
M A N N I N G

Debasish Ghosh
FOREWORD BY JONAS BONÉR

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

DSLs in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

DSLs in ACTION
DEBASISH GHOSH
M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com
©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Icons in the book are from www.picol.org, used under license as described at
http://creativecommons.org/licenses/by-sa/3.0/

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development Editor: Cynthia Kane
180 Broad St. Copyeditor: Joan Celmer
Suite 1323 Typesetters: Dennis Dalinnik
Stamford, CT 06901 Cover designer: Marija Tudor

ISBN 9781935182450
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11 10

www.allitebooks.com

http://www.allitebooks.org

 To my grandfather, who taught me my first alphabet
www.allitebooks.com

http://www.allitebooks.org

vi vi

brief contents
PART 1 INTRODUCING DOMAIN-SPECIFIC LANGUAGES1

1 ■ Learning to speak the language of the domain 3

2 ■ The DSL in the wild 25

3 ■ DSL-driven application development 54

PART 2 IMPLEMENTING DSLS ..85
4 ■ Internal DSL implementation patterns 87

5 ■ Internal DSL design in Ruby, Groovy, and Clojure 128

6 ■ Internal DSL design in Scala 166

7 ■ External DSL implementation artifacts 211

8 ■ Designing external DSLs using Scala parser
combinators 241

PART 3 FUTURE TRENDS IN DSL DEVELOPMENT.....................275

9 ■ DSL design: looking forward 277

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about the book xix

PART I INTRODUCING DOMAIN-SPECIFIC LANGUAGES1

1 Learning to speak the language of the domain 3
1.1 The problem domain and the solution domain 4

The problem domain 4 ■ The solution domain 4

1.2 Domain modeling: establishing a common vocabulary 6
Benefits of a common vocabulary 7

1.3 Introducing DSLs 8
What’s a DSL? 10 ■ Popular DSLs in use 12
Structure of a DSL 14

1.4 Execution model of a DSL 15
1.5 Classifying DSLs 17

Internal DSLs 18 ■ External DSLs 18
Nontextual DSLs 19
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.6 When do you need a DSL? 20
The advantages 20 ■ The disadvantages 21

1.7 DSLs and abstraction design 22
1.8 Summary 23
1.9 References 24

2 The DSL in the wild 25
2.1 Building your first Java DSL 26

Setting up the common vocabulary 27 ■ Your first
Java implementation 28

2.2 Making friendlier DSLs 32
Externalizing the domain with XML 32 ■ Groovy:
a more expressive implementation language 33
Executing the Groovy DSL 35

2.3 DSL implementation patterns 36
Internal DSL patterns: commonality and variability 37
External DSL patterns: commonality and variability 45

2.4 Choosing DSL implementations 50
2.5 Summary 52
2.6 References 53

3 DSL-driven application development 54
3.1 Exploring DSL integration 55

Why you should care about DSL integration 56

3.2 Internal DSL integration patterns 58
Using the Java 6 scripting engine 60 ■ Using a DSL
wrapper 64 ■ Language-specific integration
features 73 ■ Spring-based integration 75

3.3 External DSL integration patterns 76
3.4 Handling errors and exceptions 78

Naming an exception 79 ■ Handling incorrect typing errors 80
Handling exceptional business conditions 81

3.5 Managing performance 82
3.6 Summary 83
3.7 References 84
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
PART II IMPLEMENTING DSLS85

4 Internal DSL implementation patterns 87
4.1 Filling your DSL toolbox 88
4.2 Embedded DSLs: patterns in metaprogramming 90

Implicit context and Smart APIs 91 ■ Reflective
metaprogramming with dynamic decorators 96
Reflective metaprogramming with builders 102

Lessons learned: metaprogramming patterns 105

4.3 Embedded DSLs: patterns with typed abstractions 106
Higher-order functions as generic abstractions 106
Using explicit type constraints to model domain logic 113
Lessons learned: thinking in types 117

4.4 Generative DSLs: boilerplates for runtime
generation 118
How generative DSLs work 118 ■ Ruby metaprogramming
for concise DSL design 119

4.5 Generative DSLs: macros for compile-time code
generation 122
Metaprogramming with Clojure 122 ■ Implementing the
domain model 123 ■ The beauty of Clojure macros 125

4.6 Summary 126
4.7 References 127

5 Internal DSL design in Ruby, Groovy, and Clojure 128
5.1 Making DSLs concise with dynamic typing 129

Readability 130 ■ Duck typing 131 ■ Metaprogramming—
again! 133 ■ Why Ruby, Groovy, and Clojure? 134

5.2 A trade-processing DSL in Ruby 135
Getting started with an API 136 ■ A little bit of
monkey-patching 139 ■ Rolling out a DSL interpreter 140
Adding domain rules as decorators 143

5.3 The order-processing DSL: the final frontier in
Groovy 148
The order-processing DSL so far 148 ■ Controlling the scope of
metaprogramming 149 ■ Rounding it off 152
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
5.4 Thinking differently in Clojure 153
Building a domain object 154 ■ Enriching domain objects
using decorators 155 ■ A DSL session at the REPL 161

5.5 Recommendations to follow 162
Honor the principle of least complexity 162 ■ Strive for optimal
expressivity 162 ■ Avoid diluting the principles of well-designed
abstractions 163 ■ Avoid language cacophony 163

5.6 Summary 164
5.7 References 165

6 Internal DSL design in Scala 166
6.1 Why Scala? 167
6.2 Your first step toward a Scala DSL 169

Testing Java objects with a Scala DSL 169 ■ Scala DSL
as a wrapper for Java objects 170 ■ Modeling noncritical
functionality as a Scala DSL 170

6.3 Let’s DSL in Scala! 170
Expressive syntax on the surface 171 ■ Creating domain
abstractions 172

6.4 Building a DSL that creates trades 175
Implementation details 177 ■ Variations in DSL
implementation patterns 181

6.5 Modeling business rules with a DSL 182
Pattern matching as an extensible Visitor 183 ■ Enriching
the domain model 184 ■ Calculating tax and fee business
rules in a DSL 187

6.6 Stitching ’em all together 190
More abstraction with traits and types 190 ■ Making domain
components concrete 192

6.7 Composing DSLs 193
Composing using extensions 194 ■ Composing different
DSLs using hierarchical composition 199

6.8 Monadic structures in DSL 203
6.9 Summary 208
6.10 References 209

CONTENTS xi
7 External DSL implementation artifacts 211
7.1 Anatomy of an external DSL 212

The simplest option first 212 ■ Abstracting the
domain model 213

7.2 The role of a parser in designing an external DSL 217
Parsers and parser generators 217 ■ Syntax-directed
translation 219

7.3 Classifying parsers 225
Simple top-down parsers 226 ■ Advanced top-down
parsers 228 ■ Bottom-up parsers 229

7.4 Tool-based DSL development with Xtext 231
Grammar rules and the outline view 232 ■ The metamodel
for your grammar 233 ■ Generating code for the
semantic model 236

7.5 Summary 238
7.6 References 239

8 Designing external DSLs using Scala parser combinators 241
8.1 Parser combinators 242

What are parser combinators? 243 ■ Designing DSLs the
parser combinator way 244

8.2 The Scala parser combinator library 246
The base abstractions in the parser combinator library 247
The combinators that glue parsers together 248 ■ Monads for
DSL parser composition 252 ■ Packrat parsing for left
recursive DSL syntax 254

8.3 DSL design with parser combinators: step-by-step 257
Step 1: Executing the grammar 258 ■ Step 2: Building the
semantic model for the DSL 259 ■ Step 3: Designing the
Order abstraction 260 ■ Step 4: Generating the AST using
function application combinators 261

8.4 A DSL that needs a packrat parser 264
Introducing the domain problem 264 ■ Building the
grammar 266 ■ Designing the semantic model 268
Parser composition for extending DSL semantics 270

8.5 Summary 272
8.6 References 273

CONTENTSxii
PART III FUTURE TRENDS IN DSL DEVELOPMENT275

9 DSL design: looking forward 277
9.1 Growing language support for DSL design 278

Striving to be expressive 279 ■ More power with
metaprogramming 281 ■ s-expressions instead of XML as the
carrier 281 ■ Parser combinators becoming more popular 282

9.2 DSL workbenches 282
What’s in a DSL workbench? 283 ■ The advantages of
using a DSL workbench 284

9.3 More tool support 285
9.4 The mature evolution of a DSL 286

Versioning your DSL 286 ■ Best practices for a
smoother evolution of DSL 287

9.5 Summary 289
9.6 References 290

appendix A Role of abstractions in domain modeling 291

appendix B Metaprogramming and DSL design 311

appendix C A cheat sheet for Ruby’s DSL-friendly features 321

appendix D A cheat sheet for Scala’s DSL-friendly features 325

appendix E A cheat sheet for Groovy’s DSL-friendly features 330

appendix F A cheat sheet for Clojure’s DSL-friendly features 333

appendix G Polyglot development 337

index 341

foreword
I have always enjoyed working with compilers, the engineering part of it as much as
the creative process, on crafting my own language. Programming languages in gen-
eral and Domain Specific Languages (DSLs) in particular are something I’m very
passionate about.

 The concept of DSLs is nothing new. For example, Lisp developers have developed
and used “little languages” for a long time. But in recent years DSLs have become
more widely used and adopted in the industry in general. The tools and techniques
have matured, and it has never been easier to start exploring the wonderful world of
language design.

DSLs, as most languages, are about communication. A well-crafted DSL communi-
cates the essence and means of the domain it represents in a way that feels and is so
natural that you don’t even think about its underlying technology. It helps to bridge
the gap between business and technology and between stakeholders and program-
mers—a skill more important than ever and well worth acquiring.

 Debasish is a highly regarded expert in both the Scala and open source communi-
ties. I have been reading his intellectually challenging but highly enjoyable blog for
years and I got to know Debasish more closely about a year ago when he started con-
tributing to the Akka project. It immediately became evident that he was not only a
deep thinker, but also a pragmatic hacker who gets things done. I have enjoyed dis-
cussing programming languages, design, and more with him ever since.

 I’m excited about this book. It covers a lot of ground and it is not only wide
but also deep. It will take you on a journey through the state-of-the-art in the DSL
xiii

FOREWORDxiv
landscape today, and along the way you will learn how to think when designing flex-
ible and natural DSLs. As a bonus you’ll also get a tour through some of the most
interesting programming languages today such as Scala, Groovy, Clojure, and Ruby
and learn how each one makes you think about and approach a problem differ-
ently. Enjoy the ride. I sure did.

JONAS BONÉR

SCALABLE SOLUTIONS

http://jonasboner.com

preface
In spring 2001 the company I work for, Anshinsoft (http://www.anshinsoft.com),
made a foray into enterprise application development for one of the largest securities
brokers and asset management firms in the Asia-Pacific region. The process stimu-
lated my interest in the challenges of modeling a specific problem domain and trans-
lating the model into real-world implementation artifacts. Since then, it’s been a long
journey through the pages of Eric Evans’ domain-driven design book (Domain-Driven
Design: Tackling Complexity in the Heart of Software), the teachings of Josh Bloch on
designing good APIs (How to Design a Good API & Why it Matters; http://
www.infoq.com/presentations/effective-api-design) and Martin Fowler’s preaching
on domain-specific languages (DSLs).

 The purpose behind a well-designed DSL is to provide a humane interface to your
target users. The best way to do that is to have a programming model that speaks the
language of the domain. For way too long we’ve been developing applications that are
like a black box to business users. Believe me, every user would love to have a look at
the business rules that you model in your code base rather than having to scramble
through the boxes and arrows on a whiteboard.

 The rules embedded in your code need to be comprehensible to the user. They
need to be presented in a language that the user understands. This is what I realized
in the 10 years I have spent working in domain modeling. When the rules are compre-
hensible, a DSL shines, communication between the development team and the busi-
ness users becomes more effective, and your software becomes more expressive to
your users.
xv

PREFACExvi
 An implementation language plays an important role any time you want to provide
expressive syntax and semantics to your users. We’ve seen the phenomenal growth of
an ecosystem that fosters expressive language development. Ruby, Groovy, Scala, and
Clojure have been forerunners in encouraging developers to write more succinct yet
expressive code. I’ve been programming in all these languages and I feel that idiom-
atic code written in any of them can be much more domain-friendly than most of
their predecessors.

 Writing a book on DSLs has been a challenge. I tried to focus on everything that’s
real-world about DSLs. That’s why I chose a specific domain upfront. As the book pro-
gresses, you’ll feel how the domain models grow in complexity as business require-
ments add up. This helps you appreciate how a DSL-driven development approach
scales up with the added complexity of the problem domain. There’s nothing radical
in the approach; a DSL only encourages you to add an extra dimension to your
thought process of API design. Remember, it’s your users who’ll be using the DSL.
Please keep them in mind and you’ll be successful!

acknowledgments
Unusual as it may seem, I’d like to start with a self-acknowledgment. I had no idea
that I could keep myself focused for so long on a specific topic of interest. The pro-
cess of writing this book taught me the values of perseverance, self-determination,
and self-belief.

 Thanks to my team at Anshinsoft for creating a workplace where ideas are nur-
tured and given wings to fly. The late-night brainstorming sessions helped me to carve
out many a complex domain model and ignited in me a love of DSLs.

 Thanks to our client manager, Watanabe san (Mr. Tohru Watanabe), who taught
me the domain model of the securities trading business. This book is filled with exam-
ples of what he’s taught me over the many years that we’ve interacted.

 Thanks to the following reviewers for helping me improve the quality of the manu-
script: Sivakumar Thyagarajan, Darren Neimke, Philipp K. Janert, James Hatheway,
Kenneth DeLong, Edmon Begolli, Celso Gonzalez, Jason Jung, Andrew Cooke, Boris
Lenzinger, David Dossot, Federico Tomassetti, Greg Donald, John S. Griffin, Sumit
Pal, and Rick Wagner. Special thanks to reviewers Guillaume Laforge and John Wilson
for teaching me nuances of writing Groovy DSLs; Michael Fogus for his suggestions on
improving the contents of chapters 5 and 6; and Sven Efftinge for his suggestions on
Xtext and external DSLs in chapter 7. And to Franco Lombardo for doing a final tech-
nical proofread of the manuscript shortly before it went to press.

 During the course of writing DSLs In Action, the Twitter community was an invalu-
able source of assistance and inspiration, offering many words of wisdom.
xvii

ACKNOWLEDGMENTSxviii
 I’ve had an excellent team to work with at Manning Publications. Cynthia Kane,
my development editor, was tireless in assisting me with grammar, style, and taking a
reader-centric view of every chapter that I wrote. If you find the text easy to read and
understand, it’s thanks to the many iterations of each chapter that Cynthia went
through and made me do as well. Thanks to Karen Tegtmeyer for organizing the peer
reviews, Maureen Spencer for all the help she extended during the course of manu-
script development, Joan Celmer for being so responsive during copyediting, and the
rest of the Manning crew who provided support during production. I also want to
express my thanks to publisher Marjan Bace for having confidence in me.

 Very special thanks to my wife, Mou, who’s been the quintessential source of inspi-
ration to me throughout this journey. Her words of encouragement at every step of
this long and arduous process made all the difference in making it a meaningful and
fruitful one.

about the book
Every time you design a domain model on your whiteboard, it seems to get lost
in translation within the complex code base you started with. When you design
your implementation model in your favorite programming language, it no longer
speaks the dialect that the domain expert can understand. If your implementation
on the whiteboard doesn’t conform exactly to the specifications you agreed on
with the domain user, there’s no way it can be verified by the person who under-
stands the domain rules.

DSLs in Action addresses this core issue by suggesting a DSL-driven application
development model. Design your domain APIs around the syntax and semantics that
the domain user understands. Then, even during the development of the code base,
the user can do incremental verifications of the domain rule implementations. If your
code speaks the language of the domain, it becomes clearer to the person who devel-
ops it, to the one who maintains it, and to a nonprogrammer domain expert who
understands the business.

 This book addresses the issues of using a DSL as well as implementing one. It talks
about a DSL as a thin veneer of linguistic abstraction on top of an underlying semantic
model. The semantic model is the implementation that manages the core structure of
the domain, while the language layer speaks the dialect of the domain user.

 You will learn how to design and implement DSLs using modern languages like
Ruby, Groovy, Scala, and Clojure. The book discusses the strengths and weaknesses of
the paradigms that these languages support in designing a DSL. By the time you’ve fin-
ished reading the book, you’ll have a thorough understanding of the concepts that
xix

ABOUT THE BOOKxx
you need to master in order to design beautiful domain abstractions that your user
can understand and appreciate.

Who should read this book?

If you want to design good APIs that are expressive enough for your domain users as
well as for your fellow programmers, this book is for you. If you’re a domain user and
would like to improve your communication with the application development team,
this book is for you. If you’re a programmer who feels the pain of trying to verify with
your domain users whether the implementation of their business rules is correct, this
book is for you as well.

Roadmap

Figures 1, 2, and 3 will give you an idea of how the book is organized and of what you
can expect as you read it. The book has three parts:

Using DSLs
Implementing DSLs
Future trends in DSL development

In part 1 (chapters 1-3), you’ll get a detailed overview of how a DSL-driven develop-
ment environment fits into your application architecture. If you’re a programmer or
an architect, this part of the book will help you adapt your current development stack

Figure 1 Your journey through chapters 1 through 3

ABOUT THE BOOK xxi
Figure 2 Your journey through chapters 4 through 6

Figure 3 Your journey through chapters 7 through 9

ABOUT THE BOOKxxii
with the new paradigm. The book is centered on languages that run on the Java Vir-
tual Machine (JVM). If you’re a Java programmer, you’ll quickly determine how you
can integrate your current Java-based project with DSLs that you develop in other,
more expressive JVM languages.

 Behind the user-friendly syntactic structures of a DSL is an underlying semantic
model. Part 2 and chapters 7 and 8 focus on how to design the semantic model so that
it acts as a good host for the linguistic abstractions of the DSL above it. This part of the
book is more appropriate for developers who want to build beautiful abstractions as
part of their domain model. Chapters 4 through 8 contain lots of DSL implementation
snippets in languages like Ruby, Groovy, Clojure, and Scala. If you’re using one of
these languages or planning to use them for your DSL implementation in the near
future, you’ll find these chapters extremely useful. I start with basic DSL implementa-
tion techniques, then cover advanced techniques like metaprogramming, parser com-
binators, and frameworks like ANTLR and Xtext.

 Part 3 (chapter 9) focuses on the future and techniques like parser combinators
and DSL workbenches.

DSLs in Action is targeted at real practitioners. It contains theory, but only when it’s
required for the purpose of understanding the implementation that follows. I wrote
the book with the full and honest intention that it be useful to the developer commu-
nity in the real world.

Typographical conventions

The book has a number of callouts and sidebars used to call your attention to impor-
tant information.

 In most cases, I’ve used the following sidebar template to present information
related to the domain of securities trading and settlement:

I’ve also included a number of callouts in the book that use the following template
and icon:

These callouts contain information that stands out from the rest of the
text in the section. The callouts might contain special idioms of DSL

design, highlights from a discussion that we’ve recently had, or other nuggets
that I want to emphasize.

I use one more icon in the book to attract your attention:

Financial brokerage system
Information that’s accompanied by this icon contains something you should know
to understand the domain that’s the focus of the DSL discussion. Special terms
and concepts that you need some background information about are presented in
these sidebars.

ABOUT THE BOOK xxiii
Be sure to read the extra information highlighted with these icons. It will help you to
fully understand the ideas being discussed.

Code conventions and downloads

This book includes numerous example DSLs, many of which are substantial enough to
explain complete domain rule implementations. The code is written in Java, Ruby,
Groovy, Scala, and Clojure. Source code in listings or in text is in a fixed-width font
to separate it from ordinary text. Method names, parameters, object properties, other
scripts like those of ANTLR or Xtext, and XML elements and attributes in text are also
presented in fixed-width font.

 Source code can be verbose and detailed in order to provide a meaningful expla-
nation of the semantics and the context. In many cases, the original source code has
been reformatted, adding line breaks and reworking indentation, to accommodate
the available page space in the book. In rare cases, this was not enough, and some list-
ings include line continuation markers.

 Code annotations accompany many of the source code listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 I acknowledge that not all of you will be familiar with all the programming lan-
guages that I’ve used to implement the DSL structures. Keeping this in mind, I’ve
included short reference cards (or cheat sheets) for the languages I discuss in appen-
dixes C through G. These are not meant to be a complete reference for the language,
but only brief pointers to the language features used in explaining the DSL implemen-
tations. References are provided to complete texts that you should read to supple-
ment the cheat sheets.

 Most of today’s IDEs are mature enough to let you develop projects in multiple lan-
guages. But, for those readers who aren’t familiar with the polyglot development envi-
ronment, appendix G is a good starting point.

 The source code for all examples in this book is available from Manning’s website,
http://www.manning.com/DSLsinAction, which also contains relevant instructions on
how to build and run them in your environment. Be sure to keep a copy of these list-
ings when you go through the text.

Author Online

The purchase of DSLs in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical

Information about individual languages
When you see this icon, you’ll know that the sidebar contains tidbits of information
about the language used in the current examples. In order to fully understand the
examples, you’ll need to be familiar with these specific concepts.

ABOUT THE BOOKxxiv
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/DSLsinAction. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.

About the author

Debasish Ghosh (@debasishg on Twitter) is the chief technology evangelist at Anshin-
soft (http://www.anshinsoft.com), where he specializes in leading the delivery of enter-
prise-scale solutions for clients ranging from small to Fortune 500 companies. His
research interests are OO and functional programming, DSLs, and NoSQL databases.
He’s a senior member of the ACM and authors a programming blog at Ruminations of a
Programmer (http://debasishg.blogspot.com). He can be reached at dghosh@acm.org.

About the cover illustration

The figure on the cover of DSLs in Action is captioned “A man from Durdevac, near
Osijek, Slavonija, Croatia.” The illustration is taken from a reproduction of an album
of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsen-
ovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustra-
tions were obtained from a helpful librarian at the Ethnographic Museum in Split,
itself situated in the Roman core of the medieval center of the town: the ruins of
Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

 The village of Durdevac is near the town of Osijek in Slavonia, a geographical and
historical region in eastern Croatia. Men in Slavonija traditionally wear red caps, white
shirts, blue waistcoats, and pants with embroidered ornamentation. The final accesso-
ries are a wide woolen or leather belt and thick woolen socks, topped off with a jacket
made from brown sheepskin, just like the figure on the cover of this book is wearing.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Introducing
 domain-specific

 languages

What are domain-specific languages (DSLs)? What value do they have for
an application developer? What value do they add for the business user who’ll
use the application? Does DSL-driven development improve communication
between the development team and the team of domain experts? What are the
pros and cons of DSL-driven development? These are some of the questions that
you’ll find answers to in part 1 of this book.

 Chapters 1, 2, and 3 form part 1 of DSLs In Action. I’ll introduce many of the
commonly used DSLs and talk about general design principles so you can get an
idea of what to look for when you design a DSL of your own.

 Chapter 1, is as usual, an introduction to DSLs.
 In chapter 2, you’ll design what might be your first DSL. As you work along,

you’ll get a taste of how expressive DSLs evolve iteratively from the user require-
ments. First, you’ll implement the DSL in Java; then you’ll see how it can be
more expressive using Groovy, another language on the JVM.

 In chapter 3, you will learn integrating internal and external DSLs in a core
application and how to manage errors and exceptions.

 Part 1 will be equally appealing to programmers and nonprogramming
domain users. I’ve kept implementation details out of part 1 so you can get a
broad overview of the DSL landscape.

Learning to speak
 the language

 of the domain
Every morning on your way to the office, you pull your car up to your favorite cof-
fee shop for a Grande Skinny Cinnamon Dolce Latte with whip. The barista always
serves you exactly what you order. She can do this because you placed your order
using precise language that she understands. You don’t have to explain the mean-
ing of every term that you utter, though to others what you say might be incompre-
hensible. In this chapter, you’ll look at how to express a problem in the vocabulary
of a particular domain and subsequently model it in the solution domain. The
implementation model of this concept is the essence of what is called a domain-
specific language (DSL). If you had a software implementation of the coffee shop
example where a user could place an order in the language that they use every day,
you would have a DSL right there.

This chapter covers
■ What a DSL is
■ The benefits a DSL offers, both to business

users and to solution implementers
■ The structure of a DSL
■ Using well-designed abstractions
3

4 CHAPTER 1 Learning to speak the language of the domain
 Every application that you design maps a problem domain to the implementa-
tion model of a solution domain. A DSL is an artifact that forms an important part
of this mapping process. You’ll look more closely at the definition of what a DSL is
a bit later. First, you need to understand the process that makes this mapping pos-
sible. For this mapping to work, you need a common vocabulary that the two
domains share. This vocabulary forms one of the core inputs that lead to the evolu-
tion of a DSL.

A good abstraction is essential to a well-designed DSL implementation.
If you want to dig deep into the subject of well-designed abstractions,

appendix A has a detailed discussion about the qualities to look for. A good
plan of attack is to skim the appendix now, then continue reading this chap-
ter. Section 1.7 contains basic information about abstractions, but appendix
A is much more detailed.

1.1 The problem domain and the solution domain
Domain modeling is an exercise that helps you analyze, understand, and identify the
participants involved in a specific area of activity. You start with the problem domain
and identify how the entities collaborate with each other meaningfully within the
domain. In the earlier example of the coffee shop, you placed your order in the most
natural language of the domain, using terminology that mapped closely to what
the barista understands. Terminology forms the core entity of the problem domain.
The barista could easily figure out exactly what she needed to serve you to fulfill your
request because you’re both familiar with the required terminology.

1.1.1 The problem domain

In a domain modeling activity, the problem domain is the processes, entities, and con-
straints that are part of the business that you’re analyzing. Domain modeling, also
known as domain analysis (see [1] in section 1.9), involves the identification of all
the major components of the domain and how they collaborate. In the example you
began with, the barista knew all the entities like coffee, whipped cream, cinnamon,
and nonfat milk that formed her problem domain model. When you analyze a
more complex domain like a trading and settlement system for financial brokers,
securities, stocks, bonds, trade, and settlement are some of the components that
belong to the problem domain. Along with these components, you’ll also study how
securities are issued, how they’re traded in stock exchanges, settled between vari-
ous parties, and updated in books and accounts. You identify these collaborations
and analyze and document them as artifacts of your analysis model.

1.1.2 The solution domain

You implement a problem domain analysis model in terms of the tools and tech-
niques offered by the solution domain. The barista could map your order to the pro-
cedure that she needed to follow to serve your Grande Skinny Cinnamon Dolce

5The problem domain and the solution domain
Latte. The process she followed and the tools she used formed parts of her solu-
tion domain. When you’re dealing with a larger domain, you might need more sup-
port from your solution domain in terms of the tools, methodologies, and
techniques that it needs to offer. You need to map the problem domain compo-
nents into appropriate solution domain techniques. If you use an object-oriented
methodology as the underlying solution platform, then classes, objects, and meth-
ods form the primary artifacts of your solution domain. You can compose these arti-
facts to form larger ones, which might serve as better representations of higher-level
components in your problem domain. Figure 1.1 illustrates this first step in domain
modeling. As you move along, you’ll flesh out the process of how to get to the solu-
tion domain by using techniques that domain experts can understand throughout
the lifecycle of transformation.

 The primary exercise involved in domain modeling is mapping the problem
domain to artifacts of the solution domain, so that all components, interactions, and
collaborations are represented correctly and meaningfully. To do this, you first need
to classify domain objects at the proper level of granularity. When you correctly clas-
sify domain objects, each object of the problem domain is visible in the solution
domain, with its proper structure and semantics. But your map can be only as good as
the language of interaction between the domains. A solid interaction requires that the
problem domain and the solution domain share a common vocabulary.

Figure 1.1 Entities and collaborations from the problem domain must map to
appropriate artifacts in a solution domain. The entities shown on the left (security,
trade, and so on) need corresponding representations on the right.
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Learning to speak the language of the domain
1.2 Domain modeling: establishing a common vocabulary
When you start an exercise in domain modeling, you start with the problem domain
that you’re going to model. You need to understand how the various entities of the
domain interact among themselves and fulfill their responsibilities. While you’re fig-
uring all this out, you collaborate with domain experts and with other modelers.
Domain experts know the domain. They communicate using the domain vocabu-
lary, and use the same terminology when they explain domain concepts to the out-
side world. The modelers know how to represent an understanding of the model in
a form that can be documented, shared, and implemented by software. The model-
ers must also understand the same terminology and reflect the same understanding
in the domain model that they’re designing.

 Sometime back I started working on a project that involved modeling the back-
office operations of a large financial brokerage organization. I wasn’t a domain
expert, and I didn’t know much about the details and complexities involved in the
practices of the securities industry practices. Now, after working in that domain for
quite a while, I think it’s similar enough to other domains that you might deal with to
model most of my examples and annotations in this book on that domain. The side-
bar in this section gives a brief introduction to the domain of securities trading and
financial brokerage, which you’ll use as running examples for implementing DSLs. As
you progress, I’ll define new concepts wherever applicable and focus on the relevant
details only when necessary. If you’re not familiar with what goes on in a stock
exchange, don’t panic. I’ll give you enough background in the sidebars to help you
understand the basic concepts of what you model.

 On the first day of our requirements analysis meeting, the domain specialists of
the financial industry started talking about coupon bonds, discount bonds, mort-
gages, and corporate actions. These terms were part of the usual terminology that a

Financial brokerage systems: a background
The business of financial brokerage starts with a trading process. This process
involves the exchange of securities and cash between two or more parties, referred
to as the counterparties of the trade. On a certain date, the counterparties promise
to make the trade (this date is referred to as the trade date) at a place known as
the stock exchange, based on an agreed upon price, known as the unit price. The
securities, which form one leg of the exchange process (the other being cash), can
be of several types, such as stocks, bonds, mutual funds, and a host of other types
that can have a hierarchy of their own. There are, for example, several types of
bonds, like coupon bonds and discount bonds.

Within a certain number of days of the promise to trade, the exchange is made by
transferring the ownership of funds and securities between the counterparties; this
exchange is known as the settlement process. Each security type has its own life-
cycle of trade, execution, and finalization, and passes through a series of state
changes in the course of the trading and settlement process.

7Domain modeling: establishing a common vocabulary
brokerage specialist uses to communicate, but I didn’t know what they meant. Also,
lots of terms were being used synonymously. The terms discount bond and zero cou-
pon bond are synonymous, and they were being used interchangeably by different
domain experts in different contexts. But because these terms were unknown to
me, confusion reigned. Not all of us were specialists in the financial industry, and we
soon realized that we needed to share a common vocabulary to make the knowledge-
sharing sessions more meaningful. Not only did we collaborate in terms of the com-
mon domain vocabulary, we also made sure that the model we designed and devel-
oped spoke the same language—the natural language of the domain.

1.2.1 Benefits of a common vocabulary

A common vocabulary, shared between the stakeholders of the model, serves as the
binding force that unifies all artifacts that are part of the implementation. More
importantly, with the common vocabulary in place, you can easily follow the path of
features, functions, and objects across all phases of the project delivery cycle. The
same terms that the modeler uses for documenting use-cases appear as module names
in programs, entity names in data models, and object names in test cases. In this way, a
common vocabulary bridges the gap between the problem domain and the solution
domain. Creating a common vocabulary might take more time up-front than you’re
initially willing to spend, but I can almost guarantee that you’ll save yourself a lot of
redoing in the long run. Let’s look at some of the tangible benefits that a common
vocabulary offers.

SHARED VOCABULARY AS THE GLUE

During the requirements analysis phase, a shared vocabulary serves as the common
bridge of understanding between the modelers and the domain experts. All your dis-
cussions are more succinct and effective. When Bob (who’s a trader) talks about inter-
est accrual for bonds, Joe (who’s a modeler) knows that Bob is referring specifically to
coupon bonds.

COMMON TERMINOLOGY IN TEST CASES

The common vocabulary can also serve as the basis for developing test cases. Then,
the domain expert group can verify these test cases. A sample test case from my earlier
project on brokerage system implementation reads: For a zero coupon bond issued by
Trampoline Securities with a face value of USD 10,000 and a primary value date of 15th May
2001 at a price of 40%, the investor will have to pay USD 4,000 at issue launch. The test case
makes perfect sense to the modeler, the tester, and the domain specialist who’s review-
ing it, because it uses terminology that forms the most natural representation of the
domain language.

COMMON VOCABULARY DURING DEVELOPMENT

If the development team is using the same vocabulary to represent program modules,
the resulting code is also going to speak the same domain language. For example, if
you talk about modules like bond trading and settlement of securities, when you write
code, you’ll use the same vocabulary to name domain entities.

8 CHAPTER 1 Learning to speak the language of the domain
Developing and sharing a common vocabulary between the problem and solution
domains is the first step in our march toward the solution domain. Let’s update figure 1.1
with this common glue that binds the domains together to come up with figure 1.2.

 You know that the developers and the domain experts need to share a common
vocabulary, but how will the language be mapped? How does the domain expert
understand the model that the developers are generating? This communication prob-
lem is a common one in any software development ecosystem.

 Looking at figure 1.2, you’ll realize that the domain experts are in no way
equipped to understand the technical artifacts that currently populate the solution-
domain model. As systems increase in complexity, the models get bloated and the
communication gap keeps on widening. The domain experts don’t need to under-
stand the complexities that surround an implementation model; they need to verify
whether the business rules being implemented are correct. Ideally, the experts them-
selves would write test scripts to verify the correctness and comprehensiveness of the
domain rules’ implementation, but that’s not a practical solution.

 What if you could offer the experts a communication model that builds on the
common vocabulary and rolls off everyone’s tongue with the same fluidity that a
domain person uses in his everyday business practice? You can. This is the moment
when the DSL enters the picture!

1.3 Introducing DSLs
Joe, the IT head for the hypothetical company Trampoline Securities, had no idea
what Bob, the trader, was up to as he leaned over Bob’s shoulders and took a sneak

Figure 1.2 The problem domain and the solution domain need to share a common
vocabulary for ease of communication. With this vocabulary, you can trace an artifact
of the problem domain to its appropriate representation in the solution domain.

9Introducing DSLs
peek at his console. To his amazement, Joe discovered that Bob was busy typing com-
mands and statements in a programming environment that he thought belonged
exclusively to the members of his development team. Here’s the fly-on-the-wall record
of their conversation:

■ Joe: Hey Bob, can you write programs?
■ Bob: Yeah, sort of, in our new TrampolineEasyTrade system.
■ Joe: But, but, you’re a trader, right?
■ Bob: So? We use this software for that, too.
■ Joe: You’re supposed to be using the software, not programming in it! The prod-

uct isn’t even out of the development labs.
■ Bob: But I thought it’d be great if I could write some tests for the software that

I’ll be using later. That way, I can pass on my inputs to the development team
way early in the sprint. Being part of this exercise makes me feel like I’m con-
tributing more. I have a much better feel for what’s being developed. And I can
check to see if my use cases are working, too.

■ Joe: But that’s the responsibility of the development team! I sit with them
every day. I’ve got tools in place to check code coverage, test coverage, and a
bunch of other metrics that’ll guarantee that what we deliver is the best it
can be.

■ Bob: As far as knowing about financial brokerage systems is concerned, who do
you think understands the domain better? Me? Or your set of tools?

Ultimately Joe had to admit that Bob, who’s an expert in the domain of financial
brokerage systems, was better equipped to verify whether their new offering of the
trading platform covered the functional specs adequately and correctly. What Joe
couldn’t understand is how Bob, who isn’t a programmer, could write tests using their
testing framework.

 As a reader, you must also be wondering. Look at the following listing, which shows
what Bob had up on his console.

place orders (
 new Order to buy(100 sharesOf "IBM")
 limitPrice 300
 allOrNone
 using premiumPricing,
 new Order to buy(200 sharesOf "CISCO")
 limitOnClosePrice 300
 using premiumPricing,
 new Order to buy(200 sharesOf "GOOGLE")
 limitOnOpenPrice 300
 using defaultPricing,
 new Order to sell(200 bondsOf "SUN")
 limitPrice 300
 allOrNone

Listing 1.1 Order-processing DSL

10 CHAPTER 1 Learning to speak the language of the domain
 using {
 (qty, unit) => qty * unit - 500
 }
)

Looks like a code snippet, right? It is, but it also contains language that Bob usually
speaks when he’s at his trading desk. Bob’s preparing a list of sample order-creation
scripts that place orders on securities using various pricing strategies. He can even
define a custom pricing strategy on his own when he places the order.

 What’s the language that Bob’s programming in? It doesn’t matter to him, as long
as he gets his work done. To him, it’s the same language that he speaks at his trading
desk. But let’s determine how what Bob is doing differs from the run-of-the-mill cod-
ing that we do every day in our programming jobs:

■ The vocabulary of the language that Bob is using seems to correspond closely
with the domain that he belongs to. In his day job at his trading desk, he places
orders for his clients using the same terminology that he’s writing directly into
his test scripts.

■ The language that he’s using, or the subset of the language that you see on
his console, doesn’t seem to apply outside the domain of financial broker-
age business.

■ The language is expressive, in the sense that Bob can clearly articulate what
he wants to do as he steps through the process of creating a new order for
his client.

■ The language syntax looks succinct. The syntactic complexities of the high-level
languages you usually program in have magically disappeared.

Bob is using a domain-specific language, tailor-made for financial brokerage systems. It’s
immaterial at this point what the underlying language of implementation is. The fact
that the underlying language isn’t obvious from the code in listing 1.1 indicates that
the designer successfully created an expressive language for a specific domain.

1.3.1 What’s a DSL?

A DSL is a programming language that’s targeted at a specific problem; other pro-
gramming languages that you use are more general purpose. It contains the syntax
and semantics that model concepts at the same level of abstraction that the problem
domain offers. For example, when you order your Cinnamon Latte, you use the
domain language that the barista readily understands.

DEFINITION Abstraction is a cognitive process of the human brain that
enables us to focus on the core aspects of a subject, ignoring the unnecessary
details. You’ll talk more about abstractions and DSL design in section 1.7.
Appendix A is all about abstractions.

Programs that you write using a DSL must have all the qualities that you expect to find
in a program that you write in any other computer language. A DSL needs to give you

11Introducing DSLs
the ability to design abstractions that form part of the domain. In the same way that
you can build a larger entity out of many smaller ones in the problem domain, a well-
designed DSL gives you that flexibility of composition in the solution domain. You
should be able to compose DSL abstractions just like you compose your functionalities
in the problem domain.

 Now you know what a DSL is. Let’s talk about how it differs from other program-
ming languages you’ve been using.

HOW’S A DSL DIFFERENT FROM A GENERAL-PURPOSE PROGRAMMING LANGUAGE?
The answer to the difference is in the definition itself. The two most important quali-
ties of a DSL that you need to remember are:

■ A DSL is targeted at a specific problem area
■ A DSL contains syntax and semantics that model concepts at the same level of

abstraction as the problem domain does

When you program using a DSL, you deal only with the complexity of the problem
domain. You don’t have to worry about the implementation details or other non-
essential elements of the solution domain. (For more discussion about nonessential
complexity, see appendix A.) More often than not, people who aren’t expert program-
mers can use DSLs—if the DSL has the appropriate level of abstraction. Mathematicians
can easily learn and work with Mathematica, UI designers feel comfortable writing
HTML, hardware designers use VHDL (very-high-speed integrated circuit hardware
description language; a DSL used in electronic design automation) to name a few such
use cases. Because nonprogrammers need to be able to use them, DSLs must be more
intuitive to users than general-purpose programming languages need to be.

 You write a program only once, but you manage its evolution for many years. For a
program to evolve, it needs to be nurtured by people, many of whom may not have
been involved in designing the initial version. The key issue is communication, the
ability for your program to communicate with its intended audience. In the case of a
DSL, the direct audience is neither the compiler nor the CPU, but the human minds
that need to understand its behavior. The language needs to be communicative to its
audience and allow code snippets that are expressive enough to map to the thought
process of the domain modeler. For this to happen, the DSL that you design has to
offer the correct level of syntactic as well as semantic abstractions to the user.

WHAT’S IN A DSL FOR BUSINESS USERS?
As you’ve learned from the discussion so far, DSLs stand out from normal high-level
programming languages in two ways:

■ DSLs offer a higher level of abstraction to the user. This implies that you don’t
have to be concerned about the nuances of identifying specific data structures
or other low-level details. You can focus on solving the problem at hand.

■ DSLs offer a limited vocabulary that’s specific to the domain it addresses. The
fact that it contains nothing extra helps you focus on the problem that you’re

12 CHAPTER 1 Learning to speak the language of the domain
modeling. A DSL doesn’t have the horizontal, spread-out focus of a general-pur-
pose programming language.

Both these qualities make DSLs a friendlier tool for the nonprogramming domain
expert. Your business analysts understand the domain, which is what a DSL abstracts.

 With more and more programming languages offering higher levels of abstraction
design, DSLs are poised to be a major component in today’s application development
ecosystem. Nonprogramming domain analysts will surely have a major role to play
here. With a DSL implementation in place, they’ll be able to write test scripts correctly
from day one. The idea isn’t to run the scripts immediately, but to ensure that you’ve
adequately covered the possible business scenarios in your implementation. When
the DSL is designed at an effective level of abstraction, it’s not unusual for domain
experts to browse through source code that defines the business logic. They’ll be able
to verify the business rules, and provide immediate feedback to developers based on
their observations.

 Now that you’ve seen some of the values that a DSL offers to you as a developer
and as a domain user, let’s take a look at some of the commonly used DSLs in the
industry today.

1.3.2 Popular DSLs in use

DSLs are everywhere. Whether or not you brand them as DSLs, I’m sure you’re using a
lot of them in every application that you develop. Table 1.1 lists a few of the most com-
monly used DSLs.

There are a lot more DSLs that you use on a regular basis. Can you identify some of
the common characteristics that these languages have? Here are a few:

■ All DSLs are specific to the domain. Each language is of limited expressivity; you
can use a DSL to solve the problem of that particular domain only. You can’t
build cargo management systems using only HTML.

DEFINITION Martin Fowler used the term limited expressivity to describe
the most important characteristic of a DSL. In his 2009 DSL Developer’s

Table 1.1 Commonly used DSLs

DSL Used for

SQL Relational database language used to query and manipulate data

Ant, Rake, Make Languages for building software systems

CSS Stylesheet description language

YACC, Bison, ANTLR Parser-generator languages

RSpec, Cucumber Behavior-driven testing language in Ruby

HTML Markup language for the web

13Introducing DSLs
Conference keynote talk ([3] in section 1.9), Martin mentioned that it’s
this limited expressivity that differentiates a DSL from a general-purpose
programming language. You can model anything and everything with a
general-purpose programming language. With a DSL, you can model only
one specific domain, but in a more expressive way.

■ For each of the languages listed in table 1.1 (and the other popular ones being
used), you usually need to use the abstractions that they publish. Barring specific
exceptions, you don’t even need to know the underlying implementations of
these languages. Every DSL offers a set of contracts that you can use to build
your solution domain model. You can compose multiple contracts to build
more complex models. But you don’t need to step out of the offered contracts
and get down to the implementation level of the DSL.

■ Every DSL is expressive enough to make its intentions clear to the nonprogram-
ming user. The DSL isn’t merely a collection of APIs that you use; every API is
concise and speaks the vocabulary of the domain.

■ For every DSL, you can go back to your source file months after you wrote them
and immediately be able to figure out what you meant.

It’s a fact that DSL-based development encourages better communication between
developers and domain experts. This is its greatest virtue. By using a DSL, a nonpro-
gramming domain expert won’t transform himself into a regular programmer. But
with the expressiveness and explicitly communicative APIs that DSLs offer, the domain
expert will be able to understand which business rules the abstraction implements and
whether it adequately covers all possible domain scenarios.

 Let’s look at one motivating example of a DSL snippet selected from the list in
table 1.1. Consider the following snippet from a Rakefile, which is mainly used to
build Ruby-based systems:

desc "Default Task"
task :default => [:test]

Rake::TestTask.new { |t|
 t.libs << "test"
 t.pattern = 'test/*_test.rb'
 t.verbose = true
 t.warning = false
}

This code snippet creates a number of unit tests that can be run as the default task.
Even if you don’t know Ruby, this snippet means the same thing to you; it’s just as
expressive to you. How can that be? The snippet has explicit hotspots that match
vocabulary you’re familiar with and provides an easy-to-use interface to the user of the
DSL. In this case, Rake will be used by the developer. The language of the code uses
semantics that match the level of abstraction that a developer expects and under-
stands. Similarly, if you develop a DSL for the trader community, you need to keep in
mind the level of expressiveness that suits the expectations and experiences of a trader

14 CHAPTER 1 Learning to speak the language of the domain
at the dealing desk. This section contains a sidebar that has a short introduction to
some of the basic terminology of the trading system. Have a look at the definitions
because you’ll be using many of them in the example DSLs that you’ll develop over the
course of the book.

 When you design a DSL, keep your target users in mind. A DSL needs to be as
expressive and granular as necessary for the user to understand it. In the following
chapters, you’ll learn how to design DSLs at the level of abstraction that feels most nat-
ural to users. Meanwhile, let’s fill in some of the missing links in figure 1.2 so you’ll
have a more complete picture of how DSLs enable a better mapping between the
problem and the solution domain.

1.3.3 Structure of a DSL

Look at figure 1.3, which shows how a DSL script binds the common vocabulary to the
underlying implementation model of the solution domain.

 The following describes the three principles that a well-designed DSL embodies to
make your software more communicative to domain users:

■ A DSL provides a direct mapping to the artifacts of the problem domain. If the
problem domain has an entity named Trade, the DSL script must contain the
same abstraction that plays the same role.

■ The DSL script must use the common vocabulary of the problem domain. The
vocabulary becomes the catalyst for better communication between developers
and business users. When business users interact with the software domain
model, the DSL script is their interface, as shown in figure 1.3.

Financial brokerage systems: trade and settlement
A trade is performed between two parties (counterparties) and involves an
exchange of securities and currencies that’s subject to the regulations of the mar-
ket where it takes place. The trade is only a promise, and needs to be settled
within a fixed number of days after the trade is made. This date, referred to as the
settlement date, depends on a number of factors like the specific market where
the trade is executed, life cycle of the security, the nature of the trade, and the
date when the trade was made (trade date).

Each trade has an associated cash value. The cash value is the amount of money
that’s due from the party that bought the security. This cash value depends on
things like the principal value, stamp duty, and brokerage fees and commissions,
to name a few.

After the trade is completed in the stock exchange, the trade details are entered
into the back office of the trading organization. This process is called trade enrich-
ment. The system computes all the details: the settlement date, trade tax, com-
mission, and the final cash value.

15Execution model of a DSL
■ The DSL script must abstract the underlying implementation. This principle is
an important part of good abstraction design, and it applies to DSLs as well. The
DSL script cannot contain accidental complexities that deal with implementa-
tion details.

In figure 1.3, the relationships shown between the node labeled DSL script and the
other nodes illustrate these three principles. If you keep these principles in mind as
you design your DSL, your software will communicate effectively to domain users. In
the next section, you’ll look at the execution model of a DSL—how the DSL script and
its implementation model is realized when you run your application.

1.4 Execution model of a DSL
Domain experts use the DSL script to understand the domain model and business
rules. You, as a developer, need to implement the DSL in terms of an underlying tech-
nology platform. In most cases, a DSL is nothing but a layer of abstraction over the
host language that presents a domain-friendly interface to the business users. (It’s not
always the host language. See section 1.5 for details about DSL classification.) You’re
kind of extending the host language to implement another language on top of it.
This concept is sometimes referred to as a metalinguistic abstraction. You’ll also come
across DSLs that don’t use an embedded language for implementation. Maybe it uses
a custom language that the team designed specifically for implementing the DSL. In

Figure 1.3 A DSL script provides a representation of the domain language to the
implementation model. It uses the common vocabulary as the underlying dictionary that makes
the language feel more natural to users.

16 CHAPTER 1 Learning to speak the language of the domain
section 1.5, you’ll look more closely at how DSL implementations are classified. For
now, let’s talk about how you execute a DSL script.

 Figure 1.4 shows the three most common ways to execute a DSL script.

1 The script can directly execute the underlying model without any more code
generation or manipulation. There might be an interpreter that directly inter-
prets the script and runs it. The UNIX little programming languages awk and
sed are examples of DSLs that execute directly.

2 A DSL script that’s developed on a virtual machine follows the second model.
The semantic model underlying any Java DSL script generates bytecodes that
are executed on the JVM.

3 Some languages offer compile-time metaprogramming. When you’re develop-
ing a DSL using this kind of language, you build metastructures as part of your
source code, which get translated to the normal forms of the language before
it runs. Lisp supports this technique through macros that get expanded to nor-
mal Lisp forms during the macro expansion phase (I discuss this in more
detail in appendix B). For these languages, there’s an intermediate stage
where you have source code translation before the byte code is generated for
the virtual machine.

Figure 1.4 Three execution models for a DSL script. You can directly
execute the program that implements the solution domain model B.
Alternatively you can instrument bytecodes and then execute the script C.
Or you can do a source code translation (as with Lisp macros) and then
generate bytecodes for execution D.

17Classifying DSLs
Now that you’re comfortable with the three common models of execution for a DSL
script, revisit the DSL in listing 1.1 that Bob was playing with. Irrespective of the lan-
guage of implementation, you’ll discover that it also needs a semantic model as its
underlying implementation. That model might be a host language like Ruby or Scala,
or it might be a custom language that the developers at Trampoline Securities
designed to implement the trading DSL.

 Consider Ant, the popular build tool, and the XML-based DSL that it presents to
the user. As a developer, when you look at the following XML snippet in Ant, you’ll
find that it expresses familiar concepts. The code clearly spells out that it’ll build a jar
as the target and that this task has a dependency on the task compile.

<target name="jar" depends="compile">
 <mkdir dir="${build.dist}"/>
 <jar jarfile="${build.dist}/${name}-${version}.jar">
 <fileset dir="${build.classes}" includes="**"/>
 <fileset dir="${src.dir}">
 <include name="*"/>
 </fileset>
 </jar>
</target>

This DSL script has an underlying semantic model; the implementation is in the
form of Java classes, methods, and packages that create interfaces for tasks and
dependencies. The developer doesn’t have to cross the boundaries of the DSL inter-
face and dig down into the implementation in order to use Ant. Of course, there
might be an exceptional situation when the developer might need to do so, because
Ant is an extensible framework. But that’s only the exception.

 So far, we’ve mostly been talking about DSL scripts that are designed as extensions
of a host language, but that’s not the only kind of DSL script there is. You can also clas-
sify DSLs based on the way you implement them. The next section lays down a taxon-
omy of DSLs.

1.5 Classifying DSLs
A DSL speaks the language of the domain. The richer the domain, the more expres-
sive the DSL needs to be. To the domain user, a DSL makes him understand the story
of the domain that the developers have implemented as the underlying model. It
doesn’t matter to him how the underlying model has been implemented, so long as
he has coherent access to the domain abstractions through the DSL script.

 The most popular way to classify DSLs is related to the way you implement them.
Martin Fowler made this broad classification some time back and it’s recognized and
followed by almost all practitioners in the industry today. He classifies a DSL as internal
or external, depending on whether it’s been implemented on top of an existing host
language. Internal DSLs are also known as embedded DSLs because they’re implemented
as an embedding within a host language. (Internal DSLs will be discussed further in
chapters 5 and 6 where you’ll implement DSLs using JVM languages like Ruby, Groovy,

18 CHAPTER 1 Learning to speak the language of the domain
Scala, and Clojure.) External DSLs are also called standalone DSLs because they’re
developed ground-up as an independent language, without using the infrastructure of
an existing host language. Chapters 7 and 8 deal more with external DSLs.

 Besides these two broad classifications, you’re also looking at newer paradigms of
DSL development. Companies like Intentional Software (http://www.intentsoft.com/)
have come out with tools you can use to create nontextual DSLs. Such developments
and growing trends are subjects in chapter 9. For now, you will focus on the two main
classifications and use examples to discuss some of their characteristics.

1.5.1 Internal DSLs

An internal DSL is one that uses the infrastructure of an existing programming lan-
guage (also called the host language of the DSL) to build domain-specific semantics
on top of it. One of the most popular internal DSLs used today is Rails, which is imple-
mented on top of the Ruby programming language. When you write Rails code,
you’re programming in Ruby, based on the semantics that Rails implements for devel-
oping web applications. In most cases, an internal DSL is implemented as a library on
top of the existing host language. In section 2.1, you’ll develop an order-processing
DSL as an example of an internal DSL, based on Java and Groovy as the host language.
Figure 1.5 illustrates the structure of an internal DSL.

 As you see in figure 1.5, the internal DSL script is a thin veneer over the abstrac-
tions of an underlying host language. Now let’s see what an external DSL looks like.

1.5.2 External DSLs

An external DSL is one that’s developed ground-up and has separate infrastructure for
lexical analysis, parsing techniques, interpretation, compilation, and code genera-
tion. Developing an external DSL is similar to implementing a new language from
scratch with its own syntax and semantics. Build tools like make, parser generators like
YACC, and lexical analysis tools like LEX are examples of popular external DSLs. Of
course, the complexity of an external DSL implementation depends on how rich you

Figure 1.5 You implement an internal DSL using an existing host language and the infrastructure
that it offers.

19Classifying DSLs
want it to be. In most cases, you’ll find that the external DSL doesn’t need to have all
the complexities of a full-blown language. You’ll see many examples in chapters 7
and 8. Figure 1.6 shows how an external DSL is structured on top of a custom lan-
guage infrastructure.

 Figure 1.6 shows the generic components of an external DSL. In real-life examples,
you might not need all of them or you might decide to combine components, depend-
ing on the complexity of your language.

 Do you need to create a DSL in the form of a textual representation? Not always; a
graphical representation can often be more self-explanatory. Let’s see how.

1.5.3 Nontextual DSLs

Besides internal and external DSLs, there’s a growing trend in the industry toward
developing richer ways of modeling the domain. A DSL needs to be a representation
of the domain but the definition doesn’t mandate that this representation or lan-
guage needs to be a textual one. In fact, many claim that software code is too narrow a
medium to adequately express domain knowledge. Some of the reasons that are often
cited are:

■ Text allows only limited notational freedom to express a domain problem.
■ Many domain problems are better visualized by the domain user in the form of

rich artifacts like spreadsheets or graphical models.
■ In a text-based script, domain logic is often scattered within the maze of syntac-

tic structures that are accidentally too complex.
■ A domain expert is always more comfortable manipulating visual models than

source code.

In response to these reasons, one other type of DSL is fast becoming the next-
generation way to model and harvest domain knowledge. The domain user gets to see
and process a representation of the domain knowledge through an editor called

Figure 1.6
You need to develop your own
language-processing
infrastructure for an external
DSL. The infrastructure
includes lexical analyzers,
parsers, and code generators
commonly found in high-level
language implementations.
Note that the complexities of
each of them depend on how
detailed your language is.

20 CHAPTER 1 Learning to speak the language of the domain
the Projection Editor. The Projection Editor can project the appropriate view of the
domain to the user, which he can then manipulate without writing a single line of
code. At the back end, the Projection Editor can generate code that models the users’
intentions. Intentional’s DSL Workbench (http://www.intentsoft.com) and JetBrains’
Meta Programming System (MPS) (http://www.jetbrains.com/mps) are two examples
of rich DSL modeling tools. In chapter 9, you’ll see more such examples and the fea-
tures that they offer in the discussion of future trends of DSL-based development.

 Classifying DSLs as internal, external, and nontextual is only one broad way of
looking at the types of implementations that DSLs can have. For all practical purposes,
you can consider the nontextual DSLs as external DSLs only, because the underlying
infrastructure that you use to develop DSL APIs isn’t a host language.

 Now that you have a pretty good idea of what DSLs are and how you can use them
to improve communication between developers and domain users, what do you think
are some of the valid use cases for writing a DSL? Do you need to write a DSL for every
piece of code that you develop? Or are there specific circumstances that make a more
compelling case for DSL-based development?

1.6 When do you need a DSL?
Every application has business rules that need to be explicit, readable, and declara-
tive. A DSL is an ideal way to model these kinds of rules. It doesn’t take a lot of effort
to develop a DSL that expresses a time period as 2.weeks.ago instead of time() –
1209600. But the impact that it has on users can be huge.

 Should you use DSL-based development in your next project? Before you decide,
you need to weigh the pros and cons. As with any other technology, DSLs can have pit-
falls. As a developer, you’re the best person to judge whether you need a DSL for mod-
eling the current problem. For that, you need to be aware of some of the common
advantages and disadvantages that DSLs offer.

1.6.1 The advantages

DSL-based development gets you more return on your investment when the complex-
ity of the domain is high. As I mentioned before, you’re going to use small DSL
engines in almost every project that you implement. When you’re planning for a com-
plex modeling project, you need to make a conscious decision and weigh your options
before making the final call. Following are some points that will help you weigh in on
your decision toward DSL-based development.

DSLS ARE EXPRESSIVE
They tend to provide a small, focused surface area for the APIs and deal with abstrac-
tions that speak the precise semantics of the domain. Users love them.

DSLS ARE CONCISE

Because they’re concise, DSLs are easy to look at, see, think about, and show. Dan Roam
(see [2] in section 1.9) calls these the four steps to visual thinking. It’s the conciseness
of a DSL that reduces the semantic distance between the program and the problem.

21When do you need a DSL?
DSLS ARE DESIGNED AT A HIGHER LEVEL OF ABSTRACTION

DSLs don’t have to deal with lower-level language constructs, optimizing data struc-
tures, and other implementation techniques. Instead, DSLs embody domain knowl-
edge at a level where it can be conserved, validated, and reused more easily than an
implementation that’s based on a general-purpose programming language. This
makes DSLs suitable for many nonprogramming domain experts.

DSLS CAN GIVE HIGHER PAYOFF

DSL-based development tends to produce a higher payoff in the long run of your
development lifecycle.

DSL-BASED DEVELOPMENT IS SCALABLE

If the project team has an imbalance of expertise in a specific programming lan-
guage, expert programmers can focus initially on the implementation of the DSL.
The rest of the team can then use the DSL. The DSL, because it’s at a higher level of
abstraction, becomes easier to learn and can be used as the vehicle to scale up the
development team.

 As is the case with any other technology paradigm, DSL-based development has its
share of advantages when you use it in a development cycle. We’ll talk more about
DSL-based development in chapter 3. Next are some of the common pitfalls of DSLs
that might cause heartache for your development project.

1.6.2 The disadvantages

All the disadvantages of DSLs relate to implementation overheads that incur addi-
tional cost in the software development lifecycle.

LANGUAGE DESIGN IS HARD

DSL implementation is language design, and language design is a complex task that
doesn’t scale. Instead of starting anew with the complexities of the lexers and gram-
mars of your language, most DSLs are implemented as an embedding within a higher-
level language. Still, it’s complex enough and is definitely not an exercise to be
undertaken by nonexpert programmers. Later chapters cover language features and
their suitability for implementing embedded DSLs.

DSLS HAVE AN UPFRONT COST

DSL-based development has an upfront cost that you’ll incur in your project. Accept-
ing this cost makes sense only when the model is at least moderately complex. You’ll
eventually benefit when the cost factors level off during the later stages of the develop-
ment cycle.

USING DSLS CAN LEAD TO PERFORMANCE CONCERNS

DSLs sometimes can cause performance concerns for your application. After all, it’s
yet another layer of indirection. As a project manager, you need to consider factors
like scale of deployment and scope of reusability when you’re deciding whether to use
DSL-based development.

22 CHAPTER 1 Learning to speak the language of the domain
DSLS SOMETIMES LACK ADEQUATE TOOL SUPPORT

Any development methodology needs rich tool support to scale out to the community
of programmers. Tool support includes availability of IDE integrations, unit testing
support, language workbenches, and profiling support to name a few. If your DSL gen-
erates multiple target languages for execution, interoperability between all the lan-
guages can also be a potential concern.

YET-ANOTHER-LANGUAGE-TO-LEARN SYNDROME

Any external DSL has to be learned separately by the developers. With internal DSLs,
all you have to learn is the interface that it publishes on top of the existing host lan-
guage. But developers are often disturbed to find that not only do they have to learn
yet another new language, but it’s one that has limited applicability.

DSLS CAN LEAD TO LANGUAGE CACOPHONY

Typically, when you develop an application, you need to use multiple DSLs. When you
have multiple languages, there’s always the concern that when you combine them you
won’t get a unified model for the domain. DSL composition isn’t easy, because individ-
ual DSLs tend to evolve independently of each other. Unless you manage it carefully,
language multiplicity can lead to anarchy.

 As you saw in figure 1.3, a DSL is a linguistic abstraction that’s on top of an under-
lying implementation model. The better you abstract your domain model, the easier it
is to build a natural language on top of it. Let’s look at the qualities that the underly-
ing model needs to have in order to be a strong foundation for an expressive DSL.

1.7 DSLs and abstraction design
In earlier sections of this chapter, I’ve used the term abstraction to loosely mean any
artifact from the domain that exhibits a coherent set of behavior. An abstraction focuses
on the essential attributes of the subject, removing any unnecessary details from the user. But
what constitutes the essential parts depends on the perspective from which you view
the abstraction. In this section, you’ll look at how abstraction is related to designing a
DSL and what role it plays in making your DSL expressive.

 As you’ll see in chapters 5 and 6, a well-designed abstraction is the foundation on
which you build the linguistic layer of the DSL. But how do you make your abstractions
well-designed?

 From the criteria that make an abstraction optimal, I’ve identified four as the essen-
tial qualities that the design should support. Table 1.2 summarizes these qualities.

 Designing good abstractions is a separate topic. In this chapter, I won’t digress into
the details. Instead, I discuss abstraction design extensively in appendix A. There I dis-
cuss each of the qualities described in table 1.2 in much more detail and with lots of
real-world examples. Go through the appendix before you dive into the next chapters.
When you’re comfortable distinguishing well-designed abstractions from the poorly
designed ones, you’ll better appreciate how they contribute to more effective DSL
design techniques.

23Summary
1.8 Summary
You’ve reached the end of a long introduction to the rationale behind DSLs. When
you model a specific domain, your implementation needs to speak the vocabulary of
the domain. When you have the common vocabulary in place, the DSL brings the
domain syntax and semantics into your solution model.

 Be sure your DSL is expressive enough by using well-designed abstractions that use
the power of the host language. Designing abstractions is an iterative process, and so is
designing a good DSL. You can’t achieve a well-designed DSL in the first iteration. It
always evolves through a collaborative effort between the developer and the domain
expert. Involve the team of domain experts early in the development process. If they
can understand what your abstraction promises and verify the implementation of their
business rules, that’s proof that your model is both correct and sufficiently expressive.

 Laying the groundwork for an unfamiliar paradigm of development is always an
arduous process. Kudos to you for successfully undertaking that task. Now you’ll start
the journey into the real-world pragmatics of DSL design and implementation. In
chapter 2, the focus is more on actual DSLs that have been implemented using mod-
ern languages on the JVM. The adventure starts with Java, then continues into the
expressiveness of Groovy, Scala, and Ruby. You’ll notice how the expressiveness of our

Table 1.2 Qualities of a well-designed abstraction

Quality of abstraction Effect on design

Minimalism Publish only those behaviors that you promise to your clients. Publishing
more leads to exposing the implementation of your abstraction, which
can lead to difficulty later.

Distillation Keep your abstraction’s implementation free of all nonessential details.

Extensibility Design your abstractions so that they can grow in a piecemeal manner
without impacting existing clients.

Composability Your abstractions should be able to compose with other abstractions,
leading to higher-order abstractions.

Key takeaways & best practices
■ A DSL is a communication medium between developers and business practi-

tioners. Always involve your domain expert while you’re designing a DSL.
■ A DSL might not be suitable for every occasion. Weigh the pros and cons

before you decide to design and invest in one.
■ DSL design is always iterative. Give it the diligence and effort that it deserves.
■ Keep in mind that the syntax of the DSL needs to be expressive enough for

the end user. Don’t overengineer your DSL. Doing that only makes the syntax
cluttered and increases the complexity of the implementation.

24 CHAPTER 1 Learning to speak the language of the domain
models increases as you use some of today’s state-of-the-art programming languages.
Stay tuned!

1.9 References
1 Coplien, James O. 1998. Multiparadigm Design in C++. Addison-Wesley Professional.
2 Roam, Dan. 2009. The Back of the Napkin: Expanded Edition. Portfolio Hardcover.
3 Fowler, Martin. Introducing Domain-Specific Languages. 2009 DSL Developer’s

Conference (http://msdn.microsoft.com/en-us/data/dd727707.aspx).

The DSL in the wild
In the previous chapter, you saw how DSLs improve communication between the
development team and the domain experts. We discussed the overall architecture
of DSLs and the various execution models that they support. But what good are
those DSLs without a meaningful, real-world use case? Given a real-world problem,
how can you judge whether designing a DSL would be a better solution than using
the traditional model of software development? In this chapter, we dive into these
real-world pragmatics of DSL design.

 We’ll start with a motivating example of the ground-up design, implementation,
and refinement of a real-world DSL from our preferred domain of the financial
brokerage business. We’ll look at a couple of implementations, then proceed to
explain some of the general patterns that you’ll come across when you design DSL
implementations. Figure 2.1 shows a visual roadmap of how we’re going to explore
real-world DSLs in this chapter.

This chapter covers
■ Designing your first Java-based DSL
■ Using Groovy to make your DSL more

expressive
■ Patterns of DSL implementation
■ Choosing a DSL type
25

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 The DSL in the wild
In every section, we’ll discuss a real-world application of DSLs, either in the form of an
implementation use case or as a collection of patterns that you can use in your own
model. At the end of this chapter, you’ll know how to think in terms of modeling your
problem domain using DSL-based paradigms. I’ll show you a typical, API-based model
and a DSL-based model side-by-side and you’ll learn to appreciate how the latter
makes a more expressive presentation to your domain users.

2.1 Building your first Java DSL
An example is worth a thousand words. As I hinted in chapter 1, the examples we’ll be
working with are primarily from the financial securities domain, with specific refer-
ences and explanations to set up the context of the implementation. (Be sure to read
the sidebars for details about this domain.) Not only will the explanations help you
understand the specific domain, you can refer to them when we discuss examples of
DSL implementations that are related to these concepts. Because the examples use the
same domain as a basis, you’ll be able to improve and add to the DSL snippets as we
move along.

 In section 1.3, we saw Bob, the trader, working on snippets of the DSL that pro-
cesses client orders before placing them in the stock exchange for the trade transac-
tion. Let’s build on that scenario as you develop your first DSL.

 Suppose you’re in charge of implementing a DSL that processes orders using
domain vocabulary similar to what Bob was using. As you saw in chapter 1, one of the
primary forces that drives DSL development is the involvement of a domain expert.
With a sufficiently expressive DSL, he can comprehend the business rules and logic
that your development team implements. He can verify the logic before the code base
gets out of the development labs. You can even involve him in writing functional test

Figure 2.1 Roadmap for chapter 2

27Building your first Java DSL
suites as a user of your DSL. Not only do you get comprehensive test coverage using
the domain knowledge of an expert, your DSL also gets to pass a real-world usability
check. As the leader of the project, it’s extremely important that you orchestrate the
involvement of the Bobs of your team early on in the process.

 Let’s assume that the DSL snippet you implement builds new orders for a spe-
cific client request. The language, needless to say, speaks the vocabulary of the
domain and allows the user (Bob on our team) to manipulate all combinations of
order processing rules within the semantic constraints of valid business rules. Don’t
get hung up on the best syntax to use for this DSL right at the beginning. As I
mentioned in chapter 1, DSLs always need to evolve iteratively and are never done
right the first time. In the following sections, you’ll learn how the order-processing
DSL evolves gradually, how its expressivity increases depending on the implementa-
tion language you select, and how the example culminates in an expressive
enough language that makes Bob happy. The important thing is to start the process
with a limited scope and a moderate expectation. But, as you learned in chapter 1,
any exercise in DSL building starts with setting up the common vocabulary across the
stakeholders of the project.

2.1.1 Setting up the common vocabulary

Bob looked at the problem domain, identified the core requirements, and immedi-
ately came up with the necessary language constructs for the order-processing DSL.
They are shown in table 2.1.

 Now that the vocabulary is in place, we’ll start the initial implementation in the
dominant language of our programming community—Java. Java has the highest num-
ber of developers in the industry. Anything you can build with Java as the backbone

Financial brokerage system: processing client orders
As we discussed in chapter 1, the trading process involves buying and selling secu-
rities in the market place, guided by the rules of the stock exchange. These trans-
actions take place in response to orders placed by investors through registered
agents. These agents can be brokers, clearing banks, or financial advisers. A typ-
ical order from a client consists of information like the security to be transacted
(buy or sell), quantity, and the unit price details. All these elements specify any
constraint that the counterparty wants to impose on the price of execution. The
following steps are performed from when the order is placed until the execution
notice of trades is generated:

1 The investor places the order with the agent.
2 The agent records the order and forwards it to the stock exchange.
3 The order is executed and the notice of execution comes back to the agent.
4 The agent records the execution details and passes the notice to the investor.

28 CHAPTER 2 The DSL in the wild
has huge potential for seamless acceptance within the community. Let’s start the exer-
cise and explore the limits of expressiveness that Java offers as an implementation lan-
guage. Our goal is to make Bob feel comfortable as he steps in to write the functional
tests and validate the business rules.

2.1.2 Your first Java implementation

Java is an object-oriented (OO) language. As the first step in designing the DSL, you
need an object representation of the Order abstraction that encapsulates the various
attributes of a client order.

BUILDING THE ORDER ABSTRACTION

The following listing is the Order class in Java that Bob will use to process new orders.

public class Order {
 static class Builder {
 private String security;
 private int quantity;
 private int limitPrice;
 private boolean allOrNone;
 private int value;
 private String boughtOrSold;

 public Builder() {}
 public Builder buy(int quantity, String security) {
 this.boughtOrSold = "Bought";
 this.quantity = quantity;
 this.security = security;
 return this;
 }
 public Builder sell(int quantity, String security) {
 this.boughtOrSold = "Sold";

Table 2.1 Preliminary vocabulary for a DSL that processes orders

Domain concept Details

1 New order ■ Must specify an instrument name.
■ Quantity should be mandatory.
■ Whether to buy or sell needs to be specified.
■ An order can be specified as all-or-none, indicating that either the whole

order needs to be completed or that none of it is completed. No partial
orders should be fulfilled.

2 Order pricing ■ Unit price needs to be mentioned.
■ Examples of unit price are limit-price, limit-on-close-price, and

limit-on-open-price.

3 Order valuation ■ The full order needs to be valued based on a pricing scheme.
■ The pricing scheme can be predetermined or the user can specify an

ad-hoc scheme inline

Listing 2.1 Order abstraction for Java DSL

Builder design
patternB

Fluent interface
through method
chainingC

29Building your first Java DSL
 this.quantity = quantity;
 this.security = security;
 return this;
 }
 public Builder atLimitPrice(int p) {
 this.limitPrice = p;
 return this;
 }
 public Builder allOrNone() {
 this.allOrNone = true;
 return this;
 }
 public Builder valueAs(OrderValuer ov) {
 this.value = ov.valueAs(quantity, limitPrice);
 return this;
 }
 public Order build() {
 return new Order(this);
 }
 }

 private final String security;
 private final int quantity;
 private final int limitPrice;
 private final boolean allOrNone;
 private int value;
 private final String boughtOrSold;

 private Order(Builder b) {
 security = b.security;
 quantity = b.quantity;
 limitPrice = b.limitPrice;
 allOrNone = b.allOrNone;
 value = b.value;
 boughtOrSold = b. boughtOrSold;
 }

 // getters
}

The implementation of the class shown in this listing uses some of Java’s common idi-
oms and design patterns to make the published API more expressive. The builder
design pattern B lets the user of the API construct orders incrementally. The pattern
uses fluent interfaces C that provide an easy-to-read representation of the domain
problem. (I discuss fluent interfaces more in chapter 4.) By using the builder as the
mutable object, you ensure the immutability of the Order data members D for easier
concurrency. One of the effects of using a builder to construct an object is that the
core abstraction becomes immutable.

DEFINITION The Builder design pattern is commonly used to build objects
incrementally. It separates the process of constructing the object from its rep-
resentation, so that multiple representations can use the same process. For
more information, see [5] in section 2.6.

Immutable
propertiesD

30 CHAPTER 2 The DSL in the wild
That’s the implementation part of the Builder pattern. We’ll come back to some of
the issues in the code. First, let’s find out how the DSL shapes up in real world when
Bob uses it.

USING THE ORDER BUILDER

The following usage snippet has sufficient domain vocabulary density; almost all the
keywords that we noted in table 2.1 are in the published API language:

Order o =
 new Order.Builder()
 .buy(100, "IBM")
 .atLimitPrice(300)
 .allOrNone()
 .valueAs(new StandardOrderValuer())
 .build();

But even though we’ve used the right vocabulary, the DSL is also Java, so it has to abide
by the syntax restrictions and verbosity that Java requires as a programming language.
The call to valueAs B takes as input an implementation artifact that you have to spec-
ify nonlocally to the current context. Java doesn’t support higher-order functions out
of the box, so we can’t specify a pretty inline valuation strategy. For the Java imple-
mentation, the user of the DSL can define only concrete implementations for each of
the order valuation strategies. In the DSL implementation, we define the contract for
order valuation as an interface:

public interface OrderValuer {
 int valueAs(int qty, int unitPrice);
}

The DSL user defines separate concrete implementations for specific valuation
strategies:

public class StandardOrderValuer implements OrderValuer {
 public int valueAs(int qty, int unitPrice) {
 return unitPrice * qty;
 }
}

Simulating higher-order functions in Java
Though Java doesn’t support higher-order functions out of the box, some libraries
simulate them by using objects. See lambdaJ (http://code.google.com/p/lamb-
daj), Google Collections (http://code.google.com/p/guava-libraries), and Func-
tional Java (http://functionaljava.org) for samples. If you’re stuck with Java, these
libraries provide options for modeling higher-order functions. The drawback is that
these options are quite verbose and definitely not as elegant as those offered by
languages like Groovy, Ruby, or Scala.

Order valuation
algorithm

B

31Building your first Java DSL
Now Bob can’t define his valuation policies inline, which was one of his original
requirements. He thinks that’s a major deterrent, given that we’ve claimed that DSLs
can help nonprogramming domain experts write meaningful functional tests. He has
other observations about the order-processing DSL:

■ Verbosity in syntax—The language contains lots of unnecessary parentheses and
other extra flourishes that interrupt the flow and get in the way of a nonpro-
grammer domain expert.

■ Extra nondomain complexity in syntax—Bob’s referring to the Builder class that
had to be explicitly used by the DSL user. The DSL could have been imple-
mented without using the complexities of the Builder class. We could have
used chained setter methods of the Order class itself to build fluent interfaces.
But the Builder class encourages immutable abstraction design without muta-
ble properties. Can we get rid of this additional syntax from our language?
Using more abstraction power, we can hide the explicit builder from the sur-
face syntax and make it even more succinct:

new Order.toBuy(100, "IBM")
 .atLimitPrice(300)
 .allOrNone()
 .valueAs(new StandardOrderValuer())
 .build();

This solution only pushes the complexity from the syntax to the implementation. The
bottom line is that the verbosity remains at the implementation level, if not at the
usage level of the DSL.

ANALYZING THE JAVA DSL
We as Java programmers can fully appreciate the concerns that an explicit Builder pat-
tern addresses and that make APIs fluent. The Java-based DSL that we designed looks
pretty good when Java programmers are using the DSL. But there’s no denying the
fact that we can overcome the verbosity of Java by using an implementation language
that’s more expressive to its users, yet results in a more concise code base. Let’s ana-
lyze the Java code in more detail and look at the Java features that lead to the syntactic
complexities that Bob complained about. Table 2.2 lists the Java features that map to
Bob’s reported issues.

 In the following sections, we’ll explore options that can honor Bob’s suggestion of
making the DSL friendlier to the domain experts.

Table 2.2 Mapping issues reported against Java’s limitations

Issue reported Responsible Java feature

Verbose (unnecessary parenthe-
ses and syntax)

■ Part of basic Java syntax.
■ Parentheses are mandatory for functions. Dots are manda-

tory for method dispatch on objects and classes.

32 CHAPTER 2 The DSL in the wild
2.2 Making friendlier DSLs
The expressiveness of a DSL is judged by your user. In this case, Bob has identified
areas in your Java-based solution that need to be more closely aligned to the problem
domain. Let’s try to make the DSL friendlier for Bob to use. One of the strategies
you’ll look at introduces an additional layer in the form of XML that externalizes the
domain language in a more human-readable form. The second strategy discusses
implementing the DSL in an entirely new and more expressive programming lan-
guage, Groovy.

2.2.1 Externalizing the domain with XML

XMLs are frequently used for business markups, so why not use XML for designing the
domain language in our application? XML has rich tooling support, is recognized by
all browsers and IDEs, and has a slew of frameworks and libraries for parsing, process-
ing, and querying purposes.

 True, XML is externalizable in the sense that a domain expert can write XML struc-
tures that are separate from the programming machinery. But XML is completely
declarative, inordinately verbose, and doesn’t easily support the expression of control
structures. The following snippet shows sample XML for the order-processing DSL
shown in listing 2.1. I’ve intentionally elided parts of it to avoid showing the ugliness
that arbitrary expressions can bring to an XML structure.

<orders>
 <order>
 <buySell>buy</buySell>
 <quantity>100</quantity>
 <instrument>IBM</instrument>
 <limitPrice>300</limitPrice>
 <allOrNone>true</allOrNone>

Nondomain complexity ■ Java is not a malleable language. Many common idioms need
to be expressed through additional layers of indirection, also
known as design patterns.

■ Additional class structures need to be constructed as part
of the abstraction design. Some bubble up as surface syn-
tax in the final published API. The Builder class is an
example of such unnecessary syntactic barriers that came
up in our earlier DSL.

■ Java is not an interpreted language. Executing any snippet of
Java code requires you to define a class with a public
static void main method. Ultimately these are perceived
as added syntactic noise by the DSL user.

Inability to express inline valuation
strategy function

■ Java doesn’t offer higher-order functions as first-class fea-
tures of the language.

Table 2.2 Mapping issues reported against Java’s limitations (continued)

Issue reported Responsible Java feature

33Making friendlier DSLs
 <valueAs>...</valueAs>
 </order>
 ...
</orders>

The idea behind XML is not to do programming, but to express document struc-
tures in a completely portable way. DSLs often contain control structures that can’t
be expressed elegantly in XML. Many Java EE and XML (Java Platform, Enterprise
Edition) frameworks use XML to provide declarative configuration parameters. But if
you try to write business logic and domain rules using XML, you’ll soon hit the same
bottleneck of expressivity that our Java implementation faced before. Try a more
direct approach, without going beyond the boundaries of your natural program-
ming language. Remember, the language is the most powerful programming tool
that you have.

2.2.2 Groovy: a more expressive implementation language

By now you must have realized that you’re trying to design a DSL that fits within the
confines of the underlying implementation language. The DSL that clients will be using
is the same language that the DSL is implemented in. In your first attempt, all the prob-
lems that Bob mentioned are the innate limitations of the Java programming language,
which you couldn’t work around in your implementation of the DSL. The technique
used is called embedding the DSL within the host language, which you’ve already seen in
section 1.7 when we discussed the taxonomy of internal and external DSLs.

 Now let’s now try to embed our DSL in a language that’s more expressive than Java.
Groovy is a language that runs on the JVM, is more expressive than Java, is dynamically
typed, and supports higher-order functions.

A GROOVY SOLUTION

As you progress through this book, you’ll look at the features of Groovy that can help
you design better DSLs. You are going to implement the order-processing DSL using
Groovy, but first, here’s a sample of that DSL in Groovy that has the same functions as
the earlier Java example:

newOrder.to.buy(100.shares.of('IBM')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}

This snippet creates a new client order for buying 100 shares of IBM at a limit price of
300 dollars in an all-or-none mode. The order valuation is computed using the speci-
fied formula. The end result is the same as the earlier Java example; the difference is
the expressivity that the higher-order abstractions of Groovy bring to the implemen-
tation. DSL constructs like 100.shares.of('IBM') are possible only because Groovy
offers fabulous metaprogramming capabilities. This makes the language more natu-
ral to the domain user. The following listing is the complete implementation of the
DSL in Groovy.

34 CHAPTER 2 The DSL in the wild
class Order {
 def security
 def quantity
 def limitPrice
 def allOrNone
 def value
 def bs

 def buy(su, closure) {
 bs = 'Bought'
 buy_sell(su, closure)
 }

 def sell(su, closure) {
 bs = 'Sold'
 buy_sell(su, closure)
 }

 private buy_sell(su, closure) {
 security = su[0]
 quantity = su[1]
 closure()
 }

 def getTo() {
 this
 }
}

def methodMissing(String name, args) {
 order.metaClass.getMetaProperty(name).setProperty(order, args)
}

def getNewOrder() {
 order = new Order()
}

def valueAs(closure) {
 order.value = closure(order.quantity, order.limitPrice[0])
}

Integer.metaClass.getShares = { -> delegate }
Integer.metaClass.of = { instrument -> [instrument, delegate] }

In the following sections, I’m going to be a cheerleader for DSL-based implementa-
tions. I’m going to only touch on the features of Groovy that stand out with respect to
this specific implementation. In chapters 4 and 5 will cover in detail all the features
that make Groovy a great language for DSL implementation. For now, let’s look at spe-
cific Groovyisms that make this expressivity possible.

METHOD SYNTHESIS USING METHODMISSING

You can invoke nonexistent methods in Groovy; methodMissing offers the hook to
intercept all such invocations B. In the order-processing DSL, every invocation
of methods like limitPrice and allOrNone is intercepted by methodMissing and

Listing 2.2 Order processing DSL in Groovy

Hook to intercept
nonexistent
method calls

B

Closure for inline
valuation strategy
specification

C

Metaprogramming
to inject new
methods

D

35Making friendlier DSLs
converted to calls of property setters on the Order object. The methodMissing hook
provides conciseness in the code base and flexibility when you’re adding method
calls without explicit definitions.

GROOVY METAPROGRAMMING TECHNIQUES FOR DYNAMIC METHOD INJECTION

Using metaprogramming techniques, we’ve injected methods into built-in classes like
Integer that add to the expressivity of the language. The method getShares adds a
property named shares to the class Integer that makes a great combinator for form-
ing the natural flow of the DSL D.

FIRST-CLASS SUPPORT FOR HIGHER-ORDER FUNCTIONS AND CLOSURES

This support is possibly the most important feature that makes languages like
Groovy shine over Java in offering expressive DSLs. The difference this makes is
huge; just look at the valueAs method C invocations in the Groovy and Java ver-
sions of the language.

 Now you’ve got your DSL implementation in Groovy and a DSL usage snippet. But
you still need the mechanism to integrate the two and set up an execution environ-
ment that can execute any instance of the DSL supplied to it. Let’s see how to do that.

2.2.3 Executing the Groovy DSL

Groovy has scripting abilities. Any Groovy code can be executed through the inter-
preter and you can use this Groovy power to set up an interactive execution environ-
ment for your order-processing DSL. Enter the DSL implementation (listing 2.2) in a
file called ClientOrder.groovy. Enter the usage snippet in another text file named
order.dsl. Make sure that both are in classpath, then submit the following script to
the Groovy interpreter:

def dslDef = new File('ClientOrder.groovy').text
def dsl = new File('order.dsl').text
def script = """
 ${dslDef}
 ${dsl}
"""
new GroovyShell().evaluate(script)

Integrating a DSL into your core application
The example in this section shows only one way of integrating DSL implementation
along with the DSL invocation. We’ll talk about more integration methods in chap-
ter 3 when we discuss integrating DSLs into your core application.

The example uses string concatenation to build the final script that gets executed.
One disadvantage of this approach is that if there are any errors in execution, the
line numbers in the stack trace won’t match the line numbers in the source file
order.dsl. As I’ve mentioned, building a DSL and integrating it with your application
is an iterative process. We’ll improve on this strategy in chapter 3 when we discuss
yet another method of integrating a Groovy DSL into your application.

36 CHAPTER 2 The DSL in the wild
Congratulations! You’ve successfully designed and implemented a DSL that’ll make
any domain person happy. The Groovy-based order-processing DSL that you’ve imple-
mented fulfils expressivity criteria that puts it way ahead of the earlier Java version.
More importantly, you know that DSL design is an iterative process. Had we not devel-
oped the Java version, you wouldn’t have realized the importance of using a more
expressive language as the base of the implementation.

In part 2 of this book (chapters 4-8), we’ll look at other DSL imple-
mentations, not only in Groovy, but in other JVM languages like Scala,

Clojure, and JRuby. This comparison will help you realize how DSL imple-
mentation techniques can vary depending on the features that the underly-
ing host language offers.

Now that you’ve seen a complete implementation of a DSL that solves a real-life use
case, you’ve got an inside-out view of how an implementation evolves through the
stages of successive refinement. The Groovy implementation turned out to be expres-
sive to the users. But what are some of the underlying implementation techniques that
contributed to its expressiveness?

 Depending on the language you choose for implementing an internal DSL, you get
some of these techniques for free. Building a well-designed DSL is the art of mixing
the idioms of the host language and these techniques in a way that transforms that
host language into the shape of your DSL. You used some of the techniques that
Groovy offers when you designed your implementation. But not all DSLs are alike.
Like every other language, there are definite patterns in DSL design that depend on
the platform of your implementation, the core skill set of your team members, the
overall architecture of your application, and other constraints related to your develop-
ment ecosystem.

 Up next, we’ll take a look at some of the implementation patterns of DSLs. Patterns
are like ready-made packages of reusable design knowledge that you can use in your
own implementations. They teach you how to make friendlier DSLs using the power of
the host language. In the next section, you’ll learn about the variations in patterns
that internal and external DSLs exhibit under the constraints of a particular imple-
mentation. You can’t implement all these patterns in every language, but you need to
understand all the patterns so that you can make the optimal choice within your
implementation platform.

2.3 DSL implementation patterns
Classifying DSLs as internal or external is too broad a definition, considering the mul-
titude of architectural patterns that these languages implement in practice. All
internal DSLs share the common trait of being built on top of a host language. The
common trait of all external DSLs is that they build their language infrastructure
from scratch. It’s not only the commonality of their origin that characterizes the
entire taxonomy of DSLs. As we saw in chapter 1, a DSL is an embodiment of good

37DSL implementation patterns
abstraction design principles. To design a good abstraction, you need to consider
not only the commonality of forms between the participating components but also
the variabilities that each exhibits.

 In the next two sections, we’ll explore some of these patterns of variability. When
you have an idea of the patterns that exist even within the same family of DSLs, you’ll
be able to map your own DSL requirements to the concrete implementation architec-
ture more easily. The more you identify such recurring patterns, the easier it’ll be for
you to reuse your abstractions. As you learned from our discussions in appendix A
about designing abstractions, when you can reuse your abstraction, the language that
you design becomes more extensible. In case you haven’t read appendix A yet, do
that now. The information it contains will help you during your journey through the
rest of this book.

2.3.1 Internal DSL patterns: commonality and variability

Internal DSLs are everywhere. With languages like Ruby and Groovy offering flexible
and concise syntax and a powerful metaprogramming model, you can find DSL devel-
opment that piggybacks these capabilities in almost every piece of software. The com-
mon pattern across all internal DSLs is that they are always implemented on top of an
existing host language. I tend to use the term embedded more when I talk about internal
DSLs, because it makes one aspect of their architecture explicit. You can use the infra-
structure of an existing language in a number of ways, each of which results in DSL
implementations that vary in form, structure, flexibility, and expressivity.

 Internal DSLs manifest primarily in two forms:

■ Generative—Domain-specific constructs are transformed to generate code
through compile-time macros, preprocessors, or some form of runtime meta-
object protocol (MOP).

■ Embedded—Domain-specific types are embedded within the type system of the
host language.

Even this micro-classification is not entirely without its share of ambiguity. Consider
Ruby and its accompanying web framework Rails, written as an internal DSL in Ruby.
From that point of view, Rails is embedded within Ruby. But Rails also uses Ruby’s
metaprogramming power to generate lots of code during runtime. From this point of
view, it’s generative as well.

 Let’s consider some of the statically typed languages that purely embed DSLs
within the type system of the host language. Haskell and Scala are the dominant play-
ers in this category; the DSL that you design inherits all the power of the host type sys-
tem. Finally, there are language extensions to Haskell (Template Haskell) that add
generative capabilities to the language through macros.

 We have numerous variations even within the classification of internal DSLs,
including instances when a single language offers multiple paradigms of DSL develop-
ment. Figure 2.2 shows a diagrammatic view of the taxonomy and some languages that
implement these variations.

38 CHAPTER 2 The DSL in the wild
In this section, we’ll look at these common variations found among some of the inter-
nal DSL implementation techniques, using figure 2.2 as a reference.

Chapters 4 and 5 are supplements to the material in this section. In
those chapters, we’ll discuss DSL patterns and implementations in much

more detail.

SMART API
Smart API is possibly the simplest and most frequently used implementation of inter-
nal DSLs you’ll encounter. This technique is based on chaining methods in sequence
similar to the Builder pattern implementation (see [1] in section 2.6). Martin Fowler
calls the Smart API a fluent interface (http://www.martinfowler.com/bliki/FluentInter-
face.html). For this pattern, you create APIs that get wired up in the natural sequence
of the domain action that you’re trying to model. This process makes it fluent, and the
domain-based method names make it readable and meaningful to the DSL user. The
following code snippet is from the Guice API (http://code.google.com/p/google-
guice/), which is the dependency injection (DI) framework from Google. If you’re the
user trying to wire up a Java interface with an implementation as a declarative module
of your application, the following use of the API seems to flow naturally and expresses
the intent of your use case:

binder.bind(Service.class).to(ServiceImpl.class).in(Scopes.SINGLETON)

Figure 2.3 illustrates how the APIs chain forward through repeated invocations on the
returned object.

Figure 2.2 An informal micro-classification of patterns used in implementing internal DSLs

39DSL implementation patterns
With method chaining, you use the infrastructure of the host language and build
Smart APIs that speak the vocabulary of your domain. The drawback of this tech-
nique is that it can lead to the proliferation of many small methods that might not
make much sense on their own. Also, not all use cases can be implemented using
fluent interfaces. Typically, using the Builder pattern to incrementally construct and
configure objects is most effective when you use method chaining to model the pro-
cess; the Java implementation of the order-processing DSL in section 2.1 is an exam-
ple. In languages like Groovy or Ruby that offer named arguments, the Builder
pattern and fluent interfaces become somewhat redundant. (Named arguments
with defaults are also available in Scala 2.8.) For example, the previous Java snippet
turns into a more concise yet expressive Groovy code using a mix of normal and
named parameters:

binder.bind Service, to: ServiceImpl, in: Scopes.SINGLETON

Smart API is a common pattern used in internal DSLs. The exact implementation of it
depends on what language you’re using. The main takeaway from this discussion is:
Always choose the most idiomatic implementation technique when you’re using DSL
patterns. I’ll come back to this topic with more examples and implementation varia-
tions when I talk about fluent interfaces in the context of internal DSL implementa-
tion in chapter 4. For now, let’s move on to another pattern.

SYNTAX TREE MANIPULATION

Syntax tree manipulation is yet another option that’s used for implementing internal
DSLs. The design follows the interpreter pattern (see [1] in section 2.6) and uses the
infrastructure of the host language to create and manipulate the abstract syntax tree
(AST) of the language. After you’ve generated the AST, it’s your responsibility to
traverse the AST and do the manipulations that will generate the necessary code for
the domain logic. Groovy and Ruby have developed this infrastructure through library
support that can generate code by manipulating the AST.

 Come to think of it, this is what Lisp offers you out of the box with its lan-
guage infrastructure. In Lisp, every program is a list structure, which is the AST

Figure 2.3 Smart API using method chaining. Note how the method calls progress
forward and return only at the end to the client.

40 CHAPTER 2 The DSL in the wild
that the programmer has access to. Manipulating the AST to generate code is the
basis of the Lisp macros. You can extend the core language syntax by manipulat-
ing the AST.

TYPED EMBEDDING

DSL patterns based on metaprogramming rely on code generation techniques to keep
the interface of the DSL precisely at the level of abstraction that the domain demands.
But what if your host language doesn’t support any form of metaprogramming? When
you’re designing a DSL, it’s extremely important to be minimal in what you offer to
your users as the syntax of the language. The more support the host language infra-
structure provides for abstraction, the easier it is for you to achieve this minimalism.

 Statically typed languages offer types as one of the means to abstract domain seman-
tics and make the surface syntax of your DSLs concise. Instead of generating code to
express the domain behavior you want, you can define domain-specific types and
implement them in terms of the types and operations offered by your host language.
These types will form the language interface of your DSL that the user will be working
with; he won’t care about their concrete implementations. Typed models come with a
guarantee of some level of implicit consistency in your programming model. Figure 2.4
is a snapshot of what types can offer to your DSL.

 The biggest advantage of this technique is that because your DSL’s type system is
embedded in the type system of the host language, your type system is automatically
type-checked by the language compiler. Your DSL users will be able to take full advan-
tage of the IDE integration capabilities of the host language like smart assist, code
completion, and refactoring.

 Consider the following example in Scala that models the abstraction of a Trade. In
this example, Trade, Account, and Instrument are domain-specific types B that have
business rules encapsulated within them C. With Ruby or Groovy we generated addi-
tional code to implement domain behavior; in Scala we implement similar semantics
within types and leave it to the compiler to check for consistency.

Figure 2.4 An embedded typed DSL comes with lots of implicit guarantees
of consistency. Use a type to model your DSL abstraction. The constraints
that you define within your type are automatically checked by the compiler,
even before the program runs.

41DSL implementation patterns
trait Trade {
 type Instrument
 type Account

 def account: Account
 def instrument: Instrument

 def valueOf(a: Account, i: Instrument): BigDecimal
 def principalOf: BigDecimal
 def valueDate: Date
 //..
}

Languages like Haskell and Scala that offer advanced static typing let you design purely
typed embedded DSLs without resorting to code generation techniques, preproces-
sors, or macros. As a DSL user, you can compose typed abstractions using combinators
that are implemented in the language itself. The type systems that these languages
offer provide advanced capabilities like type inferencing and support of higher-order
abstractions that make your language concise yet sufficiently expressive. Paul Hudak
demonstrated this with Haskell in 1998 (see [2] in section 2.6), when he used the tech-
niques of monadic interpreters, partial evaluation, and staged programming to imple-
ment purely embedded DSLs that can be evolved incrementally over time. Christian
Hofer, et al discuss similar implementations with Scala in [3] in section 2.6. They also
discuss how you can polymorphically embed multiple implementations within a single
DSL interface using the techniques of Scala traits, virtual types, higher-order generics,
and family polymorphism. In chapter 6, I’ll use sample implementations to explain
how static typing in Scala helps you to design pure, embedded domain-specific lan-
guages (EDSLs).

DEFINITION Monads figure in a model of computation popularized by Haskell.
Using monads, you can compose abstractions, following predefined rules. I
discuss monadic structures in chapter 6 when I talk about DSL implementa-
tions in Scala. For more information, go to http://en.wikipedia.org/wiki/
Monad_(functional_programming).

Now we’re going to talk about several metaprogramming patterns that we use fre-
quently in DSL implementations. Languages that support them can’t thrive without
them. In the world of DSLs, metaprogramming offers one of the richest techniques to
design custom syntax for your DSL.

REFLECTIVE METAPROGRAMMING

You can apply patterns at a local level of implementation; Smart API was an example of
that. But when you design a DSL, you might need to adopt patterns as general imple-
mentation strategies. They shape the way you structure your whole implementation
and they’re one of the key features of your host language. In our discussion of imple-
mentation patterns for internal DSLs (refer to our roadmap in figure 2.1), metapro-
gramming is one such concept that manifests itself in various forms when you design a
DSL. Reflective metaprogramming is the pattern that we’ll discuss in this section.

Abstract
domain typesB

Abstract domain
operations

C

42 CHAPTER 2 The DSL in the wild
 Suppose you’re designing a DSL where you need to read stuff from configuration
files and invoke methods dynamically, depending on the contents of the file. Here’s a
real-life example in Ruby that reads from a YAML file, composes the method name,
and dynamically invokes the method using arguments read from the file:

YAML.load_file(x_path).each do |k, v|
 foo.send("#{k}", v) unless foo.send(k)
end

Because the method name isn’t known until runtime, we’ll use the metaprogramming
abilities of Ruby to do a dynamic dispatch on the object using Object#send(), instead
of the usual dot notation of invoking methods statically. This coding technique is
reflective metaprogramming; Ruby discovers methods at runtime and does the invoca-
tion. DSL implementations that deal with dynamic objects use this technique to delay
method invocations until the last moment when it gets the complete information,
maybe from configuration files.

RUNTIME METAPROGRAMMING

Unlike reflective metaprogramming, which discovers existing methods at runtime, you
can use other forms of metaprogramming that can generate code dynamically during
runtime. Runtime metaprogramming is another way by which you can achieve small
surface syntax for your DSL. It makes your DSL look lightweight on the surface; the
heavy lifting of code generation is transferred to the backend infrastructure of your
host language.

 Some languages expose their runtime infrastructure components as meta-objects
that programmers can manipulate. In Ruby or Groovy, you can use such components
in your programs to dynamically change the behavior of meta-objects during runtime
and inject new behavior to implement your domain constructs. Figure 2.5 shows a
brief overview of the runtime behavior of metaprogramming in Ruby and Groovy.

Figure 2.5 Languages that support runtime metaprogramming let users generate code
on the fly. This code can add behaviors dynamically to existing classes and objects.

43DSL implementation patterns
In the order-processing DSL that we developed in section 2.1, we used this same tech-
nique in Groovy to generate additional methods like shares and of in built-in classes
like Integer. These methods don’t have any meaningful role to play in the semantics
of the action that the DSL performs. Rather, they serve as useful glue to make the lan-
guage more natural to the domain we’re modeling. Figure 2.6 annotates the return
types of each method that’s called in sequence for a section of the Groovy-based DSL.
You can see how the power of metaprogramming generates code during runtime to
string together the new methods and adds to the expressivity of the language.

 Rails and Grails are two of the most powerful web development frameworks
that use the power of runtime metaprogramming. In Rails, when you write the
following snippet, the Ruby metaprogramming engine generates all the relevant
code for the relational model and validation logic, based on the definition of the
Employees table.

class Employee < ActiveRecord::Base {
 has_many :dependants
 belongs_to :organization
 validates_presence_of :last_name, :title, :date_of_birth

 # ..
}

Runtime metaprogramming makes your DSL dynamic by generating code during
runtime. But there’s another form of code generation that takes place during compi-
lation and doesn’t add any overhead during runtime. Our next DSL pattern is compile-
time metaprogramming, which is mostly found in the Lisp family of languages.

COMPILE-TIME METAPROGRAMMING

With compile-time metaprogramming, you can add custom syntax to your DSL, much
like you can with the pattern you just learned about (runtime metaprogramming).
Although these patterns are similar, there are some crucial differences between the
two, as table 2.3 makes clear.

 In typical implementations of compile-time metaprogramming, the user interacts
with the compiler and generates program fragments during the compilation phase.

Macros are the most common way to implement compile-time metapro-
gramming. In section 4.5 we’ll delve into the details of how compile-

time metaprogramming works, with specific examples from Clojure.

Figure 2.6
Enriching the domain syntax through
runtime metaprogramming

44 CHAPTER 2 The DSL in the wild
Preprocessor-based macros in C and templates in C++ are some examples of language
infrastructure that can generate code during the compilation phase. But in the long
history of programming languages, Lisp is the granddaddy of compile-time metapro-
gramming. C macros operate at the lexical level through textual substitution. Lisp
macros work with ASTs and offer significant power in designing abstractions at the syn-
tax level. Figure 2.7 shows a schematic diagram of how the custom syntax that you
define in your DSL gets transformed through the macroexpansion phase into valid
program forms, which are then forwarded to the compiler.

 That was the last of the internal DSL implementation patterns that we’ll discuss in
this chapter. We’ve discussed various flavors of metaprogramming that you’ll find
mostly in dynamic languages like Ruby, Groovy, and Clojure. We also talked about
static typing and the benefits that it brings when you’re designing type-safe DSL
scripts. In chapters 4, 5, and 6, we’ll get back to all these patterns and discuss each of
them, with specific examples in each of the languages.

 We started the chapter with the promise that we’d talk about real-world DSL
design. We discussed DSL implementations in Java and Groovy, and we just now

Table 2.3 Comparison of compile-time and runtime metaprogramming

Compile-time metaprogramming Runtime metaprogramming

You define syntax that gets processed before
runtime, during the compilation phase.

You define syntax that gets processed through the
MOP of the language during runtime.

No runtime overhead because the language
runtime has to deal only with valid forms.

Some runtime overhead because meta-objects are
processed and code is generated during runtime.

Figure 2.7 You use macros to do compile-time metaprogramming. Your DSL script
has some valid language forms and some custom syntax that you’ve defined. The
custom syntax is in the form of macros, which get expanded during the
macroexpansion phase into valid language forms. These forms are then forwarded to
the compiler.

45DSL implementation patterns
finished looking into the patterns that come up in internal DSL implementation. Each
pattern is a snippet of experience that you, as a practitioner, should feel free to reuse.
All of them have been used successfully in building real-world DSL implementations.

 Now we’ll move on to the next obvious sequel of this discussion. What do you do
when your host language doesn’t support the syntax that you’re looking for in your
DSL? You need to get out of the confines of your host language and search for alterna-
tives that you’ll need to build from scratch. You need to use external DSLs. In the next
section, we’ll look at some of the implementation patterns that external DSLs offer.

2.3.2 External DSL patterns: commonality and variability

External DSL design follows the same lifecycle and principles of general-purpose lan-
guage design. I know this statement is inherently repulsive and might drive you away
from thinking about designing external DSLs in your next project. Although the
statement is true in theory, it’s not all that grim when you consider that your DSL
isn’t necessarily as complex in syntax and semantics as a general-purpose program-
ming language can be. In reality, you can process some external DSLs by manipulating
strings using regular expressions. But the only common trait of all external DSLs is
that they aren’t implemented using the infrastructure of a host language.

 External DSL processing consists of the following two broad phases, as figure 2.8
explains:

Parse—where you tokenize the text and use a parser to recognize valid inputs

Process—where you do the business processing on valid inputs that were recognized by
the parser in the first phase

Figure 2.8 The processing stages of an external DSL. Note that unlike internal
DSLs, the parser is now part of what you need to build. In internal DSLs, you use
the parser of the host language.

B

C

46 CHAPTER 2 The DSL in the wild
If you’re designing a simple DSL in which the parser itself processes the inputs inline,
the two phases might be combined. The more common and realistic approach is one
in which the parser generates an intermediate representation of the input text. In var-
ious scenarios and for varying complexities of the DSL, this intermediate representa-
tion can be an AST or a more sophisticated metamodel of the language you’re
designing. The parser can also vary in complexity, ranging from simple string process-
ing to detailed syntax-directed translation (a parsing technique discussed more in chap-
ter 8) using parser generators like YACC and ANTLR. The processing phase works on
the intermediate representation and either generates the target output directly or can
itself transform into an internal DSL that gets processed using the infrastructure of the
host language.

 In the following sections, we’ll briefly discuss each of the patterns that you’re likely
to encounter in external DSL implementations. In chapter 7, we’ll have a more detailed
discussion about the implementation aspects of each of them. Figure 2.9 lists some of
the common patterns found in real-world external DSL implementations.

 Each pattern shown in figure 2.9 provides a way to describe the syntax of your DSL
using a form that’s external to the host language of implementation. This means that
the DSL script that you’ll write won’t pass as valid syntax in the implementation lan-
guage. For each of these patterns, you’ll see how you can transform the custom DSL
syntax into an artifact that can be consumed by your host language.

CONTEXT-DRIVEN STRING MANIPULATION

Suppose you need to process business rules, but instead of traditional APIs you want to
provide a DSL interface to your users. Consider the following example:

commission of 5% on principal amount for trade
 values greater than $1,000,000

Figure 2.9
An informal micro-classification of common
patterns and techniques of implementing
external DSLs

47DSL implementation patterns
This is a string that doesn’t make sense in any programming language. With appropri-
ate pre-processing and scrubbing, you can coerce it into valid Ruby or Groovy code.
The parser will be a fairly simple one that tokenizes the string and does simple trans-
formations through regular expression manipulations. The resulting form will be
Ruby or Groovy code that can be executed right away as an implementation of the
business rule.

TRANSFORMING XML TO A CONSUMABLE RESOURCE

Many of you have probably worked with
the Spring DI framework. (If you’re unfa-
miliar with Spring, go to http://www.
springframework.org.) One of the ways
you can configure the DI container is
through an XML-based specification file.
You need to put all your dependencies of
abstractions and implementations into this
file. During runtime, the Spring container
bootstraps the specification file and wires
up all dependencies into a BeanFactory or
ApplicationContext, which remains alive
during the lifecycle of the application and
serves up all the necessary context infor-
mation. The XML specification that you
write is an external DSL that gets parsed
and persisted as a resource to be con-
sumed by the application.

 Figure 2.10 shows a schematic overview
of how Spring uses XML as the external
DSL to bootstrap its ApplicationContext abstraction.

 Another similar example is the Hibernate mapping file that maps the database
schema with your entity description files. (For more information about Hibernate, go
to http://hibernate.org.) Both examples follow the parse and process stages of execu-
tion, albeit with different lifecycles and persistence strategies. They exhibit the com-
monality of external DSLs, but differ from the pattern we discussed earlier (context-
driven string manipulation) in the form and complexity of the parser and the lifetime
of the intermediate representation.

DSL WORKBENCH

The core concepts of metaprogramming that we discussed in the context of internal
DSLs have been extended to another level by some of the language workbenches and
metaprogramming systems that are currently available. When you write code in text
form, the compiler needs to parse the code to generate the AST. What if the system
already maintains the code that you write in the form of an AST? If a system could do

Figure 2.10 XML is being used as the
external DSL to abstract Spring configuration
specification. The container reads and
processes XML during startup and produces
the ApplicationContext that your
application uses.

48 CHAPTER 2 The DSL in the wild
that, the result would be easier transformation, manipulation, and subsequent code
generation from the intermediate representation.

 Eclipse Xtext (http://www.eclipse.org/Xtext) is a great example of a system that
offers a complete solution for end-to-end development of external DSLs. Instead of
storing your DSL in plain text form, it stores a higher-order representation of your DSL
grammar in the form of metamodels. These metamodels can then be integrated seam-
lessly with a number of other frameworks like code generators, rich editors, and so on.
Tools like Xtext are called DSL workbenches because they offer a complete environ-
ment for developing, managing, and maintaining their external DSLs. We’ll discuss
designing DSLs based on Xtext with a detailed case study in chapter 7.

 JetBrains’ Meta Programming System (http://www.jetbrains.com/mps/index.
html) supports nontextual representations of program code that eliminate the need
for code parsing. The code is always available as the AST, with all its annotations and
references, and allows you to define generators that generate code in numerous pro-
gramming languages. It’s as if you’re designing your external DSL in a metalanguage
offered by the metaprogramming system of the workbench. You can define business
rules, types, and constraints like you would do through your programming language.
The difference is in the external presentation, which is much friendlier, might be
graphical, and is easier for you to manipulate.

 Looking back at figure 2.9, you’ve just learned about three of the commonly used
techniques for external DSL implementation. We’ll discuss two others that might be the
two most prominent techniques that you’ll use in your real-world applications. We’re
almost to the end of our third milestone of the chapter. By now, you have a good appre-
ciation for all the techniques of internal and external DSL implementations that we’ve
discussed so far. I’m sure that you’re anxiously waiting to see some of them being used
in the larger context of modeling a domain. We’ll be taking that journey soon.

MIXING DSL WITH EMBEDDED FOREIGN CODE

Parser generator tools like YACC and ANTLR let programmers use syntax notation
that’s similar to Extended Backus-Naur Form (EBNF) to declare the grammar of the
language. The tool processes the production rules and generates the parser of the lan-
guage. When you implement a parser, you usually want to also define some actions
that your parser should take when it recognizes a fragment of input. One example of
such an action is building up an intermediate representation of the input language
string, which will be used in later stages by your application.

 Tools like YACC and ANTLR let you embed host language code for action defini-
tions within the production rules. Associated with each rule, you can write code frag-
ments in C, C++, or Java that get bundled into the final parser code that the tool
generates. This is a pattern of external DSL design in which you can extend the native
DSL with foreign embedding in some other high-level language. We’ll discuss a com-
plete DSL design using this pattern with ANTLR as the parser generator in chapter 7.
Now let’s move on to our final classification.

49DSL implementation patterns
DSL DESIGN BASED ON PARSER COMBINATORS

This classification is the final unit shown in figure 2.9. Now we get to discuss one of
the most innovative ways to design an external DSL. In the last section, you saw how
you can use external tools along with embeddings of a programming language in
YACC or ANTLR to generate a parser for your DSL. These tools generate efficient
parsers of the grammar that you feed them. The drawback is that they aren’t exactly
the friendliest of tools to use. Many of today’s languages offer a better alternative in the
form of parser combinators.

 In combination with a powerful type system, you can design parser combinators to
be an expressive DSL that’s implemented as a library within the language itself. You
can develop parsers using the full power of your host language artifacts like classes,
methods, and combinators, without resorting to an external tool set.

 Scala offers a parser combinator library as part of its standard library. Using Scala’s
power of higher-order functions, we can define combinators that make the parser DSL
look like declarative EBNF production rules. Check out the following grammar that’s
declared using Scala parser combinators. It defines the grammar for a small order-
processing language using pure Scala.

object OrderDSL extends StandardTokenParsers {
 lexical.delimiters ++= List("(", ")", ",")
 lexical.reserved += ("buy", "sell", "shares", "at",
 "max", "min", "for", "trading", "account")
 def instr = trans ~ account_spec
 def trans = "(" ~> repsep(trans_spec, ",") <~ ")"
 def trans_spec = buy_sell ~ buy_sell_instr
 def account_spec = "for" ~> "trading" ~> "account" ~> stringLit
 def buy_sell = ("buy" | "sell")
 def buy_sell_instr = security_spec ~ price_spec
 def security_spec = numericLit ~ ident ~ "shares"
 def price_spec = "at" ~ ("min" | "max") ~ numericLit
}

If you can’t get into the details of the above snippet, that’s totally OK. I threw in this
sample implementation only to demonstrate the power of declarative parser develop-
ment within the confines of a host language. Using this technique, you’ll be able to
develop your external DSL parser fully in Scala.

I’ll revisit the topic of parser combinators in chapter 8, which contains a
comprehensive external DSL that’s built using Scala parser combinators.

We’ve come to the end of this road. We’ve covered all the DSL implementation pat-
terns and techniques that were listed earlier in the chapter. These descriptions were
sort of thumbnails aimed at providing the bigger picture in the context of real-world
DSL implementation. In chapters 4 through 8, you’ll see in detail how to use each of
these in various forms when we take up real-world domain problems and implement
DSLs for each of them.

50 CHAPTER 2 The DSL in the wild
 Before we end the chapter, we need to take a realistic view of a topic you’ll find
useful every time you step out to design a DSL: how to decide on the pragmatics of
which form of DSL to use in your application. In chapter 1, we discussed when to use a
DSL. Now I’m going to explain how to choose between internal and external DSLs
when you’re designing an application. DSLs make perfect sense when they’re used to
model specific problems of the domain. But you need to do a balancing act in choos-
ing the engineering aspects of it. Whether you choose to design an internal DSL or an
external one can depend on a lot of factors; not all of them will necessarily be driven
by technology choices.

2.4 Choosing DSL implementations
As programmers, we’re always faced with many options, be it in design methodology,
programming paradigms, or using idioms in specific implementations. We’ve been
talking about designing DSLs, the virtues of well-designed abstractions, and a multi-
tude of options to make your language expressive enough to your user community.
Now we have to talk about some other options that you’ll face.

 Suppose you’ve decided to adopt a DSL-based development approach for your
project and you’ve already identified a couple of business domain components that
make good candidates for expressive DSL design. How do you decide on your DSL
implementation strategy? Do you want to use the host language and model your prob-
lem as an internal DSL? Or would you prefer to design an external DSL to get to the
level of expressivity that your users need? As with most problems in software engineer-
ing, there’s no universal choice. It all depends on the set of constraints that the prob-
lem domain presents and the set of options your solution domain offers. In this
section, let’s review some of the factors you need to consider before jumping in to
decide on the DSL implementation technique.

REUSING EXISTING INFRASTRUCTURE

Internal DSLs piggyback on the host language infrastructure, syntax, semantics, mod-
ule system, type system, method of error reporting, and the complete tool chain that it
integrates with. This piggybacking is possibly the most definitive advantage of imple-
menting internal DSLs. For external DSLs, you need to build all these from the ground
up, which is never an easy proposition. Even within internal DSLs, you have lots of
implementation patterns to choose from, as we saw in the last section. Your choice
here will mostly depend on the capabilities of your host language and the level of
abstraction that it supports.

 If you use a language like Scala or Haskell that offers rich type systems, you can
decide to use them to encode your domain types and have a purely embedded DSL.
But embedding might not always be the most appropriate option available. The lan-
guage that you’re trying to embed needs to have concrete syntax and semantics simi-
lar to that of the host language for embedding to work. A mismatch in either will
make your DSL look foreign to the ecosystem of the host language and will never com-
pose with its native control structures. In such cases, you might want to resort to

51Choosing DSL implementations
metaprogramming techniques, if they’re offered by your host language. As I discussed
earlier, metaprogramming lets you extend the base language with your own domain
constructs and can often lead to the design of more expressive surface syntax for your
DSL compared to the embedded variant.

LEVERAGING EXISTING KNOWLEDGE

There are situations when your decision to use an implementation paradigm is driven
by the available knowledge base of your team members. Internal DSLs are more likely
to score on this point. The important point to consider is that being familiar with the
language doesn’t imply that the programmers are aware of the DSL-friendly idioms
that it offers. Fluent interfaces are commonly used in Java and Ruby, but they have
their pitfalls too. And there are situations when you need to consider aspects like
mutability of abstractions, context sensitivity of the fluent API, and the finishing problem
of finalizing the chain (see [4] in section 2.6) to make your DSL semantically consis-
tent. All these things involve subtle idiomatic usage of the language, which contrib-
utes to the consistency of your DSL.

 Leveraging existing knowledge is certainly an important consideration. As the
leader of the team, judge the expertise of your team members, based on the context
of DSL implementation, not on their familiarity of the surface syntax of the language.
I’ve seen instances when a team decided to use XML as the external DSL and gained a
lot in productivity and user acceptance instead of trying to shoehorn internal DSLs
into Java.

LEARNING CURVE WITH EXTERNAL DSLS

Maybe you’re afraid to choose external DSLs because you think that designing them is
just as complex as designing a general-purpose programming language. If that’s what
you’re thinking, I don’t blame you. Just having to deal with terms like syntax-directed
translation, recursive descent parsers, LALR and SLR seems to remind you of how complex
the whole thing can be.

 In reality, most of the external DSLs required in application development don’t
need to be as complicated as a full-blown programming language. Then again, some
external DSLs will be complex, and there is an associated learning curve as part of the
cost of development. The advantage is that you can customize almost everything,
including how you handle errors and exceptions, instead of being confined within the
constraints of an underlying host language.

THE RIGHT LEVEL OF EXPRESSIVITY

Although internal DSLs score a lot of points by reusing existing infrastructure, it’s also
true that the constraints that the base language forces on you can make it difficult to
achieve the right level of expressivity for your domain users. More often than not,
modules are identified as candidates for DSL long after the development environment
and the tool chain have been finalized. It’s not always possible to switch to an alternate
language that might have been a better candidate for the DSL design.

52 CHAPTER 2 The DSL in the wild
 When this happens, you need to consider external DSLs as part of your application
infrastructure. The main advantage of modeling a problem with an external DSL is
that you can design it precisely to the level of sophistication that you need for the
problem at hand. It also gives you ample room for tweaking, based on user feedback.
This isn’t always possible with internal DSLs, because you have to abide by the basic
constraints of syntax and semantics that the base language enforces.

COMPOSABILITY

In a typical application development scenario, you need to compose DSLs with each
other and also with the host language. Composing internal DSLs with the host lan-
guage is easy. After all, the DSL uses the same language and is mostly implemented as
a library that embeds into your host language.

 But let’s talk a bit about combining multiple DSLs, even when they’re implemented
using the same host language. If you’re using statically typed languages for implemen-
tation and you’ve designed embedded DSLs, you need the support of the host lan-
guage’s type system to ensure seamless composability between them. Languages that
support functional programming paradigms encourage you to design internal DSLs
based on functional combinators. The internal DSL and the combinators can be com-
pletely composable, if they’re designed properly. External DSLs are harder to design
in this manner, particularly if they were designed separately and without considering
composability as an upfront criterion.

2.5 Summary
From the rationale of DSLs in chapter 1 to the real-world pragmatics of DSL use,
implementation, and classification, you’ve come a long way in a short time. If chap-
ter 1 gave you a precursor to DSL-based development paradigms, this chapter has
exposed you to the pragmatics of real-world usage.

 I started the chapter with an example to emphasize how DSL-based program devel-
opment focuses on making abstractions more expressive. A Java-based implementa-
tion of the order-processing DSL was expressive enough for the programmer as a user.
But when we speak of DSLs as being an effective vehicle for non-programming domain
experts, you need to have an implementation language that helps you express more in
the language of the domain. The Groovy implementation did precisely that; the level
of expressiveness increased considerably when we moved from Java to Groovy.

 In the next section, we changed gears from the specifics of an implementation to
the broader topic of DSL patterns. You learned about the patterns in DSL implementa-
tions that exist even within the broad classification of internal and external DSLs. DSLs
can be of varying complexity. As a DSL designer, you need to decide on the strategy of
implementation that best suits the problem at hand. We discussed all of those patterns
in section 2.3 to give you an overall idea of the implementation techniques.

 In this chapter, you’ve seen how DSLs vary in form and structure. It’s the architect’s
responsibility to give it the final shape that models the domain. Before we talk about
that, we need to discuss how you integrate DSLs with your development environment.

53References
So far, you’ve seen the macromodel of DSLs in action. Now it’s time to think in terms
of the micromodeling artifacts of DSL-based development. If you’re on the JVM and
your core application is in Java, how do you integrate your Groovy DSL so that it can
talk to the Java components and still maintain its own identity as a separately evolving
entity? There are quite a few options you can adopt, and a few pitfalls to avoid. But
that’s for the next chapter.

 In all the following chapters, you’ll implement DSL snippets from the securities
trading domain, and Bob will always be there with us as the all-seeing eye to help us
make our DSLs more expressive.

2.6 References
1 Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional.
2 Hudak P. 1998. Modular Domain-Specific Languages and Tools, Proceedings of

the 5th International Conference on Software Reuse.
3 Hofer, Christian, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors.

2008. Polymorphic Embedding of DSLs, Proceedings of the 7th International Confer-
ence on Generative Programming and Component Engineering, pp 137-148.

4 Ford, Neal, Advanced DSLs in Ruby, http://github.com/nealford/presentations/
tree/master.

Key takeaways & best practices
■ Java offers features that make your DSL expressive enough. If you feel limited

with Java, target other languages on the JVM that have good interoperability
with Java.

■ When you’re using a specific language for DSL implementation, keep an eye
on the patterns that it offers to make your DSL idiomatic. If you’re using
Groovy or Ruby, metaprogramming is your friend. With Scala, the rich type sys-
tem can form the backbone of your DSL implementation.

■ Keep an open mind when you’re selecting the type of DSL you’re going to
design. External DSLs might seem difficult, but most likely you won’t require
the sophistication needed to build a full-blown language from the ground up.

DSL-driven application
development
In the two previous chapters, we’ve looked at many of the user- and implementa-
tion-level perspectives of DSLs. You’ve seen how expressive abstractions lead to an
easier understanding of the code base and reduce the feedback cycle from the
domain experts. But at the end of the day, however expressive the DSL is that you
design, you need to integrate it with the model of your core Java application. (Your
application might not be in Java; I’m using that as an example.) You’re also going
to need to take care of certain aspects related to the integration upfront. In this
chapter, we’ll talk about those issues, as well as others that you need to address
when you consider developing a whole application that uses DSLs.

 You develop your main application using a primary language of the platform,
like Java. For some of the business rules or configuration specifications, you might
decide to use DSLs written in languages that can be more expressive than Java. How
can you integrate them seamlessly within your core application? Because DSLs tend

This chapter covers
■ Integrating internal and external DSLs in a

core application
■ Managing errors and exceptions
■ Optimizing performance
54

55Exploring DSL integration
to evolve independently of the main application, your architecture needs to be flexible
enough to compose the changing DSLs with minimal impact on the running applica-
tion. Figure 3.1 shows how I’m going to address these issues as you progress through
the chapter.

 We’re going to consider three main aspects of DSL-driven application development:

■ Integration issues
■ Handling exceptions and errors
■ Managing performance

DSLs don’t work in isolation. When you’re integrating them with your application, you
need to consider numerous issues, including the fact that both the DSLs and your core
application can raise exceptions that manifest as errors to the DSL users. How do you
handle them? (We’ll discuss this in section 3.4.) The chapter concludes with an over-
view of performance concerns that might arise when you use a DSL.

 By the end of the chapter, you’ll understand how you should architect your appli-
cation so that it integrates seamlessly with DSLs written in a different language.

3.1 Exploring DSL integration
Like all beautiful abstractions, a DSL needs to integrate with the other components
of your application architecture. In most common use cases, a DSL models the
changing artifacts of your applications, like business rules and configuration param-
eters. It’s important that you design your DSL and the application such that they
can evolve independently of each other and yet be able to integrate seamlessly with
the workflow.

Figure 3.1 How you’ll progress through the chapter and learn the issues related to DSL-
driven application development

56 CHAPTER 3 DSL-driven application development
 In this section, we’ll explore various ways
to make DSL integration seamless. Remem-
ber, a DSL might address the concerns of
one, specific domain, but it can be used
across multiple, larger domains. Whether the
DSL is used in this way depends on how
generic the domain that it addresses is. A
DSL that manipulates date and time can be
used across all applications that need to
handle date calculations, but a DSL that
deals with corporate tax regulations might
be useful within a more limited context.
The date-manipulation DSL must be more
malleable so that it can integrate with multi-
ple application contexts.

 Before we go into the details of integrat-
ing DSLs into your application, look at fig-
ure 3.2, which shows how your DSL-driven
application architecture looks.

 In a typical layered architecture, a DSL
can be used at any level so long as it pub-
lishes the right context for integration with that layer of the application. Integrating
internal DSLs is easier because they’re designed primarily as libraries in the same lan-
guage as your application. External DSL integration is trickier and needs to plug in
through published, specific end points that your application can subscribe to. Before
we delve any deeper into the integration aspects of internal and external DSLs with
specific use cases for your application architecture, here are some reasons why you
should care about DSL integration.

3.1.1 Why you should care about DSL integration

Just as you need to care about wiring the components of your core application, you
need to think about integrating the whole application with externally pluggable DSL
scripts. A DSL can evolve independently of your application, so you need to have the
right amount of coupling between them.

When you use an expressive language like Groovy, Ruby, or Scala as the
main language of your core application, you might not have any inte-

gration issues; you’ll never feel the need to plug in DSL scripts written in any
other language. The issues that I describe in the following sections mostly
relate to integrating DSL scripts with a Java application.

Developers tend to be aggressive using DSLs of multiple languages within the same
application without thinking beforehand about how to integrate them. If you
choose the wrong language for DSL implementation, the perfectly healthy looking

Figure 3.2 A macroscopic view of DSL-based
application architecture. Note the decoupling
of the DSLs from the core application. They
have different evolution timelines.

57Exploring DSL integration
architecture in figure 3.2 could very well turn out to be a nightmare for the appli-
cation developer. No one wants to be in the position of our friend in figure 3.3.

 Table 3.1 describes which aspects you need to consider to ensure that the DSL you
develop integrates seamlessly with your application and to avoid being in the situation
of the poor guy in figure 3.3.

Table 3.1 Integrating DSLs into your core application

Issue to address As an architect you should . . .

Separation of concerns
How do you ensure that the DSL has
clearly defined boundaries between the
core problem that it addresses and
the application context that it inter-
acts with?

Define the bounded context of the DSL correctly and think
about how it might be used in situations different from
the current application.
Look at the principle of distillation of abstraction design
that I discuss as one of the core qualities in appendix A.

Evolution of the DSL API
The DSL API needs to evolve indepen-
dently of the application context

Make sure the evolution of the API maintains backward
compatibility.
If the DSL is a third-party one, raise a red alert the
moment you notice incompatible changes being made in
the DSL APIs. If you don’t, these changes will come back
to bite you later.

Figure 3.3 Our application architect is having a nightmarish time thinking about how to integrate
DSLs written in various languages with the core application. It’s a time bomb that’s waiting to
explode. Can you help him out?

58 CHAPTER 3 DSL-driven application development
Now that you have an understanding of why you need a definite strategy for integrat-
ing DSLs into core applications, let’s look at some of their use patterns. We’ll start with
internal DSLs, where integration is done mostly in the form of APIs that are available
in the DSL library.

3.2 Internal DSL integration patterns
You design an internal DSL as a library either in the same language that your appli-
cation is implemented in or in one that offers a seamless interoperability with it. In
both cases, the integration doesn’t need any external infrastructure; it’s like yet
another API call between the boundaries of the DSL and the core application. I call
this homogeneous integration because the languages involved interoperate well enough
within the constraints of the underlying VM. Look at figure 3.4, which illustrates how
DSLs developed using Java, Groovy, and Spring configuration integrate homoge-
neously on the JVM. You could deploy each of the DSLs as a jar file that the main
application can refer to.

 Suppose you’re developing an application using Java as the primary programming
language. But because you’re a polyglot, you choose to use the power of Groovy to
implement your XML Builder functionality. (Builders offer a great way to process
XML in Groovy. Go to http://www.ibm.com/developerworks/java/library/j-pg04125/.)
Then you discover a third-party JRuby-based DSL that you can use to load all your
Spring beans to manage application configurations. How should you integrate your
DSLs with your core application? The integration has to be such that it shouldn’t
incur too much complexity for the user, but at the same time you need to keep the
DSL sufficiently decoupled from the core application so that it can manage its own

Avoid language cacophony
Using too many languages in DSLs leads
to chaos in the development and mainte-
nance of the whole architecture.
This isn’t only a technology issue, but a
personnel issue as well. People might
not be cooperative if they have to main-
tain code that uses too many languages.

Ensure that the language you choose for implementing
DSLs has seamless interoperability with the host lan-
guage of your application.
Compromise on the flexibility of your DSL’s syntax,
rather than use a language that doesn’t offer the best
integration abilities with the core application ecosys-
tem. Just because languages are running on the same
virtual machine (VM) doesn’t imply seamless interoper-
ability. Consider this a warning.
If the language that you’re using to implement a DSL
offers multiple ways to interoperate with the host lan-
guage of the application, choose the one that offers the
most natural form of integration rather than using generic
sandbox-based scripting environments. We’ll discuss
such options in section 3.2 in the context of Groovy and
Java interoperability.

Table 3.1 Integrating DSLs into your core application (continued)

Issue to address As an architect you should . . .

59Internal DSL integration patterns
evolution and lifecycle over time. You can integrate your DSL written in these JVM
languages with the Java application in a number of ways.

 When you consider the collection of languages on the JVM, most offer a num-
ber of ways to integrate with Java. Table 3.2 lists the ways you can use each of them.
But you need to be aware of the pros and cons of each and use the option that best
suits your problem.

Table 3.2 Integration points published by internal DSLs

Internal DSL pattern Published integration point

Java 6 Scripting Engine (discussed in
section 3.2.1)

Use the corresponding scripting engine that comes with
Java 6 to integrate DSLs written in scripting languages
like Groovy.

DSL wrapper (discussed in
section 3.2.2)

Wrap Java objects with smarter APIs written in languages
like JRuby, Scala, or Groovy and use the Java integration
capabilities of these languages.

Language-specific integration features
(discussed in section 3.2.3)

Directly integrate with Java through abstractions that can
load and parse scripts directly. Groovy offers such direct
integration.

Spring-based integration
(discussed in section 3.2.4)

Use Spring to load beans written in dynamic languages
directly into your application through declarative
configuration.

Figure 3.4 All three DSLs integrate homogeneously with the core application. Each
DSL can be deployed as jar files that interoperate seamlessly in the JVM.

60 CHAPTER 3 DSL-driven application development
When we talk about integration in the following sections, we’re assum-
ing that the core application is developed using Java. This use case is the

one that’s used most frequently today. Another point to note is that even
though all these languages offer varying degrees of integration capabilities
with Java, integration among them is at an immature stage. You won’t find a
Groovy application using Ruby for a DSL.

Let’s look at the patterns listed in table 3.2 and see how some of the JVM languages use
them to integrate with a Java-based application.

3.2.1 Using the Java 6 scripting engine

Java as a platform has become ubiquitous. For some time, programmers have been
talking about a unification layer that allows interoperability across all the lan-
guages that the platform embraces. Using Java 6 scripting, you can embed script-
ing languages within Java applications by using the appropriate engines. Now you
can even integrate DSLs that were implemented using languages like Groovy or
JRuby through the Java APIs defined in the javax.script package. Let’s look at an
example of this kind of integration, using our order-processing DSL from chapter 2
as a case study.

PREPARING THE GROOVY DSL
In section 2.2.2, we implemented a Groovy script that executed the DSL for order cre-
ation. In this section, we’ll look at the same DSL, integrated and invoked from within a
Java application. This example will give you an idea of the power of Java scripting as
an enabler of DSL integration.

 Let’s assume that we have the Groovy DSL implementation for processing client
orders (ClientOrder.groovy) shown in the following listing (the content of this list-
ing is repeated from section 2.2.2).

ExpandoMetaClass.enableGlobally()

class Order {
 def security
 def quantity
 def limitPrice
 def allOrNone
 def value
 def bs

 def buy(su, closure) {
 bs = 'Bought'
 buy_sell(su, closure)
 }

 def sell(su, closure) {
 bs = 'Sold'

Listing 3.1 ClientOrder.groovy: order-processing DSL in Groovy

61Internal DSL integration patterns
 buy_sell(su, closure)
 }

 def getTo() {
 this
 }

 private buy_sell(su, closure) {
 security = su[0]
 quantity = su[1]
 closure()
 }
}

def methodMissing(String name, args) {
 order.metaClass.getMetaProperty(name).setProperty(order, args)
}

def getNewOrder() {
 order = new Order()
}

def valueAs(closure) {
 order.value = closure(order.quantity, order.limitPrice[0])
 order
}

Integer.metaClass.getShares = { -> delegate }
Integer.metaClass.of = { instrument -> [instrument, delegate] }

The Order abstraction in this code that we developed on the Groovy side captures
the order details that the user enters. In another script file, order.dsl in listing 3.2, the
DSL user does the scripting (also in Groovy) that uses the implementation in list-
ing 3.1 to place orders for the client. Note that this script is based purely on the DSL
that we designed in listing 3.1 and assumes minimal understanding of the workings
of the programming language. In addition to creating the orders, the script accumu-
lates them into a collection that’s returned to the caller. But who’s the caller? Don’t
worry, you’ll find out soon.

orders = []
newOrder.to.buy(100.shares.of('IBM')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << order

newOrder.to.buy(150.shares.of('GOOG')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << order

Listing 3.2 order.dsl: Groovy script for placing orders

Add order to the
collection

B

62 CHAPTER 3 DSL-driven application development
newOrder.to.buy(200.shares.of('MSOFT')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << order
orders

In listing 3.2, the user uses newOrder to create a new Order abstraction that gets filled
up with attributes like buy or sell, the share to transact, limit price, valuation strategy,
and so on. Every order that gets created is appended to a collection B. The collection
is returned at C.

 Now we come to the interesting part of the story: you are going to integrate the
DSL implementation and the script with the main Java application.

INTEGRATING THE DSL IMPLEMENTATION AND THE SCRIPT

The code fragment in listing 3.3 shows a snippet of code from the main application.
This snippet expects the collection of orders to be returned from the DSL execution
so that it can further process the orders. The Java code in the snippet uses the script-
ing engine for Groovy. Similarly, implementations of scripting engines are available
for other JVM languages like JRuby, Clojure, Rhino, and Jython that can be integrated
into your Java application as seamlessly as this Groovy one (go to https://scripting.
dev.java.net/ for more information).

ScriptEngineManager factory = new ScriptEngineManager();
ScriptEngine engine = factory.getEngineByName("groovy");

List<?> orders = (List<?>)
 engine.eval(new InputStreamReader(
 new BufferedInputStream(
 new SequenceInputStream(
 new FileInputStream("ClientOrder.groovy"),
 new FileInputStream("order.dsl")))));

System.out.println(orders.size());
for(Object o : orders) {
 System.out.println(o);
}

Let’s look at the steps that led to the integration. Figure 3.5 shows a sequence
diagram, annotated with the actions that listing 3.3 performs on the DSL script
and implementation.

 As you can see, Java 6 scripting APIs provide a viable option for integrating your
DSL into your Java application using almost any JVM language. javax.script also
offers APIs that let you set up bindings of variables at various scopes to exchange infor-
mation between your DSL and the Java components.

Listing 3.3 Java application code that invokes the Groovy DSL

Return collection
to caller

C

Get factory for
ScriptEngineB

Get Groovy
ScriptEngineCList of orders

returnedD

Evaluate
DSL script

E

Process
orders

F

63Internal DSL integration patterns
PROBLEMS WITH JAVA 6 SCRIPTING

Java 6 scripting is one of the most generic ways to get JVM languages to interoperate.
And like any generic strategy, there’s always a better option for the specific language
that you’re working with. Because the DSL script gets loaded in a separate ClassLoader
and executes in its own sandbox, you face problems of interoperability between the
Groovy and Java abstractions. Note how we get a list of Objects from the Groovy DSL
script within Java in listing 3.3, as opposed to a list of Order abstractions. The only way
you can invoke Order methods on it is by using reflection. Also, because the script exe-
cutes in the sandbox of the ScriptEngine, when there’s an exception, the line num-
bers mentioned in the stack trace don’t match the line numbers in the source file. This
situation can make it difficult to debug exceptions thrown from the DSL script. Let’s
explore some better options for integrating an internal DSL.

Scripting engines were introduced in Java 6 as a generic way to handle
script execution from within Java programs. The design principles of

the Java 6 ScriptEngine-based APIs cater to all JVM languages that implement
an infrastructure that’s compliant with Java Specification Request (JSR) 233.

Figure 3.5 Integrating the Groovy DSL through the Java 6 scripting engine. The interaction
diagram shows all the steps involved in evaluating the Groovy DSL script within the sandbox
of the ScriptEngine.

64 CHAPTER 3 DSL-driven application development
If the language that you plan to use for DSL implementation offers its own
specific ways of integrating with Java, review it carefully before deciding in
favor of implementations that are JSR 233 compliant. Using the language-spe-
cific solution is probably best practice because it’s likely to be simpler and
more idiomatic.

You just saw how the scripting APIs of Java 6 work to enable polyglotism on the JVM. I
picked up the example in Groovy because we implemented a Groovy DSL in chapter 2
that could be seamlessly plugged into the Java application without much of a fuss. You
can use similar techniques to plug DSLs written in other JVM languages like JRuby, Clo-
jure, or Rhino into your Java applications.

Polyglotism encourages use of multiple languages even within a single
solution domain. The languages need to have good interoperability and

well-published integration points. Usually such a family of languages operates
on a common runtime like the JVM that hosts languages like Java, Scala, Ruby,
Groovy, and so on. One of the main ideas behind DSLs is to use the most suit-
able language to design your domain API and integrate it with the core appli-
cation through the common runtime.

You can integrate your DSL at various levels. The Java scripting option we discussed in
section 3.2.1 lets you embed your DSL within the execution framework of the Script-
Engine and invoke the DSL scripts. It has the advantage that your DSL is totally decou-
pled from the application and executes within the sandbox of the ScriptEngine
context. The disadvantage of this approach is that it’s not intuitive to have the DSL
components interact easily with the environment of the main application.

 Let’s look at another approach to DSL integration that operates at a different
level than script engines and integrates more closely with the host language of
your application.

3.2.2 Using a DSL wrapper

In this integration approach, you build the DSL as a wrapper layer on top of the main
application components using the rich features that the DSL host language offers. You
can adopt this approach to make your legacy applications publish smarter APIs. Using
the rich language features of yet another JVM language, you can make more expres-
sive domain components based on the legacy abstractions. Not only will your domain
experts love them, but your fellow API users will also enjoy using them.

SETTING UP THE EXAMPLE

In this example, we’ll use Scala, the statically typed language for the JVM that also has
nice interoperability features with Java. Suppose your main application is written in
Java and all your domain objects are implemented as part of the application. Your cli-
ent is aware of the hype and fun of DSL-based development and asks you to imple-
ment some smart DSL features on top of their existing legacy Java trading application.
This scenario is perfect for you to integrate by wrapping.

65Internal DSL integration patterns
To help explain the concept of integrating by wrapping, I’m going to use another
example from the world of securities trading. Figure 3.6 shows an overview of the
trade process. Don’t forget to read the sidebar; it provides enough background infor-
mation for you to follow along.

Financial brokerage systems: client account
In order to trade, a client needs to open an account (called the trading account)
with the Stock Trading Organization (STO). All trades for the client are booked in
that account and recorded by the STO. When the trade is done, the settlement pro-
cess has to be initiated. That process does the final balancing of the securities and
currencies that were exchanged between the two parties.

For example: client XXX buys 100 shares of SONY @50 USD per share through STO
Nomura Securities. The STO gets those securities from the stock exchange where
a broker does the sell. After the trade is made, there’s a settlement process during
which 100 shares of SONY and approximately 5000 USD are exchanged between
the two counterparties. This settlement is done through an account (the settle-
ment account), which can be same as the trading account of the client or it can
be a different account.

To review, the trading account is used for doing the trade, and the settlement
account is used for settling the trade. They can be the same account or different
ones. Figure 3.6 shows an overview of the process.

Figure 3.6 Role of trading and settlement accounts in the trade process

66 CHAPTER 3 DSL-driven application development
Consider the Account domain model, an entity from our friendly domain of securi-
ties trading operations. An account is an entity through which the firm, its clients,
and the brokers manage trading and settlement activities. The sidebar in this section
gives a brief explanation of the role of accounts and their types in trading and settle-
ment operations.

If you’ve forgotten what trading and settlement mean in the context of
our domain, review the callouts in chapters 1 and 2.

Listing 3.4 contains a simplified view of the domain model for the Account entity
that we’ll use to discuss the wrapper approach to DSL integration. Account is a Java
class on which we’ll implement Scala wrappers. Ultimately, you’re going to find out
how the usage patterns in client APIs become more succinct and expressive when you
use a wrapper.

public class Account {
 public enum STATUS { OPEN, CLOSED }

 public enum TYPE { TRADING, SETTLEMENT, BOTH }

 private String number;
 private String firstName;
 private List<String> names = new ArrayList<String>();
 private STATUS status = STATUS.OPEN;
 private TYPE accountType = TYPE.TRADING;
 private double interestAccrued = 0.0;

 public Account(String number, String firstName) {
 this.number = number;
 this.firstName = firstName;
 }

 public Account(String number, String firstName, TYPE accountType) {
 this(number, firstName);
 this.accountType = accountType;
 }

 //.. getters ommitted

 public double calculate(final Calculator c) {
 interestAccrued = c.calculate(this);
 return interestAccrued;
 }

 public boolean isOpen() {
 return status.equals(STATUS.OPEN);
 }

 public Account addName(String name) {
 names.add(name);
 return this;
 }
}

Listing 3.4 Account domain object in Java

67Internal DSL integration patterns
If you’ve been programming in Java, I’m sure you’re neither amused nor surprised by
the verbosity and boilerplate stuff that the model in listing 3.4 uses. Let’s try to figure
out how you can make the abstraction smart enough so your client can get some APIs
that let him express his intents in a more domain-rich vocabulary. At the end of this
exercise, you’ll have a DSL that’ll integrate nicely into the guts of your Java application.

BUILDING THE DSL
Let’s start with the abstraction AccountDSL in Scala that acts as an adapter to the
Account Java class, and implement something called smart domain APIs. Remember,
your ultimate goal is to make the Account class so smart that the client can apply the
language on existing instances of the Account class, no matter what DSL you design. In
the following code snippets, I’ll show you how to enrich the AccountDSL abstraction
incrementally. I’ll also discuss potential uses of the DSL so that you get a feel for the
enrichment as it occurs in the domain abstraction.

 The following listing shows the DSL layer in Scala that we’ll use seamlessly with the
Java Account class.

class AccountDSL(value: Account) {

 import scala.collection.JavaConversions._
 def names =
 value.getNames.toSeq.toList ::: List(value.getFirstName)

 def belongsTo(name: String) = {
 (name == value.getFirstName) || (names exists(_ == name))
 }

 def <<(name: String) = {
 value.addName(name)
 this
 }
 //..
}

The code in the listing uses some of the typical Scala idioms that I describe briefly in
the sidebar “Scala 101”. For more Scala details, see [1] in section 3.7.

 In listing 3.5, AccountDSL is an adapter to the Java Account class and wraps it as an
underlying implementation. At B we convert the Java collection to a Scala one, which
we’ll use subsequently with higher-order functions. (Scala collections are always
semantically richer than Java collections in the sense that you can apply higher-order
functions to make operations on them more expressive.) This code uses Scala 2.8
implicit conversions between Java and Scala collections. If you’re still working on a
Scala version that’s earlier than 2.8, you can use the jcl conversion APIs like this:

 def names =
 (new BufferWrapper[String] {
 def underlying = value.getNames
 }).toList ::: List(value.getFirstName)

Listing 3.5 AccountDSL in Scala

Convert Java
collection to Scala

B

Domain APIC

New operator syntax
on collectionD

68 CHAPTER 3 DSL-driven application development
In listing 3.5, we define a domain API belongsTo C using our new Scala collection
and higher-order functions. Note the succinctness of implementation that Scala
offers. Finally, we define an operator-like syntax using << to make our DSL more
expressive and concise at D.

 With the new Scala APIs wrapping our original Java implementation, the client can
express his domain intents more succinctly, as we’ll see shortly. Being expressive and
concise is one of the major benefits of DSL-driven development. This example clearly
demonstrates this power of DSL.

USING SCALA IMPLICITS

Before we talk more about the client, we need to take care of one other thing that I
promised earlier. You need to make Account interoperable with AccountDSL, so that
all the smartness you implement on top of AccountDSL can be applied to Account
instances as well. Scala offers implicits that you can use to make any feature that’s
already available on AccountDSL work on instances of the Account class too. All you
have to do is ensure that an implicit definition of the conversion is available in the lex-
ical scope of execution:

implicit def enrichAccount(acc: Account): AccountDSL =
 new AccountDSL(acc)

Now that you have transparent conversion from Account to AccountDSL, you can use
the new DSL APIs on Account instances too. Let’s create some instances of our Java
class Account:

val acc1 = new Account("acc-1", "David P.")
val acc2 = new Account("acc-2", "John S.")
val acc3 = new Account("acc-3", "Fried T.")

Scala 101
In the method belongsTo, we use a predicate as:

>> (names exists(_ == name))

This predicate is a succinct way to express the following in Scala:

>> (names.exists(n => n == name))

1 In Scala, the dot (.) is optional when you invoke methods on a receiver.
2 The underscore (_) that we use is shorthand for anything substitutable in

Scala. In listing 3.5, _ is the placeholder for supplying the parameter to the
higher-order function that exists accepts.

3 The Scala type inferencer does an inferencing of the parameter type of the
function that exists takes.

4 In Scala, operators are methods. We can define << as the method that adds
the name to the order object. Using symbolic operators like << might be visu-
ally appealing to some, but as a cautionary note, this is a matter of personal
choice and can lead to unreadable code if you use it too much.

69Internal DSL integration patterns
Now add a few more account holder names to acc1 using the new operator <<:

acc1 << "Mary R." << "Shawn P." << "John S."

Note how concise yet expressive the previous snippet looks as compared to what we
would have done with our original Java APIs:

acc1.addName("Mary R.").addName("Shawn P.").addName("John S.");

Let’s form a collection of accounts and print the first names (firstName) of those
accounts that include John S. as one of the owners:

val accounts = List(acc1, acc2, acc3)
accounts filter(_ belongsTo "John S.") map(_ getFirstName) foreach(println)

Expressive indeed! In fact, the code is much more expressive than what you would get
with the original Java APIs. The reason for the difference is that the richness of Scala
as a language helps you craft rich semantics in a reduced surface area of the API. In
the previous snippet, we use combinators like filter, map, and foreach that operate
on higher-order functions. These combinators make the code much more concise
than what you would get with an imperative Java syntax. Are you having fun? Let’s
party on!

 Get the list of accounts belonging to John S. and compute the sum of accrued-
Interest for all accounts for which the accumulated interest is greater than a pre-
defined threshold:

accounts.filter(_ belongsTo "John S.")
 .map(_.calculate(new CalculatorImpl))

Implicits in Scala
In our definition of the enrichAccount method, there’s an implicit modifier in
front of the method definition enrichAccount. In Scala, the implicit modifier for
a method is used to define an automatic conversion from one type to another. In
this case, the method enrichAccount converts an Account to an instance of
AccountDSL. Instead of using

scala> enrichAccount(acc1) belongsTo("David P."),

you can directly use an instance of Account to invoke methods of AccountDSL:

scala> acc1 belongsTo("David P.")

It’s like all methods of AccountDSL have been injected into the class Account.
Sound familiar? It’s similar to what we do with Ruby monkey patching that lets you
split open any class and extend it with additional methods.

But there’s a difference. In Scala, implicits are lexically scoped. The automatic
conversion between Account and AccountDSL is available only in the lexical scope
of the method enrichAccount. Ruby open classes that allow modifications of
existing classes on a global scope are significantly different. For some more
insights on the virtues of Scala implicits, see [3] in section 3.7.

70 CHAPTER 3 DSL-driven application development
 .filter(_ > threshold)
 .foldLeft(0.0)(_ + _)

This snippet contains applications of the Scala idiom that I explained in an earlier
sidebar. The _ is a placeholder for the type-inferenced argument that the predicate in
filter takes as input. This snippet expresses the domain problem with more clarity
than what you would get out of a language that has more verbose syntax like Java. As I
discussed in chapter 1, it’s all thanks to the richness in abstraction design that a more
powerful language like Scala offers, by reducing the accidental complexity of your code.

 Note the CalculatorImpl object that calculate() takes as input. We defined
Calculator as an interface in Java with CalculatorImpl as its implementation:

public interface Calculator {
 double calculate(Account account);
}

public class CalculatorImpl implements Calculator {

 @Override
 public double calculate(Account account) {
 //.. implementation
 }
}

Most of the time, you’ll have the same implementation of the Calculator interface
being passed into the Account#calculate() method. One way to avoid this repetition
is to use DI to inject the implementation dynamically during runtime. Scala offers a
better alternative: you can make this parameter implicit in all calls of calculate.

class AccountDSL(value: Account) {

//.. as above

 def calculateInterest(
 implicit calc: Calculator): Double = {
 value.calculate(calc)
 }
}

You define an implicit argument to the method calculateInterest and have the
implicit default set up in the scope of execution of the DSL B. Now you have an
implicit default value for the implementation of Calculator; you don’t need to pass
Calculator repeatedly to invocations of calculateInterest. Look at the final ver-
sion of the calculation of accrued interest for all accounts that belong to John S:

implicit val calc = new CalculatorImpl

accounts.filter(_ belongsTo "John S.")
 .map(_.calculateInterest)
 .filter(_> threshold)
 .foldLeft(0.0)(_ + _)

With support for features like closures and higher-order functions, Scala offers you
the power to define control abstractions that look like syntax that’s built into the

Implicit Calculator
instanceB

71Internal DSL integration patterns
language. Using Java objects as underlying implementations, you can design powerful
control constructs that make your DSL succinct and expressive.

BENEFITS TO USERS

As we discussed in chapter 1, the point is not that a nonprogramming domain expert
will be able to program in any DSL that you design. It’s the explicit communicability of
the API that matters for a well-designed DSL. In the previous snippet, you’ll notice
functional combinators like map, filter, and foldLeft that don’t qualify as very
meaningful to the domain person. But the domain person will be able to figure out
the following hotspots easily from that snippet:

■ Filter the account belonging to John S
■ calculateInterest on it
■ Filter only those that are > the threshold value
■ Add up the interest values

When you offer all these hotspots in a localized surface area of the code base, it
becomes easier for the domain expert to comprehend and verify the business
logic. With an imperative approach, the same logic would have been spread across
a larger code segment, making it much more difficult for someone who doesn’t
know programming.

 Let’s define a control abstraction using our Account Java object and the Account-
DSL that we implemented in listing 3.5:

object AccountDSL {
 def withAccount(trade: Trade)(operation: Account => Unit) = {
 val account = trade.account
 //.. initialization
 try {
 operation(account)
 } finally {
 //.. clean up
 }
 }
}

The underlying abstractions used in this snippet, Account and Trade, are Java classes
that might have been enriched using Scala wrappers. Now it’s the turn of your DSL
users to use such abstractions to perform useful domain operations. The following
DSL code fragment is possible using the control abstraction withAccount and a wrap-
per to integrate Scala and Java. It’s so much more expressive and closer to the domain
syntax than what would have been possible with an only-Java paradigm.

withAccount(trade) {
 account => {
 settle(
 trade using
 account.getClient
 .getStandingRules

72 CHAPTER 3 DSL-driven application development
 .filter(_.account == account)
 .first)
 andThen journalize
 }
}

This sequence of API invocation does exactly what you see in figure 3.7.
withAccount does all this in only a few lines of clear domain-specific code. Show

this snippet to your domain expert. I’m sure he’ll be able to explain to you what it
does. I did the same thing with one of the Bob’s on our project team. (Remember
Bob? He’s our friendly domain expert from Trampoline Securities who joined us in
section 1.4.) Can you imagine what happened? Bob looked over the code and here’s
the conversation that followed:

■ Bob: You’re picking up the first of the selected standing rules after filtering, right?
■ Me: Yeah!
■ Bob: But sometimes there’s going to be more than one match for the

same account.
■ Me: Then how do you decide which rule to pick up?
■ Bob: When that happens, every rule has a priority tagged onto it. You need to

pick up the one with the highest priority.
■ Me: Great!

The next time your manager talks about a big up-front investment for DSL implemen-
tation, tell him about what you’ve learned. It’s a myth that every integration effort
using a DSL requires a huge outlay of money. The wrapper technique we discussed in
this section is a real-life testimony to this. In fact, this technique builds on your cur-
rent investment in the Java domain model, and you get the added benefit of code
that’s smarter and more useful to the domain experts.

 You can use the DSL wrapper technique whenever you use Scala as the DSL
implementation language on top of Java. You probably noticed you can make your
Java objects smarter using the power of Scala type system. The implicits feature is the
secret sauce that lets you do it. In the next section, we’ll look at how to use some

Figure 3.7 The flow as depicted in the preceding code snippet takes
an account and describes the sequence until the end of the transaction.

73Internal DSL integration patterns
language-specific integration features to implement DSLs on top of Java. We’ll again
take Groovy as an example and revisit the DSL that we discussed in section 3.2.1.

3.2.3 Language-specific integration features

Let’s revisit the original order-processing DSL that you integrated with your core Java
application in section 3.2.1. Moving away from the ScriptEngine approach, we’ll use
a technique that loads Groovy classes dynamically in your Java application. Loading
the classes dynamically ensures better manageability of your Groovy objects, even
within the core Java application.

To get more Groovy information about metaprogramming, closures,
and delegates, check out [2] in section 3.7.

COMMUNICATING BETWEEN JAVA CODE AND GROOVY DSL
Suppose that in your trading application you’ve used Java 6 ScriptEngine to integrate
your order-processing DSL with the Java application. Things were running fine until
one day the client came back with a new requirement: additional processing needs to
be done on the collection of orders that the script returns to your Java application.
Specifically, he needs to compute the total valuation of all orders that have been
placed so far, and he needs custom displays of order attributes for the customer.

 Up to this point, you’ve been loading the DSL implementation (Client-
Order.groovy) and the user-defined script (order.dsl) as a single Groovy script
that’s executed in the sandbox of the ScriptEngine. The Groovy DSL is completely
opaque to the Java code; the script is loaded using a different classloader than your
Java classes, which makes them invisible in your main application. You need to buy
some time from your client to try to implement alternate ways to integrate the DSL
that make Groovy classes more visible to your Java application.

BETTER INTEGRATION WITH GROOVY CLASSLOADER

In this section, we’re going to treat Groovy classes as reusable abstractions in the Java
application and use GroovyClassLoader to load only the order-processing script that
your user writes. The following listing shows the changes you need to make to your
DSL to make things more Groovy.

public class RunScript {
 public static void main(String[] args)
 throws CompilationFailedException, IOException,
 InstantiationException, IllegalAccessException {

 final ClientOrder clientOrder =
 new ClientOrder();

 clientOrder.run();

 final Closure dsl =
 (Closure)((Script) new GroovyClassLoader().parseClass(
 new File("order.dsl")).newInstance()).run();

Listing 3.6 RunScript.java: DSL integration using GroovyClassLoader

Set up the
metaclass

B

Load the
Groovy class

C

74 CHAPTER 3 DSL-driven application development
 dsl.setDelegate(clientOrder);
 final Object result = dsl.call();

 List<Order> r = (List<Order>) result;
 int val = 0;
 for(Order x : r) {
 val += (Integer)(x.getValue());
 }
 System.out.println(val);
 }
}

Let’s recap how this listing makes DSL integration more meaningful in Groovy. We’ve
separated the abstraction ClientOrder.groovy and precompiled it to make the Order
class available to the Java application. In the Java class, we execute an instance of
ClientOrder to set up the metaclass B. The DSL script order.dsl returns a Closure
that contains the DSL code C. Next, we set up ClientOrder as the delegate of the
Closure to resolve the symbols that the script uses D. Then, we call the DSL script to
return a list of Order objects E. Finally, we can find out the total order valuation by
iterating over individual orders F.

 As soon as we come out of the execution of the DSL script, we get back a list of
Order objects that we can use for other business processing. We couldn’t have done
this with the code in listing 3.3, where we used a Java 6 scripting API to integrate our
DSL with the Java application. Now your client is happy, and you’ve learned a new way
to integrate your Groovy DSL into your Java application.

THE FINAL RESULT

Here’s the DSL script order.dsl, changed to return a Closure to the Java application.

{->
orders = []
ord1 =
newOrder.to.buy(100.shares.of('IBM')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << ord1

ord2 =
newOrder.to.buy(150.shares.of('GOOG')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << ord2

ord3 =
newOrder.to.buy(200.shares.of('MSOFT')) {
 limitPrice 300

Listing 3.7 order.dsl: the DSL script now returns a Closure

Set up delegate
for the closureDExecute

DSLE

Process result
collectionF

75Internal DSL integration patterns
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}
orders << ord3

println "Orders ..."
orders.each { println it }
}

This Groovy DSL is better than the earlier version of the order-processing DSL that you
saw in chapter 2. It also offers better Java integration than what you saw with the
ScriptEngine-based approach in section 3.2.1.

 From a language-specific integration feature, let’s move on to a framework-based
integration approach that you can use to integrate internal DSLs with a Java applica-
tion. Spring offers a suitable platform; the next section shows how to use it.

3.2.4 Spring-based integration

We’ve come to the final integration technique that I summarized in table 3.2. It’s one
level up in terms of abstraction because it offers integration through a framework, as
opposed to through a language, as discussed earlier. How often have you fantasized
about how helpful it would be if some of the business rules that you’ve implemented in
Java could have been changed dynamically without having to restart your application?

SPRING’S DYNAMIC LANGUAGE SUPPORT

Since version 2.0, Spring has supported bean implementation using expressive,
dynamic languages like Ruby and Groovy. (For more information about Spring, go to
http://www.springframework.org.) These beans are also refreshable. A refreshable bean
is one that allows itself to reload dynamically when its underlying implementation
changes. Let’s consider an example from our financial brokerage domain where an
implementation of a TradingService needs to look up rules for computing the
accrued interest on coupon bonds.

public class TradingServiceImpl implements TradingService {
 private AccruedInterestCalculationRule accIntRule;

 @Override
 public void doTrade(Trade trade) {
 // .. implementation
 }
}

In this snippet, the business rules for accrued interest calculation are injected at runt-
ime through DI using Spring B. Using the dynamic language support that Spring
offers, you can implement these rules using expressive languages like JRuby or Groovy
or Jython. This is an area where a small, rich DSL is a great fit. The benefits are twofold:

■ The code is more expressive because the languages themselves are more rich.
■ You can auto-reload the runtime instance of the bean when the underlying

implementation changes.

Calculation
rule injected
by SpringB
www.allitebooks.com

http://www.allitebooks.org

76 CHAPTER 3 DSL-driven application development
In the current example, we can use a Java interface for the rule contract:

public interface AccruedInterestCalculationRule {
 BigDecimal calculate(Trade trade);
}

And the backing implementation of the rule can be done using a DSL written in Ruby:

require 'java'

class RubyAccruedInterestCalculationRule {
 def calculate(trade)
 //.. implementation
 end
end

RubyAccruedInterestCalculationRule.new

Now there’s just one thing left to do.

WIRING UP THE IMPLEMENTATION

You can then wire up the whole implementation using the following XML configu-
ration snippet in Spring. Now, when you ask for an instance of AccruedInterest-
CalculationRule from within your Java program, you get an instance that is
implemented using the Ruby DSL.

<lang:jruby
 id="accIntCalcRule"
 refresh-check-delay=”5000”
 script-interfaces=
 "org.springframework.scripting.AccruedInterestCalculationRule "
 script-source="classpath:RubyAccruedInterestCalculationRule.rb">
</lang:jruby>

Congratulations! Using Spring, you’ve successfully integrated a Ruby DSL into your
Java application. This model of DSL integration is nonintrusive and keeps the DSL
component decoupled from the context where it is used. If you are using Spring as
the DI framework in your application, consider this integration pattern as an option
for dynamically reloading business-rule DSLs.

 Now that you’ve seen the homogeneous integration patterns related to internal
DSLs, let’s look at patterns for integrating external DSLs. External DSLs can be any
form. You can implement them using a custom language infrastructure. In the next
section, we’ll revisit all the external DSL implementation patterns we discussed in sec-
tion 2.3.2 and see how each publishes explicit integration points for your core applica-
tion. Note that external DSLs are custom-made for specific applications only; our
discussion on integration patterns for external DSLs will be limited to a few common
techniques that are currently being used.

3.3 External DSL integration patterns
How do you integrate XML with your application? Did you just scream “Using the XML
parser!” If you did, you are correct! Because XML isn’t part of the host language you’re
using to implement the application, you need separate machinery to parse and process

77External DSL integration patterns
XML. XML is so commonly used that you get a slew of tools like XPath, XQuery, and a
huge number of XML parsers bundled with almost every enterprise solution. Integrat-
ing XML with your application is a no-brainer. Unfortunately, the external DSLs that
you’ll design for your applications aren’t lucky enough to inherit such a repertoire of
tools. Integrating your external DSL with your application is likely to rely on specific
techniques that can’t be generalized as a pattern.

 Judging from what I said in the last paragraph, you must be thinking that integrat-
ing external DSLs is a nightmare in the application development lifecycle. It all
depends on how complex the DSL is and the technique that you’re using to develop
it. If you use standard tools like ANTLR or YACC to develop parsers for your external
DSL, integration is pretty straightforward; read section 2.3.2 again. For every exter-
nal DSL pattern that we discussed in that section, you can see that the integration
points are quite obvious after you’ve designed the DSL.

 Let’s look at the patterns of external DSL that we discussed in section 2.3.2
again and try to figure out the integration points that each of them publish. Table 3.3
lists a summary of thoughts for how you can integrate external DSLs with your
core application.

Table 3.3 Integration points published by external DSLs

External DSL pattern Published integration point

Context-driven string
manipulation

The string is converted to the host language through a tokeni-
zation process, using techniques like regular expression match-
ing and dynamic code evaluation. The resultant code snippet is
the integration point with the application.

Transforming XML to a
consumable resource

XML parsers are the most natural form of integration point.
After parsing, XML is converted to data structures of the host
language that can be directly used by the application.

Nontextual representation The nontextual representation is converted to an AST. You can
use the AST as the basis for generating multiple forms of con-
crete syntax trees. You can target one of the concrete syntax
trees to generate the host language of the application, which
then becomes the integration point.

Mixing DSL with embedded
foreign code

The DSL processing engine transforms the DSL into appropriate
data structures in the language of the embedded code and
plugs in the embedded code snippets as callbacks. The result
is a set of data structures in the embedded code that can be
directly used in the core application, using the same language.

DSL design-based on parser
combinators

Parser combinators are implemented as a library in languages
like Scala. The rules that you write to parse the external DSL
are combinators in the host language. Using embedded snip-
pets of the host language, you build up data structures that
get populated by the rules. When the rules reduce to the
topmost node of the tree, you have the complete semantic
model of the DSL.

78 CHAPTER 3 DSL-driven application development
Why didn’t I go into the details of integration patterns for external DSLs like I did for
internal DSLs? Internal DSL integration takes place through a host language, but
external DSLs often require a more elaborate stack that depends on the specific appli-
cation domain. Designing a language-processing infrastructure is a more open-ended
problem than designing APIs in a host language. It’s difficult to have a generic discus-
sion of external DSL integration patterns without delving into the specific details of
what it needs to achieve and the infrastructure involved. We’ll take up these tech-
niques in detail with examples in chapters 7 and 8.

In chapter 7, we’ll discuss external DSL design using ANTLR, a com-
monly used parser generator. We’ll also look at tools that help you gen-

erate an external DSL through a workbench. For both ANTLR and the DSL
Workbench, we’ll also discuss how to integrate the external DSL with your
core application.

Chapter 8 has a detailed discussion about external DSL design using Scala
parser combinators.

We’ve just covered all the integration patterns for internal and external DSLs. Now
you can handle most of the problems you’ll encounter when you’re integrating your
DSL with your core application. Throughout this discussion, I’ve assumed that
your core application is developed in Java and that you’re trying to integrate DSLs
that were designed in more expressive languages with that application. This use
case is the most common one that you’ll encounter in real-world programming, so
it is imperative that you have a solid understanding of the integration issues related
to the problem.

 Figure 3.1 illustrates the most important issue related to DSL-driven application
development: integrating the DSL with the core application. This issue is sometimes
considered late in the development cycle, as an afterthought, rather than being
addressed up front. Now we’ll look at yet another concern that’s often ignored by pro-
grammers at the beginning of the DSL development lifecycle. Deciding on a strategy
for handling errors and exceptions is something that needs to be high on your prior-
ity list, particularly if your DSL has a fairly large user base.

3.4 Handling errors and exceptions
It’s superimportant to be as friendly to your user with error reporting as you are with
the expressiveness of your syntax. Because a DSL is a language of limited applicability,
your error messages should also speak the language of the domain. Error and excep-
tion reporting in a DSL-based environment needs to be disciplined so you never mis-
lead the user, leaving them in a state of confusion. You need to clearly articulate the
exact condition that the system is in. This concept is called domain-driven exception
reporting, which we’ll discuss in section 3.4.1. We’ll also talk about the two main types
of error states that your DSL user will have to face. Together, these comprise the three-
pronged view of error and exception handling strategies that you, as a DSL designer,
need to consider. This view is shown in figure 3.8.

79Handling errors and exceptions
Depending on the type of DSL (internal or external) you have and the implementa-
tion language you’re using, the ways in which the error conditions manifest them-
selves will vary. Table 3.4 contains an overview of the error and exception issues and
your responsibilities as a DSL designer.

Let’s look at each of these issues in detail.

3.4.1 Naming an exception

When you name an exceptional condition in the DSL, use the language that the
domain uses to describe the situation. The exception might not be an infrastructure
fault—it can also be an alternate path of a business use case. The idea is to present
such situations in the language of the domain. Here’s an example from a system that
settles trades between counterparty accounts:

Table 3.4 What you need to know about errors and exceptions in DSLs

Issue How to handle as a DSL designer

You need to clearly state the exceptional condi-
tions within a DSL.

An exceptional state is also a domain abstrac-
tion. Always use the domain language to express
any exception that might occur during process-
ing. See section 3.4.1.

You need to handle errors that might result when
the user types method names, object names, and
other things incorrectly.

The exact strategy depends on the implementa-
tion language you’re using. See section 3.4.2.

You need to handle exceptions that might arise
when the system enters an invalid business
state. What will happen, for example, when
someone tries to transfer funds between
accounts and the communication line to the bank
is down?

When you report such an exception, be sure to
supply all relevant details to the user in the lan-
guage they understand. See section 3.4.3.

Figure 3.8 The three-pronged strategy for dealing with errors and exceptional states
in a DSL

80 CHAPTER 3 DSL-driven application development
val fromBalance = fromAccount.getSecurityBalance
if (fromBalance <= tradeQuantity)
 throw new SettlementFailedException(
 " Insufficient security balance in " +
 "account " + counterpartyAccount.getName +
 " for settlement completion")
settle(..)

The system has reached an exceptional state; the settlement will fail when the seller
doesn’t have a sufficient security balance in his account. This state of affairs is
expressed by the exception name SettlementFailedException, the common ver-
biage that describes the situation in a real-world settlement system. When the user
gets this exception, he’s going to know exactly what has happened. He is also going to
see the accompanying message, which you’ve written, that clearly states the details of
why it failed.

3.4.2 Handling incorrect typing errors

No matter how expressive your DSL, your
user is going to make mistakes. It’s human
nature. When you’re programming in a
statically typed language like Java or Scala,
the compiler promptly notifies you of
such mistakes as soon as you make them.
Anytime you go against the rules of the
type system of the language you’re using,
the compiler acts as the policeman for
you, as in figure 3.9.

 If the user is sufficiently knowledge-
able in the host language that imple-
ments the DSL, error messages reported
by the compiler can be helpful. Modern
IDEs that provide code assist and autocompletion facilities can also be helpful with
such typing errors. But what can you do when that help is not available?

WHEN THE TYPE SYSTEM CAN’T HELP YOU

A dynamically typed language like Ruby or Groovy doesn’t come with compiler help
for type errors. In these languages, most such mistakes are manifested as runtime
errors after they’re processed through the usual method dispatch pipeline that the
language implements. Without compile-time error checking, well-designed DSLs in
dynamic languages take advantage of features like methodMissing to install user-
friendly error handlers. A DSL user can get information from these handlers that help
them rectify the error.

methodMissing is a useful technique when you’re designing DSLs in a dynamic lan-
guage. In the following example in Ruby I’ve added just enough context information
to make the runtime exception more meaningful to the user:

Figure 3.9 The compiler is the policeman!

81Handling errors and exceptions
class Trade
 //..
 def method_missing(method, *args, &block)
 raise NoMethodError, <<ERRORINFO
method: #{method}
args: #{args.inspect}
on: #{self.to_yaml}
ERRORINFO
 end
 //..
end

If the user supplies a method name that’s not implemented on a trade object, Ruby
raises a NoMethodError by default. The snippet contains an implementation of
method_missing that provides a custom error handler, adding more context informa-
tion for the user. (For an example of how to use methodMissing to synthesize new
methods in Groovy, see section 2.2.2.)

THE ROLE OF PARSERS

For an external DSL, when you use parsers to parse the input script, ensure that you
report the exact line number and the position in the input string where the error
occurred. Such user-friendly error reporting depends a lot on what you’re using to
generate the parser of your DSL syntax. Top-down parsers generated by ANTLR offer
better support for error reporting than the bottom-up ones generated by YACC. We’ll
discuss more of these in chapter 7 when we talk about designing external DSLs using
parser generators.

OK. Now you know how to deal with the inevitable typos or erroneous input that a
user is bound to try to sneak in. What can you do about business conditions that make
some actions impossible?

3.4.3 Handling exceptional business conditions

Your DSL should be able to report the precise exceptional state, using domain-driven
exception reporting, which we discussed earlier in section 3.4.1. More importantly,
the DSL should have handlers in place that take care of all domain exceptions raised
while the DSL is running. This includes all clean-up actions, resource releases, and
transaction rollbacks.

 Proper exception handling and reporting is also related to the strategy you choose
for integrating your DSL script with the core application. Integration strategies that
rely on the ScriptEngine-based approach like the one we saw in section 3.2.1 are usu-
ally poor at exception reporting. Consider the following example from the section
where we discussed embedding Groovy scripts within a Java application:

ScriptEngineManager factory = new ScriptEngineManager();
ScriptEngine engine = factory.getEngineByName("groovy");

try {
 List<?> orders = (List<?>)
 engine.eval(new InputStreamReader(

82 CHAPTER 3 DSL-driven application development
 new BufferedInputStream(
 new SequenceInputStream(
 new FileInputStream("ClientOrder.groovy"),
 new FileInputStream("order.dsl")))));
} catch (javax.script.ScriptException screx) {
 // handle
}

In this example, we didn’t handle the exception explicitly within the Groovy method.
We assumed that it would be handled by the caller function B. The class javax.
script.ScriptException has methods like getFileName() and getLineNumber()
that’ll help you locate exactly where the exception occurred. The important point here
is to be careful about handling exceptions that originate from inside your DSL and pro-
vide enough context information to the user. For code running in the sandbox of the
ScriptEngine, the right context for handling the exception is not always intuitive. This
is yet another reason why you should opt for better language-specific ways to integrate
your DSL, and fall back on the scripting option only if necessary

DSLs are designed for readability and expressiveness in the domain. Always try to
keep the user in mind when designing DSLs. At the same time, be aware of the perfor-
mance considerations that a DSL can impose on your design. What’s the trade-off?

3.5 Managing performance
Performance is an important criterion, but, believe it or not, I don’t think it’s the most
important one. You can improve the performance of an underperforming application
by scaling up or scaling out resources. But when you’ve implemented a spaghetti sys-
tem without any concern for expressivity or maintainability, you’re going to be stuck
with it for the rest of its life.

 Even so, you need to consider performance factors when you design an applica-
tion. Let’s face it—a properly designed DSL usually isn’t a hindrance to the opti-
mal performance of your application. Some of the dynamic languages like Groovy
or Ruby are slower compared to Java. But as an application developer or architect,
you need to make a trade-off between the raw speed that the application offers and
the aspects of making your code base maintainable, expressive, and adaptive to
future changes.

 Not all parts of your application need to be blazing fast. Portions of it require
more ease of maintenance than speed. Consider the configuration parameters of
your application. They need to be processed once, possibly when the application
starts up. It’s more important for some of the configuration parameters to be exter-
nalized and presented to the user in a form that’s more readable than pure code,
than for your application to start super quickly. The advantages of added expressive-
ness far outweigh the problems that might result from an increase in the startup time
of the application.

 Lots of initiatives are underway to make dynamic languages perform better on the
JVM. It makes more sense to invest in using these languages to design expressive DSLs.

Handle
exception

B

83Summary
If you have an expressive code base today, tomorrow you’ll automatically get the bene-
fits of improved performance when Groovy and Ruby language runtimes become
more performant on the JVM.

 Why do you think people use languages like Groovy and Ruby for designing a DSL,
knowing full well that their code base will be less performant than equivalent Java
code? It’s because these languages are maintainable, readable, and adaptive to
changes. It’s much easier to grow your DSL when you have an inherently expressive
host language underneath. With respect to performance, these factors are equally as
important as the raw speed of execution. All of these together determine the evolu-
tion path and lifeline of the language that you design for the domain.

 Statically typed languages like Scala are almost as performant as native Java. The
wrapper model of DSL integration that you saw in section 3.2.2 is unlikely to cause any
difference in performance compared to your native Java application.

 Script engines that operate in a sandbox environment are somewhat slower, but
then again, you don’t use scripts for performance-intensive tasks anyway. Scripting
DSLs are mostly used for processing lightweight domain logic that’s usually exposed to
end users and domain experts. Embedded DSLs or internal DSLs are mainly imple-
mented as libraries in the host language and don’t incur any performance penalty
whatsoever. External DSLs are free standing and implement their own language
machinery. In most pragmatic applications, you don’t need to design external DSLs
that have the complexity of a full-blown high-level language. In the real world, tools
like parser generators (YACC, ANTLR) and parser combinators (as in Scala and
Haskell) can be used effectively to easily build the necessary language infrastructure.

 Finally, remember the golden rule for performance tuning: benchmark exten-
sively before going for optimization.

3.6 Summary
In this chapter, we discussed all aspects of DSL-driven application development. You
learned how to select the right strategy for integrating your DSL with the core applica-
tion. The patterns of integration we discussed have given you a good idea about when

Key takeaways & best practices
■ DSLs never stand alone. They have to be integrated with your core application.

Let this be your golden rule when you're planning a DSL design, beginning at
day one.

■ When you design an internal DSL, choose the language that has the best inte-
gration capabilities with the core language of your application.

■ External DSLs often need additional infrastructure, like parser generators.
Keep this in mind when you’re planning the implementation phase so that you
have appropriate development resources on your team.

■ Follow established best practices while you integrate your DSL with your
core application.

84 CHAPTER 3 DSL-driven application development
to use the wrapper-based integration approach over the one based on ScriptEngine.
The exact strategy depends a lot on the implementation language that you’re using.
We also talked about how to handle errors and exceptions and how to report them to
users in a language that’s natural to the domain you’re modeling. Finally, we con-
cluded the chapter with a discussion about the trade-offs you might have to make
between the performance and manageability of your DSL code.

 With this chapter, we come to the end of the Getting Started section of the book.
In the following chapters, we’ll dive deep into all the implementation aspects of DSLs.
We’ll cover many of the JVM languages, design and implement DSL snippets using
each of them, and then discuss the virtues and gotchas of every approach that they
offer. It’s going to be a fascinating ride. Be prepared, stay calm, and buckle up for the
trip ahead.

3.7 References
1 Odersky, Martin, Lex Spoon, and Bill Venners. 2008. Programming in Scala. Artima.
2 König, Dierk, Paul King, Guillaume Laforge, and Jon Skeet, 2009. Groovy in Action,

Second Edition. Manning Early Access Program Edition. Manning Publications.
3 Ghosh, Debasish. Why I like Scala’s Lexically Scoped Open Classes. Ruminations

of a Programmer. http://debasishg.blogspot.com/2008/02/why-i-like-scalas-lexically-
scoped-open.html.

Part 2

Implementing DSLs

On the surface, DSL syntax appears to be aligned to the dialect that the
domain user speaks in his daily life. Part 1 focused mainly on the importance of
making your software speak the language of the domain. But even when you’ve
accomplished this, behind the syntax of the DSL is an underlying semantic
model that you need to develop, following principles of well-designed abstrac-
tions. Unless you have a semantic model that is extensible, malleable, and com-
posable, it’ll be difficult to have an expressive syntax on top.

 Part 2 (chapters 4 through 8) discusses all the idioms and best practices that
make a good semantic model.

 When you design a DSL, it is important to use the most appropriate language
that offers the level of abstraction that you need to program in. In this part of
DSLs in Action I discuss DSL implementation using Groovy, Ruby, Scala, and Clo-
jure. Each of these languages has its own strengths and weaknesses and each
offers features that you can use to model the components of your DSL. As a
developer seeking to use DSL-based development, you need to be aware of the
idioms that these languages offer and the ways they integrate with your main
application stack.

 Part 2 also covers external DSL development using modern frameworks like
ANTLR and Xtext (from Eclipse). ANTLR is a parser generator that helps you
write custom parsers for the DSL that you’re developing. Xtext is an environ-
ment that gives you a full stack for developing and managing external DSLs.

 I cap off part 2 with a discussion of parser combinators, the beautiful func-
tional abstractions for developing external DSLs.

Internal DSL
 implementation patterns
In part 1, you were inducted into the DSL-driven development paradigm. You saw
DSLs in all their glory and the issues that you need to address to use DSLs in a real-
world application. This chapter marks the beginning of the discussion about the
implementation-level issues of DSLs.

 Every architect has their own toolbox that contains tools for designing beautiful
artifacts. In this chapter, you’ll build your own toolbox to hold architectural pat-
terns that you can use to implement DSLs. Figure 4.1 depicts the broad topics that I
plan to cover.

 As a DSL designer, you need to be aware of the idioms and best practices in DSL
implementation. We’ll start with how to build a collection of patterns that you can

This chapter covers
■ Embedded DSL patterns with

metaprogramming
■ Embedded DSL patterns with typed

abstractions
■ Generative DSL patterns with runtime

metaprogramming
■ Generative DSL patterns with compile-time

metaprogramming
87

88 CHAPTER 4 Internal DSL implementation patterns
use in real-life application development. Internal DSLs are most often embedded in a
host language. Many of these languages support a meta-object protocol that you can
use to implement dynamic behaviors onto your DSL. Most of these languages are
dynamically typed, like Ruby and Groovy; we’ll discuss several patterns that use the
metaprogramming power of these languages in section 4.2. Statically typed languages
offer abstraction capabilities to model your DSL with embedded types, which we’ll
look at in section 4.3 in the context of using Scala as the implementation language.
In sections 4.4 and 4.5, we’ll look at code-generation capabilities of languages you can
use to implement concise internal DSLs. These are called generative DSLs because
they have a concise syntax on the surface, but implement domain behaviors by gener-
ating code either during compile time or runtime. At the end of the chapter, you’ll
feel good knowing that now you have a bag full of tricks, patterns, and best practices
that you can use to model real-life problem domains.

4.1 Filling your DSL toolbox
A master craftsman always has a packed toolbox. He starts filling up his toolbox with
an initial seed that he inherited from his master, then enriches it over the years of
practicing his art. We’re talking about DSLs in this book, specifically about filling up
your own toolbox for implementing internal DSLs.

 Let’s start with the common patterns of internal DSLs we discussed in section 2.3.1.
These are patterns of implementation that you can apply in various scenarios when
you’re doing DSL-based design. The discussion in section 2.3.1 also contained code
snippets that illustrated how the patterns manifest themselves in certain commonly
used languages. In this chapter, we’ll build on that discussion, provide examples from
our problem domain of financial brokerage systems, and map the examples onto

Figure 4.1 Roadmap of the chapter

89Filling your DSL toolbox
implementations that realize their solution domains. As you read, make sure you col-
lect all the things you need to enrich your toolbox. Sometimes I’ll show you multiple
implementation techniques for the same pattern, often in different languages, and
highlight the trade-offs that each involves.

 Before we move on to the details, look at figure 4.2, which picks up a few of the
patterns that we identified in chapter 2 and annotates each of them with example arti-
facts that we’ll discuss in this chapter. To clarify one of the annotations in the figure:
look at the box “Reflective metaprogramming”, which is a pattern for embedded DSL.
In the examples that I’ll discuss in this chapter, you’ll see how to use this pattern to
implement implicit context in Ruby and Groovy and dynamic decorators in Ruby. Both of
these implementation artifacts make DSLs that help users express the intent clearly
without any unnecessary complexity.

 As figure 4.2 indicates, internal DSLs fall into two categories:

■ Embedded—The DSL is inside the host language, which implies that you, the pro-
grammer, write the entire DSL explicitly

■ Generative—Part of the DSL code (mostly repetitive stuff) is generated by the
compile-time or runtime machinery of the language

Figure 4.2 Internal DSL implementation patterns, along with example
artifacts. I’ll discuss each of these artifacts in this chapter, and provide sample
implementations in the languages specified in the figure.

90 CHAPTER 4 Internal DSL implementation patterns
In any real-world application, patterns don’t occur in isolation. Patterns manifest
themselves in the form of cooperating forces and solutions in every use case that
you’ll be working with. The effects that one pattern generates are handled by another
pattern; the entire system evolves as a coherent pattern language. In the following sec-
tions, I’ve chosen to follow the style that you’ll encounter in your role as a DSL
designer. Instead of providing a geometrically structured description of each of the
patterns in isolation, I’ll take sample DSL fragments from our financial brokerage sys-
tems domain and deconstruct each of them to explore these pattern structures. This
method will not only give you an idea of how each of the patterns can be imple-
mented in real-life use cases, but you’ll also appreciate how these structures can be
synergistically stitched together to create a greater whole.

 Let’s start with the pattern structures that you’ll use to implement embedded DSLs.

4.2 Embedded DSLs: patterns in metaprogramming
Metaprogramming is writing programs that write programs. OK, that’s what you find
in textbooks, and more often than not you’re misled into thinking that metaprogram-
ming is yet another code generator with an embellished name. Practically speaking,
metaprogramming is programming with the meta-objects that the compile-time or the
runtime infrastructure of your environment offers. I won’t go into the details of what
that means; I’m sure you know all about it by now, after having gone through the
detailed discussion that we had in section 2.5.

 In this section, we’ll look through examples in our domain that can be modeled
using metaprogramming techniques. In some cases, I’ll start with implementations in
a language that doesn’t offer the power of metaprogramming. Then you’ll see how
the implementation transforms to a more succinct one when we use a language that
lets you program at a higher level of abstraction using metaprogramming.

CODE ASSISTANCE In all of the following sections that have rich code snip-
pets, I include a sidebar that contains the prerequisites of the language fea-
tures that you need to know in order to appreciate the implementation
details. These sidebars are just the feelers for the language features used in
the code listing that follow. Feel free to read the appropriate language
cheat-sheet that’s in the appendixes for more information about a particu-
lar language.

Every subsection that follows contains a theme that manifests itself as an instance of
a metaprogramming pattern implementation, all of which are shown in figure 4.2.
We’ll start with a sample use case, look at the DSL from the user’s point of view,
and deconstruct it to unravel the implementation structures. It’s not that each use
case implements only one pattern instance. In fact, all the following themes com-
prise multiple pattern instances working toward the fulfillment of realizing the solu-
tion domain.

91Embedded DSLs: patterns in metaprogramming
4.2.1 Implicit context and Smart APIs

Let’s begin with a brief refresher from the earlier chapters. Clients register themselves
with stock trader firms; these firms trade the clients’ holdings for them and keep them
safe. For more information about client accounts, refer to the callout Financial broker-
age systems: client account in section 3.2.2.

 With that out of the way, let’s talk about designing a DSL that registers client
accounts with the trader. You can judge for yourself how applying metaprogramming
techniques under the hood can make your APIs expressive without users knowing any-
thing about the implementation.

JUDGING THE EXPRESSIVITY OF A DSL
Look at the following DSL script. This DSL creates client accounts to be registered with
the stock broker firm.

Account.create do

 number "CL-BXT-23765"
 holders "John Doe", "Phil McCay"
 address "San Francisco"
 type "client"
 email "client@example.com"

end.save.and_then do |a|

 Registry.register(a)
 Mailer.new
 .to(a.email_address)
 .cc(a.email_address)
 .subject("New Account Creation")
 .body("Client account created for #{a.no}")
 .send
end

Ruby tidbits you need to know
■ How classes and objects are defined in Ruby. Ruby is OO and defines a class

in the same way that any other OO language does. Even so, Ruby has its own
object model that offers functionalities to the users to change, inspect, and
extend objects during runtime through metaprogramming.

■ How Ruby uses blocks to implement closures. A closure is a function and the
environment where the function will be evaluated. Ruby uses block syntax to
implement closures.

■ Basics of Ruby metaprogramming. The Ruby object model has lots of arti-
facts like classes, objects, instance methods, class methods, singleton
methods, and so on that allow reflective and generative metaprogramming.
You can dig into the Ruby object model at runtime and change behaviors or
generate code dynamically.

Listing 4.1 DSL that creates a client account

Create accountB

Save accountC

Send mail
after open

D

92 CHAPTER 4 Internal DSL implementation patterns
This code listing shows how the client uses the DSL. Note how it hides the implementa-
tion details and makes the account creation process expressive enough for the client.
It not only creates the account, it does other stuff as well. Can you identify what else it
does by looking at listing 4.1, without looking at the underlying implementation? If you
can figure out all the actions that the code does you have a smart DSL implementation.

 You can easily identify the actions that the DSL performs from the code. It creates
the account B and saves it (possibly to the database) C. Then it, among other things,
registers the account and sends a mail to the account holder D.

 As far as expressivity is concerned, the DSL does a fairly good job of offering intui-
tive APIs to the user. Show this DSL snippet to a domain expert and they’ll also be able
to identify the sequence of actions that it does because the DSL honors the vocabulary
of the domain. Now let’s look at the underlying implementation.

DEFINING THE IMPLICIT CONTEXT

The Account object is an abstraction that implements the methods called while an
instance is created. This is the plain old Ruby way to define the instance methods of a
class. The script is shown in the following listing.

class Account
 attr_reader :no, :names, :addr, :type, :email_address

 def number(number)
 @no = number
 end

 def holders(*names)
 @names = names
 end

 def address(addr)
 @addr = addr
 end

 def type(t)
 @type = t
 end

 def email(e)
 @email_address = e
 end

 def to_s()
 "No: " + @no.to_s +
 " / Names: (" + @names.join(',').to_s +
 ") / Address: " + @addr.to_s
 end
end

Now let’s look beyond the obvious method definitions of the abstraction and gaze into
some of the subtle aspects that you can identify as the implementation patterns that
we talked about earlier.

Listing 4.2 Expressive domain vocabulary in implementation of Account

93Embedded DSLs: patterns in metaprogramming
 With any code snippet, you need to define the context under which that code will
run. The context can be an object that you defined earlier or an execution environ-
ment that you set up explicitly or declared implicitly. Some languages mandate that
the context be explicitly wired with every invocation of the corresponding methods.
Consider the following Java code:

Account acc = new Account(number);
acc.addHolder(hName1);
acc.addHolder(hName2);
acc.addAddress(addr);
//..

All invocations of methods that operate on the Account object need to have the con-
text object passed explicitly as the dispatcher. Explicit context specification makes ver-
bose code that doesn’t help make DSLs readable and succinct. It’s always a plus if a
language allows implicit context declaration; it results in terse syntax and a concise
surface area for the API. In listing 4.1, we invoke methods like number, holders, type,
email, and others on an implicit context of the Account that gets created.

 How do you make the context implicit? Here’s the relevant code, implemented in
Ruby as part of the Account class that does exactly that through a clever bit of
metaprogramming:

class Account
 attr_reader :no, :names, :addr, :type, :email_address

 ## rest as in listing 4.1

 def self.create(&block)
 account = Account.new
 account.instance_eval(&block)
 account
 end
end

Look at C, where instance_eval is a Ruby metaprogramming construct that evalu-
ates the block that’s passed to it in the context of the Account object on which it’s
invoked. It’s as if the newly constructed account were implicitly passed to every invoca-
tion of the method that you pass around in the Ruby block B. This code is an exam-
ple of reflective metaprogramming. The context of evaluation is determined through
reflection during runtime by the Ruby execution environment.

 You can perform the same trick in Groovy as well, which is another language with
strong metaprogramming capabilities.

 The previous Ruby code snippet becomes the code shown in the following listing
in Groovy.

Groovy tidbits you need to know
■ How to create a closure in Groovy and set up a context for method dispatch.

create takes
a block

B

eval block in
Account contextC

94 CHAPTER 4 Internal DSL implementation patterns
class Account {

 // method definitions

 static create(closure) {
 def account = new Account()
 account.with closure
 account
 }
}

Account.create {
 number 'CL-BXT-23765'
 holders 'John Doe', 'Phil McCay'
 address 'San Francisco'
 type 'client'
 email 'client@example.com'
}

Note how the implementations differ, yet we have APIs of similar expressivity in both
the languages.

USING SMART APIS TO IMPROVE EXPRESSIVENESS

Readability is an inevitable consequence of expressiveness in a DSL. Implementing flu-
ent interfaces is one way to improve readability and make Smart APIs. You can imple-
ment method chaining so that the output from one method flows naturally as the
input of another. This technique makes your series of API invocations feel more natu-
ral, and it’s closer to the sequence of actions that you would perform in the problem
domain. This makes the APIs smart in the sense that you don’t need to include any
boilerplate code in their invocation.

 Consider the sequence of method calls that causes mail to be sent in D of listing 4.1.
The API invocation flows in the same sequence of actions that you would do when
you’re working with a mail client.

 Watch out for fluency issues when you design DSLs on your own. The next listing
shows the snippet of code that implements the Mailer class that we used in the DSL in
listing 4.1.

class Mailer
 attr_reader :mail_to, :mail_cc, :mail_subject, :mail_body

 def to(*to_recipients)
 @mail_to = to_recipients
 self
 end

 def cc(*cc_recipients)
 @mail_cc = cc_recipients
 self
 end

Listing 4.3 Implicit context set up for method dispatch in Groovy

Listing 4.4 Mailer class with fluent interfaces

Return self
for chainingB

95Embedded DSLs: patterns in metaprogramming
 def subject(subj)
 @mail_subject = subj
 self
 end

 def body(b)
 @mail_body = b
 self
 end

 def send
 # actual send
 puts "sending mail to (#{@mail_to.join(",")})"
 end
end

The Mailer instance is returned to the caller B to be used as the context for the next
invocation. The send method is the final method of the chain that finishes the entire
sequence and sends the email.

 In listing 4.1, which shows how to use the account-creation DSL, the three steps
involved in creating the account are quite explicit. Let’s look at an even more
explicit view in figure 4.3, which shows the steps that apply the patterns that give the
DSL its shape.

 The steps for applying a pattern are: create an instance of the account, save it to the
database, and do other actions as part of the follow up. The third step in the sequence
has been explicitly modeled as a closure, or a Ruby block. Note that the block takes the

Figure 4.3 The steps of pattern application: B The account is created
through the implicit context that is set up using instance_eval. C
The account is saved. D The Mailer is set up using fluent interfaces and
gets the account from a block.

96 CHAPTER 4 Internal DSL implementation patterns
created account instance as an input and uses it to perform the other actions. The
instance remains unchanged; this is called a side-effecting action.

 Managing side effects is an extremely subtle issue in program design. You need to
decouple them to make abstractions pure. Abstractions that are free from side effects
make your world a better place. Always shoot for explicit separation of side-effecting
actions when you’re designing DSLs. In listing 4.1, all the side-effecting code is decou-
pled in a separate block. Doing this is not specific to internal DSL design; you should
this in mind when you’re designing any abstractions.

 In this section, we discussed two of the implementation patterns that are used
extensively in DSL-based design paradigms. The key takeaways from this section are
listed in the sidebar.

Next we’ll look at other implementation structures that use reflective metaprogram-
ming to implement dynamic behaviors in your DSL.

4.2.2 Reflective metaprogramming with dynamic decorators

During our explorations of metaprogramming techniques, you saw in section 4.2.1
how you can use them to make your DSL expressive and succinct. In this section, we’ll
explore yet another aspect of runtime metaprogramming: manipulating class objects
dynamically to decorate other objects.

 The Decorator design pattern is used to add functionalities to objects dynamically
during runtime. (In appendix A, I talk about the role of decorators as a design pattern
for enabling composability between abstractions.) In this section, we’re going to look
at this topic more from an implementation perspective and see how the power of
metaprogramming can make more dynamic decorators.

DECORATORS IN JAVA

Let’s start with the abstraction for Trade, a domain entity that models the most funda-
mental entity involved in the trading process. For the purpose of this example, we’ll
consider the contract from the point of view of composing a Trade object with decora-
tors that affect its net value. For basic information about how a trade’s net cash value is
computed, take a look at the accompanying sidebar.

Key takeaways from this section
Implement Smart APIs with fluent interfaces using method chaining (Mailer class
in listing 4.4).

Implicit context makes DSLs less verbose and incurs less surface area for the APIs,
leading to better expressivity (the create class method in the Ruby snippet and the
static create method in the Groovy code in listing 4.3).

Isolate side effects from pure abstractions (the Ruby block in listing 4.1 that reg-
isters the account and sends mail to the account holder).

97Embedded DSLs: patterns in metaprogramming
Consider the Java code in the following listing.

public class Trade {
 public float value() {
 // ..
 }
}

public class TaxFeeDecorator extends Trade {
 private Trade trade;

 public TaxFeeDecorator(Trade trade) {
 this.trade = trade;
 }
 @Override
 public float value() {
 return trade.value() + //..;
 }
}

public class CommissionDecorator extends Trade {
 private Trade trade;

 public CommissionDecorator(Trade trade) {
 this.trade = trade;
 }
 @Override
 public float value() {
 return trade.value() + //..;
 }
}

Financial brokerage systems: the cash value of a trade
Every trade has a cash value that the counterparty receiving the securities needs
to pay to the counterparty delivering the securities. This final value is known as the
net settlement value (NSV). The NSV has two main components: the gross cash
value and the tax and fees. The gross cash value depends on the unit price of the
security that was traded, the type of the security, and additional components like
the yield price for bonds. The additional tax and fee amounts include the taxes,
duties, levies, commissions, and accrued interest involved in the trading process.

The gross cash value calculation depends on the type of the security (equity or
fixed income), but is fundamentally a function of the unit price and the quan-
tity traded.

The additional tax and fee amounts vary with the country of trade, the exchange
where the trading takes place, and the security that’s traded. In Hong Kong, for
example, a stamp duty of 0.125% and a transaction levy of 0.007% are payable on
equity purchases and sales.

Listing 4.5 Trade and its decorators in Java

Trade abstractionB
Compute and return
the trade valueC

Decorators D

Details of tax
and fee
computationE

Details of commission
computationF

98 CHAPTER 4 Internal DSL implementation patterns
The code in this listing implements the contract for the Trade abstraction B and two
of the decorators D that can be composed with Trade to impact the net value of the
execution C, E, F. The usage of this decorator pattern is as follows:

Trade t =
 new CommissionDecorator(
 new TaxFeeDecorator(new Trade()));
System.out.println(t.value());

You could go on adding additional decorators from the outside over the basic abstrac-
tion of Trade. The final value that’s computed will be the net effect of applying all the
decorators on the Trade object.

 If Java is your language of implementation, listing 4.5 is your DSL for computing
the net value of a given trade. Now it’s obvious that the code is almost the best that we
can do with Java as the implementation language. It makes perfect sense to a pro-
grammer, and if they are familiar with the design patterns that the Gang of Four has
taught us (see [1] in section 4.7), they must be satisfied with a domain-specific realiza-
tion of the sermon. But, can we do better?

IMPROVING THE JAVA IMPLEMENTATION

With the reflective metaprogramming capabilities of Ruby or Groovy, we can make the
DSL more expressive and dynamic. But before we look into the corresponding imple-
mentation, let’s identify some of the areas that are potential candidates for improve-
ment. See table 4.1.

 Dynamically typed languages like Ruby and Groovy are more concise in syntax
than Java. Both offer duck typing, which can make more reusable abstractions at the
expense of static type safety that languages like Java and Scala give you out of the box.
(You can also implement duck typing in Scala. We’ll talk about that in chapter 6.)
Let’s explore more of the dynamic nature of Ruby to get the knowledge you need to
improve on the points mentioned in table 4.1.

DYNAMIC DECORATORS IN RUBY

The following listing is a similar Trade abstraction in Ruby, slightly more fleshed out
than the Java implementation in terms of real-life contents.

Table 4.1 Possible improvement areas for decorators in the Java DSL

Can we improve? How?

Expressivity and domain friendliness. Be less verbose, but the sky’s the limit here.

Hardwired relationship between Trade and the
decorators.

Get rid of static inheritance relationships, which
will make the decorators more reusable.

Readability. The Java implementation reads out-
side in, from the decorators to the core Trade
abstraction, which isn’t intuitive.

Put Trade first, and then the decorators.

99Embedded DSLs: patterns in metaprogramming
class Trade
 attr_accessor :ref_no, :account, :instrument, :principal

 def initialize(ref, acc, ins, prin)
 @ref_no = ref
 @account = acc
 @instrument = ins
 @principal = prin
 end

 def with(*args)
 args.inject(self) { |memo, val| memo.extend val }
 end

 def value
 @principal
 end
end

Apart from the with method B, there’s not much to talk about in terms of implemen-
tation differences with this code’s Java counterpart. I’ll get back to the with method
shortly. First, let’s look at the decorators. I’ve designed the decorators as Ruby mod-
ules that can be used as mixins in our implementation(for more information about
mixins, see appendix A, section A.3):

module TaxFee
 def value
 super + principal * 0.2
 end
end

module Commission
 def value
 super - principal * 0.1
 end
end

Even without examining the details too closely, you can see that the decorators in the
snippet aren’t statically coupled to the base Trade class. Wow, we’ve already success-
fully improved one of the issues that were listed in table 4.1.

 Remember we mentioned duck typing? You can mix in the modules of the above
snippet with any Ruby class that implements a value method. And it so happens that
our Trade class also has a value method. But how exactly does the super call work in

Ruby tidbits you need to know
■ How modules in Ruby can help implement mixins that you can tag on to other

classes or modules.
■ Basics of Ruby metaprogramming that generate runtime code through

reflection.

Listing 4.6 Trade abstraction in Ruby

Dynamic module
extension

B

100 CHAPTER 4 Internal DSL implementation patterns
these module definitions? In Ruby, if you specify a super call without any arguments,
Ruby sends a message to the parent of the current object to invoke a method of the
same name. This is where reflective metaprogramming comes in as the sweet spot of
implementation. In this case, it happens to be the value method. Notice how we’re
invoking a super class method without statically wiring up any specific super class. Fig-
ure 4.4 illustrates how the super calls of the Trade class and the decorators chain
together at runtime to give us the desired effect.

 But where is the metaprogramming magic going on? And how does it make our
DSL more expressive? For the answers, let’s go back to the with method in listing 4.6.
What it does is take all the decorators that are passed as arguments to the method
and creates an abstraction, dynamically extending the Trade object with all of them.
Look at figure 4.5, which shows how the decorators get wired dynamically with the
subject class.

 The dynamic extension in the figure is equivalent to the effect that we could have
had with static extension of Ruby classes. But the fact that we can make it happen dur-
ing runtime makes things much more reusable and decoupled. Here’s how you apply
decorators to the Trade object using the implementation in listing 4.6.

tr = Trade.new('r-123', 'a-123', 'i-123', 20000).with TaxFee, Commission
puts tr.value

Using metaprogramming techniques, we wired objects during runtime and imple-
mented the DSL in the previous snippet. Now it reads well from the inside out, as you
would expect with the natural domain syntax. The syntax has less accidental complex-
ity than the Java version and is certainly more expressive to the domain person. (See
appendix A, section A.3.2 for a discussion of accidental complexity.) There you have

Figure 4.4 How the super call wires up the value() method. The call starts with
Commission.value(), Commission being the last module in the chain, and propagates downward
until it reaches the Trade class. Follow the solid arrow for the chain. Evaluation follows the dotted
arrows, which ultimately results in 220, the final value.

101Embedded DSLs: patterns in metaprogramming
it. We’ve successfully addressed all three items for improvement from table 4.1. Wasn’t
that easy?

 It’s not all coming up roses though. Any pattern based on dynamic metapro-
gramming has pitfalls that you need to be aware of. Read the accompanying side-
bar for that mild note of exception that might come back to bite you in the end.

When you use runtime metaprogramming in dynamically typed lan-
guages, the conciseness of your syntax is improved, the expressivity of

the domain language is greatly enhanced, and you can dynamically manipu-
late the abilities of class structures. All these pluses come at the price of
diminished type safety and slower execution speed. I’m not trying to discour-
age you from using these techniques in designing DSLs for your next project.
But, as always, designing abstractions is an exercise in managing trade-offs. In
the course of using DSL-based development, you’ll encounter situations
where static type safety might be more important than offering the best possi-
ble expressiveness to your DSL users. And as you’ll see in course of this chap-
ter, even with static type checking there are options with languages like Scala
for making your DSL as expressive as its Ruby counterpart. Weigh all the
options, then decide whether to take the plunge.

Key takeaway from this section
The Decorator design pattern helps you attach additional responsibilities to
objects. If you can make decorators dynamic like we did with Ruby modules in this
section, you get the added advantage of better readability for your DSL.

Figure 4.5 The subject (Trade class) gets all the decorators (TaxFee and
Commission) and extends them dynamically using the with() method.

102 CHAPTER 4 Internal DSL implementation patterns
In this section, you saw how you can use metaprogramming to help you implement
dynamic decorators. It’s so different and much more flexible than what you would do
in a statically typed language like Java or C#. Most importantly, you saw how you can
use dynamic decorators to implement a real-world DSL snippet for our domain. In the
next section, we’ll continue our journey through the world of reflective metaprogram-
ming techniques and implement yet another variant of one of the most popular
design patterns in Java.

4.2.3 Reflective metaprogramming with builders

Remember our order-processing DSL that we built as part of a motivating example in
chapter 2? We started with an example in Java where we used the Builder design pat-
tern (see [1] in section 4.7) to make the order-processing DSL expressive to the user.
As a quick recap, here’s how the client uses the Java implementation of the DSL, repli-
cated from section 2.1.2:

Order o =
 new Order.Builder()
 .buy(100, "IBM")
 .atLimitPrice(300)
 .allOrNone()
 .valueAs(new OrderValuerImpl())
 .build();

This code uses the fluent interfaces idiom to build a complete Order. But with Java,
the entire building process is static; all the methods that the builder supports need
to be statically invoked. Using patterns of dynamic metaprogramming in Groovy, we
can make builders much more minimalistic, but still expressive (see [2] in section 4.7;
I also discuss the minimalism property of abstraction design in appendix A, section A.2).
The user has to write less boilerplate code, and that makes the final DSL more precise
and easier to manage. The language runtime uses reflection (that’s why it’s called
reflective metaprogramming) to do what would otherwise have to be done statically,
using lots of boilerplate code.

THE MAGIC OF GROOVY BUILDERS

Consider the skeleton components in listing 4.7 for modeling a Trade object in
Groovy. Once again, as a side note, the Trade abstraction we’re developing here is
much simpler than what you would use to develop a production-quality trading sys-
tem and is only for the purpose of demonstrating the concept that we’re addressing
in this section.

Groovy tidbits you need to know
■ How classes and objects are defined in Groovy.
■ Groovy builders let you create hierarchical structures using reflection. The

syntax that it offers is concise and ideal for a DSL.

103Embedded DSLs: patterns in metaprogramming
package domain.trade

class Trade {
 String refNo
 Account account
 Instrument instrument
 List<Taxfee> taxfees = []
}

class Account {
 String no
 String name
 String type
}

class Instrument {
 String isin
 String type
 String name
}

class Taxfee {
 String taxId
 BigDecimal value
}

Here we have a plain old abstraction for Trade that contains an Account, an Instrument,
and a list of Taxfee objects. First let me introduce the builder script that will magically
introspect into the guts of the classes and create the correct objects with the values that
you supply for them.

def builder =
 new ObjectGraphBuilder()

builder.classNameResolver = "domain.trade"
builder.classLoader = getClass().classLoader

def trd = builder.trade(refNo: 'TRD-123') {
 account(no: 'ACC-123', name: 'Joe Doe', type: 'TRADING')
 instrument(isin: 'INS-123', type: 'EQUITY', name: 'IBM Stock')
 3.times {
 taxfee(taxId: 'Tax ${it}', value: BigDecimal.valueOf(100))
 }
}

assert trd != null
assert trd.account.name == 'Joe Doe'
assert trd.instrument.isin == 'INS-123'
assert trd.taxfees.size == 3

If you’re from a Java background, the code in this listing looks magical indeed. The
DSL user writes methods, like trd B, that construct the builder that creates trade
objects. Within the trd method, the user calls methods like account and instrument

Listing 4.7 Trade abstraction in Groovy

Listing 4.8 Dynamic builders for Trade objects in Groovy

Building the
builder

B

Dynamically
created methods C

104 CHAPTER 4 Internal DSL implementation patterns
C, which we don’t have as part of the Trade class. Yet somehow the code runs, as if
these methods were created magically by the language runtime. It’s the power of
Groovy metaprogramming that does the trick.

INSIDE GROOVY BUILDERS

In fact, it’s the combination of metaprogramming techniques, named parameters,
and closures that make the DSL snippet in listing 4.8 work so wonderfully. You’ve seen
quite a few examples in earlier chapters of how closures work in Groovy. Let’s dig into
some of the details of how the runtime discovers the class names, builds the correct
instances, and populates with the data that you’ve supplied to the builder. The salient
points are listed in table 4.2.

For more details about how Groovy builders work, refer to [2] in section 4.7.
 You’ve seen enough of metaprogramming techniques and how you can use them

to design expressive DSLs. It’s now time to take stock of what we did in this whole sec-
tion and review the patterns from figure 4.2 that we’ve implemented so far. After all,
you want to use them as the tools in your repertoire to build a world of DSLs.

Table 4.2 Builders and metaprogramming

Runtime discovery How it works

Matching the method name For any method invoked on the ObjectGraphBuilder, Groovy
matches the method name with a Class using a ClassName-
Resolver strategy that gives it the Class to instantiate.

Customizing
ClassNameResolver

You can customize the ClassNameResolver strategy with
your own implementation.

Creating the instance When Groovy has the Class, it uses another strategy,
NewInstanceResolver, that calls a no-argument construc-
tor to create a default instance of the class.

Working with hierarchical
structures

The builder gets more sophisticated when you have references
within your class that set up a parent/child relationship (like we
have in Trade and Account in listing 4.8). In these cases, it
uses other strategies like RelationNameResolver and
ChildPropertySetter to locate the property classes and
create instances.

Key takeaway from this section
You can use builders to construct an object incrementally within your DSL. When
you make the builders dynamic, you cut down on the boilerplate code that you have
to write. Dynamic builders like the ones in Groovy or Ruby smooth out the imple-
mentation aspect of your DSL by constructing methods dynamically through the
meta-object protocol of the language runtime.

105Embedded DSLs: patterns in metaprogramming
4.2.4 Lessons learned: metaprogramming patterns

Don’t think about the patterns we’ve covered as isolated entities, shut away by them-
selves. When you work on a domain, you’ll find that each results in forces that you need
to resolve by applying other patterns (see [5] in section 4.7). Figure 4.6 is a reminder of
what we’ve implemented so far. In the figure, the DSL patterns from figure 4.2 are
listed on the left and the implementation instances of each of them that have been
used in the code examples in this chapter are listed on the right.

 We discussed a few important patterns that you would frequently use in imple-
menting internal DSLs. These are primarily targeted for dynamically typed languages
that offer strong metaprogramming capabilities.

 From reflective metaprogramming we’re going to move on to another category of
patterns that you’ll use when you’re implementing internal DSLs in statically typed

Key takeaway from this section
The patterns we discussed in this section help you make your DSLs less verbose
and more dynamic. We used the metaprogramming capabilities of the language to
do stuff during runtime that would you would otherwise have to do statically, using
boilerplate code.

It’s not only the specific implementation in Ruby or Groovy that matters. You need
to think through the context that leads to these implementations. Indeed, there
are lots of other ways to make your DSL dynamic when you’re using powerful imple-
mentation languages.

When you get a feel for the problem that this technique solves in real-life domain
modeling, you’ll be able to identify many such instances and come up with solu-
tions of your own.

Figure 4.6 Internal DSL patterns checklist up to this point. In this chapter, you’ve
seen implementations of these patterns in Ruby and Groovy.

106 CHAPTER 4 Internal DSL implementation patterns
languages like Scala. When you model your DSL components as typed abstractions,
some of your business rules are implemented for free as part of the language’s type
system. This is yet another way to make your DSL concise, yet expressive.

4.3 Embedded DSLs: patterns with typed abstractions
In the patterns we’ve discussed so far, you’ve learned how to get concise code structures
in your DSL, not only in how they’re used, but also as part of the implementation.

 In this section, we move away from dynamic languages and try to find out if we can
make DSLs expressive using the power of a type system. For these examples, we’re going
to be using Scala. (All Scala code that I demonstrate in this section is based on Scala 2.8.)
We’ll focus on how types offer an additional level of consistency to our DSL, even before
the program can run. At the same time, types can make a DSL as concise as some of the
dynamic languages that we’ve already discussed. Refer to figure 4.2 frequently, which is
our frame of reference for all the patterns that we’ll be discussing in this chapter.

4.3.1 Higher-order functions as generic abstractions

So far in our discussions about domains, we’ve concentrated on the operations of the
financial brokerage system, like maintaining client accounts, processing trades and
executions, and placing orders on behalf of its clients. In this section, let’s look at a cli-
ent document that determines all trading activities that the broker does during the
work day. A daily transaction activity report for a client account is something that the
trading organization generates for some of its clients and dispatches to their respec-
tive mailing addresses.

GENERATING A GROUPED REPORT

Figure 4.7 shows a sample client activity report that contains the instruments traded,
the quantity, the time of the trade, and the amount of money involved in the trade.

Figure 4.7
A simplified view of a sample
client activity report statement

107Embedded DSLs: patterns with typed abstractions
Many organizations offer their clients a flexible way to view daily transactions. They
can view it sorted on specific elements, or grouped. If I have a trading account, I
might want to see all my transactions sorted and grouped by the individual instru-
ments traded during the day. Figure 4.8 shows that view.

 Maybe I also want a view that groups all my transactions based on the quantities
traded in each of them, as in figure 4.9.

 In reality, the report can contain lots of other information. We’re going to focus
only on what is useful for the context we’re going to implement. In this example, we’ll
construct a DSL that lets a client view his trading activity report based on a custom
grouping function. We’ll start with a DSL that implements separate functions for each

Figure 4.8
Sample view of the account
activity report sorted and
grouped by the instruments
traded during the day. Note how
the instruments are sorted and
the quantities grouped together
under each instrument.

Figure 4.9
Sample view of the account
activity report sorted and grouped
by the quantity of instruments
traded during the day.

108 CHAPTER 4 Internal DSL implementation patterns
grouping operation. Then, we’ll improve the verbosity of our implementation by
designing a generic groupBy combinator that accepts the grouping criterion as a
higher-order function.

DEFINITION As a reminder, a combinator is a higher-order function that takes
another function as input. Combinators can be combined to implement DSL
structures as we’ll see here and also in chapter 6. Appendix A also contains
details about combinators.

You’ll see the power of Scala’s type system that makes the operation statically type safe,
combined with its ability to handle higher-order functions. To that end, let’s jump
right in with code examples.

SETTING UP THE BASE ABSTRACTIONS

Let’s start bottom up with the final view of how your DSL will look. Then we’ll work
toward implementing the same thing using Scala. Here’s how users will use your DSL:

activityReport groupBy(_.instrument)
activityReport groupBy(_.quantity)

In the code snippet, the first invocation generates the activity report grouped by
instrument, and the second one generates it grouped by the quantity traded. The fol-
lowing snippet implements the basic abstraction of a client activity report. Let’s take a
more detailed look at some of the features that the abstraction offers.

type Instrument = String

case class TradedQuantity(instrument: Instrument,
 quantity: Int)

implicit def tuple2ToLineItem(t: (Instrument, Int)) =
 TradedQuantity(t._1, t._2)

case class ActivityReport(account: String,
 quantities: List[TradedQuantity]) {
 //..
}

Scala tidbits you need to know
■ Case classes define immutable value objects. A case class is a concise way

to design an abstraction where the compiler gives you a lot of goodies out of
the box.

■ Implicit type conversions allow you to extend an existing abstraction in a com-
pletely noninvasive way.

■ For-comprehensions offer a functional abstraction of an iterator over a
collection.

■ Higher-order functions let you design and compose powerful functional
abstractions.

Concrete type
definitionB

Value objectC

Implicit Tuple2
to LineItemD

The main
abstractionE

109Embedded DSLs: patterns with typed abstractions
This isn’t a Scala book. Even so, for your understanding, I’m going to highlight some
of the features that this code fragment offers. It’ll help you compare it with an equiva-
lent Java fragment, and demonstrate some of the expressive power that it has.

 Keeping in mind that we need to be expressive in our DSL, we start with a type def-
inition that models a domain artifact B. This keeps the code self-documented by
avoiding opaque native data types. It also makes the code more meaningful to a
domain user and keeps the type of Instrument flexible enough for future changes.

 The case class TradedQuantity C models a value object. Value objects are sup-
posed to be immutable and Scala case classes are a succinct way to represent them. A
case class offers automatically immutable data members, syntactic convenience for a
built-in constructor, and out-of-the-box implementations of equals, hashCode, and
toString methods. (Case classes are a great way to model value objects in Scala. For
more details, see [4] in section 4.7.)

 The implicit declaration D is the Scala way to provide automatic conversion
between data types. Implicits in Scala are lexically scoped, which means that this type con-
version will be functional only in the module where you explicitly import the implicit
definition. In this example, the tuple (Instrument, Int) can be implicitly converted to
a TradedQuantity object through this declaration. Note that (Instrument, Int) is the
Scala literal representation for a tuple of two elements. A more verbose representation
is Tuple2[Instrument, Int]. (In section 3.2.2, I discussed how Scala implicits work.
If you need to, make a quick visit back to refresh your memory.)

 Finally, we come to the main abstraction of the client activity report. Activity-
Report E contains the account information and the list of all tuples that represent
the quantities and instruments traded during the day.

 Now we’re going to step through the following iterative modeling process and
implement the grouping function that’ll give the client the custom views they like to
have for their daily transaction report. Table 4.3 shows how we’ll improve our model
using an iterative process.

First we’ll implement the groupBy functions.

FIRST ATTEMPT: A SPECIALIZED IMPLEMENTATION

If we build specialized implementations of the groupBy function for the Activity-
Report abstraction, the DSL user is going to get quite an expressive API. But we’re dis-
cussing implementations here; expressive usage can’t be the only yardstick for judging the

Table 4.3 Iterative improvement of the DSL

Step Description

Create a DSL for the client to view the
trading activity report. Support grouping
operations by Instrument and
Quantity.

Implement specialized grouping functions:
groupByInstrument and groupByQuantity
Reduce repetitive boilerplates by implementing a generic
grouping function: groupBy{T <% Ordered[T]]

110 CHAPTER 4 Internal DSL implementation patterns
completeness of our DSL. The following listing shows the specialized implementation
for grouping by Instrument and Quantity. Notice how we need to define specialized
functions for each kind of grouping that we want to give to the user.

type Instrument = String

case class TradedQuantity(instrument: Instrument,
 quantity: Int)

implicit def tuple2ToLineItem(t: (Instrument, Int)) =
 TradedQuantity(t._1, t._2)

case class ActivityReport(account: String,
 quantities: List[TradedQuantity]) {
 import scala.collection.mutable._

 def groupByInstrument = {
 val m =
 new HashMap[Instrument, Set[TradedQuantity]]
 with MultiMap[Instrument, TradedQuantity]

 for(q <- quantities)
 m addBinding (q.instrument, q)

 m.keys.toList
 .sortWith(_ < _)
 .map(m.andThen(_.toList))
 }

 def groupByQuantity = {
 val m =
 new HashMap[Int, Set[TradedQuantity]]
 with MultiMap[Int, TradedQuantity]

 for(q <- quantities)
 m addBinding (q.quantity, q)

 m.keys.toList
 .sortWith(_ < _)
 .map(m.andThen(_.toList))
 }
 }

Can you identify the drawbacks of this implementation? Before we look into them, let
me briefly explain some of the Scala idioms that we’re using in this listing.

 In the implementation of ActivityReport in listing 4.9, quantities can contain
multiple entries for the same Instrument, so we define a multimap in B using
Scala’s mixin syntax. With HashMap, we mix in the trait MultiMap to get a concrete
instance of the MultiMap. For more details about Scala traits and mixins, refer to [4]
in section 4.7.

 We iterate over quantities and populate the HashMap using for comprehensions of
Scala C. This is quite different from a for loop that we have in imperative languages.
(I’ll discuss for comprehensions in detail when we talk about monadic structures in

Listing 4.9 Activity report with specialized implementations of groupBy

MultiMap
with mixin

B

For
comprehensionC

Grouping by
InstrumentD

111Embedded DSLs: patterns with typed abstractions
Scala in section 6.9.) In D we sort the keys of the MultiMap and forms a List grouped
by Instrument. Each member of the List is a Set containing the quantities that corre-
spond to a single Instrument. The underscores have their usual meaning that we dis-
cussed in section 3.2.2.

 The main drawback of the implementation in listing 4.9 is the number of boiler-
plate repetitions that the code contains. groupByInstrument and groupByQuantity
have the same overall structure; only the attribute based on which the grouping is to
be done is different. Do you hear a familiar voice from the past, crying out against a
violation of well-designed abstraction principles? If not, turn to appendix A, where I
discuss how the process of distillation keeps your abstractions free from all accidental
complexities. The problem with this code is that the specialized groupBy implementa-
tion encourages boilerplate code. Not only that, if we add more grouping criteria
later to the ActivityReport class, we’ll need to write more boilerplate code to imple-
ment customized grouping. What can we do about that? What we need is a more
generic implementation.

THE GENERIC IMPLEMENTATION

Let’s make the implementation more generic and subsume the specialized methods.

type Instrument = String

case class TradedQuantity(instrument: Instrument,
 quantity: Int)

implicit def tuple2ToLineItem(t: (Instrument, Int)) =
 TradedQuantity(t._1, t._2)

case class ActivityReport(account: String,
 quantities: List[TradedQuantity]) {
 import scala.collection.mutable._

 def groupBy[T <% Ordered[T]](f: TradedQuantity => T) = {
 val m =
 new HashMap[T, Set[TradedQuantity]]
 with MultiMap[T, TradedQuantity]
 for(q <- quantities)
 m addBinding (f(q), q)
 m.keys.toList.sort(_ < _).map(m.andThen(_.toList))
 }
}

Now the implementation is reduced in size. Did you see how the density increased
when we implemented the generic groupBy B to create more powerful abstractions?
Table 4.4 provides a summary of how you implement the generic groupBy.

 Now let’s look at the invocation of groupBy by the DSL user and follow the
sequence of implementation steps that’s executed. This exercise will help you under-
stand how the type system of Scala works behind the scenes to create an expressive
DSL structure.

Listing 4.10 Generic implementation of groupBy

Parameterized
by what to
group

B

112 CHAPTER 4 Internal DSL implementation patterns
Examining what goes on behind the scenes is an important step in DSL design and if
you’re an implementer, you should be extremely sure to understand every bit of it.
Read this section several times if you need to, until you have a clear understanding of
how the method dispatch works in Scala. Quite a few idioms are hidden in the 15 lines
of implementation shown in listing 4.10 that need careful consideration. When you’re
confident you see how the various idioms are wired to fulfill the contract that the API
publishes, you’ll be able to make it a part of your toolbox.

val activityReport =
 ActivityReport("john doe",
 List(("IBM", 1200), ("GOOGLE ", 2000), ("GOOGLE", 350),
 ("VERIZON", 350), ("IBM", 2100), ("GOOGLE", 1200)))

println(activityReport groupBy(_.instrument))
println(activityReport groupBy(_.quantity))

Instead of trying to explain that code textually, let me explain the sequence of
actions that take place for the invocation activityReport groupBy(_.instrument)
in figure 4.10.

 Higher-order functions aren’t specific only to typed abstractions. All modern lan-
guages offer higher-order functions and closures, irrespective of whether or not
they’re statically typed. You can use the pattern implementations I discuss here in dif-
ferent ways and languages. Keep an eye on the context in which the patterns are being
used, and use your implementation language to get things done.

 Remember, we’re trying to explore all internal DSL implementation patterns
across the languages that you use on the JVM. You can use a statically typed language
or a dynamically typed one; either way, your goal should be to use the appropriate tool
for the power you need in modeling your DSL.

 In the next section, we’re going to discuss how to use explicitly typed constraints to
express domain logic and behavior. This is something that dynamically typed lan-
guages can’t support. But given an expressive and rich type system, using explicitly
typed constraints can be a potent tool in your toolbox. They can make your DSLs
unbelievably succinct.

Table 4.4 Implementing a generic groupBy

Step Description

Implement a generic groupBy Needs to be parameterized with the type that we’ll use for group-
ing the activity report.
It will accept a function f as its argument, which models the cri-
teria of grouping. groupBy is an example of Scala’s support for
higher-order functions. You can pass around functions like any
other data type as parameters and return types. You can use this
ability to abstract the criteria and replace specialized implemen-
tations of grouping as in listing 4.9.
Look at figure 4.10 to understand how such a generic function
works under the hoods

113Embedded DSLs: patterns with typed abstractions
4.3.2 Using explicit type constraints to model domain logic

When you design a domain model, you implement abstraction behaviors that must
honor the rules and constraints that the domain imposes on you. Languages like Ruby
and Groovy are dynamically typed, so all such domain rules need to be encoded as
runtime constraints. In section 4.2, you saw how reflective metaprogramming works
toward implementing DSL structures that model these domain rules in Ruby and
Groovy. In this section, I’ll start with an example of runtime validation implementa-
tion in Ruby. Then I’ll demonstrate how you can implement similar constraints more
succinctly using the static type system of Scala.

RUNTIME VALIDATION IN RUBY

Consider the simple example from our domain of a Trade abstraction in Ruby, which
we partially modeled in listing 4.7. A Trade object needs an Account object, which we
call the trading account of the client. In listing 4.7, the account object is well repre-
sented with the attr_accessor class methods. In the domain of trading systems, there
can be multiple types of accounts (discussed in the sidebar titled Financial brokerage sys-
tems: client account in section 3.2.2). But the account that we specify in a Trade abstrac-
tion is constrained to be a trading account only; it can’t be a settlement-only account. This
domain rule needs to be validated every time we build a Trade object with an Account
object. How do you do this in Ruby? You can insert the usual validation check as in the
following snippet:

Figure 4.10 Activity report computation grouped by instrument (groupBy(_.instrument)).
Follow the steps in the figure and correlate them with listing 4.10 and the snippet that follows it,
which uses the DSL to compute the ActivityReport for "john doe".

114 CHAPTER 4 Internal DSL implementation patterns
class Trade
 attr_accessor :ref_no, :account, :instrument, :principal

 def initialize(ref, acc, ins, prin)
 @ref_no = ref
 raise ArgumentError.new(“Has to be a trading account”)
 unless trading?(acc)
 @account = acc
 ## ..

Wherever you expect to have a trading account passed in your domain model, you
need to do this same validation over and over during runtime. (You can make the vali-
dation more declarative using class methods, as used in Rails; but still, it remains a
runtime validation.) You also need to write explicit unit tests for each of these cases to
check whether the particular domain behavior fails as it should when supplied with a
nontrading account. All this requires additional code, which you can avoid if your lan-
guage supports explicit specification of typed constraints.

 In statically typed languages, you can specify constraints over specific types that’ll
be checked during compile time. When you have a program that compiles success-
fully, at least one level of consistency of domain behaviors is already enforced within
your model.

EXPLICITLY TYPED CONSTRAINTS IN SCALA

Let’s try to model a Trade object in Scala that has some domain constraints over
accounts and instruments. At the end of this exercise, you’ll realize how explicit
type constraints can make your DSL abstractions promise an extra level of consis-
tency that the dynamically typed ones can’t, even before you execute it. You’ll defi-
nitely want this trick in your toolkit when you’re using a statically typed language in
your application.

Every trade object needs a Trading account. Here’s how we model this behavior in
Scala. The following listing shows only this one aspect of a Trade object and is meant
only as an example.

trait Account
trait Trading extends Account
trait Settlement extends Account

Scala tidbits you need to know
■ The power of type-based programming. You can use types to express many

constraints the domain in your DSL. Generic type parameters and abstract
types are your friends.

■ Abstract vals let you keep the abstraction open until the last stage of
instantiation.

Listing 4.11 Trade object with typed constraints in Scala

Two Account
types

B

115Embedded DSLs: patterns with typed abstractions
trait Trade {
 type A <: Trading

 val account: A
 def valueOf: Unit
}

This listing is an example of how types can enforce implicit business rules. In the listing,
we’ve modeled Account and Trade objects using Scala traits (see [4] in section 4.6).
We’ve used separate types for Trading and Settlement accounts B. As a programmer,
you can’t pass a Settlement account to a method that expects a Trading account. The
compiler enforces this rule; a business rule that expects a Trading account doesn’t
have to explicitly check to determine whether you passed a valid account type.

 We’ve also defined some of the business rules explicitly. We’ve abstracted type A
with constraints (<: Trading) in Trade C. You can’t instantiate a Trade object with
any account type other than Trading D. You don’t have to write any extra code to
enforce the validation; again, the compiler does it for you.

 A trade is a contract between two parties that involves an exchange of instruments.
If you need a little brush up on some of the attributes of a trade, see the sidebar that’s
in section 1.4. Depending on the instruments that are traded, the behavior, lifecycle,
and calculations of the trade vary. An equity trade is one that involves an exchange of
equities with currencies. When a fixed income is the instrument type that’s being
exchanged in a trade, we call it a fixed income trade. For more details about equities,
fixed incomes, and other instrument types, see the sidebar in this section.

Let’s specialize our definition of Trade to model an EquityTrade and a Fixed-
IncomeTrade in the following listing.

trait Instrument
trait Stock extends Instrument

Financial brokerage systems: instrument types
Instruments that are traded can be of various types designed to meet the needs of
the investors and issuers. Depending on the type, every instrument follows a differ-
ent lifecycle in the trading and settlement process.

The two main classifications are equity and fixed income.

Equities can again be classified as common stock, preferred stock, cumulative
stock, equity warrants, or depository receipts. The types of fixed income securities
(also known as bonds) include straight bonds, zero coupon bonds, and floating rate
notes. For the purpose of our discussion, it’s not essential to be familiar with all
these details. What is important is that the Trade abstractions will vary, depending
on the type of instrument that’s being traded.

Listing 4.12 EquityTrade and FixedIncomeTrade model

Account subtype
of Trading

C

Account
instanceD

116 CHAPTER 4 Internal DSL implementation patterns
trait FixedIncome extends Instrument

trait EquityTrade extends Trade {
 type S <: Stock

 val equity: S
 def valueOf {
 //..
 }
}

trait FixedIncomeTrade extends Trade {
 type FI <: FixedIncome

 val fi: FI
 def valueOf {
 //..
 }
}

Like the explicit constraints on Account that we used in listing 4.11, in this listing
we’re constraining the traded instrument type. Again, business rules are enforced
implicitly by the compiler.

 We’ve specified separate types for EquityTrade and FixedIncomeTrade B and E.
As a programmer, you can’t pass a FixedIncomeTrade to a method that expects an
EquityTrade. The compiler enforces this rule; a business rule that expects a particular
type of Trade doesn’t have to explicitly check to determine whether you passed a valid
trade type.

 An EquityTrade trades a Stock B and a FixedIncomeTrade trades a FixedIncome

E. The basic business rule is completely enforced at the compiler level without a sin-
gle line of validation from the programmer. Accordingly, you constrain the abstract
vals equity C and fi F.

 The valueOf method is polymorphic and typed. You can provide separate imple-
mentations of the valueOf method D and G, assuming that your Trade abstraction
gets an appropriate type, either Account or Instrument.

 Using typed abstractions and explicit constraints on the values and types, we imple-
mented quite a bit of domain behavior without a single line of procedural logic. Not
only is our main code base smaller, the number of unit tests that you need to write and
maintain has also been reduced. When you need to maintain a code base, don’t you
feel more comfortable when you have a declarative type annotation that expresses
some critical semantics of the domain being modeled?

 This discussion was on a different path from what we’ve been doing with dynamic
language-based DSL implementations in the earlier sections. Now let’s look back at
what you’ve learned about the statically typed way of thinking and how it differs from the
Ruby or Groovy way.

EquityTrade works
on Stock

B
Instrument
types

C

Implementation of
trade valuationD

FixedIncomeTrade
works on FixedIncome

E

Instrument
typesF

Implementation of
trade valuationG

117Embedded DSLs: patterns with typed abstractions
4.3.3 Lessons learned: thinking in types

In this section, you’ve learned how types can play a significant role in designing
expressive domain abstractions. The main difference from the earlier Groovy and
Ruby examples is that with the safety net of static type checking, you already have
one level of correctness built into your implementation. A typed code that com-
piles correctly guarantees that you’ll satisfy many of the constraints of the domain.
We’ll explore this further in chapter 6 when we design more DSLs using Scala. Fig-
ure 4.11 is an updated checklist of internal DSL patterns that you learned about in
this section.

 We’ve discussed a few important patterns that you’ll use frequently when you’re
implementing internal DSLs with statically typed languages. Although metaprogram-
ming is the secret sauce for dynamic languages, typed abstractions offer concise DSL
development mechanisms when you’re using statically typed languages.

So far you’ve seen implementation patterns that make concise internal DSLs, either by
abstracting domain rules within a powerful type system or through reflection using
the metaprogramming power of the host language. In the next section, we’ll look at
patterns that will make the language runtime write code for you. You’re going to make
concise DSLs by using generated code.

Key takeaways from this section
The main purpose of this section was to make you think in types. For each abstrac-
tion that’s in your domain model, make it a typed one and organize the related busi-
ness rules around that type. Many of the business rules will be automatically
enforced by the compiler, which means you won’t have to write explicit code for
them. If your implementation language has a proper type system, your DSL will be
as concise as ones written using dynamic languages.

Figure 4.11
Program structures for typed
embedding of internal DSLs. These
patterns teach you how to think with
types in a programming language.

118 CHAPTER 4 Internal DSL implementation patterns
4.4 Generative DSLs: boilerplates for runtime generation
Metaprogramming has many facets. In the previous sections, you saw numerous exam-
ples of reflective metaprogramming. The VM introspects on meta-objects during run-
time, discovers objects that can be applied to the current context, and magically
invokes it. But you can look at metaprogramming in a different way. In fact, the classic
definition of metaprogramming is writing code that writes code.

 This definition has specific semantics when we talk about it in the context of differ-
ent languages. Languages like Lisp offer compile-time metaprogramming, as we saw
in detail in section 2.5.2. Languages like Ruby and Groovy offer runtime metapro-
gramming and can generate code during runtime using eval and dynamic dispatch
methods. In this section, we’ll examine a specific example of how you can reduce the
surface area of your DSL abstractions by writing less explicit code, instead relying on
the language runtime to generate the rest for you. You might be asking yourself, why is
this important?

4.4.1 How generative DSLs work

When you design a generative DSL, you’ll write less boilerplate code. Instead, the lan-
guage generates that code for you through metaprogramming. Figure 4.12 offers a
visual explanation.

Figure 4.12 Runtime metaprogramming generates code from meta-objects during runtime. The
meta-objects generate more objects, which reduces the amount of boilerplate code that you
need to write.

119Generative DSLs: boilerplates for runtime generation
Besides the objects that you develop, you also manipulate meta-objects that generate
more artifacts for you when the program runs. These additional artifacts represent the
code that the language runtime writes for you. It’s as if you’re giving subtle instruc-
tions to your assistant so you can concentrate on the more important aspects of your
job. The assistant takes care of all the routine operations that your instructions
advised him to perform. But what are these meta-objects? Where do they live and how
do they do what you ask them to do? Join me as we explore designing generative DSLs
in Ruby.

4.4.2 Ruby metaprogramming for concise DSL design

In our domain of securities trading and settlement, we’ve been talking about trades in
this chapter. In a real-world application, a Trade module is a complex one with lots of
domain objects and associated business rules, constraints, and validations. Some of
these validations are generic and apply to all similar attributes in the same context,
but others are specific to the context and need to be explicitly coded within the class
definition. Nonetheless, the general flow of validation checks is the same and can be
centralized or generated using appropriate techniques.

 Let’s see how Ruby metaprogramming can make things simpler for you.

USING CLASS METHODS TO ABSTRACT VALIDATION LOGIC

Assume that you’re developing your trading application in Rails using ActiveRecord
for persistence handling. Here’s an idiomatic code snippet for the Trade model.

class Trade < ActiveRecord::Base
 has_one :ref_no
 has_one :account
 has_one :instrument
 has_one :currency
 has_many :tax_fees

 ## ..

 validates_presence_of :account, :instrument, :currency
 validates_uniqueness_of :ref_no

 ## ..
end

If you have experience using Rails in a project, you know what the last two lines in
the class definition do. The two Ruby class methods, validates_presence_of and
validates_uniqueness_of, encapsulate the validation logic for the attributes that we
supply as arguments. Note how the domain constraints for these attributes are nicely
abstracted away from the surface area of the exposed API (a good example of dis-
tilled model design). I discuss the principles of distillation in abstraction design in
section A.3. During runtime, these methods generate the appropriate code snippets
that validate these attributes.

120 CHAPTER 4 Internal DSL implementation patterns
MIXINS FOR DYNAMIC METHOD GENERATION

Let’s do something similar for the Trade abstraction that we developed in Ruby in list-
ing 4.6. What we’ll do is put inline validation logic into the class definition of Trade,
but we’ll hide the details of invocation and the exception-reporting machinery of the
validation behind the scenes; all that boilerplate code is going to be generated during
runtime. Here’s how we want the abstraction to look:

class Trade
 include ...

 attr_accessor :ref_no, :account, :instrument
 trd_validate :principal do |val|
 val > 100
 end

 ## ..
end

In this snippet, something appears to be missing in B (I’ll clarify this shortly). Also,
trd_validate is the validation machinery that can generate runtime code for invok-
ing the validation logic that we pass as the block in C.

 But, where does trd_validate come from? It must be something that we’ve
defined elsewhere and needs to be linked to the code that defines the main class. Pos-
sibly the elided portion in B is the place to look at. Let’s unravel the code a bit more.
Before we go into the details of how this Trade model gets the trd_validate method,
here’s a Ruby module TradeClassMethods that defines our class method
trd_validate:

module TradeClassMethods
 def trd_validate(attribute, &check)
 define_method "#{attribute}=" do |val|
 raise 'Validation failed' unless check.call(val)
 instance_variable_set("@#{attribute}", val)
 end

 define_method attribute do
 instance_variable_get "@#{attribute}"
 end
 end
end

Ruby tidbits you need to know
■ Basics of Ruby metaprogramming. The Ruby object model has many artifacts

like classes, objects, instance methods, class methods, singleton methods,
and so on, that let you use reflective and generative metaprogramming. You
can dig into the Ruby object model at runtime and change behaviors or gener-
ate code dynamically.

■ Modules and how they let you implement mixins for extending your existing
abstractions.

What to
include?B

Validation logic
as blockC

Generate setter
for attribute

B

Generate getter
for attributeC

121Generative DSLs: boilerplates for runtime generation
What does this snippet do? It generates setter B and getter C methods during
runtime for the attribute that’s passed to the method trd_validate, using Ruby’s
dynamic method definition capabilities. In the process of defining them, this code
also generates more code for invoking the validation logic that the user passed to it in
the form of a block. Nice! Just imagine the amount of boilerplate code that we didn’t
have to write by using this metaprogramming feature. This savings is multiplied for
every attribute that you use to invoke trd_validate.

THE FINAL GLUE

Now it’s time to assemble things. Let’s define another module that glues TradeClass-
Methods with the Trade class and makes trd_validate available within Trade. The fol-
lowing listing is the final version of the code that glues everything together and makes
all the above magic happen.

enable_trade_validation.rb
require 'trade_class_methods'
module EnableTradeValidation
 def self.included(base)
 base.extend TradeClassMethods
 end
end

trade.rb
require 'trade_class_methods'
require 'enable_trade_validation'

class Trade
 include EnableTradeValidation

 attr_accessor :ref_no, :account, :instrument
 trd_validate :principal do |val|
 val > 100
 end

 ## ..
end

You just saw how to avoid writing boilerplate validation logic explicitly by using
metaprogramming techniques to generate it. This code is generated during runtime
when the Ruby VM executes your program.

Listing 4.13 Trade with domain validation

Key takeaways from this section
Most of the patterns we discussed in this chapter focus on making your DSL less
verbose and yet more expressive. Ruby and Groovy offer strong support for runtime
metaprogramming that generates code for you. Whenever you feel that the code
you’re writing for implementing a DSL looks repetitive, think metaprogramming.
Instead of writing the code yourself, let the language runtime write it for you.

122 CHAPTER 4 Internal DSL implementation patterns
What a long, exciting chapter this is. We’ve been discussing lots of tricks that you need
up your sleeve when you’re writing DSLs. Don’t worry if everything isn’t sinking in the
first time you read it. After you get an overall idea of these techniques, you’ll be able to
think through your problem and carve out your solution domain in the best way possi-
ble. If you need a light refreshment to recharge your programming batteries, go get it
now. What we’ll be discussing next relates to a new development on the JVM of an age-
old paradigm of program development. It’s Lisp metaprogramming, packaged on the
JVM, and it’s called Clojure. Ruby and Groovy metaprogramming is primarily based on
runtime code generation, but Clojure does it during compile time using macros. We’re
going look at how macros shape the way you think about designing internal DSLs.

4.5 Generative DSLs: macros for compile-time
code generation
Finish up your snack, because now we’re going to talk about how generative metapro-
gramming in Ruby and Groovy generates code during runtime. Your DSL surface syn-
tax will still be concise; you don’t have to write the boilerplate stuff that the language
runtime generates for you. With Clojure (the Lisp on the JVM), you get all the benefits
of code generation, minus the runtime overhead of it that Groovy and Ruby incur.
(For information about Clojure, go to http://clojure.org.) Invented by Rich Hickey,
Clojure offers the syntax and semantics of Lisp, along with seamless integration with
the object system that Java offers. For a more detailed introduction to the language
and the runtime, refer to [3] in section 4.7.

4.5.1 Metaprogramming with Clojure

Clojure is a dynamically typed language that implements duck typing and offers pow-
erful functional programming capabilities. In this section, we’ll focus more on the
generative capabilities of Clojure that are available through its system of macros.

 Code generation using Clojure macros is a form of compile-time metaprogramming,
which we discussed briefly in section 2.3.1. If you’re not familiar with the basic concepts
of how compile-time macros work in Lisp or Clojure, now’s a good time to review the
concepts that I discuss in appendix B. As a brief refresher, look at figure 4.13, which
outlines the basic flow of events in a compile-time metaprogramming system. The pro-
gram that you write defines higher-order abstractions as macros that get expanded to
valid Clojure forms during the compilation phase.

 Before we dive into the implementation details, let’s look at a snippet of the prob-
lem domain that we’re going to cover. When a client places an order to the broker for
trading an instrument (either buy or sell), the following sequence of actions take place:

1 The broker places the order in the exchange
2 Street-side trades are done between brokers according to the placed order and

results in execution
3 Executions get allocated to client accounts and results in generation of client trade

123Generative DSLs: macros for compile-time code generation
Let’s try to implement the allocation process that generates the client trade from an
execution. In reality there’s a many-to-many relationship between orders, executions,
and trades. For the purpose of this example, let’s assume that there’s a one-to-one
relationship between execution and the client trade. We’ll use the power of Clojure
duck typing to model our use case.

4.5.2 Implementing the domain model

Here’s how we define a trade and an execution in Clojure. Trade and execution essen-
tially contain the same information. The difference is that an execution contains a

Clojure tidbits you need to know
■ Prefix syntax and functional thinking. Clojure uses prefix notation and is

based on s-expressions. Clojure is uniform in syntax throughout, there’s no
order of operations, and it boasts absolute consistency. Clojure is a functional
language in which you organize your modules as functions.

■ Maps in Clojure are used as a ubiquitous data structure to model objects.
■ Macros let you define syntactic extensions for your DSL. They make your DSLs

concise through compile-time code generation.

Figure 4.13 Compile-time metaprogramming generates code through macro expansion. Note that
we’re still in the compilation phase when the code is generated. This technique doesn’t have any
runtime overhead, unlike the earlier one in figure 4.12.

124 CHAPTER 4 Internal DSL implementation patterns
broker account, but a trade is done on a client account, based on the order that the client
places. The following snippet defines a sample trade and a sample execution.

 (def tr1
 {:ref-no "tr-123"
 :account {:no "cl-a1" :name "john doe" :type ::trading}
 :instrument "eq-123" :value 1000})

(def ex1
 {:ref-no "er-123"
 :account {:no "br-a1" :name "j p morgan" :type ::trading}
 :instrument "eq-123" :value 1000})

An account is a separate structure embedded within the trade structure. An account
contains an attribute :type that indicates whether it’s a trading account or a settle-
ment account. The type is modeled as a Clojure keyword that’s nothing but a symbolic
identifier that evaluates to itself B. Clojure keywords provide fast equality checks and
are used as lightweight constant strings. For more information about client accounts
and the various types that it supports, read the sidebar Financial brokerage systems: client
account in section 3.2.2.

 Let’s define two functions in listing 4.14: one that checks whether an account is a
trading account, and another that allocates an execution to a client account generat-
ing a client trade. The latter is the main domain problem use case that we’ll focus
on. We’ll start with a function definition and see how you can make the implementa-
tion of the function more succinct when macros are generating repetitive boiler-
plates for it.

 (defn trading?
 "Returns true if the account is a trading account"
 [account]
 (= (:type account) ::trading))

 (defn allocate
 "Allocate execution to client account and generate client trade"
 [acc exe]
 (cond
 (nil? acc) (throw (IllegalArgumentException.
 "account cannot be nil"))
 (= (trading? acc) false) (throw (IllegalArgumentException.
 "must be a trading account"))
 :else {:ref-no (generate-trade-ref-no)
 :account acc
 :instrument (:instrument exe) :value (:value exe)}))

Look at what’s going on in the allocate function in this listing. The core business
logic that allocate handles is in the :else clause of the cond statement. The first two
condition clauses B perform two validations that we need to do for every operation
that we carry out within the trading subsystem. For any method on trade, we need to
validate that the trading account is a non-null entity and that it’s indeed a trading

Listing 4.14 Allocation function for execution

Clojure keyword ::trading B

ValidationB

125Generative DSLs: macros for compile-time code generation
account and not a settlement account. That’s what comprises the main explicit sur-
face area in the allocate method. The allocate method contains accidental code
complexity that needs to be factored away from the core API implementation.

4.5.3 The beauty of Clojure macros

Because the validations that we do in the allocate method are generally applicable to
all trade functions, why not refactor them into a reusable entity? Then we’d have a val-
idate function that can be invoked for all accounts like we did for trd_validate when
we defined the Ruby module TradeClassMethods earlier in section 4.4.1. But macros
provide distinct advantages, which I discuss in the callout.

Clojure supports macros you can use to generate code during the compila-
tion phase; then the macro is expanded into the normal Clojure forms.

The advantage is twofold:

1 You avoid the overhead of the function call through inline expansion of
the macro during the compilation phase.

2 The code is more readable because you don’t use the lambdas that would
have been required if you used higher-order functions.

The next example will make all this clearer. In the following snippet, I define a macro
that can be used as a control abstraction, much like the normal Clojure form, but that
encapsulates all the validation logic within it.

(defmacro with-account
 [acc & body]
 `(cond
 (nil? ~acc) (throw (IllegalArgumentException.
 "account cannot be nil"))
 (= (trading? ~acc) false) (throw (IllegalArgumentException.
 "must be a trading account"))
 :else ~@body))

Note how the body can consist of a variable number of forms that get inserted into the
generated code via the splicing unquote ~@. (For more details about how the splicing
unquote works, refer to [3] in section 4.7.) If we implemented a function for the vali-
dation logic, we’d have to use lambdas instead. Using with-account, this is how our
allocate function looks:

 (defn allocate
 "Allocate execution to client account and generate client trade"
 [acc exe]
 (with-account acc
 {:ref-no (generate-trade-ref-no)
 :account acc
 :instrument (:instrument exe) :value (:value exe)}))

Now the implementation is more concise and succinct because it needs to focus only
on the core domain logic. All exception handlings and accidental complexities are

126 CHAPTER 4 Internal DSL implementation patterns
being factored away to the macro, without incurring any overhead on the runtime
performance. The macro with-account is not only coupled with the implementation
of allocate; it’s a general control structure, looks like a normal Clojure form, and is
reusable across all the APIs that need trading accounts to be validated.

 Generative DSLs write code for you. But as an observant reader, you must’ve
already figured out the differences that language implementations offer with respect
to when the code is generated. Section 4.4 discussed runtime code generation; in this
section, you saw how Clojure implements compile-time code generation using the power
of macros. Both strategies have their advantages and disadvantages, and you need to
weigh your options before deciding on one specific implementation.

4.6 Summary
You’ve ridden with me for a long time in this chapter. You deserve kudos for being
a part of this journey. We covered almost the entire range of internal DSL imple-
mentation patterns, with problem snippets from our domain of financial broker-
age systems.

Key takeaways from this section
The focus of this section was to make your DSL implementation concise yet
expressive. This idea has been the recurring theme for all the sections in this chap-
ter. The difference is in the implementation itself.

With Clojure macros, you make your DSL concise without having any impact on the
runtime performance. You can bend the language itself to express the exact syn-
tax and semantics that your DSL asks for. The Lisp family offers this awesome
power as a natural way to model the real world.

Key takeaways & best practices
When you design an internal DSL, follow the best practices for the language con-
cerned. Using the language idiomatically always results in the optimal mix of
expressiveness and performance.

A dynamic language like Ruby or Groovy gives you strong metaprogramming capa-
bilities. Design your DSL abstractions and the underlying semantic model that rely
on these capabilities. You’ll end up with a beautifully concise syntax, leaving the
boilerplates to the underlying language runtime.

In a language like Scala, static typing is your friend. Use type constraints to
express a lot of business rules and use the compiler as the first-level verifier of your
DSL syntax.

When you’re using a language like Clojure that offers compile-time metaprogram-
ming, use macros to define custom syntax structures. You'll get the conciseness
of Ruby with no additional runtime performance penalty.

127References
Dynamic languages like Ruby and Groovy offer powerful reflective metaprogramming
paradigms that you can use to make your DSL implementations both concise and
expressive. Such languages let you manipulate their meta-model during runtime,
which makes them great tools for implementing more dynamic structures.

 In this chapter, you saw how to make more dynamic builders and decorators that
harness the power of metaprogramming. You also saw how you can use static typing to
express domain constraints declaratively and how to implement generative DSLs that
generate code during compile time or runtime.

 Because you’ve read this chapter, you can now think in terms of mapping your DSL
implementation to the idioms and best practices that your language offers. We talked
about lots of patterns that you can easily map to appropriate contexts of your DSL
model. In previous chapters, you heard about the virtues of DSL-based development,
but you never got to see how a particular scenario of your problem domain maps to a
specific implementation structure. The following list contains the main features that
this chapter adds to your DSL landscape:

■ You can now improve the conciseness of your DSL by using the power contained
in your implementation language.

■ If you’re using a statically typed language, you can build your DSL models
around typed abstractions.

■ If your language offers metaprogramming, you can use it to reduce the surface
syntax of the DSL and let the language runtime or the compile-time machinery
generate the code for you.

Now it’s time to look at more examples from the real world. In the next chapter, we’ll
discuss the dynamically typed family of languages and what they can do to implement
expressive DSLs. So what are you waiting for? Grab your coffee mug, get a refill, and
turn the page for more DSL delights.

4.7 References
1 Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional.
2 Konig, Dierk, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.

2009. Groovy In Action, Second Edition. Manning Early Access Program Edition.
Manning Publications.

3 Halloway, Stuart. 2009. Programming Clojure. Pragmatic Bookshelf.
4 Odersky, Martin, Lex Spoon, and Bill Venners. 2008. Programming in Scala: A

Comprehensive Step-By-Step Guide. Artima.
5 Coplien, James O. Design Pattern Definition. http://hillside.net/patterns/222-

design-pattern-definition.

Internal DSL
design in Ruby,

Groovy, and Clojure
The best way to learn new paradigms and design techniques is to look at real imple-
mentations using the best languages that support them. In chapter 4, you saw quite
a few idioms and patterns that can help you develop expressive internal DSLs. For
this chapter, I’ve selected three of today’s most popular languages on the JVM.
You’re going to go through the exercise of building real-world DSLs using them.

 Before going into the details of what we’re going to do, figure 5.1 is a roadmap
that I plan to follow in this chapter.

 The languages I’ve selected for this chapter are dynamically typed. I start the
chapter by discussing some of the attributes of dynamically typed languages that

This chapter covers
■ Making DSLs concise using duck typing and

metaprogramming
■ Implementing a trade-processing DSL in Ruby
■ Improving our order-processing DSL using

Groovy
■ Thinking differently about the trade-

processing DSL in Clojure
■ Common pitfalls with each language
128

129Making DSLs concise with dynamic typing
make good DSLs and why I selected Ruby, Groovy, and Clojure for our discussion.
Then we’ll jump right into the implementation part and take you successively
through the process of implementing complete DSLs using each of the three lan-
guages. We discuss the main features that these languages offer that you’ll frequently
use in designing DSLs and some of the rationale for when to select which pattern for
your implementation.

 At the end of this chapter, you’ll have an overall idea of how to approach design-
ing a DSL in languages that offer similar capabilities. Because we’ll implement com-
plete DSLs, you’ll learn how to think in terms of the DSL that you design and you’ll
program your implementation language to fit the syntax that you want to provide to
the user.

 This chapter is going to be programming intensive; be prepared for lots of code
coming your way and have your language interpreters handy. The examples are small
and illustrative and I promise you’ll have as much fun trying them out as I had writing
them. The book’s appendixes contain a short refresher for each of these three lan-
guages. Feel free to peek for a bootstrap in case you’re unfamiliar with any of them. If
you’re new to the concept of development using multiple languages (also known as
polyglot development), there’s an introduction for bootstrapping in appendix G. But
before we start in on the details, let’s look at the rationale behind choosing the lan-
guages that I did.

5.1 Making DSLs concise with dynamic typing
One of the important attributes that an internal DSL adds on top of the underly-
ing language is an enhanced readability of the domain semantics. The internal
DSL translates the implementation to the domain user in terms of the language
that he understands.

Figure 5.1 Roadmap of the chapter

130 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
When your nonprogrammer domain expert looks at a DSL script, he
should be able to understand the domain rules from it. This result is

the real value that a DSL adds to improving the communication path between
the developer and the domain person. I’m not evangelizing that every non-
programmer domain person should be able to write programs using the DSL,
but he should at least be able to understand the domain semantics from a
DSL snippet.

A program written in a dynamically typed language doesn’t contain type annota-
tions; by nature it’s visually less noisy and tells you what the programmer intends to
do. This leads to better readability of the code, one of the prime attributes that dif-
ferentiates any typical API from a DSL. In the following subsections, I’ll discuss three
of the most important characteristics that shape DSLs developed using dynamically
typed languages:

■ Enhanced readability, because there are no type annotations (section 5.1.1)
■ Duck typing, which refers to the way you think of designing contracts in your

DSLs (section 5.1.2)
■ Metaprogramming, one way to get rid of boilerplate code from your DSL imple-

mentation (section 5.1.3)

5.1.1 Readability

As a DSL reader, you expect the language to flow smoothly, without any unnecessary
complexity. The type system of a programming language can potentially add to the
accidental complexity of a DSL. If you implement your internal DSL in a language
that has a verbose type system like Java, there’s a good chance that the resulting DSL
will require you to plug many unnecessary type annotations into your abstractions.
In a dynamically typed language, you don’t need to provide type annotations, so
the intent of the programmer is much clearer than it is in an alternative implementa-
tion in a corresponding statically typed language. Still, things won’t necessarily be eas-
ier when it comes to understanding the implementation behind the intent. (You’ll
see more examples of this when we discuss common pitfalls of dynamic language-
based DSL implementation in section 5.5.) On the whole, dynamically typed lan-
guages offer a more succinct syntax,, which results in enhanced readability of the DSL
and its implementation.

 Although the readability of a DSL is obvious, there’s another aspect of dynamic lan-
guages that plays an important role when you design and implement internal DSLs.
They’re low in ceremony and rich in semantics. They’re also quite a bit more concise
than statically typed languages and, although you’re still dealing with abstraction hier-
archies, the thinking behind them is different. I’m referring to the way an abstraction
responds to a message that’s sent to it.

131Making DSLs concise with dynamic typing
5.1.2 Duck typing

Dynamic typing isn’t necessarily weak typing. You invoke a message on an object, and
if the object satisfies the contract that the message asks for, you get a response; other-
wise, the message propagates up the object hierarchy chain until one of its ancestors
satisfies the contract. If it reaches the root without any handler capable of responding
to the message, you get a NoMethodError. There’s no compile-time check that stati-
cally determines whether a message invoked on an object is valid. Rather, you can
change the set of methods and properties to which an object responds to during run-
time. For any specific message, if an object supports the message at the time it’s
invoked, it’s considered to be a valid invocation. This process is typically known as duck
typing, and is implemented in languages like Ruby, Groovy, and Clojure. You can also
implement duck typing in statically typed languages like Scala; we’ll discuss that in
chapter 6.

IMPLEMENTING POLYMORPHISM WITH DUCK TYPING

What does duck typing in dynamic languages buy you when you’re implementing
DSLs? Once again, the simple answer is that you get a concise implementation at the
expense of static type safety. You don’t need to statically declare interfaces or have
inheritance hierarchies to implement polymorphism. As long as the receiver of a mes-
sage implements the right contract, it can respond to the message meaningfully. Fig-
ure 5.2 shows how to implement polymorphism using duck typing.

 Now let’s look at an example from our domain. First, we’ll do a Java implementa-
tion using interfaces and then demonstrate the conciseness that duck typing offers
with an implementation in Ruby.

Figure 5.2 Polymorphism through duck typing. The abstractions Foo and Bar don’t
have any common base class, but we can treat them polymorphically in languages that
support duck typing.

132 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
A TRADE DOMAIN EXAMPLE

Trades that are executed in the stock exchange can be of various types, depending on
the type of instrument being traded. (I’m sure you’re now familiar with trades, instru-
ments, and executions. If you’ve forgotten some of the concepts, refresh your knowl-
edge by reading the sidebars in earlier chapters.) A security trade involves trading
equities or fixed incomes. A forex trade involves exchanging foreign currencies in the
form of spot or swap transactions. With a statically typed language like Java, you would
typically model the two abstractions as specializations of an interface, say, trade. You
would also define the inheritance chain statically, as in the following snippet:

interface Trade {
 float valueOf();
}

class SecurityTrade implements Trade {
 public float valueOf() { //.. }
}

class ForexTrade implements Trade {
 public float valueOf() { //.. }
}

Now, if you have a method that needs to calculate the cash value of any kind of Trade
supplied to it, you’ll implement it as:

public float cashValue(Trade trade) {
 trade.valueOf();
}

Here, the argument to cashValue is constrained to the upper bound of the static type
that implements the valueOf method. It’s statically checked by the Java compiler. Now
let’s compare this implementation to one that does a cash_value with duck typing, as
shown in the following listing.

class SecurityTrade
 ## ..
 def value_of
 ## ..
 end
end

class ForexTrade
 ## ..
 def value_of
 ## ..
 end
end

def cash_value(trade)
 trade.value_of
end

Listing 5.1 Polymorphism with duck typing

133Making DSLs concise with dynamic typing
cash_value(SecurityTrade.new)
cash_value(ForexTrade.new)

No extras clutter up this implementation, and there’s no static inheritance relation-
ship; cash_value works as long you give it something that implements a value_of
method. You might be thinking, what if I send it an unrelated object that doesn’t
implement the value_of method. It blows up during runtime, of course. That’s the
reason you should have a comprehensive coverage of unit tests to test your contracts.

 For unit testing, you can create mocks easily too, because you don’t have to jump
through the hoops of ensuring static type safety. Remember, with languages that offer
duck typing, you don’t test for types and you don’t try to emulate static typing with
your dynamic language. It’s a different way of thinking about abstraction design. Your
test suites will test whether your abstractions implement the contract that they’re sup-
posed to provide to your clients.

 Duck typing makes you write code that’s free of statically checked constraints. One
immediate effect is that your DSL implementation becomes much more concise, but
at the same time your intentions are clear. We discussed this in section 4.2.2 when we
implemented expressive decorators through dynamic mixins in Ruby. The final DSL
looked like this:

Trade.new('r-123', 'a-123', 'i-123', 20000).with TaxFee, Commission

Note that we mixed in the modules TaxFee and Commission with Trade, and we used
Ruby’s duck typing to compute the total cash value of the trade.

 Next up, let’s revisit one technique that we saw in chapter 4. Metaprogramming is
used by dynamically typed languages to save you from writing repetitive boilerplate
code in your applications.

5.1.3 Metaprogramming—again!

Besides making your code free of type annotations, how does dynamic typing lead to
concise DSLs? One obvious answer is by keeping you from writing repetitive code
structures and instead generating them through the machinery of the language itself.
Having a concise DSL API is as important to the DSL user as having a concise imple-
mentation is to you, the DSL implementer. Using their capabilities to introduce new
methods and properties at runtime, both Ruby and Groovy have awesome metapro-
gramming facilities, which we discussed in sections 2.3.1 and 4.2. Let’s return to one
example to reiterate the conciseness that dynamic typing offers for DSL implementa-
tions. The following listing demonstrates how you can use runtime metaprogramming
and closures to implement an XML builder in Groovy.

def clientOrders = //..
builder = new groovy.xml.MarkupBuilder()

builder.orders {
 clientOrders.each {ord ->

Listing 5.2 XML builder in Groovy: the power of dynamic metaprogramming

134 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
 order(type: ord.getBuySell()) {
 instrument(ord.getSecurity())
 quantity(ord.getQuantity())
 price(ord.getLimitPrice())
 }
 }
}

In this example, Groovy’s MarkupBuilder doesn’t know anything about the methods
order, instrument, quantity, or price B. The language runtime uses dynamic
method dispatch and employs Groovy’s methodMissing() hook to intercept all unde-
fined method calls. You can use similar techniques in Ruby. Dynamically typed lan-
guages provide an interceptor for all undefined methods. This technique makes
programs much more concise and dynamic, but also preserves the expressiveness that
you need.

 We’ve just looked at the three attributes that you associate with a DSL that’s imple-
mented using a dynamic language. The first one, readability, describes the surface syn-
tax of the DSL script. The other two attributes, duck typing and metaprogramming,
have more to do with the underlying implementation techniques. Let’s find out what
features Ruby, Groovy, and Clojure possess that help you create and implement
expressive DSLs.

5.1.4 Why Ruby, Groovy, and Clojure?

Ruby, Groovy, and Clojure each possess all three attributes of dynamically typed lan-
guages that make them great hosts for implementing internal DSLs. Table 5.1 contains
an overview of these language features.

Table 5.1 Ruby, Groovy, and Clojure features that make them great choices for your internal DSLs

Groovy’s dynamic
method dispatchB

Readability Duck typing Metaprogramming

Ruby Flexible syntax, no type annota-
tions, and strong literal support.

Supports duck typing
and you can use
responds_to? to
check whether a class
responds to a specific
message.

Has strong support of
reflective and generative
metaprogramming.

Groovy Flexible syntax, optional type
annotations, and strong literal
support.

Supports duck typing;
you have some poly-
morphism without a
common base class.

Has strong support for run-
time metaprogramming
through Groovy metaobject
protocol (MOP).

Clojure Syntax is flexible but bound by
the prefix form of expressions as
in other Lisp variants. You can
provide optional type hints to
speed up method dispatch, which
avoids reflection in Java calls.

Supports duck typing
as in Ruby or Groovy.

Implements compile-time
metaprogramming through
macros. Clojure is malleable
enough to be extended
as per the requirements of
your DSL.

135A trade-processing DSL in Ruby
Even though Ruby, Groovy, and Clojure have some of the same characteristics, they’re
different enough for us to discuss them separately in the context of DSL implementa-
tion. All of them run on the JVM, have strong metaprogramming support, and are fast
becoming mainstream development languages. Yet one of the areas in which they dif-
fer is the way they integrate with the JVM. Figure 5.3 summarizes some of the areas
where the three languages are alike, as well as those where they differ.

 In this chapter, we’ll explore internal DSL implementation in all three languages.
In the course of our discussion, we’ll see the features that each of these languages
offer and also look back at how they map to the implementation of the patterns we
discussed extensively in chapter 4.

5.2 A trade-processing DSL in Ruby
We’re going to develop a complete use case in this section. We’ll implement a com-
plete DSL for making new security trades and compute their cash values using plugga-
ble business rules. After you execute the DSL, you’ll get an instance of a Trade
abstraction that you can use in various ways, depending on your application’s func-
tionalities. We’ll start with a modest implementation and make incremental changes,
making it more and more expressive and domain rich. Figure 5.4 shows a roadmap of
what we’ll do in each iteration as the DSL evolves.

 Throughout our journey, Bob will act as our mentor, pointing out all the inade-
quacies and areas of improvement and helping us mold our design into the shape
that fits into the glove of an expressive DSL. It’s up to Ruby to help us comply with
Bob’s requests.

Figure 5.3 Ruby, Groovy, and Clojure present an interesting mix for DSL implementation

136 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
CODE ASSISTANCE In all of the following sections that have rich code snip-
pets, I’ll include a sidebar that contains the prerequisites of the language fea-
tures that you need to know to appreciate the implementation details. Feel
free to refer to the appropriate language cheat sheet in the appendixes
before you proceed.

Keep our goal in mind: Bob should be able to understand the DSL and verify whether
it violates any of his business rules.

5.2.1 Getting started with an API

API designs start out rather rusty. If you’re working with a dynamic language, you
always start with a body of clay and mold it iteratively to make it more expressive.

Ruby tidbits you need to know
■ How are classes and objects defined in Ruby? Ruby is object-oriented (OO)

and follows the usual notion of any other OO language to define a class. Ruby
does have its own object model that has functionalities that let you change,
inspect, and extend objects during runtime through metaprogramming.

■ How do you use the hash to implement a variable argument list? In Ruby, you
can pass a hash as an argument to a method to emulate keyword arguments.

■ Basics of Ruby metaprogramming. The Ruby object model has lots of artifacts
like classes, objects, instance methods, class methods, singleton methods,
and so on, that enable reflective and generative metaprogramming. You can
dig into the Ruby object model at runtime and change behaviors or generate
code dynamically.

Figure 5.4
How we’ll enrich our Ruby
DSL to implement trade
processing. At every stage,
we’ll make the DSL richer by
using the abstraction
capability that Ruby offers
and add more domain
functionality.

137A trade-processing DSL in Ruby
Consider the following code snippet that our API designers came up with as the first
version of the DSL:

instrument = Instrument.new('Google')
instrument.quantity = 100

TradeDSL.new.new_trade 'T-12435',
 'acc-123', :buy, instrument,
 'unitprice' => 200,
 'principal' => 120000, 'tax' => 5000

Bob saw this and yelled, “Hey! This looks too technical for me. What are those weird
constructs that I need to invoke to get an instrument? That’s not how I interpret an
instrument when I get a trade.”

 Bob has a point, which I’ll address shortly. But before I do, let me reiterate that a
DSL never comes out right the first time. A DSL always evolves iteratively. That snippet is
still an ordinary API with the usual readability that Ruby offers. It doesn’t feel like a
fluid sentence that Bob can roll off his tongue while he’s tending to his usual chores
in the trading business. Even so, this code gives us the baseline from which we’ll
move forward.

THE BASE ABSTRACTIONS

Every DSL design starts with a set of basic abstractions, on which you build your
domain-friendly language. We’ll call this approach bottom-up programming, where
larger abstractions grow from smaller pieces and ultimately end up with the expres-
siveness that your domain expert wants.

 We’ll start our DSL design with a set of APIs for basic domain entities like Security-
Trade and Instrument. The following listing provides the base Ruby abstractions that
implement it.

class SecurityTrade

 attr_reader :ref_no,
 :account,
 :buy_sell,
 :instrument,
 :unitprice

 attr_accessor :principal,
 :tax,
 :commission

 def initialize(ref_no, account, buy_sell, instrument, unitprice)
 @ref_no = ref_no
 @account, @buy_sell, @instrument, @unitprice =
 account, buy_sell, instrument, unitprice
 end

 def self.create(ref_no, account, buy_sell, instrument, h)
 tr = new(ref_no, account, buy_sell, instrument, h['unitprice'])

Listing 5.3 SecurityTrade in Ruby (Iteration 1)

New Instrument
to be traded

New trade
to create

Class method
to create trade

B

138 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
 [:principal, :tax, :commission].each do |m|
 tr.instance_eval("tr.#{m} = h['#{m}'] if h.has_key?('#{m}')")
 end
 tr
 end
end

In this listing, notice the hash h in the create class method B that’s used to provide
the named arguments for unitprice, principal, and tax. Using a hash to implement
named arguments is a common idiom in Ruby. Another interesting trick that’s
employed is in C, where we use metaprogramming to set up the implicit context of the
receiver and populate the trade instance with values from the hash h. We discussed
how to set up an implicit context in section 4.2.1.

 Listing 5.4 is the implementation of the Instrument class. There’s nothing fancy
about it, except that we’re not making it immutable yet. For the current version of the
DSL, you could’ve made it an immutable value object. We’ve kept it a mutable object
for reasons that’ll be clear to you in the next section when we use its mutability to
come up with an expressive instrument creation DSL.

class Instrument
 attr_accessor :name, :quantity
 def initialize(name)
 @name = name
 end

 def to_s()
 "(Name: " + @name.to_s +
 "/Quantity: " + @quantity.to_s + ")"
 end
end

The final piece of this section is the class TradeDSL, which is just a skeleton of things to
follow:

require 'security_trade'
class TradeDSL
 def new_trade(ref_no, account, buy_sell, instrument, attributes)
 SecurityTrade.create(ref_no, account, buy_sell, instrument, attributes)
 end
end

Our DSL has just started taking its first steps. As we proceed with the iterations in the
following sections, you’ll notice how TradeDSL evolves in expressiveness as we add
more and more functionalities to it.

A DSL FACADE

The class TradeDSL also demonstrates the important technique of how you can decou-
ple the DSL syntax from the underlying implementation. On the one hand, this class
offers the surface syntax of the DSL to the user. On the other hand, it wraps the base

Listing 5.4 Instrument traded in Ruby

Populate
hash C

139A trade-processing DSL in Ruby
abstractions to provide a layer on top of the underlying implementation. Figure 5.5
illustrates this aspect of DSL structure.

 Remember, when you design a DSL, be sure to provide a single point of interaction
to the user. In this context, the TradeDSL class plays the role of a DSL facade. Currently,
it only wraps the create method of the SecurityTrade class. In course of our subse-
quent iterations, we’ll build up enough meat in this abstraction so that it becomes self-
sufficient and caters to the users’ requirements. But right now we need to deal with
Bob’s problems with the instrument creation part of the DSL. Here’s where a little bit
of monkey business can come in handy.

5.2.2 A little bit of monkey-patching

The next step in the evolution of the TradeDSL class is to make it easier for Bob to cre-
ate an instrument. He needs to be able to ask for 100 shares of IBM the way he’s used
to doing on his trading desk. The result we want is something like the following,
which shows the trade creation DSL that identifies the instrument being traded.

TradeDSL.new.new_trade 'T-12435',
 'acc-123’, :buy, 100.shares.of('IBM'),
 'unitprice' => 200, 'principal' => 120000, 'tax' => 5000

The voodoo that Bob previously had to deal with to create an instrument using unnec-
essary syntactic constructs is gone, and is replaced by a more natural language that
Bob speaks in his regular trading business: 100.shares.of('IBM'). Now Bob’s pretty
happy! How did we achieve that?

 Listing 5.5 is an implementation of the methods shares and of that we’re silently
introducing as methods of the Numeric class. Numeric is a built-in class in Ruby, but
you can open any class and introduce new properties or methods into it. People call

Figure 5.5 A DSL facade offers an expressive API to the user. It also keeps the core
implementation structures from being exposed.

140 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
this monkey patching, and many detractors discourage this practice. As with any other
superpower, monkey patching has risks and pitfalls. Any standard Ruby text (see [1]
in section 5.7) will warn you when you’re overstepping your limits. But when you use it
judiciously, monkey patching makes your DSL flow.

require 'instrument'
class Numeric
 def shares
 self
 end

 alias :share :shares

 def of instrument
 if instrument.kind_of? String
 instrument = Instrument.new(instrument)
 end
 instrument.quantity = self
 instrument
 end
end

This listing completes our first iteration toward shaping up our trade DSL. Note how
our DSL is getting more expressive as the core abstractions evolve into larger wholes.
We’ve removed the noise that was generated when we created the instrument in the
snippet at the beginning of section 5.2.1. But we still have quite a few syntactic oddi-
ties when we consider the natural language of expression that Bob wants. With Ruby,
we can push the limits even further. Our TradeDSL facade is lean enough to go for it.
In the next section, we’ll flesh it out with more syntactic sugar for the final DSL that
Bob will use.

5.2.3 Rolling out a DSL interpreter

What is expressive enough? The answer to this question is debatable, depending on
the perspective of your DSL user. To a user who’s a programmer familiar with Ruby,
the DSL that we came up with in iteration 1 would likely qualify as a fairly expressive
one. Even a nonprogramming domain expert can figure out what’s going on at the
macro level, though he might be a little irritated with the additional syntax that it has.
With a language as expressive as Ruby, we can push it to the limit and try to make it
more aligned with the way Bob speaks at his trading desk.

Ruby tidbits you need to know
Monkey patching means introducing new properties or methods into an already
existing class. In Ruby, you can open up an existing class and introduce new meth-
ods or properties that augment its behavior. This is a powerful feature; so powerful
that you might be tempted to misuse it.

Listing 5.5 Instrument DSL using monkey patching

Open up class
Numeric

B

New method
shares C

New
method ofD

141A trade-processing DSL in Ruby
ADDING AN INTERPRETER

We’ve already developed a fairly expressive syntax for TradeDSL in section 5.2.2 that
also nicely captures the domain semantics. Still, it looks too technical for Bob, who’s
used to a more fluid expression of the trading language in his domain.

 In our second iteration, we’re going to roll out an interpreter that’ll interpret
Bob’s language, chop off the frills, and extract the essence needed to build the neces-
sary abstractions. Here’s how it’ll look when we’re done:

str = <<END_OF_STRING
 new_trade 'T-12435' for account 'acc-123'
 to buy 100 shares of 'IBM',
 at UnitPrice=100, Principal=12000, Tax=500
END_OF_STRING

puts TradeDSL.trade str

Now that we have the core abstractions in place, we’re going to start adding to the syn-
tactic sugar of our DSL. As promised earlier, the language for trade processing is
steadily evolving.

 What do we need to add to our TradeDSL class to make it feel like the code in the
previous snippet? Listing 5.6 is another iteration of TradeDSL, the facade that we
talked about in section 5.2.2. It rolls out a small interpreter that processes the user
input before passing it on to SecurityTrade.

require 'security_trade'
require 'numeric'

class TradeDSL
 class << self
 def const_missing(sym)
 sym.to_s.downcase
 end

Ruby tidbits you need to know
■ How to define multiline strings using "here" documents. Use this technique

when you want to define a string literal in place within the source code instead
of externalizing it elsewhere.

■ How to define class methods. Class methods (or singleton methods) are
instance methods of the Ruby singleton class. For more details, look at [1] in
section 5.7.

■ Using evals in Ruby and how they work with metaprogramming. One of the
most powerful features of Ruby is its ability to evaluate a string or a block of
code dynamically during runtime. You get a number of flavors of evals that
you can use in various contexts.

■ Regular expression processing in Ruby. Ruby has built-in support for regular
expressions, which is extremely useful in pattern matching and text processing.

Listing 5.6 Trade DSL in Ruby, as an interpreter (Iteration 2)

Intercept undefined
constants

B

142 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
 def trade(str)
 TradeDSL.new.interpret(str)
 end
 end

 def new_trade(ref_no, account, buy_sell, instrument, attributes)
 SecurityTrade.create(ref_no, account, buy_sell, instrument, attributes)
 end

 def interpret(input)
 instance_eval parse(input)
 end

 def parse(dsl_string)
 dsl = dsl_string.clone
 dsl.gsub!(/=/, '=>')
 dsl.sub!(/and /, '')
 dsl.sub!(/at /, '')
 dsl.sub!(/for account /, ',')
 dsl.sub!(/to buy /, ', :buy, ')
 dsl.sub!(/(\d+) shares of ('.*?')/, '\1.shares.of(\2)')
 dsl.sub!(/(\d+) share of ('.*?')/, '\1.shares.of(\2)')
 puts dsl
 dsl
 end
end

Before going through the details of what this code does, let’s look at a diagram-
matic representation of how Bob’s language is being interpreted. Figure 5.6 traces
this sequence.

Implicit context
for new_trade

C

Process user
input

D

Figure 5.6 How a sample TradeDSL script is interpreted by the code in listing 5.6 to generate Ruby
objects. An instance of security_trade is generated through the DSL interpreter.

143A trade-processing DSL in Ruby
Try to understand the way this figure corresponds with the DSL implementation in list-
ing 5.6. Recognize any of the techniques that we discussed in chapter 4? Well, in the
listing, we have quite a few of them embedded within the code. The techniques recur
from time to time in various forms and implementations. Look at the following list to
discover some of them:

■ Method const_missing B uses runtime metaprogramming (discussed in sec-
tion 4.4) to convert any undefined constants to strings.

■ instance_eval in method interpret C sets up the implicit context (discussed
in section 4.2.1) of an instance of TradeDSL for executing the method new_trade

■ Method parse uses regular expressions D to process the user input and con-
verts it into a form suitable for invoking the instance method new_trade

For a more detailed discussion about Ruby metaprogramming techniques, see [5] in
section 5.7.

SPEAKING BOB’S LANGUAGE

Consider all this from a DSL user’s point of view. He can use this DSL to write trade
generation snippets using the same language that he does in his everyday business.
We’ve provided some bubble words in the DSL to make it more aligned with his nor-
mal vocabulary. As a user, Bob can now enter these DSL strings into a file that he can
load and process to generate instances of SecurityTrade. Even when he gets trade
data from upstream front-office systems, he can use this DSL to generate instances of
SecurityTrade and save it to his database.

 In the next section, we’ll enhance the DSL to incorporate a few business rules and
make it more friendly to the users who are programmers and who want to enrich the
trades that Bob generates so they can be used in the next step of the trading cycle.

5.2.4 Adding domain rules as decorators

Although Bob is happy with the current form that generates trades, he has some con-
cerns about the next step of the trading cycle where we need to enrich the trades
using some of the domain rules. We assured him that we’re working on it and will get

Ruby tidbits you need to know
■ How to define and use Ruby blocks. Blocks are used to implement lambdas

and closures in Ruby.
■ How you implement mixins using Modules. Ruby modules are yet another way

to group artifacts that can be included in your classes as mixins.
■ How you chain mixins to design decorators
■ Duck typing. In Ruby, an object responds to a message if it implements the

method by that name. Whether the object implements the method is not stat-
ically checked; you can change the object during runtime. If it quacks like a
duck, it is a duck in Ruby.

144 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
back to him as soon as we’ve reached a level of expressiveness that he can compre-
hend. Let’s discuss this iteration, which enhances the DSL and enriches the trade.

TRADE DSL –WHERE WE STAND NOW

We’ve already discussed quite a bit about our evolving DSL. Before we add to the trade
enrichment part, let’s step back and look at where we stand. Figure 5.7 says it all.
We’ve developed the trade generation script that produces an instance of Security-
Trade. As part of trade enrichment, we’ll add business rules that are candidates for
being modeled as a DSL.

 When the trades reach the back office of a securities trading organization, cash val-
ues and static data need to be added so that they can be passed in to the next step in
the processing pipeline. In section 4.2.2, we discussed how to compute the cash value
of trade, also known as the net settlement value. After we receive trades in the back
office, we need to invoke domain rules on the trades to compute their cash values.
These domain rules vary across stock exchanges, the type of instruments traded, and a
number of other factors. To keep our current scope simple, we’re assuming a fixed set
of rules. We’re going to enrich our DSL to invoke those rules on the generated trades.

IMPLEMENTING DOMAIN RULES

The following rules apply to the trades that Bob generates:

■ The cash value of a trade depends on the principal amount, the tax or fee
amount, and the broker commission amount

■ If the incoming trade stream contains any of these amounts, we’ll honor them;
otherwise, we need to compute them from the individual trades as per the fol-
lowing business rules.

■ The following business rules apply to every trade:
– The principal amount is the product of the unit price and the quantity, both

of which are parts of the trade object.
– The tax or fee is calculated as a fixed percentage of the principal amount.
– The broker commission is calculated as a fixed percentage of the princi-

pal amount.

Figure 5.7 We’ve developed the DSL for trade generation. Now we’ll add
business rules as DSLs to compute cash value of the trade.

145A trade-processing DSL in Ruby
With these rules as part of the implementation, the following listing shows how the
DSL is being used by the users to enrich trades.

require 'trade_dsl'
require 'cash_value_calculator'
require 'tax_fee'
require 'broker_commission'

str = <<END_OF_STRING
new_trade 'T-12435' for account 'acc-123'
 to buy 100 shares of 'IBM',
 at UnitPrice = 100
END_OF_STRING

TradeDSL.trade str do |t|

 CashValueCalculator.new(t).with TaxFee, BrokerCommission do |cv|

 t.cash_value = cv.value
 t.principal = cv.p
 t.tax = cv.t
 t.commission = cv.c
 end
 t
end

TradeDSL.trade(str) generates an instance of SecurityTrade that gets passed into
the Ruby block B. In the block, the trade is enriched as a side effect of mutating the
instance that it takes D. All this is disciplined and idiomatic Ruby programming.
We’re using the conciseness that Ruby offers, along with the domain semantics that we
add to the language to make it more expressive.

 Notice how we’re making the domain rules pluggable in our DSL in this code by
abstracting the computation logic of TaxFee and BrokerCommission. All the DSL user
needs to do is wire up the necessary components with the CashValueCalculator class

C. The technique that we use for wiring them up is called mixin-based programming,
which we already discussed in section 4.2.2. Here, the mixins act as decorators of the
main class CashValueCalculator.

 To make the TradeDSL.trade method accept an additional block as an argument,
we need to make the following small change. The rest of the DSL remains the same.

require 'security_trade'
require 'numeric'

class TradeDSL
 class << self
 def const_missing(sym)
 sym.to_s.downcase
 end

Listing 5.7 Using the Trade DSL

Listing 5.8 Trade DSL in Ruby: blocks for side effects (Iteration 3)

Ruby block for
side effects

B

Side effects
in a blockD

Decorators
using mixins C

146 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
 def trade(str)
 yield TradeDSL.new.interpret(str) if block_given?
 end
 end

end

Now let’s go back to listing 5.7 and look into the implementation of the decorators
that we added transparently to the CashValueCalculator instance.

RUBY DSL WITH DECORATORS

Listing 5.7 shows an instance of how you can add syntactic sugar on top of core
abstractions like TaxFee and BrokerCommission. And unlike static languages, we can
do all this dynamically through the magic of metaprogramming. The following listing
implements the complete DSL that computes the cash value of a given trade.

class CashValueCalculator
 attr_reader :trade

 attr_accessor :p, :t, :c

 def initialize(trade)
 @trade = trade
 @p = [@trade.principal,
 @trade.unitprice * @trade.instrument.quantity].find do |m|
 not m.nil?
 end
 @t = @trade.tax unless @trade.tax.nil?
 @c = @trade.commission unless @trade.commission.nil?
 end

 def with(*args)
 args.inject(self) { |acc, val| acc.extend val }
 yield self if block_given?
 end

 def value
 @p
 end
end

module TaxFee
 def value
 @t = @p * 0.2 if @t.nil?
 super + @t
 end
end

module BrokerCommission
 def value
 @c = @p * 0.1 if @c.nil?
 super + @c
 end
end

Listing 5.9 Calculating the cash value of the trade

Process the block
as a side effectB

Concise
literal syntax

B

Compose mixins
dynamicallyC

147A trade-processing DSL in Ruby
Aha! Now we have the DSL implementation ready with a friendly surface syntax that
Bob can understand, and an expressive implementation that speaks the language of
the domain. Table 5.2 contains a quick recap of how this Ruby implementation of the
DSL embodies the three attributes of dynamically typed languages that we talked
about in section 5.1.

 This completes the Ruby implementation of the trading DSL. I set up one problem
from a real-life use case at the beginning of the section and demonstrated how you
can solve it using a DSL-based approach. Now that you’ve implemented it, it appears to
be the most idiomatic way to implement the domain functionality that we set out to
model. We used Ruby, exploited its powers of flexible syntax, duck typing, and
metaprogramming, and finally arrived at a language that a domain expert can com-
prehend. As we completed the implementation step-by-step, I highlighted all the fea-
tures that make Ruby a great language for internal DSL implementation. The idea
wasn’t to show off the power of Ruby, but to reiterate how a DSL-based approach can
complement a powerful language to make extensible abstractions.

 In the next section, we’ll talk about DSL implementation in another language that,
like Ruby, offers dynamic typing and has powerful metaprogramming abilities, but
also has a more seamless model of integration with the JVM. You used this language in
chapters 2 and 3 when we designed an order-processing DSL using it. It’s Groovy, and
we’ll use it to improve on your earlier implementations of the same DSL.

Have you started wondering why we’ve been looking at so many lan-
guages when most of the time you’ll be using only one for your develop-

ment? In real-life application development, if you’re designing DSLs, ideally

Table 5.2 Dynamic languages and the Ruby DSL

Attribute Supporting Ruby features shown in listing 5.9

Readability Malleable syntax, array literals, and optional parentheses make the code in
initialize method B clear and concise. It clearly advertises the
domain rule that asks us to honor the cash value components if they come
with the input trade, and to calculate otherwise.
The total cash value of the trade is computed implicitly by the modules
that you mix in with the CashValueCalculator instance. The DSL in
listing 5.7 nicely abstracts away the implementation of the net cash value
calculation, while explicitly telling the user which components take part in
the computation. In fact, the user’s going to supply the components that
he wants to use in computing the final net value.

Duck typing Note how the value method in TaxFee and BrokerCommission uses
super without any static inheritance relationship. This is an example of
duck typing.
You can plug in any module that has a value method and things will be
chained in magically.

Metaprogramming The with method C acts as the combinator that lets us compose the mix-
ins through runtime extensions of the participating modules.

148 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
you should be using the language that best fits the solution domain. Remem-
ber, it’s the DSL syntax and semantics that matter the most; the language you
use for implementation is only a means of getting there. The richer the set of
idioms up your sleeve, the more options you have to use when you’re design-
ing your DSL.

5.3 The order-processing DSL: the final frontier in Groovy
Groovy as a language offers capabilities that are similar to Ruby’s: dynamic typing and
strong runtime metaprogramming power. The main difference between the two lan-
guages is that Groovy shares the object model with Java, which means that it has more
seamless integration capabilities than Ruby. In fact, Groovy is often touted as a DSL for
Java. For this reason, choose Groovy as the implementation language when you’re
designing DSLs that need to fit in the ecosystem of a Java application. Both Ruby and
Groovy offer similar capabilities as hosts for implementing DSLs. But by virtue of shar-
ing the object system with Java, Groovy offers better integration capabilities.

 In this section, we’ll revisit the order-processing DSL that you implemented first in
chapter 2 and worked with again in chapter 3. We won’t focus on the features of
Groovy that we’ve already discussed while implementing the trade DSL in Ruby. We’ll
talk more about one single, stand-out feature in Groovy metaprogramming that you’ll
use often when you’re designing an internal DSL.

 We’ll start with a brief recap of the earlier iterations of the order-processing DSL.
Then I’ll identify the drawbacks and we’ll improve on our earlier attempts until we
have the final version of implementation.

5.3.1 The order-processing DSL so far

We’ve already discussed quite a few options for Groovy implementations. Figure 5.8
offers a brief recap.

Figure 5.8 A look at the alternatives we implemented in our order-processing DSL in
earlier chapters

149The order-processing DSL: the final frontier in Groovy
In section 2.2.3, we did an end-to-end Groovy implementation that executed the DSL
from Groovy using GroovyShell. GroovyShell takes the DSL definition as well as the
script and executes it using the evaluate method. In section 3.2.1, we changed the DSL
and used Java 6 scripting engine APIs to eval the DSL. In section 3.2.3, we explored yet
another option that was an improvement over the one we used in section 3.2.1. Instead
of using the Java ClassLoader, we used GroovyClassLoader from within the Java appli-
cation to load the DSL for order processing.

 All the options that we’ve explored so far have a common drawback, related to the
way we used Groovy metaprogramming concepts. In this section, we’ll improve our
earlier attempts by implementing a better model of Groovy metaprogramming to
drive your DSL.

5.3.2 Controlling the scope of metaprogramming

In all the earlier approaches to this DSL, we injected methods to existing Groovy
classes by adding methods to their MetaClass.

Look at this snippet from listing 3.1 where we added properties like shares and of to
the Integer class:

Integer.metaClass.getShares = { -> delegate }
Integer.metaClass.of = { instrument -> [instrument, delegate] }

That code lead us to write DSL scripts as follows (from listing 3.2):

newOrder.to.buy(100.shares.of('IBM')) {
 limitPrice 300
 allOrNone true
 valueAs {qty, unitPrice -> qty * unitPrice - 500}
}

Groovy tidbits you need to know
■ ExpandoMetaClass and how it does metaprogramming. A special artifact of

Groovy metaprogramming that lets you dynamically add methods, construc-
tors, properties, and static methods using a neat closure syntax.

■ Closures and delegates. A closure in Groovy is a lambda that can be defined
in one place and executed somewhere else, much like with Ruby blocks. The
delegate is usually the enclosing object of the closure, but you can change it
during runtime.

■ Class declaration in Groovy. It’s similar to Java, minus the verbosity of types.
You also get that Groovy concise syntax.

■ How Groovy categories manage the scope of metaprogramming. Categories in
Groovy are an alternative to ExpandoMetaClass for metaprogramming. Using
categories, you can control the scope within which the changes to the meta-
objects are visible within your application.

150 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
We did this injection using Groovy’s ExpandoMetaClass, which lets you add methods,
properties, constructors, and static methods to an existing class during runtime. The
problem with Groovy’s ExpandoMetaClass is that the properties or methods that you
inject to a class are available globally. When you’re writing an application, it might not
be a recommended social practice to change the behaviors of all instances of a class
across all the threads of the JVM. ExpandoMetaClass does this, which makes your
changes to a class visible to all other users. Global changes are also an issue with Ruby
monkey patching, and can have adverse impacts on other users, introducing incom-
patibilities in the ways they look at the class and method definitions.

 A fine-grained control over the scope of metaprogramming is a feature that you
should always keep in mind when you’re implementing Groovy DSLs. This is precisely
the reason why we have a separate section about Groovy implementation.

THE GROOVY MOP AND CATEGORIES

The Groovy MOP gives you yet another option for making smart and controlled injec-
tions into existing classes. But instead of making these added properties visible glob-
ally, it restricts the scope to within a block of code. You define classes, called categories,
where you define additional methods that you want to inject. Programmers use catego-
ries extensively in Groovy to produce expressive DSLs. (For a more detailed explana-
tion of Groovy categories, see [2] in section 5.7.) Let’s use categories and re-engineer
our order-processing DSL to its new, improved form. The basic abstraction that cap-
tures an Order in Groovy is shown in the following listing.

class Order {
 def name
 def quantity
 def allOrNone = false
 def limitPrice
 def valueClosure

 def Order(stockName, qty) {
 name = stockName
 quantity = qty
 }

 def limitPrice(price) {limitPrice = price}

 def allOrNone() {allOrNone = true}

 def valueAs(closure) {
 valueClosure = closure.clone()
 valueClosure.delegate =
 [qty: quantity, unitPrice: limitPrice]
 }

 String toString() {
 "stock: $name, number of shares: $quantity,

➥allOrNone: $allOrNone, limitPrice: $limitPrice,

Listing 5.10 Order class in Groovy

Ensure thread
safety

Bind the free
variables

151The order-processing DSL: the final frontier in Groovy
➥valueAs: ${valueClosure()}"
 }
}

As part of our DSL, we need to give the user the flexibility of a little language for
expressing the quantity of shares that he wants to buy or sell as 200.IBM.shares. We’ll
do this using Groovy categories. But we need a helper class that abstracts this expres-
sion and allows the user to include the rest of the order description as a closure. Let’s
call this class Stock. Here’s the class definition:

class Stock {
 def order

 Stock(orderObject) {
 order = orderObject
 }

 def shares(closure) {
 closure = closure.clone()
 closure.delegate = order
 closure()
 order
 }
}

Before proceeding any further with the implementation, let me introduce the new
order-processing DSL in use, so that you can follow the implementation as we move
ahead. Here’s the DSL script that Bob can use for ordering his stock transactions.

buy 200.GOOG.shares {
 limitPrice 300
 allOrNone()
 valueAs {qty * unitPrice - 500}
}

buy 200.IBM.shares {
 limitPrice 300
 allOrNone()
 valueAs {qty * unitPrice - 500}
}

buy 200.MSOFT.shares {
 limitPrice 300
 allOrNone()
 valueAs {qty * unitPrice - 500}
}

In this listing, we need to add methods to class Integer. We’ll do that using Groovy
categories this time.

THE BASIC DSL
The first category is shown in the following listing. This category will help us build
instances of Stock.

Listing 5.11 Order-processing DSL script

Ensure thread
safety

Delegate to collect
the information

152 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
class StockCategory {
 static Stock getGOOG(Integer self) {
 new Stock(new Order("GOOG", self))
 }

 static Stock getIBM(Integer self) {
 new Stock(new Order("IBM", self))
 }

 static Stock getMSOFT(Integer self) {
 new Stock(new Order("MSOFT", self))
 }
}

You can see that 200.IBM gives us an instance of Stock using StockCategory, which is
defined in the listing. On this instance of Stock, we invoke the method shares. This
method takes a closure that contains the rest of the order details as an argument.
When we defined the Stock class, we set the delegate of the closure that shares takes
to the order instance. Doing so sets up the correct context when we specify limit-
Price, allOrNone, and valueAs in the script in listing 5.11. Note that in real-life proj-
ects we can generate this code from the list of stocks in the database.

 Now we’ve got the basic engine of the DSL ready. We need to add one last category
to make the script smarter, then finish it off with a Java launcher.

5.3.3 Rounding it off

Look at listing 5.11 once again. Processing for each individual order starts with buy.
This means that we need to inject a method buy to the Groovy Script class. Let’s do
this using another category:

class OrderCategory {
 static void buy(Script self, Order o) {
 println "Buy: $o"
 }

 static void sell(Script self, Order o) {
 println "Sell: $o"
 }
}

For this demonstration, we just want to print the order that the user has entered and
check that all its attributes are set correctly. In real-life projects, you should be writing
meaningful domain logic that processes the order and does other things.

 This step completes the DSL implementation in Groovy. All we need to do now is
write a runner that runs this DSL, and then invoke the runner code from within a Java
application. Here’s the Groovy code that runs the DSL using the categories that we
defined above:

class DslRunner {
 static runDSL(dsl) {
 use(OrderCategory, StockCategory) {

Listing 5.12 Adding methods to Integer using categories

Use the
categories

B

153Thinking differently in Clojure
 new GroovyClassLoader().parseClass(dsl as File).newInstance().run()
 }
 }
}

In this snippet, note that the additional methods that we inject into the existing
classes are available only within the scope denoted by the use {} block B. Finally,
here’s the Java application that invokes DslRunner:

public class LaunchFromJava {
 public static void main(String[] args) {
 DslRunner.runDSL("newOrder.dsl");
 }
}

Ta-da! You’ve just seen how a DSL implementation evolves in Groovy. Figure 5.9
depicts the translation of the DSL script through the semantic model to the execu-
tion phase.

 This concludes our miniseries of DSL implementation in Groovy. In the next sec-
tion, we’ll implement a completely different flavor of DSL using the power of Clojure.

5.4 Thinking differently in Clojure
In this section, you’re going to see how you can implement a use case for computing
the cash value of a trade in Clojure. (If you need a reminder, section 4.2.2 contains a
sidebar that discusses what I mean by the cash value of a trade.) We’ll use a DSL-based
approach, building smaller domain abstractions bottom up and then composing them
using Clojure combinators.

 We implemented this same use case in section 5.2.4 using Ruby. So why are we
dealing with it again? Ruby is a language that offers a completely different paradigm

Figure 5.9 How the Groovy DSL script gets transformed into the Semantic model and finally into the
Execution model

154 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
than Clojure. Ruby is OO and uses runtime metaprogramming as the primary tool for
DSL implementation. Clojure is mostly functional, with strong compile-time metapro-
gramming capabilities using macros. It’s no surprise you need to think differently in
Clojure than in Ruby or Groovy. Even when you implement a DSL for the same use
case, a Clojure-based implementation might be entirely different from a Ruby-based
one. Here I’ve intentionally picked the same use case we used for Ruby just to demon-
strate how selecting another host language can influence design decisions differently.
Look at table 5.3 for some of the key differentiators in Clojure that stand out with
respect to Ruby. For a more detailed discussion of Clojure as a language, you can see
[6] in section 5.7.

 To fully appreciate the differences between the two implementations, I strongly
advise you to go back and reread the information about the Ruby implementation
before I take you through the Clojure one.

5.4.1 Building a domain object

To start building a DSL, we need some of the underlying abstractions that form the
core of the domain model. For this reason, our first step is to design the trade abstrac-
tion and define a factory method (shown in listing 5.13) that generates trade objects
from an external source.

DEFINITION A Factory method is a design pattern that provides a single point
of interaction for the creation of instances of a family of objects.

Table 5.3 Think differently when you’re implementing a DSL in Clojure

DSL implementation in Ruby DSL implementation in Clojure

Think in terms of objects and modules and
how to wire them up during runtime using the
power of metaprogramming.

Think in terms of the functions of the use case and
how to compose them using Clojure sequences that
operate on lambdas.

Use tricks like method_missing,
const_missing, and other dynamic
metaprogramming features to make the DSL
concise and expressive.

Use macros to convert DSL syntax to normal Clojure
forms—all during compile time.

A DSL implemented in Ruby or Groovy might
not feel like the native syntax of the language.

A DSL implemented in Clojure looks like Clojure code
because its structure is based on s-expressions.

Clojure tidbits you need to know
■ Basic function definition and syntax of the language. The syntax of Clojure is

like Lisp; the prefix notation might catch you off guard. In case you’re not used
to it, go through the basics by reviewing [4] in section 5.7.

■ Defining a Map data structure. Map is a data structure that’s used often in Clo-
jure to implement the class-like structures of OO programming.

155Thinking differently in Clojure
The source can be any data source that your system interacts with; for example, the
attributes can come from a web request, flat file, or database. The factory method
extracts information from the request and builds a map that represents the attributes
of a trade.

(defn trade
 "Make a trade from the request"
 [request]
 {:ref-no (:ref-no request)
 :account (:account request)
 :instrument (:instrument request)
 :principal (* (:unit-price request) (:quantity request))
 :tax-fees {}})

(def request
 {:ref-no "trd-123"
 :account "nomura-123"
 :instrument "IBM"
 :unit-price 120
 :quantity 300})

Clojure is implemented on top of objects, though it presents a functional model of
programming to users. In this example, we implement abstractions as name-value
pairs in the form of a Clojure Map. Note that trade is a function that builds up the nec-
essary abstraction with the relevant information from the input request. The input
request D is also a Map, implemented as a function of its keys. When we extract values
out of the Map, we use the same syntax as we do for a function invocation B. As an
example, the literal syntax (:account request) extracts the value of the account key
from the Map.

 The method trade clearly expresses the domain intents and semantics. The map
literal syntax enables named arguments, which map domain concepts directly into
program elements and makes the code expressive. The map tax-fees is still a
placeholder C that we need to fill up when we enrich the generated trade in the
next section.

5.4.2 Enriching domain objects using decorators

The next step is to enrich the base abstraction with additional features that make it
usable in a real-world use case of a trading lifecycle. We’re going to use decorators
to do this, the same way we did with the Ruby implementation in section 5.2.4 to
enrich the trade with tax and fee components. But unlike the Ruby implementation,
we’ll use compile-time metaprogramming and macros to implement the same behav-
ior in Clojure.

Designing a DSL involves mapping the syntax that you want to the
underlying semantics of the language. You need to change the way you

think when you use a different language for implementation.

Listing 5.13 Trade generation in Clojure

Build trade
from request

B

Principal value
= unit-price *
quantity

Populate
tax-fee laterC

Sample
requestD

156 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
But how do you add behaviors to an abstraction dynamically without adding any run-
time performance overhead? Clojure lets you do that using compile-time mixins. Let’s
see how.

USING CLOJURE COMBINATORS

Suppose we have the construct with-tax-fee that introduces additional behaviors
within an already existing Clojure function to add tax and fees to our trade. In the
following snippet, if we apply with-tax-fee to our trade function, we get a new func-
tion that has the additional mappings for :tax and :commission stacked on top of the
existing set.

 (with-tax-fee trade
 (with-values :tax 12)
 (with-values :commission 23))

In this snippet, with-tax-fee acts as the decorator to the trade function. Now you
can execute trade with a request and tax and commission components will be filled
up with 12% and 23% of the principal amount, respectively. (Tax and commission are
usually expressed as percentages of the principal amount of a trade.)

 If you’re not the implementer of the DSL, you’re not really bothered about what it
takes to implement constructs like with-tax-fee or with-values. You can use them
as combinators and develop your abstractions for the trade DSL. But in this section,
we’re discussing DSL implementations. So our next step is to see what it takes to imple-
ment a function that decorates another function with an additional behavior. Here’s
an implementation of with-values.

Clojure tidbits you need to know
■ Higher-order functions. Clojure supports higher-order functions where you can

use functions as first-class values. You can pass functions as parameters,
accept one as a return value, and so on.

■ Macros are the most important secret sauce for developing DSLs in Clojure.
Macros are the building blocks of compile-time metaprogramming.

■ Let binding and lexical scope. You can define bindings at precisely the scope
you need, no matter how narrow it is.

■ Understanding the Clojure standard library functions. A wealth of them are
available at the Clojure site (http://clojure.org).

■ Immutable data structures. Clojure offers immutable and persistent data
structures. By persistence I mean that you have access to all earlier
versions, even after mutating a data structure. Look at [4] in section 5.7
for details.

■ Some standard combinators like reduce and ->. Combinators let you write
concise and expressive code structures in Clojure. Combinators are functions
that take other functions as parameters.

157Thinking differently in Clojure
(defn with-values [trade tax-fee value]
 (fn [request]
 (let [trdval (trade request)
 principal (:principal trdval)]
 (assoc-in trdval [:tax-fees tax-fee]
 (* principal (/ value 100))))))

The combinator with-values does quite a bit to augment the output of the trade
function with additional behavior. Even though this isn’t a book on Clojure, let’s look
into this code more closely in table 5.4 to get an idea of how it abstracts the complex-
ity to give clients a simpler API.

 But how does with-tax-fee integrate with with-values to give us the new trade
function? That’s what we’ll turn to next.

Listing 5.14 Wrap trade with additional behavior

Table 5.4 Dissecting a Clojure API

Higher-order functionsB
Returns a functionC

Get the
trade valueD

Add to :tax-fees
Map as percentage
of principal

E

Clojure feature How the DSL uses it

Higher-order functions that
are an essential part of the
recipe that you’ll use when
implementing DSLs.

The first argument that with-values takes is a function B.
The with-values function returns another function C, which is
also characteristic of a language that supports functions as first-
class values. Because Clojure supports higher-order functions you
can pass functions as parameters, get them as return values, and
treat them like any other data type in the language.
In C, fn denotes an anonymous function in Clojure. The
anonymous function that with-values returns is the one that
augments the input function trade with additional behavior to
populate :tax-fees.

Evaluation in a lexical context
to control scope

We invoke trade on the argument that the new function takes D

and augment the resultant Map with tax-fee values.
The bindings in a let are sequential; note that we use trdval in
the next binding for principal.

Immutability and the ability to
implement persistent data
structures

In the last step in the listing, we add tax-fee as the key and the
value parameter as its value E. Then we add the entry to the
Map that trade returned in D.
The original Map doesn’t get mutated. Clojure implements immuta-
ble and persistent data structures. In this case, for every invoca-
tion, assoc-in returns a new Map that augments the original
Map with the key and value specified as arguments.

Functions that compose
naturally

The fact that with-values returns a function helps implement
chaining. So we can write code like the following:

(with-tax-fee trade
(with-values :tax 12)
(with-values :commission 23))

In this code, we chain two invocations of with-values with the
original trade function. This chaining of method invocation is
what we mean by composability, which is offered by languages like
Clojure that implement functions as first-class values.

158 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
DECORATORS USING HIGHER-ORDER FUNCTIONS

Before we look at with-tax-fee, here’s a little something that forms the basis of our
decorator implementation. One thing is becoming clearer. Unlike the Ruby imple-
mentation, in which we focused on objects, Clojure provides you with interesting
tricks to deal more with functions. The whole idea when you’re implementing DSLs is
to explore some of the idioms that fit the Clojure landscape more naturally. The fol-
lowing snippet shows an interesting trick you can do with function threading.

 (def trade
 (-> trade
 (with-values :tax 20)
 (with-values :commission 30)))

The function -> threads its first argument across the forms that are the subsequent
arguments. Function threading makes implementing a decorator trivial in Clojure,
because you can redefine the original function by threading it through the decorators
using ->. The implementation of a decorator shown in listing 5.15 uses this technique
and is taken from Compojure, the web development framework in Clojure (go to
http://github.com/weavejester/compojure for more information). If you’re not
familiar with Clojure, the concepts we’ve just been discussing will take some time to
gel. But when you get the feel of how you can compose larger functional abstractions
out of smaller ones, you’ll appreciate the beauty that those four short lines of code
can bring to your implementation.

WRAPPING IT UP WITH A CLOJURE MACRO

Instead of making the user do all this, why not wrap up the function threading stuff
with a Clojure macro that reads more simply and intuitively, and at the same time
abstract the same magic without any runtime overhead? That’s what’s happening in
the following listing.

(defmacro redef
 "Redefine an existing value, keeping the metadata intact."
 [name value]
 `(let [m# (meta #'~name)
 v# (def ~name ~value)]
 (alter-meta! v# merge m#)
 v#))

(defmacro with-tax-fee
 "Wrap a function in one or more decorators."
 [func & decorators]
 `(redef ~func (-> ~func ~@decorators)))

That bit of code completes with-tax-fee, the Clojure version of a compile-time deco-
rator that lets you add behaviors to existing abstractions in a completely noninvasive
manner. with-tax-fee is implemented as a macro B, which gets expanded during the
macro expansion phase of compilation and generates the code that it encapsulates.

Listing 5.15 Decorator in Clojure

Clojure
macro

B

159Thinking differently in Clojure
 Before decorating the input function, we need to redefine the root binding of the
function that’s preserving the metadata. The macro redef does this for us. This pro-
cess is different from what happens in Ruby, where all metaprogramming is done dur-
ing the execution phase. As we discussed earlier, during runtime we don’t have any
meta-objects in Clojure; they’re all resolved during macro expansion.

 We’ve done lots of stuff to our implementation and come up with a DSL that adds
tax and fee calculation logic to a trade abstraction. With the decorated trade func-
tion, we can now define an API that computes the cash value of the trade. The features
of Clojure that you’ve seen so far make this implementation a meaningful abstraction
for the domain. The API is explicit about what it does with the trade to compute its net
cash value. A person familiar with the domain and the language can understand right
away what the function tries to achieve.

 (defn net-value [trade]
 (let [principal (:principal trade)
 tax-fees (vals (trade :tax-fees))]
 (reduce + (conj tax-fees principal))))

This implementation is a testimony to the succinctness of Clojure. Clojure is a dense
language and lets you program at a higher level of abstraction. The last expression in
this snippet packs a powerful punch. reduce is a combinator that recurses over the
sequence and applies the function (+) that’s passed to it B.

WHAT WE’VE ACCOMPLISHED

Before we move on to the next step in running our DSL, let’s step back for a moment
and take stock in table 5.5 of what you’ve achieved so far in implementing the DSL for
the cash value calculation of the trade.

Table 5.5 Evolving our DSL

Combinator increases
abstraction

B

Step in the evolution of the DSL Implementation details

1 Designed the base abstraction for
trade

We used a factory method trade that does the following:

1 Accepts data from an external source
2 Generates a trade object in the form of a Clojure Map

2 Injected additional behaviors into
the domain object.

Techniques used:

■ Decorator pattern
■ Clojure macros

Changed trade function to one with additional behaviors
for tax and fee injected for cash value calculation.

How to get tax and fee to populate trade:

1 Define the with-values function that augments the
output of the trade function with behaviors.

2 Add tax and fee to the output of the trade function using
the Decorator pattern

3 Define the with-tax-fee macro that enables the multi-
ple application of with-values on an existing function.

Note: with-tax-fee uses compile-time metaprogram-
ming and has no runtime overhead.

160 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
Figure 5.10 DSL script to execution model for Clojure. Pay attention to the series of steps that the
DSL script goes through before it’s ready for execution. As we discussed in chapter 1, the semantic
model bridges the DSL script and the execution model.

Clojure is a language with a philosophy that’s different than that of Ruby, Groovy, or
Java. Clojure is idiomatically functional, despite being developed on top of Java’s
object system. You need to think differently when you’re programming in Clojure. As
you saw in this section, we didn’t have to do any special magic to design our DSL in
Clojure. It’s just Clojure’s natural way of programming.

 Before we go any further, let’s look at figure 5.10 which illustrates the lifecycle of a
DSL script written in Clojure.

 Feeling tired? We still have one last bit of business left with the Clojure DSL—the
instant gratification of seeing your DSL in action within a Clojure REPL (read-eval-
print-loop). Get yourself a cup of coffee and a few cookies if you need caffeine and
sugar to invigorate you. You might need a pick-me-up, because in the next section
we’re going to go interactive. You’ll interact directly with the Clojure interpreter and
run the DSL that you designed in this section.

3 Defined the net-value function for
cash value calculation of trade

The net-value function accepts the trade function that
we modified in step 2 and also takes the following actions:

1 Gets the principal from the trade
2 Gets the tax and fees from the trade
3 Computes the net cash value using the specified

domain logic

Table 5.5 Evolving our DSL (continued)

Step in the evolution of the DSL Implementation details

161Thinking differently in Clojure
5.4.3 A DSL session at the REPL

A dynamic language like Clojure gives you the pleasure of directly interacting with the
language runtime through an REPL. (Read about REPL at http://en.wikipedia.org/
wiki/Read-eval-print_loop.). Using the REPL, you can immediately see your DSL in
action, make changes online, and feel the effect of the changed behaviors instantly.
You should definitely use this feature for the seamless evolution of your DSL.

 For the cash value calculation logic, our DSL looks as simple as (net-value (trade
request)), which is as concise and expressive as possible. You can create a trade
instantly, run your DSL in the REPL, and make changes to the trade function by add-
ing more domain rules as decorators. Here’s a look at a sample session at the Clojure
REPL with the DSL we’ve implemented so far:

user> (def request {:ref-no "r-123", :account "a-123",
 :instrument "i-123", :unit-price 20,
 :quantity 100})
#'user/request

user> (trade request)
{:ref-no "r-123", :account "a-123", :instrument "i-123",
 :principal 2000, :tax-fees {}}

user> (with-tax-fee trade
 (with-values :tax 12)
 (with-values :commission 23))
#'user/trade

user> (trade request)
{:ref-no "r-123", :account "a-123", :instrument "i-123",
 :principal 2000, :tax-fees {:commission 460, :tax 240}}

user> (with-tax-fee trade
 (with-values :vat 12))
#'user/trade

user> (trade request)
{:ref-no "r-123", :account "a-123", :instrument "i-123",
 :principal 2000, :tax-fees {:vat 240, :commission 460, :tax 240}}

user> (net-value (trade request))
2940

One of the most important qualities of a DSL is the ability to hide complex implemen-
tations behind simple-to-use APIs that model the domain vocabulary. This session at
the Clojure REPL demonstrates this simplicity. DSLs always make you feel like you’re
using a language that models the one a trader speaks at his dealing desk. In this case,
it happens to have a Clojure implementation underneath.

 For every new paradigm, there comes a set of pitfalls that you, as a designer, need
to be aware of. So far you’ve seen quite a few patterns, idioms, and best practices that
should guide your thought processes while you’re implementing DSLs. In the next sec-
tion, I’ll talk about some of the pitfalls that you should stay clear of.

162 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
5.5 Recommendations to follow
So far this chapter has been a positive experience for you. We’ve discussed DSL imple-
mentation in three of the most popular dynamic languages on the JVM. You’ve seen
lots of idioms and implementation techniques and actually implemented a couple of
useful snippets of DSL from our domain of stock trading applications. But you always
have to pay the piper, and no matter how easy all this might seem, there are some
potential problems that we’ve got to talk about.

 Instead of picking up three completely different examples, I’ve intentionally
selected examples for this section that are broadly related to each other. The idea is to
highlight the fact that even with the same problem in hand, you’ll need to employ dif-
ferent techniques to solve it, depending on the repertoire of your language. What you
can do using dynamic metaprogramming in Ruby might be better solved using a dif-
ferent idiom in Clojure. It’s extremely important to learn to use the right tool for the
right job. While you’re figuring out which tool does what, you’ll stumble on the most
common pitfalls that might catch you off guard. Let’s discuss some of them from the
perspective of DSL development.

5.5.1 Honor the principle of least complexity

When you’re implementing an internal DSL, select the least complex idiom of the
host language that best fits in the solution model. You’ll frequently see developers use
metaprogramming techniques when they could’ve done the same thing without them.
A common example of this in Ruby is the use of monkey patching. (Remember mon-
key patching? It’s the technique in which you open up a class and make changes to
methods and properties. Doing this is particularly dangerous in Ruby because these
changes are always applied globally.) In many situations, instead of opening up a class
and introducing new methods in it, you can instead define a new Module in Ruby that
contains those methods and include the Module in the target class.

5.5.2 Strive for optimal expressivity

If you try too much for the nirvana of expressivity in your DSL, you’ll introduce unwar-
ranted complexity into your implementation. Make the language as expressive as your
user requires. The Ruby DSL that we rolled out in section 5.2.2 was expressive enough
for a programmer to comprehend the semantics of the domain. Here it is once again
as a quick reference:

TradeDSL.new.new_trade 'T-12435',
 'acc-123’, :buy, 100.shares.of('IBM'),
 'unitprice' => 200, 'principal' => 120000, 'tax' => 5000

Expressive enough! But you might be asking, why did we go for the interpreter version
of the DSL? For a couple of reasons. First, I wanted to take the DSL to the next level so
that it would be acceptable to the Bobs on our team. Bob was the first person who com-
plained about the accidental complexity that our DSL had. And the interpreter version
was close to what he would normally say at his trading desk. The second reason was I

163Recommendations to follow
wanted to demonstrate how far you can stretch the dynamism that Ruby offers. But in
real life when you’re designing DSLs, keep in mind the level of expressivity that fits the
profile of your user.

5.5.3 Avoid diluting the principles of well-designed abstractions

You’ll often be in situations when you’ll be tempted to make the DSL more verbose,
thinking that it will make your language more acceptable to the users. One of the most
common impacts of such an attempt is that it violates the principles of well-designed
abstractions that we discussed in chapter 1. Introducing bubble words or frills in a lan-
guage can lead to decreased encapsulation and increased visibility of the internals of
your implementation. It can also make your abstractions unnecessarily mutable. List-
ing 5.5 showed a common example of this trade-off; we made the Instrument abstrac-
tion mutable so that we could build a nice DSL around the instrument-creation logic.
Look back at listing 5.7 where we exploited this mutability property to make our DSL
more expressive.

 This is not to say that you should never bother with expressivity. Remember that
designing a language is always an exercise of making trade-offs and compromises. Be
sure to critically evaluate whatever decision you make and whatever compromises you
make in your abstractions. And always keep your design principles aligned with the
profile of the user who’ll be using your DSL.

5.5.4 Avoid language cacophony

It’s a common allegation that DSLs don’t compose. A particular DSL is targeted to
solve a specific problem of a domain. When you design a DSL for a trading applica-
tion, you always think in terms of making it expressive with reference to the prob-
lem domain that you’re modeling. You really don’t think about how your DSL will
integrate with another third-party DSL that does ledger accounting and maintains
client portfolios.

 Even though you can’t know everything, always try to design abstractions that com-
pose easily. Functions compose more naturally than objects. And if you’re using a lan-
guage that supports higher-order functions like Ruby, Groovy, or Clojure, always focus
on building combinators that can be chained together to form little languages. Check
out appendix A, where I discuss the advantages of composable abstractions and their
impact on concurrency.

 If your abstractions don’t compose, your DSL will feel chaotic to use. Language
artifacts will stand lonely and forlorn and will never feel natural to your domain users.

 These pitfalls are some of the most common ones that you should be aware of
while you’re designing DSLs. It’s extremely important to carefully select the subset
of languages that you’re going to use for implementing your DSL. Keep all the inte-
gration requirements of your DSL in mind and honor the principles of designing
good abstractions.

164 CHAPTER 5 Internal DSL design in Ruby, Groovy, and Clojure
5.6 Summary
Congratulations! You’ve just reached the end of our discussion about implementing
internal DSLs in dynamically typed languages. I chose Ruby, Groovy, and Clojure as
the three implementation languages mainly because of the variety that they offer as
residents of the JVM.

JRuby is the Java implementation of Ruby that provides a bridge for it to interoper-
ate with the Java object model. It comes with the strength of Ruby metaprogramming
and adds to it the power of Java interoperability. Groovy is known as the Java DSL and
shares the same object model as Java. Clojure, despite being implemented on top of
the Java object model, offers the strong functional programming paradigm of Lisp.

 In this chapter, we discussed how you can implement typical, real-life trading appli-
cation use cases using these three languages. Ruby offers strong metaprogramming
capabilities that can make your DSL dynamic at runtime, which enables you to com-
pose and build higher-order abstractions. Groovy offers capabilities during runtime
that are similar to those of Ruby, but interoperates with Java more seamlessly because
it shares the same object model.

 You implemented the final version of our order-processing DSL in Groovy, which
we started way back in chapter 2. Through this example, you also got an idea of how a
typical DSL evolves through an iterative process of incremental improvement. Clojure
is the Lisp that runs on the JVM and comes with the awesome power of compile-time
metaprogramming, also known as macros. You saw how to use macros to make a DSL
expressive and concise, doing it all without adding any runtime overhead that the
metaobject protocol incurs in many other languages.

 At the end of the day, if you can always keep in mind the compromises and trade-
offs that you need to do when designing your DSL, you’ll do well. After all, every lan-
guage design is an exercise in how effectively you can balance your expressivity with
the implementation overheads. For a DSL, the primary objective is to make your code
fully reveal its intentions, which is the best way to improve the communication path
between the developer and the domain expert.

Key takeaways & best practices
■ Be aware of all the metaprogramming tricks available with Ruby when you

design an internal DSL. But always remember that metaprogramming has its
own costs, with respect to both code complexity and performance metrics.

■ Prefer Groovy categories to ExpandoMetaClass to control the scope of
metaprogramming.

■ Monkey patching in Ruby is always tempting, but it operates in the global
namespace. Use monkey patching in DSL implementation judiciously.

■ Clojure is a functional language, though it’s implemented on top of Java.
Design your DSL around domain functions if you’re using Clojure. Use the
power of functional programming through higher-order functions and closures
to design the semantic model of your DSL.

165References
Now that you’ve completed this journey along the road of DSL design using the three
most popular, most dynamic languages on the JVM, you must’ve developed a familiar-
ity with the basic idioms that support a DSL implementation. Choosing the correct
idiom of a given language is the most important aspect of development, one that
shapes how expressive your DSL APIs will be. This chapter is a significant step forward
for you, giving you a baseline from which to delve more into idiomatic implementa-
tion techniques in Ruby, Groovy, and Clojure.

 In the next chapter, we’ll look at DSL implementation from the other side of the
typing fence. We’ll discuss how static typing helps shape up DSL implementations.
You’re also going to complete a fun-filled exercise developing internal DSLs in Scala.

5.7 References
1 Thomas, Dave, Chad Fowler, and Andy Hunt. 2009. Programming Ruby 1.9: The

Pragmatic Programmers’ Guide, Third Edition. The Pragmatic Bookshelf.
2 Subramaniam, Venkat. 2008. Programming Groovy: Dynamic Productivity for the Java

Developer. The Pragmatic Bookshelf.
3 Perrotta, Paolo. 2010. Metaprogramming Ruby: Program Like the Ruby Pros. The

Pragmatic Bookshelf.
4 Halloway, Stuart. 2009. Programming Clojure. The Pragmatic Bookshelf.
5 Abelson, Harold, Gerald Jay Sussman and Julie Sussman. 1996. Structure and

Interpretation of Computer Programs, Second Edition. The MIT Press.

Internal DSL
 design in Scala
In the earlier chapters, we’ve been through the pros and cons of DSL-driven devel-
opment. By now you must have realized that for the parts of your application that
need to model business rules, a DSL can go a long way toward improving the com-
munication path between the development team and the team of domain experts.
In the last chapter, we discussed how you can use a few of the dynamic languages
on the JVM as hosts for designing internal DSLs. In this chapter, we’ll look at the
most promising candidate from among the statically typed ones, Scala.

 Like all implementation discussions, this is going to be a programming-inten-
sive chapter in which we’ll start with the suitability of Scala as a host for implement-
ing internal DSLs, and then dive right into real-world DSL design. Figure 6.1 is a
roadmap of our journey through this chapter.

 Sections 6.1 and 6.2 will establish Scala as a host for internal DSLs. After that, we
get into the details of implementing real-world use cases from our domain of secu-
rities trading back-office systems. You’ll see lots of idioms, best practices, and

This chapter covers
■ Scala as a language
■ Developing an internal DSL in Scala
■ Composing multiple DSLs
■ Using monadic structures
166

167Why Scala?
patterns in action in sections 6.3 through 6.6. In section 6.7, we’ll discuss how you can
compose multiple DSLs to evolve larger ones. We’ll conclude the chapter with a discus-
sion about how monads can make your DSLs concise, functional, and more expressive.

 At the end of the chapter, you’ll have comprehensive knowledge of how to design
DSLs using Scala as the host language. You’ll learn the idioms and best practices of
how to model domain components and how to create easy-to-use and expressive lan-
guage abstractions with them. Sounds exciting, doesn’t it? Let’s get started.

I used Scala 2.8 to produce the code listings and snippets. For those of
you not familiar with the Scala syntax, there’s a Scala cheat sheet for you

in appendix D at the end of the book.

6.1 Why Scala?
Scala offers a host of functional, as well as OO, abstraction mechanisms that help you
design concise and expressive DSLs. A DSL can’t stand on its own; in case you missed it
before, a DSL is layered as a facade on top of an implementation model. In this sec-
tion, we’ll take a look at how Scala shapes up as a host language, both for designing
the underlying model as well as the DSL layer on top of it. Table 6.1 shows some of the
features of idiomatic Scala that you’ll use regularly to design your DSLs.

 The confluence of the features listed in table 6.1 makes Scala one of the most pow-
erful languages on the JVM for designing internal DSLs. But it’s still a new language
that makes you think differently. Introducing a new language to a team is always a big
change, both technologically and culturally. Your company might already have made a
big commitment to the JVM as a platform, a number of your clients’ applications run
on Java, and you have a whole lot of programmers trained in myriad Java frameworks.
Are you going to forego all the benefits that you’ve accrued in order to embrace a new
programming language? Fortunately, with Scala, you can afford to take an incremen-
tal step toward this transition. The next section discusses how.1

Figure 6.1 Our roadmap through this chapter

168 CHAPTER 6 Internal DSL design in Scala
1 The main differences between ordinary classes and case classes are simpler constructor invocation, availability
of default equality semantics, and pattern matching (see [2] in section 6.10).

Table 6.1 Idiomatic Scala in DSL design

Feature How Scala does it

Flexible syntax Scala has a concise surface syntax, with many features that help
morph your DSL to use the more natural dialect of the domain.

Examples:

■ Optional dots in method invocation
■ Semicolon inference
■ Infix operators
■ Optional parentheses

An extensible object
system

Scala is object-oriented. It shares Java’s object model and extends it on
many fronts through its advanced type system.

Scala’s object semantics:

■ Traits for mixin-based implementation inheritance (see [12] in sec-
tion 6.10)

■ Orthogonal extension capabilities of classes through abstract type
members and generic type parameters (see [13] in section 6.10)

■ Constrained orthogonality of abstractions through self-type annota-
tions (see [14] in section 6.10)

■ Case classes for implementing value objects1

Functional programming
capabilities

Scala is a multi-paradigm programming language. It combines the
power of OO and functional programming features.

Why object�functional?

■ Functions in Scala are first-class values; higher-order functions are
supported at the type-system level. You can define custom DSL con-
trol structures as closures and pass them around just like any other
data type.

■ With a pure OO language, you need to design everything as
classes, whether it is a verb or a noun in your domain. Scala’s OO
functional mix allows you to model closer to the semantics of your
problem domain.

Statically checked duck
typing

Scala supports duck typing through structural types (see [2] in sec-
tion 6.10).

Difference with Ruby duck�typing:
Duck typing in Scala is statically checked.

Lexically scoped open
classes

Scala offers the power of open classes through its implicit con-
struct, as we discussed in the Scala implicits sidebar in section 3.2.

Difference with Ruby monkey patching:
Scala implicits are lexically scoped; the added behavior via implicit
conversions needs to be explicitly imported into specific lexical scopes
(see [2] in section 6.10).

169Your first step toward a Scala DSL
6.2 Your first step toward a Scala DSL
The fact that Scala makes a good host for an internal DSL isn’t enough to convince
your manager to introduce it as one of the technologies in your development ecosys-
tem. Any new technology needs to be introduced gradually or the risk of introducing
chaos increases. Typically you can roll out this adoption slowly by using it in a noncrit-
ical line of business.

 With Scala, the big plus is that it is on the JVM and interoperates with Java. You can
preserve all your Java investments and still try to adopt Scala in your enterprise. You
can get into using Scala DSLs in quite a few ways; you can even design a few of your
own while keeping your base Java abstractions. Figure 6.2 shows some of the strategies
you can use with your own development team.

 As you can see from this figure, your mainstream delivery can continue in Java,
while some members of your team get inducted into Scala by working in auxiliary
activities of your project. Let’s look at each of these ways of introducing Scala in detail
in the following sections.

6.2.1 Testing Java objects with a Scala DSL

Testing is one of those activities that forms the core of your development practice. At
the same time, it gives you plenty of flexibility in choice of technology and frame-
works. Test suites need to be treated as artifacts of equal importance to your code
base. You’ll see lots of development going on in the industry that attempts to make
test suites more expressive and exhaustive.

Table 6.1 Idiomatic Scala in DSL design (continued)

Feature How Scala does it

Implicit parameters Allow the compiler to infer some of the arguments implicitly without
your having to specify them as part of your API invocation. Doing so
leads to concise syntax and improved readability for your DSL script.

Modular composition A distinct notion of an object, which you can use to define a concrete
module of your DSL. You can define DSL constructs in terms of abstract
members and defer committing to a concrete implementation until late
in your abstraction design lifecycle.

Figure 6.2
You don’t need to start doing
Scala in production code from
day one. These are some of
the baby steps that you can
start with, in no specific
order, during the lifetime of
your project.

170 CHAPTER 6 Internal DSL design in Scala
DSLs have become an integral part of testing frameworks. Choose a Scala DSL-based
testing framework and you can begin your journey to learning DSL designs in Scala
today. ScalaTest (see [8] in section 6.10) is one such framework that lets you write
DSLs to test Java as well as Scala classes. You don’t need to be able to write Scala classes
from the get go. You can reuse all your Java classes with these testing frameworks and
get the feel of working in a DSL-based environment.

6.2.2 Scala DSL as a wrapper for Java objects

As we’ve discussed many times in this book, Scala integrates quite seamlessly with
Java. You can dress up Java objects with Scala wrappers to make them more smart and
expressive. In case you’re not convinced, go back to section 3.2.2 where we imple-
mented lots of smartness on top of Java objects using Scala power. This approach
can be a prudent way to learn how to make DSLs on top of your Java object model
using Scala.

6.2.3 Modeling noncritical functionality as a Scala DSL

In a large application, there are often areas that aren’t so critical. You can negotiate
with the client regarding their deliveries. You can select some of these as hotspots for
learning to design Scala DSLs. If you don’t want to get away from your main Java com-
pile mode, you can even script your Scala DSL and run it using the ScriptEngine that
comes with Java 6.

 Let’s get down to the next level of detail and discuss how you can use these features
in Scala to build domain models that help you make good DSLs.

CODE ASSISTANCE In all of the following sections that have rich code snip-
pets, I’ve included a sidebar that contains the prerequisites of the language
features that you need to know in order to appreciate the implementation
details. Feel free to navigate to the appropriate language cheat sheet that’s in
the appendixes as you encounter this code.

We’ll continue using the same domain of financial brokerage solutions and build
examples of how these features combine to form the wholeness of a complete DSL
ready to run. It is going to be an exciting journey.

6.3 Let’s DSL in Scala!
You have enough of a background now to get into what we’re here for. We’ll study
real-life use cases from the domain of securities trading and see how they translate to
expressive DSLs using Scala as the implementation language.

 We’ll be examining use cases similar to the ones I selected for the discussions
about designing DSLs in Ruby and Groovy. That way, you’ll see how you need to think
differently, even with the same problem domain, when you’re designing DSLs in both
statically typed and dynamic languages. But first let’s look at some of the features that
Scala offers that make the syntax of your DSL expressive to users.

171Let’s DSL in Scala!
6.3.1 Expressive syntax on the surface

When you talk about the syntax of a language, there’s always a fine line between
expressiveness and verbosity. A syntax that’s expressive to a nonprogramming user
might seem extremely verbose to a programmer. We discussed this issue when you
designed an interpreter in Ruby for the trading DSL in section 5.2.3. Remember how
Bob complained about the nonessential syntactic complexities that Java forced on us
in the order-processing DSL that we designed in section 2.1.2? Despite being statically
typed like Java, Scala offers a more concise surface syntax, which makes the DSL less
noisy. Consider the following listing, which shows typical Scala code that adds a
ClientAccount to an already existing list of accounts.

val a1 = ClientAccount(no = "acc-123", name = "John J.")
val a2 = ClientAccount(no = "acc-234", name = "Paul M.")

val accounts = List(a1, a2)

val newAccounts =
 ClientAccount(no = "acc-345", name = "Hugh P.") :: accounts

newAccounts drop 1

Even if you’re not familiar with Scala, this listing makes perfect sense. Table 6.2 shows
some of the features that make this snippet so concise.

 The items that we discussed in this section are purely syntactical issues on the
surface. Other features also contribute to readable syntax in Scala, including pow-
erful literal syntax for collections, use of closures as control abstractions, and
advanced features like implicit parameters. We’re going to look at them separately
later in this chapter when we discuss the roles that each of them play in designing an
internal DSL.

 Let’s start by designing some of the domain abstractions that form the base on
which you’ll build your DSLs. We’ll use our trusty domain of securities trading and the
same abstractions that I relied on in earlier chapters using other languages. Not only

Scala tidbits you need to know
■ OO features of Scala. You need to know the various ways you can design Scala

classes and inheritance hierarchies.
■ Type inference in Scala, use of operators as methods, and flexible syntax,

including optional parentheses and semicolons.
■ Immutable variables that help you design functional abstractions.
■ Case classes and objects in Scala and the features they offer for designing

immutable value objects.
■ Traits in Scala and how they help you design mixins and multiple inheritance.

Listing 6.1 Expressive and concise syntax in Scala

Named and default
argumentsB

Type
inferenceC

Operator ::
is a methodDOptional parenthesesE

172 CHAPTER 6 Internal DSL design in Scala
does this approach help you connect to domain concepts that you’ve already learned,
it also makes a good comparative study of implementation idioms across all the lan-
guages that you’ve seen so far.

6.3.2 Creating domain abstractions

When you design a DSL in Scala, it’s mostly an object model that serves as the base
abstraction layer. You implement specializations of various model components using
subtyping, and form larger abstractions by composing with compatible mixins from
the solution domain. For the actions within your model, you create functional
abstractions, then compose those using combinators. Figure 6.3 explains the ways you
can achieve extensibility in Scala abstractions with the dual power of OO and func-
tional capabilities.

 To build your implementation of the trading DSL, let’s look at some of the base
abstractions from the problem domain.

THE INSTRUMENT

Listing 6.2 is an abstraction of an Instrument that you trade in a stock exchange. It
starts with the general interface for an Instrument, then specializes into Equity and
various forms of FixedIncome securities. (If you need an introduction to the various
instrument types, read the sidebar accompanying section 4.3.2.)

Table 6.2 Features that make Scala syntax concise, with reference to listing 6.1

Conciseness in Scala Impact on your DSL design

Semicolon inference Unlike in Java, you don’t need to put in semincolons as delimiters between
Scala statements. Less noise is the immediate result when you design
DSLs in Scala.

Named and default
arguments

We instantiate a ClientAccount class B using named arguments. The
class declaration is implemented as a case class, which gives you a light-
weight syntax for construction. The class declaration can also contain
default values for arguments that don’t need to be repeated during instanti-
ation. Using these arguments provides valuable support toward improved
readability of your DSL script.

Type inference When you construct a list with the accounts, you don’t need to specify the
type of the resulting list C. The compiler infers that for you.

Operators as methods The list accounts is augmented with another ClientAccount using
the operator syntax :: D. This is actually another way to do a method
dispatch on the List instance accounts.::(ClientAccount(no =
"acc-345", name = "Hugh P."). Note how the operator syntax and
the optional dot (.) for method invocation make the code fragments much
more readable to the user.

Optional parentheses We drop the first account from the list using the drop method on List E.
The parentheses are optional here, making the code fragment more aligned
to natural flow.

173Let’s DSL in Scala!
package api

import java.util.Date
import Util._

sealed abstract class Currency(code: String)
case object USD extends Currency("US Dollar")
case object JPY extends Currency("Japanese Yen")
case object HKD extends Currency("Hong Kong Dollar")

trait Instrument {
 val isin: String
}

case class Equity(isin: String, dateOfIssue: Date = TODAY)
 extends Instrument

trait FixedIncome extends Instrument {
 def dateOfIssue: Date
 def dateOfMaturity: Date
 def nominal: BigDecimal
}

case class CouponBond(
 override val isin: String,
 override val dateOfIssue: Date = TODAY,
 override val dateOfMaturity: Date,
 val nominal: BigDecimal,
 val paymentSchedule: Map[String, BigDecimal])
 extends FixedIncome

Listing 6.2 Instrument model in Scala

Figure 6.3 With Scala you can use the dual power of OO and functional programming to evolve
your domain model. Using the OO features of Scala, you can abstract over types and values,
specialize a component through subtyping, and do composition using mixins. You can also use
the functional features of Scala through its higher-order functions, closures, and combinators.
Finally, you can compose all of this using modules and get your final abstraction.

Singleton
objects

B

Mixin
inheritance

C

174 CHAPTER 6 Internal DSL design in Scala
case class DiscountBond(
 override val isin: String,
 override val dateOfIssue: Date = TODAY,
 override val dateOfMaturity: Date,
 val nominal: BigDecimal,
 val percent: BigDecimal)
 extends FixedIncome

The domain vocabulary is explicit in the implementation and we don’t have much
noise from accidental complexities polluting the essence of the domain model. (For
more about accidental complexity, see appendix A.) Because this is the first of the
domain models that we’ll carve out in this chapter, let’s look at some of the Scala fea-
tures that make this model expressive yet concise.

■ Singleton objects, implemented as specializations of the Currency class B, which
are instantiated exactly once. This is the Scala way of implementing the Single-
ton pattern (see [3] in section 6.10). It avoids all the evils of statics in Java.

■ Extensible object hierarchies through traits that can be extended through inheri-
tance C.

■ Simplified constructor invocations for case classes.

Let’s look at a couple more abstractions before we start building some DSL scripts out
of them.

ACCOUNT AND TRADE

The following listing is the Account model in Scala. Account is the domain entity
against which clients and brokers trade securities.

package api

abstract class AccountType(name: String)
case object CLIENT extends AccountType("Client")
case object BROKER extends AccountType("Broker")

import Util._
import java.util.Date

abstract class Account(no: String, name: String, openDate: Date) {
 val accountType: AccountType

 private var closeDate: Date = _
 var creditLimit: BigDecimal = 100000

 def close(date: Date) = {
 closeDate = date
 }
}

case class ClientAccount(no: String, name: String,
 openDate: Date = TODAY)
 extends Account(no, name, openDate) {
 val accountType = CLIENT
 }

Listing 6.3 Account model in Scala

Sets up the default
credit limit

175Building a DSL that creates trades
case class BrokerAccount(no: String, name: String,
 openDate: Date = TODAY)
 extends Account(no, name, openDate) {
 val accountType = BROKER
 }

Now that we have the Account and Instrument models ready, we can define the base
abstraction for security trade.

package api

import java.util.Date

trait Trade {
 def tradingAccount: Account
 def instrument: Instrument
 def currency: Currency
 def tradeDate: Date
 def unitPrice: BigDecimal
 def quantity: BigDecimal
 def market: Market
 def principal = unitPrice * quantity

 var cashValue: BigDecimal = _
 var taxes: Map[TaxFee, BigDecimal] = _
}

trait FixedIncomeTrade extends Trade {
 override def instrument: FixedIncome
 var accruedInterest: BigDecimal = _
}

trait EquityTrade extends Trade {
 override def instrument: Equity
}

We define two types of trades, depending on the class of instrument being traded. As
you’ll see later, the two types of trades have different characteristics with respect to
how their cash values are calculated. (For what I mean by the cash value of trade, see the
sidebar accompanying section 4.2.2.) Also note that we override the instrument
method B in listing 6.4 to reflect the correct type of security that the trade deals with.

 Well, that was quite a bit of coding to do only to set up the context for taking your
first shot at writing a trade creation DSL. You’ll get your chance to do that in the next
section, where there’s also a discussion of some of the Scala features that help you
build it.

6.4 Building a DSL that creates trades
I’m a firm believer in looking at concrete things first and exploring how they evolve.
Without going into any of the implementation specifics, here’s how our trading DSL
creates new trades for you:

Listing 6.4 Trade model in Scala

Override methods to
specialized return types

B

176 CHAPTER 6 Internal DSL design in Scala
val fixedIncomeTrade =
 200 discount_bonds IBM

➥ for_client NOMURA on NYSE at 72.ccy(USD)

val equityTrade =
 200 equities GOOGLE

➥ for_client NOMURA on TKY at 10000.ccy(JPY)

The first definition, fixedIncomeTrade, creates an instance of FixedIncomeTrade to
buy 200 discount bonds (DiscountBond) of IBM for client account NOMURA at 72 USD
per unit traded on the New York Stock Exchange.

 The second definition, equityTrade, creates an instance of EquityTrade for sale
of 200 equities of GOOGLE for client account NOMURA at 10000 JPY per unit traded on
the Tokyo Stock Exchange.

Now let’s look at the regular API version of a trade-creation process that uses the con-
structor of one of the concrete classes. The following listing shows the concrete imple-
mentation of FixedIncomeTrade, followed by a sample instantiation.

package api

import java.util.Date
import Util._

case class FixedIncomeTradeImpl(
 val tradingAccount: Account,
 val instrument: FixedIncome,
 val currency: Currency,
 val tradeDate: Date = TODAY,
 val market: Market,
 val quantity: BigDecimal,
 val unitPrice: BigDecimal) extends FixedIncomeTrade

val t1 =
 FixedIncomeTradeImpl(
 tradingAccount = NOMURA,
 instrument = IBM,
 currency = USD,
 market = NYSE,
 quantity = 100,
 unitPrice = 42)

Scala tidbits you need to know
■ Implicit parameters are automatically provided by the compiler if they’re not

specified explicitly. Makes a great case for designing concise syntax of a DSL.
■ Implicit type conversions are the secret sauce for lexically scoped open

classes (similar to, but a much improved version of, Ruby monkey patching).
■ Named and default arguments help implement the Builder pattern without a

lot of fuss.

Listing 6.5 FixedIncomeTrade implementation and instantiation

Implementing
FixedIncomeTrade trait

Sample
instantiation

177Building a DSL that creates trades
The difference between the DSL and the more typical API is obvious. The DSL version
looks more natural and readable to a domain user, but the API has the feel of a pro-
gram fragment. You’ve got to take care of quite a few syntactic nuances in the second
version: commas as argument separators, usage of the class name for instantiation,
and so on. As you’ll see later, implementing a readable DSL version also imposes quite
a few constraints as far as sequencing operations are concerned. You can opt for flexi-
ble sequencing using the Builder pattern (see [3] in section 6.10), but then you have
to deal with two additional issues: the mutability of Builder objects and the finishing
problem (see [4] in section 6.10).

 Now let’s dig into the implementation aspects of the DSL script that I showed you
at the beginning of this section.

6.4.1 Implementation details

Before looking at the details, take a hard look at the DSL script at the beginning of sec-
tion 6.4 and the normal constructor invocation in listing 6.5. The most salient differ-
ence between them that you’ll notice is the absence of any (well, almost any)
additional nonessential syntactic structure in the DSL version. As I mentioned earlier,
syntaxes like the dot operator for method invocation or parentheses for method argu-
ments are optional in Scala. But you still need to wire them up with enough flexibility
so that everything makes sense in the final script. What do you think is the secret
sauce for this wiring?

IMPLICIT CONVERSION

It’s Scala implicits! Let’s start with the creation of the FixedIncomeTrade:

val fixedIncomeTrade =
 200 discount_bonds IBM

➥ for_client NOMURA on NYSE at 72.ccy(USD)

If we take the sugar out of this statement and put back the dots and parentheses to
make it more canonical, it becomes:

val fixedIncomeTrade =
 200.discount_bonds(IBM)
 .for_client(NOMURA)
 .on(NYSE)
 .at(72.ccy(USD))

With all the method invocations and arguments decorated with their honored sym-
bols, it looks similar to the Builder pattern that we used in section 2.1.2 to build our
order-processing DSL in Java. For the current implementation, you can say we’re using
an implicit form of the Builder pattern. Yes, we’re literally using the implicit conversion
feature of Scala to do the conversions so that each individual piece gets wired up in
the right sequence to render the final form of the DSL.

 Let’s look at how 200 discount_bonds IBM makes sense. When you understand the
mechanics that build this stuff, you’ll be able to figure out how the rest of the things
fall in place by looking at the complete code. Look at the following code snippet:

178 CHAPTER 6 Internal DSL design in Scala
type Quantity = Int
class InstrumentHelper(qty: Quantity) {
 def discount_bonds(db: DiscountBond) = (db, qty)
}

implicit def Int2InstrumentHelper(qty: Quantity) =
 new InstrumentHelper(qty)

We define a class InstrumentHelper that takes an Int and defines a method
discount_bonds. The method takes an instance of DiscountBond and returns a
Tuple2 of the bond and the quantity. Then we define an implicit conversion from
Int to the class InstrumentHelper. This conversion converts an Int implicitly to an
instance of InstrumentHelper on which we can invoke the method discount_bonds.
Because Scala has optional dots and parentheses, you can use the infix form 200
discount_bonds IBM to make it look more natural.

 After you define this conversion, the Scala compiler takes care of the rest at use-
site by adding the necessary call semantics to your script. This same mechanism
works for the rest of the script and ultimately results in a method that can generate
an instance of a FixedIncomeTrade with all necessary arguments. We’ll look at the
complete code and see some of the idioms that you need to follow to use implicit
conversions. But first, look at figure 6.4, which traces the execution of the script to
generate the trade.

Figure 6.4 Sequence of implicit conversions that leads to the construction of the
FixedIncomeTrade instance. Read the figure from left to right and follow the arrows for implicit
conversions and the subsequent creation of helper objects.

179Building a DSL that creates trades
To understand the figure, you need to look at the complete source code of the object
that does this implicit magic behind your API.

A BAG OF IMPLICIT CONVERSIONS

If you look closely at figure 6.4, you’ll realize that it’s really a seesaw of implicit conver-
sions that plays the role of an implicit builder. These conversions evolve the final
FixedIncomeTrade object. The code in the following listing defines the helper func-
tions that do the conversions.

package dsl

import api._
object TradeImplicits {

 type Quantity = Int
 type WithInstrumentQuantity = (Instrument, Quantity)
 type WithAccountInstrumentQuantity =
 (Account, Instrument, Quantity)
 type WithMktAccountInstrumentQuantity =
 (Market, Account, Instrument, Quantity)
 type Money = (Int, Currency)

 class InstrumentHelper(qty: Quantity) {
 def discount_bonds(db: DiscountBond) = (db, qty)
 }

 class AccountHelper(wiq: WithInstrumentQuantity) {
 def for_client(ca: ClientAccount) = (ca, wiq._1, wiq._2)
 }

 class MarketHelper(waiq: WithAccountInstrumentQuantity) {
 def on(mk: Market) = (mk, waiq._1, waiq._2, waiq._3)
 }

 class RichInt(v: Int) {
 def ccy(c: Currency) = (v, c)
 }

 class PriceHelper(wmaiq: WithMktAccountInstrumentQuantity) {
 def at(c: Money) = (c, wmaiq._1, wmaiq._2, wmaiq._3, wmaiq._4)
 }
 //..
}

The next listing continues with the same object TradeImplicits and defines the con-
version functions shown in listing 6.6 as implicit definitions in Scala.

object TradeImplicits {

 // .. continued from listing 6.6

 implicit def quantity2InstrumentHelper(qty: Quantity) =
 new InstrumentHelper(qty)

Listing 6.6 TradeImplicits defines the conversion functions

Listing 6.7 The implicit definitions in TradeImplicits

180 CHAPTER 6 Internal DSL design in Scala
 implicit def withAccount(wiq: WithInstrumentQuantity) =
 new AccountHelper(wiq)
 implicit def withMarket(waiq: WithAccountInstrumentQuantity) =
 new MarketHelper(waiq)
 implicit def withPrice(wmaiq: WithMktAccountInstrumentQuantity) =
 new PriceHelper(wmaiq)
 implicit def int2RichInt(v: Int) = new RichInt(v)

 import Util._
 implicit def Tuple2Trade(
 t: (Money, Market, Account, Instrument, Quantity)) =
 {t match {
 case ((money, mkt, account, ins: DiscountBond, qty)) =>

 FixedIncomeTradeImpl(
 tradingAccount = account,
 instrument = ins,
 currency = money._2,
 tradeDate = TODAY,
 market = mkt,
 quantity = qty,
 unitPrice = money._1)
 }
 }
}

The object TradeImplicits is in a package named dsl, but all the domain model
abstractions are in a package named api. This isn’t as unnecessary as it might seem.
Remember when we talked about the underlying domain model that forms the base
on which you build the DSL facade? In this example, all domain model abstractions
are in the package api, while the linguistic layer is kept in dsl. Also, you need to keep
these two layers decoupled so you can have multiple DSLs from the same domain
model. Always maintain this convention when you’re designing your DSLs.

In Scala, implicits give you the power of open classes, similar to monkey
patching in Ruby or ExpandoMetaClass in Groovy. At the same time,

Scala gives you a way to control the visibility of the class you open up for mod-
ification. Import the specific module only within the lexical scope that uses
these additional methods and the compiler will take care of the rest. The
global namespace isn’t polluted, like it is in the Ruby counterpart.

IMPLICITS AND LEXICAL SCOPE

Using implicits, we added a method named ccy to Int through an implicit conversion
to the RichInt class. If we keep this implicit conversion at the global namespace, all
threads will be able to see this change. We already discussed the obvious drawbacks of
this arrangement when we talked about Ruby monkey patching earlier. Make this your
golden rule: implicits must be scoped appropriately. In this case, do an explicit import
TradeImplicits._ and make the implicit conversion available only to your lexical
scope, without impacting any other thread of execution.

 Still, when all’s said and done, implicit conversions aren’t visible explicitly within
your code and might give off a magical vibe when you’re debugging. To help demystify

181Building a DSL that creates trades
things, Scala has compiler switches that let you check implicit conversions as a post-
compilation debugging tool (see [2] in section 6.10).

 This example is the first Scala DSL that you’ve written. Aren’t you excited about the
expressiveness it has? If you’re not comfortable yet with the ins and outs of the imple-
mentation of the DSL, go back and re-examine figure 6.4. Make sure your understand-
ing of the code base flows in the same path as the progression shown in the figure.

OK. Now it’s time to settle down after almost being swept away by the wave of Scala
excitement. Let’s compose ourselves and think about some of the key issues that you
need to be aware of when you’re deciding in favor of creating a Scala DSL.

6.4.2 Variations in DSL implementation patterns

If you look carefully at the code that we developed as the layer that’s on top of the
domain model for building the DSL, you’ll notice a pattern. This pattern is also
explicit in the diagram that I presented in figure 6.4. Move from left to right in the
diagram as the DSL script gets interpreted. You’ll notice how we build an n-tuple
cumulatively through a successive application of implicit conversions in Scala. This
phenomenon is effectively the Builder pattern that I mentioned in section 6.4.1. But
unlike the traditional builder approach in which we have a separate mutable abstrac-
tion that builds the entity, here we’re using an immutable variant of the same pat-
tern. In the imperative version of the Builder pattern, the builder object is updated
with successive method invocations, each of which returns an instance of the self. In
this case, the methods don’t belong to the same class and the implicit conversion of
Scala acts as the glue that binds the invocations together. One invocation generates a
tuple; that tuple gets converted implicitly to the next stage of the pipeline, which
takes the earlier tuple and generates the next one.

 You could have just as easily used the other pattern. Would it have made any differ-
ence? The traditional Builder pattern gives you the convenience of flexible sequenc-
ing of the method calls. The problem is that you have to invoke the finishing method
to complete the build process (see [4] in section 6.10). In the current implementa-
tion, the sequence is fixed in the DSL and the compiler will complain if you finish the
sequence prematurely without building the complete trade. As usual, it’s a trade-off,
like many other design decisions.

 The traditional Builder pattern uses a mutable builder object. You invoke method
chaining through fluent interfaces that mutate the builder object. In the form of the
Builder pattern that you just saw, which evolves through implicit conversions, every
object is immutable, which is one of the recommended idioms in abstraction design.

 Before we conclude this section, let’s look at the key aspects of some of the Scala
features that you learned in order to build the DSL facade on top of your domain
model abstractions. Table 6.3 contains a summary of this information.

 You’ve completed the DSL for creating trade objects. In the next section, you’ll
build more DSLs for business rules, each of which can be verified by the domain
experts. Remember that the main value-add of DSL-based development is to foster

182 CHAPTER 6 Internal DSL design in Scala
better communication with the domain experts and help them verify the business
rules that you’ve implemented. Before you develop the DSL, you need to have some
more domain abstractions that serve as the underlying implementation model.

6.5 Modeling business rules with a DSL
Business rules are the hotspots for using DSLs. They form the configurable sections of
your domain model and are the most important things that you need to verify
through your domain experts. It’s an added benefit if your DSL is friendly enough for
your domain experts (like our friend Bob) to be able to write a few tests around them.
For our DSL, the business rule that we need to model is that the tax and fees for a
trade must be calculated. See table 6.4 for how that takes place.

The DSL that you’ll design needs to be readable enough for Bob, our domain expert,
to understand the rules, check for the comprehensiveness of implementation, and
certify its correctness. What do you need to do first? You guessed it! You need to create
the domain model abstractions for tax and fee components before you try to add the
DSL layer on top of them.

 I suspect that some of my more astute readers are getting a bit impatient at the
prospect of having to sit through another session of domain modeling before get-
ting a peek at the next serving of DSL implementation. Let’s do something more
interesting. Let’s digress and build a small DSL that implements a business rule that’s
based on the domain model that we’ve already implemented. This exercise will both

Table 6.3 Scala features checklist for trade-creation DSL

Scala feature Used for

Flexible syntax, optional dot (.) and parentheses
leading to infix notation

Making the DSL readable and more expressive to
the user

Implicit conversion Lexically scoped open classes that add methods
to built-in classes like Int
Object chaining

Named and default arguments Making the DSL readable

Table 6.4 Business rule to model with DSL: calculate tax and fees for a trade

Step Description

1 Execute trade Trade takes place on the exchange between the counterparties.

2 Calculate tax and fee The tax and fee need to be calculated on the trade that takes
place. The calculation logic depends on the type of trade, the
instruments being traded, and the exchanges where the transac-
tion takes place.
The tax and fee form a core component of the net cash value of
the trade that needs to be settled between the counterparties.

183Modeling business rules with a DSL
perk you up and demonstrate one of the functional features of Scala that’s used
extensively to make a better implementation of one of the most commonly used OO
design patterns.

6.5.1 Pattern matching as an extensible Visitor

Besides offering a simplified constructor invocation syntax, case classes in Scala use
pattern matching over deconstructed objects, a feature typically used by algebraic data
types in functional languages like Haskell. (For more information about algebraic
data types, go to http://en.wikipedia.org/wiki/Algebraic_data_type. For more details
about how pattern matching works in Scala, see [2] in section 6.10.) The reason for
using pattern matching over case classes is to implement a generic and extensible Visi-
tor pattern (see [3] in section 6.10).

 In DSL design, you can use the same pattern to make your domain rules more
explicit to users. Although with a typical OO implementation such rules tend to be bur-
ied within object hierarchies, you can use this functional paradigm over your case
classes to achieve a better level of expressiveness and extensibility. For more details
about how pattern matching over case classes in Scala leads to more extensible solu-
tions compared to a traditional OO Visitor implementation, see [5] in section 6.10.

 Consider another business rule that we’ll implement as a DSL in our application:
Increase the credit limit of all client accounts that were open before today by 10%.

 Listing 6.3 is the Account abstraction of our domain model with two concrete
implementations for ClientAccount and BrokerAccount. (Remember that we dis-
cussed client accounts in a sidebar in section 3.2.2. A broker account is an account
that the broker opens with the stock trading organization.) The implementation of
the proposed rule needs to abstract over all client accounts that are present in the sys-
tem and that are affected by this change in the credit limit. Let’s look at the Scala snip-
pet that implements this rule in the function raiseCreditLimits.

def raiseCreditLimits(accounts: List[Account]) {
 accounts foreach {acc =>
 acc match {
 case ClientAccount(_, _, openDate) if (openDate before TODAY) =>

Scala tidbits you need to know
■ Pattern matching helps implement functional abstractions and an extensible

Visitor implementation.
■ Higher-order functions promote functional programming features in Scala.

They also help implement combinators that are useful for functional program-
ming.

■ Abstract val and abstract type help design open abstractions that can be com-
posed later to form concrete abstractions.

■ Self-type annotations for easy wiring of abstractions.
■ Partial functions are expressions that can produce values for a limited domain.

Pattern
matching

B

184 CHAPTER 6 Internal DSL design in Scala
 acc.creditLimit = acc.creditLimit * 1.1
 case _ =>
 }
 }
}

Note how the rule is explicitly published through pattern matching over case classes.
Under the hood, the case statements B are modeled as partial functions, which are
defined only for the values mentioned in the case clauses. Pattern matching makes
modeling the domain rule easy, because we care only about ClientAccount instances
in the current context. The underscore (_) in the second case clause is a don’t-care
that ignores other types of accounts. Refer to [2] in section 6.10 for more details
about pattern matching and partial functions in Scala.

 Why is this a DSL? It expresses a domain rule explicitly enough for a domain expert
to understand. It’s implemented over a small surface area, so that the domain person
doesn’t have to navigate through piles of code to explore the semantics of the rule.
Finally, it focuses only on the significant attributes that the rule specifies, blurring the
nonessential parts within a don’t-care clause.

Now that you have an early taste of yet another DSL fragment that models a sample busi-
ness rule for our solution, let’s get into the domain model of tax and fee that we prom-
ised earlier. The next section is going to be exciting. You’ll learn lots of new modeling
techniques that Scala offers. So grab another cup of coffee and let’s get going.

6.5.2 Enriching the domain model

We built Trade, Account, and Instrument abstractions earlier. Those were the basic
abstractions from the problem domain. Now let’s consider the tax and fee compo-
nents that need to interact with the Trade component to calculate the cash value of
the trade.

 When we talk about tax and fee, we need a separate abstraction that’s responsi-
ble for their calculation. Calculating tax and fee is one of the primary business rules
of the model that’ll vary with the country and the stock exchange where you’ll
deploy your solution. And as you must’ve figured out by now, for business rules that
can vary, a DSL makes your life easier by making the rules explicit, expressive, and
easier to maintain.

 Figure 6.5 shows the overall component model of how the tax and fee abstractions
interact with the Trade component in our solution model.

A DSL needs only to be expressive enough for the user
It’s not always necessary to make DSLs feel like natural English. I reiterate: make
your DSLs expressive enough for your users. In this case, the code snippet will be
used by a programmer; making the intent of the rule clear and expressive is suffi-
cient for a programmer to maintain it and for a domain user to comprehend it.

185Modeling business rules with a DSL
Note that all of abstractions depicted in figure 6.5 are modeled as Scala traits. As such,
they can be wired together flexibly, and composed with suitable implementations to
generate the appropriate concrete object during runtime. Let’s look at the TaxFee-
Calculator and TaxFeeCalculationComponent in the following listing.

package api

sealed abstract class TaxFee(id: String)
case object TRADE_TAX extends TaxFee("Trade Tax")
case object COMMISSION extends TaxFee("Commission")
case object SURCHARGE extends TaxFee("Surcharge")
case object VAT extends TaxFee("VAT")

trait TaxFeeCalculator {
 def calculateTaxFee(trade: Trade): Map[TaxFee, BigDecimal]
}

trait TaxFeeCalculationComponent { this: TaxFeeRulesComponent =>
 val taxFeeCalculator: TaxFeeCalculator

 class TaxFeeCalculatorImpl extends TaxFeeCalculator {
 def calculateTaxFee(trade: Trade): Map[TaxFee, BigDecimal] = {
 import taxFeeRules._
 val taxfees =
 forTrade(trade) map {taxfee =>
 (taxfee, calculatedAs(trade)(taxfee))
 }
 Map(taxfees: _*)
 }
 }
}

Listing 6.8 Tax and fee calculation components in Scala

Figure 6.5
Tax fee component model for the trading solution. The
class diagram shows the static relationship between
the TaxFeeCalculationComponent and the
collaborating abstractions.

Singleton
objects

B

Calculates
tax and fee
for a trade

C

Self-type
annotation

D

Abstract
valE

Object
import
syntaxF

186 CHAPTER 6 Internal DSL design in Scala
Let’s look into this code listing and try to understand how the entire component
model gets wired up. Table 6.5 has the details.

Table 6.5 Dissecting a Scala DSL implementation model

Abstraction Role in the DSL implementation

TaxFee This abstraction is the value object (see [6] in section 6.10)
that corresponds to the individual tax and fee types. The
various tax/fee types are modeled as singleton objects in
Scala B.

Note: As value objects, all individual tax/fee types are
immutable.

TaxFeeCalculator Abstraction that calculates all the taxes and fees applica-
ble to a trade C.

TaxFeeCalculationComponent This is the overarching abstraction that wires up a
couple of other abstractions and forms the core that does
the actual calculation of taxes and fees for a trade.
TaxFeeCalculationComponent collaborates with
TaxFeeRulesComponent through a self-type annotation

D, and TaxFeeCalculator through an abstract val E.

Design benefits:

■ The abstraction is decoupled from the implementation.
You’re free to provide implementations for both of the
collaborating abstractions of TaxFeeCalculation-
Component.

■ Implementation can be deferred until you create concrete
instances of TaxFeeCalculationComponent.

Self-type annotations in Scala
You can use self-type annotations to specify additional types that the self object
this can take within the component. It’s almost like saying trait TaxFee-
CalculationComponent extends TaxFeeRulesComponent, but saying it implicitly.

We’re not actually creating this compile-time dependency now. Using self-type
annotation, we’re indicating a promise that TaxFeeCalculationComponent will be
mixed in with TaxFeeRulesComponent during any concrete instantiation of the
object. We’ll fulfill this promise in listing 6.13 and in the subsequent creation of
the object in listing 6.14.

Note that within TaxFeeCalculatorImpl#calculateTaxFee, we use an import on
taxFeeRules F, which is just another abstract val within TaxFeeRulesComponent.

By specifying TaxFeeRulesComponent as a self-type annotation, we’re declaring it
as one of the valid types of this to the Scala compiler. For more details about how
self-type annotations work in Scala, refer to [2] in section 6.10.

187Modeling business rules with a DSL
It looks like we’ve achieved a lot of wiring without much coding. Limited coding is the
power that Scala brings to you; you can program at a higher level of abstraction. In
the next section, we’re going to complete both the implementation of TaxFeeRules-
Component and a DSL for defining domain rules for calculating tax and fee.

6.5.3 Calculating tax and fee business rules in a DSL

Let’s start the domain model of the rules component with a trait that publishes the
main contracts for tax and fee calculation. For brevity, we’ll consider only a simplified
view of the world here; in reality, things are way more detailed and complex.

package api

trait TaxFeeRules {
 def forTrade(trade: Trade): List[TaxFee]
 def calculatedAs(trade: Trade): PartialFunction[TaxFee, BigDecimal]
}

The first method, forTrade B, gives a list of TaxFee objects that are applicable to the
specific trade. The second method, calculatedAs C, does the calculation for a spe-
cific TaxFee valid for the particular trade.

 Now let’s look at the TaxFeeRulesComponent, which, along with building the DSL
for calculating the tax and fee, provides a concrete implementation of TaxFeeRules.
This component is shown in the following listing.

package api

trait TaxFeeRulesComponent {
 val taxFeeRules: TaxFeeRules

 class TaxFeeRulesImpl extends TaxFeeRules {
 override def forTrade(trade: Trade): List[TaxFee] = {
 (forHKG orElse
 forSGP orElse
 forAll)(trade.market)
 }

 val forHKG: PartialFunction[Market, List[TaxFee]] = {
 case HKG =>
 List(TradeTax, Commission, Surcharge)
 }

 val forSGP: PartialFunction[Market, List[TaxFee]] = {
 case SGP =>
 List(TradeTax, Commission, Surcharge, VAT)
 }

 val forAll: PartialFunction[Market, List[TaxFee]] = {
 case _ => List(TradeTax, Commission)
 }

 import TaxFeeImplicits._
 override def calculatedAs(trade: Trade):
 PartialFunction[TaxFee, BigDecimal] = {

Listing 6.9 DSL for tax and fee calculation business rules

TaxFee applicable
to the trade

B

How to calculate C

List of TaxFee
using combinators

B

Specific list
for Hong Kong

C

Specific list
for Singapore

D

Generic list for
other countries

E

Tax calculation
domain rules

F

188 CHAPTER 6 Internal DSL design in Scala
 case TradeTax => 5. percent_of trade.principal
 case Commission => 20. percent_of trade.principal
 case Surcharge => 7. percent_of trade.principal
 case VAT => 7. percent_of trade.principal
 }
 }
}

TaxFeeRulesComponent abstracts over TaxFeeRules and provides an implementation
of it. You can supply your own implementation if you want, but TaxFeeRules-
Component is still an abstract component because it contains an abstract declaration of
taxFeeRules. We’ll provide all the concrete implementations when we compose our
components together, building a concrete TradingService. But first let’s take a
detailed look at the implementation shown in the listing to see how the DSL gets the
tax and fee types, then goes on to calculate the tax and fee amount.

GETTING THE LIST OF APPLICABLE TAX AND FEE HEADS

Let’s look first at the implementation of the DSL in TaxFeeRulesImpl. The method
forTrade is a single-line method, which is a functional composition using Scala com-
binators. As you read in appendix A, combinators are a great way to compose higher-
order functions. (If you haven’t read appendix A, you’re missing out.)

 Combinators play a role in making DSLs expressive. They shine as one of the most
useful areas of functional programming. Scala offers you the power of functional pro-
gramming; feel free to use combinator-based language construction whenever you
think it’s appropriate. The business rule for finding the set of taxes and fees for a
trade stated in English is as follows:

“Get the Hong Kong-specific list for trades executed on the Hong Kong market OR Get the
Singapore-specific list for trades executed on the Singapore market OR Get the most generic
list valid for all other markets.”

Partial functions in Scala
Partial functions are those defined only for a set of values of its arguments. Partial
functions in Scala are modeled as blocks of pattern-matching case statements.
Consider the following example:

val onlyTrue: PartialFunction[Boolean, Int] = {
 case true => 100
}

onlyTrue is a PartialFunction that’s defined for a limited domain. It’s defined
only for the Boolean value true. The PartialFunction trait contains a method
isDefinedAt that returns true for the domain values for which the Partial-
Function is defined. Here’s an example:

scala> onlyTrue isDefinedAt(true)
res1: Boolean = true
scala> onlyTrue isDefinedAt(false)
res2: Boolean = false

189Modeling business rules with a DSL
Now read the single statement in forTrade B, which implements this rule. You’ll see
an exact correspondence to the most natural way of expressing the rule and you get it
all within a small surface area of the API. We used the combinator orElse, which
allows you to compose partial functions in Scala and select the first one that defines it.

 In listing 6.9, the composed abstraction in method forTrade returns the generic
list of TaxFee objects only if the market is neither Hong Kong nor Singapore. When
you understand how forTrade works and how you can compose partial functions in
Scala, you’ll know how the specific higher-order functions forHKG C, forSGP D, and
forAll E work.

CALCULATING THE TAX AND FEE

It’s now time to look at how the taxes and fees are calculated. This calculation is the
second part of the business rule that we’re addressing in our DSL. Look at the method
calculatedAs F in listing 6.9. Can you figure out what rule it implements?

 Once again, we see Scala pattern matching making domain rules explicit. For each
case clause, the return value is once again sugared with the magic of implicits that
adds a method percent_of to the class Double. The result is the infix notation that
you see in listing 6.9. And here’s the TaxFeeImplicits object that you need to import
to bring all implicit conversions to the scope of your DSL:

package api

object TaxFeeImplicits {
 class TaxHelper(factor: Double) {
 def percent_of(c: BigDecimal) = factor * c.doubleValue / 100
 }

 implicit def Double2TaxHelper(d: Double) = new TaxHelper(d)
}

After you import the TaxFeeImplicits object, you get the domain-friendly syntax in
the method calculatedAs, which your business user will like a lot.

A DSL AND AN API: WHAT’S THE DIFFERENCE?
In section 6.5, you’ve learned how to make DSL scripts for creating domain entities
on top of an underlying implementation model. You learned how to build DSLs for
your business rules. I described some of the techniques that Scala gives you to
implement expressive APIs over an OO domain model. In both of the implementa-
tions we worked through, I went a bit overboard and tried to make our little lan-
guage more expressive using the open classes that implicit conversions offer. But
even without the added sweetness of implicits, you can make your domain model
implement sufficiently expressive APIs using the combination of OO and functional
programming features.

 This fact brings to mind a question that has surely crossed your mind as well:
what’s the difference between an internal DSL and an API? Frankly speaking, there’s
not much of a difference. An expressive API that makes the domain semantics explicit
to its users without the burden of additional nonessential complexities is an internal

190 CHAPTER 6 Internal DSL design in Scala
DSL. In all the code snippets that I’ve branded as DSLs, the driving force is domain
expressiveness for the user. The implementer of the DSL needs to maintain the code
base, the domain expert needs to be able to understand the semantics; you can
achieve both of these without going overboard. But you can do that only if you’re
using a language that enables you to build higher-order abstractions and compose
them together. Maybe it’s time now to take another look at the virtues of well-designed
abstractions that I point out in appendix A.

 As mentioned earlier, all the components I’ve described so far in figure 6.5 are
abstract, in the sense that we’ve designed them as traits in Scala. You’ve yet to witness
the real power of composing traits to form concrete instantiable domain abstractions.
Let’s compose the trade abstractions in the next section and build some concrete
trading services. After we have the services, they’ll serve as the base for developing the
linguistic abstractions of our DSL.

6.6 Stitching ’em all together
Now that you’ve built a DSL that addresses the business rule for calculating the tax and
fee, let’s build some new abstractions that’ll be the spice for the next serving of DSL.

In this section, you’ll learn how to compose traits through mixin-based inheritance in
Scala. You’ll also see another form of abstraction that Scala supports: abstracting over
types. When you have more options to use when you’re composing your abstractions,
you can make your domain model more malleable, and your DSL syntax can evolve
more easily out of it.

6.6.1 More abstraction with traits and types

When you design a domain model, one of the abstractions that you publish to your
end clients is a domain service. A domain service uses entities and value objects (see [6]
in section 6.10) to deliver the contracts they expose to clients. Let’s look at a typical
domain service, called TradingService, in the following listing, much simplified com-
pared to a real-world use case.

package api

trait TradingService
 extends TaxFeeCalculationComponent
 with TaxFeeRulesComponent {

Scala tidbits you need to know
■ Modules in Scala. The object syntax that lets you define concrete abstrac-

tions by composing abstract ones.
■ Combinators like map, foldLeft, and foldRight.

Listing 6.10 Base class for TradingService in Scala

Mixin inheritance
with traits

B

191Stitching ’em all together
 type T <: Trade

 def taxes(trade: T) =
 taxFeeCalculator.calculateTaxFee(trade)

 def totalTaxFee(trade: T): BigDecimal = {
 taxes(trade).foldLeft(BigDecimal(0))(_ + _._2)
 }

 def cashValue(trade: T): BigDecimal
}

Let’s make a quick run down of the service contracts and some of the new Scala fea-
tures that they use in table 6.6.

 Note that we haven’t yet made any abstraction concrete; they’re still abstract, with
traits having abstract types that we’ll define in the next section. Scala as a language
offers a variety of options to design your abstractions. Choose the ones that best fit the
problem at hand and make your design aligned to the idioms of well-designed abstrac-
tions that I discuss in appendix A.

Table 6.6 Dissecting the domain service TradingService in listing 6.10

Feature Description

Power of mixins—composing
with existing abstractions

TradingService mixes in with two of our earlier components
TaxFeeCalculationComponent and TaxFeeRules-
Component B.

Note:
With mixins we get inheritance of the interface as well as
optional implementations. This is multiple inheritance, done right.

Abstraction over the type of
trade

The trait TradingService abstracts over the trade type C.
This kind of maneuver is intuitive because we need to specialize
the trading service, depending on the type of trade it handles. But
there’s an upper bound on the constraint of our base class for
security trade, Trade.

When do you concretize T?
When we concretize TradingService later, we’ll supply an
implementation for the abstract trade type T

The core logic of the tax fee
calculation is totalTaxFee

The service defines a concrete method totalTaxFee D that
sums over the component tax and fee items using the foldLeft
combinator. For more details about how foldLeft works with
the placeholder syntax (_) of Scala, read appendix D at the end of
the book.

Tip:
Always prefer combinators to explicit recursion or iteration.

Abstract method for deferred
implementation in subclasses

cashValue is an abstract method E that we’ll define in sub-
types, because the actual logic depends on the type of trade that
the service handles.

Abstract
typeC

Combinator-based
programming

D

Abstract
method

E

192 CHAPTER 6 Internal DSL design in Scala
6.6.2 Making domain components concrete

EquityTradingService provides the trading service for equity trades. It’s a concrete
component that needs to be instantiated once for all services that it renders. You
model it using the singleton object notation of Scala (see [2] in section 6.10) in the fol-
lowing listing.

package api

object EquityTradingService
 extends TradingService {

 type T = EquityTrade

 val taxFeeCalculator = new TaxFeeCalculatorImpl
 val taxFeeRules = new TaxFeeRulesImpl

 override def cashValue(trade: T): BigDecimal = {
 trade.principal + totalTaxFee(trade)
 }
}

This notation looks pretty straightforward, doesn’t it? It contains the following
elements:

■ A concrete type EquityTrade B for the abstract trade type we defined in the
base class

■ Concrete implementations for the values we left as abstract in the traits that we
mixed in C

■ A definition of how to compute the cashValue of an equity trade D

Similar to EquityTradingService, we also implement another concrete trading ser-
vice FixedIncomeTradingService, the counterpart for the FixedIncomeTrade class, in
the following listing.

package api

object FixedIncomeTradingService
 extends TradingService with AccruedInterestCalculationComponent {

 type T = FixedIncomeTrade

 val taxFeeCalculator = new TaxFeeCalculatorImpl
 val accruedInterestCalculator = new AccruedInterestCalculatorImpl
 val taxFeeRules = new TaxFeeRulesImpl

 def accruedInterest(trade: T): BigDecimal = {
 accruedInterestCalculator.calculateAccruedInterest(trade)
 }

 override def cashValue(trade: T): BigDecimal = {
 trade.principal +

Listing 6.11 A concrete trading service for equity trades

Listing 6.12 Trading service for fixed income trades in Scala

Concrete type
supplied

B

Concrete vals
supplied

C

Concrete method
suppliedD

Add mixin for
accrued interest B

Concrete instance
for accrued

interest calculator

193Composing DSLs
 accruedInterest(trade) + totalTaxFee(trade)
 }
}

Note the additional component that we mix in with the core abstraction, Accrued-
InterestCalculationComponent B, which computes accrued interest for the trade.
Accrued interest is something typical to fixed-income instruments and also forms an
integral part of the cash value calculation for fixed income trades. I’m sure it’s obvious
as well from how we define the FixedIncomeTradingService abstraction.

 In this section, we defined service abstractions for our domain. Then we wired
them up with the components that we built earlier to construct concrete Scala mod-
ules that you can directly use within your DSL.

The real power that Scala offers you in this exercise is the ability to
defer committing to a specific implementation until the last stage.

Abstract vals, abstract types, and self-type annotations are the three main pillars
that helped you achieve this. Add to them the flexibility of composing abstrac-
tions through mixin-based inheritance and you have the complete recipe for
designing scalable components.

What you’ve done so far is construct a DSL from a set of underlying domain model
components. In Scala, I defined the DSL layer as a set of abstractions that evolve based
on the requirements of the user. In this way, you end up with hierarchies of abstrac-
tions that model the various use cases of our trading system. Now consider what hap-
pens when some of the market rules change and you need to integrate the new rules
with a set of existing abstractions. Here we’re talking about composing the existing
DSL with some new ones. In the next section, I’ll show you how you can do this using
Scala’s type system.

6.7 Composing DSLs
The domain model of your application is built out of intention-revealing abstractions.
The DSL layer that you offer on top of the model as a facade becomes usable and
extensible only if the abstractions are at the correct level. In this section, we’ll con-
sider the whole DSL as an abstraction and discuss how you can compose DSLs together.
This technique comes in handy when you need to weave multiple Scala DSLs together
and compose a bigger whole. In our domain of designing trading systems, integrating
market-rule DSLs with the core business rules of trade processing is one use case that
we’ll be discussing.

 After you have a DSL that’s designed as an abstraction, you can extend it through
subtyping in Scala. Subtyping can lead to an entire DSL hierarchy, with each of the
specialized abstractions providing different implementations to the same core lan-
guage. Sound polymorphic? Sure they are, and we’ll use polymorphism to compose
DSLs in section 6.7.1. We’ll also look at composing unrelated DSLs in section 6.7.2;
after all, DSLs tend to evolve independently of each other and of your application

194 CHAPTER 6 Internal DSL design in Scala
lifecycle. Your application architecture must be capable of hosting a seamless compo-
sition of multiple DSL structures.

6.7.1 Composing using extensions

When a trade has been entered into the system, it passes through a normal trading
lifecycle that begins with enrichment. This process adds some of the derived informa-
tion to the trade record that didn’t originally come from the upstream system. This
information includes the cash value of the trade, applicable taxes and fees, and other
components that vary with the type of instrument being traded.

GROWING UP THE DSL
Consider the following DSL snippet. It doesn’t look like a DSL right now, but you are
going to add more meat to its bones as we move along. You are also going to define
some of the trade lifecycle methods using the components that you’ve implemented
so far.

package dsl

trait TradeDsl {
 type T <: Trade
 def enrich: PartialFunction[T, T]
}

There’s nothing semantically rich about the language at the moment. It just defines a
method enrich, which is supposed to enrich a trade after it’s been entered into the
system B.

 Let’s define specific implementations of TradeDsl for FixedIncomeTrade and
EquityTrade in listings 6.13 and 6.14. The DSL for FixedIncomeTrade uses the Fixed-
IncomeTradingService abstraction that we designed earlier.

package dsl

import api._
trait FixedIncomeTradeDsl extends TradeDsl {
 type T = FixedIncomeTrade

 import FixedIncomeTradingService._

 override def enrich: PartialFunction[T, T] = {
 case t =>
 t.cashValue = cashValue(t)
 t.taxes = taxes(t)
 t.accruedInterest = accruedInterest(t)
 t
 }
}

object FixedIncomeTradeDsl extends FixedIncomeTradeDsl

Listing 6.13 Trade DSL for FixedIncomeTrade

Abstract
method

B

Accrued interest for
fixed-income trade

Concrete instance
of the DSL

195Composing DSLs
The DSL for EquityTrade uses the EquityTradingService abstraction that we defined
earlier.

package dsl

import api._
trait EquityTradeDsl extends TradeDsl {
 type T = EquityTrade

 import EquityTradingService._

 override def enrich: PartialFunction[T, T] = {
 case t =>
 t.cashValue = cashValue(t)
 t.taxes = taxes(t)
 t
 }
}

object EquityTradeDsl extends EquityTradeDsl

In listings 6.13 and 6.14, we have FixedIncomeTradeDsl and EquityTradeDsl as indi-
vidual concrete languages that implement the same core language of TradeDsl. To
implement the enrichment semantics, they use the TradingService implementations
that we designed in section 6.6. The class diagram in figure 6.6 shows how the two lan-
guage abstractions are related to each other.

 Because FixedIncomeTradeDSL and EquityTradeDSL are extensions of the same
base abstraction, they can be used polymorphically through the usual idioms of inher-
itance. But consider yet another type of TradeDSL that’s not specialized on the type of

Listing 6.14 Trade DSL for EquityTrade

Figure 6.6 TradeDSL has an abstract type member T <: Trade, but
EquityTradeDSL has the concrete type T = EquityTrade and
FixedIncomeTradeDSL has the concrete type T = FixedIncomeTrade.
TradeDSL has two specializations in EquityTradeDSL and
FixedIncomeTradeDSL.

196 CHAPTER 6 Internal DSL design in Scala
the trade. It models another business rule that needs to compose with the semantics
of both EquityTradeDSL and FixedIncomeTradeDSL. Let’s illustrate this composition
technique in Scala using an example.

COMPOSING DSLS WITH PLUGGABLE SEMANTICS

Business rules change with changes in market conditions, regulations, and lots of
other factors. Let’s assume that the stock broker organization announces a new mar-
ket rule for promoting high value trades as follows:

“Any trade on the New York Stock Exchange of principal value > 1000 USD must have a
discount of 10% of the principal on the net cash value.”

Now this rule needs to be implemented when we enrich the trade, irrespective of
whether its type is EquityTrade or FixedIncomeTrade. You don’t want to include it
as part of the core cash value calculation; it’s a promotional market rule that
shouldn’t impact the core logic of the system. Rather, you should implement such
domain rules like the layers of an onion so you can include and exclude them flexi-
bly without intruding into your core abstractions (think decorators). Let’s extend
our TradeDsl with some new semantics that reflect these market-specific rules in the
following listing.

package dsl
import api._

trait MarketRuleDsl extends TradeDsl {
 val semantics: TradeDsl
 type T = semantics.T

 override def enrich: PartialFunction[T, T] = {
 case t =>
 val tr = semantics.enrich(t)
 tr match {
 case x if x.market == NYSE && x.principal > 1000 =>
 tr.cashValue = tr.cashValue - tr.principal * 0.1
 tr
 case x => x
 }
 }
}

This is the exciting part, where we compose the DSLs. Note the abstract val
semantics that embeds the DSL that we want to be composed with this new domain
rule B. Internal DSLs are also known as embedded DSLs. But in most cases, you’ll find
that the semantics are hardwired within the implementation of the DSL. In this partic-
ular case, we want to make the actual semantics of the composed DSL pluggable. By
making them pluggable, you have the loose coupling between the composed DSLs. At
the same time, runtime pluggability lets you defer your commitment to the concrete

Listing 6.15 A new semantics for TradeDsl—another business rule

Underlying
semanticsB

Invoke contained
semantics

Decorate with
additional rule

197Composing DSLs
implementation. In the following listing, you define concrete objects for Equity-
TradeDsl and FixedIncomeTradeDsl, composed with the new MarketRuleDsl.

package dsl

object EquityTradeMarketRuleDsl extends MarketRuleDsl {
 val semantics = EquityTradeDsl
}

object FixedIncomeTradeMarketRuleDsl extends MarketRuleDsl {
 val semantics = FixedIncomeTradeDsl
}

Later you’ll look at the entire set of composed DSLs in action. But first let’s add more
functionality to TradeDsl using some of your knowledge about functional combina-
tors. Combinators will give us compositional semantics both at the functional level
and at the object level.

MORE COMPOSITION WITH FUNCTIONAL COMBINATORS

Remember we talked about the trade lifecycle earlier in this section? Before the trade
is enriched, it is validated. After the enrichment is done, it is journalized to the books
of the accounting system. A few more steps occur in the real-world application, but for
the purpose of demonstration, let’s keep it short for now. How can you model this
business rule in a Scala DSL?

 You will use PartialFunction combinators to model this sequencing, and
pattern matching to make the rule explicit. The following listing enriches our orig-
inal implementation of TradeDsl and adds a control structure that models this
business rule.

package dsl

import api._

trait TradeDsl {
 type T <: Trade

 def withTrade(trade: T)(op: T => Unit): T = {

 if (validate(trade))
 (enrich andThen journalize andThen op)(trade)
 trade
 }

 def validate(trade: T): Boolean = //..
 def enrich: PartialFunction[T, T]
 def journalize: PartialFunction[T, T] = {
 case t => //..
 }
}

Listing 6.16 DSL composition

Listing 6.17 Modeling the trade lifecycle in a DSL

Add custom
actions

B

Combinator-based
infix operations C

198 CHAPTER 6 Internal DSL design in Scala
You must have been wondering why you defined enrich as a PartialFunction.
Partial functions in Scala use the amazing power of composition to build higher
order structures.

 You have defined a control structure withTrade that takes an input trade and lets
you perform the complete sequence of lifecycle operations on it. This control struc-
ture also has an option to add custom operations to the trade lifecycle in the form of
an additional argument (op: T => Unit) B. This argument is a function that operates
on the trade but returns nothing. One typical use of such functions is to add side-
effecting operations to the trade lifecycle. Logging, sending emails, and doing audit
trails are examples of functions that have side effects but that don’t alter the return
value of the final operation.

 Now let’s look into the pattern-matching block within withTrade. The entire
domain rule is expressed within the four lines of code that it contains. The
andThen combinator C also nicely expresses the sequence that the trade lifecycle
needs to follow.

USING THE FULLY COMPOSED DSL
The following listing shows the whole composition in action. This DSL creates a trade
using our trade-creation DSL, does all sorts of enrichment, validation, and other lifecy-
cle operations, and finally composes with the market rules DSL to generate the final
cash value of the trade.

import FixedIncomeTradeMarketRuleDsl._

withTrade(
 200 discount_bonds IBM
 for_client NOMURA
 on NYSE
 at 72.ccy(USD)) {trade =>
 Mailer(user) mail trade
 Logger log trade
} cashValue

You used the Decorator design pattern as your composition technique in this section
(see [3] in section 6.10). We consider the semantics to be the decorated DSL; the
wrapper provides the necessary decoration. You can use the Decorator pattern to
implement dynamic inclusion and exclusion of responsibilities from an object. No
wonder it turned out to be a useful tool here, when we needed to compose families of
DSLs together.

 What happens if the languages that you want to compose aren’t related? Fre-
quently, you’ll use utility DSLs for modeling date and time, currencies, and geometric
shapes that find applicability within the context of other larger DSLs. Let’s see how
you can manage their evolution seamlessly.

Listing 6.18 The trade lifecycle DSL

199Composing DSLs
6.7.2 Composing different DSLs using hierarchical composition

It is quite common to use a smaller DSL embedded within a larger one. Trading solu-
tions can use DSLs for expressing currency manipulations and conversions, date and
time management, and customer balance management in portfolio reporting, to
name a few situations in which you’ll find them.

 Now suppose you’re implementing a DSL for client portfolio reporting. You need to
report balances for securities and cash holdings that the client account holds as of a
particular date. Note the two italicized words: client-portfolio and balance represent
two important domain concepts and are candidates for DSL-based implementations.
They’re independent abstractions, but they often occur in close association with
each other.

AVOIDING IMPLEMENTATION COUPLING

Let’s find out in table 6.7 how you can make this association clean enough so that the
individual DSLs can evolve as independent implementations.

Balance is the interface that abstracts the underlying implementation. Scala lets
you define type synonyms. You can define type Balance = BigDecimal and happily use

Table 6.7 Composing DSLs hierarchically

Associated abstractions need to evolve independently

Balance is:

■ An amount of money or security held by a client
■ An important domain concept with specific

semantics that can be modeled as a DSL
■ An amount that can be expressed as
BigDecimal for implementation purposes only,
though BigDecimal doesn’t have any meaning
to the domain user

Client portfolio is:

■ A report of a client’s balances across his
holdings

■ An important domain concept with specific
semantics that can be modeled as a DSL

Note:

You should always hide your implementation from your published language constructs. Not only does
this method make your DSL readable, it lets you change the underlying implementations seamlessly
without any impact on the client code. To learn more about how to hide your implementation, read the
discussions that are in appendix A.

Modeling the association:

A snippet from the point of view of the domain user clearly shows how the two abstractions for bal-
ance and portfolio can be associated when you’re designing domain APIs:

trait Portfolio {
 def currentPortfolio(account: Account): Balance
}

To Do:

You need to compose the two DSLs such that the association can be seamless across multiple imple-
mentations of each of them. You can flexibly plug in an alternative implementation of Balance DSL
when defining an implementation of the Portfolio DSL.

200 CHAPTER 6 Internal DSL design in Scala
Balance as the name to describe the net value of your client holdings in his portfolio.
But what happens when you build larger families of Portfolio DSLs as specializations
of your base DSL, just like the ones we made with TradeDsl in section 6.7.1? Embed-
ding the implementation of Balance within the Portfolio DSL will couple the entire
hierarchy to a concrete implementation. Even if you need to, you’ll never be able to
change the implementation in the future. The solution is to avoid directly embedding
one DSL in the other and instead compose them hierarchically. In the end, you’ll have
two DSLs that fit together nicely and that are coupled loosely enough so that you can
plug in your implementation of choice whenever you feel like it.

 Consider the following DSL for modeling your client’s portfolio in the follow-
ing listing.

package dsl

import api._
import api.Util._

trait Portfolio {
 type Balance = BigDecimal
 def currentPortfolio(account: Account): Balance
}

trait ClientPortfolio extends Portfolio {
 override def currentPortfolio(account: Account) =
 BigDecimal(1200)
}

Ugh! By the time you get down to the first specialization of the Portfolio DSL, you
see that the Balance abstraction B has already been broken through C. Try to com-
pose them hierarchically and keep the implementation of the Balance DSL outside
the Portfolio DSL. Composing hierarchically means that one needs to be within the
other. The difference between composing hierarchically and the code in listing 6.19
is that you are going to embed the DSL interface and NOT the implementation. I can
almost hear the murmur of abstract vals coming across from my readers. You
guessed it! The Portfolio DSL needs to have an instance of the Balance DSL, which
we’ll call Balances.

HOW DO YOU MODEL BALANCE?
To get a true understanding of a DSL, we can’t deal with examples that are too trivial.
After all, you can appreciate the expressiveness of a DSL only when you realize how it
abstracts the underlying complexities in a readable syntax. Initially we talked about
modeling a balance with a BigDecimal. But if you’re a domain person familiar with
the securities trading operations, you know that for a client account, the balance indi-
cates the client’s cash position in a particular currency as of a specific date. I’m not going
into the details of how you compute balance from a client portfolio. Modeling a bal-
ance with only a BigDecimal is an oversimplification. The Balances DSL contract is
shown in the following listing, followed by a sample implementation BalancesImpl.

Listing 6.19 A DSL with implementation coupling

Embedded
implementationB

In real life, this is
complex logic

C

201Composing DSLs
package dsl

import java.util.Date
import api._
import api.Util._
import api.Currency._

trait Balances {
 type Balance

 def balance(amount: BigDecimal,

➥ ccy: Currency, asOf: Date): Balance
 def inBaseCurrency(b: Balance): (Balance, Currency)
 def getBaseCurrency: Currency = USD
 def getConversionFactor(c: Currency) = 0.9
}

class BalancesImpl extends Balances {
 case class BalanceRep(amount: BigDecimal,
 ccy: Currency, asOfDate: Date)
 type Balance = BalanceRep

 override def balance(amount: BigDecimal,

➥ ccy: Currency, asOf: Date)
 = BalanceRep(amount, ccy, asOf)

 override def inBaseCurrency(b: Balance)
 = (BalanceRep(b.amount * getConversionFactor(getBaseCurrency),
 b.ccy, b.asOfDate), getBaseCurrency)
}

object Balances extends BalancesImpl

A client balance can be reported in a specific currency, depending on the client’s pref-
erence. But for auditory regulations, it’s often required to be converted to a base cur-
rency. A base currency is one in which the investor maintains its book of accounts. In
the forex market, the US dollar is usually considered to be the base currency. In the
DSL shown in listing 6.20, the method inBaseCurrency reports the balance in the base
currency. In the sample implementation B of Balances, we commit to an implemen-
tation of the abstract type Balance as a tuple of three elements: the amount, the cur-
rency, and the date (a balance is always calculated as of a specific date).

COMPOSING THE BALANCE DSL WITH THE PORTFOLIO DSL
In order to compose with the Portfolio DSL, you need an abstract val of Balances B
as a data member within it, as shown in the following listing.

package dsl

import api._

trait Portfolio {
 val bal: Balances
 import bal._

Listing 6.20 DSL for modeling account balance

Listing 6.21 The Portfolio DSL contract

Abstract
type

Concrete
implementation

B

Abstract val for
Balances DSL

B
Object import
syntax

C

202 CHAPTER 6 Internal DSL design in Scala
 def currentPortfolio(account: Account): Balance
}

Note the object import syntax of Scala C that makes all members of the object bal avail-
able within the class body. Now let’s look at a specialized implementation of Portfolio
that computes the balance of a client account in the next listing.

trait ClientPortfolio extends Portfolio {
 val bal = new BalancesImpl
 import bal._

 override def currentPortfolio(account: Account) =
 val amount = //..
 val ccy = //..
 val asOfDate = //..

 balance(amount, ccy, asOfDate)
}

object ClientPortfolio extends ClientPortfolio

We’ve committed to a specific implementation of Balances in our ClientPortfolio
DSL. Now we need to ensure that when we compose ClientPortfolio with other DSLs
that use Balances, those other DSLs will also use the same implementation.

 Let’s look at another implementation of Portfolio that acts as the deco-
rator of other Portfolio implementations. In the following listing we look at
Auditing, an implementation of Portfolio that adds auditing features to other
Portfolio implementations.

trait Auditing extends Portfolio {
 val semantics: Portfolio

 val bal: semantics.bal.type
 import bal._

 override def currentPortfolio(account: Account) =
 inBaseCurrency(
 semantics.currentPortfolio(account))._1
}

Auditing not only composes with another Portfolio DSL B, but it also ensures that
the DSL it embeds within itself (semantics) uses the same implementation of the embed-
ded Balances DSL C. (Balances is embedded within Portfolio, which is the super-
class of Auditing.) We enforce this constraint by declaring bal in Auditing to be
semantics.bal, which defines it as a Scala singleton type. Now we can specify the con-
crete implementation values of semantics and bal to create an abstraction for
ClientPortfolio that supports Auditing. Look at the following snippet:

Listing 6.22 A DSL implementation of Portfolio

Listing 6.23 Another implementation of the Portfolio DSL

Committed to an
implementation

Implementation
details elided

Portfolio DSL
embedded

B

Singleton
type of ScalaC

Report balance in
base currency

203Monadic structures in DSL
object ClientPortfolioAuditing extends Auditing {
 val semantics = ClientPortfolio
 val bal: semantics.bal.type = semantics.bal
}

When you use hierarchical composition to compose multiple DSLs, you get the advan-
tages listed in table 6.8.

The subject of DSL composition is well explained in the paper Polymorphic embedding of
DSLs (see [7] in section 6.10). Read the paper if you want to get into the details of
other ways to compose DSLs in Scala.

 In earlier sections of this chapter, you’ve seen lots of techniques you can use to
compose abstractions using the object-functional power of Scala. The discussion of
composition is still incomplete, because we haven’t talked about monadic abstrac-
tions. Monadic abstractions are used extensively to build composable computations.
Monads have their origin in category theory (don’t worry, I’m not going to discuss the
mathematics behind monads; you can look into that on your own if you’re inter-
ested). In the next section, you’re going to see how you can put some syntactic sugar
on top of monadic structures in Scala. This additional magic will help you design
sequencing of DSL operations.

6.8 Monadic structures in DSL
I’ve probably put enough emphasis on how abstractions that compose well make read-
able DSLs. When we talk about abstracting a computation, functional programming
gives you more composing power than the OO programming model. You get this
added boost because functional programming treats computations as applications of
pure mathematical functions, without the side effects of mutable state. The moment
you decouple functions from mutability, all you’re left with are abstractions that you
can verify independently, without any dependence on external context. Functional
programming offers mathematical models that let you compose computations as func-
tional compositions. I’m not going into the depths of category theory or any similar
formalism that makes this promise. The only thing you need to remember is the fact
that compositionality of functions gives you a way to form complex abstractions out of
simpler building blocks.

Table 6.8 Advantages of using hierarchical composition for DSLs

Advantage Reason for the advantage

Representation independence The DSLs you compose don’t contain any embedded implementa-
tion details

Loose coupling Loose coupling between the composed DSLs, which means all of
them can evolve independently

Static type safety Scala’s powerful type system ensures that all the constraints can
be enforced by the compiler

204 CHAPTER 6 Internal DSL design in Scala
WHAT’S A MONAD?
You can think of monads as function composition, and binding on steroids. When you
build abstractions that obey the monad laws, you can use them to construct higher-
order abstractions by using beautiful composition semantics

A monad is an abstraction in which you structure your computation
into values and sequences of computations that use them. You can use

them to compose dependent computations to form larger computations. Monads
have their theoretical basis in category theory, which might be something you
don’t want to contemplate right now. If, on the other hand, you’re not scared
of category theory, go read [11] in section 6.10. For the rest of you, relax.
We’re not going to get into the guts of that theory here.

We’re going to examine monads only in terms of what you need from them to design a
Scala DSL. You’ll see a lot more monadic structures when we discuss parser combinators

Monads for you
A monad is an abstraction that binds computations. Instead of giving generic def-
initions, let me define all monadic attributes in terms of what you’ll find in Scala.
(The classical approach would’ve been to use either category theory or Haskell to
explain the first-order principles; using Scala as the basis for the explanation
seems more useful).

A monad is defined by the following three things:

1 An abstraction M[A], where M is the type constructor. In Scala, you define the
abstraction as class M[A] or case class M[A] or trait M[A].

2 A unit method (unit v), which in Scala is the invocation of the constructor
new M(v) or M(v).

3 A bind method, which allows you to sequence computations. In Scala, it’s
implemented by the flatMap combinator. bind f m is equivalent to m flat-
Map f in Scala.

List[A] is a monad in Scala. The unit method is defined by the constructor
List(…) and bind is implemented by flatMap.

Does this mean that you can define any abstraction that has these three things
and it becomes a monad? Not necessarily. A monad needs to obey the following
three laws:

1 Identity. For a monad m, m flatMap unit => m. With the List monad in Scala,
we have List(1,2,3) flatMap {x => List(x)} == List(1,2,3).

2 Unit. For a monad m, unit(v) flatMap f => f(v). With the List monad in
Scala, this implies List(100) flatMap {x => f(x)} == f(100), where f
returns a List.

3 Associativity. For a monad m, m flatMap g flatMap h => m flatMap {x => g(x)
flatMap h}. This law tells us that the computation depends on the order, but
not on the nesting. Try verifying this law for Scala List as an exercise.

205Monadic structures in DSL
in Scala in chapter 8. In this section, we’re going to talk about some of the monadic
operations in Scala that can make your DSLs compose more beautifully than when you
use an OO counterpart.

 The accompanying sidebar gives a brief introduction to monads. For more details
about monads, refer to [9] in section 6.10.

HOW MONADS REDUCE ACCIDENTAL COMPLEXITY

Consider the Java example in listing 6.24 of a typical operation in your web-based trad-
ing application. You have a key that you use to get the value from HttpRequest or
HttpSession. The value that you get is the reference number of a trade. You need to
do a query for the trade from the database to get the corresponding Trade model.

String param(String key) {
 //..
 return value;
}

Trade queryTrade(String ref) {
 //.. query
 return trade
}

public static void main(String[] args) {
 String key;
 //.. set key

 String refNo = param(key);
 if (refNo == null) {
 //.. exception processing
 }

 Trade trade = queryTrade (refNo);
 if (trade == null) {
 //.. exception processing
 }
}

This code shows some nonessential complexity B, plaguing the surface syntax of your
abstraction. All the null checks have to be done explicitly and at every step in this
computation of a domain model from a context parameter. Now consider the follow-
ing equivalent Scala code that does the same thing as the previous code using its
monadic for comprehension syntax.

def param(key: String): Option[String] = {
 //..
}
def queryTrade(ref: String): Option[Trade] = {
 //..
}

Listing 6.24 Handling alternate routes in computation using Java

Listing 6.25 Scala monadic for comprehensions

Fetch value from
request or session

Do query from
database

Null checkB

Monadic return valueB

206 CHAPTER 6 Internal DSL design in Scala
def main(args: Array[String]) {
 val trade =
 (
 for {
 r <- param("refNo")
 t <- queryTrade (r)
 }
 yield t
) getOrElse error("not found")

//..
}

Let’s look more into how the monadic structures in this listing chain together to cre-
ate the trade object within the main method.

param returns a monad Option[String] B. Option[] is a monad in Scala that you
can use to abstract a computation that might not produce any result. queryTrade
returns another monad, Option[Trade] B, which has a type that’s different from
Option[String]. We need to chain these computations such that if param returns a
null value, queryTrade must not be invoked. We did this check explicitly in listing 6.24.
Using monadic structures, the underlying implementation of the monad Option[]
takes care of this plumbing so that your code remains clean and free of accidental
complexity C.

 How does a monad take care of this chaining? It’s through the bind operation that
we discussed in the monad laws in the sidebar earlier in this section. In Scala, bind is
implemented as flatMap; the for comprehension C is just syntactic sugar on top of
flatMap, as you can see in the following snippet.

 Here’s the unsweetened version of the for comprehensions that makes this
bind explicit.

param("refNo") flatMap {r =>
 queryTrade(r) map {t =>
 t}} getOrElse error("not found")

flatMap (equivalent to the >>= operation in Haskell) is a combinator that serves as
the glue for this snippet. It’s the overarching bind operator that injects the output of
param into the input of queryTrade, handling all the necessary null checks within it.
For comprehensions offer a higher level abstraction on top of the flatMap combina-
tor to make your DSL more readable and expressive.

 A detailed discussion of monads, flatMaps, and for comprehensions is beyond the
scope of this book. What you need to know is that monadic structures and operations
give you an easy way to implement DSLs. We’ve just looked at one of the most common
uses of monads as a means of sequencing dependent computations without introduc-
ing nonessential complexities. Apart from this, monads are also used extensively as a
mechanism to explain side effects in pure functional languages, handle state changes,
exceptions, continuations, and many other computations. Needless to say, you can use
all of these ways to make your DSLs appear more expressive. For more details about
monads in Scala, see [10] in section 6.10.

for comprehensionsC

207Monadic structures in DSL
 To tie a nice big bow on our discussion about how monads help make expressive
language abstractions, let’s build one variant of the trade lifecycle DSL that we imple-
mented in listing 6.20. Instead of using partial functions to sequence operations, we’ll
use monadic comprehensions of Scala. Doing this exercise will give you an idea about
how to think in terms of monads when building your own DSL. We’ll keep the exam-
ple simple just to demonstrate how you can build your own computations that can be
chained using for comprehensions.

DESIGNING A MONADIC TRADE DSL
Without much ado, let’s define a variant of the TradeDSL that we discussed in list-
ing 6.17. Each of the lifecycle methods now returns a monad (Option[]) instead of
PartialFunction.

package monad

import api._
class TradeDslM {
 def validate(trade: Trade): Option[Trade] = //..
 def enrich(trade: Trade): Option[Trade] = //..
 def journalize(trade: Trade): Option[Trade] = //..
}

object TradeDslM extends TradeDslM

We can use that DSL within a for comprehension to invoke the sequence of lifecycle
methods on a collection of trades:

import TradeDslM._

val trd =
 for {
 trade <- trades
 trValidated <- validate(trade)
 trEnriched <- enrich(trValidated)
 trFinal <- journalize(trEnriched)
 }
 yield trFinal

This snippet has the same functionality as listing 6.20 but it uses monadic binds to
chain operations. In the case of our earlier implementation that was based on partial
functions, we could only chain operations that matched exactly in types. In this for
comprehension, there are sequenced operations that don’t have the types that match
exactly. trades is a List of Iterable that generates a Trade for every iteration of the
comprehension execution. We don’t have to check for the end-of-sequence explicitly
because List is implemented as a monad; just like Option[], the flatMap combinator
within List takes care of such boundary conditions. validate returns an
Option[Trade], which can be Some(trade) or None. When we pipeline the output of
validate into enrich, we don’t do any explicit null checks or any explicit conversion
from Option[Trade] -> Trade. So long as you pipeline using monadic structures like

Listing 6.26 Monadic TradeDsl

208 CHAPTER 6 Internal DSL design in Scala
List[] or Option[], all binds are done automatically through the flatMap combina-
tor. In this sense, chaining operations using monadic binds is more powerful than
what we achieved using partial functions in listing 6.17. When they’re designed cor-
rectly, monadic operations can lead to expressive DSLs, especially if you use the syn-
tactic sugar that for expressions provide in Scala (or the do notation in Haskell).

 In case you’re curious, the previous snippet boils down to the following flat-
Map expression:

trades flatMap {trade =>
 validate(trade) flatMap {trValidated =>
 enrich(trValidated) flatMap {trEnriched =>
 journalize(trEnriched) map {trFinal =>
 trFinal
 }
 }
 }
}

Obviously, this looks more programmatic and less readable to the domain user than
the earlier version that uses for expressions.

 As you saw in this section, monads in Scala are yet another way to compose abstrac-
tions. They’re subtly different from partial functions and offer a truly mathematical
way to chain dependent abstractions. Scala offers quite a few built-in monadic struc-
tures. Be sure to use them appropriately when you implement DSLs in Scala.

6.9 Summary
The Scala community is abuzz with DSLs and not without reason. Scala is one of the
most potent forces among the programming languages today. It offers first-class sup-
port for designing expressive DSLs.

 In this chapter, you’ve taken a thorough tour of all the Scala features that help you
design internal DSLs. We started with a summary of the feature list of Scala, then care-
fully dug deep into each of them by examining snippets of DSLs designed from the
domain of securities trading. A DSL is architected as a facade on top of an underlying
implementation model. In this chapter, we switched back and forth between the
domain model and the language abstractions that are on top of it.

DSLs need to be composable at the contract level, without exposing any of their
implementation details. You have to design them this way because every DSL evolves
on its own and you might need to change an implementation without impacting other
DSLs or your core application. You saw how internal DSLs in Scala compose together
statically using the power of the type system. Finally, we took a tour of how monadic
operations can help construct composable DSL structures. Scala doesn’t make monads
as explicit as Haskell does in its programming model. But you can still use Scala’s
monadic comprehension to sequence domain operations without introducing a lot of
nonessential complexities.

209References
Internal DSLs are hosted within a specific language and are sometimes limited by the
capabilities of the host language. You can get around these limits by designing your
own external DSL. In the next chapter, we’re going to look at some of the building
blocks of external DSLs. We’ll start with some of the basic theories of compilers and
parsers, and then move on to higher-order structures like parser combinators that are
widely used today. Stay tuned!

6.10 References
1 Odersky, Martin, and Matthias Zenger. 2005. Scalable component abstractions.

Proceedings of the 20th annual ACM SIGPLAN conference on object-oriented programming
systems, languages, and applications, pp 41-57.

2 Wampler, Dean, and Alex Payne. 2009. Programming Scala: Scalability = Functional
Programming + Objects. O’Reilly Media.

3 Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements
of reusable object-oriented software. Addison-Wesley Professional.

4 Ford, Neal, Advanced DSLs in Ruby, http://github.com/nealford/presentations/
tree/master.

5 Emir, Burak, Martin Odersky, and John Williams. Matching Objects With Pat-
terns. LAMP-REPORT-2006-006. http://lamp.epfl.ch/~emir/written/Matching-
ObjectsWithPatterns-TR.pdf.

6 Evans, Eric. 2003. Domain-Driven Design: Tackling complexity in the heart of software.
Addison-Wesley Professional.

7 Hofer, Christian, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Poly-
morphic Embedding of DSLs. Proceedings of the 7th international conference on gen-
erative programming and component engineering, 2008, pp 137-148.

8 ScalaTest. http://www.scalatest.org.
9 Wadler, Philip. 1992. The essence of functional programming. Proceedings of the

19th ACM SIGPLAN-SIGACT symposium on principles of programming languages. pp 1-14.
10 Emir, Burak. Monads in Scala. http://lamp.epfl.ch/~emir/bqbase/2005/01/

20/monad.html.

Key takeaways & best practices
■ Scala has a concise syntax with optional semicolons and type inference. Use

them to make your DSL surface syntax less verbose.
■ Design your abstractions in Scala by using multiple artifacts like classes,

traits, and objects to make your DSL implementation extensible.
■ Scala offers lots of functional programming power. Use it to abstract the

actions of your DSL. You’ll escape the object-only paradigm and make your
implementation more expressive to the user.

210 CHAPTER 6 Internal DSL design in Scala
11 Pierce, Benjamin C. 1991. Basic Category Theory for Computer Scientists. The MIT
Press.

12 Ghosh, Debasish. Implementation Inheritance with Mixins—Some Thoughts.
Ruminations of a Programmer. http://debasishg.blogspot.com/2008/02/imple-
mentation-inheritance-with-mixins.html.

13 Venners, Bill. Abstract Type Members versus Generic Type Parameters in Scala.
http://www.artima.com/weblogs/viewpost.jsp?thread=270195.

14 Ghosh, Debasish. Scala Self-Type Annotations for Constrained Orthogonality.
Ruminations of a Programmer. http://debasishg.blogspot.com/2010/02/scala-self-
type-annotations-for.html.

External DSL
 implementation artifacts
External DSLs, like the internal ones, have a layer of abstraction on top of an exist-
ing domain model. Where they differ is how they implement the layer. External
DSLs build their own language-processing infrastructure: the parsers, the lexers,
and the processing logic.

 We’re going to start with a discussion of the overall architecture of the process-
ing infrastructure of an external DSL. The internal DSLs get this infrastructure free
from the underlying host language, but the external DSLs need to build them from
the ground up. First, we’re going to look at hand-written parsers, and then move on
to develop your first custom external DSL using the ANTLR parser generator. In the
final section of the chapter, we’ll look at a different paradigm of DSL development:
the model-driven approach of the Eclipse Modeling Framework (EMF), using
Xtext, as a comprehensive environment for external DSL development. Figure 7.1
provides a roadmap of our progress through the chapter.

This chapter covers
■ The processing pipeline of an external DSL
■ Parser classification
■ Developing an external DSL using ANTLR
■ The Eclipse Modeling Framework and Xtext
211

212 CHAPTER 7 External DSL implementation artifacts
In this chapter, you’ll learn how to develop a language-processing infrastructure using
the tools available on the market today. When you’re done, you can use this infrastruc-
ture to develop your own DSL processor.

7.1 Anatomy of an external DSL
You’ve already seen in section 1.5 how an external DSL is structured on top of a cus-
tom language infrastructure. In this section, we’ll look at the details of how the archi-
tecture of the DSL evolves along with the model of the domain that it describes. I’ll
also describe some of the implementation options and the trade-offs that you need to
make as a DSL designer.

7.1.1 The simplest option first

Let’s start with the simplest of options that you have when designing an external DSL.
Your DSL has a custom syntax that you’ve developed a parser for. The parsing engine
first lexicalizes the input stream, converting them to recognizable tokens. These
tokens are also known as the terminals of the grammar. The tokens are then fed on to
the production rules and parsed as valid sentences of the grammar. This process is
shown in figure 7.2.

 The parsing infrastructure is the only processor that does everything required to pro-
cess the input DSL script and generate the necessary output.

The parsing infrastructure doesn’t need to be very sophisticated for
every instance of the DSL that you want to process. It’s not uncommon

to have simple data structures like string manipulators or regular expression
processors as the parsing engine for simple languages of the domain. In most
of these cases, you can bundle together the steps of lexicalization, parsing,
and code generation into a consolidated set of actions.

Figure 7.1 Our roadmap through the chapter

213Anatomy of an external DSL
The design shown in figure 7.2 doesn’t scale when it becomes more complex. If you
have a simple requirement that’s not likely to scale up in complexity, you can choose
this implementation of a do-all kind of language processing infrastructure. But not all
problems in the world are simple. As you’ll see next, the only way to address complex-
ity is to modularize concerns and introduce a suitable level of abstraction.

7.1.2 Abstracting the domain model

In figure 7.2, the do-all box of the parsing infrastructure handled all the processing that
needed to be done to generate the target output. As I mentioned earlier, this
approach doesn’t scale with the growing complexity of the language. Even if you con-
sider a moderately complex DSL, the single box needs to perform all the following
tasks within one monolithic abstraction:

■ Parse the input, based on a set of grammar rules.
■ Store the parsed language into a form of AST. For simpler use cases, you can

skip the AST generation phase and embed actions to execute directly within
the grammar.

■ Annotate the AST, enriching it in the form of intermediate representations for
generating target actions.

■ Process the AST and perform actions like code generation.

That’s a lot of work for one abstraction. Let’s see if we can make this a little simpler.

MODULARIZING THE BIG BOX

Let’s try to separate some of these responsibilities to make the design of the big box
more modular. Figure 7.3 shows one way to do that.

 In figure 7.3, parsing is one of the core functionalities that you can identify as a
separate abstraction. One of the natural side effects of parsing is the generation of

Figure 7.2 The simplest form of an external DSL. The parsing
infrastructure does everything necessary to produce the target actions.
The phases of processing the DSL script (lexicalization, parsing,
generating the AST, and code generation) are all bundled in one
monolithic block.

214 CHAPTER 7 External DSL implementation artifacts
an AST. The AST identifies the structural representation of the language in a form
that’s independent of the language syntax. Depending on what you want to do from
the AST, you have to augment it with additional information like object types, anno-
tations, and other contextual notes that you’ll need in the next phase of processing.
Your AST becomes much richer and starts accumulating the semantic information of
your language.

THE SEMANTIC MODEL

When you’re working on a DSL for a specific domain, the enriched AST becomes
the semantic model for the domain itself. The reason the top two regions over-
lap in figure 7.3 is that the core-parsing process needs to generate some sort of
data structure.

 The next process in the pipeline will enrich this data structure with the domain
knowledge. The completion of this process leads to figure 7.4, where we identify the
semantic model of the domain as one of the core abstractions of the DSL process-
ing pipeline.

 The semantic model is a data structure that’s enhanced with domain semantics
after the DSL scripts are processed through the pipeline. Its structure is independent
of the DSL syntax and is more aligned to the solution domain model of the system. It’s
the perfect abstraction that decouples the input syntax-oriented scripting structure
from the target actions.

 As part of the target output, the DSL processor can do quite a few things. It can gen-
erate code that becomes part of the application. It can generate resources that are

Figure 7.3 Separation of concerns for the four responsibilities that the single box in
figure 7.2 was doing. Each dotted region can now encapsulate the identified
functionalities.

215Anatomy of an external DSL
consumed and interpreted by the application runtime, like the object-relational map-
ping files in Hibernate that generate the data model. (Hibernate is an object-relational
mapping [ORM] framework. For more information, go to http://www.hibernate.org.)
The semantic model keeps you isolated from both sides and serves as the independent
repository of all the necessary domain functionalities.

 One other major benefit of having a well-designed semantic model is that your
application is more testable. The entire domain model of your application can be
tested independently of the syntax layer of your DSL. Let’s look at the semantic model
in more detail and see how the model evolves during the development cycle of an
external DSL.

POPULATING THE SEMANTIC MODEL

The semantic model serves as the repository of the domain model. The parser popu-
lates the semantic model as it consumes the input stream of the DSL script. The design
of the semantic model is completely independent of the DSL syntax and evolves
bottom-up from smaller abstractions, as with internal DSLs. Figure 7.5 illustrates how
the semantic model evolves bottom-up as the repository of the domain structure, attri-
butes, and behavior.

 The difference with external DSLs lies in the way you populate the semantic
model in the course of the parsing process. When you’re using internal DSLs, you
populate smaller abstractions in the host language. You use the compositional fea-
tures of the host language to build the larger whole. With external DSLs, you popu-
late smaller abstractions as you parse the syntax of your language. As your parse tree
grows up, the semantic model is fleshed out into a concrete representation of the
domain knowledge.

 After you’ve populated the semantic model, you can use it to generate code,
manipulate databases, or produce models to be used by other components of your

Figure 7.4 We’ve split the parsing infrastructure box of figure 7.2 into two
separate abstractions. The parser takes care of the core parsing of the
syntax. The semantic model is now a separate abstraction from the parsing
engine. It encapsulates all the domain concerns that are ready to be fed into
the machinery that generates all the target actions.

216 CHAPTER 7 External DSL implementation artifacts
application. Now look again at figure 7.4. Are you convinced of the benefits that sepa-
rating abstractions brings to the architecture of your DSL system?

 Architecturally speaking, both internal and external DSLs form a layer on top of
the semantic model. With an internal DSL, you use the parser of the host language;
the contracts that you publish to the user take the form of a thin veneer on top of the
semantic model. With external DSLs, you build your own infrastructure that parses
the DSL script and executes actions. These actions lead to the population of the
semantic model.

 The parser that you implement as part of the infrastructure recognizes the syntax
of the DSL script. Some important aspects of implementing external DSLs that you
need to master are the techniques you can use to implement the various forms of pars-
ers and lexical analyzers.

 In the next section, we’re going to discuss parsing techniques. Rather than provide
a detailed treatise on parser implementations, I’ll give a brief overview of the land-
scape and discuss parsing techniques and the class of grammars that each addresses.
When you use the most appropriate set of tools to develop your external DSLs (like
parser generators), you might not need a detailed exposition of how parsers are
implemented. But, depending on the class of language that you design, a fair knowl-
edge of parsing techniques always comes in handy. The references at the end of the
chapter can point you to relevant information about this topic.

Figure 7.5 The semantic model evolves bottom-up as a composition of
smaller domain abstractions. You develop smaller abstractions for domain
entities, as indicated by the dotted rectangles. You then compose them
together to form larger entities. In the end, you have the entire domain
abstracted in your semantic model.

217The role of a parser in designing an external DSL
7.2 The role of a parser in designing an external DSL
The DSL script that you execute is fed into a lexical analyzer. The analyzer then token-
izes the stream into identifiable units that are recognized by the parser. When the
parser has consumed the entire stream of input and has reached a successful terminal
stage, we say that it has recognized the language. Figure 7.6 shows a schematic dia-
gram of the process.

 When I talk about lexical analyzers and parsers, I’m not assuming that they’re
complex. Their complexity depends on the language that you design. As I men-
tioned earlier, if your DSL is simple enough, you might not need separate stages for
lexicalization and parsing. Your parser might simply consist of a string processor that
manipulates input scripts, based on regular expression processing. In such cases, you
can get away with a handcrafted parser, as opposed to a more complicated one that
you’d need to design when you’re using a more sophisticated infrastructure. Let’s
see how you’d build a parser for a nontrivial DSL, using such an infrastructure that
generates the parser for you.

7.2.1 Parsers and parser generators

The parser that you design is an abstraction for the grammar of your language. If you
choose to implement the entire parser by hand, you’d need to:

■ Develop the BNF syntax for the language
■ Write the parser that mirrors the syntax

Unfortunately, when you develop a parser manually, the entire grammar gets embed-
ded within the code base. Any change in the grammar means that you’ll have to make
a significant change in the code that implements it. This kind of problem is typical
when you’re programming at a lower level of abstraction (appendix A provides a
more detailed explanation).

 A better alternative to writing nontrivial parsers by hand is to use a parser genera-
tor. A parser generator lets you program at a higher level of abstraction. You simply
have to define two things:

Figure 7.6 The process of parsing. The language script is fed into the lexical analyzer
that tokenizes and feeds them into the parser.

218 CHAPTER 7 External DSL implementation artifacts
■ The grammar rules, in Extended Backus Naur Form (EBNF) syntax
■ Custom actions that you want to execute on recognition of grammar rules

With a parser generator, the infrastructure code for implementing the parser for your
grammar will be encapsulated within the generator itself. Standard procedures for
error handling and parse-tree generation become part of the generator; they work the
same way for every parser that you create out of it.

 As with any technique that offers a higher level of abstraction, you have to
write, manage, and maintain less code. Another big advantage of using parser gen-
erators is that many of them are capable of generating the target parser in multi-
ple languages. Table 7.1 contains information about some of the commonly used
parser generators.

Besides the list in table 7.1, there are a few other parser generators like Java Compiler
Compiler (JavaCC), developed by Sun Microsystems (go to https://javacc.dev.java.net/)
and IBM Jikes Parser Generator (http://www10.software.ibm.com/developerworks/
opensource/jikes/project/). Both Jikes and JavaCC generate Java parsers and offer
functionalities similar to YACC and Bison.

 Whether you use a hand-written parser or one constructed by a generator, it’s the
syntax of your language that directs the parser. When the parser recognizes the lan-
guage, it generates a parse tree that encapsulates the whole process of recognition
into a recursive data structure. If you’ve added custom actions to your grammar rules,
the parse tree that’s generated is augmented with that additional information, form-
ing your semantic model. Let’s see how the parser generator does this translation
from custom syntax to the semantic model of your domain by looking at an example
of a language that’s processed using ANTLR.

Table 7.1 Parser generators available today

Parser generator
Associated lexical

analyzer
Details

YACC LEX Part of the UNIX distribution (originally
developed in 1975) that generates pars-
ers in C.

Bison Flex Part of the GNU distribution with almost
similar functionality as YACC and LEX,
but can generate parsers in C++.

ANTLR (go to http://antlr.org) Packaged with ANTLR Implemented by Terrance Parr. Capable
of generating parsers in a host of target
languages like Java, C, C++, Python,
and Ruby.

Coco/R Generates a scanner Coco/R is a compiler generator, which
takes an attributed grammar of a source
language and generates a scanner and a
parser for that language.

219The role of a parser in designing an external DSL
7.2.2 Syntax-directed translation

When your external DSL implementation processes a piece of DSL script, it starts with
the recognition of its syntax. You parse the syntax and translate it to generate the
semantic model. The semantic model acts as the repository for the next action that
you execute. But how do you recognize the syntax? Table 7.2 shows the two sets of arti-
facts that you need for this recognition to be successful.

Figure 7.7 illustrates how the grammar rules that you supply along with the custom
actions get processed by the parser generator to generate the semantic model.

Table 7.2 Recognizing the DSL syntax

Artifact What it does

A context-free grammar
that identifies the set of
valid productions

The grammar specifies the syntactic structure of the DSL. DSL scripts
that obey the rules defined in the grammar are the only ones that are
considered to be valid.

Note: I’m going to use the ANTLR parser generator for all examples in
this section to specify the grammar.

A set of semantic rules that
you apply to the attributes
of the symbols that your
grammar recognizes. These
rules are then used to gen-
erate the semantic model.

Along with each grammar rule, you can define actions that are exe-
cuted when the rule is recognized by the parser. The action can be the
generation of the parse tree or any other trigger that you want to gen-
erate, as long as the action is related to the rule being recognized.
Defining an action is easy. Every parser generator allows foreign code
to be embedded, along with the DSL-based production definitions of
the grammar. For example, ANTLR lets you embed Java code, YACC
lets you embed C.

Figure 7.7 The parser generator takes the grammar rules and the custom
actions as input. It then generates the lexical analyzer and the parser, which
accept the DSL script and generate the semantic model. Then you can integrate
this model with the core application.

220 CHAPTER 7 External DSL implementation artifacts
Let’s do a sample exercise of language interpretation for a small order-processing DSL
using the ANTLR parser generator. We’ll define the lexical analyzer and the grammars
and embed a few custom actions that’ll populate the semantic model of our language.

SETTING UP THE ANTLR EXAMPLE

The language is similar (albeit simpler) to the order-processing DSL that we devel-
oped in chapter 2 using Groovy. This example will teach you the steps you need to
perform to use a parser generator to develop an external DSL. You’ll develop the syn-
tax of your DSL and generate the semantic model that produces a custom abstraction
of all the orders that are being placed.

 Consider the following snippet as the series of orders that a client can place with
the trading organization:

buy IBM @ 100 for NOMURA
sell GOOGLE @ limitprice = 70 for CHASE

The entire order placement instruction consists of repeating lines of the same format.
You’ll design an external DSL using ANTLR that processes these scripts. Then, you’ll
generate data structures as the semantic model. To keep things simple, we’ll consider
each line as a separate order and the entire collection as a list of orders placed by the
client. The first step is to design the lexical analyzer that’ll preprocess the input script
into a sequence of symbols that our grammar can recognize.

DESIGNING THE LEXICAL ANALYZER

The lexer reads the input stream and converts the characters into tokens as per the
token definitions specified in the lexical analyzer. With ANTLR, you can specify lexer
rules either inline with the grammar specification or as a separate file. In our exam-
ple, we’ll put all the token specifications in a separate file that we’ll call OrderLexer.g;
ANTLR specifications live in a file with a .g extension (for grammar). Note that the
specification given in the following listing uses a DSL structure that’s readable and
expressive as a token language.

lexer grammar OrderLexer;

EQ : '=';
BUY : 'buy';
SELL : 'sell';
AT : '@';
FOR : 'for';
LPRICE : 'limitprice';
ID : ('a'..'z'|'A'..'Z')+;
INT : '0'..'9'+;
NEWLINE : '\r'? '\n';
WS : (' '|'\t')+ {skip();};

The lexer rules are matched in a greedy way. When the lexer tries to match rules with
the input stream, it uses the rule that has the maximum match. In case of a tie, it picks
up the rule that appears first in the order within the specification file.

Listing 7.1 OrderLexer.g: The lexer for your DSL in ANTLR

Skip whitespaces

221The role of a parser in designing an external DSL
 The next step is to jump into the syntax of your language. That syntax is identified
by grammar rules that you design.

DESIGNING THE GRAMMAR RULES

In this step, you define the grammar rules, which are based on the syntax of your DSL.
It’s a pretty simple DSL, and is for illustration purposes only. We’re going to skip over a
lot of the error processing functionalities and focus on the architecture of the gram-
mar rules. For a detailed treatment of how ANTLR defines grammar rules and the var-
ious options that it offers to the user, refer to [2] of section 7.6.

 The grammar rules in listing 7.2 are defined in a separate file, OrderParser.g. That
file follows the EBNF notation, which is incredibly expressive to a language designer.
Later, when you integrate the lexer and the parser along with the processor code that
drives the parser, you’ll see how ANTLR generates the actual parser code from these
EBNF specifications. Note that the generator does all the heavy lifting of implement-
ing the actual parser. You, as the developer, get to focus on the task of defining the
specific syntax.

parser grammar OrderParser;

options {
 tokenVocab = OrderLexer;
}

orders : order+ EOF;
order : line NEWLINE;
line : (BUY | SELL) security price account;
security : ID;
limitprice : LPRICE EQ INT;
price : AT (INT | limitprice);
account : FOR ID;

For anyone familiar with the EBNF notation, these grammar rules look expressive. We
want to build a collection of orders C. Each order consists of a line that specifies the
order placement details D. We’re keeping a reference to the lexer class at the begin-
ning of the grammar file within the options block B.

ANTLR comes with a GUI-based interpreter environment (ANTLRWorks; go to
http://www.antlr.org/works)) in which you can run sample DSL scripts interactively
through the specified grammar. It builds the parse tree for you. You can also debug
your rules, in case there are any parsing exceptions.

 Now you must be wondering why the grammar that we specified in listing 7.2
doesn’t have any custom action for the necessary syntax-directed translation. The rea-
son is because I want to give you a feel for the lightweight DSL syntax that the gram-
mar specification for ANTLR gives you. The grammar rules themselves are sufficient
for the successful recognition of a valid DSL script; you don’t need anything else! In
the next section, we’ll discuss how to embed Java code as custom action definitions
within each of the grammar rules.

Listing 7.2 OrderParser.g: Grammar rules for your DSL in ANTLR

The lexer
reference

B

All ordersC

order has a lineD

222 CHAPTER 7 External DSL implementation artifacts
EMBEDDING FOREIGN CODE AS CUSTOM ACTIONS

As you saw in listing 7.2, the ANTLR grammar lets you build a default parse tree
through the parser that it generates. If you want to augment the parse tree with addi-
tional information or generate a separate semantic model by parsing the DSL script,
you can do it by defining custom actions with embedded foreign code. In this section,
we’ll add custom actions to the grammar rules that we defined in listing 7.2 and gen-
erate a collection of custom Java objects by parsing the DSL script.

 We begin by defining a plain old Java object (POJO) Order. When the script is
parsed, it generates a semantic model consisting of List of Order objects. The follow-
ing listing shows the resulting actions embedded in our grammar rules.

parser grammar OrderParser;

options {
 tokenVocab = OrderLexer;
}

@header {
 import java.util.List;
 import java.util.ArrayList;
}

@members {
 private List<Order> orders = new ArrayList<Order>();
 public List<Order> getOrders() {
 return orders;
 }
}

orders : order+ EOF;
order : line NEWLINE {orders.add($line.value);};

line returns [Order value]
 : (e=BUY | e=SELL) security price account
 {
 $value = new Order($e.text, $security.value,
 $price.value, $account.value);
 };

security returns [String value]: ID {$value = $ID.text;};

limitprice returns [int value]
 : LPRICE EQ INT {$value = Integer.parseInt($INT.text);};

price returns [int value] : AT
 (
 INT {$value = Integer.parseInt($INT.text);}
 |
 limitprice {$value = $limitprice.value;}
);

account returns [String value] : FOR ID {$value = $ID.text;};

Listing 7.3 OrderParser.g: Action code embedded in the grammar rules

Custom imports and
package specifications

Code that parser
class shares

Form collection
of Order objects

B

Rule return
valuesC

223The role of a parser in designing an external DSL
If you’re not familiar with the EBNF style of writing grammar rules and how to embed
action code within them, you can look at [2] in section 7.6. Note that the rules you
define can have return values C that get propagated upward as the parsing contin-
ues. Computations bubble up and you end up forming the collection of Order
objects B.

 The next listing is the abstraction for the Order class. I’ve made this pretty simple
for illustration purposes.

public class Order {
 private String buySell;
 private String security;
 private int price;
 private String account;

 public Order(String bs, String sec, int p, String acc) {
 buySell = bs;
 security = sec;
 price = p;
 account = acc;
 }

 public String toString() {
 return new StringBuilder()
 .append("Order is ")
 .append(buySell)
 .append("/")
 .append(security)
 .append("/")
 .append(price)
 .append("/")
 .append(account)
 .toString();
 }
}

In the next section, we’ll write the main processor module that integrates the ANTLR
generated lexer, the parser, and any other custom Java code. Let’s see how you can
parse your DSL script and generate necessary output.

BUILDING THE PARSER MODULE

Now you can use ANTLR to build the parser and integrate it with the driver code.
Before we do that, we need to write the driver that takes character streams from input,
feeds them to our lexer to generate tokens and to the parser to recognize our DSL
script. The following listing shows the driver code, the Processor class.

import java.io.*;
import java.util.List;
import org.antlr.runtime.*;
import org.antlr.runtime.tree.*;

Listing 7.4 Order.java: The Order abstraction

Listing 7.5 Processor.java: The driver code for our parser module

224 CHAPTER 7 External DSL implementation artifacts
public class Processor {

 public static void main(String[] args)
 throws IOException, RecognitionException {
 List<Order> os =
 new Processor().processFile(args[0]);
 for(Order o : os) {
 System.out.println(o);
 }
 }

 private List<Order> processFile(String filePath)
 throws IOException, RecognitionException {
 OrderParser p =
 new OrderParser(
 getTokenStream(new FileReader(filePath)));
 p.orders();
 return p.getOrders();
 }

 private CommonTokenStream getTokenStream(Reader reader)
 throws IOException {
 OrderLexer lexer =
 new OrderLexer(new ANTLRReaderStream(reader));
 return new CommonTokenStream(lexer);
 }
}

We use the tokenization support that ANTLR provides and its built-in classes for read-
ing from the input stream. In the listing, after we construct the parser B, we invoke
the method from the start symbol of the grammar, orders(), which is generated by
ANTLR. All the classes that are referred to in the listing (like OrderLexer, Common-
TokenStream, and OrderParser) are either generated by ANTLR from our grammar
rules or are part of the ANTLR runtime. We’re assuming that the DSL is in a file whose
path is specified as the first argument of the command-line invocation.

 As a sample action of what you can do with the semantic model, the program in
listing 7.5 prints the list of Order objects that’s generated by the parsing process. If this
were a real program, you could feed these objects directly into other modules of your
system to integrate the DSL with your core application stack.

 We’ve done a lot of work in this section. Let’s look back at all we’ve been through.

HOW FAR WE’VE COME

ANTLR has classes like org.antlr.Tool that work on your grammar files to generate
the Java code. Then your build process can compile all Java classes, including the ones
that form parts of your custom codebase. Table 7.3 contains a summary of what we’ve
done so far to build the entire infrastructure for processing our external DSL.

 Now you have a basic idea of the entire development lifecycle for building and pro-
cessing an external DSL using a parser generator. This approach is pretty common.
When you want to design an external DSL by building a language that’s based on a
custom infrastructure, this is the process that you’ll follow.

Main driver

Print the
order list

Read DSL script
from file

Parser reads from
token streamB

Token stream
generated by lexer

225Classifying parsers
ANTLR is a great parser generator. It’s used extensively to build custom parsers and
DSLs. But there’s still more that ANTLR can do. So far, we haven’t talked about the
class of grammars that ANTLR can handle. Theoretically, you can parse any language if
you don’t have any constraints on the efficiency of the parser that’s generated. But in
real life, we need to make compromises. When you’re developing a DSL, you want to
have the most efficient parser that can parse your language. You don’t want a generic
parser that can parse many other languages but has a low efficiency coefficient for
your language. ANTLR is just one tool that can generate a parser capable of recogniz-
ing a specific class of languages.

 As a DSL designer, you need to be aware of the general classification of parsers,
their implementation complexities, and the class of languages that each of them is
capable of handling. The next section provides an overview of parser taxonomies and
their complexities.

7.3 Classifying parsers
When a parser recognizes the input stream that you give to it, it generates the com-
plete parse tree for the language script. Parsers are classified based on the order in
which the nodes of the parse tree are constructed. The parser might start construct-
ing the parse tree from the root; these parsers are called top-down parsers. Con-
versely, the parse tree might be constructed starting from the leaves and moving up
towards the root. We call these bottom-up parsers. Top-down and bottom-up parsers
vary in the complexity of their implementations and the class of grammars that they
recognize. As a DSL designer, it’s worthwhile to make yourself familiar with the gen-
eral concepts associated with both of them. Look at figure 7.8, which illustrates how
parse trees are constructed by each type of parser.

Table 7.3 Building an external DSL with the ANTLR parser generator

Step Description

1 Identify lexicons and pre-
pare the lexer for ANTLR

In listing 7.1, we built the lexer OrderLexer.g. We used the token defi-
nitions for our order-processing DSL.

Note: Your lexer definition file should always be separate from the
parser. Keeping it separate makes your lexer reusable across parsers.

2 Build grammar rules in
EBNF notation

In listing 7.2, we defined the syntax of our DSL in OrderParser.g, based
on ANTLR syntax.
The grammar recognizes valid syntax for the DSL and flags an excep-
tion for any invalid syntax.

3 Populate the semantic
model

In listing 7.3, we enriched the grammar definition with custom Java
code that injects semantic actions into the parsing process. We’re
building our semantic model using these code snippets.

4 Wrap it up In listing 7.5, we have custom Java code that models an Order
abstraction and a driver process that uses ANTLR infrastructure to
invoke our DSL script into the parsing pipeline.

226 CHAPTER 7 External DSL implementation artifacts
In this section, we’ll discuss how you can classify parsers based on the way they con-
struct the parse tree and derive the language out of the production rules. Within the
two classes of parsers (top-down and bottom-up), there are quite a few variations that
add to the class of languages that they recognize at the expense of a little complexity
in implementation. I assume a basic familiarity with parsing techniques, look-ahead
processing, parse trees, and other fundamental language-processing concepts. If you
need background on these topics, see [3] in section 7.6.

 Let’s start with top-down parsers and look at some of the implementation varia-
tions within them.

7.3.1 Simple top-down parsers

As I mentioned earlier, a top-down parser constructs the parse tree starting from the root
and proceeds with a leftmost derivation of the input stream. This means it starts process-
ing the input from the left symbol and moves toward the right symbol.

 The most general form of top-down parser is the recursive descent (RD) parser.
You might be asking yourself, what does recursive descent mean? Recursive means
that these parsers are implemented in terms of recursive function calls (see [1] in sec-
tion 7.6). The descent part refers to the fact that the parse tree construction starts at
the top (which also explains the top-down category).

 We’re going to start with the simplest RD parser and gradually work our way
through the complex variants that are powerful enough to recognize a broader class
of languages as long as you use an efficient implementation. First, we’re going to dis-
cuss LL(1) and LL(k) RD parsers. These two classes of top-down parsers are the basic
implementations that cover most of what you’ll need to design external DSLs.

Figure 7.8 How top-down and bottom-up parsers construct their parse trees.

227Classifying parsers
LL(1) RECURSIVE DESCENT PARSER

An LL(1) RD parser is a top-down parser that can parse the syntactic structures of a
language based on a single look-ahead token. What does LL(1) mean? The first L
denotes that the parser processes the input string from left-to-right. The second L
denotes that when the parser constructs the parse tree from the root down to the
leaves, it descends into the children from left to right. As you might’ve guessed from
the definition, the 1 indicates the number of look-ahead tokens. Because there’s only
one look-ahead token, the parser selects the next production rule to apply based on
the match of this single token.

 What if the parser can’t find an exact matching rule based on the single look-
ahead token? This might happen because your grammar can have multiple produc-
tion rules that start with the same symbol. Remember the LL(1) parser can look-ahead
only one token. In order to resolve this ambiguity of multiple rules matching the same
look-ahead token, you can either use an LL(k) parser where k > 1, or you can use left-
factoring to change your grammar definition to make it acceptable to an LL(1) RD
parser (see [1] in section 7.6 for details).

 Sometimes you might want a top-down parser to handle left recursion. If your lan-
guage has a grammar rule of the form A : A a | b, then your top-down parser goes into
an infinite loop. Remember that I mentioned earlier that RD parsers are implemented
using recursive calls. A left recursion in the production rule makes it recurse forever.
There are rule-rewriting techniques you can use to convert left-recursive rules. See [3]
in section 7.6 for details.

LL(K) RECURSIVE DESCENT PARSER

The LL(k) is a more powerful variant of LL(1) in the sense that it has a larger look-
ahead set. It uses this set to determine which production rule to apply on the input
token. Yes, a larger look-ahead set means that this parser is more complex than the
LL(1). But it’s worth investing in that complexity, considering the benefits of generat-
ing more powerful parsers.

 How much more powerful is this parser than the LL(1)? Because LL(k) parsers
have such an enhanced look-ahead set, they can parse many computer languages. It’s
still limited in the sense that the parser can disambiguate grammar rules that are dis-
joint in only the first k tokens. But you can augment an LL(k) parser with more sophis-
ticated features. One feature is backtracking, which makes the parser recognize
languages that have arbitrary look-ahead sets. We’ll discuss backtracking parsers in
section 7.3.2.

ANTLR generates LL(k) parsers with an arbitrary look-ahead set and is the most
suitable for implementing DSLs in real-life applications. Many large software applica-
tions like Google App Engine, Yahoo Query Language (YQL) and IntelliJ IDEA use
ANTLR for parsing and interpreting custom languages.

 You know the basics, so we can jump right into a discussion of some of the
advanced top-down parsers. You might not use them very often, but it’s always useful
to know about them and appreciate the techniques that they employ to make efficient

228 CHAPTER 7 External DSL implementation artifacts
implementations. In fact, we’ll be using one of these techniques in chapter 8 when we
discuss how to design external DSLs using Scala parser combinators.

7.3.2 Advanced top-down parsers

The advanced parsing techniques give more power to your parsers, but at the
expense of added complexity to the implementation. Keep in mind that you’ll usu-
ally use parser generators or parser combinators that abstract the implementation
complexities within them. As a developer, you’ll use the published interfaces of
those abstractions.

RECURSIVE DESCENT BACKTRACKING PARSER

This parser adds backtracking infrastructure to an LL(k) RD parser, which gives it the
power to process arbitrary-sized look-ahead sets. With backtracking infrastructure in
place, the parser can parse ahead as far as it needs to. If it fails to find a match, it can
rewind its input and try alternate rules. This capability makes it quite a bit more pow-
erful than the LL(k).

OK, so it can backtrack and choose alternate rules, but is there any order to this
process? You can specify hints for ordering in the form of syntactic predicates, as in
ANTLR (see [2] in section 7.6). You can declaratively specify the ordering so that the
parser can select the most appropriate rule to apply on the input stream.

 With this kind of parser, you get much more expressive grammars, called parsing
expression grammars (PEGs). PEG is a more expressive form of grammar that extends
ANTLR’s backtracking and syntactic predicates (see [4] in section 7.6). PEG adds oper-
ators like & and ! that you specify within the grammar rules to implement finer con-
trols over backtracking and parser behaviors. They also make the grammar itself way
more expressive. You can develop parsers for PEGs in linear time using techniques like
memorizing.

MEMOIZING PARSERS

With a backtracking RD parser, partial parsing results can be evaluated repeatedly
when the parser backtracks and tries alternative rules. A memoizing parser makes
parsing efficient by caching partial results of parsing.

 That sounds great, but because the memoizing process means that previously com-
puted results need to be stored, you’re going to need additional memory. But the effi-
ciency you gain over conventional backtracking parser implementations will more
than outweigh the pain of needing additional infrastructure. You’ll also be pleased to
know that our old friend ANTLR supports memoization.

 You can avoid this need for more memory by implementing a packrat parser, which,
in addition to having a catchy name, also happens to be a functional pearl (see [6] in
section 7.6). You implement this parser by using the natural laziness that functional
languages like Haskell have. We’re going to discuss packrat parsers more when we talk
about Scala parsers in section 8.2.3.

229Classifying parsers
PREDICATED PARSERS

In some cases, an RD parser can’t determine the alternative rule to apply based on syn-
tax alone. To help it make decisions, you can annotate the parser using Boolean expres-
sions. A particular alternative matches only if the Boolean expression evaluates to true.

 Typically, you would use a predicated parser when you want a single parser that can
parse multiple versions of a language. The core language can be recognized by the
base parser, and additional semantic predicates are used to handle extensions and
other versions. For more information about predicated parsers, see [1] in section 7.6.

 Top-down parsers can be extremely simple, like the LL(1) that we discussed in sec-
tion 7.3.1. But for complex language parsing, you need sophisticated ones, like the
backtracking parsers, memoizing parsers, and predictive parsers that we talked about.
Each of these advanced variants makes the parsers recognize a wider class of lan-
guages, along with reducing the time and space complexity of implementation. In the
next section, we’re going to see another class of parsers that are possibly more versa-
tile than top-down parsers in the sense that they can recognize any deterministic
context-free language.

7.3.3 Bottom-up parsers

A bottom-up parser constructs the parse tree starting from the leaves and moving
toward the root. It reads the input stream from left to right and constructs a right-
most derivation through successive reduction of grammar rules, proceeding toward
the start symbol of the grammar. It’s the opposite direction of what a top-down
parser follows.

 The most common technique in bottom-up parsers uses what is known as shift-reduce
parsing. When the parser scans the input and meets a symbol, it has two alternatives:

■ Shift the current token aside (usually to an implementation stack) for subse-
quent reduction.

■ Match the current handle (the substring of the input string that matches the
right-hand side of a production rule), and replace it with the nonterminal on
the left-hand side of the production. This step is commonly known as the reduc-
tion step.

We’re going to talk about two of the most commonly used shift-reduce bottom-up
parsers: operator precedence parsers and LR parsers. Operator precedence parsers
have limited capability, but are extremely simple to implement by hand. On the other
hand, LR parsers are used extensively by most of the parser generators.

OPERATOR PRECEDENCE PARSER

This bottom-up parser can recognize only a limited set of languages. It’s based on a
static set of precedence rules that are assigned to the terminal symbols.

 An operator precedence parser is simple to implement by hand, but it’s of
limited use because it can’t handle multiple precedence of the same symbol and it
can’t recognize a grammar that has two nonterminals side by side. For example, the

230 CHAPTER 7 External DSL implementation artifacts
following snippet doesn’t use operator precedence grammar because expr operator
expr is a rule with more than one adjacent non-terminal:

expr : expr operator expr
operator : + | - | * | /

Let’s now look at the most widely used class of bottom up parsers that can imple-
ment a large class of languages and are used by popular parser generators like YACC
and Bison.

LR(K) PARSER

An LR(k) parser is the most efficient bottom-up parser. It can recognize a large class of
context-free grammars. The L denotes that the parser processes the input string from
left-to-right. The R denotes that it constructs the rightmost derivation in reverse dur-
ing parsing. And as you might have guessed from the definition, the k indicates the
number of look-ahead tokens. The parser uses this number to determine which pro-
duction rule to apply.

 An LR parser is table driven. The parser generator constructs a parse table that
contains the action that the parser needs to take on recognition of an input symbol.
As you saw earlier, the action can be a shift or a reduce. When the whole string is recog-
nized, the parser is said to be reduced to the start symbol of the grammar.

 This kind of parser is difficult to implement by hand, but it’s strongly supported by
parser generators like YACC and bison.

VARIATIONS OF THE LR PARSER

The LR parser has three variations: the simple LR (SLR), the look-ahead LR (LALR),
and the canonical LR. SLR parsers use a simple logic to determine the look-ahead sets.
The parsing process results in lots of conflict states. LALR parsers are more sophisti-
cated than SLR ones and have better look-ahead processing and fewer conflicts.
Canonical LR parsers can recognize more language classes than LALR.

WHAT YOU’LL REALLY BE USING

Parsers form the core foundation of external DSLs. You need to have a basic idea of
how parsers are related to the class of languages that they recognize. I’ve given you a
lot of nifty information in this section that’ll help you choose the right kind of parser
for your DSL. But when you’re out there developing in the real world, except for when
you’re dealing with trivial language implementations, you’ll never be implementing
parsers by hand. You’ll choose parser generators.

 When you use a parser generator, you can think at a higher level of abstraction.
You can specify grammar rules (or the language syntax), and the generator will con-
struct the actual parser implementation for you. But remember, that implementation
consists only of the language recognizer and a simple form of the AST. You still have to
transform this AST into the semantic model that suits your processing requirement.
For this, you need to write action code, embedded within the grammar rules.

 In the next section, you’ll learn how to take this approach up another level of
abstraction by adding support for rich tooling to the process of DSL development.

231Tool-based DSL development with Xtext
7.4 Tool-based DSL development with Xtext
Parser generators like ANTLR are a big step forward toward developing external DSLs
at a higher level of abstraction. But you still need to embed your target actions directly
within the grammar rules. The EBNF rules and the logic for generating your semantic
model are still not sufficiently decoupled. If you need to implement multiple semantic
models for a single set of grammar rules, you might even end up duplicating the code
for the parser itself; either that, or you’ll have to derive your semantic models from a
common base abstraction that the grammar rules offer.

 Xtext is a framework for developing external DSLs that leverages the Eclipse plat-
form. With Xtext, you get a complete toolset for managing the entire lifecycle of your
DSL. It’s integrated with the Eclipse Modeling Framework (EMF) and it maintains all
the artifacts of your DSL development process in the form of managed components.
(For more information about EMF, go to http://www.eclipse.org/emf.)

 To use Xtext, you’ll have to write an EBNF grammar for your language. The EMF
uses this grammar to generate all the following goodies:

■ An ANTLR-based parser
■ A metamodel for your language, which is based on the Ecore metamodeling

language of EMF
■ An Eclipse editor that offers syntax highlighting, code assist, code completion,

and a customizable outline view of your model

Figure 7.9 shows a snapshot of the postprocessing that Xtext does with the EBNF gram-
mar rules that you define.

 Xtext also has composable code generators that generate semantic models that
you set requirements for. In this section, we’ll implement the same order-processing

Figure 7.9 Xtext processes the textual grammar rules and generates lots of stuff.
Chief among the important stuff is the Ecore metamodel that abstracts the syntax
that the model of the grammar uses.

232 CHAPTER 7 External DSL implementation artifacts
DSL that we implemented with ANTLR in section 7.2.2. You’ll see how the comprehen-
sive tooling support and model-based development of Xtext makes it easier to manage
the evolution of your DSL. Let’s start with the definition of your language: the EBNF-
based Xtext grammar rules.

7.4.1 Grammar rules and the outline view

The grammar that you specify for your DSL uses the EBNF form with some of the addi-
tional adornments that Xtext supports. I’m not going to go into the details of the
grammar-rule specifications that Xtext supports. The Xtext User Guide has all the juicy
details (see [5] in section 7.6). For now, look at the Xtext grammar rules for the order-
processing DSL from section 7.2.2 in the following listing.

grammar org.xtext.example.Orders
 with org.eclipse.xtext.common.Terminals

generate orders http://www.xtext.org/example/Orders

Model :
 (orders += Order)*;

Order :
 line = Line;

Line :
 buysell = ('buy' | 'sell') security = Security

➥ price = Price account = Account;

Security :
 name = ID;

Price :
 '@' (
 (value = INT)
 |
 ('limitprice' '=' (value = INT))
);

Account :
 'for' value = ID;

This code is similar to what we used with ANTLR. Some of the newer stuff asks Xtext
to generate the metamodel for the language C. If you have an existing Ecore meta-
model, you can also ask Xtext to import it to your workspace and synchronize with
the textual representation of the grammar rules that you write. You’ll see more of the
internals of the metamodel in section 7.4.2. Another interesting thing is that you can
reuse an existing grammar by mixing it in with your rules B.

 Xtext generates the default parse tree (AST) from your grammar rules. You can
make inline assignments within the grammar to connect the various elements of the
AST that the parser generates D, E.

Listing 7.6 Xtext grammar rules

Reusing the
default lexer

B

Derived
metamodelC

Multivalue
assignmentD

Simple
assignmentE

233Tool-based DSL development with Xtext
Along with the textual version of the grammar rules, Xtext also displays an outline
view that shows the structure of your model as a tree. You can use the outline view to
navigate to the various model elements. Figure 7.10 shows the outline view for the
grammar we defined in listing 7.6.

 What you see in the figure is the default view of the model. What’s uber-cool is that
Xtext allows you to customize almost every aspect of this view. You can customize the
outline structure, let users selectively filter contents, and register custom context
menus, as well as other things. You only have to override the default implementations.
The outline view is part of the toolset for visualizing the model of your language. It
works in collaboration with the textual representation of your grammar and gives the
process of DSL development a richer feeling.

7.4.2 The metamodel for your grammar

After you define the grammar rules in the text editor and ask Xtext to generate the
language artifacts, it generates the complete Ecore metamodel from the grammar.

Figure 7.10
Hierarchical, or outline view of the model.
The outline view shows the structure
associated with each rule. You can sort
the elements alphabetically and select an
element to navigate to the corresponding
one in the text editor.

234 CHAPTER 7 External DSL implementation artifacts
(Ecore contains the core definition of abstractions in EMF.) The metamodel is an
abstraction that represents the textual form of your grammar in a model that Xtext
can manage easily. The metamodel uses the Ecore metatypes to describe the com-
ponents of your grammar rules. Figure 7.11 shows the metamodel of our grammar
in Xtext.

 In this metamodel, notice that the AST of the grammar is being represented
by metatypes like EString and EInt, which are some of the abstractions pro-
vided by Ecore.

 Along with the metamodel, the generator also generates the ANTLR parser, which
instantiates the metamodel. It’s the metamodel that controls the entire tooling sup-
port offered by Xtext. For more details about the internals of the metamodel, refer to
the Xtext User Guide (see [5] of section 7.6).

 After the generator has generated the required artifacts, all the wonderful plug-ins
are installed. You use the plug-ins to write your DSL scripts in an editor that offers
the smartness of syntax highlighting, code assist, and constraint checks. Xtext has the

Figure 7.11 The metamodel of the order-processing DSL. Every production rule from our grammar
returns an Ecore model element like EString and EInt.

235Tool-based DSL development with Xtext
entire language of the DSL in its repository as a model based on EMF; it can add smart-
ness to the way the script is rendered for you. Figure 7.12 shows an editing session for
our DSL.

 Now we’ve embedded our language within Xtext’s repository. Xtext gives us a tool-
ing interface for manipulating the syntax of our DSL and automatically updates its
own Ecore model. It also gives us a default AST in a representation as per the parser
that it generates. But when you use a DSL, you need to generate a more refined
abstraction—the semantic model. As a DSL designer, you want to generate your
semantic model through custom code development and you’d like it to be decoupled
from the core model of your language. Xtext can do this through code-generating
templates that you can use to integrate the grammar rules with the generation of your
model. Let’s explore more of Xtext’s capabilities and see what facilities the generator
uses to generate code that will construct your semantic model.

Figure 7.12 The Xtext metamodel provides you with an excellent editor for writing DSLs. See
how the code completion suggests alternatives for you? You can also see the syntax
highlighting feature, which is quite handy.

236 CHAPTER 7 External DSL implementation artifacts
7.4.3 Generating code for the semantic model

After you have the grammar rules and the metamodel defined as I’ve described, it’s
time to write a code generator that’ll process the models that you created and gener-
ate a semantic model for you. You might want to generate multiple semantic models
from one grammar. For example, for our order-processing DSL, we might want to gen-
erate a Java class that creates a collection of all orders that the user has entered. We
could also generate a set of JSON (JavaScript Serialized Object Notation) objects with
those orders for transporting them to a data store. Ideally, both these models should
be decoupled from the core grammar rules. Figure 7.13 shows how the overall archi-
tecture should look.

 Let’s generate the Java code using the Xpand templates that Xtext offers.

CODE GENERATION USING THE XPAND TEMPLATE

The Xpand template walks through the AST of your grammar rules and generates the
code for you. The first input that it needs is the metamodel, which we’ll specify as
<<IMPORT orders>>. Here’s the main template that serves as the entry point and dis-
patches to all other templates:

«IMPORT orders»
«DEFINE main FOR Model»
 «EXPAND Orders::orders FOR this»
«ENDDEFINE»

In this snippet, orders is the name of the metamodel we need to import. Every tem-
plate consists of a name and a metatype on which the template is invoked. In this
example, the template is named main and the metatype is specified as Model (Model
was an element in our grammar rule that’s represented by Xtext as a metatype in the
Ecore metamodel). Our main template is simple. All it does is dispatch to the
Orders::orders subtemplate on recognition of the symbol Model. The following list-
ing shows our template definition for Orders::orders.

Figure 7.13
The semantic models need to be
decoupled from the grammar rules.
For one set of grammar rules, you can
have multiple semantic models.

237Tool-based DSL development with Xtext
«IMPORT orders»

«DEFINE orders FOR Model»
 «FILE "OrderProcessor.java"»
 import java.util.*;
 import org.xtext.example.ClientOrder;
 public class OrderProcessor {
 private List<ClientOrder> cos = new ArrayList<ClientOrder>();
 public List<ClientOrder> getOrders() {
 «EXPAND order FOREACH this.orders»
 return Collections.unmodifiableList(cos);
 }
 }
 «ENDFILE»
«ENDDEFINE»

«DEFINE order FOR Order»
 cos.add(new ClientOrder("«this.line.buysell»",
 "«this.line.security.name»",
 «this.line.price.value»,
 "«this.line.account.value»"));
«ENDDEFINE»

When the grammar has recognized the language and has reduced to the start symbol
(Model), this template will generate the code as it’s specified in the listing. Table 7.4
shows in detail some of the features of the code generation template.

When the templates are ready, you can run the generator once again from the context
menu of the project.

PROCESSING THE DSL SCRIPT

Let’s say that this is the DSL script that we need to process:

buy ibm @ 100 for nomura
sell google @ limitprice = 200 for chase

For that script, the class shown in the following listing will be generated by Xtext in
the file OrderProcessor.java.

Listing 7.7 Template for generating the semantic model for orders

Table 7.4 Xtext code generation template

Feature Explanation

Can generate any code. In
our example, we’re gener-
ating a Java class.

The class exposes one method that returns a collection of all orders
parsed from the DSL script. The collection that’s returned contains a
POJO (ClientOrder) that we defined separately from the grammar.

Inline expansion of the
order template within
orders.

We access the elements from within the production rules and use tem-
plates for textual substitution of inline elements. Look at how
«this.line.price.value» serves as the placeholder for the
price value when it’s parsed within the DSL script.

Import metamodel

Generate Java file

Custom Java class

Class to be
generated

Templates for
substitution

238 CHAPTER 7 External DSL implementation artifacts
import java.util.*;
import org.xtext.example.ClientOrder;
public class OrderProcessor {
 private List<ClientOrder> cos = new ArrayList<ClientOrder>();

 public List<ClientOrder> getOrders() {
 cos.add(new ClientOrder("buy", "ibm", 100, "nomura"))
 cos.add(new ClientOrder("sell", "google", 200, "chase"))
 return Collections.unmodifiableList(cos);
 }
}

With Xtext, defining the grammar rules and building the semantic model are suffi-
ciently decoupled. The grammar rule definitions are managed by the smart textual
editor that is complemented with the customizable outline view. The semantic model
implementation is controlled through the code generators linked with the parsers
through the metamodel.

 Let’s take a final look at the pros and cons of a hybrid textual and visual environ-
ment like Xtext when you’re developing external DSLs.

THE GOOD AND THE BAD (BUT IT’S MOSTLY GOOD)
Xtext offers a novel approach to external DSL development. It augments the tradi-
tional textual representation of your DSL with a rich toolset. You still have to write
your grammar rules in EBNF notation. But behind the scenes, Xtext not only gener-
ates the ANTLR parser for you, but also abstracts your grammar rules within a meta-
model. The architecture, which is based on the metamodel, manages the entire
toolset. You get some powerful editing capabilities for your DSL. Using Xtext-based
development, you can also decouple your semantic model from the grammar rules
and use Xpand template facilities to generate custom code.

 Overall, Xtext gives you a powerful experience when you develop external DSLs
because you have the EMF available to you. The only thing you need to keep in mind is
that you’re basically dependent on the Eclipse platform. Even so, only the IDE integra-
tion in Xtext is Eclipse-dependent. You can use the runtime components like the pars-
ers, the metamodel, the serializers, and the linkers, as well as the Xpand templating in
any arbitrary Java process. All this makes Xtext the framework to use when you’re
developing an external DSL.

7.5 Summary
In this chapter, you learned some of the design principles of external DSLs. An
external DSL needs to have its own language-processing infrastructure. If your DSL
is low enough in complexity, you can use a hand-written parser to process the syn-
tax of the language. If your DSL is more complex, you need to use a full-stack
parser generator like YACC, Bison, or ANTLR. We discussed ANTLR-based language
construction in detail and you developed your own custom, order-processing DSL
using it. You saw how the various components of the implementation engine like

Listing 7.8 Class generated by the template in listing 7.7

239References
the lexical analyzer, the parser, and the semantic model coordinate to generate the
final DSL processor.

 When you design a nontrivial external DSL with a fairly rich syntax, it’s the parser
that forms the core of it. Parsers are classified based on the way they process the input
stream and construct the parse tree. There are two main types of parsers: top-down
and bottom-up. As a language designer, you need to be aware of the class of languages
that each of these implementations can handle. You also need to know the implemen-
tation complexity and trade-offs that a specific type of parser implies. We discussed all
of these in this chapter when we talked about parser classification.

 Judging from the DSL that you designed, you know how to select the right kind of
parser for your language. In the final section of this chapter, we moved on to a differ-
ent paradigm of DSL development that mixed in a rich toolset along with the standard
textual model that you’re already familiar with. Using the model-driven approach of
the EMF, Eclipse offers Xtext as a comprehensive environment for external DSL devel-
opment. We developed the same order-processing DSL using Xtext. The process dem-
onstrated how the richness of a model-driven approach complemented with a full
toolset can lead to a richer experience of language development.

 In the next chapter we’ll look at an entirely different paradigm for developing
external DSLs using Scala. Scala offers functional combinators that you can use as
building blocks to develop parsing techniques. They’re called parser combinators, and
we’ll use them to develop sample external DSLs from our domain of securities trading.

7.6 References
1 Parr, Terence. 2009. Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages. The Pragmatic Bookshelf.
2 Parr, Terence. 2007. The Definitive ANTLR reference: Building Domain-Specific Lan-

guages. The Pragmatic Bookshelf.
3 Aho, Alfred V., Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools, Second Edition. Addison Wesley.

Key takeaways & best practices
■ When you’re designing a DSL, you need to have a clean separation of the syn-

tax and the underlying semantic model.
■ In an external DSL, the semantic model can be implemented by host language

structures. For syntax parsing, you need to have a parser generator that inte-
grates with the host language. ANTLR is a typical parser generator that inte-
grates well with Java.

■ Choose the appropriate parser class for what you need before you design exter-
nal DSLs that need moderate language-processing capabilities. Making the
correct choice will help you moderate the complexity of your implementation.

■ Choose the right level of complexity that does the job. For an external DSL,
you might not need the full complexity of a general language design.

240 CHAPTER 7 External DSL implementation artifacts
4 Ford, Bryan. 2004. Parsing Expression Grammars: A Recognition Based Syntac-
tic Foundation. Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on princi-
ples of programming languages, pp 111-122.

5 Xtext User Guide. http://www.eclipse.org/Xtext/documentation/latest/xtext.html.
6 Ford, Bryan. 2002. Packrat parsing: simple, powerful, lazy, linear time, func-

tional pearl. Proceedings of the seventh ACM SIGPLAN International Conference on
Functional Programming, pp 36-47.

Designing external
DSLs using Scala

parser combinators
With basic background information about external DSL implementations already
served up in chapter 7, we’re going to jump directly into parser combinators.
Parser combinators are one of the most beautiful applications of functional pro-
gramming. They offer an internal DSL to use for designing external DSLs so you
don’t have to implement your own language infrastructure as you do with other
techniques of external DSL design. When we designed an external DSL for process-
ing client orders in chapter 7, remember that we used ANTLR as the parser genera-
tor. We designed our grammar for the DSL and ANTLR generated the parser for us.
To design our own DSL, we had to use an external tool that provided us with the nec-
essary language implementation infrastructure. Using parser combinators, you
don’t have to step out of the host language for a second. This makes the implemen-
tation succinct, expressive, and completely free of any external dependency.

This chapter covers
■ What are parser combinators
■ The Scala parser combinator library
■ Using packrat parsers
■ Designing external DSLs using Scala parser

combinators
241

242 CHAPTER 8 Designing external DSLs using Scala parser combinators
We’ll start off with an introduction to what parser combinators are and how Scala
implements them as a library on top of the core language. Then we’ll go into every
detail of the Scala implementation, highlighting the features that make them exem-
plary for DSL design. After that, we’re going to design two external DSLs based on Scala
parser combinators. Finally, I’ll introduce packrat parsers, which let you implement a
class of grammars not possible with ordinary recursive descent parsers. Figure 8.1 is a
roadmap of how the chapter progresses on our gradual journey to the world of design-
ing DSLs using Scala parser combinators.

 At the end of the chapter, you will have a solid understanding of how to use the
techniques of functional programming in general and parser combinators in particu-
lar to implement an extensible external DSL of your own.

8.1 Parser combinators
In chapter 7, I defined a parser as an engine that works on an input stream and con-
sumes a collection of tokens. It can either recognize the stream of tokens as part of a
valid language identified by the parser, or it can reject the input as soon as it encoun-
ters an invalid symbol. In either case, the parser returns a result (success or failure),
along with a truncated stream containing the rest of the input not yet consumed.

 When the parser returns a success, you can feed the truncated input stream to yet
another parser that can potentially consume the rest of the input. In the case of a fail-
ure, you can rewind to the beginning of the stream and try parsing with another
parser. Because parsers work this way, you can chain them in a variety of ways to parse
a complete input stream. Figure 8.2 demonstrates how parsers can be combined to
consume an input stream.

 In this section, you’ll see how you can use a parser as a functional abstraction of
the language that it recognizes. Because it’s a function of its input, a parser can
compose with other parsers and evolve the syntax of our DSL in a piecemeal way.

Figure 8.1 Our roadmap through the chapter

243Parser combinators
Such compositions are done using higher-order functions that we formally call
parser combinators.

8.1.1 What are parser combinators?

Let’s look at the problem of composing parsers in a functional way. In functional pro-
gramming, a parser is a function that takes input and produces a result. Parser combi-
nators allow you to use higher-order functions (also known as combinators) in a
purely compositional way to construct grammar structures such as sequencing, repeti-
tions, optionality, and choice. If your language of implementation supports infix oper-
ator notation, then a grammar rule written using parser combinators resembles an
EBNF production.

 The biggest advantage of parsing with combinators is improved composability; you
take primitive parsers and compose them functionally to generate larger ones (I
explain the virtues of composability in appendix A). Composing with combinators is
like building with LEGOs—we start with smaller pieces and build higher-order struc-
tures out of them. Figure 8.2 demonstrates a sequence combinator in action.

 In the world of DSL design, you can use parser combinators to compose smaller
language fragments that model parts of your DSL syntax and build the whole DSL
structure out of them. The sequence combinator that you see in figure 8.2 is only one

Figure 8.2 Chaining parsers. Parser #1 parses a part of the input stream. Parser #2
matches the part left over by parser #1. The combination returns a parser that
combines the two results. The combination parser succeeds only if both parser #1
and parser #2 match their inputs.

244 CHAPTER 8 Designing external DSLs using Scala parser combinators
such combinator, which is shown in the figure composing two DSL syntax parsers
sequentially. Any standard implementation includes a variety of such combinators,
much like LEGO sets. Let’s start with an overview of how some of the commonly used
combinators consume an input stream and recognize the grammar of your language,
shown in table 8.1.

Now that you’ve seen some of the basic combinators, we’ll dig into the specific imple-
mentations. But before that, let’s look at how you can use parser combinators when
you’re designing external DSLs.

8.1.2 Designing DSLs the parser combinator way

When you designed an external DSL in chapter 7, you built your own language pro-
cessing infrastructure. Building parsers by hand is tedious, error prone, and often
leads to an unmanageable bloat of code, so we decided to use external frameworks
like ANTLR or XText. Using an external framework resulted in an implementation
architecture like that shown in figure 8.3.

 I’m not saying that the architecture in the figure is bad. In fact, it’s the most com-
mon paradigm in designing external DSLs today. Developers have been using this
same architectural style since language processing tools like LEX and YACC came out
of the AT&T labs.

Table 8.1 Commonly used parser combinators

Combinator How it combines

Sequence A parser combinator for sequential composition. If two parsers P and Q are
combined using the sequential combinator, the parsing succeeds if:

■ P successfully consumes a part of the input stream
■ Q following P consumes the input that P did not consume

Alternation A parser combinator for composing alternatives. If two parsers P and Q are
combined using the alternation combinator, then the parsing succeeds if
either P or Q succeeds in the following way:

■ First P runs on the input stream. If P succeeds, then the parsing is
successful.

■ If P fails, then the input stream is rewound to the point where P started,
and then Q runs on the same stream.

■ If Q succeeds, then the parsing is successful; otherwise, it’s a failure.

Function application A combinator that allows a function to be applied on a parser, resulting in a
new parser.

Repetition A combinator that works on a parser P and returns another parser that
parses one or more repetitions of what P parses. Sometimes this combinator
also allows repetitions of patterns interleaved with separators to be parsed.
For example, if P parses a string abc, application of a repetition combinator
generates a parser that can parse repetitions of abc like abcabcabc...,
or the pattern abc interleaved with a space like abc abc abc

245Parser combinators
That doesn’t mean we can’t make progress by exploring newer and better ways of
implementing DSLs. One obvious drawback with the architecture in figure 8.3 is the
presence of external dependencies in the implementation. Parser generators are
external entities and, as the figure shows, you need to use their foreign syntax when
you declare EBNF rules for your DSL (see chapter 7 to refresh your memory about
EBNF). This implies an extra bit of learning curve for you. The parser code that it gen-
erates has a static structure and depends completely on the underlying implementa-
tion of the generator. You can’t do much tweaking to customize it.

 Designing a DSL with parser combinators is an entirely different experience.
You’re within the abstractions of your host language when you define your gram-
mar rules. You use higher-order functions to define your DSL syntax and to add cus-
tom actions through prebuilt combinators that the library offers. You’ll see all the
details in the following sections. Figure 8.4 offers a peek at how the overall archi-
tecture of your implementation is simplified when you’ve got parser combinators in
your host language.

 In this architecture, there’s no dependency on external frameworks. The only con-
straint is that your language needs to have an implementation of a parser combinator
library. Parser combinators are a relatively new entrant in the world of DSL implemen-
tation. Many modern languages like Haskell, Scala, and Newspeak offer parser combi-
nators as libraries on top of the core language. In the course of this chapter, you’ll
find exciting new applications of functional programming that parser combinators
espouse. You’ll discover how they make your DSL design succinct, yet expressive.

Figure 8.3 Implementation architecture of designing an external DSL using an
external parser generator like ANTLR. The generator produces a parser that parses
the DSL script and generates the semantic model of the application.

246 CHAPTER 8 Designing external DSLs using Scala parser combinators
DEFINITION Newspeak is a programming language by Gilad Bracha in the tra-
dition of Self and Smalltalk. For more information about this language, go to
http://newspeaklanguage.org.

In the next section, we’ll look at the Scala parser combinator library and the power it
offers in designing external DSLs in a purely functional way. Every parser that you define
serves as a building block that models part of your DSL syntax. Combinators serve as the
glue that wire up these building blocks and add semantics to your language.

8.2 The Scala parser combinator library
Scala implements parser combinators as a library on top of the core language. You can
find the library within the package scala.util.parsing, along with the Scala lan-
guage distribution. Implementing parser combinators as a library makes it easily
extensible without affecting the core language. In this section, you’ll learn some of
the specific combinators that the library has that help your DSL syntax to evolve. You’ll
learn the techniques and idioms in the Scala library through DSL snippets as we go
along. For more details on the APIs, refer to [1, 2] in section 8.6 or go through the
source code in the Scala distribution. (Unfortunately, there’s no exhaustive coverage
of Scala parser combinators in any published form. The source code is the best refer-
ence there is at the moment.)

Figure 8.4
Implementation architecture of an external DSL
designed using parser combinators. You’re
completely within the confines of the host
language infrastructure when you define grammar
rules and custom actions.

247The Scala parser combinator library
8.2.1 The base abstractions in the parser combinator library

As you know from our discussion in the previous section, a parser is a function that
transforms an input stream into a result. The Scala library models this as shown in fig-
ure 8.5.

ParseResult abstracts the result that a parser produces, which can be either a suc-
cess or a failure. ParseResult also tracks the next input that hasn’t yet been con-
sumed by the current parser. The Scala library models ParseResult as a generic
abstract class that has specialized implementations for Success and Failure. The fol-
lowing listing shows how Scala defines the ParseResult[T] type constructor and it’s
specialized implementations for Success and Failure.

trait Parsers {
 sealed abstract class ParseResult[+T] {
 //..
 val next: Input
 }

 case class Success[+T](result: T, override val next: Input)
 extends ParseResult[T] {
 //.. implementation
 }

 sealed abstract class NoSuccess(
 val msg: String, override val next: Input)
 extends ParseResult[Nothing] {
 //..
 }

 case class Failure(
 override val msg: String, override val next: Input)
 extends NoSuccess(msg, next) {
 //..
 }

Listing 8.1 How Scala models the parse result

Figure 8.5 Modeling a parser as a function in the Scala library

ParseResult tracks
the next input

B

Successful
parseC

Base class for
unsuccessful parse

D

Failure => backtrack
and retryE

248 CHAPTER 8 Designing external DSLs using Scala parser combinators
 case class Error(
 override val msg: String, override val next: Input)
 extends NoSuccess(msg, next) {
 //..
 }
 //..
}

ParseResult is generic on the data type that the parser produces. In case of a
Success, C you’ll get a result of type T. In case of a Failure D, you’ll get a fail mes-
sage. Failure can be either fatal or nonfatal. In the case of a nonfatal Failure E, you
can backtrack and try other parsers supplied as alternations. The fatal case is an Error

F, in which case no backtracking is done and the process stops. No matter what hap-
pens (Success or Failure), the result specifies how much input was consumed by the
parsing process and the position of the input stream that needs to be passed to the fol-
lowing parser in the chain B.

 You’ll see more of these alternations and backtracking in an external DSL example
later in the chapter. How you’re going to handle nonsuccess cases in parsing is one
thing that you need to consider carefully when you design your DSL. Too many alter-
nations can lead to performance degradation and there might be situations where
you need to design parsers that don’t backtrack.

Are you wondering what role these parser combinator classes play in
your DSL implementation?

Every snippet of DSL that you model needs to have a parser associated with it
that checks the validity of the syntax. DSL processing continues only if it gets a
valid syntax from the user. If the syntax is valid, the parser returns a Success;
otherwise, it returns an Error or a Failure. For a Failure, the parser might
backtrack and try alternate rules, if any are available.

So now you have parsers and various kinds of ParseResult implementations. But how
do these parsers chain together to parse the whole of your DSL? That’s the role of the
combinators. Let’s talk about some of the combinators that Scala offers and how you
can use them effectively as the glue to combine multiple parsers of your DSL.

8.2.2 The combinators that glue parsers together

The Scala parser combinator library contains a set of combinators for wiring up pars-
ers. When you’re designing external DSLs using ANTLR or XText, you can use these
combinators to design your grammar so it looks much like the EBNF notation you saw
in chapter 7. The difference is that when you use combinators, you don’t have to use
any external environment on top of your host language. You can be within the con-
fines of your Scala language and use higher-order functions to define your EBNF-like
grammar. Just think of your DSL syntax as a collection of smaller snippets; the combi-
nators let you plug parsers for each of them together, forming the bigger whole.

 The best way to learn about the combinators that Scala has is through a real-life
example. You’ve been through this example in earlier chapters. As a recap, consider

Fatal error, no
backtrackingF

249The Scala parser combinator library
designing an external DSL that processes client orders from a series of inputs from the
user. Figure 8.6 shows a picture form of the abstraction that you need to generate.

 Now that you have a pretty good idea of what parser combinators can do for you,
you have another option to think about. Instead of jumping into using an external
parser generator (like ANTLR), you can now consider processing your DSL syntax as a
collection of smaller parsers wired together using the combinators that Scala offers.
Each of the smaller parsers parses one specific DSL structure and coordinates with the
combinator to pass the input stream to the next parser in line.

 You discuss the issues with the users, iterate over the syntax that they would like to
have and, after a couple of iterations, come up with the version of the grammar shown
in the following listing. You had a recent refresher on the Scala parser combinator
library; the grammar that you’ve written uses it to express your DSL syntax.

package trading.dsl
import scala.util.parsing.combinator.syntactical._

object OrderDsl extends StandardTokenParsers {
 lexical.reserved +=
 ("to", "buy", "sell", "min", "max", "for", "account", "shares", "at")
 lexical.delimiters += ("(", ")", ",")

 lazy val order =
 items ~ account_spec

 lazy val items =
 "(" ~> rep1sep(line_item, ",") <~ ")"

 lazy val line_item =
 security_spec ~ buy_sell ~ price_spec

 lazy val buy_sell =
 "to" ~> ("buy" | "sell")

 lazy val security_spec =
 numericLit ~ (ident <~ "shares")

Listing 8.2 A sample external DSL using Scala parser combinators

Figure 8.6
Generate an order using all the other
attributes as inputs

Delimiters and
reserved wordsB

Sequencing
combinator (~)C

Repetition combinator
with separatorD

Alternation
combinator (|)E

250 CHAPTER 8 Designing external DSLs using Scala parser combinators
 lazy val price_spec =
 "at" ~> (min_max?) ~ numericLit

 lazy val min_max =
 "min" | "max"

 lazy val account_spec =
 "for" ~> "account" ~> stringLit
}

The grammar shown in the listing can successfully parse this sample DSL:

(100 IBM shares to buy at max 45, 40 Sun shares to sell

➥ at min 24, 25 CISCO shares to buy at max 56)

➥ for trading account "A1234"

Congratulations! You’ve just designed the syntax of your first DSL using the parser
combinator library. We’ll add more spice that’ll make it spit out the semantic model of
our domain abstraction.

 Now that you have an idea of what the grammar looks like and what language it
can process, let’s dive into the grammar rules that lead to the parsing of the DSL.

 Just before doing that, note that the grammar rules begin with a set of lexical
delimiters B that gives you the list of characters used to separate tokens in the input.
We also need to specify the set of reserved words in our language as specified by
lexical.reserved in listing 8.2. In the course of the rest of this section, you’ll get a
good understanding of the combinators that the library offers and how you can use
them to evolve your own language. For a more complete description of all the Scala
combinators, look at the source code in Scala distribution.

EVERY GRAMMAR RULE IS A FUNCTION

Every grammar rule models a concept of the domain. You need to name the rule
appropriately so that it represents the domain concept that it models. Use EBNF nota-
tion to model the body of the rule, just as you would when you’re defining a context-
free grammar in ANTLR.

 Every rule returns a Parser that represents the value the function body returns. If
the function body is formed through combinators that wire up multiple parsers, the
end result of applying those combinators is the final Parser that the rule returns.
Assume for now that every rule returns a Parser [Any]. In section 8.3.4, you’ll see
how to return more specific parser types by applying custom functions within the
rule body.

When you’re working with the grammar rules, remember the golden
rule of designing DSLs: name the grammar rules appropriately so they

reflect the domain concept they model. When you’re designing external DSLs
using parser combinators, the grammar rules become the blueprint that you
discuss with your domain experts. They’re concise, expressive, and must con-
vey information that’s appropriate to the domain people.

251The Scala parser combinator library
THE SEQUENCE COMBINATOR

In Scala, the ~ symbol is the sequence combinator. You see this at C in listing 8.2. The
name ~ is a symbol for brevity and is simply a method defined within the class
Parsers[T].

 Scala allows infix operator notation, so a ~ b is actually a.~(b). When you use the
sequence combinator in infix form, you get the feel of the EBNF notation. And it’s
made more intuitive through type inference that Scala provides.

 Let’s look in detail at listing 8.2 again and see how the sequence combinator
works. items receives the original input supplied to the combined parser C. It tries
to parse the input by invoking the body of the rule (method) named items D. If the
parsing succeeds, it generates a ParseResult r1 (for example). The next parser in
the sequence, account_spec, starts consuming the input where items left off. If the
parsing succeeds with ParseResult r2, then the combinator ~ returns a Parser that
generates a result of type (r1, r2).

THE ALTERNATION COMBINATOR

This combinator is denoted by a | in the Scala library. The alternation combinator
uses backtracking when it’s looking for alternate rules. This combinator works only
when the previous parser had a nonfatal failure and backtracking is allowed.

 Let’s look at E in listing 8.2. The input goes to the first alternative "to" ~> "buy".
An implicit conversion defined within the Parsers traits converts the String into a
Parsers[String]. If the parsing succeeds, no other alternative is considered and the
result is returned as the result of buy_sell. If the parsing is unsuccessful, the next
alternative "to" ~> "sell" is tried. If that succeeds, its result is returned. The alter-
nates you specify are always considered by the parser to be ordered choices.

THE SELECTIVE SEQUENCE COMBINATOR

These combinators are implemented as methods named ~> and <~. They selec-
tively keep either the right or the left result. Selective sequence combinators are
frequently used to prune out information that doesn’t form part of the semantic
model; sequencing needs to be recognized, but you’re interested in the result of
only one of the parsers.

 Look again at listing 8.2. Let’s see how the selective combinator at D works. The
method ~> works just like ~, but keeps only the result of the right-hand-side parser. In
the example, "(" isn’t needed for future processing and can be dropped from the
result. The method <~ works just like ~, but keeps only the result of the left-hand-side
parser. In the example, ")" isn’t needed for future processing and can also be
dropped from the result.

THE REPETITION COMBINATOR

You use the repetition combinator to implement constructs that are repeated. Table 8.2
shows the variations of the repetition combinator.

 In listing 8.2, D is an example of a repetition combinator. items is composed of
one or more occurrences of a line_item using "," as the separator.

252 CHAPTER 8 Designing external DSLs using Scala parser combinators
PUTTING IT ALL TOGETHER

A common concern that haunts many developers is that all these combinators might
be difficult to implement. Lots of plumbing might be required to compose the pars-
ers. But remember that the holy grail of well-designed abstractions is abstractions
that compose easily, so you can make larger abstractions out of them. With parser
combinators, as you’ll see in this chapter, you can create abstractions that bind parsers
together without your having to bother too much about the plumbing code.

 You’ve seen such abstractions in chapter 6, when we talked about monads in Scala.
We’re going to use the wisdom you gained there here as well and see how monadic
operations make implementing the combinators easy.

8.2.3 Monads for DSL parser composition

Parser combinators are abstractions that use
the principles of functional programming
to compose primitive parsers into larger
ones that can recognize a bigger language.
Figure 8.7 will help you visualize how combi-
nators compose parsers.

 As you saw in the last section, combina-
tors for sequencing and alternations thread
together parsers that they get as input. How
does this threading take place?

IMPLEMENTING THE SEQUENCING COMBINATOR—THE HARD WAY

Consider the sequencing combinator that Scala offers and that we’ve already dis-
cussed. One way to implement it is shown in the following listing.

def ~ [U](p: => Parser[U]): Parser[~[T, U]] =
 new Parser[~[T, U]] {
 def apply(in: Input) =
 Parser.this(in) match {
 case Success(r1, next1) => p(next1) match {

Table 8.2 Variations of the repetition combinator

Variation Explanation

(rep(p), p*) Repeat p zero or more times

(repsep(p, sep), p*(sep)) Repeat p zero or more times with a separator

(rep1(p), p+) Repeat p one or more times

(rep1sep(p, sep), p+(sep)) Repeat p one or more times with a separator

(repN(n, p)) Repeat p exactly n times

Listing 8.3 Implementing the sequencing combinator in Scala

Figure 8.7 Combinators compose smaller
parsers and give rise to bigger ones.

Parse input
using current
parser

B
Success! Pass
remaining
input

C

253The Scala parser combinator library
 case Success(r2, next2) => Success((r1, r2), next2)
 case Failure(msg, next) => Failure(msg, next)
 }
 case Failure(msg, next) => Failure(msg, next)
 }
 }

The implementation is correct and the combinator works as per the specification. The
current parser consumes the original input stream and parses it B. If it succeeds, the
result, along with the rest of the input, is passed to the argument parser C. If that
parser also succeeds, the final result and the remaining input get returned as the final
parser ~[T, U]. A class is defined for ~[T, U] in the trait Parsers.

 This seems perfectly fine, doesn’t it? Well, something isn’t quite right. Do you see
the problem with this implementation?

 It’s the plumbing code that takes center stage, making the core logic of the
sequencing obscure to the reader of the program. This is precisely the problem that
your manager was worried about. The root of the problem is that in listing 8.3 we pro-
grammed at a fairly low level of abstraction, exposing the implementation details to
the user.

USING MONADS—LOOK MA, NO BOILERPLATES

In the current context, it’s the plumbing for composing abstractions that gets
exposed to the combinator implementation. As you learned in chapter 6, monads are
a great way to overcome this problem. Monadic binds implemented in Scala using
flatMap help you wire abstractions seamlessly. When you’re out there designing your
own combinators, you can rely on these abstractions for composing your parsers. To
keep your lower-level implementation specifics from being exposed to your combina-
tor design, the Scala combinator library makes both ParseResult and Parser
monadic. This means that you can automatically chain multiple Parser and Parse-
Result abstractions without implementing any threading logic yourself. If we do that,
our sequencing combinator implementation turns into one simple for comprehen-
sion statement:

def ~ [U](p: => Parser[U]): Parser[~[T, U]] =
 (for(a <- this; b <- p) yield new ~(a,b)).named("~")

Yes! Now you’re looking at a beautiful abstraction that the developer can use in a con-
cise way.

But what do monads have to do with our DSL implementation?
As a DSL designer, you need to be aware of the underlying implementa-

tion techniques that your library uses. The fact that parser combinators are
implemented as a library in Scala implies that they’re meant to be extensible.
In real-life situations, you’ll need to implement your own combinators. Then
you’ll need all the wisdom of monads when you try to compose parsers within
your combinator implementation.

Final
success!

254 CHAPTER 8 Designing external DSLs using Scala parser combinators
Look at the source code of the Scala library for all the gory details that make this
possible.

 Now you know that monads help you design better combinators for wiring your
DSL parsers, so let’s jump onto another aspect of the Scala library. There’s another
feature that you’ll need to use to implement complex DSL structures.

8.2.4 Packrat parsing for left recursive DSL syntax

The top-down recursive descent parsers that we’ve looked at so far (see chapter 7) can
process a fixed look-ahead set of symbols that limits the class of languages that it
can recognize. Your DSL could very well have a syntax that these regular top-down
parsers might either fail to handle or handle inefficiently. This problem is caused by
the fact that LL(1) (see section 7.3.1) can work only with a single look-ahead symbol,
and LL(k) works with a limited set (bounded by k) of look-ahead symbols when it’s
identifying applicable grammar rules. These parsers are called predictive parsers
because they try to predict the rule to apply by looking ahead in the input stream.

 The other class of top-down recursive descent parsers are called backtracking pars-
ers. They have the ability to speculate on the next applicable rule by backtracking and
trying out alternates in succession. As you saw already with the Scala combinator
library, the alternation combinator can backtrack and try alternative grammar rules
that you supply.

 Predictive parsers are fast and use linear time parsing, but a naïve implementation
of backtracking parsers can quickly degenerate to exponential time parsing. Consider
this simple grammar rule for evaluating an expression with Scala parser combinators:

lazy val exp = exp ~ ("+" ~> term) |
 exp ~ ("-" ~> term) |
 term

In this exp parser, if the exp at the beginning of the first alternative succeeds but then
the parser doesn’t get a "+", the input rewinds and the parser tries the second alterna-
tive. Once again, it’ll parse the first exp as part of executing this alternative. The rep-
arsing continues until it gets a match from one of the full set of alternatives that
you’ve provided. This repetition can make the running time exponential.

 Packrat parsers (see [3] in section 8.6) can help solve this problem of redoing the
same computation using the technique of memoization. A packrat parser caches every
computation that it does, so the parser doesn’t have to repeat the same computations
when it needs them; it can get it straight out of the cache that it maintains, in constant
time. Packrat parsers can handle unlimited look-ahead symbols through backtracking.
They also use a linear-time parsing algorithm. In the following subsections, we’ll talk
about some of the benefits that packrat parsers give you.

DEFINITION Memoization is a technique that lets you cache earlier results so
that they’re not recomputed later.

255The Scala parser combinator library
MEMOIZATION MAKES PACKRAT PARSERS EFFICIENT

How do you implement memoization in a packrat parser? It depends a lot on the lan-
guage you’re using to implement your packrat parser. If you’re using a lazy-by-default
language like Haskell, you literally don’t need to do anything to implement memoiza-
tion. Haskell’s default implementation of call-by-need semantics delays evaluation and
memoizes the result for future use. Haskell provides the most beautiful implementa-
tion of a purely functional, memoizing, backtracking parser.

 Scala isn’t a lazy-by-default language. The parser combinator library implements
explicit memoization by using a specialized Reader that implements caching. Here’s
a snippet of how the packrat parser in Scala extends the Parsers trait for pars-
ing functionality and embeds within it a specialized Reader (PackratReader) that
implements memoization:

trait PackratParsers extends Parsers {
 class PackratReader[+T](underlying: Reader[T])
 extends Reader[T] {
 //..
 }
 //..
}

Now we can find out how the exp parser in the snippet becomes more efficient with
the Scala PackratParsers implementation. When the first alternative fails after suc-
cessful recognition of the first exp, the parser has the result memoized. It won’t have
to do any extra work to recognize the first exp at the beginning of the second alterna-
tive; the parse result will be available right from the cache. Because computations are
reused, packrat parsing is done in linear time.

PACKRAT PARSERS SUPPORT LEFT RECURSION

Even with memoization support, the initial design of packrat parsers couldn’t handle left
recursion of grammar rules. In fact, no top-down recursive descent parsers can handle
left recursion. Consider the same parser you saw earlier that evaluates an expression:

lazy val exp = exp ~ ("+" ~> term) |
 exp ~ ("-" ~> term) |
 term

What happens when the parser gets an expression like 100 – 20 – 45? The exp parser
first looks up the memo table to check whether it has been evaluated before. Because
this is the first attempt to parse it, the memo table is Nil. The exp parser tries to evalu-
ate the body of the rule, which again starts with another exp. Soon your unfortunate
exp parser is going around in circles in an infinite recursive loop!

 Any left-recursive rule can be converted to an equivalent non-left recursive one
through a process of transformation. Some packrat parsers can do this for directly left-
recursive rules. But transforming the rules makes them more obscure to the reader
and makes the process of generating an AST more complex.

 Now packrat parsers support left recursion (direct and indirect) through a new
technique of memoization, first implemented by Warth, et al. (see [4] in section 8.6).

256 CHAPTER 8 Designing external DSLs using Scala parser combinators
PackratParsers in the Scala library implements this form of memoization and sup-
ports direct and indirect left recursion in grammar rules. You’ll see examples of how
to implement left recursion with Scala parsers in the next section. For more details on
the implementation technique, look at the source code for implementing packrat
parsers in the Scala source distribution. Besides offering linear time parsing by using
backtracking with unlimited look-ahead, packrat parsers have even more features that
can be useful for implementing external DSLs.

PACKRAT PARSERS PROVIDE SCANNERLESS PARSING

Typical parsers have separate scanners for tokenization of input. Packrat parsers don’t
need a separate scanner; they use a single formalism to express the lexical and con-
text-free syntax of the language.

 You might be asking what the benefits of scannerless parsing are. Well, these pars-
ers don’t need a separate abstraction called lexer; you’re dealing with a single syntax.
Because there’s a single abstraction for the entire parsing phase, grammars that use
packrat parsing are easier for you to compose. If you need to compose multiple exter-
nal DSLs, you’re composition is going to be improved.

 The drawbacks (you knew there’d be some, didn’t you?) are that you need to aug-
ment the grammar with extra disambiguation information for distinguishing between
reserved words and identifiers. Extra disambiguation is also required for identifying
the delimiter set in the language.

SUPPORT FOR SEMANTIC PREDICATES

In addition to the syntactic match capability that packrat parsers offer, you can add
semantic predicates to the grammar rules. These predicates can determine whether
the parse was a success or failure, depending on the semantic values of other syntac-
tic entities.

ORDERED CHOICE

Unlike parsers that use context-free grammars, packrat parsers support only ordered
choice in the alternation combinator. When you specify alternates in the combinator
that have an overlapping prefix, be sure to list the one with the longest possible match
before the other ones.

 With ordered choice, packrat parsers eliminate the possibilities of shift/reduce
and reduce/reduce conflicts that you can get with an LR parser.

 Now you understand what parser combinators are and how you can design efficient
parsing techniques by using packrat parsers. We’re going to talk more about packrat
parsers and you’re going to design a DSL that uses packrat parsers in section 8.4. Don’t
go away!

Is it mandatory for me to make all my parsers in a DSL implementation
packrat parsers?

Usually only some parts of your DSL need to handle complex left-recursive
rules. You can use packrat parsers to design those parsers. The others can still
remain ordinary recursive descent parsers. In the Scala library, you can freely
mix ordinary parsers with the packrat parsers.

257DSL design with parser combinators: step-by-step
We’ve covered all the basics of parser combinators and how you can use them in
designing your next external DSL in a functional language. We’ve also looked at a sam-
ple grammar implementation of an order-processing DSL (listing 8.2), using the com-
binators available in the Scala library. You must have realized by now that you need to
think differently when you use a functional technique like parser combinators to
design a DSL. When you decide on an implementation strategy to use in your applica-
tion, you need to be aware of the pros and cons and the relative capabilities that all the
techniques offer. In the next section, I’m going to summarize everything we’ve talked
about regarding DSL design. I’m going to focus on highlighting the differences between
internal DSLs and external DSLs using parser generators and parser combinators.

8.3 DSL design with parser combinators: step-by-step
Parser combinators combine the succinctness of an EBNF grammar system with the
power of composition that you get with pure functions. We’ve talked a lot about the
features that parser combinators offer. Let’s look at how these features stack up from a
DSL designer’s perspective and lead to the development of a complete language for
our order-processing DSL.

 You’ve designed internal DSLs using host languages like Ruby, Groovy, and Scala.
You’ve been through the various techniques for designing external DSLs using parser
generators and workbenches. Now you’re going to see how you can use parser combi-
nators as yet another tool in your toolbox. Before we jump into the design, look at the
comparison matrix in table 8.3 that compares designing internal DSLs and the two
techniques for designing external DSLs.

 I hope that comparison helps you to see what’s what. Now let’s start with the
grammar that we designed in listing 8.2 as the foundation and follow the steps that
lead to the evolution of the complete model of our language. As the first step, we

Table 8.3 DSL implementation techniques

Features Internal DSL
External DSL

Parser generator Parser combinator

Completely built within
a host language.

Yes, can be purely
embedded (as in Scala)
or generative (as in
Ruby or Lisp).

No, usually needs an
external infrastructure
for the parser genera-
tor (for example, LEX
and YACC, ANTLR).

Yes, the host language
has to support higher-
order functions and
offer a parser combina-
tor library as in Scala
and Haskell.

The end-user DSL is
directly runnable host
language code.

Yes, DSL constructs
are host language
method calls.

No, the parsing infra-
structure parses the
DSL and executes the
functions associated
with every symbol.

No, every token gets
converted to a
Parser instance, all
of which are then wired
using the combinators
as operators.

258 CHAPTER 8 Designing external DSLs using Scala parser combinators
need to verify that the grammar indeed recognizes our language and generates a
parse tree.

8.3.1 Step 1: Executing the grammar

If you look at the grammar that we designed in listing 8.2, you’ll see it defines the
complete syntax of our order-processing DSL. It successfully parses the DSL snippet
that I included immediately after the listing. The program in the following listing pro-
cesses our DSL script and generates the output for a successful parse.

val str = """(100 IBM shares to buy at max 45, 40 Sun shares
 to sell at min 24, 25 CISCO shares to buy at max 56)
 for account "A1234""""

import OrderDsl._

order(new lexical.Scanner(str)) match {
 case Success(order, _) =>
 println(order)
 case Failure(msg, _) => println("Failure: " + msg)
 case Error(msg, _) => println("Error: " + msg)
}

We invoked the parser order B, which is the topmost abstraction for our DSL grammar
(see the grammar in listing 8.2). If the DSL script that we provide produces a successful
parse, we print the output C; otherwise, we print whatever error message the parser
generates. Printing only the default output of the parser looks too trivial and not mean-
ingful for processing in our application. In the next section, I’ll show you how you can
generate a semantic model of your choice from the process of parsing the language.
But for now, can you guess what’ll be the output of the print statement C?

 To figure that out, let’s first look at the parse tree that is generated from the pars-
ing process. See figure 8.8.

 The parsing process is the same as the one we discussed earlier when we talked
about external DSL development using ANTLR in chapter 7. At each step of the parsing

The end user needs
to know the host
language.

Mostly yes, because
all exceptions and
error handling use the
host language infra-
structure. The DSL
also has to be a valid
program in the host
language.

No, the DSL is a new
language built ground-
up using the parser
generator.

No, the DSL is a new
language that you build
using the language-pro-
cessing infrastructure
that your host lan-
guage offers.

Listing 8.4 Running the DSL processor

Table 8.3 DSL implementation techniques (continued)

Features Internal DSL
External DSL

Parser generator Parser combinator

Invoke parser
order

B

Successful
parseC

259DSL design with parser combinators: step-by-step
process, we output the result as a string. The output is determined by the combinators
that we use while building up the grammar. For example, look at the DSL script portion
100 IBM shares that gets reduced by the grammar rule lazy val security_spec =
numericLit ~ (ident <~ "shares"). By using the combinator <~, we prune the phrase
shares from the output. The result of parsing the snippet will be the result of sequencing
numericLit and ident, which will come out as (100~IBM). Note that the rep1sep com-
binator generates a List of all the line_item abstractions that it contains. The option-
ality combinator (?) generates a Scala Option[].

 Proceeding similarly across all the nodes of the parse tree in figure 8.5, you get the
final output for a successful parse of the earlier DSL script:

(List((((100~IBM)~buy)~(Some(max)~45)),

➥(((40~Sun)~sell)~(Some(min)~24)),

➥(((25~CISCO)~buy)~(Some(max)~56)))~A1234)

As you look at this output, you must be wondering what use it could have in a real
application. You’re right; we can’t do anything meaningful with such an unstructured
representation of our DSL script that contains an aggregate of tuples and lists. Let’s
build up a semantic model of our Order abstraction and see how we can use more
combinators to populate it as we go along with the parsing process.

8.3.2 Step 2: Building the semantic model for the DSL

Now that we know that the default parsing output is useless, we need to work toward
making it more meaningful and usable within the context of an application. How can
we do this? The answer is simple: we need more powerful abstractions for the seman-
tic model of our DSL.

Figure 8.8 The parse tree that’s generated from the parsing process of the
grammar in listing 8.2. The dotted portion represents repetition of line_item,
which ultimately reduces to the order node of the tree.

260 CHAPTER 8 Designing external DSLs using Scala parser combinators
 Building a semantic model for the Order abstraction isn’t a problem. But how do
we integrate the model with the parsing process?

 The Scala library has a few combinators for function application that you can use
to transform the result of a successful parse. These function application combinators
help you integrate your semantic model with your parsing rules. With these combina-
tors, you can parse your DSL script and also build up the domain model incrementally
by applying one of these combinators. Instead of the default return values of your DSL
parsers (which I provided in listing 8.2), your parsers can return attributes of your
semantic model. This way, when you complete the parsing process, you’ve effectively
built the whole semantic model as the AST.

 Let’s look at these combinators in detail.

COMBINATORS FOR FUNCTION APPLICATION

Scala has two function application combinators: ^^ and ^^^. Like all other combina-
tors, ^^ and ^^^ are methods in the Parsers trait. For a parser p and function f, p ^^ f
produces a parser that recognizes what p does. If p parses successfully, the combinator
applies the function f to the result of p. Consider this example from our grammar:

lazy val order: Parser[Order] = items ~ account_spec ^^

➥{ case i ~ a => Order(i, a) }

The ^^ combinator applies the pattern-matching anonymous function to the result of
the parse defined by items ~ account_spec. Instead of a default return value, the
parser returns a Parser[Order]. Note that the Order abstraction that the function
returns is lifted into its Parser through an implicit definition in Parsers trait of the
library. Look at figure 8.9 and its subsequent explanation for more details.

 Just as the combinator ^^ takes a function f and applies it to the result of the
parser p, the combinator ^^^ takes a value r and replaces the result of parser p with it
for a successful parse of p.

COMBINATOR FOR PARTIALFUNCTION APPLICATION

Scala’s PartialFunction application combinator is ^?. For a parser p and partial func-
tion f, p ^? (f, error) produces a parser that recognizes what p does. If p parses suc-
cessfully and f is defined at the result of p, the combinator applies the parser f to the
result of p. If f isn’t applicable, then error gives the appropriate reason.

 Remember that our ultimate objective is to process the DSL script and build a
domain model that the core application can use. For the order-processing DSL, one of
the core domain artifacts will be the Order abstraction. Let’s build that up in the next
section using the grammar that we developed in listing 8.2 and the combinators that
we just talked about.

8.3.3 Step 3: Designing the Order abstraction

We’ll build our Order abstraction bottom-up so the various stages of the parsing pro-
cess can construct an appropriate AST node out of the individual building blocks. The
most intuitive way to do this is to model the building blocks as Scala case classes that

261DSL design with parser combinators: step-by-step
can be directly plugged into the grammar rules using the function application combi-
nators. (For more information about Scala case classes, see appendix D.)

 First let’s look at the Order model in the following listing. Order is the semantic
model or the AST that the parser generates.

package trading.dsl

object AST {
 trait PriceType
 case object MIN extends PriceType
 case object MAX extends PriceType

 case class PriceSpec(pt: Option[PriceType], price: Int)

 case class SecuritySpec(qty: Int, security: String)

 trait BuySell
 case object BUY extends BuySell
 case object SELL extends BuySell

 case class LineItem(ss: SecuritySpec,
 bs: BuySell, ps: PriceSpec)

 case class Items(lis: Seq[LineItem])

 case class AccountSpec(account: String)

 case class Order(items: Items, as: AccountSpec)
}

This is plain old Scala stuff, which we used repeatedly when we designed internal DSLs
in chapter 6. Now we need to plug the various classes into the grammar rules to actu-
ally generate the AST in the form that we want.

8.3.4 Step 4: Generating the AST using function application
combinators

Now that we have the underlying semantic model, let’s use the Scala combinators in
every stage of our parsing process and build a rich AST that we can use in our application.
As always, when you’re processing a DSL, irrespective of what technique you use, your
ultimate aim is to come up with an abstraction that your application can use elsewhere.

 The following listing shows the earlier grammar from listing 8.2, but now it’s anno-
tated with all function application combinators.

import scala.util.parsing.combinator._
import scala.util.parsing.combinator.syntactical._

object OrderDsl extends StandardTokenParsers {
 lexical.reserved +=
 ("to", "buy", "sell", "min", "max", "for", "account", "shares", "at")

Listing 8.5 Semantic model for the order-processing DSL

Listing 8.6 AST for the order-processing DSL

262 CHAPTER 8 Designing external DSLs using Scala parser combinators
 lexical.delimiters += ("(", ")", ",")

 import AST._

 lazy val order: Parser[Order] =
 items ~ account_spec ^^ { case i ~ a => Order(i, a) }

 lazy val items: Parser[Items] =
 "(" ~> rep1sep(line_item, ",") <~ ")" ^^ Items

 lazy val line_item: Parser[LineItem] =
 security_spec ~ buy_sell ~ price_spec ^^
 { case s ~ b ~ p => LineItem(s, b, p) }

 lazy val buy_sell: Parser[BuySell] =
 "to" ~> "buy" ^^^ BUY |
 "to" ~> "sell" ^^^ SELL

 lazy val security_spec: Parser[SecuritySpec] =
 numericLit ~ (ident <~ "shares") ^^
 { case n ~ s => SecuritySpec(n.toInt, s) }

 lazy val price_spec: Parser[PriceSpec] =
 "at" ~> (min_max?) ~ numericLit ^?
 ({ case m ~ p if p.toInt > 20 => PriceSpec(m, p.toInt) },
 (m => "price needs to be > 20"))

 lazy val min_max: Parser[PriceType] =
 "min" ^^^ MIN | "max" ^^^ MAX

 lazy val account_spec: Parser[AccountSpec] =
 "for" ~> "account" ~> stringLit ^^ AccountSpec
}

When you’ve become familiar with the individual combinators, this code will be self-
explanatory. In most of the rules, we’re using the combinator ^^ to deconstruct the
tuple returned by the parser and to thread it into the anonymous pattern-matching
function that follows. Figure 8.9 is a schematic representation of what goes on behind
the scenes when you reduce through a sample grammar rule.

 One exception to flow shown in figure 8.9 is the following rule:

lazy val items: Parser[Items] =
 "(" ~> rep1sep(line_item, ",") <~ ")" ^^ Items

In this snippet, I’m using the constructor Items directly instead of using the pattern-
matching anonymous function. I can do that because the parser produces a single
value of type Seq[LineItem] that directly feeds into the constructor of Items. The
same technique is also used for the rule for account_spec.

 In listing 8.6, notice the use of the partial function application combinator ^? B.
Here we can use a context-specific error message in case the partial function isn’t
defined at the result value of the parser. Consider what happens when you give a price
specification as at max 10; the parser returns a success. But the partial function specifi-
cation adds more semantics to validate the input. In this case, we use a guard in pat-
tern matching to state that the minimum allowed value for a price has to be greater

Make semantic model
available to parser

Function application
combinator ^^

Function application
combinator ^^^

Partial function
combinator ^?

B

263DSL design with parser combinators: step-by-step
than 20. (There’s more about Scala pattern matching in appendix D.) At B in list-
ing 8.6, though the parser reports a success, the PartialFunction isn’t defined at
that value. You can use this technique to report a context-specific error message for
input validation.

 Now your parser returns a structured AST as per the specifications of your semantic
model. It’s an instance of Order, which you can directly use in your application.

Did you ever wonder why I’ve been declaring each method as a lazy
val instead of def? It’s because the evaluation of a lazy val is deferred

until its actual use; the order in which you define the rules doesn’t matter.

Congratulations! You’ve completely implemented an external DSL using parser com-
binators. The DSL implementation is concise and uses the familiar EBNF style nota-
tions for defining the syntax of the language. You implemented the semantic model
using vanilla Scala abstractions and the model is totally decoupled from the syntax
definition. As a designer, could you ask for more?

 I think you’re ready to try a more advanced DSL implementation that needs a pack-
rat parser.

Figure 8.9 A detailed run-down of how a sample grammar rule returns a Parser[Order]. items
and account_spec each flow in as a Parser B, C to the rule. The sequence combinator runs
Parser[Items] and Parser[AccountSpec] and passes the results as an instance of ~ to the
function application combinator D. Pattern matching is done E and an Order instance is created

F. Through an implicit conversion, Order is lifted into a Parser G and is returned H.

264 CHAPTER 8 Designing external DSLs using Scala parser combinators
8.4 A DSL that needs a packrat parser
In the previous section, we developed one complete DSL using parser combinators,
but I never mentioned a word about packrat parsers. Packrat parsers are special, in
the sense that they can do cool stuff that regular top-down recursive descent parsers
can’t. In this section, you’ll develop a new DSL that needs a packrat parser for its
implementation. If the earlier DSL gave you an idea of the functional power of parser
combinators, this one will focus more on the specific power that Scala’s implementa-
tion of PackratParsers offers.

8.4.1 Introducing the domain problem

We’re getting out of our order-processing domain. Now we’re going to use a post-
trade business use-case that’ll form the core of our DSL.

 A financial organization that has custody business does safekeeping of securities
on behalf of its customers. As a customer, you can open an account with them and
they’ll safekeep your securities after the trade is made. Our new DSL will allow invest-
ment managers to publish the set of rules that determines the settlement bank and
account where securities and cash need to be safekept after the trade is completed. In

Financial brokerage system: settlement standing instructions
When trades take place, securities and currencies are exchanged between coun-
terparties. This process, which takes place after the trade is done, is called the
settlement of trade. Settlement involves transferring funds and securities between
the accounts of the counterparties. There can be multiple accounts, depending on
the trade type, the security traded, the counterparty involved, and a number of
other factors.

To facilitate a smooth transfer of funds, the investment manager maintains a data-
base of standing rules that need to be looked up when a trade is made. These rules
are the SSIs. They need to be published to the brokers and custodians from time
to time.

The settlement of a trade usually has two components: the security side and the
cash side. You might have the same settlement instructions for both the security
and cash side, or they might be settled differently. The SSI has to be explicit in
case you want to settle security and cash separately.

As an example, an investment bank might state: An equity trade executed in the
Japan market has to be settled with us internally at account A-123. This rule needs
to be applied to all the customers that the investment bank is safekeeping. The
rules can be organized in a hierarchy and looked up from specialized to generalized
form. There can be one more rule, as in an equity trade for Sony has to be settled
externally with BOTM at account BO-234. This means that all Sony trades will be
settled via BOTM, but all other equity trades will be settled internally by the invest-
ment bank.

265A DSL that needs a packrat parser
the terminology of the domain, we say that the DSL describes how safekeeping firms
manage the settlement standing instructions (SSIs) for their clients. Check out the accom-
panying sidebar for a brief introduction to the domain problem.

 In real-life, who’ll use this DSL? The investment managers are potential users, as
are all the business people working in the settlement of securities in an investment
bank. Entering the SSI into a trading system would be a boon; it would be an
expressive way to abstract the domain problem clearly for the business user. Before
we dive into the DSL itself, let’s look at how SSIs fit into the trading and settle-
ment process.

UNDERSTANDING THE BUSINESS PROCESS

To have a more complete understanding of the roles that the SSIs play in a trading
and settlement process, look at figures 8.10 and 8.11. Figure 8.10 shows the basic trad-
ing and settlement processes that take place between the involved counterparties.

 Figure 8.11 shows why we need to have SSIs to complete the process of trade
and settlement.

 Now that you have an idea of what SSIs are, let’s look at some representative SSI
rules that an investment manager wants to publish.

SAMPLE SSI RULES THAT WE’LL IMPLEMENT

For brevity, we’re considering only a simple subset of the rules that you would find in
real-life implementations: .

■ Settle trades for customer chase in JPN market of ibm internally with us at a-345.
■ Settle trades for customer chase in JPN market internally with us at a-123.
■ Settle trades for customer nri in US market externally at CITI c-123.
■ Settle trades for customer chase of sony internally with us at n-234.
■ Settle trades for customer chase on account ch-123 internally with us at n-675.

Figure 8.10 The trade and settlement processes. Trade is a promise made between two
counterparties for exchange of securities and cash. The settlement is the actual commitment
that transfers securities and cash between the counterparty accounts to change positions.

266 CHAPTER 8 Designing external DSLs using Scala parser combinators
■ Settle trades for broker icici in JPN market safekeep security internally with us at
us-123 settle cash externally at BOJ b-954. (In this rule there are separate cash
and security SSIs.)

We’ll start with the grammar as we did earlier. If you went through the last DSL that we
designed using parser combinators in Scala in section 8.4, the grammar in listing 8.7
will be perfectly clear to you.

8.4.2 Building the grammar

The entire grammar is a bit long, though most of it will be familiar to you. I’m not
going to describe the whole thing; rather, I’ll focus on some of the special aspects of it.
The entire grammar is shown in the following listing.

package trading.dsl
import scala.util.parsing.combinator._
object SSI_Dsl extends JavaTokenParsers
 with PackratParsers {

 lazy val standing_rules = (standing_rule +)

 lazy val standing_rule =
 "settle" ~> "trades" ~> trade_type_spec ~ settlement_spec

 lazy val trade_type_spec =
 trade_type_spec ~ ("in" ~> market <~ "market") |
 trade_type_spec ~ ("of" ~> security) |
 trade_type_spec ~ ("on" ~> "account" ~> account) |
 "for" ~> counterparty_spec

 lazy val counterparty_spec =
 "customer" ~> customer | "broker" ~> broker

Listing 8.7 Grammar rules for SSI_Dsl

Figure 8.11 The SSIs are needed to complete the process of settlement. The
brokers and the custodians need to know the bank and account information
where the securities and cash need to be transferred.

Use PackratParsers here

Left recursion and
ordered choiceB

267A DSL that needs a packrat parser
 lazy val settlement_spec =
 settle_all_spec | settle_cash_security_separate_spec

 lazy val settle_all_spec = settle_mode_spec

 lazy val settle_cash_security_separate_spec =
 repN(2, settle_cash_security ~ settle_mode_spec)

 lazy val settle_cash_security =
 "safekeep" ~> "security" | "settle" ~> "cash"

 lazy val settle_mode_spec =
 settle_external_spec | settle_internal_spec

 lazy val settle_external_spec =
 "externally" ~> "at" ~> bank ~ account

 lazy val settle_internal_spec =
 "internally" ~> "with" ~> "us" ~> "at" ~> account

 lazy val market = not(keyword) ~> stringLiteral
 lazy val security = not(keyword) ~> stringLiteral
 lazy val customer = not(keyword) ~> stringLiteral
 lazy val broker = not(keyword) ~> stringLiteral
 lazy val account = not(keyword) ~> stringLiteral
 lazy val bank = not(keyword) ~> stringLiteral

 lazy val keyword =
 "at" | "us" | "of" | "on" | "in" | "and" | "with" |
 "internally" | "externally" | "safekeep" |
 "security" | "settle" | "cash" | "trades" |
 "account" | "customer" | "broker" | "market"
}

From this grammar, can you figure out why we need to use packrat parsers? Look at
the rule for trade_type_spec B. Yes, there’s left recursion and ordered choice,
which, as you’ve seen before, is one of the strengths of a packrat parser. A packrat
parser uses specialized memoization techniques (see section 8.2.3) to reduce parsing
complexity for left recursive rules from exponential to linear time.

 To implement your parser as a packrat parser in Scala, you need to do a few spe-
cific things that I’ll tell you about in table 8.4.

 All of the other stuff in the grammar looks similar to what we discussed in the context
of designing our order processing DSL. It’ll be a straightforward (yet useful) exercise to
write a driver program and run some of the DSL snippets in table 8.4 using the parser.

 Now let’s take a look at how you develop the semantic model that implements the
domain abstraction for an SSI.

Table 8.4 Making your parser a packrat parser in Scala

Step Description

1 Mix in with PackratParsers Our SSI parser in listing 8.7 does the following:

object SSI_Dsl extends JavaTokenParsers with
PackratParsers {

Keywords modeled
as parsers

268 CHAPTER 8 Designing external DSLs using Scala parser combinators
8.4.3 Designing the semantic model

As with the earlier case in section 8.3.4, we’re going to develop domain-level abstrac-
tions in Scala that you can plug directly into the grammar rules using the function
application combinators. I’m going to call the whole abstraction an SSI_AST because
this is the form of the AST that we want to compute after parsing our DSL script. The
following listing contains the complete semantic model.

 package trading.dsl

 object SSI_AST {
 type Market = String
 type Security = String
 type CustomerCode = String
 type BrokerCode = String
 type AccountNo = String
 type Bank = String

 trait SettlementModeRule
 case class SettleInternal(accountNo: AccountNo)
 extends SettlementModeRule
 case class SettleExternal(bank: Bank, accountNo: AccountNo)
 extends SettlementModeRule

 trait SettleCashSecurityRule
 case object SettleCash extends SettleCashSecurityRule
 case object SettleSecurity extends SettleCashSecurityRule

 trait SettlementRule
 case class SettleCashSecuritySeparate(
 set: List[(SettleCashSecurityRule, SettlementModeRule)])
 extends SettlementRule
 case class SettleAll(sm: SettlementModeRule) extends SettlementRule

2 Provide the input that your parser
processes as type Input defined in
Reader[Elem]

A packrat parser in Scala is implemented on top of a special-
ized Reader, the PackratReader, which is defined as:

class PackratReader[+T](underlying:
Reader[T]) extends Reader[T] {

The PackratReader wraps an underlying Reader for
implementing memoization on top of it. The type of element
that the Reader accepts is defined to be Char in the
Parsers trait that you extend.

3 Explicitly specify the return type as
PackratParser[…]

It’s not mandatory for all of the parsers to be packrat pars-
ers. For those that need memoization for backtracking or left
recursion, specify the return type explicitly as
PackratParser. You’ll see examples of this when we
implement the semantic model.

Listing 8.8 The semantic model (or AST) for the SSI DSL

Table 8.4 Making your parser a packrat parser in Scala (continued)

Step Description

269A DSL that needs a packrat parser
 trait CounterpartyRule
 case class Customer(code: CustomerCode) extends CounterpartyRule
 case class Broker(code: BrokerCode) extends CounterpartyRule

 case class TradeTypeRule(cpt: CounterpartyRule,
 mkt: Option[Market], sec: Option[Security],
 tradingAccount: Option[AccountNo])

 case class StandingRule(ttr: TradeTypeRule,
 str: SettlementRule)

 case class StandingRules(rules: List[StandingRule])
}

The listing is self-explanatory and is pure and simple Scala code. The only reason I’m
presenting it here is so you can refer to it when we use the classes in the function
application combinator to process parser results.

 The next listing shows the complete grammar, annotated with combinators for
processing the AST and generating the StandingRules as the final data structure of
our semantic model.

object SSI_Dsl extends JavaTokenParsers
 with PackratParsers {

 import SSI_AST._

 lazy val standing_rules: Parser[StandingRules] =
 (standing_rule +) ^^ StandingRules

 lazy val standing_rule: Parser[StandingRule] =
 "settle" ~> "trades" ~> trade_type_spec ~ settlement_spec
 ^^ { case (t ~ s) => StandingRule(t, s) }

 lazy val trade_type_spec: PackratParser[TradeTypeRule] =
 trade_type_spec ~ ("in" ~> market <~ "market")
 ^^ { case (t ~ m) => t.copy(mkt = Some(m)) } |
 trade_type_spec ~ ("of" ~> security)
 ^^ { case (t ~ s) => t.copy(sec = Some(s)) } |
 trade_type_spec ~ ("on" ~> "account" ~> account)
 ^^ { case (t ~ a) => t.copy(tradingAccount = Some(a)) } |
 "for" ~> counterparty_spec
 ^^ { case c => TradeTypeRule(c, None, None, None) }

 lazy val counterparty_spec: Parser[CounterpartyRule] =
 "customer" ~> customer ^^ Customer |
 "broker" ~> broker ^^ Broker

 lazy val settlement_spec =
 settle_all_spec |
 settle_cash_security_separate_spec

 lazy val settle_all_spec: Parser[SettlementRule] =
 settle_mode_spec ^^ SettleAll

 lazy val settle_cash_security_separate_spec: Parser[SettlementRule] =
 repN(2, settle_cash_security ~ settle_mode_spec) ^^ { case l: Seq[_] =>
 SettleCashSecuritySeparate(l map (e => (e._1, e._2))) }

Listing 8.9 The complete DSL that generates our semantic model

Make AST
available

Return type as
PackratParserB

270 CHAPTER 8 Designing external DSLs using Scala parser combinators
 lazy val settle_cash_security: Parser[SettleCashSecurityRule] =
 "safekeep" ~> "security" ^^^ SettleSecurity |
 "settle" ~> "cash" ^^^ SettleCash

 lazy val settle_mode_spec: Parser[SettlementModeRule] =
 settle_external_spec |
 settle_internal_spec

 lazy val settle_external_spec: Parser[SettlementModeRule] =
 "externally" ~> "at" ~> bank ~ account
 ^^ { case b ~ a => SettleExternal(b, a) }

 lazy val settle_internal_spec: Parser[SettlementModeRule] =
 "internally" ~> "with" ~> "us" ~> "at" ~> account ^^ SettleInternal

 //..
}

For the left-recursive rule trade_type_spec B, we return a PackratParser[Trade-
TypeRule]. This ensures that when the alternates are parsed, backtracking will be
done using memoization and left recursion will also be processed using the optimiza-
tions we discussed in section 8.2.3.

 Wow! We’ve got the entire DSL along with an abstraction for its semantic model.
The grammar looks expressive and the Order abstraction is a faithful representation
of the domain entity. All the individual parsers are now wired together using function
application combinators that incrementally build up the domain model.

 As I mentioned earlier, the roots of parser combinators are based on functional
programming. The extensibility of the paradigm is also based on function combina-
tion. In the next section, you’ll see some of the compositional aspects of Scala parsers
that can make your DSL design extensible.

8.4.4 Parser composition for extending DSL semantics

As you saw in section 8.2, you can define a parser as a pure function that takes an
input and produces a parse result. In the Scala library, we express this as (Input =>
ParseResult[T]). The combinators that we define are nothing but higher-order func-
tions that implement parser composition using sequencing, alternation, repetition,
and so on. But how do parsers and parse results compose?

MONADS FOR CUSTOM EXTENSION

If you go through the source code of the parser combinator library in Scala, you’ll
find that both ParseResult[T] and Parser[+T] are monadic. This means that they
implement the standard methods map, flatMap, and append that help you design indi-
vidual combinators like ~ (sequence) without explicitly plumbing the actual threading
of inputs in combining the parsers. You saw this same example in listing 8.3 where a
monadic Parser and ParseResult implementation led to a succinct implementation
of ~ using for-comprehensions.

 When the parser compositional semantics is glued into the basic abstractions, you
can always follow the rules that help us play. You can chain combinators, you can trans-
form a parse result using your own transformation function, and you can decorate an

Remainder is same as listing 8.6

271A DSL that needs a packrat parser
already existing parser with additional semantics. Consider an example where you want
to log how the parsing proceeds for one of your parsers in the order-processing DSL.
Here’s how you can do it using the log combinator defined in the Parser abstraction:

lazy val line_item: Parser[LineItem] =
 log(security_spec ~ buy_sell ~ price_spec ^^ { case s ~ b ~ p =>
 LineItem(s, b, p) })("line_item")

log is defined in the Parsers trait as a decorator that wraps an existing parser and
adds logging information around its execution. Look at the Scala source code for
more details.

DESIGNING YOUR OWN PARSER AS A DECORATOR

You saw in listing 8.6 how you can add context-sensitive validations to a parser by using
the partial function application combinator. If you need to add more semantics to the
parsing process, you can define your own parser that can be used to decorate an exist-
ing parser. Consider the example in the following listing.

trait ValidatingParser extends Parsers {
 def validate[T](p: => Parser[T])(
 validation: (T, Input) => ParseResult[T]): Parser[T] = Parser (
 in => p(in) match {
 case Success(x, in) => validation(x, in)
 case fail => fail
 }
)
}

ValidatingParser wraps an existing parser and can add arbitrary domain semantics
to it. Note that the validate method takes a closure validation as an argument
where you can specify additional domain semantics specific to the implementation of
your DSL. You’ll see an application of this in our SSI_Dsl parser (shown in listing 8.7)
a bit later.

 Remember I told you in a sidebar earlier in this chapter that an SSI can contain
separate instructions for settlement of cash and security? We modeled this with the fol-
lowing parser that was in listing 8.8:

 lazy val settle_cash_security_separate_spec: Parser[SettlementRule] =
 repN(2, settle_cash_security ~ settle_mode_spec) ^^ { case l: Seq[_] =>
 SettleCashSecuritySeparate(l map (e => (e._1, e._2))) }

Note that the execution of the parser results in a SettlementRule that we design as
the following case class in our semantic model:

case class SettleCashSecuritySeparate(
 set: List[(SettleCashSecurityRule, SettlementModeRule)])
 extends SettlementRule

The parser uses a repN(2, ..) to validate that we have exactly two legs coming out
from the DSL script. But in order to qualify as a valid set of rules, we need to ensure

Listing 8.10 A validating parser that can add domain semantics to a parser

272 CHAPTER 8 Designing external DSLs using Scala parser combinators
that one of the two rules must be for security settlement and the other one for cash set-
tlement. How do we do this?

PLUGGING IN THE DECORATOR

One way is to plug in our ValidatingParser with the additional domain validation
logic that we want it to execute to qualify as a valid standing rule. The following listing
shows how to do this in the relevant rule of the grammar.

lazy val settle_cash_security_separate_spec: Parser[SettlementRule] =
 validate(
 repN(2, settle_cash_security ~ settle_mode_spec)

➥ ^^ { case l: Seq[_] =>
 SettleCashSecuritySeparate(l map (e => (e._1, e._2))) }
) { case (s, in) => {
 if ((s hasSettleSecurity) && (s hasSettleCash))
 Success(s, in)
 else Failure(
 "should contain 1 entry for cash and

➥security side of settlement", in)
 }
 }

If we have a Success on the original parsing and the resultant List contains one
SettleSecurity and one SettleCash entry, we return the Success as the final result

B; otherwise, we convert the earlier Success into a Failure C because a domain val-
idation has failed. Of course, in order to use the ValidatingParser within our gram-
mar rules, we need to mix it in with our original SSI_Dsl parser:

object SSI_Dsl extends JavaTokenParsers
 with PackratParsers
 with ValidatingParser {
 //..

This technique of composing multiple parsers is an application of the Decorator
design pattern. It helps you keep your basic abstraction (the core parser, in this case)
cleaner and lets you plug in additional domain logic wherever you need it.

8.5 Summary
If you’ve gotten this far in the chapter about parser combinators, you’ve really learned
a lot about one of the most advanced applications of functional programming in lan-
guage design. Parser combinators offer the most succinct way to design an external
DSL. You don’t need to design an infrastructure on your own to implement the DSL.
The parser combinator technique gives you an internal DSL for building your own
external DSL. You can use the underlying language infrastructure for the basic ser-
vices like modularity, exception handling, and so on, and still design a new language
for your users.

Listing 8.11 ValidatingParser as a decorator

Validation
passed

B

Validation
failedC

273References
In this chapter, you learned how Scala implements parser combinators as a library on
top of the core language. You can define your grammar rules in an almost-EBNF nota-
tion by composing plain old Scala functions. The Scala library offers a rich set of com-
binators that allows you to process your semantic model and evolve the parsing
process into your own AST. Finally, we discussed packrat parsers that let you do things
that ordinary top-down recursive descent parsers don’t let you do. You also used Scala
in an exercise that showed you what an efficient implementation of packrat parsers
Scala provides.

8.6 References
1 Wampler, Dean, and Alex Payne. 2009. Programming Scala: Scalability = Functional

Programming + Objects. O’Reilly Media.
2 Odersky, Martin, Lex Spoon, and Bill Venners. 2008. Programming in Scala: A

Comprehensive Step-By-Step Guide. Artima.
3 Ford, Bryan. 2002. Packrat parsing: simple, powerful, lazy, linear time, func-

tional pearl. Proceedings of the seventh ACM SIGPLAN International Conference on
Functional Programming, pp 36-47.

4 Warth, Alessandro, James R. Douglass, and Todd Millstein. 2008. Packrat pars-
ers can support left recursion. Proceedings of the 2008 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, pp 103-110.

5 Newspeak. http://newspeaklanguage.org.

Key takeaways & best practices
■ Parser combinators are the most functional way to design external DSLs with-

out going out of your language syntax.
■ An external DSL designed using parser combinators tends to have a succinct

implementation, because the combinators offer a declarative syntax through
infix notation and type inference.

■ Before you use the parser combinator library offered by your language, be
aware of the special features the library offers like memoized parsers, packrat
parsers, or other goodies. Being familiar with its features will help you design
the most optimally performing grammar possible for your DSL.

Part 3

Future trends
 in DSL development

Chapter 9 contains a short discussion of future trends we’re seeing in DSL-
based development. Functional programming is becoming more popular,
because functional abstractions offer better composability than the correspond-
ing OO ones. I expect lots of DSL development to mature in the functional pro-
gramming world. Techniques like parser combinators will become more popular
as developers start appreciating their real power. Another area that’s expanding
is DSL workbenches, which offer a complete development and maintenance
stack for DSLs. In this part of the book I also discuss the important topic of DSL
versioning and some of the practices that you can adopt to ensure a smooth evo-
lution of the DSL syntax for your users. The main thrust of part 3—chapter 9—is
to touch base on these developing trends in the DSL world.

DSL design: looking
forward
Congratulations! You’ve reached the last chapter of the book. We’ve covered a lot
of ground as I’ve told you about the paradigms of DSL-based development. We’ve
discussed all the aspects of DSL design using quite a few languages, mostly on the
JVM. I carefully chose a good mix of statically and dynamically typed languages, cov-
ering both OO and functional paradigms. In this chapter, we’ll look at trends in
DSL development that are becoming more popular and mainstream. As a practitio-
ner, you need to be aware of these developments; some might eventually evolve and
mature into useful implementation techniques.

 We’re going to discuss some of the areas that DSL designers are focusing on that
enhance DSL-based development. Figure 9.1 shows a roadmap of the features that
you’ll learn about on the last leg of our journey together.

 We’re going to start in section 9.1 with language expressivity, where the hori-
zon seems to be expanding by the day. Groovy, Ruby, Scala, and Clojure are way

This chapter covers
■ Overview of our journey together
■ Expanding support for DSL development
■ Increasing tool support for writing DSLs
■ The continuing evolution of DSLs
277

278 CHAPTER 9 DSL design: looking forward
more expressive than Java and have been continuously evolving, while still keeping a
human interface in mind. Of these languages, the dynamic ones like Groovy, Ruby,
and Clojure already use the power of metaprogramming, which is even being added
in a couple of statically typed languages. Even if you don’t use metaprogramming
now, as an expert in DSL development, you need to keep yourself up to date about
how these features are shaping today’s languages to create a better environment for
DSL construction.

 Another addition to the DSL implementation technique is the use of parser combi-
nators. More languages that have functional programming capabilities will gradually
offer libraries that implement parser combinators as part of their standard distribu-
tion. We’re going to discuss this in section 9.1.

 Next we’ll step into something that has the potential to be a new norm in DSL
development: the use of DSL workbenches. Section 9.3 discusses additional tool sup-
port in modern IDEs. I conclude the chapter with a section about DSL evolution where
I’ll discuss how to grow a DSL in a disciplined way, keeping an eye on the language’s
backward compatibility.

 If in the earlier chapters you learned about the present of DSL design, in this chap-
ter you’ll get an idea of what to look for in the future of DSLs. You need to be pre-
pared for tomorrow, because today is already here.

9.1 Growing language support for DSL design
DSLs are all about being expressive with respect to the domain that you model. When
you’re modeling an accounting system, you want your API set to speak in terms of
debits, credits, books, ledgers, and journals. But these are only the nouns of the
model, the concrete artifacts that form some of the core concepts in the problem
domain. You also need to convey the verbs with the same level of expressiveness that
you speak in the problem space. Remember our coffee shop example in chapter 1
that started us off? The barista could serve precisely what you ordered because you
spoke in the language she understands. The whole expression needs to have a synergy

Figure 9.1 Our roadmap through the chapter

279Growing language support for DSL design
with the problem domain that’s being modeled. Consider the following snippet of
Scala code that we discussed in chapter 3:

withAccount(trade) {
 account => {
 settle(
 trade using
 account.getClient
 .getStandingRules
 .filter(_.account == account)
 .first)
 andThen journalize
 }
}

This snippet is a DSL from the domain of securities trading system. Note how the
nouns and verbs of the domain are expressively modeled through the DSL syntax.
Scala’s support for higher-order functions lets you treat your domain behaviors (the
verbs) as uniformly as the domain objects (the nouns). This uniform treatment makes
the language expressive.

 You might be wondering why I’m being so emphatic about something in the last
chapter of the book when the same subject has been the underlying theme through-
out our discussion. I feel the need to reemphasize the fact that for a sufficiently pow-
erful language, the expressiveness is limited only by the creativity of its users. Powerful
idioms like metaprogramming, functional control structures, and a flexible enough
type system let a programmer express the problem domain in a DSL that speaks the
same language as the domain itself. In this section, we’ll discuss how some of today’s
languages are extending the frontiers of expressivity to position themselves as potent
forces for DSL development.

9.1.1 Striving to be expressive

With newer languages coming up pretty quickly, we’ll be seeing more and more sup-
port that makes for expressive syntax design for your DSL. In the earlier chapters, we
discussed all the power that Ruby, Groovy, Scala, and Clojure offer in this respect. In
this section, I’ll give you a brief overview of the capabilities that some of the other lan-
guages offer. I won’t discuss them in detail; the main idea is to show you that now
there are more languages that strive to be expressive to the human interface. Look at
figure 9.2, which shows the progression of how some mainstream languages have
evolved into more expressive ones in the course of time.

 Expressive programming languages help close the semantic gap between the prob-
lem domain and the solution domain. In OO languages that don’t support higher-
order functions, you need to shoehorn objects as functors to model domain actions.
Obviously this indirection manifests itself as accidental complexity (see appendix A)
in the resulting DSL that you design. With support of first-class functions, your DSL
becomes much cleaner and more acceptable to your users.

280 CHAPTER 9 DSL design: looking forward
Now we’re going to look at how DSL development practices have evolved over the years
with increasing expressiveness of programming languages. Remember that we used to
write domain rules in the days of C as well, only at a much lower level of abstraction
than what we do today. Figure 9.3 shows this progression in DSL development.

 Many of these features are mature today, but others are still evolving and being
adopted by more and more languages. I’m going to describe three of the important
features that have been gaining more ground in the ecosystem of DSL-based develop-
ment. I’ll start with a technique that’s already become popular in the dynamic lan-
guages. Given its potential use in DSL design, metaprogramming is being introduced
in more and more languages, even some of the statically typed ones.

Figure 9.2 Evolution of expressiveness in programming languages

Figure 9.3 Evolution of the features in programming languages we use to develop DSLs

281Growing language support for DSL design
9.1.2 More power with metaprogramming

In the languages being developed today, we’re witnessing an increase in metapro-
gramming power. Ruby and Groovy offer runtime metaprogramming, as you saw in
chapters 2, 3, 4, and 5. Clojure, the Lisp on the JVM, offers compile-time metapro-
gramming and lets you design expressive DSLs without one bit of runtime perfor-
mance overhead. If you’re into DSLs, you need to master the metaprogramming
techniques that your language of choice offers.

 Statically typed languages like Haskell (see [10] in section 9.6) and OCaml (see
[11] in section 9.6) have started to implement metaprogramming as part of the lan-
guage infrastructure. Template Haskell is an extension to Haskell that adds compile-
time metaprogramming facilities to the language. The traditional way to design DSLs
in Haskell is to go for the embedded or the internal DSL implementation. Frequently
there’s a mismatch between what the DSL developer wants to write and what Haskell
lets you do with its syntax. Compile-time metaprogramming lets you write concrete
syntax that can be converted to appropriate Haskell AST structures. It’s similar to what
you can do with Lisp macros.

 Developments in metaprogramming for many languages are a direct indication
that DSLs are becoming mainstream. Next, we’re going to look at a feature that has
the potential to replace most instances of XML as the carrier of data.

9.1.3 s-expressions instead of XML as the carrier

An expressive language like Clojure (or Lisp) provides you with s-expressions, which
can model code as data. In today’s enterprise systems, you often see masses of XML
being used as configuration data and touted as the DSL for expressive modeling.
These XML structures are then parsed and processed using appropriate tools that gen-
erate executable artifacts for the application. The problem is that XML is painful to
the eyes and has limited capability to express higher-order structures like condition-
als. It serves as a poor alternative to s-expressions.

 In one project I worked on, we were using XML for transporting entities as mes-
sages across various deployments. Consider the following XML snippet that models an
Account object:

<account>
 <no>a-123</no>
 <name>
 <primary>John P.</primary>
 <secondary>Hughes R.</secondary>
 </name>
 <dateOfOpening>20101212</dateOfOpening>
 <status>active</status>
</account>

With XML as the format, we need to parse the message and transform it into an appro-
priate data structure. Why not use the s-expressions available in Clojure? The code
becomes so much more expressive and less verbose at the same time:

282 CHAPTER 9 DSL design: looking forward
 (def account
 {no 123,
 name {primary “John P.” secondary “Hughes R.”},
 date-of-opening “20101212”,
 status ::active })

The new snippet is more concise than the equivalent XML counterpart and is semanti-
cally much richer. It models data in Clojure that you can also execute. You don’t have
to contrive additional machinery to parse the structure and transform it into a run-
time artifact; it executes directly within the Clojure runtime. I call it executable XML. It’s
a much better DSL than the XML version and is defined using only the features that
your programming language offers. We’ll be seeing more of such data-as-code para-
digm as DSL-based development matures.

 Another trend that’s growing in popularity, mainly in functional languages, is
using parser combinators. You saw in chapter 8 the power that parser combinators
offer in DSL design. Let’s look at them again.

9.1.4 Parser combinators becoming more popular

You saw in chapter 8 how parser combinators allow you to design external DSLs even
within the confines of a host language library. With functional programming becoming
more popular, we’ll see a proliferation of parser combinator libraries. Gilad Bracha’s
upcoming language Newspeak (see [4] in section 9.6) has a rich parser combinator
library that can decouple grammar rules from the semantic model much better than
what we have in Scala. Many existing languages like F# (see [5] in section 9.6),
JavaScript (see [6] in section 9.6), and Scheme (see [7] in section 9.6) are also devel-
oping their own parser combinator libraries.

 Parser combinators let you develop the syntax of your DSL in a declarative way, sim-
ilar to writing EBNF rules. You can write EBNF-like declarative grammar rules in parser
generators too, but when you use parser combinators, you remain within the scope of
your host language and get to use all its other features. With support from the host
language, you can decouple your semantic actions from the grammar and get a clean
implementation of the DSL.

 Let’s look at yet another stream of DSL development methodology. It’s on a higher
level of abstraction than textual DSLs. I’m talking about DSL workbenches. You saw
one example of this paradigm when we discussed DSL development with Xtext. DSL
workbenches could very well bring about a fundamental change in the way we think
about DSLs.

9.2 DSL workbenches
From a high-level view, a DSL design is, in some way, an exercise in building the most
expressive API you can within the confines of your environment. In the case of internal
DSLs, you’re limited to the host language that you use. With external DSLs, you design
your own syntax, subject to the restrictions of your parser generator or combinator. In
all these cases, we’re talking about textual DSLs; whatever interface you present to your

283DSL workbenches
user, it’s in the form of text-based structures. You can give very expressive APIs to your
users, but if they’re implemented in a specific language, the user has to abide by the
rules and regulations that the language runtime mandates.

 Recently a school of thought has questioned this paradigm of text-based DSL
development. Suppose I, as an expert in data analytics, want to embed Excel macros
within the calculation engine of my weather forecasting system. To me, a spread-
sheet seems to be the most intuitive way to express the logic that the macro encapsu-
lates. In the text-only-based world of DSL design, there’s no way you can compose
higher-order structures like a spreadsheet or a charting engine within the scope of
your language.

 Frameworks like Eclipse XText (see chapter 7) bring you a step in this direction.
Instead of plain text, it stores the metamodel of the DSL, which can then be pro-
jected onto an Eclipse editor. The editor provides capabilities like syntax-highlighting
and code completion. The higher the level of abstraction that such frameworks sup-
port, the easier it becomes for the end user to create, edit, and maintain her own
DSL. A tool that supports end users in creating, editing, and maintaining DSLs is
called a workbench.

9.2.1 What’s in a DSL workbench?

In chapter 7, you saw how you can generate workbenches for your DSL using Eclipse
Xtext (see [1] in section 9.6). JetBrains Meta-Programming System (MPS) ([2] in sec-
tion 9.6), and Intentional’s Domain Workbench ([3] in section 9.6) are similar tools
in the same space. Instead of dealing with text-based programs, these tools use higher-
order structures like the AST as the basic storage unit.

 As a workbench user, you don’t have to write text-based programs; you’ll get a pro-
jectional editor, a special form of IDE, where you can manipulate your DSL structures.
DSL workbenches usually offer seamless integration with tools like Microsoft Excel,
which you can use to design your DSL syntax and semantics. The model that you build
in Excel is stored in the workbench repository as metadata and corresponds to the
higher-level abstractions of your DSL.

 You can also generate code in specific languages from the metamodel that’s
stored in the workbench’s repository. Wasn’t this supposed to be the domain user’s
dream and the initial value proposition that we used to associate with DSLs? The
domain workbench seems to be the ideal confluence of the domain experts and the
programmers. Figure 9.4 shows how domain workbenches support the full lifecycle
of a DSL implementation.

 The available DSL workbenches are based on the same principle of programming
at a higher level of abstraction that we’ve been talking about in this book. There are
differences, as far as the representations of abstractions are concerned. Some of the
areas where these products vary are summarized in table 9.1.

 A DSL workbench can definitely be beneficial to have in your bag of tricks. Let’s
look at the advantages of using one.

284 CHAPTER 9 DSL design: looking forward
9.2.2 The advantages of using a DSL workbench

Even though all workbenches vary in the degree to which they offer flexibility to the
user with respect to the areas mentioned in the table, all DSL workbenches offer the fol-
lowing advantages:

■ Separation of concerns between the interface of the DSL and the implementation.
■ Direct interaction between the user and higher-level structures, structures that

are on a higher level than those found in textual programming languages. The
workbench approach to DSL development is far more appealing to nonpro-
gramming domain users.

Table 9.1 Feature variation in DSL workbenches

Feature Differences between workbenches

Representation and
definition of abstract
syntax

The abstract syntax can be represented in terms of an abstract syntax
tree or graph, and defined as a metamodel or a grammar form.

Metamodel
composition

Many of the workbenches support an abstract syntax representation
that’s a composition of several grammars or metamodels.

Transformation
capabilities

Some workbenches, like Xtext, allow template-based code transforma-
tion, while MPS supports model-to-model transformation out of the box.

IDE support Most of the workbenches offer powerful custom IDE support out
of the box. They offer syntax highlighting, code completion, and
context-sensitive help to the DSL writer.

Figure 9.4 DSL workbenches support the full lifecycle of a DSL implementation. Domain
experts work with higher-level structures like Microsoft Excel. The workbench stores
metadata instead of program text. The metadata can be projected onto smart editors called
projectional editors where you can edit, version, and manage it. The workbenches also have
the facility to generate code to programming languages like Java.

285More tool support
■ A rich end-to-end environment for DSL-driven development.
■ Easier composition of multiple DSLs.

When all’s said and done, DSL workbenches are still in the infancy stage, as far as
adoption is concerned. The technology has promise and has been promoted for quite
some time. Some concerns need to be addressed by the DSL workbench vendors
before they can be positioned for mainstream adoption. The main concern is vendor
lock-in with workbenches. The following attributes of a DSL workbench are the most
important ones:

■ Abstract representation schema
■ Projectional editor
■ Code generator

All of these are locked into the respective frameworks. There’s always a certain level of
apprehension when you’re locked in a specific platform for modeling your DSL. Being
locked in implies that your development team has to learn yet another specific tool set
in order to implement a DSL as part of your project. Even so, workbenches are an
interesting technology paradigm and we need to keep an eye on how they evolve.

 Workbenches are one means to getting a complete DSL development environ-
ment. But besides workbenches, we’re also looking at enhanced tool support in IDEs
that can make DSL development easier than what it is right now.

9.3 More tool support
As you saw in the earlier section, the primary tool support for designing DSLs comes in
the form of DSL workbenches. But when you’re not using a workbench, how much
support can you expect from the environment that you’re working with?

 One obvious way of getting advanced tool support for writing DSLs is from your IDE.
When you program in a general-purpose programming language using the support of
an IDE, you get an editor that supports syntax highlighting, code completion, and
many other editing features. Now imagine getting some of these features when you
program using your DSL. Consider writing an internal DSL in Groovy for the financial
brokerage system, where you want to highlight every currency code that the user
enters. Or you want automatic code completion for some of the financial institutions
supported by your system.

 Many IDEs have started offering some sort of tooling that helps you with syntax
highlighting and autocompletion, even without a full-blown DSL workbench. IDEs
today are extensible using a plug-in-based architecture. You can plug in your own bits
to define syntax highlighting, code completion, and many other things (see [8] and
[9] in section 9.6).

 The blog post Contraptions for Programming (see [8] in section 9.6) describes a plug-
in for Eclipse-Groovy-based DSL development where you implement your own custom
syntax highlighter. Eclipse-Groovy components provide an extension point in the
form of an interface that you can implement to customize the list of keywords that you

286 CHAPTER 9 DSL design: looking forward
want to be syntax-highlighted. There’s similar custom Groovy DSL support for IntelliJ
IDEA where the plug-in implements autocompletion for methods and properties see
([9] in section 9.6). Look at figure 9.5 for an overview of how you can introduce the
syntax highlighter for your custom DSL as part of IDE plug-in architecture.

 So far we’ve talked about DSL development. Another important issue with today’s
DSL-based environment is the disciplined evolution of DSL versions. I’ll give you a
brief overview in the next section of how you can streamline the growth of a DSL so
that multiple versions can coexist.

9.4 The mature evolution of a DSL
Many of us use DSLs in our application development. We use DSLs mainly to model the
components of our system that tend to change frequently, like the configuration param-
eters and the business rules. One area that needs to mature further is the discipline
that we follow to evolve a DSL in the face of such changes. You need to think about your
DSL’s evolution strategy even before you come up with the first version to be deployed.

9.4.1 Versioning your DSL

Depending on how your DSL is going to be used, you need to have a versioning strat-
egy. If your DSL is going to be used solely by a closed group of users working as a cohe-
sive unit, you might decide not to follow a specific versioning strategy. Whenever you
need to make a change to fix a bug or to introduce new requirements, you can roll
out the newer version and replace the earlier one. A simple note that points out issues
of backward incompatibilities will accompany the new version.

 But what if multiple groups of users are going to use your DSL? Then you’ll have to
plan for incremental versioning strategies. Not all your users will be interested in get-
ting the new release, so you need to employ both of the following strategies:

■ Your version management in the code base must be able to branch out to main-
tain multiple releases.

■ You must create specific deployment scripts that can deploy multiple versions of
your DSL.

Figure 9.5
In an IDE, besides the core part, you
can implement your own plugins. For
your DSL, you can design a syntax-
highlighter as a plugin and introduce it
alongside the rest of the IDE.

287The mature evolution of a DSL
Whatever strategy you use, make sure it addresses the following issues that frequently
come up with respect to the evolution of any specific software module:

■ Handling backward compatibility
■ Catering to specific user needs that you can’t roll out for general use

Many of these concerns are also applicable to software deployment in general and
aren’t specific to DSLs. In the following section, we’ll discuss some of the practices you
can follow during your design phase that will address many of these versioning issues.

9.4.2 Best practices for a smoother evolution of DSL

Suppose you’re using a third-party DSL in your application that’s been deployed in
multiple customer locations. You need to add more features in your application when
you discover that the new version of the DSL has exactly what you want. But the new
version isn’t backward compatible with the version that you’ve been using. What are
you going to do?

 Consider another scenario where your DSL models the business rules of securities
trading that can vary with the stock exchange where it’s deployed. It so happens that
some of these rules change only for the Tokyo Stock Exchange and you need to roll
out a new version that’s specific to the Tokyo deployments. Yikes! The horror stories
about trying to manage multiple versions simultaneously are legend.

 Let’s look at some of the things that you can do upfront to mitigate these teething
problems and keep them from haunting you through many sleepless nights.

IMPLICIT CONTEXT FOR BETTER VERSION EVOLUTION

Consider this fluent API-based internal DSL snippet in Ruby that we discussed in sec-
tion 4.2.1:

Account.create do

 number "CL-BXT-23765"
 holders "John Doe", "Phil McCay"
 address "San Francisco"
 type "client"
 email "client@example.com"

end.save.and_then do |a|

 Registry.registNer(a)
 Mailer.new
 .to(a.email_address)
 .cc(a.email_address)
 .subject("New Account Creation")
 .body("Client account created for #{a.no}")
 .send
end

In this DSL, the account creation process uses the implicit context pattern of internal DSL
design. This pattern makes the DSL easier to evolve when compared to the approach of

288 CHAPTER 9 DSL design: looking forward
making them fixed-position parameters to the create method. In the Account abstrac-
tion, you can add additional attributes without impacting existing clients.

AUTOMATIC TRANSFORMATION FOR BACKWARD COMPATIBILITY

You can use this strategy to offer an automatic transformation of the older APIs to the
newer ones, with appropriate defaults. Consider this snippet of a Scala DSL for defin-
ing a fixed income trade that we discussed in section 6.4.1:

val fixedIncomeTrade =
 200 discount_bonds IBM

➥ for_client NOMURA on NYSE at 72.ccy(USD)

Users were using this DSL happily. Trades were being made using the specific currency
as mentioned in the DSL (USD in the snippet). This currency is called the trading cur-
rency. Eventually trades get settled through a settlement process, but our DSL assumed
that the settlement of the trade was also being done in the same currency. As we all
know, rules change, and one day users got a notification that a trade can be settled in
a currency that’s different than the trading currency (called the settlement currency).
Accordingly, the newer version of the DSL becomes:

val fixedIncomeTrade =
 200 discount_bonds IBM

➥ for_client NOMURA on NYSE at 72.ccy(USD)

➥ settled in JPY

The question is what happens to the DSLs that were written using the earlier version of
your engine? Those earlier DSLs are probably going to explode, because the underly-
ing model won’t have a valid value for the settlement currency.

 You can address this problem by defining an automatic transformation within the
semantic model that sets up the default value of the settlement currency to the value
of the trading currency. If you do this, users will have a migration path to follow and
the earlier versions of the DSL will continue to run happily ever after.

A DSL FACADE CAN ADDRESS A LOT OF VERSIONING PROBLEMS

Remember the DSL facade we talked about in section 5.2.1? A facade acts as a protec-
tor of your model APIs and helps you do manipulations with the syntax that you pub-
lish for your DSL users. When you need to make changes to the DSL syntax in future
versions, you can localize your changes within the DSL facade without having any
impact on the underlying model. This strategy works great if you need to roll out
small syntax changes as part of newer versions of your DSL.

FOLLOW THE PRINCIPLES OF WELL-DESIGNED ABSTRACTIONS

I’ve detailed principles of well-designed abstractions in appendix A. Read them, and
then read them again. Every DSL you design must follow these principles if they’re
going to evolve gracefully for your users. You need to version your DSL just like you
need to version your APIs. The more rigid your APIs become, the more difficult it’ll be
to make them evolve with newer versions.

289Summary
 Whatever option you choose, you need to make it possible to use multiple versions
of the DSL in a single application. This area of DSL development is still evolving and
needs more time to mature. You can help by carefully considering the future needs of
your DSL users.

9.5 Summary
Here we are, at the concluding summary of the final chapter of the book. By now,
you’ve been through all the aspects of how DSLs give you a better way to model your
domain. In this chapter, we’ve looked at some of the future trends of DSL-based devel-
opment. DSL workbenches promise more disciplined evolution of your DSL through
an appropriate toolset that handles the complete lifecycle of your language. We’re
seeing regular programming languages getting more expressive by the day, making
them more suitable for use as the host language for your DSL. Whatever language you
decide to use for developing your DSL, make sure you follow the discipline that helps
you grow your DSL incrementally and iteratively.

 In this book, I’ve discussed some of the JVM languages that have great features for
designing DSLs. Besides standing out individually as powerful languages for DSL
design, all of them nicely interoperate with Java using the common runtime of the
JVM. This is a big plus, because as a user, you’re no longer restricted to using only one
language for your DSL needs.

 Besides these JVM languages, we’re seeing lots of other languages that are being
used extensively for designing expressive DSLs. Haskell, the pure functional lan-
guage, and Erlang, the language that supports concurrency-oriented programming,
are the forerunners in this development. The software development community has
realized that the only way to manage the complexity of domain modeling is to use
languages that offer higher-order abstractions. DSL-driven development is one of the
ways that make these abstractions into beautiful and reusable artifacts. A good DSL
enhances productivity, makes code more maintainable and portable, and offers a
friendly interface to the users. All of the unnecessary details are hidden away. A DSL
is the way you should model a domain. We’ve already started to see the potential of
DSLs in the real world of software development today.

Key takeaways & best practices
■ DSL-based application development is a relatively new topic in software. Keep

an eye on the growing trends that are developing today.
■ Tool support in DSL-based development is rapidly improving. Starting with

IDEs and going down to native DSL workbenches, a rich set of tools always
promotes the development of an ecosystem.

■ Every new language that becomes popular has something special to offer in
DSL design. Even if your favorite language doesn’t offer the same feature out
of the box, you can try to emulate it if the feature offers tangible value-add to
the development and implementation of DSLs.

290 CHAPTER 9 DSL design: looking forward
9.6 References
1 Xtext User Guide. http://www.eclipse.org/Xtext/documentation/latest/xtext.html.
2 Meta Programming System. http://www.jetbrains.com/mps/.
3 Intentional Software. http://intentsoft.com/.
4 Newspeak. http://newspeaklanguage.org/.
5 Tolksdorf, Stephan. FParsec—A Parser Combinator Library for F#. http://

www.quanttec.com/fparsec/.
6 Double, Chris. Javascript Parser Combinators. Bluish Coder. http://www.bluish-

coder.co.nz/2007/10/javascript-parser-combinators.html.
7 Pretterhofer, Lorenz. Scheme Parser Combinators. A Lexical Mistake. http://

alexicalmistake.com/2008/06/scheme-parser-combinators/.
8 Eisenberg, Andrew. Extending Groovy Eclipse for use with Domain-Specific

Languages. Contraptions for programming. http://contraptionsforprogram-
ming.blogspot.com/2009/12/extending-groovy-eclipse-for-use-with.html.

9 Pech, Vaclav. Custom Groovy DSL Support. JetBrains Zone. http://jetbrains. dzone.
com/articles/custom-groovy-dsl-support.

10 Template Haskell. HaskellWiki. http://www.haskell.org/haskellwiki/Template_
Haskell.

11 Meta OCaml. http://www.metaocaml.org/.

appendix A
Role of abstractions

 in domain modeling

You should treat this appendix as a prelude to the entire discussion on DSLs. A DSL
is nothing but a layer of abstraction over an underlying implementation model.
The implementation model is nothing but an abstraction on top of the problem
domain model, using the technology platform of the solution domain. Unless you
get it right, your domain model won’t be at the correct level of abstraction, and the
linguistic representation of it in the DSL won’t be either. Let’s see how you can
make your abstractions shine.

A.1 Qualities of well-designed abstractions
This section focuses on the qualities of well-designed abstractions. I’ll use the
fields of software engineering and program design as points of reference, but I’ll
specifically focus on how having a well-designed abstraction makes it easier for
you to design reusable domain models. As we go down this road together, you’ll
learn to appreciate how abstractions play a central role in designing complex
domain models. As you learn to abstract more and more, you’ll become increas-
ingly proficient at distilling the core concepts of a model from the redundancies
of the surrounding details. To illustrate my points, I’ll discuss specific qualities
that differentiate well-designed abstractions from poorly designed ones.

This section contains an informal discussion of the virtues that well-
designed abstractions have. In the course of this discussion I’ll pres-

ent code snippets that demonstrate implementation aspects of these quali-
ties. Depending on the aspect that I’m talking about, I’ve chosen the
language that explains the feature in the most expressive way. Though
there’s a definite emphasis on OO programming paradigms, I’ve also used
291

292 APPENDIX A Role of abstractions in domain modeling
functional programming principles to implement a number of examples. If
you’re not comfortable with some of the languages used, this isn’t the time to
reach over to the bookshelves. The examples are simple enough and intuitive
enough to explain the relevant design principles without your needing to dig
around for more information about the specific language. You also have
appendixes C through F in case you need to peek at some of the features that
these languages offer.

Every abstraction has a functionality to deliver to its clients. To deliver this functional-
ity, the abstraction publishes a set of contracts (also known as interfaces) that the clients
can use. This set of contracts can vary, depending on the nature of the client. Each
contract has an underlying implementation that’s usually abstracted away from the cli-
ent; the client sees only the published contracts.

 In the rest of this section, I’ll introduce the qualities of a well-designed abstraction.
Later I’ll talk about each in depth.

A.1.1 Minimalism

Depending on the nature of the client, you might decide to expose a certain amount
of implementation detail. But here’s the catch: all the details that you expose get pub-
lished, and the client gets coupled to it. You need to be sure to expose only the
essence that’s required to fulfill the contract that your abstraction promises to the cli-
ent. We’ll discuss this issue in more detail in section A.2 when we talk about the mini-
mality of abstractions.

A.1.2 Distillation

When we talk about well-engineered abstractions, it means that we’ve ensured
that none contains nonessential details that don’t belong to the core concerns of
the abstraction. Abstraction implementations should be pure enough to minimize the
details, yet still convey the necessary meaning. The process of creating such an
abstraction is called the distillation of the abstraction; we’ll discuss this in more
detail in section A.3.

A.1.3 Extensibility and composability

Engineering is about designing things in a modular way. You can extend modular arti-
facts through composition. In addition to being extendable, software abstractions also
need to be extensible. An abstraction that you design today might have to be extended
with additional functionalities in the future. The important point is that this exten-
sion shouldn’t break when existing clients try to use it. Section A.4 takes a detailed
look at how to implement seamlessly extensible abstractions using techniques offered
by current programming languages.

 Extensibility is possible only through composability. Well-behaved abstractions can
be composed to form higher-level abstractions. How do you design abstractions that

293Minimalism publishes only what you promise
compose? And what happens if your abstractions have side effects that update the
global context of execution?

 After you get to know the qualities to look for in well-designed abstractions, you’ll
be able to appreciate the role that abstractions play in designing domain models.
You’ll also have an idea of why you need to design abstractions at the correct level to
ensure that your model speaks the language of the domain. Only then will your code
be as expressive as the language of the person who’s an expert in the domain.

A.2 Minimalism publishes only what you promise
Suppose that in your financial brokerage application, you need to design an abstrac-
tion that publishes to the external world the various prices of an instrument, based on
a set of price types. Every instrument that gets traded on a stock exchange has a num-
ber of prices—opening price, closing price, and market price, to name a few. Your
abstraction should have a method publish that accepts a specific instrument and a list
of price types. It should return a Map with the price type as the key, and the correspond-
ing price of that instrument as the value. Here’s your first attempt in Java:

class InstrumentPricePublisher {
 public HashMap<PRICE_TYPE, BigDecimal> publish(Instrument ins,
 List<PRICE_TYPE> types) {
 HashMap<PRICE_TYPE, BigDecimal> m =
 new HashMap<PRICE_TYPE, BigDecimal>();
 //..
 return m;
 }
}

You intended to have the method publish return a Map of the price type and the price
for a particular instrument. But the implementation returns a specialization of the
Map abstraction—a HashMap—the method uses internally to store the data. By return-
ing a specialization of the abstraction, it exposes the underlying implementation to
the client. The client’s code now becomes coupled to the HashMap B that’s returned
from your published contract.

 Suppose that later on you need to change the implementation of the underlying
data structure to TreeMap. You can’t do that, because it would break your client’s code.
Your abstraction can’t evolve! How could you have avoided this problem?

A.2.1 Evolve by being generic

Hindsight is 20/20, and unfortunately that’s what you’re faced with here. You need
to be sure that your initial abstraction returns the most generic type that satisfies the
promise of your contract. This promise is to return a Map, a data structure that
supports a key/value pair, based on lookup strategy. Here’s the correct version of
the abstraction, which minimizes the exposure of the implementation and returns the
right level of refinement for your abstraction:

Populate
HashMap

B

294 APPENDIX A Role of abstractions in domain modeling
class InstrumentPricePublisher {
 public Map<PRICE_TYPE, BigDecimal> publish(Instrument ins,
 List<PRICE_TYPE> types) {
 Map<PRICE_TYPE, BigDecimal> m = Collections.emptyMap();
 for(PRICE_TYPE type : types) {
 m.put(type, getPrice(sec, type));
 }
 return m;
 }
}

Now that you’ve seen a concrete example, what do you think is the key symptom
that lets you know that your abstraction has violated the principle of minimality of
publication? Let’s explore some of the fundamental concepts that can help you
make this diagnosis.

A.2.2 Subtyping to prevent implementation leak

As we all know, inheritance is a technique used in OO to model the commonality and
variabilities of an abstraction. The behavior that you define in a base abstraction can
be overridden for further refinements down the hierarchy. The more you move
toward the leaves in the hierarchy, the more refined the abstractions become and the
more specialized the published contracts tend to be. To make successive refinements
to your abstractions, you can use inheritance to model subtyping. In subtyping, as the
term suggests, subtypes must inherit only the contracts from the supertype; the specific
implementation of the contract is left to the subtype itself. I’ve created figure A.1 to
illustrate this concept.

Figure A.1
Subtyping through interface
inheritance. Subtypes
FixedIncome and Equity
inherit only the interface from
the supertype Instrument
and provide their own
implementations.

295Minimalism publishes only what you promise
The more specialized types are referred to as the subtypes of the more generalized
ones. Subtyping doesn’t imply that an implementation is shared within type hierar-
chies. Class-based OO languages like Java and C# implement subtyping using interface
inheritance [2]. But in most such languages, subtyping is often used synonymously with
subclassing, which results in confusing semantics and brittle abstraction hierarchies.
Used correctly, interface inheritance is a useful tool that you can use to design robust
hierarchies of types within abstraction families. When you extend abstractions using
only subtyping, implementations can never leak out; you’re left with an abstraction
that is a good example of minimality.

 One problem that crops up when you specialize behaviors using inheritance is that
implementations are shared within the hierarchy, a situation commonly referred to as
implementation inheritance.

A.2.3 Implementation inheritance done right

Implementation inheritance is a useful technique, when you use it correctly. It’s easy
to abuse, and when you do you get situations where your subclasses become unnec-
essarily coupled to the implementation of your base class. This situation is shown in
figure A.2.

 Now, subclasses are also clients of your base class, and in this situation implementation
has leaked into them. The resulting scenario is commonly referred to as the fragile base
class problem in OO modeling. In such situations, any change in the implementation of

Figure A.2 Coupling in implementation inheritance. Implementation of issue() in
FixedIncome and Equity reuses the implementation from the super class.

296 APPENDIX A Role of abstractions in domain modeling
the base class can potentially break the contracts of the subclass, which makes the evo-
lution of abstractions almost impossible. This situation is similar to what we faced with
InstrumentPricePublisher earlier. The root problem is that the base abstraction has
published its implementation to its clients.

 The big thing to remember from the examples in this section is: publish only
what you need to, and only to whom you need. If you don’t follow this advice, you risk
overexposure, your abstractions will leak implementations, and you’ll violate the
minimality principle.

A.3 Distillation keeps only what YOU need
As we discussed in section A.1, an abstraction needs to publish only the core essence
to its clients, which makes it minimal from the outside looking in. It’s also equally
important to ensure that the abstraction you design is clean in its internals as well. Dis-
tillation is the process of extracting the essence of something. In the context of
abstraction design, distillation is the process of purifying your abstractions’ implemen-
tations by getting rid of all the nonessential details.

A.3.1 What is nonessential?

I sense some of you murmuring, “How do I know which part of an implementation is
nonessential? I’ll repeat what the experts say: you’ll know this when you have the
experience to look into your abstractions with sufficient insight and clarity. Defined
informally, a detail in an abstraction design is said to be nonessential when it doesn’t
map as one of its core concerns.

 Suppose you’re using a word processor to draft one of your job applications for the
position of Domain Modeler. You start typing and the word processor starts highlight-
ing words that get thrown out by its built-in spell checker as invalid. When was the last
time you bothered to check the exact version of the spell checker that the word proces-
sor came with? Or when you had to take special steps to initialize the spell checker
when you started the word processor? You always assume that the spell check function
in the word processor is set up correctly and is fully functional. If you had to bother
about its availability and do special steps to set it up every time you typed a word, that
would be a good example of you having to handle a nonessential detail as part of your
regular process.

 Once again I’ll take a use a common pattern in class-based OO programming to
explain the basic concepts of how to distill an abstraction out of its nonessential
details. I’ll use an example from the domain of financial brokerage systems. If you’re
not familiar with the domain, this might be a good time to go through some of the
concepts that I introduced in the sidebars in sections 1.2 and 1.3.

A.3.2 Accidental complexity

Suppose you have to design an abstraction TradeProcessor that processes a collection
of trades that’s supplied to it. Then it computes the trade details like net trade value,

297Distillation keeps only what YOU need
tax, fees, and commissions applicable for the trade, and other information relevant to
the market in which it’s being traded. The following listing shows one abstraction that
you might design.

class TradeProcessor {
 private SettlementDateCalculator calculator;
 public TradeProcessor() {
 try {
 calculator = new SettlementDateCalculatorImpl(..);
 } catch (InitializationException ex) { //.. }
 }
 public void process(List<Trade> trades) {
 for(Trade trade: trades) {
 calculator.settleOn(trade.getTradeDate());
 }
 // other processing
 }
}

As part of trade enrichment, the TradeProcessor needs to calculate the settlement
date, and the computation needs to consider lots of factors from the context in which
the trade was executed. SettlementDateCalculator is responsible for providing this
service. Assume for the time being that SettlementDateCalculator is a separate
interface with an implementation SettlementDateCalculatorImpl that has the spe-
cific responsibility of computing the settlement date from the trade date and a host of
other context information. The constructor for TradeProcessor creates an instance
of SettlementDateCalculatorImpl and stores it in its context for subsequent use by
the process method. This means that the TradeProcessor instance is now responsi-
ble for the lifecycle management of the service that it instantiates. SettlementDate-
CalculatorImpl might have a complex constructor that needs to collaborate with
other services to instantiate successfully.

 What happens if any of those services fail to instantiate? If that happens, then the
TradeProcessor class is responsible for handling these chains of exceptions within its
constructor and arranging for appropriate recovery mechanisms. Is this something
that should be a concern of the domain abstraction for TradeProcessor?

TradeProcessor is a domain object. You, as the designer, should think of it only in
terms of how it collaborates with the behavior of other domain objects and services to
deliver what it promises to its clients. Instantiating and managing the lifecycle of ser-
vices aren’t things that fall under the core responsibilities of this domain abstraction.
This example shows how a domain object might be designed to handle nonessential
complexities that would be better handled by some lower layers of the architecture
stack. Fred Brooks calls this accidental complexity (see [1] in A.6). Some prefer to use
the term incidental complexity.

Listing A.1 TradeProcessor processes trade details

298 APPENDIX A Role of abstractions in domain modeling
When you minimize accidental complexity in your abstractions, you can
be sure that your abstractions will be at the proper level. As an applica-

tion software designer, be sure to delegate instantiation and lifecycle manage-
ment of collaborating services to lower-level frameworks like dependency
injection (DI) containers.

At every step in the design process, look back to verify whether the abstraction is dis-
tilled enough and whether any lower-level details have leaked into higher-level
abstractions. The class TradeProcessor illustrates an example where accidental com-
plexity needs to be removed by redistributing responsibilities across the layers of the
architecture stack.

A.3.3 Removing the impurities

The solution, as has been prescribed for many problems in computer science, is to
introduce an extra level of indirection between your domain abstraction and the lan-
guage of implementation. This layer acts as the insulation that protects your domain
abstractions from getting polluted with accidental complexity.

 Before we think about how to distill the impurities out of this abstraction, let’s take
a fresh look at what constitutes the impurities that we need to remove. Here’s another
view of the relevant section of the abstraction in the following listing, annotated to
show the information that needs to be removed.

class TradeProcessor {
 private final SettlementDateCalculator calculator;
 public TradeProcessor() {
 try {
 calculator = new SettlementDateCalculatorImpl(..);
 } catch (InitializationException ex) { //.. }
 }
}

TradeProcessor manages the lifecycle of the service SettlementDateCalculator by
instantiating a concrete implementation B within the constructor. This has the fol-
lowing effects:

■ TradeProcessor is now dependent on one specific concrete implementation of
the service.

When you write unit tests for TradeProcessor, you need to make sure
that the collaborating service instance is available, along with all other depen-
dent services. This goes against the principles of unit-testability of an abstrac-
tion, and also makes the abstraction less reusable outside this specific context
of implementation.

■ The constructor of TradeProcessor is now polluted with error handling code

C that arises out of the instantiation logic of SettlementDateCalculatorImpl.

Listing A.2 TradeProcessor annotated with nonessential details

Lifecycle
management
code

B

Exception handling
for service failureC

299Distillation keeps only what YOU need
The code is now noisy with details that shouldn’t be the primary concern of
TradeProcessor.

Do you have a better idea of what constitutes the nonessential details of an abstrac-
tion? Great! Now let’s try to fix them.

A.3.4 Keeping away implementation details using DI

All we need to do is remove the lifecycle concerns of SettlementDateCalculator from
TradeProcessor. Whenever TradeProcessor needs one SettlementDateCalculator,
we’ll supply an instance from outside, which is the correct way to do it. TradeProcessor
doesn’t need to bother about the exact concrete implementation of the instance that
it receives, because now it’s going to be insulated from the instantiation, management,
and finalization of the services that it needs to collaborate with. Dependency injection (DI)
will do this for us.

DEFINITION A DI framework is an external container that creates, assembles,
and wires the dependencies into an object graph through declarative configu-
ration code. For more details on the various techniques of DI, refer to [2] in
section A.6.

We’re going to use Guice, the DI framework from Google, (http://code.google.com/
p/google-guice/) and wire up our dependencies on specific implementations of
SettlementDateCalculator. The following listing shows how the distilled abstrac-
tion looks.

class TradeProcessor {
 private final SettlementDateCalculator calculator;
 @Inject
 public TradeProcessor(SettlementDateCalculator calculator) {
 this.calculator = calculator;
 }
 //.. as in listing A.2
}

TradeProcessor is now relieved of its nonessential details and the instantiation logic
is removed to an external framework. All you need to know now is how we’ll tie up the
implementation of SettlementDateCalculator with the TradeProcessor class. We
have to configure an external Module in Guice that does the wiring when the applica-
tion bootstraps. I won’t go into the details of how Guice works. The main idea is that
by introducing an external framework, we’ve been able to get rid of all the nonessen-
tial details in our original abstraction.

DI is only one of the techniques you can use to distill your abstractions from acci-
dental complexities. Many language implementations offer powerful features that
obviate the need to use an external framework for such purposes. We look at one such
example when we discuss the powerful and extensible static type system of Scala in

Listing A.3 TradeProcessor distilled

Annotation
for injection

Clean
constructor

300 APPENDIX A Role of abstractions in domain modeling
chapter 6. Functional programming also offers higher-order functions and closures
that let you externalize functionalities that don’t need to be handled within your
abstraction. We explore many such capabilities in chapter 5 when we go into the
details of using functional programming features in designing domain models.

A.4 Extensibility helps piecemeal growth
You’ve followed the principles discussed in sections A.2 and A.3, and now your
abstractions have the right exposure (through minimalism) and purity (through dis-
tillation). But now your client requests that you incorporate more features in the
application and you have to incorporate additional behaviors in your abstractions. It’s
time for you to test whether your abstractions are extensible enough.

A.4.1 What’s extensibility?

Extensibility is the quality that allows your abstractions to grow in a piecemeal manner
without impacting existing clients. Different paradigms of development support dif-
ferent extensibility mechanisms. This section will give an overview on designing exten-
sible abstractions using the more popular techniques from the realms of OO and
functional programming. We discuss other forms of extensibility when we talk about
advanced language features and higher-level abstractions in chapters 5 through 8.

 The Map abstraction in Java contains the basic functionalities of an associative
data structure and provides a Dictionary interface to its clients. java.util.Map has
been extended in a number of ways within the standard JDK library. On one hand,
you have the concrete subclass implementations like HashMap and TreeMap that offer
all the Map operations over different underlying storage mechanisms. On the other
hand, Map gets richer behavioral semantics by being subtyped into SortedMap and
ConcurrentMap.

 How extensible is java.util.Map? Suppose you need to add specific behavior to
java.util.Map that should work across all variations and implementations of the Map
interface. Think about this, because it’s not as trivial as it seems when you consider the
options that Java offers as a language.

 Extending any specific implementation like HashMap won’t work, because if you do
that, the additional functionality won’t be available to other implementations of Map.

 You could wrap an instance of Map into a decorator (see [3] in section A.6), but
this solution would work only for certain specific use cases. In other use cases, wrap-
ping Maps into your own classes takes away important aspects of the original Map
instances, for example SortedMap or ConcurrentMap. Consider the following example:

 class DecoratedMap<K, V> implements Map<K, V> {
 private final Map<K, V> m;
 public DecoratedMap(Map<K, V> m) {
 this.m = m;
 }
 //..
 }

Wrapped
MapB

Implementation
of Map<K, V>

301Extensibility helps piecemeal growth
DecoratedMap<K, V> decorates the wrapped Map<K, V> B, but can’t use any of the
features of the wrapped instance if the client passes a ConcurrentMap or a Sorted-
Map in the constructor. Eugene discusses one such use case in [5] in A.5 where the
only available option to provide an extended functionality across all Map implemen-
tations is to write a standalone utility function—not at all an OO approach from the
purist point of view.

 The last resort is to implement the Map interface ground-up. The problem with
this is that it’s going to result in lots of copy-paste code that duplicates across all
such implementations.

 After looking at all the alternatives, why do you think it’s difficult to extend
java.util.Map using a true OO approach?

 In this case we have a hierarchy of abstractions and we’re trying to plug in a new
behavior across all implementations of the type java.util.Map. This problem is crying
out for implementation inheritance, more specifically, multiple implementation inher-
itance, because we’re talking about multiplicity of behaviors. What you need is the abil-
ity to compose independent granular abstractions that can seamlessly mix in the main
abstraction additively to introduce new behavior or override existing ones. Mixins offer
one such alternative, as you’ll see in the next section.

A.4.2 Mixins: a design pattern for extensibility

Mixins let you do exactly what’s needed here. They’ve been implemented in many lan-
guages that offer the facility of building larger abstractions out of mixable attributes.

 Consider a situation where the financial brokerage house you’re consulting with
decides to introduce a new instrument in the market, which they call exotic instrument.
This exotic instrument has a number of features that are common to other instru-
ments and that have already been implemented as part of your domain model. All you
need to do is assemble these existing features and extend your abstraction for exotic
instrument. With mixin-based programming, you can literally do this and mix the
base abstraction for exotic instrument with all the individual features, forming the
whole. Look at figure A.3, which illustrates this technique. The mixin classes Coupon-
Payment, Maturable, and Tradable mixes in with the parent abstraction Instrument
to provide behavior and implementation to the whole class ExoticInstrument.

 Gilad Bracha, the computational theologist, in his OOPSLA (Object-Oriented Pro-
gramming, Systems, Languages, and Applications) 90 paper (see [4] in section A.6),
defines a mixin as an abstract subclass that can be used to specialize the behavior of a variety of
parent classes. Mixins can’t be used standalone, so they’re called an abstract subclass.
They define uniform class extensions and can be seamlessly tagged on to a family of
abstractions to add the same behavior. Scala (http://www.scala-lang.org) offers mixin
implementation in the form of traits. Ruby calls them modules. Think of traits as Java
interfaces, with the difference that the method declarations in the interface can also
contain optional implementation that the base can share.

302 APPENDIX A Role of abstractions in domain modeling
A.4.3 Mixins for extending Map

Now let’s look at how you can use mixins to add a specific behavior across all imple-
mentations of the Map abstraction. Suppose you’re asked to add a synchronized get
method to Maps as an additional behavior overriding the existing API. First, you
define a trait in Scala that provides an implementation of this behavior over the stan-
dard Map interface:

trait SynchronizedGet[A,B] extends Map[A, B] {
 abstract override def get(key: A): Option[B] = synchronized {
 super.get(key)
 }
}

Now you can mix in this behavior with any variant of a Scala Map, irrespective of the
underlying implementation:

val names = new HashMap[String, List[String]]
 with SynchronizedGet[String, List[String]]

val stuff = new scala.collection.jcl.LinkedHashMap

➥[String, List[String]]
 with SynchronizedGet[String, List[String]]

Notice that in the final implementation, the trait SynchronizedGet is mixed in
dynamically during runtime object creation.

Figure A.3 Mixin-based inheritance. ExoticInstrument gets the
implementation of issue() and close() from Instrument, then gets
composed from the mixins CouponPayment, Maturable, and Tradable.

Mixing in with a
Scala HashMap

Mixing in with a Java
LinkedHashMap

303Extensibility helps piecemeal growth
 Scala traits can also be mixed in statically as a composition of multiple attributes
over an existing abstraction. Mixing in Scala traits results in a form of implementation
inheritance that doesn’t suffer from the drawbacks of the Java implementation. We
discuss Scala traits in more detail when we talk about Scala’s language features in
chapter 6.

A.4.4 Functional extensibility

People often complain that OO programming makes them write lots of classes, often
unnecessarily. Everything isn’t an object, though OO sometimes would like you to feel
that way. In the real world, many problems are better modeled as functional abstrac-
tions or rule-based abstractions.

 Suppose you’re modeling an algorithm that has a definite workflow, like in the
following snippet. I’ve intentionally elided the arguments that the algorithm takes
as input.

def process(...) = {
 try {
 if (init) proc
 } finally { end }
}

init is the initialization part of the algorithm. If init is successful, you invoke proc,
which does the core processing. The end models the finalization part, which cleans
up resources.

 Now you’re asked to extend this implementation for different variants of init,
proc, and end. One option is to have separate objects for each of them wrapping the
workflows as functors or function-objects. That would work, but you can do a better
job by using the power of functional programming and higher-order functions. You
can model init, proc, and end as functions and pass them as closures to the main pro-
cess. Here’s how:

def process(init: =>Boolean, proc: =>Unit, end: =>Unit) = {
 try {
 if (init) proc
 } finally {
 end
 }
}
def doInit = { //.. }
def doProcess = { //.. }
def doEnd = { //.. }

Now let’s look at an unconventional way to extend your abstraction. This technique is
not supported by all languages, but it can be an effective tool, if you use it judiciously
within your application.

Generic
algorithm

Initialization Core
processing

Finalization

304 APPENDIX A Role of abstractions in domain modeling
A.4.5 Extensibility can be monkey business too

You don’t have to build new abstractions to make what you have more extensible.
Many languages offer open classes that let you directly extend existing structures by
injecting new methods or updating existing ones. Both Ruby and Groovy support
open classes and let you crack open any class and make changes to existing behavior.
Doing this is typically called monkey patching. It’s also frowned upon by many devel-
opers as being extremely unsafe. Even though monkey patching can be extremely
powerful when you use it responsibly, there are lots of practical examples in current
application development that testify against its professed virtues.

 The main issue with Ruby monkey patching is that it lacks lexical scoping; anything
and everything you add to an abstraction goes in the global namespace and remains vis-
ible to every other user of the same abstraction. Scala offers a much better alternative
in the form of lexically scoped open classes. (For my own take on this Scala feature, see
http://debasishg.blogspot.com/2008/02/why-i-like-scalas-lexically-scoped-open.html.)
Scala calls it implicits, and they let you extend existing classes through a lexically
scoped implicit conversion. This feature is unbelievably useful and strikes the perfect
balance between Ruby’s unsafe monkey patching and Java’s strictly closed classes.

A.5 Composability comes from purity
Lots of studies have tried to teach limited forms of human language to other great
apes. Gorillas and chimpanzees have been able to pick up and communicate through
symbols and sign languages and even through a limited form of combinations of the
human protolanguage. Although their vocabulary continued to grow, the area in
which they failed to develop and improve was the composition of those languages into
meaningful phrases. The human brain has a region known as Broca’s area, which is
responsible for our ability to produce grammatical sentences. This ability makes our
communication meaningful, coherent, and contextual in the real world. Software
abstractions that model the real world also need to define and publish contracts that
enable them to interact in a similarly meaningful way.

 In our daily use of computers, the operating system regularly downloads packages,
updates, and newer versions. Not all these components have been developed by the
same person or even at the same time. Still, all of them communicate effectively and
compose seamlessly, abstracting all the implementation differences away from you.

 Today we’re part of a software development ecosystem where a single program-
ming language doesn’t define the layer of compatibility. We have powerful runtimes
and middleware hosting multiple languages, protocols, and distribution mechanisms
that can communicate with each other. When you develop an application, you use
multiple languages to develop software components. These components can range
from a few lines of code to hundreds or thousands of lines. You want to be able to
compose them as prefabricated units of work that can plug in seamlessly with the rest
of the ecosystem of your application infrastructure.

305Composability comes from purity
OO programming uses techniques like aggregation, parameterization, and inheri-
tance that help you develop large abstractions from small ones. But these techniques
have their own pitfalls that you need to consider every time you use them. For exam-
ple, implementation inheritance in Java can lead to unnecessary coupling between
class structures, making them less extensible. If you adhere to the recommended best
practices of design patterns, you’ll be able to avoid such pitfalls. I discussed one such
pattern in section A.3 when I told you how DI can help remove unnecessary details
from your component and distill it of its impurities. Now let’s look at a few more ways
that design patterns can help you.

A.5.1 Design patterns for composability

Consider one of the common design pat-
terns used to abstract a set of actions from
the clients. Gamma, et. al. (see [3] in sec-
tion A.6) calls it the Command pattern. The
intent of the Command design pattern is to
encapsulate a request as an object. Then
you can parameterize clients with different
requests, queue or log requests, and support
undoable operations. Figure A.4 illustrates
the structure that the Command pattern
forces on your abstraction.

 The Command design pattern decou-
ples the invoker and the receiver from
the command that’s being executed. This
makes your individual commands reusable
outside the context of the invoker and the
receiver. You can even implement higher-
level commands by aggregating individual
units of commands. Commands are com-
posable, by aggregation. Figure A.5 shows
how you can design a MacroCommand using
aggregation-based composability.

 The Command design pattern, along with its composite variant, lets you compose
at a macro level; you compose objects that are supposed to perform specific actions all
by themselves. But suppose you’re designing a UI and you need to be able to dynami-
cally add and remove the individual features of your widget. You’re going to need
composability at a much lower level of granularity than what’s possible with the Com-
mand pattern. In this case, every object you compose might have a different set of fea-
tures that you assemble through the interface published by your abstraction.

 Here’s where you apply the Decorator pattern. You have a core object and you
design a group of wrapper classes, the decorators, that share the same interface as

Figure A.4 Command decouples invoker and
receiver from the actions. This makes the
command object reusable outside the current
context of execution.

306 APPENDIX A Role of abstractions in domain modeling
the core. You can dynamically attach and detach these decorators at the object level.
The pattern provides an option for composition as an alternative to subclassing and
implementation inheritance. You’ll find that there are quite a few structural and
behavioral patterns that are followed by the community of OO programmers for
designing composable class structures. Look at [3] in section A.6 for a detailed dis-
cussion about each of these.

A.5.2 Back to languages

Over time, many of the design patterns that I’ve discussed earlier have been sub-
sumed into modern OO and functional languages. As I discussed in section A.3,
both Scala and Ruby have built-in support for mixin-based inheritance. Mixin
classes are a great way to compose abstractions and are the right way to implement
multiple inheritance. Scala’s support for object-based mixins is an implementation
of the Decorator pattern.

 Besides modular mixin composition, Scala’s advanced type system also supports
other mechanisms that promote composability of abstractions. I discuss them in more
detail when I talk about Scala as an implementation language for complex domain
models in chapter 6. This section will focus on the developments on the horizon of
programming languages that are becoming more and more powerful, subsuming
more design patterns and best practices in the realm of language implementation.

PROTOTYPE-BASED OO
Consider another form of OO, one that doesn’t have classes. Objects are the only form
of abstraction that models behavior of entities. If you want to share behaviors, mark
one object as the parent form of another. You don’t have any static inheritance hierar-
chies in this model; all the problems of implementation inheritance innate to class-
based OO suddenly disappear. JavaScript is based on this model, which is called the
prototype-based model of OO, as opposed to the class-based model that we’ve already dis-
cussed. Let’s see how the problem of object composition is handled by another per-
spective of OO that these languages take.

Figure A.5
MacroCommand composes commands. Execution of
the MacroCommand results in a cascaded execution of
its composed commands.

307Composability comes from purity
 In the following JavaScript example, I’ll define an object instrument, which serves
as the prototypal object for all instruments. The term prototypal indicates that the object
instrument serves as the base, which will be shared by all other objects that implement
the same contract. A specialized variant of instrument, the fixed_income object, adds
its own special behavior on top of the implementation provided by instrument. At the
implementation level, fixed_income has a pointer to its parent object, which we call its
prototype. In this case, the prototype is the instrument object.

 The thought process behind this setup is simple. When you invoke a method on an
object, the receiver matches the method (also called the message) to its own set of con-
tracts (or messages). If the receiver doesn’t find a match, it forwards the message to its
prototype to see if the prototype can respond to that message. The method continues
to be forwarded until one of the prototypes responds or we reach the root Object.

 Sharing knowledge through prototypes at the object level is called delegation. Dele-
gation helps you to dynamically compose abstractions at the lowest level of granularity.

var instrument = {
 issue: function() { //.. }
 close: function() { //.. }
 //..
}
var fixed_income = Object.beget(instrument);
fixed_income.mature = function() { //.. }

Use the form of OO that helps you model your problem in the best pos-
sible way. Language should never be a constraint. Instead of writing

boilerplate code to implement design patterns, look around at your choices.
A powerful language might offer more succinct options.

When a design pattern gets subsumed in the implementation of a language, it might
not be as explicit in structure as it was previously. In fact, it melds to the language itself
as a natural idiom. Ruby metaprogramming is one such example.

METAPROGRAMMING (IT’S EVERYWHERE)
When you implement the Builder pattern in Java, you need to include lots of extra
embelishments, but with Ruby metaprogramming, it’s a natural idiom. Take a look at
Jim Weirich’s markup builder implementation that uses the clever trick of Ruby’s
method_missing. (To see this implementation, go to http://github.com/jimweirich/
builder/tree/master.) DI similarly melds into the way Ruby usually constructs new
objects. Strategy pattern can be implemented directly either through Ruby modules
or by using the ability of Ruby to strip open a class and change its implementation
during runtime.

A.5.3 Side effects and composability

Let’s talk some more about the Command design pattern that I mentioned earlier. It
encapsulates a user action and gives you a way to compose many of them as a higher
level of abstraction. By user action I mean something the user does on an object that

Sets the prototype
to instrument

308 APPENDIX A Role of abstractions in domain modeling
produces a result. But another effect of the action might be in the form of some side
effect that it produces. For example, the action might also print something on the
console, issue a write to the database, raise an exception, or update some global state.

 Side effects depend on past history—a debit action on your bank account that
updates the balance as a side effect behaves differently depending on the current bal-
ance of the account. You can’t ignore the order of evaluation and compilers can’t do
special optimizations like composition, memoization, or lazy evaluation. A side-
effected program is hard to understand, and harder to analyze.

COMMAND-QUERY SEPARATION

How can you ensure that you have side effects under control in OOP? The solution is,
once again, to use the design patterns, idioms, and best practices that have evolved
over the years. A good example of such a pattern is Command-Query Separation, a term
coined by Bertrand Meyer when he was designing the Eiffel language, and subse-
quently promoted by Martin Fowler here: http://www.martinfowler.com/bliki/Com-
mandQuerySeparation.html. Queries are supposed to be pure actions that produce a
result without mutating any global state or producing any side effect. Commands, on
the other hand, are interesting only for the side effects they produce, which usually
involves some sort of mutation of state. The pattern states that every abstraction
should either be a query or a command, but never both.

Side effects never compose. Use the Command-Query Separation pat-
tern to ensure that you’ve segregated queries from commands in your

model. If you do, you’ll have control over all the side-effecting abstractions.

Functional programming rarely uses side effects, and even when it does, some lan-
guages have special annotations that explicitly publish the exact side effect that it pro-
duces. Not all functional languages restrict side effects. Haskell does, and it does it
through its static type system. You can’t pass a side-effected abstraction to a function
where it expects purity.

HASKELL EXAMPLES

Let’s go back to our Command pattern that we modeled with objects. For a parallel in
the functional world, let’s apply two functions, f and g, in sequence, to every element
of a collection. If we used our implementation from section A.5.1, we would’ve had a
macro command composed of two individual commands encapsulating the functions
f and g respectively (maybe as function objects). Here’s how you can do something
similar, but much more simply, in Haskell:

map f (map g lst)

map is a Haskell combinator that invokes a user-supplied function over all elements in a
list. In this snippet, function g will be applied first on every element of the list lst,
which generates an intermediate list structure. The outer map will apply f on every ele-
ment of the intermediate list to generate the final output list. This operation is the
way things usually work and is similar to the way our previous MacroCommand works.

309Composability comes from purity
 Remember that Haskell is a pure functional language and doesn’t allow effecting
functions to be passed in places that expect purity. map happens to be a combinator
that accepts only pure functions. Look at the type definition of map in Haskell:

Prelude> :t map
map :: (a -> b) -> [a] -> [b]

map is a function that takes another function (a->b) and a list [a] as input and gener-
ates another list [b] formed by applying the function over each element of the source
list. When I invoke f or g with map, the compiler will accept it only if f and g are pure
functions, without any side effects. Because f and g are guaranteed to be pure, the
Haskell compiler can transform the invocation to map (f . g) lst. Instead of invoking
the functions in succession, the compiler transformation invokes their composition
on each element in the list. What this buys you is that the temporary data structure
that was being generated in the previous case completely disappears. The guarantee
of purity leads to better composability.

 Now you must now be wondering how our OO Command in section A.5.1 was able
to handle side effects. How can we do the same thing in the pure world of Haskell?
Haskell implements the Command-Query Separation pattern at the language level.
Consider the following functions:

f :: Int -> Int
g :: Int -> IO Int

The function f is a pure function that returns the same output every time it’s given
the same input. But g is a function that has side effects. You can determine this
from the type declaration. The type g indicates that it returns an action that, when
performed, might have side effects; then it returns a type of Int. For example, the
function g might read from stdin or from a database, or it might modify a mutable
state. Repeatedly invoking g won’t produce the same results every time; the result
depends on the history of actions that were already performed. Haskell’s type sys-
tem makes it explicit that f is a query, whereas g is a command.

 Not all functional languages are as pure as Haskell. Most of them will let you use
functions that have side effects without any explicit indication in the function signa-
ture. This does not negate the advantage of functional programming over OO con-
struction with respect to composability. Functional programming is idiomatically
practiced for purity and programmers find it natural to write that way. Side effects are
considered aberrations in the functional world, whereas they’re more natural in the
OO world.

A.5.4 Composability and concurrency

Possibly the biggest advantage you have with composable abstractions is that they
implement support for concurrent programming. Right now, you’re probably using
lock-based synchronization when you design concurrent abstractions that are meant
to run in multithreaded environments. Designing for concurrency is hard, and it’s

310 APPENDIX A Role of abstractions in domain modeling
made harder by the inherent nondeterminism in execution that thread-based models
offer. Lock-based concurrency control doesn’t compose; individually atomic opera-
tions synchronized on locks don’t ensure atomicity when they’re composed together.
It’s no wonder that research in computer science has been geared toward better
abstractions for concurrency control.

 Software transactional memory (STM) is one of the concurrency control structures
that’s been implemented successfully in languages like Haskell and Clojure. STM is an
alternative to lock-based synchronization and gives you concurrency control that’s
analogous to database transactions for controlling access to shared memory within
your programs. The primary advantage that STM brings to you is the ability to com-
pose atomic operations into larger atomic operations.

 Let me elaborate with a small example in Haskell. The following snippet of code
implements an atomic transfer operation between two bank accounts.

transfer :: Account -> Account -> Int -> IO ()
transfer from to amount
 = atomically (do { credit to amount
 ; debit from amount })

Even if you’re not familiar with the nuances of the Haskell programming language,
you don’t need to run to the local bookstore right now. The example is fairly intuitive
for understanding how a Haskell combinator atomically ensures that two individu-
ally atomic operations, deposit and withdraw, compose to form a larger atomic oper-
ation, transfer.

 Composability is one of the recurring themes we’ll visit repeatedly in part 2 of the
book when we discuss how to implement higher-level abstractions using combinators.
When you can compose abstractions and isolate side effects, then you can hope to
make your abstractions more expressive.

A.6 References
1 Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on Software Engineer-

ing, Anniversary Edition (2nd Edition). Addison-Wesley Professional.
2 Prasanna, Dhanji R. 2009. Dependency Injection: Design Patterns Using Spring and

Guice. Manning Publications.
3 Gamma E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional.
4 Bracha, Gilad, and William R. Cook. September 1990. Mixin-based Inheritance.

Proceedings of the European Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 303-311.

5 Kuleshov, Eugene. February 2008. It is safer not to invent safe hash map/Java. http://
www.jroller.com/eu/entry/not_invent_safe_hash_map.

appendix B
Metaprogramming

 and DSL design

Metaprogramming is a technique that’s commonly associated with designing DSLs.
Using metaprogramming, you can write code that generates code. When you
design a DSL, you can let the language runtime or the compile-time infrastructure
generate code for you. This code might seem extremely verbose or boilerplate to
your users. In this appendix, I’ll discuss common techniques of metaprogramming
used in designing DSLs and how you can use these techniques to make your DSL
expressive and succinct.

B.1 The meta in the DSL
In section 2.1, you learn that the powerful metaprogramming capabilities of
Groovy can help you write a more expressive DSL than Java can. Languages like
Groovy and Ruby let you inflect dynamic runtime behaviors on objects. You can
add capabilities on the fly that make the resultant semantics much more malleable.
These dynamic behaviors are governed by the metaobject protocol (MOP) (see [5]
in section B.8) that each of these languages implements in their runtime. The
metaobject protocol of a language defines the semantics of the extensibility of the
language artifacts. Take a look at the accompanying callout for a gentle introduc-
tion to the concept of MOP in programming languages.

DEFINITION A meta-object is an abstraction that manipulates the behavior
of other objects. In an OOP language, a metaclass might be responsible for
creating and manipulating classes. To do that, the metaclass needs to store
all information that’s relevant to the class, like type, interface, methods,
and extension objects.

A meta-object protocol (MOP) for a language defines the semantics of
the extensibility of programs written in that language. The behavior of the
311

312 APPENDIX B Metaprogramming and DSL design
program is determined by the MOP, including aspects of the program that
can be extended by the programmer during compile time or runtime.

Metaprogramming is the ability to write programs that generate new programs or that
change the behavior of existing programs. In an OO language like Ruby or Groovy,
metaprogramming implies capabilities that extend existing object models, add hooks
to alter the behaviors of existing methods (or even classes), and synthesize new meth-
ods, properties, or modules during runtime through introspection. Languages like
Lisp use macros as the metaprogramming tool that let you syntactically extend the
language during the compilation stage. Although the primary form of metaprogram-
ming that’s supported by Groovy or Ruby is runtime, Lisp metaprogramming is com-
pile time, and doesn’t incur any runtime overhead. (Both Groovy and Ruby have
library support for compile-time metaprogramming through explicit manipulation of
the ASTs. But it’s nowhere near as elegant as Lisp. See section B.2 to see why.) Java also
offers metaprogramming capabilities through annotation processing and aspect-oriented
programming (AOP); it also defines all its extensibility mechanisms through its MOP.

 Does your code generate code? This question is possibly the most important
one to ask yourself when you’re trying to determine whether your language is effec-
tive enough to implement a DSL. You can use metaprogramming to grow your host
language toward the domain syntax; it’s considered to be a potent force in DSL
design. Statically typed languages like Haskell and OCaml that have traditionally
relied on pure embedded semantics for designing DSLs now offer type-safe compile-
time metaprogramming through extensions like Template Haskell and MetaOCaml
respectively. For more information, see http://www.haskell.org/th/ and http://www.
metaocaml.org/.

 In this section, let’s review the basic metaprogramming capabilities in some of
today’s languages that make them useful for designing a DSL. Part 2 of this book
discusses each of these capabilities in greater detail, with lots of examples from the
real world.

B.1.1 Runtime metaprogramming in DSL implementation

Why is metaprogramming support such an important feature for a language to host a
DSL? The answer is that because metaprogramming support makes a language exten-
sible, the DSL that you’ve implemented in an extensible language also becomes transi-
tively extensible. OK, I’ll admit that was a mouthful. Let’s dig into an example so you
can grasp this concept of extensibility when it comes to a DSL.

 Consider figure B.1, which illustrates the execution model of a DSL in a language
that supports runtime metaprogramming. If the MOP of the language supports exten-
sibility of core language features, the DSL implementation can leverage this feature;
programmers can alter or extend core behaviors on the collaborating objects. In this
way, the DSL surface syntax remains concise, and the underlying implementation
does all the heavy lifting in collaboration with the MOP of the language. Figure B.1
illustrates this behavior as a sample DSL snippet gets interpreted by the underlying

313The meta in the DSL
implementation and finally processed through the combination of the core language
runtime and the language metaprogramming behaviors.

 Now that you’ve seen an abstract model of the role that metaprogramming plays in
the DSL execution context, let’s revisit our order-processing DSL and check out how
the Groovy MOP plays a central role in adding to the expressivity of the language. See
figure B.2 for a diagrammatic representation of the inflection points.

 All the annotated parts in figure B.2 indicate points at which core language
abstractions are dynamically altered or extended through metaprogramming sup-
port that Groovy’s MOP defines. These extensions have been implemented as part of
the DSL implementation, so the client contracts are concise and free of any inciden-
tal complexity.

Figure B.1 The role of the language metamodel in DSL execution

Figure B.2 Groovy metaprogramming inflection points in our order-processing DSL

314 APPENDIX B Metaprogramming and DSL design
B.1.2 Compile-time metaprogramming in DSL implementation

As you see in chapter 2, the Groovy MOP extends the core language semantics to
implement dynamic program behaviors during runtime. All code generation, method
synthesis, and message interception take place when the program is being executed,
which means that all meta-objects in Groovy and Ruby are the runtime artifacts of the
language. Compile-time metaprogramming lets you construct and manipulate pro-
grams during compile time. You can define new constructs and interact with the com-
piler to perform syntactic transformations and application-specific optimizations. Isn’t
this in perfect harmony with Steele’s vision (see [6] in section B.3) that “a main goal in
designing a language should be to plan for growth?” Truly, with compile-time metaprogram-
ming, you can grow a language seamlessly toward your domain syntax.

 To use the most common form of compile-time metaprogramming you imple-
ment syntactic macros. Macro implementations vary in complexity and power, from
the textual macros offered by C preprocessors to the sophisticated AST-based ones
offered by variants of Lisp and some statically typed languages like Template Haskell
and MetaOCaml. In this section, we’ll take a detailed look at some of the capabilities
that macros and compile-time metaprogramming add to the power of designing suc-
cinct DSLs.

 Besides macros, some languages offer other preprocessor-based capabilities for
compile-time metaprogramming, like the templates in C++, AOP, and annotation pro-
cessing. Some languages like Groovy and Scala also have implementations of explicit
compiler plugins, which provide some metaprogramming capabilities in the form of
AST manipulation. We’ll discuss these features later, though our main focus will be on
macro-based implementations like those in the Lisp family of languages.

C++: TEMPLATES

C++ offers templates as one of the most dominant protocols for metaprogramming. C++
templates support powerful code-generation mechanisms through manipulation of
data structures during compile time. This form of compile-time metaprogramming
has been used quite successfully in scientific and numerical applications for generat-
ing inline versions of algorithms that employ techniques like loop unrolling for opti-
mizing performance.

 Another useful application of C++ metaprogramming is in techniques like expres-
sion templates (see [1] in section B.3) that can serve as a useful alternative to C-style
callbacks. Instead of incurring the overhead of function calls associated with callback
functions, expression templates let you put logical and algebraic expressions directly
inline in the function body. The C++ array-processing library Blitz++ (see [2] in sec-
tion B.3) uses this technique by creating parse trees of array expressions that are used
to generate customized kernels. By generating code during compile time, these tech-
niques have also been used to design DSLs that let programmers write code of the fol-
lowing form on higher-order data structures like vectors and matrices:

Vector<double> result(20), x(20), y(20), z(20);
result = (x + y) / z;

315The meta in the DSL
Besides generating code through template instantiation, C++ offers operator over-
loading as another primitive form of metaprogramming. As a follower of the C pro-
gramming language, C++ also inherits the macro system processed by a preprocessor
to the compiler. Languages belonging to the Lisp family make use of macros to pro-
vide support for compile-time metaprogramming. Let’s look at those now.

LISP AND CLOJURE: MACROS

Lisp has the most sophisticated and complete support for compile-time metaprogram-
ming, through its system of macros. Unlike C macros that have limited expressive
power and that operate based on textual substitution, Lisp macros are powered by the
full extensibility of the language.

 When you have a macro call in your Lisp expression, the Lisp compiler doesn’t
evaluate the arguments. Instead, it passes them unevaluated to the macro code. The
macro code is processed and returns a new Lisp form that’s evaluated in place of the
original macro form. This entire transformation of macro calls runs at compile time,
generating code that consists of valid Lisp forms that are integrated with the AST of
the main program. Look at figure B.3 for an illustration of the compile-time metapro-
gramming support that Lisp offers.

 Besides the support of syntactic macros, the Common Lisp programming language
has lots of other features that make it a natural fit for metaprogramming purposes. Its
uniform representation of code and data, the recursive evaluation model, and the fact
that it uses expression-based semantics as opposed to statement-based ones are some
of the features that you’ll enjoy using.

 Clojure (http://www.clojure.org) is a Lisp implementation on the JVM that was
written by Rich Hickey. Clojure offers metaprogramming through syntactic macros,
much like Common Lisp does. Because Clojure is implemented on the JVM, it inte-
grates seamlessly with Java and offers interoperability with Java objects. In the follow-
ing sections, I’ll use Clojure code snippets to demonstrate the Lisp way of DSL design.
I’ll be using the term Lisp for general reference to the paradigm that we’re talking
about. After all, Clojure is a Lisp. In section B.2 you’ll find more details about how the

Figure B.3 Lisp uses macros to provide compile-time metaprogramming support

316 APPENDIX B Metaprogramming and DSL design
Lisp language design is aligned to expressive DSL implementation. If you want, look at
figure B.3 again. It provides an abstract visualization of how Lisp macros generate
code in the precompilation phase.

 Let’s go through the macro expansion process and how the final Lisp form that’s
evaluated by the compiler is generated. Suppose you’ve got the following DSL snippet
that processes client orders and, based on some criteria, submits the order to the trad-
ing engine:

 (when (and (> (value order) 1000000)
 (is-premium-client? client))
 (make-trade order broker)
 (update-journal client))

In that snippet, when is a macro that has the following form:

 (defmacro when [test & body]
 (list ‘if test (cons ‘do body)))

When the Lisp compiler encounters the call to the macro, it doesn’t have a run-
time parameter to evaluate the arguments with. All that the compiler has is the
source code. What it does is pass the following Lisp lists that represent the source
code, unevaluated:

(and (> (value order) 1000000) (is-premium-client? client))
(make-trade order broker)
(update-journal client)

The compiler then runs the macro with these three list forms as the arguments. The
parameter condition is bound to the list form (and (> (value order) 1000000) (is-
premium-client? client)) and the forms (make-trade order broker) and (update-
journal client) are bound to the &rest body parameter. The macro expansion takes
place and is replaced with the following code, which is generated from the backquote
expression in the macro body:

 (if (and (> (value order) 1000000)
 (is-premium-client? client))
 (do
 (make-trade order broker)
 (update-journal client)))

Like the Groovy MOP, code generation takes place with Common Lisp macros as well,
but unlike Groovy, it takes place during the precompilation phase. The Lisp runtime
never sees any of the meta-objects; it works only on valid Lisp forms.

JAVA: ANNOTATION PROCESSING AND AOP SUPPORT

Java also supports a limited form of compile-time metaprogramming through annota-
tion processing and support for AOP (see [4] in section B.3). You can use annotations
in a Java program that get processed during build-time. These annotations generate
code that can supplement or alter existing program behavior.

 AspectJ (see [3] in section B.3) is the aspect-oriented extension to Java that offers a
small set of powerful constructs that let you inject additional behavior into existing

317Lisp as the DSL
programs through bytecode instrumentation. You can specify well-defined points in
the execution of a program, known as join points, at which you can inject advices to
define additional behaviors. A collection of join points is referred to as a pointcut.
Pointcuts, advices, and Java member declarations make modular units called aspects.
Aspects are used to generate code at specific pointcuts and define one form of MOP
for Java. You can use aspects to implement a limited form of DSLs in Java. They’ve
been used quite successfully in Java EE frameworks like Spring (http://www.spring-
framework.org) to offer concise little languages to the developer.

B.2 Lisp as the DSL
In section 2.3, we look at the role of metaprogramming and code generation in
designing successful DSLs. One of the ways you can make your DSL acceptable to users
is to have a concise surface syntax and yet be sufficiently expressive with the domain
vocabulary. What this implies is that the host language has rich program-transforma-
tion semantics, whether at the compilation level or at the runtime level.

 In section 2.3.1, you see how languages like Groovy offer runtime MOPs to gener-
ate code that alters program behavior through method synthesis, method intercep-
tion, and other forms of meta-object manipulation. Runtime metaprogramming does
have performance issues, because the transformation structures are being manipu-
lated through the reflection and introspection of the meta-objects.

 Languages like Lisp offer compile-time metaprogramming using macros, which
we discuss in section B.1. It’s the power of syntactic macros that make the Lisp run-
time completely free of any metastructures; a Lisp program execution has to deal only
with the valid Lisp forms that are defined as part of the core language runtime. This
makes Lisp metaprogramming special and syntactic macros the bedrock of DSL
implementation in Lisp. In this section, we’ll go into further detail about the struc-
ture of Lisp programs and try to understand the differences between them and other
language implementations.

When you write a program in most languages, what you’re writing is
being represented as the concrete syntax tree (CST). The CST is the

faithful representation of your program, including the white spaces, com-
ments, and any metainformation you generate. Your program is then passed
through scanners, lexical analyzers, and parsers to generate what we call the
abstract syntax tree (AST). The AST is the syntactic essence of your program
that gets pipelined into the next phases of the compilation process. It goes
through the usual steps of transformation, optimization, and code genera-
tion. The parser of your language is primarily responsible for all such trans-
formations that lead to the generation of the AST from the CST.

B.2.1 What’s so special about Lisp?

What makes compile-time metaprogramming difficult in languages like Java or C++?
In order to work effectively with compile-time metaprogramming, you need to make

318 APPENDIX B Metaprogramming and DSL design
transformations on the AST of the program. Read the sidebar in this section for a brief
outline of abstract and concrete syntax trees.

 In most languages like Java or C++, a program is represented as a string of charac-
ters. The only way the AST can be generated from the CST is through the language
parser, which can parse only valid syntax for that language. The parser isn’t available
as a separate module during the precompilation phase of the program. (Well, this
isn’t strictly true. Now there are languages like Template Haskell and MetaOCaml that
implement compile-time metaprogramming using macros. I talk about them briefly in
chapter 9.) Because the parser isn’t available during this time, new syntax processing
or precompile-time program transformation in these languages is restricted to one of
the following primitive techniques:

■ Macros based on textual substitutions through a compiler preprocessor as in C
■ Selective preprocessing during the precompiler phases through annotations (as

in Java) or templates (as in C++)
■ Instrumentation of bytecodes as in AOP using AspectJ in Java

If your background is in C, you’re probably ruminating on the extremely messy,
painful, and error-prone artifacts that preprocessor macros gave you as part of that
language. This is where Lisp shines. Lisp has been designed ground-up with an infra-
structure that supports syntactic extensibility. The first step toward this outcome was
decided when John McCarthy, the father of Lisp, decided that the language should
have access to its abstract syntax.

 So far I’ve mostly been talking about macros that process the AST and transform
new syntax to original Lisp forms. Macros are what make Lisp extensible, but the real
reason behind the power of macros lies in the design of the language itself. Let’s look
at some of the philosophies of Lisp language design that make it significantly different
from what you see in Java or C++.

B.2.2 Code as data

In Lisp, every program is a list structure, which is the AST of the code itself. As a result,
code is seen as having the same representation and syntax as data. By standardizing on
this simple protocol, the language publishes the abstract syntax to the programmer.
This abstract syntax is simple—it’s a list. Any metaprogram that you generate using
Lisp needs to conform only to this simple, standard representation.

B.2.3 Data as code

By using the QUOTE special form, data syntax can be embedded easily into the code
syntax. Lisp macros are good examples of this philosophy. In fact, Lisp extends this
paradigm of data as code and offers a full-blown template mechanism for writing
metaprograms. In Common Lisp, we call this quasiquotation. In Clojure, the same fea-
ture is implemented through syntax quote, unquote, and splicing unquote. Here’s the def-
inition of the macro defstruct in Clojure:

319Lisp as the DSL
 (defmacro defstruct
 [name & keys]
 `(def ~name (create-struct ~@keys)))

The syntax quote character, represented by a backquote (`) causes the form that fol-
lows it to be interpreted as Lisp data and works like normal quoting. But within the
syntax quoted form, the unquote character (~) turns off quoting and lets Lisp com-
pute that form. A similar technique in Common Lisp, the quasiquotation, lets you
write templates of data in which some parts of the data are fixed, but the others are
computed. It’s pretty much a complete template sublanguage embedded within the
syntax of Lisp.

 We’ll take a detailed look at this Lisp feature when I talk about metaprogramming
in detail in chapter 5. If you’re not used to the paradigms of Lisp programming, now
might be a good time for you to take a break and think about the awesomeness and
dynamism that this feature can bring to your code generation capabilities.

B.2.4 A simple parser that parses only list structures

Lisp is a language with minimal syntax. The Lisp parser is so simple because all it
needs to parse are lists! Both the data and code syntax are represented uniformly
using list structures. The Lisp macro body is also a list structure.

 Lisp is a homoiconic language, and as you now know, it has powerful compile-time
metaprogramming abilities. You might be wondering how this relates to the awesome-
ness of Lisp in implementing DSLs. The answer is simple: stick to the Lisp philosophy
of representing your DSL as a list structure and organize repeatable constructs and pat-
terns as macros. If you design your DSL this way, you won’t need a separate parser for
your DSL. You can use the Lisp parser to parse something that isn’t even a valid Lisp
form and extend the language with new syntax and semantics that speak the vocabulary
of your domain. Look at figure B.4 for a visual of the Lisp-as-the-DSL metaphor.

Figure B.4 Lisp as the DSL. Lisp macros get transformed into valid Lisp forms
and get submitted to the compiler.

320 APPENDIX B Metaprogramming and DSL design
DEFINITION Homoiconic is a five-dollar word that describes a language in
which a program can be represented using a data structure that the language
can process. In the case of Lisp, it’s a list that makes a uniform representation
for code and data.

By looking at figure B.4, can you figure out how Lisp unifies the differences between
external and internal DSLs? On one hand, there’s external syntax in our DSL, also
known as macros. Macros aren’t valid Lisp forms. At the same time, we don’t need an
external parser to process those external forms. The ubiquitous list data structure uni-
fies them all and the native Lisp parser serves as the universal processor for our DSL.
All these capabilities that I’ve discussed make Lisp almost a perfect language for
implementing custom DSL structures.

 Metaprogramming is a technique that lets you write programs that write programs.
You just saw how Lisp achieves this through compile-time macros. Section B.1 gives
you a general overview of compile-time metaprogramming. This section describes a
concrete implementation in one of the earliest metaprograming-powered languages.
When you have a solid understanding of the power of meta, you’ll appreciate how you
can exploit this paradigm in real-life implementations of DSLs. In chapters 4 and 5,
you’ll find lots of examples of compile-time and runtime metaprogramming using
dynamic languages like Ruby, Groovy, and Clojure.

B.3 References
1 T. Veldhuizen. Expression templates. C++ Report, 7 (5) pp. 26-31, June 1995.
2 Blitz++, http://www.oonumerics.org/blitz/.
3 AspectJ, http://www.eclipse.org/aspectj/.
4 Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,

and J. Irwin. 1997. Aspect-Oriented Programming. Proceedings of the European
Conference on Object-Oriented Programming, pp. 220-242.

5 Kiczales, Gregor, Jim des Rivieres, and Daniel G. Bobrow. 1991. The Art of the
Metaobject Protocol. The MIT Press.

6 Steele, Jr, G.L. Growing a language. Higher-Order and Symbolic Computation 12
(1999), pp. 221-236.

appendix C
A cheat sheet for Ruby’s

 DSL-friendly features

This appendix will assist you as you become familiar with the DSL-friendly features
of Ruby. Please don’t treat this information as a comprehensive language overview.
For a more complete and detailed discussion of the language and its syntax, see the
references in section C.2.

C.1 DSL-friendly features of Ruby
Ruby is a dynamically typed OO language with strong features of reflective and gen-
erative metaprogramming. Ruby’s object model lets you change the behaviors of
objects at runtime through reflection into its metamodel. You can also generate
code during runtime through metaprogramming, which means that your DSL sur-
face syntax is always concise. Table C.1 gives you a brief overview of the features of
Ruby that make it a great language for designing DSLs.
321

322 APPENDIX C A cheat sheet for Ruby’s DSL-friendly features
Table C.1 Ruby feature overview

Classes and objects

Ruby is OO. You can define classes that have
instance variables and methods.
A Ruby object has a set of instance variables
and an associated class.
A Ruby class is an instance of the class
Class. It has everything that an object has,
plus a set of method definitions and a refer-
ence to the superclass.
When you design a DSL using Ruby, it’s
common to model the entities of your domain
as classes.

class Account
 def initialize(no, name)
 @no = no
 @name = name
 end
 def to_s
 "Account no: #{@no} name: #{@name}"
 end
end

initialize is a special method that’s called
when you invoke Account.new. It’s used to
set the state of your object after the initial memory
allocation.
@no and @name set up the instance variables of the
class. You don’t have to declare variables before
using them.

Singletons

You can define a method specific to a particu-
lar object.
The set of method definitions within a Ruby
class (as I’ve already mentioned) are nothing
but singleton methods that are defined for the
instance of the class Class. Singletons are
also known as class methods in Ruby.

accnt = Account.new(12, "john p. ")
def accnt.do_special
 ##
end
accnt.do_special ## runs
acc = Account.new(23, "peter s. ")
acc.do_special ## error!

do_special is a method that’s defined only
for the instance accnt. It’s an example of a
singleton method in Ruby, where self refers to the
instance accnt

Metaprogramming

Metaprogramming is the secret sauce behind
Ruby DSLs. Ruby is a reflective language that
lets you peek into the runtime meta-objects
and change their behaviors.

class Account
 attr_accessor :no, :name
end

attr_accessor is a class method that uses
reflective metaprogramming during runtime. It
generates accessor methods for the attributes
that are supplied as parameters. Note how concise
the surface syntax is; the boilerplates are generated
during runtime.

class Trade < ActiveRecord::Base
 has_many :tax_fees
end

This example is from the ActiveRecord library of
Rails. The one-to-many relation between entities is
expressed through a class method in Ruby and used
with reflective metaprogramming.

323DSL-friendly features of Ruby
Open classes

Ruby lets you open any class and add or
change attributes, methods, and properties
during runtime.
This feature is popularly known as monkey
patching, and is considered to be one of
Ruby’s most dangerously powerful features.
Because monkey patching works in the
global namespace, you need to use this
feature judiciously.

class Integer
 def shares
 ##
 end
end

You can design DSL-friendly features using Ruby’s
open classes. For example, you can open the class
Integer and add a method named shares, so
that your DSL user can write code like 2 shares.
On the down side, all users who’ll be using the
class Integer are affected by this monkey patch-
ing. Be careful!

Evals

In Ruby, you can evaluate a string or a block
of code on the fly. This is one of the most pow-
erful features of Ruby metaprogramming.
In designing DSLs, you can use the evals to
set up the appropriate context. Then you can
pass a block that invokes methods, without
explicitly specifying the context. This makes
your DSL syntax less verbose.
You can set up a different context in which to
evaluate the code by using one of the follow-
ing flavors of evals that are available:

■ class_eval—evaluate a string or a block
of code in the context of a class or a module

■ instance_eval—evaluate a string
or a block of code in the context of a
class instance

■ eval—evaluate a string or a block of code
in the current context

class Account
end
Account.class_eval do
 def open
 ##
 end
end

The context is the class Account. class_eval
creates an instance method for the class
Account.

Account.instance_eval do
 def open
 ##
 end
end

The context is the singleton class of
self.instance_eval produces a singleton
method (or class method) for Account.

Modules

Modules offer a way to group related artifacts
like methods, classes, and so on, so that
they can be included in your class as a
mixin component.
Modules also offer a namespace facility
in Ruby.

module Audit
 def record
 ##
 end
end

The module defines a new namespace for grouping
together all the audit-related methods. Now you can
use it as a mixin and include it in your class to make
it auditable:

class Account
 include Audit
 ## can use the method record here
end

Table C.1 Ruby feature overview (continued)

324 APPENDIX C A cheat sheet for Ruby’s DSL-friendly features
C.2 References
1 Thomas, Dave, Chad Fowler, and Andy Hunt. 2009. Programming Ruby 1.9: The

Pragmatic Programmers’ Guide, Third Edition. The Pragmatic Bookshelf.
2 Perrotta, Paolo. 2010. Metaprogramming Ruby: Program Like the Ruby Pros. The

Pragmatic Bookshelf.

Blocks

Ruby blocks are chunks of code, somewhat
similar to anonymous methods, that can be
reified for later execution. Just like methods,
a Ruby block can take parameters.
A block is used synonymously with lambdas,
which can implement higher-order functions
in Ruby.

sum = 0
[1, 2, 3, 4].each do |value|
 sum += (value * value)
end
puts sum

|value| in horizontal bars is the parameter that
gets passed to the block.
The method each which belongs to a Ruby array,
accepts a block as a parameter

Hash as a variable-length argument list

Ruby has a user-friendly way to implement a
variable-length argument list to a method.
You can simply pass a hash, then access it as
key/value pairs.
Doing this adds to the readability of the DSL
code and makes implementing the Builder
pattern a trivial task.

def foo(values)
 ## values is a hash
end

Calling the function:

foo(:a => 1, :b => 2)

Example application of this idiom from Rails:

class Trade
 has_many :tax_fees,
 :class_name => "TaxFee",
 :conditions => "valid_flag = 1",
 :order => "name"
end

Duck typing

In Ruby, you design an abstraction NOT based
on types, but based on the set of messages it
responds to. If an object responds to a quack
message, then it’s a duck!
This kind of coding wouldn’t work in Java. In
Java, you need to specify the type signature of
the argument when it’s passed in a method.

class Duck
 def quack
 ##
 end
end
class DummyDuck
 def quack
 ##
 end
end
def check_if_quack(duck)
 duck.quack
end

The method check_if_quack will work with
instances of Duck as well as DummyDuck, because
both of them respond to the message quack.

Table C.1 Ruby feature overview (continued)

appendix D
A cheat sheet for Scala’s

 DSL-friendly features

This appendix will assist you as you become familiar with the DSL-friendly features
of Scala. Please don’t treat this information as a comprehensive language overview.
For a more complete and detailed discussion of the language and its syntax, see the
references in section D.2.

D.1 DSL-friendly features of Scala
Scala is an object-functional language that runs on the JVM. It has great interopera-
bility with Java by virtue of having the same object model (and more). Scala has a
nice, concise syntax, offers type inference, and a whole bunch of mechanisms for
designing abstractions based on a combination of OO and functional paradigms.

Table D.1 Scala feature overview

Class-based OOP

Scala is OO. You can define classes that
have instance variables and methods. But
besides being a class, a Scala abstraction
can be of many other types, each with its
own set of features and applicability.
We’re going to look at most of them in
this appendix.
When you design a DSL using Scala, it’s
common to model the entities of your
domain as classes or as any of the other
ways to group related functionalities.
For details about class definition syntax,
refer to [1] in section D.2.

class Account(val no: Int, val name:
String) {
 def balance: Int = {
 //.. implementation
 }
 //..
}

A class definition can take parameters. In this snip-
pet, val implies that no and name are immutable
and cannot be reassigned.
balance is a method that you can define. It doesn’t
take any argument and returns an Int.
325

326 APPENDIX D A cheat sheet for Scala’s DSL-friendly features
Table D.1 Scala feature overview (continued)

Case classes

You can add the word case before a class
definition and get a lot of mileage out of the
abstraction that the compiler generates.
It’s called a case class in Scala. For a case
class, the compiler automatically does
the following:

■ Converts the constructor arguments into
immutable vals. You can explicitly specify
var to decide otherwise.

■ Implements equals, hashCode, and
toString methods to the class.

■ Lets you invoke a shorthand notation for the
constructor. You don’t need to specify the
keyword new while instantiating an object of
the class. The compiler gives you a compan-
ion object that contains the apply() con-
structor and an extractor on the constructor
arguments.

Case classes are also useful for pattern match-
ing. They’re the most idiomatic way to imple-
ment algebraic data types in Scala.
Because of the built-in features of immutability
that case classes offer, they’re often used
to build immutable value objects when designing
DSLs

abstract class Term
case class Var(name: String)
extends Term
case class Fun(arg: String, body:
Term) extends Term

For this case class definition, you can instantiate
as val p = Var("p"), without having to explic-
itly specify new.

Traits

Traits are yet another way to specify abstrac-
tions in Scala. They’re similar to Java interfaces
in that you can leave out the implementation for
concrete classes. But unlike interfaces, you can
specify partial implementations of some meth-
ods in a trait.
Traits offer a way to implement mixins in Scala
and can also be used to design the correct way
to use multiple inheritance.

trait Audit {
 def record_trail {
 //.. implementation
 }
 def view_trail // open
}
class SavingsAccount extends Account
with Audit {
 //..
}

Traits are a great way to design open reusable
abstractions without committing to a specific
implementation. Note how in this definition,
the method view_trail is kept open for
implementation by the abstraction that mixes
in the trait.

327DSL-friendly features of Scala
Higher-order functions & closures

In Scala, functions are first-class values, and you
can pass a function as an argument to yet
another function. You can also have a function
return another function. Functions as first-class
values give Scala the main power for functional
programming.
Higher-order functions make code less verbose
and express the correct verb semantics of
your DSL.
Closures let you write fewer classes and objects
and more functional artifacts.

val hasLower =
bookTitle.exists(_.isLowerCase)
def foo(bar: (Int, Int)=>Int) {
 //..
}

In the first example, the method exists takes a
function as an argument that it applies to each
character of the string. In Java, this would’ve
been way more verbose.
The second example shows the literal syntax of a
function in Scala.

Pattern matching

Like all functional programming languages,
Scala has pattern matching. You can match arbi-
trary expressions with a first-match-wins policy
in Scala.
Case classes and pattern matching are a potent
combination for implementing functional idioms
in Scala.
You can implement an extensible Visitor pattern
using case classes.
As you see in chapter 6, pattern matching
plays an important role in making expressive
business rules

def foo(i: Int) = i match {
 case 10 => //..
 case 12 => //..
 case _ =>
}

The previous rendering is a more concise Scala
version of Java’s switch/case statement. But
pattern matching has many other uses.

val obj = doStuff()
var cast:Foo = obj match {
 case x:Foo => x
 case _ => null
}

The earlier example is a more idiomatic way
of implementing an instanceOf check used
in Java.

trait Account
case class Checking(no: Int) extends
Account
case class Savings(no: Int, rate:
Double) extends Account
def process(acc: Account) = acc match
{
 case Checking(no) => // do stuff
 case Savings(no, rt) => // do stuff
}

Case classes can be used directly for pattern
matching. Note that earlier I said that case
classes implement extractors by default.

Table D.1 Scala feature overview (continued)

328 APPENDIX D A cheat sheet for Scala’s DSL-friendly features
Objects as modules

Objects define executable modules in Scala.
After you define abstractions using classes and
traits, you can compose them together into a
concrete abstraction using the object syntax.
Object syntax is the closest approximation of
statics that are used in Java.

object RuleComponent extends Rule
with CountryLocale with Calendar { //
..
}

RuleComponent is a singleton object created
out of the specified abstractions.

Implicit arguments

You can leave out the last argument of a function
by declaring it to be implicit. The compiler
will look for a matching argument from the
enclosing scope of the function.

def shout(at: String)(implicit curse:
String) {
 println("hey: " + at + " " + curse)
}
implicit val curse = "Damn! "
shout("Rob")

The compiler will complain if it can’t find a match-
ing argument from the enclosing scope.

Implicit type conversions (aka Pimp My Library)

You can extend existing libraries without making
any changes to them by using implicit type con-
versions. It works much like Ruby monkey patch-
ing, but it’s controlled within the lexical scope.
Martin Odersky named this the Pimp My Library
pattern (see [2] in section D.2).
The implicit conversion function is automatically
applied by the compiler. This helps you make
your legacy abstractions smart with improved
APIs.

class RichArray[T](value: Array[T]) {
 def append(other: Array[T])
 : Array[T] = {
 //.. implementation
 }
}
implicit def enrichArray[T](xs:
Array[T]) = new RichArray[T]

The implicit definition of enrichArray serves
as the conversion function from Array to
RichArray.

Partial functions

A partial function is one that's defined only for a
set of values of its arguments. Partial functions
in Scala are modeled as blocks of pattern-match-
ing case statements.
PartialFunctions are used idiomatically to
define the message receive loop in Scala actors.

val onlyTrue:
PartialFunction[Boolean, Int] = {
 case true => 100
}

onlyTrue is a PartialFunction that’s
defined for a limited domain. It’s defined only for
the Boolean value true. The
PartialFunction trait contains a method
isDefinedAt that returns true for the domain
values for which the PartialFunction is
defined. Here’s an example:

scala> onlyTrue isDefinedAt(true)
res1: Boolean = true
scala> onlyTrue isDefinedAt(false)
res2: Boolean = false

Table D.1 Scala feature overview (continued)

329References
D.2 References
1 Wampler, Dean, and Alex Payne. 2009. Programming Scala: Scalability = Functional

Programming + Objects. O’Reilly Media.
2 Odersky, Martin. Pimp My Library. Artima Developer. http://www.artima.com/

weblogs/viewpost.jsp?thread=179766.

Generics and type parameters

Scala offers type parameters that you specify as
part of your class and method declarations. You
can also specify explicit constraints on these
types that your abstraction will honor. You get an
automatic level of constraint checking by the
compiler without having to write a single line of
validation logic.
With Scala, you can abstract many of your DSL
constraints within the type system.

class Trade[Account <:
TradingAccount](account: Account) {
 //..
}

In this class definition, you won’t be able to cre-
ate an instance of Trade with an account that
doesn’t satisfy the specified constraint.

Table D.1 Scala feature overview (continued)

appendix E
A cheat sheet for Groovy’s

 DSL-friendly features

This appendix will assist you as you become familiar with the DSL-friendly features
of Groovy. Please don’t treat this information as a comprehensive language over-
view. For a more complete and detailed discussion of the language and its syntax,
see the references in section E.2.

E.1 DSL-friendly features of Groovy
Groovy is a dynamically typed OO language with strong features of reflective and
generative metaprogramming. Groovy shares the object model with Java and has
strong interoperability with the Java language. Groovy can also be used as a script-
ing language. It has optional typing, operator overloading, strong literal syntax,
and functional abstractions like closures. Table E.1 gives you a brief overview of the
features of Groovy that make it a great language for designing DSLs.

Table E.1 Groovy feature overview

Class-based OOP

Groovy is OO. You can define classes
that have instance variables and meth-
ods. The syntax is similar to Java and
the default visibility modifier is public.
For details about class definition syntax,
refer to [1] in section E.2.

class Account {
 Integer balance(Date date) = {
 //.. implementation
 }
 //..
}

This snippet shows a class declaration in Groovy.
330

331DSL-friendly features of Groovy
Table E.1 Groovy feature overview (continued)

Optional typing

You can declare static types just like you
can in Java; these types are honored at
runtime. Groovy also offers dynamic typing
like Python does, where the type declara-
tion is replaced by the def keyword. For-
mal parameters to method and closure
declarations can even omit the def.

String str = new String("Groovy");
str = 8
def dstr = "dynamic"
dstr = 20

str will be assigned the String 8
dstr will be assigned the Integer 20

Properties

You declare properties as fields with the
default visibility modifier, no matter what
type you’re using.

class Foo {
 String str
 def dyn
}

This snippet shows a class with properties.

Strings

You can define single-line strings,
multiline strings, or a GString with
placeholders.

def single = 'single line string'
def multi = """ I am a multi line
 string"""
def gstring = "$single has ${single.size}
characters"

This code shows various strings that are supported in
Groovy.

Collection data types

Groovy offers all common collection data
types like Range, List, Map, and so on.
All of them have a strong
literal syntax that makes great DSL snip-
pets.

// range (half inclusive)
(0..<10).each { println it }
// list manipulation
[1,2,3] * 2 == [1,2,3,1,2,3]
[1,[2,3]].flatten() == [1,2,3]
[1,2,3].reverse() == [3,2,1]
[1,2,3].disjoint([4,5,6]) == true
// map definition literal syntax
def map = [a:0, b:1]

Examples of various collection data types in Groovy.

Closures

A closure is a block of code that can be
reified for later execution. It encapsulates
some logic and an enclosing scope.

def clos = { println "hello world!" }

clos() //prints "hello world!"

def mult = {x, y -> println x * y}

mult(2, 5) // prints 10

These snippets show closures in Groovy.

332 APPENDIX E A cheat sheet for Groovy’s DSL-friendly features
E.2 References
1 König, Dierk, Paul King, Guillaume Laforge, and Jon Skeet, 2009. Groovy in

Action, Second Edition. Manning Early Access Program Edition. Manning
Publications.

2 Subramaniam, Venkat. 2008. Programming Groovy: Dynamic Productivity for the Java
Developer. The Pragmatic Bookshelf.

Builders

Builders help you build hierarchical data
models with amazingly concise syntax.
The secret sauce is metaprogramming.

def builder = new
 groovy.xml.MarkupBuilder(writer)
 builder.html(){
 head(){
 title("Welcome"){}
 }
 body(){
 p(“How are you?”)
 }
 }

Groovy builders work based on a combination of
metaprogramming and closures.

Metaprogramming—ExpandoMetaClass

The ExpandoMetaClass is one of the
primary metaprogramming constructs that
allows you to dynamically add methods,
constructors, properties, and static meth-
ods using a closure syntax.

Integer.metaClass.twice << {delegate * 2}

This snippet adds a method named twice to the class
Integer.This new method is visible to all threads in
unlimited scope

Metaprogramming—categories

This concept is similar to the
ExpandoMetaClass, but visibility
is limited to the scope that you explicitly
specify.

class IntegerCategory {
 static Integer twice(Integer i) {
 return i * 2
 }
}
use (IntegerCategory) {
 assert 4 == 2.twice()
}

The method twice is visible only within the scope
specified by use {}.

Table E.1 Groovy feature overview (continued)

appendix F
A cheat sheet for Clojure’s

 DSL-friendly features

This appendix will assist you as you become familiar with the DSL-friendly features
of Clojure. Please don’t treat this information as a comprehensive language over-
view. For a more complete and detailed discussion of the language and its syntax,
see the reference in section F.2.

F.1 DSL-friendly features of Clojure
Clojure is a functional programming language that’s built on top of the JVM. It’s
dynamically typed, with optional type hints and type inference, and is targeted as a
general-purpose programming language. Clojure is a dialect of Lisp and compiles
directly to JVM bytecode. It’s homoiconic and has strong features of concurrency
control built in the language.

 Besides the features described in the table, Clojure has lots of other features
related to concurrency and state management, lazy sequences, sequence-compre-
hensions and looping, and many advanced data structures. For more on these,
refer to [1] in section F.2.
333

334 APPENDIX F A cheat sheet for Clojure’s DSL-friendly features
Table F.1 Clojure feature overview

Functional—organize DSLs around functions

You organize your entire DSL as a collec-
tion of functions.
In Clojure, functions are first-class arti-
facts with strong support for higher-
order functions and closures. Anony-
mous functions are also supported.
In spite of the fact that Clojure is built
upon Java, the language is predomi-
nantly functional. You can go down to
the Java level and invoke object seman-
tics, but idiomatic Clojure is functional.

(str "hello" " " "world")
=> "hello world"
(count [1 2 3 4 5])
=> 5
(+ 12 20)
=> 32

Prefix notation is the normal order of the day.

Note:
Clojure is homoiconic. Note that every function invocation
is a list that begins with the function name.

(filter even? [1 2 3 4])
=> (2 4)

even? is a Clojure function that returns true if the input
is an even number. In the previous example, we pass the
function even? as a parameter to filter, which
applies even? to every element of the passed sequence.

(filter #(or (zero? (mod % 3))
 (zero? (mod % 5)))
 [1 3 5 7 9 10 15])
=> (3 5 9 10 15)

filter can also take an anonymous function.

Functional—function definition

You define a function using defn. That’s
pure syntax, which I illustrate in the
example. The most interesting part is
that in Clojure (like any other Lisp vari-
ant), a function is also data that starts
with a symbol.

(defn ^String greet
 "Greet your friend"
 [name]
 (str "hello, " name))

defn starts the beginning of a function definition. The next
part is the documentation associated with the function def-
inition, called the docstring. Then we have the parameter
list in a vector, and finally the body of the function.
Optionally, you can have metadata with the ^ prefix. Here
it indicates the return type of the function.
The whole function definition is also a Clojure list that
contains members for every part of the definition.

Designing abstractions

The Clojure way Traditional OO way

■ Public fields
■ Immutable objects
■ Polymorphism through multimethods

and protocols
■ No implementation inheritance

■ All data is hidden inside classes through private
members

■ Objects are mutable
■ Polymorphism through inheritance hierarchies, which

can mean inheritance of interface or implementation
■ Implementation inheritance allowed

335DSL-friendly features of Clojure
Sequences

Every aggregate data type in Clojure is a
sequence. You can treat sequences uni-
formly through a set of APIs that apply
equally to every member of the
sequence family. You can also treat all
Java collections as Clojure sequences.
Take a look at the examples.

(first '(10, 20, 30))
=> 10
(rest [10, 20, 30])
=> (20, 30)
(first {:fname "rich" :lname "hickey"})
=> [:fname "rich"]

In the code snippet:

■ The first example invokes first on a List.
■ The second example invokes rest on a Vector.
■ The third example invokes first on a Map.

Sequences are functions

Clojure treats every sequence type as a
function. This follows from the mathe-
matical definitions of the sequences.
Here's a list of the ways we can express
Clojure’s sequences mathematically:

■ A Vector is a function of its position.
■ A Map is a function of its key.
■ A Set is a function of membership.

(def colors [:red :blue :green])
(colors 0)
=> :red
(def room {:len 100 :wd 50 :ht 10})
(room :len)
=> 100
(def names #{"rich hickey" "martin odersky"
"james strachan"})
(names "rich hickey")
=> "rich hickey"
(names "dennis Ritchie")
=> nil

Creating sequences

Clojure offers a number of functions that
you can use to create sequences. Many
of them offer a lazy sequence as a result
and can be used to generate infinite
sequences.

(range 0 10 2)
=> (0 2 4 6 8)
(repeat 5 3)
=> (3 3 3 3 3)
(take 10 (iterate inc 1))
=> (1 2 3 4 5 6 7 8 9 10)

Filtering sequences

Clojure offers combinators that you can
use to filter a sequence. Always prefer
using these combinators instead of cod-
ing an explicit recursion.

(filter even? [1 2 3 4 5 6 7 8 9])
=> [2 4 6 8]
(take 10 (filter even? (iterate inc 1)))
=> [2 4 6 8 10 12 14 16 18 20]
(split-at 5 (range 10))
=> [(0 1 2 3 4) (5 6 7 8 9)]

Table F.1 Clojure feature overview (continued)

336 APPENDIX F A cheat sheet for Clojure’s DSL-friendly features
F.2 References
1 Halloway, Stuart. 2009. Programming Clojure. The Pragmatic Bookshelf.

Transforming sequences

Clojure offers lots of combinators that
transform an existing sequence. They
take as input one sequence and gener-
ate another sequence or value by apply-
ing some transformation.

(map inc [1 2 3 4])
=> (2 3 4 5)
(reduce + [1 2 3 4])
=> 10

Persistent data structures and immutability

In Clojure, all data structures are immu-
table and persistent. This means that
after you make changes to an object,
you can access all historical versions of
the same object without incurring addi-
tional overhead in storage requirements.

(def a [1 2 3 4])
(def b (conj a 5))
a
=> [1 2 3 4]
b
=> [1 2 3 4 5]

Macros

The secret sauce of DSL design in Clo-
jure is macros. Macros are artifacts that
get expanded to valid Clojure forms dur-
ing the macro-expansion phase.
Macros are a very potent tool to use
to design custom syntax constructs in
your DSL.

(defmacro unless [expr form]
 (list ‘if expr nil form))

The macro defines a control structure like if or while
that you can use just like normal Clojure forms.

Table F.1 Clojure feature overview (continued)

appendix G
Polyglot development

As you’ve seen throughout the book, DSLs are not limited by a single programming
language. You can use the language that best fits your requirements. Even though it
seems that this means that your application will become a nest of chaos between
indiscriminate islands of language cacophony, that doesn’t have to be the case. But
how will you know when your project has entered such an unfortunate state? Sim-
ple! You’ll feel like the confused programmer in figure G.1.

 In this appendix, you’ll see how to bootstrap yourself into a disciplined polyglot
development environment. I assume that you’ll be developing DSL-based applica-
tions on the JVM. In such developments, Java can play the role of the base host lan-
guage where your main application is developed using Java, and you’re developing
DSLs in some other language to make
your published APIs expressive to your
clients. Just a friendly reminder—
this appendix is only for entry-level
users planning to start developing
DSLs using a mixed-language para-
digm. If you’re already experienced
in such development patterns, feel
free to skip this appendix.

 I’m going to discuss two exam-
ples of how to bootstrap your devel-
opment environment in case you
decide to develop your DSL in a non-
Java language on the JVM and inte-
grate it with your Java-based applica-
tion. The first example is based on
Groovy, which is a dynamic lan- Figure G.1 Don’t let this happen to you!
337

338 APPENDIX G Polyglot development
guage. You’ll get a feel for how modern IDEs give you a seamless integration of a
mixed Java-Groovy project. The second example is based on Scala, which is a statically
typed language. In that example, you’ll see how to set up your environment for a
mixed Java-Scala project.

G.1 What features should you look for in an IDE?
When you’re working on a polyglot project in languages on the JVM, you’ll want to
look for the following features in your IDE:

■ Support for a mixed Java-X project where X is Scala, Groovy, Ruby, or Clojure,
and any combination of Java/X project dependencies.

■ A rich syntactic editor integrated with the IDE that provides some amount of
assistance to the developer. The richness of the editor means support for syntax
highlighting, inferred types, documentation on hover, code completion, and
the like.

■ A unified explorer view of all project artifacts, including types, packages, and
views of the combined project.

■ Debugging support integrated for the languages.

Additionally, there will be other features that vary across languages. Generally, stati-
cally typed languages offer better IDE support than dynamic ones because there’s
more meta-information available to them. But things are improving every day. Many
popular IDEs are becoming more and more user-friendly, offering a better experience
to the developers.

G.2 Bootstrapping a Java-Groovy development environment
If you’ve worked on any nontrivial Java project, you must’ve had the experience of
using a modern IDE like Eclipse (http://eclipse.org) or NetBeans (http://net-
beans.org). When you use multiple languages for developing DSLs, I’m sure you’ll also
be looking for similar user friendliness in interaction and building project artifacts
from your IDE. This is something that’s evolving quickly—keep an eye on your favorite
platform for all the recent updates.

 Groovy is a language that has good integration with Java. As I mention in chap-
ter 3, Groovy shares the object model with Java; any IDE that works well for Java-
based projects should also work equally well for Groovy-based ones. But there’s a
catch. Groovy is a dynamic language where you can optionally specify types. In many
cases, the compile-time type information isn’t present with the IDE. Code comple-
tion or other rich features that the editor offers might not be that refined in Groovy.
Even so, things are improving and we’re seeing lots of plugins being developed that
perform these smart acts in the editor, even for dynamic languages.

 To bootstrap your Groovy-based DSL development environment in a Java project,
take the advice given in table G.1.

339Bootstrapping a Java-Scala development environment
G.3 Bootstrapping a Java-Scala development environment
Scala, as we’ve discussed earlier, is statically typed with a powerful type system. IDE sup-
port for Scala is evolving—we already have quite good support for Scala editing
through Eclipse, IntelliJ Idea, and NetBeans.

 Installing Scala support in Eclipse is as simple as pulling in the latest version of the
plugin. Here’s the complete rundown of what you need to do to bootstrap your
Eclipse environment to support a mixed Java/Scala development.

 Software requirements:

■ Java Development Toolkit 1.6
■ Eclipse Classic 3.5.2 (Check the exact version at http://eclipse.org)

After you’ve installed Eclipse, you need to install the plugin for Scala development.
On the home page for Scala IDE (http://www.scala-ide.org/), there’s a friendly video
that takes you through the steps in detail.

 Eclipse plugin for Scala is improving daily. Now with the plugin installed, you get a
rich set of features for developing a mixed Scala/Java project:

■ Support for Scala/Java project development
■ Rich editor support with code completion, type inferencing, and so on
■ Incremental compilation
■ Debugger support
■ A lot more for all the artifacts of Scala and Java

Table G.1 Steps for setting up a Groovy based DSL development environment

Do Use it for

Download the Java Development Kit
(version 5 or 6).

Regular Java development, as well as the runtime for
Groovy-based development.

Download the NetBeans IDE (latest ver-
sion); for exact version compatibility
information, check out the documenta-
tion at http://netbeans.org.

The IDE that you’ll use for hosting Java and Groovy proj-
ects.

Create a regular Java application from
the NetBeans menu.

This application will be the one that can host Java and
Groovy source files.

Name the project and start creating Java
and Groovy source files.

The IDE that will provide an integrated view of the Java
and Groovy project artifacts. The Groovy DSL scripts will
appear alongside Java source files, based on the package
structure that you design. Without any additional plugin,
you’ll be able to build your project from within Netbeans.
Your DSL scripts can be happily invoked from within Java
classes, using one of the methods that we discuss in
chapters 2, 3, and 4.

340 APPENDIX G Polyglot development
G.4 Popular IDEs for polyglot development
Table G.2 provides a list of some of the commonly used IDEs for developing applica-
tions that use multiple languages. With each of the IDEs, I’ve listed the corresponding
required plugins and the common languages that they support.

IDEs are improving every day and are getting richer with new features. Please
check the URL for your preferred IDE before you decide to jump on it.

Table G.2 Polyglot IDEs

IDE Plugin support

Eclipse (http://eclipse.org) Plugin support for:

■ Groovy (http://groovy.codehaus.org/Eclipse+Plugin)
■ Ruby
■ Scala (http://scala-ide.org)
■ Clojure (http://code.google.com/p/counterclockwise/)

NetBeans (http://netbeans.org) Plugin support for:

■ Ruby (http://netbeans.org/projects/ruby/)
■ Clojure (http://www.enclojure.org)
■ Scala (http://wiki.netbeans.org/Scala)
■ Groovy support is native; no plugin is required

Emacs (http://www.gnu.org/
software/emacs/)

Among all the JVM languages, Emacs is possibly the number
one choice for Clojure editing. One point of warning though:
unless you’re familiar with Emacs, it takes some time to get
into the mode. If you want to try out the Emacs-Clojure combi-
nation, go to http://www.assembla.com/wiki/show/clojure/
Getting_Started_with_Emacs

IntelliJ IDEA (http://www.jetbrains.
com/idea/)

Plugin support for:

■ Groovy (http://www.jetbrains.com/idea/features/
groovy_grails.html)

■ Ruby (http://www.jetbrains.com/idea/features/
ruby_rails.html)

■ Scala (http://confluence.jetbrains.net/display/SCA/
Scala+Plugin+for+IntelliJ+IDEA)

■ Clojure (http://www.assembla.com/wiki/show/clojure/
Getting_Started_with_Idea_and_La_Clojure)

index
A

abstract syntax tree. See AST
abstractions 22

commonality and variabilities 294
higher level offered by DSL 11
intention-revealing 193
qualities of 23

accidental complexity 100, 297
ActiveRecord 119
alternation

common parser combinator type 244
annotation, self-type 186
Ant

as DSL 12, 17
ANTLR 48, 218

building the parser module 223
class of grammar it handles 225
comes with GUI-based interpreter 221
as DSL 12
embed Java code 219
generates LL(k) parsers 227
grammar rules 221
lexer for DSL 220
semantic model 222
steps to build an external DSL 224
top-down parsers 81
with order-processing DSL 220–225

ANTLRWorks 221
API

and a DSL 137
smart domain 67
vs. internal DSL 189

append 270
architecting an external DSL 212–216

arguments, named 39
AspectJ 316
AST 39, 77, 283

side effect of parsing 214
and Xtext 235

awk 16

B

backtracking parsers 228
Backus Naur Form. See BNF
beans, refreshable 75
beginning Scala DSL 169–170

modeling noncritical functionality 170
testing Java objects 169
wrapper for Java objects 170

Bison 218
as DSL 12

BNF
grammar 217

bottom-up parser
how they work 229–230
LR(k) parser 230
operator precedence parser 229
shift-reduce 229
SLR parser 230

Bracha, Gilad 301
brokerage. See financial brokerage
bubble words 163
Builder

in Groovy 103
XML in Groovy 58

Builder pattern 29, 38, 177, 307
drawback 39
expressive DSL 102
341

INDEX342
Builder pattern (continued)
use in Java 102
uses a mutable builder 181

business rules
and DI 75
modeling with a DSL 182
types model 116
See also domain rules

C

call-by-need 255
Cascading Style Sheets. See CSS
chaining decorators in Ruby 99–100
choosing DSL implementations 50

composability 52
learning curve with external DSLs 51
reusing existing infrastructure 50
right level of expressivity 51

choosing the DSL language 58
Client Order Processing

common vocabulary 28
Clojure 277, 315

bindings 157
combinator 159
compile-time decorator 158
compile-time metaprogramming 122, 155
compile-time mixins 156
decorators 155
DSL to execution model 160
example macro in DSL 125
feature overview 334
function

composition 157
threading 158

functional DSL 153
functions as first class values 157
higher-order functions 157
immutability 157
macros 154
Map 155
map literal syntax 155
persistent data structures 157
reduce 159
Sequences 154
splicing unquote 125
symbol 124
thinking differently 153
why good internal DSL choice 134

Clojure DSL
with macros 122–126

Closure 74
Coco/R 218
combinators 108, 172, 188

Command pattern 305, 307
Command-Query Separation pattern 308
common patterns of internal DSL 88

dynamic decorators using mixins 96
explicit type constrants 113
hierarchical structures using builders 102
higher-order functions as generic

abstractions 106
implicit context and Smart APIs 91
macros for compile-time code generation

122
Ruby metaprogramming 119

common vocabulary 7–8
binding to implementation model 14
need for 7
setting up 27

commonality and variabilities 20, 37–50, 294
communication gap, during development 8
compile time code generation. See compile-time

metaprogramming
compile-time metaprogramming

Blitz++ 314
C++ templates 314
and DSL 314
how Lisp supports 315
implementing syntactic macros 314–315
Java support 316

composability 52, 243
and concurrency 309
and side effects 307
with parser combinator 243–244
See also well-designed abstractions

conciseness 35
concrete syntax trees 77
const_missing 143
context in a DSL 93
context-sensitive validations 271
control abstractions 125, 171
controlling metaprogramming with Groovy

DSL 148–153
CSS

as DSL 12
Cucumber

as DSL 12

D

data structure 21
data-as-code 282
decorating a function in Clojure 156–157
decorator 271
Decorator pattern 96, 198, 272

compose with domain abstraction 98
improving the Java implementation 98
in Ruby 99

INDEX 343
decorators 300
in Clojure 155
example in Java 97
and mixins 96–101
use in a Ruby DSL 100

dependency injection. See DI
design patterns for composability 305
developing a DSL using Xtext 232–238

code for the semantic model 236
metamodel for grammar 233

development
communication gap during 8

DI 76, 299, 307
and business rules 75
inject during runtime 70
See also Guice

distillation 111
of the abstractions. See well-designed abstractions

domain
analysis 4
experts

and DSL 130
vs. modelers 6

externalizing with XML 32
domain modeling 4

mapping problem domain into solution domain
artifacts 5

object for a Clojure DSL 154
rules

as DSL 144
vocabulary 6–8, 174
See also domain analysis

domain-specific language. See DSL
domain-specific types

language interface of DSL 40
DSL

abstraction design 22
abstractions, designing with 11
advantages 20–21
avoid boilerplates 110, 121
benefits to business users 11
bounded context 57
building in Java 26–31
choosing implementations. See choosing DSL

implementations
classifying 17–20
context in 93
decouple syntax from implementation 138
definition 10–12
design patterns depend on platform 36
direct mapping with problem domain

artifacts 14
disadvantages 21–22
ease of understanding code 13
encourages better communication 13

error and exceptions issues 79
evolution 286–289
evolve iteratively 27
example 10
execution model 15
external 17–18

patterns 45
host language 18
implementation patterns 36–50
implicit business rule modeling 115
integration issues 57
internal 17–18
introduction 8–15
intuitive to users 11
involvement of a domain expert 26
language design 21
layer

in Scala 67
limited expressivity 12
making friendlier 32–36
managing 3rd party 287
modeled in types 113–116
models

business rules 55
concepts at problem domain’s abstraction

level 11
configuration parameters 55
of execution 16–17

no need to know implementation 13
nontextural 19
normal API 175
offers higher level of abstraction 11
popular 12–14
purpose 10
roles 14
semantic model 17
structure of 14–15
syntax

recognizing 219
targeted toward problem area 11
using multiple languages 56
vocabulary 11
vs. general-purpose language 11
why compose 193
workbench 47

DSL script
abstracts underlying implementation 15
shares common vocabulary of problem

domain 14
DSL versioning 286–289

patterns of implementation 287
DSL with packrat parser 267

domain problem 264
lazy vals in Scala 266
semantic model 268

INDEX344
DSL workbench 282
advantages 284
main attributes 285
variations 284

DSL wrapper 64–73
building the DSL 67
publish Smart APIs 64
sample domain model in Java 66

DSL-based development
tool support 285

DSL-driven application
architecture 56

DSL-friendly features of Clojure
creating sequences 335
designing abstractions 334
filtering sequences 335
functional 334
macros 336
persistent data structures and immutability

336
sequences are functions 335
transforming sequences 336

DSL-friendly features of Groovy
builders 332
categories 332
class-based OOP 330
closures 331
collection data types 331
ExpandoMetaClass 332
optional typing 331
properties 331
strings 331

DSL-friendly features of Ruby
blocks 324
classes and objects 322
duck typing 324
evals 323
hashes 324
metaprogramming 322
modules 323
open classes 323
singletons 322

DSL-friendly features of Scala
case classes 326
class-based OOP 325
generics and type parameters 329
higher-order functions and closures 327
implicit arguments 328
implicit type conversions 328
objects as modules 328
partial functions 328
pattern matching 327
traits 326

duck typing 98–99
in DSL 131–133

to implement polymorphism 131
Scala 168

dynamic code evaluation 77
dynamic language DSL pitfalls 162–163
dynamic typing

concise DSL 129
duck typing 131
less accidental complexity of DSL 130
metaprogramming 133
succinct DSL syntax 130
virtues 129

E

EBNF 48, 231, 243, 282
grammar 218
OrderParser.g follows notation 221

Eclipse 338
editor 231
platform 231

Eclipse Modeling Framework. See EMF
Eclipse Xtext. See Xtext
Ecore

metamodel 231, 233
EDSL 41
embed scripting languages 60
embedded

foreign code 222
types. See Scala
See also internal DSL

embedded domain-specific languages. See EDSL
embedded DSLs

patterns in metaprogramming 90, 105
patterns with typed abstractions 106–117
See also DSL, internal

EMF 231
See also Ecore

enhanced readability 129
error reporting

domain-driven 78
errors and exceptions

in DSL 79
See also handling errors and exceptions

evolution
of a Clojure DSL 159–160
of the DSL API. See DSL integration issues

exception reporting
domain-driven 78

execution model 15
of a DSL with runtime metaprogramming 312–

313
expressivity

limited, in DSL 12
Extended Backus-Naur Form. See EBNF

INDEX 345
extensible object system
Scala 168

extensible Visitor in Scala DSL 183–184
extensible. See well-designed abstractions
external DSL 18

abstracting the domain model 213
anatomy 212
embed Java code 221
evolution of the semantic model 215–216
integration patterns 76–77
modularizing the steps 213
parse & process 45–46
parser generator 217
populating the semantic model 215
scaling up in complexity 212–216
semantic model 214
simplest form 212
steps in processing 213
using ANTLR 220–225

external DSL design
using parser combinators 244–245, 257

external DSL patterns 45
classification 46
context-driven string manipulation 46
DSL design based on parser combinators 49
DSL workbench 47
mixing DSL with embedded foreign code 48
transforming XML to consumable resource 47

external DSL phases
parse 45

F

F# 282
financial brokerage

accrued interest 193
background 6
balance 200
base currency 201
calculate tax and fees 182
cash value of trade 97, 144
client

account 65
portfolio 199

custody business 264
equity 115
fixed income 115
instrument types 115
rules for cash value of a trade 144
sample SSI 265
settlement account 65
settlement standing instructions 264
trade and settlement 14, 265
trade enrichment 194
trading account 65

financial brokerage system
client order processing 27

flatMap 270
flexible syntax

in Scala 168
fluent interfaces 29, 94, 102

example of DSL 94
final method of the chain 95

for comprehension 253
foreign embedding 48
Fowler, Martin 12

classifies DSLs 17
fragile base class problem 295
framework based integration. See Spring-based

integration
function application

common parser combinator type 244
function threading 158–160
Functional Java 30
functional programming

Scala 168

G

generative DSL
runtime code generation 118, 122

global changes 150
Google Collections 30
grammar

advantages of a parser generator 217–218
BNF 217
EBNF 218
nonterminal 230
parser classification 225
terminals 212

Groovy 277
advantages 33
categories 150–151

to control metaprogramming 149–152
delegate 152
dynamic typing 148
example DSL with categories 151
ExpandoMetaClass 150
expressive implementation language 33–35
feature overview 330–331
how builders work 104
meta-objects 42
metaprogramming inflection points 313
order processing DSL 33
running a DSL with categories 152
runtime code generation 43
sample DSL usage 33
scripting 61
shares object model with Java 148

INDEX346
Groovy (continued)
supports open classes 304
why good internal DSL choice 134

Groovy DSL 73
closures 35
dynamic method injection 35
executing 35

Groovy-based DSL development environment
setting up 339

GroovyClassLoader 73
GroovyShell 149
groupBy 108

combinator
in Scala 109, 112

generic implementation 111
specialized implementation 109
used in a DSL 112

Guice 38, 299

H

handling errors and exceptions 78–82
Haskell 281
Hibernate

uses XML for entity description files 47
higher-order functions 270
homogeneous integration 58
homoiconicity 319
host language 18

See also internal DSL
HTML

as DSL 12
human interface 278

I

IDE plugin architecture 286
idiomatic Clojure is a DSL 155
immutable 109
implementation

of DSL, no need to know 13
specialized to generalized 109–111

implementation inheritance
misuse 295–296

implementation model
binding to common vocabulary 14

implementation patterns. See DSL implementation
patterns

implicit conversions 178
implicits 189, 304

builders for Scala DSL 177–180
context 93, 138, 143
conversions 67
Groovy Expando 180

parameters
Scala 169

and Ruby monkey-patching 180
wire up DSL 177–181

incidental complexity 297
instance_eval 143
instrument creation DSL 139
integration

by wrapping 64
homogeneous 58
language-specific features 73

IntelliJ IDEA 286
Intentional Domain Workbench 283
Intentional DSL Workbench 20
interfaces

fluent 29
inheritance 295

internal DSL 36
common patterns 113
embedded 89
generative 89
patterns summary 105
typed abstractions 106
vs. an API 189

internal DSL patterns 37
classification 37
embedded 37
generative 37
integration 58–59
metaprogramming

compile-time 43
reflective 41
runtime 42

Smart API 38
syntax tree manipulation 39
typed embedding 40

interpreter 141
pattern 39

J

Java
first implementation 28–32
limitations 31
no higher-order functions 30
syntactic barriers 32
syntax restrictions 30

Java 6 scripting engine 60–63
difficulty in debugging exceptions 63
example in Groovy 60
Groovy DSL integrating with application 62
when to use 63

Java Compiler Compiler. See JavaCC
Java EE 33
Java Platform, Enterprise Edition. See Java EE

INDEX 347
Java scripting. See Java 6 scripting engine
JavaCC 218
JavaScript 282, 307
javax.script 60
JetBrains Meta Programming System 20, 48, 283
Jikes Parser Generator 218
JRuby 75
JSON 236
JSR 233 63

K

keyword
in Clojure 124

L

LALR 51
lambdaJ 30
language cacophony, avoiding. See DSL integration

issues
language expressivity 277
language syntax

expressiveness vs. verbosity 171
language-specific integration features 73–75
left recursion 227
LEX 18
lexer 256

keep definition file separate 225
rules

with ANTLR 220
lexically scoped open classes

Scala 168
Lisp 16, 39

compile-time metaprogramming 44, 118
as the DSL 317
macros work with ASTs 44
metaprogramming patterns 41
way of DSL design 315

Lisp macros
designing syntactic constructs for DSL 316
how Lisp supports metaprogramming 317, 320
how they generate code 316

little language 151
LL(1) 254

what it means 227
See also top-down parser

LL(k) 254
more powerful variant of LL(1) 227
See also top-down parser

LL(k) parsers
generated by ANTLR 227

LR parser
variations 230

M

macros 16, 155
Make

as DSL 12
managing performance 82–83
map 270
metalinguistic abstraction 15
meta-object protocol. See metaprogramming
metaprogramming 16, 278

in Clojure DSL 125
code generation 312
compile-time 122

macros 37
and runtime 126
vs. runtime 44

controlling with Groovy DSL 148–153
dynamic runtime behaviors 311
expressive DSL 311
Groovy metaprogramming inflection points 313
in Groovy 104
meta-object 311
pitfalls 101
reflective 41, 93

with builders 102
Ruby basics 91
in Ruby DSL 100
runtime 42, 143

meta-object protocol 37
See also dynamic typing
See also embedded DSL: patterns in meta-

programming
method chaining 94

See also Builder pattern
method dispatch 172
minimality of abstractions. See well-designed

abstractions
mixins 99

for extensibility 301
modelers

vs. domain experts 6
modeling business rules with a DSL 182
modular composition

Scala 169
monads 204

and abstraction 205, 207
laws 204

monkey patching 162, 304
example in DSL 140

mutable and immutable builders 181

N

named and default arguments
conciseness in Scala 172

INDEX348
named arguments
languages 39

net settlement value. See NSV
NetBeans 338
Newspeak 282
noise index 172
nonessential complexity 205
nontextual DSL 19
NSV

main components 97

O

OCaml 281
OOP

pitfalls 305
open classes 304
operators as methods

conciseness in Scala 172
optional parenthesis

conciseness in Scala 172
order-processing DSL using ANTLR 220, 225

custom actions 222
grammar rules 221
lexical analyzer 220

order-processing DSL with parser
combinators 257–263

application combinators 261
building the parse tree 258
from parser to the semantic model 262
grammar 258
integrate semantic model with parsing

process 260–263
Order abstraction 260
semantic model 259

P

packrat parsers in Scala 254–257
backtracking 254
call-by-need makes them efficient 255
left recursion 255
linear time parsing 255
memoization 254
ordered choice 256
scannerless parsing 256
semantic predicates 256

PackratParsers features for DSL 254–257
parse tree 218

augment 222
parser combinators 77, 282

abstractions of the host language 245
declarative parser development 49
functional abstraction 243

higher order functions 49
most common types 244
no external toolset for DSL design 49
removing external dependencies 245
sample grammar 49

parsers
backtracking 228
bottom up 225
bottom-up 229–230
chaining 242
composing

for extending DSLs 270
monadically 252–254
multiple 272

generating parse trees 225
generators 48, 218
top down 225–226, 229

parsing
syntax-directed translation 46

patterns
Builder 29, 38, 102, 177, 181, 307
Command 305, 307
Command-Query Separation 308
Decorator 96, 198, 272
implementation. See DSL implementation pat-

terns
interpreter 39
matching 197
Pimp My Library 328
Visitor 183
with typed abstractions 106–117

Pimp My Library pattern 328
pluggable domain rules 145
polyglot development environment 337

a Java-Groovy environment 338
a Java-Scala environment 339
features 338
popular IDEs 340

polyglotism 64
problem domain 4–5

entities of 6
mapping components to solution domain 5

programming
mixin-based 145

progression in DSL development 280
Projection Editor 20
projectional editor 283
prototype. See prototype-based OO
prototype-based OO 306

Q

quality of abstraction 23

INDEX 349
R

Rails. See Ruby
Rake

as DSL 12
RD parser. See recursive descent
read-eval-print-loop. See REPL
recursive descent parsers 51
reflective metaprogramming 41, 93
regular expression 77

manipulations 47
repetition

common parser combinator type 244
REPL session with Clojure DSL 161
RSpec

as DSL 12
Ruby 17, 277

abstracting validation logic 119–121
chaining decorators in 99–100
defining classes and objects 91
dynamic

decorators 98
dispatch 42
method definition 121

example DSL with metaprogramming 121
feature overview 322
flexible syntax 147
interpreter DSL 141
metaprogramming for concise DSL 119
mixin-based programming 145
mixins as decorators 145
modules 301
reflective metaprogramming 42
runtime metaprogramming 43
sample DSL in Rails 43
supports open classes 304
why good internal DSL choice 134

Ruby block
managing side effects 96, 145

Ruby DSL features 147
runtime metaprogramming 42, 143

and DSL 312

S

sample business rule as Scala DSL 196
Scala 17, 277

abstract type members 168
advanced type system 168
alternation combinator symbol 251
as DSL implementation language 72
base abstractions 172
case classes 109, 168
checklist for trade-creation DSL 182
combinator orElse 189

combinators for DSL 41
concise surface syntax 168
conciseness in 172
domain abstractions 172–175
DSL

embedded 41
layer 67
wrapper 64

explicit constraints on values and types 114, 116
expressive syntax 171
features for internal DSL design 167
for comprehension 205
generic type parameters 168
groupBy combinator 109

in Scala 112
higher-order functions 41, 108, 112, 168
idioms 67
implicits 177

lexically scoped 69, 109
mixin-based inheritance 168, 190
not lazy-by-default language 255
object-functional 168
packrat parsers 254–257
parser combinator library 49
partial functions 184, 188
pattern matching 183
repetition combinator variations 251
selective sequence combinator symbol 251
self-type annotations 168, 186
sequence combinator symbol 251
singleton objects 174

notation 192
static type checking 117
statically typed DSL 41
structural types 168
traits 301

in DSL 115
type inferencing 41
type safe combinator DSL 108
typed abstractions 116

Scala 101 68
Scala DSL

wiring abstractions 184–187
Scala DSL composition

avoiding implementation coupling 200–203
composed DSL 198
decouple from core 196
embed interface not implementation 200
hierarchical compositions 199, 201, 203
making it pluggable 196
specialization for abstractions 194–196
through extension 194
using functional combinators 197
using the Decorator pattern 198

INDEX350
Scala internal DSL
abstract and concrete abstractions 187–193
business rules that vary 184
combinators for composition 187
concrete domain components 192
control structure to make it explicit 197
domain service 190
enriching domain model 184
how to compose 193–203
making domain friendly models 200
modeling

business rules 187
trade lifecycle 197

monadic
binds 205–206
DSL example 207
structures 203

pattern matching for business rules 183
traits for wiring 185
type synonyms decouple implementations 199

Scala packrat parsers. See packrat parsers in Scala
Scala parser combinator library

~[T, U] 253
chaining combinators example 270
decorating a parser 271
domain validations in a parser 271–272
Error 248
Failure 247
function application combinators 260
gluing parsers functionally 248
how parsers and parse results compose 270
modeling a parser 247
monadic 270

composition 252
PackratParsers 256
ParseResult 247
partial function application combinator 262
rep1sep 259
sample external DSL 249–252
Success 247
trait Parsers 253

ScalaTest 170
Scheme 282
ScriptEngine 63, 73
scripting languages

embed 60
scripting. See Java 6 scripting engine
sed 16
semantic model 219

decoupled from grammar rules 235
external and internal DSL 215
repository of the domain model 215

semicolon inference
conciseness in Scala 172

separating the DSL syntax from actions 219–220

separation of concerns. See DSL integration issues
sequence

common parser combinator type 244
settlement 6, 14

date, definition 14
standing instructions. See financial brokerage

system
s-expressions 154

instead of XML 281
shift/reduce 256

parsing 229
side effects

and composability 307
depend on past history 308
and functional programming 308–310
never compose 308

side-effecting operations 198
SLR 51
smart domain APIs 67
smart DSL

on top of a legacy application 67, 72
software transactional memory 310
solution domain 4–5
Spring 47

as DI framework 76
config DSL for JRuby beans 76
integration 75–76
XML as external DSL 47

SQL
as DSL 12

SSI 265
standalone DSL. See DSL, external
static type checking. See Scala
subclassing

confusing semantics 295
subtyping 172, 294
syntactic sugar 140
syntax-directed translation 46, 219

T

Template Haskell 281
top-down parser

advanced 228
leftmost derivation 226
LL(k) recursive descent 227
memoizing parser 228
packrat parser 228
predicated parser 229
recursive descent 226–227

backtracking parser 228
trade

cash value 14
creation DSL in Scala 175–181
date 6

INDEX 351
trade (continued)
enrichment, definition 14
settlement date 14

trade-processing DSL in Ruby 135
domain rules as decorators 143
the DSL interpreter 140
initial DSL API 136
iterations 135
monkey patching 139

type inference
conciseness in Scala 172

typed abstractions. See Scala
types 40

advantages 40
compiler checks for consistency 40
encapsulates business rules 40

U

unit tests 133

V

value object 109
variabilities. See commonality and variabilities
Visitor pattern 183
vocabulary

common. See common vocabulary

W

well-designed abstractions
composability for purity 304–310
distillation 296–300
extending functionally 303
extensibility 300
how mixins extend abstractions 301, 303
minimalism 293–296

nonessential details 296
prevent implementation leak 293
publishes contracts 292
reducing accidental complexity 296–300
role in domain modeling 291

what makes Lisp extensible
code as data 318
data as code 318
simple parser 319

why s-expressions
semantically richer 282

wiring abstractions in Scala DSL 184–187

X

XML
builder 133
declarative DSL 32
externalizable as a DSL 32
for modeling 281
parsers 77
See also external DSL integration patterns

XPath. See external DSL integration patterns
XQuery. See external DSL integration patterns
XText 283
Xtext

code generator 236
DSL development 231
example grammar rules 232
metamodel 48
Xpand templates 236

Y

YACC 18, 48, 218
bottom-up parsers 81
as DSL 12
embed C 219

Debasish Ghosh

Y
our success—and sanity—are closer at hand when you work
at a higher level of abstraction, allowing your attention to
be on the business problem rather than the details of the

programming platform. Domain Specifi c Languages—“little
languages” implemented on top of conventional programming
languages—give you a way to do this because they model the
domain of your business problem.

DSLs in Action introduces the concepts you’ll need to build
high-quality domain-specifi c languages. It explores DSL imple-
mentation based on JVM languages like Java, Scala, Clojure,
Ruby, and Groovy and contains fully explained code snippets
that implement real-world DSL designs. For experienced
developers, the book addresses the intricacies of DSL design
without the pain of writing parsers by hand.

What’s Inside
Tested, real-world examples
How to fi nd the right level of abstraction
Using language features to build internal DSLs
Designing parser/combinator-based little languages

Th is book is written for developers working with JVM languages.
Others will fi nd techniques that (generally) work for them too.

Debasish Ghosh is a senior member of the ACM and an infl uen-
tial blogger. He works with DSLs based on Java, Ruby, Clojure,
and Scala.

For online access to the author and a free ebook for owners
of this book, go to manning.com/DSLsinAction

$44.99 / Can $51.99 [INCLUDING eBOOK]

DSLs IN ACTION

PROGRAMMING/SOFTWARE ENGINEERING

“Covers a lot of ground...not
 only widely but deeply.”
 —From the Foreword by Jonas
 Bonér, Scalable Solutions

“Th orough, well thought-out,
 carefully craft ed.”
 —Guillaume Laforge
 SpringSource

“Covers the what, why, when,
 and how of DSLs.”
 —David Dossot
 Programmer & Author

“Exhaustive, competent,
 and compelling.”
 —Federico Tomassetti
 Politecnico di Torino

“Five languages, no trivial
 examples, all in one book.”
 —John S. Griffi n, Overstock.com

M A N N I N G

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about the book
	Who should read this book?
	Roadmap
	Typographical conventions
	Code conventions and downloads
	Author Online
	About the author
	About the cover illustration

	Part 1 – Introducing domain-specific languages
	Learning to speak the language of the domain
	1.1 The problem domain and the solution domain
	1.1.1 The problem domain
	1.1.2 The solution domain

	1.2 Domain modeling: establishing a common vocabulary
	1.2.1 Benefits of a common vocabulary

	1.3 Introducing DSLs
	1.3.1 What’s a DSL?
	1.3.2 Popular DSLs in use
	1.3.3 Structure of a DSL

	1.4 Execution model of a DSL
	1.5 Classifying DSLs
	1.5.1 Internal DSLs
	1.5.2 External DSLs
	1.5.3 Nontextual DSLs

	1.6 When do you need a DSL?
	1.6.1 The advantages
	1.6.2 The disadvantages

	1.7 DSLs and abstraction design
	1.8 Summary
	1.9 References

	The DSL in the wild
	2.1 Building your first Java DSL
	2.1.1 Setting up the common vocabulary
	2.1.2 Your first Java implementation

	2.2 Making friendlier DSLs
	2.2.1 Externalizing the domain with XML
	2.2.2 Groovy: a more expressive implementation language
	2.2.3 Executing the Groovy DSL

	2.3 DSL implementation patterns
	2.3.1 Internal DSL patterns: commonality and variability
	2.3.2 External DSL patterns: commonality and variability

	2.4 Choosing DSL implementations
	2.5 Summary
	2.6 References

	DSL-driven application development
	3.1 Exploring DSL integration
	3.1.1 Why you should care about DSL integration

	3.2 Internal DSL integration patterns
	3.2.1 Using the Java 6 scripting engine
	3.2.2 Using a DSL wrapper
	3.2.3 Language-specific integration features
	3.2.4 Spring-based integration

	3.3 External DSL integration patterns
	3.4 Handling errors and exceptions
	3.4.1 Naming an exception
	3.4.2 Handling incorrect typing errors
	3.4.3 Handling exceptional business conditions

	3.5 Managing performance
	3.6 Summary
	3.7 References

	Part 2 – Implementing DSLs
	Internal DSL implementation patterns
	4.1 Filling your DSL toolbox
	4.2 Embedded DSLs: patterns in metaprogramming
	4.2.1 Implicit context and Smart APIs
	4.2.2 Reflective metaprogramming with dynamic decorators
	4.2.3 Reflective metaprogramming with builders
	4.2.4 Lessons learned: metaprogramming patterns

	4.3 Embedded DSLs: patterns with typed abstractions
	4.3.1 Higher-order functions as generic abstractions
	4.3.2 Using explicit type constraints to model domain logic
	4.3.3 Lessons learned: thinking in types

	4.4 Generative DSLs: boilerplates for runtime generation
	4.4.1 How generative DSLs work
	4.4.2 Ruby metaprogramming for concise DSL design

	4.5 Generative DSLs: macros for compile-time code generation
	4.5.1 Metaprogramming with Clojure
	4.5.2 Implementing the domain model
	4.5.3 The beauty of Clojure macros

	4.6 Summary
	4.7 References

	Internal DSL design in Ruby, Groovy, and Clojure
	5.1 Making DSLs concise with dynamic typing
	5.1.1 Readability
	5.1.2 Duck typing
	5.1.3 Metaprogramming-again!
	5.1.4 Why Ruby, Groovy, and Clojure?

	5.2 A trade-processing DSL in Ruby
	5.2.1 Getting started with an API
	5.2.2 A little bit of monkey-patching
	5.2.3 Rolling out a DSL interpreter
	5.2.4 Adding domain rules as decorators

	5.3 The order-processing DSL: the final frontier in Groovy
	5.3.1 The order-processing DSL so far
	5.3.2 Controlling the scope of metaprogramming
	5.3.3 Rounding it off

	5.4 Thinking differently in Clojure
	5.4.1 Building a domain object
	5.4.2 Enriching domain objects using decorators
	5.4.3 A DSL session at the REPL

	5.5 Recommendations to follow
	5.5.1 Honor the principle of least complexity
	5.5.2 Strive for optimal expressivity
	5.5.3 Avoid diluting the principles of well-designed abstractions
	5.5.4 Avoid language cacophony

	5.6 Summary
	5.7 References

	Internal DSL design in Scala
	6.1 Why Scala?
	6.2 Your first step toward a Scala DSL
	6.2.1 Testing Java objects with a Scala DSL
	6.2.2 Scala DSL as a wrapper for Java objects
	6.2.3 Modeling noncritical functionality as a Scala DSL

	6.3 Let’s DSL in Scala!
	6.3.1 Expressive syntax on the surface
	6.3.2 Creating domain abstractions

	6.4 Building a DSL that creates trades
	6.4.1 Implementation details
	6.4.2 Variations in DSL implementation patterns

	6.5 Modeling business rules with a DSL
	6.5.1 Pattern matching as an extensible Visitor
	6.5.2 Enriching the domain model
	6.5.3 Calculating tax and fee business rules in a DSL

	6.6 Stitching ’em all together
	6.6.1 More abstraction with traits and types
	6.6.2 Making domain components concrete

	6.7 Composing DSLs
	6.7.1 Composing using extensions
	6.7.2 Composing different DSLs using hierarchical composition

	6.8 Monadic structures in DSL
	6.9 Summary
	6.10 References

	External DSL implementation artifacts
	7.1 Anatomy of an external DSL
	7.1.1 The simplest option first
	7.1.2 Abstracting the domain model

	7.2 The role of a parser in designing an external DSL
	7.2.1 Parsers and parser generators
	7.2.2 Syntax-directed translation

	7.3 Classifying parsers
	7.3.1 Simple top-down parsers
	7.3.2 Advanced top-down parsers
	7.3.3 Bottom-up parsers

	7.4 Tool-based DSL development with Xtext
	7.4.1 Grammar rules and the outline view
	7.4.2 The metamodel for your grammar
	7.4.3 Generating code for the semantic model

	7.5 Summary
	7.6 References

	Designing external DSLs using Scala parser combinators
	8.1 Parser combinators
	8.1.1 What are parser combinators?
	8.1.2 Designing DSLs the parser combinator way

	8.2 The Scala parser combinator library
	8.2.1 The base abstractions in the parser combinator library
	8.2.2 The combinators that glue parsers together
	8.2.3 Monads for DSL parser composition
	8.2.4 Packrat parsing for left recursive DSL syntax

	8.3 DSL design with parser combinators: step-by-step
	8.3.1 Step 1: Executing the grammar
	8.3.2 Step 2: Building the semantic model for the DSL
	8.3.3 Step 3: Designing the Order abstraction
	8.3.4 Step 4: Generating the AST using function application combinators

	8.4 A DSL that needs a packrat parser
	8.4.1 Introducing the domain problem
	8.4.2 Building the grammar
	8.4.3 Designing the semantic model
	8.4.4 Parser composition for extending DSL semantics

	8.5 Summary
	8.6 References

	Part 3 – Future trends in DSL development
	DSL design: looking forward
	9.1 Growing language support for DSL design
	9.1.1 Striving to be expressive
	9.1.2 More power with metaprogramming
	9.1.3 s-expressions instead of XML as the carrier
	9.1.4 Parser combinators becoming more popular

	9.2 DSL workbenches
	9.2.1 What’s in a DSL workbench?
	9.2.2 The advantages of using a DSL workbench

	9.3 More tool support
	9.4 The mature evolution of a DSL
	9.4.1 Versioning your DSL
	9.4.2 Best practices for a smoother evolution of DSL

	9.5 Summary
	9.6 References

	appendix A: Role of abstractions in domain modeling
	A.1 Qualities of well-designed abstractions
	A.1.1 Minimalism
	A.1.2 Distillation
	A.1.3 Extensibility and composability

	A.2 Minimalism publishes only what you promise
	A.2.1 Evolve by being generic
	A.2.2 Subtyping to prevent implementation leak
	A.2.3 Implementation inheritance done right

	A.3 Distillation keeps only what YOU need
	A.3.1 What is nonessential?
	A.3.2 Accidental complexity
	A.3.3 Removing the impurities
	A.3.4 Keeping away implementation details using DI

	A.4 Extensibility helps piecemeal growth
	A.4.1 What’s extensibility?
	A.4.2 Mixins: a design pattern for extensibility
	A.4.3 Mixins for extending Map
	A.4.4 Functional extensibility
	A.4.5 Extensibility can be monkey business too

	A.5 Composability comes from purity
	A.5.1 Design patterns for composability
	A.5.2 Back to languages
	A.5.3 Side effects and composability
	A.5.4 Composability and concurrency

	A.6 References

	appendix B: Metaprogramming and DSL design
	B.1 The meta in the DSL
	B.1.1 Runtime metaprogramming in DSL implementation
	B.1.2 Compile-time metaprogramming in DSL implementation

	B.2 Lisp as the DSL
	B.2.1 What’s so special about Lisp?
	B.2.2 Code as data
	B.2.3 Data as code
	B.2.4 A simple parser that parses only list structures

	B.3 References

	appendix C: A cheat sheet for Ruby’s DSL-friendly features
	C.1 DSL-friendly features of Ruby
	C.2 References

	appendix D: A cheat sheet for Scala’s DSL-friendly features
	D.1 DSL-friendly features of Scala
	D.2 References

	appendix E: A cheat sheet for Groovy’s DSL-friendly features
	E.1 DSL-friendly features of Groovy
	E.2 References

	appendix F: A cheat sheet for Clojure’s DSL-friendly features
	F.1 DSL-friendly features of Clojure
	F.2 References

	appendix G: Polyglot development
	G.1 What features should you look for in an IDE?
	G.2 Bootstrapping a Java-Groovy development environment
	G.3 Bootstrapping a Java-Scala development environment
	G.4 Popular IDEs for polyglot development

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

