
www.allitebooks.com

http://www.allitebooks.org

Creating Dynamic UIs
with Android Fragments
Second Edition

Create engaging apps with fragments to provide a rich
user interface that dynamically adapts to the individual
characteristics of your customers' tablets and smartphones

Jim Wilson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Creating Dynamic UIs with Android Fragments
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: March 2016

Production reference: 1170316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-959-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jim Wilson

Reviewers
Nayanesh Ramchandra Gupte

Robert Dale Johnson III

Commissioning Editor
Edward Gordon

Acquisition Editor
Kirk D'costa

Content Development Editor
Mehvash Fatima

Technical Editor
Dhiraj Chandanshive

Copy Editor
Shruti Iyer

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jim Wilson is the President of JW Hedgehog, Inc., a consulting firm specializing
in solutions for the Android, iOS, and Microsoft platforms. He has over 30 years of
software engineering experience, with the past 15 years heavily focused on creating
mobile device and location-based solutions. Jim cofounded multiple software-related
startups and has served in a consulting role at several more. After nearly a decade as
a Microsoft Device Application Development MVP, he now focuses on developing
Android and iOS device applications.

Jim's passion is mentoring software developers. He is a regular contributor of
Android, iOS, and Xamarin training material at Pluralsight (http://training.
jwhh.com), a leading provider of online developer training. Jim has authored more
than 30 articles on device application development and has served as a contributing
expert on mobile software development issues for a variety of media outlets.

Jim and his wife, along with several cats, split their time between Celebration,
Florida (just three miles from Walt Disney World) and Weirs Beach, New Hampshire.
You can take a look at his blog (http://blog.jwhh.com) where he talks about a
variety of mobile software development issues as well as the adventures of a life split
between the busy region of the "House of Mouse" and the quietness of NH's lakes
and mountains.

You can reach Jim at androidtraining@jwhh.com.

www.allitebooks.com

http://training.jwhh.com
http://training.jwhh.com
http://blog.jwhh.com
http://www.allitebooks.org

About the Reviewers

Nayanesh Ramchandra Gupte is an enthusiastic Android professional based
in Bengaluru, the Silicon Valley of India. He is a full stack Android engineer and
has explored Android for more than 5 years. Till date, Nayanesh has worked with
different organizations and developed more than 40 Android applications. Some of
these apps are featured with Top Developers Badge on Google Play. Programming,
especially in Java and Android, is not just a part of his career but his passion as well.

Besides being a software engineer, Nayanesh works as an Android consultant and is
associated with the Google Developers Group based in Bengaluru. Writing personal
blogs and articles on Java and Android remain a few of his interests. He works as a
professional Android trainer and pursues teaching and illustration as his hobbies.

Associated with one of the e-commerce giants in India, Nayanesh is part of the core
engineering team. He also works closely with the Product and UX teams to build a
next-generation platform for e-commerce.

You can get in touch with Nayanesh through various channels at https://about.
me/NayaneshGupte and https://www.linkedin.com/in/nayaneshgupte

To begin with, I credit my parents who have always nurtured my
dreams and constantly supported me in making them come true.
I thank my wife, Aakanksha, and my in-laws, who have trusted my
dynamic decisions while I hopped cities and organizations with the
aim of improving my career. I sincerely thank Mr. Sudarshan Shetty,
my guide, because of whom I got engrossed in Java and Android.
His teachings have brought me a long way. I am sure there is much
more to explore. I owe a lot to my best buddies, Saurabh Lele and
Rahul Gangal, since it was all because of them that I decided to
get into this field of programming. The journey would have been
incomplete without my colleagues and mentors Rishi and Vishal
from whom I learnt what a passion for programming really is! Last
but not least, I would like to thank Packt Publishing for offering me
this opportunity.

www.allitebooks.com

https://about.me/NayaneshGupte
https://about.me/NayaneshGupte
https://www.linkedin.com/in/nayaneshgupte
http://www.allitebooks.org

Robert Dale Johnson III is an experienced developer/consultant who has
worked primarily with Android over the past 5 years. He has also worked with
many other technologies and frameworks, from BD-J (BluRay Disc-Java) and
Java to Joomla, and many of the languages and technologies related to them.

Along with his full-time professional pursuits, he is a seasoned freelancer who has
worked on dozens of projects and applications. To find out more about Robert and
his portfolio, take a look at his personal website, www.rdjiii.info, or feel free
to reach out to him through his consultancy company, Contrahere Solutions LLC,
at www.contrahere.com.

I would like to thank my son, Xander Johnson, for being the best son
I could ever wish for. His love and appreciation drives me to become
the best that I can, pushing me forward with a smile on my face and
joy in my heart. Xander, I love you and thank you for everything
you have done, and will do, to make me a better person personally,
morally, and professionally.

www.allitebooks.com

www.rdjiii.info
www.contrahere.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Fragments and UI Modularization 1

The need for a new approach to UI creation 1
The broad platform support of fragments 2
How fragments simplify common Android tasks 3
The relationship between fragments and activities 3
Making the shift to fragments 4
The old thinking – activity-oriented 4

Defining the activity appearance 5
Displaying the activity UI 8

The new thinking: fragment-oriented 8
Creating the fragment layout resources 8
Creating the Fragment class 11
Converting an activity to use fragments 13

Summary 15
Chapter 2: Fragments and UI Flexibility 17

Creating UI flexibility 17
Dynamic fragment layout selection 18

Adding an alternate layout resource 20
Managing fragment layout by screen size 24
Eliminating redundant layout descriptions 25

Designing fragments for flexibility 27
Avoiding tight coupling 28
Abstracting fragment relationships 28
Encapsulating fragment operations 31
Creating a loosely connected relationship between fragments 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Fragments protect against the unexpected 33
Creating the book description activity 33
Adding functionality to the book description activity 35
Making the MainActivity class adaptive 35

Summary 38
Chapter 3: Fragment Life Cycle and Specialization 39

Understanding the fragment life cycle 40
Understanding fragment setup and display 40

Avoiding method name confusion 42
Understanding fragment hide and teardown 43
Maximizing the available resources 44

Managing a fragment state 44
Special-purpose fragment classes 45

ListFragment 45
Associating data with the list 45
Separating data from the display 46

DialogFragment 53
Styles 53
Layout 54
Displaying DialogFragment 55
Event handling in DialogFragment 56
The Dialog identity 58

Summary 61
Chapter 4: Working with Fragment Transactions 63

Intentional screen management 63
Dynamically managing fragments 64

Deferred execution of transaction changes 65
Adding and removing fragments 66
Supporting the back button 68

Creating an adaptive application layout 70
Updating the layout to support dynamic fragments 71
Adapting to device differences 72
Dynamically loading a fragment at startup 74
Transitioning between fragments 75

Eliminating redundant handling 76
Creating the fragment on the fly 76
Managing asynchronous creation 77
Putting it all together 80

Summary 82

Table of Contents

[iii]

Chapter 5: Creating Rich Navigation 83
A brave new world 83
Making navigation fun with swipe 84

Implementing swipe navigation 85
Adding swipe navigation with Android Studio 86

Managing the swipe UI behavior 89
Putting the swipe UI into place 91

Providing direct navigation to screens 93
Don't get trapped in the past 93
Direct navigation for a small number of screens 94
Direct navigation for four or more screens 96

Creating a navigation drawer activity with Android Studio 97
The activity and application screen fragment 97
The navigation drawer fragment 100

Summary 105
Chapter 6: Fragments and Material Design 107

Creating a rich user experience 107
Material design 108

Principles of material design 108
The role of motion 109

Converting our application to use material design 109
Dealing with different Android versions 110
Setting up the theme 111
Updating the fragments appearance 113

Incorporating motion in fragment transitions 116
Transitioning fragments on and off the screen 117

Transitioning the book card off and on the screen 118
Transitioning the book details on and off the screen 119

Creating continuity with shared element transitions 120
Maintaining continuity across multiple cards 125

Summary 131
Index 133

[v]

Preface
Long gone are the days of mobile apps with a static UI squished on a tiny screen.
Today's users expect mobile apps to be dynamic and highly interactive. They expect
an app to look fantastic when they look at it on their medium resolution smartphone
and just as fantastic when they switch over to using it on their high-resolution tablet.
Apps need to provide rich navigation features, be adaptive, and be responsive.

Trying to meet these demands using Android's traditional activity-centric UI design
model is difficult at best. As developers, we need more control than that afforded by
activities. We need a new approach, and fragments give us this new approach.

In this book, you'll learn how to use fragments to meet the challenges of creating
dynamic UIs in the modern world of mobile app development.

What this book covers
Chapter 1, Fragments and UI Modularization, introduces fragments, UI modularization,
and the role that fragments play in developing a modularized UI. This chapter
demonstrates creating simple fragments and using fragments statically within
activities.

Chapter 2, Fragments and UI Flexibility, builds on the concepts introduced in the
previous chapter to provide solutions to specific differences in device layouts.
This chapter explains how to use adaptive activity layout definitions to provide
support for a wide variety of device form factors with a small set of fragments
that are automatically rearranged based on the current device's UI requirements.

Preface

[vi]

Chapter 3, Fragment Life Cycle and Specialization, discusses the relationship of the
life cycle of fragments with that of activities and demonstrates the appropriate
programming actions at the various points in the life cycle. Leveraging this knowledge,
the special purpose fragment classes, ListFragment and DialogFragment, are
introduced to demonstrate their behavior and provide a deeper understanding of
how their behavior in the activity life cycle differs from that of standard fragments.

Chapter 4, Working with Fragment Transactions, explains how to create multiple app
screens within a single activity by dynamically adding and removing fragments
using fragment transactions. Topics covered include thread handling, implementing
back button behavior, and dynamically adapting multifragment UIs to differences in
device characteristics.

Chapter 5, Creating Rich Navigation, brings everything together by building on the
previous chapters to show how to use fragments to enhance the user's experience
through rich navigation features. This chapter demonstrates how to implement a
number of navigation features, including screen browsing with swipe-based paging,
direct screen access with drop-down list navigation, and random screen viewing
with tabs.

Chapter 6, Fragments and Material Design, introduces the next generation of
application development using material design. This chapter demonstrates how
to implement fragments that incorporate a rich visual appearance and animated
transitions using the latest features of Android's material design capabilities.

What you need for this book
To follow the examples in this book, you should have a basic knowledge of Android
programming and a working Android development environment.

This book focuses primarily on Android Studio and the Android development
environment; however, other tools, such as Eclipse with the ADT plugin, JetBrains'
IntelliJ IDEA IDE, or a similar Android-enabled development tool, can also be used.

Who this book is for
This book is for anyone with a basic understanding of Android programming who
would like to improve the appearance and usability of their applications.

Whether you're looking to create a more interactive user experience, create more
dynamically adaptive UIs, provide better support for tablets and smartphones in
a single app, reduce the complexity of managing your app UIs, or just trying to
expand your UI design philosophy, this book is for you.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To create a fragment for the book list, we will define a new layout resource file
called fragment_book_list.xml."

A block of code is set as follows:

public class BookListFragment extends Fragment
 implements RadioGroup.OnCheckedChangeListener {
 @Override
 public void onCheckedChanged(RadioGroup radioGroup, int id) {
 }
 // Other members elided for clarity
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class BookListFragment extends Fragment
 implements RadioGroup.OnCheckedChangeListener {
 @Override
 public void onCheckedChanged(RadioGroup radioGroup, int id) {
 }
 // Other members elided for clarity
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"In Android Studio, we associate a resource file with this qualifier by selecting
Screen Height in the New Resource File dialog."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file
from http://www.packtpub.com/sites/default/files/downloads/
CreatingDynamicUIwithAndroidFragmentsSecondEdition_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/sites/default/files/downloads/CreatingDynamicUIwithAndroidFragmentsSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/CreatingDynamicUIwithAndroidFragmentsSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Fragments and UI
Modularization

This chapter introduces fragments, UI modularization, and the role that fragments
play in developing a modularized UI. The chapter demonstrates creating simple
fragments and using fragments statically within activities.

Let's have a look at the topics to be covered:

• The need for a new approach to UI creation
• Making the shift to fragments

By the end of this chapter, we will be able to create and use fragments within a static
activity layout.

The need for a new approach to UI
creation
Chances are that the first class you learned to use when you became an Android
developer was the Activity class. After all, the Activity class provided your app
with a user interface. By organizing your user interface components on an activity,
the activity became the canvas on which you were painting your application
masterpiece.

In the early days of Android, building an application's user interface directly within
an activity worked reasonably well. A majority of early applications had a relatively
simple user interface, and the number of different Android device form factors was
small. In most cases, with the help of a few layout resources, a single activity worked
fine across different device form factors.

Fragments and UI Modularization

[2]

Today, Android devices come in a wide variety of form factors with incredible
variation in their sizes and shapes. When you combine this with the highly
interactive user interfaces of modern Android applications, the creation of a single
activity that effectively manages the user interface across such divergent form factors
becomes extremely difficult.

A possible solution is to define one activity to provide the user experience for a subset
of device form factors—for example, smartphones. Then, we can define another
activity for a different subset of form factors, such as tablets. The problem with
this approach is that activities tend to have a lot of responsibilities beyond simply
rendering the user interface. With multiple activities performing essentially the same
tasks, we must either duplicate the logic within each of the activities or increase the
complexity of our program by finding ways to share the logic across activities, such
as creating potentially complex inheritance relationships. The approach of using
different activities for different form factors also substantially increases the number of
activities in the program, easily doubling or tripling the number of activities required.
In addition, the advent of Google's material design specification further increases the
complexity of the code contained within each activity.

We need a better solution, one that allows us to modularize our application's user
interface into sections that we can arrange as needed within an activity; fragments
are the solution.

Android fragments allow us to partition the user interface into functional groupings of
user interface components and logic. An activity can load and arrange the fragments
as needed for a given device form factor. The fragments take care of the form factor
details, while the activity manages the overall user interface issues. Fragments can also
play an important role in grouping user interface components in ways that simplify
the application of material design. We'll take a look at the role of fragments in material
design in Chapter 6, Fragments and Material Design.

The broad platform support of fragments
The Fragment class was added to Android at API Level 11 (Android 3.0). This was
the first version of Android that officially supported tablets. The addition of tablet
support exacerbated an already difficult problem; developing Android applications
was becoming increasingly difficult because of the wide variety of Android device
form factors.

Fortunately, fragments provide a solution to this problem. With fragments, we can
much more easily create applications that support a variety of form factors because
we can partition our user interfaces into effective groupings of components and their
associated logic.

Chapter 1

[3]

As of the writing of this book, over 95% of Android phones in use support fragments
natively. If you happen to be working on a project where you're required to support
the less than 5% of devices that do not support fragments natively—those devices
with an API level below 11—you can still take advantage of fragments through v4
of the Android Support Library. The details of working with the Fragment class in
v4 of Android Support Library are outside the scope of this book; however, you can
find information on working with the Fragment class in v4 of the Android Support
Library at http://developer.android.com/tools/support-library/index.html.

How fragments simplify common Android
tasks
Fragments not only simplify the way we create our application user interfaces,
but also simplify many of the built-in Android user interface tasks. User interface
concepts such as tabbed displays, list displays, and dialog boxes have all historically
had distinctly different approaches even though they are each variations on a
common concept. Each is a way of combining user interface components and logic
into a functional group. Fragments formalize this concept and therefore allow us to
take a consistent approach to these formerly disparate tasks. We will talk about each
of these issues in detail as well as some of the specialized fragment classes, such as
DialogFragment and ListFragment, later in this book.

The relationship between fragments and
activities
Fragments do not replace activities but rather supplement them. A fragment always
exists within an activity. An activity instance can contain any number of fragments,
but a given fragment instance can only exist within a single activity. A fragment
is closely tied to the activity on which it exists, and the lifetime of this fragment is
tightly coupled with the lifetime of the containing activity. We'll talk much more
about the close relationship between the lifetime of a fragment and the containing
activity in Chapter 3, Fragment Life Cycle and Specialization.

One thing we don't want to do is make the common mistake of overusing fragments.
Often when someone learns about fragments, they make the assumption that every
activity must contain fragments; this is simply not the case.

http://developer.android.com/tools/support-library/index.html

Fragments and UI Modularization

[4]

As we go through this book, we'll discuss the features and capabilities of fragments
and a variety of scenarios in which they work well. We always want to keep these in
mind as we build our applications. In those situations where fragments add value,
we definitely want to use them. However, it is equally important that we avoid
complicating our applications by using fragments in cases where they do not
provide any value.

Making the shift to fragments
Although fragments are a very powerful tool, they do something very simple
fundamentally. Fragments group user interface components and their associated
logic. Creating the portion of your user interface associated with a fragment is very
much like doing so for an activity. In most cases, the view hierarchy for a particular
fragment is created from a layout resource; although, just as with activities, the view
hierarchy can be programmatically generated.

Creating a layout resource for a fragment follows the same rules and techniques
as doing so for an activity. The key difference is that we're looking for opportunities
to partition our user interface layout into manageable subsections when working
with fragments.

The easiest way to get started working with fragments is for us to walk through
converting a traditional activity-oriented user interface to use fragments.

The old thinking – activity-oriented
To get started, let's first look at the appearance and structure of the application we
will convert. This application contains a single activity that, when run, looks similar
to the following screenshot:

Chapter 1

[5]

The activity displays a list of five book titles in the upper portion of the activity.
When the user selects one of these books title, the description of this book
appears in the lower portion of the activity.

Defining the activity appearance
The appearance of an activity is defined in a layout resource file named
activity_main.xml that contains the following layout description:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <!-- List of Book Titles -->
 <ScrollView
 android:layout_width="match_parent"

Fragments and UI Modularization

[6]

 android:layout_height="0dp"
 android:id="@+id/scrollTitles"
 android:layout_weight="1">
 <RadioGroup
 android:id="@+id/bookSelectGroup"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content">
 <RadioButton
 android:id="@+id/dynamicUiBook"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/dynamicUiTitle"
 android:checked="true" />
 <RadioButton
 android:id="@+id/android4NewBook"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/android4NewTitle" />

 <!-- Other RadioButtons elided for clarify -->
 </RadioGroup>
 </ScrollView>

 <!-- Description of selected book -->
 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:id="@+id/scrollDescription"
 android:layout_weight="1">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="@string/dynamicUiDescription"
 android:id="@+id/textView"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:gravity="fill_horizontal"/>
 </ScrollView>
</LinearLayout>

Chapter 1

[7]

You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

This layout resource is reasonably simple and is explained as follows:

• The overall layout is defined within a vertically-oriented LinearLayout
element containing two ScrollView elements

• Both of the ScrollView elements have a layout_weight value of 1 that
causes the top-level LinearLayout element to divide the screen equally
between the two ScrollView elements

• The top ScrollView element with the id value of scrollTitles wraps a
RadioGroup element containing a series of the RadioButton elements, one
for each book

• The bottom ScrollView element with the id value of scrollDescription
contains a TextView element that displays the selected book's description

http://www.packtpub.com
http://www.packtpub.com/support

Fragments and UI Modularization

[8]

Displaying the activity UI
The application's activity class is MainActivity. To display the activity's user
interface, we will override the onCreate method and call the setContentView
method, passing the R.layout.activity_main layout resource ID via the
following code:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // load the activity_main layout resource
 setContentView(R.layout.activity_main);
}

The new thinking: fragment-oriented
The activity-oriented user interface we currently have would be fine if all Android
devices had the same form factor. As we've discussed, this is not the case.

We need to partition the application user interface so that we can switch to a
fragment-oriented approach. With proper partitioning, we can be ready to make
some simple enhancements to our application to help it adapt to device differences.

Let's look at some simple changes we can make that will partition our user interface.

Creating the fragment layout resources
The first step in moving to a fragment-oriented user interface is to identify the natural
partitions in the existing user interface. In the case of this application, the natural
partitions are reasonably easy to identify. The list of book titles is one good candidate,
and the book description is the other. We'll make each of them a separate fragment.

Defining the layout as a reusable list
For the list of book titles, we have the option of defining the fragment to contain
either the ScrollView element that's nearest to the top (which has an id value of
scrollTitles) or just the RadioGroup element within this ScrollView element.
When creating a fragment, we want to structure it in such a way that the fragment
is most easily reused. Although the RadioGroup element is all we need to display
the list of titles, it seems likely that we'll always want the user to be able to scroll
the list of titles if necessary. With this being the case, it makes sense to include the
ScrollView element in this fragment.

Chapter 1

[9]

If you're using Android Studio, you can use the New Fragment menu
option to create the fragment class and layout resource in a single step
by selecting the Create layout XML checkbox on the New Android
Activity dialog.
For now, you want to uncheck the New Android Activity dialog's
Include fragment factory methods and Include interface
callbacks checkboxes. Unchecking these checkboxes will
significantly simplify the code generated.
We'll talk about these and many other fragment-related features of
Android Studio in detail throughout the rest of this book.

To create a fragment for the book list, we will define a new layout resource file
called fragment_book_list.xml. We will copy the top ScrollView element and its
contents from the activity_main.xml resource file to the fragment_book_list.xml
resource file. The resulting fragment_book_list.xml resource file is as follows:

<!-- List of Book Titles -->
<ScrollView
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:id="@+id/scrollTitles"
 android:layout_weight="1">
 <RadioGroup
 android:id="@+id/bookSelectGroup "
 android:layout_height="wrap_content"
 android:layout_width="wrap_content">
 <RadioButton
 android:id="@+id/dynamicUiBook"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/dynamicUiTitle"
 android:checked="true"/>
 <RadioButton
 android:id="@+id/android4NewBook"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:text="@string/android4NewTitle"/>

 <!-- Other RadioButtons elided for clarify -->
 </RadioGroup>
</ScrollView>

Fragments and UI Modularization

[10]

This gives us a layout resource consistent with the book title portion of the user
interface as it appeared in the activity layout resource. This is a good start.

Minimizing assumptions
An effective fragment-oriented user interface is constructed with layout resources
that minimize assumptions about where and how the fragment is used. The fewer
assumptions we make about a fragment's use, the more reusable the fragment
becomes.

The layout in the fragment_book_list.xml resource file as we now have it is
very limiting because it includes significant assumptions. For example, the root
ScrollView element includes a layout_height attribute with a value of 0. This
assumes that the fragment will be placed within a layout that calculates the height
of the fragment.

A layout_height attribute value of 0 prevents the ScrollView element from
properly rendering when we use the fragment within any of the many layouts that
require the ScrollView element to specify a meaningful height. A layout_height
attribute value of 0 prevents the fragment from properly rendering even when
doing something as simple as placing the fragment within a horizontally oriented
LinearLayout element. The layout_weight attribute has similar issues.

In general, a good practice is to design the fragment to fully occupy whatever space
it is placed within. This gives the layout in which the fragment has the most control
over the placement and sizing of the fragment.

To do this, we'll remove the layout_weight attribute from the ScrollView element
and change the layout_height attribute value to match_parent. As the ScrollView
element is now the root node of the layout resource, we also need to add the android
namespace prefix declaration.

The following code snippet shows the updated ScrollView element:

<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/scrollTitles">
 <!—RadioGroup and RadioButton elements elided for clarity -->
</ScrollView>

With the updated ScrollView element, the fragment layout can now adapt to almost
any layout it's referenced within.

Chapter 1

[11]

Encapsulating the display layout
For the book description, we'll define a layout resource file called fragment_book_
desc.xml. The fragment layout includes the contents of the activity layout resource's
bottom ScrollView element (which has an id value of scrollDescription).
Just as in the book list fragment, we'll remove the layout_weight attribute, set
the layout_height attribute to match_parent, and add the android namespace
prefix declaration.

The fragment_book_desc.xml layout resource file appears as follows:

<!-- Description of selected book -->
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/scrollDescription">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="@string/dynamicUiDescription"
 android:id="@+id/textView"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:gravity="fill_horizontal"/>
</ScrollView>

Creating the Fragment class
Similar to when creating an activity, we need more than a simple layout definition
for our fragment; we also need a class.

Wrapping the list in a fragment
All fragment classes must extend the android.app.Fragment class either directly
or indirectly.

We'll call the class for the fragment that manages the book list—that is,
BookListFragment. The class will directly extend the Fragment class as follows:

Import android.app.Fragment;
public class BookListFragment extends Fragment { … }

www.allitebooks.com

http://www.allitebooks.org

Fragments and UI Modularization

[12]

During the creation of a fragment, the Android framework calls a number of methods
on this fragment. One of the most important of these is the onCreateView method. The
onCreateView method is responsible for returning the view hierarchy represented by
the fragment. The Android framework attaches this returned view hierarchy for the
fragment to the appropriate place in the activity's overall view hierarchy.

In a case like the BookListFragment class where the Fragment class inherits directly
from the Fragment class, we must override the onCreateView method and perform
the work necessary to construct the view hierarchy.

The onCreateView method receives three parameters. We'll focus on just the first
two for now:

• inflater: This is a reference to a LayoutInflater instance that can read
and expand layout resources within the context of the containing activity

• container: This is a reference to the ViewGroup instance within the activity's
layout where the fragment's view hierarchy is to be attached

The LayoutInflater class provides a method called inflate that handles the details
of converting a layout resource into the corresponding view hierarchy and returns
a reference to the root view of this hierarchy. Using the LayoutInflater.inflate
method, we can implement our BookListFragment class' onCreateView method to
construct and return the view hierarchy corresponding to the R.layout.fragment_
book_list layout resource, as shown in the following code:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View viewHierarchy =
 inflater.inflate(R.layout.fragment_book_list,
 container, false);
 return viewHierarchy;
}

You'll notice in the preceding code we include the container reference and a
Boolean value of false in the call to the inflate method. The container reference
provides the necessary layout parameters for the inflate method to properly format
the new view hierarchy. The parameter value of false indicates that container
is to be used only for the layout parameters. If this value were true, the inflate
method would also attach the new view hierarchy to the container view group.
We do not want to attach the new view hierarchy to the container view group
in the onCreateView method because the activity will handle that.

Chapter 1

[13]

Providing the description fragment
For the book description fragment, we'll define a class called BookDescFragment. This
class is identical to the BookListFragment class, except that the BookDescFragment
class uses the R.layout.fragment_book_desc layout resource as follows:

public class BookDescFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
 container, Bundle savedInstanceState) {
 View viewHierarchy =
 inflater.inflate(R.layout.fragment_book_desc, container, false);
 return viewHierarchy;
 }
}

Converting an activity to use fragments
With the fragments defined, we can now update the activity to use them. To get
started, we'll remove all the book titles and description layout information from
the activity_main.xml layout resource file. The file now contains just the top-level
LinearLayout element and comments to show where the book titles and description
belong. The code is given as follows:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles -->

 <!-- Description of selected book -->

</LinearLayout>

Using the fragment element, we can add a fragment to the layout by referencing
the fragment's class name with the name attribute. For example, we will reference
the book list fragment's class, BookListFragment, as follows:

<fragment
 android:name="com.jwhh.fragments.BookListFragment"
 android:id="@+id/fragmentTitles"/>

Fragments and UI Modularization

[14]

We want our activity user interface to appear the same, using fragments as it
did before we converted it to use fragments. To do this, we will add the same
layout_width, layout_height, and layout_weight attribute values to the
fragment elements as were on the ScrollView elements in the original layout.

With this, the complete layout resource file for the activity, activity_main.xml,
now looks similar to the following code:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookListFragment"
 android:id="@+id/fragmentTitles"/>

 <!-- Description of selected book -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookDescFragment"
 android:id="@+id/fragmentDescription"/>
</LinearLayout>

If you are working with Android Studio, you might find a
tools:layout attribute on the fragment element. This attribute is
used by Android Studio to provide a preview of the layout within the
graphical designer. It has no effect on your application's appearance
when the application is run.

When the application is run, the user interface appears exactly as it did when it was
defined entirely within the activity.

Chapter 1

[15]

Summary
The shift from the old thinking of being activity-oriented to the new thinking of
being fragment-oriented opens up our applications to rich possibilities. Fragments
allow us to better organize both the appearance of the user interface and the code we
use to manage it. With fragments, our application user interface has a more modular
approach that frees us from being tied to the specific capabilities of a small set of
devices and prepares us to work with the rich devices of today and the wide variety
of new devices to come tomorrow.

In the next chapter, we'll build on the modularized user interface we created with
fragments to enable our application to automatically adapt to the differences in
various device form factors with only minimal changes to our application.

[17]

Fragments and UI Flexibility
This chapter builds on the concepts introduced in the previous chapter to provide
solutions to addressing specific differences in device layouts. The chapter explains
the use of adaptive activity layout definitions to create apps that automatically
rearrange their user interface in response to the differences in device form factors.
With adaptive activity layout definitions, applications are able to support a wide
variety of devices using just a few properly designed fragments.

In this chapter, we will cover the following topics:

• Simplifying the challenge of supporting device differences
• Dynamic resource selection
• Coordinating fragment content
• The role of FragmentManager
• Supporting fragments across activities

By the end of this chapter, we will be able to implement a user interface that uses
fragments to automatically adapt to differences in device layouts and coordinates
user actions across the involved fragments.

Creating UI flexibility
Utilizing fragments in our user interface design provides a good foundation for
creating applications that more easily adapt to device differences, but we must go a
little further to create truly flexible UIs. We must design our application such that the
fragments that make up the UI are easily rearranged in response to the characteristics
of the device on which the app is currently running.

Fragments and UI Flexibility

[18]

To achieve this, we must follow appropriate techniques to dynamically change the
layout of individual fragments in response to the current device's characteristics. Once
we employ these techniques, we must be sure that we implement our fragments in
such a way that each fragment can function effectively, independent of layout changes
that might affect the behavior or even existence of other fragments within the activity.

Dynamic fragment layout selection
As we mentioned in the previous section, creating a flexible UI requires that the
layout and positioning of fragments within an activity be able to change in response
to differences in device characteristics. We can include code in our application
to dynamically arrange fragments in response to the form factor of the device on
which our app is running, but in most cases doing so is not only unnecessary but
also undesirable. The deeper the dependencies between the user interface and
application code, the more difficult maintaining and enhancing an application
becomes. Although there will always be some degree of dependency between our
user interface and application code, we want to minimize such dependencies and
instead do as much of our user interface layout-related work within layout resources
as possible.

The easiest way to build flexibility into our application user interface is to take
advantage of the Android resource system's built-in device adaptability. Android
allows us to design different layout-related resources for our application with
each optimized for (and associated with) a specific set of device characteristics. At
runtime, the Android resource system takes care of automatically selecting and
loading the appropriate resources for the current device. Although this feature can
be used to dynamically modify the layout of any activity, it is particularly effective
when used in conjunction with fragments.

To see Android resource selection in action, let's continue with our application
from the previous chapter. As you'll recall, the layout for our activity is in the
activity_main.xml resource file and looks similar to this:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"

Chapter 2

[19]

 android:name="com.jwhh.fragments.BookListFragment"
 android:id="@+id/fragmentTitles"/>

 <!-- Description of selected book -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookDescFragment"
 android:id="@+id/fragmentDescription"/>
</LinearLayout>

This layout stacks our fragments, BookListFragment and BookDescFragment,
one on top of the other. Although this layout renders well on a smartphone held
vertically in the portrait orientation, rotating the phone so that it's held horizontally
in the landscape orientation creates a much less attractive appearance, as seen here:

The current layout clearly does not make the best use of the available screen space in
this orientation. When the phone is orientated in landscape, the application would
look much better if we position the two fragments side by side.

Fragments and UI Flexibility

[20]

Adding an alternate layout resource
We can add support for an alternative layout to our application by creating a new
activity layout resource file with the fragments appropriately arranged.

To create the new resource file using Android Studio, perform the following steps:

1. Expand the app folder in the project explorer window.
2. Expand the res folder under src.
3. Then, right-click on the layout folder under res.
4. Select New.
5. Now, select Layout resource file to open the New Resource file dialog.
6. Enter the filename as activity_main.xml (be sure that it is spelled exactly

the same as the existing activity_main.xml resource file).
7. Next, highlight Orientation under Available qualifiers: and click on the >>

button to move it to Chosen qualifiers:.
8. Select Landscape under Screen orientation:

The New Resource File dialog will appear, as in the following screenshot:

Click on the OK button to create the new resource file.

Chapter 2

[21]

Once the new activity layout resource file is created, the res folder in the project
explorer will look similar to the following screenshot:

Note in the screenshot that a folder named activity_main.xml appears under
the layout folder. The activity_main.xml folder contains two copies of the
activity_main.xml file with the one you just created having the (land) text
next to it, indicating that the layout resource is associated with landscape screen
orientation. The activity_main.xml files appearing to be in a single folder
named activity_main.xml is actually a bit of Android Studio trickery.

If you explore the layout folder as it appears in your computer's filesystem, you
will find that there are two layout-related folders: one named layout, and another
named layout-land. The original activity_main.xml file is in the layout folder
and the newly created landscape-oriented version is in the layout-land folder. At
runtime, Android devices rely on these individual folders to identify which version
of the activity_main.xml file to use based on the device's current orientation.
Fortunately, Android Studio manages these filesystem details. As developers, we
will simply select the specific orientation we would like to target with each resource
file, and Android Studio will take care of the filesystem details.

Fragments and UI Flexibility

[22]

Copy the contents of the original activity_main.xml file and paste the contents into
the activity_main.xml (land) file. We can now modify the activity_main.xml
(land) resource file to arrange the fragments to render properly when the phone
is in landscape orientation. First, we will switch the LinearLayout element from a
vertical to horizontal orientation. We will then change the layout_width values for
each fragment to 0dp and the layout_height value to match_parent. We can leave
each of the fragments' layout_weight value as 1 so that LinearLayout spaces them
equally from left to right.

The updated resource file looks similar to this:

<LinearLayout
 android:orientation="horozontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles -->
 <fragment
 android:layout_width="0dp"
 android:layout_height=" match_parent"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookListFragment"
 android:id="@+id/fragmentTitles"/>

 <!-- Description of selected book -->
 <fragment
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookDescFragment"
 android:id="@+id/fragmentDescription"/>
</LinearLayout>

Chapter 2

[23]

Having done nothing more than adding this simple resource file to our project,
the application now displays the list of titles and book descriptions next to one
another when run on a device held in the landscape orientation, as shown in
the following screenshot:

During runtime, when the MainActivity class loads the R.layout.activity_main
resource, the Android resource system returns the appropriate version of the
activity_main.xml resource file for this orientation. When the user rotates the
device to a different orientation, Android automatically recreates the activity and
loads the appropriate resource for the new orientation.

The Android environment detects a wide variety of device form factor characteristics.
By taking advantage of fragments, we are able to create an application that easily
adapts to device differences by simply providing different layout resource files that
shift around the location of our fragments as if they were puzzle pieces.

Without fragments, we would have to provide the entire layout for the activity—radio
buttons, text views, and everything—in both of the layout files. We would then find
ourselves having to maintain two complex, almost identical files. Using fragments, the
individual pieces are self-contained and nonduplicated. Fragments modify the layout
in an easy manner and simplify our application's maintenance.

Fragments and UI Flexibility

[24]

Managing fragment layout by screen size
The same technique we use to adapt our user interface to device orientation
differences can be taken much further to work with differences in screen sizes.

Differences in device screen sizes are one of the most common reasons to use layout
resources to manage fragments. With this being the case, understanding how to
use layout resources to deal with differences in screen sizes is essential to working
effectively with fragments.

To associate resources with specific screen size characteristics, we use resource
screen size qualifiers. Screen size qualifiers give us a very detailed level of control
over which layout resources are associated with each device form factor.

To avoid the complications inherent in the wide variety of screen pixel densities
and physical screen sizes available, Android uses a canonicalized unit of measure
called density-independent pixel (dp) when managing screen sizes. If you've been
working with Android for any length of time, you are probably already familiar
with density independent pixels as they are the preferred unit of measurement
when positioning and sizing views within an Android user interface.

The dp unit always corresponds to the physical size of a pixel on a 160 dpi device
and therefore provides a consistent unit of measurement independent of the physical
pixel size of the device. For example, a device with a 7-inch display may have a
physical pixel count of 1280x720 while another device with a 7-inch display has a
physical pixel count of 1920x1080, but both devices have a dp count of approximately
1000x600. The Android platform takes care of the details of mapping between the
density independent pixels and physical pixels of a device.

Android provides three types of screen size qualifiers: smallest width, available
screen width, and available screen height. They can be explained as follows:

• Smallest width screen size qualifier: This corresponds to the number of
device independent pixels at the screen's narrowest point, independent of
the device orientation. Changing the device orientation does not change the
device's smallest width. In Android Studio, we associate a resource file with
this qualifier by selecting Smallest Screen Width in the New Resource File
dialog and entering the desired value into the Smallest screen width: field
expressed in dp units.

• Available width screen size qualifier: This corresponds to the number
of device independent pixels measured left to right at the device's current
orientation. Changing the device orientation changes the available width. In
Android Studio, we associate a resource file with this qualifier by selecting
Screen Width in the New Resource File dialog and entering the desired
value into the Screen width: field expressed in dp units.

Chapter 2

[25]

• Available height screen size qualifier: This corresponds to the number of
device independent pixels measured top to bottom but behaves identically
to the available width screen size qualifier otherwise. In Android Studio, we
associate a resource file with this qualifier by selecting Screen Height in the
New Resource File dialog and entering the desired value into the Screen
height: field expressed in dp units.

Eliminating redundant layout descriptions
As the number of form factors in our application targets grow, managing the
resource files with different layout resource qualifiers can become somewhat
complicated due to the fact that we'll likely want to use the same layout resource
file for different qualifiers. To demonstrate this problem, let's update our application
so that the activity layout we are currently using for landscape-oriented devices is
also used on devices with a current width of 600dp or greater.

One option we have for updating our app to use the landscape layout with 600dp
and wider devices is to copy the entire contents of the landscape-oriented layout
resource file, activity_main.xml (land), to a new activity_main.xml layout
resource file that is associated with a Screen Width qualifier of 600dp. Doing a
simple copy of the entire landscape layout resource file contents is easy enough,
but doing so leaves us with a maintenance headache. With the layout details
duplicated in two separate versions of the activity_main.xml file, every time we
make a change to the layout, we have to be sure that we make it in both versions
of activity_main.xml.

To avoid this resource layout duplication, we can use layout aliasing.

Layout aliasing
Layout aliasing allows us to have a single copy of each unique layout description.
We can then tell the resource system to include the contents of this resource
description in these resource files associated with the resource qualifiers for
which we want to use this layout.

To get started, perform the following steps:

1. Create a new resource file named activity_main_wide.xml using
the New Resource File dialog. Do not associate any qualifiers with
activity_main_wide.xml.

2. Copy the contents of activity_main.xml (land) into the
activity_main_wide.xml file.

3. Delete the contents of activity_main.xml (land).

Fragments and UI Flexibility

[26]

4. Then, add the following code to activity_main.xml (land):
<merge>
 <include layout="@layout/activity_main_wide"/>
</merge>

The preceding code tells the resource system to include the contents of
activity_main_wide.xml when processing activity_main.xml (land).

We'll now create the layout resource file for devices with a width of 600dp or greater.
To create the file, perform the following steps:

1. Open the Android Studio New Resource File dialog. Name the file
activity_main.xml (be sure that it is spelled exactly the same as the
two existing activity_main.xml resource files).

2. Select the Screen Width qualifier.
3. Now, enter 600 as the Screen width: value.
4. Click the OK button.

You should now see the activity_main.xml (w600dp) file under the
activity_main.xml folder in the Android Studio project explorer, as shown
in the following screenshot:

Chapter 2

[27]

In some cases, Android Studio does not immediately display the newly
created resource files in the project explorer. If you do not see the
activity_main.xml (w600dp) file under the activity_main.xml
folder, collapse the layout and res folders. When you expand the res,
layout, and activity_main.xml folders, the newly created resource file will
be visible.

Add the following code to the activity_main.xml (w600dp) file:

<merge>
 <include layout="@layout/activity_main_wide"/>
</merge>

The preceding code is the same one we added to the activity_main.xml (land)
file earlier. Just as in the case of the activity_main.xml (land) file, this code
causes the resource system to include the contents of the activity_main_wide.xml
file when processing the activity_main.xml (w600dp) file.

Using this technique of resource aliasing, we now have a single layout description
being applied to each of the desired form factors with no unnecessary duplication
of layout resource files. The activity_main_wide.xml file provides the layout
description with the activity_main.xml (land) and activity_main.xml
(w600dp) files, incorporating the contents of activity_main_wide.xml as part
of the Android resource build process.

Refer to Table 2 of the Android Providing Resources guide for the order of
precedence that Android follows when performing layout aliasing; this
is available at http://developer.android.com/guide/topics/
resources/providing-resources.html.

Designing fragments for flexibility
With our user interface well partitioned and adaptable, we need to be sure that
each fragment functions effectively as layout differences cause the behavior, and
possibly, even the existence of other fragments within the activity to change.
When an application user interface is divided into fragments, the fragments rarely
exist completely independent of one another. Very often, a user's interaction
with one fragment has some effect on other fragments within the same activity.
In the case of our application, this issue arises when a user selects a book within
BookListFragment. In response to the user's selection, the application is responsible
for displaying the corresponding description in BookDescFragment.

http://developer.android.com/guide/topics/resources/providing-resources.html
http://developer.android.com/guide/topics/resources/providing-resources.html

Fragments and UI Flexibility

[28]

Avoiding tight coupling
One possible solution to coordinating fragment content is to allow the fragments
to directly communicate with one another. To coordinate content within our
application, we could pass the BookDescFragment reference into BookListFragment
when we first create the activity. In response to each user selection within
BookListFragment, BookListFragment would directly update TextView
contained within BookDescFragment.

Although simple to implement, this solution is problematic because it tightly
couples the two Fragment classes to each other. The BookListFragment fragment
is only usable within activities that also contain the BookDescFragment fragment,
and making changes to the layout of BookDescFragment may potentially break
BookListFragment.

We always want to keep in mind that the key goal of using fragments is to be well
partitioned and adaptable.

Abstracting fragment relationships
Instead of creating direct relationships between the fragments, we can take
advantage of the abstraction provided by interfaces. By defining a simple callback
interface to represent the act of a user making a book selection, we can completely
eliminate tight coupling between fragments. The BookListFragment class can
be written to provide notification of a user selection through the interface. By
implementing the interface on the activity, the activity can handle coordinating the
user selection within BookListFragment by updating the displayed description
within BookDeskFragment.

When creating a new fragment using the Android Studio New Android Activity
dialog, the dialog includes an option labeled Include interface callbacks?. Selecting
this option automatically defines and connects a basic interface to communicate with
the containing activity. As we're converting an existing fragment rather than creating
a new one, we'll need to define the interface and connect it to the activity ourselves.

Defining the callback interface
The callback interface should include methods for any interaction with the
fragment that may be meaningful to the activity containing the fragment. At the
same time, the interface should not burden the activity with unnecessary details. The
interface should be focused on application-level actions, such as selecting a book,
rather than implementation-level actions, such as tapping on a radio button. The
implementation-level details should be isolated within the fragment. We should also
be sure to design the interface without any preconceived ideas of what the activity
will do with the notification.

Chapter 2

[29]

In the case of BookListFragment, the only action of interest to the activity is the
user selecting a book. This tells us the interface needs just a single method; we'll call
the interface method onSelectedBookChanged. We know that, in the case of this
application, the goal is to display the selected book description, so one possibility
is to have the onSelectedBookChanged method include a parameter for the book
description. The problem with passing the book description is that doing so limits the
use of BookListFragment to just this one use case: displaying the book description.
Instead, by passing an identifier for the book, BookListFragment is available for any
use case in which the user selects a book. For simplicity, in our example we'll use an
array index as the identifier; in a real scenario, the identifier would more likely be a
key to locate the book information within a data store or service.

We'll call our new interface OnSelectedBookChangeListener. The interface looks
similar to this:

public interface OnSelectedBookChangeListener {
 void onSelectedBookChanged(int bookIndex);
}

Making the fragment self-contained
The BookListFragment class needs to hide the details of user selection and instead
translate each selection to a book identifier, which in our case is an array index. We
first need to update the BookListFragment class to handle the radio button selection
by implementing the RadioGroup.OnCheckedChangeListener interface as follows:

public class BookListFragment extends Fragment
 implements RadioGroup.OnCheckedChangeListener {
 @Override
 public void onCheckedChanged(RadioGroup radioGroup, int id) {
 }
 // Other members elided for clarity
}

Within the BookListFragment class' onCreateView method, we will set the radio
group's click listener as the BookListFragment class, as shown here:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View viewHierarchy = inflater.inflate(
 R.layout.fragment_book_list, container, false);

 // Connect the listener to the radio group
 RadioGroup group = (RadioGroup)

Fragments and UI Flexibility

[30]

 viewHierarchy.findViewById(R.id.bookSelectGroup);
 group.setOnCheckedChangeListener(this);

 return viewHierarchy;
}

There are a number of ways to determine the book index corresponding to the
selected radio button, such as setting the tag value on each radio button or using
a lookup table. For simplicity, we'll create a simple method containing a switch
statement as in the following code:

int translateIdToIndex(int id) {
 int index = -1;
 switch (id) {
 case R.id.dynamicUiBook:
 index = 0 ;
 break;
 case R.id.android4NewBook:
 index = 1 ;
 break;
 case R.id.androidSysDevBook:
 index = 2 ;
 break;
 case R.id.androidEngineBook:
 index = 3 ;
 break;
 case R.id.androidDbProgBook:
 index = 4 ;
 break;
 }
 return index;
}

Fragment notification
A fragment can always access the activity on which it is placed using the
getActivity method. Within the BookListFragment class' onClick method,
we can use the getActivity method to access the activity, cast it to the
OnSelectedBookChangeListener interface, then call the onSelectedBookChanged
method, and pass it the book index for the selected radio button, as shown in the
following code:

public void onCheckedChanged(RadioGroup radioGroup, int checkedId) {
 // Translate radio button to book index
 int bookIndex = translateIdToIndex(checkedId);

Chapter 2

[31]

 // Get parent Activity and send notification
 OnSelectedBookChangeListener listener =
 (OnSelectedBookChangeListener) getActivity();
 listener.onSelectedBookChanged(bookIndex);
}

The BookListFragment class now completely handles notifying the parent activity
of each change in the user's book selection.

Encapsulating fragment operations
Within the BookDescFragment class, we want to encapsulate any details about
how the user interface is updated. We'll do this by providing a simple method
that accepts the book index and handles the details of locating and displaying
the book description. Before we implement this method, we need to update
the BookDescFragment class' onCreateView method to retrieve the list of book
descriptions, retrieve a reference to TextView identified by R.id.bookDescription,
and assign both to class-level fields, as shown here:

public class BookDescFragment extends Fragment {
 String[] mBookDescriptions;
 TextView mBookDescriptionTextView;
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View viewHierarchy = inflater.inflate(
 R.layout.fragment_book_desc, container, false);

 // Load array of book descriptions
 mBookDescriptions = getResources().
 getStringArray(R.array.book_descriptions);

 // Get reference to book description text view
 mBookDescriptionTextView = (TextView)
 viewHierarchy.findViewById(R.id.bookDescription);

 return viewHierarchy;
 }
}

www.allitebooks.com

http://www.allitebooks.org

Fragments and UI Flexibility

[32]

We can now add a setBook method that accepts the book index, accesses the
appropriate book description, and updates mBookDescriptionTextView. The
setBook method appears as follows:

public void setBook(int bookIndex) {
 // Lookup the book description
 String bookDescription = mBookDescriptions[bookIndex];

 // Display it
 mBookDescriptionTextView.setText(bookDescription);
}

Creating a loosely connected relationship between
fragments
A good use of interfaces and encapsulation greatly simplifies using any component,
and fragments are no different. With the work we've done on the BookListFragment
and BookDescFragment classes, our activity can now coordinate user interaction
in BookListFragment by updating BookDescFragment in three simple steps, as
follows:

1. Implement the OnSelectedBookChangeListener interface.
2. Get a reference to the BookDescFragment class.
3. Call the BookDescFragment class' setBook method.

Let's look at Step 2 first. Unlike when working with views, an activity cannot directly
reference the fragments contained within it. Instead, fragment handling is delegated
to the FragmentManager class.

With FragmentManager, an activity can access the contained fragments by calling the
FragmentManager.findFragmentById method and passing the desired fragment's
ID value from the layout resource.

Using FragmentManager to access BookDescFragment, we can implement the
BookListFragment.OnSelectedBookChangeListener interface on our activity
to update the displayed description for each user selection in BookListFragment.
Take a look at the following code:

public class MainActivity extends AppCompatActivity
 implements OnSelectedBookChangeListener{
 @Override
 public void onSelectedBookChanged(int bookIndex) {
 // Access the FragmentManager

Chapter 2

[33]

 FragmentManager fragmentManager = getFragmentManager();
 // Get the book description fragment
 BookDescFragment bookDescFragment = (BookDescFragment)
 fragmentManager.findFragmentById (R.id.fragmentDescription);

 // Display the book title
 if(bookDescFragment != null)
 bookDescFragment.setBook(bookIndex);
 }

 // other members elided for clarity
}

Fragments protect against the
unexpected
The true test of user interface flexibility lies in how well the user interface design
and implementation holds up when encountering an unexpected change request.
A well-designed fragment-based user interface allows us to create incredibly
dynamic user interfaces that can evolve and change with minimal impact on the
code. As an example, let's make what could potentially be a major design change
to our application.

Currently, the application always shows the book list and description on the same
activity. The only difference is whether the fragments are positioned vertically or
horizontally relative to one another. Imagine we receive feedback from our users that
they don't like the way the app appears when viewed on a portrait-oriented handset
with the list positioned above the description. When viewed on a portrait-oriented
handset, they would like the list and description to appear on separate activities. In
all other cases, they want the app to continue to show the list and description side
by side.

Creating the book description activity
To display the book description, use the Android Studio New Android Activity
dialog to add a blank activity named BookDescActivity that uses a layout resource
file named activity_book_desc.xml. Copy the contents of the default version of
the activity_main.xml file and paste them into the activity_book_desc.xml
file. The default version of the activity_main.xml file is the one that does not have
(land) or (w600dp) after the name in the Android Studio project explorer.

Fragments and UI Flexibility

[34]

Remove the fragment element for BookListFragment from the activity_book_
desc.xml file so that it shows only BookDescFragment, as in the following code:

<LinearLayout
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- Description of selected book -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments_after.BookDescFragment"
 android:id="@+id/fragmentDescription"
 tools:layout="@layout/fragment_book_desc"/>
</LinearLayout>

In the default version of the activity_main.xml resource file, remove
BookDescFragment so that it shows only the list, as in the following code:

<LinearLayout
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments_after.BookListFragment"
 android:id="@+id/fragmentTitles"
 tools:layout="@layout/fragment_book_list"/>
</LinearLayout>

We now have activities that support showing the list and description separately.
Remember that these changes will not affect the appearance of the app in scenarios
that use the activity_main_wide.xml resource file.

Chapter 2

[35]

Adding functionality to the book description
activity
BookDescActivity relies on an "Intent extra" to pass the book index. As
BookDescFragment contains all the logic necessary to display a book description,
we can simply get a reference to BookDescFragment and set the book index just
as we did in the MainActivity class, as shown here:

public class BookDescActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_book_desc);

 // Retrieve the book index from the Activity Intent
 Intent intent = getIntent();
 int bookIndex = intent.getIntExtra("bookIndex", -1);
 if (bookIndex != -1) {
 // Use FragmentManager to access BookDescFragment
 FragmentManager fm = getFragmentManager();
 BookDescFragment bookDescFragment = (BookDescFragment)
 fm.findFragmentById(R.id.fragmentDescription);

 // Display the book title
 bookDescFragment.setBook(bookIndex);
 }
 }
}

Making the MainActivity class adaptive
The MainActivity class has some extra work to do now because the specific
fragments contained within it vary. When running on a device with a screen that
is at least 600dp wide, the MainActivity class always contains an instance of
BookDescFragment. On the other hand, when running on other devices, the presence
of BookDescFragment will depend upon the device's current orientation. We could
add code to the MainActivity class to test for all of these various scenarios, or we
could take a simpler approach, which is to check whether the activity contains an
instance of the BookDescFragment class.

Fragments and UI Flexibility

[36]

Using this approach, we have the MainActivity class' onSelectedBookChanged
method to check the validity of BookDescFragment returned by FragmentManager.
If FragmentManager returns a valid reference, the method can call setBook
on BookDescFragment just as it is. If the returned reference is not valid, the
onSelectedBookChanged method calls startActivity with an Intent instance
containing the information to display BookDescActivity, which includes
bookIndex as an extra, as shown in the following code:

public void onSelectedBookChanged(int bookIndex) {
 // Access the FragmentManager
 FragmentManager fm = getFragmentManager();

 // Get the book description fragment
 BookDescFragment bookDescFragment = (BookDescFragment)
 fm.findFragmentById(R.id.fragmentDescription);

 // Check validity of fragment reference
 if(bookDescFragment == null || !bookDescFragment.isVisible()){
 // Use activity to display description
 if(!mCreating) {
 Intent intent = new Intent(this, BookDescActivity.class);
 intent.putExtra("bookIndex", bookIndex);
 startActivity(intent);
 }
 }
 else {
 // Use contained fragment to display description
 bookDescFragment.setBook(bookIndex);
 }
}

Note the if statement that checks the validity of bookDescFragment. In most cases,
a simple check for whether the reference is null is all we need. The one exception
is when the app is run on a handset device on which the user views the app in the
landscape orientation and then rotates the device to portrait. In this situation, the
BookDescFragment instance is not visible, but the activity's FragmentManager
instance may be caching a reference to an invisible instance remaining from the
landscape layout. For this reason, we will check both for a null reference and for
visibility. We'll discuss the details of the fragment life cycle, creation, and caching
over the next two chapters.

Chapter 2

[37]

Note also the if statement that checks the value of the mCreating field. Android
fully recreates the activity instance when the device is rotated between orientations.
As part of this process, Android restores the user's radio button selection, which then
causes the onSelectedBookChanged method to be called. We will include this if
check so as to not process the calls that occur during activity creation.

To manage the value of the mCreating field, we will declare it with an initial value
of false and then set it to true in the MainActivity class' onResume method, as
shown in the following code:

public class MainActivity extends Activity
 implements OnSelectedBookChangeListener{
 boolean mCreating = true;
 @Override
 protected void onResume() {
 super.onResume();
 mCreating = false;
 }
 // other members elided for clarity
}

We now have adaptability built into our app. The scenarios that use the
activity_main_wide.xml resource file look as they always did. On portrait-oriented
handset devices, our app provides the user interface with two separate activities: one
for the book list and one for the book description. The application now appears on
portrait-oriented handset devices, as shown here:

Fragments and UI Flexibility

[38]

Summary
Fragments provide our applications with a level of user interface flexibility that
would be difficult to achieve otherwise. By properly designing our application to
use fragments and associating the fragment resources with the appropriate device
characteristics, we're able to build apps that contain a rich user interface that
automatically adapts to the wide variety of Android device form factors that exist.
We get all of these capabilities while writing only minimal code.

In the next chapter, we will dig into the life cycle of fragments and explore how we
can leverage the fragment life cycle to create more responsive user interfaces and
how we can leverage specialized Fragment classes.

[39]

Fragment Life Cycle
and Specialization

This chapter discusses the relationship of the life cycle of fragments with that
of activities and demonstrates the appropriate programming actions at various
points in the life cycle. The special purpose fragment classes, ListFragment and
DialogFragment, are introduced covering their use and how their behavior in the
activity life cycle differs from that of standard fragments.

The following topics are covered in this chapter:

• Fragment setup/display event sequence
• Fragment teardown/hide event sequence
• Working with the ListFragment class
• Working with the DialogFragment class
• Interacting with a DialogFragment class as a traditional Dialog class
• Wrapping an existing Dialog class in a DialogFragment class

By the end of this chapter, we will be able to coordinate the setup and teardown of
fragments within their host activities and effectively utilize the ListFragment and
DialogFragment classes.

Fragment Life Cycle and Specialization

[40]

Understanding the fragment life cycle
One of the challenges of developing Android applications is to ensure that our
applications effectively handle the life cycle of the application's activities. During the
lifetime of an application, a given activity may be created, destroyed, and recreated
many times. A simple action, such as a user rotating a device from the portrait
to landscape orientation or vice-versa, normally causes the visible activity to be
completely destroyed and recreated using the appropriate resources for the new
orientation. Applications that do not cooperate effectively with this natural life
cycle often crash or behave in some other undesirable manner.

Each fragment instance exists within a single activity; therefore, this fragment must
cooperate in some way with the activity life cycle. In fact, not only do fragments
cooperate with the activity life cycle, but also they are intimately connected.

In the setup and display phases, as well as in the hide and teardown phases,
fragments provide many of the same life cycle-related callback methods as activities.
In addition, fragments provide additional life cycle-related callback methods that
relate to the fragment's relationship with the containing activity.

As our applications become more sophisticated and we work with more specialized
implementations of the fragment class, understanding the fragment class' life cycle
and the relationship with the activity life cycle is essential.

If you are unfamiliar with the basics of Android's activity life cycle
callback methods, refer to the Activity Lifecycle section of the Android
Activity documentation at http://developer.android.com/
reference/android/app/Activity.html#ActivityLifecycle.

Understanding fragment setup and display
Fragment setup and display is a multiphase process involving the fragment's
association with an activity, its creation, and the standard life cycle events of moving
the activity into the running state (also known as the resumed or active state).
Understanding the behavior of the life cycle events and the associated callback
methods is essential to use fragments effectively. Once we have an understanding of
the life cycle events and callback methods, we'll look at just how the event callback
methods are used.

http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle
http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle

Chapter 3

[41]

The following figure shows the sequence of life cycle-related callback method calls
that occur on fragments and activities during setup and display:

As you might expect in most cases, the first step in the setup and display of a
fragment occurs in the activity's onCreate method. In most cases, the activity calls
the setContentView method from within the activity's onCreate callback method,
which then loads the layout resource and triggers the activity's association with the
contained fragments.

Note what happens next. Before the fragment is even created, it is attached to the
activity. The fragment is first notified of the attachment and receives a reference to
the activity through the onAttach callback method. The activity is then notified and
receives a reference to the fragment through the onAttachFragment callback method.

Although attaching the fragment to the activity prior to creating the fragment may
seem unexpected, doing so is useful. In many cases, the fragment needs access to the
activity during the creation process because the activity often contains information
that the fragment will display or that is otherwise important to the fragment's
creation process.

Attached to the activity, the fragment then performs general creation work in
the onCreate method and then constructs the contained view hierarchy in the
onCreateView method. We'll talk more about which actions are appropriate to perform
in each method in the Maximizing the available resources section later in this chapter.

Fragment Life Cycle and Specialization

[42]

When an activity contains multiple fragments, Android calls the four methods
Fragment.onAttach, Activity.onAttachFragment, Fragment.onCreate, and
Fragment.onCreateView in succession for one fragment before making any calls
to these methods for the next fragment. This allows each fragment to complete the
process of attachment and creation before the next fragment begins this process.

Once the sequence of calling these four methods is complete for all the fragments, the
remaining setup and display callback methods are called individually in succession
for each fragment.

After the activity completes the execution of its onCreate method, Android then
calls each fragment's onActivityCreated method. The onActivityCreated method
indicates that all views and fragments created by the activity's layout resource are
now fully constructed and can be safely accessed.

At this point, the fragment receives the standard life cycle callbacks on the onStart
and onResume methods just after each of the activity methods of the same name is
called. Any work performed in the fragment's onStart and onResume methods is
very much like the work performed in the corresponding methods within an activity.

For many fragments, the only methods in this part of their life cycle that are
overridden are the onCreate and onCreateView methods, as we noted in the
examples in the previous chapters.

Avoiding method name confusion
The activity and fragment classes have a number of commonly named callback
methods, and most of these commonly named methods have a common purpose.
One important exception is the onCreateView method. The purpose of this method
is very different for each class.

As mentioned previously, Android calls the Fragment class' onCreateView method
to give the fragment an opportunity to create and return the fragment's contained
view hierarchy. This method is commonly overridden within a fragment.

The method of the same name in the Activity class is called repeatedly by the
LayoutInflater class during the process of inflating a layout resource. Most
activity implementations do not override this method.

Chapter 3

[43]

Understanding fragment hide and teardown
Just as fragments behave in a similar way to activities during setup and display,
they also behave in a similar way during hide and teardown, as shown in the
following figure:

Initially, during hide and teardown, fragments behave just as activities. When the
user switches to another activity, each fragment's onPause, onSaveInstanceState,
and onStop methods are called. For each method, the fragment implementation is
called first, followed by the activity implementation.

After the onStop method is called, fragments begin to behave a little differently than
activities. Consistent with the separation of fragment creation from fragment view
hierarchy creation, fragment view hierarchy destruction is separate from fragment
destruction. Following the call to the activity's onStop method, the fragment's
onDestroyView method is called, indicating that the view hierarchy returned by the
fragment's onCreateView method is being destroyed. The fragment's onDestroy
method is then called, followed by the fragment's onDetach method. At this point,
the fragment has no association with an activity and any calls to the getActivity
method will return null.

Fragment Life Cycle and Specialization

[44]

For activities containing multiple fragments, Android calls the sequence of the
three methods onDestroyView, onDestroy, and onDetach for an individual
fragment before beginning the sequence of calling these three methods for the next
fragment. This groups the process of destroying and detaching each fragment similar
to the way Android groups the process of attaching and creating each fragment.
Once this sequence is completed for all fragments, Android calls the activity's
onDestroy method.

Maximizing the available resources
For the most part, life cycle management for a fragment is very much like that of
an activity. There is, however, one important exception: the two-phase nature of
fragment creation and destruction. Fragments separate their creation and destruction
from their contained view hierarchy. This is because fragments have the ability to
exist and be associated with an activity in the absence of their view hierarchy.

There are many scenarios where an activity contains multiple fragments but has only
a subset of these fragments visible at any point in time. In such a case, the contained
fragments can have their onAttach and onCreate methods called. But the call to
each fragment's onCreateView method is delayed until the time comes for the app
to make the contents of this fragment visible. Similarly, when the time comes to hide
the contents of a fragment, only the fragment's onDestroyView method is called, not
the onDestroy and onDetach methods.

This behavior comes into play when fragments are dynamically managed within an
activity. This behavior allows the overhead of associating a fragment with an activity
and initializing the fragment's state to occur only once while being able to easily
change the visibility of the fragment's view hierarchy. This is important when we
explicitly manage the visibility of fragments using the FragmentTransaction class
and certain action bar features that manage fragments. We'll talk about these issues
in the next two chapters.

Managing a fragment state
For many fragment implementations, the most important callback method in the
life cycle sequence is the onSaveInstanceState method. Just as with an activity,
this callback method provides the fragment with an opportunity to persist any state
before the fragment is destroyed, such as when the user moves to another activity
or when the user rotates the device to a different orientation. In both these cases, the
activity and contained fragments may be completely torn down and recreated. By
persisting the fragment state in the onSaveInstanceState method, this state is later
passed back to the fragment in both the onCreate and onCreateView methods.

Chapter 3

[45]

When managing the state of a fragment, you want to be sure to separate work that
is general to the fragment's overall existence from being work-specific to setting up
the view hierarchy. Any expensive initialization work that's general to the fragment's
existence, such as connecting to a data source, complex calculations, or resource
allocations, should occur in the onCreate method rather than the onCreateView
method. This way, if only the fragment's view hierarchy is destroyed and the fragment
remains intact, you avoid unnecessarily repeating expensive initialization work.

Special-purpose fragment classes
Now that we understand the life cycle of fragments, we can look at some of
the specialized versions of the Fragment class. As we go through each of these
specialized classes, remember that they all ultimately inherit from the Fragment
class and therefore experience the same life cycle behavior. Many of these specialized
classes have an impact on which operations are safe to perform at the various points
in the life cycle, and some of these classes even add their own life cycle methods.
Understanding each of these classes and their interaction with the fragment life
cycle is essential to using the classes effectively.

ListFragment
One of the simplest fragment derived classes to use, and yet one of the most helpful,
is the ListFragment class. The ListFragment class provides a fragment that
encapsulates ListView and, as the name implies, is useful for displaying lists of data.

Associating data with the list
Unlike the base Fragment class, we're not required to override the onCreateView
callback method for the ListFragment class. The ListFragment class provides
a standard appearance and only requires that we associate some data. The
ListFragment class does all the work of creating the view hierarchy and
displaying this data.

We will associate the data with the ListFragment class by calling the ListFragment
class' setListAdapter method and passing a reference to an object that implements
the ListAdapter interface. Android provides a number of classes that implement
this interface, such as ArrayAdapter, SimpleAdapter, and SimpleCursorAdapter.
The specific class you use will depend on how your source data is stored. If none
of the standard Android classes meet your specific requirements, you can create a
custom implementation reasonably easily.

Fragment Life Cycle and Specialization

[46]

For a discussion about creating a custom list adapter, take a
look at the Displaying the Quick Contact Badge Android tutorial at
http://developer.android.com/training/contacts-
provider/display-contact-badge.html.

The ListFragment class wraps an instance of the ListView class, which is accessible
through the getListView method. In most scenarios, we can feel free to interact
with the contained ListView instance directly and take advantage of any features
offered by the ListView class. The one very important exception is when we set
the ListAdapter instance. Both the ListFragment and ListView classes expose
a setListAdapter method, but we must be sure to use the ListFragment version
of the method.

The ListFragment class relies on certain initialization behaviors that occur within
the ListFragment.setListAdapter method; therefore, the process of calling the
setListAdapter method directly on the contained ListView instance bypasses
this initialization behavior and may cause the application to become unstable.

Separating data from the display
Up until now, our application has used a fixed layout of several RadioButton
views to display the list of books. Using a fixed layout to display such options is
not generally a good choice because any changes to the book list require that we go
in and directly modify the fragment layout. In practice, we would prefer to have a
layout that is independent of the specific titles. We could write code to dynamically
generate the RadioButton views, but there is an easier way. We can instead use the
ListFragment class.

By switching our application to use the ListFragment class, we can simply store the
list of book titles in an array resource and associate the contents of this array resource
with the ListFragment instance. In the event of adding more titles or needing to
change one of the titles, we can simply modify the array resource file. There is no
need for us to make any changes to the actual fragment layout.

Our application already has all the book titles stored as individual string resources,
so we just need to add an array resource for them. We'll add the book titles array to
the course_arrays.xml resource file within the values resource folder, where we
currently have an array resource defined to hold the list of book descriptions.

http://developer.android.com/training/contacts-provider/display-contact-badge.html
http://developer.android.com/training/contacts-provider/display-contact-badge.html

Chapter 3

[47]

Within the resources root element of the course_arrays.xml resource file, add a
string-array element that includes a name attribute with a value of bookTitles.
Within the string-array element, add an item for each book title that references
the string resource for each title. We want to be sure that we list the book title array
entries in the same order as the book_descriptions array entries because we use
the array index as the ID value for each book when we notify the activity of the user's
book selection. The array resource entries for the book title and description arrays
appear as follows:

<resources>
 <!-- Book Titles -->
 <string-array name="book_titles">
 <item>@string/dynamicUiTitle</item>
 <item>@string/android4NewTitle</item>
 <item>@string/androidSysDevTitle</item>
 <item>@string/androidEngineTitle</item>
 <item>@string/androidDbProgTitle</item>
 </string-array>

 <!-- Book Descriptions -->
 <string-array name="book_descriptions">
 <item>@string/dynamicUiDescription</item>
 <item>@string/android4NewDescription</item>
 <item>@string/androidSysDevDescription</item>
 <item>@string/androidEngineDescription</item>
 <item>@string/androidDbProgDescription</item>
 </string-array>
</resources>

With the titles stored as an array resource, we can now easily create a ListFragment
derived class to display the book titles.

Creating the ListFragment derived class with Android
Studio
The first step is to add a new class to our project. To do this, we'll create a new class
named BookListFragment2 that extends the ListFragment class. In Chapter 1,
Fragments and UI Modularization, we created the fragment class manually. For the
BookListFragment2 class, we'll use Android Studio.

Fragment Life Cycle and Specialization

[48]

To create the BookListFragment2 class, we first need to open the New Android
Activity dialog by performing the following steps:

1. Select the Android Studio File menu.
2. Then, select New.
3. Select Fragment.
4. Select Fragment (List).

Now, we will perform the following steps within the New Android Activity dialog:

1. In the Object Kind: field, enter String.
2. In the Fragment class name: field, enter BookListFragment2.
3. Then, unselect the Include fragment factory methods? checkbox.
4. Unselect the Switch to grid view on large screens? checkbox.

The New Android Activity dialog should now look similar to the following
screenshot:

Chapter 3

[49]

Click on the Finish button to complete the creation of the BookListFragment2 class.

The generated class has the onCreate method stubbed to populate the list with
dummy data. To load in the list of book titles, update the onCreate method, as
shown in the following code:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // TODO: Change Adapter to display your content
 String[] bookTitles =
 getResources().getStringArray(R.array.book_titles);
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 android.R.id.text1, bookTitles));
}

In the onCreate method, we will first call the base class implementation that is
required by all classes that extend ListFragment. We will then load the bookTitles
array resource. We will call the setListAdapter method by passing an instance
of the ArrayAdapter. The array adapter takes the context as the first parameter,
which we will get by accessing the activity, and then it takes the array as the
third parameter. The second parameter is the ID of the resource used to lay out
each entry in the list. This resource can be a custom resource or one of the built-in
Android resources. In our case, we will use the built-in Android layout resource
android.R.layout.simple_list_item_1, which displays a single string value
for each row within ListView.

Creating a custom layout resource for the ListFragment class is just like
doing so for the ListView class and is discussed in detail in the Android
developer documentation at http://developer.android.com/
reference/android/app/ListFragment.html.

Handling the ListFragment item selection
For our application to work correctly, we need to inform the activity each time the
user selects one of the titles. As we use an interface to loosely couple our fragment
with the activity, this turns out to be a pretty simple task.

http://developer.android.com/reference/android/app/ListFragment.html
http://developer.android.com/reference/android/app/ListFragment.html

Fragment Life Cycle and Specialization

[50]

When Android Studio generates the BookListFragment2 class, it includes
a nested interface declaration within the BookListFragment2 class named
OnFragmentInteractionListener along with code to use the interface to
notify the activity of user selections within the list. Scroll to the bottom of the
BookListFragment2 class, and you'll see the OnFragmentInteractionListener
interface declaration, as shown in the following code:

public interface OnFragmentInteractionListener {
 // TODO: Update argument type and name
 public void onFragmentInteraction(String id);
}

As we previously created our OnSelectedBookChangeListener interface,
we don't need the OnFragmentInteractionListener interface; so, we can
delete it and then update the BookListFragment2 class to use our existing
OnSelectedBookChangeListener interface.

Scroll to the top of the BookListFragment2 class and locate the mListener field
declaration as shown in the following code:

private OnFragmentInteractionListener mListener;

Update the mListener field declaration to use the OnSelectedBookChangeListener
interface so that the declaration now appears as shown in the following code:

private OnSelectedBookChangeListener mListener;

With the mListener field, we are able to store a reference to the containing
activity as an OnSelectedBookChangeListener interface reference. The
generated BookListFragment2 class code sets the mListener reference in
the onAttach callback method. As we discussed earlier in this chapter, the
onAttach method is called when the fragment instance is attached to the
containing activity and receives a reference to this activity. Update the onAttach
method to use the OnSelectedBookChangeListener interface rather than the
OnFragmentInteractionListener interface so that the method now appears as
shown in the following code:

public void onAttach(Activity activity) {
 super.onAttach(activity);
 try {
 mListener = (OnSelectedBookChangeListener) activity;
 }
 catch (ClassCastException e) {
 throw new ClassCastException(activity.toString()
 + " must implement OnSelectedBookChangeListener");
 }
}

Chapter 3

[51]

The onAttach method simply assigns the activity to the mListener field casting the
activity to the OnSelectedBookChangeListener interface. The method also includes
a try\catch block to display an appropriate error message if the containing activity
does not implement the OnSelectedBookChangeListener interface.

The generated BookListFragment2 class includes an onListItemClick method that
is called when the user makes a selection from the list and receives several selection-
related parameters, including the zero-based position of the user selection. Update
the onListItemClick method to use the OnSelectedBookChangeListener interface
so that the method appears as shown in the following code:

public void onListItemClick(ListView l, View v,
 int position, long id) {
 super.onListItemClick(l, v, position, id);
 if (null != mListener) {
 mListener.onSelectedBookChanged(position);
 }
}

After calling the onListItemClick method on the base class, the preceding code
verifies that the mListener field is set. If it has, the onSelectedBookChanged
method is called, passing the position of the user selection. This code will now
inform the activity each time the user makes a selection from the list, just as the
BookListFragment class implementation did when the user selected a radio button.

All the activity classes in our application that use our BookListFragment2 class
already implement the OnSelectionChangeListener interface, so there is no
change required to the activity classes.

Updating the layout resources
We will now update the activity_main.xml resource file to use the
BookListFragment2 class instead of the original BookListFragment
class, as shown in the following code:

<LinearLayout
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <!-- List of Book Titles ** using the ListFragment **-->
 <fragment

Fragment Life Cycle and Specialization

[52]

 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookListFragment2"
 android:id="@+id/fragmentTitles"/>

 <!-- Description of selected book -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookDescFragment"
 android:id="@+id/fragmentDescription"/>
</LinearLayout>

We need to make the same change in the activity_main_wide.xml file.

Our program is now fully functional using the ListFragment class and appears
as follows:

Any changes that we need to make to the titles can now all be made in the resources
file and require no changes to the user interface code.

Chapter 3

[53]

DialogFragment
Up until now, we've been looking at fragments as a new way to divide our
application's user interface into subsections of the available display area. Although
fragments are new, the concept of having an aspect of our application user interface
as a subsection of the available display area is not new. Whenever an application
displays a dialog, the application does exactly this.

Historically, the challenge of working with dialogs is that, even though they are
conceptually just another window within an application, we must handle many
of the tasks related to dialogs differently than other aspects of our application
user interface. Doing something as simple as handling a button click requires the
dialog-specific DialogInterface.OnClickListener interface, rather than the
View.OnClickListener interface that we use when handling a click event from
non-dialog-related parts of our user interface code. An even more complicated
issue is that of orientation changes. Dialogs automatically close in response to an
orientation change and therefore can create inconsistent application behavior if a
user changes device orientation while a dialog is visible.

The DialogFragment class eliminates much of the special handling related
to dialogs. With the DialogFragment class, displaying and managing a dialog
becomes much more consistent with other aspects of our application user interface.

Styles
When an application displays an instance of the DialogFragment class, the window
for the DialogFragment instance has up to three parts to it: the layout area, title,
and frame. A DialogFragment instance always contains the layout area, but we can
control whether it includes the title and frame by setting the DialogFragment class'
style using the setStyle method. The DialogFragment class supports four styles
with an instance of the DialogFragment class having exactly one style applied. The
following table shows the four available styles:

Style Has title Has frame Accepts input
STYLE_NORMAL Yes Yes Yes
STYLE_NO_TITLE No Yes Yes
STYLE_NO_FRAME No No Yes
STYLE_NO_INPUT No No No

Fragment Life Cycle and Specialization

[54]

Note that the styles remove features cumulatively. For example,
STYLE_NO_TITLE indicates no title, whereas STYLE_NO_FRAME
indicates no frame and no title. If we do not call the setStyle
method, Android creates the DialogFragment instance with the
style set to STYLE_NORMAL.

The style affects the remainder of the behavior of the DialogFragment class and
therefore must be set in the onCreate callback method. An attempt to set the
DialogFragment class' style any later in the life cycle is ignored.

If you wish to provide the dialog with a special theme, the theme's resource ID can
also be passed to the setStyle method. To allow Android to select an appropriate
theme based on the style, simply pass 0 as the theme resource ID. The following
code sets the DialogFragment instance to have no title and use the Android-selected
theme for this style, as in the following code:

class MyDialogFragment extends DialogFragment {
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setStyle(DialogFragment.STYLE_NO_TITLE, 0);
 }
}

Layout
Populating the layout of an instance of the DialogFragment class is similar to that
of a standard fragment derived class. We will simply override the onCreateView
method and inflate the layout resource via the following code:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View theView = inflater.inflate(R.layout.fragment_my_dialog,
 container, false);
 return theView;
}

Creating a layout resource for use with a DialogFragment derived class works
exactly like creating a layout resource for any other fragment derived class. To have
our DialogFragment instance display a line of text and two buttons, we will define
the fragment_my_dialog.xml layout resource as shown in the following XML:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"

Chapter 3

[55]

 android:layout_height="match_parent">

 <!-- Text -->
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="0px"
 android:layout_weight="1"
 android:text="@string/dialogSimpleFragmentPrompt"
 android:layout_margin="16dp"/>

 <!-- Two buttons side-by-side -->
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="0px"
 android:orientation="horizontal"
 android:layout_weight="3">
 <Button
 android:id="@+id/btnYes"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/text_yes"
 android:layout_margin="16dp"/>
 <Button
 android:id="@+id/btnNo"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/text_no"
 android:layout_margin="16dp"/>
 </LinearLayout>
</LinearLayout>

Displaying DialogFragment
Displaying our DialogFragment derived class is largely just a matter of creating
the class instance and calling the show method. We need to keep in mind, though,
that although our DialogFragment instance appears as a standard dialog when
it displays, it is actually a fragment. As with all fragments, it is managed by the
containing activity's FragmentManager instance. As a result, we need to pass
a reference to the activity's FragmentManager instance as part of the call to the
DialogFragment class' show method, as we do in the following code:

MyDialogFragment theDialog = new MyDialogFragment();
theDialog.show(getFragmentManager(), null);

Fragment Life Cycle and Specialization

[56]

With our DialogFragment derived class' style set to STYLE_NO_TITLE and using
the fragment_my_dialog.xml layout resource file shown earlier, the previous
code displays the following screenshot:

Event handling in DialogFragment
One of the key values of the DialogFragment class is that it provides greater
consistency in our code than that available when using the traditional Dialog
class. Most aspects of working with the DialogFragment class are the same as
when working with other fragments. No longer does displaying a dialog have to
be handled so differently than other aspects of our application user interface. For
example, no special handling is required to deal with orientation changes. Another
place where this greater consistency is evident is in event handling because our
button click event handling can use the standard view class event interfaces.

To handle the button clicks, our DialogFragment derived class simply implements
the View.OnClickListener interface. The following code shows setting the yes and
no button click events to call back to our DialogFragment derived class in our class'
onCreateView callback method:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View theView = inflater.inflate(R.layout.fragment_my_dialog,
 container, false);

 // Connect the Yes button click event and request focus
 View yesButton = theView.findViewById(R.id.btnYes);
 yesButton.setOnClickListener(this);
 yesButton.requestFocus();

 // Connect the No button click event
 View noButton = theView.findViewById(R.id.btnNo);
 noButton.setOnClickListener(this);

 return theView;
}

Chapter 3

[57]

Note that we're setting up the button click handling just as we would if we
were working within any other fragment or even directly within the activity.

We can also handle notifying the activity of the user's interaction with the
DialogFragment derived class consistently with the way we do with other
fragments. Just as we did when notifying the activity of book title selections, our
DialogFragment derived class simply provides an interface to notify the activity
which of the available buttons the user selected, as shown in the following code:

public class MyDialogFragment extends DialogFragment
 implements View.OnClickListener {
 // Interface Activity implements for notification
 public interface OnButtonClickListener {
 void onButtonClick(int buttonId);
 }
 // Other members elided for clarity
}

As long as the activity implements the interface, our DialogFragment derived class
can notify the activity of the button that the user clicked.

In the handler for our button click events, we'll follow the same pattern as we did in
the previous chapter. We will access the containing activity, cast it to the expected
interface, and call the interface method, as shown in the following code:

public void onClick(View view) {
 int buttonId = view.getId();

 // Notify the Activity of the button selection
 OnButtonClickListener parentActivity = (OnButtonClickListener)
 getActivity();
 parentActivity.onButtonClick(buttonId);

 // Close the dialog fragment
 dismiss();
}

Note that there is one bit of special handling in the onClick method. Just as with the
traditional Dialog class, we must call the dismiss method on the DialogFragment
derived class when we no longer wish to display it.

Fragment Life Cycle and Specialization

[58]

The Dialog identity
Although we treat our DialogFragment derived class as just another fragment,
a part of its identity is still tied to the traditional Dialog class. In fact, Android
actually wraps our DialogFragment derived class within a traditional Dialog
instance. This occurs in a callback method specific to the DialogFragment class
named onCreateDialog that Android calls just prior to calling the onCreateView
callback method.

The Dialog instance that the onCreateDialog method returns is the window that is
ultimately displayed to the user. The layout we create within our DialogFragment
derived class is simply wrapped within the Dialog window. We can access this
Dialog instance later in the life cycle to access behavior related to the Dialog
class or even override the method to provide our own Dialog instance.

Accessing behavior related to Dialog
Accessing the behavior related to Dialog of our DialogFragment derived class
requires a reference to the Dialog instance created in the onCreateDialog method.
We retrieve this reference by calling the getDialog method. Once we have the
reference to the Dialog instance, we can access aspects of the class' Dialog identity
that are not otherwise available.

When we create a DialogFragment derived class with the style set to STYLE_NORMAL,
the displayed dialog includes a title area above the layout area. The value of the title
can only be set by calling the setTitle method on the Dialog instance that wraps
our DialogFragment instance. A similar issue arises in dealing with the dialog-
cancellation behavior. By default, the user can cancel a dialog by tapping on the
activity behind the dialog. In many cases, this may be unacceptable as we want to
require the user to acknowledge one of the choices within the dialog. The following
code sets these behaviors related to Dialog after the button click handling is set up:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View theView = inflater.inflate(R.layout.fragment_my_dialog,
 container, false);

 View yesButton = theView.findViewById(R.id.btnYes);
 yesButton.setOnClickListener(this);
 yesButton.requestFocus();

 View noButton = theView.findViewById(R.id.btnNo);
 noButton.setOnClickListener(this);

Chapter 3

[59]

 // Set the dialog aspects of the dialog fragment
 Dialog dialog = getDialog();
 dialog.setTitle(getString(R.string.myDialogFragmentTitle));
 dialog.setCanceledOnTouchOutside(false);

 return theView;
}

The code first sets the dialog title and then sets the option to prevent the user from
closing the dialog by tapping on the activity window. For the call to the setTitle
method to work, we will need to change the call to the setStyle method in the
onCreate callback method to set the style to STYLE_NORMAL so that the dialog will
have a title area.

Wrapping an existing dialog in a fragment
There may be times where we like the programming consistency that the
DialogFragment class offers but want to take advantage of the features provided
by a class that is derived from the traditional Dialog class. By overriding the
DialogFragment class' onCreateDialog method, we can do exactly this. Overriding
the onCreateDialog method allows us to replace the DialogFragment class' default
Dialog instance with the one we create. A great example of when this is useful is in
leveraging the Android AlertDialog class.

The AlertDialog class provides a variety of default behaviors and allows us to
display text, an icon, and buttons all without having to create a layout resource.
There is something we must keep in mind when we leverage a class that inherits
from the traditional Dialog class. Although outside interaction with our class will
be consistent with other DialogFragment derived classes, any interactions with the
traditional Dialog class that occur within our DialogFragment derived class will be
done in the traditional Dialog class way. For example, to create a DialogFragment
derived class that utilizes the AlertDialog class requires that our class implement
the Dialog class way of handling click events; that is, it must implement the
DialogInterface.OnClickListener interface, as shown in the following code:

public class AlertDialogFragment extends DialogFragment
 implements DialogInterface.OnClickListener{ }

Fragment Life Cycle and Specialization

[60]

Within our class' onCreateDialog method, we will create the AlertDialog instance
using the AlertDialog.Builder class just as if we were going to display the
AlertDialog instance directly. Within the onCreateDialog method, we will set all
the options on the AlertDialog.Builder instance, including the title, message, icon,
and buttons. Note that we never call the AlertDialog.Builder class' show method;
instead, we call its create method. We will then take the reference to the newly
created AlertDialog instance and return it from the onCreateDialog method.
All of these steps are shown in the following code:

public Dialog onCreateDialog(Bundle savedInstanceState) {
 // Create the Builder for the AlertDialog
 AlertDialog.Builder builder = new
 AlertDialog.Builder(getActivity());

 // Set the AlertDialog options
 builder.setTitle(R.string.alert_dialog_title)
 .setMessage(R.string.alert_dialog_message)
 .setIcon(R.drawable.ic_launcher)
 .setCancelable(false)
 .setPositiveButton(R.string.text_yes, this)
 .setNegativeButton(R.string.text_no, this);

 // Create and return the AlertDialog
 AlertDialog alertDialog = builder.create();
 return alertDialog;
}

The Dialog instance we create is now managed as a part of the DialogFragment
instance. Everything else we do with our AlertDialogFragment class will be just
as it is with the other DialogFragment derived classes we create.

When our app shows our AlertDialogFragment class, it looks like this:

Chapter 3

[61]

Note that we didn't need to override the onCreateView callback method
because the Dialog instance we created in the onCreateDialog
callback method provides the desired display characteristics.

Overriding the DialogFragment class' onCreateDialog callback method is a
powerful technique that allows us to enjoy the benefits of the DialogFragment class
while still leveraging any existing investment we may have in traditional Dialog
classes—whether they are a built-in class, such as the AlertDialog class, or a custom
Dialog class that we may have as part of our own code library.

Summary
Understanding the fragment life cycle empowers us to leverage the phases of
creation and destruction of fragments to more efficiently manage fragments and
the data associated with them. By working with this natural life cycle, we can take
advantage of the specialized fragment classes to create a rich user experience while
following a more consistent programming model than was previously available.

In the next chapter, we will build on our understanding of the fragment life cycle to
take more direct control of fragments to dynamically add and remove them within
individual activities.

[63]

Working with Fragment
Transactions

This chapter covers dynamically managing fragments within an activity, implementing
back button behavior, and monitoring user interaction with the back button.

Let's have a look at the topics covered:

• Understanding FragmentTransactions
• Dynamically adding and removing fragments
• Managing fragment UI separately from activity relationship
• Adding back button support to FragmentTransactions

By the end of this chapter, we will be able to create interactive UIs that use fragments
to dynamically change the appearance of the screen in response to user actions.

Intentional screen management
Until now, we've considered each activity to always correspond to a single screen
in our application. We used fragments only to represent subsections within each
screen. As an example, let's think back to the way we constructed our book browsing
application. In the case of a wide-display device, our application uses a single activity
containing two fragments. One fragment displays the list of book titles, and the other
fragment displays the description of the currently selected book. As both of these
fragments appear onscreen at the same time, we display and manage them from
a single activity. However, in the case of a portrait-oriented handset, we chose to
display the book list and the book description on separate screens. The reason for this
is that the two fragments do not appear onscreen at the same time; we manage them
in separate activities.

Working with Fragment Transactions

[64]

Surprisingly, in both cases our application performed the same task. The only
difference is how much information we were able to display onscreen at one time.
That one detail caused us to add an extra activity to our application. We also increased
the complexity of our application because the code to launch a new activity is more
involved than the code we use to simply update a fragment within the same activity.
Also, we duplicated code in the activities because they both interact with the book
description fragment.

As you'll recall, when we started talking about fragments in Chapter 1, Fragments and UI
Modularization, we mentioned that one of the key values of fragments is that they help
reduce unnecessary complications, activity proliferation, and logic duplication. Yet, as
the application is currently written, we're experiencing all of these things.

We need to evolve our thinking about UI design a little further. Rather than having
activities within our application that simply react to what information happens to fit
on the device's physical display, we instead need to focus on intentionally managing
the relationship between the screens in our application and the corresponding
activities.

To the user, the experience of moving to a new screen simply means that the view
layout they see is replaced with a different view layout. Historically, we've tended to
design our applications so that each activity has a relatively fixed layout. As a result,
moving the user to a new screen requires displaying a new activity, but fragments
give us another option.

Rather than simply using fragments to manage logical subsections of the screen,
we can also use them to manage logical groupings of an entire screen. We can then
dynamically manage the fragments within a single activity to change from one
fragment to another. This gives the user the experience of moving from one screen
to the next while giving us the convenience of managing common user interface
elements within a single activity.

Dynamically managing fragments
The process of dynamically managing fragments commonly involves multiple steps.
The steps may be as simple as removing one fragment and adding another, or they
may be more complex, involving the removal and addition of multiple fragments. In
any case, we need to be certain that all dynamic changes to the fragments within an
activity that constitute a shift from one application screen to the next occur together
as a single unit of work. Android does this by grouping the steps into transactions
using the FragmentTransaction class.

Chapter 4

[65]

Conceptually, the FragmentTransaction class behaves in a manner consistent with
other transaction models:

1. Start the transaction.
2. Identify the desired changes.
3. Commit the transaction once all changes within this unit of work are identified.

When we're ready to make changes, we will start a new FragmentTransaction
instance by calling the beginTransaction method on the activity's FragmentManager
instance, which returns a reference to the FragmentTransaction instance. We will
then use the new FragmentTransaction instance to identify the desired changes
to the list of displayed fragments within the activity. While we're in the transaction,
these changes will be queued up but not yet applied. Finally, when we identify all the
desired changes, we will call the FragmentTransaction class' commit method.

Once all the changes in the transaction are applied, our application display is
updated to reflect these changes, giving the user the feel of moving to a new screen
within our application. Although our application performs a number of steps to
modify the list of fragments displayed within the existing activity, from the user's
perspective everything behaves just as if we displayed a new activity.

Deferred execution of transaction changes
The call to the commit method does not apply the changes immediately.

When we work with the FragmentTransaction class, we do not do any direct work
on the application user interface. Instead, we build a list of work to be done on the user
interface in the future. Each method that we call on a FragmentTransaction instance
adds another to-do item to the list. When we're done adding to the to-do list and we
call the commit method, this list of to-do items gets packaged up and sent to the main
UI thread's message queue. The UI thread then walks through the list, performing the
actual user interface work on behalf of the FragmentTransaction instance.

As the method calls to the FragmentTransaction instance do
not directly affect the user interface, an application can safely make
these calls on a non-UI thread. Complex applications can take
advantage of this fact to provide a more responsive user experience
by performing work related to FragmentTransaction in the
background when necessary.

Working with Fragment Transactions

[66]

The deferred execution of the work performed within a FragmentTransaction
instance works well in most cases. It can, however, create problems if our application
code needs to find a fragment, or interact with a view that is added by a fragment,
immediately following the call to the commit method. Although such a requirement
is not normally the case, it does sometimes come up.

If we do have such a requirement, we can force the FragmentTransaction
instance's work to be executed immediately by calling the FragmentManager class'
executePendingTransactions method after the call to the FragmentTransaction
instance's commit method. When a call to the executePendingTransactions method
returns, we know that all the committed FragmentTransaction work is performed.

We need to be careful by only calling the executePendingTransactions method on
the main UI thread; this method causes the pending user interface work to execute
and therefore triggers direct interaction with the user interface.

Adding and removing fragments
There are a number of methods available on the FragmentTransaction class to
manipulate the fragments within an activity, the most fundamental of which are
the add and remove methods.

The add method allows us to place a newly created fragment instance within a
specific view group of our activity, as shown here:

// Begin the transaction
FragmentManager fm = getFragmentManager();
FragmentTransaction ft = fm.beginTransaction();

// Create the Fragment and add
BookListFragment2 listFragment = new BookListFragment2();
ft.add(R.id.layoutRoot, listFragment, "bookList");

// Commit the changes
ft.commit();

We will first create a new FragmentTransaction instance using the
activity's FragmentManager instance. We will then create a new instance of
our BookListFragment2 class and attach it to the activity as a child of the
LinearLayout view group identified by the R.id.layoutRoot ID value. Finally,
we will commit the FragmentTransaction instance, indicating that we're done
making changes. We'll look at the XML layout that corresponds to this code later
in the Updating the layout to support dynamic fragments section of this chapter.

Chapter 4

[67]

Fragments can be dynamically added to any layout element that derives
from ViewGroup. Much of the example code you are likely to encounter
uses FrameLayout for this purpose. As we're evolving an existing layout
that uses LinearLayout and LinearLayout derived from ViewGroup,
there's no need for us to introduce FrameLayout in this case.

The string value bookList, which we will pass as the third parameter to the add
method, is simply a tag value. We can use the tag value to later locate the fragment
instance in much the same way as we might use the id value. When adding fragments
dynamically, we will use tags as identifiers rather than id values, simply because there
is no way to associate an id value with a dynamically added fragment.

The tag value comes in handy when we are ready to display a different fragment
because we need to have a reference to the existing fragment to pass to the remove
method so that we can remove it before adding a new fragment. The following code
shows how we can update the display to show the BookDescFragment class in place
of the BookListFragment2 class we added in the previous code:

FragmentManager fm = getFragmentManager();
Fragment listFragment = fm.findFragmentByTag("bookList");
BookDescFragment bookDescFragment = new BookDescFragment();
FragmentTransaction ft = fm.beginTransaction();
ft.remove(listFragment);
ft.add(R.id.layoutRoot, bookDescFragment, "bookDescription");
ft.commit();

We will begin by using the tag value to find our existing BookListFragment2 instance
using the FragmentManager class' findFragmentByTag method. We will then create
an instance of the new fragment we wish to add. Now that we have references to the
fragment we want to remove and the one we want to add, we will begin the fragment
transaction. Within the transaction, we will remove the BookListFragment2 instance
by passing the reference to the FragmentTransaction class' remove method and then
add the new fragment using the add method, just as we did earlier. Finally, we will call
the commit method to allow the changes to be made.

Working with Fragment Transactions

[68]

This process of removing the fragment instance under a particular view group and
adding another in its place occurs frequently enough for the FragmentTransaction
class to include a convenience method named replace. The replace method allows
us to simply identify the information for the fragment we wish to add. It takes care
of the details of removing any other fragments that may exist within the target view
group. Using the replace method, the code to remove the BookListFragment2
instance and add the BookDescFragment instance can be written as follows:

FragmentManager fm = getFragmentManager();
bookDescFragment = new BookDescFragment();
FragmentTransaction ft = fm.beginTransaction();
ft.replace(R.id.layoutRoot, bookDescFragment, "bookDescription");
ft.commit();

Note that this code, with the exception of the replace method name, is identical to the
case of adding a fragment. We will create our fragment instance, and then within the
FragmentTransaction instance, we will call the replace method by passing the IDs
of the target view group, fragment instance, and tag. The replace method handles the
details of removing any fragment that may currently be within the R.id.layoutRoot
view group. It then adds the BookDescFragment instance to the view group.

Supporting the back button
As we move to this model of managing our application screens as fragments,
we need to be sure that we're providing the user with an experience consistent
with their expectations. An area that requires special attention is our application's
handling of the back button.

When a user interacts with the applications on their device, they naturally move
forward through various application screens. The normal behavior is that a user can
move back to a previous screen at any time by tapping the back button. This works
because, each time an application displays a new activity, Android automatically
adds this activity to the Android back stack. This results in the expected behavior
of the user moving to the previous activity with each tap of the back button.

This behavior is based on the assumption that one activity equals one application
screen—an assumption that is no longer correct due to our dynamic management
of screens as fragments. When we transition the user from one application screen to
another using the FragmentTransaction class, the application continues to display
the same activity, leaving the back stack with no awareness of our application's new
screen. This results in the application appearing to jump back multiple screens in
response to the user tapping the back button because the back stack returns the user
directly to the previous activity, ignoring any intermediate changes made to the
current activity.

Chapter 4

[69]

The following figure demonstrates the issue:

The following is the explanation of the preceding figure:

1. An application initially calls the startActivity method to display an
instance of Activity1. Activity1 is automatically added to the back
stack and is currently at the top of the stack.

2. Activity1 then calls the startActivity method to display Activity2,
which uses the FragmentTransaction.add method to add FragmentA.
Activity2 is automatically added to the top of the back stack.

3. Next, Activity2 uses the FragmentTransaction.replace method to
display FragmentB in place of FragmentA. As far as the user is concerned,
the application displays a new screen showing the contents of FragmentB.
The problem is that the back stack is unchanged.

4. When the user now taps the back button, his/her expectation is that the app
should display the previous screen, FragmentA; instead, when Android pops
the back stack, the next screen it encounters is Activity1.

We resolve this issue by calling the FragmentTransaction class' addToBackStack
method within the FragmentTransaction instance that displays FragmentB. The
addToBackStack method adds the changes within the transaction to the top of
the back stack. This allows the user to use the back button to move through the
application screens created within the FragmentTransaction instance just as one
does with the screens created by showing an activity.

Working with Fragment Transactions

[70]

We can call the addToBackStack method at any point during the transaction prior to
calling the commit method. The addToBackStack method optionally accepts a string
parameter that can be used to name the location in the back stack. This is useful if
you wish to programmatically manipulate the back stack later, but in most cases this
parameter value can be passed as null. We'll see the addToBackStack method in
action shortly as we modify our application to use a more adaptive layout.

If your activity is derived from AppCompatActivity, you will need to
call getSupportFragmentManager to be able to create transactions
that properly support addToBackStack. When deriving from
AppCompatActivity, calls to addToBackStack on a transaction
created with the standard FragmentManager silently fail.

Creating an adaptive application layout
Let's put our discussion of dynamic fragment management into practice by updating
our application to work with just a single activity. This one activity will handle both
scenarios: wide-display devices, where both fragments appear side-by-side, and
portrait-oriented handsets, where the fragments appear as two separate screens.
As a reminder, the application appears as shown in the following screenshot in
each scenario:

In our application, we'll leave the wide-display aspect of the program alone because
static layout management works fine here. Our work is on the portrait-oriented
handset aspect of the application. For these devices, we'll update the application's
main activity to dynamically switch between displaying the fragment containing
the list of books and the fragment displaying the selected book description.

Chapter 4

[71]

Updating the layout to support dynamic
fragments
Before we write any code to dynamically manage the fragments within our
application, we first need to modify the activity layout resource for portrait-
oriented handset devices. This resource is contained in the activity_main.xml
layout resource file that is not followed by (land) or (600dp). The layout resource
currently appears as shown here:

<LinearLayout
 xmlns:tools="http://schemas.android.com/tools"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <!-- List of Book Titles -->
 <fragment
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:name="com.jwhh.fragments.BookListFragment2"
 android:id="@+id/fragmentTitles"
 tools:layout="@layout/fragment_book_list"/>
</LinearLayout>

We need to make two changes to the layout resource. The first is to add an id attribute
to the LinearLayout view group so that we can easily locate it in code. The other
change is to completely remove the fragment element. The updated layout resource
now contains only the LinearLayout view group, which includes an id attribute value
of @+id/layoutRoot. The layout resource now appears as shown here:

<LinearLayout
 android:id="@+id/layoutRoot"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">
</LinearLayout>

Working with Fragment Transactions

[72]

We still want our application to initially display the book list fragment, so removing
the fragment element may seem like a strange change; however, doing so is essential
as we will move our application to dynamically manage the fragments. We will
eventually need to remove the book list fragment to replace it with the book description
fragment. If we were to leave the book list fragment in the layout resource, our attempt
to dynamically remove it later would silently fail.

Only dynamically added fragments can be dynamically
removed. Attempting to dynamically remove a fragment
that was statically added with the fragment element in
a layout resource will silently fail.

Adapting to device differences
When our application runs on a portrait-oriented handset device, the activity needs
to programmatically load the fragment containing the book list. This is the same
Fragment class, BookListFragment2, that we previously loaded with the fragment
element in the activity_main.xml layout resource file. Before we load the book list
fragment, we first need to determine whether we're running on a device that requires
dynamic fragment management. Remember that, for wide-display devices, we will
leave the static fragment management in place.

There'll be a couple of places in our code where we'll need to take different logic
paths depending on which layout we use, so we'll need to add a boolean class-level
field to the MainActivity class in which we can store whether we're using dynamic
or static fragment management. Take a look at the following:

boolean mIsDynamic;

We could interrogate the device for its specific characteristics, such as screen size and
orientation. However, remember that much of our previous work was to configure
our application to take advantage of the Android resource system to automatically
load the appropriate layout resources based on the device characteristics. Rather
than repeating these characteristic checks in code, we can simply include the code to
determine which layout resource was loaded instead. The layout resource for wide-
display devices we created earlier—that is, activity_main_wide.xml—statically
loads both the book list fragment and the book description fragment. We can include
in our activity's onCreate method code to determine whether the loaded layout
resource includes one of these fragments, as shown here:

public class MainActivity extends Activity
 implements BookListFragment.OnSelectedBookChangeListener {
 protected void onCreate(Bundle savedInstanceState) {

Chapter 4

[73]

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main_dynamic);

 // Get the book description fragment
 FragmentManager fm = getFragmentManager();
 Fragment bookDescFragment =
 fm.findFragmentById(R.id.fragmentDescription);

 // If not found than we're doing dynamic mgmt
 mIsDynamic = bookDescFragment == null ||
 !bookDescFragment.isInLayout();
 }

 // Other members elided for clarity
}

When the call to the setContentView method returns, we will know that the
appropriate layout resource for the current device is loaded. We will then use the
FragmentManager instance to search for the fragment with an id value of R.id.
fragmentDescription that is included in the layout resource for wide-display
devices but not the layout resource for portrait-oriented handsets. A return value
of null indicates that the fragment was not loaded and we are, therefore, on a
device that requires us to dynamically manage the fragments. In addition to the
test for null, we will also include the call to the isInLayout method to protect
against one special case scenario.

In the scenario where the device is in a landscape layout and then rotated to portrait,
a cached instance to the fragment identified by R.id.fragmentDescription
may still exist, even though the activity does not use the fragment in the current
orientation. By calling the isInLayout method, we're able to determine whether the
returned reference is part of the currently loaded layout. With this, our test to set the
mIsDynamic member variable effectively says that we'll set mIsDynamic to true when
the R.id.fragmentDescription fragment is not found (which equals null), or it
is found but is not part of the currently loaded layout (that is,!bookDescFragment.
isInLayout).

Working with Fragment Transactions

[74]

Dynamically loading a fragment at startup
Now that we're able to determine whether dynamically loading the book list
fragment is necessary, we will add the code to do so to our onCreate method,
as shown here:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main_dynamic);

 // Get the book description fragment
 FragmentManager fm = getFragmentManager();
 Fragment bookDescFragment =
 fm.findFragmentById(R.id.fragmentDescription);

 // If not found than we're doing dynamic mgmt
 mIsDynamic = bookDescFragment == null ||
 !bookDescFragment.isInLayout();

 // Load the list fragment if necessary
 if (mIsDynamic) {
 // Begin transaction
 FragmentTransaction ft = fm.beginTransaction();

 // Create the Fragment and add
 BookListFragment2 listFragment = new BookListFragment2();
 ft.add(R.id.layoutRoot, listFragment, "bookList");

 // Commit the changes
 ft.commit();
 }
}

Following the check to determine whether we're on a device that requires dynamic
fragment management, we will include FragmentTransaction to add an instance
of the BookListFragment2 class to the activity as a child of the LinearLayout view
group, identified by the ID value R.id.layoutRoot. This code capitalizes on the
changes we made to the activity_main.xml resource file: removing the fragment
element and including an id value on the LinearLayout view group.

Now that we're dynamically loading the book list, we're ready to get rid of the
other activity.

Chapter 4

[75]

Transitioning between fragments
As you'll recall, whenever the user selects a book title within the
BookListFragment2 class, the fragment notifies the main activity by calling the
MainActivity.onSelectedBookChanged method and passing the index of the
selected book. The onSelectedBookChanged method currently appears as follows:

public void onSelectedBookChanged(int bookIndex) {
 FragmentManager fm = getFragmentManager();

 // Get the book description fragment
 BookDescFragment bookDescFragment = (BookDescFragment)
 fm.findFragmentById(R.id.fragmentDescription);

 // Check validity of fragment reference
 if(bookDescFragment == null || !bookDescFragment.isVisible()){
 // Use activity to display description
 Intent intent = new Intent(this, BookDescActivity.class);
 intent.putExtra("bookIndex", bookIndex);
 startActivity(intent);
 }
 else {
 // Use contained fragment to display description
 bookDescFragment.setBook(bookIndex);
 }
}

In the current implementation, we will use a technique similar to what we did
in the onCreate method to determine which layout is loaded; we will try to find
the book description fragment within the currently loaded layout. If we find it, we
will know that the current layout includes the fragment, and we will go ahead and
set the book description directly on the fragment. If we don't find it, we will call
the startActivity method to display the activity that does contain the book
description fragment.

Starting a separate activity to handle the interaction with the BookListFragment2
class unnecessarily adds complexity to our program. Doing so requires that we pass
data from one activity to another, which can sometimes be complex, especially if
there are a large number of values or if some of these values are object types that
require additional coding to be passed in an Intent instance. More importantly,
using a separate activity to manage the interaction with the BookListFragment2
class results in redundant work due to the fact that we already have all of the code
necessary to interact with the BookListFragment2 class in the MainActivity class.
We'd prefer to handle the interaction with the BookListFragment2 class consistently
in all cases.

Working with Fragment Transactions

[76]

Eliminating redundant handling
To eliminate this redundant handling, we will start by stripping any code in the current
implementation that deals with starting an activity. We can also avoid repeating the
check for the book description fragment because we performed this check earlier in
the onCreate method. Instead, we can now check the mIsDynamic class-level field
to determine the proper handling. With this in mind, we can initially modify the
onSelectedBookChanged method to now look similar to the following code:

public void onSelectedBookChanged(int bookIndex) {
 BookDescFragment bookDescFragment;
 FragmentManager fm = getFragmentManager();

 // Check validity of fragment reference
 if(mIsDynamic) {
 // Handle dynamic switch to description fragment
 }
 else {
 // Use the already visible description fragment
 bookDescFragment = (BookDescFragment)
 fm.findFragmentById(R.id.fragmentDescription);
 bookDescFragment.setBook(bookIndex);
 }
}

We will now check the mIsDynamic member field to determine the appropriate code
path. We still have some work to do if it turns out to be true, but in case it is false,
we can simply get a reference to the book description fragment that we know is
contained within the current layout and set the book index on it, much as we were
doing before.

Creating the fragment on the fly
In case the mIsDynamic field is true, we can display the book description fragment
by simply replacing the book list fragment we added in the onCreate method with
the book description fragment using the code shown here:

FragmentTransaction ft = fm.beginTransaction();
bookDescFragment = new BookDescFragment();
ft.replace(R.id.layoutRoot, bookDescFragment, "bookDescription");
ft.addToBackStack(null);
ft.setCustomAnimations(
 android.R.animator.fade_in, android.R.animator.fade_out);
ft.commit();

Chapter 4

[77]

Within FragmentTransaction, we will create an instance of the BookDescFragment
class and call the replace method, passing the ID of the same view group that
contains the BookListFragment2 instance that we added in the onCreate method.
We will include a call to the addToBackStack method so that the back button
functions correctly, allowing the user to tap the back button to return to the book list.

The code includes a call to the FragmentTransaction class'
setCustomAnimations method, which creates a fade effect
when the user switches from one fragment to the other.

Managing asynchronous creation
We have one final challenge, which is to set the book index on the dynamically
added book description fragment. Our initial thought might be to simply call the
BookDescFragment class' setBook method after we create the BookDescFragment
instance, but let's first take a look at the current implementation of the setBook
method. The method currently appears as follows:

public void setBook(int bookIndex) {
 // Lookup the book description
 String bookDescription = mBookDescriptions[bookIndex];

 // Display it
 mBookDescriptionTextView.setText(bookDescription);
}

The last line of the method attempts to set the value of mBookDescriptionTextView
within the fragment, which is a problem. Remember that the work we do within a
FragmentTransaction class is not immediately applied to the user interface. Instead,
as we discussed earlier in this chapter in the Deferred execution of transaction changes
section, the work within the transaction is performed sometime after the completion of
the call to the commit method. Therefore, the BookDescFragment instance's onCreate
and onCreateView methods are not yet called. As a result, any views associated with
the BookDescFragment instance are not yet created. An attempt to call the setText
method on the BookDescriptionTextView instance will result in a null reference
exception.

One possible solution is to modify the setBook method to be aware of the current
state of the fragment. In this scenario, the setBook method checks whether the
BookDescFragment instance is fully created. If not, it will store the book index value
in the class-level field and later automatically set the BookDescriptionTextView
value as part of the creation process. Although there may be some scenarios that
warrant such a complicated solution, fragments give us an easier one.

Working with Fragment Transactions

[78]

The Fragment base class includes a method called setArguments. With the
setArguments method, we can attach data values, which are otherwise known as
arguments, to the fragment that can then be accessed later in the fragment life cycle
using the getArguments method. Much as we do when associating extras with an
Intent instance, a good practice is to define constants on the target class to name
the argument values. It is also good programming practice to provide a constant
for an argument's default value in the case of nonnullable types such as integers,
as shown here:

public class BookDescFragment extends Fragment {
 // Book index argument name
 public static final String BOOK_INDEX = "book index";

 // Book index default value
 private static final int BOOK_INDEX_NOT_SET = -1;

 // Other members elided for clarity
}

If you used Android Studio to generate the BookDescFragment
class, you would find that the ARG_PARAM1 and ARG_PARAM2
constants are included in the class. Android Studio includes these
constants to provide examples of how to pass values to fragments
just as we're discussing now. As we're adding our own constant
declarations, you can delete the ARG_PARAM1 and ARG_PARAM2
constants from the BookDescFragment class as well as the
lines in the generated BookDescFragment.onCreate and
BookDescFragment.newInstance methods that reference them.

We'll use the BOOK_INDEX constant to get and set the book index value and the
BOOK_INDEX_NOT_SET constant to indicate whether the book index argument is set.

To simplify the process of creating the BookDescFragment instance and passing it
the book index value, we'll add a static factory method named newInstance to the
BookDescFragment class that appears as follows:

public static BookDescFragment newInstance(int bookIndex) {
 BookDescFragment fragment = new BookDescFragment();
 Bundle args = new Bundle();
 args.putInt(BOOK_INDEX, bookIndex);
 fragment.setArguments(args);
 return fragment;
}

Chapter 4

[79]

The newInstance method starts by creating an instance of the BookDescFragment
class. It then creates an instance of the Bundle class, stores the book index in
the Bundle instance, and then uses the setArguments method to attach it to
the BookDescFragment instance. Finally, the newInstance method returns
the BookDescFragment instance. We'll use this method shortly within the
MainActivity class to create our BookDescFragment instance.

If you used Android Studio to generate the BookDescFragment
class, you would find that most of the newInstance method
is already in place. The only change you would have to make
is to replace the two lines that reference the ARG_PARAM1 and
ARG_PARAM2 constants, which you deleted with the call to the
args.putInt method shown in the preceding code.

We can now update the BookDescFragment class' onCreateView method to look for
arguments that might be attached to the fragment. Before we make any changes to
the onCreateView method, let's look at the current implementation, which appears
as follows:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View viewHierarchy = inflater.inflate(
 R.layout.fragment_book_desc, container, false);

 // Load array of book descriptions
 mBookDescriptions =
 getResources().getStringArray(R.array.bookDescriptions);

 // Get reference to book description text view
 mBookDescriptionTextView = (TextView)
 viewHierarchy.findViewById(R.id.bookDescription);
 return viewHierarchy;
}

As the onCreateView method is currently implemented, it simply inflates the layout
resource, loads the array containing the book descriptions, and caches a reference to
the TextView instance where the book description is loaded.

We can now update the method to look for and use a book index that might be
attached as an argument. The updated method appears as follows:

public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View viewHierarchy = inflater.inflate(
 R.layout.fragment_book_desc, container, false);

Working with Fragment Transactions

[80]

 // Load array of book descriptions
 mBookDescriptions =
 getResources().getStringArray(R.array.bookDescriptions);

 // Get reference to book description text view
 mBookDescriptionTextView = (TextView)
 viewHierarchy.findViewById(R.id.bookDescription);

 // Retrieve the book index if attached
 Bundle args = getArguments();
 int bookIndex = args != null ?
 args.getInt(BOOK_INDEX, BOOK_INDEX_NOT_SET) :
 BOOK_INDEX_NOT_SET;

 // If we find the book index, use it
 if (bookIndex != BOOK_INDEX_NOT_SET)
 setBook(bookIndex);
 return viewHierarchy;
}

Just before we return the fragment's view hierarchy, we will call the getArguments
method to retrieve any arguments that might be attached. The arguments are returned
as an instance of the Bundle class. If the Bundle instance is not null, we will call the
Bundle class' getInt method to retrieve the book index and assign it to the bookIndex
local variable. The second parameter to the getInt method, BOOK_INDEX_NOT_SET,
is returned if the fragment happens to have arguments attached that do not include
the book index. Although this should not normally be the case, being prepared for
any such unexpected circumstance is a good idea. Finally, we will take a look at the
value of the bookIndex variable. If it contains a book index, we will call the fragment's
setBook method to display it.

Putting it all together
With the BookDescFragment class now including support for attaching the
book index as an argument, we're ready to fully implement the main activity's
onSelectedBookChanged method to include switching to the BookDescFragment
instance and attaching the book index as an argument. The method now appears
as follows:

public void onSelectedBookChanged(int bookIndex) {
 BookDescFragment bookDescFragment;
 FragmentManager fm = getFragmentManager();

 // Check validity of fragment reference
 if(mIsDynamic){

Chapter 4

[81]

 // Handle dynamic switch to description fragment
 FragmentTransaction ft = fm.beginTransaction();

 // Create the fragment and pass the book index
 bookDescFragment = BookDescFragment.newInstance(bookIndex);

 // Replace the book list with the description
 ft.replace(R.id.layoutRoot, bookDescFragment,
 "bookDescription");
 ft.addToBackStack(null);
 ft.setCustomAnimations(
 android.R.animator.fade_in, android.R.animator.fade_out);
 ft.commit();
 }
 else {
 // Use the already visible description fragment
 bookDescFragment = (BookDescFragment)
 fm.findFragmentById(R.id.fragmentDescription);
 bookDescFragment.setBook(bookIndex);
 }
}

Just as before, we will start by checking whether we're doing dynamic fragment
management. Once we determine we are, we will start the FragmentTransaction
instance and create the BookDescFragment instance. We will then create a new
Bundle instance, store the book index into it, and then attach the Bundle instance
to the BookDescFragment instance with the setArguments method. Finally, we will
put the BookDescFragment instance into place as the current fragment, take care of
the back stack, enable animation, and complete the transaction.

Everything is now complete. When the user selects a book title from the list, the
onSelectedBookChanged method will get called. The onSelectedBookChanged
method then creates and displays the BookDescFragment instance with the
appropriate book index attached as an argument. When the BookDescFragment
instance is ultimately created, its onCreateView method will retrieve the book
index from the arguments and display the appropriate description.

www.allitebooks.com

http://www.allitebooks.org

Working with Fragment Transactions

[82]

Summary
Intentional screen management frees us from the burden of trying each application
screen to an individual activity. Using the FragmentTransaction class, we're able
to dynamically switch between individual fragments within an activity, eliminating
the need to create a separate activity class for each screen in our application. This
helps to prevent the proliferation of unnecessary activity classes, better organize our
applications, and avoid the associated increase in complexity.

We'll see in the next chapter that this ability to dynamically manage multiple screens
within a single activity opens us up to greater flexibility and an increased richness in
the appearance and navigation behavior of our Android applications.

[83]

Creating Rich Navigation
This chapter demonstrates the role of fragments in creating a rich user interface
navigation experience.

The following topics are covered in this chapter:

• Making navigation fun with swipe
• Direct navigation for a small number of screens with PagerTitleStrip
• Direct navigation for four or more screens with navigation drawers

By the end of this chapter, we will be able to implement solutions that utilize
fragments to provide rich user navigation, including swipe navigation, direct
screen navigation with tap-enabled headings, and navigation drawers.

A brave new world
As we discussed, fragments provide us with the ability to closely control and manage
our application user interface. Through the use of the FragmentTransaction class,
we can provide the user with the experience of moving from one screen to another
by simply switching between different fragments. This takes us to an entirely new
way of thinking: a brave new world of application design.

When creating our user interface in this way, the activity acts as a sort of screen
manager, with the fragments implementing the screens themselves. This concept
of managing the individual application screens as fragments within an activity
is so powerful that it has become the foundation of some of the most compelling
navigation features of the Android platform.

Android provides classes that cooperate with this design pattern to enable us to
create rich navigation and screen management experiences in a simple way.

Creating Rich Navigation

[84]

Making navigation fun with swipe
Many applications involve several screens of data that a user might want to browse
or flip through to view each screen. As an example, think of an application where
we list a catalogue of books with each book in the catalogue appearing on a single
screen. A book's screen contains an image, title, and description, as in the following
screenshot:

To view each book's information, the user needs to move to each book's screen. We
could put a next button and a previous button on the screen, but a more natural
action is for the user to use their thumb or finger to swipe the screen from one edge
of the display to the other and have the screen with the next book's information slide
into place, as represented in the following screenshots:

Chapter 5

[85]

This creates a very natural navigation experience, and is honestly a more fun way to
navigate through an application than using buttons.

Implementing swipe navigation
Implementing swipe navigation is pretty simple, and fragments are at the core.
Each of the screens is implemented as a fragment derived class. Each screen can be
a completely different fragment derived class, or the screens can be instances of the
same fragment derived class with different data. To create a book browser app, such
as the one shown in the previous screenshots, we can use a single fragment derived
class with each fragment instance displaying the appropriate image, title, and
description for the selected book.

As is always the case with fragments, the fragment instances are contained within an
activity. The activity uses another class that we'll discuss a little later in this chapter
to provide the swipe UI behavior and manage the fragments. All of these classes can,
of course, be manually created and connected together, but doing so is much easier if
we take advantage of Android Studio.

Creating Rich Navigation

[86]

Adding swipe navigation with Android Studio
Using Android Studio, we can create an activity that includes all of the pieces
required to provide swipe navigation. The Android Studio nomenclature can seem
a bit confusing, though. To create a swipe navigation-enabled activity with Android
Studio, you must use the Android Studio option to create Tabbed Activity.

When creating a new project, select Tabbed Activity from the Add an activity to
Mobile dialog, as shown in the following screenshot:

Chapter 5

[87]

When adding an activity to an existing project, select Tabbed Activity from the New
| Activity option, as shown in this screenshot:

Creating Rich Navigation

[88]

Whether creating a new project or adding an activity to an existing project, after you
select Tabbed Activity, Android Studio opens the Customize the Activity dialog.
On the Customize the Activity dialog, select Swipe Views (ViewPager) as the
Navigation Style value, as shown in this screenshot:

When you click on the Finish button, Android Studio generates the activity
class, which contains two nested classes: PlaceholderFragment and
SectionsPagerAdapter.

The PlaceholderFragment class is the fragment class that presents the screen
for each book. We can change the class name to BookFragment and use the same
techniques as those we discussed in the Managing asynchronous creation section
of Chapter 4, Working with Fragment Transactions, to display each book within the
fragment instance.

The SectionsPagerAdapter class manages the process of the user swiping between
fragments. Let's look at the SectionsPagerAdapter class in more detail.

Chapter 5

[89]

Managing the swipe UI behavior
Managing the individual fragments in a way that allows the user to swipe between
them requires an adapter class. The Android support library includes two classes that
provide this capability: FragmentPagerAdapter and FragmentStatePagerAdapter.

The FragmentPagerAdapter and FragmentStatePagerAdapter
classes are available in both the v4 and v13 support libraries. In
most cases, you should use the v13 support library version of these
classes as the v13 support library version works with standard
fragment and activity classes. The v4 support library version of
FragmentPagerAdapter and FragmentStatePagerAdapter
require that you also use support library versions of the fragment and
activity classes.

The FragmentPagerAdapter class is useful for scenarios where there are a small
number of fragments. When a given fragment instance is created, it is directly
stored in the FragmentManager class and that same instance is reused each time
this fragment's page is displayed. The fragment's onDestroyView method is called
when the user switches to a different fragment, but the onDestroy method isn't. It's
important that we only use the FragmentPagerAdapter class in cases where there
are a relatively small number of fragments, because we should assume that once a
fragment is created, it will exist as long as the FragmentPagerAdapter instance exists.

The FragmentStatePagerAdapter class is useful for scenarios where there are a
large number of fragments because fragments may be destroyed when they are
no longer visible. The ability to discard and recreate the contained fragments also
makes the FragmentStatePagerAdapter class useful for scenarios where the list of
fragments being displayed may change. The details of implementing an updatable
FragmentStatePagerAdapter instance are beyond the scope of this book, but an
example is available at http://bit.ly/UpdateFragmentStatePagerAdapterV2.

The SectionsPagerAdapter class generated by Android Studio extends the
FragmentPagerAdapter class and works well to display a few books, as we're doing
in our book browser app. The SectionsPagerAdapter class is nested within the
Android Studio generated activity and appears as shown in the following code:

public class SectionsPagerAdapter extends FragmentPagerAdapter {
 public SectionsPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 // other members elided for clarity
}

http://bit.ly/UpdateFragmentStatePagerAdapterV2

Creating Rich Navigation

[90]

Note that the SectionsPagerAdapter class is not marked as static. Being a nonstatic
nested class, which is commonly known in Java terminology as an inner class,
allows the SectionsPagerAdapter instance to access member variables of the
activity in which it's contained. This is useful because the book data can be stored
in arrays or other collections within the activity and still be directly accessible by
the SectionsPagerAdapter class.

The first method to override in the SectionsPagerAdapter class is the getItem
method, which is responsible for returning the appropriate fragment instance
for a given position. Our getItem method simply creates a new instance of the
BookFragment class by calling the BookFragment.newInstance method and passing
the data for the book at the specified position, as shown in the following code:

public Fragment getItem(int position) {
 return BookFragment.newInstance(mTitles[position],
 mDescriptions[position], mTopImageResourceIds[position]);
}

The next method to override is the getCount method and appears as shown in the
following code:

public int getCount() {
 return mTitles.length;
}

The getCount method is responsible for returning an integer value indicating the
total number of screens to be displayed, which we can do by simply returning the
length field from the array containing the book titles.

The last SectionsPagerAdapter class method that we need to override is
getPageTitle. The string returned from getPageTitle is displayed in the thin blue
bar that appears near the top of the screen. It's generally a short bit of text that gives
the user an indication of the screen's content. As shown in the following screenshot,
the text is visible for the previous, current, and next screens:

Chapter 5

[91]

Our getPageTitle method implementation simply returns the value for the
requested position from an array containing the list of shortened titles, as shown
in the following code:

public CharSequence getPageTitle(int position) {
 return mTitlesShort[position];
}

Implementing the SectionsPagerAdapter class takes care of the code that manages
our fragments. Now, we just need to put the swipe UI into place by connecting the
SectionsPagerAdapter class to the appropriate UI classes. This work is handled
by the activity.

Putting the swipe UI into place
The primary class that provides the swipe UI behavior is the Android Support
Library's ViewPager class. In fact, the only view contained in the layout resource file
that Android Studio generates is the ViewPager class. The ViewPager class provides
all of the UI functionality to allow the user to swipe between the individual book
screens but does not provide the functionality to display the title text returned from
the SectionsPagerAdapter.getPageTitle method that appears in the blue bar
near the top of the screen. To include this functionality, we need to update the layout
resource file to include the PagerTitleStrip class as a child of the ViewPager class.

Creating Rich Navigation

[92]

The updated layout resource file appears as shown in the following XML layout:

<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <android.support.v4.view.PagerTitleStrip
 android:id="@+id/pager_title_strip"
 android:layout_width="match_parent"
 android:layout_height="40dp"
 android:layout_gravity="top"
 android:background="#33b5e5"
 android:paddingBottom="4dp"
 android:paddingTop="4dp"
 android:textColor="#fff"/>
</android.support.v4.view.ViewPager>

Setting the PagerTitleStrip element's layout_gravity attribute to top positions
the PagerTitleStrip at the top of the ViewPager class' display area. Alternatively,
we could set the layout_gravity attribute to bottom to position PagerTitleStrip
at the bottom of the ViewPager class' display area.

Note that the ViewPager and PagerTitleStrip classes come
from v4 of the Android Support Library. This is true whether using
the FragmentPagerAdapter class from the v4 or v13 Android
Support Library.

We will connect the SectionsPagerAdapter class to the UI classes in the activity's
onCreate method, as shown in the following code:

protected void onCreate(Bundle savedInstanceState) {
 // Code to load the layout and arrays elided for clarity
 mSectionsPagerAdapter =
 new SectionsPagerAdapter(getFragmentManager());
 mViewPager = (ViewPager) findViewById(R.id.pager);
 mViewPager.setAdapter(mSectionsPagerAdapter);
}

Chapter 5

[93]

After the onCreate method loads the layout and arrays, an instance of the
SectionsPagerAdapter class is created and assigned to the mSectionsPagerAdapter
member field. The onCreate method then retrieves a reference to the ViewPager class
that was loaded by the activity layout and assigns the reference to the mViewPager
member field. Finally, mSectionsPagerAdapter is associated with mViewPager using
the setAdapter method. Note that there is no code required to set up or interact with
PagerTitleStrip. The ViewPager class automatically detects the PagerTitleStrip
class in the layout and takes care of setting the title text values.

We now have everything in place. Our book browser app is ready; the user can now
browse through our list of books using the swipe navigation. For the full code, take a
look at the code download for this chapter.

Providing direct navigation to screens
Swiping through a list of screens one by one is useful for scenarios where users wish
to browse through the available screens. There are times, though, when users may
prefer to be able to navigate directly to a particular screen. In this section, we will
explore two options to provide direct screen navigation support. One option for
directly navigating to a small number of screens and another for directly navigating
to a larger number of screens.

Don't get trapped in the past
Before we look at solutions to providing direct screen navigation, I would like
to point out two direct screen navigation features of Android Studio that you
should avoid.

On the Customize the Activity dialog we used earlier in the Adding swipe navigation
with Android Studio section of this chapter, the Navigation Style selection offers two
options other than the Swipe Views (ViewPager) option we chose. One option is
Action Bar Tabs (with ViewPager), which creates a traditional tab navigation style
that uses the Android action bar, as shown in the following screenshot:

Creating Rich Navigation

[94]

The other option is Action Bar Spinner which creates a drop-down list within the
Android action bar. The drop-down list appears as shown in the following screenshot:

Although the use of action bar tabs and spinners was preferred for direct screen
navigation solutions just a couple of years ago, both are now deprecated. You should
not use these solutions in any new development. Instead, Android now provides
other solutions to direct screen navigation that are more consistent with other aspects
of the Android UI. We'll look at these newer direct screen navigation solutions
throughout the rest of this chapter.

Direct navigation for a small number
of screens
Although action bar-based tab navigation is deprecated, the ability for a user to
navigate directly to a screen by tapping the screen's title is still useful because it's
both simple and intuitive to users. Android makes this capability available through
the PagerTabStrip class.

The PagerTabStrip class inherits from the PagerTitleStrip class that we used in
the Putting the swipe UI into place section earlier in this chapter. Switching our book
browser app to use the PagerTabStrip class rather than the PagerTitleStrip class is
simply a matter of replacing the PagerTitleStrip class in the main activity's layout
resource file with the PagerTabStrip class, as shown in the following XML layout:

<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pager"
 android:layout_width="match_parent"

Chapter 5

[95]

 android:layout_height="match_parent">
 <android.support.v4.view.PagerTabStrip
 android:id="@+id/pager_title_strip"
 android:layout_width="match_parent"
 android:layout_height="40dp"
 android:layout_gravity="top"
 android:background="#33b5e5"
 android:paddingBottom="4dp"
 android:paddingTop="4dp"
 android:textColor="#fff"/>
</android.support.v4.view.ViewPager>

No other modifications to our app are required. Now, when we run our app,
it appears as shown in the following screenshot:

The switch to use the PagerTabStrip class creates only a small difference in the
appearance of the app: the currently selected screen's title is now underlined.
However, there is a bigger change in the app. Tapping the title of the previous or
next screen causes the app to navigate directly to this screen and therefore makes
screens accessible with a single tap rather than requiring a swipe motion. The user
is still free to swipe between screens if desired.

Creating Rich Navigation

[96]

The PagerTabStrip class works well for apps that have only two or three screens.
It can be used with apps with larger numbers of screens, but accessing any screen
other than those that are immediately before or after the current screen requires the
user to swipe screen by screen, just as was the case with the PagerTitleStrip class.
Effectively providing direct screen navigation to four or more screens requires a
different solution.

Direct navigation for four or more screens
Providing direct navigation to more than two or three screens requires that there be
an easy way to view the list of the available screens. One of the best ways to do so is
using the Android navigation drawer.

The navigation drawer provides a screen selection list that slides open from the
edge of the display when the user taps the stacked bars icon next to the title in the
action bar or uses a swiping motion near the edge of the device display to pull the
navigation drawer open.

The following screenshot shows a version of our book browser app that utilizes the
navigation drawer. The navigation drawer is open when needed, as shown in the
left-hand side screenshot, and hidden when not needed, as shown in the right-hand
side screenshot:

Chapter 5

[97]

Creating a navigation drawer activity with Android
Studio
Although it's certainly possible to manually set up an activity to use a navigation
drawer, I suggest that you take advantage of the Navigation Drawer Activity feature
of Android Studio that is available on both the Add an activity to Mobile dialog and
the New Activity menu shown earlier in the Adding swipe navigation with Android
Studio section of this chapter.

Android Studio takes care of generating the boiler plate code required to set up the
navigation drawer and the associated interaction with the activity. Using Android
Studio to set up a navigation drawer substantially reduces the amount of code you
have to write.

Android Studio's Navigation Drawer Activity feature generates three classes:

• An activity class
• A fragment class for the application screens named PlaceHolderFragment,

which is nested within the activity
• A fragment class for the navigation drawer named

NavigationDrawerFragment, which is a standalone class

The activity and application screen fragment
As fragments behave consistently without regard for how they are displayed, we can
simply change the name of the PlaceHolderFragment nested class to BookFragment
and implement it exactly as we did earlier in this chapter.

The role of the activity is to set up the navigation drawer and then display the
appropriate BookFragment instance in response to the user's navigation drawer
selection. The activity uses the DrawerLayout class to manage the navigation
drawer display, as shown in the following XML layout:

<android.support.v4.widget.DrawerLayout
 xmlns:android= "http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/drawer_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <FrameLayout android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Creating Rich Navigation

[98]

 <fragment android:id="@+id/navigation_drawer"
 android:layout_width="@dimen/navigation_drawer_width"
 android:layout_height="match_parent"
 android:layout_gravity="start"
 android:name="com.jwhh.bookdrawer.NavigationDrawerFragment"
 tools:layout="@layout/fragment_navigation_drawer" />
</android.support.v4.widget.DrawerLayout> t:

The DrawerLayout element has two child elements: FrameLayout and fragment.
The FrameLayout element is the placeholder for the application screens and is
where the currently selected BookFragment instance is displayed. The fragment
element handles displaying the fragment class for the navigation drawer:
NavigationDrawerFragment. The fragment element's layout_gravity attribute
value of start indicates that the navigation drawer should slide in and out from the
starting edge of the device display, which is the left-hand side edge for most cultures.

The activity handles the setup work in the onCreate method, which is shown in the
following code:

protected void onCreate(Bundle savedInstanceState) {
 // Code to load the layout and arrays elided for clarity
 mNavigationDrawerFragment = (NavigationDrawerFragment)
 getFragmentManager().findFragmentById(R.id.navigation_drawer);
 mNavigationDrawerFragment.setUp(
 R.id.navigation_drawer,
 (DrawerLayout) findViewById(R.id.drawer_layout));
}

After the onCreate method handles the standard behaviors of loading the activity
layout and array resources, it then initiates the setup work for the navigation drawer
by retrieving the navigation drawer fragment from the layout and calling the
navigation drawer's setUp method. We'll look at the setUp method in detail later
in the The additional responsibilities of the NavigationDrawerFragment class section of
this chapter.

To respond to the user's navigation drawer selections, the activity
implements the NavigationDrawerCallbacks interface defined within
the NavigationDrawerFragment class. The interface has one method,
onNavigationDrawerItemSelected, which is implemented in the activity
as shown in the following code:

public class MainActivity extends Activity
 implements NavigationDrawerFragment.NavigationDrawerCallbacks {
 public void onNavigationDrawerItemSelected(int position) {
 mTitle = mTitles[position];

Chapter 5

[99]

 BookFragment newFragment = BookFragment.newInstance(
 mTitles[position], mDescriptions[position],
 TopImageResourceIds[position]);

 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction()
 .replace(R.id.container, newFragment)
 .commit();
 }

 // other members elided for clarity
}

The onNavigationDrawerItemSelected method sets the mTitle field to the
title of the currently selected book, creates an instance of the BookFragment
class by passing in the appropriate values for the selected book, and then uses a
FragmentTransaction to display the newly created BookFragment instance within
the activity view with the ID value of R.id.container, which is FrameLayout of the
activity's layout resource.

The only other significant navigation drawer-related responsibilities that the activity
has are in the onCreateOptionsMenu method, which is shown in the following code:

public boolean onCreateOptionsMenu(Menu menu) {
 if (!mNavigationDrawerFragment.isDrawerOpen()) {
 getMenuInflater().inflate(R.menu.main, menu);
 ActionBar actionBar = getActionBar();
 actionBar.setDisplayShowTitleEnabled(true);
 actionBar.setTitle(mTitle);
 return true;
 }
 return super.onCreateOptionsMenu(menu);
}

The activity is only responsible for managing the app bar when the navigation bar
is closed; therefore, the onCreateOptionsMenu method starts by verifying that the
navigation drawer is not currently open. As long as the navigation drawer isn't open,
the onCreateOptionsMenu method takes care of inflating the menu and displaying
the title for the current selection. The NavigationDrawerFragment class triggers a
refresh of the options menu with each new user selection, which then triggers a call
to the onCreateOptionsMenu method, allowing the options menu and action bar title
to reflect the appropriate information for the current selection.

Creating Rich Navigation

[100]

The navigation drawer fragment
The NavigationDrawerFragment class has a dual identity. By and large, it's a
standard fragment with all of the responsibilities that go with being a fragment.
Being the navigation drawer fragment, the NavigationDrawerFragment class also
has some special responsibilities tied to managing the navigation drawer.

Navigation drawer fragment standard responsibilities
As is normally the case for a fragment, the NavigationDrawerFragment class is
responsible for creating its own layout. The layout can be pretty much whatever you
would like it to be, but it is commonly a standard ListView view configured to allow
only a single selection.

Using ListView, the NavigationDrawerFragment class can display the list of
available options by simply loading the options from an array with ArrayAdapter.
In the case of our book browser app, this is an array containing the list of book
titles. The NavigationDrawerFragment class is then notified of the user selection
by handling the ListView class' onItemClick callback method. In the case of the
NavigationDrawerFragment class, the onItemClick callback method calls the
NavigationDrawerFragment class' selectItem method to perform the details of
handling user selection. We'll look at the selectItem method in the next section.

Other than a few other minor housekeeping tasks, this takes care of the
NavigationDrawerFragment class' standard responsibilities. Let's now look at
those additional responsibilities that come with handling the navigation drawer.

The additional responsibilities of the
NavigationDrawerFragment class
Being contained in the navigation drawer, the NavigationDrawerFragment class
is responsible for responding to changes in the drawer visibility and notifying the
activity of the user's selection.

To see how the NavigationDrawerFragment class handles these additional
responsibilities, we'll start by looking at the NavigationDrawerFragment class'
setUp method. As we discussed earlier in the The activity and application screen
fragment section of this chapter, the NavigationDrawerFragment class' setUp
method is called from the activity's onCreate method. The activity passes in the
ID value of the container, in which the application screen fragment is displayed,
and a reference to the DrawerLayout instance.

Chapter 5

[101]

The setUp method appears as shown in the following code:

public void setUp(int fragmentId, DrawerLayout drawerLayout) {
 mFragmentContainerView =
 getActivity().findViewById(fragmentId);
 mDrawerLayout = drawerLayout;
 mDrawerLayout.setDrawerShadow(
 R.drawable.drawer_shadow, GravityCompat.START);

 ActionBar actionBar = getActionBar();
 actionBar.setDisplayHomeAsUpEnabled(true);
 actionBar.setHomeButtonEnabled(true);

 mDrawerToggle = new ActionBarDrawerToggle(
 getActivity(),
 mDrawerLayout,
 R.drawable.ic_drawer,
 R.string.navigation_drawer_open,
 R.string.navigation_drawer_close)
 {
 @Override
 public void onDrawerClosed(View drawerView) {
 // implementation elided for clarity
 }
 @Override
 public void onDrawerOpened(View drawerView) {
 // implementation elided for clarity
 }
 };

 if (!mUserLearnedDrawer && !mFromSavedInstanceState) {
 mDrawerLayout.openDrawer(mFragmentContainerView);
 }

 mDrawerLayout.post(new Runnable() {
 @Override
 public void run() {
 mDrawerToggle.syncState();
 }
 });
 mDrawerLayout.setDrawerListener(mDrawerToggle);
}

Creating Rich Navigation

[102]

The onCreate method starts by storing references to the application screen container
and the DrawerLayout instance and then sets DrawerLayout to display a shadow
around the navigation drawer. The next three lines get a reference to the action bar
and then enable interaction with the icon on the left-hand side edge of the action
bar to open and close the navigation drawer. An ActionBarDrawerToggle derived
anonymous class is created to handle the navigation drawer fragment's open and
close events. The last line of the onCreate method associates the anonymous class
instance as a listener for the drawer layout.

One bit of code that may seem kind of unusual is the call to the syncState method
that is wrapped in the post method call. The syncState method ensures that
the class that's listening for the drawer open and close events is in sync with the
navigation drawer's state of being opened or closed. Wrapping the syncState
method call in the post method call assures that the state is synchronized after
the activity is restored.

The primary responsibility of the ActionBarDrawerToggle derived anonymous
class is to keep the action bar title and option items in sync with changes to the
opened and closed states of the navigation drawer. The code to handle the drawer
being opened is in the onDrawerOpened method, which is implemented as shown
in the following code:

public void onDrawerOpened(View drawerView) {
 super.onDrawerOpened(drawerView);
 if (!isAdded()) {
 return;
 }
 if (!mUserLearnedDrawer) {
 mUserLearnedDrawer = true;
 SharedPreferences sp = PreferenceManager
 .getDefaultSharedPreferences(getActivity());
 sp.edit().putBoolean(PREF_USER_LEARNED_DRAWER, true).apply();
 }
 getActivity().invalidateOptionsMenu
}

The first few lines simply call the super class implementation and then verify that
the fragment is associated with the navigation drawer. The next if block uses the
preference manager to keep track of whether the user has ever seen the navigation
drawer. This code is necessary so that the navigation drawer can be automatically
opened on the app's very first execution to make the user aware of the navigation
drawer's existence. The primary purpose of the onDrawerOpened method is the last
line, which invalidates the action bar options menu. Invalidating the options menu
triggers calls to the onCreateOptionsMenu methods in both the activity and the
NavigationDrawerFragment class, giving these classes an opportunity to update
the action bar to reflect the user's current selection.

Chapter 5

[103]

Now let's look at the ActionBarDrawerToggle derived class' onDrawerClosed
method, which is implemented as shown in the following code:

public void onDrawerClosed(View drawerView) {
 super.onDrawerClosed(drawerView);
 if (!isAdded()) {
 return;
 }
 getActivity().invalidateOptionsMenu();
}

Note that with the exception of the code to interact with the preference manager,
the onDrawerClosed method does basically the same work that was performed in
the onDrawerOpened method; it calls the base class implementation, verifies that
the fragment is associated with the navigation drawer, and then invalidates the
options menu.

To understand why the options menu is invalidated, let's start by looking at the
NavigationDrawerFragment class' onCreateOptionsMenu method implementation,
which is shown in the following code:

public void onCreateOptionsMenu(Menu menu, MenuInflater inflater)
{
 if (mDrawerLayout != null && isDrawerOpen()) {
 inflater.inflate(R.menu.global, menu);
 ActionBar actionBar = getActionBar();
 actionBar.setDisplayShowTitleEnabled(true);
 actionBar.setTitle(R.string.app_name);
 }
 super.onCreateOptionsMenu(menu, inflater);
}

The onCreateOptionsMenu method starts by checking to see whether the navigation
drawer is open. As long as the drawer is open, the method inflates the global options
menu, which is the menu containing only those options that are independent of
any particular application screen. The rest of the code in the if block displays the
application name in the action bar.

Creating Rich Navigation

[104]

As you'll recall from the The activity and application screen fragment section earlier in
this chapter, the activity's onCreateOptionsMenu method only performs its work
when the drawer is closed. As we just saw, the NavigationDrawerFragment class'
onCreateOptionsMenu method only performs its work when the drawer is opened.
These two onCreateOptionsMenu method implementations combine to ensure
that the options menu and title are always rendered appropriately. The activity
implementation sets the options menu and title to the appropriate state for the
currently visible application screen. However, when the navigation drawer is opened,
the drawer covers the application screen; therefore, the NavigationDrawerFragment
class' implementation sets the options menu and title to the global state so as to reflect
that there is no application screen that is currently visible.

The last NavigationDrawerFragment class method we'll look at is the selectItem
method. This is the method that is called each time the user makes a selection from
the navigation drawer. The selectItem method is implemented as shown in the
following code:

private void selectItem(int position) {
 mCurrentSelectedPosition = position;
 if (mDrawerListView != null) {
 mDrawerListView.setItemChecked(position, true);
 }
 if (mDrawerLayout != null) {
 mDrawerLayout.closeDrawer(mFragmentContainerView);
 }
 if (mCallbacks != null) {
 mCallbacks.onNavigationDrawerItemSelected(position);
 }
}

The method starts by storing the position of the item the user selected and
then setting this item as the highlighted item in the navigation drawer. The
method then closes the drawer to move it out of the way of the main application
screen. Finally, the method notifies the activity of the user's selection by
calling the activity's implementation of the NavigationDrawerCallbacks.
onNavigationDrawerItemSelected method. As we discussed in the The activity and
application screen fragment section of this chapter, the activity's implementation of the
onNavigationDrawerItemSelected method handles the details of displaying the
BookFragment instance associated with the user's selection.

Chapter 5

[105]

The navigation drawer fragment responsibilities big picture
As we saw, at the detail level, the NavigationDrawerFragment class has a number of
different tasks, but they all boil down to a few simple responsibilities:

• Populating and displaying the list of options
• Triggering updates to the action bar options and title when the state of the

navigation drawer changes
• Setting the title and options to the global state when the drawer is opened
• Closing the drawer and notifying the activity when the user makes

a selection

Ultimately, the NavigationDrawerFragment class provides the user with an easy
way to navigate directly to the list of application screens. It really is this simple.

Summary
Fragments are the foundation of modern Android app development, allowing us to
display multiple application screens within a single activity. Thanks to the flexibility
provided by fragments, we can now incorporate rich navigation into our apps with
relative ease. Using these rich navigation capabilities, we're able to create a more
dynamic user interface experience that makes our apps more compelling and that
users find more intuitive and fun to work with.

In the next chapter, we'll discuss how we can further improve our app through
material design. Using material design, we'll give our app a more engaging visual
appearance and incorporate rich animated transitions as we move between fragments.

[107]

Fragments and
Material Design

This chapter demonstrates how to implement fragments that incorporate a rich
visual appearance and animated transitions as described by Google's material
design guidelines.

The following topics are covered in this chapter:

• Material design
• Converting our application to use material design
• Incorporating motion in fragment transitions

By the end of this chapter, we will be able to create rich, visually appealing
applications that utilize fragments to perform screen transitions that incorporate
sophisticated animations in accordance with Google's material design guidelines.

Creating a rich user experience
As we discussed, fragments give us the ability to create application user interfaces
that are flexible, highly adaptable, and can support a variety of navigation options.
These behaviors are key functional aspects of building a successful app. However, in
modern app development, an app must be more than just functional to be successful.
To be successful, an app must also be visually appealing and engaging.

In this chapter, we will wrap up our discussion of fragments by creating an app that
builds on the functional abilities of fragments that we've already discussed to also
be visually appealing and incorporate rich animations when transitioning from one
fragment to another. We will do this using material design.

Fragments and Material Design

[108]

Material design
Material design is a design guide from Google for creating visually appealing
applications that incorporate a very colorful graphical appearance and rich animated
user experience. The material design guidelines are not specific to mobile but rather
serve as a single set of ideas to design rich and highly interactive user experiences
across mobile, web-based, and desktop apps.

The overall topic of material design is a complex subject that is outside the scope
of this book. In this chapter, we will touch on a few general issues of material
design; however, our focus is on those aspects of material design that are specific
to Android fragments.

Google provides several online resources that are helpful in learning more
about working with material design. For a high-level look at material
design, refer to http://www.google.com/design/spec/material-
design. To dig deeper into the aspects of material design that are
specific to Android, take a look at http://developer.android.com/
design/material.

Before we start incorporating material design into our app, let's first look at material
design's core principles.

Principles of material design
Material design centers on the idea of incorporating a sense of the physical world in
the application experience. Through the use of shadows and layering, the application
experience has a sense of depth and ordering. User experience is highly graphical
with brightly colored imagery and a focus on being visually pleasing. Animation
and motion are used to provide user feedback and meaningful transitions.

These principles all combine to provide users with a rich experience that conforms
to the sense of order provided by the physical world while taking full advantage
of the capabilities available within the virtual world of computers.

http://www.google.com/design/spec/material-design
http://www.google.com/design/spec/material-design
http://developer.android.com/design/material
http://developer.android.com/design/material

Chapter 6

[109]

The role of motion
Motion plays an important role in the material design experience and is the aspect of
material design that most specifically applies to programming with fragments. As an
app transitions from one screen to another, motion is an effective tool in providing
an engaging experience and is useful in creating associations between the items
on one screen that relate to items on another screen. As we'll discuss later in this
chapter, fragment classes provide the features necessary to create a sense of motion
when moving between fragments and can even provide the ability to create the effect
of having items on one screen appear to move to another screen.

Before we incorporate motion into our fragment transitions, we'll create a version of
our Android Book app that conforms to material design.

Converting our application to use
material design
Throughout this chapter, we'll work with the version of our Android Books app
that we completed in Chapter 4, Working with Fragment Transactions. As you'll recall,
this is the version of our app that shows a list of books on one fragment, allows the
user to select a book from this list, and then shows the detail for the selected book
on another fragment. To refresh your memory, the app appears as shown in the
following screenshot:

Fragments and Material Design

[110]

At the completion of this chapter, the app will have an appearance and behavior
consistent with material design and will look similar to the following screenshot:

This updated version of the app clearly has a more engaging appearance than the
prior version. Each book shown in the list on the left-hand side has a rich graphical
appearance and uses shadowing to give the appearance of being placed on a card
that is layered above the screen. When a user selects a book, the app transitions to
the screen on the right-hand side, which displays a larger image of the book along
with the book's title and description.

One thing that's not apparent in the preceding screenshot is that the screen transition
is animated. The cards slide out to the left, the image and title appear to move from
the card onto the detail screen, and the description slides up from the bottom of the
screen. I've posted a short video showing the transition at the URL http://bit.ly/
jimwfragments0601. The video shows the transition first at full speed and then at
one-fourth the speed to make the details of the transition more visible.

Dealing with different Android versions
Native support for material design was added to the Android platform as part
of Android Lollipop, which is Android version 5.0 and API level 21. Support for
material design is available to older Android versions through Android Support
Library. The fragment-related discussions in this chapter apply to both the native
API and Android Support Library; however, the sample code for this chapter is
entirely built using the native API.

http://bit.ly/jimwfragments0601
http://bit.ly/jimwfragments0601

Chapter 6

[111]

Whether the native API or Android Support Library is the right choice for your app
depends on when you're releasing your app and your specific user base. The number
of devices that natively support material design is growing rapidly and may already
be in the majority by the time you read this chapter.

For information on the current distribution of Android versions, visit
Android Dashboards at http://developer.android.com/about/
dashboards.
I encourage you to take a look at Android Dashboards rather than relying
on the platform support information displayed within Android Studio.
In my experience, Android Studio substantially underreports the level of
support for newer versions of Android.

Setting up the theme
For our application to conform to material design, we need to give it a material
design theme. Remember that the first Android version to natively support material
design is API 21. To create the resource file, we'll start by using the Android Studio
New Resource File dialog to create a new Values resource file named styles that
targets API 21 and above, as shown in the following screenshot:

http://developer.android.com/about/dashboards
http://developer.android.com/about/dashboards

Fragments and Material Design

[112]

If you create a project that targets API 21 or above, Android Studio
includes a values resource file named styles that targets API 21 and
above.

Within the styles resource file, define a style named AppTheme that inherits from the
built-in theme named Theme.Material.Light and set the four basic theme colors as
shown in the following XML:

<resources>
 <style name="AppTheme" parent="android:Theme.Material.Light">
 <item name="android:colorPrimary">#F44336</item>
 <item name="android:colorPrimaryDark">#B71C1C</item>
 <item name="android:colorAccent">#FF8A80</item>
 <item name="android:textColorPrimary">#FFFFFF</item>
 </style>
</resources>

Simply by inheriting from a material design theme, our app takes on much of
the appearance and behaviors of material design. The color values allow us to
customize our app's color scheme.

For guidance on selecting colors, refer to Google's material design style
guide at http://bit.ly/materialdesigncolor.

A part of the display affected by each color value is shown in the following figure:

For information on adding material design support to pre-Lollipop
devices, take a look at the Google blog post at http://bit.ly/
appcompatmateriald.

http://bit.ly/materialdesigncolor
http://bit.ly/appcompatmateriald
http://bit.ly/appcompatmateriald

Chapter 6

[113]

Updating the fragments appearance
We now need to give each of our fragments a richer appearance. Let's look firstly
at the fragment that shows the list of books: BookListFragment. We'll change this
class to show each book using a more card-like appearance. For simplicity, we'll
have the fragment display only a single card for now. We'll update the fragment to
display multiple cards later in the Maintaining continuity across multiple cards section
of this chapter.

To create the card-like layout, use the Android Studio New Resource File dialog to
create a new layout file named book_card_view.xml. The relevant portions of the
book_card_view.xml file are shown in the following XML:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 ... >
 <android.support.v7.widget.CardView
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:id="@+id/card_view"
 card_view:cardCornerRadius="4dp"
 card_view:cardElevation="4dp"
 card_view:cardUseCompatPadding="true"
 ... >
 <RelativeLayout
 ... >
 <ImageView
 android:id="@+id/topImage"
 android:src="@drawable/db_programming_top_card"
 ... />
 <TextView
 android:id="@+id/bookTitle"
 android:layout_toEndOf="@+id/topImage"
 android:textColor="@android:color/black"
 android:text="@string/androidDbProgTitle"
 ... />
 </RelativeLayout>
 </android.support.v7.widget.CardView>
</LinearLayout>

Fragments and Material Design

[114]

The layout file uses the CardView class from v7 of Android Support Library to create
the card-like appearance. The cardCornerRadius attribute sets the card corners to be
slightly rounded, and the cardElevation attribute creates a small shadow around
the card, giving the appearance of the card being layered over the screen. Setting the
cardUseCompatPadding attribute to true causes spacing between multiple cards to
behave consistently across Android versions. CardView is placed within a vertically-
oriented LinearLayout and contains the ImageView and TextView views, which
display the book image and title respectively.

Note that the CardView class is part of v7 of Android Support Library.
This is true even when targeting API versions that natively support
material design. You can add the support library to your Android Studio
project by right-clicking on the project name within the project window,
selecting Open module settings, selecting the Dependencies tab, and
then clicking on +.

In Chapter 4, Working with Fragment Transactions, the BookListFragment class
displayed a simple list and therefore extended the ListFragment class. We'll now
have the BookListFragment class manage the display layout directly and therefore
extend the Fragment class, as shown in the following code:

public class BookListFragment extends Fragment {
 private OnSelectedBookChangeListener mListener;
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View rootView = inflater.inflate(R.layout.book_card_view,
 container, false);
 return rootView;
 }
 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 mListener = (OnSelectedBookChangeListener)activity;
 }
 // other members elided for clarity
}

The BookListFragment class is very simple at this point. The onCreateView method
inflates our book_card_view.xml layout resource. The onAttach method stores a
reference to the activity in the mListener member field, just as it did in Chapter 4,
Working with Fragment Transactions.

Chapter 6

[115]

When we run our program, the activity creates and shows the BookListFragment
class, which displays a single book card, as shown in the following screenshot:

To allow the user to select the card and view the book details, we'll update
the onCreateView method to add a click handler to CardView, as shown in
the following code:

public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View rootView = inflater.inflate(R.layout.book_card_view,
 container, false);
 rootView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mListener.onSelectedBookChanged(0);
 }
 });
 return rootView;
}

Inflating the layout resource returns the top-level view, which is LinearLayout
containing CardView. We will then use the setOnClickListener method to
associate a click listener, which uses the mListener member field to notify the
activity that the user has selected the book with an index value of 0. Just as
in Chapter 4, Working with Fragment Transactions, the activity will then display
BookDescFragment, passing in the data for the book with an index value of 0.

Fragments and Material Design

[116]

To give BookDescFragment a richer appearance, we'll update it to display the
book image, title, and description. Now, when the user selects the card displayed
by BookListFragment, BookDescFragment appears as shown in the following
screenshot:

With our app updated to have a richer appearance, let's now look at how we can add
animated transitions from one fragment to the other.

Incorporating motion in fragment
transitions
Incorporating meaningful motion is the central idea of material design. As
developers, we're encouraged to use motion to enrich user experience, especially
when the user moves from one screen to the next. To simplify incorporating motion
in fragment transitions, the Fragment class includes features that greatly simplify
animating the transition from one fragment to another.

Chapter 6

[117]

The fragment transition features we will cover in this chapter are
available on the native Fragment class starting in API 21 and are available
to earlier Android versions with the Fragment class in v4 of Android
Support Library.

Let's first look at adding a simple motion of sliding the items from one fragment off
the screen and sliding the items for the next fragment onto the screen.

Transitioning fragments on and off the screen
Android has supported animating views since the platform's initial release.
The problem is that managing the details of animating individual views can be
prohibitively complex for developers who do not specialize in animation. To
simplify the process of animating views, Android provides transitions. Transitions
hold information regarding animations to apply to a set of views.

Transitions are not specific to fragments. In generalized terms, transitions
apply to groups of views known as scenes. To avoid unnecessarily
complicating our discussion, we'll focus on transitions specifically in the
context of fragments.

Fragments support the following four transitions:

• Exit: This is the transition to use when the current fragment is hidden and
when we are not popping the back stack

• Enter: This is the transition to use when the current fragment is
initially shown

• Return: This is the transition to use when the current fragment is hidden
as a result of popping the back stack

• Reenter: This is the transition to use when the current fragment is shown
as a result of popping the back stack

To better understand the fragment transitions, let's look at the transitions that occur
in our app.

When the user views BookListFragment and taps on the card to display
BookDescFragment, the following transitions occur:

• The exit transition runs for BookListFragment
• The enter transition runs for BookDescFragment

Fragments and Material Design

[118]

When the user views BookDescFragment and presses the back button to return to
BookListFragment, the following transitions occur:

• The return transition runs for BookDescFragment
• The reenter transition runs for BookListFragment

As our app is currently written, our fragments have their transitions all set to null.
The result of this is that, whenever the user moves from one fragment to another, the
first fragment simply disappears, and the next fragment appears. Using transitions,
we can improve user experience by incorporating motion to give the user a better
sense of moving from one fragment to another.

Transitioning the book card off and on the screen
Let's update our app so that, when a user selects a card on BookListFragment, the
views on BookListFragment slide off the left edge of the display, and the views
for BookDescFragment slide up from the bottom of the display. We'll do this using
the Slide class.

We'll first set the transitions for BookListFragment. We'll do so in the activity's
onCreate method, where we will create BookListFragment and add it to the
activity, as shown in the following code:

protected void onCreate(Bundle savedInstanceState) {
 // code to call base class and load resources elided for clarity
 Slide slideLeftTransition = new Slide(Gravity.LEFT);
 slideLeftTransition.setDuration(500);
 BookListFragment listFragment = BookListFragment.newInstance();
 listFragment.setExitTransition(slideLeftTransition);
 FragmentManager fm = getFragmentManager();
 fm.beginTransaction()
 .add(R.id.layoutRoot, listFragment)
 .commit();
}

After calling the base class implementation and loading the resources, the activity's
onCreate method creates an instance of the Slide class, passing a gravity value of
LEFT. The gravity value of LEFT tells the Slide instance to slide views off the left
edge when hiding views and slide views in from the left edge when showing them.
The new Slide instance is assigned to the local slideLeftTransition variable. We
will then use the setDuration method to indicate that the slide animation should
run for a period of 500 milliseconds.

Chapter 6

[119]

After creating BookListFragment, we will use the setExitTransition method to
set slideLeftTransition as the transition to execute when BookListFragment is
hidden. Note that we never call setReenterTransition on the BookListFragment
instance. The exit and reenter transitions are considered complementary; therefore, by
not setting the reenter transition, Android automatically uses slideLeftTransition
when reentering the fragment. We only need to call setReenterTransition when
we'd like the reenter transition to behave differently than the exit transition.

Once we create BookListFragment and set the exit transition, we will add
BookListFragment to the activity just as we normally do.

Transitioning the book details on and off the screen
Now, let's set the transitions for BookDescFragment to slide the views
in and out from the bottom of the display. We'll do this in the activity's
OnSelectedBookChangeListener.onSelectedBookChanged method,
as shown in the following code:

public void onSelectedBookChanged(int bookIndex) {
 Slide slideBottomTransition = new Slide(Gravity.BOTTOM);
 slideBottomTransition.setDuration(500);
 BookDescFragment bookDescFragment =
 BookDescFragment.newInstance(mTitles[bookIndex],
 mDescriptions[bookIndex], mImageResourceIds[bookIndex]);
 bookDescFragment.setEnterTransition(slideBottomTransition);
 bookDescFragment.setAllowEnterTransitionOverlap(false);
 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction()
 .replace(R.id.layoutRoot, bookDescFragment)
 .addToBackStack(null)
 .commit();
}

Setting up the transitions for BookDescFragment is very similar to the work we
did for BookListFragment. We will start by creating an instance of the Slide
class. As we want the views to slide in and out from the bottom of the display, we
will use a gravity value of BOTTOM. We will assign the new Slide instance to the
slideBottomTransition local variable.

Fragments and Material Design

[120]

After creating BookDescFragment, we will call setEnterTransition by passing
slideBottomTransition to indicate that the views should slide in and out from
the bottom of the display. We don't need to explicitly set the return transition
because the enter and return transitions are complementary, just as is the case
for the exit and reenter transitions. After setting the enter transition, we will call
setAllowEnterTransitionOverlap by passing a value of false, which indicates
that we'd like the enter a transition to wait for the BookListFragment exit transition
to complete before starting. Without the call to setAllowEnterTransitionOverlap,
the views for BookDescFragment will slide on to the display as the views for
BookListFragment are still sliding off. Finally, we will display BookDescFragment
just as we normally do.

We now have Slide transitions added to our app. When the user selects the book
card, the card slides off the left edge of the screen, and the book detail slides up
from the bottom. When the user taps the back button, the detail slides off the bottom
of the display, and the card slides back in from the left. You can see a video of the
animation at http://bit.ly/jimwfragments0602.

In addition to the Slide transition, other common transitions used when hiding
and showing fragments are Fade, which fades the views in and out of visibility,
and Explode, which causes the views to fly in from and out toward the edges
of the display.

The addition of the slide motion gives our application a much richer and professional
feel, but there's still more that we can do. Let's look now at how we can go a step
further and use transitions to create greater continuity between fragments.

Creating continuity with shared element
transitions
In our app, BookListFragment provides book summary information: the image
and title. When the user selects the card for a book, BookDescFragment shows the
detail for this book: the image, title, and description. We can create greater continuity
between the two fragments using motion to give the appearance that the image and
title are moving from the summary screen onto the detail screen. This reinforces to
the user that the information on the detail screen, BookDescFragment, is associated
with the user's selection from the summary screen, BookListFragment. Shared
element transitions give us this capability.

When using shared element transitions, the related views within each fragment
must be given a common transition name. The easiest way to do so is to include the
transitionName attribute on the affected views in the fragment's layout resource.

http://bit.ly/jimwfragments0602

Chapter 6

[121]

If you prefer to set the transition name programmatically, you can use the
View.setTransitionName method. We'll take a look at an example of
setting the transition name programmatically in the Maintaining continuity
across multiple cards section later in this chapter.

We'll first update the book_card_view.xml layout resource to include the
transitionName attribute, as shown in the following XML:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 ... >
 <android.support.v7.widget.CardView
 android:id="@+id/card_view"
 ... >
 <RelativeLayout
 ... >
 <ImageView
 android:id="@+id/topImage"
 android:transitionName="book_image"
 ... />
 <TextView
 android:id="@+id/bookTitle"
 android:transitionName="title_text"
 ... />
 </RelativeLayout>
 </android.support.v7.widget.CardView>
</LinearLayout>

The ImageView element now includes a transitionName attribute with a value of
book_image, and TextView includes a transitionName attribute with a value of
title_text. You can use whatever value you would like for transitionName as
long as the value is the same for the corresponding views within each fragment.
With this in mind, we will update the fragment_book_desc.xml layout resource
to include the transitionName attribute, as shown in the following XML:

<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 ... >
 <RelativeLayout
 ...>
 <ImageView
 android:id="@+id/topImage"

Fragments and Material Design

[122]

 android:transitionName="book_image"
 .../>
 <TextView
 android:id="@+id/bookTitle"
 android:transitionName="title_text"
 .../>
 <TextView
 android:id="@+id/bookDescription"
 ...>
 </RelativeLayout>
</ScrollView>

Note that the transitionName attribute on the ImageView element in
fragment_book_desc.xml has the same value—that is, book_image—as the
transitionName attribute on the ImageView element in book_card_view.xml.
Similarly, the transitionName attribute on the first TextView element in
fragment_book_desc.xml has the same value—that is, title_text—as the
TextView element in book_card_view.xml.

The ImageView and TextView elements happen to have the same
respective id attribute values in both layout resource files. This is
done as a matter of good program design but is not required for the
shared element transition to work.

In addition to the views having common transition names, we also need
references to ImageView and TextView corresponding to the user's selection.
To allow us to access the ImageView and TextView elements, we'll update our
OnSelectedBookChangeListener interface to accept a reference to the view
corresponding to the user's selection, as shown in the following code:

public interface OnSelectedBookChangeListener {
 void onSelectedBookChanged(View view, int bookIndex);
}

Now that the OnSelectedBookChangeListener interface accepts a reference to the
selected view, the click listener we set up in the BookDescFragment onCreateView
method can be updated to pass the selected view, as shown in the following code:

rootView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mListener.onSelectedBookChanged(v, 0);
 }
});

Chapter 6

[123]

With this change to the click listener, the activity will receive a reference to the
selected view, which can then be used to retrieve a reference to the selected
ImageView and TextView elements.

The remainder of the work to handle the shared element transition occurs within
the activity's OnSelectedBookChangeListener.onSelectedBookChanged method,
which is implemented as shown in the following code:

public void onSelectedBookChanged(View view, int bookIndex) {
 Slide slideBottomTransition = new Slide(Gravity.BOTTOM);
 slideBottomTransition.setDuration(500);
 ImageView bookImageView =
 (ImageView)view.findViewById(R.id.topImage);
 TextView titleTextView =
 (TextView)view.findViewById(R.id.bookTitle);
 TransitionSet sharedTransitionSet = new TransitionSet();
 sharedTransitionSet.addTransition(new ChangeBounds())
 .addTransition(new ChangeTransform())
 .setDuration(500);
 BookDescFragment bookDescFragment =
 BookDescFragment.newInstance(mTitles[bookIndex],
 mDescriptions[bookIndex], mImageResourceIds[bookIndex]);
 bookDescFragment.setEnterTransition(slideBottomTransition);
 bookDescFragment.setAllowEnterTransitionOverlap(false);
 bookDescFragment.setSharedElementEnterTransition(
 sharedTransitionSet);
 FragmentManager fragmentManager = getFragmentManager();
 fragmentManager.beginTransaction()
 .replace(R.id.layoutRoot, bookDescFragment)
 .addSharedElement(bookImageView, "book_image")
 .addSharedElement(titleTextView, "title_text")
 .addToBackStack(null)
 .commit();
}

The onSelectedBookChanged method starts out by setting up the slide transition
as we discussed in the Transitioning the book details on and off the screen section
earlier in this chapter. The method then uses the View reference that was passed
in as a parameter to get a reference to the ImageView and TextView elements that
correspond to the user's selection.

Fragments and Material Design

[124]

Now, we need to set up a transition to animate the book's image and title, which
actually requires two separate transitions. We need a ChangeBounds transition to
animate the image and title from their onscreen positions within BookListFragment
to their respective onscreen positions within BookDescFragment. We also need a
ChangeTransform transition to animate the image and title from their display sizes
within BookListFragment to their respective sizes within BookDescFragment.
To apply both of these transitions, we will create an instance of TransitionSet.
We will then use the addTransition method to add instances of ChangeBounds
and ChangeTransform to the TransitionSet instance. Finally, we will set the
TransitionSet instance to execute over a period of 500 milliseconds using the
setDuration method. We can speed up the transition by decreasing the duration or
slowing down the transition by increasing the duration. Using TransitionSet, we can
have both the ChangeBounds and ChangeTransform transitions occur simultaneously.

With the transitions created, we will then create a new instance of BookDescFragment.
Using the setEnterTransition and setAllowEnterTransitionOverlap methods,
we will set the nonshared views to slide in from the bottom of the display after
the BookListFragment exit transition completes just as we did previously in the
Transitioning the book details on and off the screen section of this chapter. We will then
tell BookDescFragment to use our TransitionSet instance for any shared transition
elements.

We now need to indicate which views are included in the shared element
transition. We will do this by passing the ImageView and TextView references
to the FragmentManager class' addSharedElement method along with their
corresponding transition names. These are the same transition names we set with the
transitionName attribute in the layout resources: book_image for ImageView and
title_text for TextView. We will then do the same for TextView. Other than the
calls to the addSharedElement method, we will display BookDescFragment, just
as we've been doing.

With the addition of the shared element transition, the book image and title will
appear to move off the card and expand into position within BookDescFragment.
The book description, which is not part of the shared element transition, will
then slide in from the bottom of the screen after the shared elements move into
position. You can watch a video of this transition in action at http://bit.ly/
jimwfragments0603.

http://bit.ly/jimwfragments0603
http://bit.ly/jimwfragments0603

Chapter 6

[125]

Maintaining continuity across multiple cards
To complete our app, we need to move from showing a single book card within
BookListFragment to showing a list of book cards. To show a list of cards, we'll
use RecyclerView from v7 of Android Support Library.

The RecyclerView class, similar to the CardView class, is part of v7 of
Android Support Library, even when targeting API versions that natively
support material design.

The RecyclerView class provides an efficient way to show potentially large sets of
data and customize their appearance. Conceptually, the RecyclerView class works
in a very similar way to the ListView class. The RecyclerView instance creates a
small number of display rows, usually a few more than will fit on the screen. As the
user scrolls through the RecyclerView instance, the RecyclerView instance recycles
the views for the rows that have scrolled off the screen to display data for the rows
that are now scrolling on the screen.

We'll use the book_card_view layout resource we created in the Updating the
fragments appearance section earlier in this chapter to customize the appearance
of each row within RecyclerView. Doing so creates a bit of a complication. For
shared element transitions to work, each view must have a unique transition name;
therefore, we can't rely on the transitionName attribute within the book_card_view
layout resource to set the transition names. We'll instead need to set the transition
names dynamically for each book.

To get started with the RecyclerView class, let's create a new layout resource,
fragment_book_list.xml, containing the RecyclerView class, as shown in
the following XML:

<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/book_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

The RecyclerView class occupies the entire available display area and has an id
value of book_recycler_view. We can now update BookListFragment to display
and populate the RecyclerView class, as shown in the following code:

public class BookListFragment extends Fragment {
 private String[] mTitles;
 private int[] mImageResourceIds;
 private RecyclerView mRecyclerView;
 private RecyclerView.Adapter mAdapter;

Fragments and Material Design

[126]

 private RecyclerView.LayoutManager mLayoutManager;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 // base class and resources elided for clarity
 mAdapter = new BookAdapter(mTitles, mImageResourceIds);
 }
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 View rootView = inflater.inflate(
 R.layout.fragment_book_card, container, false);
 mRecyclerView =
 (RecyclerView)rootView.findViewById(R.id.book_recycler_view);
 mRecyclerView.setHasFixedSize(true);
 mLayoutManager = new LinearLayoutManager(getActivity());
 mRecyclerView.setLayoutManager(mLayoutManager);
 mRecyclerView.setAdapter(mAdapter);
 mRecyclerView.addOnItemTouchListener(
 new RecyclerItemClickListener(getActivity(),
 new RecyclerItemClickListener.OnItemClickListener() {
 @Override
 public void onItemClick(View view, int position) {
 mListener.onSelectedBookChanged(view, position);
 }
 }));
 return rootView;
 }
 // other members elided for clarity
}

The BookListFragment class starts by declaring member variables to hold the
book title and image resource ID arrays. It then declares member variables to
hold references to the RecyclerView class and classes related to managing the
RecyclerView class.

After calling the base class implementation and loading the book-related arrays,
the onCreate method creates an instance of the BookAdapter class, passing in the
book title and image resources ID arrays. The BookAdapter class handles the details
of displaying the list of books within the RecyclerView instance. We'll discuss the
BookAdapter class implementation in just a moment.

Chapter 6

[127]

The majority of the work within BookListFragment occurs in the onCreateView
method. We will start the onCreateView method by inflating the fragment_book_
list resource, retrieving a reference to the contained RecyclerView instance
and calling the setHasFixedSize method with a value of true. The call to the
setHasFixedSize method tells the RecyclerView instance that the changes made
to the data do not affect the display size of the RecyclerView instance, which
allows the RecyclerView instance to perform animations more efficiently. We will
then create an instance of the LinearLayoutManager class and associate it with the
RecyclerView instance. The RecyclerView class supports a variety of layouts; the
LinearLayoutManager class provides a simple layout behavior similar to that of the
ListView class. Finally, we will associate the adapter we created in the onCreate
method with the RecyclerView instance and provide a handler to notify the activity
when the user selects one of the books in the list.

The BookAdapter class that we created in the onCreate method is responsible for
managing the details of associating the data for each book with the appropriate
display rows of the RecyclerView instance. The BookAdapter class is implemented
as shown in the following code:

public class BookAdapter extends
 RecyclerView.Adapter<BookAdapter.ViewHolder> {
 private String[] mTitles;
 private int[] mImageResourceIds;
 public BookAdapter(String[] titles, int[] imageResourceIds) {
 mTitles = titles;
 mImageResourceIds = imageResourceIds;
 }
 public int getItemCount() {
 return mTitles.length;
 }
 @Override
 public BookAdapter.ViewHolder onCreateViewHolder(
 ViewGroup parent, int viewType) {
 // implementation elided for clarity
 }
 @Override
 public void onBindViewHolder(ViewHolder holder, int position) {
 // implementation elided for clarity
 }
 public static class ViewHolder extends RecyclerView.ViewHolder {
 // implementation elided for clarity
 }
}

Fragments and Material Design

[128]

The BookAdapter class inherits from the RecyclerView.Adapter class and has
member fields to store references to the book title and image resource ID arrays. The
BookAdapter constructor simply stores the passed book title and image resource ID
arrays into these member fields. The getItemCount method returns the number of
contained data items using the length of the book title array.

Note that the BookAdapter class' base class, RecyclerView.Adapter, is templated
on the BookAdapter.ViewHolder class. The BookAdapter.ViewHolder class is
also the return type of the onCreateViewHolder method and is the type of the first
parameter passed to the onBindViewHolder method. The BookAdapter.ViewHolder
class is a static nested class that appears at the end of the BookAdapter class.

As the ViewHolder class is nested within the BookAdapter class, its full
name is BookAdapter.ViewHolder. It can, however, be referred to as
simply ViewHolder within the body of the BookAdapter class.

The BookAdapter.ViewHolder class is responsible for storing the TextView and
ImageView references for a particular display row. It is implemented as shown in
the following code:

public static class ViewHolder extends RecyclerView.ViewHolder {
 public TextView mTextView;
 public ImageView mImageView;
 public ViewHolder(View v) {
 super(v);
 mTextView = (TextView)v.findViewById(R.id.bookTitle);
 mImageView = (ImageView)v.findViewById(R.id.topImage);
 }
}

The BookAdapter.ViewHolder inherits from the RecyclerView.ViewHolder
class. Its implementation is very simple, consisting of only two member fields
and a constructor. After calling the super class constructor, the BookAdapter.
ViewHolder constructor simply uses the passed View parameter to find this display
row's TextView and ImageView instances and store them in the mTextView and
mImageView member fields, respectively.

Each instance of the ViewHolder class is created by the BookAdapter class'
onCreateViewHolder method, which is implemented as shown in the following code:

public BookAdapter.ViewHolder onCreateViewHolder(
 ViewGroup parent, int viewType) {
 View rootView = LayoutInflater.from(parent.getContext())

Chapter 6

[129]

 .inflate(R.layout.book_card_view, parent, false);
 ViewHolder vh = new ViewHolder(rootView);
 return vh;
}

The onCreateViewHolder method starts by inflating the book_card_view layout
resource and storing the returned View reference in the rootView local variable. It then
creates an instance of our ViewHolder class, passing in the rootView variable. The
ViewHolder class then uses the passed rootView reference to access the TextView and
ImageView instances for this display row. Finally, the onCreateViewHolder method
returns the new ViewHolder instance.

The last bit of work of the BookAdapter class occurs in the onBindViewHolder
method, which is responsible for associating a book's title and image with the
TextView and ImageView instances within a particular display row. It's in the
onBindViewHolder method where we need to handle the details of enabling
the shared element transitions.

The onBindViewHolder method is implemented as shown in the following code:

public void onBindViewHolder(ViewHolder holder, int position) {
 holder.mTextView.setText(mTitles[position]);
 holder.mImageView.setImageResource(mImageResourceIds[position]);
 holder.mTextView.setTransitionName("title_text_" + position);
 holder.mImageView.setTransitionName("book_image_" + position);
}

The onBindViewHolder method receives a reference to the ViewHolder instance
corresponding to a particular display row and the position of the data to display.
The onBindViewHolder method uses the member fields of the ViewHolder class
to display the book title and image for the book at the requested position. It's these
TextView and ImageView instances that will be animated when the user makes
a selection.

For the shared element transition to work, we have to assure that each view has a
unique transition name. We can't rely on the transition name that currently appears
within the book_card_view layout resource because the same transition names
would be repeated on each row. Instead, we will use the setTransitionName
method to programmatically set each view's transition name to a unique value by
concatenating the position value onto a base string value. For the first row of data,
the TextView instance's transition name is title_text_0, and the ImageView
instance's transition name is book_image_0; for the next row, the transition names
are title_text_1 and book_image_1, respectively; and so on.

Fragments and Material Design

[130]

To maintain the continuity of the transition names, we need to update the activity's
onSelectedBookChangelistener method to set the transition names passed to the
fragment transaction to match those of the views within the selected card, as shown
in the following code:

fragmentManager.beginTransaction()
 .replace(R.id.layoutRoot, newFragment)
 .addSharedElement(bookImageView, "book_image_" + bookIndex)
 .addSharedElement(titleTextView, "title_text_" + bookIndex)
 .addToBackStack(null)
 .commit();

The transaction manager associates the appropriate transition names with the
TextView and ImageView instances by simply appending the position value
of the selected card, just as we did in the BookAdapter class.

The one last bit of work we need to do is have BookDescFragment set the ImageView
and TextView instances it contains to the appropriate transition names. To do
this, we'll need to pass the position to BookDescFragment when we create it in the
activity's onSelectedBookChangelistener method, as shown in the following code:

BookDescFragment bookDescFragment =
 BookDescFragment.newInstance(mTitles[bookIndex],
 mDescriptions[bookIndex], mImageResourceIds[bookIndex],
 position);

We can then set the transition names within the BookDescFragment.onCreateView
method using the setTransitionName method, just as we did in the BookAdapter.
onBindViewHolder method.

And with this, our app is complete! Our app now displays the list of books within
cards. When a user selects a card, the app slides the cards off the left edge of the
screen, the selected title and image animate from the selected card onto our detail
screen, and the description text slides up from the bottom. You can watch a video
of the animation at http://bit.ly/jimwfragments0601.

We focused on those aspects of the RecyclerView class that are specific
to our application. For a more general discussion on RecyclerView,
take a look at the walkthrough from Google at http://bit.ly/
recyclerlists.

http://bit.ly/jimwfragments0601
http://bit.ly/recyclerlists
http://bit.ly/recyclerlists

Chapter 6

[131]

Summary
Modern app development requires that apps be more than just functional to be
successful. Apps must support the wide variety of Android devices on the market, be
visually appealing, and provide a rich interactive experience. Throughout this book,
we've discussed the important role that fragments play in meeting these demands.

Fragments allow us to create modular UI components that are more adaptable and
easier to work with than the more monolithic approach of using activities alone.
Fragments are a key element in creating a modern app navigation experiences, such
as swipeable screens and the navigation drawer. With the advent of material design,
fragments allow us to incorporate motion to provide more engaging user experiences
that provide a greater sense of continuity.

Using what you've learned about working with fragments in this book, you will be
able to successfully deliver the rich, adaptable, and engaging app experience that
users demand. We wish you a successful start to being creative with fragments.

[133]

Index
A
activity-oriented user interface

about 4, 5
activity appearance, defining 5-7
activity UI, displaying 8

adaptive application layout
book list fragment, dynamically

loading 74
creating 70
device differences, adapting to 72, 73
dynamic fragments, supporting by layout

updates 71
Android Studio

used, for adding swipe navigation 86-88
used, for creating ListFragment derived

class 48, 49
used, for creating navigation drawer

activity 97
animation video

reference link 120, 130
application

converting, material design used 109, 110
different Android versions, dealing

with 110
fragments appearance, updating 113-116
theme, setting up 111, 112
user interface, managing 83

asynchronous creation
managing 77-80

B
book card

transitioning, off screen 118, 119
transitioning, on screen 118, 119

book description activity
creating 33, 34
functionality, adding 35

book detail
transitioning, off screen 119, 120
transitioning, on screen 119, 120

C
CardView class 114
color selection

reference link 112
continuity

creating, with shared element
transitions 120-124

maintaining, across multiple cards 125-130
custom list adapter

reference link 46

D
dashboards

reference link 111
density-independent pixel (dp) 24
DialogFragment

about 53
Dialog identity 58
displaying 55, 56
event handling 56, 57
layout 54
styles 53, 54

Dialog identity, DialogFragment
about 58
existing dialog, wrapping in

fragment 59-61
related behavior, accessing 58, 59

[134]

direct screen navigation
activity 97-99
application screen fragment 97-99
precautions 93, 94
providing 93
providing, for multiple screens 96
providing, for small number of

screens 94, 95
dynamic fragment layout selection

about 18, 19
alternate layout resource, adding 20-23
fragment layout, managing by screen

size 24, 25
redundant layout descriptions,

eliminating 25
dynamic fragments

fragments, transitioning between 75
layout, updating 71

dynamic management, of fragments
about 64, 65
back button, supporting 68-70
transaction changes, deferred

execution 65, 66

F
Fragment class

creating 11
description fragment, providing 13
list, wrapping in fragment 11, 12
reference 3

fragment layout resources
assumptions, minimizing 10
creating 8
display layout, encapsulating 11
layout, defining as reusable list 8, 9

fragment-oriented user interface
about 8
activity conversion, for using

fragments 13, 14
Fragment class, creating 11
fragment layout resources, creating 8

fragment relationships
abstracting 28
callback interface, defining 28, 29

fragment, making self-contained 29, 30
fragment notification 30, 31

fragments
adding 66-68
creating, on fly 76
dynamic management 64
removing 66-68

fragments, designing for flexibility
about 27
loosely connected relationship between

fragments, creating 32
operations, encapsulating 31, 32
relationships, abstracting 28
tight coupling, avoiding 28

FragmentStatePagerAdapter instance
reference link 89

FragmentTransaction class 64, 83
fragment transitions

continuity, creating with shared element
transitions 120-124

motion, incorporating 116, 117
off screen 117
on screen 117
reference link 124

I
intentional screen management 63, 64

L
layout resources

updating 51, 52
life cycle, fragment

about 40
available resources, maximizing 44
display 40-42
fragment state, managing 44, 45
hide 43, 44
method name confusion, avoiding 42
setup 40-42
teardown 43, 44

ListFragment
about 45
data, associating with list 45

[135]

data, separating from display 46, 47
derived class, creating with Android

Studio 48, 49
item selection, handling 50, 51
reference link 49

M
MainActivity class

making adaptive 35-37
material design

about 108
motion 109
principles 108
reference links 108
using, via application conversions 109, 110

N
navigation drawer activity

creating, with Android Studio 97
navigation drawer fragment

about 100
additional responsibilities 100-104
responsibilities 105
standard responsibilities 100

O
onCreateView method

about 12
container parameter 12
inflater parameter 12

onSelectedBookChanged method
implementing 80, 81

order of precedence
URL 27

R
RecyclerView

reference link 130
redundant handling

eliminating 76

redundant layout descriptions
eliminating 25
layout aliasing 25-27

rich user experience
creating 107

S
special purpose fragment classes

about 45
DialogFragment 53
ListFragment 45

swipe navigation
adding, with Android Studio 86-88
implementing 85
swipe UI behavior, managing 89-91
swipe UI, putting into place 91-93
using 84, 85

U
UI creation, approach

about 1, 2
activity-oriented user interface 4
fragment-oriented 8
fragments 4
fragments, used for simplifying

Android tasks 3
platform support of fragments 2, 3

UI flexibility
creating 17
dynamic fragment layout selection 18
fragments, designing for flexibility 27

V
video

transition, reference link 110

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Fragments and UI Modularization
	The need for a new approach to UI creation
	The broad platform support of fragments
	How fragments simplify common Android tasks
	The relationship between fragments and activities
	Making the shift to fragments
	The old thinking – activity-oriented
	Defining the activity appearance
	Displaying the activity UI

	The new thinking: fragment-oriented
	Creating the fragment layout resources
	Creating the Fragment class
	Converting an activity to use fragments

	Summary

	Chapter 2: Fragments and UI Flexibility
	Creating UI flexibility
	Dynamic fragment layout selection
	Adding an alternate layout resource
	Managing fragment layout by screen size
	Eliminating redundant layout descriptions

	Designing fragments for flexibility
	Avoiding tight coupling
	Abstracting fragment relationships
	Encapsulating fragment operations
	Creating a loosely connected relationship between fragments

	Fragments protect against the unexpected
	Creating the book description activity
	Adding functionality to the book description activity
	Making the MainActivity class adaptive

	Summary

	Chapter 3: Fragment Life Cycle
and Specialization
	Understanding the fragment life cycle
	Understanding fragment setup and display
	Avoiding method name confusion

	Understanding fragment hide and teardown
	Maximizing the available resources
	Managing a fragment state

	Special-purpose fragment classes
	ListFragment
	Associating data with the list
	Separating data from the display

	DialogFragment
	Styles
	Layout
	Displaying DialogFragment
	Event handling in DialogFragment
	The Dialog identity

	Summary

	Chapter 4: Working with Fragment Transactions
	Intentional screen management
	Dynamically managing fragments
	Deferred execution of transaction changes
	Adding and removing fragments
	Supporting the back button

	Creating an adaptive application layout
	Updating the layout to support dynamic fragments
	Adapting to device differences
	Dynamically loading a fragment at startup
	Transitioning between fragments
	Eliminating redundant handling
	Creating the fragment on the fly
	Managing asynchronous creation
	Putting it all together

	Summary

	Chapter 5: Creating Rich Navigation
	A brave new world
	Making navigation fun with swipe
	Implementing swipe navigation
	Adding swipe navigation with Android Studio
	Managing the swipe UI behavior
	Putting the swipe UI into place

	Providing direct navigation to screens
	Don't get trapped in the past
	Direct navigation for a small number
of screens
	Direct navigation for four or more screens
	Creating a navigation drawer activity with Android Studio
	The activity and application screen fragment
	The navigation drawer fragment

	Summary

	Chapter 6: Fragments and
Material Design
	Creating a rich user experience
	Material design
	Principles of material design
	The role of motion

	Converting our application to use material design
	Dealing with different Android versions
	Setting up the theme
	Updating the fragments appearance

	Incorporating motion in fragment transitions
	Transitioning fragments on and off the screen
	Transitioning the book card off and on the screen
	Transitioning the book details on and off the screen

	Creating continuity with shared element transitions
	Maintaining continuity across multiple cards

	Summary

	Index

