution of blogging platforms.

https://hbr.org/2015/06/corporate-alliances-matter-less-thanks-to-apis
https://hbr.org/2015/06/corporate-alliances-matter-less-thanks-to-apis
https://hbr.org/2015/04/are-you-using-apis-to-gain-competitive-advantage
https://hbr.org/2015/04/are-you-using-apis-to-gain-competitive-advantage
http://www.web2summit.com/web2009/public/schedule/detail/10194
http://www.web2summit.com/web2009/public/schedule/detail/10194
http://technologygovernance.eu/files/main/2009070708552121.pdf

21© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_3

 CHAPTER 3

 Static Site Generators

 Which way you ought to go depends on where you want to get to …

 —Lewis Carroll, Alice in Wonderland

 In the previous chapters, we talked about the static Web and the emergence of a new type of web called
Web 2.0 or the dynamic Web. This would eventually turn out to be a major paradigm shift, but what were
the implications of this transition from static to Web 2.0? In this chapter, we explore the impact of that
transition and particularly how it would come to influence the world of blogging. The dynamic Web had
far-reaching consequences for what it meant to be an Internet company, and how people interacted with
the Web itself to tell a story. The history of blogging deeply intertwines with the development of content
management systems that people were using during that time to blog and write. We review how content
management systems came about and some of the common problems associated with using them. Out of
those frustrations, one developer decided to switch over entirely from content management to static web
sites and thus Jekyll was born. We explore his rationale behind creating a static generator and why blogging
with a static web site makes sense. Finally, this chapter ends by showcasing a few of the most popular static
site generators presently in use.

 The Maturing Web
 There was a gradual progression of developments that led to the maturation of the Internet and made it
more secure. A comprehensive list of those advancements is beyond the scope of this book. However, the
most important of those updates led to evolution of the Web into a stable platform for services that could
take people as the input and generate interaction as the output. The Web was becoming more reliable
for acting as an interface between people and computer applications. What this meant, more concretely,
was that you could actually do things over the Web now. As simple as this might sound, this completely
revolutionized whole new industries like e-commerce. Over time, the number of people that could access
the Internet increased exponentially. To put this in perspective, more than 3 billion people are now using the
Internet, according to the United Nations. With more and more people using the Internet, it quickly turned
into a tool for social discovery. The idea of user-based profiles and profile-based platforms was starting to
emerge; this was essentially the beginning of web services and social media. Some of those nimble web
services have evolved into tech giants with billions of users (e.g., Facebook). The platforms they offer are
based on rapid updates, animations, videos, and constant updates of information, all of which simply could
not be achieved with the static Web.

 The evolution of programming languages was central to the profile-based platforms and Web 2.0
technologies. The new web languages allowed developers to create platforms that can process user requests
in parallel and increase the speed with which content was served to those users. Web applications could
now be loaded in parallel chunks based on user feedback and usability. The early profile-based platforms
were limited in user personalization options and provided a very small selection of core services for their

CHAPTER 3 ■ STATIC SITE GENERATORS

22

users. Today, all of that has changed: Most social platforms offer several interconnected services that are
reaching out to millions, if not billions, of users. One consequence of being able to reach large audiences
at a fraction of the cost is that it becomes very easy to share information and turn some of those users into
paying customers. Blogging in turn has taken on an ever-changing form in the maturing Web, incorporating
social media to engage with larger audiences and build a loyal following or their own user base. Looking at
popular blogs such as FiveThirtyEight , it is easy to see that they have become a microplatform in their own
sense. These microplatforms serve a very important function to the niches in which they operate: curation
of interesting information relevant to that niche along with the added opinion of the blogger. Each of these
blogging microplatforms has the following three commonalities:

• A large user base or reader base with which the original poster can engage.

• A type of commenting system where the readers can interact with other readers.

• A low barrier for maintenance and posting on that platform.

 ■ Note Web 2.0 has had many iconic companies that started small and seemed radical, but most of them
eventually succeeded. Notable examples include Twitter, Facebook, Myspace, YouTube, and LinkedIn.

 Blogging in Web 2.0
 The art of blogging, along with its tool set, has progressed tremendously in just a few years. Today,
sophisticated bloggers have a much richer set of tools for curation, automation, and posting. The different
tools that a blogger uses eventually become part of his or her workflow. The blogger becomes proficient
at this workflow and simply repeats this cycle of gather–synthesize–publish to continue posting great new
content (we cover workflows more in later chapters). Along with the tools, we now have a comprehensive
system to manage the blogs called a content management system (CMS).

 There are several popular CMSs in use currently, and the three most popular are WordPress (which
powers at least one third of the Web), Joomla, and Drupal. There are many other CMSs that are smaller and
niche-specific (e.g., TinyCMS), used by hobbyists or others who need the additional functionality.

 The three most popular CMSs just mentioned are also open source. This implies that the source code
behind those blogging engines is open for anyone to review and contribute to, if they have the appropriate
knowledge. This has helped improve the code tremendously at an incredible rate that would never have been
possible if a company was developing those engines. New features can be added very easily, and because it is
an open community, often new or creative uses of the tools that were not imagined by the creators are added.
If these new use cases seem convincing, they are eventually incorporated in the system itself.

 Another interesting aspect of this type of open development is that if security problems or bugs are
discovered in the blogging engines, they get fixed much faster. Imagine that a problem is reported to the
community about a coding error that causes the blogging engine to behave in a malicious manner. The
community that gets built around the open source tools will notice that a problem arose and work toward a
fix. In some cases, a patch (a solution to fix the bad code) gets released in less than a day.

 Let’s review very briefly what we have talked about so far: We have painted a picture of the
transformation of the Web from static to dynamic. In this new dynamic Web, blogging also underwent
changes, including the use of CMS to make the mundane tasks of managing posts easy. More important, the
time spent to get a blog up and running got shorter and shorter until it was only a matter of minutes before
someone could put up a blog of their own. As generally happens with widely used tools, CMSs also started
to become more powerful with new features. Many of the new features were built to help with customization
and personalization of the blog or the web site. The exact settings to personalize a web site are left to the user
to decide.

CHAPTER 3 ■ STATIC SITE GENERATORS

23

 Writing a new theme from scratch to style a blog or a web site might provide the best user experience,
but it certainly does not address all the security gaps. As CMSs became larger and more complex, so did
the components that were a part of them. Common plug-ins emerged for blogging engines like WordPress
that allowed the administrator to complete easy tasks such as management of posts, comments, and other
associated blog settings. This CMS management eventually turned into a comprehensive admin panel
that many CMSs now offer. The admin panel provides a higher level overview of the blog and all of its
components to the user. The users slowly discovered that some custom add-ons on their blog were more
prone to getting compromised if not well maintained and updated.

 The entire process of keeping the admin panel and the CMS updated was getting very time consuming,
but the costs of not doing so could be rather embarrassing and take days to clean up. Developers were starting
to get frustrated because the whole idea of blogging was becoming bogged down with more maintenance
and less focus on writing and creating new content. Many developers tried to think of possible solutions
and after much tinkering, a few options emerged. The easiest solution was to use a blogging engine that was
being hosted online for you, instead of self-hosting something like WordPress. Blogger falls into this category
of hosted blogs that did not require much maintenance, and the back end would be managed at large by the
company behind the efforts. This is an incredibly lucrative option, because the user can purchase add-ons
such as a custom domain that points to their own blog and circumvent the hosting issue entirely.

 There are limitations of this approach in terms of customization: Self-hosting allows for more
modifications that might not otherwise be possible. Increasingly, it was becoming clear that there was a
need for a self-hosting service for the developer who can customize the blog to his or her own needs and still
be able to spend time creating great content instead of spending it on updating and maintenance.

 ■ Note Problems often arose because the user did not update his or her CMS to the latest version in which
a known problem has been fixed. Hackers took advantage of outdated software to compromise a system and
defaced a web site, although the problem could have been very easily avoided.

 Looking Back
 As a response to the ever-complicated CMS landscape, new solutions were emerging in the form of
hosted blogs, which were catching on very fast. Today, incredibly sophisticated blogging engines that are
hosted in the cloud are becoming popular and many people are turning to them as a substitute to avoid
maintenance. Not all developers arrived at the same solutions, though; some reached out in a different
directions keeping, the blog based on hosting but removing the complexities out of it. Let’s talk a little bit
about how this was accomplished. Developers are always interested in workflows. That means they like to
see repetitive patterns that can be automated to save them time so they can focus on the few things that
matter to them. If blogging could be reduced to something like that where most of the maintenance could
be automated, we could have an easy-to-use system that can allow the user to do the one thing a blog
should be focused on: writing great content.

 The static Web was made from a few native components : hyperlinking, documents, and pictures. That
was about all it had, but it was very good at a few things. One of those was displaying text. This became
the foundation for the next generation of blogging engines, which all focused around the idea that content
is king. More important, these new engines are focused on removing the dynamicity to some extent and
making blogs or web pages minimal to leave a minimal fingerprint. This allows for incredibly fast loading
times, distraction-free reading, and automation of as many components of the blog as possible to meet the
workflow considerations.

 Jekyll came about as a result of these frustrations, and it is the main focus of this book. Jekyll was created
by Tom Preston-Werner as he was figuring out why he had stopped blogging a few times after he started. He
realized exactly what the problem was: He wanted to write great posts, not style template pages, moderate

CHAPTER 3 ■ STATIC SITE GENERATORS

24

comments all day long, or constantly lag behind the latest software releases. He needed something simple
to use and easy to maintain, and he thought hard about how to fix this problem from the bottom up. The
following was the result of his reflection:

 On Sunday, October 19th, I sat down in my San Francisco apartment with a glass of
apple cider and a clear mind. After a period of reflection, I had an idea. While I’m not
specifically trained as an author of prose, I am trained as an author of code. What would
happen if I approached blogging from a software development perspective? What would
that look like?

 First, all my writing would be stored in a Git repository. This would ensure that I could try
out different ideas and explore a variety of posts all from the comfort of my preferred editor
and the command line. I’d be able to publish a post via a simple deploy script or post-
commit hook. Complexity would be kept to an absolute minimum, so a static site would
be preferable to a dynamic site that required ongoing maintenance. My blog would need
to be easily customizable; coming from a graphic design background means I’ll always be
tweaking the site’s appearance and layout.

 We can already notice many of the design principles behind Jekyll being described in this note. The core
issues are addressed and a simplified model for a blog is proposed to be created with Jekyll. This was only
the beginning of static site generators, and Jekyll was the first one.

 Components of a Static Generator
 A static site generator is essentially a converter: It takes a template directory (representing the raw form of a
web site), runs it through template converters, and spits out a complete, static web site suitable for serving
through a web server like Apache. Jekyll was designed with a few key ideas in mind, but before we can get to
those, we need to discuss what makes up a static site generator. Here are the three generalized components
found in most static site generators today:

• Core language : The language a static generator is written in, for example JavaScript
or Ruby.

• Templates : The templating language to be used through the blog and posts.

• Plug-ins : All static site generators allow for additional functionality through some
sort of a plug-in system.

 Having listed the three components, the next logical step seems to be discussing their purpose. Let’s
spend a little bit of time addressing why those three components are important to every static generator and
what the implications are of switching one of them out.

 The core language is the foundation of converting a raw markup of the Web site into an elegant
blog. This component is the most fundamental (of the three) to how the blog elements will ultimately be
structured and defined. Often, we are not concerned with lower level definitions of our blogging engine.
However, it must be noted that if we need to extend the engine itself to include something new, it can only
be done in a manner that is consistent with the core language. In practical terms, the extensions can only be
written in the same language as the core language. This is one reason many static-site generators are simply
ports of existing ones in a new language. This allows developers to work in a language with which they feel
comfortable and design new extensions or functionality. Most of these static generators are open source as
is, so enthusiasts often end up making their own version if need be.

CHAPTER 3 ■ STATIC SITE GENERATORS

25

 The next component is the templating language . This is a level above the core language, but it is just as
important because it automates and allows programmatic access to many of the key components of your
blog. A templating language essentially allows the user to set forth rules for how a particular section of the
blog should look. In doing so, the templating language provides the programmatic capabilities to accomplish
a repetitive task, for instance, loop over all the posts in the blog tagged with a particular tag and display them
in a given category.

 The final component is the plug-ins , which allow for the most interesting functionality. Plug-ins
play a very important role in that they allow for additions that the developers have not thought about or
integrations with new technologies. Plug-ins are different from extensions to the core language as they do
not actually change anything about the engine. Plug-ins only modify the representation of data that the blog
has access to or that it has generated. On the other hand, extensions can modify deeper constructs such as
adding a new data source to give the blog access to new information that it did not have access to previously.
Plug-ins and extensions are incredibly important to a complete blog, but these are advanced concepts that
are discussed more thoroughly in a later chapter.

 The design of a static generator is such that any of the three components described earlier can be
switched out and replaced with an equivalent from another programming domain. This is generally done to
gain access to new features or allow for greater familiarity to the developers working on the core language.
There are many static generators that are almost clones of each other with just one component swapped, for
instance Jekyll and Octopress.

 ■ Note Static site generators are often developed with many variations, aside from just the three components
listed here. In a few cases, the final product is so different from the original generator that it serves a
completely new purpose in a different language.

 Static site generators like Jekyll often have a very interesting file structure, discussed at length later.
However, it is worth noting now that static blogs often evolve to have custom data added, such as image
assets, that are not accounted for in any standard framework. Coming back to the design principles of a static
site generator, the rest of this chapter focuses on the most popular static generators and the developments
that have made them popular. A few examples of the top generators are also included for the reader as a
showcase.

 Before we get into the static generators, one important concept to discuss is that of licensing. The
various static site generators have different licenses for very good and valid reasons. These licenses are well
established in the open source community and serve an important purpose: protecting the developer of
the project from involvement in potential legal issues and protecting his or her reputation. The three main
licenses that most static site generators fall under are MIT, BSD, and GPL. These licenses have a long history
of use and establishment that is beyond the scope of this book, but the interested reader can learn more in
the chapter notes. Functionally, the MIT and BSD licenses allow another developer to release derivatives
of the original project under different licenses including closed source work. GPL is strictly against turning
open source software into closed product, making it a requirement to release all derivatives under the GPL
license. On a historical note, the GPL license had a significant impact on the development of the Linux
kernel in the early stages. To this day, much of the code is licensed under GPL , even though the kernel is
widely implemented. The BSD license has a few interesting provisions making it attractive to developers,
such as the nonendorsement clause that, along with the nonadvertisement clause, allows the project to
not be slandered while being advertised publicly, preserving the integrity and the online identity of the
developers. Interestingly, there have been several derivatives of these licenses themselves that tackle issues
of how to deal with code libraries and APIs, but we do not spend much time on those.

CHAPTER 3 ■ STATIC SITE GENERATORS

26

 Static Generators Showcase
 This section focuses on some of the most popular static generators and the features that they offer. These
are all open source tools that you can use to compile your web site, but Jekyll is the easiest one with which to
get started. For each generator, the details of its core components along with an image of the home page is
provided. This allows you to become familiar with the different generators and what to look for when you are
exploring the different options to try aside from Jekyll.

 Jekyll
 The first one is also the most popular one, which is the subject of this book: Jekyll, shown in Figure 3-1 .

 Figure 3-1. Jekyll home page

 Jekyll is one of the most popular platforms, with about 200,000 favorites on GitHub and about 4,000
forks. It also has the best documentation and a great community associated with it, not only other bloggers
who use Jekyll, but also hundreds of developers answering questions and issues on Stack Overflow regarding
Jekyll. Here is the breakdown in terms of the three core components:

• Core language: Ruby

• Templating language: Liquid

• License: MIT

 Octopress
 The second widely used generator is Octopress . It is like Jekyll’s cousin but with very important differences,
shown in Figure 3-2 . Octopress in a sense comes included with several sophisticated features that would be
of use to someone who wants to customize to a greater extent. For instance, it comes with 19 preinstalled
plug-ins out of the box, a dozen dependencies (ruby gems), it uses Sass by default, and so on. This is useful
for someone who is willing to put in the time and create something more complex. Octopress actually has
the exact same breakdown as Jekyll for the core components, but the big differences come in the form of
plug-ins and add-ons that are available with Octopress that are not found elsewhere in Jekyll.

CHAPTER 3 ■ STATIC SITE GENERATORS

27

 It must be noted that because both Octopress and Jekyll are written in Ruby, any blog in one framework
can be extended to the other one without many portability issues. In addition to that, any add-ons developed
within the framework of one engine can easily be ported to the other.

 Hexo
 The third static site generator is also the first deviation, as it is based around Node.js. Hexo is a powerful
blogging engine with a lot of plug-ins and features that one would find in Jekyll and Octopress, shown
in Figure 3-3 . Hexo is one example of a blogging engine created in a different language (JavaScript) for
developers to easily contribute in a language with which they are familiar, as opposed to Ruby.

 Figure 3-2. Octopress home page

 Figure 3-3. Hexo home page

 The breakdown of Hexo can be described as follows:

• Core language: JavaScript, Node.js more precisely

• Templating language: EJS or Swig

• License: MIT

CHAPTER 3 ■ STATIC SITE GENERATORS

28

 Pelican
 The next most popular framework is written in one of the most popular languages, Python. Pelican is a
powerful static site generator that imports from WordPress if needed and offers support for many different
localizations other than just English. In this way, the blogger can write blog posts in his or her own native
tongue. Aside from Jekyll, Pelican is one of the few static site generators that comes with a Theme repository
with which new users can get started. The Pelican development blog is shown in Figure 3-4 .

 Figure 3-4. Pelican Development Blog

 The breakdown of Pelican is as follows:

• Core language: Python

• Templating language: Jinja2

• License: GPL

 To make it easier for the reader to see Pelican in action, two showcase examples are also provided:

• Kyle Fuller’s blog: http://kylefuller.co.uk/

• Open messaging stack buddycloud: http://buddycloud.com/

 These are the top four static site generators. As we start to dive into the next few generators, it is
interesting to note that they incorporate a unique mixture of recent technologies.

 Hugo
 The next generator is Hugo. Hugo is a fast and flexible static site generator written in Go, which is a web
programming language developed at Google around 2007. It is interesting to note that Hugo is one of the
few static site generators that highlight the wide applicability of static generators to web applications beyond
a blog, including portfolios, and so on. Hugo also comes with a theme repository for the blogging engine
and a guide on how to customize themes, which is available at the Hugo development home page shown in
Figure 3-5 . The breakdown of Hugo can be described as follows:

• Core language: Go

• Templating language: Go Templates

• License: SimPL-2.0

http://kylefuller.co.uk/
http://buddycloud.com/

CHAPTER 3 ■ STATIC SITE GENERATORS

29

 Just as with Pelican, to see Hugo in action, visit the following showcases:

• Steve Francia’s blog: http://spf13.com/

• GopherCon’s web site: http://gophercon.com/

 Brunch
 The next static generator is Brunch , which has been described as an ultrafast HTML5 build tool that can
automate the generation of HTML5 ready sites. Brunch is different from the showcase thus far because it
is fundamentally a build tool. That means Brunch can take directions and the ingredients and cook up a
delicious meal for you. However, by the same logic, Brunch can also generate static sites because a similar
set of instructions can be adopted from HTML5 builds to generate static blogs, too. Some of the features of
Brunch are shown in Figure 3-6 .

 Figure 3-5. Hugo home page and quick start guides

 Figure 3-6. Brunch home page and features

http://spf13.com/
http://gophercon.com/

CHAPTER 3 ■ STATIC SITE GENERATORS

30

 The two main competitors of Brunch that are commonly used are Gulp and Grunt, both of which are
discussed later in this book as crucial components of the integration to a static blog.

 The breakdown of Brunch is as follows:

• Core language: JavaScript

• Templating language: Any JavaScript-based templates would work

• License: MIT

 Given the feature set of Brunch applies more to the back end, it is hard to see it in action visually.
However, there are several apps built on it and two showcase examples are also provided:

• Get Blimp: http://www.getblimp.com/

• Code Combat: http://codecombat.com/

 After Brunch, the next two static generators that we will talk about are interesting in their own
categories. We will be focusing on modularity and the crucial need for a modular static blog later on, but the
following two generators have this principle built in.

 Middleman
 The next static site generator is Middleman. This generator has been described as a hand-crafted static
generator for modern web development. Middleman is actually written in Ruby but uses a different
templating system than Jekyll or Octopress. One of the main premises of Middleman is the ability to
integrate new web technologies very easily. The home page of Middleman and the quick start guide is shown
in Figure 3-7 .

 Figure 3-7. Middleman home page and development guide

 The breakdown of Middleman can be described as follows:

• Core language: Ruby

• Templating language: ERB or Tilt

• License: MIT

http://www.getblimp.com/
http://codecombat.com/

CHAPTER 3 ■ STATIC SITE GENERATORS

31

 Interestingly, popular companies such as MailChimp are using Middleman for static content hosting.
To see Middleman in action, visit the following showcases:

• FronCube: https://frontcube.com/

• Lauren Dorman’s blog: https://laurendorman.io/

 Metalsmith
 The second generator in the category of modularity is Metalsmith . This static generator takes modularity
to an extreme where everything is a plug-in. From the simplest tasks to the complex ones, all the logic in
Metalsmith is handled in small chunks of code called plug-ins. This static generator might be one of the
most elegantly designed from a technical standpoint because everything is written in a modular fashion.
However, for beginners, this would be a little complicated because it requires a deep understanding of the
blog engine infrastructure. The home page for Metalsmith is shown in Figure 3-8 .

 Figure 3-8. Metalsmith static site generator home page

 The breakdown of Metalsmith is as follows:

• Core language: JavaScript (Node.js to be more accurate)

• Templating language: HBT or any JavaScript-based templates would work

• License: MIT

 There are a few enthusiasts who have used Metalsmith to completely refactor their blogs:

• Rob Ribeiro’s blog: https://azurelogic.com/

• Robin Thrift’s blog: http://www.robinthrift.com/

 It must be noted that in the past few static site generators, the blogs or web applications are not what
stands out as much as the back end, which is hard to see. Developers often have preferences, which we
explore later in this book, in terms of picking a static site generator. The one that best fits their needs might
not be the simplest to use, but the hope is that through this book, the reader gets the general idea behind
most if not all static generators.

 Nanoc
 The last generator to be discussed in this section is Nanoc. Nanoc is not a very well-known static site
generator, but it powers a few incredible web sites, so it is definitely worth mentioning. Nanoc, much like
Jekyll, is also written in Ruby, which might be one of the many reasons it powers the developer’s pages for
GitHub. The home page for the static generator Nanoc is shown in Figure 3-9 .

www.allitebooks.com

https://frontcube.com/
https://laurendorman.io/
https://azurelogic.com/about/
http://www.robinthrift.com/
http://www.allitebooks.org

CHAPTER 3 ■ STATIC SITE GENERATORS

32

 The breakdown of Nanoc can be described as follows:

• Core language: Ruby

• Templating language: eRuby

• License: MIT

 There are a few enthusiasts who have used Nanoc to completely refactor their blogs:

• FOSDEM 2015 page: https://fosdem.org/

• GitHub Developer page: https://developer.github.com/

 Summary
 In this showcase, several of the most prominent static site generators were presented and the key objective
in doing so is to show the reader what is out there in the broader landscape aside from just Jekyll, which is
the focus of this book. We will be talking extensively about Jekyll from here on, but the interested reader can
come back to this chapter after going through some of the advanced concepts to decide if they want to make
their own blog with a different static site generator.

 The amazing side effect of having so many static site generators is that for those who come from a
different programming background than Ruby, there is definitely a generator out there to match their tastes.
Moreover, most of the principles discussed in this book can be translated to other static generators and even
made to work in a similar fashion. The most exciting aspect of having different generators is the application
to various tasks for which you can use a static web site. It might be surprising to some just how widely
applicable static web sites can be for simple tasks, and we explore more of those applications and use cases.

 Let’s briefly review what we discussed here: We started by talking about the inspiration for static
site generators from the static Web. We then explored the design principles behind Jekyll as seen by Tom
Preston-Werner, and finally we showcased some of the most popular static site generators available in
different languages. Looking ahead, we jump into Jekyll and start with the basics required to have a static
blog with Jekyll.

 Figure 3-9. Nanoc static generator home page

https://fosdem.org/
https://developer.github.com/

CHAPTER 3 ■ STATIC SITE GENERATORS

33

 Further Reading
 1. Different types of licenses as explained by CodingHorror:

 http://blog.codinghorror.com/pick-a-license-any-license/

 2. Jekyll home page: http://jekyllrb.com/

 3. Tom Preston-Werner’s blog: http://tom.preston-werner.com/

 REVIEW

 The data for static site generators was taken from https://www.staticgen.com/

 1. Search Task: Find a popular repository containing Jekyll Themes.

 2. Search Task: List five of the most popular Jekyll plug-ins.

 3. Search Task: Find which themes from Octopress are most commonly used.

 4. List the three core components of a static site generator that we discussed.

 5. How do these components allow for greater flexibility?

 6. What are some of your concerns about Jekyll and other static site generators just
from a first glance?

 7. What is one personal project that you can think about right now that might benefit
from a static web site?

 8. Why do you think it would benefit from a static blog page?

 9. Software licensing plays an important role for developers. From what we discussed,
which license would you pick and why?

 10. If you already have a blog, what are some services that you currently use that you
think might be missing in static sites?

 11. Finally, do you think distraction-free reading for your reader and distraction-free
writing for you are crucial components of blogging?

 This concludes the introduction to static site generators. Our journey to building static blogs with Jekyll
has just begun!

http://blog.codinghorror.com/pick-a-license-any-license/
http://jekyllrb.com/
http://tom.preston-werner.com/
https://www.staticgen.com/

 PART II

 The Fundamentals

 In this section, we focus on learning about the three most important tools that are part of a typical
Jekyll workflow: Markdown, Liquid and Git. These three combined allow for most of the funtionality
present in a static web site. We go through each of those components in detail, and talk about the
how these technologies are implemented in a static blog. This section is heavily focused on teaching
the basic principles behind the tools that are routinely used in a blog to create new styles or content.
Without this early emphasis, it would become very difficult to create new projects or apply Jekyll to
an idea and learn in depth about these tools. A functional introduction to the main features of these
three web technologies is provided here and the section ends with a complete overview of the Jekyll
file structure.

37© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_4

 CHAPTER 4

 Fundamentals of Version Control

 These guys here … They don’t practice the fundamentals anymore.

 —Uncle Drew

 Jekyll is the static site generator that we focus on throughout this book. It is the most popular static generator
in use today, with plenty of features to create a fully functional blog. This chapter begins the process of
understanding the prerequisites for using Jekyll. We focus on how Jekyll parses source files to create static
pages, the need to learn Markdown, the basics of version control, and an introduction to Git. These concepts
and components are the backbone of Jekyll and we will be using them regularly in projects. The main focus
of this chapter is version control because it becomes crucial in managing all the code associated with Jekyll
projects. One of the best version control tools available is Git. We introduce Git and provide a walkthrough
of the terminology and commands used in Git. We start by talking about Jekyll as a converter, and then move
to using Markdown and writing posts in it. After that, we discuss version control in depth and present a few
minitutorials on how to use Git. Finally, we end the chapter with a brief explanation of developer workflow
and the advantages of adopting one for a Jekyll-powered blog.

 Parsing Engine
 Jekyll is essentially a parser that converts plain text content written in a special formatting language called
Markdown into HTML. These content blocks get inserted into one or more templates to build the final
output for a static page or post. Markdown is a styling language used to prepare written content such as
blog posts in Jekyll that can eventually be converted into HTML. Markdown allows us to focus on content
by using an easy-to-read and easy-to-write plain text format, which can then be converted to valid HTML.
Jekyll does not come with any content, nor does it have any templates or design elements. This is a common
source of confusion when getting started. Jekyll does not have a default style of organizing or rendering
posts, so you have to create it or borrow from other open source themes.

 How exactly does Jekyll use Markdown? The full story is more involved, but a high-level overview is
shown in Figure 4-1 . You can think of Jekyll as a cook trying to make a delicious new dish: He needs a recipe
to make the dish and then the actual ingredients to use according to the recipe. The written content is
analogous to ingredients that are used in a dish and templates in Jekyll are equivalent to the recipe that will
tell Jekyll (the cook) how to make the dish. The cook also has a third level of instructions, and for Jekyll, that
is the configuration file included in each project. This file dictates many features, such as how the web site
should link internally and how those links should work in the final web site generated by Jekyll. Aside from
the configuration files, there are two more components involved in the parsing: templates and include files.
Both of these components, along with blog posts, make up the input that gets compiled by Jekyll. The output
from Jekyll is a collection of HTML pages that make up your static site.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

38

 Let’s briefly talk about each of these components separately. The configuration file mostly contains
Jekyll options and variables that need to be defined for compilation. The blog posts themselves are written
in Markdown, which allows the blogger to write them without worrying about formatting. Jekyll converts the
blog posts into HTML and renders them into a static page, as specified in the template. The template itself is
mostly written in language developed for templating called Liquid, created by Shopify. Liquid is designed to
provide programmatic access and to execute logic within template files without imposing any security risk
on the hosting server. Jekyll uses Liquid to generate a page based on the structure specified in the template.
The template leaves space for content blocks that are inserted into the static page as it is rendering. The final
result is an HTML page that contains content and style elements as if the page was written from scratch. Now
that we have an overall scheme of how Jekyll works, let’s begin with Markdown.

 Markdown
 Markdown was originally created by John Gruber at Daring Fireball. The syntax was released as an open
standard that GitHub adopted and then changed as they saw fit. We are not covering the original version, but
instead this flavor of Markdown used by GitHub. This is also known as GitHub Flavoured Markdown (GFM) ,
and it contains a few extra features not available in the original version of Markdown. As a consequence,
some of the style conventions for formatting might not work if used outside of GitHub. Here is how
Markdown fits in the bigger picture: To create style elements such as bold text, superscripts, bullet points,
headings, and more, Markdown provides us with shorthand conventions that are easier to type out rather
than using HTML tags. We rely on this shorthand to prepare our content and then Jekyll will render the
shorthand into the appropriate HTML.

 How does the conversion actually happen? Jekyll uses a markdown engine called kramdown that parses
and converts any content prepared in Markdown into HTML, which can then be hosted. kramdown is itself
a Ruby library, and GitHub now supports it as the official Markdown engine that Jekyll will be using. To use
Markdown and learn how it works, we use an online editor called Dillinger available at http://dillinger.
io/ and shown in Figure 4-2 . Dillinger uses two panes: The left pane is the source code and the right pane is
the Markdown preview.

 Figure 4-1. Jekyll as a parsing engine. Three different components go into Jekyll as inputs: the configuration
file for the web site, the blog posts, and the templates that organize the blog posts. The blog posts are mostly
written content, the templates are mostly programmatic instructions to organize the blog posts, and the
configuration file tells Jekyll how link the blog posts to each other and to the rest of the web site.

http://www.ruby-lang.org/
http://dillinger.io/
http://dillinger.io/

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

39

 Markdown provides numerous style guidelines and conventions that can be used to format content, but
the best way to understand how they are used is through an example. We first look at a passage written in
Markdown, then preview what it renders and the HTML that is generated from Markdown. These three steps
help illustrate just how easy it is to write blog posts using Markdown.

 # New Text

 Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has
been the industry's standard dummy text ever since the 1500s, when an unknown printer took a
galley of type and scrambled it to make a type specimen book.

 - Lorem Ipsum is simply dummy text (Two spaces to create bullets)
 - Lorem Ipsum is simply dummy text 2
 - Lorem Ipsum is simply dummy text 3

 It has survived not only five centuries, but also the leap into electronic typesetting,
remaining essentially unchanged. It was popularised in the 1960s with the release of
Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing
software like Aldus PageMaker including versions of Lorem Ipsum. As [John Gruber] writes on
the [Markdown site][df1]

 > The overriding design goal for Markdown's
 > formatting syntax is to make it as readable
 > as possible. The idea is that a
 > Markdown-formatted document should be
 > publishable as-is, as plain text, without
 > looking like it's been marked up with tags
 > or formatting instructions.

 [john gruber]: <http://daringfireball.net>
 [df1]: <http://daringfireball.net/projects/markdown/>

 This Markdown passage generates a preview that can be seen in Figure 4-3 .

 Figure 4-2. The first section of the code is the plain text written in Markdown

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

40

 Finally, here is the HTML generated from that Markdown passage. Pay attention to the bold tags
because all of those have shorthands that were used in the preceding passage. Would you really want to write
all of these tags out when you just want to create a blog post? Markdown was created to write easily, without
worrying about these tags.

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>Markdown Preview</title>
 <style>
 </style>
 </head>
 <body id="preview">
 <h1>New Text</h1>
 <p>Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum
has been the industry's standard dummy text ever since the 1500s, when an unknown printer

 took a galley of type and scrambled it to make a type specimen book.</p>

 Figure 4-3. Markdown preview of the content. This sample of text shows several important features such as
headings, bullet points, paragraphs, hyperlinks, and block quotes. We saw the Markdown that rendered into
this post and next we look at the HTML that was generated as the Markdown gets processed.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

41

 Lorem Ipsum is simply dummy text (Two spaces to create bullets)
 Lorem Ipsum is simply dummy text 2
 Lorem Ipsum is simply dummy text 3

 <p>It has survived not only five centuries, but also the leap into electronic typesetting,
 remaining essentially unchanged. It was popularised in the 1960s with the release of
Letraset sheets containing Lorem Ipsum passages, and more recently with desktop

 publishing software like Aldus PageMaker including versions of Lorem Ipsum. As
 John Gruber writes on the
Markdown site</p>

 <blockquote>
 <p>The overriding design goal for Markdown's formatting syntax is to make it as readable
 as possible. The idea is that a Markdown-formatted document should be publishable as-

is, as plain text, without looking like it's been marked up with tags or formatting
instructions.</p>

 </blockquote>
 </body>
 </html>

 This looks like plain HTML that we can understand and is ready to host on a server as a web page. This
same type of conversion can be extended to different types of templates and one can design a layout for a
blog post similar to a web page to be put in a collection of pages. In some sense, that’s what a Jekyll blog is: a
collection of web pages that are hosted like a static web site with JavaScript magic included.

 You can see how easy it is to write content using Markdown, and you don’t have to worry about using
HTML or any tags to write it all. This is the real power of Jekyll: The content creator can focus on what
matters to them in Markdown and the rest will be taken care of within the template. Once the template is
written, there is no further need for editing each time new text needs to be converted. It must be noted here
that just because a blog is static, that does not imply that the blog will be plain text and appalling. CSS and
JavaScript can add a number of visually impressive features that we talk about in later chapters. Jekyll uses
Markdown as the language to format text posts and it is incredibly easy to learn, so it is worth spending some
time to get accustomed to the various style options available to the user.

 We specifically focus on a flavour of Markdown called GFM . The reason for this will become clear later
on, but in short, we will be using GitHub Pages as the publishing platform because it is incredibly easy to
use. The advantages of this approach will become clear later on, but in practice, the versions of Markdown
are not all that different. In the end, it is the notation that we need to focus on, and more precisely the idea
that we can write posts or plain text with Markdown notation. It’s more than just formatting; it becomes a
natural extension of blogging once you have been using it for a long time. Once that feeling becomes natural,
it is extremely easy to switch to a different flavor if needed. Let’s look at the formatting features offered here.

 Headers (The number of # determines the heading size)
 # This is an <h1> tag
 ## This is an <h2> tag
 ###### This is an <h6> tag

 Emphasis
 This text will be italic
 This text will be bold

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

42

 Unordered List
 * Item 1 (No spaces requied)
 * Item 2
 * Item 2a (Two spaces required)
 * Item 2b

 Ordered List
 1. Item 1
 2. Item 2
 3. Item 3
 * Item 3a (Two spaces required)
 * Item 3b

 Task List (Available on GitHub and Dillinger)
 - [x] This is a complete item
 - [] This is an incomplete item

 Images
 ![Cool Logo](/images/logo.png)

 Format: ![Alt Text](url)

 Links
 http://GitHub.com - automatic!

 Format: [Link name](http://website.com)

 Block Quotes
 We can all agree:
 > This book is awesome

 Format: Adding the > creates the blockquote.

 Inline Code
 def foo():
 if not bar:
 return True

 Format: Add four spaces.

 Block Code
 ̀``javascript
 if (isAwesome){
 return true
 }
 ̀``
 Format: Use three ``` and then write the block of code.

 This brief guide describes the commonly available features in Markdown as they are used to write
blog posts. It might seem like a lot of complicated information, but to use Markdown, you just have to
practice writing content with it. After a few times, it will become very natural. This guide is left here only as a
reference so you can revisit it as you write more using Markdown.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

43

 ■ Note A distinction needs to be made regarding the types of files where Markdown will be detected and
compiled versus the types of files where Liquid will be detected and compiled.

 Files that are written in Markdown are saved with the .md extension. This file extension is often interchangeable
with .markdown but both extensions signify that the file contains Markdown content. Both types of files are
picked up by kramdown to be compiled into HTML that can be hosted on a web server. Markdown is often used
in conjunction with other technologies or libraries in Jekyll, such as Liquid. Most blog posts that are written in
Markdown contain some Liquid code in the form of include files and front matter in YAML (which we talk about in
the next chapter). In Jekyll you can define included files by placing them in the _includes folder. For all practical
purposes, includes are not templates themselves; rather, they are just code snippets that get included into
templates. In this way, you can include the code snippets in multiple templates as needed for the page overall.

 On the other hand, template files are also mostly written in Liquid but saved as .html files. Even though
Markdown will only be detected and compiled by kramdown if the files have an .md or .markdown extension,
 Liquid can work with both Markdown files and .html files in a Jekyll project.

 Version Control
 Version control or source control is the methodology of managing changes to a large set of documents. In
the broader sense, it is the management of changes to documents, computer programs, large web sites, and
other collections of information. The most important feature behind using version control is the ability to
keep detailed and accurate histories. Every single change is noted and highlighted to differentiate from the
previous version. Changes are usually identified by a number or letter code, termed the revision number,
revision level, or simply revision. Each revision to the documents is associated with a timestamp and an ID
of the person making the change. There are many popular version control software packages available, as
well as different source management models, all with their own advantages, but we focus on a particular one
called Git, shown in Figure 4-4 . A few other popular version control systems in use include these:

• Bazaar: bazaar.canonical.com

• SVN: subversion.apache.org

• Mercurial: mercurial.selenic.com

• CVS: savannah.nongnu.org/projects/cvs

• Perforce: perforce.com (commercial software)

 Figure 4-4. Git version control

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

44

 Git was initially designed and developed by Linus Torvalds for Linux kernel development . His focus in
creating it was on high-speed data queries and data integrity. For a project as large as the Linux kernel, it
was absolutely necessary that the changes made be accessible for every revision possible. Another reason to
pick Git is because GitHub uses it for its own back end and we use it to publish projects to GitHub. There are
numerous other reasons for picking Git, but they are beyond the scope of this chapter.

 To understand almost any version control system, we have to first go over some more terminology. We
need to understand how the different components of a version control system work and the best way to do
that is describing each one in some detail. We use most of these terms (in the context of Git) several times
throughout a chapter, so they will eventually become familiar. The list of terminology is provided here just
for reference.

• Baseline: An approved revision of a document or source file from which subsequent
changes can be made locally.

• Branch: A set of files under version control can be branched so that two copies of
those files can develop at different speeds or in different ways independently of
each other.

• Change: A change represents a specific modification to a document under version
control.

• Change list: A change list, change set, update, or patch refers to the set of changes
made in a single commit.

• Checkout: A checkout is creation of a local working copy from the repository.

• Clone: Cloning means creating a repository containing the revisions from another
repository.

• Commit: A commit is merging the changes made in the working copy back to the
repository. The terms commit and checkin can also be used to describe the new
revision that is created as a result of committing.

• Conflict: A conflict occurs when two or more parties make changes to the same lines
of code in a particular document. When those changes are merged, the system is
unable to reconcile them. A user must resolve the conflict by combining the changes
or by selecting one set of changes in favor of the other.

• Delta compression: For efficient storage of the version control files and history,
most revision control software uses delta compression, which retains only the
differences between successive versions of files. Git heavily uses this to compress the
files being stored or uploaded to a server.

• Head: Also sometimes called tip, this refers to the most recent commit, either to the
trunk or to a branch.

• Import: The process of copying a local directory into the repository for the first time.

• Initialize: To create a new, empty repository.

• Merge: A merge or integration is an operation in which two sets of changes are
applied to a file or set of files.

• Pull, push: These functions copy revisions from one repository into another. Pull is
initiated by the receiving repository, whereas push is initiated by the source. Fetch
can also be used to pull files from a remote repository.

• Repository: The repository is where files and their historical data are stored, often
on a server or a remote location.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

45

• Resolve: The act of user intervention to address a conflict between different changes
to the same document.

• Revision: Also called version. A version is any change in form.

• Tag: A tag or label refers to an important snapshot in time, consistent across many
files. These files at that point can all be tagged with a user-friendly, meaningful name
or revision number.

• Trunk: The unique line of development that is not a branch also known as baseline,
mainline, or master.

• Update: An update merges changes made in the repository by other people into the
local working copy.

• Working copy: The working copy is the local copy of files from a repository, at a
specific time or revision. All work done to the files in a repository is initially done on
a working copy.

 ■ Note You are not required to know every one of these terms. The actual list of terminology from the Git
documentation is much longer, but a minimal level of familiarity is needed before moving past this chapter.
This shortened list is provided as a reference for you to return to at any point to look up a term as needed.

 This list should provide the reader with a working knowledge of version control systems. Most of
the features mentioned in the preceding list will be used in projects throughout the book. The concepts
and ideas behind version control are more important than learning the terms listed. These ideas can be
summarized in the following two points:

• All changes to the source code are made in small sets and accounted for in the
history.

• Different versions of the same source code can be maintained independently, under
the same change accountability system.

 As mentioned earlier, the version control that we will be using is called Git. It is a fairly easy to use tool,
and although it is tempting to cover the basics of Git here, there is a better visual resource. Before we get
there, let’s talk about the two different ways to access Git: The first one is through a graphical user interface
(GUI) that allows one to easily see the commits and push new changes to the Master branch. The second
option available for Git is through the command line. The command-line interface (CLI) is scary and
confusing to many users. For that reason alone, there is a significant portion of a later chapter covering this
topic and the use of the CLI. Even though it can be intimidating, the freedom that the CLI offers might far
exceed what the GUI can do.

 Additionally, most developers use Git through the command line. In the past, there weren’t that many
options available, but that all has changed, too. Now GitHub offers its own client to use Git easily and access
its services, add commits, and sync them to GitHub with ease. The client is shown in Figure 4-5 and it also
comes with a tutorial on how to use it effectively. It is available for both Mac OS X and Windows operating
systems.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

46

 The second important resource for this chapter is the tutorial on Git, which was developed by Code
School in collaboration with GitHub to teach users how to easily use Git for their personal projects. This
tutorial is better than most others that are available online and the reader is strongly recommended to go
through the tutorial web site shown in Figure 4-6 . This tutorial allows you to put together the terminology
discussed earlier in this chapter with practical exercises available through the short tutorial.

 Figure 4-6. Git tutorial available at https://try.github.io/

 Figure 4-5. GitHub client for desktop

 This chapter is about mastering the fundamentals and there are three highlighted in this chapter:
Markdown, version control concepts, and Git. The best aspect of these fundamentals is that you don’t have
to memorize anything. It’s habitual, so after some practice, their use becomes natural. This is especially true
for Markdown: Once you have been using it for long enough, it feels as if it is a natural extension of plain text;
you no longer see formatting and plain text, you instead see output that would be generated by Markdown.
Version control and Git go hand in -hand, so most of the terminology concepts discussed earlier are also
directly applicable to using Git for personal projects.

https://try.github.io/

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

47

 Installing Git
 This is a short section, but we need to talk about installing Git on your system sooner or later. We go through
all three options here: Windows, Mac OS X, and Linux. Let’s start with Linux because it is the easiest option:
Look through your package manager in the distribution to install it. On a debian like distro, the installation
would happen as follows:

 $ sudo apt-get install git

 This will pull all the dependencies along with Git and easily install the whole package for you, making it
available.

 The next platform is Windows, where you simply need to download the installer, which will install any
required tools to use Git on Windows. The installer guides the user through the steps and preferences; an
example is shown in Figure 4-7 . The installer can be found on the Git-scm web site at http://git-scm.com/
download/win . Finally, There is also an installer for Mac OS X available at http://git-scm.com/download/mac .

 Figure 4-7. Git installation wizard in Windows

 ■ Tip The installation parameters are mostly fine as is, as we will not be using any of the advanced
features. For a better visual introduction to installing Git, a good resource is available on Udacity at
 https://www.udacity.com/wiki/ud775/install-git/install-git-windows .

http://git-scm.com/download/win
http://git-scm.com/download/win
http://git-scm.com/download/mac
https://www.udacity.com/wiki/ud775/install-git/install-git-windows

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

48

 Jekyll Workflow
 For a developer, it is important to think about workflows or find patterns that can explain a process. If we put
together the three components that we talked about in this chapter, a workflow seems to emerge, as shown
in Figure 4-8 . The content for blog posts is written using Markdown and this content is managed by version
control. This content and the whole static web site gets published online to GitHub using Git and it becomes
available. Version control also maintains versions of the static web site as they are made available online
one change set at a time. We will see how this interdependence becomes more technical as specific Git
commands are introduced to handle this workflow in future chapters.

 Figure 4-8. All content for a blog post is written in Markdown. This content is placed under version control
that manages any type of changes to it. We use Git to publish the content prepared by Markdown to a remote
location where the static web site can finally be hosted. These three components work together to power
a Jekyll blog.

 Summary
 In this chapter, we talked about the fundamentals behind how to write plain text with Markdown, the basic
concepts of version control, and how to use Git. These ideas are the cornerstone of using Jekyll and we will
integrate these concepts later on in a workflow that can be adopted by a user. These tools allow the user to
not be too focused on creating the proper styles of content and just focus on creating excellent new content.
Finally, the syntax and parameters presented here as references are meant for the user to come back and
revisit. After a few days of using these tools regularly, they will become very straightforward to work with for
your personal projects.

CHAPTER 4 ■ FUNDAMENTALS OF VERSION CONTROL

49

 Further Reading
 1. Git Documentation: https://git-scm.com/documentation

 2. Git Reference: http://gitref.org/

 3. Linux kernel Git Reference: https://www.kernel.org/pub/software/scm/git/
docs/user-manual.html

 REVIEW

 In this review, we focus on Markdown and Git. These are mostly small code exercises that should not
take more than five minutes or so.

 1. Create a numbered list in markdown, listing your favorite foods to eat.

 2. Create h1, h2, and h3 headers in Markdown.

 3. Read through Markdown syntax once again.

 4. Read through the terminology for Git once again.

 5. Work through as many Git Immersion labs as you can at http://gitimmersion.com/ .

 We end our journey for now with Git and Markdown, but they are not going away. In the next few
chapters, we start to dive into Jekyll and revisit that template we talked about at the beginning of this
chapter.

https://git-scm.com/documentation
http://gitref.org/
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://gitimmersion.com/

51© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_5

 CHAPTER 5

 Fundamentals of Style

 Elegance is refusal.

 —Coco Chanel

 Well-designed user interfaces are the backbone of any personal project or blog. Whether a web site,
application, or piece of software, creating the most intuitive connection between a human and a machine is
key to the successful utilization of a digital product. Static generators might not seem to have the allure, but
Jekyll allows for a surprisingly large amount of customization and styling.

 In this chapter, we talk about how Jekyll handles various style components and the associated assets.
A brief introduction to popular front-end packages such as Bootstrap, Foundation, and Sass is provided in
this chapter. We also cover the compatibilities of various styles or packages and how to get started with your
own projects using just those packages and using Jekyll later to put them all together in a workflow that you
are already using. Finally, we analyze a few sample themes to show how the different style elements look
when put together in a coherent manner with elegance.

 What Is Style?
 Style is what traverses through time. It becomes a personal brand that people associate with you. Over the
long term, your personal style distinguishes you, even in a house full of artists. The appeal of blogs and
projects built with Jekyll is the simplicity, the clean design, and the solid colors that enhance the foreground
where the content is present. Additionally, the overall look is often focused on making the content stand out
and removing as many distractions as possible, but that’s not to say that you can’t get creative with Jekyll.
A huge part of the aesthetic within minimalistic styling is the reduction of distractions to give the reader the
pleasure of enjoying your thoughts, visualizations, and the content you created. This removal of distractions
is largely divided into two phases of blogging: distraction-free reading and distraction-free writing. Both are
crucial components of the content creator’s methodology and will help you discover a suitable workflow
and your taste in presenting your content to the reader. Let’s start with how these two ideas fit into the bigger
picture of a blogging workflow.

 Distraction-free writing is more important for the back end, which is to say that the content creator needs
it, but the reader will not see it. For that reason, less emphasis is often given to creating an environment that
a writer can efficiently navigate and feel comfortable using. The advantage of providing such an environment
is that after a while, the tools used by the writer become a natural extension of his or her workflow, similar to
writing blog posts in Markdown. Distraction-free writing is obviously very subjective, but the use of Markdown
is critical for us in Jekyll projects to provide some additional directions to search for the right type of tools to
use. Before we get into the tools, it might be beneficial to show what a great distraction-free writing interface
would look like. This is borrowed from a blogging platform called Svbtle by Dustin Curtis. The interface is clean
and works on a very unique yet natural idea: Write a thought down as the title of a post come back later to
expand on the rest of the story and publish a full blog post. The Svbtle dashboard is shown in Figure 5-1 .

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

52

 Figure 5-1. Svbtle dashbaord providing distraction-free writing. Svbtle has this great feature but it also has
many limitations, the main ones being the homogenity of the blogs: Almost all the blogs look the same, so
showing off your own style is very difficult.

 In the next chapter, we will talk about how to implement a very similar feature in Jekyll. For now, this
idea of writing a title and then coming back to it later to finish the post in a text editor is our main focus. In
this sense, distraction-free writing can be divided into two more pieces: collecting ideas and an editor. Now
that we boiled the idea down even further, we can start looking for tools. A good editor can also provide a
method for collecting ideas, and superimposing Jekyll on that editor will give us a method to organize those
ideas, much like Svbtle does. There are a few great editors available for writing and editing Markdown and all
of them integrate very nicely into developer workflows that can be repeated to maximize the time available
to create new content. We discuss the implications of this idea at length later in the book. Some of the most
popular editors are listed here.

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

53

 1. Sublime Text 3: This is a lovely text editor with a focus on ease of use and
convenience through shortcuts. It has a lot of the shortcuts needed just for
developers, so writing Markdown in Sublime is a very natural choice. After
getting used to the basic environment of Sublime, it is easy to start working on
the shortcuts and macros. Sublime can be found at http://www.sublimetext.
com/ . Additionally, a great visual guide to Sublime is present at Scotch:
 https://scotch.io/bar-talk/the-complete-visual-guide-to-sublime-
text-3-getting-started-and-keyboard-shortcuts .

 2. Atom: This editor was created by GitHub for web editing purposes. It has all
the features that a modern web editor would, such as async updates, which
allow one to see the updates done to code without reloading. Atom is based
on Sublime so you still get all the package management goodness here. In
particular, Atom has a package just for Markdown editing named Markdown-
Writer for Atom. Atom can be found at https://atom.io/ . Additionally, the full
documentation for Atom can be found at https://atom.io/docs .

 3. StackEdit: This editor is the simplest to use. StackEdit is an online Markdown
editor with live preview of the text being written. It even lets you save the files
on GitHub or Dropbox to update the blog remotely. There are some minor
differences between the online editor and GFM, but the core features work
almost the same. The most remarkable feature of StackEdit is that it allows you
to edit on the fly and there is no need for a local install. The live preview makes
it very easy to make quick edits to your blog posts if needed. StackEdit can be
found at https://stackedit.io/ .

 4. Notepad++: This is one of the oldest and simplest code editors to use for
Markdown and numerous other languages. It is similar to Notepad in terms
of the interface but it is very lightweight and supports full-fledged syntax
highlighting, tabbing, and all the advanced features you would expect in a
resource-heavy editor. This editor does not have the same live preview as the
previous three mentioned in this list, but it does provide a starting point for
someone who just wants to write Markdown properly without worrying about
any of the other advanced features. Notepad++ is available at https://notepad-
plus-plus.org/ .

 ■ Tip For a novice, the best editor to start with would be StackEdit, to practice Markdown or any of the
exercises from the last chapter. It’s an online editor that requires minimal installation effort. Another online
integrated development environment (IDE) to consider would be Codeanywhere. For the next best option,
Notepad++ or Sublime would work great. Finally, for more serious web development, as we explore later in the
book, the best option is to use Atom with the appropriate packages installed.

 The other side to the reduction of distractions is distraction-free reading . This aspect of a project or blog
is far more subjective and fewer recommendations can be made, but we critique some themes later on in
this chapter. The most important part of distraction-free reading is this balance between being bland and
being interesting. If a blog’s appearance is too minimal, it could look like the blogger is just being lazy. If
there is too much theming, it risks confusing the reader, causing them to just leave the site. A clean interface
is crucial to surviving that first contact, but distraction-free reading is mostly reflected in the theme choice
or theme construction. With some exceptions, it is not always difficult to remove clutter from a blog theme
that was forked from an original design. In some cases, a theme has certain parameters for frame sizes or

http://www.sublimetext.com/
http://www.sublimetext.com/
https://scotch.io/bar-talk/the-complete-visual-guide-to-sublime-text-3-getting-started-and-keyboard-shortcuts
https://scotch.io/bar-talk/the-complete-visual-guide-to-sublime-text-3-getting-started-and-keyboard-shortcuts
https://atom.io/
https://atom.io/docs
https://stackedit.io/
https://notepad-plus-plus.org/
https://notepad-plus-plus.org/

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

54

sidebars that make it incredibly difficult to remove those design flaws, but crafting a theme from scratch
gives you the most freedom and control. Making a theme from scratch is a difficult and time-consuming
process, but definitely worth the effort. In the upcoming sections, we introduce a few frameworks that can
be used to create a new theme to be used as the front end for Jekyll. Although this discussion is short, it does
aim to provide a functional introduction to the frameworks so that the reader could pick them up with ease
in the future.

 So where can front-end frameworks be used for style elements in Jekyll? Two out of three main
components of the blog can be powered by stylistic front-end frameworks, as shown in Figure 5-2 .

 Figure 5-2. The three components of a blog: HTML, CSS, and JS. HTML is the core element of the web site
and both Bootstrap and Foundation are large libraries that work directly with HTML. The second component
is CSS, which tells the HTML elements how to look. Sass and LESS are two preprocessors that can be used to
power it. Finally, the last component is JavaScript (JS), which offers interactivity to a web site. We won’t be
using any style elements with the JS.

 Bootstrap
 The first set of front-end packages that we examine is Bootstrap, built by Twitter. This package is a very
powerful framework that makes rapid prototyping very easy. Rapid prototyping is the practice of reducing an
idea to a tangible mockup in a short time, and Bootstrap has all the features necessary to make this happen.
In this section, we cover how to use Bootstrap and the background magic that makes this framework so
powerful. The other frameworks use similar principles, so we only cover them for Bootstrap, which is
arguably one of the most widely used front-end frameworks. The purpose of this section is to provide a short
tutorial so that the reader can understand the fundamentals of using Bootstrap to create a theme. In essence,
Bootstrap is extending HTML to do more complex tasks such as making a drop-down menu as in just a few
lines of code.

 <div class="dropdown">
 <button class="btn btn-default dropdown-toggle" type="button" id="dropdownMenu1" data-
toggle="dropdown" aria-haspopup="true" aria-expanded="true">
 Dropdown

 </button>
 <ul class="dropdown-menu" aria-labelledby="dropdownMenu1">
 Action
 Another action

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

55

 Something else here
 Separated link

 </div>

 The result of this small segment of code is in Figure 5-3 . Notice the related style elements to the div
class were imported automatically. This is one of the most powerful features of Bootstrap: The default
styling provides a fast solution to completing a first-version mockup of a project. The previously noted small
segment of code is called a component in Bootstrap, where each component is a small template of code
that can pasted as is from the components example to create an instance on a web page. The components
documentation is available at http://getbootstrap.com/components/ .

 Figure 5-3. Drop-down element generated by the code in Bootstrap. The default package comes preinstalled
with several new templates and icons that can be easily used just by calling different class names.

 In the preceding code, it is easy to see how the Drop-down button and the menu are created in just a
few lines of code. The div class drop-down and the drop-down-menu class are predefined snippet templates
that come with Bootstrap. The interesting aspect of Bootstrap is the documentation available on the web
site, which provides the code snippets for these small templates so a user can simply copy and paste the
HTML template snippets into a blank page with the Bootstrap files to get a new project up and running in a
very short amount of time. Bootstrap is available as an archive that can be downloaded from the web site to
be used as a template. This template contains all the code snippets available to Bootstrap. A complete page
showing the features and templates in Bootstrap is shown in Figure 5-4 . These templates are available at
 http://getbootstrap.com/components/ .

 ■ Tip New front-end components might become available soon with the release of Bootstrap 4.

http://getbootstrap.com/components/
http://getbootstrap.com/components/

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

56

 To get the started with this new framework, let’s create a theme for a blog. This will be a very simple
theme only using a few components of Bootstrap. In the next few chapters, we revisit this theme to show you
how to apply Jekyll to it and use it. There are two ways to download and start working with Bootstrap:

• To download the compiled version of Bootstrap, use this link:
http://getbootstrap.com/getting-started/#download

• The second method is to import the required files directly into your HTML. MaxCDN
hosts the latest compiled versions of Bootstrap that can be used. We will be using this
approach.

 Create a new empty file and save it as bootstrap.html . Let’s get the basic HTML structure going for
starters:

 <html>

 <head>

 <!-- Bootstrap imports will go here -->

 </head>

 <body>

 </body>
 </html>

 Figure 5-4. Bootstrap template and all the features available presented on a single page

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

57

 This is the initial template. Now we can start filling this out with the magic of Bootstrap and the components
available within. Here are the MaxCDN import statements that we need to access the components.

 <html>

 <head>

 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.
min.css">

 <!-- Optional theme -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap-
theme.min.css">

 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.min.js"></script>

 </head>

 <body>

 </body>
 </html>

 From here on in this tutorial, the rest of the code will go in the <body> tag. Let’s start with a simple top
bar to title this blog.

 <p class=" navbar-text ">First Test Jekyll Blog</p>

 Now let’s add some navigation elements to this top bar.

 <ul class="nav nav-tabs">
 <li role="presentation" class="active">Home
 <li role="presentation">About
 <li role="presentation">Contact Me

 After the top bar , let’s make an introductory banner; Bootstrap calls it a jumbotron. The jumbotron in its
original form will take up the entire page, but this makes the banner look uneven, so we need to constrain it
using the container class. This will force the jumbotron to appear within a nice rounded corner container.

 <div class="jumbotron">

 <div class="container">

 <h1>Hello, world!</h1>
 <p> This is our first blog theme that we will be using to practice how to use Bootstrap
and put it together with Jekyll. </p>

 <p>Learn more</p>

 </div>

 </div>

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

58

 Now that we have an intro banner, let’s add some placeholders for the blog posts. We can use the panel
components to organize the blog. We will be using the panel component that has a heading in it.

 <div class="panel panel-default">
 <div class="panel-heading">Daily Blog Posts</div>
 <div class="panel-body">

 Unread Posts 40
 <h3>Example heading New</h3>

 </div>
 </div>

 This component gives us a panel, and we can have as many panels on the page as we want. All we need
to do is add a new component and change the parameters accordingly to fit the new panel.

 <div class="panel panel-default">
 <div class="panel-heading">Resources</div>
 <div class="panel-body">

 Useful Links: 2
 <h3> Example heading <span class="label label-
default">Jekyll Docs</h3>

 </div>
 </div>

 Finally, with the second panel done, we will add pagination to allow for an easy reading mode and
organization of the posts.

 <nav>
 <ul class="pager">
 Previous
 Next

 </nav>

 This completes our tutorial of the sample blog page. The best part of it all is that all the components that
were presented in this tutorial were available almost directly line-by-line on the Bootstrap web site. Only
minimal edits were needed. The final result of the Bootstrap code is shown in Figure 5-5 .

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

59

 The completed code for this sample web page is available with this chapter for ease of access, but
readers are encouraged to replicate the components directly from the Bootstrap web site to use them in their
own projects.

 ■ Note To answer the question of how the sample web page we created will actually become a Jekyll theme,
we have to consider some more details about how Jekyll works, particularly handlebars. We discuss these at
length in the following chapter. In brief, we need a block of code to allow some sort of programmatic access
to all the blog posts made and then we can loop through the collection of blog posts and show them under the
appropriate panel. This block of code is a handlebars component that can turn a normal theme into a Jekyll-
injectable blog template.

 Foundation
 The second framework that we cover is Foundation by Zurb. In some sense, Foundation is a more stripped
down framework as compared to Bootstrap. It provides the user with all the essentials that one can find in
Bootstrap, but there are some minor differences. Choosing between Bootstrap and Foundation is like choosing
between dark and milk chocolate: One framework isn’t necessarily better than the other, they just pair well with
different things, and people tend to develop personal preferences. One of the most crucial parts of a front-end
framework is an easy-to-use grid system. It’s the core feature that enables designers and developers to rapidly
prototype layouts and make quick changes without moving other elements in the grid. Foundation comes with
built-in form validation from Abide, whereas Bootstrap doesn’t have this feature. Foundation has always had
a slightly more advanced grid layout and grid system. It was the first major framework to go responsive and
was also the only big mobile-first framework until other packages caught up. It might be a matter of personal
preference but even to this day, Foundation does have a more efficient grid system.

 Figure 5-5. Completed Bootstrap blog page created from basic components available with the framework

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

60

 In terms of features, both the frameworks are about the same; however, Foundation does have
some unique features not found elsewhere. The following is a short list of advanced features available in
Foundation.

• Interchange: This image responsive package appropriately loads images for the
right browser type. The package pulls multiple media requests and displays them
differently for the different sections of the page. This is great for loading a mobile-
friendly component on small devices. Interchange also offers other advanced
media loading capabilities such as maps and locations on a desktop site. Finally,
Interchange has a few event-based capabilities that dynamically change some styles
on the page based on which content is loaded.

• Pricing charts: For any product or service with tier-based pricing, a pricing chart
is perfect. Foundation allows you to make a pricing table with ease in a container
for any subscription-based product. This is not a unique or novel feature, but
it definitely becomes a decisive one when designing a single-page web site for
a product that needs this feature. In those cases, a user might simply choose
Foundation over Bootstrap when picking a theme or if designing a new theme,
because it allows them to make the single-page application faster.

• Grid system: Foundation has a very advanced grid system that allows the developer
to place elements on the web page responsively and with ease. A great example
of the grid system is the Skeleton theme. This is a bare-bones theme written in
Foundation that can be extended for use in personal projects and is available as a
plug-in for various blogging engines like Jekyll.

• Page tours (Joyride): This is a feature unique to Foundation, and it would be
incredibly difficult to replicate in Bootstrap without extensive coding. Joyride allows
the user to provide a guided tour of a particular page along with all the noteworthy
sections where the user can stop and be provided specific instructions on how to
continue. This can extend to modals, as well, for providing on-screen instructions
and navigation. An example of Joyride in action can be seen on the Foundation
sample documentation at http://foundation.zurb.com/docs/components/
joyride.html .

• Off-canvas navigation: This is another unique feature that many blogs have
available. In these off-canvas elements, the navigation menus are positioned outside
of the normal view of the web page and they slide in when activated, often by a click
trigger as shown by the box in Figure 5-6 . This type of off-canvas navigation is often
very attractive in allowing for distraction-free reading of the blog post or the content.
The navigation is easily available to the reader at any time, without the distraction of
being a sidebar.

http://foundation.zurb.com/docs/components/joyride.html
http://foundation.zurb.com/docs/components/joyride.html

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

61

 These features not only make Foundation an attractive platform, but also incredibly well suited for
various single-page showcases. If one of the previously mentioned features is suitable for a project, it would
make a lot of sense to just start the project with Foundation. Much like Bootstrap, this framework also comes
with a package that can be downloaded and used as a starting template. In the remainder of this section, we
spend some time talking about the applications and practical uses of Foundation.

 The mobile responsiveness and fast loading speed of Foundation-based assets make it very suitable for
 e-mail templates and mass e-mailing . In fact, MailChimp actually offers several Foundation-based templates
in the mass e-mailing designer to send quick and easy messages. Foundation has been instrumental in
creating many other e-mail templates. The team behind Foundation, Zurb, is also very serious about
creating functional and responsive e-mail. Recently, Zurb released a special CSS framework called Ink
to write HTML e-mails compatible across all the e-mail clients. This is usually not a problem for small or
personal projects. However, alternative e-mail clients become a relevant concern when the user base grows
large enough and a significant portion of the audience uses an e-mail client. Ink can make the process
of supporting different clients a breeze by providing a uniform language that the various clients can all
understand. The documentation for Ink can be found at Zurb’s web site at http://zurb.com/ink/docs.php .

 Here is a short list of the clients supported by Ink:

• Apple Mail (Desktop and iOS)

• Outlook (2000, 2002, 2003, 2007, 2010, 2011, 2013)

• Thunderbird

• Android

• Gmail (Desktop, Mobile, iOS, Android)

• AOL Mail

• Hotmail and Outlook.com

 Figure 5-6. Off-canvas navigation being demonstrated in Foundation.The sidebar only becomes active once
the button shown in red is clicked. A second click makes the sidebar vanish, allowing for more reading real
estate.

http://zurb.com/ink/docs.php

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

62

 ■ Note In the following two sections, we do not talk about styling frameworks, but instead tools used to
manage the implementation of styling elements in CSS. These tools are processors that allow us to write
manageable CSS in a more advanced fashion that was not possible before. In return, we can implement new
functionality and control it in a more fine-tuned manner than was previously allowed. The two processors we
discuss are Sass and LESS.

 Style Sheet Management: Sass
 The purpose of this section is to discuss the importance of style sheet management using Sass, which has
been adopted by many Jekyll themes, in favor of writing plain CSS files. The style elements available to a
blog are present in the CSS files, but they can be written in a more sophisticated and easy to read manner
using Sass.

 Sass stands for Syntactically Awesome Style Sheets , and it is a CSS framework to make lengthy (theme-sized)
CSS manageable. Sass is actually a preprocessor for CSS, much like PHP to the Web. It allows the use of many
features that are not well defined in CSS such as variables, nesting, and inheritance. These properties are mostly
found in object-oriented programming to modularize a project and make it manageable, and in Sass, they exist
for the same purpose. The following example illustrates the use of Sass.

 CSS code

 body {
 font: 100% Helvetica, sans-serif;
 color: #333;
 }

 The Sass implementation

 $font-stack: Helvetica, sans-serif
 $primary-color: #333

 body
 font: 100% $font-stack
 color: $primary-color

 It is easy to see the value of global variables that can be reused throughout the following CSS code. This
is only one small feature of Sass, and already it makes the implementation easier to read and manage. Along
with global variables, another very useful feature present in Sass is nesting of code. This allows for reduction
of tags in the CSS with additional readability and management of large projects.

 CSS code

 nav ul {
 margin: 0;
 padding: 0;
 list-style: none;
 }

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

63

 nav li {
 display: inline-block;
 }

 nav a {
 display: block;
 padding: 6px 12px;
 text-decoration: none;
 }

 Sass code

 nav
 ul
 margin: 0
 padding: 0
 list-style: none

 li
 display: inline-block

 a
 display: block
 padding: 6px 12px
 text-decoration: none

 ■ Tip It must be noted that Sass uses two types of syntax. The main syntax of Sass is known as SCSS
(for Sassy CSS). SCSS files use the extension .scss . The second, older syntax is known as the indented syntax
(or just Sass). Instead of brackets and semicolons, it uses the indentation of lines to specify blocks. This is the
syntax we use in the code shown here to demonstrate the concepts in an easy-to-read manner.

 In the preceding code, just the proper use of indentation allowed us to nest the ul , li , and a tags. This
not only makes the CSS more readable, but the style elements also start to make intuitive sense, just as they
would apply to the HTML page in a similar hierarchy. The next feature in managing CSS is modularity,
especially dividing long code into smaller and manageable files. There is an option already in CSS to split
files and write the code in that manner, but it has a drawback: When the split of files happens in CSS, it
creates a new HTTP request to be served. This could slow down web page loading speed if there is a large
enough number of files. Sass introduces the notion of modularity somewhat differently: It uses the import
function currently available through CSS, but instead of requiring several HTTP requests, Sass takes the
files requested to be imported and combines them all into a single CSS file before serving it to the web
browser. This is simply a design feature inherent to the job of a preprocessor like Sass. The single file can
be served easily without any noticeable delays; at the same time, it allows the user to manage the code
in an organized manner. This preprocessing capability does not actually introduce any new CSS for the
most part; it only makes what is currently available easy to write and manage over the long term. Many

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

64

developers have switched over their core CSS to Sass, which is processed to generate the new CSS as needed.
The development cycle is also has a faster turnaround rate with Sass. The following example illustrates the
 import function .

 Filename: _reset.sass

 html,
 body,
 ul,
 ol
 margin: 0
 padding: 0

 Filename: base.sass

 @import reset

 body
 font: 100% Helvetica, sans-serif
 background-color: #efefef

 Generated complete CSS

 html, body, ul, ol {
 margin: 0;
 padding: 0;
 }

 body {
 font: 100% Helvetica, sans-serif;
 background-color: #efefef;
 }

 In this example, we can see the two files reset and base.sass containing separate code written in
Sass syntax were merged together to generate a single file containing the appropriate code. The file to be
imported needs the file name of the _filename.sass format. In the same manner, several smaller files can
be created to hold the appropriate CSS, which can then be put together in a single file before serving them to
a web server. This feature is used frequently in themes such as Skeleton , which was previously mentioned,
and many other popular ones. Finally, in this section let’s talk about inheritance. In object-oriented
programming, this is often the most powerful feature, allowing for abstraction of a large project into smaller
code files. In Sass, inheritance allows us to write fewer lines of code for the same elements and condense
redundant code into fewer lines. The following example illustrates that.

 Sass code
 .message
 border: 1px solid #ccc
 padding: 10px
 color: #333

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

65

 .success
 @extend .message
 border-color: green

 .error
 @extend .message
 border-color: red

 .warning
 @extend .message
 border-color: yellow

 CSS generated

 .message, .success, .error, .warning {
 border: 1px solid #cccccc;
 padding: 10px;
 color: #333;
 }

 .success {
 border-color: green;
 }

 .error {
 border-color: red;
 }

 .warning {
 border-color: yellow;
 }

 The use of global variables, nesting, modularization, and inheritance are only few of the advances
available in Sass, but they make writing CSS easy, manageable, and fun. Many Jekyll themes have embraced
the use of Sass by refactoring the current CSS. This allows for a more dynamic writing style and long-
term management of the web site. The compartmentalization offered by Sass also allows the developer to
reflect any changes in style elements over a smaller scale and not across the whole web site. Sass is also
more broadly preferred over LESS simply because Sass allows you to write reusable methods and use logic
statements like conditionals and loops.

 Style Sheet Management: LESS
 A variant of Sass, LESS is also a preprocessor compiling modified CSS into regular CSS. The purpose of this
section is to showcase how an alternative to Sass can be used in place of CSS to manage the style elements
for the Jekyll-powered blog. The main objective of LESS is to make the user write less CSS as compared to
before. The syntax and features are similar to Sass, but the two diffe r in the packages built by the open source
community. The core advantage of using Sass versus LESS is the installation procedure: Sass uses Ruby
gems, whereas LESS uses JavaScript so it can easily load in the browser without any additional software. We
cover Ruby and the gems both in great detail later in this book. One of the most favorable aspects of using
LESS is the documentation. Many developers prefer the documentation for LESS as a compiler over the docs

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

66

for Sass. The two preprocessors are very much alike and syntactically, one of the major differences is the use
of @ for defining variables in LESS, whereas Sass uses $ for variables. The syntax is largely the same in both of
them, as the following example illustrates.

 LESS syntax

 @darkblue: #00008B;
 @border-color: #CCCCCC; //gray
 @base-font-size: 16px;

 body {
 font-size: @base-font-size;
 }
 header {
 border-bottom: 1px solid @border-color;
 }
 a {
 color: @darkblue;
 }

 Compiled CSS

 body {
 font-size: 16px;
 }
 header {
 border-bottom: 1px solid #CCCCCC;
 }
 a {
 color: #00008B;
 }

 LESS is great for beginners because it’s really easy and quick to set it up. It’s very similar to plain CSS,
so writing it is intuitive. Compared to CSS, everything about LESS is very easy and user-friendly. However,
when a project starts to become more complicated, new features that might be more difficult to implement
in LESS require a more powerful preprocessor like Sass. The biggest advantage provided by Sass is actually
another package called Compass, which is an open source library of common tasks that are needed to run
and maintain CSS assets. Compass also lets you add an external framework like Foundation or Bootstrap on
top. This means you can easily harness all the power of your favorite framework without having to deal with
the mess of using multiple tools.

 ■ Tip It must be noted that both Sass and LESS work at the level of style elements and managing CSS
assets. Neither of the frameworks is specific to front-end packages such as Bootstrap or Foundation. They
work equally well with either package, but preferences guide developers into making different choices. In the
case of Compass, the tool only allows pulling in different packages with ease. That being said, LESS is a great
framework to learn the basics; for more serious projects, it makes more sense to use Sass because of the
packages available.

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

67

 In larger projects, a tiny error can cause chaos for the entire project. An advantage of using LESS as
training wheels is the ability to debug errors easily through the code. Sass does not have the same debugging
features as LESS and often the debugging messages returned are not helpful. LESS notifications are well-
presented and also appear to be spot on with the errors. The main difference between LESS and other CSS
precompilers is that LESS allows real-time compilation via less.js by the browser. The syntax of LESS is
similar to writing CSS itself and the framework keeps closest to the same conventions. The compilers involve
some sort of download and setup for installation, and these tasks might intimidate a beginner, especially if
the setup is more extensive. One alternative is to use an online service that can use the preprocessors in the
cloud, without any need for local downloads or installs. CodePen is a popular service that offers many other
code-demo services along with offering both Sass and LESS preprocessors accessible online. The user can
configure the proper settings to use the appropriate preprocessor as shown in Figure 5-7 . This allows for the
compilation and generation of the complete CSS that can be served as a web asset.

 Figure 5-7. CSS configuration panel on CodePen. In the CSS Preprocessor drop-down list, LESS, Sass, and
SCSS syntaxes are all available. More details are available at http://blog.codepen.io/documentation/
editor/using-css-preprocessors/ .

 Jekyll Themes
 So far in this chapter, we have seen a lot of style elements that create different themes but not a complete
product. In the upcoming chapters, we dive deeper into the code presented in this chapter and complete
that Bootstrap theme. In this section, we look at some completed themes and try to dissect the various
elements being used to create those themes. These themes are simplistic, but they accomplish both our
original goals: distraction-free reading and writing. All the themes covered in this section are open source
and available for readers as inspiration to use later on in their own themes. One of the best repositories of
Jekyll themes is available at http://jekyllthemes.org/ .

 The web site contains several themes created with an intricate combination of many frameworks that
we cover in a later chapter. We examine a few themes that are similar to the projects that we will be working
on later in the book. These themes not only provide inspiration for new features, but also give hints as to
what style elements should be kept in mind while designing a Jekyll theme. The first theme examines what a
Bootstrap-based finished product would look like. This theme, called Whitepaper , is shown in Figure 5-8 .

http://blog.codepen.io/documentation/editor/using-css-preprocessors/
http://blog.codepen.io/documentation/editor/using-css-preprocessors/
http://jekyllthemes.org/

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

68

 The next theme is also very simple, but this one is made using a Sass and Jekyll-based template called
Muffin. This theme is well suited for distraction-free reading, as the fonts provide a clear focus on the
content and the entire theme has very few elements to minimize distractions. This theme, called Vanilla
Bean Crème by Richard Bray, is shown in Figure 5-9 .

 Figure 5-8. Whitepaper theme showing Bootstrap simplicity in action for blogging

 Figure 5-9. Vanilla Bean Crème theme made from the template Muffin showing the distraction-free reading
interface. Notice the simplicity and direct focus on the created content.

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

69

 The emerald theme is another minimal theme with a clean, responsive layout and an off-canvas
menu that we discussed in the Foundation section. This theme is great as a starting point to get writing,
as it has all the features that any other Jekyll theme would for the back end. On the front end, it has a
clean and crisp interface to work with. The off-canvas menu along with the blog posts are responsive, so
on mobile devices, they adjust to the screen requirements very easily. This theme by Jacopo Rabolini is
shown in Figure 5-10 .

 Figure 5-10. The emerald theme shown in two panels with the off-canvas menu. Panel A shows the plain
theme without the menu activated and panel B shows the activated menu.

 The final theme to be considered in this section is one that can be used for single-page applications
or project demos. This theme is easy to set up and can be used as a landing page for any sort of personal
project. Compass is a very straightforward theme covering just the bare bones for building a quick landing
page, and this is the only theme surveyed here that does not have inherent blogging features. Therefore,
making a blog using Compass would be somewhat difficult, although the same Jekyll principles apply to this
theme that are found in all the themes thus far. This theme is shown in Figure 5-11 .

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

70

 Summary
 Elegance is the refusal to be satisfied with bad design or lack of choices. The choices in the Jekyll ecosystem
roughly translate to packages and frameworks that can be used to build a blog. In this chapter, we covered
two of the most popular choices, Bootstrap and Foundation. Both frameworks have immense potential
that the user can unlock with some experience with either one. We talked about the management of style
elements using a preprocessor that makes the job easier in some sense, and the differences between
Sass and LESS. Finally, we looked at a few finished Jekyll themes that use the frameworks we previously
mentioned and what the application of such a finished product would be. There are numerous themes
available for Jekyll, with more features than we covered here (e.g., automation) that we return to later
in this book. The community around these frameworks is constantly evolving and incorporating new
web technologies, making it possible to do more in a shorter amount of code. The style of blogging and
storytelling is a living “thing”; it lives and grows just as the people who develop it do. As the times change,
so will the meaning of terms like elegance and design, but the refusal to settle for anything less than elegant
will always remain an inflexible choice. Our adventure through the style of Jekyll comes to an end here. In
the next chapters we start to explore Jekyll more thoroughly, look at its folder structure, and learn how to
complete the theme that we started building in this chapter.

 Figure 5-11. Compass theme being used as a landing page. This theme has all the features needed to show off
a personal project or single-page demos.

CHAPTER 5 ■ FUNDAMENTALS OF STYLE

71

 Further Reading
 1. Foundation documentation: http://foundation.zurb.com/

 2. Bootstrap complete components: http://getbootstrap.com/components/

 3. Bootstrap snippets: http://bootsnipp.com/

 4. Bootstrap Tutorial Lab: http://www.tutorialrepublic.com/twitter-
bootstrap-tutorial/

 5. Foundation 6 is coming: http://zurb.com/article/1403/foundation-
6-prototype-to-production

 6. Compass style documentation: http://compass-style.org/

 REVIEW

 In this review, we focus on the frameworks covered in this chapter and the process of creating a theme
using the two tools.

 1. Coding Task: Import Bootstrap files from MaxCDN. Have a file skeleton prepared
and then make a simple Web page with gylphicons of a barcode and a qrcode.

 2. Coding Task: Create a four-column and three-row table using Bootstrap on the
same page with the icons.

 3. Coding Task: Download the Foundation template and create the same table as the
second task. Notice the differences here.

 4. Coding Task: Find the corresponding Foundation components for all the Bootstrap
components used in the sample web page covered in the Bootstrap tutorial.

 5. Coding Task: Find a simple e-mail template being used in Foundation from the
web site at http://zurb.com/playground/responsive-email-templates and
try to replicate it to some extent in Bootstrap.

http://foundation.zurb.com/
http://getbootstrap.com/components/
http://bootsnipp.com/
http://www.tutorialrepublic.com/twitter-bootstrap-tutorial/
http://www.tutorialrepublic.com/twitter-bootstrap-tutorial/
http://zurb.com/article/1403/foundation-6-prototype-to-production
http://zurb.com/article/1403/foundation-6-prototype-to-production
http://compass-style.org/
http://zurb.com/playground/responsive-email-templates

73© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_6

 CHAPTER 6

 Fundamentals of Jekyll

 Know thyself.

 —Socrates

 Understanding how a project is organized and constructed can provide deep insight into the principles that
make it work. Organization is critical for a project of any scope, this can be true for something as simple
as a Java applet to something as complex as a full mobile application back end. For that reason, most
projects follow some established conventions. These conventions are kept uniform across most projects
with minor modifications, which allows a new developer to get up to speed in a very short time. They
know exactly where to look and find the appropriate code. In this chapter, we talk about the organizational
principles used within Jekyll to manage a blog. More specifically, we talk about how Jekyll organizes a blog
and what conventions should be used while working with a Jekyll blog. We discuss the implications of this
organization in the context of more complex features such as inheritance for the blog theme files. We also
cover the handlebars templates and how the use of handlebars allows for Jekyll magic to be added to a blog
theme. Finally, we talk about whether it is practical to install Jekyll locally on your computer.

 Folders
 Much like any app project, Jekyll also creates a folder structure where it holds all the files. This allows the
user to group files in a specific manner and as the project grows large, the structure is the only factor making
it manageable. To understand the operational principles behind Jekyll, we discuss the folder structure in
detail here. It must be noted that even though each project is different, there is a well-defined convention
that most projects follow. Let’s introduce some notation to read the folder structure chart. The top level is
given by a single period . and it is also known as the root . The root is generally where the entire project is
stored. Every other folder underneath is tabbed once and the files under those folders are tabbed twice.
The folders that contain information pertaining to the blog settings by Jekyll are named in the following
format: _folder-name . Within this format, we can get an overview of the entire project folder and also learn
about what kind of blog style assets are being used and stored. A well-designed folder structure can give a great
deal information about the project at a glance; that’s why knowing how Jekyll creates them is so important.

 Let’s start by looking at a simple folder structure for a new blog. The only folder that we do not discuss
is the assets folder, as it is not part of the standard Jekyll structure. The assets folder represents any generic
folder you happen to create in your root directory. Images, documents, and files that are not properly
formatted for Jekyll will be left untouched here so that they can be served normally.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

74

 .
 ├── _config.yml
 ├── _drafts
 | ├── crazy_ideas.md
 | └── simplicity_in_tech.md
 ├── _includes
 | ├── footer.html
 | ├── sidebar.html
 | └── header.html
 ├── _layouts
 | ├── default.html
 | └── post.html
 ├── _posts
 | ├── 2007-10-29-jekyll_new.md
 | ├── 2008-08-25-jekyll_pro.md
 | └── 2009-04-26-jekyll_matters.md
 ├── _data
 | └── members.yml
 ├── _site
 └── index. html

 ■ Tip A short note about file extensions is in order here. The .yml file extension is the YAML front-matter,
the HTML files are Jekyll-associated HTML files with content and templates, and the .md extension is the
Markdown format that contains the blog posts. We talk about the .yml files in depth shortly.

 Drafts and config
 This seems like a complex structure, but it is actually not that difficult to follow along. Let’s break it down
from the top level. The first file, _config.yml , is a Jekyll-associated file that specifies some global variables
that will be used throughout the site. A good example of this is site color preference. Jekyll themes are often
based around single colors that are overlapping in the theme, so changing that color for the whole site
in _config.yml is the best design choice.

 The next folder is _drafts . This folder can have multiple uses, but one recommended use borrowed
from Svbtle is using it as a list of ideas that can be developed further over time. In this way, the names of
the files in this folder are just ideas, and the files can be left blank, to be developed and then saved into the
appropriate folder.

 Includes
 _includes is one of the most useful folders in the project. This folder contains modular blocks of
code that can be reused in several different posts and contexts. Generally, the _includes folder is a nice
place to throw in and test new web technologies without any major impact on the project. The files from
 _includes are matched to the post by using a Liquid tag: {% include file.html %} and if any of the
newly added technologies are incompatible, simply remove the Liquid tag. That’s all. We discuss Liquid
tags later in this chapter.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

75

 Layouts
 The next folder is _layouts , which contains layouts for the entire blog. A layout is essentially HTML infused
with Liquid and handlebars to create a full web page. The layout is actually a template that determines
how each page of the blog will render, once that particular layout is applied to it. Some layouts take priority
over others. For instance, the default layout is much like a master layout, which can be applied to every
web page in the blog, and even other layouts. The default layout is a perfect place to store code that needs
to be used globally. A perfect example of this type of code would be using font-awesome. Font-awesome is
an incredibly rich source of vectorized icons available free of charge to use. The icons render as true font
elements that can be manipulated with CSS. To use font-awesome, the recommend methodology is to
include import the files in the <head> tag of an HTML file. The default layout can be the perfect place for this.
The following code is an example of font-awesome implemented in a default layout file.

 <head>
 <meta charset="utf-8">
 <title>{{ site.data.theme.name }} - {{ page.title }}</title>
 <meta name="author" content="{{ site.data.theme.name }}" />
 <meta name="description" content="Sample blog of John Smith: Tech, startups, design -
connected. " />

 <link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-
awesome.min.css">

 {% include analytics.html %}
 {% include mixpanel.html %}

 </head>

 Here is an example of importing the font-awesome style elements from MaxCDN into working web sites
or HTML pages. The most powerful aspect of this default layout is that other layouts can inherit from this
default layout and extend it as needed for different applications. We discuss this feature of the inheritance
shortly. Font-awesome is, well, pretty awesome for personal projects. Additionally, it is very easy to get
started.

 <html>
 <head>
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/

font-awesome.min.css">
 </head>

 <body>

 <p> <i class="fa fa-amazon fa-4x"></i> </p>
 <p> <i class="fa fa-firefox fa-4x"></i> </p>
 <p> <i class="fa fa-battery-half fa-4x"></i> </p>

 </body>
 </html>

 That’s all you need, and the result is shown in Figure 6-1 .

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

76

 ■ Tip The font-awesome web site has a lot more information on advanced techniques with the icons such as
stacking icons and increasing the font sizes. See the web site and the Getting Started page for more information
at https://fortawesome.github.io/Font-Awesome/get-started/ .

 A few features of the preceding sample code must be brought to the reader’s attention. The font-
awesome web site includes a list of all the icons, along with a single-line code that calls a particular icon. For
instance, the Amazon icon was given by <p> <i class="fa fa-amazon fa-4x"></i> </p>.

 In this line of code, fa- amazon is the call to the Amazon icon, however the fa-4x is a feature within
font-awesome to increase the size of the icon four times. This is an immensely useful feature, allowing us to
increase the size of any required icons up to five times. After that, we have to perform some CSS magic, and
treat the icon as a single font character and just increase it as we would for an alphabet. This short passage
demonstrated font-awesome and the unique ability of the default layouts to modularize code. Now let’s
move on to the rest of the folder structure.

 Posts, data, and site
 The next folder after _layouts is the _ posts folder. This is arguably the most important folder for your blog,
as it contains all the posts and also the content that will be filling up the templates and layouts designed for
the blog. The _posts folder has a very specific format for each of the files being kept in it. The file name has
to be in the date-filename format— year-month-date-complete_filename.md —and this post date will be
shown as the date on which this post was made to the blog in Jekyll. One important feature to note is that
all the files in the _posts folder are not necessarily blog posts, and therefore not required to follow the post
layout. Any file can follow any layout, but it has to be specified in the front matter, another topic that we
discuss shortly.

 The portion of the folder structure that we have covered so far can be classified as content-based
categories; that is to say, these folders contain the content that will be rendered to the final blog. The
remaining folders contain web site data that are generated from how the blog content interacts with the
layouts and templates. The next folder is the _data folder, appropriately titled as such to contain any JSON
or CSV formatted blog to be made accessible to the blog. This data can be accessed by the Liquid templating
system and a good example for the _data folder is accessing different authors who write for the same blog,
and pulling their related information programmatically. The data on those authors, such as their Twitter
handles or other social media, can be stored in as shared data, and then accessed appropriately as needed.

 Figure 6-1. A sample of font-awesome icons implemented in the preceding HTML code

https://fortawesome.github.io/Font-Awesome/get-started/

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

77

 The next folder is _site in our folder structure. This is actually the only folder in the project that
becomes populated automatically. Generally, Jekyll compiles the web site, integrating the various
components and storing the compiled web sites in the _site folder. The web site contained in this folder is
ready to be served through a web server such as Apache. We use this folder extensively in the later chapters
of this book to create custom additions to our blog. The last remaining file is index.html ; as with any other
web site, this one holds the front page to the blog. However, in comparison to most other platforms, the
index file usually contains very little information. Most often, this information is limited to helping organize
the posts to render on the blog and paginate in case there are too many blog posts on a single page. This
concludes our introduction to file structure in Jekyll, so let’s spend a bit of time talking about the intervening
topics before returning to a code-level overview of all the major files in the file structure.

 YAML
 Jekyll is powered largely programmatic access to various elements connecting the blog as a project.
One of the connecting threads in Jekyll is YAML. The YAML language was developed as a way to create
simple hierarchical documents. The YAML syntax was created as a computerized format of storing and
relating metadata to content. It exists as a serializing structure that is the process of translating data or an
object state into a format that can be stored in memory or a data structure like an array.

 ■ Note At one point, YAML was called Yet Another Markup Language, however, eventually in the later
versions, it was renamed as a recursive acronym for YAML Ain’t Markup Language. This more appropriately
reflected its purpose as a data development language, rather than simply marking up documents as in the case
of Jekyll blog posts. More information on YAML is available at http://yaml.org/ .

 In Jekyll, YAML is used for maintaining metadata for the page or post and its contents. For Jekyll, YAML
is used as front matter, which is defined by being the first thing in the file and set between triple-dashed lines
as follows:

 title: YAML Front Matter Demonstration
 description: A very simple way to add metadata descriptor to a page

 <h1> {{ title }} </h1>
 <p> {{ description }} </p>
 Add page content here...

 In the preceding example, the first --- denotes the start of YAML front matter and the second set of
dashes signifies the ending of the metadata. The HTML below the dashed lines uses Liquid tags, which
are covered in the next section. Generally in YAML, the user can set predefined variables to values such as
the title and description , or even create custom ones. Essentially, in Jekyll, YAML is one of the few ways
that data can be stored about the blog. The extension .yml denotes a YAML file, and if you go back to the
file structure under _data , the members.yml file is actually a YAML file that would contain data in a specific
format as shown next in the _data/authors.yml file. The front matter is not only important for blog posts,
as it contains the title and other post-related information, but it is also used by all pages in a Jekyll project to

http://yaml.org/

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

78

provide context about the file and its function in the whole project. As such, any file with front matter within
the dashes will be processed as metadata by Jekyll. In YAML, there are numerous predefined variables and
some of them are crucial to all the blog posts:

• layout : This specifies the layout file to use, and this variable is how different posts
or pages can use different layouts. The layout files must be placed in the _layouts
directory.

• permalink : This allows the blog post URLs to be more meaningful and more useful
than Jekyll’s default standard of giving each post a site-address/year/month/day/
title.html . This variable allows you to create more meaningful short permalinks to
your blog posts when published.

• category/categories : Blog posts can be categorized into different categories in
the YAML front matter. When the site is generated, the index.html is often used to
actually render the grouped posts under the respective category.

• tags : Blog posts can also be tagged with multiple tags and often these tags are
displayed at the end of a post to allow the user to see related searchable posts with
the same tag.

 Using just these four predefined variables, there is a lot of information that can be provided about a
post. Jekyll will process that information and render the blog post, place it in the proper categories, and
make sure it links to other posts with the same tags. Let’s see a more complete example of a YAML front
matter.

 layout: post
 title: My new post
 comments: True
 permalink: my-new-post
 categories:
 - blog
 - 2016

 A lot is going on in this short snippet. It must be noted that all the metadata here is simply directing
Jekyll on what to use and how to use it in the context of this post. The layout variable tells Jekyll what type of
layout should be used for this post. The title specifies the title of the blog post to be shown on the blog itself.
The next variable is not technically predefined, but it is used so often that it might as well be considered a
predefined. The comments variable is used to add blog comments, and this is done through Disqus which
we will talk about in the later chapters. The next predefined is permalink, which gives your blog-post a
meaningful link or shortcut to remember by the last variable is categories. As the name implies, this variable
allows you to organize and categorize the blog posts in a systematic manner. This is mostly helpful in the
index file to allow for proper display of the appropriate categories.

 This is how simple it is to use YAML: Just a few lines describes the blog post as Jekyll requires it
completely. Let’s go over another example of YAML that is more practical for a blog. Imagine that your blog
has multiple authors. Sometimes they want to coauthor a post and you want to show who the author is
for each post. By default, Jekyll will default to a predefined in _config.yml but we can change that. In this
example, we use two authors and write their information in YAML, saving it in the _data folder.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

79

 _data/authors.yml
 authors:
 hanzou:
 name: Hanzou Hattori
 display_name: Hanzou
 email: hanzou@company.com
 web: http://company.com
 twitter: company
 github: hanzou
 jorgen:
 name: Jörgen Mortensen
 display_name: Jörgen
 email: jorgen@company.com
 web: http://company.com
 twitter: company

 Here the information about the two authors is classified under the authors tag, along with the reference
name for each of the authors, followed by his information. This is the type of data representation at which
YAML excels. The next file will be the actual implementation. This can be done anywhere in the layouts, but
the recommended location is the <header> or the default layout.

 {% assign author = site.authors[page.author] %}
 <header>

 <h1>{{ page.title }}</h1>
 <p>
 by {{ author.display_name }}
 </p>

 </header>

 Here the author.display_name is a reference by Liquid to the _data/authors.yml file. Another
important tag is the assign author one, which sets the author tag for a page equal to one of the authors
given in the list of the site.authors data. Now that we have an implementation, all we need to do is to
update YAML to let Jekyll know of the changes and exactly what type of data to pull out.

 layout: post
 title: New Post Using Jekyll
 author: jorgen
 tags: Tumblr, Jekyll, tutorial

 This post will pull out only the information related to the author jorgen , and Jekyll can use that in the
post. This concludes our introduction to YAML, as the information presented here should be enough in the
case of using YAML for Jekyll. Additionally, there will be some more links for further reading at the end of
this chapter.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

80

 Liquid and Handlebars
 We have been skirting around the topic of Liquid templating language and handlebars, but we finally
address it in this section. Liquid is a Ruby-based template language created by Shopify to be used in their
e-commerce products, but it can also be used as an independent library. It is heavily used in Shopify
themes and therefore it fits well with the templating system in Jekyll. Liquid and handlebars offer similar
functionality: to add programmatic access in themes to site data. The previous example involving the use
of site data involving multiple authors is a perfect use case for Liquid. Handlebars adds extensibility and
minimal logic, such as #if, #unless . Liquid takes this a step further and offers a more complete feature set.
In addition, Liquid is Ruby-based, the same as Jekyll, therefore the two are very compatible. This section
provides a thorough introduction to Liquid and how Jekyll takes advantage of it. This templating language
can be broken down into three main components: tags, objects, and filters. In the upcoming sections, we
focus on the first two components.

 Tags
 Tags are the programmatic logic that provides access to simple statements like if and for . The tags available
in Liquid can be further broken down into four categories, depending on the type of access they provide to
the user. The tags used in Liquid are wrapped in {% insert-tag %} . The first category is control-flow tags;
this is the set of tags that allow Jekyll to determine which block of code should be executed and in what
order. There are four types of control-flow tags and the first type is the if tag. As the name implies, an if tag
executes a block of code only if a certain condition is met. Here is an example of the if tag in action.

 {% if product.title == 'shoes' %}
 These shoes are awesome!
 {% endif %}

 This generates the statement These shoes are awesome! only if the product.title matches
the declared title shoes . This is a very simple application of control-flow, but the if tag is also used as
conditional for showing or hiding blog elements. The next tags are elseif and else , demonstrated here.

 {% if customer.name == 'joe' %}
 Hi Joe!
 {% elseif customer.name == 'anonymous' %}
 Hey Anonymous!
 {% else %}
 Hello!
 {% endif %}

 The next tag is the case/when tag, which compares a statement to the provided possible alternatives and
evaluates them. In some sense, this tag is an easier version of the if tag.

 {% assign food = 'cake' %}
 {% case food %}
 {% when 'cake' %}
 This is a cake
 {% when 'cookie' %}
 This is a cookie
 {% else %}
 This is not a cake nor a cookie
 {% endcase %}

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

81

 The last tag that we discuss is actually much like a do–while loop, but it’s called the unless tag. As the
name implies, this block of code executes only if certain conditions are not met. This tag might not be used
much, but for the sake of completeness, the following is an example of an unless tag in action.

 {% unless product.title == 'shoes' %}
 These are not shoes
 {% endif %}

 This was the first type of tags, the control-flow tags. The next category is the iteration tags. These tags
allow for programmatic access through iteration or looping. We only cover the three most commonly used
iteration tags: for , break , and continue . The for tag repeatedly executes a task until exhausted by another
condition, as this example shows.

 {% for author in site.authors %}
 {{ author.display_name }}
 {% endfor %}

 This snippet of code allows us to iterate through each of the authors and obtain their display_name .
However, the for loop tag is nondiscriminant. If there is a need to make the loop stop, or prevent it from
going on, a condition is required, and this is where the break and continue tags come into play.

 {% for i in (1..5) %}
 {% if i == 4 %}
 {% continue %}
 {% else %}
 {{% break %}}
 {% endif %}
 {% endfor %}

 This snippet of code actually does not generate any output because the loop would break at each
runtime. That is not of much consequence because the snippet simply demonstrates the use of break and
 continue tags. This was the second category of tags, the iteration tags. The next type of tags are variable
tags, which, as the name suggests, allow programmatic access to variables. There is only one tag among the
variables that gets frequently used, the assign tag. As the name implies, the assign tag allows the user to
create a new variable as shown in this example.

 {% assign new_variable = false %}
 {% if my_variable = true %}
 Hooray!
 {% endif %}

 In this snippet, the new_variable was assigned the Boolean value of false and the if statement
logically verified it. This was the third of the tags, the variable tags. Finally, the last type of tag is the theme
tags. These are a collection of tags that help Jekyll decide which components of the layout and the template
to use. The most commonly used theme tag is the include tag. As the name implies, the include tag allows
the user to include unique, modular components in a theme or a template. Most of these elements are
stored in the _includes folder. This tag is immensely useful in almost every single Jekyll theme file, as it
allows for modularization and includes only the components that are needed in a particular layout. This
tag is ubiquitous in layouts as well because it allows for advanced features such as inheritance to be used in
Jekyll files. Let’s spend some time talking about the topic of inheritance in the next section. We have finally
completed the first of the Liquid components: tags. The next category is objects.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

82

 Objects
 There are more than 20 different types of objects in Shopify’s Liquid that make possible an incredible
amount of customization and provide granular access to a theme. In this chapter, we cannot address all of
those objects, but we discuss a few of the most popular ones. Before we delve into the properties of objects,
we need to define what an object is. Objects are crucial to understanding object-oriented programming.
There are numerous examples of real-world objects: your desk, your laptop, and your bicycle, to name just a
few. The objects present in an environment all share two characteristics: They all have a concrete state and
some defined behavior. If loosely defined, a state is the physical characteristic and the behavior is the result
of the input or interaction with the object. Identifying the state and behavior for real-world objects is a great
way to begin thinking in terms of object-oriented programming.

 Software objects are conceptually similar to real-world objects: They also consist of state and related
behavior. An object stores its state in terms of variables contained within the object. It also makes the
possible behavior available through functions that can be used on objects. Functions or methods, as
they are called, operate on an object’s state and serve as the primary mechanism for object-to-object
communication. The use of methods to manipulate an object allows the developer to hide the internal state
of the object or how the object itself is being constructed. All the interactions with the object are performed
through methods, in a technique called data encapsulation. In a sense, this is also how APIs work. Bundling
code into individual objects provides a number of benefits, including the following.

 1. Modularity: The code for an object can be written and maintained
independently of the source code for other objects.

 2. Reuse: If an object that you require in your project already exists, you can simply
use that object in your program.

 3. Debugging: If a particular object turns out to be problematic, you can simply
remove it from your application and plug in a different object as its replacement.
This is analogous to fixing mechanical problems in the real world. If a bolt
breaks, you replace that bolt, not the entire machine.

 Liquid objects are also often referred to as Liquid variables. Just like any programmatic object, these
objects have state and behavior (also known as an attribute). To output an object’s attribute on the page,
wrap it in {{ and }} . For example, the product object contains an attribute called title that can be used to
output the title of a product:

 {{ product.title }}

 Let’s try to focus on the objects available in Jekyll, as those will be more pertinent to us in theme files
and while creating smaller include files. The three most commonly used objects that we focus on are site ,
 page , and paginator . In the remainder of this section, we review these objects and the associated variables.
The first object and associated variables we cover is the site object.

 ■ Note Handlebars.js is a templating language (much like Liquid) that offers programmatic access for
templates to access site data. However, it had a limited feature set that could not be extended easily. That’s why
Shopify came up with its own templating language called Liquid, which is now the backbone of Jekyll. Liquid
is very similar to handlebars in terms of using the same {{ some code }} syntax. Currently, Liquid has surpassed
Handlebars.js and therefore Jekyll switched to using Liquid as well. As a result, we only see the handlebars
notation, not the feature set.

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

83

 Site Variables
 The site object refers to the entire Jekyll blog. The attributes of the site object are often globally applicable
to the blog. The following are some of the most commonly used attributes of the site object in a Jekyll blog:

• site.pages: A list of all pages.

• site.posts: A listing of all posts in the blog, in reverse chronological order.

• site.related_posts: If the page being processed is a post, this contains a list of up
to ten related posts. By default, these are the ten most recent posts.

• site.data: A list containing the data loaded from the YAML files located in the _data
directory.

• site.categories. sample: The list of all posts in the category sample.

• site.tags. newtag: The list of all posts with tag newtag.

 Page Variables
 The next of the objects to consider is the page object. The page object refers to a single page under
consideration. Therefore, the attributes of the page object refer to the content of that page and provide
programmatic access to the post in the context of all the posts in the blog. Here are some of the most
commonly used attributes of the page object:

• page.content: This method returns the content of the page.

• page.title: This method returns the title of the page.

• page.excerpt: This method returns the excerpt of a given page.

• page.url: This method returns the URL of the post without the domain, but with a
leading slash; for example, /2009/10/10/test-post.html .

• page.date: This method returns the date assigned to the post.

• page.categories: This method returns a list of categories to which the post belongs.
The categories can either be specified in the YAML front matter and also from the
directory structure. Categories are derived from the directory structure above the
 _posts directory. For example, a post at /new/code/_posts/2008-12-24-testing.md
would have the categories ['new', 'code'] .

• page.tags: The method returns a list of tags to which this post belongs. These are
specified in the YAML front matter.

• page.next: This method returns the next post relative to the current post in
 site.posts .

• page.previous: This method returns the previous post relative to the current post in
 site.posts .

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

84

 Paginator Variables
 The last of the objects to consider is the paginator variables . The paginator object allows for the use of
pagination in the blog, to create multiple pages for a reader. The paginator object helps to dynamically
update the page counts and provide intelligent pagination. Here are some of the most common attributes of
the paginator object:

• paginator.per_page: This method returns the number of posts per page.

• paginator.posts: This method returns the posts available for that page.

• paginator.total_posts: This method returns the total number of posts.

• paginator.page: This method returns the number of the current page.

• paginator.previous_page: This method returns the number of the previous page.

• paginator.next_page: This method returns the number of the following page.

 The purpose behind selecting these variables for the three objects and presenting them here is
to allow the reader to be familiar with them. All of the variables in Liquid cannot be covered here, but
hopefully the pattern behind the variables can be exposed to the reader to the point where they can read the
documentation and figure out which of the objects and the associated variables to use in their own projects.

 ■ Tip The methods and objects presented here were limited by space and scope. To learn more about Liquid,
a great reference is the Shopify pages. Again, the purpose of presenting that material here was to get readers
familiar with the tags and objects, so that they can use different variables as they need more comfortably. The
web site for the objects is available at https://docs.shopify.com/themes/liquid-documentation/objects .

 Inheritance
 Inheritance is an advanced object-oriented programming concept where a base-level object with a general
feature set is constructed. This common base is used to construct other objects by adding features to them
and obtaining the desired object. In this manner, all objects inherit from a basic object. Jekyll allows for
inheriting previously defined files in two ways. The first one is using the include tag, which is shown the next
example, and the other method is using the YAML front matter for inheriting layouts.

 {% include header.html %}
 <h1> Testing below the header </h1>

 Here, the include tag is being used to bypass rewriting all the code of the header, as it is simply
imported here. The analogy of the inheritance can be used here in that this new file simply inherits the
properties of the header and extends them in a new direction. The more direct observation of inheritance
is through the YAML front matter. In this example, individual pages can inherit from other pages. A perfect

https://docs.shopify.com/themes/liquid-documentation/objects

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

85

example of this is in layouts: The default layout is the base object, and every other layout inherits from it.
Therefore a page layout can use the default for the header and extend that layout to add new features to
create a page. This type of inheritance is usually carried out as follows:

 layout: default

 <h1> Testing out a new page </h1>
 ... More code ...

 Although inheritance might seem like a simple concept as it is used in Jekyll, it is an incredibly powerful
tool that we will be revisiting and using often throughout the book. Often in themes, many elements are
inherited to ensure that the code is clean and maintainable. This also allows for reusing previously written
code in an efficient manner.

 Installing Jekyll Locally?
 In this section, let’s briefly talk about whether installing Jekyll locally is practical. Most of the development
that we undertake will be happening on GitHub, which already offers automatic compilation of Jekyll-
powered blogs and web sites. Performing the compilation locally will not make much of a difference because
the end result will still have to be pushed to GitHub. The primary advantage of not installing Jekyll locally
is that you do not have to worry about installing or maintaining all the dependencies that come along with
Jekyll. This can be a particularly difficult problem on a Windows machine. Most of the projects that will be
covered in the following chapters use GitHub as a code hosting platform and we push our Jekyll projects to
GitHub. Each push to the online platform will automatically trigger a Jekyll recompile of our static web site
to keep it updated. As a result, for a Windows machine, there are hardly any advantages to installing Jekyll
locally. We perform an in-depth installation of Jekyll later in the book.

 For the interested reader, here we provide some resources and ideas on how to use Jekyll in Windows.
Installing Jekyll on Windows is perhaps the most time consuming. Using Windows, no libraries are installed,
so everything needs to be installed from scratch. Julian Thilo has created an excellent guide to installing
Jekyll on Windows alongside Ruby and the other needed tools. His tutorial has tested several versions, so
following his tutorial to install Jekyll is highly recommended. The tutorial is routinely updated with new
versions of Ruby and Jekyll as they become compatible to run on Windows. The general process for installing
Jekyll is as follows:

 1. Installing a compatible, stable version of Ruby on Windows.

 2. Installing a stable version of the Jekyll gem.

 3. Installing the Rouge gem for syntax highlighting.

 4. Installing the optional syntax highlighting through Pygments and Python.

 5. Running Jekyll.

 The reason for not including an entire tutorial in this chapter itself is that although this book might be
recent, new versions of Jekyll, Ruby, and Rouge are constantly coming out; therefore a tutorial presented
here would become outdated for later versions. On the other hand, Thilo’s guide is a smaller, self-contained
project that can be updated with each release, making it more reliable and up to date. The entire tutorial is
available at http://jekyll-windows.juthilo.com/ .

www.allitebooks.com

http://jekyll-windows.juthilo.com/
http://www.allitebooks.org

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

86

 Installing Jekyll on Linux is actually very straightforward:

 $ sudo apt-get install ruby ruby-dev make gcc nodejs
 $ sudo gem install jekyll --no-rdoc --no-ri

 The first line installs the prerequisites for Jekyll, and the second one installs Jekyll itself through a gem.
Installing Jekyll on an OS X machine can be done in a simple manner as well. The only tool needed to install
Jekyll is Xcode, as OS X already comes preinstalled with Ruby and gems, at least Yosemite. The terminal will
do the rest:

 $ sudo gem install jekyll

 ■ Tip A very nice tutorial on how to install Jekyll on a Mac OS X machine is available at http://internet-
inspired.com/wrote/install-jekyll-in-osx-mavericks/ .

 Summary
 In this chapter, we talked about the folder structure of a Jekyll project. We went into depth about the types of
folders and the conventions used in Jekyll. In addition, we explored the various components that make up
each of the files. This includes the three packages font-awesome, YAML, and Liquid. We talked about each
of these packages in the context of their use in Jekyll and provided some background on each one. These
packages are very powerful when used together in a blog, but they are only a small part of the larger Jekyll
ecosystem that we discuss subsequently in the book. In this chapter, we also talked about two advanced
concepts: inheritance and objects. Both of those are used extensively in Jekyll but only abstractly. The proper
implementation is generally obscured and the idea behind presenting it here was to more concretely point
to the fundamental concepts behind those ideas. We are only starting to scratch the surface of the files
present within a Jekyll structure, and although this introduction was not exhaustive, it was meant to help the
reader understand the basics. Once a reader is familiar with the material, it is easy to know what else he or
she needs to seek out and learn to complete his or her understanding. Our journey ends here with the Jekyll
folder structure. In the following chapters, we pick up the remaining components of a folder structure such
as static assets and how they integrate into the remaining Jekyll ecosystem.

 Further Reading
 1. Liquid for Designers : https://github.com/Shopify/liquid/wiki/

Liquid-for-Designers

 2. Shopify’s Liquid cheat sheet : http://cheat.markdunkley.com/

 3. Font-awesome : https://fortawesome.github.io/Font-Awesome/

 4. Portable Jekyll : http://www.madhur.co.in/blog/2013/07/20/
buildportablejekyll.html

 5. Liquid filters : https://docs.shopify.com/themes/liquid-documentation/
filters

http://internet-inspired.com/wrote/install-jekyll-in-osx-mavericks/
http://internet-inspired.com/wrote/install-jekyll-in-osx-mavericks/
https://github.com/Shopify/liquid/wiki/Liquid-for-Designers
https://github.com/Shopify/liquid/wiki/Liquid-for-Designers
http://cheat.markdunkley.com/
https://fortawesome.github.io/Font-Awesome/
http://www.madhur.co.in/blog/2013/07/20/buildportablejekyll.html
http://www.madhur.co.in/blog/2013/07/20/buildportablejekyll.html
https://docs.shopify.com/themes/liquid-documentation/filters
https://docs.shopify.com/themes/liquid-documentation/filters

CHAPTER 6 ■ FUNDAMENTALS OF JEKYLL

87

 REVIEW

 In this review, we focus our attention on using the objects and variables learned in the context of YAML.

 1. Review Task : Go through the YAML section quickly and then the page object.

 2. Review Task : Go through the folder structure again and be able to explain all the
components accurately.

 3. Search Task : Find a new folder structure from a theme in a previous chapter and
elucidate its folder structure.

 4. Interpretation Task : Interpret the following _include file along with the following
YAML front matter.

 _include file

 {% if content and page.related %}
 <h2>Related Posts</h2>

 {% for post in site.posts %}
 {% if page.related contains post.title %}
 {{ post.title }}
 {% endif %}
 {% endfor %}

 {% endif %}

 YAML front matter

 layout: post
 title: "Jekyll related posts"
 category: blog
 permalink: /blog/jekyll-related-posts
 related: [
 "A tiny rant: Jekyll vs. Octopress",
 "6 Weeks of Daily Blogging",
 "Bash Productivity Tips"
]

 Blog post content here.

 PART III

 Projects

 This section is all about application: We take on several projects and modify them completely to fit
a problem that we are trying to solve. Some of those are just hobby projects, but others are focused
on social issues and how technology can affect them. Each of these projects is focusing entirely on a
web technology that is crucial to Jekyll and pushing it to the limits. In each of these projects, we use
the resources offered by the last section and apply them here. The idea here is to simply build on
those tools and just keep adding features until a theme that we picked for Jekyll to edit looks similar
to the desired final result. There are several limitations of modifying a theme instead of just creating
a new one from scratch, but the biggest advantage is to save time from developing all the style assets
and more. The later chapters also have a social theme that can better showcase the use cases for the
technologies and how it can be helpful. I hope that you enjoy these projects just as much as I did
selecting and preparing them. Good luck!

91© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_7

 CHAPTER 7

 Blog-awareness

 Great ideas don’t need approvals, they need application.

 —Amit Kalantri

 We have talked about a lot of concepts pertaining to Jekyll in the previous chapters, but all of them were
presented in an isolated manner. In this chapter, we go through a simple Jekyll theme to learn how those
ideas come together to create a static web site. A very in-depth overview of the code used in the theme
along with helpful comments to understand that code are provided here. Our discussion is focused on
blog-awareness, which is also the central theme of this chapter. This is the idea that Jekyll has built-in
support for features that are needed in a blog such as permalinks, categories, pages, and custom layouts. In
addition, these simple features can be further customized and configured in a number of ways to support
new ideas. Being blog-aware makes it easier to add new features to Jekyll and inherit the same rules or
layouts that apply to the rest of your blog. New pages or posts can be added seamlessly and they still follow
the same fundamental rules and conventions. We show how a theme takes advantage of blog-awareness and
more important, how this property makes Jekyll themes modular. This modularity, along with the theme
configuration, allows for us to recycle working code and reuse it in different parts of a project. We spend the
majority of our time in this chapter talking about how to download a Jekyll theme, how to extract it, and how
to get ready to start editing. Finally, we methodically go through each file in a code editor and explain how
the code works.

 Getting the Theme
 The example used in this chapter is a fairly straightforward theme and it also has a very simple design. We
focus on various aspects of Jekyll by studying this theme. The theme is called Kactus , developed by Nick
Balestra and available on GitHub at https://github.com/nickbalestra/kactus . Later we look into more
themes that can be found at http://jekyllthemes.org/ .

 We review the specifics of GitHub in much more detail later on in the book; our focus for now is to
download the theme and start editing it locally. Any Jekyll themes available on GitHub are open source and
freely available so that developers and users may use and modify them. The theme can be downloaded
directly (as a zipped file) from GitHub, as shown in Figure 7-1 . The project page on GitHub also provides
a very nice overview of the folder structure of the theme. Generally, a project on GitHub is not simply
downloaded, but rather cloned for editing purposes. GitHub allows this by forking the project. By forking,
the developer also carries over the history of previous developments to projects that were checked in. The
check-ins are in the form of commits, and keeping a history of them might become necessary in case the
developer wants to contribute those changes back to the project. In those cases, cloning preserves the
previous history and simply adds new code on top. For now, we are not concerned with cloning the theme or
maintaining histories. We won’t be adding new features to the theme that enhance functionality, but rather

https://github.com/nickbalestra/kactus
http://jekyllthemes.org/

CHAPTER 7 ■ BLOG-AWARENESS

92

using the theme as a foundation to apply it toward our ideas and projects. Once the theme is downloaded
from GitHub to your computer, it’s time to extract the files and then we can start navigating through the
folder. In Windows, extracting files is very straightforward.

 Figure 7-1. Downloading the Kactus theme by Nick Balestra. Once the theme is downloaded, we can start
exploring it and working with the code.

 The initial folder structure after downloading the theme and extracting is shown in Figure 7-2 . Let’s
dive into the folder structure and rely on the most commonly used conventions to understand the files and
folders here.

• Every folder with a _folder-name is a folder storing information about the blog. In
this theme, the folders include drafts, layouts, and posts.

• The assets folder contains the styling assets associated with the blog.

• The LICENSE and README.md files are both instructional files for the developer or the
user to understand the terms under which this project has been open sourced and
how to get this theme running in Jekyll.

• The only HTML file present in the folder structure is index.html .

• There is only one page aside from the home page in this theme, named about.md.

• The feed.xml files contains the ATOM feed of blog posts and other related changes
synchronized over the Web.

• Finally, the .gitignore file contains a list of files that will not be recorded in version
control. This is generally done for files that change frequently, but their internal state
is not of much importance to the overall project.

CHAPTER 7 ■ BLOG-AWARENESS

93

 Now that we have briefly reviewed the folder structure, let’s spend a little time on the one folder that we
did not cover in detail previously: the style assets folder . This folder contains four subfolders:

• Css: Stylesheets.

• fonts : Fonts specific to the blog.

• images : Storing images to be used in the web site.

• js : JavaScript for interactivity.

 It is easy to see how the assets folder works: It stores mostly static assets and style files that are being
used in the blog. The Css folder contains the stylesheets for the entire blog, the fonts folder contains any
special fonts being used on the web site, the images folder is a repository for images being used in blog posts
or pages, and finally the js folder contains JavaScript files pertinent to the theme or layouts. These assets
allow interactivity in a Jekyll blog, but the files inside or the frameworks chosen for each blog could be very
different. Generally, the layouts being used decide which styles to use.

 ■ Tip The Kactus theme does not have very complex style sheets, so it might be worth the time to look
through the entire stylesheet (style.css). This will provide the reader a refresher on manipulating HTML
elements using CSS. On the other hand, the js assets will be available as downloadable libraries (in most
cases) that need to be implemented in the blog to become actionable.

 Installing a Code Editor
 The code editor that we use throughout this book is called Sublime. It’s free to use, user-friendly, and
incredibly powerful with the proper customizations. The current version is Sublime Text 3, available at
 http://www.sublimetext.com/3 . The Sublime web site also gives easy instructions to follow on how to
install Sublime 3 for Windows, OS X, and Linux. One of the best features in Sublime is the integration of
plug-ins, and there are thousands of plug-ins available. The plug-ins are managed as packages and can be

 Figure 7-2. Folder structure of the downloaded theme Kactus. A brief explanation of the folders and files
shown here is provided in text.

http://www.sublimetext.com/3

CHAPTER 7 ■ BLOG-AWARENESS

94

added to Sublime using the package control system. The terms plug-ins and packages are interchangeable
for Sublime. To use plug-ins, we need to install package control following the instructions that are provided
through the package control web site at https://packagecontrol.io/installation .

 The package control has an incredible Jekyll plug-in that can be loaded in Sublime and used for tasks
such as new post shortcuts, template tags, and easily saving Jekyll posts in the date format. Along with this
plug-in, there are several others that can be used in Sublime to make life easier while blogging with Jekyll.

• MarkdownEditing: An amazing add-on, it arguably adds the best syntax highlighting
to Markdown files, even better than some proprietary apps. It also simplifies the
interface by removing line numbers. It is available at https://packagecontrol.io/
packages/MarkdownEditing .

• SmartMarkdown: It supplements MarkdownEditing and adds a variety of other useful
features such as smart tables, easily changing the level of headlines (i.e., h1, h2, h3,
etc.) and creating bullet points when you press Return. It is available at https://
packagecontrol.io/packages/SmartMarkdown .

• WordCount: As the name implies, this add-on adds word count functionality to the
Sublime Text status bar. It can be very useful in certain situations, especially if it
is used in conjunction with estimated reading time to allow the reader to know
how long the post will take to read. It is available at https://packagecontrol.io/
packages/WordCount .

• Markdown Preview: Markdown Preview renders the Markdown written either with
original Markdown or via Github API and generates the result through output
methods. The output can be opened in a browser, sent to a new Sublime Text
document, sent to the Clipboard, or saved to an HTML file. It is available at
 https://packagecontrol.io/packages/Markdown%20Preview .

• Jekyll: As mentioned earlier, this package makes it easier to write Jekyll blog posts.
It is available at https://packagecontrol.io/packages/Jekyll .

 ■ Note All the relevant code from the Kactus theme will be provided within the chapter and any
modifications to it will be available with the book. However, readers are encouraged to follow along with the
changes being made to the code within their own editor to get familiar with browsing a Jekyll theme in Sublime.

 In addition to plug-ins, Sublime has a few very nice features such as tabs and a distraction-free mode.
To enable the distraction-free mode, select the option from the View menu or press Shift + F11 on your
keyboard (in Windows). In this mode, the word-wrap length shortens, menu interface elements disappear,
and there’s nothing left to distract you. It certainly helps to focus on what Jekyll is intended to do: help you
write great content.

 A Kactus in the Desert
 Digging into a new theme and understanding it can be like a traveler looking for water in the desert. If
you keep looking around without a plan, you will not make any progress and might run out of time. In the
beginning of this chapter, we started to look at the folder structure to obtain a few fundamental clues on
how this theme is organized. In this section, we examine the Kactus theme in depth, going through every
file in the theme. You are encouraged to open the files and follow along or just open the whole theme folder

https://packagecontrol.io/installation
https://packagecontrol.io/packages/MarkdownEditing
https://packagecontrol.io/packages/MarkdownEditing
https://packagecontrol.io/packages/SmartMarkdown
https://packagecontrol.io/packages/SmartMarkdown
https://packagecontrol.io/packages/WordCount
https://packagecontrol.io/packages/WordCount
https://packagecontrol.io/packages/Markdown Preview
https://packagecontrol.io/packages/Jekyll

CHAPTER 7 ■ BLOG-AWARENESS

95

in Sublime, as we present only the relevant snippets. The first folder in the theme is the _drafts folder. To
refresh your memory, the purpose of this folder is to store unfinished drafts of blog posts. There is only one
file available in this folder: a-draft-post.markdown .

 title: "A Draft Post"
 description: Work in progress
 ## date: add a date when publishing

 [...]

 Check out the [Jekyll docs][jekyll] for more info on how to get the most out of Jekyll. File
all bugs/feature requests at [Jekyll's GitHub repo][jekyll-gh].

 [jekyll-gh]: https://github.com/mojombo/jekyll
 [jekyll]: http://jekyllrb.com

 This file starts off with the YAML front matter, as we would expect from a Jekyll post. The notation right
below the front matter [...] is being used to show that some of the text or code in the file was omitted. It is
not an artifact in Jekyll. We covered Markdown fairly thoroughly earlier in the book, but the way in which the
hyperlinking works is very unique. In this case, the second [bracket] refers to a footnote that is actually a
link. This is different from the usual GFM, where the link is simply inserted in the [text](link) format.

 The _includes Folder
 The next folder in the theme is the _includes folder . This folder contains seven files; let’s start with disqus.
html . Disqus is actually a very popular commenting system available as a freemium service. For our
purposes, the free version would be more than sufficient. The file contains some JavaScript embedded code
provided by Disqus to be pasted into that file and saved in _includes to obtain a functional commenting
system. The Disqus web site provides instructions on how to obtain a functioning instance on your own blog
at https://help.disqus.com/customer/portal/articles/472138-jekyll-installation-instructions .

 The next file is footer.html , which creates the footer of the blog, as the name implies. This is also a very
simple file:

 <footer id="footer">
 <p class="small">© Copyright {{ site.time | date: '%Y' }} {{ site.author }}</p>
 </footer>

 This snippet of code defines a footer class and starts it on a new line using the paragraph element.
Within the copyright notice, the Liquid variables time and date are used, along with the name of the
author who owns the copyright. This was a very straightforward example of how to implement a modular
component and then import it within the different layouts. The next file we examine is navigation.html ,
 and this file generates the top bar:

 <nav class="main-nav">
 {% if page.url != "/index.html" %} # If current page is not home page
 ← Home
 {% endif %} # Show an arrow to return to home page

https://help.disqus.com/customer/portal/articles/472138-jekyll-installation-instructions

CHAPTER 7 ■ BLOG-AWARENESS

96

 {% if page.url != "/about/" %} # If current page is not the About page
 {% if site.aboutPage %} # And the site has enabled an About page
 About
 {% endif %} # Show a link to the About page
 {% endif %}
 Subscribe
 </nav>

 This code might seem intimidating because it is using a lot of the advanced Liquid features, but we can
break it down into simpler pieces. The snippet starts off by defining a navigation class. The logic behind this
snippet is in the if -tag from Liquid. It is being used to inquire about the page.url property. If the current
page is not the home page, then it would make sense to provide an option to return to the home page. This
snippet does so by using the back arrow in the span tag. That is the purpose of the first if statement. The
second if statement applies the same logic to show the About page: If the current page is not the About page,
provide a link for the user to see the About page. Finally, it doesn’t matter which page the user is on; this
code snippet will always show the Subscribe button in the top bar, as shown in Figure 7-3 .

 Figure 7-3. The top bar shown in the Kactus theme. The Home button is not displayed in the top bar because
the site is on the home page; therefore the if statement would not execute. The other two buttons have not
satisfied the if statement requirements so they continue to be displayed.

 We return to the site.baseurl variable shortly. The next file that we examine is a bit more complex.
This is the pagination.html file and its purpose is to provide Jekyll with the logic on how to spread blog posts
across multiple pages to keep the home page from overflowing and listing everything. Pagination has two basic
features: previous and next pages. The trick is to understand how to dynamically move posts to the next page
after a certain number of them have been listed. A minor detail to keep in mind with pagination is that it starts
numbering the pages from 0, so the first page is 0 and the following page is 1. Let’s look at the code for this file.

 <nav id="post-nav">
 {% if paginator.previous_page %}

 {% if paginator.previous_page == 1 %}

CHAPTER 7 ■ BLOG-AWARENESS

97

 ← Newer Posts

 {% else %}

 ← Newer Posts

 {% endif %}

 {% endif %}
 {% if paginator.next_page %}

 Older Posts →

 {% endif %}
 </nav>

 There is a lot going on in this file, but breaking it down into smaller pieces makes it easier to examine.
The file starts off by defining a nav class, more specifically a pagination-type object. The first part of this code
is the previous_page property and it can be best explained with the following example. Let’s say we are on
page 1 and look through the first if statement; if the current page is page 1, then we have moved past the
home page (which is page 0) and we have also moved past the first few posts that can be displayed. In that
case, it makes sense to give an option to move back to the home page (which essentially takes the user to the
home page or page 0). If that current page is page 2, then the previous_page property can be used to give the
user an option to move back to page 1. Let’s look at this visually:

 (A) *0 1
 Home Next Page
 (B) 0 <-- *1
 Home Go back to home page

 (C) 0 1 2 3 <-- *4
 Home Go to previous page

 In the first case (A) , we have two pages and currently we are on the home page, shown by the asterisk.
In the second case (B) , we want to navigate to the previous page, but we only have two pages, so the
previous page is the home page and we can simply hyperlink paginator.previous_page to site.baseurl .
In the third case (C) we are several pages down and we want to navigate one page back. Here, we have to
call paginator.previous_page to get the appropriate link because we can’t use the site.baserul anymore.
That was the previous_page property, but how do we move to the next page? That’s the next if statement,
the next_page property. This is actually far simpler than previous_page logic: On any given page, if there are
more pages remaining, provide a link to go to the next_page .

 ■ Tip It might help to look at how Jekyll blogs are organized to understand the contradictory nature of
 previous_page pointing to newer posts , and next_page pointing to older posts . In a paginated Jekyll site,
the newest posts appear first. This implies that page 0 will have the latest posts. Now if we are on page 2, the
previous page actually contains more recent posts; that’s why it points to newer posts . At the same time, if you
want to go to the next_page , this page will contain older posts, therefore next_page points to older posts.

CHAPTER 7 ■ BLOG-AWARENESS

98

 The next file to examine is the post_list.html file . As the name implies, this file generates a list of posts
that will be displayed on the home page. Generally, this code is present in index.html , but it doesn’t always
have to be the case.

 <ul id="post-list">
 {% for post in paginator.posts %}

 <aside

class="dates">{{ post.date | date:"%b %d" }}</aside>
 {{ post.title }}

<h2>{{ post.description }}</h2>

 {% endfor %}

 {% if paginator.previous_page or paginator.next_page %}
 {% include pagination.html %}
 {% endif %}

 The logic behind this code snippet is to create a list of all the posts with a hyperlink. This hyperlink is
between the post.date and the post title to the Jekyll path of the blog post or page. This is done by using
a for loop on the list. This list actually functions like an ordered list with the tag. The hyperlinking is
done by URL concatenation where site.baserul is added on top of post.url to get the full link to the blog
post. There are two parsing operations needed to obtain the URL. The first one is using remove_first to get
rid of the trailing slash (applied to post.url) and the second one is applied to post.date to get the date in
the appropriate format. This format is typical for a blog post where the date is on top, followed by the post
title, and finally the description of that post. There might be some confusion with the use of the post.url
and baseurl , but Figure 7-4 clarifies how a URL is broken down into the two variables. The last if statement
in this file ensures that the previous or next page also contains the paginator from pagination.html as we
discussed earlier.

 Figure 7-4. The breakdown of a URL created by Jekyll pointing to a page on the Web site or blog. Note that the
property site.baseurl simply accesses the site variable baseurl and site.url accesses the site variable url .

 These two files were complex files as they involved a deep understanding of concepts that we have not
applied before. The remaining two files in this folder are fairly straightforward. The next file that we examine
is profile.html . This file creates the author’s profile that would go on top of the page, as shown earlier in
Figure 7-3 . There are a few global variables used as site properties, but the code itself is very straightforward.
One thing to note is that this file is included in every page, which is possible due to the layouts that we
discuss in the next section. Let’s look into the code for the author profile.

CHAPTER 7 ■ BLOG-AWARENESS

99

 <div class="profile">
 <section id="wrapper">

 <header id="header">

 {% if site.aboutPage %}

 {% else %}

 {% endif %}

 <h1>{{ site.author }}</h1>
 <h2>{{ site.description }}</h2>
 </header>

 </section>
 </div>

 In this code snippet, the author profile is being wrapped inside the <header> tag where it passes through a
conditional statement: If the site is configured to have an About page in _config.yml , then hyperlink the avatar
picture to the URL of the About page with the site.baseurl . Otherwise, simply display the avatar without
any hyperlinking. That is the logic behind the if statements: After the if loop, the rest of the code displays the
name of the author with site.author and a small description of the web site using site.description . This
snippet is behind the code being used to display the author image shown at the top of Figure 7-2 .

 The last file in _includes is share.html , which allows the reader to share an article on Twitter or
Facebook. There are many ways to share a post, and some are simpler than others. We look at three different
ways to share on social media. The simplest way is to use the embed code for a share button, as most social
media sites have an easy-to-use code. Let’s look at Twitter, for example: It provides various sizes and types of
share buttons, along with the code for how to use them. This code can then just be turned into an include
file that can be referenced from a layout. The Twitter share buttons are available at https://about.twitter.
com/resources/buttons .

 The second method of sharing involves the use of a third-party service such as AddThis or Flare by
Filament that offers multiple share services embedded in a single plug-in. These plug-ins work in a similar
fashion to the embed codes, but they take it a step further. To use AddThis or Flare , the pages of the blog or
web site have to be linked through an admin panel and then an embed code can be obtained. The biggest
advantage of this method is that the web site is completely modular: The appearance or the types of social
media sharing services that are available to the blog or site can be controlled completely independently of the
site itself. This allows the code to remain small, yet functional and customizable. The final method of sharing
posts involves creating custom code involving a link to open the social media site and share the post or page.
This is the approach Kactus took; let’s examine only the Twitter share code being used in share.html .

 <a class="twitter" href="https://twitter.com/intent/tweet?text={{ site.domain_name }}
{{ page.url }} - {{page.title}} by @{{ site.authorTwitter }}">
Tweet

 This piece of code seems very complicated, but it is actually a clever way of getting someone to tweet
your page.url , and it works using Liquid properties. The logic here is to append the site domain and the
post URL to post on Twitter along with the author of the article. This hyperlinks to the text tweet with the
intent of sharing the post or page. This was the last file in the _includes folder. Now we move on to the folder
that integrates all these files in a meaningful manner to display on the blog, the _layouts folder.

https://about.twitter.com/resources/buttons
https://about.twitter.com/resources/buttons

CHAPTER 7 ■ BLOG-AWARENESS

100

 The _layouts Folder
 Layouts are templates that tell Jekyll what to draw from the _ includes folder and how to integrate it into a
cohesive web site. Layouts are generally written in Liquid combined with HTML to make the best use of all the
 _includes . The first layout is the default layout, from which every other layout inherits. Let’s look at the code
for default.html in small segments. The first segment is the <head> tag.

 <!DOCTYPE html>
 <html lang="en">

 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>{{ site.name }}{% if page.title %} - {{ page.title }}{% endif %}</title>
 <link rel="shortcut icon" href="{{ site.baseurl }}assets/images/favicon.ico">
 <link rel="stylesheet" href="{{ site.baseurl }}assets/css/style.css">
 <link rel="alternate" type="application/rss+xml" title="My Blog" href="{{ site.baseurl }}
rss.xml">
 <link rel="stylesheet" href="{{ site.baseurl }}assets/css/highlight.css">
 </head>

 Here we can see the meta -information in the < head> tag present at the opening of the file. The initial
 meta tags are browser compatibility checks. They can be obtained from a reference guide or any theme. The
interesting snippet following the meta tags includes the title of the web site by referencing the page.title
property. Following the title, the next link is referencing the favicon of the blog, the second link is loading up
the style.css files, and the last link is referencing the RSS feed feature available in the blog. Finally, there
is another call to load up highlight.css , which serves the purpose of syntax highlighting in the posts. Now
let’s look at the second section of this layout.

 <body>

 {% include navigation.html %}

 {% if page.profile %}
 {% include profile.html %}
 {% endif %}

 <section id="wrapper" class="{% if page.profile %}home{% endif %}">
 {{ content }}
 </section>

 This segment of the code calls to various files that should be included in the default layout and the page.
The first one, include , integrates the top bar through navigation.html , and the second one checks to see
if the current page is the profile page, in which case the profile elements should be incorporated here. The
third portion would show the rest of the profile data for the author if the current page is indeed the profile
page. This segment of code integrated a few of the _includes . Let’s move on to the next segment of code.

CHAPTER 7 ■ BLOG-AWARENESS

101

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
 <script src="{{ site.baseurl }}assets/js/main.js"></script>
 <script src="{{ site.baseurl }}assets/js/highlight.js"></script>
 <script>hljs.initHighlightingOnLoad();</script>

 This segment is actually very straightforward: These few lines are importing or loading scripts necessary
to run the blog. The first one points to loading jQuery, which is immensely helpful in front-end tasks. The
second one loads the local main.js . The third statement loads another local file called highlight.js , and
the last <script> tag is initializing a function called initHilightingOnLoad(). As the name implies, this
function starts code highlighting when the page is loaded. This was the third segment covering loading
the JavaScript files into the blog. There is actually one last tidbit in the default layout, which is a Google
Analytics code. It is also an embed code, and there is nothing for us to review in that segment. We talk about
Google Analytics in much more depth later in the book. There is only one more layout left in this folder,
the post layout. This layout is specific just for blog posts, but it inherits from the default and it builds on the
missing pieces.

 ■ Tip While reading through post.html , pay careful attention to how the default layout carves out a basic
structure but leaves the specifics for other pages to inherit and define. This is the true power of object-oriented
programming: A single core can power all sorts of different objects, and once the default object has been
constructed, other objects can inherit from it and develop it further.

 The next layout is post.html , the layout that every post will follow; more precisely, any file that has
the layout YAML front matter variable set to post. This time, the code won’t be broken down into segments.
Instead, this time, try to work through the code on your own and then we discuss it in detail.

 layout: default
 archive: true

 <article class="post">
 <header>
 <h1>{{ page.title }}</h1>
 <h2 class="headline">{{ page.date | date:"%B %-d, %Y" }}</h2>
 </header>
 <section id="post-body">
 {{content}}
 </section>
 </article>

 <footer id="post-meta" class="clearfix">

 <div>
 {{ site.author }}
 {{ site.description }}
 </div>

CHAPTER 7 ■ BLOG-AWARENESS

102

 <section id="sharing">
 {% include share.html %}
 </section>
 </footer>

 <!-- Disqus comments -->
 {% if site.disqus %}
 <div class="archive readmore">
 <h3>Comments</h3>
 {% include disqus.html %}
 </div>
 {% endif %}

 <!-- Archive post list -->
 {% if page.archive %}
 <ul id="post-list" class="archive readmore">
 <h3>Read more</h3>
 {% for post in site.posts %}

 {{ post.title

}}<aside class="dates">{{ post.date | date:"%b %d" }}</aside>

 {% endfor %}

 {% endif %}

 There are at least four distinguishable segments in the code just presented: the post section, the footer,
the Disqus comments, and the archive post list. Let’s break each of them down.

• The first section is the header, which contains the post title, followed by the post
date and then the content. It must be noted that this is different from the home page,
where the post.date preceded the post title.

• The second section is the footer, which contains the share to Twitter button, along
with the site author’s name and his or her description or bio.

• The third and fourth sections are related by the same class, but they have different
purposes. The third section configures the comments section and Disqus is enabled
if it is configured in the YAML code.

• The comments will be displayed by using the include import. Notice that each
section calls to the appropriate includes to fill in the layout as needed.

• The final section of the code enables a related posts section under the blog post itself.
This is accomplished by using an if loop to confirm whether an archive is enabled.
If archive is enabled, then a for loop is used to go through the posts available and
list them out with the date and title. The post name is hyperlinked to the actual blog
posts, creating a Related Posts section at the end of each blog post.

CHAPTER 7 ■ BLOG-AWARENESS

103

 The _posts Folder
 We examined both the layouts available in the Kactus theme, and the next folder is the _posts folder, which
contains one sample post. We do not examine this folder because the information about how to write a Jekyll
post in Markdown was presented previously. This covers the folder structure in the theme, but we are still
left with a few key files in the theme. These files, _config.yml and index.html , are both absolutely critical to
the entire blog. I ndex.html follows more naturally after covering layouts and includes. This file is generally
used to generate a list of posts and the styles for how to display them, but in Kactus, this was done by post-
list.html much earlier. Here’s index.html .

 profile: true

 {% include post-list.html %}
 {% include footer.html %}

 The YAML front matter enables the author profile to be shown on the home page as seen earlier in
Figure 7-2 . The other two includes create the post list and also add a footer to the blog. There are several
instances like this file covered in the chapter where using the proper include allows for code to be reused;
more important, it allows for the code to become modularized. The last file in Kactus is _config.yml , and
the code is shown here.

 name: Your New Jekyll Site
 description: Blogging about stuffs
 meta_description: "Your New Jekyll Site, Blogging about stuffs"

 aboutPage: true

 markdown: redcarpet
 highlighter: pygments

 paginate: 20
 baseurl: /
 domain_name: 'http://yourblog-domain.com'
 google_analytics: 'UA-XXXXXXXX-X'
 disqus: false
 disqus_shortname: 'your-disqus-shortname'

 # Details for the RSS feed generator
 url: 'http://your-blog-url.example.com'
 author: 'Your Name'
 authorTwitter: 'YourTwitterUsername'

 permalink: /:year/:title/

 This file is crucial because it is one of the only files where all the parameters that we have been
using thus far can be defined. All the entries shown with the variable: value are either site, page, or YAML
variables. The first few lines only describe the blog and the name for it. This is important for search engine
optimization (SEO), which we discuss later in the book. The following line defines the aboutPage variable
to be true for the blog, followed by two lines containing interpretive code for GitHub where the blog will
be hosted. This code sets a compiler for Markdown called redcarpet and selects a code highlighter to be

CHAPTER 7 ■ BLOG-AWARENESS

104

 pygments . The pagination is also defined here, following the baseurl convention of defining the baseurl to
be the URL. The domain name is defined as the web site’s home address, and the variables following define
the analytics and Disqus. The information about these variables will be obtained from the various third-
party services. The following three lines of variables define the properties of the blog for an RSS generator
that syndicates the blog. Finally, the permalink is defined as the URL followed by the year and the title of
the post. This is a very important setting, as it will carry through to every post or page made with the blog.
The remaining code in the config file is actually site-wide defaults that can be defined here. Often in a Jekyll
blog, we repeat many of the same configuration options in YAML and other sources. The use of defaults in
the config file can allow us to apply them to a majority of the blog posts or pages; for instance, setting the
same layout in each file, adding the same categories to a majority of posts, assigning the same author to all
the posts in the same folder, and so on. This type of configuration allows for even more reuse of code and it
works as shown here.

 defaults:
 -
 scope:
 path: "amazing-posts"
 type: "posts"
 values:
 layout: "my-site"
 author: "Mr. Hyde"

 In this example, everything that comes under scope has the same values applied to it. That’s the whole
purpose of using defaults in a site-wide configuration file. In this example, the layout my-site is being applied
to all posts under the folder amazing-posts/ and the author name is defined as Mr. Hyde. This covers the
last of the files, and the entire Kactus theme. We made it!

 ■ Note The latest release of Jekyll (Jekyll 3.0) has made some of the _config.yml in Kactus outdated. There
are two instances that need to be updated: The default Markdown compiler now is kramdown , not redcarpet ,
and the syntax highlighter in use now is rouge , not pygments . Both of these changes need to be applied to this
file before hosting on GitHub.

 Summary
 In this chapter, we broke the entire Kactus theme down into small components that we could examine to
see how Liquid and Markdown interacted within the context of Jekyll in this theme. This chapter was more
about the application of concepts that we have been learning on and off about previously. We started with
a few general principles about the folder structure and then looked further into each of the folders and the
files present in them. We talked more about the ideas behind the code through each of the sections as we
examined the code. This simple theme is a very powerful guided exercise and it was an opportunity to see
the code behind a full theme in action. It might be worth the time to go through this chapter again with fresh
eyes to understand any snippets of code that weren’t very clear. In the end, the application of concepts is
the easiest way to show how the components such as Markdown and Liquid give rise to inheritance and
reusable code that can make Jekyll aware. Blog-awareness is an emergent phenomenon that results from the
use of object-oriented principles, making Jekyll incredibly powerful and an easy tool to use for prototyping.
Our journey breaking down Kactus ends here. Review this chapter well because we will be using Kactus
again in the next chapter to create a very cool small project!

CHAPTER 7 ■ BLOG-AWARENESS

105

 Further Reading
 1. Popular Jekyll themes: GitHub Themes, https://github.com/jekyll/jekyll/

wiki/Themes

 2. Jekyll Now home page: http://www.jekyllnow.com/

 3. Smashing Magazine tutorial: http://www.smashingmagazine.com/2014/08/
build-blog-jekyll-github-pages/

 REVIEW

 In this review, we focus on a few interpreting tasks reviewing code similar to our Jekyll themes.

 1. Interpretive Task: The following piece of code creates a footer. What would the
output be like? Just draw it out on paper.

 <footer class="center">
 <div class="measure">
 <small>
 Theme crafted with <3 by John Otander

(@4lpine).

 </> available on Github.
 </small>
 </div>
 </footer>

 2. Interpretive Task : The following piece of code creates social media icons. Which icons
would be seen on a page? Use the font-awesome cheat sheet if necessary.

 <div class="social-icons">
 <div class="social-icons-right">
 {% if site.github_username %}

 {% endif %}

 {% if site.stackoverflow_id %}
 <a class="fa fa-stack-overflow" href="https://stackoverflow.com/users/{{ site.

stackoverflow_id }}">
 {% endif %}

 {% if site.twitter_username %}

 {% endif %}
 </div>
 </div>

https://github.com/jekyll/jekyll/wiki/Themes
https://github.com/jekyll/jekyll/wiki/Themes
http://www.jekyllnow.com/
http://www.smashingmagazine.com/2014/08/build-blog-jekyll-github-pages/
http://www.smashingmagazine.com/2014/08/build-blog-jekyll-github-pages/

CHAPTER 7 ■ BLOG-AWARENESS

106

 3. Interpretive Task: The following piece of code creates pagination. Review the
pagination covered earlier and then interpret this piece of code.

 <div class="pagination clearfix mb1 mt4">
 <div class="left">
 {% if paginator.previous_page %}
 {% if paginator.page == 2 %}
 Newer
 {% else %}
 <a class="pagination-item" href="{{ site.baseurl }}/page{{paginator.previous_

page}}/">Newer
 {% endif %}
 {% else %}
 Newer
 {% endif %}
 </div>
 <div class="right">
 {% if paginator.next_page %}
 <a class="pagination-item" href="{{ site.baseurl }}/page{{paginator.next_
page}}/">Older
 {% else %}
 Older
 {% endif %}
 </div>
 </div>

107© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_8

 CHAPTER 8

 Git It Done

 Don't let your dreams be dreams.

 —Shia LaBeouf

 We covered the Kactus theme in detail in the last chapter, but now it’s time to make something using Kactus.
In this chapter, we create a news brief web site using Kactus and implementing the web technologies that we
have been discussing thus far. Kactus is a good foundation for this project because it is a simple theme that
yields to modifications very easily. Our finished product with new style components would be very different
from the original theme. This is our first self-contained project, so we also discuss the thought process that
goes into starting a project: the design thinking involved in prototyping what the project should look like,
creating a wireframe of the project at different stages, and finally making a list of components that need to
be integrated into the project. These additional topics should give the reader a sense of how to start a new
project using Jekyll and arrive at a mental image of how the project should function. We also talk about
adding new style elements that we have not covered previously. Finally, we introduce how to use Git through
this project, and more specifically, how to host the project on GitHub and manage modifications to Kactus
using GitHub Desktop.

 Scope and Scale
 Planning is crucial in the early stages of starting a new project. Even though a good plan can’t account for
the unexpected, it can provide us with broad milestones. We have to turn those milestones into concrete
objectives that can followed throughout the project. If obstacles arise while executing the objectives, we
simply have to revisit the milestones and rethink the objectives in line with what we learned from the ones
that didn’t work. This iterative process is known by many names, but Kent Beck provided us with a complete
framework called Extreme Programming (XP) : starting projects with a simple design that constantly evolves
to add needed flexibility and remove complexity. There are two questions to keep in mind during the initial
planning phases of this project:

• What is the scope of this web site? The scope spans a multitude of factors, such
as the purpose of the project, the intended audience, and how that audience will
interact with the web site. Finally, the scope extends beyond the project to the
developer as well. How much time will a developer dedicate to maintaining and
updating the project instead of creating new content?

• What is the scale of this web site? The scale covers the resources required to
integrate new technologies with the web site in the future, reaching out to and
serving a large enough audience. This might involve techniques such as creating
mailing lists, which we talk about later in this chapter.

CHAPTER 8 ■ GIT IT DONE

108

 These two questions are broadly applicable to personal projects that you would like to show off, a
blog that you started to write, and even professional web sites for organizations. Let’s try to answer these
questions for Kactus. To begin answering, we first need a concise description of our web site: This web site
is going to be a news brief, where articles (roughly 140 words in length) are posted every day discussing the
delicate connection between science and society . Now that’s a simple yet comprehensive description of
what the project will be about. Great! Once we have this description, we can start thinking about the finished
product that will deliver the goals outlined in the description. To make this task simpler, the best solution is
to find other projects that have a description similar to ours so that we can draw inspiration from them. An
alternative method is to prototype your idea from scratch (this is sometimes the only possible way). However,
if we can find another app that already does most of what we want, prototyping becomes much easier.

 There are many web sites and apps for news briefs, but one of the best designed and functional apps
that accurately fits our description is the Economist Espresso app, shown in Figure 8-1 . Espresso is a mobile
app that provides a short list of news briefs (150 words long) every morning about what is happening in the
world. We want to accomplish something similar, but at a much smaller scale, with only one post per day
fitting the rest of our description. We also want to do a Web-version powered by Jekyll and not a mobile app.
We thus have two well-defined constraints that can point us in the right direction. Let’s go back to examine
the Espresso app, as we might discover some useful insights in the process that someone else has already
figured out.

 Figure 8-1. The Economist Espresso app shown in two panels. Panel A is the opening screen, listing the news
briefs split into different categories. Panel B shows what a single news brief looks like. The particular section
shown in this panel contains multiple briefs.

 We can obtain a lot of information from Figure 8-1 , and the first piece to note is the length of the briefs.
They are very short and to the point, with key words shown in bold. We can use syntax highlighting to
accomplish the same result, or we can simply boldface the words in Markdown. Figure 8-1 can also help us
decide the features that we don’t want in our app. For instance, our scope was one article a day, so we cannot
have all our briefs combined in a daily summary. That is not to say that we can’t use summaries, but instead

CHAPTER 8 ■ GIT IT DONE

109

of daily summaries we would have to do weekly summaries of the news briefs. Interestingly, that model works
well for many publications such as The Scientist, which uses weekly briefings to report on the top science
stories of the week. Just from examining an already existing app, we have a few ideas about how our product
should look or function. To get a realistic idea of what that a finished product might look like, we need to
advance our understanding of the project and how we approach it. Creating a simple prototype is a great way
to start modeling behaviour that our web site will exhibit. For instance, a news brief is analogous to a short blog
post. A very simple way to model a single news brief would be in a word processor, as shown in Figure 8-2 .

 Figure 8-2. A simple prototype of what a single news brief should look like. This rapid prototype was done
in a word processor, but it shows all the necessary features that we would want on a news brief web site: the
heading of the post, the date it was published, the post itself, and finally navigation to see older posts.

 ■ Tip The simplest way to prototype or storyboard an idea is to just do it on paper. It doesn’t matter how
poorly it is done: As long as you can get your ideas out, you can always go back and organize them on another
sheet of paper methodically.

 Once we have this base model of the prototype, it is easier to start adding components to it and making
more modifications. We can think of Espresso as a collection of features, and then decide which ones we
want to implement in our own project. The first feature we want to look at is the archive. Espresso has a
very nice archive organized by days, shown in Figure 8-3 . This archive can be reached from the Settings
and contains the articles organized by each day. Clicking on a different day takes you to the set of news
briefs published that day. We can model this archive by listing news briefs organized by the date and month
of posting. We can also use labels (in the archive) to list posts that have a common theme, much like the
categories in Figure 8-1 .

CHAPTER 8 ■ GIT IT DONE

110

 Figure 8-3. The archive in the Espresso ap p. The days on the top correspond to the articles published on that
particular day.

 Let’s think about prototyping this in the simplest way possible: We can go back to the word processor
that was used in Figure 8-2 to create the mockup of a blog post. Creating a hyperlink from the blog post
navigation bar to the Archive page would be sufficient for the web site, at least in the prototype. An example
prototype of an Archive page is shown in Figure 8-4 . So far, we have a two-page prototype (from the word
processor) that we can use to focus on the overall picture and answer the two questions that we posted at
the beginning of this chapter. The scope of this web site is to provide news briefs on topics that deal with
the connection between science and society. The web site will be a Jekyll blog with each news brief roughly
the Jekyll equivalent of a blog post. These briefs will be fewer than 140 words and we will post one per day.
There are two intended audiences for this web site: college students who are studying science or interested
in it and the general public or layman who reads the news briefs to learn what is happening in the world of
science.

CHAPTER 8 ■ GIT IT DONE

111

 The scale of the web site is small initially and we will be hosting it on GitHub Pages for the moment. In
this early testing period, you want to learn as much as you can about your audience and how they interact
with the web site. Other resources required for the web site are enabling comments by readers and capturing
their attention so that they come back to reading it again. Scale is all about testing and improving on the
features that your audience uses. This is not something we can prototype easily. However, we talk about
techniques such as creating mailing lists and integrating them into the blog to start building up a critical
mass in the latter half of this chapter. It is important to understand the rationale behind the extra steps that
we use in this chapter, such as drawing inspiration from the Espresso app and then prototyping the final
product, instead of just implementing features right away. This chapter is structured so that you will form
a mental representation of how the project should function and appear before we start coding. That’s why
we talked about Espresso, then moved on to a more concrete representation with a prototype, and finally
defined the scale and scope of the web site. In the next section, we pick up the Kactus theme again and you
are encouraged to follow the changes in code on your own code editor (Sublime).

 Tools List
 The scope and scale discussed earlier are actually part of a larger thought process that results in the creation
of a project specification. We create a complete spec in the next chapter. After creating a simple prototype
(either on paper or using a tool like a word processor), the last step before we start writing code is to make a
list of web technologies that we will be implementing in this project. This list is similar to a recipe that first
lists out the ingredients that you need and then the method of preparation. For now, it might be a good idea
to simply make the list on a piece of paper. With some practice, as you are writing these components down,
your mind will start thinking ahead in terms of concrete code snippets or the appropriate include files.
The following list shows the components we need.

 1. Disqus: This is used for comments on the news briefs. Disqus can be found at
 https://disqus.com/home/ .

 2. Font-awesome: This is used for navigation and simple stylistic additions. The home
page is found at https://fortawesome.github.io/Font-Awesome/icons/ .

 Figure 8-4. A minimal prototype of the archive. The posts for each day are listed by the month. This is the page
that users will reach after clicking the Archive link on a blog post or the home page.

https://disqus.com/home/
https://fortawesome.github.io/Font-Awesome/icons/

CHAPTER 8 ■ GIT IT DONE

112

 3. MailChimp: This is used for creating a mailing list and subscription to the list.
It can be found at http://mailchimp.com/ .

 4. Social buttons: These are used to share the news brief by using AddThis or
custom-creating the icons. This can be found at http://www.addthis.com/ .

 Just Do It
 We can finally get started modifying the code powering Kactus for the news brief. All the updated code from
Kactus is provided here and the files are available along with the book for the reader. In this project, we use
GitHub to host the final project. GitHub will convert the theme into a static web site powered by Jekyll and
then host it for us. In brief, GitHub is a web interface to Git, where source code under version control can
be hosted and modified collaboratively by developers. This allows multiple individuals or teams to work
together on a project. To use GitHub, you first need to create an account and verify your e-mail address.
Once that is done, you can start using it. The first order of business is to create a repository. Click New
Repository to get started or go to https://github.com/new .

 This repository needs to be configured in a certain way because we want it to hold the code for Kactus
and also host the web site on GitHub. The naming pattern of this repository will direct GitHub to use GitHub
Pages, which is the hosting tool powered by Jekyll used for processing Jekyll-based web sites. It can create
static web sites from the source code present in the repository. The appropriate naming scheme for the
repository is username.github.io , as shown in Figure 8-5 . It is crucial to name the repository in this manner
for it to be compiled properly by GitHub into a web site.

 Figure 8-5. The naming scheme for a repository to be converted into a web site: username.github.io

http://mailchimp.com/
http://www.addthis.com/
https://github.com/new

CHAPTER 8 ■ GIT IT DONE

113

 Once the repository has been created, it is ready to handle code. New code needs to be pushed to this
empty repository in a process often called the initial commit, which also makes the web interface of GitHub
available to us. To make the initial commit , GitHub needs a local repository to work with. This copy will
be synced and made available online. We use GitHub Desktop to manage the repository locally and push
code online. GitHub Desktop is a new tool built to bring the native workflow of Git to a visual application
for platforms such as Windows and Mac. You can easily connect to GitHub and publish or share code with
a few simple clicks. After a repository has been created as shown previously, you are given a few options to
make the initial commit. We use GitHub Desktop, so the best choice is to select Set up in Desktop, as shown
in Figure 8-6 . This will take you to the download page for GitHub Desktop, from which you should install the
version appropriate for your platform.

 ■ Tip To review Git terminology or the need for version control, refer back to Chapter 4 and review the
sections on version control.

 Figure 8-6. Downloading GitHub Desktop to set up this git repository . Notice that the username in this
example is jekyll-mini-blog and the domain associated where the website will appear is jekyll-mini-
blog.github.io

 After the installation is done, open GitHub Desktop, which shows the Tutorial by default. It is a good
idea to walk through the tutorial to understand the software. To get started, click on the gear icon near the
top right and go to the Options setting. In the Options setting, log in to the GitHub account with which you
created the repository, as shown in Figure 8-7a . Once you have logged in, click the plus sign near the top left
of GitHub Desktop to access the empty repository that we created earlier. This is shown in Figure 8-7b . After
cloning the repository, you will be prompted for a location on your computer to which to save the repository,
which will become our local version. Remember this folder location, as we will use it shortly. Initially, we
don’t see anything in GitHub Desktop because the cloned repository is empty; however, we now begin
adding files to it.

http://dx.doi.org/10.1007/978-1-4842-1464-0_4

CHAPTER 8 ■ GIT IT DONE

114

 Figure 8-7a. Adding the GitHub account with which you created the repository will allow you to access the
repository and clone it.

 Figure 8-7b. Cloning the repository locally after signing in. After selecting the available repository, click Clone
 repository-name and you are done.

CHAPTER 8 ■ GIT IT DONE

115

 The process of adding new code, files, and images is all the same, and it revolves around three steps:
 add, commit, and push . In brief, new files (code and noncode) are added to the repository under Git.
The files are finalized in a commit that takes a commit message as a comment on what changes are being
introduced. Finally the commit containing the changes and a description of those changes is pushed to
GitHub, where the code will be hosted. This process is basically repeated for every change introduced to
the project. The objective is to keep those changes small and testable because in that manner, when we
make a mistake, it is easy to track down which commit introduced those problems. In this fashion, we can
easily diagnose problems with a project that requires long-term development and also a project that will be
improved over time, such as a blog or our news brief web site.

 We are ready to make the initial commit. In this first commit, we add all the files from the original
Kactus theme. This can be accomplished in a few ways, but we will go with the simplest approach for now:
Download the Kactus theme as a zipped file (shown in the previous chapter), extract it, and copy all the
files over to the local location of the cloned empty repository. Once the files have been copied over, GitHub
Desktop will be populated with all the new changes to be added. This group of changes is the commit that
we will push to GitHub, as shown in Figure 8-8 . Once the changes become visible in GitHub Desktop, add a
commit message and then click Commit to master.

 Figure 8-8. The initial commit : A set of changes importing the Kactus theme into the repository. Each commit
must be a small and manageable set of changes, so that debugging becomes easier. The exception is the initial
commit.

CHAPTER 8 ■ GIT IT DONE

116

 Once the changes are committed, it is time to push the code to GitHub. This step has many names:
Sometimes it is simply referred to as pushing and other times as publishing or just committing code.
GitHub Desktop calls it publishing changes to the repository, which is a functional description. In the top
right corner, clicking Publish will finalize the changes to the repository and make them available online, as
shown in Figure 8-9 . Pushing the code to GitHub has a few other noteworthy effects: In this case, the pushed
changes contain Jekyll components and Jekyll-formatted source files. We also named the repository in a
way to let GitHub know to use GitHub Pages and compile the web site using Jekyll. After the code is pushed,
within the next ten minutes or so, the live version of Kactus-theme (which is exactly what we pushed in
the initial commit) will be available on jekyll-mini-blog.github.io . In the future, all changes pushed
to this repository will trigger GitHub to recompile the blog, but the changes will be reflected on the live
version nearly instantaneously. When GitHub finishes compiling the blog, it will be published online at the
 username.github.io address for users to access.

 Figure 8-9. Publishing changes after the initial commit. Clicking Publish pushes the changes to the repository
and makes them available on GitHub.

 ■ Tip To make any change to the live website, we must first make those changes to the local version. After
that, the changes need to be pushed to GitHub where GitHub Pages will use Jekyll to recompile the blog. The
newly compiled blog will reflect the changes we just pushed. To make new changes, we have to go through the
process of add, commit, and push with GitHub Desktop each time.

 Font-Awesome
 We can now start working through a few examples of this process for our project. Let’s start implementing
the features we covered in the web technologies list. The first one is font-awesome. To briefly review it, font-
awesome provides a standard set of web and brand icons free for personal or commercial use. These icons
make it easy to illustrate something quickly with almost no effort. The web site for the project is available at:
 https://fortawesome.github.io/Font-Awesome/ .

https://fortawesome.github.io/Font-Awesome/

CHAPTER 8 ■ GIT IT DONE

117

 We look at the code first before switching back to GitHub Desktop. Implementing font-awesome is very
straightforward. To follow the instructions on the web site linked earlier, click Getting Started. We use the
MaxCDN link to get access to font-awesome. The proper location to place the import is in the <head> tag. In
Kactus, the head tag can either be in a file under _includes or _layouts . One way to tell is generally the name
of the file itself; for convenience, most themes would name such files head.html or header.html . In this case,
there is no such file, so we move on to _layouts , where in default.html , we find the head tag as follows:

 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>{{ site.name }}{% if page.title %} - {{ page.title }}{% endif %}</title>
 <link rel="shortcut icon" href="{{ site.baseurl }}assets/images/favicon.ico">
 <link rel="stylesheet" href="{{ site.baseurl }}assets/css/style.css">
 <link rel="alternate" type="application/rss+xml" title="My Blog" href="{{ site.baseurl }}
rss.xml">
 <link rel="stylesheet" href="{{ site.baseurl }}assets/css/highlight.css">
 </head>

 We add the font-awesome line to the very end as shown here.

 <link rel="stylesheet" href="{{ site.baseurl }}assets/css/highlight.css">
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-
awesome.min.css">
 </head>

 That was it! The simplicity of font-awesome makes it absolutely delightful to use, and soon enough, we
will start implementing the icons, too. One rationale behind placing this code in default.html is that every
layout will inherit from this file, making the imports instantly available to every page in the theme. Once this
code has been added to default.html , this should come up as a new change in GitHub Desktop because
this entire project is under version control. Let’s work through how to add this change, commit it, and then
push the code. The commit message should be simple, yet descriptive enough to give us an idea of what
changes are being pushed to the live web site, as shown in Figure 8-10 . In addition, GitHub Desktop also
shows the changes made to the file present in this commit. Remember that every time a change is made, it
is available in GitHub Desktop. Once a series of changes are available, it is time to include all of those in a
commit and push the changes. The goal is to include a small set of changes to push each time in a commit,
and these commits can be derived from breaking down large project goals into small, manageable tasks. It is
very easy to get lazy with commit messages, but they are critical to managing a large project with a long-term
history of changes. Our first commit added font-awesome to the project, and the next series of commits will
change the outlook of Kactus.

CHAPTER 8 ■ GIT IT DONE

118

 Navigation
 Let’s start by fixing the navigation bar at the top of the site. The objective here is to point the Subscribe
button to an empty link that will be replaced by MailChimp later on and move the current link to feeds to an
RSS navigation bar element. We also add the appropriate font-awesome icons to each of the navigation bar
elements. For reference, use the font-awesome cheat sheet. The following are the appropriate font awesome
icons to be used for the navigation bar.

• Home: Uses a unicode back arrow to be replaced with fa-arrow-left .

• RSS: New element, font-awesome companion: fa-rss.

• About: No current icon, font-awesome icon: fa-cog.

• Subscribe: No current icon, font-awesome icon: fa-envelope-o.

 Let’s see how these modifications (adding an RSS element and font-awesome icons) look in code for
 navigation.html .

 <nav class="main-nav">
 {% if page.url != "/index.html" %}
 <i class="fa fa-arrow-left"></i> Home
 {% endif %}

 Figure 8-10. Adding a commit message to the change made in default.html including font-awesome.
The actual line of code added is visible in the panel on the right. After the change has been added through a
commit, click Sync to push the changes to GitHub and update the live web site. This is essentially the process of
add, commit, and push in Git.

CHAPTER 8 ■ GIT IT DONE

119

 {% if page.url != "/about/" %}
 {% if site.aboutPage %}
 <i class="fa fa-cog"></i> About
 {% endif %}
 {% endif %}

 <i class="fa fa-rss"></i> RSS
 <i class="fa fa-envelope-o"></i> Subscribe
 </nav>

 Once the modifications have been made in navigation.html , it is time to commit the changes and
push the code to GitHub so that our live copy can be updated. This process is reviewed once again in
Figure 8-11 . From here on, we focus only on the code, as the process remains the same for every single
change made to the local version. This second commit adds a few font-awesome icons to the navigation
bar, and now we need to start changing the web site itself to get it closer to the prototype that we presented
earlier in this chapter. To do so, the first element to be removed is the profile near the top.

 Figure 8-11. Demonstrating a commit of changes and pushing code to GitHub. After adding the font-
awesome icons to the navigation bar, a commit message is added and the changes are pushed to GitHub.

CHAPTER 8 ■ GIT IT DONE

120

 Page Profile
 The code for the page profile is found in _layouts under default.html , and under the <body> tag is the code
we need to remove (shown as the bold snippet).

 <body>

 {% include navigation.html %}

 {% if page.profile %}
 {% include profile.html %}
 {% endif %}

 This will make the profile stop showing up at the top of the page. Now we repeat the cycle of add, push,
and commit to make the change available on the live web site. We can now start changing the layout of the
page itself to make it look more like the prototype that we proposed.

 Pagination
 One unique aspect about Kactus is that the pagination variable is defined in the config.yml file. This means
that we can change how many posts to keep on a single page before a page break and continuing on to the
next page. If we make that number 1, then the web site will display only one post. This is the code that needs
to be changed:

 markdown: redcarpet
 highlighter: pygments

 paginate: 1

 This will make one post per page possible. This little trick has a major advantage: It lets us retain the
pagination features such as links to the next page and previous pages and use them as navigation below
the post. To see this in action, we have to create a few quick posts to be included on the blog. Let’s copy the
YAML from the one post present and make a new post out of it. This is the part that needs to be copied:

 title: "Welcome to Jekyll!"
 date: 2013-11-10 10:18:00
 description: Thriller Comedy Horror

 The date and the description need to be changed for each post, and the newly created posts need to be
saved as new files in the Jekyll format year-month-date-filename.markdown . In Sublime, there is a quick
way to make a dummy post: Just type in lipsum and press Tab to get the standard dummy text on the post.
Just type it again to get another paragraph, and that will be the second file. Now add these changes and push
them to GitHub. In this commit, we have two new files and an edit to config.yml that will be available on the
live web site. The web site now looks more like Figure 8-12 ; the additional bar under the navigation bar will
be cleaned up later on.

CHAPTER 8 ■ GIT IT DONE

121

 Post List
 The next task is to change how the web site displays the posts: Instead of just loading up a list of the posts, we
need to display the text along with the post. For this, we would have to look into post-list.html , and this
file is crucial for the transformation of the Kactus theme into our news brief. The first elements we need to
remove are the hyperlinks from each post to the post layout from the title and the date. We want to display
the post itself on the home page. This can be done by simply removing the hyperlink <a> tag entirely, and to
keep the date in the same location, we can use a in the same line as well:

 <aside class="dates"> {{ post.date | date:"%b %d" }}</aside>
 <h1>{{ post.title }}</h1> <h2> {{ post.description }}</h2>

 The next step is to actually show the content of the post as an item of the page list. In this way, the page
list loops through each post and shows its name, the date it was created, and the content of the post. This is
a very important distinction to make because every change that needs to be displayed on each post will have
something to do with the post list. To display the content of the blog post, let’s look at how the default layout
shows the content of each post. The default layout uses the following code snippet:

 <section id="wrapper" class="{% if page.profile %}home{% endif %}">
 {{ content }}
 </section>

 The section tag allows the default layout to wrap the Liquid content variable in it and display it. We can
simply modify this to not include the profile each time, as follows:

 <section id="wrapper">
 {{ content }}
 </section>

 That’s it! It was very easy to do this because we could simply borrow from the default layout. Now we
can add this to the post list file along with two font-awesome icons:

• Post Description: fa-commenting-o

• Post Date: fa-calendar-check-o

 Figure 8-12. The web site at its current stage. The title of the first post here depends on which post was dated
most recently. That is the post that will show up first, another pagination feature, along with the Older Posts
buttons that are retained by simply changing the config.yml .

CHAPTER 8 ■ GIT IT DONE

122

 Let’s look at post-list.html after the modifications. The lines of code shown in bold indicate the new
changes.

 <ul id="post-list">
 {% for post in paginator.posts %}

 <aside class="dates"><i class="fa fa-calendar-check-o"></i> {{ post.date | date:"%b
%d" }}</aside>

 <h1>{{ post.title }}</h1> <h2><i class="fa fa-commenting-o"></i> {{ post.description
}}</h2>

 <section id="wrapper">
 {{ post.content }}
 </section>

 {% endfor %}

 {% if paginator.previous_page or paginator.next_page %}
 {% include pagination.html %}
 {% endif %}

 After pushing this code, the web site is finally starting to look more like the prototype, and the end result
is shown in Figure 8-13 . Keep in mind that the post layout itself is not being used here at all; we are using a
trick to show the details of a post such as the name, date, and most important, the contents of the post as a
list item (or items). This idea might be easier to conceptualize if we think of it in terms of objects. Each
item in the post list is an object with multiple properties such as a name, a short description, and the blog
post content. The post list is only a for loop that goes through each of the objects, showing it in a previously
specified manner.

CHAPTER 8 ■ GIT IT DONE

123

 Share Buttons
 Now that the post content appears on each post, we need to make it shareable by including share buttons.
The post layout actually has a footer that contains share buttons that we can repurpose to our own use in
the post list. The best way for us to reuse it would be to modularize the code and put it in a separate file,
including it only where necessary. The original share buttons in Kactus are present in a footer shown in
Figure 8-14 . The code for the social buttons is present in _includes/social.html and the implementation is
in the post layout shown here.

 <footer id="post-meta" class="clearfix">

 <div>
 {{ site.author }}
 {{ site.description }}
 </div>

 Figure 8-13. The post content present along with the post title, description, and date. At the bottom, the
pagination navigation bar shows the Older Posts link. Kactus is starting to look more like the prototype
discussed earlier.

CHAPTER 8 ■ GIT IT DONE

124

 <section id="sharing">
 {% include share.html %}
 </section>
 </footer>

 Figure 8-14. Social icons in a share bar with the author name and summary, after foot.html is included

 This segment of code creates a footer containing a social profile, the description of the site, and the
author’s name. We need to save this snippet as a file itself so that the code can be reused in the appropriate
files. The proper location to place this would be on top of the pagination navigation bar. We can copy this
snippet and save it as foot.html for further use. We will be including this file within pagination.html and
the rationale behind placing it here instead of the post list file is that spacing the web site would be easier
later on when we clean up the news brief. This include is very easy; just add the following to the top of
 pagination.html :

 {% include foot.html %}

 That should do the job. Notice that we didn’t write any code this time, we simply repurposed code in a
different context by creating a new file. That’s the power of modularity in Jekyll. We had to do no work this
time to get the social buttons. The final result would include the social icons bar right above the pagination.
Just ignore the extra horizontal rules for now, as we will clean them up at a later stage as we add colors to the
site and also a title.

 We only covered two social media icons here, but to add a larger variety of social media icons or enhance
the intractability of the user with the web site, there are two other very nice tools. The first one is a third-
party service called AddThis, which creates a small social share bar that loads on the side of every page. This
share bar can be filled with any of the hundreds of social media sites of the user’s choice on AddThis.com.
The second service is more subtle, but you might have come across a blog where you could select a line and
share the post by quoting the line you selected. This service is called Flare by Filament. It also works similar to

CHAPTER 8 ■ GIT IT DONE

125

AddThis, where a script loads up the service and the users can interact with it. The main difference between
AddThis and Flare is simply the subtle share options when the reader selects a line. One recommendation for
this news brief site is to use custom icons to share the post along with Flare to quote and share a specific line.
In general, this type of sharing increases user interactivity. A good tutorial to get started with Flare is available
at http://www.dtelepathy.com/blog/products/share-content-with-flare .

 Archive
 Our prototype also included an archive feature, so let’s build that into the pagination navigation bar. This
one is very easy: Simply go into pagination.html and replicate an <a> tag to point to an archive page. If we
look in the file, we can see remnants of unicode arrows, so let’s replace those with font-awesome while we
are updating the file as follows:

• Front-arrow: Older posts - fa-arrow-right

• Back-arrow: Newer posts - fa-arrow-left

• Archive: fa-archive

 The code to include the archive looks like this (shown as the bold line):

 {% endif %}

 <i class="fa fa-archive"></i> Archive

 {% if paginator.next_page %}

 The archive is not pointing to anything because the page has not yet been created. Let’s work on
that next.

 ■ Note The archive can be created in many ways; some are simple and others are more complex. In this
chapter, we are going with a simpler approach because we have not yet covered how to use plug-ins in Jekyll.
As a result, the archive created in this chapter does not look the same as the one proposed in the prototype.
That is also a reality of prototyping: The features created in a prototype often don’t translate well to production
web sites. In this case, a beautiful archive can be created with ease by using plug-ins. You can revisit this
project and upgrade the archive after learning how to implement plug-ins.

 The code for generating an archive is shown here. The main idea of an archive is to display each of the
posts along with the date on which it was published. All the add-ons, such as categorizing by year or even
months, require more complex loops and capture statements.

 title: Archive
 permalink: archive/

 <section id="archive">
 <h3>Most recent posts</h3>

http://www.dtelepathy.com/blog/products/share-content-with-flare

CHAPTER 8 ■ GIT IT DONE

126

 {%for post in site.posts %} <!-- For loop for categories -->
 {% unless post.next %}

 <ul class="this">
 {% else %} <!-- Capture the year and compare them -->
 {% capture year %}{{ post.date | date: '%Y' }}{% endcapture %}
 {% capture nyear %}{{ post.next.date | date: '%Y' }}{% endcapture %}
 {% if year != nyear %}

 <h3>{{ post.date | date: '%Y' }}</h3> <!-- If the years don't match, create a new
heading-->

 <ul class="past">

 {% endif %}
 {% endunless %}

 <time>{{ post.date | date:"%d %b" }}</time>{{ post.title
}} <!-- Listing out the date and the titles -->

 {% endfor %}

 </section>

 The logic in the archive loops is to go through each post available and capture the year it was published.
Then the years are compared to each other. If the year for the next post is not the same as the current
post, that must mean the next post was published in a different year than the current post. If the years
being compared are different, a new heading is created for the year and the posts are all listed under the
appropriate year. In this manner, the post date can be differentiated and organized. The rest of the code
deals with creating a list of the posts with the URL linked to the title of the post. This code is a bit complex,
but the main ideas can be broken down into organizing the appropriate posts within each year and then
listing them on the archive page. The multiple loops make this process a little easier to categorize and
display. There is an even simpler approach to creating an archive as a simple list of all the posts, which can
be done with the following snippet:

 {% for post in site.posts %}
 * {{ post.date | date_to_string }} » [{{ post.title }}]({{ post.url }})
 {% endfor %}

 In this snippet, one loop goes through all the posts and the * represents the Markdown character to
create a bullet point. Each post is listed by its date and then hyperlinked using the title to the post URL. This
creates a simple, yet functional archive. Let’s spend a little bit of time on the front matter as well. In this case,
the title is actually the title of the page, and the permalink gives an address for the page after the baseurl.
The address to access the archive is given as username.github.io/archive and this was defined by the
permalink. To create new pages, save the file as filename.md and specify the permalink to access it. Now we
can update our link from earlier in pagination.html for the navigation bar.

 <i class="fa fa-archive"></i>
Archive

CHAPTER 8 ■ GIT IT DONE

127

 Comments
 Now that we are done creating the archive, the next objective is to integrate a commenting system. We
use Disqus for this web site. It is one of the most widely used commenting systems and it is very easy to
implement as well. To get started, create an account on https://disqus.com/ .

 Disqus will load independently of the web site, but it works as a system that becomes embedded. After
creating an account, click the gear in the top right corner to see the settings menu, shown in Figure 8-15 .
From this menu, select Add Disqus To Site.

 Figure 8-15. The settings menu near the top right of the web site, with the Add Disqus To Site option

 That should take you to the Disqus Engage platform, which is the commenting system. Select Start
Using Engage, which should take you to the site registration page, shown in Figure 8-16 . This registration
simply asks you for the name of the site, a URL where the site becomes available on Disqus, and finally the
category of the web site. Click Finish registration to complete the process and get to the actual integration
page. Here you are given a few options based on the blogging platform that you use. We would be using the
universal code for this project, but the Kactus theme, like many other Jekyll themes, comes along with the
universal code implemented with a variable used for disqus_shortname . This variable can be defined in
 config.yml according to what Disqus assigns you.

https://disqus.com/

CHAPTER 8 ■ GIT IT DONE

128

 Once the registration is complete, it is time to set up Disqus on the web site, and for that we need the
shortname. After finishing registration, Disqus takes us to the Choose a platform page, which has a sidebar
containing all the settings, shown in Figure 8-17a . Select the Basic tab, and scroll halfway down the page to
reach the Site Identity heading; the shortname is given under that heading, as shown in Figure 8-17b .

 Figure 8-17a. The sidebar containing options to install Disqus. The Basic option takes you to the site settings

 Figure 8-16. Registering to use Disqus on the web site. These required fields will activate Disqus on the news
brief site and allow users to comment on posts.

CHAPTER 8 ■ GIT IT DONE

129

 Figure 8-17b. The Disqus shortname revealed in the site properties. We use this in the config.yml

 Once we have this code, we need to update our web site to enable Disqus and define the shortname
associated with the domain that we want to use it on. To do this, let’s look at the config.yml file for the
variables.

 disqus: true
 disqus_shortname: newsbrief-jekyll

 These variables enable Disqus, but we still have another issue: The comments are enabled for the
post layout, and for that reason, they will not be present on every news brief. Conceptually, as of now, each
news brief is being displayed on the web site as a post list object with blog-post-like properties. To display
comments, we simply add another property to the object. The proper location of Disqus comments to be
displayed for each individual news brief is right below the pagination navigation bar, shown as follows:

 </nav>
 {% include disqus.html %}

 That completes setting up and enabling Disqus for our news brief page. Notice that adding comments
was not a feature we prototyped earlier, but decided to include in production because it made sense to have it.

 MailChimp
 The next task is to setup MailChimp to capture an audience and keep them coming back for more. Using
Mail Chimp efficiently is a lengthy endeavor, so we split our discussion of MailChimp into two phases:
setting up the mailing list signup form, which is covered in this chapter, and running a campaign using the
mailing list, which is covered in the next chapter. The signup form is the subject of this section because we
will be including this in the top bar, which includes the Subscribe button. Here’s an outline of what we will
be covering: Sign up for MailChimp, set up the mailing list, set up the signup forms, and finally configure the
navigation bar link for the web site. To get started with MailChimp, go to mailchimp.com and sign up. Once
your account is confirmed, you are asked for some details about yourself, as shown in Figure 8-18 .

CHAPTER 8 ■ GIT IT DONE

130

 The initial setup takes only a few minutes. After completing the setup, you are brought back to the
dashboard, shown in Figure 8-19 . From here, we can being creating a signup list.

 Figure 8-18. MailChimp signup page . Fill out the required information (not shown here) on this page to get
started

 Figure 8-19. Creating a list in MailChimp, after signing up and providing the initial information for the
mailing list

 Clicking Create a list, opens a List Details page . This page requires you to provide more information
about the mailing list, such as the default from address, a reminder for people to know how they found this
mailing list (which is an I-CANN antispam requirement), and a few other minor details. The mailing list is
almost ready after you fill in this page, as shown in Figure 8-20 .

CHAPTER 8 ■ GIT IT DONE

131

 After filling in the list details, the mailing list is almost ready, and it is time to set up the signup form.
When you click Save for the mailing list, you see a confirmation on the top of the page letting you know that
the mailing list was created as shown in Figure 8-21 . The last step is to configure the signup form so that we
can include it on the web site.

 Figure 8-20. Completing the mailing list details. Once completed, the mailing list is almost ready to be used

 Figure 8-21. The confirmation on the top signifies that the mailing list is ready. Below that is the link for
signup forms that we will edit next.

 The purpose of the signup forms is to start building a following with the mailing list and keep visitors
coming back to the news brief page. Once you have a dedicated following, monetization strategies could
help bring in revenue. Clicking on the signup forms will take you to a list of the different types of forms. We
will be editing the General forms, as shown in Figure 8-22 .

CHAPTER 8 ■ GIT IT DONE

132

 This selection takes you to a page for editing the General forms. The page itself shows a form and it has
numerous options for editing, adding fields, removing fields, and adding text. We can keep this form very
simple and only ask the bare minimum, as shown in Figure 8-23 . In general, the fewer fields a user has to fill
out, the more likely he or she is to complete the form and sign up for the mailing list.

 Figure 8-22. The different possible signup forms available in MailChimp. We will edit the General forms

 Figure 8-23. Editing page for the signup form . This page allows us to customize what readers see if they
choose to sign up for the news brief site mailing list. The editing page contains a variety of options in the right
sidebar for customization of the information that we have about a reader and even theming of this page. The
URL near the top of the page is the link to this form that we can use in the news brief site navigation bar.

 Cleaning Up
 The previous section covered setting up the signup form and the mailing list. Now let’s return to our web site
and clean up the news brief site by adding colors and removing unnecessary style elements and padding.
The current state of the web site is shown in Figure 8-24 .

CHAPTER 8 ■ GIT IT DONE

133

 Let’s start with the title. The best placement for the title would be right under the navigation bar, which
would allow the title to remain spaced in between the navigation and the news posts. The following code
should do the trick, in navigation.html :

 <h1 align="center" style="color:rgb(103, 65, 114)"><i class="fa fa-bolt"></i>
 Science Brief </h1>

 The bold code is actually the title. This line does three things: add a fa-bolt font-awesome in front of
the title, provide the title itself, and color it using the style element. As another example, let’s add a brick red
color to the post.title

 <h1 style=" color:rgb(150, 40, 27) ">{{ post.title }}</h1> <h2><i class="fa fa-
commenting-o"></i> {{ post.description }}</h2>

 Now that we have added two colors, it is time to start removing elements and adjusting spacing. Given
that we are editing style elements, it stands to reason that the code behind those elements would also be
found in the style files. In this project, the style files are located in assets/css/style.css and the actual
file is very lengthy, but there is an easier way to edit the file. Notice that the assets folder doesn’t have a
 _foldername in front of it, which implies that this folder is not one of the folders that Jekyll processes into
HTML. The implication of this is that the code present in that folder is the same as the one on the production

 Figure 8-24. The current state of the web site. Notice the issues we need to clean up: the padding after the end
of blog post content, the extra horizontal rule above the pagination navigation bar, a title for the web site, and
adding color to headings.

CHAPTER 8 ■ GIT IT DONE

134

web site. For that reason, we can use the console in a browser like Chrome to edit the code as it looks. The
exact same changes can be carried over to our local copy and we would have fixed all the style elements.
Let’s start with removing the extra hr element present above the pagination bar. One way to accomplish this
is to remove the horizontal rule (border) under the sharing icons and then remove the padding to bring the
two elements closer. This will allow the page to flow more naturally. In Chrome, pressing F12 launches the
inspection console that can show you the code for each element as you hover the mouse over it. The inspect
button is near the top, on the left side of the console, as shown in Figure 8-25 .

 Figure 8-25. Opening the console to examine the style elements of the blog. The inspect button is highlighted
at the top left of the console. When you click this button, just hovering the mouse over a style element will bring
you to the HTML code in the top part of the panel, and the CSS in the bottom panel. It points exactly to the
lines in the code that contain the style code.

 You can edit the styles in the panel and observe their effects on the web site on the left side of the
screen. In this case, to remove the border underneath the share icons, just click on the bottom border
element and press Delete to remove that element. You will immediately see the effect of deleting the element
on the web site. To close the space in between the pagination bar and the social icons, just delete the
 padding-bottom element as well. The next part is to close the spacing in between the end of the post content
and the beginning of the social icons bar. To do this, let’s examine that region using the Inspect element. We
find the following lines as the source:

 #wrapper {
 max-width: 600px;
 margin: 0 auto;
 padding: 60px 40px 100px 40px; }

 The line shown in bold is the main culprit, and the largest padding space is the 100px present. If we
reduce that to 10px , our gap will be gone! That removes the second gap and the cleaning up is complete.
Our web site now looks ready, as shown in Figure 8-26 .

CHAPTER 8 ■ GIT IT DONE

135

 ■ Note Even though we can see the effects of removing or adding elements immediately on the web site,
these changes still need to be carried over to the actual styles.css file and applied to the exact lines stated in
the console. For instance, the wrapper element mentioned earlier corresponds to line 141 in styles.css . When
you browse the file, line 141 really does begin with the wrapper element. The changes made in the browser
are only temporary, and they need to be carried over to the file. Once these changes are made, they need to be
added in a commit and pushed like any other change to this web site.

 Summary
 In this chapter, we tackled a full-length project of creating a news brief web site and introduced a wealth of
ideas by editing the Kactus theme. We applied new technologies to this project by integrating the knowledge
gained and topics covered over the past chapters, implementing font-awesome, Disqus, and MailChimp. We
also discussed the topic of version control, and specifically Git, in the context of this whole project. GitHub
Desktop is an indispensable tool that allows us to visually commit our changes. We used it to push every
change to the live web site. We also introduced a few style changes to make the web site more complete. We
discussed some ideas behind project management, such as prototyping, and how to identify the scope and
scale of a project. The prototype we created guided the actual coding and modifications that we made to
Kactus. In most large projects, in-depth planning and creating well-defined specifications for a project saves
a lot of resources and minimizes risk.

 Figure 8-26. The effects of our cleanup on the web site. The additional padding, borders, and spacing have all
been removed and the web site looks better without all the gaps.

CHAPTER 8 ■ GIT IT DONE

136

 Further Reading
 1. GitHub Desktop guides: https://help.github.com/desktop/guides/getting-

started/setting-up-github-desktop/

 2. Livefyre commenting system: http://web.livefyre.com/comments

 3. Getting started with MailChimp: http://mailchimp.com/resources/guides/
getting-started-with-mailchimp/

 4. Flare by Filament: http://filament.io/flare

 5. Adding social buttons to Jekyll: http://vdaubry.github.io/2014/10/20/add-
social-sharing-buttons-with-jekyll/

 6. Simple post sharing in Jekyll: http://codingtips.kanishkkunal.in/share-
buttons-jekyll/

 7. AddThis social sidebar: https://www.addthis.com/

https://help.github.com/desktop/guides/getting-started/setting-up-github-desktop/
https://help.github.com/desktop/guides/getting-started/setting-up-github-desktop/
http://web.livefyre.com/comments
http://mailchimp.com/resources/guides/getting-started-with-mailchimp/
http://mailchimp.com/resources/guides/getting-started-with-mailchimp/
http://filament.io/flare
http://vdaubry.github.io/2014/10/20/add-social-sharing-buttons-with-jekyll/
http://vdaubry.github.io/2014/10/20/add-social-sharing-buttons-with-jekyll/
http://codingtips.kanishkkunal.in/share-buttons-jekyll/
http://codingtips.kanishkkunal.in/share-buttons-jekyll/
https://www.addthis.com/

137© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_9

 CHAPTER 9

 Photo Blogging

 Photography takes an instant out of time, altering life by holding it still.

 —Dorothea Lange

 We just finished building our first project with the Kactus theme, and here we begin another exciting
project. This time, we build a Jekyll-based photo blog with some nice add-ons. We begin this chapter with
a discussion of the scope and scale for this project and then dive into the details. We make a formal project
specification that details the features to be implemented in the photo blog and technologies that we will
use. This is presented in a general format so that the reader can adopt the spec to any personal or hobby
projects. After going over the spec, we look for a Jekyll theme that can be modified to meet our goals. We
then prototype the project in the simplest way possible. Once the prototype is done, we can start making
modifications to the Jekyll theme and implementing features. We also discuss web technologies related to
photo blogging, such as using a content delivery network (CDN) . Finally, we end this chapter by going over
how to create and run a MailChimp campaign.

 There can be many motivations behind building a photo blog: You can use it to track your experiences
on a journey, or perhaps put together pieces from your life that you want to share with the world. In this
project, we create a Jekyll blog that acts as a personal portfolio to show off your photography skills, in a
manner that you enjoy. To keep readers engaged with the blog, we integrate MailChimp and use it to send
a “picture of the day.” There are several ways of operating and maintaining a portfolio, but a freemium
blog approach would work best in the long run. Within this technique, daily content discussed by the
photographer on the blog engages the readers and eventually converts them into paying users for any
photography that you might want to sell. Before we go any further with this project, there are two restrictions
that we must keep in mind:

• Hosting pictures on GitHub and then incorporating them in a Jekyll theme is not
efficient or preferred. There will be significant lag on the web site (load time), driving
users away from it.

• Selling photography on the blog itself would involve setting up a shopping cart and
would create unnecessary overhead in terms of complexity, maintenance, and costs.

 The best option for us would be to to offload the photography on a platform meant to share and sell
photos, such as 500px. Before diving into the code, we also discuss why Jekyll is an ideal platform for the
portfolio. Jekyll doesn’t natively support photo galleries, but that won’t stop us from trying indirectly.
Compared to other blogging engines like Wordpress, implementing a photo gallery in Jekyll is slightly more
difficult, but definitely very doable.

CHAPTER 9 ■ PHOTO BLOGGING

138

 Project Specification
 Let’s start by describing the technical requirements for this project. The photo blog will be built using Jekyll
so we need a Jekyll theme, we need to modify the theme, and we also need to use a photo hosting service like
 500px . To satisfy these technical requirements, we create a project spec. A spec is similar to a blueprint that
breaks down the goals of a project into smaller tasks and then matches the tasks with the corresponding web
technologies. As such, the spec is divided into three main sections: broad goals, TODOs, and technologies.
The goals section also includes the scale and scope of the project. Let’s create a project spec for this photo
blog as follows.

 Broad goals

 Scope: A static blog that embeds photography hosted elsewhere, and daily blog
posts about interesting pictures across the Web.

 Scale: A minimal theme hosted on GitHub pages for a blog showcasing a
personal portfolio, with MailChimp incorporated, which is free for the first
2,000 subscribers.

• To create a photo blog with Jekyll that can act as a personal portfolio.

• To embed photos in the blog using 500px.

• To find an appropriate theme to showcase the photography.

• To blog daily about photos, discussing their relevance or significance.

• To send a picture of the day to readers.

• To set up a method for readers to purchase your photography.

 TODO s

• Find an appropriate theme for the blog.

• Edit the theme to remove any unnecessary elements.

• Create a blog layout that also contains some portfolio elements.

• Set up a 500px account.

• Learn about the 500px embed codes.

• Learn how to assign prices to 500px photos.

• Set up MailChimp to send the picture of the day.

 Technologies

• Jekyll

• GitHub Pages

• Front-end frameworks in the Jekyll theme

• MailChimp

• 500px

 This spec is simple enough to get us started for now, but we refine it and make it more comprehensive
in later projects. The spec provided here is enough to get a full picture of what we will be building. Now that
we have a spec, the next step is to create a simple prototype that can be used to guide our search when we
look for a theme. The prototype shown in Figure 9-1 was created in PowerPoint to demonstrate that you can

CHAPTER 9 ■ PHOTO BLOGGING

139

make basic drawings quickly in PowerPoint. This design is very rudimentary, but there’s a reason for this:
More often than not, this type of sketch is about all you would have the chance to do. Prototypes are not
meant to be perfect representations, but only to place your thoughts on paper, and this sketch accomplishes
that purpose.

 Figure 9-1. A simple sketch of the photo blog with the core elements placed on the canvas. This sketch was
made in PowerPoint to guide our search for a Jekyll-theme based around these elements. Notice the progression
here: The spec translates into a prototype which guides the search for a theme and finally, we start editing the
theme to obtain the desired product.

 The search for an appropriate theme begins with the prototype that we just completed. The usual leads
come from the Jekyll Themes home page (jekyllthemes.org) or simply Google search. In this case, after
looking through a few pages of Jekyll Themes, Dopetrope (http://jekyllthemes.org/themes/dopetrope/)
seems like the perfect theme for this project. This theme is designed to be a portfolio and most elements
available in the theme are responsive and photography-inclined. We can edit this theme to fit our own
needs, so let’s go over some of the available features. The theme has additional layouts for sidebars that
can be used to display art, as shown in the top navigation bar. The footer is also extensive, containing a few
lists and brief descriptions of articles, along with the date they were posted. The home page also contains a
panel that can used to show the features available for the portfolio. These can be repurposed if necessary to
talk about the categories of photography that you are interested in or have done in the past. Finally, for our
project, it is necessary to include a Subscribe button for the mailing list. This allows us to send readers the
picture of the day. Now that we have a decent idea of the theme, let’s start editing it. The folder structure is
shown in Figure 9-2 .

http://jekyllthemes.org/themes/dopetrope/

CHAPTER 9 ■ PHOTO BLOGGING

140

 A first look at this folder structure shows us that left-sidebar.html , no-sidebar.html , and right-
sidebar.html are the three types of sidebars available in the theme. For demonstration purposes, this theme
has some additional folders, such as the blog folder. We can either remove or merge the code in that folder
into the appropriate layout or the theme itself. Our primary objective is to be efficient and reuse as much of
the code written in the theme as possible. When the usual tricks don’t work, it is time to start writing code
from scratch. Before we start making edits to the code, it is worthwhile considering why Jekyll is a good
platform for building this portfolio.

• Cost: The early versions of the portfolio made with Jekyll and hosted in GitHub
Pages are essentially free for the user. The up-front cost of hosting the portfolio and
maintaining it is essentially zero. You don’t have to buy server hosting space or worry
about downtime.

• Hosting: GitHub Pages also brings forth one of the most important features of Jekyll:
There is no need to manage complicated back ends for the portfolio and additionally
the shopping cart, if you are selling the photography.

• Platform: Integrating well-known services such as 500px to host and sell your
photography gives you another platform where you can advertise your photography
and build a following. This can obviously be done on other platforms as well, but
it often involves the use of plug-ins, which only add more maintenance overhead.
Additionally, 500px gives you embed codes that can simply be copied into
Markdown as you are writing the post in Sublime.

• Expertise: Finally, the best part about using Jekyll is that you get to show off your
technical expertise and coding skills as well as photography. They go hand-in-hand,
and could give you an edge over other people when you display your portfolio.

 Although it might make sense to switch your portfolio to an advanced platform later on, Jekyll can
power the early versions perfectly when your main focus is on building an audience or a following.

 Figure 9-2. Folder structure of the Dopetrope theme

CHAPTER 9 ■ PHOTO BLOGGING

141

 Using GitHub
 When we start making changes to the theme, the theme files will be put under version control. Every set of
changes needs to be committed to the repository and finally pushed online to GitHub where the code will
reside. We use the same repository naming style as in the last chapter: creating a new repository and naming
it in the username.github.io format. This naming convention will let us use GitHub Pages to compile
the Jekyll source code present in the repository into a static web site. This is the second time we are using
GitHub, so let’s delve into some concepts before getting to the theme. We first need a clear idea of the tools
being used.

• Git : This is the main tool that instantiates version control on a set of files. Git is
actually what allows us to add files to a set of changes, commit those changes, and
finally push them online to the live web site. In the last chapter, we used GitHub
Desktop, which makes this process visual and easier to manage. Eventually, we will
begin using Git CLI.

• GitHub Desktop: As mentioned earlier, GitHub Desktop is actually a visual tool that
allows us to manage code using Git and interface it with GitHub, where the code is
being hosted. This is what we use to push all of our changes online and in turn to the
live web site.

• GitHub: GitHub is an online code-hosting platform that works with Git and allows
developers to push their code online so that it can be shared with other collaborators
and developers. GitHub actually hosts the web site and all the code that we work on.
Using Git through GitHub Desktop, we push our code online to GitHub, which is the
final destination.

 The difference among these three tools is important to understand because it determines the
limitations of what each tool can do. GitHub is primarily a code-hosting platform. Its main purpose is to
provide developers the means to create multiple repositories to host their projects, manage them, and
collaborate. GitHub allows us to put a full web site in the repository and then host it online using GitHub
Pages. For Jekyll-based projects, GitHub Pages serves as a playground to learn, prototype, and experiment
with Jekyll. There are two hosting services provided through GitHub Pages. The first one involves creating
a root repository that triggers GitHub Pages to compile and host whatever Jekyll code is present in that
repository. The second service is useful when you don’t have Jekyll code, but still want to create a project
web site for your repository. You can do that with GitHub’s Automatic Page Generator, which will help you
quickly create a landing page.

 ■ Tip In this second method, GitHub creates a special branch called gh-pages to store the HTML template
web site created by the Automatic Page Generator. Given that the resulting web site is already in HTML, it can
be hosted directly.

 Ultimately, GitHub as a platform is not meant to be a replacement for hosting, although it works
sufficiently well. As such, there are some limitations associated with using GitHub Pages. The repository
created in the last chapter with the format username.github.io is called a root repository . There can only
be one root repository per account, and once it has been created, it automatically uses GitHub Pages to
compile any Jekyll source code present. The reason for having only one root repository per account is due to
the naming convention. As mentioned earlier, the root repository also has the corresponding web address
 http://username.github.io but that can be changed to a custom domain name. After the root repository
has been created, any project pages (using the second method) that are online under an account are
redirected by default to username.github.io/REPOSITORY-NAME or under the custom domain name.

http://username.github.io/

CHAPTER 9 ■ PHOTO BLOGGING

142

 To reiterate the point, GitHub Pages is meant to help you learn Jekyll, but it is not a hosting server. You
actually can host a project or a blog for production use and GitHub will not disappoint you, but you can
only have one web site at a time. There are other publishing platforms like Amazon’s AWS, but using them
involves advanced concepts and AWS is not as user-friendly. To continue using GitHub with a new project
in each chapter, we have to delete the previous root repositories. Our old repository had the Kactus news
brief, and now we have to delete it and create a new root repository. After deleting the current root repository
on GitHub, we have to re-create the root repository and then copy over Dopetrope in an initial commit.
Rest assured, all your old code is still safe offline in the folder location that was being used to push the
code online. Additionally, you can simply download the final product as a zipped file, just as we have been
downloading themes from GitHub for our own projects. In the next section, we delete the current root and
make room for Dopetrope to be pushed to a new and empty root repository.

 Deleting Repositories
 We start by going to the repository page and clicking Settings as shown in in Figure 9-3a . On the Settings
page, scroll all the way down to the bottom and find the Danger Zone, shown in Figure 9-3b .

 Figure 9-3a. Settings button for a repository Figure

 Figure 9-3b. Settings to delete a repository. Once Delete the repository is clicked, a dialog box box will open,
asking you to type the name of the repository and then click Confirm to delete the repository.

 This completes the deletion of the root repository. Your code is safe locally at the location you were
using to push the code online. If you want a copy of the finished product before deletion, you can go to the
repository page and download it as a zipped file. Now that your account doesn’t have a root repository, it’s
time to start the process again.

CHAPTER 9 ■ PHOTO BLOGGING

143

 Visual Tutorial
 In the previous chapter, we demonstrated how to create a repository and set up GitHub Desktop with it. The
process is briefly summarized here and shown in Figure 9-4 .

 1. Create a root repository in the form of username.github.io.

 2. Once the repository is created, set it up in GitHub Desktop.

 3. Download the Dopetrope theme from its GitHub repository, extract the zipped
file, and copy over the code to the location of the local repository on your
computer (https://github.com/CloudCannon/DopeTrope-Jekyll-Theme).

 4. Add the files to an initial commit on GitHub Desktop and push the code online.

 Figure 9-4a. Creating the root repository again on GitHub

 Figure 9-4b. Confirmation that the root repository has been created. Now we need to configure it in GitHub
Desktop.

 ■ Tip This visual tutorial is a very quick walkthrough of the steps needed to create a repository and set it
up in GitHub Desktop. It does not show the initial commit, which includes the changes made by copying over
the source code for Dopetrope into the local GitHub repository. For a more detailed overview, please revisit the
previous chapter.

 The root repository has been created. To set it up in GitHub Desktop, click the plus sign in the top
left corner to reveal all the repositories in the account. Pick the root repository and click Clone, which will
prompt you to pick a local location to save the code, as shown in Figure 9-5 .

https://github.com/CloudCannon/DopeTrope-Jekyll-Theme

CHAPTER 9 ■ PHOTO BLOGGING

144

 Figure 9-5a. Browsing for the folder location in which to clone the repository. The location in this case is
 Documents/GitHub/repo .

 Figure 9-5b. After clicking OK in the preceding dialog box, the repository has been cloned in GitHub Desktop

 Dope Editing
 Let’s start editing the theme. You might notice that after you push the initial commit, the theme renders
terribly when you actually visit the domain username.github.io , as the issue resides in the _config.yml file.
The actual problem is that of routing, in the last line:

 baseurl: '/DopeTrope-Jekyll-Theme'

 To fix this issue, simply delete the baseurl definition and _config.yml should look like the following:

 name: DopeTrope
 description: DopeTrope template for Jekyll
 paginate: 10

CHAPTER 9 ■ PHOTO BLOGGING

145

 Now that the web site is live, let’s start editing it from the top. The first element is the name of the theme,
and your personal portfolio should have your own name. The first file to look into would be index.html , and
we immediately see the include , which has the theme name:

 <body class="homepage">
 {% include header_landing.html %}

 Let’s look at _includes/header_landing.html . The beginning of the file shows us the name of the
theme. We can edit that and the final result would look like this.

 <div id="header-wrapper">
 <div id="header">

 <!-- Logo -->
 <h1>Vikram Dhillon</h1>

 Navigation Bar
 The next element to edit is the top navigation bar , which is a bit complicated to edit because it is not clear
where the code resides. When we examine header_landing.html, we see a navigation layout; on the other
hand, the _includes folder also has a nav.html file that seems to be similar. The difference between the two
files is actually the layouts in which they are being used. The header_landing template is used for index.
html, but most other pages such as sidebar layouts use nav.html, which doesn’t contain the extra image
elements. For our purposes, we would edit header_landing.html and change the nav bar to contain only the
following.

 <!-- Nav -->
 <nav id="nav">

 <li class="current">Home
 Blog
 Specialties
 Subscribe

 </nav>

 This slims down the navigation bar and also gives us all the elements that we need. The links will all be
placed here once they are ready. Now that the top nav bar is ready, let’s move on to the banner. The banner
gives a first impression of your portfolio, so feel free to edit it in any way that seems fit. The code resides in
 header_landing.html .

 <!-- Banner -->
 <section id="banner">
 <header>
 <h2>Howdy. This is my portfolio.</h2>
 <p> Check out my dope art.</p>
 </header>
 </section>

CHAPTER 9 ■ PHOTO BLOGGING

146

 Photography Specialties
 Below the header there is a collection of features, which you can use to highlight your special talents
or interests in photography. However, a visitor on the portfolio needs to see the best of your images as
soon as possible, to have a moment of inspiration . This is a term defined by Google and Amazon as
the moment when a visitor is inspired by a visual to take action, which is often a sale. That’s part of the
reason the Amazon one-click button is crucial to the web site. This features section needs to be moved to
a separate page that can be easily accessed through the top navigation bar. To do this, we need to consider
what elements are suitable for a page showcasing the features. We can carry over the title, nav bar, and the
banner from the landing page and truncate the page after the features have been discussed. This can be
accomplished by editing the layouts, which decide what should render on a page. The index.html page uses
the landing layout, and if we examine the layout, it has a few includes:

 {% include header.html %}
 {{ content }}
 {% include blog.html %}
 {% include footer.html %}

 We actually don’t need the last two includes, as they become unnecessary for the page showcasing the
features. The index page included header_landing.html, which made the banner, navigation, and title
possible, so we can modify this layout to look like this:

 {% include header.html %}
 {% include header_landing.html %}

 This creates a layout that will truncate right after the features are displayed. Now we can’t just modify the
 landing.html layout because it is already being used, so let’s save our edits into a new file under _layouts as
 feature_layout.html . This file name denotes the layout that the features page will be using. Once the layout
is saved, it can now be referenced by a new page. A layout by itself can’t do much, because a page needs to
define a layout in the YAML front matter to access it, and then the page can inherit all of its properties and
add more elements to it. Essentially, a layout provides basic elements that all pages belonging to a certain
category can benefit from. Once a page inherits a layout, it extends the layouts to a specific goal and the page
is rendered to meet that goal. In the preceding case, the two includes are self-sufficient components and we
actually don’t need to extend the page at all. A new page called features.html can be created and saved in
the top directory (the same location as the sidebar pages). This page will simply contain the following:

 title: Features
 layout: features_layout

 That’s all we need to create a new page showcasing the features. Now that we have them in a separate
location, we need to remove them from the index page. There is a slight problem with this approach: You
might notice that the index page includes header_landing.html to show those features. If we try to edit the
 header_landing page to remove the features, we won’t be able to display them on the features page either.
There are a few ways to fix this problem, but in these situations, the best approach preserves the greatest
amount of code. Here’s one way to solve this problem: Create a second layout cloning header_landing.html
and use this new layout in index.html . Then, we can delete the features section from the original header_
landing file and save the day. More concretely, here’s the change made to index.html :

 <body class="homepage">
 {% include header_landing_new.html %}

CHAPTER 9 ■ PHOTO BLOGGING

147

 This tells the index page to use a new layout called header_landing_new , which will not contain the
features. In this fashion, the header_landing page remains unchanged and is used to display the features.
A clone of the header_landing page without the features is used to render the index page. Here is what the
clone page header_landing_new.html contains:

 <!-- Header -->
 <div id="header-wrapper">
 <div id="header">

 <!-- Logo -->
 <h1>Vikram Dhillon</h1>

 <!-- Nav -->
 <nav id="nav">

 Home
 Blog
 Specialties
 Subscribe

 </nav>

 <!-- Banner -->
 <section id="banner">
 <header>
 <h2>Howdy. This is my portfolio.</h2>
 <p> Check out my dope art.</p>
 </header>
 </section>

 <!-- Features section removed -->

 </div>
 </div>

 Notice that in the original navigation, the Home hyperlink included a class <li class="current"> , which
has been removed here. We are no longer on the home page, so the current class does not have any purpose
for the features page. Additionally, notice the section where the code for the Features was removed. Making a
new file to include the features code in this sense allows us to keep the same code and modularize it.

 Portfolio
 The next step is the actual portfolio. We actually don’t need to edit anything here. The portfolio, as designed,
gives you the perfect opportunity to explain your photograph in a title followed by a short description. The
photos can essentially be thumbnails of the actual pictures, and this theme gives you a great chance to
highlight yourself at your best. While working with Jekyll, there will be numerous occasions when you feel
like a crucial component is missing from a theme; you have two options at that point. The first is to code it
yourself and use it as you intended, and the second is to adapt whatever is available. In this portfolio, a small
section to showcase your photography is already available, so let’s use that. It does require some level of
preparation and strategy. The portfolio section displays images that are present in: assets/images/ , so that’s

CHAPTER 9 ■ PHOTO BLOGGING

148

where you would need to go and replace the images with your own so that they show up in the portfolio. To
edit the subtext for each one, we need to go back to index.html , which contains the code for the portfolio
under the appropriate section:

 <section>
 <header class="major">
 <h2>My Portfolio</h2>

 Underneath this <section> there are descriptions for each of the pictures. Let’s change the Find out
more button to Learn More.

 <footer>
 Learn More
 </footer>

 This highlights a disadvantage of having everything hard-coded here: The button text has to be replaced
six times for consistency. Even though this might seem intensive, it actually saves you more time in the long
run because of how simple the process is: You just need to update the caption and subtext along with the
picture under the assets folder to update your portfolio.

 So what goes in the link that points to the Learn More button? In this portfolio, we want to offload
the photography to another platform that is better suited for it; some practical reasons for doing so were
discussed earlier. The recommended platform is 500px, but Flicker might work as well. The simplest reason
for hosting the photography on 500px is because that service has been created to share and sell photography,
and it has some additional security features for the photographer to prevent pictures from being stolen.
Once you have created a 500px account, you can upload the pictures along with all the EXIF information.
After an image has been uploaded, you can simply point the Learn More button to the link for the image.
This strategy for managing the portfolio might be effective, if that you update the thumbnails every month or
so with new and refreshing pictures. We talk more about embedding your own photography in those posts
later on in the chapter.

 ■ Note In the editing thus far and the remainder of this chapter, we are not using font-awesome icons
for the buttons or headings, but feel free to add them as necessary. The appropriate file into which the font-
awesome style sheet should be imported would be header.html under _includes . After that, you can add
fa-icons anywhere in the web site that you wish.

 The Blog
 The next component to edit is the blog . Currently, the large photos on the blog are only taking up space and
not providing much value to the portfolio. The blog itself is an essential component, but just like the features,
we need to move it out of the way. The blog won’t entirely be gone because of the footer, and we talk about
that shortly. To move the blog onto its own page, we need to make a new page. Luckily, the templates that
already came with Dopetrope might come in handy, especially the no-sidebar.html page. On this page, we
can basically remove everything after the <header> comment.

CHAPTER 9 ■ PHOTO BLOGGING

149

 <!-- Content -->
 <article class="box post">
 <header>
 <h2>The Blog</h2>
 </header>
 ... <!-- Blank space -->
 </article>

 Now this page is ready to contain and render the blog. The way posts were being displayed with a large
picture is not very efficient, so we follow a simple method of listing the title of the blog posts with a brief
 post.excerpt for each listed post. This is actually very easy to do.

 {% for post in site.posts %}

 {{ post.title }}
 <p> {{ post.excerpt }} </p>

 {% endfor %}

 This gives us a very nice listing of the blog posts. Notice that we are still making all these edits with
 no-sidebar.html , but we need to save our changes as a new file. Let’s call this file posts.html ; it will reside
in the top directory (where the index.html file is). This serves to fix one side of the issue, but now we need
to remove the blog from the landing.html layout. This actually turns out to be somewhat tricky because of
the formatting of the theme. If we remove the {% include blog.html %} from the layout, this renders the
theme completely white near the bottom, and all the elements in the footer have their color overwritten. The
problem starts in the index.html file near the beginning with two extra <div> tags. They should be closed
at the end of the file, but in this theme they are left open. To fix this, two closing </div> tags were added to
 _includes/blog.html at the end of the file. The layout integrates blog.html and footer.html into the home
page so the tags matched up, but once we remove the blog.html include from the layout, this mismatch
causes the footer color issue. The way to fix this is very straightforward: Just add two </div> tags to the end
of index.html to close the tags. The layout now doesn’t need to rely on blog.html to close the tags for the
theme, and we created a new blog page.

 Footer
 Now that the blog has been set up, let’s get started with the footer. It looks cluttered, so the first order of
business is to clean it up. Let’s remove the two lists at the bottom with the headers Tempus conseqat and
 Ipsum et phasellus . To do that, under _includes/footer.html , remove the entire code within both of the
 4u classes:

 I.
 <div class="4u"> <!-- Start removing from this line -->
 <section>
 <header>
 <h2>Tempus conseqat</h2>
 </header>

CHAPTER 9 ■ PHOTO BLOGGING

150

 ... <!-- Remainder of the code -->

 </section>
 </div>

 II.
 <div class="4u"> <!-- Start removing from this line -->
 <section>
 <header>
 <h2>Ipsum et phasellus</h2>
 </header>
 ... <!-- Remainder of the code -->

 </section>
 </div>

 This should remove the lists from the page. Incidentally, the next 4u class is the social icons, so let’s
label it correctly:

 <header>
 <h2>Social:</h2> <!-- This header used to say Vitae tempor lorem -->
 </header>

 Below the social icons, there is the address. It’s up to you if you want to delete it, and the contents of the
address reside in the contact class.

 <ul class="contact">

 ... <!-- Remainder of the code -->

 The footer has room for a lot of other delicate modifications. Let’s start with changing the title.

 <section>
 <header>
 <h2>The Blog</h2> <!-- This header used to say "Blandit nisl adipiscing"
-->
 </header>

 This footer contains a small snapshot of the blog, up to five posts as declared by the for loop offset .
Let’s change that to three, and we discuss later how to change what posts show up here.

 {% for post in site.posts offset: 0 limit: 3 %}

 After this, the next change is actually the date of posts being shown in the footer. Currently, the date
filter displays the full month on the top, which becomes a problem if the post was in November, because
the date arrow element gets distorted very easily. To fix this, we need to switch over to the three-character
abbreviations for the month:

 {{ post.date | date: "%b" }} {{ post.date | date: "%d"}}</
strong>

CHAPTER 9 ■ PHOTO BLOGGING

151

 The %B shows the full month and the %b displays the shortened month name. On the right side, the
footer contains a small section titled “What’s this all about?” where you could briefly talk about the purpose
of this blog and what you hope to post about. While we are on that topic, how can you optimize your blog to
try and sell your photography? The idea here is that your blog will eventually build a following to whom you
can sell the photography. The best way of building this following is to create interesting content that relates
to the photography that you do. In this manner, you can embed your own photos in the blog post and pitch
them to the readers. This is the essence of the freemium model: You attract readers to your blog with free
content and embed your own pictures at the end of the post. The readers are eventually converted into paid
users of that photography.

 Blog Post Layout
 We talk at length about how to embed the proper way, but before that, we need to change the layout of
the blog posts themselves. Currently, a blog post is rendered on a page with a top image, followed by the
title and the date, then a featured image for that particular post, and finally the post content. We need to
streamline this layout so that the main focus is the text that you write; for that reason, we will remove the
top image and the featured images. Additionally, we need to add the categories variable in the YAML front
matter, which allows us to selectively call on the category pinned posts to show them on the home page.
Let’s start looking through the post layout. At the very beginning of the file, we see a {% include nav.html %}
statement. This was the other navigation in this theme designed for all the pages that are not the landing
page. We should start here and sync this navigation with what we have in the header_landing.html page.
This implies that we need to remove the contents of <!-- Nav --> and replace them with the navigation in
 header_landing . We also need to remove the banner image at the bottom. Here’s what the new nav.html
looks like after removing the code.

 <!-- Header -->
 <div id="header-wrapper">
 <div id="header">

 <!-- Logo -->
 <h1>Vikram Dhillon</h1>

 <!-- Nav -->
 <nav id="nav">

 Home
 Blog
 Specialties
 Subscribe

 </nav>

 </div>
 </div>

 This is a much shorter version of the navigation available to the blog posts. Now that the top image is
done, the next part is the featured image in the post. To remove that one, we need to remove the line that
hyperlinks the images, which is shown in bold here.

CHAPTER 9 ■ PHOTO BLOGGING

152

 <section class="box">
 <img src="{{ site.baseurl }}{{ page.featured }}"
alt="" />
 {{ page.content }}
 </section>

 The resulting segment is shown as follows:

 <section class="box">
 {{ page.content }}
 </section>

 The featured image has been removed and now it’s time to discuss the blog posts themselves and their
format. The posts are crucial to convert readers, and we talk about a few techniques that make this process
easier. We need to modify the contents of the post itself and format the post in a manner that can promote
sales. We use the following format: Start with an introduction to a genre of the photograph, followed by a
brief history or some interesting facts about that genre or picture that will be the subject of this post. This
will be followed by the photograph itself and the story it tells, in your own perspective. That’s what gives your
blog a personal touch that differentiates your blog from others in the blogosphere. Finally, after talking about
the photograph, you need to link it to your own work and embed a picture that you have put up on 500px
into the blog post. Underneath the post there will be space for comments powered by Disqus. Let’s start with
the YAML front matter.

 title: Sunt in culpa qui
 featured: /assets/images/pic05.jpg
 layout: post

 The line shown in bold points to the featured image section that we removed from the layout. This line
should also be removed from the front matter. Notice that we will use this image, just not from the front
matter. There are a few reasons for this, but the main reason is that putting an image in as a tag in the front
matter limits how you can manipulate it. This tag has an associated style component or a rule attached to
it in the layout (post.html) that defines how the picture should render. Jekyll will apply that rule to every
image referred by the featured tag without exceptions. This “cookie-cutter” approach takes away any ability
to manipulate the image or add any additional HTML tags to it. Now this might work for images that are all
exactly the same size, but it will not work out of the box for any image taken from the Internet. The simpler
approach is to display the image by using an <image> or <a> tag, which gives you a much higher degree of
control over the image. This might involve a few extra lines of code written among the beautiful Markdown,
 but that is a totally acceptable trade-off to get full control over the image. We will show an example of
the blog post following the format that we discussed earlier, but before we get to that, let’s make another
addition to YAML for categories. Currently, the first three blog posts appear on the home page, but if we add
categories to them, we can simply list the posts that belong to that particular category.

 title: Sunt in culpa qui
 layout: post
 categories:
 - pinned

CHAPTER 9 ■ PHOTO BLOGGING

153

 This adds the category pinned to the post, and now we can be more specific about this category in the
footer. We will be editing the same line that controls how many posts show up in the footer:

 {% for post in site.categories.pinned offset: 0 limit: 3 %}

 Embedding Photography
 The last component in the blog post is embedding your own photography from 500px into the blog post.
This seems very simple because for each image, 500px provides you an embed code and you can simply use
that in the post. However, there are some complications with this method, the main one being if the image
being used is larger than the box container used in the post layout, the image will extend beyond the box and
appear out of proportion. This will definitely happen for many images out of the box. The situation is the
opposite from last time, where the use of a rule or style component limited the amount of manipulation we
could do to the image. Here we actually need a rule to contain the size of this embedded image from 500px.
The best tool for this job is a platform called Embedly available at http://embed.ly/code .

 Embedly creates cards that can embed components of a web site along with a small excerpt that
describes the component, in most cases. The cards look absolutely beautiful and better than an embedded
image manipulated with CSS style options. The web site just mentioned allows the user to create cards
that are followed by an embed code that can be used within the blog post. The rationale here is to upload
the image to 500px, and then use Embedly to control the size of the pictures we want to embed. To see an
example of this, we use an article from the New York Times, “Blood Pressure, a Reading With a Habit of
Straying,” which is available at http://www.nytimes.com/2015/12/01/health/blood-pressure-a-reading-
with-a-habit-of-straying.html .

 Now if we put that link in the Embedly bar on the Cards page, a beautiful embed is generated, as shown
in Figure 9-6 .

 Figure 9-6a. Putting a link in the Embed bar on http://embed.ly/code to obtain a card along with an
embed code shown in Figure 9-6b

http://embed.ly/code
http://www.nytimes.com/2015/12/01/health/blood-pressure-a-reading-with-a-habit-of-straying.html
http://www.nytimes.com/2015/12/01/health/blood-pressure-a-reading-with-a-habit-of-straying.html
http://embed.ly/code

CHAPTER 9 ■ PHOTO BLOGGING

154

 Let’s do a complete example of a blog post following our own guidelines.

 title: Awesome picture post
 layout: post
 categories:
 - pinned

 Integer volutpat ante et accumsan commophasellus sed aliquam feugiat lorem aliquet. Ut enim
rutrum phasellus iaculis accumsan dolore magna aliquam veroeros.

 <style>

 #center_image{
 position: absolute;
 top: 50%;
 margin: -50px auto 0;
 }
 </style>

 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

 Figure 9-6b. Embed code for the card generated by Embedly

 ■ Note Embedly is a freemium platform to create cards from URLs that are free until the first 5,000 cards
created per month. This is more than enough for most personal projects, so we can safely use it. For more
information on pricing, please visit http://embed.ly/pricing .

 This embed card also comes along with code that can be copied to the blog post where the embedded
image should be displayed, as shown in Figure 9-6b .

http://embed.ly/pricing

CHAPTER 9 ■ PHOTO BLOGGING

155

 <a class="embedly-card" href="https://500px.com/photo/127469533/full-homemade-thanksgiving-
dinner-by-brent-hofacker">Full Homemade Thanksgiving Dinner
 <script async src="//cdn.embedly.com/widgets/platform.js" charset="UTF-8"></script>

 In this post, we covered the fundamentals that we talked about previously, and this completes our editing
of the Dopetrope theme to obtain the portfolio. In our example, any of the missing links can be referenced to
the top navigation bar by using {{ site.baseurl}}/page_name.html . The created page such as the blog page
or the features page can be linked to fill out the top navigation bar. The picture portfolio is ready for action!

 <!-- Nav -->
 <nav id="nav">

 <li class="current">Home
 Blog
 Specialties
 Subscribe

 </nav>

 Content Delivery Network (CDN)
 In our photography blog, some of the images that we have used in the blog posts reside locally in the
assets folder of the repository. This folder eventually gets pushed to the cloud where it resides on GitHub
and is rendered into a web site by GitHub Pages. For a regular web site hosted on a shared server, the web
site would be far too slow if the photos were simply being loaded from a directory. The loading time for
professionally taken pictures would be much longer because those photos have a high resolution and are
large in size. In this sense, professional photography needs a boost so that it can be hosted on a server. The
best option generally is to offload the photos and in our case, we offloaded the professional pictures onto
500px. There are a few other methods that professional photographers use to keep pictures on their own
portfolios entirely. The most effective of those methods is the use of a CDN.

 The goal of a CDN is to serve static content to the users with high performance. When a user makes a
request to a web site that is using a CDN, the web site loads itself and a request to load the static content is
sent concurrently. The CDN resolves to an optimized server based on location of the user and availability of
the server that will handle the request. The requests for content are algorithmically directed to a collection
of servers (called nodes) that are optimal to handling that request. The performance optimizations are based
on location that is best used for serving content to the readers. As you can understand, a CDN is a very large
service provider, and using a CDN is generally cheap, too, so most portfolios rely on some kind of CDN. If
you recall, even font-awesome uses MaxCDN. There are numerous benefits in doing so, including reducing
bandwidth costs, improving page load times, and increasing availability of the content. GitHub itself sits
behind a massive CDN known as Fastly; that’s why the load times for web sites hosted through GitHub Pages
are very fast. Another aspect of using a CDN such as CloudFlare is the added protection against attacks.
Many CDNs provide a feature set that protects the web site against denial-of-service (DoS) attacks in which
thousands of bots make millions of requests to a server and bring it down so that no traffic can access it.
Smart security solutions such as DDoS protection, SSL encryption, and other web application firewalls keep
the threats to a minimum. Most of these services recognize the extraneous requests during attacks and deny
them while keeping the web site alive.

 A new portfolio doesn’t yet need to set up an extensive CDN, but it might need one at a stage with high
traffic. Later in the book, we discuss web site publishing in detail and cover how to set up a CDN. Now that
we have talked about the CDN and its relation to a portfolio, let’s get to the last topic of this chapter: setting
up MailChimp. We covered the first half of using MailChimp, which is setting up the signup form. Here we
discuss the second half, which is how to run a MailChimp campaign.

CHAPTER 9 ■ PHOTO BLOGGING

156

 MailChimp Campaign
 In the last chapter, we created a MailChimp account and set up a sign up list that was linked to the Subscribe
button. We use the same list here again to link the Subscribe element of the top navigation bar. Let’s assume
we already have some users signing up for our mailing list. In this section, we discuss how you would
actually run a campaign to send a picture of the day to your users. Log back into your MailChimp account
and follow along. After logging in, the first page you see is the Dashboard, shown in Figure 9-7 .

 Figure 9-7. Dashboard of MailChimp after a signup form has been created. Click the drop-down list to show
the campaign options

 Figure 9-8. Selecting which mailing list to use for this campaign

 We use a Regular Campaign in this case, and selecting that brings us to the next page, where we select
which mailing list to use for this campaign. We only have one that belongs to our blog, as shown in Figure 9-8 .

 Once the mailing list has been selected, click Next to move to the next page. This is the Campaign
info page, shown in Figure 9-9 . On the Campaign info page, we set up some basic information, such as the
return e-mail address for the campaign newsletters and the e-mail subjects. Most of this information is very
straightforward to fill out, and for the tracking options and the rest, the defaults work perfectly fine. This will
help your readers connect the source of the e-mails to the blog and the rest of your portfolio.

CHAPTER 9 ■ PHOTO BLOGGING

157

 Figure 9-9. Campaign info page

 After completing the campaign information, we arrive at the page where we need to build the e-mail
template, as shown in Figure 9-10 . There are numerous templates being showcased, so let’s think about
what our requirements from this e-mail campaign are. We only need a very simple e-mail template where a
picture is the focus, and a description under it takes the reader either to your blog or to your 500px page. For
that reason, we pick the 1 Column layout.

 Figure 9-10. Selecting the 1 Column layout for the e-mail campaign

CHAPTER 9 ■ PHOTO BLOGGING

158

 After selecting the 1 Column template, you will be taken to the design wizard where you actually design
the e-mail. This wizard actually allows you to drag and drop components from the right pane, and that’s
the method we use. However, you can also edit the code and fix any components if needed. The themes are
all written in straightforward HTML and CSS. What components should we include in our e-mail? To keep
things simple, we start with a header greeting the user. This will be followed by the picture of the day and
a text box very briefly explaining how this picture relates to any recent events or upcoming days. This text
box should end with a button to visit your web site for more information. To replicate this in the MailChimp
wizard, you would need to follow these steps.

 1. Start by dragging a text block from the right pane to the e-mail and place it at
the top of the image block that is already on the canvas. Just as you place the
block, the right pane changes to edit mode and you can enter text. Enter, “Good
Morning!” in the text area.

 2. Hover over the picture box and drag it to reposition it between the header and
the text block below it, as shown in Figure 9-11 .

 Figure 9-11. The drag icon shown on the left side

 Figure 9-12. Removing the default heading 1 text because we already have a header

 3. Move the already existing text block below the image and click the edit pencil
icon to edit that text block, as shown in Figure 9-12 . Remove the header text in it
because we already have the header, and the remainder of the block would serve
as the description area for the picture of the day.

 4. Scroll past the text block and add a button from the right pane below the text
block. Edit the button text to “Visit my Portfolio” and the link to your web site, as
shown in Figure 9-13 .

CHAPTER 9 ■ PHOTO BLOGGING

159

 That’s all you need for designing the e-mail. The full template is shown in the two parts of Figure 9-14 .
This is the e-mail that we will be sending out through this campaign. You have to run the campaign every
day to send a picture of the day.

 Figure 9-13. Editing the button to display your web site

 Figure 9-14a. The top part of the e-mail that will be sent through the campaign

CHAPTER 9 ■ PHOTO BLOGGING

160

 ■ Note The designer allows for the addition of numerous other components to the e-mail, such as dividers to
organize the e-mail, social share and follow icons, and even videos. Use them once you become more familiar
with the designer and the basic theme.

 Once the e-mail has been designed, we can go to the last step, which is a checklist of the campaign
(as shown in Figure 9-15), and then you can click Send. Here, we actually run into a bit of trouble because
our list doesn’t actually have a subscriber. Besides that, at this stage, MailChimp asks you to confirm once
more and the e-mail gets sent out to all the subscribers of that mailing list, as shown in Figure 9-16 .

 Figure 9-15. Error message at the end of our campaign because there are no subscribers

 Figure 9-16. Last confirmation before sending the mass e- mail

 Figure 9-14b. The lower half of the e-mail to be sent through the “Picture of the Day” campaign

CHAPTER 9 ■ PHOTO BLOGGING

161

 This finishes up our discussion of MailChimp, as we have created a mailing list and also run a
campaign. Most of the campaign information that was entered for the first time can simply be reused if
you start a new campaign. After running a campaign once, you can rerun it the next day to send out a new
picture. All you would have to do is add a new picture to the designer. The rest will all carry over from the
last campaign run. Now add the signup form for the mailing list we created last time and complete the last
element of the top navigation bar.

 Summary
 In this chapter, we started editing the Dopetrope theme to create a personal portfolio that can showcase
your photography and interests in art. We started off by understanding some basic limitations of Jekyll and
by creating a project spec that detailed the technologies that we needed to accomplish our goals. The spec
translated into creating a simple prototype, which gave us further direction into the nature of the web site.
We found the appropriate theme to work on and modify into a final product that can be used as a portfolio.
Then, we identified all the problem areas for the theme and fixed each one, manipulating several layouts
and creating new pages to fix the blog. We also edited the layout of the blog posts themselves to make the
images easy to manipulate and confer to the freemium model better. Finally, we talked about how to run
a MailChimp campaign and send the picture of the day. Over time, using this as a personal portfolio and
creating great content on the blog will lead to successful conversion of readers into long-term paid users of
your photography.

 Further Reading
 1. 500px support center: https://support.500px.com/hc/en-us

 2. MailChimp Campaign: http://kb.mailchimp.com/campaigns/ways-to-build/
create-a-campaign-with-campaign-builder

 3. Embedly docs: http://embed.ly/docs

 4. CloudFlare: https://www.cloudflare.com/overview/

https://support.500px.com/hc/en-us
http://kb.mailchimp.com/campaigns/ways-to-build/create-a-campaign-with-campaign-builder
http://kb.mailchimp.com/campaigns/ways-to-build/create-a-campaign-with-campaign-builder
http://embed.ly/docs
https://www.cloudflare.com/overview/

163© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_10

 CHAPTER 10

 Open Debates

 Those who stand for nothing fall for anything.

 —Alexander Hamilton

 Technology has fundamentally changed how we communicate with each other. New tools and platforms
allow us to share our stories more vibrantly than ever before. In this chapter, we focus on a cornerstone of
discourse: debates. We build a Jekyll-based debate platform that can leverage the full capabilities of GitHub
to host open debates. We begin with an introduction to the debate platform and the rules of an Oxford-style
debate. After that, we provide an in-depth overview of GitHub and all of its features, including some features
of GitHub Pages that we have not yet had a chance to cover. We then create a prototype based on the rules
to help us find a theme. When we have found a suitable theme and understood the requirements for this
project, we can start editing the theme to obtain our final debate platform. Finally, we end this chapter with
a discussion of how our platform can take advantage of the open standards and use them in conducting the
debates.

 A common theme that many new nonprofits are aiming for is creating a platform to have intelligent and
candid conversations about the problems facing our society. A discussion involving strong opinions often
breaks down into slander and flame wars, but a sophisticated platform can control the chaos that ensues
during a debate. In these debates, controlling the flow of information becomes crucial and being able to
direct the participants and users in a meaningful way adds value to the debate. An online platform can make
this process smoother and more efficient. The focus of this platform is Oxford-style debates involving two
speakers, one moderator, and participants. Each debate has a central theme and an associated statement
that one of the speakers defends and the other speaker opposes. The inspiration for this platform came
from The Economist, which often hosts Oxford-style debates on a wide variety of issues at http://debates.
economist.com/ and has a very good functional understanding of how to carry out a debate. Their platform
is very well designed and polished, but closed. We will be designing an open source alternative powered by
Jekyll and integrating third-party tools where necessary in our project. There are several benefits to creating
an open platform, but the biggest one is that anyone can implement this project on GitHub and use it
with minor modifications to host their own debates. Keeping the project open source also plays to several
advantages that we discuss shortly. Before we get any deeper into the project itself, we have to change some
of the rules for an Oxford debate and modify them to fit Jekyll as a platform.

 Rules of the Game
 Let’s talk about the structure and the rules of an Oxford-style debate . In some cases, the debate lasts over
a span of ten days or more, but we modify some of the rules here to fit our Jekyll theme. We use the The
Economist debates as a basis to develop our own rules.

http://debates.economist.com/
http://debates.economist.com/

CHAPTER 10 ■ OPEN DEBATES

164

• The debate will be conducted in five phases: briefing, opening statements, rebuttal,
closing statements, and results.

• Guest opinions will be interspersed within the debate, not to take sides, but to
provide context to the debate from fresh perspectives.

• The home page of the debate should contain the briefing. This provides a summary
of the issue at hand, briefly discusses the problem statement for the debate, and
gives the reasons why this debate fits in the context of modern society. It should
provide a timeline for the debate.

• From that point onward, every page in the web site actually represents each of the
five phases, so let’s dive into what elements each page should include.

• The briefing page was already discussed, but it should also provide a mechanism for
voting that is easily accessible on the home page.

• The opening statements page should be distraction-free and start with opening
statements by the moderator. Here, the moderator will introduce the two speakers
participating in the debate, along with a brief summary of how their backgrounds
play a role in this debate. After introducing the speakers and providing the context
for this debate, the moderator should inform the audience why the issues in this
debate are relevant to the audience. Following the moderator’s statements, the two
speakers will provide their sides and support them with evidence and additional
links for further study. At the end of the page there is room for comments, which
allows the readers to ask questions after reading the opening statements.

• The next phase is the rebuttal, which gets very interesting. At this point, the debate
has been going on for a few days, so the moderator would start off this section
and summarize the points made by both the speakers and the top comments or
comment threads. This is followed by the speakers examining each other’s opening
statements and using them to provide support for their own positions and leaving a
note as their rebuttal statement. Most of the guest notes should be provided by now
during the opening and rebuttal phases. Comments are still allowed in the rebuttal
phase on the speaker’s positions.

• The next phase is the closing phase. The debate has run its time and the speakers,
along with the participants, have provided their input. In the closing statements,
the speakers examine how their views changed after being influenced by the other
speaker and how their positions have evolved. The moderator also summarizes the
whole debate with the key turning points and his or her own opinion on the issue.
This phase is very similar to the opening statements, the only difference being that
this phase is the ending.

• The debate has now come to a conclusion. The results phase is a summary of the
entire debate. There are a few components here, the first one being the results
from voting by the participants. The second one is an analysis of the debate by the
moderator along with the decision made by the participants. This could simply be a
short summary of the points made by the speakers and the winner of the debate as
decided by the participants.

CHAPTER 10 ■ OPEN DEBATES

165

 ■ Note The reader might wonder why we covered the structure and the rules of the debate in such detail.
This time, instead of creating a project specification, we simply discussed the structure and rules pertaining to
a project. The main reason is that often in real projects, you would have nothing more than a set of ill-defined
ideas to start from; this is great practice for building a full-fledged project from a simple structure.

 We just discussed the structure and the rules of this debate, but how can we distinguish ourselves from
The Economist debates? An important theme we have for this chapter is to use open standards and provide
transparency in the debates, to keep them “open.” For that reason, GitHub will turn out to be our best friend
here. To use GitHub effectively, we need to understand its components. In the next section, we do a deep
walkthrough of the platform, describing all of its features.

 Navigating GitHub
 Previously, we covered how to create a new repository on GitHub, but we have not yet covered all the
features and components offered by GitHub in detail. Let’s start after you sign in to your account. The first
page after logging in is the home page, which contains several feeds of information, some of which are taken
from other projects that you follow. We talk about followed projects momentarily. Underneath the + New
repository button, there is some information about types of repositories, as shown in Figure 10-1 . Recall that
in Git, repositories are functional units that contain your code for a project. All the changes that you make to
the code are pushed to the corresponding repository for that project. A single account can hold any number
of public repositories.

 Figure 10-1. The different types of repositories that can exist under your account

 So what is a public repository? In Figure 10-1 , we can see a few other types as well. The All view lists
all the repositories under the account. Under your account, public repositories are the ones that anyone
can access. To clarify what access means, they can see all of your code and reuse it if they want. With public
repositories, any code or static elements pushed to the repository are available to anyone else who might
access them. On the other hand, private repositories are only accessible to you and other collaborators to
whom you provide access (there’s an option to provide access that we cover shortly). The Sources tab lists
the repositories that contain source code from your projects. This is important because not every repository
that you create would have to be based on code; you can create simple text-based repositories as well to
share text and use version control to collaborate with developers. Finally, the last tab is Forks. GitHub
allows you to clone other public repositories in a process called forking. This creates a clone of the available
repository that you wish to fork under your own account. Now you can make as many modifications to it
as you like and eventually even contribute back to the original project. From this dashboard, let’s open the
repository and start exploring.

CHAPTER 10 ■ OPEN DEBATES

166

 Repository Overview
 The next page is the repository overview, shown in Figure 10-2 , which provides a plethora of information.

 Figure 10-2. The repository view . In this view, several other features located in the top bar become available

 This is the repository view. It shows all the functionality and features available for this repository. Within
this repository view, we are in the code section. Let’s start unraveling this information from the top. The first
thing to notice is the three buttons on the top: Unwatch, Star, and Fork. These buttons show how popular a
repository might be in GitHub among developers. A very hot project might have a lot of stars, which is the way
other developers keep up with updates from your repository. The fork count in a repository is the number of
times other developers have cloned this repository to make their own edits. The name of the account and the
repository are presented next, followed by the features of this repository. We examine each of these features
individually. Underneath this list is a description of the code base; in this case, we haven’t provided one to the
repository. Next is a quick view of some numbers on the repository, the most important of which include how
many branches exist, the number of commits, if this repository has produced any releases, and how many
people have contributed to the code. Following the stats is the quick access bar, which gives you the link to
clone the repository locally, switch between branches, download the code as a zip, and so on. Finally, after
the quick access bar is the source code for the repository itself. Here, we can see the folder structure, the latest
commit that was made, and any readme files underneath the code, if present at all.

 That was a lot of information for a single feature, but as you start using Github more often, all of this will
seem familiar to you. Additionally, most of your work is not really done on GitHub; it’s generally offline. For
the purposes of this debate, however, we use the next feature, which is Issues.

 Issues
 In brief, each repository that contains code might also have bugs associated with it. When a commit causes
other code to break, one of the contributors to the blog or a user can open a bug with the repository. The
Issues tab is essentially a way to track these bugs. We use this bug tracker in a different way: The Issues tab
is publicly accessible, so we can take advantage of it to keep the conversations between the moderators and
speakers open. More concretely, we can open a new issue and ask the speakers to reply to the issue, which
the participant can see. The moderator simply copies the replies by the speakers into the debate. Aside from
transparency, this method greatly reduces the complexity involved on the speaker side. It allows them to
reply in a very straightforward manner as a comment to the issue created. The Issues feature is shown in
Figure 10-3a and creating an issue is displayed in Figure 10-3b .

CHAPTER 10 ■ OPEN DEBATES

167

 Figure 10-3a. Issues feature in GitHub. Clicking New Issue allows you to create a new issue for the repository.
We use this feature to keep the conversations between the moderator and the speaker transparent

 Figure 10-3b. Creating a new issue within a repository. The issue statement can be written in Markdown

 The issues act as task manager for the repository and allow us to manage and fix any problems that
arise. The issues are not limited to just code; you can create them for any sort of repository. In our case,
we will be using them to obtain statements from the speakers through each phase of the debate. We will
be creating new post layouts that can be inherited to format the statements properly. The issues can be
designed to reflect which debate they originated from, and one easy way to distinguish the issues is by using
a naming scheme : [Debate-name] Opposing-Speaker Opening Statements . This method would work nicely to
organize the debates on the GitHub side.

CHAPTER 10 ■ OPEN DEBATES

168

 ■ Note We are only discussing one Git hosting solution in this chapter, GitHub. However, there are several
other platforms for Git. Some of the most popular ones include Bitbucket, GitLab, Gerrit, and Perforce. Not
all these platforms are open or free to use, however; in some cases the requirements for enterprise-level
development are different than for personal projects.

 Pull Requests
 The next feature is pull requests , which goes back to the idea of forking repositories. Once you have cloned a
repository, you also have the entire history of that repository. There can be many reasons to fork a repository,
and a common one is to learn how the code works and play with it on your own. However, another reason
for forking a repository is to make a change and contribute back to the original project. In those cases, after
forking a repository and making the changes that you desire, it is time to push the changes back to the
original project using a pull request. Essentially, a pull request is a summary of the commits and exactly
what changes are you proposing to make. This is also the only proper way to contribute back to open source
projects on Git. The pull request feature is shown in Figure 10-4 .

 Figure 10-4. Pull requests to a repository

 Wiki
 The next feature is the wiki for a repository. This feature simply allows you to create pages and use them
as tutorials or status updates on your project. The pages can really be used for anything as necessary, and
creating them is very easy because the pages can be formatted with Markdown. This feature can be useful
in our project if the moderator of the debate chooses to rephrase the rules discussed in the previous section
and show them to the speakers. Another interesting use of the wiki that will have to be ported into the debate
would be a further reading section that would allow interested readers to learn more about the context in
which the debate is happening. The wiki feature is shown in Figure 10-5 .

CHAPTER 10 ■ OPEN DEBATES

169

 Figure 10-5. Wiki feature for the repository

 The next two features are more for the purposes of obtaining data on developers and less for the project
itself. As a result, they might be used more often within an organization developing an open source product.

 Pulse and Graphs
 The next feature, Pulse, gives you an overview of the repository. It tells you the interactions developers have
had with it in terms of commits or merges, and also how many interactions the repository has had with the
“outside” in terms of the pull requests. It also details the number of open or resolved issues. This feature
is handy when a project grows large enough to accommodate many developers and a large code base. At
that time, it is crucial that some level of accountability and a measure of repository health is present. The
Pulse feature is shown in Figure 10-6 . The next feature is Graphs, and as the name implies, this is another
analytics feature for the repository. Just as Pulse provides data on the repository, Graphs provides data on
the developers interacting with the repository. This feature is shown in Figure 10-7 , and the data tabs show
the seven prominent metrics on the developers. The particularly important ones are number of commits
made be the developers involved and the contributors. For personal projects such as this debate project,
most of this data will show one developer or one contributor, so this data is not very insightful to us. On the
other hand, it might be a good idea to use this data for personal goals and improvement. Recently, there
has been a push to centralize the contributions made by developers so that they can include them in their
own achievements. One path forward has been to use Mozilla Open Badges, which seems like an interesting
alternative, and the data from GitHub certainly makes it easier to link and identify developer contributions.

CHAPTER 10 ■ OPEN DEBATES

170

 Figure 10-6. Pulse feature for the repository

 Figure 10-7. Graphs with data on the developers interacting with the repository

 There are more options available in each of the two features than we covered here, but most of those
options are not useful for small projects. The last feature is the settings. This is what we used previously to
delete an older repository and then create a new one. Launching this feature takes us to the Settings page,
and the sidebar helps the user navigate through the various settings available for the repository. The most
practical settings are on the Options tab of the sidebar and we focus on them. The Options page is split into
four zones. The first zone provides the option to rename the repository. This is easy to do, but you have
to be very careful that any other variables in the code using that repository name are also updated, or it
might break links. The next zone shows the features of the repository. Remember the issue and wiki views
we discussed earlier? Those can be disabled for a repository if needed. This is generally done to restrict
the repository strictly to a code base. We need these features so we will leave this section untouched. Let’s
skip ahead to the danger zone. This is the zone where you can upgrade your GitHub plan to get a private
repository if need be. In addition, you can also transfer the ownership of your repository to another user so
they can manage it for you. This could be useful if someone managing the repository cannot do it for the
near future and you need a new manager. Finally, this zone contains the option to delete your repository and
all the information associated with it. This allows you to create root repositories again to host new code.

CHAPTER 10 ■ OPEN DEBATES

171

 GitHub Pages
 The last zone that we’ll talk about is GitHub Pages, which contains an automatic page generator. Let’s start
with the page generator, and then we cover some features of GitHub Pages. Essentially, the page generator
uses predefined templates to create a Jekyll-based landing page for your project. The code generated from
the template is a fully functional web site stored in the same repository under a new branch called gh-pages .
The branch is hosted on a web address provided by GitHub as username.github.io/project_name . This can
be incredibly useful if you want to make a landing page for your finished project. The auto-generator wizard
will create a beautiful layout for you where you can provide a download link to your executable. There are
two types of web sites that GitHub Pages will generate for us, and we have already briefly covered both of
them. The first type is a user or organization site. This option is automatically selected when the repository is
created with the name username.github.io and GitHub Pages automatically compiles that repository into
a web site using any Jekyll components available within the repository. For our purposes, this is the type of
web site that we are creating within this project. The other type of web site that GitHub Pages will create is
a project site. This option allows you to make a project page for any of the repositories under your account
and you can hold multiple landing pages within your repository using this method. GitHub Pages is simply
creating a Jekyll-based landing page that you can modify for every project that you launch with the auto-
generator. The auto-generator is shown in Figure 10-8 .

 Figure 10-8. GitHub Pages auto-generator for project pages

 The organization web site created by GitHub Pages using the username.github.io naming format not
only compiles automatically, but it also has a few other interesting features. The most practical feature is that
you can configure a custom domain for this web site that was compiled by GitHub Pages. This allows you to
redirect from the username.github.io web address to a custom domain that you like. There are two types of
 redirects for GitHub Pages sites: subdomains and apex domains (top-level domains). It is important that we
discuss the terminology first before moving on to avoid any confusion.

CHAPTER 10 ■ OPEN DEBATES

172

• Primary domain : A web address pointing to the location of a web site on a server.
Generally given in the form of example.com and also known as a top-level domain or
simply domain.

• Subdomain : A domain that is part of the primary domain. Generally given in the
form of subdomain.example.com .

• Project directory : A web-accessible directory present on a server. Generally given
in the form of example.com/project . This should not be confused with GitHub’s
project sites, which are given the web address of username.github.io/project .

• Apex domain : Top-level domain, much like a primary domain. The only difference
between the apex domain and the primary domain is the use of terminology.
Domains are used normally to refer to web sites and apex domains are being used by
GitHub to refer redirects to top-level domains.

 So how does GitHub Pages actually do the redirects for project sites and organization sites? Essentially,
these redirects work as shown in Table 10-1 .

 Table 10-1. Redirects for GitHub Pages

 Type Given Web Address Custom Domain Redirect

 For organization sites username.github.io example.com

 For project sites username.github.io/project project.example.com or project.com

 To make the redirects happen, there are two parties involved: The first is your web site generated
by GitHub Pages that resides in a repository (it needs to know where to redirect). The second is the zone
file of the custom domain (which needs to know the web address to which it can redirect). Let’s start by
creating a custom domain for the organization site. The first step is committing a text file named CNAME to
the repository. In the new file, add a single line that specifies the bare domain for your custom domain. For
example, use the domain websitename.com in this file and not https://websitename.com . Note that there
can only be one domain in the CNAME file. Commit this file, and that takes care of the repository side. This
step is common to both organization sites and project sites, so you would have to do this if you were setting
up a custom domain for either of the sites.

 The second step involves making the changes to the Domain Name System (DNS) zone file. Setting up a
domain redirect for an organization site is very straightforward: All you need to do is to create A records with
your DNS provider to resolve to the following IP addresses:

• 192.30.252.153

• 192.30.252.154

 Following this method and editing the A records with the DNS provider, we can redirect an organization
site to a custom apex domain. Redirection for project sites is very similar, but it involves a few more steps in
certain cases. A sample DNA zone file with an A record that points to GitHub is shown in Figure 10-9 .

https://websitename.com/

CHAPTER 10 ■ OPEN DEBATES

173

 ■ Note For DNS providers such as GoDaddy, setting up redirects with GitHub Pages can be done by
committing the CNAME file to the repository and then editing the zone file by clicking Manage Domain and then
the DNS Zone File tab on the GoDaddy dashboard.

 The process of redirecting project sites is slightly more involved because you have two options: Either
create an independent domain for the project site or redirect it as a subdomain of a custom domain. If
an organization site has been created (or there exists a repository under your account using the format
 username.github.io), then any project site that you set up will default to being a subdomain under that
organization site. If you use the GitHub Pages auto-generator, the resulting landing page will also be created
as a subdomain. The project sites can be kept as subdomains of the organization site or redirected to
independent custom domains following roughly the same process as before.

 For the project sites , the first step is exactly the same: Add a CNAME file with the domain name to the
repository. Here you get to decide what you want to do with this project site. One option is to redirect the site
to an independent domain, using example.com in the CNAME file. This is on the repository side; on the DNS
side, side, you have to add a CNAME record and an A record as follows:

 CNAME
 Name = blog
 Type = CNAME
 Value = yourusername.github.io. (Yes, there is a . at the end!)

 A record
 Name = (blank, nothing)
 Type = A
 Value = 192.30.252.153

 If you want to redirect the site to a subdomain, then put subdomain.example.com in the CNAME file. The
next step is different: Instead of adding an A record and CNAME record in the DNS zone file, we simply add
the CNAME to the zone file as follows:

 Name = blog
 Type = CNAME
 Value = yourusername.github.io. (Yes, there is a . at the end!)

 Figure 10-9. A sample zone file on GoDaddy for an apex domain redirection

CHAPTER 10 ■ OPEN DEBATES

174

 This completes the process of redirecting the project site to a custom domain. A visual guide to
changing CNAME and editing the A records is referenced later in the chapter. Our tour of GitHub Pages is now
complete, so let’s jump into this project and start editing the theme.

 ■ Review To redirect GitHub Pages-generated web sites, you first need to commit a file with the name CNAME
and a domain name in it. After that, for organization sites you need to edit the A record with the DNS provider.
For project sites, you need to edit the CNAME and A record with the DNS provider to redirect toward an apex
domain. To redirect toward a subdomain, just edit the CNAME .

 Prototyping
 We have prototyped our projects before, but the approach we took was largely to create a model for what our
blog should look like. The model then guides our search for a theme that we can edit. So why do we start with
a built theme and then edit it? Well, the answer is a practical one: Whenever you want to start with a new
task or project at hand, starting from complete scratch might be a waste of time. You want to start at a solid
foundation and then keep changing it or adding elements to give it a personalized feeling. In development
terms, you almost never want to start from absolutely nothing, which can be a huge setback. Selecting a
theme to use as a base greatly helps to visualize the end product. That’s the main objective of prototyping:
providing a tangible representation to aid our visualization of the final product. Another approach to the same
problem is to model the behaviour of the web site or the way users would interact with the web site and their
workflow. Given that our debate has multiple phases and a workflow to it, we can storyboard our prototype. In
this approach, the main focus of the model is to try and capture the transition that users face while going from
one phase to another. In this section, we model the home page for Open Debates and the transition into the
briefing phase for the debate. The storyboard will first show the home page and detail the features available
on the home page, and then transition into the briefing phase of the debate. This allows us to capture the
interaction between the linking page and the beginning of the debate itself.

 Figure 10-10 shows the Open Debates page . This page starts with a top navigation bar containing the
name of the web site and two navigation options. Beneath the navigation bar are a few options to share the
ideas from the debate to social media. After the social bar there is a summary of the current debate, along
with a picture relating to the debate. This allows the readers to understand the motion being debated and
the positions of the speakers. There must also be an easily accessible and distraction-free button to access
the current debate. Underneath the current debate is an archive of the past debates that have happened on
this platform.

CHAPTER 10 ■ OPEN DEBATES

175

 Figure 10-11 shows the results of the transition from the home page to the debate briefing page. This
page would be the entry page for the user, and it shows a brief summary and description of the debate.
The page starts with the same top navigation bar, but instead of the site name, this navigation bar provides
the name of the current debate. Underneath this bar, instead of social media, we have a debate specific
navigation bar that takes us from one phase of the debate to the next. Under the debate phases is the content
of the debate. This is a briefing page, so it contains a summary of the debate along with the two speakers.
Finally, after providing a brief introduction to the debate, there is a voting option. This first vote gauges the
initial reactions of the crowd tuning in for this debate.

 Figure 10-10. The Open Debates home page

CHAPTER 10 ■ OPEN DEBATES

176

 Jekyll Collections
 Before we get into editing the theme, there is one more problem that comes to light after making the
storyboard. The issue we face is organizing the pages created through the debates. It is clear that each debate
will require five or six different pages and the total number of pages will grow very fast. We need a method
for organizing these pages from each debate, and more important, we need a way to dynamically reassign
and automatically update links throughout the theme using some global variables. This becomes important
for elements such as navigation bars, which are generally created with hard-coded links to defined pages.
It is not sensible to hard-code the links to pages associated with a debate when they will become obsolete
in the next debate. We can’t simply ask the maintainer of the theme to update the links each time for a new
debate. The links in a navigation bar need to be such that they can be automatically updated with a single
switch. If we can create a template for navigation that has the property of dynamically updating links each
time a new debate happens and preserving the old links, we can properly direct the user to any debate
and its associated pages. This problem is commonly known as routing, and to solve it, advanced front-end
frameworks such as Ember.js and Angular.js use sophisticated mechanisms called routers. The sole purpose
of a router is to help guide user workflow through a web application and make it easier on the developer to
create new routes. These routes can essentially be understood as links that can be dynamically updated.

 Figure 10-11. Transition into the debate itself

CHAPTER 10 ■ OPEN DEBATES

177

 Jekyll has two types of routing mechanisms that provide the most basic functioning to a blog. The first
one is a primitive-type routing preset within Jekyll, which creates the links to every post and page once the
site has been compiled. The second one is a derived-type routing relying on components of Jekyll such as
YAML and Liquid. Two examples of the latter include the permalink YAML variable, which allows for some
level of routing to individual blog posts, and Liquid tags that provide support for inheritance and includes.
Recently, a much more sophisticated mechanism for routing was included in Jekyll 2.0 called collections. A
collection allows you to define a new set of documents that behave much like a post or a page, but have their
own properties. Collections bring all of Jekyll’s features to custom sources of data or information that are not
chronologically organized posts, but have a set relationship with one another. Everything that’s not a post or
a page can be represented as a collection. Using collections allows for an organization scheme to be applied
to the custom sources (posts or pages). We rely on this ability of organizing new pages to provide us with the
routing features needed for the debates. To implement a collection and tell Jekyll to read in your collection,
create a new folder with the name of the collection. This folder name needs to be specified in the _config.
yml file along with some optional variables and that’s it: Your collection is ready. Now we can add all sorts
of pages in the folder and the configuration added to the _config.yml file will take care of routing the files
properly for us. Let’s take a look at what this configuration is.

 collections: # What comes next pertains to a collection
 new_debate: # Name of the collection
 output: true # Convert every page in the collection to an html file
 permalink: /awesome/:path/ # Routing and permalink for each of the pages

 These four lines of code implement the collection and routing that we need for this project. The first
line denotes that the following configuration is related to a collection. The second line is the name of the
collection. For this collection to be processed by Jekyll, there needs to be a folder in the format _foldername
containing the pages or posts under this collection. The third line specifies an output for Jekyll to convert
every post or page into a corresponding HTML file. The last line here actually gives us the routing. This
permalink specifies that all the files from this debate should be listed under the /awesome/ path. For
instance, if we had a file _new_debate/debate_briefing.md , it would be converted to jekyll-mini-blog.
com/awesome/new_debate/debate_briefing.html . Each debate will become a functional unit for this blog.
In that sense, we consider each debate as a collection of posts or pages that correspond to the phases of the
debate. To add new debates to the collection, simply add the next collection underneath the debate and the
associated configuration for it. This is shown as follows:

 collections:
 first_debate:
 output: true
 permalink: /awesome/:path/

 second_debate:
 permalink: /two/:path/

 We will see this in action in the upcoming section, so let’s get started with selecting a theme and editing it.

 Theming the Debate
 It should be noted here that the actual theme for this debate doesn’t matter as much as the concepts being
brought in and used to edit the theme. The only requirement for a theme is that it needs a navigation bar
on the top of the page. Looking through Jekyll Themes for a minimal theme with a navigation bar, the Type
theme seems a very interesting choice (http://jekyllthemes.org/themes/type-theme/). Download the

http://jekyllthemes.org/themes/type-theme/

CHAPTER 10 ■ OPEN DEBATES

178

zipped file and set it up as we have done previously on GitHub and use GitHub Desktop to manage and
commit changes. Let’s start by editing _config.yml . The baseurl has been set to root , so we don’t need to
edit anything. Here is the metadata for the site:

 theme:
 # Meta
 title: Open Debates

 Add a description fitting to the web site, and edit the header.

 # Header text - Link the current debate here
 header_text: >
 <p>Oxford style debates on issues that matter.</p>
 <p>Current debate topic: Cloud Computing.</p>

 header_text_feature_image: img/debate.png # A cover-image for the header

 Make sure that the image is not distracting, because the header text will appear in front of that image.
A few lines down, there’s also a feature to add Disqus-enabled comments to pages, and we will use that, so
remember to come back to this later and add your shortname.

 # Scripts
 google_analytics: # Tracking ID, e.g. "UA-000000-01"
 disqus_shortname:

 Let’s start adding the first debate. We also add some metadata with the collections code.

 collections:
 first:
 output: true
 permalink: /first/:path/
 thumbnail: /thumbnails/first.png

 This creates a collection called first , with an associated permalink variable that points each page of
the debate under site.baseurl/first/page and we also have a thumbnail custom variable. Each collection
can have some metadata associated with it, and here, the variable points to a newly created folder that
contains a thumbnail image representing the debate. The output: true option tells Jekyll to convert any
Markdown files present in the collection into HTML files that can be normally accessed. We can use this on
the home page to list all the previous debates. There is some clutter with social icons that can be removed
from the page if necessary, but most of the variables need to be assigned to be active, so if we leave them
alone, they will not cause any issues. Now let’s get to the home page. There are plenty of edits we need to
make, so a list might help.

• Edit the top navigation bar.

• Make sure the header featured image displays with the appropriate text.

• Show the current debate.

• List previous debates.

 The navigation bar is a bit convoluted in this theme. Instead of just having a list of links to form the
navigation, the theme loops over every page available and makes the navigation bar from the pages that
have a title and page.hide disabled. Note that in our case, each debate needs to have a navigation bar that

CHAPTER 10 ■ OPEN DEBATES

179

is different from the one present on the home page. We need to create two separate navigation bars and
replace the loop with hard-coded links to actual pages. The first step in this process is to take the navigation
code from header.html and put it in a separate file.

 <!-- Code to be moved from header.html to nav-bar.html -->
 <nav class="site-nav">

 {% for page in site.pages %}
 {% if page.title and page.hide != true %}

 {{ page.title }}

 {% endif %}
 {% endfor %}
 <!-- Social icons from Font Awesome, if enabled -->
 {% include icons.html %}

 </nav>

 This code needs to be saved in a new file. Let’s call it nav-bar.html , and to make the navigation appear
on the home page, let’s include this file in header.html as {% include nav-bar.html %} . Let’s start editing
the navigation bar to link to defined pages. We will be editing the previously mentioned code, now present in
 nav-bar.html .

 <nav class="site-nav">

 Home
 About

 <!-- Social icons from Font Awesome, if enabled -->
 {% include icons.html %}

 </nav>

 This snippet of code allows us to control what goes in the navigation bar of the home page while
preserving the social icons that were defined. Now save the nav-bar.html file and remember to commit the
changes. For the Home link to work properly, we have to use site.url instead of site.baseurl because
the value of site.baseurl actually changes for different parts of the web site. If you are browsing the About
page, site.baseurl will evaluate and return a link that is the subsection of the site. For instance, site.
baseurl will return jekyll-mini-blog.github.io/about from evaluating {{ site.baseurl }} for the
About page. That’s why defining site.url in _config.yml is the right course of action: That variable will
evaluate to an absolute for the whole site.

 # SITE CONFIGURATION
 baseurl: "" # the subpath of your site, e.g. /blog/
 url: "http://jekyll-mini-blog.github.io" # Your username.github.io url here

CHAPTER 10 ■ OPEN DEBATES

180

 So how do we create the second navigation bar that auto-updates the links each time? We need to use a
global variable that can be changed each time to reflect the name of the current debate. This variable can be
placed in _config.yml , underneath the collections definitions to make the editing easier:

 current: first

 The current becomes the global variable that will update the links for us in each debate. Using this
global variable, and the fact that all the phases for the debate would be the same, we can construct the
navigation to follow a pattern like {{ site.baseurl }}/{{ site.current }}/briefing . Let’s see how this
works for navigation.

 <nav class="site-nav">

Briefing

Opening

Rebuttal

Closing

Results

 <!-- Social icons from Font Awesome, if enabled -->
 {% include icons.html %}

 </nav>

 This allows us to rely on just the global variable to auto-update the links each time within the debate.
This file is a clone of the original navigation bar, but this one is special for debates, so save it as nav-bar-
debates.html . Each time, simply editing the current variable in config.yml will automatically generate new
links for the navigation. This navigation bar by itself is just one component; eventually we will have to create
a series of new layouts for each of the five phases of this debate. We return to this topic shortly, but for now
we have to organize the collections and display them on the home page. This can be done in a number of
ways, but we will do a simple loop through the collections to display them all, along with a thumbnail. That’s
what the thumbnail variable in the config.yml file was for. First, a folder with the name thumbnails needs to
be created. After that, place images in the folder corresponding to each of the debates and make sure that the
names of the images match with those specified in config.yml so that Jekyll lists them out. Before that, we
need to clean up the home page a bit and remove the posts. All the code within <div class="posts"> is safe
to remove along with the pagination code under

 {% if paginator.total_pages > 1 %}
 <div class="pagination">

CHAPTER 10 ■ OPEN DEBATES

181

 You should be left with just a </div> tag in the end that closes off the initial home class. That will remove
the posts from the home page, and now we can start adding the debates. The logic here is to consider each
collection as a unit or an object, and on the home page, we are simply listing each object using a simple
tag. The way to do this would be through a for loop: Loop through all the collections and list their names.

 {% for collection in site.collections %}g
 <p> {{ collection.label }} </p>
 {% endfor %}

 The new updates to Jekyll 3.0 allow you to simply use collections.label to get the name of the
collection. This is essentially the logic that we are using to list all the collections on the home page. As you
keep adding more collections, this home page list will automatically grow. This code needs some style
elements so that we can list the collections in a visually appealing manner, so let’s look at the code for the full
 index.html .

 layout: default

 <!-- Old code -->
 <div class="home">
 {% if site.theme.header_text %}
 <div class="call-out"
 style="background-image: url('{{ site.baseurl }}/{{ site.theme.header_text_feature_image
}}')">
 {{ site.theme.header_text }}
 </div>
 {% endif %}
 <!-- Old code -->

 </br> <!-- Line breaks -->

 <p align="center"> Our debates: </p>

 <style> <!-- Styling the list to center it and remove the bullets -->

 .test{text-align:center}
 ul{list-style-type: none;}

 </style>

 <div class="test"> <!-- A class using the style we just specified -->

 <!-- The current debate in session being displayed on top of the page -->

 <p>
 The debate in session currently is - <a class="page-link" href="{{ site.baseurl }}/{{ site.
current }}/briefing"> {{ site.current }} </p>

 <small> {{ site.curr_description }} </small>

 </br>

CHAPTER 10 ■ OPEN DEBATES

182

 <!-- For loop: List a thumbnail and hyperlink the label of the collection to the briefing
page for that debate-->

 {% for collection in site.collections %}

 <p>
 {{ collection.label }}:<a href="{{ site.baseurl}}/{{ collection.label}}/
briefing/"> Briefing </p>

 {% endfor %} <!-- End for loop -->

 </div>

 </div>

 There is quite a lot happening in this file, so let’s break it down into a few simpler components.

• The old code leftover from the edits starts the home class and makes the header
appear with the featured header image.

• The
 tags just add horizontal breaks. These tags are dispersed throughout the
theme to make it appear clean and not cluttered. The technically correct way would
be to put everything in a <div> and then put the spacing in CSS, but this was just a
quick way to do that.

• The next block is actually the style elements, which centers the list of objects and
also removes the bullet from the .

• The next block of code is another measure to make the debate platform clean.
This one lists the current debate explicitly, along with a link to the briefing page
for that debate based on the current variable in the config.yml file. There’s also a
new variable called site.curr_description , and this variable corresponds to a
definition in config.yml for curr_description . The purpose of this variable is to
enter a short description for the current debate and the way this would be done in
 config.yml is as follows:

 curr_description: >
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
 # There must be one tabbed spacing on the line after the > character.

• Finally, the last block of code is simply extrapolating from what we discussed earlier
with the collections. This block does two things with the listing. Remember that even
if this code looks complex, it just lists each collection as an object or a unit. The first
element to list is an image or a thumbnail for each of the collections. The second
element is the label of the collection along with the word “Briefing” hyperlinked to
the briefing page of the debate.

 This fixes up the home page for us, so right now the home page shows a list of debates and highlights
the current debate. We only added minimal style elements, but a few simples ones such as creating a box
around the current debate with a dashed green border can be implemented with ease. Now what’s left for
this project is actually designing the layouts for each of the six phases. There will be significant repeats across
the phases, but each phase will have some unique features. Let’s start with the first one, the debate briefing.

CHAPTER 10 ■ OPEN DEBATES

183

 Phases
 The first element needed in the briefing page is a voting mechanism. The Economist debates use a beautiful
miniature voting mechanism, but in Jekyll, we can’t do any server-side programming so we have to rely on
third-party services to provide us with a polling capability. Recently, Twitter announced the ability to create
polls with multiple choices, so what if we used Twitter polls in our debates? There is one limitation of these
polls: The voting period only lasts for 24 hours. That might seem like a serious disadvantage because we
want to capture the votes through the entire debate. Arguably, that’s just one way to gauge what the audience
thinks. Another possibility is to capture the change in their thoughts over the period of 24 hours. In this case,
we have to create new poll every 24 hours, but that offers a very high degree of control and granularity on
audience input. The difference here is that instead of capturing the feedback from the audience over the
whole debate, we capture how their minds changed as the new phases expose them to different ideas and
information that they might not have considered before. Creating a poll on Twitter is actually very simple.
A sample poll is shown in Figure 10-12 . There are two distinct advantages of creating a poll on Twitter and
using that instead of creating it on the Open Debates platform.

• The first one is the simplicity of creating and maintaining the poll. There is absolutely
no overhead in terms of development on our end: The poll is hosted elsewhere and
it can be embedded very simply just as a normal tweet would be embedded in a web
page. Being able to embed the poll is one of the best features, and the results from that
poll are displayed after the 24-hour window. The moderator can take note of those
or even save the old polls as images, and then update the briefing page each time for
the 24-hour window. This allows the audience to see the results of the poll and more
important, they get to see the changes in mindsets as the debate progresses.

• The other realistic advantage is that most debates on The Economist are already
using social media to some extent, either to ask questions or spread awareness about
the issue. Incorporating social media as a central component of the debate allows us
to reach our followers on social media easily. The use of another platform also makes
it possible to reach a larger user base, which follows the same principles mentioned
previously in the choice of using 500px for hosting photography.

 Figure 10-12. Creating a poll on Twitter using the mobile app. A poll can also be created easily on the web
app using the same method as shown here

CHAPTER 10 ■ OPEN DEBATES

184

 The major disadvantage within this scheme is having the moderator present the results from every
polling window. More specifically, this would mean that the briefing file would have to be edited daily. Being
aware of this shortcoming, though, can make it easier for us to accommodate the editing from the moderator
and keep it minimal.

 To make the editing pain-free for the moderator, we rely on styles that can make the text visually
appealing and standardize them through the theme. This allows us to include the styles in a layout and then
implement them using a <div class="style"> tag. For this debate platform, we will need five styles :

• Bios: The style being used to display the bios of the speakers and the moderator on
the briefing page.

• Moderator talks: The style being used to show the statements made by the
moderator.

• Speakers talk: The style being used to show the speaker statements.

• Guests talk: The style being used to show the statements by guests.

• Poll results: The style being used when the moderator presents the results from a
polling window.

 Each of these styles will turn into an individual file present under _includes . In this way, we can
include all of the styles in a layout and then inherit that layout for the phases that are actually pages
themselves. The styles being presented here are not always the best visual choices and they are not very
sophisticated, but they illustrate the phases accurately and minimally. Most of these styles are font changes
and other CSS-based elements designed to distinguish among the various participants in the debate. The
logic here is to design style classes such that the moderator only needs to use basic HTML during the editing.
So where should the styles be stored? The obvious solution is that we would put them as individual files that
we can then include in a layout. Let’s look at the _layouts folder, where three layouts are present. Both the
posts and pages inherit layouts from the default, which has a few lines of code.

 <!DOCTYPE html>
 <html class="no-js">
 {% include head.html %}
 <body>
 {% include header.html %}
 <div class="content">
 {{ content }}
 </div>
 {% include footer.html %}
 </body>
 </html>

 Most of the interesting code is in the includes, as the header.html file contains the top navigation bar code
edited earlier to modularize the code and create a new nav-bar.html file. We need to revisit that file because
the navigation is still not fixed for the debates. We created two files, nav-bar.html and a second one called
 nav-bar-debates.html for the debates. So how do we make Jekyll switch the navigation bars? Let’s use an if
statement with the logic that if we are not at the home page, then the other navigation bar should display.

 {% if page.url == "/index.html" %}
 {% include nav-bar.html %}
 {% else %}
 {% include nav-bar-debates.html %}
 {% endif %}

CHAPTER 10 ■ OPEN DEBATES

185

 This code replaces the single line {% include nav-bar.html %} in the header.html file. Going back to
the default layout, the page layout inherits from this one, so the page layout might be the better place to store
the styles. The styles should be entered near the top of the file, after the front matter, shown as follows:

 layout: default

 {% include bio_style.html %}
 {% include guest_style.html %}
 {% include mod_style.html %}
 {% include speaker_style.html %}
 {% include results_style.html %}

 This will ensure that any page that inherits the page layout will have access to any of these style elements
if necessary. In the remainder of this chapter, we cover each of the phases along with the corresponding styles.
The first phase is the briefing, stored in briefing.md in the location _first-collection/briefing.md . This file
has three elements: mod style for introducing the debate, bio style for the bios of the guests, and finally the poll
embedded from Twitter. The poll created on Twitter can be embedded with ease, as shown in Figure 10-13 .

 Figure 10-13. Embedding a poll created on Twitter. The embed code provided by Twitter and selected here
can be copied over to an individual file, twitter_poll.html , and then included in the briefing page.

CHAPTER 10 ■ OPEN DEBATES

186

 Let’s start with the full code of the phases, the first one being briefing.md .

 layout: page
 title: Debate Briefing

 <div class="mod">
 Consectetur adipiscing elit. Donec a diam lectus. Sed sit amet ipsum mauris. Maecenas congue
ligula ac quam viverra nec consectetur ante hendrerit. Donec et mollis dolor. Praesent et
diam eget libero egestas mattis sit amet vitae augue.
 </div>

 <!-- Embedding the twitter poll -->
 {% include twitter_poll.html %}
 <!-- Biographies for the mod and the speakers -->

 <p style="text-align:center;">

 Vikram Dhillon (Moderator)
 </p>

 <div class="bio">
 <p> Biography of the moderator </p>
 </div>

 <hr>

 John Smith (Opposing)

 <div class="bio">
 <p> Biography of John Smith </p>
 </div>

 Benjamin Franklin (Favoring)

 <div class="bio">
 <p> Biography of Benjamin Franklin </p>
 </div>

 Let’s break down what is happening in this file, along with the styles being used.

• We are using the page layout for this page in the debate. We also saved all of our style
includes in the page layout, so it makes sense to use that. This layout also has an
additional style feature of making the title appear in the h1 tag.

• Right away, the first block of text is contained within the <div class="mod"> and this
corresponds to the moderator style. We discuss exactly what is in the style shortly.

CHAPTER 10 ■ OPEN DEBATES

187

• Following the mod style is the include for embedding the Twitter poll. This code is
being kept in a separate file to make the polling modular. That is to say, this code will
have to be changed each 24 hours, so if we keep the code in an isolated file, all you
need to do to edit the code is to paste the embed code in the twitter_poll.html file.
The integration of this poll in the appropriate place is already taken care of.

• After the poll, we start listing the biographies. This is the last part of the code. Here
we are using the bio class and there are some style features associated with the
 span and img classes, too. These features allow us to edit without having to worry
about how the pictures or bios will render on the page. The CSS in the background
takes care of this automatically with the styles we specified. Notice that the trend of
hiding style details is common in this file. This is due to the fact that editing can be
done simply using HTML tags; any other styles and related features can be stored
elsewhere and used in the page as needed.

 All of the styles corresponding to biographies can be contained in bio_styles.html and the moderator
style can be stored in mod_style.html . Let’s look at both of them, starting with bio_styles.html .

 <style type="text/css">

 img { /* The style applies anytime an img tag is used */
 vertical-align: middle;
 margin-bottom: 0.50em;
 }

 span { /* The style applies anytime a span tag is used */
 font-size: 1em;
 padding-left: 0.5em;
 padding-right: 5em;
 font-variant: small-caps;
 }

 .bio { /* The style applies only to div class bio */
 font-size: 15px;
 font-family: 'Roboto', sans-serif;
 padding-bottom: 1em;
 }

 hr { /* The style applies anytime a hr tag is used */
 border: 0;
 border-bottom: 1px dashed #ccc;
 background: #999;
 }

 </style>

 The code here applies to both custom div classes and HTML tags. This allows us to ensure that any
instance of a tag can inherit the proper style. This is what allows us to just use tags and not have to
worry about whether the images will be placed appropriately. Let’s look at the mod_style.html next.

CHAPTER 10 ■ OPEN DEBATES

188

 <style>

 .mod { /* The style applies only to div class mod */
 font-size: 12px;
 font-family: 'PT Sans Narrow', sans-serif;
 padding-bottom: 1em;
 }

 </style>

 This is a simple custom style implementing a new font. Where are these fonts coming from? We are
using Google Fonts for these custom styles. To use custom fonts properly, Google Fonts tells us that we have
to import the fonts into the header of an HTML page. In this theme, all the imports are handled in head.
html . Let’s create a new file called fonts.html in _includes where we can store import links to any fonts that
we want to use. This file should be included in head.html (line 23) under the Google Fonts option.

 <!-- Google Fonts -->
 {% if site.theme.google_fonts %}
 <link href="//fonts.googleapis.com/css?family={{ site.theme.google_fonts }}"
rel="stylesheet" type="text/css">
 {% endif %}

 {% include fonts.html %}

 Now the fonts stored in fonts.html will be imported automatically and made available to the whole
theme. The contents of fonts.html for our debate platform are shown here.

 <!-- For bio styles -->
 <link href='https://fonts.googleapis.com/css?family=Roboto:300italic' rel='stylesheet'
type='text/css'>

 <!-- For results styles -->
 <link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet' type='text/
css'>

 <!-- For speaker styles -->
 <link href='https://fonts.googleapis.com/css?family=Droid+Sans' rel='stylesheet' type='text/
css'>

 <!-- For mod styles -->
 <link href='https://fonts.googleapis.com/css?family=PT+Sans+Narrow' rel='stylesheet'
type='text/css'>

 <!-- For guest styles -->
 <link href='https://fonts.googleapis.com/css?family=Slabo+27px' rel='stylesheet' type='text/
css'>

 These link statements are all taken right from Google Fonts and stored here to allow for easy addition of
any new fonts and a modular structure. In this manner, we can now design any styles with these fonts, and
the fonts will become available automatically.

CHAPTER 10 ■ OPEN DEBATES

189

 The next file to cover is the opening phase, which should be named opening.md in the debate collection
folder. This file is actually very simple, as it only contains three styles: the mod style for when the moderator
discusses the issue, the opening statements from the speakers, and any input from guests. Here’s the full
code for opening.md , and a discussion of the code follows.

 layout: page
 title: Opening Statements

 <div class="mod"> <!-- Moderator comments -->
 Consectetur adipiscing elit. Donec a diam lectus. Sed sit amet ipsum mauris. Maecenas congue
ligula ac quam viverra nec consectetur ante hendrerit. Donec et mollis dolor. Praesent et
diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta
lorem lacinia consectetur.
 </div>

 <div class="speakers"> <!-- Speaker #1 opening statement -->

 <!-- Speaker #1 picture -->
 John Smith (Opposing)

 <p> Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum. </p>

 </div>

 <div class="speakers"> <!-- Speaker #2 opening statement -->

 <!-- Speaker #w profile picture -->
 Benjamin Franklin (Favoring)

 <p> Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum. </p>

 </div>
 <hr> <!-- Speaker statements done -->

 <div class="guest"> <!-- Guest input -->

 <p class="input"> Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. </p>

 </div>

• The front matter tells Jekyll that this is the opening page. Additionally, with the page
layout, the “Opening Statements” title also gets the <h1> property.

• From the start, this page has some comments from the moderator in <div
class="mod"> , which we discuss shortly. This class has some font updates for the
moderator comments.

CHAPTER 10 ■ OPEN DEBATES

190

• After the moderator statements, there are two instances of <div class="speakers">
that are the opening statements from both the speakers. In each instance, the first
line is actually their photos following the same code as the debate briefing. The next
are their names, again following the same logic as the briefing. After the name and
image come the opening statements from the speakers put into new paragraphs to
give ample spacing.

• Once the opening statements from the speakers are done, there’s a horizontal rule to
indicate the completion of the opening statements.

• Following the opening statements is some input from guests who are experts in the
areas being discussed in the debate. The guest statements are introduced in <div
class="guest"> and the statements themselves are put into another paragraph class
called input .

 This code actually uses three style classes : guest , input , and speaker . The other elements are being
inherited from the bio_style.html file for the bios. The input class is being used for the guests, so we can
store them together in one file. Let’s start looking at these files to see what elements they bring in for the
 opening.md page. The first is guest_style.html , which contains the guest class.

 <style>

 .guest {
 padding-top: 0.5em;
 font-size: 22px;
 font-family: 'Slabo 27px', serif;
 padding-bottom: 1em;
 color: rgb(108, 122, 137);
 }

 .input:before {
 content: "Guest Input: ";
 }

 </style>

 The guest class provides the guest input with the Slabo font and also a peculiar rgb(108,122,137)
color. This helps distinguish the guest input from the rest of the page. This class also provides the input text
with some padding. The input class just exists to provide the words “Guest Input” before the input text is
displayed. The content property is the only way to add text in CSS, but it only works with pseudo-elements
 :after and :before , which decide the placement of the text. We used this tag as <p class="input"> Lorem
ipsum … </p> and therefore the content “Guest Input” was inserted right before the Lorem ipsum text. The
next file to be examined is the speaker class, contained in the speaker_styles.html file.

 <style>

 .speaker {
 font-size: 12px;
 font-family: 'Droid+Sans', serif;
 padding-bottom: 1em;
 }

 </style>

CHAPTER 10 ■ OPEN DEBATES

191

 This is also a very simple style file providing the Droid Sans font to the statements from speakers. These
two files add the style elements to the opening page and make it easier for the moderator to simply add the
content provided to them by the speakers or guests within the proper classes.

 ■ Note It must be noted that the moderator only adds the content provided by the speakers in the
appropriate areas designated to the speakers. This content should also be requested through GitHub via
opening an issue. We discussed how to open issues with a GitHub repository and now we can finally use them
to obtain feedback from speakers and guests.

 The next file is for the rebuttal phase , which would be stored in the rebuttal.md file. It looks the exact
same as the opening file, as it contains the same three elements: moderator summary, the rebuttal by each
speaker examining the other’s statements, and guest comments on the issue. The only difference would be
the front matter.

 layout: page
 title: Rebuttal

 The next file is for the closing statements, saved as closing.md . This file has two components that are
already covered: the moderator summary and closing statements by the speakers. The full code is shown here.

 layout: page
 title: Closing Statements

 <div class="mod">
 Consectetur adipiscing elit. Donec a diam lectus. Sed sit amet ipsum mauris. Maecenas congue
ligula ac quam viverra nec consectetur ante hendrerit. Donec et mollis dolor. Praesent et
diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta
lorem lacinia consectetur.
 </div>

 <div class="speakers">

 John Smith (Opposing)

 <p> Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum. </p>

 </div>

 <div class="speakers">

 Benjamin Franklin (Favoring)

CHAPTER 10 ■ OPEN DEBATES

192

 <p> Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia
deserunt mollit anim id est laborum. </p>

 </div>

 There is nothing new in this code, as the style elements being used and the code itself were discussed
previously in the opening statements. Finally, the last phase of this debate is the results , which is stored in
 results.md. This phase involves just comments from the moderator. Let’s look at the full code of results.md .

 layout: page
 title: Results of the Debate

 <div class="mod">
 Consectetur adipiscing elit. Donec a diam lectus. Sed sit amet ipsum mauris. Maecenas congue
ligula ac quam viverra nec consectetur ante hendrerit. Donec et mollis dolor. Praesent et
diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta
lorem lacinia consectetur.
 </div>

 <div class="results">
 Sed sit amet ipsum mauris. Maecenas congue ligula ac quam viverra nec consectetur ante
hendrerit. Donec et mollis dolor.
 </div>

 This file uses a new style class that we have not covered. The idea here is for the moderator to summarize
the debate on both sides and announce the results of the debate. The first mod class is just for a summary
and the results class later on is the polling results from the debate. This is where the moderator shows the
data on how the mind-set of the audience changed over the course of the debate and if any interesting shifts
happened. The results class is also very straightforward, stored in the results_style.html file.

 <style>

 .mod { /* The style applies only to div class mod */
 font-size: 13px;
 font-family: 'Montserrat', sans-serif;
 padding-bottom: 4em;
 }

 </style>

 This segment of code gives the poll results the Montserrat font and some padding on the bottom.
That was the last section of the debates, and this finishes up the first debate collection. There are still a few
finishing touches left for this Open Debates platform, the first one being the use of comments. We discussed
how to implement Disqus previously, so in this case, we would want to put the Disqus embed code in a file
under _includes and then manually include the embed file in the appropriate areas. It must be noted that
comments should not be posted under the page layout because we don’t want comments on the briefing or
results. Therefore the include has to be done manually for the briefing.md , opening.md , rebuttal.md , and
 closing.md files. The next feature is actually about the content of the statements made by the moderator
and speakers: To encourage the readers to actively participate in the debates, speakers should end their

CHAPTER 10 ■ OPEN DEBATES

193

statements with something like, “If you agree with my statement, please vote for my side.” This last line can
hyperlink to the poll on the briefing page, and in this manner, we can at least try to ensure that the polling
happens frequently in each window. The last feature is about the navigation bar. When a new debate starts,
each of the links to the debate navigation bar will be present but not active because the pages have not been
created. This is simply an artifact of the sidebar, and users will be redirected to a 404 page if they click on
the inactive link. In a later section, we can try to fix this inactivation through the use of plug-ins. For now,
though, the 404 page will be perfect for the debate platform.

 Summary
 In this chapter, we created an Open Debates platform that uses the GitHub platform to promote open
standards in communication between the moderator and the speakers. We talked about how an Oxford-
style debate happens and after listing out the rules for the debate, we started constructing our prototype.
Based on the rules and our prototype, we found a matching theme and started editing until our platform
satisfied all of the features required by the rules. This type of behavior-driven development is crucial for
large projects, and we relied heavily on our ideas about the platform to create the final project. Our debate
platform used some advanced features such as collections and using a collection as an object to create
lists. These lists were presented on the home page, and we used a lot of Liquid tags for routing alongside
conditionals like if statements to route the user workflow. We also leveraged the open standards of GitHub
to collect input from the guests and speakers by opening issues. A new approach in capturing the change in
mind-sets of the audience was used here in terms of the Twitter poll, and we discussed how to best embed
and take advantage of the polling mechanism.

 Further Reading
 1. Jekyll collections docs: http://jekyllrb.com/docs/collections/

 2. Google Fonts: https://www.google.com/fonts

 3. GitHub Pages: User and organization pages: https://help.github.com/
articles/user-organization-and-project-pages/

 4. GitHub Pages: Custom domains: https://help.github.com/articles/
setting-up-a-custom-domain-with-github-pages/

 5. GitHub Pages basics: https://help.github.com/categories/github-pages-
basics/

 6. Twitter polls: https://blog.twitter.com/2015/introducing-twitter-polls

 7. DNS zone file editing: https://www.godaddy.com/help/manage-dns-for-your-
domain-names-680

 8. Adding CNAME records and A records: https://www.godaddy.com/help/add-
a-cname-record-19236

 9. GitHub Issues: https://guides.github.com/features/issues/

 10. GitHub video guides: https://www.youtube.com/user/GitHubGuides

 11. GitHub text guides: https://guides.github.com/

http://jekyllrb.com/docs/collections/
https://www.google.com/fonts
https://help.github.com/articles/user-organization-and-project-pages/
https://help.github.com/articles/user-organization-and-project-pages/
https://help.github.com/articles/setting-up-a-custom-domain-with-github-pages/
https://help.github.com/articles/setting-up-a-custom-domain-with-github-pages/
https://help.github.com/categories/github-pages-basics/
https://help.github.com/categories/github-pages-basics/
https://blog.twitter.com/2015/introducing-twitter-polls
https://www.godaddy.com/help/manage-dns-for-your-domain-names-680
https://www.godaddy.com/help/manage-dns-for-your-domain-names-680
https://www.godaddy.com/help/add-a-cname-record-19236
https://www.godaddy.com/help/add-a-cname-record-19236
https://guides.github.com/features/issues/
https://www.youtube.com/user/GitHubGuides
https://guides.github.com/

195© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_11

 CHAPTER 11

 Open Research

 What we find changes who we become.

 —Peter Morville

 Following the theme of this section, we build another open resources platform. The open dissemination of
research data has been a boon to the community because it allows for cross-verification and a more cohesive
understanding of the topics being studied. In this chapter, we return to using Jekyll as a blogging platform,
but with new tools commonly used in academia. These power tools are enabled as modular includes so
that they can run in the background to add several interesting features to the blog. We begin by picking a
simple theme to use and then design a prototype for how we will integrate the services within that theme.
After the prototype has been completed, we take on in-depth overview of Git and the CLI for it. We talk
about the foundations of Git, followed by a tutorial on the most commonly used Git commands. Finally, we
apply all the changes necessary to integrate all the tools that we previously discussed and end the chapter by
discussing how those tools can be beneficial at large.

 A New Platform
 When the heartbleed vulnerability was made public, the most reliable sources of information were the
bloggers examining the source code and the details themselves. They blogged extensively about it by going
into the details of the bug and explaining its implications. Often, they were using variables and symbols
to explain broad ideas, and more important, they were extending the logic they discovered to show how
widespread the problem was. The open distribution of their findings was crucially helpful, and that’s what
we replicate in this chapter.

 In designing products, keeping the end user in mind is very important, and there are three gradations
of this.

• The best case is the founders designing a product for themselves. They are solving
problems that matter to them, and ultimately they are the users themselves.

• The second case is that of building products that other users will use as intermediate
components in their product.

• Finally, the hardest case is that of building a product that you don’t have any
intention of using (health care and most human resources software falls into this
category). This project is an example of the last case.

 Technical blogging is the theme of this chapter, but every tool being used here has broad applications,
even outside of technical subjects. The main topic for application here is the Git command line and we
are pairing it with the application and implementation of some JavaScript-based tools. It is the actual

CHAPTER 11 ■ OPEN RESEARCH

196

implementation of these technologies that holds more far value than just using all those tools. This chapter
is not straightforward or easy to go through, but learning how to integrate diverse web technologies and
maintain a theme is a formidable skill that you will gain from reading this chapter.

 There are several components going into this blog, and most of them might be new to the reader, so we
introduce each one and go over its usage in detail.

 KaTeX
 The first tool is KaTeX , which is a minimal port of LaTeX for the Web. LaTeX is a document markup
language, in the same category as Markdown, but created for a very different purpose. LaTeX uses the design
philosophy of separating presentation from the actual content. This allows authors to focus on the content
of what they are writing, rather than the visual appearance. LaTeX is widely used in academia to prepare
documents and for publication of scientific documents in many fields, including mathematics, physics,
chemistry, bioinformatics, computer science, statistics, and economics.

 LaTeX is actually a high-level language that uses the power of TeX in an easier way for writers. In short,
TeX handles the layout side and LaTeX handles the content side for document processing. In that respect,
LaTeX and TeX are much more exhaustive, whereas KaTeX is a web port of LaTeX and only offers a few
necessary features. Instead of using the complete language, we are interested in using only the features
that enable the rendering of math fonts and symbols. This limited typesetting is much easier to perform
and KaTeX does it with incredible speed as well. A sample document prepared by LaTeX and rendered by
TeX is shown in Figure 11-1 . Our implementation of KaTeX is accomplished by downloading and including
the katex.css and katex.js files from the publicly available release. Once the files are included in the
repository, the files can then be imported into the relevant locations.

 Figure 11-1. A rendered document prepared using LaTeX

 There’s a lot more that can be done using LaTeX, although displaying equations or symbols is a big
portion of what we would be using online. Notations and symbols across subject areas can take advantage of
KaTeX. A common use case has been developers blogging about breaking down a complex algorithm where
they need to symbols or notation to explain how the algorithm would behave given an arbitrary set of initial
conditions or input. KaTeX can format and render them very easily, and with enough practice, it might seem
like a natural extension of Markdown.

CHAPTER 11 ■ OPEN RESEARCH

197

 The next two tools are related in the function that they perform: to create a presentable and graphical
display of data. This can be immensely useful in many different situations, especially if you are trying to
provide an example of your own point of view and then you can present data that you either collected or
borrowed from a particular source. A perfect example of this can be you representing data taken from an
organization with custom views that help you showcase your own points better.

 Plot.ly
 The first tool in this set is Plot.ly , which we use to create interactive graphs within blog posts. Plot.ly is a
graphing library built for large data set visualizations; however, we will only be using its JavaScript API.
The use of an API will allow us to use Plot.ly as a rendering engine that will create our graph off-site and
just display it on our blog posts. That’s essentially how APIs work: A company builds an incredible tool and
wants developers to use its service without exposing the secret sauce. To that end, the company develops
commands and functions that let developers pass their own data as an argument to the secret sauce,
which will produce the desired result. In this manner, the developer only gets to a black box that can do the
processing and provide the results. A graphical representation of this relationship between the developers
and the APIs they use is provided in Figure 11-2 .

 Figure 11-2. The developer is allowed special access to the secret sauce, but only if he or she sends her data
through a bridge constructed by using the methods that the company provided.

 Plot.ly is the same way for us through their JavaScript API that we will be using: Essentially it gives us
the tools to draw a graph and represent data, but the actual functioning of the methods or functions used
to draw that graph are hidden from us. One thing to note is that we’re specifically using the JS API for Plot.
ly because the JS inports work out very nicely on static blogs. Using Plot.ly will feel very similar to using
font-awesome, except that here you actually have to write a bit of code to render the graph. A sample
graph made by the Plot.ly JS API is shown in Figure 11-3 . Our implementation will simply import the Plot.
ly JS API file through their CDN into the theme and then we can rely on Plot.ly features to make a graph
using JavaScript.

CHAPTER 11 ■ OPEN RESEARCH

198

 There is a notable open source alternative to Plot.ly called D3 (Data-Driven Documents), a JavaScript
library that allows you to make high-quality graphics and render them on the Web. The JavaScript D3.js
library uses prebuilt JavaScript functions to select elements, create SVG (Support Vector Graphics) objects,
style them, or add transitions. The final result is embedded within an HTML web page. Incidentally, Plot.ly
is also built using the D3 library, but it adds several new features that make it easier to use with a static site
generator like Jekyll. It renders very smoothly, as compared to D3, which takes a little longer to produce the
desired graphic. Using D3 within Jekyll is a bit convoluted and requires some fixes that make it impractical.
The effort put into building a D3 graphic alone is considerable, and then to have to work on displaying it
properly within HTML makes the process very time-consuming. The page load speeds are also different with
both Plot.ly and D3, as the former loads a little bit faster and is less resource intensive.

 IPython
 The second of the two tools for data visualization and sharing is IPython . Originally designed to be a feature-
rich and interactive development environment for Python, the project evolved into a web-based interactive
computational environment for creating IPython notebooks. These notebooks allow you to combine Python
programming with interactive prewritten programs and even text and equations for documentation. The
concept of a notebook is very powerful for the notion of open research: Being able to share data and, more
important, the methodology behind those results is crucial for increasing reproducibility in research. A
notebook essentially guides a reader on the steps being followed to obtain a certain result. It can document
the methodology being used very precisely, and at the same time it demonstrates the computations being
done, all in one notebook. Currently, the lack of reproducible research is debilitating the confidence of
researchers, and there are several efforts in the research community to create notebook-like interfaces where
anyone can follow and verify the methods being used in a study. The notebook document format actually
stores all the information and the input and output cells in JSON format, which can contain code, text,
interactive media, and plots. An example notebook session (in the browser) is shown in Figure 11-4 .

 Figure 11-3. A sample graph produced by Plotly.js API

CHAPTER 11 ■ OPEN RESEARCH

199

 The IPython project now comes under the Jupyter organization, and they have created a fantastic
notebook viewer, called nbviewer, that can render your IPython notebook on the Web from a GitHub
repository. The notebook viewer already has several demons that can be found at http://nbviewer.
ipython.org/ . Because the viewer pulls information from GitHub, sharing your notebook is as simple as
sharing your code on GitHub. You can also share segments of your code in Gists and have the nbviewer
render the Gist into a web notebook. Some books have taken advantage of the nbviewer as a book
companion where the code for each chapter is presented in one large notebook. One distinct advantage to
hosting your own work in GitHub and then sharing it through the notebook viewer is that you can reference
yourself easily in a blog post through compiling site data. This is a feature of Jekyll much like collections, but
it is easier to implement. Site data creates globally accessible data in JSON format that can be shared across
the web site; that way, you can always call on your work using a shortcut and the notebook viewer will be
linked. There are two main ways to share your work, the first one being uploading the files to a file-sharing
server and then linking to them from within your blog, and the second being using a notebook viewer such
as the one mentioned here. We go over how to do both, but the second strategy is much more effective, and
we will be using a similar idea for sharing slides, too.

 Reveal.js
 The topic of sharing slides brings us to our last tool to be used in the blog: Reveal.js . Again, the use of
JavaScript falls within Atwood’s law. It just makes development much easier to accomplish in a static blog.
Reveal.js is a framework for creating beautiful presentations using HTML. It has a number of slick features
like Markdown content, code highlighting, nested slides, PDF export, and so on. In this project, we host
reveal.js presentations on the Jekyll blog, so that the presentations become a natural extension of the listing
of posts. In this manner, linking to a blog post would be replaced by linking to a presentation. In an

 Figure 11-4. IPython Notebook. Notice the top half describing the problem and some background
information, followed by input and output cells that implement the theory described.

http://nbviewer.ipython.org/
http://nbviewer.ipython.org/

CHAPTER 11 ■ OPEN RESEARCH

200

HTML-based presentation framework, the greatest advantage is that you don’t need Microsoft PowerPoint to
showcase your work and you have a lot of freedom with additional features focused on coding. Each slide is
contained within <section> tags as shown here.

 <section data-markdown>
 </section>

 There is a lot of configuration used in a reveal.js presentation, and in this case we can change all the
variables in the YAML front matter. In exchange for being able use YAML, we have to design a smart layout
that can pull information from the variables we just defined and then supply them to reveal.js appropriately.
We can create a simple layout to show how to accomplish this. In addition, we use the YAML front matter to
make presentations just as you would make a normal blog post, in a regular .md file.

 ■ Note The reveal.js project that we will be using in Jekyll is actively changing and updating. Therefore we
won’t simply download and add it. Instead, we will be adding it as a submodule. A submodule allows you to
keep another Git repository in a subdirectory of your repository. The other repository has its own history, which
does not interfere with the history of the current repository. This can be used to have external dependencies
such as third-party libraries. It makes a lot of sense to do this for third-party libraries such as reveal.js because
we can constantly receive updates from the main project using the git pull command. We can’t do this for
themes because once we start editing a theme, the end result is sufficiently far away from the original theme
that any updates to it might end up breaking our theme and causing more issues for our projects.

 Planning the Theme
 Before we start adding these features and editing a theme, we need to have an idea of what we are about to
do with the theme. We will make a simple prototype, but let’s focus first on the concrete details for each of
the components.

• KaTeX : Import the source files from the latest release, place them in the Jekyll theme,
and include the files within the theme to allow KaTeX implementation throughout
the blog.

• Plotlyjs : Import the CDN file in the head of the theme, then use the provided tags
to create a drawing area for the graph on a canvas. Finally, use JavaScript to actually
draw a sample graph.

• Bibliography : Use a bibtex file to create a sample bibliography within the theme on
a separate page, use a JavaScript parser to parse the bibliography, and finally show a
possible alternative with site.data.

• IPython : Show how to make an IPython notebook available on the blog and also on
the nbviewer.

• Reveal.js : Import the release files into the theme, include them within the theme,
create a layout that can take configure reveal.js in the front matter, and use the layout
to create a sample presentation as a blog post.

CHAPTER 11 ■ OPEN RESEARCH

201

 Figure 11-5a. Prototype of a blog post, containing the quadratic formula in TeX typesetting

 Figure 11-5b. Prototype of a bibliography, rendered on the page by a parser

• Wrappers : Any tool that is imported in the theme to be used requires instantiation.
The JavaScript does all the processing necessary in the background, and after that
your objects and elements are ready to be used on the HTML canvas. Now, to
actually use the objects, you need to instantiate them. This is generally done using
a simple <div> tag to denote the beginning of a class associated with the JavaScript
objects. We will have to use wrappers for all of the elements listed here, and very
often, the wrappers are provided along with the tool being used.

 Let’s create a simple storyboard that features a blog post that uses KaTeX and a model page containing the
bibliography that will be made using a JavaScript parser. The storyboard prototype is shown in Figure 11-5 .

CHAPTER 11 ■ OPEN RESEARCH

202

 Exploring Git
 We have been talking about GitHub in the past few chapters and have used it extensively to push all of
our changes online, but let’s review some of that information. In this chapter, we will be talking about yet
another way to push code online through the command line. This is the way Git was intended to be used, but
it is much easier to understand and introduce the concepts after you’ve already been using the tools.

 Recall that GitHub is the front end to hosting code using version control with Git. GitHub has numerous
projects hosted on it in the form of repositories, which are essentially project folders that can be edited
locally and then synced online. Each repository in turn can have several branches, where each branch is just
a different version of the same code held in the repository. The primary branch (or the trunk) is called the
 master branch , and this is usually the branch that gets synced online to GitHub. Now Git is actually the tool
being used in the background to make all of this magic happen, and GitHub Desktop is just a nice graphic
interface that simplifies the task for new users. This is not to say that GitHub Desktop is limited, as it does
almost everything you would need to use in this book, but the CLI does provide more options and advanced
features not available within GitHub Desktop. Here, we go into detail covering the command line and the
convenience it provides to the user.

 When you installed GitHub Desktop, you also installed Git, but you can download and install the
latest version from the project web site at https://git-scm.com/downloads , where it also explains how
to download for all the platforms. On Linux, this is much easier to do, as you can simply install it using the
preferred package manager for your distribution. For OS X, just clicking the Mac OS X web site will start the
download for the latest release. The same applies for Windows: The Downloads page provides a link to start
the download, as shown in Figure 11-6 .

 Figure 11-6. Downloading the latest version of Git from the Git-scm web site . The version you download
might be a different one than the 2.6.4 release shown here.

 You can accept the defaults during the installation. The most important of those options is Windows
Explorer Integration, which allows us to use Git from any folder location. After downloading and installing
Git, you should see it working within the shortcut menu. Just right-click in any folder and you should see the
new Git options, as shown in Figure 11-7 .

https://git-scm.com/downloads

CHAPTER 11 ■ OPEN RESEARCH

203

 Once Git is installed on the computer, we can start playing around with it, but before we start using Git
and the command line, it is more important to understand the tool just installed. What you installed just now
is not actually Git in the true sense; rather, it is a collection of tools that form a bare minimum development
environment called MinGW (Minimalist GNU for Windows). MinGW is essentially a wrapper for a few
essential Linux tools (e.g., the GCC, or GNU C-compiler) that are carried over to Windows. MinGW operates
on Windows but provides access to tools like GCC that are normally found in a Linux-like environment.

 MinGW has grown to include more packages, such as a component derived from the Cgywin project
that provides the command shell called bash to Windows. Git is actually used within this environment,
on the command line shell (Bash) on Windows. The shell (or terminal, as it is called in many Linux
distributions) is one of the most important components of a Linux distribution. It is a user interface that
allows access to the services or commands available within the operating system. It takes input from the user
and gives the commands to the operating system to perform. The command line is called just that because
it can execute either commands that are predefined statements or applications that are called by their name
as if they were commands available within the operating system. Git is an example of the latter; once it is
installed, it’s an application available to the system that be loaded by typing its name.

 One of the most popular shells available on Linux machines is the bash shell , and the MinGW
environment packaged along with Git brings us a bash shell to execute commands on Windows. These
commands are limited to a small subset of what would be available on a Linux machine, but they are enough
for our purposes. In brief, the main purpose of a shell is to execute commands, and we review how to use
the commands for Git shortly. Now that we understand what a shell is, let’s talk about Git CLI. As the name
implies, this version of Git is used from the terminal and there are some very good reasons behind it.

 The advantage of using the command line is that you can use the same knowledge and skills to manage
any Linux distribution. Although Git is available with a GUI, many developers prefer to use the command
line. The primary reason behind using the CLI is that you can string together a series of tools to manage
your Git workflow in the terminal. Often the GUI is limited by the features that are available within it and the
application can’t talk to other tools; therefore, customization is very difficult.

 Figure 11-7. Git shortcut menu options integrated into Windows Explorer

CHAPTER 11 ■ OPEN RESEARCH

204

 ■ Note In Linux, most programs are compiled from source and then distributed either as binaries or
packages to be installed from the package manager. The install process not only makes new features available,
but it also lets you call on the installed binary. Therefore, the terminal or shell allows you to call on programs
just as it would let you call the commands themselves. There are some more subtleties in Linux, but in a lot of
cases, installed programs and commands become roughly the same.

 Git Internals
 So how does Git itself work? An in-depth overview is outside the scope of this book, but let’s do a functional
overview of Git internals. The purpose of Git is to manage a set of files, as they change over time. Git stores
this information in a data structure called a repository. A repository is made up of two basic elements: a set
of commit objects and a corresponding set of references for each of the commit objects called heads.

• A commit object can be thought of as one object that contains information for the
current commit. More precisely, it has a few features, the first of which is the set of
 files included in this change reflecting the state of a project at this time. The second
feature is a set of references to the parent commit objects, and the last feature is an
SHA1 unique key that identifies this particular commit. A parent commit object is
a commit made before the current one. A repository always has one commit object
with no parents, as this is the first commit made to the repository.

• A head is a reference to a commit object. Each head has a name, and by default,
there is a head in every repository called master. Each time a new commit occurs,
the default head now points to the latest commit object generated from that commit.
The concept of commit objects and a head are displayed visually here.

 ----> Time -----> (As time passes, new commits get added to the repository)

 (A) <-- (B) <-- (C) (Each commit object refers to the previous one)
 ^
 |
 Master (Head)

 We’ve used these components of Git, but never looked this far into the actual magic happening
behind Git. This is a simplified explanation of how Git works, but essentially addition of commit objects
and the head referring to a new commit object is what we’re doing when we add new code. Let’s dive into
the most commonly used commands in Git and then we’ll use them on the command line. Recall that a
folder containing your code initially needs to be put under version control. To do that, you have to use the
command git init , which tells Git to treat the current directory as a Git repository. In this instance, a
 .git folder is created that actually contains all the revision history; this folder is where all the references
are contained. In large projects, the history alone could become very disk-space-consuming. Create a new
directory in a suitable location and let’s look at how the Git commands work in the terminal. Once you’ve
created a new directory, open up Git Bash from the shortcut menu by right-clicking. The shell should look
something like Figure 11-8 .

CHAPTER 11 ■ OPEN RESEARCH

205

 The first command we will use is the git init command, so let’s see how it works in the command line.

 $ git init
 Initialized empty Git repository in C:/Users/Vikram/Documents/first_repo/.git/

 The result from the terminal is displayed in the following line. Here it tells us that a Git repository has
been created in the specified location. Let’s create a text file called my_info.txt , and to see if the file really
has been created, we can use this:

 $ ls
 my_info.txt

 ls lists the files and folders in the current working directory. Notice that when we used it, the output did
not list the .git folder because it is a hidden folder. Now that we have created a file, let’s take a look at the
repository.

 $ git status
 On branch master [Current branch]

 Initial commit

 Untracked files:
 (use "git add <file>…" to include in what will be committed)

 my_info.txt [The file we just created]

 nothing added to commit but untracked files present (use "git add" to track)

 The git status command tells us about the current status of the repository. This command is very
important because it tells us exactly what will go in the next commit and what files are being changed. In this
manner, if your commit breaks something, you know exactly what you did and how to reverse those changes.
The actual message is quite verbose. It starts by telling us that we are currently on the branch master, and
that this is the initial commit to the repository. In this commit, there is one untracked file. Untracked simply

 Figure 11-8. Git Bash console . Your console window might look different, but the differences in appearance
are irrelevany. The console has a prompt, the $ sign, for taking commands from the user, and the commands
will work for all types of shells.

CHAPTER 11 ■ OPEN RESEARCH

206

means that the changes have not yet been added to Git. The message goes on further to list which files are
untracked and how to add them to the current commit. Let’s add the file we changed now.

 $ git add -A :/
 $

 The command to add files is git add , but here, the -A and the :/ options recursively add new files
anywhere in the repository to Git. This ensures that we don’t miss adding any of the files that we changed or
added in our repository. Finally, after adding the files, it’s time to commit the change.

 $ git commit -m "Initial commit, adding the first file"
 [master (root-commit) 1d8382d] Initial commit, adding the first file
 1 file changed, 1 insertion(+)
 create mode 100644 my_info.txt

 $

 This is the commit message, which starts with the command to commit the changes, git commit . The
 -m parameter is to write a commit message so that you would know exactly which changes were made. After
the command is issued, Git responds with a lot of information. The first line starts with a head named master
(the default head) pointing to the first commit. This first commit is also called the root commit and the second
line also assigns a commit ID with the commit message. After the commit message , we see the total number
of changes made; here it was just one file changed and this file had an insertion of data. Finally, the commit
message states that a new file was created under mode 100644, which is a mode of file permissions in Linux.
This particular mode implies that the file being created is a regular nonexecutable file. Some of the common
modes are shown for reference as follows, as you might encounter them during your commit messages.

 (040000): Directory
 (100644): Regular non-executable file
 (100664): Regular non-executable group-writeable file
 (100755): Regular executable file
 (120000): Symbolic link

 Recall that once the changes have been committed, there must be no outstanding changes left.
Especially with the -A :/ switches used with git add , every change made should have been added to the
commit. To check this, run git status once again.

 $ git status
 On branch master
 nothing to commit, working directory clean

 This tells us that there are no new changes that were made since the last commit. Now what if you
were to look for who made the last change? Git keeps a very detailed log of what changes were made and by
whom, which allows large projects to carefully manage changes. The command to look at this log is git log
and it works as follows:

 $ git log
 commit 1d8382d 2e9ae4c678e3dd165dcbbb959b54850fc
 Author: Vikram Dhillon <dhillonv10@gmail.com>
 Date: Mon Jan 4 21:27:58 2016 -0500

 Initial commit, adding the first file

 $

CHAPTER 11 ■ OPEN RESEARCH

207

 This log is very descriptive, and generally for more involved projects, this log would be several lines
long. The first line contains the SHA-1 hash that uniquely identifies this commit, and the part shown in bold
is a shortened commit ID that showed up earlier in the commit message. After the hash is the name of the
author who made the changes that went into this commit, along with a timestamp. Finally, the log entry has
the commit message. This is another reason why it’s crucial that commit messages be descriptive. Generally
a log file has a lot more entries, but this one contains just the commit we made.

 Distributed Development Model
 So far, we have only used Git in a local environment on our own computer but it was designed to do much
more. Originally, Git was designed to be a tool for distributed development for large teams. What does that
mean? Basically, in a distributed development environment, multiple developers work on a project and then
send their changes back to contribute to the project. The power of Git-based distributed development is in
its ability to manage multiple versions of the same code and show exactly what changed and where. Let’s
explore a few more of the common Git commands in the context of the distributed development model.
In this scenario, the main repository would reside on a server, and everyone contributing to the project
downloads (clones) a copy of that repository. This is exactly what we do on GitHub when we click Fork a
repository. After the repository has been cloned, you might see multiple branches within the repository.
Those branches can be different versions of the same code or different releases, but you can’t just start
editing those branches. Essentially, you have to make changes locally, and then create a patch that contains
your changes that can be sent so that other developers can look at your changes and test them, too.

 It might seem a bit complicated, but the process is very intuitive. Here’s a concrete outline of what
you would have to do: First, you have to create a new branch and make all your changes to the code in that
particular branch. Once you are done, commit your changes to this branch. Now you would need to see how
your changes differentiate from the code in the master branch. These changes are compiled in a patch that
you can then send off to other developers for them to examine and apply. The process of branching and
creating new ones is displayed graphically here.

 (A) -- (B) ------- (C) [Commits]
 | |
 master(HEAD) new-branch [New branch created]

 The terms branch and head are nearly synonymous in Git. Every branch is represented by one head,
and every head represents one branch. When you create a new branch, what you are really doing is creating
a head that points to a different set of commit objects, which in turn represent the state of the project at a
different time. Let’s go through an example of branching, as we discussed earlier. In this example, we go up
to creating a patch. We don’t have a remote repository where the code is located but let’s assume we know
the URL for it. We would have to clone it using git clone <repository address> , which will create a folder
for us. The clone command allows us to create a local copy of the remote repository, but this clone is also
synced with the remote repository. Now there might be multiple branches in this repository, so let’s check
what they are.

 $ git branch
 * master
 testing
 testing2

 $

CHAPTER 11 ■ OPEN RESEARCH

208

 The command git branch by itself lists all the branches available under a project. The * next to the
master branch shows us that currently, we are on the master branch. In a distributed environment, you
never want to make changes to the master, so we have to create our own branch.

 $ git branch testing_local_vikram

 $

 Using the command git branch <branch_name> creates a new branch with the specified name. Now if
we check again, we should see the name in the list of branches.

 $ git branch
 * master
 testing
 testing2
 testing_local_vikram

 $

 The clone command allows us to create a local copy of the remote repository, but this clone is also
synced with the remote repository. This means that if there are more changes made to the master branch
elsewhere, you can import those changes and keep your local version updated. This is done through the git
pull command, which can just be used as such because git clone <repo address> also defines the remote
repository URL variable that the git pull command can use to pull new information or changes. This is
yet another reason we need to create local branches: Our local code can always be synced with the remote
version. Now that we have created the branch, we need to switch to it and start making edits. Here’s another
way to think about it: Currently you are on the master branch and any changes you make will be saved to
that (master) branch. If you do that, then you lose a frame of reference to compare your end results, which is
why we needed to create this new branch. Let’s switch to our newly created branch.

 $ git checkout testing_local_vikram
 Switched to branch 'testing_local_vikram'

 $

 Here Git tells us that now we are on this new branch we just created. The changes we make at this moment
will all be saved to the new branch and not interfere with the master branch. Let’s make some more changes
in this new branch, so create a new file called my_info2.txt . Add some contents to the file; now it’s time to
commit those changes. The same two commands are used here, git add -A :/ followed by git commit -m
"Adding the second file to a new branch". Finally, if you had a remote location to push the changes,
you’d issue git push to push the changes. We will be doing this shortly with GitHub. After adding this new file,
there’s something interesting that happened to our repository. We added the my_info2.txt file in this new
branch, so if we check the master branch again, that file will disappear entirely. Try it out on your own.

 Now let’s move on to examining the differences between the master and this new branch. We expect to see
the differences being limited to this new file that we just added. To see the differences, we can use the following:

 $ git diff master..testing_local_vikram
 diff --git a/ducks.txt b/ducks.txt
 new file mode 100644
 index 0000000..dd93ec9
 --- /dev/null
 +++ b/ducks.txt

CHAPTER 11 ■ OPEN RESEARCH

209

 @@ -0,0 +1 @@
 +"Do ducks still come to this campus pond, when it's spring break?" - CL
 diff --git a/my_info2.txt b/my_info2.txt
 new file mode 100644
 index 0000000..01a59b0
 --- /dev/null
 +++ b/my_info2.txt
 @@ -0,0 +1 @@
 +lorem ipsum
 $

 Reading diffs is not that straightforward, but let’s break it down to make it simpler to understand. The
command to get a diff is git diff master..<branch name>. This lets you compare the master branch to
any other branch that you want. When you issue this command, the output is verbose, but actually very
simple to follow. The first line, shown in bold, indicates what was being compared. Here the diff command
is trying to compare two versions, a and b , of the ducks.txt file. Git tells diff that this file was just created
so the command outputs the file permissions of this new file. After the permissions, the --- and +++ signs
show what happened to the repository. Notice that the location is /dev/null , which implies that previously
there was nothing and now there is a version b/ducks.txt created. This is how Linux shows a new file was
created. After that, the next line is shown in bold because this tells you exactly how many insertions, edits,
and deletions happened to the file that we are comparing. As expected, we see that only one addition was
made to this file, which is displayed next. This exact same layout is repeated the second time to show that the
file my_info2.txt was created and what its contents are.

 This diff is the end result in distributed development; basically it is a summary of all the work that you
have done locally. After you compared the state of the project following your changes to the master branch,
you need to submit your code to other developers so that it can be examined and finally incorporated into
the master branch. A submittable version of a diff is also called a patch . These patches get submitted by
developers, and others can apply them to their own Git tree and test the outcome of your change. Git is very
nice about creating patches, and there’s even a command to do all of this for you.

 $ git format-patch -1 HEAD
 0001-Adding-two-new-files.patch
 $

 [Normally, you need to provide the 40-letter long SHA-1 id, but here HEAD is a reference to
the latest commit so you can use that as a shortname]

 The command to create a patch is git format-patch , but the options provided here turn the last
commit we made into a patch. This is useful for us at this moment only because we know that we only made
two commits, and the first one was to the master branch, so including that in the diff would provide us with
nothing useful. When creating patches, you really have two main options.

• Create a patch from the latest commit, which is what we did in the preceding command.
The format of creating a patch from any N number of commits is shown as follows.

 git format-patch -<N> <SHA1>

• Create a path from a particular diff comparing branches, which can be done by
piping the output from diff into a patch file. To pipe an output is a Linux operator that
allows you to send the output of one command as an input to the second one; in this
case, the output is sent to stdout , which redirects to the mypatch.diff file.

 git diff master..testing_local_vikram > mypatch.diff

CHAPTER 11 ■ OPEN RESEARCH

210

 The first option seems to be a better one here because it already creates a very sophisticated patch that
is ready to be sent as an e-mail. Here’s what the patch looks like.

 From d75e079c180bf9cd27fe4799a5c8f67ca14f6429 Mon Sep 17 00:00:00 2001
 From: Vikram Dhillon <dhillonv10@gmail.com>
 Date: Tue, 5 Jan 2016 15:52:30 -0500
 Subject: [PATCH] Adding two new files

 ducks.txt | 1 +
 my_info2.txt | 1 +
 2 files changed, 2 insertions(+)
 create mode 100644 ducks.txt
 create mode 100644 my_info2.txt

 diff --git a/ducks.txt b/ducks.txt
 new file mode 100644
 index 0000000..dd93ec9
 --- /dev/null
 +++ b/ducks.txt
 @@ -0,0 +1 @@
 +"Do ducks still come to this campus pond, when it's spring break?" - CL
 diff --git a/my_info2.txt b/my_info2.txt
 new file mode 100644
 index 0000000..01a59b0
 --- /dev/null
 +++ b/my_info2.txt
 @@ -0,0 +1 @@
 +lorem ipsum
 --
 2.6.2.windows.1

 This patch can roughly be broken into three parts: the header, the summary , and finally the diff. In all
practicality, a diff is not so much different from a patch, except for the formatting. The header contains the
e-mail components To, From, and a subject, which is the same as the commit we made. After this header
and above the --- present in the patch is where you would write your e-mail summarizing the changes that
you made. Below the --- is a summary of all the changes made with this patch. This format is very intuitive
because it clearly summarizes what files were changed, whether additions or deletions were made, and
finally if new files were created. The diff below the patch is still the same as before, with nothing new added.

 Just as there was a workflow with with GitHub Desktop, there’s a very simple workflow that we follow
while using Git. It comes down to roughly the following four simple steps:

 1. The first step in the workflow is to actually make the changes to the code and
save the files. This lets Git know that you made some changes but those changes
haven’t been included in version control yet.

 2. The next step is adding the changes using git add -A :/ command. This
recursively adds any new files or any changes that were made to the code.

CHAPTER 11 ■ OPEN RESEARCH

211

 3. The third step is to commit all the changes. This ensures that a small set of
changes are made in each commit, so that if something breaks, it is easy to
point to and figure out which changes caused the code to break. As a result, it is
essential that every commit is made with a descriptive commit message.

 4. The final step is to push the changes online to GitHub or a remote repository.
This is what will ultimately allow you to make your code available online.
Otherwise, you have to use format-patch to send your changes to other
developers.

 This workflow is cyclical using the three commands after making a set of changes. These three steps are
fundamental to Git-based development and will be followed in almost every repository, regardless of how
large the project is or how many branches you have. The last topic to discuss in this section is the protocols
that Git uses to clone a repository or pull or push changes. This becomes important when we start to use Git
CLI with GitHub, as we see shortly. You have two choices of protocols—HTTPS and SSH —and the protocol
that you choose while cloning repositories will also become the default protocol of choice for pulling and
pushing changes. Both of the protocols are perfectly safe to use and will not result in more or less secure
projects. The only difference is that HTTPS will require you to enter your GitHub credentials each time you
want to commit to the remote repository.

 ■ Note In the past themes, we have encountered the file .gitignore in the repositories. We only talked
about that file briefly in the appropriate content, but now we can revisit that topic in more detail. If you have
multiple releases of a product being managed in different branches, it becomes difficult to test the product
without creating more noise for Git. To avoid such an issue, the .gitignore file can be programmed to ignore
all binaries, compile files, or makefiles being generated. That way, anyone can make test cases or compile the
files without influencing the repository.

 Let’s Git Coding
 To get started, let’s delete our last repository on GitHub and start fresh. Create a new repository, in the same
format, username.github.io . Once the repository is created, you should see the Quick setup page shown in
Figure 11-9 .

CHAPTER 11 ■ OPEN RESEARCH

212

 The first thing we need to do is to clone this empty repository. Copy that link at the top and use the git
clone command to clone the repository.

 $ git clone https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git
 Cloning into 'jekyll-mini-blog.github.io'...
 warning: You appear to have cloned an empty repository.
 Checking connectivity... done.

 $

 This was within expectations. The code show in bold is actually the web address, and here Git tells us
that we cloned an empty repository into the jekyll-mini-blog.github.io folder. Once this is done, we
need to copy the contents of a Jekyll theme into the empty blog folder. For this project, we will be using the
Clean Blog theme available at http://jekyllthemes.org/themes/clean-blog/ . Download the zip release
for the theme from GitHub, extract the file, and copy all of its contents to the new folder that Git created.
Once the files have been copied over, they are ready to be added to the Git repository and then pushed as
part of the initial commit. Remember the workflow that we just discussed: Add, commit, and push . Let’s look
at how these commands work and dissect the output produced by the terminal in depth. First is add.

 $ git add -A :/

 $

 Figure 11-9. The repository Quick setup page . The link at the top gives you the web address to clone. The
lower half of this page contains the Git CLI instructions that allow us to manage the repository and push our
changes.

http://jekyllthemes.org/themes/clean-blog/

CHAPTER 11 ■ OPEN RESEARCH

213

 This produced no output; the silent return to prompt simply implies that the command included every
file that we copied in Git. We can check this by using git status as follows:

 $ git status
 On branch master

 Initial commit

 Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore
 new file: Gruntfile.js
 new file: LICENSE
 new file: README.md
 new file: _config.yml
 new file: _includes/footer.html
 new file: _includes/head.html

 This command actually shows you every new file that we added; we showed only a part of the output
here to analyze it. The first part in the Git output tells us that we are on the master branch and in the initial
commit. After that, it lists the changes to be committed and tell us that a new file was created with each of
the files added to the repository. Now it is time to commit these changes:

 $ git commit -m "Initial commit - Adding the clean blog theme"
 [master (root-commit) 0f3885a] Initial commit - Adding the clean blog theme
 52 files changed, 21639 insertions(+)

 create mode 100644 .gitignore
 create mode 100644 Gruntfile.js
 create mode 100644 LICENSE
 create mode 100644 README.md
 create mode 100644 _config.yml
 create mode 100644 _includes/footer.html
 create mode 100644 _includes/head.html
 create mode 100644 _includes/nav.html

 Here, the git commit command is followed by the commit message and Git returns a lot of output. The
first line that is shown in bold is actually a confirmation of the commit being made. It starts by telling us that
we are on the master branch. This is the initial commit, followed by a commit ID and the commit message.
The second line in the output actually tells us what happened: By copying the theme, we have 52 file
changes and 21,639 additions to Git. These are the changes included in the first commit that will be pushed
to GitHub. Now let’s take care of the final step, which is a little more complicated. To push the changes, we
need to make GitHub aware that our code is actually being stored locally, but we ultimately want to push our
code to a remote location, a repository on GitHub. The boxed section in Figure 11-9 is what we will have to
use to push our code initially; after that, simply using git push will work. The first line that GitHub tells us
to use is git remote add origin https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.
io.git . This line will tell Git the location for our remote repository to push our code to.

 $ git remote add origin https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git
 fatal: remote origin already exists.

 $

https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git
https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git

CHAPTER 11 ■ OPEN RESEARCH

214

 We actually got an error message this time, but that’s perfectly fine. We got an error because Git has
several configuration variables, and one of them is to define a remote repository. We used the same web
address to clone the repository from GitHub so our Git instance already knows the remote repository exists.
Let’s push our code:

 $ git push -u origin master
 Counting objects: 63, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (61/61), done.
 Writing objects: 100% (63/63), 1.73 MiB | 70.00 KiB/s, done.
 Total 63 (delta 5), reused 0 (delta 0)
 To https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 $

 The command itself was given to us by GitHub and it tells Git to push the local branch (the origin)
online into the default branch (master) in our repository at GitHub. The output initially tells us the number
of commit objects that Git computed, then it compresses the objects and finally uploads the objects to
the remote repository. The upload statement ends with the word done , which signifies that the upload is
complete. The remainder of the output confirms that our upload happened appropriately. In the next line,
Git tells us that it uploaded the 63 objects to the remote location given in the following line. Finally, Git tells
us that that our data was pushed into our repository on GitHub under the branch master, which is set up to
sync from our local branch (the origin). This is the actual process of pushing or uploading our code in the
form of commits from the local repository.

 Recall that we used the HTTPS web address to clone the repository originally. This might have caused
you to see two pop-ups after issuing the command to enter your user name and password. Unfortunately,
even though HTTP cloning is faster and more efficient, it is very tedious to have to enter the user name and
password each time. This can be changed to make the process automatic; you can always just re-enter the
user name and password if you want for each commit but you can define the remote repository address in a
way that Git will automatically know what to do for you. Let’s look up what our remote address is currently,
according to Git.

 $ git config -l

 remote.origin.url=https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git

 The command git config -l lists the configuration of Git according to the current repository;
however, what we really want is the line that defines the remote URL. Once we have it, the remote URL
can be changed to accommodate both the user name and password. This is done by adding them to
the URL itself so that Git can recognize them as part of the repository, therefore never prompting you
to give your login credentials for GitHub. Your remote URL will be like this: https://{USERNAME}@
github.com/{USERNAME}/{REPONAME}.git ; what you actually need is something like this:
 https://{USERNAME}:{PASSWORD}@github.com/{USERNAME}/{REPONAME}.git .

 This might seem more intimidating, but editing the remote URL is very straightforward. You do need
to remember that your user name contains your e-mail address and the @ sign can’t be present in the user
name. To remove it, you have to use the %40 escape character. Let’s see how the URL transforms.

CHAPTER 11 ■ OPEN RESEARCH

215

 https://github.com/jekyll-mini-blog/jekyll-mini-blog.github.io.git
 https://vikram%40igknight.me: password @github.com/jekyll-mini-blog/jekyll-mini-blog.github.
io.git

 To use this properly, we have to define the remote URL variable as follows:

 $ git config remote.origin.url https://vikram%40igknight.me: password @github.com/jekyll-mini-
blog/jekyll-mini-blog.github.io.git

 $

 The git config command can allow you to override any variables that you might want to change;
however, besides the remote URL, you are strongly advised to leave everything else as is. Now that we
have the credentials set up, let’s get started implementing all of the features. The first one up is KaTeX.
To get started implementing it, we need to download the release first. The latest release is available at
 https://github.com/khan/katex/releases . After a little bit of scrolling, you will encounter the Downloads
header. From there, download the zip file and extract it. We only need the katex.min.css and katex.min.js
files to use KaTeX in Jekyll. Copy those files to a new folder called public . Place them inside the folder; once
that’s done, we just need to import them. To use KaTeX, we need to edit head.html in the _includes folder.
Near the end of the file, before the <head> tag ends, add the following:

 <!-- KaTeX -->
 <link rel="stylesheet" href="/public/katex.min.css">
 <script src="/public/katex.min.js"></script>

 These lines provide the location of KaTeX CSS and JavaScript files to be imported into the theme.

 Writing Equations
 Now that the imports are done, we need to instantiate KaTeX so that any reference to it can render the
equations properly. To do this, you have to place a bit of JavaScript in the posts layout. This is assuming we
only use equations with posts. Create a new file called katex_render.html and place it in the _includes
folder with the following content:

 <script type="text/javascript">

 // grab all elements in DOM with the class 'equation'
 var tex = document.getElementsByClassName("equation");

 // for each element, render the expression attribute
 Array.prototype.forEach.call(tex, function(el) {
 katex.render(el.getAttribute("data-expr"), el);
 });

 </script>

https://github.com/khan/katex/releases

CHAPTER 11 ■ OPEN RESEARCH

216

 This snippet allows us to render anything with the div class equation into KaTeX. Save the katex_
render.html file; now we need to include it within posts. To do so, go to the _layouts folder and then into
the posts.html layout, and add the file as follows:

 <div class="row">
 <div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">

 {{ content }}

 {% include katex_render.html %}

 <hr>

 This instantiates KaTeX for every post, so now we just need to make a reference and test this
properly. Let’s pick a random post and try this out. For the first post in the _posts directory, the
 2014-06-10-dinosaurs.markdown file, let’s edit it and add an equation. At the end of that blog post, add the
following to display a simple equation:

 {% raw %}
 <!-- A simple addition equation -->
 <div class="equation" data-expr="\displaystyle x=\frac{1+y}{1+2z^2}"></div>
 {% endraw %}

 The {% raw %} tag is actually an escape character for Liquid that keeps Liquid from parsing text
between {% raw %} and {% endraw %} so that the equation can be presented to KaTeX for rendering. This
should do the trick, so let’s go ahead and start our Git magic again.

 $ git add -A :/
 warning: CRLF will be replaced by LF in _includes/katex_render.html.
 The file will have its original line endings in your working directory.

 $

 You can ignore the warnings here. Basically these warnings come up because of how some line endings
are structured. This will not edit your code in any manner; it’s just a way that Git keeps track of objects. Now,
let’s commit these changes.

 $ git commit -m "Adding KaTeX to the theme"
 [master 67ce655] Adding KaTeX to the theme
 warning: CRLF will be replaced by LF in _includes/katex_render.html.
 The file will have its original line endings in your working directory.
 6 files changed, 30 insertions(+)
 create mode 100644 _includes/katex_render.html
 create mode 100644 public/katex.min.css
 create mode 100644 public/katex.min.js

 This commits all of our changes so far to Git, and now we are ready to push the code. From this point
on, all we need to do to push the code is use git push as shown here.

CHAPTER 11 ■ OPEN RESEARCH

217

 $ git push
 warning: push.default is unset; its implicit value has changed in
 Git 2.0 from 'matching' to 'simple'. To squelch this message
 and maintain the traditional behavior, use:

 git config --global push.default matching

 To squelch this message and adopt the new behavior now, use:

 git config --global push.default simple

 When push.default is set to 'matching', git will push local branches
 to the remote branches that already exist with the same name.

 Since Git 2.0, Git defaults to the more conservative 'simple'
 behavior, which only pushes the current branch to the corresponding
 remote branch that 'git pull' uses to update the current branch.

 See 'git help config' and search for 'push.default' for further information.
 (the 'simple' mode was introduced in Git 1.7.11. Use the similar mode
 'current' instead of 'simple' if you sometimes use older versions of Git)

 Counting objects: 12, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (12/12), done.
 Writing objects: 100% (12/12), 33.73 KiB | 0 bytes/s, done.
 Total 12 (delta 6), reused 0 (delta 0)
 To https://vikram%40igknight.me:password@github.com/jekyll-mini-blog/jekyll-mini-blog.
github.io.git
 0f3885a..67ce655 master -> master

 $

 Even though the output here is very verbose, most of it is extraneous information that can be ignored.
The first half of the output is just Git telling us that some configuration variables have not been set up. After
that, the second half actually does the commit, starting with the Counting objects line. It tells us that all
the data has been uploaded from the Writing objects line and finally, in the last line, a new SHA-1 ID is
generated leading from the last commit. Git is telling us that the master branch locally with the given commit
ID has been succeeded by the second commit ID down the line. If you actually view the web site after this,
the results might be a bit disappointing because nothing is rendering properly. The reason is that we forgot
to fix the baseurl and url variables in the _config.yml file.

 baseurl: ""
 url: "http://jekyll-mini-blog.github.io"

 Now push this code and you should see the blog work perfectly. The commit is shown here.

 $ git commit -m "Changing baseurl"
 [master 9c65036] Changing baseurl
 1 file changed, 2 insertions(+), 2 deletions(-)

CHAPTER 11 ■ OPEN RESEARCH

218

 This renders the blog properly, and the post that we edited is on the second page. The equation
renders perfectly on the page and the result is shown in Figure 11-10 . This finishes the implementation of
KaTeX. Recall the {% raw %} escape character that we used along with the <div class="equation"> tags
that are used to instantiate KaTeX for each of the blog posts as necessary. The next tools is Plotly.js, and we
implement the API within the blog, which is actually very simple to do.

 Figure 11-10. Scrolling to the end of the blog post to see the sample equation we added renders perfectly

 Adding a Graph
 To this same blog post, let’s add a graph, this time using Plotly.js. The instructions for including the
JavaScript API are available at https://plot.ly/javascript/ . The only thing it requires us to do is an
include. The method for doing that is very similar to how we have included font-awesome in the past. Go to
the head.html file in the _includes folder and insert the following lines after the KaTeX includes.

 <head>
 <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
 </head>

 This will allow us to access Plot.ly.js from any of the blog posts. Now to actually draw a graph, we need
to create an instance that Plot.ly can use to draw. To do that, go back to the blog post and use the following
 <div> tag:

 <div id="tester" style="width:600px;height:250px;"></div>

 This tag creates an instance that Plot.ly can use to sketch the graph, so let’s provide some data and
create a sample graph. This has to be done as JavaScript.

 <script>
 TESTER = document.getElementById('tester'); // Instance from the HTML canvas
 Plotly.plot(TESTER, [{ // Creating the TESTER element
 x: [1, 2, 3, 4, 5], // The X and Y coordinates for the graph
 y: [1, 2, 4, 8, 16] }], {
 margin: { t: 0 } });
 </script>

 This very simple example allows you to create a graph on the page. The best features of Plot.ly are
that you can export the graph as a . png file, and even better, you can easily zoom in and see all the features

https://plot.ly/javascript/

CHAPTER 11 ■ OPEN RESEARCH

219

right in front of you. The graph we made in the theme is shown in Figure 11-11 . This finishes up our
implementation of the Plotly.js API. Notice the similarities between implementing this tool and using font-
awesome in the blog theme as we have done previously. They are almost exactly the same: font-awesome
requires us to import the design files and then instantiate the icons using the <i> class tags each time.

 Figure 11-11. Plot.ly.js graph rendered and embedded within the blog post

 Writing Bibliographies
 The next two topics are focused on bibliographies. If you’re a researcher who wants to blog about your work,
it stands to reason that you would want to list out the work you’ve published or worked on. In some cases, if
you want to point to a particular set of works as references, you would want to list the references with some
ease. That’s the goal here: to make it slightly easier for the researcher to list a bibliography or cite other
papers. To do this, we have to interface with one of the most widely used tools, bibtex. Bibtex is a reference
management tool that can help you format your references appropriately to be included in a paper or even
your own blog as the work that you’ve done. Now interfacing bibtex with Jekyll is not at all easy, but there are
two main ways to go about it.

• Use the jekyll-scholar plug-in. We haven’t talked about plug-ins or local compiling
yet, but we return to this method later in the book to see how sophisticated plug-ins
can be.

• The other option is to parse the bibliography ourselves and then render it properly
on the blog. This option is more time-consuming but fitting for this project, so let’s
try it.

 In the second option, we have to use a JavaScript-based parser that can convert a bibtex file into HTML-
based references that we can style. To do this, a project called bibtex-js was created by Henrik Muehe. We
have created a port of that project on GitHub, available at https://github.com/dhillonv10/bibtex-js
for your use. The GitHub page describes how to use this port, and it is similar to what we have been doing
until now, involving just one more include. We also style the rendered bibliography with simple CSS. The
bibliography will be presented on a new page, so we need to use the page layout for that. To create a new
page, save a file called bib.html in the top level of the project. This file will contain all the magic that the
bibtex-js parser needs.

https://github.com/dhillonv10/bibtex-js

CHAPTER 11 ■ OPEN RESEARCH

220

 layout: page

 <!-- jquery import -->

 <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/
jquery.min.js"></script>

 <!-- bibtex-js import -->

 <script type="text/javascript" src="http://bibtex-js.googlecode.com/svn/trunk/src/bibtex_
js.js"></script>

 {% include bib_info.html %}

 <div id="bibtex_display"></div>

 This file contains a wealth of information, and also the implementation present on the GitHub page for
the fork of bibtex-js. It starts off declaring the layout for this file, and then the two imports, first for jquery and
the second one for bibtex-js. After the imports, we have the actual bibliography that we modularized away
to a file called bib_info.html, and finally we have the instantiating <div> tags to display the bibliography.
Now let’s look into the bib_info.html file, which actually contains the bibliography.

 <textarea id="bibtex_input" style="display:none;">
 @book{book1,
 author = "Donald Knuth",
 title = "Concrete Mathematics"
 }

 @book{ANTLR,
 author = {Terence Parr},
 edition = {First},
 interhash = {d9ef4ed82183b86b6a3004161de5ea44},
 intrahash = {1688029f4c14bd3b234933a48e902c03},
 publisher = {Pragmatic Bookshelf},
 series = {Pragmatic Programmers},
 title = {The Definitive ANTLR Reference: Building Domain-Specific Languages},
 url = {http://www.amazon.com/Definitive-ANTLR-Reference-Domain-Specific-Programmers/

dp/0978739256%3FSubscriptionId%3D13CT5CVB80YFWJEPWS02%26tag%3Dws%26linkCode%3Dxm2%26
camp%3D2025%26creative%3D165953%26creativeASIN%3D0978739256},

 year = 2007,
 ean = {9780978739256},
 keywords = {Me:MastersThesis antlr compilers languages lexers parsers programming},
 asin = {0978739256},
 description = {Amazon.com: The Definitive ANTLR Reference: Building Domain-Specific

Languages (Pragmatic Programmers): Terence Parr: Books},
 isbn = {0978739256},
 biburl = {http://www.bibsonomy.org/bibtex/21688029f4c14bd3b234933a48e902c03/gron},
 dewey = {005.45},
 month = May
 }
 </textarea>

CHAPTER 11 ■ OPEN RESEARCH

221

 In this code, the <textarea> tags actually contain the bibtex formatted bibliography. The way to read it
is that each @ starts off a new entry in the database, and the brackets { } contain all the metadata associated
with that entry. In this example, we have just two books listed with a lot of associated information. With the
available information, the bibliography will render, but the main issue is how it will render. The result will
be poor without any formatting and that’s why in the GitHub page we have provided some styling tips. The
main reason for doing this fork was to allow for easy styling.

 <div class="bibtex_template">

 <li style="list-style: none">

 ()

 </
span>

 <a class="url" style="color:black;
font-size:10px">(view online)

 <div style="margin-left: 10px; margin-bottom:5px;">

 </div>

 </div>

 This style class bibtex_template can be used to style the bibliography as necessary. We have included
this simple scheme but you can create a more complex one. The resulting bibliography is shown in
Figure 11-12 .

 Figure 11-12. A sample bibliography rendered using the bibtex-js parser and styled with a simple div tag

CHAPTER 11 ■ OPEN RESEARCH

222

 There is another way to hold global data variables aside from just this bibliography implementation
that we did. This method is similar to Jekyll collections, but it is more limited to just data in YAML format. In
Jekyll, there is another way to store data, using the _data folder. You can save a file in the _data folder and
within the file, you can store text data that you want accessible to the entire blog. A perfect example could be
the projects that you worked on. Create a folder in the top level for _data , and within the folder, create a file
called projects.yml . Let’s look at what this file has.

 - name: Made a bridge
 description: Lorem ipsum

 - name: Got a pusheen for my kitty
 description: CL

 - name: Put on a screen protector
 description: Phone

 This is some random data put together for the projects.yml file; now let’s use it. The way to access this
data is to programmatically access the file and then loop through each element. This can be done using the
following syntax.

 {% for project in site.data.projects %}

 {{ project.name }}
 <p> {{ project.description }} </p>

 {% endfor %}

 This is a simple for loop that will allow us to access the site data that we have created. The index
variable can be anything, we’re just calling it project here. To access the data, though, the file name inside
the _data folder determines the reference, so we have index_variable in site.data.filename to access
the site.data files. It is easy to imagine that a similar format can be created to parse and use bibtex files
so that we wouldn’t need to use a plug-in or a parser. The problem with using that approach is is that
bibtex database entries are very intensive; they need a lot of preparation to be parsed and then represented
properly. It makes more sense, therefore, to use a plug-in that is designed entirely for bibliographic
purposes. The next tool for us is IPython.

 Adding Notebooks
 In pursuit of an open platform for data discovery and sharing, the use of IPython notebooks is a huge
advantage. It allows for a very easy way to replicate the methods being used in a study and obtain the same
results. The biggest advantage of the notebooks is the availability of input and output cells that let you do
computational processing within the context of the problem being explained and a possible solution being
derived. It is analogous to looking up a new word or an idea in reference books or on Google. The notebooks
being in a portable format also helps tremendously in uploading them or transferring them. Notebooks in
the past would have to be hosted and rendered through your own instance of Project Jupyter, but lately that
has changed. The nbviewer is one example of this, where gists or other repositories can be used to store
the notebooks, and they can be rendered automatically by server. There’s some better news to make data
sharing even easier using GitHub directly.

CHAPTER 11 ■ OPEN RESEARCH

223

 In May 2015, Project Jupyter announced a partnership with GitHub to make the IPython notebooks
(.ipynb files) render as Markdown files, directly on GitHub, with no external third-party server or software
needed. Several authors have taken advantage of this feature and actually published entire chapters, along
with their code on GitHub, much like you would share blog posts using Jekyll. The only difference is that
now the IPython notebooks being shared on GitHub actually render into the final form right away, instead
of being processed and then rendered. You can read more about the announcement along with the specific
examples of some authors who have posted their books at http://blog.jupyter.org/2015/05/07/
rendering-notebooks-on-github/ .

 Making Presentations
 Finally, we are on the last of the tools to implement and perhaps also the most exciting one, reveal.js, which
we use to make presentations. We discussed earlier that we will be adding reveal.js to the project as a
submodule. The command to do that and the web address are given as follows:

 $ git submodule add https://github.com/hakimel/reveal.js.git
 Cloning into 'reveal.js'...
 remote: Counting objects: 8488, done.
 remote: Total 8488 (delta 0), reused 0 (deltRae ce0),i vipancgk -orbejuescetds :8
100488%48[8/84K8
 Receiving objects: 100% (8488/8488), 6.50 MiB | 235.00 KiB/s, done.
 Resolving deltas: 100% (4543/4543), done.
 Checking connectivity... done.

 The command git submodule <web_address> adds the repository present at the specified web address
as a submodule. The rest of this output just tells us that Git copied the contents of that repository along with
the history into a reveal.js folder. Using reveal.js is actually not that complicated, but the key is realizing
that the files in the submodule that we just cloned need to be imported in the right places, and then reveal.
js needs to be supplied all of the configuration. We also want to keep our writing consistent, so that we can
make the presentations in the same manner that we write the blog posts. As we get started with our layout,
remember that this layout has two main purposes: being able to import the reveal.js files and providing the
YAML information from files to reveal.js. Here is the code for the new layout.

 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">

 <!-- Showing the title of a page, if the title is present -->

 <title>
 {% if page.title %}
 {{ page.title }} | {{ site.title }}
 {% else %}
 {{ site.title }}
 {% endif %}
 </title>

http://blog.jupyter.org/2015/05/07/rendering-notebooks-on-github/
http://blog.jupyter.org/2015/05/07/rendering-notebooks-on-github/

CHAPTER 11 ■ OPEN RESEARCH

224

 <!-- Site description -->

 {% if page.description %}
 <meta name="description" content="{{ page.description }}" />
 {% else %}
 <meta name="description" content="{{ site.description }}">
 {% endif %}
 <!-- Just some standard meta tags -->

 <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
user-scalable=no, minimal-ui">

 <!-- Importing the core reveal.js files here -->

 <link rel="stylesheet" href="{{ "/reveal.js/css/reveal.css" | prepend: site.baseurl }}"/>
 {%if page.theme %}
 <link rel="stylesheet" href="{{ "/reveal.js/css/theme/" | prepend: site.baseurl |

append: page.theme | append: '.css' }}" id="theme"/>
 {% else %}
 <link rel="stylesheet" href="{{ "/reveal.js/css/theme/black.css" | prepend: site.

baseurl }}" id="theme"/>
 {% endif %}

 <!-- Enabling code syntax highlighting -->

 <link rel="stylesheet" href="{{ "/reveal.js/lib/css/zenburn.css" | prepend:
site.baseurl }}"/>

 <!-- Printing and PDF export features -->

 <script>
 var link = document.createElement('link');
 link.rel = 'stylesheet';
 link.type = 'text/css';
 link.href = window.location.search.match(/print-pdf/gi) ? '{{ "/reveal.js/css/print/

pdf.css" | prepend: site.baseurl }}' : '{{ "/reveal.js/css/print/paper.css" | prepend:
site.baseurl }}';

 document.getElementsByTagName('head')[0].appendChild(link);
 </script>

 <!-- Favicon -->
 <link rel="apple-touch-icon" href="{{ "/apple-touch-icon.png" | prepend:

site.baseurl }}" />

 <link rel="canonical" href="{{ page.url | replace:'index.html','' | prepend: site.
baseurl | prepend: site.url }}">

 </head>

 <body>

CHAPTER 11 ■ OPEN RESEARCH

225

 <!-- Instantiating the reveal.js slides -->

 <div class="reveal">
 <div class="slides">
 {{ content }}
 </div>
 </div>

 <!-- Importing more reveal.js scripts -->
 <script src="{{ "/reveal.js/lib/js/head.min.js" | prepend: site.baseurl }}"></script>
 <script src="{{ "/reveal.js/js/reveal.js" | prepend: site.baseurl }}"></script>

 <!-- Default reveal.js configuration -->

 <script>
 // Full list of configuration options available at:
 // https://github.com/hakimel/reveal.js#configuration
 Reveal.initialize({
 controls: true,
 progress: true,
 history: true,
 center: true,
 {%if page.transition %}
 transition: '{{page.transition}}',
 {% else %}
 transition: 'slide', // Other options include: none/fade/slide/convex/concave/zoom
 {% endif %}

 // Optional reveal.js plug-ins

 dependencies: [
 { src: '{{ "/reveal.js/lib/js/classList.js" | prepend: site.baseurl }}',

condition: function() { return !document.body.classList; } },
 { src: '{{ "/reveal.js/plugin/markdown/marked.js" | prepend: site.baseurl }}',

condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: '{{ "/reveal.js/plugin/markdown/markdown.js" | prepend: site.baseurl }}',

condition: function() { return !!document.querySelector('[data-markdown]'); } },
 { src: '{{ "/reveal.js/plugin/highlight/highlight.js" | prepend: site.baseurl }}',

async: true, condition: function() { return !!document.querySelector('pre code'
); }, callback: function() { hljs.initHighlightingOnLoad(); } },

 { src: '{{ "/reveal.js/plugin/zoom-js/zoom.js" | prepend: site.baseurl }}', async:
true },

 { src: '{{ "/reveal.js/plugin/notes/notes.js" | prepend: site.baseurl }}', async:
true }

]
 });

 </script>

 </body>
 </html>

CHAPTER 11 ■ OPEN RESEARCH

226

 This code might look complicated, but this layout is designed in a manner that can be broken up into
several pieces. The first piece is the title of the page and the site, followed by the description. Following the
description are the core imports from the reveal.js project, and then importing a few other plug-ins, such as
syntax highlighting, exporting the slides, and so on. This is followed by a div tag instantiating the reveal.js
slides and then a few more imports from the project. After that, a script tag encloses the basic configuration
for a reveal.js presentation and finally the optional features for the presentations. This layout renders an
entire presentation using reveal.js and a simple blog post with the appropriate YAML formatting. The task
might seem complicated, but it really is straightforward. In this example, we create a one-slide presentation,
but the more important aspect here is the YAML. Save this file just as you would a blog post.

 layout: slides
 title: Ruby meetup
 categories: presentation
 theme: league
 transition: slide

 <section data-markdown>

 ## Overview

 [reveal.js](https://github.com/hakimel/reveal.js/) enables you to create beautiful
interactive slide decks using HTML. This presentation will show you how to integrate it with
[Jekyll](http://jekyllrb.com/)

 </section>

 This is the beginning of a reveal.js presentation. The title is provided along with the theme and transition
configuration variables. That’s all that you need in YAML. The actual blog post or the presentation starts
within the section tags, and each slide is contained within those tags. To write the slide itself, you can simply
use Markdown. That’s it! Now you can create presentations and list them as you would a regular blog post!

 Summary
 In this chapter, we designed an open platform to help researchers easily disseminate their own work and
the methodologies used to achieve their results. The theme used in this project took a lot of modifications to
showcase some tools used heavily in academia. All the changes to the blog were pushed by Git CLI this time,
and we did an in-depth tutorial of how to use it and the most commonly used commands in Git. After the
tutorial, we used the same workflow in Git throughout the chapter. We implemented KaTeX in a blog post,
used a port of the bibtex-js to parse a bibliography, discussed the use of IPython, and finally created a new
layout using reveal.js for a presentation. The tools themselves might not be used much by hobbyists, but the
process of implementing each of the new tools was a valuable lesson to learn on its own.

 Further Reading
 1. Getting Started with Git: https://git-scm.com/book/en/v2/Getting-

Started-About-Version-Control

 2. Storing Git credentials: http://gitcredentialstore.codeplex.com/

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://gitcredentialstore.codeplex.com/

CHAPTER 11 ■ OPEN RESEARCH

227

 3. Git on Windows: http://guides.beanstalkapp.com/version-control/git-
on-windows.html

 4. Getting started with Plot.ly JS: https://plot.ly/javascript/getting-
started/

 5. Toyplot library: http://toyplot.readthedocs.org/en/stable/index.html

 6. Interactive IPython notebooks: http://www.nature.com/news/interactive-
notebooks-sharing-the-code-1.16261

http://guides.beanstalkapp.com/version-control/git-on-windows.html
http://guides.beanstalkapp.com/version-control/git-on-windows.html
https://plot.ly/javascript/getting-started/
https://plot.ly/javascript/getting-started/
http://toyplot.readthedocs.org/en/stable/index.html
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261
http://www.nature.com/news/interactive-notebooks-sharing-the-code-1.16261

229© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_12

 CHAPTER 12

 Open Health Care

 Open should be the default, not the exception.

 —Carl Malamund

 Centralized discovery and rapid updates are two advantages provided by the Internet that are completely
changing the way health care information is delivered to patients. Several advancements have been made
to modes of delivery for health information. Here we build a platform around one such model. The main
focus of this chapter is speed: from the time taken to deploy the platform, to the time a reader takes to access
relevant information. This project optimizes on both sides, reducing the barriers to the deployment of such a
platform and increasing the speed with which a reader can find the appropriate topic.

 We begin by talking about a new kind of user interface (UI) to discover information easily. The content
on this platform would have to be prepared in a manner that can take advantage of the UI. As such, we
discuss some guidelines for writing content. We prototype the platform and start implementing features. The
implementation is done within the browser using prose.io as an editor and file manager. We conclude by
discussing the applications of this platform in the broader context of public health.

 Overview
 In this project, our goal is to create an information delivery platform (based on Jekyll) that can be packaged
and deployed at short notice by, say, a public health organization. You might be wondering about the
difference between an information delivery platform and a blog. They both serve the same purpose, so
what’s the difference? There are two main differences and they both have to do with the end objectives of
the platform.

• The first difference is the format of the blog . We have followed a peculiar format for all
the blogs in the projects that we created: Use a for loop and list every single post in the
 _post directory. This allows us to automatically list and update posts as they get added,
and the listing format maybe with an excerpt allows the reader to browse through
a typical blog. However, in this project, listing everything might become incredibly
ineffective, so we need to be cautious about the format that we pick for the project.

• The second difference is the content itself . In a blog, you can talk about anything
you want, and in any tone that you want. Your blog is your way of expressing your
thoughts, so you can structure your ideas how you like. If our goal, however, is to
minimize the time that readers need to reach the topic they want and absorb the
information, we have to strictly control the format and structure of the content.

CHAPTER 12 ■ OPEN HEALTH CARE

230

 These two points allow us to paint a clear picture of what is required from our platform. This chapter
is not so much project-oriented as it is goal-oriented, the difference being that in the past some features
that we prototyped might be removed in the end, or new ones are added to the project. Here, the features
that hinder our goals will be removed and only the features that optimize the project will be added. To
understand the goals of this project, we need to understand the three parties participating in it. The first
party is the developers, which includes you. Your goal is to create a modular project that is easy to maintain
and that can be deployed easily on an open platform like GitHub by another party. The second party is the
agency or party deploying the package. In the case of public health issues, this can be the Centers for Disease
Control (CDC) or even local institutions. Their goals are to obtain a platform that they can use to send out
information and update it regularly. An open source project becomes a huge preference because anyone
can use the code and make changes to it that benefit all the parties using the code. The last participant, and
perhaps the most important party, is the readers. They will consume the information made available by
the public health organization. Their goals are simply to get access to relevant information faster and in an
effective manner. The relationship among these three parties is displayed graphically in Figure 12-1 .

 Figure 12-1. The three parties involved in this platform

 Now that we have a better idea of the parties involved and their interests, it is easier to see what type
of project we have to design. It must be one that can easily be deployed on GitHub , easy to read and obtain
information from, and rapidly editable so that updates to the information presented can be done smoothly.
Creating high-quality documentation requires a high level of control over the content of the project. To that
end, we will be setting up some rules in the form of a content guide to make sure that the content is prepared
in a manner that is easy to find and consume. In this chapter, we create an information platform that can be
used by a health care provider to inform patients of their rights for data access and navigating through how
to request specific data. Part of the motivation behind this idea is to support the Precision Medicine Initiative
(PMI) . This project was launched in 2015 and the initial steps include creating a volunteer program to collect
biological samples from volunteers across the country. The creation of a biobank for sample collection also
requires transparent policies about what will happen to the data collected and how the results of the testing
will be shared. Along with the ethical obligation of the participating agencies, the volunteers also don’t
want to be turned away by confusing language that might not be accessible. The context of this project is yet
another reason why we need content guides. There is yet another component required to make the process
of editing the final platform easier: in-browser editing. So far, we have been using Git and doing the editing
locally in Sublime. That won’t work anymore, as downloading and installing additional tools requires more
time spent on maintenance. We need to streamline this workflow, so in-browser editing seems to be the
best solution. We use prose.io as the editor and a file manager to interface with the GitHub repository that
contains our code. In that manner, Prose will allow us to add files and make changes, all within the browser.
There are, however, some limitations and differences between using Prose and editing on GitHub itself.

CHAPTER 12 ■ OPEN HEALTH CARE

231

• If you are using Github, you can actually create new files and then copy any text
necessary. You can also edit or delete files if necessary. This allows for decent editing
capabilities and file management; however, if you want to upload a picture, you will
not be able to do so just using the web interface.

• Prose offers its own web interface for editing files online. You can edit the metadata
and write in Markdown easily with pre-built shortcuts. In Prose, you can upload
images and they will remain in your repository, then you can use them as normal in
your posts.

• Despite the ability to upload pictures, even in Prose, you can’t truly upload files. If the
file contains text information, you have to simply copy and paste it in a new file that
you created. This works in most of the cases and will definitely work for this project.

 We discuss the distinguishing features of Prose at length in a later section. Now that we have a better
idea of the overall picture, let’s start looking into the details. The first major change in this platform and the
other blogs we have built is the use of the cards interface for the web site. This is a fundamentally different
architecture that is built for better accessibility of information.

 Introduction to Cards
 The special sauce in this project will be the cards UI. Cards are at the center of several modern web
technologies. Today, they are becoming ubiquitous and a preferred source of updates to basic information
such as weather. They are becoming the default option when it comes to balancing clear aesthetics with
simple usability for obvious reasons. For organizing content with interactive media in one coherent structure
such as an image with headline, a share button or link, cards have become the design of choice. Moreover,
the emphasis on organization and clarity makes the use of cards ideal for mobile and responsive designs .
Content from web sites is being broken down into individual components and reaggregated in new ways to
interface better with the rise of mobile technologies. This is driving the users away from browsing multiple
pages of content linked together and toward individual pieces of information and updates aggregated into
one experience. Cards are far from a trend; they are becoming a practical method for designing applications
where speed is a crucial factor.

 The aggregation of information is allowing for the entire experience to become much more
personalized. As a design framework, the aggregation depends on the following:

• The person consuming the content and their interests, preferences, and behavior.

• Their location and environmental context.

• Their social context including the interests, preferences, and behavior of their
friends.

 Cards are becoming very deeply rooted in social media. Pinterest was the first major web platform
that relied heavily on cards, and later on integrated purchase buttons for e-commerce. Ever since Pinterest
successfully implemented cards, Twitter and Facebook have replicated the UI on their own platforms. One
of the best implementation of cards is Google Now, shown below Figure 12-2 . It provides an interface for all
sorts of information to be aggregated for the user to glance at and get updates. This implementation can be
extended to provide text-based information as well. However, the template for each individual card and how
it is represented on the canvas will ultimately determine how effective the layout becomes as a whole.

CHAPTER 12 ■ OPEN HEALTH CARE

232

 A card can essentially be thought of as an empty container with borders and a few rules that dictate the
styles of content elements . Let’s break down the general components of a card:

• Title: The first component that identifies a card. The title doesn’t need to summarize
the card but just introduce the updates it will provide.

• Subheader: The supporting information present in most cards to continue updating
at the point where the title left off. Often this is a meeting address, schedule, or link
for further information about the topic of the card.

• Content: The actual information provided by a specific card, given the preferences of
the user. It provides a quick way of glancing at updates.

 Creating Cards
 Now that we have talked about the basic components of a card, let’s play around with cards a bit more and
explore what kind of cards we can create. The reason for experimenting with cards before we dive into
editing a theme in Jekyll is to gain enough familiarity with the concept of cards and have a general idea
of what is possible to do with cards. For this, we will be using a platform called CodePen , which allows
us to write all the HTML, CSS, and JavaScript in one window and render the results live. It’s an incredibly
powerful tool for rapid prototyping and also to test new technologies. CodePen provides the most commonly
used libraries and import features for external style files and libraries. We are using a design library called
 Semantic UI , which provides templates in user-friendly HTML to create cards with interactive content.

 Figure 12-2. Google Now cards showing stocks, weather, and nearby events. Cards are helpful in this situation
because the information updates frequently and we just need a minimalistic, stylish container to render the
information to the user.

CHAPTER 12 ■ OPEN HEALTH CARE

233

We do this entirely within the browser in CodePen, so let’s get started. CodePen lets you create a new pen
without having to sign up, which is perfect for us to experiment with Semantic UI. The home page is shown
in Figure 12-3 .

 Figure 12-3. CodePen home page. We use this tool to test out the Semantic UI. Clicking New Pen on the top
right will get us started.

 Clicking New Pen takes us to a multicolumn layout with the left side displaying the canvas that will
render the results and the right pane including three dividers for HTML, CSS, and JavaScript , respectively.
We first need to import the styles required by Semantic UI into CodePen. To do this, click Settings on the top
right to open the Pen Settings dialog box. Within this dialog box, click the CSS button near the top to access
the CSS settings. Under CSS Settings, you will find a place for importing labeled Add External CSS. Here are
the CSS files that we need to import.

 //oss.maxcdn.com/semantic-ui/2.0.6/semantic.min.css
 //oss.maxcdn.com/semantic-ui/2.0.6/components/card.min.css
 //oss.maxcdn.com/semantic-ui/2.0.6/components/button.min.css

 The final result after adding the style files is shown in Figure 12-4 . These imports will now give us
access to the cards interface, a few buttons and the overall semantic interface. The right side is where we
will be doing most of our work. The panes can be collapsed or expanded by double-clicking the title of the
pane. For the cards we will be making, there is no JavaScript needed, so let’s close that panel. That leaves us
with only the HTML and CSS panels to work with. The other option available is the small Tidy button that
actually is used to format the code properly. The purpose behind the Tidy button is to automatically add the
appropriate white space, brackets, and tabbing to your code and make it look clean.

CHAPTER 12 ■ OPEN HEALTH CARE

234

 Let’s get started with the coding. First we add a bit of spacing to where the cards would render, with the
only bit of CSS we use throughout this CodePen.

 body {
 padding: 20px 20px 20px 20px;
 font-family: 'Helvetica Neue', Arial, Helvetica, sans-serif;
 }

 The code for a simple card with an action button is actually very straightforward. Here is a look:

 <div class="ui cards"> <!-- Declaring the beginning of a card for the CSS -->
 <div class="create-action card"> <!-- Action card -->
 <div class="content" style="opacity: 0.5;"> <!-- Style for content -->

 <!-- Mail button -->
 <i class="right floated mail icon teal" style="font-size: 30px;"></i>
 <div class="header"> <!-- Action text -->
 Send to email
 </div>
 </div>

 <div class="ui attached bottom button" style=""> <!-- Action button -->
 Create this scan action
 </div>
 </div>
 </div>

 Using this snippet in CodePen will generate our first card, shown in Figure 12-5 . This was a simple card
with some text and an action button , but we can create more complex cards. The next card we create will
be a profile card for a person that will give a short description of the person, including some minor details
about them.

 Figure 12-4. Importing external CSS files into CodePen for Semantic UI

CHAPTER 12 ■ OPEN HEALTH CARE

235

 Figure 12-5a. The resulting card drawn on the left pane which is the canvas

 Figure 12-5b. The HTML code ithe right pane

 The code that follows shows how to make the profile card . The code is very similar to the last block that
we used, but there are minor differences in the classes being used. This code renders a block for showing the
image, and underneath are two sections, the first one for a name, followed by supporting information and
then a description. Finally under the description is a second block containing an extra content class.

 <div class="ui card"> <!-- Render the card here -->
 <div class="image"> <!-- Display the image first -->

 </div>

 <div class="content"> <!-- Information about the person -->
 Kristy
 <div class="meta">
 Joined in 2013 <!-- Name and basic details -->
 </div>

CHAPTER 12 ■ OPEN HEALTH CARE

236

 <div class="description">
 Kristy is an art director living in New York.
 </div>
 </div>

 <div class="extra content"> <!-- Social profile -->
 <a>
 <i class="user icon"></i>
 22 Friends

 </div>
 </div>

 Putting this code on CodePen will create the image-based card shown in Figure 12-6 . These cards
have a fluid property where the image being used automatically resizes itself to fit a certain card length.
You do not need to be concerned about the image size, as it will automatically be resized to fit any screen
responsively. All the elements in Semantic UI are responsive, meaning that they will resize if the window size
changes. This makes sense because cards are most suited to be displayed on mobile devices, after all.

 Figure 12-6. A profile card displaying the picture, name, supporting information, description, a divider, and
finally extra content. This card also has a responsive property if the window size is changed.

CHAPTER 12 ■ OPEN HEALTH CARE

237

 Writing a Quote Card
 The next card is a quote card, which will contain most of the same information as the previous card, however
in the extra-content section, this card will have the quote source. The end result is shown in Figure 12-7 .

 Figure 12-7. A normal card with an extra-content section that includes the author

 <div class="ui card"> <!-- Rendering a card, displaying title, subtitle and content -->
 <div class="content">
 <div class="header">Cute Dog</div>
 <div class="meta"> <!-- Subtitle is meta-data -->
 Animals
 </div>
 <div class="description">
 Jenny is a student studying Media Management at the New School
 </div>
 </div>
 <div class="extra content"> <!-- Showing the quote author -->
 <div class="right floated author">
 <img class="ui avatar image" src="http://semantic-ui.com/images/avatar/small/matt.

jpg"> Matt
 </div>
 </div>
 </div>

 The code is mostly the same, except for the extra-content class that takes on additional parameters to
display the avatar. We’re going to make one last card that extends an action card from Figure 12-5 and add
tags or categories. This is incredibly helpful in organizing information, and once the tags are activated, they
link to a page that contains a list of all the posts with that particular tag. In the following code, the parts
shown in bold are what adds the tags.

 <div class="ui cards">
 <div class="card">
 <div class="content">
 <i class="right floated mail icon teal" style="font-size: 30px;"></i>

 <div class="header">
 Send to user email
 </div>

CHAPTER 12 ■ OPEN HEALTH CARE

238

 <div class="meta">
 <code>User email</code>
 </div>
 <div class="description">
 A description about send to user email.
 </div>
 </div>
 <div class="extra content"> <!-- Adding the categories -->
 <div>
 <i class="users icon"></i> Staff, Students
 </div>
 <div>
 <i class="user icon"></i> Kaylee Fryee
 </div>
 </div>
 </div>

 Most of the code remained the same, except for the last few lines that add the categories. So far, we
made four different types of cards: The first one was an action card, the second one was a fluid profile
card, the next one was a quote card with the avatar of an author, and the last one was a card that used
categories. We use all of these features in one single card in the theme itself for the project. So let’s go back
to the information delivery platform. How would we go about concretely building it now that we have some
experience with cards? The first thing we need to do is to lay out some rules. This is similar to an earlier
chapter when we discussed a few rules for the debate platform. Those were the specifications that became
the foundation for this project. Here, we have a content guide that dictates what kind of a platform would be
built around it.

 Content Guide
 These recommendations are derived from a hybrid between a content guide written by 18F for government
web sites and the Mallard documentation style. The guide provided by 18F provides insight into the way
content should be written and Mallard provides guidelines for how the content should be wrapped by
the title and supporting information. Combining them both here will allow us to reach our speed goals
effectively, so let’s get started.

• Tone: The tone of our writing should be conversational yet instructive. The patients
are relying on this project to get information about their own data that is often
hidden behind layers of organizational bureaucracy. We believe that being able to
deploy an open health care platform to help patients is a privilege, and our voice
needs to represent this.

• Voice: Our writing should be succinct and to the point. Using an active voice allows
the reader to relate to the content more easily, and the content becomes more
engaging as well. Avoid passive verb tenses whenever possible.

• Plain language: Readers prefer straightforward and clear English. The use of plain
English might be obvious, but it is often ignored in projects where the goal is to
break down complex information into easy-to-understand bits. It allows readers
to go through information rapidly and arrive at what they need. Don’t use formal
language or long words when short, simple ones can work fine. For instance, use buy
instead of purchase, help instead of assist, and about instead of approximately. This
shouldn’t be taken as a list of words to avoid, but rather a way of writing.

CHAPTER 12 ■ OPEN HEALTH CARE

239

• Address the users: Address the users as “you” wherever possible. The content they
are browsing is relevant to their personal health, so it should make a direct appeal
to the readers. For example, “You can contact PMI at this e-mail address,” or “Learn
more about the way your data is stored by reading this quick summary.”

• Break up chunks: Large chunks of text can overwhelm readers. Break down the
content into small paragraphs and use bullet points where appropriate. You should
craft sentences of 25 words or fewer when possible. The best case scenario is if a
sentence has fewer than 14 words. Research shows that most readers understand 90
percent of content if a sentence is fewer than 14 words.

• Acronyms: Acronyms often confuse readers. If an acronym is necessary, spell out
the full word and follow that with the acronym in parentheses on the first reference.
Then you can use the acronym in the second instance. Avoid them whenever
possible.

• Organization: Readers often scan text until they find the relevant information. Most
readers will read only 25 percent of the content present in front of them. We can
use this number to make sure that we structure our content in such a manner that
the most important information gets read first. You can do this by putting the most
important information in the first two paragraphs.

• Titles: The titles for each card must be topic-based. The title must contain a short
description of the topic, maybe five or six words long. Each card must have two titles:
One is an informal title displayed on the home page and the second one (that follows
the Mallard specifications) should be topic-oriented.

• Categories: In Mallard, all content is organized as information related to individual
topics under broad categories. The categories for each card must be listed in the
expanded view, in two or three words. The topics become names of the cards (or
blog posts) and the categories are simply an anchor to hold all the cards related to
that category.

• Authorship: Each card must have a clearly defined author in the first line of the
post. At the end of the post, a divider should be placed, and underneath the divider
a short biography of the author must be provided. This will not only help establish
credibility, but in combination with Google Analytics, this will also help determine
which author is providing the best readable content.

• Sources: Each card should have clearly placed references or sources (where
appropriate) at the end of the content.

• Tags: Each card should have a few tags listed near the end of the content, after the
sources. The tags act as a marker for the audiences that are likely to be affected by the
information present in this card.

 ■ Note The content guide lists rules for content and the structure of the web site that contains the content.
However, we are only be able to discuss the changes to the web site in detail.

CHAPTER 12 ■ OPEN HEALTH CARE

240

 Writing in Prose
 Now that we have a definitive content guide, we can start talking about the tools we will be using in this
project more concretely. The first of them is an in-browser editor and a file manager for Jekyll called Prose.
The simple fact that Prose allows us to edit without having to download any additional tools also means
that you can run Prose on any computer in a matter of minutes. The programming is no longer limited to
a machine that runs Git and needs to be configured to clone the repository or push to it. The in-browser
editing offers a lot of freedom for making quick changes, in addition to reduced maintenance of the
downloaded tools. The way Prose works is straightforward: It interfaces directly with GitHub , and then you
can pick the appropriate repository to work with through the web interface, just as you would select a folder
to open and edit in a file manager. Besides being a file manager, there are some distinct advantages to using
Prose that make it suitable for Jekyll.

• Publish/unpublish workflow : Once your post has been completed, you can publish
it by simply clicking Published. The same function can be used when you clear the
check box, to unpublish a blog post that’s already live.

• Drafts management : Locally, you have to create a new folder for drafts. Within the
folder, you can keep incomplete ideas. In Prose, you can save a post as a draft, and
when you are done, your draft turns into an actual post with the click of a button.

• Image uploading : When editing Markdown documents, you can drag and drop
images on the current page. Those images are then uploaded to a media directory
you specify in your configuration or the current directory.

• Mobile ready : Prose is designed to be a mobile-ready editor so that any device can
access your repository, and it is particularly well suited for the iPad.

• Markdown ready : The editor in Prose is designed just for Markdown with several
common features such as headers, bold, and so on available in a toolbar and a live
preview of the post.

• Access control : By modifying the configuration, you can provide access to
maintainers so that they can create and edit content but not do much else on the
blog or web site.

 Many of these features are inspired by traditional CMS systems , however, Prose itself runs on Jekyll
and Backbone.js . Let’s briefly talk about our workflow locally, and then how Prose will change it. Usually,
any blog post or theme edit starts with identification of the file that needs to be edited, then the actual
editing is done in Sublime. After the edits have been made, the same cycle of using Git—add, commit, and
push—makes all the local changes available online. In Prose, the workflow is much simpler: You find the
specific file that needs to be changed, make the change within the browser, and just click Save. In that last
step, you can add what would be equivalent to a commit message and your changes are instantly available
on GitHub. This process involves fewer steps and the best part is that you don’t have to download any tools
to use offline. The real advantage of in-browser editing and why it’s important is that the entire process can
be standardized. This is an important design consideration because when a platform such as this one gets
packaged and an organization wants to use it, they have to train their employees on a new platform. The
easier it is to use, the less training they need to do. In that sense, keeping the process simple by just editing
the theme in a browser, completely eliminating the use of Git, could be very desirable and incredibly helpful.

 So how exactly does Prose get access to your repository? The mechanism of access is called OAuth,
which stands for Open Authentication , used very broadly across the Internet. This is a way for users to log
into third-party web sites using their Microsoft, Google, Facebook, or Twitter accounts to gain a third-party
access token. This access token makes it possible for them to create an account without exposing their
password. It’s a convenient way of using new services, and each of the access tokens essentially becomes an
application that runs under one of your existing accounts.

CHAPTER 12 ■ OPEN HEALTH CARE

241

 Prosing Through
 Now that we have an idea of how Prose works and how it will change our workflow, let’s do a thorough
walkthrough of setting it up with a repository, editing files, and committing the final changes. We begin by
visiting http://prose.io/ . The home page of the web site asks us to start the OAuth process with GitHub, so
that you can access your repositories. This is shown in Figure 12-8 .

 Figure 12-8. Prose.io home page requesting OAuth initiation for your GitHub account

 The authentication starts with the dialog box in Figure 12-8 , but the user must also know what exactly is
edited and what this application can do once it gains an access token from GitHub. The next screen shown
after clicking Authorize on GitHub is shown in Figure 12-9 . Once the authentication has been completed,
the Prose editor opens and displays all the repositories that are available for editing. We only have one for
this project and the repository name is displayed, as shown in Figure 12-10 . The editor gives a View Project
option , which is the equivalent of opening a folder to see the contents and then editing as needed. At this
point, a good knowledge of the Jekyll tree and what each folder represents is necessary because that can save
time needed to search through the files. Going back to the point about standardizing the process of editing,
the process of looking through a file structure to quickly determine where the target files are can be easily
standardized. These small optimizations might not matter much in the context of making this project, but
they become incredibly important when a project is deployed in production and there are people working
on it in real time.

http://prose.io/

CHAPTER 12 ■ OPEN HEALTH CARE

242

 Figure 12-9. Completing the authentication by Prose. On this page, you can clearly see what Prose can access,
what the permissions for this application are, and a description of the app on the right.

 Figure 12-10. After authenticating to Prose, the repository browser mode displays all the repositories you
have. You can also search through repositories using the top navigation bar if you have several repositories.

 ■ Note Once authenticated, Prose can work with your GitHub repository and allow you to edit in-browser on
any computer. The access token relies on your GitHub account, not the computer you are on. For instance, to
use Prose on a public library computer, you just have to log in to your GitHub account and then visit prose.io .
Your repository will be available just as shown in Figure 12-10 .

 After clicking View Project button, we see the file browser in Prose, as shown in Figure 12-11 .

CHAPTER 12 ■ OPEN HEALTH CARE

243

 This file browsing mode starts on top with naming the repository that you are currently browsing. This is
followed by a search bar to find files within the folders included, and a button to create a new file. Note that a
similar button is also available on GitHub, but there are significant differences between this code editor and
GitHub’s editor. The mode that Prose is currently in (e.g., file-browsing mode, editing mode, etc.) is denoted
by a small icon, present in the top left corner. In Figure 12-11 , the icon displays a folder and Prose is in file-
browsing mode. Below the search bar is a listing of all the files and folders present in this repository. On the
right side is the history pane, which contains a list of the most recently edited files along with a button to
view the current draft posts. We talk at length about the code-editor mode and the history shortly, but think
of the history being displayed here as similar to the Git log that we used in the terminal. Deleting files is also
hassle-free. If you find a file that is no longer necessary in the project, just click the garbage can button next
to the file name (shown in Figure 12-12) and the file is gone. You don’t even have to commit these changes,
as the delete operation for files gets pushed automatically to the GitHub repository.

 Figure 12-11. File browsing mode for a repository . This is a central feature of Prose, providing access to most
of the operations such as search, history, and drafts. We discuss the individual components in text.

CHAPTER 12 ■ OPEN HEALTH CARE

244

 Let’s look at the code-editor mode next in Figure 12-13 .

 Figure 12-12. File-browser mode , scrolling down the same page to view individual files. The two options for
editing and deleting are available for easy operations.

 Figure 12-13. In code-editor mode, the top left icon changes to represent the new mode. The next feature to the
right of the icon is the path of the file being edited below. On the top right is the shortcut toolbar that contains
editing features such as file preview, YAML edits, settings, and commiting changes. Finally, on the left is the
actual code that has been syntax highlighted for HTML. Currently, the status of this page is shown as published.

 The Markdown editing features available for the blog posts are very convenient if you want to make
some quick changes without manually inputting the markup for them. This is another additional feature that
becomes useful for training newcomers to Markdown. The formatting toolbar is shown in Figure 12-14 .

CHAPTER 12 ■ OPEN HEALTH CARE

245

 One of the features from the code-editor mode that regularly comes in handy is the YAML-edits button
to make metadata changes for files and blog posts. We use the YAML edits feature in the code-editor mode,
shown in Figure 12-15 .

 Figure 12-14. The formatting toolbar contains all the Markdown basics such as header formats, bold
typeface, hyperlinking, quotes, and bullet points

 Figure 12-15. Clicking the YAML edits button displays the raw metadata associated with the file that is
currently being edited. This allows us to insert metadata as needed. Clicking Done applies the new metadata
to the file.

 This setting allows us to edit metadata for the files and add new information as necessary, and the
newly edited data automatically gets saved. Let’s take a look at the history panel , shown in Figure 12-16 . This
panel contains a list of recent files that were edited and the panel also tells us what type of change occurred.
The use of M in the icons denotes a modification, the use of a down arrow icon indicates a new file has been
created, and the use of a red button with a file icon on it denotes that a file has been deleted.

CHAPTER 12 ■ OPEN HEALTH CARE

246

 Figure 12-16. The history panel on the right side of Prose. This panel is a graphical representation of all the
changes being made to files in the project, an analogue of the Git commit message.

 Next in the shortcuts toolbar is the Options button , which only has two features available, shown in
Figure 12-17 . The file path actually allows you to move a file if necessary from the current location to a new one.

 Figure 12-17. The Options button provides the feature of turning the current post into a draft, if you want to
come back and work on the idea later and the ability to delete the current file

CHAPTER 12 ■ OPEN HEALTH CARE

247

 Finally we are on the last button of the shortcut toolbar, and this button is the equivalent of adding all
the changes, committing them, and pushing the resulting commit to GitHub. This button streamlines the
workflow from three commands to one button. The commit message is shown along with the Save button in
Figure 12-18 .

 Figure 12-18. The Save button with commit changes . The sidebar to the left of the Save button takes the
commit message and pushes the changes to GitHub.

 This concludes our walkthrough of Prose, as we have touched on most of the important features that
you will be using throughout this project. Now let’s start implementing features from the content guide to a
theme.

 Material Design
 There are a few requirements that we need to keep in mind while searching for a suitable theme. The first
one is that we need to use cards within the theme and the second is that we don’t want to pick a theme
that has a grid system in use. Removing a grid system and replacing it with something else is very time
consuming and difficult to accomplish. Choosing the cards UI makes the search for Jekyll themes very
narrow, and a simple search revealed an excellent theme for our use called Jekyll Material Design Lite . This
theme lists blog posts as cards, and follows the material design specification (which is used perfectly within
the theme). The theme is available on Jekyll Themes at http://jekyllthemes.org/themes/jekyll-mdl/ ,
created by the Google Developers Group Managua.

 The edits we are going to make to this theme are broken down into four broad categories.

• The first one is the edits to the top bar.

• The second category is the edits to the way cards are displayed.

• The third is the edits to the cards layout when expanded.

• The last one is the sidebar edits.

http://jekyllthemes.org/themes/jekyll-mdl/

CHAPTER 12 ■ OPEN HEALTH CARE

248

 Let’s get started with the first set of edits. Note that this theme is built using material design
 specifications and styles , so we can look to the material design library for inspiration, in terms of site
colors and themes to use. The README file for this blog tells us how to customize the theme. For custom
theme options , we need to visit http://www.getmdl.io/customize/index.html , so let’s start there. This
web site provides a color selector to help us pick different colors and then import them into the theme.
You can pick any two custom colors to use, and instead of downloading the associated CSS files, we will
just use the hosted CDN links to import the CSS. This saves us the hassle of including the files in the
commit as well, when we can simply just add the import as another line of code. Here’s the CSS import
line from the theme builder:

 <link rel="stylesheet" href="https://storage.googleapis.com/code.getmdl.io/1.0.6/material.
blue_grey-orange.min.css" />

 This line needs to be placed in the _includes/head.html file, near the end of the file:

 <link rel="stylesheet" href="https://storage.googleapis.com/code.getmdl.io/1.0.6/material.
blue_grey-orange.min.css" />
 </head>

 After the styles have been imported, we need to edit some basic information and metadata for this
platform. To do so, let’s look at _config.yml and start making changes. The following are some sample
changes.

 # Site settings
 title: Open Health Care
 email: your-email@domain.com
 description: A platform for the delivery of patient-care information and patient-data
requests to patients in a intuitive manner.
 baseurl: "" # Leave this as is
 url: "http://jekyll-mini-blog.github.io" # The site address given in the format username.
github.io

 This set of edits allows us to change the metadata and reuse this theme for our Open Health Care
platform . After the metadata edits have been made, we can leave the rest of the configuration for this file
alone. We can revisit this file for changes later on. Now the top bar displays the title of the web site, but
there is a lot more work to be done. For our platform, this top bar will act as a shortcut bar where the users
can quickly access the most important components of the platform. Therefore, this top bar will contain a
home button, a link to live updates, and syndication through a mailing list and RSS. Syndication is crucial
for this platform: Once the users start reading from our platform, any changes made to the information
provided must be reported to the users. The two most effective ways to do this are using a mailing list,
which can be created and managed through MailChimp, and RSS , which is an old-school but incredibly
reliable way of receiving site updates. First, let’s import font-awesome before we start implementing any
icons. The import for font-awesome also needs to be placed below the CSS import from earlier in the
 _includes/head.html file .

 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-
awesome.min.css">

 </head>

http://www.getmdl.io/customize/index.html

CHAPTER 12 ■ OPEN HEALTH CARE

249

 Now that we have access to font-awesome, let’s start creating the icons for the top bar that we need. The
relevant code that we need to start editing is present in header.html . First we need to remove the more_vert
button and the for loop associated with it. Now we can start adding the icons.

• Home: <i class="fa fa-home"></i>

• Live updates: <i class="fa fa-gratipay"></i>

• Mailing list: <i class="fa fa-envelope-o"></i>

• RSS: <i class="fa fa-rss"></i>

 These buttons need to be added responsively because the search button causes the search bar to expand.
If the buttons are added without any regard for proper placement, when the search bar expands, the buttons
will all be distorted. Luckily, there is a responsive space available within the header.html file that we can use:
 <div class="mdl-layout-spacer"></div>

 After all the edits have been made, here’s what the <header> tag looks like:

 <!-- Beginning of header -->
 <header class="mdl-layout__header">

 <div class="mdl-layout__header-row">

 <!-- Title -->
 {{ site.title }}

 <!-- Add spacer, to align navigation to the right -->
 <div class="mdl-layout-spacer"></div>

 <!-- Font-awesome icons -->
 <i class="fa fa-home fa-2x"></i> <div class="mdl-layout-spacer">

</div>
 <i class="fa fa-gratipay fa-2x"></i> <div class="mdl-layout-spacer">

</div>
 <i class="fa fa-envelope-o fa-2x"></i><div class="mdl-layout-spacer">

</div>
 <i class="fa fa-rss fa-2x"></i> <div class="mdl-layout-spacer">

</div>

 <!-- Search box -->
 <div class="mdl-textfield mdl-js-textfield mdl-textfield--expandable is-upgraded">
 <label class="mdl-button mdl-js-button mdl-button--icon" for="js-search__input">
 <i class="material-icons">search</i>
 </label>

 <!-- Search input and expand -->
 <div class="mdl-textfield__expandable-holder" >
 <input class="mdl-textfield__input super-search__input" type="text" id="js-

search__input" />
 </div>
 </div>

 </div>
 </header>

CHAPTER 12 ■ OPEN HEALTH CARE

250

 This code has mostly remained unchanged, except for the font-awesome icons that we added to the file.
The use of the mdl-layout-spacer tag after each icon makes the icons responsive so they are repositioned
when the search bar expands completely. The remainder of this file describes the sidebar (or drawer) and
the for loop that will add elements to the sidebar as new pages are added to the project. This will come
handy later on when we want to make sure that any links to further reading or resources are made available
to patients so that they can get an overview of the platform as a whole. Now that we have the header fixed,
let’s move to the actual cards. This is the second set of changes where we need to fix the layout of the cards
themselves.

 So what exactly do we need to change? Here's a short list: Remove the background image on cards, add
share buttons, make the title more noticeable, make the Read More button more appealing, and so on. Let’s
get started first with how the cards are being rendered through index.html . If you open that file, you will
notice that it has a huge amount of HTML code, mostly the same code repeated with different conditions
and Liquid control loops . We want to create a fairly simple layout, so we will take the last of the {% else %}
options from the index file and bring it out. The new index file looks more like this.

 layout: default

 <!-- Beginning of the index.html code, first creating a grid to render for cards -->
 <div class="page-content">
 <div class="mdl-grid">

 <!-- Loop through all the posts -->
 {% for post in site.posts %}

 <!-- Style class for an individual card -->
 <div class="mdl-card mdl-shadow--2dp mdl-cell mdl-cell--4-col mdl-cell--4-col-desktop

mdl-cell--4-col-tablet mdl-cell--12-col-phone">

 <!-- Simple colored heading for each card, with a font-awesome icon in front of the title -->
 <h4 align="center" style="color:rgb(108, 122, 137)">
 <i class="fa fa-caret-square-o-right"></i> {{ post.title }} </h4>

 <!-- Bold date, excerpt follows the date -->
 <div class="mdl-card__supporting-text">
 {{ post.date | date: "%b %-d, %Y" }}

 <!-- Include for social buttons -->
 {% include social.html %}
 <p>{{ post.excerpt }}</p>
 </div>

 <!-- Read More button, with a pointing arrow font-awesome icon -->
 <div class="mdl-card__actions mdl-card--border">

 <div class="mdl-layout-spacer"></div>
 <a class="mdl-button mdl-button--colored mdl-js-button mdl-js-ripple-effect"

href="{{ post.url | prepend: site.url }}"> Read More

CHAPTER 12 ■ OPEN HEALTH CARE

251

 <!-- Font-awesome icon for Read More button -->
 <i class="fa fa-chevron-circle-right"></i>

 </div>

 </div>
 {% endfor %}
 </div>

 </div>

 The index file might look complicated, but individually, all the components are very straightforward.
The rationale of the code is to first create a grid where the rest of the code can render cards. This grid is
important because it will allow the web site to be responsive and wrap the cards if necessary on the screen.
After creating the grid, the for loop goes through each of the posts and displays them. Next is a div tag
calling the CSS styles for an individual card. We have changed this distinctly from the original version in
the theme. In our version, the title is a header tag with color and a font-awesome icon. The title is followed
by date and an include for the social icons (which we haven’t created yet). Finally, we have the Read More
button, which now has a font-awesome icon next to it.

 Let’s get started with the social buttons for the cards. We want to give the reader an ability to share the
card from the home page. We will go with a very simple social buttons setup by AddToAny that offers a toolbar
including the major social-media sites. To get started, visit https://www.addtoany.com/buttons/for/
website and pick the second button set. Then after selecting it, click Get Button Code and see Figure 12-19 .

 Figure 12-19. Select the second button set and then click Get Button Code, which opens a small text area
underneath that contains the embed code that you need to copy and paste in a new file named _includes/
social.html .

 Take the embed code provided by AddToThis and paste it in a new file named social.html , which
provides the social buttons for each of the cards. Note that we discussed the code for index.html first and
then the social icons. If the changes are made in this order, GitHub will throw an error saying that an include
file that was referenced in index.html is not present in the _includes folder . In any case, if you create the
 social.html file next and push the changes afterward, that will fix the error automatically and the social
icons will render normally. Another optional feature would be to add the categories right here for the cards.
Originally, the categories would have been added to the top of the post, but they can also be added next to
the Read More button with the snippet shown here in bold.

https://www.addtoany.com/buttons/for/website
https://www.addtoany.com/buttons/for/website

CHAPTER 12 ■ OPEN HEALTH CARE

252

 <div class="mdl-card__actions mdl-card--border">

 <div class="mdl-layout-spacer"></div>
 <a class="mdl-button mdl-button--colored mdl-js-button mdl-js-ripple-effect"
href="{{ post.url | prepend: site.url }}" >Read More <i class="fa fa-chevron-circle-
right"></i> <small> Category: {% for cat in post.categories %} {{ cat }} {% endfor %}
</small>

 </div>

 Most of the code remains the same actually; the only difference in this snippet is the <small> style and
the addition of {{ post.categories }} to the card. This allows each card to display the category to which
it belongs. In this project, the categories are not the traditional tags that show related posts. Instead, they
follow the Mallard specification of being short phrases (two or three words long) that serve as a heading to
organize all of the cards associated with that category.

 The next set of edits is for the cards expanded; that is, the view the users reach after clicking the Read
More button. This set of edits is also divided into four sections: Above the post, the title, post-end info, and
the biography. Let’s start with the edits above the post. According to our content guide, we need to start with
the name of the author, followed by the date and clearly defined category. The first edit we make is for the
author name, and we use a built-in data structure to do this. In the previous chapters, we have used Jekyll
collections and briefly touched on site.data variables . To store the author information that we need to use
again in the biography, let’s take advantage of centralized data storage through site.data here. First, we
need to create the data files. Create a folder _data and within the folder, a file authors.yml . The contents of
this file are shown here.

 # Author details
 robert_rawlins:
 name: Robert Rawlins
 img_path: http://welcomehomerealty.ca/wp-content/uploads/2015/07/thumbnail-face-study.

jpg
 bio: Testing a biography
 robin_geall:
 name: Robin Geall
 img_path: https://greensealblog.files.wordpress.com/2013/07/face-thumbnail.jpg
 bio: New biography

 In this data file, we have stored some basic information about each of the authors and provided a
reference name that can be called in the posts. Now we need to show this information in the posts. All the
code to make the required edits is present in _layouts/post.html and the snippet in bold here shows the
code that needs to be added:

 <div class="post-section mdl-color--white mdl-shadow--4dp content mdl-color-text--grey-800
mdl-cell mdl-cell--8-col">

 <!-- Assigning the author variable to the author defined by a post in its front matter. This
tells Jekyll to pull the info associated with that particular author from authors.yml file -->

 {% assign author = site.data.authors[page.author] %}

 <!-- Now that we have access to info about that particular author, display his name -->

CHAPTER 12 ■ OPEN HEALTH CARE

253

 <!-- Personal Info -->
 <i class="fa fa-pencil-square-o"></i> Written by {{ author.name }}

 This only does part of the job. After adding this code, we allow each post to have access to the data file,
but now we actually need to call one of the authors defined in the authors.yml file from the YAML front
matter of a post. Here’s what the front matter looks like when we want to reference an author.

 layout: post
 title: "Jekyll Material Design Lite"
 date: 2015-08-11 09:34:20
 categories: mdl
 author: robert_rawlins

 That last line is the reference call. With this, the post will display the name of the author on top. The next
element to be changed is the date, and this is also the location where we state the category of the card. We
just need to edit the Liquid tags that are already present in the <div> to make it simpler, as follows:

 <div class="mdl-color-text--grey-500">
 {{ page.date | date: "%b %-d, %Y" }}
 <i class="fa fa-commenting-o"></i>
 {% for cat in page.categories %} {{ cat }} {% endfor %}
 </div>

 Those are all the tags we need, as there is no need for the remainder of the if tags and so on. Now to
properly state the category, we need to edit it as well. Here’s the edited version.

 layout: post
 title: "Jekyll Material Design Lite"
 date: 2015-08-11 09:34:20
 categories: "Informed consent"
 author: robert_rawlins

 The quotation marks actually preserve the formatting of the category, and this is what we would need to
keep the space between the words “informed” and “consent.” The change show in bold allows the category
to show after the date on the top of the blog post. The next edit is for the titles. According to our content
guide, the cards should have Mallard-style titles, but the cards also cannot display lengthy titles due to
limited space. One way to tackle this problem is to create two titles: one that would show on the home page
and the second that would be displayed in the expanded view. To do this, we use a custom YAML variable
 help_title , which will represent the shortened title to be displayed on the home page. The implementation
is actually very straightforward: We use a control loop on index.html as shown here.

 <h4 align="center" style="color:rgb(108, 122, 137)"> <i class="fa fa-caret-square-o-
right"></i>
 {% if post.help_title %}
 {{ post.help_title }}
 {% else %}

CHAPTER 12 ■ OPEN HEALTH CARE

254

 {{ post.title }}
 {% endif %}
 </h4>

 This if loop ensures that as long as a post has a help_title , the card will display that on the home
page; if it doesn’t, the card will display the original title in YAML. So how does it look when implemented for
a post? See the front matter shown here.

 layout: post
 title: "Jekyll Material Design Lite"
 help_title: "Not Mallard"
 date: 2015-08-11 09:34:20
 categories: "Informed consent"
 author: robert_rawlins

 From each of the cards, we also need to remove the comments feature. The content for these cards is
supposed to be written by experts, so gathering comments from readers might add confusion to the content
being discussed earlier. We discuss another way to gather feedback later on in this chapter. Here’s what the
post layout file (post.html) looks like after the author name edits and the removal of comments.

 <!-- Personal Info -->
 <i class="fa fa-pencil-square-o"></i> Written by {{ author.name }}

 <div class="mdl-color-text--grey-500">
 {{ page.date | date: "%b %-d, %Y" }}
 <i class="fa fa-commenting-o"></i>
 {% for cat in page.categories %} {{ cat }} {% endfor %}
 </div>

 <h3> <i class="fa fa-bookmark"></i> {{ page.title }} </h3>

 <article class="post-content">
 <p>{{ content }}</p>
 </article>

 </div>
 </div>
 </main>

 With this, the comments have been removed from the post layout. The next set of edits are at the end of
the post, after the {{ content }} and before the end of the article. There are two elements we need to add:
reference(s) related to this card and the author biography. Let’s get started with the posts layout where we
need to add more files.

 <p>{{ content }}</p>
 {% include further_info.html %}
 {% include author_bio.html %}
 </article>

CHAPTER 12 ■ OPEN HEALTH CARE

255

 The further_info.html file contains the source or references for the information presented in the
card along with the tags that link to similar information. Let’s start with the source of the card, which can be
added as a custom variable to the front matter.

 layout: post
 title: "Jekyll Material Design Lite"
 help_title: "Not Mallard"
 date: 2015-08-11 09:34:20
 categories: "Informed consent"
 author: robert_rawlins
 source: http://taylordavidson.com/2014/cards
 tags: patient

 Now to use this source variable in the post itself, we can put the code into the further_info.html file as
follows:

 <i class="fa fa-hashtag"></i> Source of this card: Link

 That single line can put the source from YAML at the end of the card. Let’s move on to tags. We need
to create a simple mechanism to list the cards associated with a tag on an archive page. Let’s say your task
is to count all the windows each building in the local downtown area has. How would you approach this?
One way to solve this problem is to first make a list of all the buildings in the local downtown area. You
could then go through each building in the list and count the windows it has. What did you really do there?
Programmatically, you used a for loop that makes a list of all the buildings and then another for loop
to count the windows in each individual building. The inner for loop ensures that you can count all the
windows for each building, and the outer loop ensures you count all the buildings. That’s the concept of a
nested loop that we need to use for the tags page.

 The rationale in this code is to create a for loop to list all the tags, then set a variable equal to the first
tag, loop through all the posts to find the posts associated with that tag, and list those posts along with that
first tag. After that, the for loop repeats, moving to the next tag, and now this new tag is set to the same
variable as before. We loop through all the posts associated with that tag, and then list out those posts and
this second tag. This same nested loop repeats through all of the tags, first listing the tag and then listing the
associated posts with that tag. Create a new file, tag.md , and let’s see this logic in action.

 layout: page
 title: Card Archive
 permalink: /tag/

 The posts associated with each tag are shown below:

 <!-- The outer for-loop, this one loops through all the available tags -->
 {% for tag in site.tags %}

 <!-- The first tag in the whole series of tags is assigned to the variable t and the tag
assigned to it changes each time the for loop goes through to the next one. -->

CHAPTER 12 ■ OPEN HEALTH CARE

256

 {% assign t = tag | first %}
 {% assign posts = tag | last %}

 <i class="fa fa-tags"></i> {{ t }} <!-- Display the current tag -->

 <!-- Time to loop through all the posts to see if they contain the current tag -->

 {% for post in posts %}

 <!-- List the posts if they contain the tag currently defined by the variable t. After
looping, a new tag will be assigned to the variable t and then we will list the posts
associated with that new tag -->

 {% if post.tags contains t %}

 {{ post.title }}
 {{ post.date | date: "%B %-d, %Y" }}

 {% endif %}

 {% endfor %}

 {% endfor %}

 Now that the tags file has been built, let’s go to the further_info.html and finish it up. The completed
file looks like this.

 <i class="fa fa-hashtag"></i> Source of this card: Link

 <i class="fa fa-tag"></i> Related tags:

 {% for tag in page.tags %}
 {{tag}}
 {% endfor %}

 This lists out all the tags associated with the card, and this snippet is present in the further_info.html
file, which renders the source and the tags after the content has been displayed. This file and the tag’s nested
loop takes care of the external sources and the tags for similar cards. To use multiple tags in one card, type
the tags space separated shown here.

 tags: Patient Testing

 The next feature to implement is the biography. Recall that earlier in this chapter, we created a data file
called authors.yml that has metadata about the authors saved as YAML entries. One of those elements is
a short line biography and an image that goes along with it. We use the site.data technique again to draw
that information out and display it at the bottom of the page through the author_bio.html file . The code
to do this is actually very straightforward and similar to the last time we used site.data , however, the only
difference here is that we are using a table tag to contain the biography.

CHAPTER 12 ■ OPEN HEALTH CARE

257

 <hr /> <!-- Start with a horizontal rule to separate this from the rest of the card -->

 <table>
 {% assign author = site.data.authors[page.author] %}

 <!-- Each entry in the table is a row with the tr tag -->
 <tr>
 <td valign="top" style="padding-right: 1em;">
 </td> <!-- Display the image first -->
 <td valign="middle"> {{ author.name }}:</td> <!-- The author name
-->
 <td valign="middle"> {{ author.bio }} </td> <!-- Finally, a short biography -->
 </tr>
 </table>

 This code should be copied into a new file and saved as _includes/author_bio.html , and this file
allows Jekyll to pull a picture and the biography associated with the author from the data file. This concludes
another set of edits; so far, we have edited how the cards are displayed on the home page, the theme coloring
itself, and finally how the card appears in the expanded view according to our guidelines. The last set of edits
remaining deal with live updates on topics relevant to patients, collecting feedback, and finally a few minor
sidebar edits.

 Providing live updates on issues is crucial for a patient-care information platform. To allow for easy live
updates, we will be using a third-party tool called Storify. Essentially, Storify allows you to drag and drop
events, news, tweets, and much more directly from social media using their search function; add formatting
within the story editor; and create a story. This story you just created contains elements pulled directly from
sources across the Web and social platforms, all without the need for any coding or formatting knowledge.
In the end, the story that you created can be shared or embedded within a blog, and this is what we will be
using for live updates.

 Once a story has been published, you can always keep adding new updates from information-rich
sources such as Twitter or news media social channels. This is a very powerful feature, as there is no coding
knowledge required and most of the process is just searching for accurate information to drag and drop
onto the story editor. After that, you can publish your story that contains the history of the issue at hand and
the current status. You can keep updating that story as you discover new information. Before we start using
Storify, though, we have to prepare this web site to organize that information properly. This will allow us
to do updates periodically without worrying about old stories getting lost and new ones not being shown
appropriately. We use the site.data storage to save the links to stories. Let’s start by creating a _data/
previous.yml file , the contents of which are shown here.

 - name: Snowstorm
 link: http://welcomehomerealty.ca/wp-content/uploads/2015/07/thumbnail-face-study.jpg

 - name: Forest fire
 link: http://welcomehomerealty.ca/wp-content/uploads/2015/07/thumbnail-face-study.jpg

 - name: Tsunami
 link: http://welcomehomerealty.ca/wp-content/uploads/2015/07/thumbnail-face-study.jpg

 - name: Lava
 link: http://welcomehomerealty.ca/wp-content/uploads/2015/07/thumbnail-face-study.jpg

CHAPTER 12 ■ OPEN HEALTH CARE

258

 All the data here is also recorded in YAML format, which makes it easier for Jekyll to access the
information. We can separate the current reporting from the past stories by using a global variable to denote
the current crisis and move all the previous working information as an entry into the previous.yml file.
This will neatly separate the two stories and streamline the organization. Let’s define the current variable as
 current_crisis; to use it, we need to add it to the _config.yml file as follows:

 # Live story feed
 current_crisis: Finishing chapter 12

 Now that we have this global variable, we can use it along with site.data to render the current
reporting events. We have to display the live updates on a new page. Create a file named updates.md ; the
contents of this file are explained here.

 layout: page
 Title: Live Updates

 <!-- First, link to the current updates from the global variable -->
 ### **Current Updates** - {{ site.current_crisis }} - [Live reporting](http://jekyll-mini-
blog.github.io/)

 --- <!-- Horizontal rule to separate the current from previous -->

 ### **Previous updates:**

 <!-- List the previous updates using a for-loop, taking information from previous.yml -->

 {% for disease in site.data.previous %}

 {{ disease.name }} - {{ disease.link }}

 {% endfor %}

 ■ Note Rendering the elements from the previous.yml file can be done in several ways. Inside the for loop,
any type of formatting can be applied to how the final elements are rendered on the site. These elements can
be edited either using Markdown or plain HTML. The link property can be hyperlinked to reach the story quickly,
or the title can be displayed in bold to place emphasis on the name, if necessary.

 The code here isn’t much different from the past times we have used site.data based storage. First, we
report on the current crisis, followed by a list of the previous updates. We obtain the data for the previous
updates from the _data/previous.yml file and list it out using the for loop. Let’s finally look at the tool
that we will be using for making the stories. Storify is straightforward to use. After creating an account and
logging in, click New Story and we will do a short walkthrough of how to use it. Storify has an incredible story
editor where you can search for rich media across the Internet to drag and drop into your story, shown in

CHAPTER 12 ■ OPEN HEALTH CARE

259

Figure 12-20 . The editor is made from two panes: the story pane, which dictates the overall flow of the story
and the search pane that allows you to search for new media across the Internet. You can even place custom
embeds within the story if you want. For most other events, you can simply search for media to be used
straight from the source.

 Figure 12-20. Search pane from Storify’s story edior . The top bar allows you to select which social media you
want to search, and then you can simply drag and drop any of the results onto the story pane to the left.

 The story pane is shown in Figure 12-21 .

 Figure 12-21. The story pane in Storify . The headline and description provide you with some organization
to start reporting on the current events. Even within the story, you can include text boxes that will fill up or
comment on any included media. This allows you to include rich media and add your own organization
scheme to the reporting.

CHAPTER 12 ■ OPEN HEALTH CARE

260

 This story pane contains the pieces of the story from the search pane. The end result is shown in
Figure 12-22 .

 Figure 12-22. The heading and description are completed, followed by a news element dropped on the story
pane from a Google search. Addition of more elements in a similar fashion completes the story.

 Figure 12-23. Finalized version of a story on Storify. The toolbar on the top provides some shortcuts and one
of them is the Embed button , which provides us with the embed code. The Edit button also comes in handy,
particularly if we need to update the reporting frequently.

 Once the story has been completed, you can click Publish on the top bar and Storify will make your
story publicly available. Here, we obtain the embed code that can be pasted into the body of a page that will
serve as the live updates for that particular reporting story. The embed code and finalized story are shown in
Figure 12-23 .

 In the last stretch of edits, the only feature left to implement is a way of gathering feedback from users.
We use a form to gather feedback from users, which is a classic method of collecting feedback. For this, we
do not make a form on Jekyll, but instead use a third-party service called Typeform. In Typeform, you can
create beautiful forms that can be served as an entire page of their own.

 To use the service, you can create an account at http://www.typeform.com/ and get started. Click
Create a new typeform to start making your own form, as shown in Figure 12-24 . This takes you through
a wizard with a few steps that help you Build ➤ Design ➤ Configure ➤ Distribute. In brief, you first pick
the type of form to build, and you are given several options as templates to be used. You also write all the
questions you want to ask here in this step. In the next step, you design the form with different styles or
colors as needed. You can also import themes from ThemeKit if you want, and then your form is almost
ready to be deployed. We won’t do a full walkthrough, but instead cover the key features.

http://www.typeform.com/

CHAPTER 12 ■ OPEN HEALTH CARE

261

 The distribute phase is shown in Figure 12-25 . It gives you a few options, but only the last one is
important.

 Figure 12-25. Obtaining the embed code from Typeform. This option gives us two further choices: Embed
in a web page or Deploy as a separate page. This option allows us to keep feedback collection separate from
everything else.

 Figure 12-24. Creating a new typeform. This allows you to start the process of building and designing the form.

CHAPTER 12 ■ OPEN HEALTH CARE

262

 After clicking Embed in a web page, we have two choices: Embed within a page or deploy as a single-
page application. We use the second option in this project. After clicking the option, you will see the screen
shown in Figure 12-26 . Click Get the code and paste the result in a new file, survey.html , which will deploy
the survey as a single-page application.

 Figure 12-26. Full page embed code from Typeform. This allows us to deploy the survey as a single-page
application.

 Before we conclude this chapter, a word is in order about where Prose fits in this platform and how to
best use it in the context of deploying this platform. In the end, for developers, what matters greatly is the
ability to fix bugs and build features fast. For quick edits when you are away from a computer that has Git
on it, Prose would undoubtedly work better than GitHub’s native editor. Additionally, you can even switch
entirely to Prose for creating new content and making blog posts. For adding features and fixing bugs, Prose
might not be the most effective way; simply because it doesn’t display the whole file, the metadata is kept
away from the file. It is still accessible, however, and at this point it is up to the preference of the developer.

 On the other hand, if you focus on the content creators , this entire point of view shifts away. For content
creators, the main focus is the ability to prepare the information that will be shared through this platform
in a distraction-free manner. To do that, Prose is a perfect fit: It reduces the learning curve on new tools
to be used, and it even has a formatting toolbar that provides shortcuts for Markdown. From that side of
development, Prose is a perfect fit for content creators, reviewers, and editors. The user access control
options allow you to fine-tune the roles and responsibilities even more. Thinking about who will be using
this platform, let’s return to Figure 12-1 . Once the platform is up and running, developers will have access to
it through GitHub and they can edit in any manner they want. At the same time, providing this platform to
an organization that might only have one or two people in IT or maintenance, using Prose would be a huge
benefit. It would allow them to create a standard process and help guides within the organization on using
Prose, much like the walkthrough provided in this chapter. From the point of view of different participants
in this project, Prose is only an add-on, but its use is greatly appreciated by partners who want to reduce the
technical learning curve and maintenance.

 Summary
 We covered a lot of ground in this chapter and created a platform that is totally different from any other blogs
that we have worked on thus far. We started by getting familiar with the idea of cards and how the cards UI
is suitable for quick glance information and perfect for mobile. We used Semantic UI and played with a few
different types of cards that we later implemented in the theme. After discussing cards, we started to talk
about why we need to control the type of content that goes in this blog. The content guide allows us to set
some rules that will make the way our platform delivers information much more effective. We went through
a set of rules made from Mallard and a guide from 18-F. Once we had the content guide prepared, we did
a thorough walk-through of prose.io and talked about why using it would make sense in such a platform.

CHAPTER 12 ■ OPEN HEALTH CARE

263

After going through Prose, we started editing the theme to confine it to the standards described in our
earlier content guide. We went through editing how the cards appear on the home page, how they look in
the expanded view, and finally collecting feedback and providing live updates. Open Health Care is only just
getting started. Platforms like this one will become mature and eventually be deployed as small packages or
blogs to provide fast, free, and factual information. Exciting times are ahead, aren’t they?

 Further Reading
 1. Google Cards UI: https://www.google.com/design/spec/components/cards.

html

 2. Patterns of Cards UI design: https://speakerdeck.com/christse/patterns-
of-card-ui-design

 3. Using cards in web design: http://www.sitepoint.com/card-tricks-using-
cards-in-web-design-layouts/

 4. Getting started with Google Material Design: http://www.getmdl.io/started/

 5. Introduction to Mallard: https://en.flossmanuals.net/_booki/
introduction-to-mallard/introduction-to-mallard.pdf

 6. About Prose: http://prose.io/#about

 7. Typeform help guides: http://helpcenter.typeform.com/hc/en-us

 8. Digital storytelling with Storify: https://storify.com/craignewman/tips-
for-using-storify-in-you-reporting

https://www.google.com/design/spec/components/cards.html
https://www.google.com/design/spec/components/cards.html
https://speakerdeck.com/christse/patterns-of-card-ui-design
https://speakerdeck.com/christse/patterns-of-card-ui-design
http://www.sitepoint.com/card-tricks-using-cards-in-web-design-layouts/
http://www.sitepoint.com/card-tricks-using-cards-in-web-design-layouts/
http://www.getmdl.io/started/
https://en.flossmanuals.net/_booki/introduction-to-mallard/introduction-to-mallard.pdf
https://en.flossmanuals.net/_booki/introduction-to-mallard/introduction-to-mallard.pdf
http://prose.io/#about
http://helpcenter.typeform.com/hc/en-us
https://storify.com/craignewman/tips-for-using-storify-in-you-reporting
https://storify.com/craignewman/tips-for-using-storify-in-you-reporting

265© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0_13

 CHAPTER 13

 Open Jekyll?

 We shall not cease from exploration and the end of all our exploring will be to arrive where
we started and know the place for the first time.

 —T. S. Eliot

 Interchangeable parts were, in a sense, the beginning of the modern machine era. The idea that one part
can replace another one while preserving the overall structure is very powerful, and thoroughly embodied
in Jekyll. Our projects so far have substituted the default components of a theme with new parts, and more
precisely, web technologies that served as perfect replacements. One interchangeable part freely replaced
another, without any fundamental changes to Jekyll, and we obtained a new functionality or feature. What
happens, though, when you open the hood and look inside? In this chapter, we are going to open Jekyll, look
inside, and extend the functionalities that it offers. We will be customizing the feature set that Jekyll offers by
adding plug-ins. We start by discussing the role Ruby plays in the making of Jekyll and how to install Ruby
offline for your own use. We play with it briefly and use it to create a skeleton Jekyll project. In this chapter, we
use a different code-hosting platform called Bitbucket to host the code and show that the implementation of
Git across various platforms remains the same. We also go through the workflow of continuous integration
and compiling Jekyll in the cloud to include the plug-ins. After the compilation, we discuss the concept of
secure keys and how to automate the build process using Codeship to push the code to Bitbucket and Rake,
which is a build tool for Ruby. We are not only opening Jekyll to look inside, but also opening a design studio
using a Jekyll theme and the plug-ins as add-ons for the various tasks a design studio needs to accomplish.

 We have integrated a lot of technologies with Jekyll thus far in the book, but to look deeper, we have
to start classifying the integrations into different types. Broadly speaking, there are general two categories:
The first one is the overlay assets layer. This layer is defined by integrations that are overlaid on an existing
Jekyll skeleton. Most of these web technologies are imported into the theme and served on top of an already
existing page, so they only load up when the user reaches the appropriate location on the web site. They
are also mostly compatible with GitHub Pages. It is important to remember that the components of this
layer add functionality to an existing Jekyll theme , or by replacing an existing feature with a better one.
This layer contains all the integrations that we have implemented in previous projects. One distinguishing
characteristic of the integrations belonging to this layer is that all of them have been included in the projects
using the {% include integration.html %} snippet.

 The second layer is what we discuss in this chapter: the shared features layer. This layer is very different
from the last one, as it is more fundamental and almost invisible. We only hear from this layer when we run
into trouble and get an error message from GitHub. This layer is defined by core functionality that Jekyll
provides us, features such as a defined folder structure, conventions for folder and file naming, configuration
files, custom data source, and layouts. We can use these features right out of the box (without importing

CHAPTER 13 ■ OPEN JEKYLL?

266

third-party tools) and most of the work that we have done either edits or adds to the features offered by this
layer. A graphical representation of these two layers is provided in Figure 13-1 . This intrinsic layer remains
hidden for several reasons.

• Simplicity: To focus on learning the basis of Jekyll, we have the integrations limited
to the assets layer. These integrations are overlaid on a page after it gets compiled by
Jekyll, when a user accesses it.

• Limited editing: We limited editing the configuration files to config.yml and the
 _include directory. As a result, we never had a need to look any deeper.

• Better tools: More often than not, building a plug-in or an add-on that we can then
use as an asset within the theme would not be as functional as a third-party tool
customized for a particular job with the appropriate features.

• GitHub Pages: Hosting on GitHub also limited our opportunities. We had to make
sure that all the integrations were compatible with Jekyll. As a result, we never looked
into the advanced features available within Jekyll.

 Figure 13-1. This flowchart shows the connection between the layers and the components that each of them contain

CHAPTER 13 ■ OPEN JEKYLL?

267

 Our main focus from the shared assets layer is the use of plug-ins to provide additional functionality.
We will talk about that in depth shortly, but first, let’s focus on the last point just mentioned: Why can’t we
use custom plug-ins freely with GitHub? The main reason is in how Jekyll is used on the GitHub Pages server.
Recall that all Jekyll-based sites are compiled by GitHub Pages, which in turn is powered by Jekyll and uses
the command jekyll build to compile your blog and layouts into a static web site that can be served over
the Internet.

 However, all Pages sites are generated using the --safe option to disable custom plug-ins for security
reasons. Unfortunately, this means your plug-ins won’t be working on the sites compiled by GitHub Pages.
This is mostly a security concern: A malicious user can make a plug-in to attack the GitHub server and
cause problems. To avoid this problem altogether, no plug-ins are allowed on GitHub Pages. To bypass
this limitation, you have to compile your blog locally, and then use GitHub Pages only as a web server to
serve your static pages to users. In such a scenario, you would have to push your compiled static files to the
GitHub repository, instead of your Jekyll source files. In an earlier chapter, we discussed the file structure of
Jekyll, and there is one folder that has not received much attention because it had been mostly invisible: the
 _site folder. This folder is the location where your site will be saved after it has been locally compiled. So far,
we have just relied on GitHub Pages to compile and present the site, but in this chapter, we actually do the
compilation locally and go through how to install Jekyll on Windows.

 GitHub actually does support a few simple plug-ins that can be enabled in _config.yml by listing
them as Ruby gems, using gem ['jekyll-feed'] . These add-ons offer functionality that extends core Jekyll
features to comply with web standards or just for fun. The following is a list of the plug-ins supported by
GitHub Pages.

• Jemoji : Provides support for emojis to be used within Jekyll posts and pages.

• Jekyll-mentions : Provides support for hyperlinking @ mentions within Jekyll posts
and pages.

• Jekyll-redirect-from : Provides support for redirecting visitors to an updated URL
when post or page file names change.

• Jekyll-sitemap : Provides a standards-compliant site map to your GitHub Pages site.

• Jekyll-feed : Provides an Atom Feed to your GitHub Pages site.

 There is a lot of information in Figure 13-1 , but let’s look go through it carefully. The order of complexity
starts from the top down as we move away from what the user sees and toward what the developer sees. In
the end, the user browses the compiled site. Underneath the site are all the assets that we included; these
are the third-party tools that we included in our Jekyll projects. This comprises the overlay asset layer. This
layer is powered by Jekyll; after all, without Jekyll’s include feature, there wouldn’t be anything to include
and display. Now we are going at the lowest level, the developer layer. The shared features layer contains
the features that Jekyll offers that are accessible to any theme built on top of it. This layer contains all the
accessible configuration that we can edit, such as the config file and the layouts that we can build to organize
information. Looking at the flowchart from the bottom up, we can see that the shared features power the
assets that power the web site that gets served to the user.

 Now Open: Jekyll Design Studio
 This project is different from the ones we have done in another way: The blog here is not central to the studio.
It is only a small component, provided with the design studio to help build a brand. The web site will serve
as a showcase of the web development capabilities (specializing in Jekyll) that our studio has, and it will also
have a portal where users can purchase specific web design services. Being a design studio, the web site will
have a number of requirements to be completely functional and promote the materials or services that we
are creating. We would also need a method of providing the clients with the finished product or web sites.

https://help.github.com/articles/emoji-on-github-pages
https://help.github.com/articles/mentions-on-github-pages
https://help.github.com/articles/redirects-on-github-pages
https://help.github.com/articles/sitemaps-for-github-pages
https://support.google.com/webmasters/answer/156184?hl=en
https://help.github.com/articles/atom-rss-feeds-for-github-pages
https://en.wikipedia.org/wiki/Atom_(standard)

CHAPTER 13 ■ OPEN JEKYLL?

268

Let’s go over the features that we implement in this design studio. Not all of them will make sense right away,
but their purpose will become clear as we move along.

• A parallel advertising platform like Fiverr where you can sell basic design services, in
addition to your own web site. This will not only help you with initial advertisement,
but also in lead generation and converting more customers to long-term users.

• A shopping cart like Snipcart to buy services straight from your studio. This will be
larger or more comprehensive services as compared to Fiverr. Having the cart on
your own web site also allows you to hire personnel for a fee who have expertise in a
particular area. For example, you can charge $100 to make an expert available who
can optimize SEO.

• Optimizing your customer channels such as mailing lists for sales through Gumroad ,
which allows you to accept preorders for a product before it is released, and
create subscriptions if you have a stream of content (i.e., a book being released
chapter-by-chapter).

• Creating video content for digital marketing and hosting it on YouTube and Wistia ,
where you can use annotations and cards to drive customer call-for-action. You can
provide some educational resources to help your clients understand the unique
web technologies that you offer and how they take advantage of Jekyll. These
instructional videos can help you convert more visitors into customers by providing
the content in a freemium model.

• Building on the last feature, you can take a very similar approach to raise donations
and create a fundraiser for a nonprofit or a community project. YouTube offers a
very simple and easy-to-use card for donations that can be added to your videos with
just a few clicks.

• Product prototyping and functional demos through InVision , which allows
designers to create mockups with advanced animations and walkthroughs. Most
modern design studios have to adopt InVision because there simply isn’t a better
alternative to create and share prototypes.

• Creating live embeds by using embed.ly for InVision and sharing the live previews
on social platforms like Twitter. Additionally, embed the live previews for demos on
your own web site.

• Provide customer support through live chat with HipChat , an absolutely amazing
tool for workspace collaboration, where you can give guest access with a link to
your clients so that they can come to the chat room for live customer support or
presales chat.

• Creating password-protected live demos of web sites or web components that
customers might want, powered by Jekyll. This will be done through a basic auth
plug-in provided by Aerobatic, the first implementation of an add-on for our
design studio.

• Implementing the ability to create and add custom plug-ins, some of which might
help the web site, whereas others will help showcase unique features that only our
design studio has created and customers can license.

CHAPTER 13 ■ OPEN JEKYLL?

269

• Creating a workflow to compile Jekyll if your customers want a custom
implementation and automate this process so that the customer doesn’t have to
touch the back end. The more technical and back-end components that your design
studio takes away, the higher your sales will be, because most of your customers are
not developers, nor have they read this book. In general, customers only want to deal
with the front end and web site development, so they want solutions that make the
back end painless, which is a huge advantage of Jekyll.

• Creating a deployment pipeline that relies on continuous integration through
 Codeship , compiling your design studio web site each time a new change is made to
ensure that any new changes to the overall web site incorporate all the plug-ins. This
is not just limited to the design studio, but can also be used for any custom web sites
that you make for your client. Automating the compilation of Jekyll can become one
step of the pipeline that eventually deploys the web site to a remote location.

■ Tip What do plug-ins and all this talk about continuous integration have in common? What is continuous
integration to begin with? To enable plug-ins, you have to compile Jekyll using the command jekyll build ,
and this is assumed to be done locally. However, in this chapter, we want to focus on doing this in the cloud
using something called build tools that are designed to compile code when it has specific supporting files that
the build tool can recognize. In doing so, the build tool can be directed to take information from a particular
source, compile it, and then place the result back in the same location. We want to automate this process for
every commit that is made such that anytime we make a change, the whole web site is up-to-date with it.
Where will something like this matter? Imagine adding an archive plug-in. If you make a new post on your
blog, you want the commit that pushes the new post to also rebuild the archive. This process of rebuilding
automatically and then placing your code in the right location securely is called continuous integration. As the
name implies, it allows us to continuously integrate new features in the production web sites.

 We return to the design studio shortly after setting up the background and all the necessary
components for it. As seen earlier, there is a long list of them, but we start locally with a bare-bones project
to help break down the advanced concepts into simpler applicable tasks. To that end, we begin with
installations, Ruby first and Jekyll later on. After Ruby has been installed, we briefly explore the language and
provide some simple examples to play with. Then, we slowly ease into advanced concepts such as package
management, gems, and how to go about installing Jekyll on Windows and other platforms (for Linux and
OS X, the installation is far easier). Finally, we play with Jekyll 3.0 and create a skeleton project that we can
use to learn advanced concepts such as compilation in the cloud.

 A Ruby from Japan
 In the mid-1990s, Yukihiro Matsumoto released a programming language that would later become the
foundation for a revolution in the Internet era. Although his initial intentions were very down to earth,
Matsumoto (also known as Matz) set out to design a language that emphasized human needs over those of
the computer, which is why Ruby is so easy to pick up. He wanted to spend his time creating Ruby such that
it would encourage programmer productivity and fun.

 Ruby is a dynamically typed, object-oriented programming language . The first property implies that
in Ruby, variables don’t need to be defined by types; the compiler can figure out what those types are,
depending on how the variables have been assigned. The second property is unique to Ruby, as every value

CHAPTER 13 ■ OPEN JEKYLL?

270

in Ruby is an object. These two properties are found in many modern programming languages, but their
application to the language as a whole and extension to frameworks built on top of the language makes Ruby
very powerful. Following a few stable releases of Ruby, David Heinemeier Hansson created a framework
called Ruby on Rails, which became the backbone for GitHub and many other modern web companies.
Let’s start installing Ruby. On OS X, Ruby is included by default. Many people on OS X use Homebrew as a
package manager. It is really easy to get a newer version of Ruby using Homebrew .

 $ brew install ruby

 On Linux, you can install Ruby by going to your package manager and finding the appropriate packages.
On Ubuntu , this can be done with:

 $ sudo apt-get install ruby-full

 This installs an older but stable version of Ruby available from the sources. On Windows, the situation
becomes a little more complicated. There is no package management and the installers don’t always work
reliably. To make Ruby easy to install, we first install a package management system for Windows called
Chocolatey. The install process is easy: Open an administrative cmd.exe command prompt and type the
following command:

 @powershell -NoProfile -ExecutionPolicy Bypass -Command "iex ((new-object net.webclient).
DownloadString('https://chocolatey.org/install.ps1'))" && SET PATH=%PATH%;%ALLUSERSPROFILE%\
chocolatey\bin

 This installation command has been made available from Chocolatey home page
(https://chocolatey.org/) and it essentially calls for powershell to download an installer and then install
the package manager. After typing that command, you should start to see output similar to this:

 C:\WINDOWS\system32> @powershell -NoProfile -ExecutionPolicy Bypass -Command
"iex ((new-object net.webclient).DownloadString('https://chocolatey.org/install.ps1'))" &&
 SET PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 d----- 2/18/2016 2:33 AM chocInstall
 Downloading https://packages.chocolatey.org/chocolatey.0.9.9.11.nupkg to

 ... [snipped output] ...

 7-Zip (A) 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18

 Processing archive: C:\Users\Vikram\AppData\Local\Temp\chocolatey\chocInstall\chocolatey.zip

 A visual of the output shown after the command executes is provided in Figure 13-2 .

https://chocolatey.org/

CHAPTER 13 ■ OPEN JEKYLL?

271

 The one problem with Chocolatey after installing it is that to access the package manager and install
new packages, you have to close the command prompt window and then open another administrative
command prompt, a simple, but slightly inconvenient task. After opening a second command prompt, your
package manager should be ready and this can be observed as follows:

 C:\WINDOWS\system32> choco -v
 0.9.9.11

 This command prompts Chocolatey to display the version currently installed. Now let’s move on to
installing Ruby. The idea here is simple: A package manager will go grab the binary for a package that you
specify and install it on your computer. This process is entirely automated and very painless.

 C:\WINDOWS\system32> choco install ruby -y
 Installing the following packages:
 ruby
 By installing you accept licenses for the packages.
 ruby v2.2.3
 Get-BinRoot is going to be deprecated by v1. Many packages no longer require it since the
folders no longer have versions on them.
 Downloading ruby 64 bit
 from 'http://dl.bintray.com/oneclick/rubyinstaller/rubyinstaller-2.2.3-x64.exe?direct'
 Installing ruby...
 ruby has been installed.
 Adding 'C:\tools\ruby22\bin' to the local path
 The install of ruby was successful.

 Chocolatey installed 1/1 package(s). 0 package(s) failed.
 See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

 Notice how simple that was? Package managers are absolutely amazing and they make life easier, another
reason why they are a part of every major Linux distribution. Let’s check if we can access Ruby right now.

 C:\WINDOWS\system32>ruby -v
 ruby 2.2.3p173 (2015-08-18 revision 51636) [x64-mingw32]

 Figure 13-2. The command we provided first downloads the appropriate package manager binary file . It
then seems to extract it using 7-zip and finally after all the files are extracted, they get copied to an executable
location and added to the PATH variable so that they are accessible again through an administrative
command prompt.

CHAPTER 13 ■ OPEN JEKYLL?

272

 The same command as before verifies that a 64-bit version of Ruby has been installed with the mingw
environment for Windows. To access Ruby, you can go to the Start menu and in the list of programs, you
should see a new folder for Ruby. For our install, this folder is called Ruby 2.2.3p173-x64 , shown in
Figure 13-3 .

 The installation process was fairly painless, but we won't be using this console for Ruby just yet. This
is not a limited programming environment and it doesn’t make for a convenient playground to test Ruby.
Instead, we use an online interpreter called repl.it that has a very clean environment to run code and obtain
output. The web interface is available at https://repl.it/languages/ruby .

 The interface is split into two components: The left pane is for writing the code that will get executed
and the right side displays the output. The right pane is like an in-browser console, as it displays output
and also acts as the input interface if your program asks the user for input. A natural question arises at this
point: Why are we covering Ruby? There are entire books written on the fundamental principles, design,
and programming concepts in Ruby. Our overview only spans the next few pages, so we can cover only a few
essential concepts. The idea here is that most programming languages have an inherent structure that we
can use to learn them systematically. Our overview illustrates how to learn Ruby in a particular format and
make it easier for readers to jump into learning Ruby, should they decide to do it on their own. There are six
main components to the system that we talked about.

• Variables and assignment: Learn about assigning variables and the primitives
available in the language.

• Hello world: Learn about the standard input and output syntax along with the
structure of a simple program in the language.

• Control flow: Learn how to control the way a user interacts with the program and
how the program can respond to inputs by the user. Involves the use of if–then–else
type statements.

• Iteration: Learn about the next level of control flow for programmatic logic using
iterators. This involves the use of for and while loops in conjunction with if–then–
else logic.

 Figure 13-3. The Ruby folder present in the Start menu following successful installation by Chocolatey. Notice
the Ruby-enabled command prompt and the additional option to use Interactive Ruby.

th
is

 f
ig

ur
e

w
ill

 b
e

pr
in

te
d

in
 b

/w

https://repl.it/languages/ruby

CHAPTER 13 ■ OPEN JEKYLL?

273

• Data structures: Learn about the composite data structures that are available in the
language built on the primitives. This involves the use of arrays, hashes, and so on.

• Advanced concepts: Finally, the last stretch of learning a new programming
language is the advanced concepts that cover objected-oriented development. After
all, in Ruby, everything is an object, so this last component is probably as extensive
as the other five combined. Beyond object orientation, there are advanced features
available in Ruby such as package management that we discuss later in this chapter.

 Playing with Ruby
 Let’s go through some of the components that we mentioned earlier. We will be running all this code online
in the repl.it editor mentioned previously. Running the code is as simple as clicking Run, as shown in
Figure 13-4 .

 In Ruby, there are three primitives, meaning that there are three different types of variables that you
can use: integers, which are numbers; booleans, which are true or false statements; and strings, which
are made from a collection of letters. Recall that we said Ruby is dynamically typed and now we’ll see that
property in use.

 # This is how you can write a comment

 my_num = 25 # my_num is an integer

 my_boolean = true # my_boolean is a boolean statement

 my_string = "Ruby" # my_string is a string

 Here, we can see that assigning variables to the appropriate data type is sufficient to tell Ruby what the
type of that variable should be. In programming languages that are not dynamically typed, you would have
to specify the variable type as follows:

 int my_num = 25

 Figure 13-4. The left side is the code editor and clicking Run makes the code execute. The right side is the
interpreter that shows the result of the code that was just executed.

th
is

 f
ig

ur
e

w
ill

 b
e

pr
in

te
d

in
 b

/w

CHAPTER 13 ■ OPEN JEKYLL?

274

 Next, let’s take a look at how to print out simple strings. In Ruby, you have two options. The print
command just takes whatever you give it and prints it to the screen. The other option is using the puts
command (for put string), which is slightly different: It adds a new (blank) line after the thing you want it to
print. Let’s look at how this difference appears in the output.

 print "Hello world" #1
 puts "Hello world" #2
 print "This is on a new line" #3

 The output from the right pane is shown here.

 Hello worldHello world
 This is on a new line

 Tracing the preceding code, the first statement prints out the string but no new line is added afterward.
This makes the output from the second statement appear right after the first statement. When we use the
 puts command (line 2) there is actually a new line after the printed string, which makes the print statement
(in line 3) appear in the next line. That’s the difference between using puts and print commands . Let’s look
at input and output in Ruby through our Hello World program.

 puts "Hello world!" # Print out a string
 puts "What would you like me to say?" # Prompt the user a question
 phrase = gets.chomp # Read in the string that the user typed
 puts "You said: " + phrase # Repeat the string they typed

 The output is shown here.

 ruby 2.2.0p0 (2014-12-25 revision 49005)
 Hello world!
 What would you like me to say?
 Ruby is great.
 You said: Ruby is great.

 The code shown in bold is the input. Notice that in Ruby you can add symbols such as the question
mark in the puts command without the need for an escape character. This simple program shows you the
input and output routines in Ruby. We already covered the print command, but to record the input entered
by the user, we have to use the gets command. The gets.chomp method retrieves the string entered and
in the preceding code, we assigned that input to a variable called phrase . Finally, the last puts command
actually prints a statement along with the variable phrase that contained the recorded input. In this manner,
Ruby can take input from a user and display it right back on the screen.

 We also mentioned that Ruby is an object-oriented language, but actually in Ruby everything is
an object. Let us review the model of an object as we discussed earlier in the book. Often an object in a
computer program tries to model a real-world entity . Let’s take the example of a car. This car could be
modeled in a computer by providing information about the size, number of doors, engine, and color. These
features uniquely identify a car that we want to model. In addition, there would be little pieces of associated
code called methods that manipulate the car; for example, start_car() would simulate turning the engine
on, break() would simulate slowing the car down, and change_color() would simulate painting the car
with a new color. These methods, combined with the features about the car, make up an object.

CHAPTER 13 ■ OPEN JEKYLL?

275

 In Ruby, everything is an object. This might be hard to grasp conceptually, but functionally this implies
that we can manipulate variables that we define very easily, as in this example.

 "This is the best book on Jekyll ever!".length

 ruby 2.2.0p0 (2014-12-25 revision 49005)
 => 37

 Notice that all we did was write out a string on quotes. Ruby recognized that it was a string and this
string being an object, we could access the .length property , which gave us the number of characters in that
string. This is how powerful object-orientation is in Ruby. We discuss more concepts later, but let’s play with
a few more methods or properties.

 "This is the best book on Jekyll ever!".upcase

 ruby 2.2.0p0 (2014-12-25 revision 49005)
 => "THIS IS THE BEST BOOK ON JEKYLL EVER!"

 This is a very simple example showing the string being converted to uppercase using the .upcase
method directly on the string. Because this string is an object, we can call any of the methods associated with
it. If the string weren’t being stored as an object, the string would reject any operations on it. This is just one
of the few interesting design features in Ruby to keep in mind.

 Another interesting property of Ruby is that multiple methods can be called on one object and they are
evaluated one at a time. This technique is called method chaining ; more than one method gets called on the
same object. Let’s see it in action.

 print "What's your name: " # Ask for input from user
 last_name = gets.chomp.capitalize! # Process the input provided, and then capitalize it

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 What's your name: vikram
 => "Vikram"

 In this example, we applied two new techniques in the second line. The first one is method chaining,
where we used the .chomp and .capitalize methods in succession. We had to use the variable last_name
to store the input that was provided by the user, but method chaining can be done directly on an object as
well. The second technique involves the ! character present at the end of the second line after .capitalize .
This character tells Ruby to perform the capitalize operation and then store the value in last_name . At first,
 last_name stores the input string provided by the user, but that string gets overwritten with the result from
 .capitalize because .capitalize! was used.

 The next topic we want to touch on concerns how variables change. So far, the variables we have
used are not flexible at all. They perform a very simple purpose: Take the user input, although they always
produce the same result regardless of what the input actually is; that is, they don’t change their behavior in
reaction to the environment. Control flow gives us the flexibility we’re looking for. We can select different
outcomes depending on the information the user provides us. Let’s start by looking at the if statement for
control flow, which we have used several times in the past for Jekyll code directly.

 if 1 < 2
 print "I'm getting printed because one is less than two!"
 end

CHAPTER 13 ■ OPEN JEKYLL?

276

 This is the essence of control flow: Depending on the user behavior, we can guide the flow for the rest
of the program. This idea is not only relevant to the preceding snippet, but also to full-scale applications
like the Jekyll blogs that we have made where we needed to change behavior on web pages depending on
the user input. There are a few variations of this that we can rely on, involving the use of else and elsif
statements , as shown here.

 if x < y
 puts "x is less than y!"
 elsif x > y
 puts "x is greater than y!"
 else
 puts "x equals y!"
 end

 The values of x and y determine which of the three statements they fit and then the corresponding puts
command gets triggered. If x is indeed less than y, then the first print statement is triggered. If that condition
is not satisfied, then the else if choice gets triggered. After exhausting the else if choices, the last resort is
the else command, which now gets triggered. This combination of if, else-if, and else is the foundation of
control flow.

 In this example, we rely on the < or > operators to evaluate x and y. A quicker way of evaluating
statements in Ruby uses the ? operator. Let’s work through an example (with strings) where we need to
check whether the user input contains a specific character.

 print "Input: " # Ask for input
 user_input = gets.chomp # Store input
 if user_input.include? "s" # Check if input contains character "s"
 puts "Your string is valid" # First puts statement
 else # Else segment
 puts "Your string is not valid: " + user_input # Second puts statement
 end

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 Input: This book is awesome
 Your string is valid

 The bold if statement is crucial to this program. We use the .include method on user_ input to search
for the character “s” and, if present, it will trigger the associated puts statement. Otherwise, the second puts
statement in the else segment gets executed. The .include? method evaluates to true if it finds what it is
looking for and false otherwise. In general, all Ruby methods that end with a ? character evaluate to boolean
values true or false.

 Control flow is not just limited to if statements; more broadly, loops are also an essential component.
A loop is a sequence of statements that is specified once but can be executed several times in succession.
The code inside the loop is executed a specified number of times, until some condition(s) are satisfied. Let’s
go over loop-based control flow, and two loops in particular, beginning with the unless statement. The
 unless statement is somewhat similar to the if-else statements, but often inverted. Often, given a certain
condition, we can invert it and still verify the opposite. In this case, the if and else results swap places
but this reversal becomes more practical if you have a very large data set that must conform to a specific
threshold.

CHAPTER 13 ■ OPEN JEKYLL?

277

 if i < 10
 puts "Student failed"
 else
 puts "Student passed"
 end

 The unless construct inverts this.

 unless i >= 10
 puts "Student failed"
 else
 puts "Student passed"
 end

 Sometimes, you want to repeat an action in Ruby while a certain condition is true, but you don’t know
how many times you’ll have to repeat that action. A good example would be prompting users for a certain
type of input: If they insist on giving you an invalid response, you might have to ask them several times
before you get the kind of input that you’re looking for. The complement to a while loop is the until loop .
It can be thought of as a backward while loop. Here is an example.

 counter = 1 # Counter is the condition that the loop needs to satisfy

 until counter > 10 # Beginning of the loop - Only repeat until counter is less than 10
 puts counter # Print the counter
 counter += 1 # Update counter, then go back to check if the condition is satisfied
 end # After counter hits 10, end the loop

 In the preceding code, the variable counter sets the initial conditions for the until loop to get started,
and that loop will keep going until a new condition is satisfied, that is, the counter reaches 10. The counter
updating within the body of the loop is what allows for the while loop to eventually end. We are using a
shorthand assignment operator to update the counter, instead of writing out the whole statement. You
already know one assignment operator, = , which defines a variable. This operator has a few variations, one
of which is += , which expands to counter = counter + 1 and this statement updates the counter for each
succession of the until loop.

 The next loop is the for loop . We have used it several times in past projects, but it is worth mentioning
because the syntax of Liquid and Ruby are very different. A for loop is a count-controlled execution of code
contained within the body of the loop and it can easily model most situations where we need to repeat a
particular task. The counter used in the loop is specified as a condition to be met in the beginning of the
loop. Let’s look at an example of a for loop that prints out numbers from 1 to 20.

 for num in 1..20 # Print numbers from 1-20, all numbers inclusive
 puts num
 end

 There are a few new things in this for loop. The output from this snippet is to print out numbers from
1 to 20, but the two dots determine how many numbers get printed in the end. The two dots tell Ruby to
include the highest number in the range and print it out as well. If we had used three dots, Ruby would
exclude the final number in the count, so the output would go from 1 to 19. Essentially, the following code
produces a different output from the preceding segment. Try it out on your own in repl.it.

CHAPTER 13 ■ OPEN JEKYLL?

278

 for num in 1...20 # Print numbers from 1-20, excluding the highest number in the set
 puts num
 end

 This simple convention allows us to change the upper and lower bounds on the for loop . So far, we
have seen that loops go on a set number of times or until certain conditions are satisfied. Loops don’t always
have to follow through and complete their duration. In some cases where the upper or lower bounds are not
well defined, we could risk creating an infinite loop, but a break statement can avoid that situation. Let’s use
it to fix a loop. In this example, the loop will be printing out a very large number of integers, mimicking an
infinite loop that prints out numbers. Our job will be to stop it after the first few numbers.

 counter = 1 # Initial counter

 until counter > 100000000000 # A very large loop
 puts counter # Printing numbers

 counter += 1 # Incrementing counter to print the next number
 break if counter > 6 # Breaking the if-loop after 6

 end

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 1
 2
 3
 4
 5
 6

 In this snippet, the large loop continues to print numbers until it is broken by the if statement. This
allows us to control the flow of the loop and exit as needed. In practical applications, the break statement
often takes on a different form entirely. The core ideas are still the same: Breaking the control flow with
higher level logic is used to stop a program if its behavior becomes unpredictable. At this point, the program
throws an exception and exists because it encountered unknown behavior instead of following through with
it and compromising the entire application. This security mechanism not only protects the application itself,
but also lets the developers know the type of input that can be provided to the app so that they can direct it
appropriately.

 Next, we begin looking at data structures , and there are two in particular on which we want to focus.
In Ruby, we can pack multiple values into a single variable using an array. An array is just a list of items
between square brackets, defined like so: [1, 2, 3, 4] . The items don’t have to be in any particular order,
so you can just as easily have an array that looks like [10, 31, 19, 400] . Each element in the array can be
identified and referenced by what’s called an index, shown here.

 +---+---+---+---+---+
 array | 5 | 7 | 9 | 2 | 0 |
 +---+---+---+---+---+
 index 0 1 2 3 4

CHAPTER 13 ■ OPEN JEKYLL?

279

 The index of an array often becomes the loop counter (the number of times a loop needs to run)
because the upper bound on the index is the length of the array. It’s a convenient way of looping through
every element in the array. Let’s look at some methods that can be applied to arrays, beginning with an
example that prints all the elements of an array.

 numbers = [1, 2, 3, 4, 5] # Define the array

 numbers.each do |item| # Another way to loop through each item
 puts item # Print each item
 end

 In this snippet, we first define the array and then use a loop to go through each element and print it out.
The logic looks very similar to a for loop and the loop counter is defined by putting it in | here |. Just as with a
 for loop, you can use the counter to manipulate the items in the array as you go through it.

 numbers = [1, 2, 3, 4, 5]

 numbers.each do |item| # Read each item from numbers
 puts (item*4)/2 # Print each item, after multiplying and dividing it
 end

 This snippet multiplies each of the numbers by four and then cuts it in half. The end result is that the
numbers are doubled. The roundabout operations in the code were just there to show that you can perform
arithmetic on each item as you read it in the loop. This also prevents the value of each item in numbers from
being changed permanently. The next data structure that we will cover is hashes.

 Each element in an array has an index that is an integer. Arrays have this limitation where each index
refers to an object, but the index itself can only be a number. What if you want to create an array of superhero
secret identities, where a string (their name) points to another string (their identity)? You would have to use
a hash. Hashes are similar to arrays in that they are a collection of indexes that have references to objects.
However, whereas arrays are indexed using integers, hashes can be indexed using any types of objects, such
as strings. A hash is essentially a collection of key–value pairs. Each key corresponds to a value using the =>
sign, and the keys or values can be any type of object. A generic example of the hash syntax is provided here.

 hash = {
 key1 => value1,
 key2 => value2,
 key3 => value3
 }

 Now let’s see how using a hash can be more powerful than an array. We’ll create a hash that holds secret
identities of superheroes and then prints them out, each key corresponding to its value.

 secret_identities = { # Defining the hash
 "The Batman" => "Bruce Wayne",
 "Superman" => "Clark Kent",
 "Wonder Woman" => "Diana Prince",
 "Freakazoid" => "Dexter Douglas"
 }

 secret_identities.each do |x, y| # Same as before, but now we need 2 counters
 puts x + ": " + y # One counter for key, another for symbol
 end

CHAPTER 13 ■ OPEN JEKYLL?

280

 In this example, a string "The Batman" is the index that points to "Bruce Wayne" . To refer to "Bruce
Wayne" , we would have to refer to its index. In this snippet, we defined a hash with a few keys and values in
strings and put them in quotation marks. To loop through the hash, we have modified the previous each-do
loop where we only used one loop counter. Here we need two counters: one that counts for keys and another
that counts for values. The next line in that loop simply prints out the value that the x and y index refer to.
The output of this hash doesn’t look any different from the input, but the main difference is that now we can
manipulate this hash. Let’s start by adding new elements to it.

 secret_identities = {
 "The Batman" => "Bruce Wayne",
 "Superman" => "Clark Kent",
 "Wonder Woman" => "Diana Prince",
 "Freakazoid" => "Dexter Douglas"
 }

 secret_identities.each do |x, y|
 puts x + ": " + y
 end

 secret_identities["CL"] = "Kitty Cat" # Adding new key-value pair

 puts # Adding a blank line
 puts "Identities updated:" # Print statement to differentiate output

 secret_identities.each do |x, y| # Printing the hash again
 puts x + ": " + y
 end

 Adding a new key–hash pair is very similar to adding a new item in an array; you simply refer to the
key and assign it a value, and that adds a new entry in the hash. Data structures like hashes often become
important for storing structured data to interpret and manipulate it further. The concept behind hashes
also becomes relevant when designing data mappings, where an object or properties of known objects are
compared against a collection with an unknown amount of objects to find matches that are close to each
other. Let’s look at one more example using hashes before moving on to advanced concepts. In this example,
we search for a value in the hash.

 movie_ratings = { # Creating the hash
 inception: 3,
 primer: 3.5,
 x-men_origins: 4,
 her: 2,
 avatar_airbender: 1,
 the_matrix: 5,
 lion_king: 3.5
 }

 good_movies = movie_ratings.select { |name, rating| rating > 3 }

 In this example, we first created a hash for movie ratings and instead of the has-rocket symbol, we just
used a colon. Both are equally valid, but this notation is more compact. The bold line at the end uses the
 .select method to choose all the values from the hash and then searches for ratings greater than 3 from
all the values. In this statement, the keys are ignored completely because Ruby understands that the first
variable name refers to keys and the search criteria only uses the second variable, which refers to the values.

CHAPTER 13 ■ OPEN JEKYLL?

281

 Finally, the last topic to discuss in Ruby is the advanced concepts involving methods, objects, and
creating a very simple class. Let’s start with methods. We have used several of them in this chapter but so far,
all of those methods were available to us. Methods are defined by using the keyword def , short for define.
Most methods can be broken down into three parts.

• Header: It includes the def keyword , the name of the method, and any arguments
the method takes. These arguments can be any object type.

• Body: It is a block of code that contains the instructions or procedures that the
method must execute. The code present in the body often uses the arguments
provided by the header for computation and prints the result.

• Ending: The method ends with the end keyword.

 Here’s an example of a simple function that prints out Hello World!.

 def hello # Header
 puts "Hello World!" # Body
 end # Ending

 Methods become useful only when they are called; often you can call a method just by typing its name.
Let’s call the hello method we just defined.

 def hello
 puts "Hello World!"
 end

 hello # Calling the method
 ruby 2.2.0p0 (2014-12-25 revision 49005)

 Hello World!

 A method can also take an argument when you call it. An argument is the piece of code you put between
the method’s parentheses when you call it. Now that we have an idea of what a method is, we can create one
of our own. Let’s start with a method that can square any number (value) passed to it.

 def square(num) # Square method defined with a parameter num
 puts num ** 2 # Operation performed on the parameter
 end

 square(12) # Calling the method, passing an argument 12

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 144

 This method takes in a number num (also called a parameter) and raises that num to the power of 2, thus
squaring it. A parameter is the name you put between the method’s parentheses when you define it. Notice
the difference between an argument and a parameter: An argument is passed to a method when it is called
and a parameter is passed to a method when it is defined. For instance, when we defined square earlier, we
gave it the parameter num (for number), but passed it the argument 12 when we called it. A function can have
any number of arguments, but those arguments must be specified when the function is called or Ruby will
throw an error; for example, wrong number of arguments (1 for 2) in the case of a function having two
parameters but only one is given when the method is called.

CHAPTER 13 ■ OPEN JEKYLL?

282

 A method can have more than one argument , but what if the number of arguments is unknown? The
solution is to use splat arguments. Splat arguments are arguments preceded by a * , which signals to Ruby that
an unknown number of arguments can be given to the method at runtime. Let’s look at an example of this.

 def what_up(greeting, *bros) # Defining the method
 bros.each do |bro| # Looping through each bro argument provided
 puts "#{greeting}, #{bro}!" # Printing out the greeting for each bro
 end
 end

 what_up("What up", "Vikram", "Ben", "Mark") # Listing the bros

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 What up, Vikram!
 What up, Ben!
 What up, Mark!

 The define statement lists two arguments: a string greeting, followed by any number of bros arguments
that will receive the greeting . Then, we loop through each bro out of all the bros given as arguments, and print
the greeting for each one of them. The notation #{greeting} is simply a placeholder for the greeting provided
from the argument and similarly, #{bro} is a placeholder for each of the bros passed in as arguments. When
we call the function, the first string is passed as the greeting argument and that’s it. Ruby knows that greeting
is not a splat argument, so the remaining arguments must be passed as bros to the method. This method is
analogous to running a for loop and printing out the greeting for each of the bros passed as arguments, but the
method makes it more precise and it can be run many times with entirely new arguments.

 What if we want to use a method to evaluate statements? We can use a method to evaluate statements
and return a true or false based on the result of the computation we just performed. Let’s create a method
that determines if a number is even.

 def is_even? (num) # Defining a method, taking an argument num
 if num % 2 == 0 # Performing a modulus operation and checking
 return true # Return true if modulus gives 0
 else
 return false # Return false otherwise
 end # Ending if-loop
 end # Ending method

 if is_even(9) == false
 puts "Not even"
 end

 ruby 2.2.0p0 (2014-12-25 revision 49005)

 Not even

 Being able to return a boolean answer and then using that result in further evaluations is what makes
the return command very powerful. By using a return statement , you can modularize a method, pass an
argument to it, and let it do the computation. After the computation has been completed, you can simply
use the result that was provided by the method and returned to further into your program. Why are methods
important? The plug-ins that we will implement and use in Jekyll for our design studio contain numerous
methods that, when combined, perform the task of that plug-in.

CHAPTER 13 ■ OPEN JEKYLL?

283

 The notion of an object that we discussed earlier is not complete. In reality, an object only models
a small portion of the bigger picture. An object contains data that describes a component along with
instructions on how to manipulate that data in a limited and specific manner. This bigger picture is a
collection of many objects and methods that add little bits to complete the description. The full picture
(or description) is called a class . Perhaps an analogy will help make the concepts clear. Suppose we have
a class called Animal. All animals have bodies and brains and these could be the shared attributes of our
 Animal class. The attributes shared by all animals can be put together into one single animal object, which
constructs the most basic description of all animals in the Animal class. We can also add some methods
that describe other properties that animals have, like movement and growth. This is the idea of a class.
Essentially, we can say that whereas a class is a general concept (like an animal), an object is a very specific
embodiment of that class, with a limited life span (like a lion, cat, or a zebra). Let’s look at an example to
apply what we just learned, creating a Person class.

 class Person # Defining a class

 def initialize(name, age) # First method, constructing a simple object
 @name = name # Internal variables referring to arguments
 @age = age
 end

 def about # Using the internal variables to print a statement
 puts "I'm #{@name} and I'm #{@age} years old!"
 end

 def bank_account_number # Another method using an internally defined
variable

 @account_number = 12345
 puts "My bank account number is #{@account_number}."
 end

 end

 eric = Person.new("Eric", 26) # Constructing a person object with name and age arguments
 eric.about # Using the name and age previously defined in statements
 eric.bank_account_number # Using another internal variable

 There is a lot going on in this class, but let’s break it down method by method. The first method in this
class is initialize , which is also known as the constructor because it creates an object. Whenever Ruby
creates a new object, it looks for a method named initialize and executes it. One simple thing we can do is
use an initialize method and construct an object by setting the instance variables equal to the arguments.
An instance variable is a variable defined within a method but accessible anywhere within that class. In
Ruby, instance variables are always prefaced with an @ symbol. In this case, @name and @age are the instance
variables and the constructor method initialize sets them equal to the arguments of that method. The
 about method is next, and this method prints out both instance variables that we created using initialize
along with a short statement. The last method prints out the bank account number defined within the
method by another instance variable, @account_number .

CHAPTER 13 ■ OPEN JEKYLL?

284

 The fun begins when we call the methods. As mentioned previously, methods by themselves are not of
much use; they become functional only when called. The first line (after the methods) is particularly important
because it supplies the information needed to create an object. Each of these statements has three parts.

• Declaration: The left side of the statement (before the = operator) is declaring the
name of an object that will soon be constructed using the right side.

• Instantiation: The new keyword tells Ruby that a new object needs to be created. In
this case, Person.new tells Ruby that the object is an instance of the Person class.

• Initialization: The new operator is followed by arguments supplied to a constructor
that uses those arguments as properties of the new object.

 The name of this object is eric and he is being created as an instance of the class Person (that makes
more sense in plain English: Eric is an instance of a person). The arguments supplied to the constructor are
the name of the Person along with his or her age and the instance variables are set to those arguments. That
makes sense because after defining the Person , we need to have their @name and @age accessible throughout
the class if we want to make more methods defining eric more completely. The next two lines simply call
on the methods we defined in the class. After we have constructed the object eric , just like anything else in
Ruby, we can call methods on it: eric.about uses the about method with instance variables provided by the
constructor and eric.bank_account_number uses the last method to print out the account number defined
within the method. The concept of a class is very powerful in object-oriented programming, especially when
you start including multiple classes in a full-scale application.

 This concludes our overview of Ruby. Although we couldn’t even come close to capturing the beauty of
this language, the goal here was to provide a conceptual framework to help readers approach Ruby should
they be interested in pursuing this further. Next, we focus on the web application side of Ruby and talk about
features such as package management and how Jekyll fits in with Ruby.

 Gems of Ruby
 In the last section, we talked about classes being a cornerstone of object-oriented programming. Often in
large applications, developers implement a collection of classes that are interdependent on each other.
These classes can share resources among each other, such as methods and any stored data. Such a collection
is called a library. In Ruby, there are libraries of all sizes, from complete web applications to small tools
containing only a few classes. To distribute these libraries and install them with ease, Ruby has created a
self-sufficient distribution system using packages. The packages easily integrate into projects when new
functionality is needed and Ruby has a default package manager called RubyGems that makes it easier to
manage adding new libraries. The libraries themselves are better known as gems in Ruby, and we spend the
remainder of this section talking about how to play with gems and use them in your own projects.

 RubyGems has an online interface that acts as a community network to find new gems and install them
in your own projects. The web site at https://rubygems.org/ is shown in Figure 13-5 .

https://rubygems.org/

CHAPTER 13 ■ OPEN JEKYLL?

285

 You can imagine gems to be similar to plug-ins or add-ons that you install in your browser, as each
gem allows for new functionality to be added to your application. Essentially you end up an application
that can take advantage of features and methods across multiple libraries. From the command line, the gem
command allows you to interact with RubyGems. We use it here to install a hello world gem, but before we
do that, let’s take a look at what the gem profile page looks like in Figure 13-6 .

 Figure 13-6. The profile page for a gem. This page contains a lot of information, such as the description of
the gem, how many versions have been released, who the authors are, information about the home page of
the gem, and if it has any other related documentation. Under the Install label from the boxed content is the
command that you can use to install this gem on your machine.

 Figure 13-5. The RubyGems web site is a centralized community network containing most of the gems
available in Ruby. The search bar leads you to the appropriate gem along with a command that you can use to
install that gem.

CHAPTER 13 ■ OPEN JEKYLL?

286

 To install this gem, fire up your command prompt with Ruby that we saw in Figure 13-3 . We use this
Ruby command prompt to install gems and play with them. To install this gem, just copy the command
provided in the profile page.

 C:\Users\Vikram> gem install hello-world
 Fetching: hello-world-1.2.0.gem (100%)
 Successfully installed hello-world-1.2.0
 Parsing documentation for hello-world-1.2.0
 Installing ri documentation for hello-world-1.2.0
 Done installing documentation for hello-world after 1 seconds
 1 gem installed

 C:\Users\Vikram>hello-world
 this is executable hello-world

 To install any gem in Ruby, you can simply use gem install gem_name . In the preceding example,
we installed the hello-world gem and you can see how Ruby’s package manager went about it. It
first downloaded the gem, then installed it and updated the ri (Ruby Index), which is Ruby’s help
documentation. The messages end with Ruby verifying that the installation was successful. Finally, to
run the gem, we just call it by its name, the same approach we would take to call a method. This gem just
displays hello world in the output, but other gems are much more powerful. Jekyll is actually a gem in
Ruby, too, but before we get into installing larger gems like Jekyll, we need to get a better understanding of
dependencies and what a Gemfile is.

 Recall that we would always import font-awesome to use the icons in our Jekyll blogs. Similarly, your
project might import other components to build itself; then to deploy your project, those components or
packages are necessary. Otherwise, your project will not build appropriately. The components that your blog
needs that are external to it are called dependencies because your project depends on them. Font-awesome
is one such example, but at the level of gems, you can add more gems to your project and they become a
dependency for it. A Gemfile is a Ruby file that defines the dependencies (all the other gems) required by
your project. The Gemfile is like a recipe and the dependencies are the ingredients that we need to cook up
your dish, which is your project. Let’s look at an example Gemfile.

 source 'https:// rubygems.org'

 gem 'cocoapods'
 gem "cocoapods-keys"
 gem 'xcpretty'
 gem 'fastlane'

 This file lists the gems that are needed for a project. The Gemfile tells Ruby that it needs to find those
gems from the database and install them to make sure the project compiles and runs smoothly. Jekyll can be
installed as a gem, but it has several dependencies. Let’s see how this works.

 C:\Users\Vikram> gem install jekyll
 Fetching: colorator-0.1.gem (100%)
 Successfully installed colorator-0.1
 Fetching: sass-3.4.21.gem (100%)
 Successfully installed sass-3.4.21
 Fetching: jekyll-sass-converter-1.4.0.gem (100%)
 Successfully installed jekyll-sass-converter-1.4.0
 Fetching: rb-fsevent-0.9.7.gem (100%)

CHAPTER 13 ■ OPEN JEKYLL?

287

 Successfully installed rb-fsevent-0.9.7
 Fetching: ffi-1.9.10-x64-mingw32.gem (100%)
 Successfully installed ffi-1.9.10-x64-mingw32
 Fetching: rb-inotify-0.9.6.gem (100%)
 ... [snip] ...
 Fetching: jekyll-3.1.1.gem (100%)
 Successfully installed jekyll-3.1.1
 Installing ri documentation for jekyll-3.1.1
 ... [snip] ...
 Done installing documentation for colorator, sass, jekyll-sass-converter, rb-fsevent, ffi,
rb-inotify, listen, jekyll-watch, kramdown, liquid, mercenary, rouge, safe_yaml, jekyll
after 42 seconds
 14 gems installed

 The process of installing Jekyll locally is not much different from any other gem, except that there are
numerous dependencies that come along with Jekyll and have to be installed. In the output, we see a lot
of packages being fetched (downloaded) and installed locally. Several portions of the output have been
removed (snipped) to only show the relevant pieces. Finally, a summary of the gems installed along with
confirmation of their entry into the help documentation is provided. That’s how simple it is to install entire
applications like Jekyll in Ruby. Now that the gem has been installed, we can access it anywhere within the
console. Let’s verify that Jekyll has been installed.

 C:\Users\Vikram> jekyll -v
 jekyll 3.1.2

 Now that Jekyll is up and running, let’s play with it and use the command line to get a boilerplate Jekyll
site up and running.

 C:\Users\Vikram\Documents\sample_site> jekyll new myblog
 New jekyll site installed in C:/Users/Vikram/Documents/sample_site/myblog.

 The command jekyll new myblog created a skeletal Jekyll site in the folder myblog . Let’s take a look at
what Jekyll created for us in this boilerplate template.

 C:\Users\Vikram\Documents\sample_site> cd myblog && dir

 Directory of C:\Users\Vikram\Documents\sample_site\myblog

 02/25/2016 02:26 PM <DIR> .
 02/25/2016 02:26 PM <DIR> ..
 02/25/2016 02:26 PM 35 .gitignore
 02/25/2016 02:26 PM 536 about.md
 02/25/2016 02:26 PM <DIR> css
 02/25/2016 02:26 PM 1,291 feed.xml
 02/25/2016 02:26 PM 506 index.html
 02/25/2016 02:26 PM 891 _config.yml
 02/25/2016 02:26 PM <DIR> _includes
 02/25/2016 02:26 PM <DIR> _layouts
 02/25/2016 02:26 PM <DIR> _posts
 02/25/2016 02:26 PM <DIR> _sass
 5 File(s) 3,259 bytes
 7 Dir(s) 322,978,512,896 bytes free

CHAPTER 13 ■ OPEN JEKYLL?

288

 The folder structure of this Jekyll app looks typical, like what we saw earlier when creating the news
brief site. Even though the app is minimal, it contains all the necessary components that a simple blog site
would have. It’s enough for us to play with and learn the basics of command-line Jekyll operations. Here are
the most useful Jekyll commands:

• jekyll build : The Jekyll site will be compiled and the result will be generated into
 _site.

• jekyll build --watch : The Jekyll site will be generated into ./_site , watched for
changes, and regenerated automatically on updating.

• jekyll serve : The Jekyll site will be compiled and a development server will run
at http://localhost:4000/ with the watch feature enabled; that is, the site will be
generated after changes.

• jekyll clean : The generated Jekyll site is cleaned from the _site folder, getting it
ready for another compile.

 Let’s put these commands into action. To compile the source files into Jekyll processed HTML, we use
the build command first.

 C:\Users\Vikram\Documents\sample_site\myblog> jekyll build
 Configuration file: C:/Users/Vikram/Documents/sample_site/myblog/_config.yml
 Source: C:/Users/Vikram/Documents/sample_site/myblog
 Destination: C:/Users/Vikram/Documents/sample_site/myblog/ _site
 Incremental build: disabled. Enable with --incremental
 Generating...
 done in 3.83 seconds.
 Auto-regeneration: disabled. Use --watch to enable.

 This output also contains a lot of information. First it locates the configuration file, which in this case
is _config.yml , and then it uses that to compile the site. The source files are located under the myblog folder
and the destination for the compiled files is the _site folder. It took Jekyll close to four seconds to generate
the site and it tells us that autoregeneration is disabled, meaning that if we updated the site now, we would
have to run jekyll build again to see the effects. But what if we want to see how the compiled site looks?
For this, we have to tell Jekyll to serve the site.

 C:\Users\Vikram\Documents\sample_site\myblog> jekyll serve
 Configuration file: C:/Users/Vikram/Documents/sample_site/myblog/_config.yml
 Source: C:/Users/Vikram/Documents/sample_site/myblog
 Destination: C:/Users/Vikram/Documents/sample_site/myblog/_site
 Incremental build: disabled. Enable with --incremental
 Generating...
 done in 0.447 seconds.
 Please add the following to your Gemfile to avoid polling for changes:
 gem 'wdm', '>= 0.1.0' if Gem.win_platform?
 Auto-regeneration: enabled for 'C:/Users/Vikram/Documents/sample_site/myblog'
 Configuration file: C:/Users/Vikram/Documents/sample_site/myblog/_config.yml
 Server address: http://127.0.0.1:4000/
 Server running... press ctrl-c to stop.

 This output is similar to what we saw when building the site and generating the compiled files. Here
the difference is that after generating the site, Jekyll uses a local web server to serve the pages that it just
compiled. This is a foreground running process, meaning that if you made changes to the site while jekyll

CHAPTER 13 ■ OPEN JEKYLL?

289

serve was running, the changes would trigger a rebuild and Jekyll would compile again to update the site.
This is also shown by the fact that autoregeneration is enabled for the compile. In the last two lines of the
configuration, we can see the local server information. Jekyll is serving the site that it just compiled on the
web address http://127.0.0.1:4000/ and this server is running continuously. The site available at that web
address is shown in Figure 13-7 .

■ Note The warning regarding adding wdm gem to the Gemfile can be safely ignored. That particular gem
is specific to Windows and it might become necessary if we did all of our development offline. However, for
the purposes of learning how to use Jekyll offline and the command-line operations, we can continue without
worrying about the wdm gem.

 Similar to the serve command, we can also ask Jekyll to watch the code for changes and simply rebuild
the site in case of changes. To do this, we use the --watch switch with the build command shown here.

 C:\Users\Vikram\Documents\sample_site\myblog> jekyll build --watch
 Configuration file: C:/Users/Vikram/Documents/sample_site/myblog/_config.yml
 Source: C:/Users/Vikram/Documents/sample_site/myblog
 Destination: C:/Users/Vikram/Documents/sample_site/myblog/_site
 Incremental build: disabled. Enable with --incremental
 Generating...
 done in 0.767 seconds.
 Auto-regeneration: enabled for 'C:/Users/Vikram/Documents/sample_site/myblog'

 This output is pretty much the same as what we got from running jekyll build , except that the process
runs in the foreground, and looks for any possible changes to the site, compiling it again if necessary. This
time, the autoregeneration option has been enabled for the blog site. After making edits to the site and
saving the file, you should start to see the following in the output where the jekyll build -- watch process
is running.

 Auto-regeneration: enabled for 'C:/Users/Vikram/Documents/sample_site/myblog'
 Regenerating : 1 file(s) changed at 2016-02-25 16:16:26 ...done in 0.115596 seconds.

 This line shows that a recompilation was performed on the site after edits were recorded. The --watch
feature can be used with both serve and build commands and it adds an autoupdate ability to both. In the
first case, the browser refreshes to show the newly compiled web site any time a change is made, and the
 build command simply recompiles the source files if it records any new edits to the source files.

http://127.0.0.1:4000/

CHAPTER 13 ■ OPEN JEKYLL?

290

 A Bucket of Gems
 So far in this book, we have used Git to put our code under version control and then pushed the code to
GitHub, a code-sharing and hosting platform. On GitHub, if we had named the central repository in a
particular format, then GitHub Pages would compile the source into a static web site that can be hosted on
GitHub alone. Our interaction and dependence on GitHub might have given the impression that it can be
very difficult to host and manage Jekyll web sites on any other platforms. Actually quite the opposite is true:
Jekyll web sites can be hosted and served with ease. To show that, in this chapter we use a different code
hosting platform, Bitbucket.

 The main focus of this book has been the interaction between Jekyll and Git. GitHub is the easiest
to use platform, so we eased into it and took advantage of all the features offered by the platform. Git can
interface with many platforms, though, and Bitbucket is one of those major platforms. In this section, we
do a walkthrough of Bitbucket to get you familiar with it and use it to host this project. One distinguishing
feature of Bitbucket on the free plan is that you can get a private repository, which is only available as a paid
feature on GitHub. Let’s get started by creating an account on Bitbucket. After confirming your e-mail, you
are presented with the Dashboard, shown in Figure 13-8 .

 Figure 13-7. Jekyll barebones template served locally in the browser. The contents displayed here are being
pulled directly from the _site directory that contains the Jekyll-compiled web site.

CHAPTER 13 ■ OPEN JEKYLL?

291

 Figure 13-8a. Top navigation bars for the Bitbucket Dashboard . Bitbucket has a traditional project-
management feel to it, but this Dashboard offers a tremendous amount of information available at your
fingertips. The boxed drop-down menus give you access to the repositories or projects that you have in your
account along with the team to which you belong. Underneath, for every repository that you have, you can
obtain at-a-glance information about the repository.

 Figure 13-8b. Bitbucket’s Dashboard without any repositories. The dashboard here offers links to several
resources to help get a user started with Bitbucket. Along with the resources is the link to downloading
SourceTree, which is analogous to using GitHub Desktop. Finally, underneath the resources is the button to
create a new repository.

CHAPTER 13 ■ OPEN JEKYLL?

292

 Let’s go through the process of creating a repository in Bitbucket and then we will look at all the settings
available for the repository. We also briefly talk about how to import code into this repository and how the
protocols to do so are very similar to GitHub. To understand how Bitbucket compares to GitHub , let’s look at
the differences between the two platforms.

• Gists: One central feature available on GitHub but not on Bitbucket is Gists, which
let you apply version control to sharable code snippets or just plain text. They can be
embedded into blog posts and shared easily as a part of your GitHub account.

• Static pages: A nice feature both services share is creating static sites out of the
repositories. This feature is pretty much the same on both services. You can create
a repository named username.bitbucket.com and get your own nifty URL with the
project site hosted on it.

• Community support: A quick look at the newest questions on Stackoverflow will
reveal that GitHub is asked about every couple of minutes, whereas Bitbucket
questions take about an hour or two to resurface. In general, GitHub has better
support than Bitbucket, but you will find an answer to either question you might have.

• Switching: Bitbucket makes it pretty straightforward to import your repositories
from GitHub. The same is not true for GitHub, but in the end Git works the same for
both platforms.

• Other version control: Although not the focus of our discussion, Bitbucket was
originally conceived as a tool for using Mercurial (another version control system)
and Git support was added later on. On the other hand, GitHub was all about Git
from the beginning.

■ Tip It might seem like a good idea to import an existing GitHub repository in Bitbucket and make it private,
but doing so is actually harmful. Keeping your code open allows others to propose edits or feature fixes in the
case of broken commits. This principle should be followed even for large-scale projects and making them open
source will only increase adoption rates.

 Next, let’s look at how the the process of creating a repository works in Bitbucket. After clicking Create a
 repository , you are presented with the repository options screen, shown in Figure 13-9 .

CHAPTER 13 ■ OPEN JEKYLL?

293

 Figure 13-9. Creating a repository and the advanced settings available. This is yet another subtle difference
between Bitbucket and GitHub: There are more options available when creating a repository in Bitbucket. It
is far easier to create a repository in GitHub and most of the settings offered here are available later on in the
Settings view for a repository. After naming the repository, you are given the choice of picking a version control
system. After that, you can add a description and then have fine-grained control over who can fork your code.
You can also choose to add an issue tracker (similar to Issues on GitHub) and a wiki, which are enabled by
default in GitHub. Finally, you can pick the language that you will be using throughout the repository and
enable notifications in HipChat, which is a team collaboration tool.

 We already covered all the features available during repository creation in Figure 13-9 , so let’s get
started: First, minimize the advanced settings and let’s use the defaults to create a repository named Testing.
After creating a repository, you are brought to the repository dashboard, which currently shows that we have
no activity. This repository dashboard view will become the starting point, and this view is very similar to
GitHub, where we saw the Git commands to get started pushing code to the repository. The dashboard is
shown in Figure 13-10 .

CHAPTER 13 ■ OPEN JEKYLL?

294

 We will push our barebones Jekyll project to this repository after finishing this walkthrough. Let’s move
on and look at the sidebar on the left. This sidebar is split into two pieces, as shown in Figure 13-11 . The
top half contains the repository actions and the bottom half includes navigation functions to look around
within the repository. The repository actions allow for basic operations such as cloning the code, forking the
code, and even making branches using the web interface rather than the command-line way of doing it with
the git checking new_branch_name command . Even advanced features such as creating pull requests or
comparing repositories are available. Under the repository actions are the navigation links that allow you to
move within the repository easily. By default, we are on the repository dashboard which is the first option,
Overview. The Source option takes you to browsing the source code present within the repository. Currently
there is nothing present in this repository, as seen in Figure 13-12 . Unlike GitHub, where the latest commit is
shown on top of the code in the repository view, Bitbucket lets you browse the commits separately with the
 Commit option . Here, you can see all the commits made, along with the branch history. After some commits
have been made, a small information box appears on the right side in the repository overview to provide
at-a-glance information about the latest commits. Finally in the navigation options, there is the ability to
download the repository as a zip file and view any pull requests that have been made for the repository.
Underneath the navigation actions is the Settings option, which takes you to the settings page for the
repository for even more options to manage the repository.

 Figure 13-10. The repository dashboard . The top boxed part shows the name of the repository along with the
owner’s name. Underneath, there is information available about this repository, which currently has nothing
in it. To get started with Bitbucket, we do not use SourceTree, but instead rely on the command line, which as
been our friend in past chapters. Just like Bitbucket, we will have easy-to-follow instructions to get our code
online.

CHAPTER 13 ■ OPEN JEKYLL?

295

 Figure 13-11a. The repository actions available in the sidebar. These links represent some of the most
commonly used operations for a repository and we create a branch using this web interface shortly.

 Figure 13-11b. The navigation options for the repository. It is interesting to note that Bitbucket separates the
commits, source, and branches, whereas on GitHub, this information is available on a single page.

CHAPTER 13 ■ OPEN JEKYLL?

296

 Figure 13-12. The Source view from the navigation bar . Currently, this repository doesn’t have any code, so
the Source view is recommending making a commit to get started.

 Let’s take a look at some of the operations available through this web interface, particularly creating a
branch, because we return to it later in the chapter. Moreover, so far, we have only created branches with the
command line. This time around, though, we use the web interface. It must be noted that branches can also
be created using GitHub’s web interface , but we preferred to use the command line to do so. In any case,
clicking the Create branch option opens up the dialog box shown in Figure 13-13 .

 The option to create a branch won’t work until we push some code and make it available online. This is
because branching can only be carried out based on previous code contained in the default branch, which
serves as a source from which to branch. We need the master branch available first before trying to create a
new branch because without a master, there is nothing to branch from.

 Figure 13-13. The Create branch dialog box . Currently this box won’t let us create a new branch because no
previous code is available to branch from.

CHAPTER 13 ■ OPEN JEKYLL?

297

 The next stop in our walkthrough is the repository settings, shown in Figure 13-14 . The settings are
similar to what we saw on GitHub in the past, but there are a few interesting options available here. The first is
that you can change the access control and make your repository private at any time necessary. You can also
change the page that you see when you visit the repository; for instance, you can change from the Overview
mode to seeing the source code directly by picking the Source landing page. Additionally, you can make a
different branch the master branch if necessary through this web interface. The sidebar in Figure 13-14 also
shows additional user management features to provide fine-controlled access to branches and the code
base. These features are more relevant to larger teams where not everyone has access to modify the entire
code base; rather, they add features by creating patches against the code already present. Those patches get
reviewed and then finally incorporated into the main project. By configuring user management, a developer
can provide read-only or clone-only access to their repository using features like deployment keys .

 Figure 13-14. The repository settings . Most of the access control features available in Bitbucket mimic the ones
in GitHub, and they are only optimal for large teams, not individuals.

CHAPTER 13 ■ OPEN JEKYLL?

298

 Now that we have looked through the repository settings, let’s examine a few account settings in
Bitbucket. These settings are important to discuss because we revisit them later in this chapter in our design
studio. The settings themselves are not so important, per se, but rather what those settings mean, because
we will be using them shortly. The settings can be reached from the top right, as shown in Figure 13-15 .

 The Settings panel is shown in Figure 13-16 . It mostly contains routine account maintenance and
edits and billing preferences, but one of the important settings we are concerned with is SSH keys . The idea
behind using SSH keys is to rely on an alternative authentication mechanism that isn’t passwords. We use a
device to generate a key that can be uploaded and saved to Bitbucket. After that, Git will check the SSH key
of the system pushing the code to ensure that the code is coming from a trusted source and being pushed or
synced to the appropriate repository. This mechanism is widely used to establish trust and identities in open
source communities such as Linux. It is interesting to note that SSH and Open Auth work based on similar
principles to provide write access. In our case, we want to compile the code in the cloud and then push it to
Bitbucket so that the resulting site can be hosted. We use Codeship to do the compilation and it uses Open
Auth to access the repositories. Once we have picked the appropriate repository, Codeship can read the
code present and then using the instructions we give it, compile the source. What happens with the result,
though? We need to push that compiled result back to the repository. There are a few clever ways of doing this
actually. One of them is to create an API token that will allow write access to push code back to the repository.
However, if we just keep committing and pushing the resulting code back to the branch, this will result in a
mismatch between how the tags are being synced from the source (Codeship) to the destination (the branch
on Bitbucket). That solution is not viable without some complex scripting, but we can allow Codeship to write
back to the repository using the SSH keys associated with that account. With the SSH key, Codeship will have
full access to that repository, and it can sync to it as if we were locally pushing the code online.

 Figure 13-15. Account settings can be reached from the top right side, along with user profile and add-on
settings

CHAPTER 13 ■ OPEN JEKYLL?

299

 Let’s briefly talk about SSH keys and how they function. A device generates a public–private key pair,
and the public key is distributed to other services that the user wants to access. SSH verifies whether
the same person offering the public key also owns the matching private key and a secure connection
is established that allows us read and write access. Recall that GitHub also gave us an option to clone
repositories using SSH, and Bitbucket has one, too, but generating SSH keys on Windows requires additional
software and configuration. For that reason, we simply choose to clone repositories using HTTP and then
modify Git settings to store the password.

 Now let’s push the sample Jekyll project we created in the last section to Bitbucket. The process is
actually very simple because the instructions are provided to us on the repository overview page. In this
case, like in the past projects, we use HTTP to transfer data. The instructions are present in the I have an
existing project drop-down list, but we won’t be using those exact commands. In either case, the logic
behind those commands is this: Add the code to version control by initializing a new Git repository, add
and commit the present code to that repository, tell Git about the remote location, and push code to that
location. Go to the location of the site that was created using Jekyll—ours was present at: C:/Users/Vikram/
Documents/sample_site/myblog/ —and let’s get started.

 Figure 13-16. Account settings for Bitbucket. In the left sidebar, the top section is Account settings, followed
by billing and access management options. The OAuth option allows us to manage any applications
authenticated with Bitbucket or create new API tokens.

CHAPTER 13 ■ OPEN JEKYLL?

300

 $ git init
 Initialized empty Git repository in C:/Users/Vikram/Documents/sample_site/myblog
/.git/

 After the repository has been created, we need to add and commit these changes.

 $ git add -A :/

 $ git commit -m "Getting code ready for Bitbucket"
 [master (root-commit) 8175dbc] Getting code ready for Bitbucket
 20 files changed, 819 insertions(+)
 [...]

 To push the code online, you have to look at the instructions for an existing project that we mentioned
earlier. Within those instructions is the remote location, and the one for this project account is

 $ git remote add origin https://opsbug@bitbucket.org/opsbug/testing.git

 You will find a similar one with your user name and repository address . Finally, push the code online
using this syntax.

 $ git push --set-upstream origin master
 Counting objects: 27, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (25/25), done.
 Writing objects: 100% (27/27), 9.37 KiB | 0 bytes/s, done.
 Total 27 (delta 1), reused 0 (delta 0)
 To https://opsbug@bitbucket.org/opsbug/testing.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 The repository view (shown in Figure 13-17) looks a lot different after being updated with information
about the code we just added.

CHAPTER 13 ■ OPEN JEKYLL?

301

 Build Tools
 Our design studio will be relying on plug-ins and also offer custom compilation and builds. The plug-ins that
we will be using are essentially gems and to incorporate them into our projects, we use a tool called bundler .
Before we get into integrating plug-ins, we have to first talk about the process of compiling Jekyll and what is
required on both ends.

• What dependencies (or gems) does the cloud compiler need to download for Jekyll?

• How should the cloud compiler access the repository that incorporates the
downloaded dependencies and recompiles the Jekyll-based site?

• Both sides require a solution, and ultimately we will be using two tools, Rake and
bundler.

 Bundler is like a dependency manager for Ruby projects. A dependency manager is similar in function
to a package manager like RubyGems, but bundler automatically finds the appropriate versions of the gems
that we specify or updates old gems that are being used in the project. The best feature of bundler is that
additional gems can be added to the project with minimal edits. We don’t have to find the plug-ins and then
add the plug-in files to the _plugins folder. Only two files need to be changed; even then, the additions are
one line each. This keeps the project clean and the clutter minimal. Essentially that means that even though
additional plug-ins are being added to the project, bundler only fetches them during compilation. Then,
Jekyll can access them to compile the web site and create the final product. The source code itself remains
spared from any additional Ruby (in the plug-ins) and the plug-ins mostly remain invisible. You only have
to work with your usual Jekyll source code, and this familiarity makes the process of adding plug-ins much
easier. We can rely on a similar workflow that we have used in the past: In a way, the plug-ins become
imports like font-awesome. To use font-awesome, all you need to do is find the icon and then the grab the
corresponding <i> tag. The import statement along with the <i> tag automatically displays the appropriate
icon, similar to how bundler adds the gems to the project and we just see the final result.

 Figure 13-17. The new repository overview . The Recent activity section on the right also shows the progression
of our repository.

CHAPTER 13 ■ OPEN JEKYLL?

302

 There are two files that bundler accesses to add plug-ins or gems, the _config.yml file and the Gemfile.
We looked at a Gemfile earlier and basically it is a specification of where to find the gems and what version
to obtain. This works out nicely because bundler uses the Gemfile as a phone directory and finds us exactly
what we are looking for. Let’s look at another one with versions.

 source 'https://rubygems.org' # Source of gems

 gem 'jekyll', '~> 2.5' # Version of the gem (Jekyll)

 group :jekyll_plugins do # Plug-ins associated with Jekyll
 gem "jekyll-less"
 gem 'therubyracer', '~> 0.12.2'
 end # A loop of plug-ins associated with Jekyll

 This Gemfile can now be used by bundler. Let’s look at the edits that need to be made to _config.yml .

 gems: ['jekyll-less', 'therubyracer']

 That’s it. The Gemfile tells bundler to download those specific gems with the given version. What can it
do after downloading them? The handover of those gems from bundler to Jekyll is accomplished through the
config file and with that line of code shown above. The _config.yml file tells Jekyll to actually use those plug-
ins, and during the compile process and if the source code calls on those gems, they are incorporated in the
proper places. These two edits are all we need to use plug-ins in Jekyll, a practical demonstration of how bundler
keeps the project clean, looking for gems and then incorporating them into projects. What about the actual
compilation and then pushing the code back to the appropriate repository? That’s where Rake enters the picture.

 Rake (Ruby make) is a build tool (or task manager) in Ruby that can execute tasks provided to it in a
certain order. It is similar to the build tool make, which is often used in C/C++ languages. Usually, make
needs instructions to compile and those instructions are found in a makefile. The makefile directs make how
to compile a program and produce the integrated final product that can be executed. Rake is built on similar
principles; the main idea is that you would use Rake to automate running multiple commands in series.
Think about the Git add-commit-push workflow and what if that all could be done automatically each time
with a single command. That’s what Rake basically allows you to do. By the end of this section, we talk about
how to remove even that single command from the whole compile process. In our design studio, we use
Rake primarily in the following manner:

• Access Bitbucket and find the repository that we want to compile.

• Download the code from that remote repository into a temporary location.

• Compile the code and generate the result in the _site directory.

• Push the code from the _site directory back to the remote location, keeping Git tags
in sync.

 In this project, our application of Rake is in the context of system commands and less focused on Ruby
itself. We use it for system commands, like the ones you have been typing in the terminal so far. The point
of using Rake and a cloud compiler is to automate the whole compile process. Codeship can rely on Rake
to tell it exactly how to get our data and publish back the results. To do so, we have to instruct Rake to issue

CHAPTER 13 ■ OPEN JEKYLL?

303

commands to the terminal one at a time. Let’s look at a Rakefile (similar to a makefile) that accomplishes the
steps we just outlined.

 desc "Generate jekyll site" # Description of the task
 task :generate do # What to execute when Rake is asked to
generate
 puts "## Generating Site with Jekyll"
 system "jekyll build" # Rake generate will build the Jekyll site
 end

 desc "Push code to Bitbucket" # Second task
 task :publish do # What to execute when Rake is asked to
publish
 system "git add ." # Rake goes through add-commit-push workflow
 system "git commit -am 'Codeship Update'"
 system "git push -u origin master"
 end
 end

 This was just an example to illustrate how tasks in Rake work. The previously mentioned Rake file
will not compile or actually work because we need to add more information. However, we can use this to
build on and create the Rakefile that will ultimately be used in the design studio and also that you can use
for custom builds. The Rakefile is divided into tasks that Rake can then execute, and essentially, the tasks
are step-by-step instructions telling Rake what to do. The first task is generate, and the syntax tells Rake
to execute it (rebuilding the Jekyll site) if we were to type rake generate in a terminal. The second task is
publish, and it can be executed by issuing the rake publish command. The syntax here tells Rake to publish
the resulting Jekyll site from the first task back to the remote location (in this case, the Bitbucket repository).
Rake satisfies the second requirement that we originally talked about; the cloud compiler can rely on the
Rakefile to tell it where to get the code and where to put it after finishing up. Now that we have talked about
the build tools, let’s start playing with Codeship.

 Continuous Integration
 Codeship is a continuous integration service that we will be using in this project. Codeship provides
free builds for open source projects, which is great for us because the code will be hosted on Bitbucket.
Continuous integration (CI) is a development practice that requires developers to check in their code into
a shared repository as soon as a feature is ready. Each check-in is then verified by automated build tools,
allowing a team to detect problems early and fix them as a project moves along. Essentially, a CI service
rebuilds a project any time a new feature is added, so that the source code is always remains compile-
ready and error free. We are taking advantage of this principle to recompile Jekyll with each commit to the
repository, so that our plug-ins properly integrated within the site. Codeship will provide the infrastructure
where both bundler and Rake can be used and the resulting code will be pushed back to the same repository
as a new commit. Then, our web site will be updated automatically based on this new commit.

 How does Codeship know to rebuild the site each time a new commit is made? Codeship is using commit
hooks. Git has a way to trigger custom scripts when some known actions are registered. A commit hook listens
for specific events; when they are registered, it performs a specific action in return. Codeship uses server-
side hooks that look for network operations such as receiving pushed commits. Once a commit happens, the
hook is triggered and then it passes on the control to a deployment pipeline, which in turn uses Rake and
Bundler to rebuild the code and push it back to the appropriate location. This is the continuous integration
mechanism that we use in this chapter. To get started with Codeship, visit https://codeship.com/ and click
Login to start setting up a deployment pipeline.

https://codeship.com/

CHAPTER 13 ■ OPEN JEKYLL?

304

 You should then see a screen that lets you create an account. We just log in with our Bitbucket account
using OAuth, as shown in Figure 13-18 . After logging in, the dashboard, shown in Figure 13-19 , looks fairly
empty because we haven’t done anything yet.

 Figure 13-18. Instead of creating an account , we log in directly with our Bitbucket repository

 Figure 13-19a. Top bar on Codeship home page . This bar has a few navigation features to select and browse
among the various projects that you can manage on Codeship.

 Figure 13-19b. The dashboard below the navigation bar . This is where the build status of your projects would
show up and eventually the build process itself would appear.

CHAPTER 13 ■ OPEN JEKYLL?

305

 Let’s start with the walkthrough. There are three distinct steps to connecting Codeship to Bitbucket .
The first one is to link the source code manager (GitHub or Bitbucket) to Codeship. After that, pick the
appropriate repository. Then, select the build environment and configure any tests if you want to run them.
In the first step, we link our Bitbucket repository. Click Connect with Bitbucket repository as shown in
Figure 13-20a . After that, you are required to pick the repository, shown in Figure 13-20b . At this time, we
only have one option available, but you can imagine a user having multiple repositories. Once you have
configured the source repository, you can start configuring the cloud environment. The first step here
is to let Codeship know that we need a Ruby environment . This can be seen by selecting Ruby from the
Select your technology to populate basic commands drop-down list, shown in Figure 13-21 . After selecting
Ruby, you will see that the setup commands are calling bundler. This call essentially prepares the cloud
environment to eventually compile Jekyll in it. The idea here is to retrieve the Gemfile that will then instruct
bundler on what gems to install into this new cloud environment.

 Figure 13-20a. Selecting the choice to connect Bitbucket SCM because it contains our repository

 Figure 13-20b. The search bar allows you to narrow down the repositories and find the right one

CHAPTER 13 ■ OPEN JEKYLL?

306

 Figure 13-21. The cloud environment that will eventually receive our Jekyll site needs to be prepared for it.
To manage what gets installed, we rely on bundler and the Gemfile that we created. Here, we just tell the cloud
environment to use bundler and let it do what we instructed. With this process, all our dependencies will get installed.

 Once the installation is complete, bundler is ready to hand over the control flow to the deployment
pipeline, which will retrieve the source code from the repository, compile it, and then push the the result
back into the same repository. Codeship also allows you to write tests for your repository that can be triggered
when a commit is made. The test pipeline can be seen in Figure 13-22 , but we leave the test pipeline blank.

 Figure 13-22. Second half of the setup commands page . The test pipeline can be configured here with the
appropriate commands but we leave this blank. Delete the contents of that box and then click Save.

CHAPTER 13 ■ OPEN JEKYLL?

307

 After saving the initial setup configuration, the project dashboard takes on a new look, as shown in
Figure 13-23 . This screen signifies that Codeship is ready for our repository to start receiving code and
rebuilding it. A few more steps are necessary in this process, though. Remember that bundler will only install
the dependencies, so we will need Rake to be ready when bundler passes control flow of the project to it.
Rake will be configured directly with the deployment pipeline. On the right side, click Project Settings and
select Deployment as shown in Figure 13-24 .

 Figure 13-23. After clicking Save and go to dashboard on the setup page, you return to this page. This is a
confirmation that the cloud environment is ready for the repository transfer between Codeship and Bitbucket.

 Figure 13-24. Under Project Settings , select Deployment to start editing the deployment pipeline

 The first step is setting up a commit hook, and we need to tell Codeship which branch to listen and
 register commits , as depicted in Figure 13-25 .

CHAPTER 13 ■ OPEN JEKYLL?

308

 After entering the branch that triggers the deployment process, you are presented with a host of options
on how exactly to trigger the pipeline. In our project, we just want the control flow to be passed on to Rake,
which will then take care of managing the code and putting it back in the repository. To tell Codeship that we
are using Rake, select the Custom Script option as shown in Figure 13-26 .

 Figure 13-25. Configuring deployment pipelines . First we need to tell Codeship to look for a branch that starts
with master to listen for commits. After entering the configuration as shown earlier, click Save pipeline settings
to start defining the commit hook.

 Figure 13-26. Selecting the deployment pipeline trigger . We use two commands that use Rake tasks

 After clicking Custom Scripts, you will be presented with the custom scripts deployment box shown
in Figure 13-27 , where you can enter the commands that will be executed after the commit. Essentially,
we want to invoke Rake so that it can compile the site and push it back to the proper location according to
the instructions in the Rakefile. To do that, we use the rake generate and rake publish tasks . Once those
commands have been entered, click Create Deployment and that will create our deployment pipeline.
At this point, Codeship is ready to register commits to our Bitbucket repository and recompile Jekyll as
we instruct Rake to do. Let’s take a moment to discuss one more design choice: Why did we use bundler

CHAPTER 13 ■ OPEN JEKYLL?

309

and Rake, which rely on makefiles? Going back to the original point about avoiding clutter, a significant
advantage of using those two tools is that the only change to the project’s source code is the makefiles. Once
the deployment pipeline is in place, we don’t have to touch it again. The same holds true if the design studio
wants to deploy custom builds for customers. When the pipeline is working, you can reduce your focus to
just the source code in the repository. Any changes from that point on can be made to the makefiles and they
will work just the same through the pipeline that you have deployed.

 Figure 13-27. Here, we enter deployment commands that will be triggered after bundler, and the deployment
pipeline takes over. Executing these two commands will run corresponding tasks defined in the Rakefile.

 Figure 13-28. General Project Settings page . Scrolling down further on this page brings you to the SSH public
key that you need to add to Bitbucket

 The last step in this walkthrough is to get the SSH keys from Codeship and then add them to Bitbucket.
Click Project Settings again and then select General Settings from the drop-down menu . The General Project
Settings page is shown in Figure 13-28 .

CHAPTER 13 ■ OPEN JEKYLL?

310

 Scroll down a little more and you will find the public SSH key, which might look similar to the following:

 ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDnIjKwRBDDOp+1mX88dyiaztqbeyf8cgEghw1ejBlchHax0NNB
yXUtXymXtWeBv5S3w0IiCQem4E6gL1zG/iw3VRQP7k2YOPSaJDvhBf9f5A4z/O6scSnngBlqvPfEohVp7GRcR3VR
NOy2v/Hq/YznOQWzstUau1TgOFt7i9oIgjvm+hr450hs+rYXWdjdgpP0Wa3WgV03v4O1ua69Q9yoKSAKGjacnJGE0g
5EKBRTBlZX8xOBLAh7eo/Bzo/fc6xgxslOfcD25L2VjmOd8tOMdlP6pbOD0/Wl/P63ObJhKMpwIbN00bcm
fpO0VjIMIdI+h63RbKXzlVO4cCqVYwN Codeship/opsbug/testing

 Copy this key and then head back to Bitbucket . On the right side, go to the Bitbucket Settings. In the left
sidebar, one of the navigation topics is Security; underneath that you will find a link to SSH Keys. Click that
to open the SSH keys page, which currently shows nothing. You have to add the key that you just copied from
Codeship. Click Add Key to open a dialogue box similar to the one shown in Figure 13-29 .

 Figure 13-29. Adding an SSH key to Bitbucket. You can use anything as a label, maybe Codeship. The key
should be pasted directly from Codeship, then click Add Key to finalize the process.

 Once the key has been added, Codeship can now actually push data back to the Bitbucket repository .
The next task for us is to manage the control flow of the project once the code has been pushed to the
repository. What steps do we need to take so that the compiled result can be served to users? There’s a plug-
in that can be added to Bitbucket to make this process smooth and also allow for additional functionality,
called Aerobatic .

 Essentially, Aerobatic is an advanced version of GitHub Pages with additional features. Aerobatic
makes it easier to deploy a static site from your Bitbucket repository, and it offers features such as basic
authentication and automatic deployment of the newer version of a site, once it comes back from being
processed in Codeship. Aerobatic is in Figure 13-30 , and can be found at https://www.aerobatic.com/ .

https://www.aerobatic.com/

CHAPTER 13 ■ OPEN JEKYLL?

311

 Installing Aerobatic to your Bitbucket repository is very straightforward. Click Install Bitbucket Add-On
on Aerobatic’s web site as shown in Figure 13-30 . After that, you should be presented with the OAuth screen
shown in Figure 13-31 .

 Figure 13-30. Site manager for Bitbucket Aerobatic . This plug-in installs on the Bitbucket account after being
authenticated. Use this plug-in to access advanced features like authentication and site updates.

 Figure 13-31. OAuth for Aerobatic plug-in. Click the "Grant access" button on this screen (not shown in the
image) to get Aerobatic on your account.

CHAPTER 13 ■ OPEN JEKYLL?

312

 Aerobatic actually lets us do more than what we previously described and also what we would get from
GitHub Pages. Note that GitHub Pages is fundamentally a platform designed to run sites built with Jekyll,
whereas Bitbucket doesn’t have a similar architecture. It is actually built in Python, but in any case, Bitbucket
and Aerobatic are more focused on hosting static sites that might not only be Jekyll-built. Just like Bitbucket,
Aerobatic is more general; it will host any sort of static pages that aren’t even organized as a site or project
with a parser. After installation, you will see in your account dashboard a new tab for Aerobatic. Clicking it
reveals the settings, as shown in Figure 13-32 . The beauty of Aerobatic is that it strives to be a fully featured
theme manager, so it comes with a few basic HTML5 themes that can be installed and hosted in a repository
with a single click. This one-click installation, followed by hosting within a repository, makes Aerobatic a
very powerful companion even for small projects. We use it to assist in hosting our design studio’s main
site and simplify the workflow for adding new plug-ins or rebuilding easily after new features get added. To
understand how this new plug-in will help us, we first need to create a new workflow involving a repository
that is hosted and managed by Aerobatic.

 Figure 13-32. Confirmation that Aerobatic was installed in Bitbucket. Below the confirmation message are
the settings available to Aerobatic. To get started, specify which repository to use for hosting

 At this point, we have installed Aerobatic to the Bitbucket account and now we need to think about the
deployment pipeline and how it will integrate with Aerobatic. Essentially, the idea is that we want to simplify
our workflow so that the cloud compiler can access data and push back results without interfering with our
hosting process.

 The workflow using Aerobatic with the Bitbucket account for hosting is shown in this schematic.

 Schematic

 Repository commits =======> Master
 |
 |
 Cloud compilation result =============> New branch (managed by Aerobatic)
 |
 |
 Hosted website (managed by Aerobatic)

 Let’s go through it to understand it properly. For our design studio, we create two branches: a master
branch and an aerobatic branch. The workflow begins with a commit to the master branch. This commit
triggers Codeship to recompile Jekyll because we have the commit hook set up in a way that it listens for
commits to the master. Recall that we did this in Figure 13-25 . After the commit is made and Codeship
is done, the resulting site needs to be pushed back, and Rake takes care of that. The resulting site will

CHAPTER 13 ■ OPEN JEKYLL?

313

be pushed back to a new branch; we can call it aerobatic, but the point here is that we are trying to keep
the source code free from the hosting production code. When the compilation is done, Rake will push
the result to the new branch and we will configure Aerobatic to host the contents of this branch. In this
manner, the source code is kept in a different branch and the result is kept in a different branch that will
continuously get updated from each update. The end result is still the same: Make edits to master and those
edits will eventually make their way into the site from the new branch. This concludes our walkthrough of
Codeship and installing Aerobatic on Bitbucket. Now we can finally get started creating the design studio.
As we go through implementing the features for the design studio, we have to divide them into categories:
advertisement, deployment, plug-ins, shopping cart, prototyping, cards, and finally customer support.
For each of these categories, we talk about the tools best suited to do the job and provide a brief overview
regarding how these tools can make you more efficient.

 Solid Studio
 The theme that we will be using for the design studio is called Solid. It can be found on the Jekyll Themes
web site at https://github.com/st4ple/solid-jekyll . This theme is designed for agencies or freelancers.
The theme is almost a perfect match for us in terms of compatibility and required features. It has a
minimalistic and elegant layout, with the relevant information about a studio on the home page. Aside
from the content, this theme is usable out of the box; because of that we won’t be spending time editing the
theme. Instead, we focus entirely on implementing the features we discussed earlier. So far, we have had the
luxury of being able to push our code and see the results instantly on a site generated by GitHub Pages . In
this case, you won’t be seeing the compiled web site until after Aerobatic has finished hosting it. If you want
to see if your newly downloaded Solid theme works, just run jekyll build in the extracted zip folder. Here’s
the output you should obtain from Jekyll locally.

 C:\Users\Vikram\Desktop\solid-jekyll-master\>jekyll build
 Configuration file: C:/Users/Vikram/Desktop/solid-jekyll-master/_config.yml
 Source: C:/Users/Vikram/Desktop/solid-jekyll-master/
 Destination: C:/Users/Vikram/Desktop/solid-jekyll-master/_site
 Incremental build: disabled. Enable with --incremental
 Generating...
 Build Warning: Layout 'none' requested in feed.xml does not exist.
 done in 3.064 seconds.
 Auto-regeneration: disabled. Use --watch to enable.

 Fiverr and Gumroad
 The first feature we want to build is the ability to advertise our services on other platforms and make a
credible name for our design studio. Users will only buy services or web themes from a trusted source
and using a different platform to get started will only give us another avenue to convert users into paid
customers. Fiverr is an online marketplace where freelancers offer services (or gigs as they are called) to
customers. The name of the web site came from a large number of gigs worth only $5. If you browse Fiverr
or search for design or web-related gigs, there are thousands available. A sample design gig is shown in
Figure 13-33 . For a design studio, individuals can create Fiverr profiles and set up low-priced gigs that are
unique to their own specialty. In a sense, this is how a design studio operates in the early stages: You have to
get customers paying for services; through their referral, you can get more clients. Fiverr makes that process
incredibly easy and also puts your design studio in front of thousands of potential clients.

https://github.com/st4ple/solid-jekyll

CHAPTER 13 ■ OPEN JEKYLL?

314

 Aside from gigs, there are some very interesting features available on the platform. One of the most
useful and powerful features is the availability of pricing packages. This is very handy in two ways. First,
the seller (or freelancer) can provide multiple levels of a gig, such as a simple version for $5 and premium
versions that include additional services. You can split up a web service that you would offer on your own
web site into several simple gigs and then create packages that will offer more features accordingly. The
second advantage of using packages is to combine several gigs into one collection and charge for the whole
package. This second option is seemingly close to a web design package that you would want to offer from
your own studio. The importance of testing the pricing and composition of packages before you start selling
them from your own web site can’t be overstated. A sample of some collections currently being sold on
Fiverr are shown in Figure 13-34 .

 Figure 13-33. An example of a logo design gig sold on Fiverr. In this case, clicking on the gig takes us to the
purchase page where we see that the basic gig is $5 and this premium gig is worth $30.

CHAPTER 13 ■ OPEN JEKYLL?

315

 Whereas Fiverr is a marketplace for small gigs and services, Gumroad is a marketplace for digital
products to be sold with a variety of payment structures, including subscription. Gumroad comes into play
when you have customers interested in a few of your most popular gigs, and you want to target them and
sell guides or ebooks that those customers can use to take their own projects a step further. You can even
use your MailChimp subscribers to generate leads for sales. One really interesting feature in Gumroad is
subscription-based pricing of products that you can use to do presales, sell Jekyll themes as zip files, or
continually sell request-based guides and ebooks. Let’s go over how subscriptions work, sign up for an
account on Gumroad, and perform a very brief walkthrough. Start by clicking on the top navigation bar
notifications to add a product, as shown in Figure 13-35 .

 Figure 13-34. Two of the trending collections available on Fiverr. Notice that both of these collections deal
with web design: One talks about SEO and page views, and the second is about video marketing. In a similar
manner, you could make a collection from your gigs and sell your package of web services to test the waters.

 Figure 13-35. Getting started with adding a new product from the Gumroad dashboard

CHAPTER 13 ■ OPEN JEKYLL?

316

 When you click Add a product, you are presented with options for what type of products can be added,
as shown in Figure 13-36a ; in this case, select Digital product. This will further show options like adding a
product sale, a subscription for a product, and collecting preorders. Select Subscription and provide a name,
as shown in Figure 13-36b . After giving a name to the subscription, you have the option of customizing it.

 Figure 13-36a. Selecting the type of product to add in Gumroad. We will go with a digital product.

 Now we need to add more details to our subscription, particularly about the name of the product, what
exactly are we selling, what the price will be, and if you want your new customers to get the last update you
sent to your product. The customization features are shown in Figure 13-37 . After the customization, you can
save the changes from top of the page and your product will be ready to be sold on Gumroad. This overview
is not comprehensive, but it does cover the basic features needed to start using and selling on Gumroad.

 Figure 13-36b. Naming the subscription and setting the price per month that the user needs to pay

CHAPTER 13 ■ OPEN JEKYLL?

317

 Updates are sent as e-mails with file attachments that go out to your subscribers. Once you have
subscribers, you can send them updates about how the product is coming along in the case of presales or
upcoming features and updates to the content of their current subscription. There are many possibilities
involving what you can send through these updates: You can send your subscribers new book chapters,
videos, or other digital content, which can be downloaded directly from the update e-mail.

 YouTube and Wistia
 Video marketing is new, but very lucrative, simply because people like videos more than they would enjoy
reading text that describes features and updates. A person explaining why you would want to use something,
how it could help you, and a touching story of how a product helped a user is far more persuasive than
reading testimonials and white papers prepared by product managers. Videos on YouTube about products
and people reviewing those products have become a common way of reaching mass audiences. Uploading
to YouTube has become as easy as having a mobile device, and the new platform even offers several editing
features in the browser so you don’t have to do offline editing. This has made the process incredibly fast,
and it has become easier to create high-quality videos. Recently, YouTube introduced cards along with
annotations that can be overlaid on videos at specific times throughout the video. The addition of cards also
comes with a unique feature of collecting donations for a charity or nonprofit of your choice.

 Figure 13-37. Customizing the subscription sale page. The page contains options for adding a cover photo,
name of the product, description, and price.

CHAPTER 13 ■ OPEN JEKYLL?

318

 We can take advantage of this new feature and annotate our videos for community fundraisers. This
might seem puzzling: A design studio doing a fundraiser? Indirectly, there is an advantage to doing this, as
the nonprofits who are taking the proceeds from donations might develop closer partnerships with your
studio and eventually become clients. You are doing a community good with the videos that you already
made available publicly and in the process you establish credibility with charities, who could develop into
future clients. To get started, log in to your YouTube account and click Creator Studio from the top-right
drop-down menu shown in Figure 13-38 .

 Figure 13-39. Creator Studio mode lists the videos uploaded by the account, and clicking Edit reveals the
cards

 Figure 13-38. Reaching the Creator Studio from the account options. Ignore the 0 subscribers

 The Creator Studio provides in-browser video editing and annotation services. In the Creator Studio,
you will see the videos you have uploaded; an example video is shown in Figure 13-39 . Click Edit button
to reveal the options, including Cards. Edit mode launches with the video in the left pane and the editing
options on the right side of the screen. The video is displayed with several pointers for the timeline and these
are all put in place so that you can place annotations or other features easily at the appropriate time, and
you can even control the duration for which the annotation appears. Click Add card option on the right and
select Donation, which brings you to a search bar and lets you pick to which charity you want to donate. It
might be a good idea to reach out to a local chapter of that nonprofit so that they know you are sending them
some traffic and donations. Edit mode is shown in Figure 13-40 .

CHAPTER 13 ■ OPEN JEKYLL?

319

 Wistia was founded in 2006 as a video hosting and analytics company. You can think of Wistia as a more
serious cousin of YouTube, designed for video marketers who want in-depth analytics and data on how their
videos are performing. Here are some of the most interesting features that Wistia offers that a design studio
might be able to take advantage of.

• Heatmaps: In Wistia, every video view generates a heatmap, which shows exactly
which parts of the video were watched, skipped, and rewatched. These trends
become very valuable data that can be tracked over time that might influence your
overall video marketing strategy.

• Better quality: The streaming server for Wistia automatically determines each
viewer’s connection speed and delivers the best quality video within those
parameters to avoid buffering.

• Calls to action: Just like YouTube, Wistia offers a version of cards and annotations,
but these annotations can be animated and have other valuable features. If you have
a video that shows how to add a new feature to a particular theme, wouldn’t it be
helpful if you could add a call to action toward the viewer to download that theme
and make those edits, too? This can allow you to turn passive viewers into active
members or even paid customers.

• E-mail lists: At some point during the video, you can ask the user to subscribe
using a call to action for the viewer entering an e-mail address. You are offering free
content that’s valuable to the viewer; in return, they could easily become a lead for
sales down the line.

• Customization: The video player and controls of that player can have a custom
theme or colors to ensure that the video fits in with the design of your web site.

 Shopping Cart
 We started by talking about using other platforms to advertise your products and services, but eventually
you will have to start selling packages and services from your own design studio as well. We need to add a
shopping cart to our design studio, and to do so we use Snipcart. It integrates very nicely with many other

 Figure 13-40. Edit mode with the Add card feature displayed. Click Create next to Donation to add a
donation card at a certain time during the video.

CHAPTER 13 ■ OPEN JEKYLL?

320

static site generators and therefore it is a good choice to use with Jekyll. In addition, the process of adding it
along with new items to the web site is something you have seen and done repeatedly in the past. Let’s first
clean out our old build in the local folder using the jekyll clean command.

 C:\Users\Vikram\Desktop\solid-jekyll-master>jekyll clean
 Configuration file: C:/Users/Vikram/Desktop/solid-jekyll-master/_config.yml
 Cleaning C:/Users/Vikram/Desktop/solid-jekyll-master/_site...
 done.
 Nothing to do for C:/Users/Vikram/Desktop/solid-jekyll-master/.jekyll-metadata.

 That should clean up the _site folder for us, and we will recompile the site after we have integrated
Snipcart. This shopping cart relies on site.data variables as a catalog of products to be sold. Create a _data
folder in the theme and add a file in that called products.yml that has the following contents .

 - name: Change by Design
 price: 29.99
 slug: change-by-design
 sku: CBD
 image: http://d.gr-assets.com/books/1348453734l/6671664.jpg

 - name: Creative Confidence
 price: 16.90
 slug: creative-confidence
 sku: CC
 image: http://d.gr-assets.com/books/1375677702l/17288649.jpg

 - name: The Art of Innovation
 price: 16.34
 slug: art-of-innovation
 sku: AOI
 image: http://d.gr-assets.com/books/1429647369l/40958.jpg

 As you can see, this is the metadata for the three books we want to sell on the page, and all of it is stored
inside the _data folder so it can be accessed using site.data variables. All we need now is to create a new
page called books.html to render this data along with the images.

 layout: default
 title: Books

 <div class="home">
 <h1 class="page-heading">Books</h1> # Header of the page

 <ul class="products-list"> # List of books from products.yml file
 {% for product in site.data.products %} # For loop going through each book

 # Display the image first

 {{ product.name }} # Followed by the product name

CHAPTER 13 ■ OPEN JEKYLL?

321

 <button class="snipcart-add-item" # Finally, add the purchase button
 data-item-name="{{product.name}}"
 data-item-id="{{product.sku}}"
 data-item-image="{{product.image}}"
 data-item-url="{{site.baseurl}}"
 data-item-price="{{product.price}}">
 Buy it for {{product.price}} $ # data-item variables provide info to

Snipcart
 </button>

 {% endfor %} # Closing the for-loop

 </div>

 This will create a very rudimentary page that contains the images of the book followed by the price and
a buy button. All the data item variables provide the information that Snipcart needs to process the items
and make it through checkout. To see how it looks, you can generate the web site locally and see the cart,
and you can browse to localhost:4000/books.html and see it in action. A sample books page is shown in
Figure 13-41 . Note that you will not be able to do a complete checkout when you are viewing the site locally.
Snipcart will not be able to validate prices, but once it is deployed to production, the cart will work. Snipcart
is only one way to integrate a shopping cart into the web site; you could also use payment providers such
as Stripe directly to pay for services. Those services have excellent guides on how to integrate the payment
APIs. Another very easy-to-use payment platform is Helium. It allows customers to pay using a simple form
that slides in over your web site. Without being taken to another page, visitors can pay on the spot using
any major credit card. They don’t even need to create an account. Although Helium integrates very easily
into web sites, you don’t necessarily have to have one. The product page can be hosted on Helium itself, so
all you need to do is e-mail, tweet, or post that link for customers to pay. This concludes our discussion of
adding a shopping cart. Next we discuss about InVision and prototyping .

 Figure 13-41. Snipcart in action, after being deployed locally

CHAPTER 13 ■ OPEN JEKYLL?

322

 Prototyping in InVision
 For a design studio, getting clients and providing them with initial prototypes is almost two thirds of the way
to closing the deal. Most designers presently use InVision for rapid prototyping and, more important, to give
live and interactive demos. This might be the most important tool in your tool set that we have discussed so
far, as almost any modern design studio must learn how to use and navigate through InVision. The reason
for using InVision is very simple: Static demos of product features are not as tangible as a live, interactive
demo that the user can navigate through and feel as an almost real version. InVision provides the ability to
create clickable demos from static Photoshop UI elements. It’s great for taking images and making clickable
image prototypes that go from screen to screen, and you can see how a feature is actually supposed look.

 The closer your clients feel to seeing the polished or finished product, the more satisfied they will be
with your work. Even more important, InVision’s demos help the client see even small interactions like how
one click takes the user from one screen to another. They can pinpoint any issues that they encounter, saving
both you and them some valuable time. Essentially, InVision is design-driven project management. This is
important to realize because the same type of thinking involved in creating Jekyll-based web sites can be
carried over to designing wireframes or prototypes. Most of the work involved in designing these clickable
demos originates in the static mockups that designers create using Photoshop and UI kits. They can often
take common elements such as sliders or menu bars from design kits and use them in their own projects.
InVision takes this process a step further by allowing the drop-down menu to actually appear when clicking
a menu bar item. It makes that menu bar navigation item come to life by assigning properties to it in a new
fashion. Some of the most impressive add-ons that come from InVision are the UI or mobile design kits
created by them and offered for free. These kits are perfect for creating mockups that can be used later in the
web interface for converting them into demos. Here are the UI kits offered by InVision currently .

• TETHR: iOS mobile applications design kit, available at http://www.invisionapp.
com/tethr

• DO: Clean, minimal, colorful, and Retina-ready for all kinds of iOS apps, available at
 http://www.invisionapp.com/do

• NOW: Cross-platform design UI kit, available at http://www.invisionapp.com/now

• Craft: When prototyping applications, we often leave items such as drop-down lists
empty, but Craft automatically populates text-based objects with names, e-mail
addresses, countries, cities, and ZIP codes from a preset database. The idea is to
provide contextually relevant content to make your demo and UI flow smoother.
You can also do the same with photos using Craft: Either upload them from your
computer or a web source. This is available as a feature within InVision.

 These kits should turn out to be immensely useful for designers looking to have standard elements that
they can use to create mockups. Each of these kits is general enough to have elements that both mobile and
web applications need. Although we can’t go over using InVision in our brief discussion, there are plenty of
examples both in the web interface and guides available through their Help Center. For us, though, sharing
a prototype is just as important as building one in the first place. By default, an InVision app offers a link
that you can give to your clients so that they can look through the demo themselves and play with it on their
phone. However, there are a few other ways that we want to discuss in the remainder of this section.

 Embedding an InVision prototype is a very powerful feature because you could use it directly in a blog
post or your portfolio. Additionally, one of the recent new features is to share a prototype directly to Twitter.
You can grab the InVision link for a project, paste it in a tweet, and automatically, the link will be expanded
into a clickable prototype. Basically, a GIF containing the live mockup will be attached to the tweet.
Another incredible tool to help embed InVision prototypes is called embed.ly, and this tool also works in an
incredibly simple fashion: Just grab your project link and paste it in the Embed bar to generate an embed
code that will have your live mockup. The Embed bar is shown in Figure 13-42 .

http://www.invisionapp.com/tethr
http://www.invisionapp.com/tethr
http://www.invisionapp.com/do
http://www.invisionapp.com/now

CHAPTER 13 ■ OPEN JEKYLL?

323

 Even though there is some learning curve to getting familiar with InVision and using the web interface,
it is one of the most important design tools available to a design studio. There are plenty of guides available
online that show step-by-step how to design a basic prototype in Photoshop and then how to make it come
to life in the web interface. Let’s move on to integrating live chat now.

 Customer Support
 Bitbucket is part of the Atlassian product development and management suite. This suite contains another
project management and collaboration tool called HipChat that we can use to provide customer support.
Although initially intended to be used simply for sharing files and collaboration, it can play the role of a
customer support chat room with guest access enabled. You can use the same account as Bitbucket to log
in to HipChat at https://hipchat.com/ . After logging in, you will be asked to create a new team, as shown
below in Figure 13-43 .

 Figure 13-42. Embed bar for InVision live and clickable demos

 Figure 13-43. You can use your Bitbucket account to access HipChat. Once you log in with your Atlassian
account, you will be required to create a new team and an associated team URL that other members can access

https://hipchat.com/

CHAPTER 13 ■ OPEN JEKYLL?

324

 Clicking Create a new team takes you to the next screen, which asks for a team URL. You can assign any
URL that hasn’t been taken, and this becomes the link that your team will need to use to access the HipChat
room. After that, click Create team URL, as shown in Figure 13-44 , which finalizes the process and brings
you to the chat room. At first, there is a lot going on in the chat room, but let’s break it down piece by piece.
At the top is the navigation bar, which contains a New Chat button that allows us to navigate between rooms
or message other users directly. The left side displays the room navigation bar, where you can see the chat
rooms that exist and an option to create new ones. The middle portion of the screen is actually the chat
room itself; here you can use the text bar at the bottom to chat with other users in the room and share files
with them. You can create a new room for customer support that your clients can access. At the top right is a
button to access room options that opens a drop-down menu, as shown in Figure 13-45 . Clicking the drop-
down menu shows an Enable Guest Access option; clicking that allows you to get a link that you can share
with your clients in case they need live support. Now you can provide access to the chat room by simply
taking the URL mentioned in Figure 13-45 and hyperlinking it with a button from the design studio. The link
will open the chat room and your client can be talking to a designer to resolve his or her issue. The more
frictionless this process, the higher customer satisfaction will be.

 Figure 13-44. Creating a team and then a unique team URL to access HipChat

CHAPTER 13 ■ OPEN JEKYLL?

325

 Deployment and Custom Builds
 We have already talked at length about deployment and what this process should look like, let’s briefly
review it: Push code to Bitbucket, link Codeship to Bitbucket, configure the deployment pipeline, and then
push the Rakefile and Gemfile. The last commit will be to the _config.yml file, which will trigger Codeship
to recompile Jekyll and push back the results into another branch that we can then host using Aerobatic.
First let’s clean the previous build from the local Solid theme folder, create a new Bitbucket repository called
design-studio, and then push the code to it.

 $ git push --set-upstream origin master
 Counting objects: 157, done.
 Delta compression using up to 4 threads.
 Compressing objects: 100% (151/151), done.
 Writing objects: 100% (157/157), 3.13 MiB | 68.00 KiB/s, done.
 Total 157 (delta 22), reused 0 (delta 0)
 To https://opsbug@bitbucket.org/opsbug/design-studio.git
 * [new branch] master -> master
 Branch master set up to track remote branch master from origin.

 Figure 13-45. Enabling guest access for the room. Once guest access is turned on, you'll see the room URL in
the People sidebar. Copy the URL and send it to your guests. Guests can use this URL to access the room in their
browser until guest access is turned off.

CHAPTER 13 ■ OPEN JEKYLL?

326

 Next, set up Codeship as shown previously. We are using the exact same settings, and the only
difference this time is that our commit will contain the Rakefile and Gemfile so Codeship will actually be
able to compile the project. Before we can allow Codeship to use Bitbucket, remember that we must set up
the SSH keys. Recall that we discussed how to add SSH keys to a Bitbucket account earlier, but we left out
one nuance. When you register with Codeship and configure your repository to be used in the deployment
pipeline, Codeship automatically adds the SSH key corresponding to your account. The problem is that
this key is added as a deployment key, meaning that it has read-only access to your account. We need write
access as well, and to do that, we must first remove the deployment key as shown in Figure 13-46 .

 Figure 13-46. Removing the existing deployment keys from the Deployment keys settings screen

 After removing the deployment key, you have to go back to Codeship ➤ Project Settings ➤ Settings and
then add the public SSH key to the Bitbucket account so that the key shows up under SSH keys, which will
give Codeship write access to this account. Once the keys show up on the SSH Keys page, you are ready to
start the deployment pipeline. There are three more things that must be done, and we do them all in one
commit: add a Gemfile, add a Rakefile, and make the necessary changes to the _config.yml file so that plug-
ins can work. Once we push that commit, Codeship will start the deployment pipeline. You get to sit back
and watch the magic happen. Let’s look at contents of the Gemfile (this file must be named Gemfile to work
properly).

 source 'https://rubygems.org' # Source of gems

 gem 'jekyll', '~> 2.5' # First gem to install is Jekyll

 group :jekyll_plugins do # Next is a group of jekyll plug-ins
 gem "jekyll-less" # Jekyll-less plug-ins
 gem 'therubyracer', '~> 0.12.2' # A dependency for jekyll-less plug-in
 end

 We are testing here whether Codeship can compile Jekyll successfully, and one of the ways we will see
it function is that the plug-ins will be integrated in the site. We chose a very simple plug-in, a Jekyll LESS
converter that simply converts files that have LESS syntax into the corresponding CSS. In the Gemfile, we install
the gem by calling it from the collection of plug-ins that will be associated with Jekyll. This file is all we need
for bundler to do the job. Now that the gems can be installed, we need to take care of obtaining the source and
then pushing it back to Bitbucket. The Rakefile is a bit more involved, so let’s break it down line by line.

CHAPTER 13 ■ OPEN JEKYLL?

327

 require 'tmpdir' # Create a temporary directory

 desc "Generate jekyll site" # First task, generate the Jekyll site
 task :generate do
 puts "## Generating Site with Jekyll"
 system "jekyll build" # System command to build Jekyll
 end

 desc "Generate and publish blog to Bitbucket"
 task :publish do # Publish Jekyll site to Bitbucket
 Dir.mktmpdir do |tmp| # Creating a temporary dir to move contents of _site
 system "mv _site/* #{tmp}" # Moving contents of _site
 system "git checkout -b aerobatic" # A new branch to push result back to
 system "rm -rf *" # Cleaning up
 system "mv #{tmp}/* ."
 system 'git config --global user.email "dhillonv10@knights.ucf.edu"'
 system 'git config --global user.name "opsbug"'
 system "git add ." # Authenticating and pushing the code back
 system "git commit -am 'Codeship Update'"
 system "git remote add bb git@bitbucket.org:opsbug/design-studio.git"
 system "git push -f bb aerobatic"
 end
 end

 There’s a lot of new code here, but it still draws from the same ideas discussed earlier in our generic
 Rakefile . The file starts with a system call to use tmpdir , which is a command to create a temporary space
where files can be stored for a short period. After that is the first task and its description provided by the
 desc variable. What follows is a loop named :generate that contains the task that Rake needs to perform.
Here, we just instruct Rake to issue the jekyll build command, and using system in front of it lets us issue
terminal commands. This task was simple; the next one is more complex because we push code.

 The next task is named :publish and there is a loop nested within the task loop. The purpose of the
second loop is to create a temporary directory where our files can be saved. The rest of this loop does two
things. The first part of the loop copies the contents of the _site directory (where the compiled site is saved)
and saves them in the temporary directory that was created. The second part defines the user credentials,
then it adds the changes to a commit and writes a commit message. Now it’s time to push the code. To
do so, we add the SSH address of the remote repository (which is Bitbucket) and then Git can force-push
to a new branch of that repository. The publish task does most of the heavy lifting, but the logic is fairly
straightforward.

 1. Create temporary directory.

 2. Save the contents of _site, which contains the compiled repository to the
temporary location.

 3. Define the user who will access Bitbucket and provide their credentials.

 4. Given that the Codeship SSH key has already been added to the Bitbucket
account, you just need to provide the user name and e-mail.

 5. Add the remote location’s SSH URL and push the code to a new branch.

CHAPTER 13 ■ OPEN JEKYLL?

328

 With the Rakefile added to the repository, let’s test our plug-in. The main purpose of this plug-in is to
convert LESS code to CSS, and we can test it by making a file called test.less with the following contents:

 @base: #f938ab;

 .box-shadow(@style, @c) when (iscolor(@c)) {
 -webkit-box-shadow: @style @c;
 box-shadow: @style @c;
 }
 .box-shadow(@style, @alpha: 50%) when (isnumber(@alpha)) {
 .box-shadow(@style, rgba(0, 0, 0, @alpha));
 }
 .box {
 color: saturate(@base, 5%);
 border-color: lighten(@base, 30%);
 div { .box-shadow(0 0 5px, 30%) }
 }

 This is the LESS source code that we hope gets compiled to CSS. Next, we need to make sure that the
 _config.yml file knows that our plug-ins exist. To do that, add the following line at the end of the file:

 gems: ['jekyll-less', 'therubyracer']

 Now let’s make sure everything is in order before committing these changes and then pushing the code
to Bitbucket.

• The deployment key has been deleted. SSH keys from Codeship have been added to
Bitbucket.

• The Rakefile and Gemfile are present and _config.yml has been edited to include
the gems.

• The test for your plug-in test.less is present in the repository.

 After adding these changes, commit them to the repository and then push the solid theme to Bitbucket.
As soon as you push these changes, the deployment pipeline will fire up and compile the site. The result of
the build can be seen in Figure 13-47 .

CHAPTER 13 ■ OPEN JEKYLL?

329

 Finally, we want to check if our plug-in worked. If it did, the file that we pushed to Bitbucket
(test.less) should have been compiled to test.css and its contents updated to the following CSS:

 .box {
 color: #fe33ac;
 border-color: #fdcdea;
 }
 .box div {
 -webkit-box-shadow: 0 0 5px rgba(0, 0, 0, 0.3);
 box-shadow: 0 0 5px rgba(0, 0, 0, 0.3);
 }

 Let’s take a look at the web interface, and recall that the resulting compiled code should be present in
the aerobatic branch, as shown in Figure 13-48 . The code was successfully translated to CSS, which means
our plug-in worked!

 Figure 13-47. Codeship giving us the green light: The build was successfully compiled. Notice the 10 steps it
took to compile the site, and how similar they are to what we instructed Rake to do.

CHAPTER 13 ■ OPEN JEKYLL?

330

 There are two steps remaining at this point. The first is to host the web site using Aerobatic and the last
one is to use Aerobatic to create password-protected pages. After pushing updates to the repository that
allow Codeship to work, go back to the repository overview page. In the left sidebar, under Navigation, you
should see an Aerobatic Hosting option. Click that option to open the Aerobatic hosting options page shown
in Figure 13-49 . These options are essentially similar to what GitHub Pages does for us if we define our
repository a certain way. Give your web site a name so that you can pick a URL. You can even use a custom
domain, as the free plan on Aerobatic allows for two CNAMES. Select the aerobatic branch to deploy
so the production web site always contains the latest code compiled by Codeship, a very straightforward
implementation of CI. Finally, click Create Website and Aerobatic should host the web site, providing you
a link for it. The hosting view is shown in Figure 13-50 , and this page also contains the URL of the final web
site. Notice a green label for Production on the right side, which denotes the current status of the web site.
Each time that Codeship pushes to the aerobatic branch, this hosting tool takes over and updates the web
site with the latest code so you will see an increment of version for each commit.

 Figure 13-48. The test.css file compiled from test.less showing that Codeship compiled our plug-in
successfully

CHAPTER 13 ■ OPEN JEKYLL?

331

 Figure 13-49. Aerobatic hosting plug-in . This page provides the configuration that you can edit to deploy your
web site.

 Figure 13-50. The hosting settings in Aerobatic. This page appears after the web site has been deployed, and
the box at the top provides the link for the web site. First deploy corresponds to the first version of the web
site, but Aerobatic stores the older versions as well in case you need to check a feature in an older version. On
the left side are the hosting settings; we will be using Environment variables to add basic authentication to
the web site.

CHAPTER 13 ■ OPEN JEKYLL?

332

 In Aerobatic, passwords can be enabled in the settings as environmental variables (shown in
Figure 13-51) for the deployed site. Remember the books.html page we made? Let’s put that page under
basic authentication. To do so, create a folder called books and put the books.html file inside that folder.
Now rename that file index.html so that books come up if we browse the sitename.com/books/ address.
First, we need to tell Aerobatic to add password authentication. Create a new file called package.json ; its
contents are shown here.

 {
 "_aerobatic": {
 "router": [
 {
 "module": "basic-auth",
 "path": "/books",
 "options": {
 "username": "$BASIC_AUTH_USERNAME",
 "password": "$BASIC_AUTH_PASSWORD"
 }
 },
 {
 "module": "webpage"
 }
]
 }
 }

 Figure 13-51. The answer to life, the universe, and everything else . Add the two environment variables defined
in the package.json file, BASIC_AUTH_USERNAME and BASIC_AUTH_PASSWORD , with a value assigned to them
here. This should enable password authentication for the contents of the books folder.

CHAPTER 13 ■ OPEN JEKYLL?

333

 Further Reading
 1. Prototyping tools: https://www.enolalabs.com/blog/archives/best-app-

prototyping-tool-proto.io-vs.-invision-vs.-marvel

 2. MailChimp + Gumroad integration: https://connect.mailchimp.com/
integrations/gumroad-integration

 3. Video data and analytics: http://wistia.com/blog/incorporating-video-
data

 4. HipChat documentation: https://confluence.atlassian.com/hipchat/
hipchat-documentation-740262341.html

 5. Launching a business on Fiverr: http://blog.fiverr.com/diy-guide-
launching-successful-fiverr-business/

 6. Product subscriptions: https://help.gumroad.com/11163-Products-and-
Customizations/subscriptions

https://www.enolalabs.com/blog/archives/best-app-prototyping-tool-proto.io-vs.-invision-vs.-marvel
https://www.enolalabs.com/blog/archives/best-app-prototyping-tool-proto.io-vs.-invision-vs.-marvel
https://connect.mailchimp.com/integrations/gumroad-integration
https://connect.mailchimp.com/integrations/gumroad-integration
http://wistia.com/blog/incorporating-video-data
http://wistia.com/blog/incorporating-video-data
https://confluence.atlassian.com/hipchat/hipchat-documentation-740262341.html
https://confluence.atlassian.com/hipchat/hipchat-documentation-740262341.html
http://blog.fiverr.com/diy-guide-launching-successful-fiverr-business/
http://blog.fiverr.com/diy-guide-launching-successful-fiverr-business/
https://help.gumroad.com/11163-Products-and-Customizations/subscriptions
https://help.gumroad.com/11163-Products-and-Customizations/subscriptions

335© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0

 Appendix

 The projects in this book are powered by Jekyll and hosted on GitHub. Our projects rely on a root repository
that gets compiled by GitHub Pages, but it has a defined web address. In this appendix, we talk about how to
get a custom domain name for the projects hosted on GitHub. This will be applied to both root repositories
and project pages associated with repositories present within a GitHub account.

 Let’s begin this appendix by discussing the two different types of web sites that GitHub Pages can
compile and host. The first type of web site is created from source code present in a root repository. This web
site is available at the web address username.github.io . The second type of web site is often a single-page
template that acts as a landing page for a repository. These single-page templates are often called project
pages. The project pages associated with a repository are stored within a branch of that repository. Let’s
begin our discussion of custom domains starting with a root repository.

 Custom Domain for a Root Repository
 A web site in the root repository is compiled and made available at username.github.io . This web address
format is the default domain name provided to every root repository by GitHub. To get a custom domain for
a root repository, we need to add a file to our repository and make some changes to the domain registrar.
There are three main steps to setting up a custom domain for your root repository :

 1. Select a custom domain and register it with a domain registrar like GoDaddy.

 2. Set up your repository by creating and adding a CNAME file that contains your
custom domain.

 3. Set up your custom domain with the domain registrar.

 We handle each step separately, starting with the root repository. After obtaining a domain from a
registrar like GoDaddy, we have to prepare GitHub to recognize that our root repository will use this custom
domain. To do that, you have to create a file named CNAME and commit it to the repository. The file must be
named exactly as displayed, and in this file, add a single line that specifies the bare custom domain without
 https:// or http:// . For instance, simply use example.com , not https://www.example.com . Commit this file
and push the code to GitHub. It must be noted that there can only be one domain in the CNAME file. To confirm
that your custom domain is ready on GitHub, click Settings in your repository. You will reach the repository
settings and under GitHub Pages, you should see the custom domain that you entered in the CNAME file.

 This takes care of GitHub, and now this root repository points to the custom domain. Now we have to
adjust the domain register to redirect to GitHub. To do this, we need to edit the A records. You have to create
two A records on GoDaddy that point your custom domain to the following IP addresses:

 192.30.252.153
 192.30.252.154

https://www.example.com/

■ APPENDIX

336

 The end result should look like Figure A-1 .

 Figure A-1. Adding the two A records that point to GitHub’s IP addresses

 Once the A records have been set up, if you type your custom domain name in the browser, it should
take you to your root repository web site. Similarly, now when you type your root repository address
(username.github.io), you should reach the custom domain that you just set up.

 ■ Note Let’s talk about the three most common errors that users encounter while trying to set up a custom
domain or a GitHub repository site. The most common one is not setting up the custom domain properly in
the CNAME file. You can only have one domain in that file and it needs to be written exactly as just specified.
Another common problem is the _config.yml file where you need to adjust the url and baseurl parameters. If
a theme is pushed to Github without changing the parameters, it could cause the web site to render in a broken
manner. Finally, the third type of error is referring to a file (in Liquid by using the {% include filename.html
%} tag) that doesn’t exist under the _includes folder.

 Custom Domain for a Project Page ?
 Project pages are generally single-page web sites or landing pages associated with a repository. A project
page can be created using the Automatic Page Generator on GitHub. The generator will automatically
assign the project page a URL in the form of username.github.io/REPO-NAME . So if a repository was named
 testing , it would have a web address of username.github.io/testing . Once a custom domain name has
been assigned to a root repository, all the project pages are redirected to be under the custom domain. Using
our example of the testing repository, its new address will be custom-domain.com/testing . In a case where
the project page repository is renamed, all the links will be updated to the new URL.

 Project pages can also be created manually. Much like a root repository that stores the source code for
a Jekyll web site, a project page is stored in a gh-pages branch that contains the code for the single-page
template. Often, the templates that power project pages are simple HTML pages, but the gh-pages branch can
compile Jekyll code if it is present. In this case, there is no automatic page generator; we simply push a Jekyll
theme to the gh-pages branch of a repository. The process of manually creating project pages is very simple.

 1. Create a regular repository as shown in Figure A-2 .

 2. Clone this repository locally following the instructions on GitHub.

 3. Commit Jekyll code to this repository.

 4. Create a gh-pages branch, make edits to the code, and push it online.

■ APPENDIX

337

 Let’s take a look at the last step. To create a new branch, you need to use the git branch command:

 $ git branch gh-pages
 $ git checkout gh-pages
 $ git branch
 * gh-pages
 master

 Once you are on the gh-pages branch, you can start making edits to the theme as if you were editing any
other Jekyll-based project. The reason for making the edits only to this branch is because the source code
present in this branch will get compiled and made available online as a project page. Now pushing code to
the gh-pages branch also requires special consideration for the first time. You can’t use git push and expect
it to work because Git does not know what to do with this new branch. To push the code to GitHub, we have
to tell Git to set up a branch in the remote location called gh-pages that will be synced to this local gh-pages
branch that we just created. In this manner, all the local changes to the gh-pages branch get pushed online
and consequently to the project page.

 $ git push --set-upstream origin gh-pages

 To https://github.com/jekyll-mini-blog/random-repo.git
 * [new branch] gh-pages -> gh-pages
 Branch gh-pages set up to track remote branch gh-pages from origin.

 The bold line shows that a new branch was set up in the remote location to be synced with our local
branch. This is exactly what we need because any changes we make to the gh-pages branch get compiled
and carried over to the project pages web site. After this first time, you can push your changes by simply
using git push because now Git knows exactly where to push the changes.

 Figure A-2. Creating a project-page repository on GitHub

■ APPENDIX

338

 ■ Note This project page is essentially a Jekyll-powered web site. To make changes, you would have to make
sure that you are on the gh-pages branch because that branch holds the code that eventually gets compiled.
Making changes to the master and pushing them to GitHub will not do anything at all. Use git branch to check
your current status.

 Configuring Jekyll-Powered Project Pages
 Essentially, all the configuration of a Jekyll site carries over to project pages. The only difference here is that
all the code lives in the gh-pages branch instead of a master. However, there is one noteworthy difference
in project pages. For most of our projects, we have kept the baseurl variable empty, but now we can use it
very effectively to route links for the project pages web site. This section also helps illustrate the difference
between site.baseurl and site.url more practically. For a project pages web site, the url assigned to it is
the custom domain that has been configured for the root repository. The baseurl is the URL assigned to the
project pages web site. Let’s look at an example for the random repository that we created. That repository
was given the web address jekyll-mini-blog.github.io/random-repo and this is the complete URL. To
configure the link routing for this web site, in the _config.yml file, we would have to use

 baseurl: '/random-repo'
 url: "http://custom-domain.com"

 In this example, it is easy to see why we need to define baseurl . The project pages web site is under the
root address (username.github.io). If we were to use site.url to create navigation links, we would end up
with links that point to locations that do not exist. For example, imagine a page with a permalink about and
if we used site.url to navigate, we would have a final URL that looks like username.github.io/about . That
page does not exist, and we need to use the baseurl assigned to the project pages site for this link to function
properly. We need to configure our navigation to use the baseurl variable that contains the project pages
address as well, so the links don’t point to the root repository. Going back to our example, if we used site.
baseurl instead, the final URL would look like username.github.io/random-repo/ about , which is exactly
what we need.

 Domain Directory
 A URL of the type username.github.io/ random-repo contains an attachment often called a domain
directory . In a hosting environment, the random repository portion of the URL represents a folder named
 random-repo and browsing to that address will show you the contents of that folder. In this case, we are using
GitHub as our host and we have a somewhat restricted hosting environment. As mentioned before, GitHub
is not a hosting platform, but it works very well for almost everything that we need. One of the shortcomings
that results from using GitHub as the host is that project pages cannot be assigned custom domains. When a
custom domain is assigned to a root repository, all the project pages are redirected to be under that domain,
but a project pages web site can’t have a custom domain name for itself.

 The same holds true for subdomains. A subdomain can be created from a domain, in the form of
 random-repo.custom-domain.com , but when using GitHub, there are a lot of modifications that need to be
made at the domain registrar. Some of these changes could result in unexpected behavior for routing or
linking, and therefore it is not practical to create subdomains. On GitHub, we are only limiting ourselves
to creating domain directories, not subdomains. Even if we were to create a subdomain, it would point to
the domain directory URL, but the process of creating it at the registrar has been known to cause issues.
Overall, GitHub provides a very simple and effective means to host a web site or any of the project created
throughout this book, but advanced features require a shared web hosting service.

339© Vikram Dhillon 2016
V. Dhillon, Creating Blogs with Jekyll, DOI 10.1007/978-1-4842-1464-0

 A
 Advanced Research Projects Agency Network

(ARPANET) , 4
 Aerobatic , 310–313, 325, 331
 AJAX , 15, 17
 Application programming interfaces (APIs) , 13

 B
 Bash shell , 203
 Bitbucket

 account settings , 298–299
 aerobatic , 311–312
 branch dialog box, creation , 296
 Codeship , 298
 Commit option , 294
 dashboard , 291, 293
 deployment keys , 297
 git checking new_branch_name command , 294
 vs. GitHub , 292
 GitHub’s web interface , 296
 Jekyll project , 299
 navigation functions , 294
 navigation options , 295
 OAuth option , 299
 repository

 actions in sidebar , 295
 creation , 292–293
 dashboard , 294
 new repository overview , 301
 settings , 297

 source view, navigation bar , 296
 SSH keys , 298–299
 user name and repository address , 300

 Blogging . See also Photo blogging; Technical
blogging

 Code Editor (see Code Editor installation)
 HTML, CSS, and JS. HTML , 54
 packages , 18
 theme, GitHub

 download , 91
 fi les and folders , 92–93
 Kactus , 91–92
 style assets folder , 93

 Bootstrap
 blog page , 59
 drop-down menu , 54–55
 MaxCDN import statements , 57
 panel component , 58
 templates , 55–56
 themes creation , 56
 top bar , 57

 Brunch , 29–30
 Bundler , 301, 302, 305, 326

 C
 Cards UI

 aggregation of information , 231
 creation

 CodePen , 232, 236
 external CSS fi les, importing , 234
 extra-content class , 237
 HTML, CSS, and JavaScript , 233
 image-based card , 236
 pen settings dialog , 233
 profi le card , 234
 rapid prototyping , 232
 Semantic UI , 232
 tags , 237–238
 text and action button , 234

 mobile and responsive designs , 231
 styles, content elements , 232
 text-based information , 231
 Twitter and Facebook , 231

 CLI . See Command-line interface (CLI)
 Code Editor installation , 93
 CodePen , 67, 232
 Codeship

 aerobatic , 310–311
 Bitbucket , 310

 Index

■ INDEX

340

 repository , 305, 310
 SCM , 305

 bundler , 306
 cloud environment , 307
 confi guring deployment pipelines , 308
 continuous integration service , 303
 custom Script option , 308
 deployment commands , 309
 deployment pipeline , 307–308
 drop-down menu , 309
 home page , 304
 navigation bar , 304
 project settings , 307, 309
 rake generate and rake publish tasks , 308
 register commits , 307
 Ruby environment , 305
 search bar , 305
 setup commands page , 306
 site manager, Bitbucket aerobatic , 311
 SSH keys , 309–310
 test pipeline , 306

 Command line , 203
 Command-line interface (CLI) , 45
 Compass , 66, 69–70
 Content delivery network (CDN) , 137, 155
 Content guidelines , 238–239
 Content management system (CMS)

 admin panel , 23
 features , 22

 Continuous integration (CI)
 account creation , 304
 Bitbucket account , 304
 Codeship , 303
 git , 303
 rake and bundler , 303

 Custom domain
 project page , 336, 338
 root repository , 335–336

 D
 Defense Advanced Research Projects Agency

(DARPA) , 4
 Disqus embed code , 192
 Distributed development model, Git

 branch and head , 207
 clone command , 208
 diff command , 209
 git pull command , 208
 header, summary and diff , 210
 HTTPS and SSH protocol , 211
 patch , 209–210

 Domain directory , 338
 Domain name system (DNS) , 172

 Dope editing
 blog , 148–149
 blog-post layout , 151–152
 embedding photography , 153–154
 footer , 149–150
 navigation bar , 145
 photography features , 146–147
 portfolio , 148

 Dopetrope theme , 140
 Dot-com bubble , 15

 E
 European Nuclear Research Organization

(CERN) , 6–7
 Extensible Markup Language (XML) , 13
 Extreme Programming (XP) , 107

 F
 Fiverr , 313, 315–317
 FiveTh irtyEight blog , 22
 Folders

 drafts and confi g , 74
 _includes , 74
 layouts , 75–76
 posts, data, and site , 76–77
 root , 73
 structure , 73–74

 Foundation , 59–61

 G
 Galactic network , 3
 Galactic supernetwork , 4
 Git

 access
 CLI , 45
 GUI , 45

 add, commit, and push commands , 212–213
 add fi les command , 206
 command line , 203
 distributed development model (see Distributed

development model, Git)
 downloading, Git-scm web site , 202
 git confi g command , 215
 GitHub client , 46
 GitHub desktop , 202
 git status command , 205
 HTTP cloning , 214
 installation , 47
 Linux kernel development , 44
 log , 206
 master branch , 202
 menu options , 203

Codeship (cont.)

■ INDEX

341

 MinGW , 203
 repository

 commit objects , 204
 Git Bash console , 205
 references , 204
 setup page , 212

 root commit and commit message , 206
 tutorial site , 46
 version control, terminology , 44–45

 GitHub Flavored Markdown (GFM) . See Markdown
 Graphical user interface (GUI) , 45
 Gumroad , 313, 315–317

 H
 Hexo , 27
 HipChat , 323
 Hugo , 28

 I
 Information delivery platform

 blog format , 229
 content itself , 229
 GitHub , 230
 high-quality documentation , 230
 limitations and diff erences, GitHub , 230
 parties involved , 230

 Information superhighway , 4–5
 Inheritance , 84–85
 Internet

 AOL, marketplace , 8
 ARPANET , 4
 boom and bust cycle , 16
 commercial internet, CERN , 6–7
 DARPA , 4
 galactic network , 3
 information superhighway , 4–5
 packet-based networking , 3
 profi le-based platforms , 21
 user-based profi les , 21

 IPython , 198–199

 J
 JavaScript Object Notation (JSON) , 13
 JavaScript packages , 18
 Jekyll

 build tools , 301–302
 collections , 176–177
 design studio , 267–268
 installation , 85–86
 workfl ow , 48

 Jekyll Material Design Lite , 247
 Jekyll-powered project pages, confi guration , 338
 jQuery , 18

 K
 Kactus , 91–92

 About page , 96
 AddTh is or Flare , 99
 disqus , 95
 navigation.html , 95
 pagination , 96
 post_list.html fi le , 98
 profi le , 99

 _includes folder
 baseurl and site.url , 98
 pagination , 97

 _layouts folder , 100–102
 _posts folder , 103–104

 Kactus, GitHub desktop
 add, commit, and push , 115
 archive , 125–126
 cleaning up , 132–135
 comments , 127, 129
 font-awesome , 116–117
 git repository, set up , 113
 initial commit , 113, 115
 MailChimp, set up (see MailChimp)
 navigation , 118–119
 page profi le , 120
 pagination , 120
 post list , 121, 123
 publishing changes, repository , 116
 repository cloning , 114
 share buttons , 123–124
 tutorial , 113

 KaTeX , 196–197
 Kramdown , 38

 L
 LESS

 advantage , 65
 debugging feature , 67
 syntax , 66

 Liquid and handlebars
 objects , 82
 page variables , 83
 paginator variables , 84
 site variables , 83
 tags , 80–81

 M
 MailChimp , 61

 editing page,
signup form , 132

 general forms edit , 132
 list details page , 130–131
 signup form , 129–130

■ INDEX

342

 MailChimp campaign
 campaign info page , 156–157
 column layout , 157
 confi rmation, mass e-mail , 160
 dashboard , 156
 default heading removal , 158
 editting button , 159
 error message , 160
 mailing list selection , 156
 “Picture of the Day” campaign , 160

 Markdown
 blog writting steps , 39
 coding section , 39
 content preview , 40
 Dillinger , 38
 formatting features , 41–42
 GFM , 41
 HTML tag generation , 40–41
 kramdown , 38
 Liquid , 43

 Material design
 author_bio.html fi le , 256
 authors.yml , 252, 256
 cards , 252, 255
 CDN links , 248
 _confi g.yml , 248
 content creators , 262
 CSS import , 248
 custom theme options , 248
 _data/previous.yml fi le , 257–258
 edit button , 260
 embed button , 260
 embed code, typeform , 262
 feedback collection , 261
 for loop , 255
 further_info.html , 255–256
 Get Button Code , 251
 <header> tag , 249
 _includes folder , 251
 _includes/head.html fi le , 248
 index.html , 250–251, 253
 liquid control loops , 250
 liquid tags, <div> , 253
 live updates, patient-care information

platform , 257
 MailChimp, and RSS , 248
 mdl-layout-spacer tag , 250
 more_vert button , 249
 new typeform, creation , 260
 open health care platform , 248
 search pane, Storify’s story edior , 259
 single-page application , 262
 site.data variables , 252
 social.html , 251
 specifi cations and styles , 248

 story pane, Storify , 259
 theme categories , 247
 updates.md , 258
 YAML front matter , 253
 YAML variable help_title , 253

 Metalsmith , 31
 Method chaining , 275
 Middleman , 30–31
 MinGW , 203
 Mosaic , 11–12

 N
 Nanoc , 31–32
 Netscape Navigator , 12

 O
 Octopress , 26
 Open debates

 custom style , 187–189
 home page , 174–175
 Oxford-style debate , 163–165
 phases

 embed code, poll , 185–187
 navigation , 184
 poll creation , 183
 rebuttal phase , 191
 results , 192
 styles , 184, 190
 Twitter-polls , 183

 theming
 collection , 178
 global variable , 180
 navigation bar , 178–179
 site, metadata , 178
 style elements , 181–182

 Oxford-style debate , 163–165

 P, Q
 Packet-based networking , 3
 Parsing engine

 inputs, Jekyll , 38
 Markdown , 37

 Pelican , 28
 Perez technological surge cycle , 16
 Photo blogging

 CDN (see Content delivery network (CDN))
 dope editing process (see Dope editing)
 folder structure, Dopetrope theme , 140
 Git , 141
 GitHub

 clone repository , 143–144
 description , 141

■ INDEX

343

 repositories deletion , 142
 root repository creation , 143

 GitHub desktop , 141
 Jekyll themes , 139
 project specifi cation

 broad goals , 138
 500px, hosting service , 138
 technologies , 138
 TODO , 138

 prototype , 138
 root repository , 141–142

 Plot.ly , 197–198
 Precision Medicine Initiative (PMI) , 230
 Profi le-based platforms , 21
 Project creation

 Economist Espresso app
 archive , 110–111
 prototype , 109
 scope description , 108
 two panel view , 108

 repository, naming scheme , 112
 scale , 111

 Prose
 advantages , 240
 authentication completing , 242
 code-editor mode , 244–245
 fi le-browser mode , 244
 fi le manager, Jekyll , 240
 formatting toolbar , 245
 GitHub , 240
 history panel , 245–246
 Jekyll and Backbone.js , 240
 markdown editing features, blog posts , 244
 open authentication , 240
 options button , 246
 Prose.io home page , 241
 repository browser mode

displays , 242–243
 save button, commit changes , 247
 traditional CMS systems , 240
 view project option , 241
 YAML edits button displays , 245

 Prototyping , 174–176

 R
 Really Simple Syndication (RSS) , 13
 Repository

 fork count , 166
 functionality and features view , 166
 GitHub pages

 auto-generator , 171
 DNS provider , 172–173

 project sites , 173
 redirects , 171, 173–174
 zone fi le , 173

 issues feature , 166–167
 issue statement , 167
 naming scheme , 167
 pull requests , 168
 pulse and graphs , 169–170
 types in account , 165
 Wiki feature , 169

 Representational state transfer (REST) , 13
 Reveal.js , 199–200
 RSS . See Really Simple Syndication (RSS)
 RSS protocol and feeds , 14
 Ruby

 argument , 281–282
 array , 279
 64-bit version , 272
 break statement , 278
 break() , 274
 .capitalize! , 275
 change_color() , 274
 .chomp and .capitalize methods , 275
 class , 283–284
 code editor , 273
 command executes , 270
 command prompts , 271
 components , 272
 data structures , 278, 280
 data type , 273
 def keyword, method , 281
 each-do loop , 280
 else and elsif statements , 276
 for loop , 277–278
 hashes , 279–280
 hello method , 281
 Homebrew , 270
 .include method, user_input , 276
 installation command, Chocolatey , 270
 installation process , 272
 interface , 272
 .length property , 275
 method chaining , 275
 object-oriented programming language , 269
 package manager binary fi le , 271
 puts and print commands , 274
 return statement , 282
 RubyGems web site creation , 284–289
 .select method , 280
 Ubuntu , 270
 unless statement , 276
 until loop , 277
 variables types , 273

■ INDEX

344

 S
 Self-hosting , 23
 Semantic UI , 232
 Simple Object Access Protocol (SOAP) , 13
 Software as a Service (SaaS) , 12
 Solid studio, Jekyll

 customer support , 323–325
 deployment and custom builds

 aerobatic branch , 330
 aerobatic hosting plug-in , 331
 Bitbucket repository , 325
 Codeship , 326
 environmental variables , 332
 LESS source code , 328
 publish task , 327
 Rakefi le , 326–327
 test.css fi le , 330
 test.less , 328–329

 fi verr and gumroad , 313, 315–317
 GitHub pages , 313
 prototypes , 322
 shopping cart , 319–321
 YouTube and Wistia , 317–319

 Static generator
 Brunch , 29–30
 components , 24–25
 core language , 24
 Hexo , 27
 Hugo , 28
 Jekyll , 26
 licenses , 25
 Metalsmith , 31
 Middleman , 30–31
 Nanoc , 31–32
 Octopress , 26
 Pelican , 28
 plug-ins , 25
 templating language , 25

 Static web . See also Internet
 commercial internet , 6–8
 components , 23
 information superhighway , 5

 Style
 distraction-free reading , 53
 distraction-free writing , 51
 editors , 52–53
 foundation framework (see Foundation)
 LESS , 65, 67
 Sass (see Syntactically awesome style

sheets (Sass))
 Sublime , 93
 Svbtle , 51
 Syndication , 13

 Syntactically awesome style sheets (Sass)
 CSS code , 62–63
 import function , 64
 inheritance , 64–65
 properties , 62
 themes, Skeleton , 64

 T, U
 Technical blogging

 bibliographies writing , 219–222
 equations writing , 215–218
 graph addition , 218–219
 IPython , 198–199
 KaTeX , 196–197
 notebooks , 222–223
 Plot.ly , 197–198
 presentations making , 223–224, 226
 Reveal.js , 199–200
 theme , 200–201

 Th emes , 67
 Compass , 70
 emerald , 69
 Vanilla Bean Crème theme , 68
 Whitepaper , 67–68

 Tools list , 111–112
 Transmission Control Protocol/Internet Protocol

(TCP/IP) , 4

 V
 Version control . See Git

 W
 Web 1.0 , 12
 Web 2.0

 AJAX , 17
 APIs , 13
 blogging , 17–18
 JSON , 13–14
 principles , 12
 REST , 13–14
 RSS , 13
 RSS protocol and feeds , 14
 SOAP , 13–14
 technological revolution

 deployment phase , 17
 installation phase , 16

 XML , 13
 Web browsers

 big-bang period , 17
 Mosaic , 11–12
 Netscape Navigator , 12

■ INDEX

345

 Web 1.0 , 12
 Web 2.0 features (see Web 2.0)

 Wistia , 317–319
 WordPress , 23

 X
 XML . See Extensible Markup Language (XML)

 Y, Z
 YAML

 data representation , 79
 predefi ned

variables , 78
 syntax , 77

 YouTube , 317–319

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: History and Development
	Chapter 1: Static Web
	Here Be Dragons
	Commercial Internet: CERN
	Summary
	Further Reading

	Chapter 2: Web 2.0
	Early Web Browsers
	Defining Web 2.0
	Boom and Bust
	Connecting the Dots
	Summary
	Further Reading

	Chapter 3: Static Site Generators
	The Maturing Web
	Blogging in Web 2.0
	Looking Back
	Components of a Static Generator

	Static Generators Showcase
	Jekyll
	Octopress
	Hexo
	Pelican
	Hugo
	Brunch
	Middleman
	Metalsmith
	Nanoc

	Summary
	Further Reading

	Part II: The Fundamentals
	Chapter 4: Fundamentals of Version Control
	Parsing Engine
	Markdown
	Version Control
	Installing Git
	Jekyll Workflow
	Summary
	Further Reading

	Chapter 5: Fundamentals of Style
	What Is Style?
	Bootstrap
	Foundation
	Style Sheet Management: Sass
	Style Sheet Management: LESS
	Jekyll Themes
	Summary
	Further Reading

	Chapter 6: Fundamentals of Jekyll
	Folders
	Drafts and config
	Includes
	Layouts
	Posts, data, and site

	YAML
	Liquid and Handlebars
	Tags
	Objects
	Site Variables
	Page Variables
	Paginator Variables

	Inheritance
	Installing Jekyll Locally?
	Summary
	Further Reading

	Part III: Projects
	Chapter 7: Blog-awareness
	Getting the Theme
	Installing a Code Editor
	A Kactus in the Desert
	The _includes Folder
	The _layouts Folder
	The _posts Folder

	Summary
	Further Reading

	Chapter 8: Git It Done
	Scope and Scale
	Tools List
	Just Do It
	Font-Awesome
	Navigation
	Page Profile
	Pagination
	Post List
	Share Buttons
	Archive
	Comments
	MailChimp
	Cleaning Up

	Summary
	Further Reading

	Chapter 9: Photo Blogging
	Project Specification
	Using GitHub
	Deleting Repositories
	Visual Tutorial

	Dope Editing
	Navigation Bar
	Photography Specialties
	Portfolio
	The Blog
	Footer
	Blog Post Layout
	Embedding Photography

	Content Delivery Network (CDN)
	MailChimp Campaign
	Summary
	Further Reading

	Chapter 10: Open Debates
	Rules of the Game
	Navigating GitHub
	Repository Overview
	Issues
	Pull Requests
	Wiki
	Pulse and Graphs
	GitHub Pages

	Prototyping
	Jekyll Collections
	Theming the Debate
	Phases
	Summary
	Further Reading

	Chapter 11: Open Research
	A New Platform
	KaTeX
	Plot.ly
	IPython
	Reveal.js
	Planning the Theme

	Exploring Git
	Git Internals
	Distributed Development Model

	Let’s Git Coding
	Writing Equations
	Adding a Graph
	Writing Bibliographies
	Adding Notebooks
	Making Presentations

	Summary
	Further Reading

	Chapter 12: Open Health Care
	Overview
	Introduction to Cards
	Creating Cards
	Writing a Quote Card

	Content Guide
	Writing in Prose
	Prosing Through

	Material Design
	Summary
	Further Reading

	Chapter 13: Open Jekyll?
	Now Open: Jekyll Design Studio
	A Ruby from Japan
	Playing with Ruby
	Gems of Ruby
	A Bucket of Gems

	Build Tools
	Continuous Integration
	Solid Studio
	Fiverr and Gumroad
	YouTube and Wistia
	Shopping Cart
	Prototyping in InVision
	Customer Support
	Deployment and Custom Builds

	Further Reading

	Appendix
	Custom Domain for a Root Repository
	Custom Domain for a Project Page?
	Configuring Jekyll-Powered Project Pages
	Domain Directory

	Index

