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Preface

The study of data structures serves as the foundation for several fields of computer science such 
as programming, compiler design, and database management. Almost every program or software 

uses data structures as an effective and efficient means of data storage and organization. Often, the 
success of a program or software depends upon the way the data is represented and the algorithm used 
to process the data. While programming, different kinds of data are required to be stored and processed 
in the computer. Data can be stored in a generalized format using variables. A data structure uses a 
collection of related variables that can be accessed individually or as a whole, and represents a set of 
data items with a specific relationship amongst them. Thus, choosing an effective data structure is the 
key to success in the design of algorithms. 

For designing an effective algorithm, a programmer can choose the most efficient data structure from 
a variety of available ones. Some common data structures include arrays, linked lists, hash tables, heaps, 
trees, tries, stacks, and queues. Different kinds of data structures are suited for different kinds of ap-
plications. For example, arrays are popularly used in searching, sorting, and matrix-related operations. 
Stacks, on the other hand, are used for converting infix=expressions to postfix and prefix forms, revers-
ing a string, processing function calls, parsing computer programs, and simulating recursion. Similarly, 
queues are most useful in simulating complex real-world problems. 

The data structures course has found its way into the undergraduate curriculum due to rapid devel-
opment and advances in the field of computer science. This course is taught using different program-
ming languages such as C, C++, and Java. We shall learn this course using C++, as it has emerged as 
one of the leading object-oriented programming languages, and is used extensively in both academia 
and industry. 

about the book

Data Structures Using C++ is designed to serve as a textbook for undergraduate courses in computer 
science and engineering and postgraduate courses in computer applications. This book seeks to incul-
cate a scientific aptitude in the readers by laying special emphasis on the understanding of the concepts 
with the help of simple language and user-friendly presentation. It also intends to develop independent 
thinking by focussing on real-world examples as well as the practical aspects of this course through 
numerous chapter-end exercises. 

The book emphasizes the following aspects of studying a course on data structures:
•	 the	skills	required	in	defining	the	level	of	abstraction	of	data	structures	and	algorithms;	
•	 the	ability	to	devise	alternate	implementations	of	a	data	structure;	and
•	 the	implementation	of	all	the	characteristics	of	data	structures	through	C++. 

While developing the content for this book the aim has been to make the readers understand  
the use of abstract data types (ADTs), classes, and various techniques for building simple data 
structures.
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key features

•	 Each	concept	in	this	book	is	explained	by	an	algorithm	and	a	piece	of	program	code	implemented	
through C++, for imparting practical knowledge to the readers. 

•	 Numerous	illustrations,	diagrams,	and	flowcharts	are	included	to	aid	the	understanding	of	concepts.
•	 A	glossary	is	provided	at	the	end	of	every	chapter,	which	helps	the	readers	assimilate	the	key	concepts	

efficiently.
•	 A	summary	is	given	at	the	end	of	every	chapter	for	a	quick	recapitulation	of	all	the	important	topics	

discussed. 
•	 Extensive	chapter-end	exercises	consisting	of	 solved	multiple	choice	questions,	 review	questions,	

and programming exercises are included to facilitate revision.

organization of the book

The book is organized into 15 chapters. 
Chapter 1 gives an introduction to programming, data structures, and related concepts. This chap-

ter covers the various types of data structures, structured programming, and development of software 
through the software engineering approach. 

Chapter 2 acquaints the reader with the concept of arrays, which is the most popular and easy-to-use 
static data structure. Arrays are found in almost every high-level programming language as a built-in 
data structure. This chapter describes arrays with respect to applications such as polynomials, strings, 
and sparse matrices.

Chapter 3 covers the stack and its implementation as a static data structure. Applications of stacks, 
such as recursion and infix expression conversion, are discussed. 

Chapter 4 covers recursion and related concepts. This chapter helps us understand, evaluate, and 
implement recursive functions. It also elaborates on how recursion works.

Chapter 5 illustrates the concept, realization, variations, and applications of queues. A queue is a 
special type of data structure that performs insertions at one end called the ‘rear’ and deletions at another 
end called the ‘front’.

Chapter 6 covers the basic concepts and realization of the linked list. This dynamic data structure is 
a powerful tool and is described with respect to applications such as polynomials, strings, and sorting.

Chapter 7 deals with trees. A non-linear data structure, the tree is a means to maintain and manipulate 
data	in	many	applications.	Non-linear	data	structures	are	capable	of	expressing	more	complex	relationships	
than linear data structures. Variations, implementation, and applications of trees are covered in this chapter. 

Chapter 8 introduces the graph, its representation, traversal techniques, and algorithms used to pro-
cess it. In many areas of application such as cartography, sociology, chemistry, geography, mathematics, 
electrical	engineering,	and	computer	science,	we	often	need	a	representation	that	reflects	arbitrary	rela-
tionships among the objects. One of the most powerful and natural solutions that models such relation-
ships is the graph. 
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Chapter 9 explains the basic search and sort techniques that help make the search process more 
efficient. If the data is kept in proper order, it is much easier to search. Sorting is a process of orga-
nizing data in a certain order to help retrieve it more efficiently. 

Chapter 10 discusses two variations of binary search trees (BSTs)—Adelson-Velskii–Landis (AVL) 
and optimal binary search trees (OBSTs). A BST is a data structure that has efficient searching as well 
as insertion and deletion algorithms. 

Chapter 11 deals with hashing, hash functions, and related aspects. The concepts of searching tech-
niques and search trees have already been discussed in Chapters 9 and 10, respectively. In an ideal situa-
tion, we expect the target to be searched and identified in one attempt or a minimum number of attempts. 
One way to achieve this is to know (or to be able to obtain) the address of the record where it is stored. 
Hashing is a method of directly computing the address of the record with the help of a key, by using a 
suitable mathematical function called the hash function. 

Chapter 12 provides an overview of heaps. As discussed earlier, a BST is used for searching and an 
array is used for sorting data of fixed size that is already collected. On the other hand, when data must be si-
multaneously inserted and sorted, then the data structure that works more efficiently than BSTs is the heap.

Chapter 13 discusses multiway search trees. Binary search trees generalize directly to multiway 
search trees. A multiway search tree is a tree of order m, where each node has at most m children. Here 
m is an integer. If k £ m is the number of children, then the node contains exactly k - 1 keys, which parti-
tion all the keys in the subtrees into k subsets. If some of these subsets are empty, then the corresponding 
children in the tree are also empty.

Chapter 14 introduces files and organization. Files contain records that are a collection of informa-
tion arranged in a specific manner. File organization refers mainly to the logical arrangement of data in 
a file system. 

Chapter 15	briefly	covers	 the	standard	 template	 library	(STL)	and	its	usage.	C++ classes provide 
information for creating libraries of data structures. The C++ class allows for implementation of ADTs, 
with appropriate hiding of the implementation details. The STL is a part of the standard C++ class li-
brary, and can be used as the standard approach for storing and processing data. 

Chapter 16 introduces the readers to the study of algorithmic strategies and their analyses. Asymptot-
ic notations are required to quantify the performance of a particular algorithm. The various algorithmic 
strategies, namely, divide-and-conquer, greedy method, dynamic programming, and pattern matching 
required to solve a particular problem effectively and efficiently are discussed in detail. A data structure 
that represents a set of strings, called tries, is discussed towards the end. It aids in pattern matching by 
making the process faster.

The appendix provides a thorough overview of the fundamentals of C++ programming. C++ has 
proven to be the most suitable language for the implementation of abstract data types because of the 
introduction of the concept of classes.

I sincerely hope that the readers will be able to make the most out of this book and apply the concepts 
learnt in their academic and professional tenures. If you have any comments or suggestions that can be 
incorporated in the future editions of this book, feel free to contact me at varsha.patil@gmail.com.

Varsha H. Patil
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FuNDAMENTAL CONCEPTs 1

OBJECTIVEs

After completing this chapter, the reader will be able to understand the following:
 • th e well-defi ned, clear, and simple approach of program design
 • fundamental aspects of an algorit hm and its characteristics
 • basic concepts such as data, data type, data object, and data structure
 • the power of abstract data type (ADT)
 • the software development life cycle (SDLC)

Programming requires different kinds of information to be stored in the computer 
and the input data to be processed. The information can be stored in a generalized 

format using variables. In principle, one variable  allows the storage of a single data 
entity. However, a set of single variables may not solve complex problems effi ciently. A 
data structure uses a collection of related variables that can be accessed individually or 
as a whole. In other words, a data structure represents a set of data items with a specifi c 
relationshi p between them. In this chapter, we shall study the fundamental concepts 
related to programming and data  structures.

1.1 INTRODuCTION TO PROGRAMMING

A  computer is a programmable data  processor that accepts input and ins tructions to pro-
cess the input (program) and generates the required output as shown in Fig. 1.1. Altho ugh 

Program Data

Computer

Output

Fig. 1.1  P rocessing a program
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computers are competent to perform complex and difficult operations, they are inherently 
simple and passive machines. They must be told precisely and explicitly in a language they 
can understand, as to what is to be done. This sequence of instructions is known as a pro-
gram. A program that satisfies user needs as per his/her specifications is called software. 
The physical machinery that actually executes these instructions is known as hardware.

The first phase of developing a program is to define the problem statement precisely. 
We have to mention very clearly what a program shall do and what our expectations from 
the program are. After defining the problem, we have to select the best suitable algorithm 
to solve it. An algorithm is a stepwise description of an action that leads the problem from 
its start state to its goal state. An algorithm must be very clear, definite, and efficient for 
the problem it aims at solving. The art of programming consists of designing or choosing 
algorithms and expressing them in a programming language. This phase of developing a 
program is very important. Later the code is tested, debugged, and revised, if required.

All computer languages can be classified into the following three basic categories:

1. Machine language
2. Assembly language
3. High-level language

In most machine languages, binary digits (bits 0 and 1) represent everything, name-
ly, instructions, data, and variables. Binary numbers are composed entirely of zeros and 
ones. Programs written in machine language can be executed very fast by computers. This 
is because machine instructions are directly understood by the computer and no transla-
tion program is required. However, these programs consisting of a sequence of zeros and 
ones are difficult to read, write, and interpret by humans. 

Assembly languages are a major improvement over machine languages. In an assem-
bly language, a short name, rather than a big binary number, defines each instruction 
and identifies each variable. In this language, programming numeric operation codes are 
substituted by mnemonics. A mnemonic is any kind of mental technique we use to help 
us represent numeric codes. Programs written in assembly language require a special 
program called the assembler that translates assembly language instructions into machine 
language instructions. Nowadays, programs are written in assembly language only when 
the speed of execution is of high priority.

Assembly language is easier to understand as it uses symbolic names for complex 
calculations and other processes, thus saving a lot of time and effort for the programmer. 
Errors made in the assembly language are easier to find and correct. However, assembly-
level programming has a few drawbacks. Instructions vary from machine to machine and 
are hence machine-dependent. Therefore, the programmer must be aware of a particular 
machine’s characteristics, requirements, and instruction set. 

A high-level language, instead of being machine-dependent, is oriented towards the 
problem to be solved. These languages enable the programmer to write instructions using 
English words and familiar mathematical symbols. Every instruction that the programmer 
writes in a high-level language is translated into a set of machine language instructions. 
This is known as one-to-many translation. 



Fundamental concepts 3

Each language is considered the best to solve a particular class of problems but unsuit-
able to solve another class of problems. Today, there are over 200 high-level languages. 
Some of the most common ones are C, C++, Java, Pascal, FORTRAN, and COBOL. A 
system program that translates a high-level language such as C++ to a machine language 
is called a compiler. It is thus a peculiar sort of program whose input is one program and 
output is another program. 

1.2 OBJECT-ORIENTED PROGRAMMING

Traditional structured programming has been used as algorithmic decomposition. Algorith-
mic or functional decomposition views software as a process. It decomposes the software/
program into modules, which represent the steps of the process. These modules are imple-
mented by language constructs such as procedures in Pascal, subroutines in FORTRAN, 
or functions in C++. Object-oriented programming-based (OOP-based) design represents 
a fundamental change from the structured programming design method. Object-oriented 
decomposition views software as a set of well-defined objects that model entities in the ap-
plication domain. These objects interact with each other to form a software system. Func-
tional decomposition is addressed after the system has been decomposed into objects. The 
basic concept in OOP is an object. Object-oriented programming is used to model the real 
world through objects. In our real world, everything, from an apple to a car, is an object, 
which can be distinguished from one another in the physical as well as the behavioural 
point of view. An object is an entity that performs computations and has a local state. It is 
also viewed as a combination of data and procedural (behavioural) elements.

The success of a software project often depends upon the choices made in the repre-
sentation of data and algorithms designed to process the data. The proper choice of a data 
structure can be a key point in the design of many algorithms. Clearly, we need proper 
ways to describe and process data.

A data type consists of a collection of values together with a set of basic operations 
defined on these values. A data type is called an abstract data type (ADT) if the program-
mer can use it without having access to and also without knowing the details of how the 
values and operations are implemented.

An object-oriented language such as C++ is a programming paradigm that has a direct 
link to ADTs by implementing them as a class. We shall use C++ as the programming 
language in this book.

1.3 INTRODuCTION TO DATA sTRuCTuREs

Computer science includes the study of data, its representation, and its processing by 
computers. Hence, it is essential to study about the terms associated with data and its rep-
resentation. As mentioned in Section 1.2, the success of a software project often depends 
upon the choices made in the representation of the data and the choice of algorithms, and 
hence we need better methods to describe and process the data. The term data structure 
refers to the organization of data elements and the interrelationships among them. 
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The field of data structures is very important and central to the study of computer 
science and programming. There is a clear distinction between the data structure speci-
fication and its realization. The specification comes before the programming language 
application and its realization comes with a specific programming language. Again, it is 
very important to study how these two processes can be accomplished successfully.

Specification of data structures requires explaining the functioning and overall be-
haviour of the data structure, whereas the implementation of the data structure requires 
simulating the data structure in some programming language. There is a close relation-
ship among algorithms, data, and data structures. In this chapter, we are going to learn 
about the fundamental concepts of data structures, various types, programming tools, 
algorithms, and flowcharts.

1.3.1 Data

Data is nothing but a piece of information. Data input, data manipulation (or data pro-
cessing), and data output are the functions of computers. Hence all information taken as 
input, processed within a computer, or provided as output to the user is nothing but data. 
It can be a number, a string, or a set of many numbers and strings.

Atomic and Composite Data

Atomic data is the data that we choose to consider as a single, non-decomposable entity. 
For example, the integer 1234 may be considered as a single integer value. Of course, we 
can decompose it into digits, but the decomposed digits will not have the same character-
istics of the original integer; they will be four single digit integers ranging from 0 to 9. In 
some languages, atomic data is known as scalar data because of its numeric properties.

The opposite of atomic data is composite data. Composite data can be broken down into 
subfields that have meaning. For example, a student’s record consists of Roll_Number, 
Name, Branch, Year, and so on. Composite data is also referred to as structured data and 
can be implemented using a structure or a class in C++.

1.3.2 Data Type

Data type refers to the kind of data a variable may store. Whenever we try to implement 
any algorithm in some programming language, we need variables. A variable may have 
any value as per the facilities provided by that language. Data type is a term that specifies 
the type of data that a variable may hold in the programming language. 

Built-in Data Types

In general, languages have their built-in data types. However, they also allow the user to 
define his or her own data types, called user-defined data types, using the built-in data 
types; for example, in the C/C++ languages, int, float, and char are built-in data types. 
Using these built-in data types, we can design (define) our own data types by means of 
structures, unions, and classes.
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User-defined Data Types

Suppose we want to maintain a record of 100 students with the following fields in each 
record: roll number, name of student, and percentage of marks of the students. Then we 
use the C++ class as follows:

class Student
{ 
     private:
          int roll;
          char name[20];
          float percentage;
     public:
          void GetRecord();
          void PrintRecord();
          void SearchRecord();
}

Class, structure, and union are the user-defined data types in C++.

1.3.3 Data Object

A data object represents a container for data values — a place where data values may 
be stored and later retrieved. A data object is characterized by a set of attributes, one of 
the most important of which is its data type. The attributes determine the number and  
type of values that the data object may contain and also determine the logical organization 
of these values.

A data object is nothing but a set of elements, say D. The data object ‘alphabets’ can be 
defined as D = {A, B, …, Z, a, b, …, z} and the data object ‘integers’ as D = {…, -3, -2, 
-1, 0, 1, 2, 3, …}. The data object set may be finite or infinite.

A data object is a run-time instance of data structures. It is the run-time grouping 
of one or more data pieces. Some of the data objects that exist during program execu-
tion are programmer-defined, such as variables, constants, arrays, and files. The 
programmer explicitly creates and manipulates these data objects through declarations 
and statements in the program. System-defined data objects are ordinarily generated au-
tomatically as needed during program execution without explicit specification by the 
programmer. 

1.3.4 Data structure

Data structures refer to data and representation of data objects within a program, that is, 
the implementation of structured relationships. A data structure is a collection of atomic 
and composite data types into a set with defined relationships. By structure, we mean a 
set of rules that holds the data together. In other words, if we take a combination of data 
types and fit them into a structure such that we can define the relating rules, we can have 
data structures that consist of other data structures too. 
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In brief, a data structure is 

1. a combination of elements, each of which is either as a data type or another data 
structure and

2.  a set of associations or relationships (structures) involving the combined elements.

Most of the programming languages support several data structures. In addition, modern 
programming languages allow programmers to create new data structures for an application. 

We can define data structures as follows:

A data structure is a set of domains D, a designated domain d Œ D, a set of functions 
F, and a set of axioms A. The triple structure (D, F, A) denotes the data structure with the 
following elements:

Domain (D) This is the range of values that the data may have.

Functions (F) This is the set of operations for the data. We must specify a set of 
operations for a data structure to operate on.

Axioms (A) This is a set of rules with which the different operations belonging to F can 
actually be implemented.
Let us consider an example of a data structure of an integer. 

Here, the data structure d = Integer

Integer
Domain D = {Integer, Boolean}
Set of functions F = {zero, ifzero, add, increment}
Set of axioms A = {
                      ifzero(zero()) Æ true;
                      ifzero(increment(zero()) Æ false
                      add(zero(), x) Æ x
                      add(increment(x), y) = increment(add(x, y))
                      equal(increment(x), increment(y) = equal(x, y)
                  }

end Integer

In general, the data type of a variable is the set of values that the variable may hold. An 
ADT is a mathematical model that includes data with various operations defined. Imple-
mentation details of an ADT are hidden, which is why it is called abstract. To represent 
the mathematical model underlying an ADT, we use the data structure, which is a collec-
tion of the variables and the data types inter-related in different ways.

1.3.5 Abstract Data Type

Software engineering is very close to computer science. Software engineering is the 
establishment and the use of good engineering methodologies and a principle for 
writing reliable software. One of the most important principles in accomplishing this 
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is the use of abstraction. Abstraction allows us to organize the complexity of a task by 
focussing on logical properties of data and actions rather than on the implementation 
details. Logical properties refer to the ‘what’ and implementation details refer to the 
‘how’. The abstraction is at the procedural and data level. 

Data abstraction is the separation of logical properties of the data from details of how 
the data is represented. Procedural abstraction means separation of the logical properties 
of action from implementation. Procedural abstraction and data abstraction are closely 
related as operations within the ADTs are procedural abstractions. An ADT encompasses 
both procedural as well as data abstraction; the set of operations are defined for any data 
type that might make up the set of values.

An ADT is the one in which the set of operations is defined at a formal, logical 
level, without being restricted by the operational details. In other words, an ADT is 
a data declaration packaged together with the operations that are meaningful for the 
data type. We encapsulate the data and the operations on this data and hide them from 
the user. In brief, an ADT includes declaration of data, implementation of operations, 
and encapsulation of data and operations.

Consider the concept of a queue. At least three data structures will support a queue. 
We can use an array, a linked list, or a file. If we place our queue in an ADT, users should 
not be aware of the structure we use. As long as they can enqueue (insert) and dequeue 
(retrieve) data, how we store the data should make no difference. 

We are aware of the importance of hiding the implementation. The user need not know 
the data structure to be able to use an ADT. For a queue, the application program should 
have no knowledge of the data structure. All references to and manipulation of the data in 
the queue must be handled through defined interfaces to the structure. Allowing the appli-
cation program to directly reference the data structure is a common fault in many applica-
tions that prevent the ADT from being fully portable to other applications. 

We want a data specification method that has the following features: 

Abstract It should help the programmer organize data by focussing on its logical 
properties rather than on the implementation details, which in turn allows the user to hide 
the complexity of a task.

Safe It should control the manipulation of the representation of data so that malfunctioning 
can be avoided.

Modifiable It should make it relatively easy to modify the representation.

Reusable The data structure should be such that it is a reusable product for others.

Let us redefine ADT for the Integer.

Abstract data type Integer 
  Operations 
 zero() Æ int
 ifzero(int) Æ boolean
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 increment(int) Æ int 
 add(int, int) Æ int
 equal(int, int) Æ boolean
 Rules/axioms for operations 
 for all x, y Œ integer let
   ifzero(zero()) Æ true;
   ifzero(increment(zero()) Æ false
   add(zero(), x) Æ x
 add(increment(x), y) Æ increment(add(x, y))
 equal(increment(x), increment(y) Æ equal(x, y)
 end Integer

This is an example of the Integer data structure; five basic functions are defined on 
a set of integer data object. These functions are as follows:

1. zero() Æ int — It is a function which takes no input but generates the integer zero 
as result. That is, its output is 0.

2. ifzero(int) Æ Boolean — This function takes one integer input and checks whether 
that number is 0 or not. It generates output of type True/False, that is, of the Boolean type.

3. increment(int) Æ int — This function reads one integer and produces its incremented 
value, that is, (integer + 1), which is again an integer.

 For example, increment(3) Æ 4

4. add(int, int) Æ int — This function reads two integers and adds them producing 
another integer.

5. equal(int, int) Æ Boolean — This function takes two integer values and checks 
whether they are equal or not. Again, it gives output of the True/False type. So its 
output is of Boolean type.

The set of axioms which describes the rules of operations is as follows:

1. ifzero(zero) Æ true — This axiom says that the zero() function which produces 
an integer zero, is checked by the ifzero()function, and ultimately the result is true.

2. ifzero(increment(zero())) Æ false — The value of increment(zero) is 1 
and hence ifzero(1) is false.

3. add(zero(), x) Æ x —This means that 0 + x = x.
4. add(increment (x), y) Æ increment (add(x, y))—Assuming x = 3 and y = 5, 

this means that add(increment (3), 5) = increment(add(3, 5)) = add(4, 5) = 
increment(8) = 9.

5. equal(increment(x), increment(y)) Æ equal(x, y)— This axiom specifies 
that if x and y are equal, then x + 1 and y + 1 are also equal.

The axioms do not specify the form of implementation of the data structure. This is why 
the ADT is an abstract one. An ADT can also be defined as a collection of variables together 
with the functions necessary to operate on those variables. Variables represent the informa-
tion contained, whereas functions define the operations that can be performed on data.
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In OOP, we can create an object from an ADT. In fact, C++ provides ‘class’ decla-
ration precisely for the purpose of defining the ADT from which objects are created. 
Creating an object involves setting aside a block of memory for the variables of that 
object. In C++, functions that operate on variables of a class are called member func-
tions. An ADT is a way of defining a data structure so that we know what it does but 
not how it does it.

1.4 TYPEs OF DATA sTRuCTuREs

We defined a data structure as a way of organizing data that specifies

1. a set of data elements, that is, a data object; and
2. a set of operations that  are applied to this data object.

These two sets form a mathematical construct that may be implemented using a particular 
programming language. The data structure is independent of their implementation. The 
various types of data structures are as follows:

1. primitive and non-primitive
2. linear and non-linear
3. static and dynamic
4. persistent and ephemeral
5. sequential and direct access

1.4.1 Primitive and Non-primitive Data structures

Primitive data structures define a set of primitive elements that do not involve any other 
elements as its subparts — for example, data structures defined for integers and charac-
ters. These are generally primary or built-in data types in programming languages.

Non-primitive data structures are those that define a set of derived elements such as 
arrays. Arrays in C++ consist of a set of similar type of elements. Class and structure are 
other examples of non-primitive data structures, which consist of a set of elements that 
may be of different data types and functions to operate on.

1.4.2 Linear and Non-linear Data structures

Data structures are classified as linear and non-linear. A data structure is said to be linear 
if its elements form a sequence or a linear list. In a linear data structure, every data ele-
ment has a unique successor and predecessor. There are two basic ways of representing 
linear structures in memory. One way is to have the relationship between the elements by 
means of pointers (links), called linked lists. The other way is using sequential organiza-
tion, that is, arrays.

Non-linear data structures are used to represent the data containing hierarchical or 
network relationship among the elements. Trees and graphs are examples of non-linear 
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data structures. In non-linear data structures, every data element may have more than one 
predecessor as well as successor. Elements do not form any particular linear sequence. 
Figure 1.2 depicts both linear and non-linear data structures. 

1.4.3 static and Dynamic Data structures

A data structure is referred to as a static data structure if it is created before program ex-
ecution begins (also called during compilation time). The variables of static data structure 
have user-specified names. An array is a static data structure.

In many applications, it is desirable to be able to start a program with the smallest 
amount of memory necessary and then allocate extra memory as the need arises. This 
facility is provided by many programming languages and in C++, through the operator 
new. These functions allow programmers to allocate memory during execution. Hence, 
the programmer can realize the data structure which dynamically grows and shrinks. 

A data structure that is created at run-time is called dynamic data structure. The vari-
ables of this type are not always referenced by a user-defined name. These are accessed 
indirectly using their addresses through pointers. 

A linked list is a dynamic data structure when realized using dynamic memory 
 management and pointers, whereas an array is a static data structure. Non-linear data struc-
tures are generally implemented in the same way as linked lists. Hence, trees and graphs 
can be implemented as dynamic data structures. 

1.4.4 Persistent and Ephemeral Data structures 

Data structures comprise a set of operations and a set of data to operate on. The opera-
tions that process the data may modify the data. This may create two versions of a data 
structure namely the recently modified (also called as updated) data structure and the pre-
vious version, which can be saved before performing any operation on it. Some  languages 
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Fig. 1.2  Classification of data structures
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such as ML have built-in data types such as the list. This data type has the associated 
 operations—append and reverse. These operations preserve two copies of the data struc-
ture, list, as the recent version and the previous version.

A data structure that supports operations on the most recent version as well as the 
previous version is termed as a persistent data structure. A persistent data structure is 
partially persistent if any version can be accessed but only the most recent one can be 
updated; it is fully persistent if any version can be both accessed and updated.

An ephemeral data structure is one that supports operations only on the most recent 
version. The distinction between ephemeral and persistent data structure is essentially the 
distinction between functional (also called effect free) and conventional imperative (also 
called effect full) programming paradigms. The functional data structures are persistent 
and the imperative data structures are ephemeral.

Data structures in conventional imperative languages are ephemeral as insertion into 
a linked list mutates the list and the old version is lost. Data structures in functional 
languages are persistent as inserting an element into a list yields a new list and the old 
version still remains available. In addition, a stack can be implemented so that pushing 
yields a new stack, leaving the old stack still available. The language ML supports both 
persistent and ephemeral data structures.

1.4.5 sequential Access and Direct Access Data structures

This classification is with respect to the access operations associated with data structures. 
Sequential access means that to access the nth element, we must access the preceding 
(n - 1) data elements. A linked list is a sequential access data structure.
Direct access means that any element can be accessed without accessing its predecessor 
or successor; we can directly access the nth element. An array is an example of a direct 
access data structure.

1.5 INTRODuCTION TO ALGORIThMs

We define computers as a data processor or as a black box. A computer acting as a black 
box accepts input (data and program) and generates output. A program is a set of in-
structions that tells the computer what to do with data. The instructions are in computer 
 language, that is, a program is a set of instructions written in a computer language.

An algorithm, named after the ninth-century Persian mathematician Abu Jafar Mo-
hummed bin Musa al-Khwarizmi, is simply a set of rules for carrying out some task, 
 either by hand or, more usually, on a machine. The real world performance of any soft-
ware depends on

1. the algorithm chosen and
2. the suitability and efficiency of various layers of implementation
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Good algorithm design is, therefore, crucial for the performance of all software sys-
tems. Moreover, the study of algorithms provides insight into the fundamental nature 
of the problem. A study of the algorithms also provides insight into possible solution 
techniques independent of the programming language, programming paradigm, computer 
hardware, or any other implementation aspects.

A programmer should first solve the problem in a step-by-step manner and then try 
to find the appropriate instruction or series of instructions that solves the problem. This 
step-by-step solution is called an algorithm. An algorithm is independent of the computer 
system and the programming language. 

Each algorithm includes steps for

1. input,
2. processing, and 
3. output.

1.5.1 Characteristics of Algorithms

An algorithm, as defined in Section 1.5, is simply a set of rules for carrying out some task, 
either by hand or, more usually, on a machine. This set of rules is the idea behind a com-
puter program. This idea is independent of implementation. An algorithm stays the same 
whether the program is in Pascal, running on a Cray in New York, in BASIC, running on 
a Macintosh in Kathmandu, or in Fortran-90, running on Param 10000 in India!

An algorithm has to solve a general, specified problem. An algorithmic problem is 
specified by describing the set of input instances it must work on and the desired proper-
ties that the output must have.

Let us redefine the term algorithm.
An algorithm is a well-defined computational procedure that transforms inputs into out-

puts achieving the desired input–output relationship. A computational problem is a speci-
fication of the desired input–output relationship. An instance of a problem is all the inputs 
needed to compute a solution to the problem. A correct algorithm halts with the correct 
output for every input instance. We can then say that the algorithm solves the problem.

In rather more detail, an algorithm is a finite and definite procedure for solving a prob-
lem. The finiteness is important. The definiteness is also important. We cannot accept 
algorithmic methods that involve making inspired guesses, such as finding a clever sub-
stitution for an integral.

Hence, an algorithm is a finite ordered set of unambiguous and effective steps which, 
when followed, accomplish a particular task by accepting zero or more input quantities 
and generate at least one output. 

The following are the characteristics of algorithms:

Input An algorithm is supplied with zero or more external quantities as input.

Output An algorithm must produce a result, that is, an output.
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Unambiguous steps Each step in an algorithm must be clear and unambiguous. This 
helps the person or computer following the steps to take a definite action.

Finiteness An algorithm must halt. Hence, it must have finite number of steps.

Effectiveness Every instruction must be sufficiently basic, to be executed easily.
In brief, an algorithm is an ordered finite set of unambiguous and effective steps that 

produces a result and terminates.

1.5.2 Algorithmics

Algorithmics is a field of computer science, defined as a study of algorithms. The overall 
goal of algorithmics is to understand the complexity of algorithms. This study includes 
design and analysis of algorithms. 

When we set out to solve a problem, there may be a choice of algorithms available. In 
such a case, it is important to decide on which one to use. Depending on our priorities and 
on the limits of the equipment available, we may want to choose an algorithm that takes 
the least time, uses the least storage, is the easiest to program, and so on. The answer can 
depend on many factors, such as the number involved, the way the problem is presented, 
or the speed and storage capacity of the available computing equipment.

It may be the case that none of the available algorithms is entirely suitable so that we 
have to design a new algorithm of our own. Algorithmics is the science that lets us evalu-
ate the effect of the various external factors on the available algorithms so that we can 
choose the one that best suits our particular circumstances; it is also the science that tells 
us how to design a new algorithm.

Algorithmics include the following: 

How to devise algorithms Devising an algorithm is an art that can never be fully 
automated. By studying various techniques, that is, design strategies, it becomes easier to 
devise new and useful algorithms.

How to validate algorithms Once an algorithm is devised, it is necessary to show that it 
computes the correct answer for all possible legal inputs. The methods used for validation 
include contradiction and mathematical induction. 

How to analyse algorithms Analysis of algorithms refers to the task of determining 
how much computing time and storage an algorithm requires. 

1.5.3 Algorithm Design Tools: Pseudocode and Flowchart

The two popular tools used in the representation of algorithms are the following:

1.  Pseudocode
2. Flowchart 

Let us study each in detail.
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1.6 PsEuDOCODE

An algorithm can be written in any of the natural languages such as English, German, 
French, etc. One of the commonly used tools to define algorithms is the pseudocode. 
A pseudocode is an English-like presentation of the code required for an algorithm. It is 
partly English and partly computer language structure code. The structure code is noth-
ing but syntax constructs of a programming language (in a slightly modified format). For 
example, some language structure constructs such as arrays or pointers are not used in the 
English language, hence they are borrowed from programming languages. 

1.6.1 Pseudocode Notations

Pseudocode is a precise description of a solution as compared to a flowchart. To get a 
complete description of the solution with respect to problem definition, pre–post condi-
tions and return value details are to be included in the algorithm header. In addition, 
information about the variables used and the purpose are to be viewed clearly. To help 
anyone get all this information at a glance, the pseudocode uses various notations such 
as header, purpose, pre–post conditions, return, variables, statement numbers, and sub-
algorithms. Let us discuss the details of each.

1.6.2 Algorithm header

A header includes the name of the algorithm, the parameters, and the list of pre and post 
conditions. This information is important to know about the algorithm just by reading the 
header, not the complete algorithm. Therefore, the header information must be complete 
enough to communicate to the programmer everything he or she must know to use the 
algorithm. The header makes the pseudocode readable.

In Algorithm 1.1, there are two parameters, an array A and the total number of elements 
in the array, that is, its size N. The parameters could be called either by reference (ref) or 
by value (val). The type is included in pointed brackets after the identifier. The algorithm 
is to sort the array A of size N.

algorithm 1.1

Algorithm sort(ref A<integer>, val N<integer>)
Pre array A to be sorted
Post sorted array A
Return None
1. if(N < 1) goto step (4)
2. M = N − 1
3. For I = 1 to M do
 For J = I + 1 to N do
 begin
   if(A(I) > A(J))
 then 
     begin
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  T = A(I)
  A(I) = A(J)
  A(J) = T 
     end
    end if
 end
4. stop

1.6.3 Purpose

The purpose is a brief description about what the algorithm does. It should be as brief as 
possible, describing the general algorithm processing, but should not describe all of the  
processing. For example, in Algorithm 1.1, the purpose just tells that this algorithm sorts the 
array of integers and does not need to state that the array is sorted and where the result is stored.  
Algorithm 1.2 searches for an element in an array.

algorithm 1.2

Algorithm search (val list<array>,val X<integer>)
Pre list containing data array to be searched and
    argument containing data to be located
Post None
Return Location

1.Let list be the array and X be the element to be searched
2.For I = 1 to N do
  begin
 if(List(I) = X)
 then 
          Return I
       end if
  end
3.Return -1
4.stop

1.6.4 Condition and Return statements

The pre condition states the pre-requirements for the parameters, if any. For example, 
in an algorithm for set operations, the pre condition may state that the input should be a 
group of elements without duplicates. Sometimes, there are no pre conditions, in which 
case, we still list the pre condition with the statement Nothing, as shown here.

Pre  Nothing

If there are several input parameters, then the pre condition should be shown for each. 
For example, a simple array search Algorithm 1.2 has the following header:

algorithm search (val list<array>, val argument<integer>)
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Search array for specific item and return index location.

Pre  list containing data array to be searched, argument containing 
data to be located in the list

Post None
Return  Location if found else return −1 indicating that the element 

is not found

In this search, two parameters are passed by value. The pre condition specifies that 
the two input parameters, list and argument, must be initialized. If a binary search were 
being used, the pre condition would also state that the array data must be ordered.

The post condition identifies any action taken and the status of any output parameters. 
In Algorithm 1.1, the post condition is the array containing sorted data. If a value is re-
turned, it will be identified by a return condition.

1.6.5 statement Numbers

The statements in an algorithm are numbered sequentially. For conditional or un-conditional 
jumps and also for iteration statements, numbering helps identify the statements uniquely. 
Any label system such as the decimal or roman numbers or even alphabets can be used 
to label the statements. If decimal notation is used, then the statements within the itera-
tive constructs can be numbered as 4.1, 4.2, and so on. This notation helps indent the  
algorithm properly.

4 while(i < 10) do
   begin
       4.1 x = x * y
       4.2 i = i + 1
   end

1.6.6 Variables

Variables are needed in algorithms. We need not define every variable used in the algo-
rithm. The use of meaningful variable names is appreciated as the context of the data is 
indicated by its name. Hungarian notation is suggested for variable naming. It is sug-
gested to use descriptive and meaningful variable names to guarantee that the meaning is 
understood properly.

The variable name used in an algorithm can be continued to be used when the respec-
tive algorithm is coded in a particular language. These meaningful variables make the code 
easier to understand, debug, and modify. It is suggested to follow a few thumb rules as:

1. It is better to use descriptive variable names instead of single character names. Often, 
we use variables such as x, y, z, a, or b and i or j for index variables of loops, matrices, 
and array indices. For example, instead of using i and j as index variables for a two-
dimensional array, it is suggested to use row and column as index variables. In searching 
algorithms, the suggested variable for the element to be searched is target instead of x. 
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For a table of weather information, City and Temperature will be a better row index 
and column index variables, respectively.

2. It is suggested to avoid usage of short forms and generic names. For example, use 
ListofColors instead of lcol or NumberOfStudents instead of nostud. The reason 
being short forms do not necessarily mean what they intend. Commonly used generic 
names are index, count, number, sum, total, row, column, etc. These variables are used 
in various modules of a program and may have many instances. Adding a good qualifier to 
the generic name results in better understanding to read, debug, or modify the code.

3. It is expected to use variable names so that the data type of the variable can be indicated.  
For example, fAverageMarks, iNumberofColors, bAvailability for float, integer, 
and Boolean data respectively. 

1.6.7 statement Constructs

There are three statement constructs used for developing an algorithm. The objective is 
that an algorithm should be made up of a combination of lesser constructs, say three, as 
in the following:

1. sequence
2. decision
3. repetition

The use of only these constructs makes an algorithm easy to understand, debug, and 
modify.

Sequence

An algorithm is a sequence of instructions, which can be a simple instruction (input, out-
put, or assignment) or either of the other two constructs. Figure 1.3 shows an example of 
such a sequence construct. Algorithm 1.3 computes the area of a circle.

Sequence construct

do action 1 

do action 2 

 . 

 . 

 . 

do action n

Algorithm 1.3

Pre           None
Post         None
Return     None
1.   Read Radius 
2.   AreaOfCircle = 2 * 3.142 * Radius * Radius 
3.   Print  AreaOfCircle 
4.   Stop 

Fig. 1.3  Sequence construct

www.allitebooks.com
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Decision

Some problems cannot be solved with the help of just a sequence of simple instructions. 
Sometimes, we need to test the conditions. If the result of the testing is true, we follow a 
sequence of instructions; if it is false, we follow a different sequence of instructions. This 
is called decision or selection construct (Fig. 1.4).

Series of actions

Series of actions

If a condition is true,
Then

Else

Fig. 1.4  Decision construct

 example 1.1  Compare two numbers to print the maximum among them.

Solution The algorithm for comparing two numbers is listed in Algorithm 1.4. 

algorithm 1.4 
   Pre None
   Post None
   Return None
1. Read two numbers Num1 and Num2
2. If Num1 > Num2
        Then Print Num1
        Else Print Num2

3. Stop

Repetition

In some problems, we need to repeat a set of instructions. We can use repetition construct 
for this purpose. Figure 1.5 shows a repetition construct and an example of computing 
the sum of first N numbers, Â N (Algorithm 1.5).

1.6.8 subalgorithms

We studied three constructs — sequence, decision, and iteration — for developing 
an algorithm for solvable problems. A solvable problem is a problem that has a solution 
that can be described in the form of an algorithm. 
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while a condition is true do 

Action 1 

Action 2 

.

.

.

Action n 

end while 

Algorithm 1.5 

Pre             None 
Post           None 
Return       SUM 
1.   Read N
2.   Let SUM = 0 and Index  = 1
3.   while Index <= N do

SUM = SUM + Index
Index = Index + 1
end while

4.   Return SUM

Repetition construct

Fig. 1.5  Repetition construct

In structured programming, the problem solution is described in the form of smaller 
modules. This modular design breaks an algorithm into smaller units called subalgo-
rithms. These units are referred by various names in programming languages such as 
functions, subroutines, procedures, methods, and modules.

The goal of modular design in algorithms is to make the complex and lengthy algo-
rithms easy to read, write, verify, and debug. Each subalgorithm can, in turn, be divided  
into subalgorithms, and the process of such subdivision may continue till each step  
becomes effective. 

 example 1.2  Write an algorithm to compute the following:

P = n!/(n − r)!

Solution Algorithms 1.6 computes the number of possible ways of arranging any 
r of n elements.

algorithm 1.6

Pre None
Post None
Return Result

1. Read n and r
2. Let
 (a) A = FACT(n) and 
 (b) B = FACT(n  −  r)
3. Result = A / B
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4. Print Result

5. Stop

Here FACT is the subalgorithm to compute the factorial of a number as

n! = n × (n - 1) × (n - 2) × ... × 1

subalgorithm FACT
1. Read n
2. Let Result = 1
3. while(n not equal to 1) do
 Result = Result × n
 n = n – 1
 end while
4. Return Result

Note that the subalgorithm makes the algorithm readable and compact. A read-
able algorithm is the one that, at one glance, gives the reader knowledge about the 
overall computation process. A compact algorithm is without redundant code. You 
must have noted in this algorithm that the factorial computation is required twice. 
A subalgorithm FACT has avoided the redundancy of code to make the algorithm a 
compact one.

1.7 RELATIONshIP AMONG DATA, DATA sTRuCTuREs, AND ALGORIThMs

There is an intimate relationship between the structuring of data and analysis of algo-
rithms. In fact, a data structure and an algorithm should be thought of as one single unit; 
neither one making sense without the other. Let us consider the example of searching for 
a person’s phone number in a directory. The procedure we follow to search a person and 
get his/her phone number critically depends on how the phone number and names are  
arranged in the directory. Let us consider two ways of organizing the data (phone numbers 
and names) in the directory.

1. The data is organized randomly. Then to search a person by name, one has to 
linearly start from the first name till the last name in the directory. There is no other 
option.

2. If the data is organized by sorting the names (alphabetically sorted in ascending 
order), then the search is much easier. Instead of linearly searching through all 
records, one may search in a particular area for particular alphabets, similar to using 
a dictionary.

As the data is in sorted order, both the binary search and a typical directory search meth-
ods work. Hence our ideas for algorithms become possible when we realize that we can 
organize the data as we wish. We can say that there is a strong relationship between the 
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structuring of data (along with inter-relationship among data structures) and the opera-
tions to process the data (algorithms). In fact, the way we process our data depends on the 
way we organize it.

1.8 IMPLEMENTATION OF DATA sTRuCTuREs 

A data structure is an aggregation of atomic and composite data types into a set with the 
relationship among them defined. As defined in Section 1.3.4, a data structure D is a trip-
let, that is, D = (D, F, A), where D is a set of data object, F is a set of functions, and A is a 
set of rules to implement the functions.

Let us consider an example of integer data type (int) in C++.

D = (0, ±1, ±2, ±3, …)
F = (+, -, *, /, %)
A =  (a  set of binary arithmetic rules to perform addition, subtraction, division, multi-

plication, and module operations)

The set of axioms A defines semantics of operations on D for F. An implementation 
of a data structure D is a mapping from D to a set of other data structures E. This map-
ping specifies how every data object of D is to be represented by objects of E. More-
over, it requires that every function of D must be written using the functions of the 
implementing data structures E. Thus, we may say that the integers are represented by 
bit strings, the Boolean is represented by 0 and 1, and an array is represented by a set 
of sequential locations in memory. We have also defined the term abstract data type, 
which is a data structure in which rules (A — the set of axioms) do not imply a form of 
representation.

Hence, another way of viewing implementation of a data structure is that it is a process 
of refining an ADT until all the operations are expressed effectively so that they are de-
fined in terms of directly executable functions.

Hence, implementation of data structures can be viewed in terms of two phases: speci-
fication and implementation. Such a division of tasks is useful as it helps to control the 
complexity of the entire process.

Phase I: Specification At the first stage, a data structure should be designed so that we 
know what it does and not necessarily how it will do it. 

Phase II: Implementation At this stage, we define all functions with respect to 
the description of how to manipulate data. This can be done with algorithms so that 
the details of the operation can be understood easily, and the reader can implement 
them easily and effectively with the help of any programming language. Either of the 
design tools, that is, an algorithm or a flowchart, can be used at this phase. We have 
already learnt about algorithms as design tools; let us now learn about flowcharts.
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1.9 FLOwChARTs

A very effective tool to show the logic flow of a program is the 
flowchart. A flowchart is a pictorial representation of an algo-
rithm. It hides all the details of an algorithm by giving a picture; 
it shows how the algorithm flows from beginning to end. In a 
programming environment, it can be used to design a complete 
program or just a part of the program.

The primary purpose of a flowchart is to show the design of 
the algorithm. At the same time, it relieves the programmers 
from the syntax and details of a programming language while 
allowing them to concentrate on the details of the problem to 
be solved. This is in contrast to another programming design 
tool, the pseudocode, which provides a textual design solution. 
Both tools have their advantages, but a flowchart has the pictorial  
power that other tools lack. Figure 1.6 is a flowchart that describes  
the process of reading, adding, printing three numbers, and printing  
the result.

1.10 ANALYsIs OF ALGORIThMs 

Algorithms heavily depend on the organization of data. There can be several ways to orga-
nize data and/or write algorithms for a given problem. The difficulty lies in deciding which 
algorithm is the best. We can compare one algorithm with the other and choose the best. 
For comparison, we need to analyse the algorithms. Analysis involves measuring the per-
formance of an algorithm. Performance is measured in terms of the following parameters: 

1. Programmer’s time complexity — Very rarely taken into account as it is to be paid for 
once

2. Time complexity — The amount of time taken by an algorithm to perform the intended 
task

3. Space complexity — The amount of memory needed to perform the task. 

It is very convenient to classify algorithms on the basis of the relative amount of time 
and space they require and specify the growth of time and space requirements as a func-
tion of the input size. 

1.10.1 Complexity of Algorithms

Algorithms are measured in terms of time and space complexity. The time complexity of 
an algorithm is a measure of how much time is required to execute an algorithm for a giv-
en number of inputs and is measured by its rate of growth relative to standard  functions.

D = a + b + c

Start

Read a, b, c

Print D

Stop

Fig. 1.6  Flowchart for 
adding three numbers
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Space complexity is similar to time complexity. The space complexity of an algorithm 
is a measure of how much storage is required by the algorithm. It is possible to design an 
algorithm that uses more space and less time or less space and more time.

Typically, computer scientists are interested in minimizing the time complexity of al-
gorithms. The economics of storage versus the speed of computers is the principal factor 
that determines the focus on time complexity. The cost of memory has decreased at an 
exponential rate over the past 25 years, whereas the cost of central processing unit time 
has not decreased at that rate. The bottleneck is the execution time. Hence, computer sci-
entists focus on the execution time of algorithms.

An algorithm can be characterized by a timing function T (n). T (n) is a measure 
of how much time is required to execute an algorithm with the given n data values. 
For example, the timing function for a sort operation specifies the time required to 
sort n data values. The timing function for an algorithm that solves a system of linear 
equations specifies the time required to solve n linear equations.

An algorithm O(n2), pronounced ‘oh of n squared’, indicates that its timing function 
will grow no faster than the square of the number of data values it processes. Let us learn 
more about these two measures of algorithms. 

1.10.2 space Complexity

Space complexity is the amount of computer memory required during program execu-
tion as a function of the input size. Space complexity measurement, which is the space 
requirement of an algorithm, can be performed at two different times: 

1. Compile time 
2. Run time

Compile Time Space Complexity 

Compile time space complexity is defined as the storage requirement of a program at 
compile time. 

This storage requirement can be computed during compile time. The storage needed 
by the program at compile time can be determined by summing up the storage size of 
each variable using declaration statements. For example, the space complexity of a 
non-recursive function of calculating the factorial of number n depends on the number 
n itself.

Space complexity = Space needed at compile time 

This includes memory requirement before execution starts. 

Run-time Space Complexity 

If the program is recursive or uses dynamic variables or dynamic data structures, then 
there is a need to determine space complexity at run-time. In general, this dynamic storage  
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size is dependent on some parameters used in a program. It is difficult to estimate 
memory requirement accurately, as it is also determined by the efficiency of compiler. 
Memory requirement is the summation of the program space, data space, and stack space. 

Program space This is the memory occupied by the program itself. 

Data space This is the memory occupied by data members such as constants and 
variables. 

Stack space This is the stack memory needed to save the function’s run-time 
environment while another function is called. This cannot be accurately estimated 
since it depends on the run-time call stack, which can depend on the program’s data 
set. This memory space is crucially important for recursive functions. 

1.10.3 Time Complexity

Time complexity T (P) is the time taken by a program P, that is, the sum of its compile 
and execution times. This is system-dependent. Another way to compute it is to count the 
number of algorithm steps. An algorithm step is a syntactically or semantically meaning-
ful segment of a program. We can determine the number of steps needed by a program to 
solve a particular problem instance in one of the following two ways: 

1. Introduce a new variable, count, into the program. This is a global variable with 
initial value 0. Statements to increment count amount are introduced in the program 
at appropriate locations. This is done so that each time the statement in the original 
program is executed, the count is incremented by the step count of that statement. We 
measure the run-time of an algorithm by counting the number of steps. 

2. Manually compute the number of times each statement will be executed. The number of 
times the statement is executed is its frequency count. Get the sum of frequency counts 
of all statements. This sum is the number of steps needed to solve a given problem.

Best, Worst, and Average Cases

The best case complexity of an algorithm is the function defined by the minimum number 
of steps taken on any instance of size n. 

The worst case complexity of an algorithm is the function defined by the maximum 
number of steps taken on any instance of size n. 

The average case complexity of an algorithm is the function defined by an average 
number of steps taken on any instance of size n. 

Each of these complexities defines a numerical function — time versus size.

1.10.4 Computing Time Complexity of an Algorithm

The total time taken by the algorithm or program is calculated using the sum of the time 
taken by each of the executable statements in an algorithm or a program. The time re-
quired by each statement depends on the following:
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1. the time required for executing it once
2. the number of times the statement is executed

The product of these two parameters gives the time required for that particular statement. 
Compute the execution time of all executable statements. The summation of all the execu-
tion times is the total time required for that algorithm or program.

In general, when we sum up the frequency count of all the statements, we get a poly-
nomial. In an analysis, we are interested in the order of magnitude of an algorithm, that is, 
we are interested in only those statements that have the greatest frequency count.

1.10.5 Big-O Notation

Given the speed of computers today, we are not concerned as much with the exact mea-
surement of an algorithm’s efficiency as we are with its general order of magnitude. 
If the analysis of two algorithms shows that one executes 15 iterations while the other 
executes 25 iterations, then they are both so fast that we cannot see the difference. On 
the other hand, if one iterates 15 times and the other iterates 1500 times, we should be 
concerned. 

We have shown that the number of statements executed in the function for n elements 
of data is a function of the number of elements, expressed as f(n). Although the equation 
derived for a function may be complex, a dominant factor in the equation usually deter-
mines the order of magnitude of the result. Therefore, we do not need to determine the 
complex measure of efficiency but only the factor that determines the magnitude. This 
factor is the big-O, as in ‘on the order of’, and expressed as O(n), that is, on the order of n.

The simplification of efficiency is known as the big-O analysis. For example, if an 
algorithm is quadratic, we would say its efficiency is O (n2) or on the order of n squared.

The big-O notation can be derived from f (n) using the following steps:

1. In each term, set the coefficient of the term to 1.
2. Keep the largest term in the function and discard the others. The terms are ranked from 

the lowest to the highest as follows:

log2n … n … n log2n … n2 … n3 … nk … 2n … n! 

For example, 

1. To calculate the big-O notation for

f(n) = n ¥ (n + 1)
2

 = 1
2

 n2 + 1
2

 n

 we first remove all coefficients. This gives us 

n2 + n

 which, after removing the smaller factors, gives us n2
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 which, in big-O notation, is stated as 

O(f(n)) = O(n2)

2. To consider another example, let us look at the polynomial expression

f(n) = ajn
k + aj-1n

k-1 + … + a2n
2 + a1n + a0 

 We first eliminate all the coefficients as follows:

f(n) = nk + nk-1 + … + n2 + n + 1

The largest term in the expression is the first one, so we can say that the order of this 
polynomial expression is 

O(f(n)) = O(nk)

Any measure of efficiency presumes that a sufficiently large sample is being consid-
ered. If you are dealing with only 10 elements and the time required is a fraction of a 
second, there will be no meaningful difference between the two algorithms. On the other 
hand, as the number of elements being processed grows, the difference between algo-
rithms can be staggering, for example, for n it is 10,000. Returning for a moment to the 
question of why we should be concerned about efficiency, consider the situation in which 
you can solve a problem in three ways: one is the linear method, another is the linear 
logarithmic method, and the third is the quadratic method. We should be able to analyse 
and select one among the many possible algorithms.

1.11 FROM PROBLEM TO PROGRAM

It is noticed that programmers spend most of their time in understanding what problems 
to solve. Initially, most problems have no simple, precise specifications. Rather, there 
are certain problems, such as creating a ‘gourmet’ recipe or preserving world peace, that 
may be impossible to formulate in terms of a computer solution. Even if we feel that our 
 problem can be solved on a computer, there is usually considerable scope in several prob-
lem parameters. Often, it is only through experimentation that reasonable values for these 
parameters can be found.

If certain aspects of a problem can be expressed in terms of a formal model, it is usu-
ally beneficial to do so, for once a problem is formalized, we can look for solutions in 
terms of a precise model and determine whether a program already exists to solve that 
problem. Even if there is no existing program, we can at least discover what is known 
about this model and use the properties of the model to help construct a good solution. 
We shall now consider a systematic approach (or phases) to program development. Soft-
ware engineering is the field that emphasises on such a systematic approach for software 
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development. Let us now discuss software engineering, which is important for both small 
simple programs developed by beginners and complex software developed by a group 
of programmers. 

1.12 sOFTwARE ENGINEERING

Software engineering is the establishment and use of good engineering methods and prin-
ciples to obtain reliable software that works on real machines.

A fundamental concept in software engineering is the software development life cycle 
(SDLC). Software, like many other products, goes through a cycle of repeating phases. 
The development process in the software life cycle broadly involves four phases: analysis, 
design, implementation, and testing. Figure 1.7 shows these phases as part of the develop-
ment process.

System development

Analysis

Design

Implementation

Testing

Fig. 1.7  System development phases

1.12.1 Analysis Phase 

The development process starts with the analysis phase; the systems analyst defines 
requirements that specify what the proposed system is to accomplish. The requirements 
are usually stated in terms that the user understands. There are four steps in the analysis 
phase: define the user, define the needs, define the requirements, and define the methods.
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Define the user A software package may be designed for a generic user or a specific 
user. For example, an accounting package may be created for use by any firm. On the 
other hand, a customized banking package may be created for a specific bank. The user of 
the package must be clearly defined.

Define the needs After the user has been identified, the analysts clearly define the 
needs. The user, or the representative of the user, clearly defines his/her expectations of 
the package.

Define the requirements On the basis of the needs of the user, the analyst can exactly 
define the requirements for the system. For example, if a package is to print cheques at the end 
of the month for each employee, what level of security and accuracy should be implemented 
needs to be clearly defined and studied. So one must study all levels of requirements of the 
system to be developed.

Define the methods Finally, after the requirements are defined in clear terms, the 
analyst can choose the appropriate methods to meet those requirements.

1.12.2 Design Phase

The design phase defines how the system will accomplish what was defined in the analy-
sis phase. In the design phase, the systems are determined, and the design of the files and/
or the databases is completed.

Modularity Today, the design phase uses a very well-established principle called 
modularity. The whole package is divided into small modules. Each module is designed 
and tested and is linked to other modules through a main program.

Tools The design phase uses several tools, the most common being a structure chart. 
A structure chart shows how to break your package into logical steps; each step is a 
separate module. The structure chart also shows the interaction among all the parts 
(modules).

1.12.3 Implementation Phase

In the implementation phase, we create the actual programs.

Tools This phase uses several tools to show the logical flow of the program before 
the actual writing of the code. One tool, still popular, is the flowchart. A flowchart uses 
standard graphical symbols to represent the logical flow of data through a module. The 
second tool used by programmers is the pseudocode. The language of the pseudocode is 
partly English and partly logical, which describes what the program is to do in precise 
algorithmic detail. This requires the steps to be defined in sufficient detail so that 
conversion to a computer program can be accomplished easily.
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Coding After the production of a fl owchart, a pseudocode, or both, the programmer 
actually writes the code in a language specifi c for the project. The choice of the language 
is based on the effi ciency of the language for that particular application.

1.12.4  Testing Phase 

Once the programs have been written, they must be tested. The testing phase can be a very 
tedious and time-consuming part of program development. The programmers are com-
pletely responsible for testing the system as a whole, that is, testing to make sure all the 
programs work properly together. There are two types of testing—black box and white 
box. The system test that engineers and users do is black box testing. White box testing is 
the responsibility of the programmer.

1.12.5  Verifi cation Phase

Program verifi cation is a process to prove that the program does what it is intended to do. 
For simpler and smaller programs, verifi cation often consists of trying a few sample cases 
to see whether the results of running the code match our expectations. However, such meth-
odology leaves certain errors undetected in the program, and hence it is avoided. Again, it is 
not recommended to verify the program, after the running code is available, as the defects 
detected are diffi cult to repair. It is said that ‘even verifi cation must be verifi ed’. This means, 
along with the system, the tests prepared are also to be verifi ed. In addition, the quality of 
every software must be verifi ed.

RECAPITuLATION

•  A computer is a programmable data process-
ing machine that accepts input, instructions to 
process  the  input  (program),  and  generates 
the  required  output.  The  data  and  the  pro-
gram  are  stored  in  the  computer’s memory. 
A  program  is  written  in  the  computer’s  lan-
guage.

•  The art of programming consists of designing 
or choosing algorithms and expressing  them 
in  a  programming  language. An  algorithm  is 
a stepwise description of actions that lead the 
problem from its start state to its goal state.

•  One of the common tools used to defi ne algo-
rithms  is  the  pseudocode.  The  pseudo code 

is an English-like  representation of  the  code 
required for an algorithm. It is part English and 
part structured code.

•  A very effective tool to show the logic fl ow of a 
program is the fl owchart. A fl owchart is a picto-
rial representation of an algorithm. It hides all 
the details of an algorithm by giving the whole 
picture,  that  is,  it  shows  how  the  algorithm 
fl ows from the beginning to the end.

•  A  data  structure  represents  a  set  of  data 
items  with  a  specifi c  relationship  between 
them. The success of a software project often 
depends on  the  choices made  in  the  repre-
sentation of data and algorithms designed to 
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process the data. The proper choice of a data 
structure can be a key point in the design of 
many algorithms.

•  Software engineering is the establishment and 
use  of  good  engineering method ologies  and 
the principle to writing reliable software. One 
of the most important principles in accomplish-
ing  this  is  the use of abstraction. Abstraction 
allows us to organize the complexity of a task 
by focusing on  logical properties of data and 
actions  rather  than  on  the  implementation 
details. Logical properties refer  to  the  ‘what’ 
and implementation details refer to the ‘how’. 
The abstraction is at the procedural and data 
levels. 

•  A data  structure  is  a way of  organizing data 
that specifi es  a set of data elements, that is, 
a data object, and a set of operations that are 
applied  to  this  data  object.  These  two  sets 
form  a  mathematical  construct  that  may  be 
implemented using a particular programming 
language. The data  structure  is  independent 

of  its  implementation.  The  various  types  of 
data structures are as follows: 

▪  primitive and non-primitive
▪  linear and non-linear
▪  static and dynamic
▪  persistent and ephemeral
▪  sequential and direct access

•  There is an intimate relationship between the 
structuring of data and analysis of algorithms. 
In  fact,  a  data  structure  and  an  algorithm 
should be thought of as a single unit, neither 
one making sense without the other. 

•  Algorithms depend heavily on the organization 
of data. There can be several organizations of 
data  and/or  algorithms  for  a  given  problem. 
The diffi culty lies in deciding which algorithm is 
the best. We can compare the algorithms and 
choose the best. For comparison, we need to 
analyze the algorithms. The analysis involves 
measuring the performance of an algorithm in 
terms of time and space complexity.

Abstract data type Data and the operations on the 
data are encapsulated and hidden from the user. 
An abstract data type is a data declaration pack-
aged together with the operations that are mean-
ingful for the data type. It includes the declaration 
of data, implementation of operations, and encap-
sulation of data and operations.

Algorithm A step-by-step solution is called an al-
gorithm. An algorithm is independent of the com-
puter system and the programming language.

Assembler A software that translates assembly 
language code to machine language is called an 
assembler.

Compiler A software that translates higher level 
language code to machine language is called a 
compiler.

Data Data is nothing but a piece of information. 
Data input, data manipulation (or data process-
ing), and data output are the themes of a com-
puter.

Data object A data object represents a container for 
data values — a place where data values may be 
stored and later retrieved from. A data object is a 
run-time instance of the data structure.

Data structure Data structure refers to data and the 
representation of data objects within a program, that 
is, the implementation of structured relationships. 
A data structure is a set of domains D, a designated 
domain d Œ D, a set of functions F, and a set of axi-
oms A. The triple structure (D, F, A) denotes the data 
structure which is usually denoted as d.

KEY TERMs
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Data type Data type is a term that specifi es the type of 
data that a variable may hold in the programming lan-
guage. 

Flowchart A pictorial representation of an algo-
rithm is called a fl owchart.

Non-linear data structure In non-linear data struc-
tures, every data element may have more than one 
predecessor as well as successor. Elements do not 
form any particular linear sequence.

Linear data structure A data structure is said to 
be linear if its elements form a sequence or a lin-
ear list. In a linear data structure, every data ele-

ment has a unique successor and a unique prede-
cessor.

Program A set of instructions is called a program.
Pseudocode A pseudocode is partly English and 

partly programming language used for writing 
an algorithm.

Software engineering Software engineering is the 
establishment and use of good engineering meth-
ods and principles to obtain reliable software that 
works on real machines.  Software engineering is 
the fi eld that emphasizes on a systematic approach 
for software development.

EXERCIsEs

Multiple choice questions

 1. The basic unit of information is the
 (a) byte
 (b) bit 
 (c) block
 (d) sector
 2. The order of an algorithm that fi nds whether a 

given Boolean function of n variables produces 
an output of 1 is

 (a) constant
 (b) linear
 (c) logarithmic
 (d) exponential
 3. Software engineering primarily deals with 
 (a) reliable software
 (b) cost-effective software
 (c) reliable and cost-effective software
 (d) none of the above
 4. A pictorial representation of an algorithm is 

called 
 (a) a fl owchart
 (b) a structure chart
 (c) a pseudocode
 (d) an algorithm
 5. An English-like representation of the code is 

called 

 (a) a fl owchart
 (b) a structure chart
 (c) a pseudocode
 (d) an algorithm
 6. A subalgorithm is also known as a
 (a) function
 (b) subroutine
 (c) module
 (d) all of the above
 7. A basic algorithm that arranges data according 

to their values is known as
 (a) inquiry
 (b) sorting
 (c) searching
 (d) recursion
 8. Defi ning the user's needs, requirements, and 

methods is a part of the
 (a) analysis phase
 (b) design phase
 (c) implementation phase 
 (d) testing phase
 9. In the system development process, the 

fl owchart is a tool used in the 
 (a) analysis phase
 (b) design phase
 (c) implementation phase 
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 (d) testing phase
10. In the system development process, a 

pseudocode is a tool used in the
 (a) analysis phase
 (b) design phase
 (c) implementation phase 
 (d) testing phase

Review questions

 1. What is programming? What are programming 
languages and how are they classified?

 2. What is object-oriented programming? 
 3. Define the terms data, data type, data structure, 

and abstract data type. 
 4. What are the types of data structures? 
 5. Explain the relationship between data structure 

and algorithm in the process of problem solving 
with an example.

 6. What is the formal definition of an algorithm? 
Write the essential properties and the 
performance measures of an algorithm.

 7. How is a pseudocode related to an algorithm? 
How is a flowchart related to an algorithm? 

 8. Write a pseudocode to compute the sum of the 
first N integers. Draw a flowchart for the same.

 9. Draw a flowchart for an algorithm that finds the 
smallest number among N numbers.

10.  Draw a flowchart for an algorithm that finds the 
largest number among N numbers.

11. What is software engineering? What is software 
development life cycle?

Answers to multiple choice questions

1. (b)  2. (d)  3. (c)  4. (a)  5. (d)  6. (d)  7. (b)  8. (a)  9. (b)
10. (b)



2 LINEAR DATA STRUCTURE 
USING ARRAYS

ObJECTIVES

After completing this chapt er, the reader will be able to understand the following:
 • Sequential organization of data
 • Linear data structure and its implementation using sequential representation in the 
form of arrays

 • Features of arrays
 • Ordered list and its representation
 • Effi cient use of arrays for representing and manipulating polynomials, strings, and 
sparse matrices

Data can be organized in a linear or non-linear form. In linear (or sequen tial) organiza-
tion, all the elements of the data can be arranged in a particular sequence, and each 

element has a unique successor (and/or predecessor) in the sequence. When each element 
may have one or more successors (or predecessors), it is called a   non-linear data structure. 
Linear list is one type of  linear data structure. Linear data structures can be realized using 
arrays as well as linked lists. In this chapter, we shall learn about the realization of linear 
data structure using arrays. Almost all programming languages support the concept of 
arrays. It is a very common and simple means of sequential data structuring. That is 
why linear data structures deserve signifi cant attention. This chapter covers linear data 
structure using arrays and its implementation, characteristics, and applications.

2.1  SEQUENTIAL ORGANIZATION

We have already studied that there are multiple ways to organize data (Chapter 1). Data 
organization heavily affects programming logic. We therefore select data structures and 
algorithms in such a way that the overall program proves to be effi cient in terms of space 
and time complexities.

As the name suggests, sequential organization allows storing data a fi xed distance 
apart. If the ith element is stored at location X, then the next sequential (i + 1)th element is 
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stored at location X + C, where C is a constant. Linear arrays, linear stacks, and linear 
queues are some examples of sequential organization. Figure 2.1 shows the four  
elements 11, 34, 25, and 9 stored in sequential organization starting with address L, 
where C = 1.

One major advantage of sequential or-
ganization is the direct or random access to 
any data element of the list in constant time. 
As sequential organization uses continuous 
memory locations to store data, the data ac-
cess time remains constant for accessing any 
element of the list, irrespective of the total 
length or size of the data list. When perform-
ing in-between insertions or deletions of ele-
ments in sequential organization, we have to 
perform data shifting to keep the organization 
consistent and intact. So the in-between inser-
tions and deletions become much expensive 
with respect to time and space complexities.

2.2 LINEAR DATA STRUCTURE USING SEQUENTIAL ORGANIZATION: ARRAYS

To store a group of data together in a sequential manner in computer’s memory, arrays 
can be one of the possible data structures. Arrays enable us to organize more than one 
element in consecutive memory locations; hence, it is also termed as structured or com-
posite data type. The only restriction is that all the elements we wish to store must be of 
the same data type. It can be thought of as a box with multiple compartments, where each 
compartment is capable of holding one data item. Arrays support direct access to any of 
those data items just by specifying the name of the array and its index as the item’s posi-
tion (sequence number as subscript).

Arrays are the most general and easy to use of all the data structures. An array as a data 
structure is defined as a set of pairs (index, value) such that with each index, a value 
is associated.

index—indicates the location of an element in an array
value—indicates the actual value of that data element

Index allows the direct addressing (or accessing) of any element of an array. Most of 
the time, an array is implemented by using continuous or consecutive memory locations  
(Fig. 2.2). However, at other times, it may not necessarily be implemented by using mem-
ory locations that are a fixed distance apart.

Address Element

L 11

L + 1 34

L + 2 25

L + 3 9

Fig. 2.1 Elements at sequential locations
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This is internally handled by operating sys-
tems; for users, it is a sequentially arranged 
data at consecutive locations. 

An array is a finite ordered collection of 
homogeneous data elements that provides 
direct access to any of its elements. Arrays 
can be used in any of their varied forms.  
A one-dimensional array is the simplest 
form of an array. Each word in the defini-
tion has a specific meaning:

Finite The number of elements in an 
array is finite or limited.

Ordered collection The arrangement of 
all the elements in an array is very specific, 
that is, every element has a particular 
ranking in the array.

Homogeneous All the elements of an 
array should be of the same data type.
Let us see how to declare an array in C++.

int Array_A[20];

This statement will allocate a memory 
space to store 20 integer elements, and the name assigned to the array is Array_A.

char Name[20];

Similarly, this statement will create an array Name that can store 20 character data type 
elements in it.

The common terms associated with arrays are as follows:

Size of array The maximum number of elements that would be stored in an array is 
the size of that array. It is also the length of that array. Arrays are static data structures 
because once the size of an array is defined, it cannot be changed after compilation. For 
the array Name, the size is 20.

Base The base address of an array is the memory location where the first element of an 
array is stored. It is decided at the time of execution of a program. The value of this base 
address varies at every program execution as it is decided at the run-time. It cannot be 
decided or defined even by a programmer.

Data type of an array The data type of an array indicates the data type of elements 
stored in that array. For the array Name, the data type is char.

Address (C = 2)

L 11

L + 2 34

L + 4 25

L + 6 9

Fig. 2.2  Array elements placed a fixed 
distance apart
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Index A user or a programmer can access the elements of an array by using subscripts 
such as Name[0], Name[1], ..., Name[i]. This subscript is called the index of an 
element. It indicates the relative position of every element in the array with respect to its 
first element. Often, an array is also referred to as subscripted variable.

Range of index If N is the size of an array, then in C++, the range of index is 0 - 
(N - 1) (whereas for languages such as Pascal it could be some integer, say, lower 
bound (LB) to upper bound (UB), e.g., 2 to n + 1 or -3 to n - 4). The range is 
language dependent.

Arrays help in storing a large amount of 
information, all with the same name and 
different indices. They provide direct access 
to these elements. Arrays are suitable for 
data items of fixed size. Figure 2.3 declares 
an array of name Array_A of 100 integers. 
The compiler generally allocates 2 bytes of 
memory for each integer. Ultimately, the ar-
ray will need 200 bytes of memory in total. 
The second statement stores the numeric 
value 456 to the third element of the array 
which is at Array_A[2].

The amount of storage per element de-
pends on the data type of the array. In C++,  
the memory requirement for different data 
types is given as follows:

1. 8 bits per element for each character,
2. 16 bits per element for integer variable, and
3. 32 bits per element for each floating point number.

One kind of data type is the generic data type where the operations are defined but the 
types of the items being manipulated are not, that is, the set of operations is defined but 
the set of values is not. The arrays are built-in generic data type in C/C++.

2.3 ARRAY AS AN AbSTRACT DATA TYpE

As defined in Section 2.2, an array is a set of pairs, index and value. For each index, 
there exists one associated element of an array. For defining an array as an abstract data 
type (ADT), we have to define the very basic operations or functions that can be per-
formed on it. The basic operations of arrays are creating an array, storing an element, 
accessing an element, and traversing the array.

Array_A[0]

Array_A[1]

Array_A[2]

.

.

.

Array_A[99]

int Array_A[100]; 
Array_A[2] = 456; 

456

Fig. 2.3 Storing elements at 
any random location 
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The function create() produces a new, empty array. Access() takes an array and an 
index as input, and returns either the appropriate value or an error. Store() is used to 
enter new index–value pairs. The axiom given in line 6 of the ADT definition reads ‘to 
retrieve the jth item where x has already been stored at index i in Array_A is equivalent 
to checking if i and j are equal, and if so, x, else search for the jth value in the remaining 
array, Array_A’. This axiom was originally given by J. McCarthy. Notice how the axioms 
are independent of any representation scheme. In addition, i and j need not necessarily 
be integers, but we assume that they are, so that an equal() function can be devised.

If we restrict the index values to be integers, then assuming a conventional random 
access memory, we can implement store() and access() so that they operate in a con-
stant amount of time. If we interpret the indices to be n-dimensional, (i1, i2, ..., in), then 
the previous axiom by J. McCarthy defines the n-dimensional arrays.

Let us specify an ADT array in which we provide specifications with operations to be 
performed.

ADT array(index, value)
1. declare create() Æ array
2. access(array, index) Æ value
3. store(array, index, value) Æ array
4. for all Array_A Œ array, x Œ value, and i, j Œ index let
5.   access(create, i) = error
6. access(store(Array_A, i, x), j) = x if equal(i, j)
7. else access(Array_A, j)
8. end
end array

Formally, ADT is a collection of domains, operations, and axioms (or rules). Let us 
discuss each of them.

Domain A domain is the intended set of values that any array may use either as an index 
or as a value. We can say that a domain of an array is a collection of fixed, homogeneous 
elements that may be atomic or structured. The restriction is that all the elements should 
be homogeneous. Arrays use a set of indices or subscript values that have one-to-one 
correspondence with the positive integer values. In C++, the index 0 is used for the first 
element, index 1 is used for the second element, and so on till N - 1, for an array of size N.

Operations As shown in the ADT, the three basic operations of an array are described 
as follows:

1. create() Æ array—This operation creates an empty, new array. Whenever a new 
array is created, it is initially empty.

2. access(array, index) Æ value—This function takes an array and index as input 
and accesses the data element of that position. When the array is newly created, this 
operation must indicate an error because initially each array is by default empty. 

www.allitebooks.com
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3. store(array, index, value) Æ array—This operation is used to store a value in 
the array at a specified index position giving the updated array as an output.

Axioms The following are the axioms which form part of the ADT:

1. access(create, i) = error—This is the first axiom that explains the working of 
the access() operation. If the array is newly created, it is initially empty. So if we try 
to access an element at the ith position, it will be an erroneous operation.

2. access(store(Array_A, i, x), j) = x if equal(i, j) else access(Array_A, j)
—The second axiom states that accessing an element at index j, where x has been already 
stored at index i in Array_A is one of the following two:
(a) if i = j then the accessed element is x itself.
(b) else the operation is equivalent to the operation of accessing element at index j, 

from Array_A.

Usually, arrays are stored in contiguous allocation of memory as is the case of C, C++, 
and Java. The ADT does not specify this. Let us learn more details of the array such as its 
memory representation and address calculation used to facilitate direct access.

2.4 MEMORY REpRESENTATION AND ADDRESS CALCULATION

A computer’s memory can be considered as one long list of bits grouped together into bytes 
and/or words. Each one of them can be referred to just one location so as to avoid machine-
dependent details, that is, whether memory is structured with a one-byte, two-byte, or n-
byte word. In addition, the addressing scheme varies with each computer such as byte ad-
dressable or word addressable. During compilation, the appropriate number of locations 
is allocated for the array. The mechanism for allocating memory is much dependant on a 
language. Regardless of machine and language dependency, when the space is actually al-
located, the location of an entire block of memory is referenced by the base address of the 
first location. The remaining elements are stored sequentially at a fixed distance apart, say, 
by a constant C. So if the ith element is mapped into a memory location of address x, then the 
(i + 1)th element is mapped into the memory location with address (x + C) as shown in Fig. 2.4. 

Here, C depends on the size of the element, that is, the number of locations required 
per element, and also on the addressing of these locations.

The address of the ith element is calculated by the following formula:

(Base address) + (Offset of ith element from base address)

Here, base address is the address of the first element where array storage starts. In 
Fig. 2.4, the base address is x and the offset is computed as

Offset of ith element = (Number of elements before ith element)
                ¥ (Size of each element)

Address of A[i] = Base + i ¥ Size of element
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Assuming the size of the element as one memory location, the memory representation 
is shown in Fig. 2.4.

A0

A1

.

.

.

Ai x (Base)

Ai Ai + 1 x + 1

.

.

.

Ai + 2 x + 2

An − 1 :

:

Array A An − 1 x + (n − 1)

Fig. 2.4 Memory representation

Most of the languages use the base address plus offset for addressing. This way of 
 addressing helps in direct access to an element with bounded time O(1) for access.

In brief, the Array_A[N] is implemented as follows:

1. Array_A is the name of the object/structure and is associated with a base (starting) 
address in memory.

2. The [N] notation specifies the number of array elements from the beginning (offset), 
which starts at zero.

3. The address of the ith element is then computed as base + i ¥ (Size of element), where 
Size of element depends on the data type.

The index, address, and values are shown in Fig. 2.5 for an array of six real numbers.
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program CoDe 2.1

 class Array

 {

   private:

     int MaxSize;

     int A[20];

     int Size;

   public:

     Array()    // constructor

     { 

      MaxSize = 20;

      Size = 0; 

     }   

Fig. 2.5 Memory address and array of real numbers

Index[i ] Address Value

0 6e80 11.56

1 6e84 34.00

2 6e88 25.65

3 6e8c 09.43

4 6e90 −67.55

5 6e94 35.12

All the elements of the array must be properly initialized before referring in any 
expression. It is important to note that arrays and their sizes are mostly defi ned statically, 
so it is not possible to change the size at the time of execution. 

2.5 CLASS ARRAY

The array ADT can support various operations such as traversal, sorting, searching, inser-
tion, deletion, merging, and block movement. Some of these operations are detailed in 
Program Code 2.1.
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     void Read_Array();

     void Display();    // Traverse_Forward()

     void Traverse_Backward();

     void Insert(int Location, int Element);

     void Delete(int Location);

     int Search(int Element);

 };

 void Array :: Read_Array()

 {

   int i, N;

   cout << "Enter size of array";

   cin >> N;

   if(N > MaxSize)

   {

    cout << "Array of this size cannot be created";

    cout << "Maximum size is" << MaxSize;

    return;

   }

   else

   {

    for(i = 0; i < N; i++)

    {

     cin >> A[i];

    }

    Size = N;

   }

 }

 void Array :: Display()

 {

   int i;

   for(i = 0; i < Size; i++)

    cout << A[i] << "\t";

   cout << endl;

 }

 void Array :: Traverse_Backward()

 {

   int i;

   for(i = Size - 1; i >= 0; i−−)

    cout << A[i] << "\t";
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2.5.1 Inserting an Element into an Array

The insert() operation inserts an element at a specifi ed location into the array. A lot of 
data movement is involved in the insert() operation. To insert an element at the ith posi-
tion in an array of size N, all the elements originally at positions i, i + 1, i + 2, ..., N - 1 
will be shifted to i + 1, i + 2, i + 3, ..., N, respectively so that each element gets shifted to 
the right by one position. All the data shifting must be performed before the actual inser-
tion. Moreover, before insertion, room must be created for the element at the ith position, 
and then the element is placed there.

Consider the following array:

0
A

1 2 3 4

a b c d

To insert ‘z’ at index = 2, that is at position 3, create room at 3 by data shifting.

A
0 1 2 3 4

a b c d

   cout << endl;

 }

 int Array :: Search(int Element)

 {

   int i;

   for(i = 0; i < Size - 1; i++)

   {

    if(Element == A[i])

    return(i);

   }

   return(-1);

 }
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Then insert ‘z’ at position 3.

A
0 1 2 3 4

a b z c d

If the array is already full before the insertion of a new element, the last element of the 
array will be lost after insertion because of array overflow. 
Now, consider the following array A:

A
0 1 2 3 4

a b c d e array size = 5

array A is full with LB = 0 and UB = 4

To insert ‘z’ at position 3, create room at the 3rd position by data shifting.

A
0 1 2 3 4

a b c d e

Then insert ‘z’ at position 3.

A
0 1 2 3 4

a b z c d e

As the element ‘e’ is shifted to index 5, ‘e’ becomes inaccessible as the UB is crossed, 
and so the element ‘e’ may go beyond the scope of the array A. To handle such errors, 
appropriate checks should be made and if needed a new array of higher size should be 
created (when the size of the new array is double that of the original, it is known as array 
doubling), into which the elements are copied, and then  the array renamed.
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Data shifting can be performed using the following function:

 void Array :: Insert(int Location, int Element)

 {

   int i;

   if(Size >= MaxSize)

   {

    cout << "Sorry, Array Overfl ow";

    return;

   }

   for(i = Size - 1; i >= Location - 1; i--)

   {

     A[i + 1] = A[i]; // shifting element to right by 

1 position

   }

   A[Location - 1] = Element;

   Size = Size + 1;

 }

2.5.2 Deleting an Element

The delete() operation removes the specifi ed element from the array. Deletion of an el-
ement is achieved by overwriting the element. After one deletion operation, one location 
becomes empty, so all the elements should be shifted by one position after the deleted ele-
ment to fi ll in the empty location of the deleted element. In short, deletion can be handled 
by simply overwriting the specifi ed location.

A 0 1 2 3 4 5

a b c d e f

Delete ‘c’ from the 3rd position, that is, index = 2.

A
0 1 2 3 4 5

a b d e f f



Linear data structure using arrays  45

Deletion can be performed using the following function: 

 void Array :: Delete(int Location)

 {

   int i;

   for(i = Location; i < Size; i++)

   {

     A[i - 1] = A[i];    

     // shifting elements to the left by 1 position

   }

    A[Size - 1] = 0;

   // Store 0 at the last location to mark it empty

   Size = Size - 1;

 }

 void main()

 {

   Array A;

   A.Read_Array();

   A.Display();    // Traverse_Forward()

   A.Traverse_Backward();

   A.Insert(3, 66);  // insert at position 3

   A.Display();

   cout << endl;

   A.Delete(3);    // delete 4th element

   A.Display();

   cout << endl;

   cout << A.Search(66);

   cout << A.Search(3);

 }

We have studied the basic operations for an array, such as reading an array and traversing it 
along with some common operations such as inserting an element and deleting an element 
in an array. Insertion and deletion operations need data shifting within the array.

The array and its operations in Program Code 2.1 are defi ned. To defi ne an array of 
fl oating point data to operate on integer data, we need to change int A[] to fl oat A[] in 
declaration of data members of class. This can be done each time the data type of array 
elements varies by editing the code using text editor and then recompiling it. C++ has a 
feature called template (also known as parameterized type). A template is a variable that 
can be instantiated to any data type. This data type could be a built-in or a user-de  fi ned type.
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2.6 ARRAYS USING TEMpLATE 

Program Code 2.2 is an array class using the template T that can be used quite easily 
for an array of int, fl oat, or any user-defined da  ta type. 

The class array defi ned in Program Code 2.1 can be rewritten using a template in C++ 
as in Program Code 2.2.

program CoDe 2.2

 template <class T>

 class Array

 {

   private:

   T * A;

   int Size;

   public:

   Array() { size = 20);    // default constructor

   Array(in ArraySize);    // user-defi n  ed size

   void Read_Array();

   void Display();

   void Traverse_Backward();

   void Insert(int Location, const T&Element);

   void Delete(int Location);

   int Search(const T&Element);

 };

 template <class T>

 Array <T> :: Array(int ArraySize) : Size(ArraySize)

 {

   A = new T[Size];

 }

 template <class T>

 void Array <T> :: Read_Array()

 {

   // code to read members of the array here

 }       

Other functions can be defi ned in a similar manner as in Program Code 2.1.
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Program Code 2.2 contains a template class definition for an array and implementation 
of a few of its functions. The function is defined in a similar manner as in Program Code 
2.1; that is, we replace int by T as the data type of the member of an array. In all member 
functions header, Array() is now replaced by Array <T> ::. The following statements 
instantiate the template class Array() to int and float, respectively. So P is an array of  
type int and Q is an array of type float.

Array <int> P;
Array <float> Q;

Similarly, we can also have an array of any user-defined data type.

2.7 MULTIDIMENSIONAL ARRAYS

The array we used till now was a one-dimensional array. Most of the times, data is or-
ganized in multiple dimensions. In such situations, a one-dimensional array proves to be 
insufficient, and we need two-dimensional, three-dimensional, or n-dimensional arrays.

2.7.1 Two-dimensional Arrays

A two-dimensional array A of dimension m ¥ n is a collection of m ¥ n elements in which 
each element is identified by a pair of indices [i, j], where in general, 1 £ i £ m and 
1 £  j £ n. For the C/C++ languages this range is 0 £ i < m and 0 £ j < n. A two-dimensional 
array has m rows and n columns. Figure 2.6 shows the pictorial representation of a two-
dimensional array Student of size 100 ¥ 9.

[0]

[0]

[1]

[2]

[3]

. 

. 

.

. 

. 

.

[98]

[99]

[1] [2] [3] [4] [5] [6] [7] [8]

Student [0] [5]

Student
Columns

Rows

Student [98] [2]

Fig. 2.6 Two-dimensional array

The best example of two-dimensional arrays is the most popular mathematical 
entity, matrix.
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Memory Representation of Two-dimensional Arrays

Let us consider a two-dimensional array A of dimension m ¥ n. Though the array is multi-
dimensional, it is usually stored in memory as a one-dimensional array. A multidimension-
al array is represented in memory as a sequence of m ¥ n consecutive memory  locations. 
The elements of a multidimensional array can be stored in the memory as

1. Row-major representation or
2. Column-major representation

Figure 2.7 shows matrix A of size m ¥ n.

Fig. 2.7  Matrix A of size m ¥ n

Col.1 Col. 2 Col. n...

Row 1 A11 A12 ... A1n

Row 2

. 

. 

.

. 

. 

.

. 

. 

.

. 

. 

.

A21 A22 ... A2n

Row m Am1 Am2 ... Amn
m × n

Columns

Rows

For understanding the matrix representations, let us take as the example a two-dimensional 
array M of size 3 ¥ 4 (Fig. 2.8).

M   =

3 × 4

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 2.8 A two-dimensional array M

The matrix M in Fig. 2.8 has 12 members in it, which can be accessed by row 
and column indices such as the element in its second row, third column, is 7. 

Row-major Representation 

In row-major representation (Fig. 2.9), the elements of matrix M are stored row-wise, that 
is, elements of the 0th row, 1st row, 2nd row, 3rd row, and so on till the mth row.



Linear data structure using arrays  49

Memory
locations

1 2 3 4 5 6 7 8 9 10 11 12

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3)

Row 0

Row 1

Row 1
Row 2

. 

. 

. . 
. 
.

Row m − 1

Row
m − 1

Row 0 Row 0

Row 1 Row 2

Fig. 2.9 Row-major arrangement

The address of the element of the ith row and the jth column for a matrix of size m ¥ n can 
be calculated as

Address of (A[i][ j]) = Base address + Offset 
= Base address + (Number of rows placed before ith row 

¥ Size of row) ¥ (Size of element) + (Number of elements 
placed before in jth element in ith row) ¥ Size of element

Here, size of a row is actually the number of columns n. The base is the address of 
A[0][0].

Address of A[i][ j] = Base + (i ¥ n ¥ Size of element) + (j ¥ Size of element)

As row indexing starts from 0, the index i indicates the number of rows before the ith row 
here and similarly for j. For Size of element = 1, the address is

Address of A[i][ j] = Base + (i ¥ n) + j

In general, 

Address of A[i][ j] = ((i - LB1) ¥ (UB2 - LB2 + 1) ¥ size) + ((j - LB2) ¥ size)

where the number of rows placed before the ith row = (i - LB1), and LB1 is the lower 
bound of the first dimension.
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Size of row = (Number of elements in row) ¥ (Size of element)

Number of elements in a row = (UB2 - LB2 + 1)

where UB2 and LB2 are the upper and lower bounds of the second dimension respectively.
For arrays in C/C++/Java, LB = 0 and UB = N - 1.

Column-major Representation

In column-major representation, m ¥ n elements of a two-dimensional array A are stored 
as one single row of columns. The elements are stored in the memory as a sequence: first 
the elements of column 0, then the elements of column 1, and so on, till the elements of 
column n - 1.

For example, consider matrix M in Fig. 2.8. The column-major arrangement of ele-
ments would be as shown in Fig. 2.10.

. 

. 

.

1 5 9 2 6 10 3 7 11 4 8 12

(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2) (0, 3) (1, 3) (2, 3)

Col. 0 Col. 1 Col. 2

Col. 0

Col. 0

Col. 1

Col. 1

Col.3

Memory locations

. . .

. . . Col. n − 1

Col.
n − 1

Fig. 2.10 Column-major arrangement
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The address of A[i][ j] is computed as

Address of (A[i][ j]) = Base address + Offset 

= Base address + (Number of columns placed before jth column 
¥ size of column) ¥ (Size of element) + (Number of elements 
placed before in ith element in ith row) ¥ Size of element

Here, the size of the column is the number of rows, that is, m. If the base is the address 
of A[0][0], then

Address of A[i][ j] = Base + (j ¥ m ¥ Size of element) + (i ¥ Size of element)

For Size of element = 1, the address is

Address of A[i][ j] for column-major arrangement = Base + (j ¥ m) + i

In general, for column-major arrangement, the address of the element of the ith row and 
the jth column is

Address of (A[i][ j] = ((j - LB2) ¥ (UB1 - LB1 + 1) ¥ size) + ((i - LB1) ¥ size)

For arrays in C/C++/Java, LB = 0 and UB = n - 1 for an n-dimensional array. Example 2.1 
shows the address calculation for row-major and column-major representations for a given 
array of integers.

 example 2.1  Consider an integer array, int A[3][4] in C++. If the base address 
is 1050, find the address of the element A[2][3] with row-major and column-major 
representation of the array.

Solution For C++, the  LB of index is 0, and we have m = 3, n = 4, and Base = 
1050. Let us compute the address of the element A[2][3] using the address computation 
formula derived in the Section 2.7.1.

Row-major representation:

Address of A[2][3] = Base + (i × n ) + j 

                 = 1050 + (2 × 4) + 3 

                 = 1061

Figure 2.11 shows the row-major representation of the element A[2][3].
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Base

1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3)

Row 0 Row 1 Row 2

Fig. 2.11 Row-major representation of A[2][3]

Column-major representation:

Address of A[2][3] = Base + (j ¥ m) + i
                   = 1050 + (3 ¥ 3) + 2
                   = 1050 + 11

                   = 1061

Figure 2.12 represents the column-major representation of the element A[2][3].

(1, 0)(0, 0) (2, 0) (1, 1)(0, 1) (2, 1) (1, 2)(0, 2) (2, 2) (1, 3)(0, 3) (2, 3)

Base

1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

Col. 0 Col. 1 Col. 3Col. 2

Fig. 2.12 Column-major representation of A[2][3]

Here, the address of the element is the same because it is the last member of the last row 
and the last column. 

Let us compute the address of A[1][3]. For row-major, the address of A[1][3] = 1050 
+ 1 ¥ 4 + 3 = 1057 and for column-major, the address of A[1][3] = 1050 + 3 ¥ 3 + 1 = 1060.

2.7.2 n-dimensional Arrays

An n-dimensional m1 ¥ m2 ¥ m3 ¥ ... ¥ mn array A is a collection of m1 ¥ m2 ¥ m3 ¥ … ¥ mn 
elements in which each element is specified by a list of n integers such as k1, k2, … kn 
called subscripts where 0 £ k1 £ m1 - 1, 0 £ k2 £ m2 - 1, …, 0 £ kn £ mn - 1. The element 
of array A with subscripts k1, k2, …, kn is denoted by A[k1][k2] …[kn].

Consider the three-dimensional array A[2][3][4]. There are 2 ¥ 3 ¥ 4 = 24 elements in 
array A. Its row-major arrangement is shown in Fig. 2.13.
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Memory address m1 = 2, m2 = 3, m3 = 4

Base A[0][0][0]

Base + 1 A[0][0][1]

Base + 2 A[0][0][2]

Base + 3 A[0][0][3]

Base + 4 A[0][1][0] Base + m3 × 1

Base + 5 A[0][1][1]

Base + 6 A[0][1][2]

Base + 7 A[0][1][3]

Base + 8 A[0][2][0] Base + m3 × 2

Base + 9 A[0][2][1]

Base + 10 A[0][2][2]

Base + 11 A[0][2][3]

Base + 12 A[1][0][0] Base + m3 × 3

Base + 13 A[1][0][1]

Base + 14 A[1][0][2]

Base + 15 A[1][0][3]

Base + 16 A[1][1][0] Base + m3 × 3 + m2

Base + 17 A[1][1][1]

Base + 18 A[1][1][2]

Base + 19 A[1][1][3]

Base + 20 A[1][2][0]

Base + 21 A[1][2][1]

Base + 22 A[1][2][2]

Base + 23 A[1][2][3]

Array elements

Fig. 2.13 Three-dimensional array with row-major memory representation
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A four-dimensional array A[2][3][4][2] with row-major representation would be stored in 
memory as shown in Fig. 2.14.

Array elements Array elements

Base + 24 A[1][0][0][0]

Base + 25 A[1][0][0][1]

Base + 26 A[1][0][1][0]

Base + 27 A[1][0][1][1]

Base + 28 A[1][0][2][0]

Base + 29 A[1][0][2][1]

Base + 30 A[1][0][3][0]

Base + 31 A[1][0][3][1]

Base + 32 A[1][1][0][0]

Base + 33 A[1][1][0][1]

Base + 34 A[1][1][1][0]

Base + 35 A[1][1][1][1]

Base + 36 A[1][1][2][0]

Base + 37 A[1][1][2][1]

Base + 38 A[1][1][3][0]

Base + 39 A[1][1][3][1]

Base + 40 A[1][2][0][0]

Base + 41 A[1][2][0][1]

Base + 42 A[1][2][1][0]

Base + 43 A[1][2][1][1]

Base + 44 A[1][2][2][0]

Base + 45 A[1][2][2][1]

Base + 47 A[1][2][3][1]

Base + 46 A[1][2][3][0]

Memory address

Base A[0][0][0][0]

Base + 1 A[0][0][0][1]

Base + 2 A[0][0][0][2]

Base + 3 A[0][0][0][3]

Base + 4 A[0][0][1][0]

Base + 5 A[0][0][1][1]

Base + 6 A[0][0][1][2]

Base + 7 A[0][0][1][3]

Base + 8 A[0][0][2][0]

Base + 9 A[0][0][2][1]

Base + 10 A[0][0][2][2]

Base + 11 A[0][0][2][3]

Base + 12 A[0][1][0][0]

Base + 13 A[0][1][0][1]

Base + 14 A[0][1][0][2]

Base + 15 A[0][1][0][3]

Base + 16 A[0][1][1][0]

Base + 17 A[0][1][1][1]

Base + 18 A[0][1][1][2]

Base + 19 A[0][1][1][3]

Base + 20 A[0][1][2][0]

Base + 21 A[0][1][2][1]

Base + 22 A[0][1][2][2]

Base + 23 A[0][1][2][3]

Memory address

Fig. 2.14 Four-dimensional array with row-major memory representation
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Notice that the array indices are in increasing order, and hence row-major ordering is 
also called lexicographic order.

Address Calculation for Multidimensional Array

For a sequential single dimension row-major representation of a multidimensional array, 
let us try to get the address of any element A[i1][i2][i3]…[in] of an n-dimensional array 
A. Let us consider the array A[2][3][4][2]. If the element A[0][0][0][0] is stored at the 
address 0, then the element A[0][0][0][1] is at address 1; the element A[0][0][1][0] is at 
address 2; the element A[0][0][1][1] is at address 3, and the element A[1][2][3][1] at ad-
dress 4, assuming one location per element. To derive a formula for a multidimensional 
array, let us first see one-dimensional (1D), two-dimensional (2D), and three-dimension-
al (3D) arrays and their address calculations, and further, we can generalize it for an  
n-dimensional array.

Address Calculation for One-dimensional Array 

Let A[m1] be a one-dimensional array. Let A[0] be stored at the address Base = X. Now, 
assuming one element per location, the address of A[1] is X + 1. The address of an arbi-
trary element A[i] is given by X + i, and the address of A[m1 − 1] is X + m1 − 1. This is 
represented in Fig. 2.15.

A[0] A[1] A[2] ... A[i ] ... A[m1 − 1]

X X + 1 X + 2 ... X + i ... X + (m1 − 1)

Fig. 2.15 One-dimensional array

Address Calculation for Two-dimensional Array 

Now, consider a two-dimensional array A[m1][m2] that has m1 rows as Row1, Row2 ... 
Row(m1 − 1), each row containing m2 elements as there are m2 columns (Fig. 2.16).

Col. 0 Col. 1 . . . Col. m2 − 1

Row 0

. 

. 

.

– – – 

Row 1

Row m1 − 1

– – –

Aij

Fig. 2.16 Two-dimensional array
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Now, let A[0][0] be stored at address X; then A[0][1] would be stored at X + 1; A[0][i] 
would be at X + i and so on till A[0][m2 − 1] at X + (m2 − 1). Now the address of A[i][0] 
would be X + (i × m2).

In general, the address of A[i][j] is X + (i × m2) + j (Fig. 2.17).

Row m1 − 1

(i × m2) elements

m2 elements

Row 0       Row 1     …           Row i          …

Fig. 2.17 Row-major representation of 2D array

Address Calculation for Three-dimensional Array

Figure 2.18 shows a three-dimensional array A[m1][m2][m3]. This array is interpreted as 
m1 two-dimensional arrays of dimension m2 × m3.

A [0][m2][m3] A [1][m2][m3] A [i][m2][m3] A [m1][m2][m3]

(i × m2 × m3) elements

. . . . . .

Fig. 2.18 Row-major arrangement of a three-dimensional array 

The address of A[i][0][0] is X + (i × m2 × m3). Therefore, the address of A[i][j][k] is 
computed as

Addr of A[i][j][k] = X + i ¥ m2 ¥ m3 + j ¥ m3 + k

By generalizing this expression, we get the address of A[i1][i2][i3]…[in] in the 
n-dimensional array A[m1][m2][m3]…[mn]

Considering the address of A[0][0][0]…[0] as X, then the address of A[i][0][0]…[0] = 
X + (i1 ¥ m2 ¥ m3 ¥ … ¥ mn) and the address of A[i1][i2]…[0] = X + (i1 ¥ m2 ¥ m3 ¥ … 
¥ mn) + (i2 ¥ m3 ¥ m4 ¥ … ¥ mn).

Continuing in a similar manner, the address of A[i1][i2][i3]…[in] will be 

Address of A[i1][i2][i3]…[in] 
 = X + (i1 ¥ m2 ¥ m3 ¥ … ¥ mn) + (i2 ¥ m3 ¥ m4 ¥ … ¥ mn) 
    + (i3 ¥ m4 ¥ m5 ¥ … ¥ mn) + (i4 ¥ m5 ¥ m6 ¥ … ¥ mn ) + … + in 
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 = X
=1

+ ∑
j

n

ij × Aj  where = Π
j

n

=1
mkAj    1 < j < n and An = 1

Similarly, we can derive the formula for column-major order too.

2.8 CONCEpT Of ORDERED LIST 

Ordered list is the most common and frequently used data object. Linear elements of an 
ordered list are related with each other in a particular order or sequence. The following 
are some examples of ordered lists.

1. Odd numbers less than or equal to 15 = {1, 3, 5, 7, 9, 11, 13, 15}
2. Months = {January, February, March, April, May, June, July, August, September, 

October, November, December}
3. Colors of the rainbow = {Violet, Indigo, Blue, Green, Yellow, Orange, Red}

There are many basic operations that can be performed on the ordered list. The following 
list states them:

1. Find the length of the list.
2. Traverse the list from left to right or from right to left.
3. Access the ith element in the list.
4. Update (Overwrite) the value at the ith position.
5. Insert an element at the ith location.
6. Delete an element at the ith position.

Arrays are the most common data structures that can be used for representing an ordered list. 
In an ordered list, members of the list follow some specific sequence. We need to select the 
best suitable data structure to perform these operations efficiently. The best possible way to 
organize them is in an array. Let L be the list; L = {a0, a1, a2, ..., an−1} having n elements. 
If we store this list in an array, say list[n], then we can store the ith element at the ith location 
(index) of the list. This representation would store a0 at list[0], a1 at list[1], and so on, 
sequentially as ai and ai+1 at the ith and (i+1)th locations.

The representation of an ordered list L in array form is shown in Fig. 2.19.

list[0] list[1] list[2] list[n − 1]

a0 a1 a2 an − 1

 .  .  .

 .  .  .

Fig. 2.19 Ordered list stored in an array

Such representation is very efficient both to retrieve and to modify operations. It requires 
a constant time to retrieve the ith element from the ith array location as the computer can 
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access randomly any word in its memory. Similar to random access, one can traverse a 
list in any direction by using a controlled subscript variable. Insert and delete operations 
will require data movement.

2.9 SINGLE VARIAbLE pOLYNOMIAL

A  polynomial of a single variable A(x) can be written as 

anx
n + an−1x

n−1 + an−2x
n−2 + ... ... a1x + a0     where an π 0 and degree of A(x) is n.

This polynomial is a sum of terms C.xe where C is a coeffi cient, e is the exponent, and x 
is a variable. A polynomial is one of the examples of an ordered list. When we think of a 
polynomial as an ADT, the basic operations are as follows:

1. Creation of a polynomial
2. Addition of two polynomials
3. Subtraction of two polynomials
4. Multiplication of two polynomials
5. Polynomial evaluation

In Program Code 2.3, we have not defi ned the data members to represent a polynomial with 
coeffi cients and exponents. We have defi ned function prototypes to operate on a polynomial. 
To defi ne data members that are deciding a suitable data structure for a polynomial, we have 
many options. For exponents and coeffi cients, we can use two separate one-dimensional arrays, 
a two-dimensional array, an array of structures, and so on. Let us analyse a few of them.

program CoDe 2.3

 ADT Polynomial

 {

   private:

     // data members here

   public:

     void Read_Poly();

     double Evaluate(double value);

     Polynomial Add_Poly(Polynomial B);

     Polynomial Mult_Poly(Polynomial B);

 };

2.9.1 Representation Using Arrays

The polynomial of degree n represented as an ordered list of coeffi cients can be stored us-
ing an array of size n + 2. That is, n + 1 locations for storing coeffi cients of n + 1 terms 
and one location for storing the degree of polynomial. Alternatively, we can also store 
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them by mapping each term with the index so that the ith term is at the (n - i)th location of 
the array. We store polynomials in the decreasing order of their exponents. The degree of 
a polynomial is the highest exponent in the polynomial. For a polynomial of degree n, we 
would need an array of size n + 1 and a store polynomial as follows:

For the term aix
i, let us store its coefficient ai at the [n − i]th index in an array, that is, 

store a coefficient of the term with exponent i at the [n - i]th index.

Poly[n − i] = ai  for i = 0 to n

This is represented in Fig. 2.20.

Poly[0] Poly[1] Poly[2] Poly[3] Poly[n − 2] Poly[n − 1]

an an − 1 an − 2 an − 3 a1 a0

 .  .  .

 .  .  .

Fig. 2.20 Storing polynomial as ordered list 

int degree; float Poly[Max + 1]; 

Here, degree £ Max
This representation is very efficient with respect to operations such as store() and 

retrieve() as it requires constant time O(1). The conventional algorithms of addi-
tion, subtraction, multiplication, and so on can be used for this representation very 
efficiently.

Such representation is both time and space efficient when the polynomial is not a 
sparse one such as polynomial P(x) of degree 3 where P(x) = 3x3 + x2 - 2x + 5 (Fig. 2.21).

Index

i
0 1 2 3 N − 1

Coefficient 3 1 −2 5 0

 .  .  .

 .  .  .

Fig. 2.21 Polynomial of degree 3—P(x) = 3x3 + x2 - 2x + 5

Figure 2.22 shows a polynomial of degree 8.

Index

i
0 1 2 3 8

Coefficient 11 0 5 1

4

2

5

0

6

−3

7

1 10

Fig. 2.22 Polynomial of degree 8—P(x) = 11x8 + 5x6 + x5 + 2x4 - 3x2+ x + 10
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However, when a polynomial is a sparse one such as A(x) = x99 + 78 for degree of n = 100, 
then only two locations out of 101 would be used as shown in Fig. 2.23.

Index

i
0 1 2 3 99

Coefficient 1 0 0 0 78

 .  .  .

 .  .  .

Fig. 2.23 Polynomial of degree 99—P(x) = x99 + 78

In such cases, it is better to store the polynomial as pairs of coeffi cient and exponent. 
We may go for two different arrays for each, or a structure having two members as two 
arrays for each of coeffi cient and exponent, or an array of structure that consists of two 
data members coeffi cient and exponent. Let us go for the structure having two data 
members coeffi cient and exponent and its array.

2.9.2 polynomial as Array of Structure

In Program Code 2.4, the coeffi cient and exponent are bound together in a structure to 
form one polynomial term, and then the array of ten such structures is used to represent 
a polynomial.

program CoDe 2.4

 const int MaxSize = 100;

 typedef struct   

 { 

   fl oat coeffi cient;

   int exponent;

 } polynomial_term;

 class Polynomial

 {

   private:

   polynomial_term Poly[MaxSize];

   int Total_Terms;

   public:

   Polynomial() { Total_Terms = 0;}

   void Read_Poly();

   void Display_Poly();

   double Evaluate(double value);

   Polynomial Add_Poly(Polynomial B);

   Polynomial Mult_Poly(Polynomial B);

 };
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Figure 2.24 depicts such a polynomial.

Index

i
0 1 2 3 N − 1

Coefficient 3 1 −2 5

Exponent 3 2 1 0

.  .  .

.  .  .

.  .  .

Fig. 2.24 Polynomial representation—P(x) = 3x3 + x2 - 2x + 5

2.9.3  polynomial Evaluation

Polynomial evaluation is substituting the value of x and computing the result. For x = 2, 
the polynomial P(x) = 3x3 + x2 - 2x + 5 results in 3 (2)3+ (2)2 - 2(2) + 5 = 29.

Program Code 2.5 provides implementation details of polynomial evaluation for a 
given value of x. The functions are provided for reading and printing the polynomials.

program CoDe 2.5

 double Polynomial :: Evaluate(double Value)

 {       

   int i = 0;

   double result = 0; 

   while (i <= Total_Terms)

   {

    Result+=Poly[i].Coef*pow(val,Poly[i].Exp);

    // pow() is the exponential function to compute xy

    i++;

   }

   return result;

 }  

 void Polynomial :: Read_Poly()

 {

   int i;

   cout << "Let us read the polynomial now" << endl;

   cout << "Enter total number of terms in polynomial";

   cin >> Total_Terms;

   for(i = 0; i <= Total_Terms; i++)

   {

    cout << "Enter Exponent of" << i+1 << "Term";
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   cin << Poly[i].Exp;

   cout<< "Enter Coeffi cient of" << i+1 << "Term";

   cin << Poly[i].Coef;

   }

 }

 void Polynomial :: Display_Poly()

 {

   int i;

   for(i = 0; i <= Total_Terms; i++)

   cout << Poly[i].Coef << "x^" << Poly[i].Exp << "+";

   cout << "\b" << endl;

 }

 void main()

 { 

   Polynomial A;

   double answer;

   A.Read_Poly();

    answer = A.Evaluate(69.45);

// Let 69.45 be the value of x 

 }

2.9.4  polynomial Addition

Let two polynomials A and B be 

A = 4x9 + 8x6 + 5x3 + x2 + 4x
B = 3x7 + x3 - 2x + 5

Then,
C = A + B = 4x9 + 3x7 + 8x6 + 6x3 + x2 + 2x + 5

The polynomials A and B are to be added to get the resultant polynomial C. Here, we 
assume that the two polynomials are in descending order of their exponents.

Let us revise the procedure of adding two polynomials. Let i, j, and k be the three 
indices to keep track of the current term of the polynomials A, B, and C, respectively, 
being processed. Initially, it tracks the fi rst term. The major steps involved can be listed 
as follows:

1. If the exponents of the two terms of polynomials A and B are equal, then the coeffi cients 
are added, and the new term is stored in the resultant polynomial C and advance i, j, 
and k to track to the next term.

2. If the exponent of the term indicated by i in A is less than the exponent of the 
current term specifi ed by j of B, then copy the current term of B pointed by j in the 
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location pointed by k in polynomial C. The pointers j and k are advanced to the 
next term.

3. If the exponent of the term pointed by j in B is less than the exponent of the current 
term pointed by i of A, then copy the current term of A pointed by i in the location 
pointed by k in polynomial C. Advance the pointer i and k to the next term. 

Each time a new term is generated, its coefficient and exponent fields are set 
accordingly. The resultant term then is attached to the end of the polynomial C. The 
current term of polynomial C is indicated by k.

Figure 2.25 shows the pictorial representation of polynomials A, B, and C using a two-
dimensional array and indices.

(a)

(b)

(c)

Index

j
0 1 2 3

Coefficient 3 1 −2 5

Exponent 7 3 1 0

Index

i
0 1 2 3

Coefficient 4 8 5 1

Exponent 9 6 3 2

4

4

0

Index

K
0 1 2 3

Coefficient 4 3 8 6

Exponent 9 7 6 3

4 5 6

1 2 5

2 1 0

Fig. 2.25 Storing polynomials in a 2D array (a) P(x) = 4x9 + 8x6 + 5x3 + x2 + 4x 
(b) P(x) = 3x7 + x3 - 2x + 5 (c) P(x) = 4x9 + 3x7 + 8x6 + 6x3 + x2 + 2x + 5
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The steps involved in polynomial addition are stated in Algorithm 2.1.

algorithm 2.1

1. Read two polynomials say A and B
2. Let M and N denote total terms in A and B respectively.
  Here, C is resultant polynomial.
4. Let i = j = k = 0
5. while (i < M and j < N) do
 begin   // repeat till one of the polynomials is copied
  if(A[i].Exp = B[j].Exp)
  begin
   C[k].Coef = A[i].Coef+B[j].Coef
   C[k].Exp = A[i].Exp;
   i = i + 1; j = j + 1, k = k + 1
  end
  else
   if(A[i].Exp > B[j].Exp)
   begin
    C[k].Coef = A[i].Coef;
    C[k].Exp = A[i].Exp;
    i = i + 1
    k = k + 1
   end
  else
  begin
   C[k].Coef = B[j].Coef;
   C[k].Exp = B[j].Exp;
   j = j + 1
   k = k + 1
  end
  end
6. while(i < m) do
 begin   // copy remaining terms
  C[k].Coef = A[i].Coef;
  C[k].Exp = A[i].Exp;
  i = i + 1
  k = k + 1
 end
7. while (j < n) do
 begin   // copy remaining terms
  C[k].Coef = B[j].Coef;
  C[k].Exp = B[j].Exp;
  j = j + 1
  k = k + 1
 end
8) stop

Program Code 2.6 is for the polynomial addition function based on Algorithm 2.1.
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program CoDe 2.6

 Polynomial Polynomial :: Add_Poly(Polynomial B)

 {

   int i = j = k = 0;

   Polynomial C;

   while (i < A.Total_Terms && j < B.Total_Terms)

   {

    if(A.Poly[i].Exp == B.Poly[j].Exp)

    {

     C.Poly[k].Coef = A.Poly[i].Coef + B.Poly[j].Coef

     C.Poly[k].Exp = A.Poly[i].Exp;

     i++; j++; k++;

    }

    else if(A.Poly[i].Exp > B.Poly[j].Exp)

    {

     C.Poly[k].Coef = A.Poly[i].Coef;

     C.Poly[k].Exp = A.Poly[i].Exp;

     i++; k++;

    }

    else

    {

     C.Poly[k].Coef = B.Poly[j].Coef;

     C.Poly[k].Exp = B.Poly[j].Exp;

     j++; k++;

    }

   }    // end of while

   while(i < A.Total_Terms)

   {

    C.Poly[k].Coef = A.Poly[i].Coef;

    C.Poly[k].Exp = A.Poly[i].Exp;

    i++; k++;

   }

   while(j < B.Total_Terms)

   {

    C.Poly[k].Coef = B.Poly[j].Coef;

    C.Poly[k].Exp = B.Poly[j].Exp;

    j++; k++;

   }

   C.Total_Terms = k - 1;

   return C;

   }    // end of function
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 void main()

 { 

   Polynomial A, B, C;

   double answer; 

   A.Read_Poly();

   B.Read_Poly();

           .

           .

           .

  C = A.Add_Poly(B);         

 }

2.9.5  polynomial Multiplication

Let A = 4x9 + 3x6 + 5x3 + 1 and B = 3x6 + x2 - 2x be the two polynomials to be multiplied, 
and the resultant polynomial be C. Let us revise the paper-pencil method. The polynomial 
A is multiplied by each term of B. We get n partial products if B has n terms in it. Finally, 
we add all these partial products to get the resultant polynomial C.

This method generates partial products each of length m, where m is the length of the 
polynomial A. n such partial products are generated and stored and fi nally added to get the 
resultant polynomial. Here, m and n are input dependent. Let us devise a better approach 
where we need not generate, store, and then add all partial products. A better solution is to 
pick up a term of polynomial B and multiply it with each term of A. One term of B and one 
term of A when multiplied yield one resultant term. This term can be immediately added 
to the resultant polynomial C, and this process is to be repeated.

To add a resultant term to polynomial C, the resultant term is compared with each 
term of the resultant polynomial C. Then the new term is inserted at the appropriate 
location in polynomial C. If the new term with equal exponent is found, then the term 
is added, else it is inserted in the resultant polynomial at an appropriate position. This 
process is repeated for each term of B with each term of A. The major steps are listed 
briefl y as follows:

1. Let A and B be two polynomials.
2. Let the number of terms in A be M, and number of terms in B be N.
3. Let C be the resultant polynomial to be computed as C = A ¥ B.
4. Let us denote the ith term of polynomial B as tBi. For each term tBi of polynomial B, 

repeat steps 5 to 7 where i = 1 to N. 
5. Let us denote the jth term of polynomial A as tAj. For each term of tAj of polynomial A, 

repeat steps 6 and 7 where j = 1 to M.
6. Multiply tAj and tBi. Let the new term be tCk = tAj ¥ tBi.
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7. Compare tCk with each term of polynomial C. If a term with equal exponent is found, 
then add the new term tCk to that term of polynomial C, else search for an appropriate 
position for the term tCk and insert the same in polynomial C.

8. Stop.

Let A = 4x9 + 3x6 + 5x3 + 1, B = 3x6 + x2, and C be the resultant polynomial. Initially, C 
is an empty polynomial.

1. We multiply each term of A with the first term of B. To start with, multiply 4x9 with 3x6 
and the result is 12x15. Currently, C is empty, so there is no term in it with the exponent 
15; therefore, we insert it in polynomial C. Now, polynomial C is

C = 12x15 

Now, continue to multiply 3x6 with 3x6, and the result obtained is 9x12. There is no term 
in polynomial C with exponent 12, so we insert it in polynomial C at an appropriate 
location. Now, polynomial C is 

C = 12x15 + 9x12 

Continuing in a similar manner for the remaining two terms of polynomial A, we get 
polynomial C as

C = 12x15 + 9x12 + 15x9 + 3x6

2. Now, multiply each term of A with the second term of B. Initially, multiply 4x9 with x2 
and the result is 4x11. There is no term in C with exponent 11, we insert it in polynomial 
C at an appropriate location. So now we get polynomial C as

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x6

Continue to multiply 3x6 with x2 and the result is 3x8. There is no term in polynomial C 
with exponent 8, so we add it at an appropriate place. Now, the polynomial C is 

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6

Let us now multiply 5x3 with x2 and we get 5x5. There is no term in C with exponent 5, 
so we insert it in polynomial C at a proper location. Now, 

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6 + 5x5

Let us now multiply the term 1 of A with x2; we get x2. There is no term in C with expo-
nent 2, so we insert it in polynomial C at an appropriate location. Therefore, 

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6 + 5x5 + x2

This is the resultant polynomial C as a result of A ¥ B.

Program Code 2.7 includes the function for the multiplication of two polynomials as 
per the procedure discussed.
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program CoDe 2.7

 Polynomial Polynomial :: Mult_Ploy(Polynomial B)

 {

   int fl ag, M, N;

   Polynomial C;

   int NewTerm_exp;

   fl oat NewTerm_coef;

   int i = j = k = 0;

    // i and j are indices indicating the current 

// terms of polynomials A & B respectively

    // k is the index pointing to current position 

// in C where new term is to be added

   int TmpIndex;

    // TmpIndex is used to traverse polynomial C for 

// inserting new term at proper location

   M = Total_Terms;

   N = B.Total_Terms;

   while(i < M)

   {

    j = 0;

    while (j < N)

    {

     NewTerm_exp = Poly[i].Exp + B.Poly[j].Exp;

     NewTerm_coef = Poly[i].Coef * B.Poly[j].Coef;

     TmpIndex = 0;

     fl ag = 0;

      while(TmpIndex < k) 

      // Insert NewTerm in Polynomial C

     {

      if(C.Poly[TmpIndex].Exp == NewTerm_exp)

       // search matching exponent

      {

       fl ag = 1; 

       break;

      }

     else if(C.Poly[TmpIndex].Exp < NewTerm_exp) 

     break;

     TmpIndex++;

     }

     if(fl ag)    // if found add coeffi cients
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      C.Poly[k].Coef = C[k].Coef + NewTerm_coef;

     else  // else add at last location or in between

     {

        if(TmpIndex==k) // add new term at end

        {

         C.Poly [k].Exp = NewTerm_exp;

         C.Poly [k].Coef = NewTerm_coef;

         k++;

        }

        else

        {

         // insert new term

         for(p = k; p < TmpIndex; p--)

         {

          C.Poly [p].Exp = C.Poly[p].Exp;

          C.Poly [k].Coef = C.Poly[p].Coef;

         }

         C.Poly[TmpIndex].Coef = NewTerm_exp;

         C. Poly[TmpIndex].Coef = NewTerm_Coef;

         k++;

        }

         j++;

      }

      i++;

    }

  return(C);

 }

 void main()

 {

   Polynomial A, B, C;

   B.Read_poly();

   B.Read_Poly();

   C = A.Mult_Poly(B);

 } 

2.10 ARRAY fOR fREQUENCY COUNT

We can use an array to store the number of times a particular element occurs in any se-
quence. Suppose we have a set of 100 non-zero values ranging between 0 and 9 and we 
want to know how many times 0 appeared, how many times 1 appeared, and so on up to 9. 
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Let these elements be placed in an array named Numbers. Now, we can have another array of 
10 elements that will show the frequency of each value in the list Numbers.

void Frequency_Count(int Freq[10], int A[100])
{
 int i; 
 for(i = 0; i < 10; i++)
   Freq[i] = 0;
 for(i = 0; i < 100; i++)
   Freq[A[i]]++;
}

In Fig. 2.26, Frequency[0] indicates that 0 occurred once in the array Numbers, 1 ap-
peared 20 times, 2 appeared 5 times, and so on.

Fig. 2.26 Frequency count of numbers ranging from 0 to 9

 .  .  .

99

Numbers

0 2 4 6 7 9

Frequency

1 20 1016 2 1 15 30 14

0 1

3 51 8

This concept will be used in Section 2.11.3 for fast transpose.

2.11 SpARSE MATRIx

A matrix is a very commonly used mathematical object. To represent a matrix, we need 
a two-dimensional array with two different indices for row and column references. The 
representation of a matrix for operations on it should be efficient so that the space and 
time requirement is less.

In many applications, the crucial aspect for algorithm design is space consideration. 
So the developer has to take care of the representation of the matrix if it is large. In 
many situations, the matrix size is very large but most of the elements in it are 0s (less 
important or irrelevant data). Only a small fraction of the matrix is actually used. A 
matrix of such type is called a sparse matrix, as the matrix is filled sparsely by data and 
most of the positions are empty or contain non-relevant data. In such cases, the matrix 
must be represented and stored with an alternate representation to achieve good space 
utilization. Such representation avoids operations such as operations with 0s (addition 
or multiplication of 0s). Consequently, a good time complexity along with efficient 
storage is achieved if a sparse matrix is stored with an alternate representation rather 
than the conventional way.
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Figure 2.27 illustrates the logical matrices LA and LB.

LA =

7 × 5 

0 0 0 0 0

0 1  0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

LB =

0 1 1 1 1

1 1  1 1 0

1 0 1 1 1

1 1 1 0 1

1 1 1 1 1

1 1 1 0 1

0 0 0 0 0

7 × 5

Fig. 2.27  Sparse logical matrix

In Fig. 2.27, the matrix LA is sparse with respect to 1s and dense with respect to 0s, 
whereas LB is sparse with respect to 0s and dense with respect to 1s. 

For a matrix of m rows and n columns, if m = n, then the matrix is called a square 
matrix (Fig. 2.28).

A =

6 × 6 

0 0 6 1 1 2

0 1 0 0 9 9

4 0 0 0 0 0

0 0 0 0 0 0

7 0 0 0 0 6

0 2 0 0 0 8

Fig. 2.28  Sparse square matrix

The matrix A in Fig. 2.28 has many 0 entries, and it may be called a sparse matrix. 
There is no precise definition of when a matrix is sparse and when it is not. Here, 0s may 
represent non-relevant data, or no change in consecutive readings of some experiment or 
consecutive positions.

Two general types of n–square sparse matrices are represented in Figs 2.29 and 2.30.

B =

3 × 3 

10 0 0

21 90  0

45 28 15

Fig. 2.29  Sparse triangular matrix

4 × 4

9 88 0 0

22 8  95 0

0 33 6 44

0 0 56 47

C =

Fig. 2.30  Sparse tridiagonal matrix

In the matrix  in Fig. 2.29, all entries above the main diagonal are 0. A matrix in which 
all non-zero entries occur only on or below the main diagonal is called a triangular matrix.

A matrix in which the non-zero entries can only occur on the diagonal or on elements 
immediately above or below the diagonal is called a tridiagonal matrix (Fig. 2.30).
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2.11.1 Sparse Matrix Representation

A sparse matrix requires an alternate form of representation. While dealing with large 
matrices that are sparse, we have to think about an alternative representation to store only 
the non-zero elements for better space utilization. 

Each element of the matrix is uniquely characterized by its row and column positions. 
So a triple (i, j, value) can easily represent the non-zero elements of the matrix. 

In the sparse representation of a matrix, there are three columns. In the first row, we 
always specify the number of rows, columns, and non-zero elements (No_Of_Non-
ZeroValues) in columns 1, 2, and 3, respectively. From the second row onwards, we 
store each non-zero element by its triple (i, j, value). So in a sparse matrix, there are 
three columns and (No_Of_NonZeroValues + 1) rows. In general, for space reliability, 
3 ¥ (No_Of_NonZeroValues + 1) should always be less than or equal to m ¥ n where 
m = number of rows and n = number of columns.

No_Of_NonZeroValues = Number of non-zero elements

In brief, for the alternate representation, we should have 

3 ¥ (No_Of_NonZeroValues + 1) £ m ¥ n

Consider the matrix A in Fig. 2.31(a). Among the 42 elements, 8 members are non-
zero. For conventional representation, we need 42 memory locations for storing the  
matrix (assuming one location per element), whereas for its alternate representation as in 
Fig. 2.31(b), we need (8 + 1) ¥ 3, that is, 27 memory locations. 

(a) (b)
9 × 3

Rows Columns Non-zero
entries

1

2

3

2

3

1

9

6 7 8

0 0 1

8

3

4 3 5

4 4 4

5 2 2

5 3 3

6 × 7

0 0 0 0 0 0 1 0 0 0

0 0 9 8 0

0 3 0 0 0

0 0 0 5 4

0 0 2 3 0

0 0 0 0 0

Fig. 2.31  Sparse matrix representation (a) Sparse matrix A 
(b) Alternate representation of sparse matrix A

In applications such as finite element analysis, image processing, simulations, and so on, 
matrices are of the size 2048 ¥ 2048 or much higher. When m and n are large numbers and 
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No_Of_NonZeroValues is much lesser, then the alternate representation saves consider-
able amount of memory and time of processing.

Program Code 2.8 represents the ADT for a sparse matrix. 

program CoDe 2.8

 class Sparse_Matrix

 {

   private:

   const int Max = 20

   int S_Mat[Max][3];

   public:

   void Read_SparseMatrix();

   Sparse_Matrix Simple_Transpose();

   Sparse_Matrix Fast_Transpose();

   Sparse_Matrix Add_SparseMatrix(Sparse_Matrix B);

   Sparse_Matrix Mpy_SparseMatrix(Sparse_Matrix B);

 };

2.11.2  Sparse Matrix Addition

Along with the alternate representation, we have to think of appropriate algorithms for com-
mon matrix operations such as addition, subtraction, transpose, inverse, multiplication, and 
division. Let us discuss two of them—addition and transpose.

Let A and B be two sparse matrices to be added, as in Fig. 2.32. 

6 7

A B C

8

0 1 1

2

2

3

2

3

0

9

8

3
+ =

4 3 5

4 4 4

5 2 2

5 3 3

6 7 11

0 1 3

1

2

2

2

1

2

7

2

9

2 3 8

3 0 8

4 2 4

4

3 54

4 4

5

2 25

3 12

6 4 9

6 7 6

0 1 2

1

2

3

2

1

0

7

2

5

4 2 4

5 3 9

6 4 8

Fig. 2.32  Sparse matrix addition
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Only if the size of both the matrices is the same can they be added. Let A_Row and 
B_Row be rows of matrix A and B respectively. M and N are the number of non-zero 
elements in A and B, respectively. C is the resultant sparse matrix. Algorithm 2.2 describes 
the procedure for adding two sparse matrices.

algorithm 2.2

1. Let A, B be the matrices to be added and stored in C
2. Let M and N be number of non-zero entries in A and B respectively.
3.  Let i, j, and k be the three index variables used for the rows of A, 

B, and C respectively.
4. Let i = j = k = 1, M = A[0][2], N = B[0][2]
5. C[0][0] = A[0][0]
 C[0][1] = A[0][1]
6. while(i £ M and j £ N) do
 begin

  if(A[i][0] = B[j][0])                                    //if1

   if(A[i][1] = B[j][1])              //if2
   then 
   begin
    C[k][0] = A[i][0]
    C[k][1] = A[i][1]
    C[k][2] = A[i][2] + B[j][2]
    i = i + 1, j = j + 1, k = k + 1
   end

   else if(A[i][1] < B[j][1])                      //if3 and else for if2
   then 
   begin
    C[k][0] = A[i][0]
    C[k][1] = A[i][1]
    C[k][2] = A[i][2] 
    k = k + 1, i = i + 1
   end

   else                             //else for if3
   begin
    C[k][0] = B[j][0]
    C[k][1] = B[j][1]
    C[k][2] = B[j][2]
    j = j + 1, k = k + 1
   end

  else if(A[i][0] < B[j][0])       //if4 and else for if1
  then 
  begin
   C[k][0] = A[i][0]
   C[k][1] = A[i][1]
   C[k][2] = A[i][2]
   k = k + 1, i = i + 1
  end
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  else                 //else for if4
  begin
   C[k][0] = B[j][0]
   C[k][1] = B[j][1]
   C[k][2] = B[j][2]
   K = k + 1, j = j + 1
  end 
 end while
 7. while(i < = M) do
  begin
   C[k][0] = A[i][0]
   C[k][1] = A[i][1]
   C[k][2] = A[i][2]
   k = k + 1, i = i + 1
  end
 8. while(j <= N) do
  begin
   C[k][0] = B[j][0]
   C[k][1] = B[j][1]
   C[k][2] = B[j][2]
   k = k + 1, j = j + 1
  end
 9. C[0][2] = k
10. stop

Program Code 2.9 includes the ADT for a sparse matrix and function for two sparse ma-
trix additions as per Algorithm 2.2.

program CoDe 2.9

  Sparse_Matrix Sparse_Matrix :: Add_SparseMatrix 

(Sparse_Matrix B)

 {

   Sparse_Matrix C;

   int i, j, k, Row1, Row2, Col1, Col2, M1, M2;

   Row1 = S_Mat[0][0];

   Col1 = S_Mat[0][1];

   M1 = S_Mat[0][2];

   Row2 = B.S_Mat[0][0];

   Col2 = B.S_Mat[0][1];

   M2 = B.S_Mat[0][2];

    if(Row1 == Row2 && Col1 == Col2)  

  // checking dimensions if1

   {

    i = j = k = 1; 

    C. S_Mat[0][0] = S_Mat[0][0];

    C. S_Mat[0][1] = S_Mat[0][1];
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   while(i £ M1 and j £ M2)    // while1

   { 

    if(S_Mat[i][0] == B.S_Mat[j][0])    // if2

    {

      if(S_Mat[i][1] == B.S_Mat[j][1])    // if3

     {

      C.S_Mat[k] [0] = S_Mat[i][0];

      C.S_Mat[k] [1] = S_Mat[i][1];

      C.S_Mat[k][2] = S_Mat[i][2] + B.S_Mat[j][2];

      i++; j++; k++;

     }    // end of if3

       else    // else of if3

     {

      if(S_Mat[i][1] < B.S_Mat[j][1])    // if4

       {

      C.S_Mat[k][0] = S_Mat[i][0];

      C.S_Mat[k][1] = S_Mat[i][1];

      C.S_Mat[k][2] = S_Mat[i][2]; 

      k++; i++;

       }    // end of if4

     else    // else of if4

       {

      C.S_Mat[k][0] = B.S_Mat[j][0];

      C.S_Mat[k][1] = B.S_Mat[j][1];

      C.S_Mat[k][2] = B.S_Mat[j][2];

      j++; k++;

     }    // end of else of if4

    }    // end of else of if3

   }    // end of if2

    else  // else of if2

    {

     if(S_Mat[i][0] < B.S_Mat[j][0])    // if5

     {

      C.S_Mat[k][0] = S_Mat[i][0];

      C.S_Mat[k][1] = S_Mat[i][1];

      C.S_Mat[k][2] = S_Mat[i][2];

      k++ ; i++;

     }    // end of if5

     else    // else of if5

     {

      C.S_Mat[k][0] = B.S_Mat[j][0];
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     C.S_Mat[k][1] = B.S_Mat[j][1];

     C.S_Mat[k][2] = B.S_Mat[j][2];

     k++; j++;

      }    // end of else of if5

    }    // end of else of if2

   }    // end of while1

   while(i £ M1)    // while2

   {

    C.S_Mat[k][0] = S_Mat[i][0];

    C.S_Mat[k][1] = S_Mat[i][1];

    C.S_Mat[k][2] = S_Mat[i][2];

    k++; i++;

   }    // end of while2

    while(j £ N)    // while3

   {

    C.S_Mat[k][0] = B.S_Mat[j][0];

    C.S_Mat[k][1] = B.S_Mat[j][1];

    C.S_Mat[k][2] = B.S_Mat[j][2];

    k++; j++;

    }    // end of while3

   C.S_Mat[0][2] = k;

   return C;

  }    // end of if1 for checking dimensions 

  else    //else for if1

    cout << "Sorry, matrices cannot be added because 

dimensions don’t match.\n";

 }    // end of function

2.11.3  Transpose of Sparse Matrix

In the conventional approach, by interchanging rows and columns, we get the transpose 
of the matrix as the elements at position [i][j] and [j][i] are swapped. 

Let m and n be the number of rows and columns for matrix A. The transpose of A can 
be obtained using the following code.

for(i = 1; i £ m; i++)
  for(j = 1; j £ n; j++)
     A[j][i] = A[i][j]; 

Time complexity of this technique is O(mn). In addition, the conventional transpose 
(Fig. 2.33(a)) is not suitable for sparse matrix’s alternate representation. By just exchanging 
the row and the column, we get the transpose of the sparse matrix as shown in Fig. 2.33(b). 



78 data structures using c++

(a)

3 × 4

4 × 3

1 5 9

2

3

4

6

7

8

10

11

12

A =

B = BT =

AT =

1 2 3 4

5 6 7 8

9 10 11 12

(b)

6 7 5

1 2 7

2

3

5

4

6

0

2

5

4

5 3 9

6 1 8

7 6 5

2 1 7

4

6

0

2

3

5

2

5

4

3 5 9

1 6 8

Fig. 2.33  Transpose of matrices (a) Conventional matrix and its transpose 
(b) Sparse matrix and its transpose

The matrix in Fig. 2.33(b) is a simple sparse matrix of size 6 ¥ 7 with 5 non-zero elements 
and its transpose.

We can notice that entries in BT are not sorted row and column wise; we need to sort 
them further. Sorting further adds to time complexity. Let us learn two better approach-
es—the simple and fast transpose algorithms.

Simple Transpose

Let A be a matrix of size m ¥ n with T non-zero elements and let B be its transpose. One 
of the easiest ways is to search for each column (column = 0 to n - 1) and sequentially 
place each column as a row in the transposed matrix B by placing the interchanged entries 
as row, column, and value (refer to Fig. 2.34 on page 80). 

The steps to transpose a matrix are described in Algorithm 2.3 and the corresponding 
program is described in Program Code 2.10.

algorithm 2.3

1. Row = A[0][0], Col = A[0][1]  and  T = A[0][2]
2. B[0][0] = Col , B[0][1] = Row  and  B[0][2] = T
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3. if T = 0 goto step(5)
4. Let i = 1
          for j = 0 to Col-1 do
  for k = 1 to T do
  if(A[k][1] = j)
    begin
     B[i][0] = A[i][1]
     B[i][1] = A[i][0]
     B[i][2] = A[i][2]
     i = i + 1
    end
5. stop 

program CoDe 2.10

 Sparse_Matrix Sparse_Matrix :: Simple_Transpose()

 {

   Sparse_Matrix B;

   int Row, Col, i, j, k, T;

   Row = S_Mat[0][0];

   Col = S_Mat[0][1];

   T = S_Mat[0][2];

   if(T == 0) return;

   B.S_Mat[0][0] = Col;

   B.S_Mat[0][1] = Row;

   B.S_Mat[0][2] = T;

   i = 1;

   for(j = 0; j < Col; j++)

   {

   for( k = 1; k <= T; k++)

   {

    if(S_Mat [k][1] == j)

    {

    B.S_Mat[i][0] = S_Mat[i][1];

    B.S_Mat[i][1] = S_Mat[i][0];

    B.S_Mat[i][2] = S_Mat[i][2];

    i++;

    }

   }

   }

   return B;

 }



80 data structures using c++

In Algorithm 2.3, we first take the first row of matrix A as (m, n, t) and store it as (n, 
m, t) in matrix B. In the second column (the 0th column being the first), we have stored 
values that initially indicated columns as now indicating rows. This column is searched 
for using col = 0 to n - 1.

For example, in the simple transpose in the following figure, the current row of matrix 
A is initially set to 0 and no entry with column as 0.  So the row is incremented and set to 
1 and the process continues; the entry (2, 1, 21) in A is stored as (1, 2, 21) in matrix B, and 
the current row value is updated each time. The next entry (3, 1, 31) is stored as (1, 3, 31) 
in matrix B. Further, entry (1, 2, 12) is stored as (2, 1, 12) in matrix B. Similarly, it goes 
on searching for each column value.

A = B = AT =

3 4 5

1 2 12

2

2

3

1

3

1

21

23

31

3 4 34

4 3 5

1 2 21

1

2

3

3

1

2

31

12

23

4 3 34

Fig. 2.34 Simple transpose

Step 4 of Algorithm 2.3 is repeated T times for each column. The time complexity is 
O(nT) where n is the number of columns in matrix A and T is number of non-zero elements 
in the matrix.

In a matrix, when all data is relevant, that is, all data members are non-zero, then  
T = m ¥ n. 

Now, the time complexity will be O(n · T) = O(n · mn) = O(mn2), which is worse than 
the conventional transpose with time complexity O(mn). Let us learn a better approach 
for transpose.

Fast Transpose

Let A be a sparse matrix of size m ¥ n with T non-zero elements. Its transpose will be 
stored in matrix B. Let Freq and RowStartPos be two one-dimensional arrays of size n. 
In Freq array, the frequency count of each column in matrix A is stored, and RowStart-
Pos will be computed and stored at the position where each row entry of matrix A is to be 
inserted in matrix B. Then, the RowStartPos is computed using Freq. The corresponding 
algorithm is as illustrated in Algorithm 2.4.
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algorithm 2.4

1. Row = A[0][0]
   Col = A[0][1]
   M = A[0][2]
2. B[0][0] = Col
   B[0][1] = Row
   B[0][2] = M
3. if M = 0 then goto step 9
4. for i = 0 to Col - 1 do 
       Freq[i] = 0 {Here Freq array stores the frequency count of each 
       column, initially set to 0}
5. for k = 1 to M do 
       Tmp = A[k][1]
       Freq[Tmp] = Freq [Tmp] + 1;
6.  RowStartPos[0] = 1 {We shall start storing elements in B matrix 

from 2nd row that is B[1][] onwards}
7. for j = 1 to Col - 1 do
       RowStartPos[j] = RowStartPos[j - 1] + RowStartPos[j - 1];
          { Here RowStartPos n matrix gives the position to place an  

element in resultant matrix}
8. for i = 1 to M + 1 do 
   begin
       k = RowStartPos[A[i][1]]
       B[k][0] = A[i][1]
       B[k][1] = A[i][0]
       B[k][2] = A[i][2]
       RowStartPos[k] = RowStartPos[k] + 1
   end
9. stop

This algorithm will first find the number of non-zero elements in each column and 
store it in an array Freq. The second array RowStartPos is used to store the starting ad-
dress of each column, which will be a row in the corresponding transposed matrix. The 
starting address of each row in the transposed matrix is given by

RowStartPos[i] = RowStartPos[i - 1] + Freq[i - 1]

where,

Freq[i - 1] gives the number of non-zero elements in row[i - 1]
RowStartPos [i - 1] gives the starting row of row [i - 1]

If the starting position for any row, say 3, is 5 in a transposed matrix and there are 2 ele-
ments in row 3, then the starting position of row 4 will be 5 + 2 = 7. Sequentially, we read 
the column index from matrix A and then get the location from the array RowStartPos, 
and we store that element in matrix B at the specified location in the transposed form. This 
is illustrated in Fig. 2.35.
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Fig. 2.35 Storing column as row in fast transpose 
(a) Input matrix B   (b) Freq[i]   (c) RowStartPos[i]   (d) BT

Time and Space Complexity Analysis of Fast Transpose

There are three loops in Algorithm 2.4, which are executed n (no. of rows), T (no. of non-
zero members), n - 1, and T times, respectively, resulting in overall time complexity O(n + T).

In the worst case, that is, when T = m ¥ n (non-zero elements), the magnitude becomes 
O(n + mn) = O(mn), which is the same as the conventional 2D transpose. However, the 
constant factor associated with fast transpose is quite high. When T is sufficiently small 
compared to its maximum of m ¥ n, fast transpose works faster.

As compared to simple transpose, time is saved but an extra space for two one-dimen-
sional arrays Freq and RowStartPos are required for the fast transpose. Program Code 
2.11 implements the sparse matrix fast transpose.
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program CoDe 2.11

 Sparse_Matrix Sparse_Matrix ::Fast_Transpose()

 {

   Sparse_Matrix B; 

   int m, n, t, i, j, Freq[], RowStartPos[];

   Row = S_Mat[0][0];

   Col = S_Mat[0][1];

   M = S_Mat[0][2];

   B.S_Mat[0][0] = Col;

   B.S_Mat[0][1] = Row;

   B.S_Mat[0][2] = M;

   if(M == 0) return;

   else 

   {

    for(i = 0; i < col; i++)

    {

     Freq[i] = 0; 

    }

    for(i = 1; i <= t; i++)

    {

     T = A[i][1];

     Freq[T]++;

    }

    RowStartPos [0] = 1; 

    for(i = 1; i < n; i++) 

    { 

     RowStartPos[i] = RowStartPos[i − 1] + Freq[i − 1];

    }

      for(i = 1; i <= M; i++)

    { 

     j = A[i][1] ;

     B[RowStartPos[j]][0] = S_Mat[i][1];

     B[RowStartPos[j]][1] = S_Mat[i][0];

     B[RowStartPos[j]][2] = S_Mat[i][2];

     RowStartPos[j] = RowStartPos[j] + 1;

    }

   }

   return B;

 } 
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In this program, the number of elements in each column is determined initially. These are 
actually going to be the number of columns in the transposed matrix. This information 
helps us update the array RowStartPos, which tells us from where we should start storing 
elements in the transposed array so that they are row wise sorted. 

2.12 STRING MANIpULATION USING ARRAY

String is the most commonly used data object. It is usually formed from the character set 
of the programming language. Suppose S = a1 a2 ... an.

The value n is the length of the character string S, where n ≥ 0. If n = 0, then S is called a 
null string or empty string. There are various operations that can be performed on the string:

1. Finding the length of a string
2. Concatenating two strings
3. Copying a string
4. Reversing a string
5. Performing string compare
6. Palindrome check
7. Recognizing a sub string.

These operations using arrays are discussed in detail in the sections that follow.
Basically, a string is stored as a sequence of characters in a one-dimensional character 

array, say A (Fig. 2.36).

Fig. 2.36 String stored in array

S T R I N G \0 – – –

0

A =

1 2 3 4 5 6 7 8 9

The simple C++ statement for storing ‘String’ in an array of size 10 is as follows: 

char A[10] = "STRING";

Each string is terminated by a special character, that is, null character ‘\0’. This null char-
acter indicates the end or termination of each string. The function compare() in Program 
Code 2.12 compares two strings to find whether they are equal. 

To compare two strings, we first check whether their lengths are the same. If the 
lengths are the same, then there is a further possibility that the strings are the same. The 
lengths are to be compared if they have been precomputed or are known, else this adds to 
the complexity. Then, we compare each character of string A with string B. If they match, 
then the strings are the same; else they are not.
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program CoDe 2.12

 Class String

 {

   private:

   char Str[];

   public:

   String() {}

   int Length();

   void Concat(String B);

   int Substring(String S);

 };

 

 int String :: Length()

 {

   int length = 0, i;

   for(i = 0; Str[i] != ’\0’; i++)

   length++;

   return(length);

 }

 void String :: Concat(String B)

 {

   int len_A, i, j;

    // To concatenate B to A we need to traverse 

 // string A till the end

   for(i = 0; Str[i] != ‘\0’; i++);

   len_A = i;

   // Let us concatenate B to A now

   for(i = len_A, j = 0; B.Str[j] != ‘\0’; j++,i++)

   {

    Str [i] = B.Str[j];

   }

   Str[i] = ‘\0’;

 }

 String String :: Copy()

 {

   String B;

   int i;

   for(i = 0; Str[i] != ‘\0’; i++)
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   B.Str[i] = Str[i];

   B.Str[i] = ‘\0’;  // Append the termination character

   return B;

 }

 String String :: Copy_Reverse()

 {

   int i, l, Len_A;

    for(l = 0; Str[l] != ‘\0’; l++);

 // loop terminates after reaching end of A

   Len_A = l--

   for(i = l, j = 0; i >= 0; i--, j++)

   B.Str[j] = Str[i];

   B.Str[j] = ‘\0’;  //Append termination character

   return B;

 }

 void String :: Rev_String()

 {

    int i, len = 0; 

//exchange ith and jth characters till middle position

   char t;

   for(len = 0; Str[len] !=‘\0’,len++);

   for(i = 0, j = len - 1; i != j; i++, j--)

   { 

    t = Str[i]; Str[i] = Str[j];  Str[j] = t;

   } 

 }

 int String :: Str_cmp(String A, String B)

 {

   int i = 0;

   if (A.Length() != B.Length())

   return(0);

    while

   (A.Str[i] == B.Str[i] && A.Str[i] != ‘\0’ && 

    B.Str[i] != ‘\0’)

    ++ i;

   if(A.Str[i] == ‘\0’ && B.Str[i] == ‘\0’)

   return(1);

   else 

   return(0);  

 }
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Palindrome check  Palindrome is a string that reads the same in forward and backward 
directions. For example, madam and malayalam are palindromes (Fig. 2.37).

Fig. 2.37 Palindrome check
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n/2

To check whether the string is a palindrome or not, there are two approaches:

1. We fi rst fi nd the reverse of the string and then compare it with the original string. If 
they match, then the string is a palindrome; otherwise, it is not. This approach needs n 
comparisons if the string length is n and an additional array to store the reversed string.

2.  The other approach does not need n comparisons but just n/2 comparisons. We can 
compare the fi rst character with the last. If they match, then again match the second 
character with the second last. Continue this process till the middle of the string. We 
can set two indices from both the ends and compare till the indices do not overlap. The 
mismatch of characters indicates that the string is not a palindrome. This approach 
does not need an additional data structure.

The program for checking a palindrome is given in Program Code 2.13.

program CoDe 2.13

 int String:: Palindrome_Check()

 {

   int i, j, l, fl ag = 0, k;

   for(l = 0; Str[l] != ‘\0’; l++); //loop terminates

   l--; k = l/2;  //to avoid null char

   for(i = 0,j = l; i <= k; i++, j--)

   {

    if(Str[i] == Str[j])

    {

     fl ag = 1;

     continue; 

    }

www.allitebooks.com

http://www.allitebooks.org
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    else

    { 

     fl ag = 0;

     break;

    }

   }

    if(fl ag == 1)

    return 0;

     else

    return 1;

 }

Substring check For substring recognition, we will fi nd the occurrence of string B in 
string A. 
For example, 

A = ‘A B C D’ 
B = ‘BC’ or ‘BCD’ and so on

There are two possibilities:

1. Either B is a substring of A or 
2. B is not a substring of A. 

Program Code 2.14 checks if a given string is a substring or not.

program CoDe 2.14

 int String :: substring(String B)

 {

   int j = 0, fl ag = 0; 

   for(i = 0; A.Str[i] != ‘\0’ || B.Str[j] != ‘\0’; i++)

   {

    if(A.Str[i] == B.Str[j])

    { 

     j++;

     fl ag = 1;

    }

    else

    {     

     j = 0;

     fl ag = 0; 

    }

  }
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    if(fl ag == 1)  

      return 1;

  else 

      return 0;

 }

2.13 pROS AND CONS Of ARRAYS

We have studied an array as an abstract data type and also its implementation. We have 
also studied and analyzed a few applications that use an array as a data structure. Let us 
list the characteristics, pros, and cons of an array as a data structure.

2.13.1 Characteristics

The characteristics of an array are as follows:

1. An array is a fi nite ordered collection of homogeneous data elements.
2. In an array, successive elements are stored at a fi xed distance apart.
3. An array is defi ned as a set of pairs—index and value.
4. An array allows direct access to any element. 
5. In an array, insertion and deletion of elements in-between positions require data 

movement.
6. An array provides static allocation, which means the space allocation done once during 

the compile time cannot be changed during run-time.

2.13.2 Advantages

The various merits of the array as a data structure are as follows:

1. Arrays permit effi cient random access in constant time 0(1).
2. Arrays are most appropriate for storing a fi xed amount of data and also for high 

frequency of data retrievals as data can be accessed directly.
3. Arrays are among the most compact data structures; if we store 100 integers in an 

array, it takes only as much space as the 100 integers, and no more (unlike a linked list 
in which each data element has an additional link fi eld).

4. Arrays are well known in applications such as searching, hash tables, matrix operations, 
and sorting.

5. Wherever there is a direct mapping between the elements and their position, such as an 
ordered list, arrays are the most suitable data structures.

6. Ordered lists such as polynomials are most effi ciently handled using arrays.
7. Arrays are useful to form the basis for several complex data structures such as heaps 

and hash tables and can be used to represent strings, stacks, and queues.



90 data structures using c++

2.13.3 Disadvantages

Some of the disadvantages of arrays are as follows:

1. Arrays provide static memory management. Hence, during execution, the size can 
neither be grown nor shrunk.

2. There is a solution to handle the problem, that is, to declare the array of some arbitrarily 
maximum size. This leads to two other problems:
(a) In future, if the user still needs to exceed this limit, it is not possible.
(b) Higher the maximum, the more is the memory wastage because  very often, many 

locations remain unused but still allocated (reserved) for the program. This leads 
to poor utilization of space.

3. Static allocation in an array is a problem associated with implementation in many 
programming languages except a few such as JAVA.

4. An array is inefficient when often data is inserted or deleted as insertion or deletion of 
an element in an array needs a lot of data movement.

5. Hence, an array is inefficient for the applications that often need insert and delete 
operations in between.

6. A drawback due to the simplicity of arrays is the possibility of referencing a non-
existent element by using an index outside the valid range. This is known as exceeding 
the array bounds. The result is a program working with incorrect data. In the worst 
case, the whole system can crash. In C++, the powerful syntax is unfortunately prone 
to this kind of error. Some languages have built-in bounds checking and do not index 
an array outside of its permitted range.

2.13.4 Applications of Arrays

The following list indicates where arrays are most beneficial:

1. Although useful in their own right, arrays also form the basis for several more complex 
data structures such as heaps and hash tables and can be used to represent strings, 
stacks, and queues. 

2. All these applications benefit from the compactness and direct access benefits of 
arrays.

3. Arrays can be used to store two-dimensional data when represented as matrix and 
matrix operations.

4. They can also be used for indexing, searching, and sorting keys, about which we shall 
learn in the Chapters 9 and 10.

5.  In some applications where the data is the same or is missing for most values of the 
indices, or for large ranges of indices, space is saved by not storing an array at all. Such 
an application is called sparse matrix representation. This has an associative array with 
integer keys. There are many specialized data structures specifically for applications, 
including address translation table and routing tables.
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RECApITULATION

•  Data  can  be  organized  in  either  a  linear  or 
a non-linear manner. In linear or sequential 
organization, all the elements can be arranged 
in a particular sequence and each element 
has a unique successor (and/or predecessor) 
in the sequence.

•  Linear data organization can be realized using 
arrays. An array is a very common and simple 
means of sequential (or linear) data structuring 
and is supported by almost all programming 
languages.

•  Sequential  organization  allows  storing  data 
at a fi xed distance apart.  If  the  ith element is 
stored at location X,  then  the  next  sequen-
tial (i+1)th element is stored at location X + C, 
where C is a constant.

•  An  array  allows  direct  or  random  access  to 
any data element of the list at a constant time, 

that  is, O(1) as sequential organization uses 
continuous memory locations to store its data. 
The data access time remains constant for 
accessing any element of the list, irrespective 
of the total length or size of the data list.

•  For  in-between  insertions  or  deletions  of  ele-
ments, we need to perform data shifting to keep 
the organization consistent and intact, which is 
expensive with respect to time.

•  When  data  is  organized  in  multiple  dimen-
sions,  a  one-dimensional  array proves  to  be 
insuffi cient,  and  we  need  two-dimensional, 
three-dimensional, or multidimensional arrays. 
A multidimensional array is an extension of a 
two-dimensional array to three,  four, or more 
dimensions.

•  Arrays are effi ciently used for matrix, polyno-
mial, and string operations.

Array An array is a fi nite ordered collection of 
homogeneous data elements that provides direct 
access (or random access) to any of its elements.

Linear and non-linear data structure In linear 
(or sequential) organization, all the elements can 
be arranged in a particular sequence, and each ele-
ment has a unique successor (and/or predecessor) 
in the sequence. When each element may have 
one or more successors (or predecessors), it is 
called a non-linear data structure.

Memory representation of array A computer’s 
memory can be well thought-out as one long list of 
bits grouped together into bytes and/or words. Each 
of them can be referred to as just location to avoid 
machine-dependent details about whether memory 
is structured with a one–byte, two–byte, or an n-
byte word. In addition, the addressing scheme such 
as byte addressable or word addressable varies.

Memory representation of two-dimensional ar-
rays Let us consider a two-dimensional array A 

of dimension m × n. Though the array is multi-
dimensional, it is usually stored in memory as a 
single-dimensional array. A multidimensional array 
is represented in memory as a sequence of m × n 
consecutive memory locations. The elements of a 
multidimensional array can be stored in memory 
as a row-major representation or a column-major 
representation.

Sequential organization Sequential organization 
allows storing data at a fi xed distance apart. If the 
ith element is stored at location X, then the next 
sequential (i+1)th element is stored at location X + 
C, where C is a constant.

Sparse matrix In many situations, the matrix size 
is very large but out of it, most of the elements 
are 0s (not necessarily always 0s). Only a small 
fraction of the matrix is actually used. A matrix of 
such a type is called a sparse matrix, as the matrix 
is fi lled sparsely by data and most of the positions 
are empty or contain non-relevant data.

KEY TERMS
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Multiple choice questions

 1. An array is a
 (a) linear data structure
 (b) non-linear data structure
 (c) complex data structure
 (d) none of these
 2. Which of the following expressions access the 

(i, j)th element of an m ¥ n matrix stored in 
column-major form?

 (a) n ¥ (i - 1) + j
 (b) m ¥ (j - 1) + i
 (c) m ¥ (n - j) + j
 (d) n ¥ (m - i) + j
 3. An n ¥ n array V is defi ned as follows:
 V[i, j] = i - j for all i, j, where 1 < i £ n, 1 £ 

j £ n
 The sum of the elements of the array V is
 (a) 0
 (b) n - 1
 (c) n2 - 3n + 2
 (d) n2 (n + 1)/2
 4. The smallest element of an array’s index is 

called its
 (a) lower bound
 (b) upper bound
 (c) range
 (d) extraction
 5. Pick out the correct answers from the following:
 (a)  During array declaration, no storage is set 

aside
 (b) Array defi nition precedes array declaration
 (c) Array declaration precedes array defi nition
 (d)  Initialization cannot be done during array 

declaration
 6. The parameter passing mechanism for an 

array is 
 (a) call by value
 (b) call by value-result
 (c) call by reference
 (d) none of the above 

 7. If n has the value 3, then the statement a[++n] = 
n++

 (a) assigns 3 to a[5]
 (b) assigns 4 to a[5]
 (c) assigns 4 to a[4]
 (d) produces unpredictable results
 8. Let A be a two-dimensional array declared as 

follows:
 An array [1, ..., 10] [1, …, 15] of integers; 

assuming that each integer takes one memory 
location, the array is stored in row-majored 
order, and that the fi rst element of the array is 
stored at location 100,  what is the address of the 
element A[i][j]?

 (a) 15i + j + 84
 (b) 15j + i + 84
 (c) 10i + j + 89
 (d) 10j + i + 89
 9. To traverse an array means
 (a) to process each element in an array 
 (b) to delete an element from an array
 (c) to insert an element into an array
 (d) to combine two arrays into a single array
 10. A matrix is said to be sparse when 
 (a) most of the elements are non-zero
 (b) most of the elements are zero
 (c) all of its elements are non-zero
 (d) None of the above.

Review questions

 1. You have two arrays, A and B, each of 10 
integers. Write an algorithm that tests if every 
element of array A is equal to its corresponding 
element in array B.

 2. Write an algorithm that reverses the elements 
of an array so that the last element becomes the 
fi rst, the second to the last becomes the second, 
and so on.

 3. An m ¥ n matrix is said to have a saddle point if 
some entry A[i, j] is of the smallest value in row 

ExERCISES
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i and the largest value in column j. Write a C++ 
program that determines the location of a saddle 
point, if one exists. What is the computing time 
complexity of your program?

 4. Write a function in C++ called merge_

arrays() that takes two stored arrays and 
merges them into one stored array. The function 
header should be 

           void merge_arrays()
           double *a, *b, *c;

 where a and b are pointers to the two stored 
arrays and c is a pointer to the resulting merged 
array.

 5. Modify merge_arrays() of Review Question 
4 so that it eliminates duplicate entries.

 6. A lower triangular array a is an n ¥ n array in 
which a[i][j] == 0, if i < j. What is the maximum 
number of non-zero elements in such an array? 
How can these elements be stored sequentially 
in memory? Develop an algorithm for accessing 
a[i][j], where i > j. Define an upper triangular 
array in an analogous manner and do the same 
for such an array as for the lower triangular array.

 7. Let a and b be two n ¥ n lower triangular arrays. 
Show how an n × (n + 1) array c can be used to 
contain the non-zero elements of the two arrays. 
Which elements of c represent the elements a[i]
[j] and b[i][j], respectively?

 8. What is meant by the terms ‘row-major order’ 
and ‘column-major order’?

 9. The array data[15, 25] is stored in memory 
in row-major order. If the base address is 500 
and element size is 5, calculate the address of the 
element data[7, 12].

10. Imagine N people have decided to commit 
suicide by arranging themselves in a circle and 
killing the Mth person around the circle, closing 
ranks as each person drops out of the circle. Find 
out which person is the last to die. Write a C++ 
program to simulate the execution sequence.

11. Write a C++ program to find out the maximum 
and second maximum numbers from an array of 
integers.

12. The mode of an array of numbers is the number 
m in the array that is repeated most frequently. 
If more than one number is repeated with equal 
maximal frequencies, there is no mode. Write a 
C++ program that accepts an array of numbers 
and returns the mode or an indication that the 
mode does not exist.

13. Write a C++ program to delete duplicate 
elements from an array of 20 integers.

14. There are two arrays A and B. A contains 25 
elements, whereas B contains 30 elements. Write 
a function to create an array C that contains only 
those elements that are common to A and B.

15. A magic square of size 5 ¥ 5 contains different 
elements. Write a C++ function to verify whether 
the sum of each individual column elements, the 
sum of each individual row elements, and the 
sum of diagonal elements are equal.

16.  Write a C++ program to build a sparse matrix as 
an array. Write functions to check if the sparse 
matrix is a square, diagonal, lower triangular, 
upper triangular, or tridiagonal matrix.

17.  Write a C++ program to subtract two sparse 
matrices implemented as an array.

Answers to multiple choice questions

1. (a)  2. (b)  3. (a)  4. (a)  5. (a), (b), (d)  6. (a)   
7. (d) The output is compiler-dependent. 8. (a)  9. (b) 10. (b)
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Stacks and queues are special data structures where insert and delete operations are 
performed only at specifi c ends rather than at intermediate or any other random 

positions. These are special cases of ordered lists. As we have seen in Chapter 2, linear 
data structures such as arrays and linked lists allow us to insert or delete an element 
from any position in the list; stacks and queues are linear lists with restrictions on these 
operations. Let us discuss these concepts in detail.

3.1 cOncEPt Of StackS anD quEuES

Stacks and queues are the two data structures where insert and delete operations are 
 applied at specifi c ends only. These are special cases of ordered lists and are also called 
controlled linear lists. There is a wide variety of software applications where we need 
these restricted data structure operations. The following are some examples where stacks 
and queues are generally used:

1. Queues are widely used in applications that maintain a list of printing jobs waiting at a 
network printer. Here, one queue that can hold all print requests from different users is kept.

2. Handling function calls in programs very often restricts access at one end to keep track of 
the returning position. In such implementation, we need to use stacks. We can keep track of 
the return address to earlier function after furnishing/fi nishing a function call using stacks.

We shall discuss stacks in this chapter and queues in Chapter 4.

StackS

OBJEctiVES

After completing this chapter, the reader will be able to understand the following:
 • All aspects of a stack as a data type such as

 ○ l ast in fi  rst out (LIFO) data access
 ○ push, pop, and other stack operations
 ○ contiguous implementation of a stack

 • Realization of a stack using arrays
 • Choosing appropriate realizations for practical applications
 • Implementation of multi-stacks
 • Use of stacks in expression conversi on, recursion, reversing data, and other applications



stacks 95

3.2 StackS

In our everyday life, we come across many examples of stacks, for example, a stack of 
books, a stack of dishes, or a stack of chairs. The data structure stack is very similar to 
these practical examples (Fig. 3.1).

Stack of books Stack of chairs Stack of cups

Fig. 3.1  Sample real world stacks

Consider a stack of books on a table. We can easily put a new book on the top of the 
stack, and similarly, we can easily remove the topmost book as compared to the books 
lying  in-between or at the bottom positions. In the same way, only the topmost ele-
ment of a stack can be accessed while direct access of other intermediate positions 
is not feasible. Elements may be added to or removed from only one end, called the 
top of a stack.

The linear data structures such as arrays and linked lists allow users to insert or delete 
an element at any position in the list, that is, we can insert or delete an element at the 
beginning, at the end, or at any intermediate position.

A stack is defined as a restricted list where all insertions and deletions are made only 
at one end, the top. Each stack abstract data type (ADT) has a data member, commonly 
named as top, which points to the topmost element in the stack. There are two basic  
operations push and pop that can be performed on a stack; insertion of an element in 
the stack is called push and deletion of an element from the stack is called pop. In 
stacks, we cannot access data elements from any intermediate positions other than the 
top position.

Given a stack S = (a1, a2, ..., an). We say that as a1 is the bottommost element, an is on 
top of the stack, and the element ai+1 is said to be on the top of ai, 1 < i £ n.

In Fig. 3.2, S = (A, B, C), where A is the bottommost element and C is the topmost 
element.

Top

BottomA

B

C

Fig. 3.2  A stack of three letters A, B, and C
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3.2.1 Primitive Operations

The three basic stack operations are push, pop, and getTop. Besides these, there 
are some more operations that can be implemented on a stack such as stack_
initialization, stack_empty, and stack_full. The stack_initialization 
operation prepares the stack for use and sets it to a vacant state. The stack_empty 
operation simply tests whether the stack is empty. The stack_empty operation is use-
ful as a safeguard against an attempt to pop an element from an empty stack. Popping 
an empty stack is an error condition. The stack_empty condition is also termed stack 
underflow. In ideal  conditions, stacks should possess infinite capacity so that the sub-
sequent elements can always be pushed, regardless of the number of elements already 
present on the stack. However, computers always have finite memory capacity, and we 
do need to check the stack_full condition before doing push because pushing an 
element in a full stack is also an error condition. Such a stack full condition is called 
stack overflow.

Another stack operation is GetTop. This returns the top element of the stack without 
actually popping it. A few more stack operations include traversing the stack, counting 
the total number of elements in the stack, and copying the stack.

Let us quickly recall all the stack operations:

1. Push—inserts an element on the top of the stack
2. Pop—deletes an element from the top of the stack
3. GetTop—reads (only reading, not deleting) an element from the top of the stack
4. Stack_initialization—sets up the stack in an empty condition
5. Empty—checks whether the stack is empty
6. Full—checks whether the stack is full

Push

The push operation inserts an element on the top of the stack. The recently added element 
is always at the top of the stack. Before every push, we must ensure whether there is a 
room for a new element (Fig. 3.3).

Top

Top C

C

B

A

B
After push

A

Fig. 3.3  The push operation
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When there is no space to accommodate the new element on the stack, the stack is said 
to be full (Fig. 3.4). If the operation push is performed when the stack is full, it is said 
to be in overflow state, that is, no element can be added when the stack is full. The push 
operation modifies the top since the newly inserted element becomes the topmost 
element (Fig. 3.3).

TopC

B

A

Stack full

Fig. 3.4  The stack full condition (stack capacity = 3)

Pop

The pop operation deletes an element from the top of the stack and returns the same 
to the user. It modifies the stack so that the next element becomes the top element  
(Fig. 3.5).

Top

C

C

B

A

BAfter pop

A

Top

Fig. 3.5  The pop operation

When there is no element available on the stack, the stack is said to be empty. If pop 
is performed when the stack is empty, then the stack is said to be in an underflow state 
(Fig. 3.6).

Empty stack

Fig. 3.6 The empty stack
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The pop operation should not be performed when the stack is empty, and hence before 
every pop, we must ensure that the stack is not empty. After deleting the last element from 
the stack, the stack should be set to an empty state.

GetTop

The getTop operation gives information about the topmost element and returns 
the  element on the top of the stack. In this operation, only a copy of the element, which 
is at the top of the stack, is returned. Hence, the top is still set to the same element 
(Fig. 3.7).

Top Top

After GetTop function

C

B

A

C

B

A

Fig. 3.7  The getTop operation 

This is the key difference between the pop and getTop operations. The getTop opera-
tion does not modify the variable top. It signals the stack underflow error if the stack 
is empty.

As both insert and delete operations are allowed only at one end of the stack,  
it retrieves data in the reverse order in which the data is stored. In Fig. 3.8, let  
S = {A, B, C}.

A

push(A) push(B) push(C)

AAA

B

BB

C

C Top

Fig. 3.8  Stack and push operations 

Suppose that the order of the operations is push(A), push(B), and then push(C). When 
we remove these elements out of the stack, they will be removed in the order C, B, and 
then A. This is shown in Fig. 3.9.
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ABC

pop( ) pop( ) pop( ) Empty

AA

B

A

B

C

Fig. 3.9  Stack and pop operations

Elements are taken out in the reverse order of the insertion sequence. So a stack is often 
called last in first out (LIFO) or first in last out (FILO) data structure.

3.3 Stack aBStRact Data tYPE

Let us now see the data object, operations, and axioms associated with the stack. Any sets 
of elements that are of the same data type can be used as a data object for stacks. The 
meaning of ‘same data type’ is that all the elements in the stack should be of the same na-
ture, having common representational logical properties. For example, stack of integers, 
stack of names of students, stack of employee records, and stack of records of processes 
of the operating system.

The following five functions comprise a functional definition of a stack:

1. Create(S)—creates an empty stack
2. Push(i, S)—inserts the element i on the stack S and returns the modified stack
3. Pop(S)—removes the topmost element from the stack S and returns the modified stack
4. GetTop(S)—returns the topmost element of stack S
5. Is_Empty(S)—returns true if S is empty, otherwise returns false

However, when we choose to represent a stack, it must be possible to build these opera-
tions. Before we do this, let us describe formally the structure stack.

ADT Stack(element)
 1. Declare Create() Æ stack
 2. push(element, stack) Æ stack
 3. pop(stack) Æ stack
 4. getTop(stack) Æ element
 5. Is_Empty(stack) Æ Boolean;
 6. for all S Œ stack, e Œ element, Let
 7. Is_Empty(Create) = true
 8. Is_Empty(push(e, S)) = false
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 9. pop(Create()) = error
 10. pop(push(e,S)) = S
 11. getTop(Create) = error
 12. getTop(push(e, S)) = e
 13. end
 14. end stack

The five functions with their domains and ranges are declared in lines 1 through 5. 
Lines 6 through 13 are the set of axioms that describe how the functions are related. 
Lines 10 and 12 are important because they define the LIFO behaviour of the stack. This 
description shows an infinite stack of no upper bound or roof on the number of elements 
specified. This will be discussed when we represent this structure using C++.

We studied the concept of ADT in Chapter 1. The ADT stack is defined in  Section 3.3. 
To implement the ADT stack in C++, the operations are often implemented as functions to 
provide data abstraction. A program that uses stacks would access the stacks only through 
these functions and would not be concerned about the implementation.

3.4  REPRESEntatiOn Of StackS uSing SEquEntial ORganizatiOn 
(aRRaYS)

A stack can be implemented using both a static data structure (array) and a dynamic data 
structure (linked list). The simplest way to represent a stack is by using a one-dimensional 
array. A stack implemented using an array is also called a contiguous stack.

An array is used to store an ordered list of elements. A stack is an ordered collec-
tion of elements. Hence, it would be very simple to manage a stack when represented 
using an array. The only difficulty with an array is its static memory allocation. Once 
declared, the size cannot be modified during run-time. We have already read that this 
leads to either poor utilization of the space or inability to accommodate all possible data 
elements. This is because we declare an array to be of arbitrarily maximum size before 
compilation.

Figure 3.10 shows the realization of a stack using arrays. 

0 1 2

0 1 2Top n − 1

Top

A B C . . . 

. . .  C B A

n − 1

Fig. 3.10  Stack using array
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Let Stack[n] be a one-dimensional array. When the stack is implemented using  arrays, 
one of the two sides of the array can be considered as the top (upper) side and the other as 
the bottom (lower) side as in Fig. 3.10.

Let us discuss the top side, which is most commonly used. The elements are stored in 
the stack from the fi rst location onwards. The fi rst element is stored at the 0th location of 
the array Stack, which means at Stack[0], the second element at Stack[1], the ith ele-
ment at Stack[i - 1], and the nth element at Stack[n - 1]. Associated with the array 
will be an integer variable, top, which points to the top element in the stack. The initial 
value of top is -1 when the stack is empty. It can hold the elements from index 0, and can 
grow to a maximum of n - 1 as this is a static stack using arrays.

Program Code 3.1 gives the defi nition of class Stack and lists the function prototypes 
for a set of basic operations.

program CoDe 3.1

 class Stack

 {

    private:

       int Stack[50];

       int MaxCapacity;

       int top;

    public:

       Stack()

       {

          MaxCapacity = 50;

          top = −1;

          currentsize = 0;

       }

       int getTop();

       int pop();

       void push(int Element);

       int Empty();

       int CurrSize();

       int IsFull();

 };

The simplest way to implement an ADT stack is using arrays. We initialize the variable 
top to -1 using a constructor to denote an empty stack. The bottom element is repre-
sented using the 0th position, that is, the fi rst element of the array. The next element is 
stored at the 1st position and so on. The variable top indicates the current element at the 
top of the stack. 
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3.4.1 create

The stack when created is initially empty. The implementation of the stack could be using 
an array or using a linked list implementation. For array implementation, its size should 
be predefined, and its implementation time should not exceed run-time. However, in case 
of a linked implementation, this limitation is overcome. Let us first look at a simple stack 
implementation. At the end of this chapter, we shall study about other better array-based 
implementations using C++ features such as templates and dynamic arrays.

For each and every stack, there is an operational end operator variable called the top 
which points to the element at the top of the stack. Hence, this integer variable holds the 
index of the array. It can also be implemented as a pointer variable. Let us currently use 
it as an integer variable. Even though we call it as a pointer pointing to the top element of 
the stack, it is an integer index variable.

The constructor must initialize the stack top, so as to represent an empty stack, to a 
value that represents the top of the empty stack. We cannot initialize it to one of the values 
in the range of 0 to n - 1 because these are the indices of the stack array. The indices 0 
to n - 1 represent one of the locations going to hold the stack elements. However, it can 
be initialized to any arbitrary integer value other than 0 to n - 1. Each push operation 
increments top by one. This is to update top to point to a newly added element. When the 
element is added to the empty stack, top should be set to 0 as the new element will be 
stored at Stack[0]. Hence, it is suitable to initialize the top to -1. This is the most suit-
able initialization instead of any other arbitrary value.

int Stack[100];
int top = −1;

These statements create an empty stack of size 100, which will hold integer values, and 
the variable top is initialized to -1.

3.4.2 Empty

Empty is an operation that takes the stack as an argument, checks whether it is empty or 
not, and returns the Boolean value true or false, respectively.

The stack empty state can be checked by comparing the value of top with the value -1, 
because top = -1 represents an empty stack.

if(top == −1)
     return 1;
else 
     return 0;

3.4.3 gettop

The getTop operation checks for the stack empty state. If the stack is empty, it 
reports the ‘stack underflow’ error message; else it returns a copy of the element that 
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is at the top of the stack. Here, top is not updated as the element is not deleted from the 
stack; rather, the element is still at the top location. The element is just read from  
the stack.

Hence, its behaviour can be described using the following statement:

if(top == −1)
     cout << "Stack underflow (empty)" << endl;
else
     return(Stack[top]);

3.4.4 Push

The push operation inserts an element onto the stack of maximum size MaxCapacity. 
Element insertion is possible only if the stack is not full. We have not discussed the 
full operation in ADT. The stack is practically full when the array size exceeds (or the 
memory is full, which can happen when we use the linked list representation of the stack). 
Hence, the stack full state can be verified by comparing the top with MaxCapacity - 1. 
If the stack is not full, the top is incremented by 1 and the element is added on the top of 
the stack. In brief,

if(top == MaxCapacity − 1)
   cout << "Stack overflow (full)";
else
{
   top ++;  //increment top by one
   Stack[top] = Element;      //add the element in new top position 
}

3.4.5 Pop

The pop operation deletes the element at the top of the stack and returns the same. This 
is done only if the stack is not empty. If the stack is empty, no deletion is possible. This is 
checked by the empty() function. If the stack is not empty, then the element at the top of 
the stack is returned and the top is decreased by one.

This is executed as

if(top == −1)
     cout << "Stack underflow\n";
else
     return(Stack[top−−]);

The stack full condition signals that more storage is needed, and in many applications 
of stacks, the stack empty state signals the end of processing. Program Code 3.2 illustrates 
the basic operations on a stack.
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program CoDe 3.2

 class Stack

 {

    private:

       int Stack[50];

       int MaxCapacity;

       int top;

    public:

       Stack()

       {

          MaxCapacity = 50;

          top = −1;

       }

       int getTop();

       int pop();

       void push(int Element);

       int Empty();

       int CurrSize();

       int IsFull();

 };

 

 int Stack :: getTop()

 {

    if(!Empty())

       return(Stack[top]);

 }

 

 int Stack :: pop()

 {

    if(!Empty())

       return(Stack[top−−]);

 }

 

 int Stack :: Empty()

 {

    if(top == −1)

       return 1;

    else 

       return 0;

 }
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 int Stack :: IsFull()

 {

    if(top == MaxCapacity − 1)

       return 1;

    else 

       return 0;

 }

 

 int Stack :: CurrSize()

 {

    return(top + 1);

 }

 

 void Stack :: push(int Element)

 {

    if(!IsFull())

       Stack[++top] = Element;

 }

 

 void main()

 {

    Stack S;

    S.pop();

    S.push(1);

    S.push(2);

    cout << S.getTop() << endl;

    cout << S.pop() << endl;

    cout << S.pop() << endl;

 }

3.5 StackS uSing tEMPlatE

The stack using an array and its operations in Program Code 3.2 is defi ned to operate on 
integer data. To defi ne stack for fl oating point data, we need to change int Stack[] to 
fl oat Stack[] in the declaration of data members of the class. This can be done each 
time the data type of array elements varies, by editing the code using a text editor and then 
recompiling it. A template is a variable that can be instantiated to any data type. This data 
type could be of the built-in or user-defi ned type. Program Code 3.2 is rewritten using 
templates as Program Code 3.3.
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program CoDe 3.3

 template <class T>

 class Stack

 {

    private:

       T * Stack;   // stack using pointer

       int top;

       int Size;

    public:

       Stack(int StackSize = 20 );  // constructor

       T& getTop();

       T& pop();

       void push(const T& Element);

       bool IsEmpty();

       int CurrSize();

 };

 

 template <class T>

 Stack <T> :: Stack(int StackSize) : Size(StackSize)

 {

    Stack = new T[Size];

    top = −1;

 }

 

 template <class T>

 T& Stack :: getTop()

 {

    if !IsEmpty()

       return(Stack[top]);

    else 

       cout << "Stack is Empty" << endl;

 }

 

 template <class T>

 T& Stack :: pop()

 {

    if !IsEmpty()

       return(Stack[top−−]);

    else 
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       cout << "Stack is Empty" << endl;

 }

 Bool Stack :: IsEmpty()

 {

    if(top == −1)

       return 1;

    else

       return 0;

 }

 

 Bool Stack :: IsFull()

 {

    if(top == MaxCapacity − 1)

       return 1;

    else 

       return 0;

 }

 

 int Stack :: CurrSize()

 {

    return(top + 1);

 }

 

 void Stack :: push(const T & Element)

 {

    if(!IsFull())

       cout << "Stack is Full" << endl;

    else

       Stack[++top] = Element;

 }

3.6  MultiPlE StackS

Often, data is represented using several stacks. The contiguous stack (stack using an 
 array) uses separate arrays for more than one stack, if needed. The use of a contiguous 
stack when more than one stack is needed is not a space-effi cient approach, because many 
locations in the stacks are often left unused. An effi cient solution to this problem is to use 
a single array to store more than one stack. Figure 3.11 shows two stacks using one array. 
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Stack 1 Stack 2

A 1 . . . B A

0 1 2 n − 3

Top 1 = 3 Top 2 = n – 2

n − 2 n − 1

2

3 4

3 4

Fig. 3.11  Initial configuration for two stacks in A[0], …, A[n - 1]

Multiple stacks can be implemented by sequentially mapping these stacks into  
A[0], ..., A[n − 1]. The solution is simple if we implement only two stacks. The 
first stack grows towards A[n - 1] from A[0] and the second stack grows towards 
A[0] from A[n − 1].

This way, we can make use of the space most efficiently so that the stack is full only 
when the top of one stack reaches the top of other stack.

The difficulty arises when we have to represent m stacks in the memory. We can divide 
A[0, ..., n - 1] into m segments and allocate one of these segments to each of the 
m stacks. This initial division into segments may be done in proportion to the expected 
sizes of the various stacks, if the sizes are known. In the absence of such information, 
A[0, ..., n - 1] may be divided into equal segments. For each stack i, we shall use 
s[i] to represent a position one less than the position in A for the bottommost element of 
that stack as shown in Fig. 3.12.

t [0] t [1] t [2]

0 2[n/m] − 1

A

s[0] s[1] s[2] s[m − 1]

n − 1[n/m] − 1

Fig. 3.12  Initial configuration for m stacks in A [0, …, n - 1]

Here, t[i], 0 £ i £ m - 1 will point to the topmost element of the stack i. 
We shall use the boundary condition s[i] = t[i] if the ith stack is empty.

Initially, s[i] = t[i] = [n/m] ¥ (i - 1), 0 £ i £ n - 1.
Stack[i] will grow from s[i] + 1 to s[i + 1] before it catches up with the 

(i + 1)th stack. Using this scheme, the m_push and m_pop programs can be written as 
in Program Code 3.4.
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program CoDe 3.4

 Stack :: m_push(int i, char x)

 {

    // push x to the ith stack

    if(t[i] == s[i + 1])

       Stack_full(i);

    else

    {

       t[i] = t[i] + 1;

       A[t[i]] = x;

    }

 }

 

 char Stack::m_pop(int i)

 {

    // pop topmost element of stack i 

    if(t[i] == s[i])

       Stack_empty(i);

    else

    {

       t[i] = t[i] - 1;
       return(A[t[i] + 1]);

    }

 }

Stack_full() and Stack_empty() are the functions to be written depending on the 
strategy followed in each case. For example, if we permit the addition of elements to 
stacks as long as there is some free space in array A, the following steps may be one of 
the solutions to this:

1. Determine the last i < j £ m, such that there is a free space between the stacks j 
and j + 1, that is, t[j] s[j + 1]. If there is such an A[j], we can move the stacks 
i + 1, i + 2, ..., j one position  to the right (treating A[n] as the rightmost) and 
can create a space between the stacks i and i + 1.

2. If there is no j in step 1, then check the left side of stack i. Find the largest j such that 1 
£ j £ i and there is space between the stacks j and j + 1, that is, t[j] < s[j + 1]. 
If there is such a j, then move the stacks j + 1, j + 2, ..., i by one space left, 
creating a free space between the stacks i and i + 1.

3. If there is no such j satisfying the conditions of either steps 1 or 2, then all the n spaces 
of A are utilized, and there is no free space.
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3.7 aPPlicatiOnS Of Stack

The stack data structure is used in a wide range of applications. A few of them are the 
following:

1. Converting infix expression to postfix and prefix expressions
2. Evaluating the postfix expression
3. Checking well-formed (nested) parenthesis
4. Reversing a string
5. Processing function calls
6. Parsing (analyse the structure) of computer programs
7. Simulating recursion
8. In computations such as decimal to binary conversion
9. In backtracking algorithms (often used in optimizations and in games)

3.8 EXPRESSiOn EValuatiOn anD cOnVERSiOn

The most frequent application of stacks is in the evaluation of arithmetic expressions. 
An arithmetic expression is made of operands, operators, and delimiters. When high-
level programming languages came into existence, one of the major difficulties faced by 
computer scientists was to generate machine language instructions that could properly 
evaluate any arithmetic expression.

A complex assignment statement such as

X = (A/B + C ¥ D  - F ¥ G/Q)

might have several meanings, and even if the meanings were uniquely defined, it is  
still difficult to generate a correct and reasonable instruction sequence. Fortunately, the 
solution we have today is both elegant and simple. Till date, this conversion is considered 
as one of the major aspects of compiler writing.

Let us see the difficulties in understanding the meaning of expressions. The first prob-
lem in understanding the meaning of an expression is to decide the order in which the 
operations are to be carried out. This demands that every language must uniquely define 
such an order.

For instance, consider the following expression:

X = a/b ¥ c - d

Let a = 1, b = 2, c = 3, and d = 4.

One of the meanings that can be drawn from this expression could be

X = (1/2) ¥ (3 - 4) = -1/2
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Another way to evaluate the same expression could be 

X = (1/(2 ¥ 3)) - 4 = -23/6

To avoid more than one meaning being drawn out of an expression, we have to specify 
the order of operation by using parentheses. For instance,

X = (a/b) ¥ (c - d)

To fix the order of evaluation, assign each operator a priority. Even though we write 
the expression in parentheses, we still query whether to evaluate (A/B) first or to evaluate 
(C - D) first. Once the priorities are assigned, then within any pairs of parentheses the 
 operators with the highest priority are to be evaluated first. While evaluating an expres-
sion, the following operation precedence is usually used:

The following operators are written in descending order of their precedence:

1. Exponentiation (^), Unary (+), Unary (-), and not (~)
2. Multiplication (¥) and division (/)
3. Addition (+) and subtraction (-)
4. Relational operators <, £ , =, π, ≥, >
5. Logical AND
6. Logical OR

Some integer values can be assigned as priority, as in Table 3.1.

Table 3.1 Operators and their priorities

Arithmetic, boolean, and relational 
operators

Priority

Ÿ, Unary +, Unary - , ~ 1

¥, / 2

+, - 3

<, £, =, π, ≥, > 4

AND 5

OR 6

Note that all the relational operators have the same priority. Exponentiation (^) and unary 
operators (+, -, and ~) have the highest priority. When there are two adjacent operators with 
the same priority, again the question arises as to which one to evaluate first. For example, the 
expression, A + B - C can be understood in two ways—(A + B) - C or A + (B - C).

This needs a decision on whether to evaluate the expression from right to left or 
left to right. Expressions such as A + B - C and A ¥ B/C are to be evaluated from left 
to right. However, the expression A ^ B ^ C is to be evaluated from right to left as  
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A ^ (B ^ C). For example, to compute 2 ^ 3 ^ 2, we need to represent and evaluate it 
as 2 ^ (3 ^ 2). When evaluated from left to right, the expression may be evaluated as  
((2 ^ 3) ^ 2), which is wrong!

Hence, the operators need to decide on a rule for proceeding from left to right for all 
expressions except the operator exponential. This order of evaluation, from left to right 
or right to left, is called associativity. Exponentiation is right associative and all other 
operators are left associative. When we write a parenthesized expression, these rules can 
be overridden. In the parenthesized expressions, the innermost parenthesized expression 
is evaluated first.
Let us consider the expression

X = A/B ^ C + D ¥ E - A ¥ C

By using priorities and associativity rules, the expression X is rewritten as

X = A/(B ^ C) + (D ¥ E) - (A ¥ C)

For example, let X be an infix expression as = ((2 + 3) ¥ 4)/2 
We manually evaluate the innermost expression first as ((5) ¥ 4)/2, followed by the 

next parenthesized inner expression (20)/2, which produces the result 10. 
Still the question remains as to how a compiler can accept such an expression and 

produce the correct code. The solution is to rework on the expression to a form called the 
postfix notation.

3.8.1 Polish notation and Expression conversion

The Polish Mathematician Han Lukasiewicz suggested a notation called Polish notation, 
which gives two alternatives to represent an arithmetic expression, namely the postfix 
and prefix notations. The fundamental property of Polish notation is that the order in 
which the operations are to be performed is determined by the positions of the operators 
and operands in the expression. Hence, the advantage is that parentheses is not required 
while writing expressions in Polish notation. The conventional way of writing the expres-
sion is called infix, because the binary operators occur between the operands, and unary 
operators precede their operand. For example, the expression ((A + B) ¥ C)/D is an infix 
expression. In postfix notation, the operator is written after its operands, whereas in prefix 
notation, the operator precedes its operands. Table 3.2 shows one sample expression in 
all three notations.

Table 3.2 Example expression in various forms—infix, prefix, and postfix

Infix Prefix Postfix

(operand)(operator)(operand) (operator)(operand)(operand) (operand)(operand)(operator)

(A + B) ¥ C ¥+ABC AB + C¥
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In Example 3.1, the conversion of an expression to its postfix and prefix notations is dis-
cussed.

 example 3.1  Convert the following expression to its postfix and prefix notations:

X = A/B ^ C + D ¥ E - A ¥ C

Solution By applying the rules of priority and associativity, this expression can be 
written in the following form:

X = ((A/(B ^ C)) + (D ¥ E) - (A ¥ C))

It can be reworked to get its equivalent postfix and prefix expressions.

Postfix: ABC ^/ DE ¥+ AC ¥-

Prefix: - +/ A ^ BC ¥ DE ¥ AC

3.8.2 need for Prefix and Postfix Expressions

We just studied that evaluation of an infix expression using a computer needs proper 
code generation by the compiler without any ambiguity and is difficult because of 
various  aspects such as the operator’s priority and associativity. This problem can be 
overcome by writing or converting the infix expression to an alternate notation such as 
the prefix or the postfix. The postfix and prefix expressions possess many advantages 
as follows: 

1. The need for parenthesis as in an infix expression is overcome in postfix and prefix 
notations.

2. The priority of operators is no longer relevant.
3. The order of evaluation depends on the position of the operator but not on priority and 

associativity.
4. The expression evaluation process is much simpler than attempting a direct evaluation 

from the infix notation.

Let us see how postfix expressions are evaluated.

3.8.3 Postfix Expression Evaluation

The postfix expression may be evaluated by making a left-to-right scan, stacking op-
erands, and evaluating operators using the correct number from the stack as operands 
and again placing the result onto the stack. This evaluation process is much simpler 
than  attempting a direct evaluation from the infix notation. This process continues 
till the stack is not empty or on occurrence of the character #, which denotes the end  
of the expression.
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Algorithm 3.1 lists the steps involved in the evaluation of the postfix expression E. 

algorithm 3.1

1. Let E denote the postfix expression
2. Let Stack denote the stack data structure to be used & let Top = −1
3. while(1) do 
   begin
    X = get_next_token(E) // Token is an operator, operand, or delimiter
     if(X = #) {end of expression}
        then return 
     if(X is an operand)
        then push(X) onto Stack
     else {X is operator}
     begin
        OP1 = pop() from Stack
        OP2 = pop() from Stack
        Tmp = evaluate(OP1, X, OP2)
        push(Tmp) on Stack
     end
         {If X is operator then pop the correct number of operands 

from stack for operator X. Perform the operation and push the 
result, if any, onto the stack}

   end
4. stop

It is assumed that the last character in E is ‘#’. A procedure get_next_token is used to 
extract the next token from E. A token is an operand, an operator, or a #. A one-dimensional 
array Stack[n] is used as a stack.

Let us consider an example postfix expression E = AB + C¥#. Now, let us scan this 
expression from left to right, character by character, as represented in Fig. 3.13.

This evaluation process is much simpler than the evaluation of the infix expression. 
Let us now devise an algorithm for converting an infix expression to a postfix notation. To 
see how to devise an algorithm for translating from infix to postfix, note that the operands 
in both notations appear in the same sequence. Let us also learn how we can manually 
convert an infix expression into a postfix expression.

The following are the steps for manually converting an expression from one notation 
to another:

1. Initially, fully parenthesize the given infix expression. Use operator precedence and 
associativity rules for the same.

2. Now, move all operators so that they replace their corresponding right parenthesis.
3. Finally, delete all parentheses, and we get the postfix expression.
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A

push A

A

B

push B
+ : B = pop( ),

A A + B

A + B

C

A + B

× : C = pop( ), pop( ) Output as: (A + B) × C

A = pop( ) push (A + B)

push C

Fig. 3.13  Evaluation of postfix expression AB + C¥

The evaluation of a postfix expression is simple, but now we need to convert an infix 
expression to its postfix form. Let us consider an example E = A/B ^ C + D ¥ E - A ¥ C.

Let us fully parenthesize the same as

E = (((A/(B ^ C)) + (D ¥ E)) - (A ¥ C))

Let us move all operators to the corresponding right parenthesis and replace the same.

E = (((A /(B ^ C)) + (D × E )) − (A × C ))

Now let us eliminate all parentheses. We get the postfix equivalent of the infix 
expression.

E(postfix) = ABC ^/ DE ¥+ AC¥-

This method can be used to get an equivalent prefix notation too as follows:

(((A/(B ^ C)) + (D × E )) − (A × C ))
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We now get the prefix expression after eliminating the parentheses as 

E(prefix) = - +/ A ^ BC ¥ DE ¥ AC

This procedure is a suitable method to manually convert the expression only. Let us try 
to work out the algorithm to convert an infix to a postfix (also to prefix).

We have observed that the order of the operand remains the same in the infix and the 
postfix notations. The output of the conversion should be a postfix notation. This post-
fix expression has a sequence of operands which is the same as that of the input infix  
expression. Hence, the operands from the infix expression can be immediately sent to 
the output as they occur. To handle the operators, the operands are stored in the stack 
until the right moment and they are unstacked (removed from the stack); they are then 
passed to the output.

For example, Let E be an infix expression as

E = A + B ¥ C

After conversion, the expression should yield ABC¥+, that is, the sequence of stacking 
them should be as given in Table 3.3.

Table 3.3 Infix to postfix conversion of the expression E = A + B ¥ C

Next character Stack Output
A Empty A

+ + A

B + AB

Now, we have to decide about the operator ¥. This is illustrated in Table 3.4(a).
Here, note that the algorithm must decide whether the operator ¥ gets placed on the top 

of the stack or the operator + is to be popped off. Since operator ¥ has the highest priority, 
we should stack it so as to get the sequence of operations for expression X2 as shown in 
Table 3.4(b).

Table 3.4 Handling and stacking of the ¥ operator in expressions

(a) Handling of the ¥ operator
Infix Postfix

Examples X1 = (A + B) ¥ C
X2 = A + (B ¥ C)

AB + C ¥
ABC ¥+

(Continued)
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Tabel 3.4 (Continued)

(b) Stacking of the ¥ operator

Next character Stack Output

A Empty A

+ + A

B + AB

¥ + ¥ AB

C + ¥ ABC

# (Pop all) +¥ ABC ¥+

In addition, when the input is exhausted, we should output all remaining operators in 
the stack to get the postfix expression as ABC¥+.
Let us consider one more example. The infix expression A ¥ (B + C) ¥ D, after conver-
sion, should generate the postfix expression ABC +¥ D¥, and hence, the sequence of 
operations should be as shown in Table 3.5.

Table 3.5 Infix to postfix conversion of the expression A ¥ (B + C) ¥ D

Next character Stack Output
A Empty A

¥ ¥ A

( ¥( A

B ¥( AB

+ ¥(+ AB

C ¥(+ ABC

(Continued)

At this point, unstack the corresponding left parenthesis and then delete the left and 
right parentheses; this should give the stack contents as follows:

Table 3.5 (Continued)

Next character Stack Output
) ¥ ABC+

¥ ¥ ABC+¥

D ¥ ABC +¥ D

Done Empty ABC +¥ D¥

From these examples and discussion, we can say that the operators are popped out of 
the stack if their in-stack priority (ISP) is greater than the priority of the incoming opera-
tor that is to be added onto the stack.
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Consider the infix expression E = A ¥ B + C#. The conversion of this expression into 
its postfix form is shown in Table 3.6.

Table 3.6 Infix to postfix conversion of the expression E = A ¥ B + C 

Next character Stack Output
A Empty A

¥ ¥ A

B ¥ AB

+ + AB¥

C + AB ¥ C

# (Pop all) + AB ¥ C+

Now, let us consider the infix expression X = A ^ B ^ C
For its equivalent postfix expression, the sequence of push and pop operations should 

be as given in Table 3.7.

Table 3.7 Infix to postfix conversion of the expression X = A Ÿ B Ÿ C

Next character Stack Output

A Empty A

Ÿ Ÿ A

B Ÿ AB

Ÿ

We have decided the strategy for pushing and popping out the operator from the stack. 
In this example, the operator at the top of the stack and the operator to be pushed onto the 
stack are the same. If this rule is applied, then the output is AB ^ C ^, which is wrong! 
Hence, we need to add a few more checks. We must take into account the associativity of 
operators and prepare a hierarchy scheme for the binary arithmetic operators and delimit-
ers. When an operator is at the top of the stack or in an expression (current token), they 
are to be treated with different priorities, as shown in Table 3.8.

Table 3.8 The operator and its ISP and ICP

Symbol In-stack priority (ISP) Incoming priority (ICP)

) - -
Ÿ 3 4

¥/ 2 2

+ - 1 1

( 0 4
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Thus, we can say that when the operators are taken out from the stack, their ISP, is 
greater than or equal to the ICP, of the new operator.

Hence, each operator is to be assigned two priorities—the incoming priority (ICP) and 
the in-stack priority (ISP). Incoming priority is considered when the operator is located in 
the given infix expression, whereas ISP is the priority when the operator is at the top of the 
stack. In Example 3.1, we observed that the lower priority operators should spend more 
time in the stack and the higher priority operators should be popped out earlier. To achieve 
this, we need to assign the appropriate ICPs and ISPs to the operators. Table 3.8 shows 
these values. If the incoming operator is the same as that of the in-stack operator and if the 
operator is left associative, then the operator from the stack should be popped and printed.

For example, consider the infix expressions X = A ¥ B ¥ C and Y = A/B ¥ C
The expression X = A ¥ B ¥ C should yield the postfix expression as AB ¥ C ¥, and 
Y = A/B ¥ C should generate the postfix expression as AB/C¥.

If the priority of the operator on the top of stack (in-stack operator) is greater than the 
priority of the operator coming from the expression (incoming operator), then the incoming 
operator is pushed onto the stack.

In short, the following points should be taken into consideration while assigning ICPs 
and ISPs:

1. Higher priority operators should be assigned higher values of ISP and ICP.
2. For right associative operators, ISP should be lower than ICP. For example, A ̂  B ̂  C 

should generate ABC^^, which means (A) ^ (B ^ C).
3. If ICP is higher than ISP, the operator should be stacked.
4. The ISP and ICP should be equal for left associative operators.

Summing up The following are the steps involved in the evaluation of an expression.

1. Assign priorities to all operators and define associativity (left or right).
2. Assign appropriate values of ICPs and ISPs accordingly. For left associative operators, 

assign equal ISP and ICP. For right associative operators, assign higher ICP than ISP. 
For example, assign a higher ICP for ‘^’ and for the right parenthesis ‘)’.

3. Scan the expression from left to right, character by character, till the end of expression. 
4. If the character is an operand, then display the same.
5. If the character is an operator and if ICP > ISP 
              then push the operator 
 else 
              while(ICP <= ISP)              
                     pop the operator and display it.
              end while
 Stack the incoming operator 
6. Continue till end of expression

The expression could be in one of the three forms—infix, postfix, or prefix. 
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An expression in one form can be converted to the other two forms. Let us write algo-
rithms for all these conversions. 

1. Infix expression to postfix expression
2. Infix expression to prefix expression
3. Prefix expression to infix expression
4. Prefix expression to postfix expression
5. Postfix expression to infix expression
6. Postfix expression to prefix expression

Let E be the expression made of characters. Characters here include operators, operands, 
and delimiters. In addition, let ‘#’ be the character denoting the end of the expression.

Infix to Postfix Conversion

Algorithm 3.2 illustrates the infix to postfix conversion.

algorithm 3.2

1.  Scan expression E from left to right, character by character, till 
character is ‘#’

      ch = get_next_token(E)
2. while(ch != ’#’}
      if(ch = ’)’) then ch = pop()
         while(ch !=‘(’)
            Display ch
            ch = pop()
         end while 
      if(ch = operand) display the same
      if(ch = operator) then
         if(ICP > ISP) then push(ch)
         else
            while(ICP <= ISP)
               pop the operator and display it
            end while
         ch = get_next_token(E)
   end while
3. if(ch = #) then while(!emptystack()) pop and display
4. stop

For this algorithm, we refer to the operators and the respective ICPs and ISPs as  
assigned in Table 3.8. Example 3.2 illustrates the conversion of an infix expression to its 
postfix form (function in Program Code 3.5).

 example 3.2  Convert the following infix expression to its postfix form:

A ^ B ¥ C - C + D/A/(E + F)

Solution Conversion of infix to postfix form can be illustrated as in Table 3.9
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Table 3.9  Infix to postfix conversion of the expression A Ÿ B ¥ C - C + D/A/(E + F)

Character scanned Stack contents Postfix expression
A Empty A
Ÿ Ÿ A

B Ÿ AB

¥ ¥ ABŸ

C ¥ AB Ÿ C

- - AB Ÿ C ¥
C - AB Ÿ C ¥ C

+ + AB Ÿ C ¥ C-
D + AB Ÿ C ¥ C - D
/ +/ AB Ÿ C ¥ C - D
A +/ AB Ÿ C ¥ C - DA
/ +/ AB Ÿ C ¥ C - DA/
( +/( AB Ÿ C ¥ C - DA/
E +/( AB Ÿ C ¥ C - DA/E

+ +/(+ AB Ÿ C ¥ C - DA/E
F +/(+ AB Ÿ C ¥ C - DA/EF
) +/ AB Ÿ C ¥ C - DA/EF+

Empty AB Ÿ C ¥ C - DA/EF+/+

Infix to Prefix Conversion

For converting the infix expression to a prefix expression, two stacks are needed—the 
operator Stack and the display Stack. The display Stack stores the prefix expres-
sion. This approach is discussed in Algorithm 3.3.

algorithm 3.3

1. Scan expression E, character by character from right to left 
         ch = get_next_token(E)
2. while(ch != ’#’) do
      if(ch = operand) then push(ch) in display Stack
         if (ch = ‘)’) then 
            ch = pop()from operator Stack
         while(ch != ‘(’)
            push(ch) in display Stack
            ch = pop()
         end while
         if(ch = operator) then
            if ICP(op) >= ISP(op) then
               push ch in operator Stack
            else
               ch = pop() 
               while(ICP < ISP)
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                   ch = pop() from operator Stack and push ‘ch’ in 
display Stack

               end while
            ch = get_next_token(E)
   end while
3. if (ch = ‘#’) then 
      while(!emptystack(operator))
         ch = pop(operator)
         push ch on display stack
      end while
4. while(!emptystack(display))
      ch = pop(operator)
      display ch
   end while
5. stop

Example 3.3 illustrates the conversion of an infix expression to its prefix form.

 example 3.3  Convert the following infix expression to its corresponding prefix form:

A ^ B × C - C + D/A/(E + F)

Solution The conversion to prefix notation is as given in Table 3.10

Table 3.10 Infix to prefix conversion of the expression A Ÿ B ¥ C - C + D/A/(E + F)

Character scanned Stack Prefix expression
) )
F ) F
+ )+ F
E )+ EF
( Empty +EF
/ / +EF
A / A + EF
/ // A + EF
D // DA + EF
+ + //DA + EF
C + C//DA + EF
- +- C//DA + EF
C +- CC//DA + EF
¥ +-¥ CC//DA + EF
B +-¥ BCC//DA + EF
Ÿ +-¥Ÿ BCC//DA + EF
A +-¥Ÿ ABCC//DA + EF

Empty +-¥ŸABCC//DA + EF
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The corresponding program for infi x to prefi x conversion is illustrated in Program Code 3.5.

program CoDe 3.5

 #include<iostream.h>

 #include<conio.h>

 #include<string.h>

 #defi ne Max 20

 //class Stack 

 class stack

 {

    char stack[Max];  // array of characters

    int top;

    public:

    Stack()  // constructor to initialize top

    {

       top = −1;

    }

     int isempty(); // function to check empty condition

    int isfull(); // function to check full condition

    void push(char ch); // to push a character into stack

    char pop(); // function to pop a character from stack

    char getTop(); // function to get the top element of

 stack

 };

 int Stack::isempty()

 {

    if(top == −1)

       return 1;

    else

       return 0;

 }

 int Stack::isfull()

 {

    if(top == Max − 1)

       return 1;

    else

       return 0;

 }
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 void Stack::push(char ch)

 {

    if(isfull())

       cout << "\nStack full";

    else

    {

       top++;

       stack[top] = ch;

    }

 }

 char Stack::pop()

 {

    char ch;

    if(isempty())

       cout << "\n stack empty \n";

    else

    {

       ch = stack[top];

       top−−;

    }

    return(ch);

 }

 char Stack::getTop()

 {

    char ch;

    if(isempty())

       cout << "\n stack empty \n";

    else

    {

       ch = stack[top];

    }

    return(ch);

 }

 // Function to get in-stack priority 

 char isp(char ch)

 {

    switch(ch)
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    {

       case ‘+’:

       case ‘−’:return 1;

       case ‘*’:

       case ‘/’:return 2;

       case ‘^’:return 3;

       case ‘(‘:return 0;

       case ‘#’:return −2;

    }

 }

 // Function to get incoming priority 

 char icp(char ch)

 {

    switch(ch)

    {

       case ‘+’:

       case ‘−’:return 1;

       case ‘*’:

       case ‘/’:return 2;

       case ‘^’:return 3;

       case ‘(‘:return 4;

    }

 }

 void intopost(char infi x[20],char postfi x[20])

 {

    int i = 0;

    char ch, x;

    stack s;

    s.push(‘#’);

    while(infi x[i]! = ‘\0’)  

    // extract character till end of expression

    {

       ch = infi x[i];

       i++;

       if(ch >= ‘a’ && ch <= ‘z’)  // operand

       {

          cout << ch;

       }

       else  // operator
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       {

          if(ch == ‘(‘)

          {

             while(s.getTop()! = ‘(‘)

             {

                x = s.pop();

                cout << x;

             }

             x = s.pop();

       }

       else

       {

          while(isp(s.getTop()) >= icp(ch)) 

          {

             x = s.pop();

             cout << x;

          }

             s.push(ch);

          }

       }

    }

    while(!s.isempty())

    {

       x = s.pop();

       if(x != ‘#’)

       cout << x;

    }

 }

 void intopre(char infi x[20],char prefi x[20])

 {

    int i, j;

    char ch, x;

    stack s;

    s.push(‘#’);

    i = strlen(infi x) − 1;

    j = 0;

    while(i! = −1)

    {

       ch = infi x[i];
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       i−−;

       if(ch >= ‘a’ && ch <= ‘z’)

       {

          prefi x[j] = ch;

          j++;

       }

       else

       {

          if(ch == ‘(‘)

          {

             while(s.getTop()! = ‘)’)

             {

                x = s.pop();

                prefi x[j] = x;

                j++;

          }

          x = s.pop();

       }

    else

    {

       while(isp(s.getTop()) > icp(ch))

       {

          x = s.pop();

          prefi x[j] = x;

          j++;

       }

       s.push(ch);

       }

    }

    }

    while(!s.isempty())

    {

       x = s.pop();

       if(x! = ‘#’)

       prefi x[j] = x;

       j++;

    }

    prefi x[j] = ‘\0’;

    strrev(prefi x);

 }
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 void main()

 {

    char infi x[20], postfi x[20], prefi x[20];

    int choice;

    do

    {

       cout << "\nMenu............";

       cout << "\n1.Infi x to postfi x conversion";

       cout << "\n2.Infi x to prefi x conversion";

       cout << "\nEnter your choice:";

       cin >> choice;

       switch(choice)

       {

          case 1:

             cout << "\nEnter the infi x expression:";

             cin >> infi x;

             cout << "\nPostfi x expression is:";

             intopost(infi x,postfi x);

             break;

          case 2:

             cout << "\nEnter the infi x expression:";

             cin >> infi x;

             intopre(infi x,prefi x);

             cout << "\nPrefi x expression is:" << prefi x;

             break;

       }

    }

    while(choice < 3);

 }

 Postfi x to Infi x Conversion

Algorithm 3.4 illustrates the postfi x to infi x conversion.

algorithm 3.4

1. Scan expression E from left to right character by character
    ch = get_next_token(E)
2. while(ch !=’#’) do
     if(ch = operand) then push(ch)
     if(ch = operator) then
     begin
        t2 = pop() and t1 = pop()
        push(strcat[‘(‘, t1, ch, t2, ’)’]
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     end
     ch = get_next_token(E)
   end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

Example 3.4 illustrates the conversion of a postfix expression to its infix form.

 example 3.4  Convert the following postfix expression to its infix form:

AB ^ C ¥ C - DA/EE +/+

Solution The conversion of the given postfix expression to its infix form is given in 
Table 3.11.

Table 3.11 Postfix to infix conversion of the expression AB Ÿ C ¥ C - DA/EE+/+

Character scanned Stack contents
A A

B AB
Ÿ A Ÿ B

C A Ÿ B, C

¥ A Ÿ B ¥ C

C A Ÿ B ¥ C, C

- A Ÿ B ¥ C - C, D

D A Ÿ B ¥ C - C, D

A A Ÿ B ¥ C - C, D, A

/ A Ÿ B ¥ C - C, D/A

E A Ÿ B ¥ C - C, D/A, E

E A Ÿ B ¥ C - C, D/A, E, E

+ A Ÿ B ¥ C - C, D/A, E + E

/ A Ÿ B ¥ C - C, D/A/E + E

+ A Ÿ B ¥ C - C + D/A/E + E

Postfix to Prefix Conversion

Algorithm 3.5 illustrates the postfix to prefix conversion.

algorithm 3.5

1. Scan expression E from left to right character by character
    ch = get_next_token(E)
2. while(ch !=’#’) do
      if(ch = operand) then push(ch)
      if(ch = operator) then
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      begin
         t2 = pop() and t1 = pop()
         push(strcat[ch, t1, t2]
      end
      ch = get_next_token(E)
   end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

Example 3.5 illustrates the conversion of a postfix expression to its prefix form.

 example 3.5  Convert the following postfix expression to its prefix form: 

AB ^ C × C - DA/EE+/+

Solution The conversion of the given postfix expression to its infix form is given in 
Table 3.12.

Table 3.12 Postfix to prefix conversion of the expression AB ^ C × C − DA/E E+/+

Character scanned Stack contents

A A

B AB
Ÿ ŸAB

C ŸABC

¥ ¥ŸABC

C ¥ŸABC, C

- -¥ŸABCC

D -¥ŸABCC, D

A -¥ŸABCC, D, A

/ -¥ŸABCC, /DA

E -¥ŸABCC, /DA, E

E -¥ŸABCC, /DA, E, E

+ -¥ŸABCC, /DA, +EE

/ -¥ŸABCC, //DA + EE 

+ +-ŸABCC//DA + EE

Prefix to Infix Conversion

Algorithm 3.6 illustrates the prefix to infix conversion.

algorithm 3.6

1. Scan expression E from right to left character by character
    ch = get_next_token(E)
2. while(ch !=’#’) do
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      if(ch = operand) then push(ch)
      if(ch = operator) then
      begin
         t2 = pop() and t1 = pop()
         push(strcat[‘(‘, t1, ch, t2, ’)’]
      end
      ch = get_next_token(E)
   end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

 Prefi x to Postfi x Conversion

Algorithm 3.7 illustrates the prefi x to postfi x conversion.

algorithm 3.7

1. Scan expression E from left to right character by character
   ch = get_next_token(E)
2. while(ch ! =’#’) do
      if(ch = operand) then push(ch)
      if(ch = operator) then
      begin
         t2 = pop() and t1 = pop()
         push(strcat [t1, t2, ch]
     end
     ch = get_next_token(E)
   end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

The corresponding program for postfi x to infi x conversion is illustrated in Program 
Code 3.6.

program CoDe 3.6

 //postfi x to infi x conversion

 #include<conio.h>

 #include<iostream.h>

 #include<string.h>

 #defi ne Max 20

 //defi nition of class stack

 class stack

 {

    char stack[max][max];    //stack of string

    int top;

    public:
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    //constructor to initialize top

    stack()

    {

       top = −1;

    }

    //function declaration

    int isempty();

    int isfull();

    void push(char str[max]);

    void pop(char str[max]);

 };

 //defi nition of isempty condition

 int stack::isempty()

 {

    if(top == −1)

       return 1;

    else

       return 0;

 }

 //defi nition of isfull condition

 int Stack::isfull()

 {

    if(top == Max − 1)

       return 1;

    else

       return 0;

 }

 //defi nition of push function

 void Stack::push(char str[Max])

 {

    if(isfull())

       cout << "\nStack full";

    else

    {

       top++;

       strcpy(stack[top], str);

    }

 }
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 //defi nition of pop function

 void Stack::pop(char str[20])

 {

    if(isempty())

       cout << "\nStack empty";

    else

    {

       strcpy(str, stack[top]);

       top−−;

    }

 }

 //defi nition of postfi x to infi x conversion

 void postfi xtoinfi x()

 {

    char postfi x[20], infi x[20];

    char s1[10], s2[10], s3[10], ch, temp[10];

    int i;

    Stack s;    //creating of object of class stack

    cout << "\nEnter the postfi x expression:";

    cin >> postfi x;

    i = 0;

    while(postfi x[i]! = ‘\0’)

    {

       ch = postfi x[i];

       i++;

       s1[0] = ch;

       s1[1] = ‘\0’;

       if(ch >= ‘a’ && ch <= ‘z’)

       {

          s.push(s1);

       }

       else

       {

          s.pop(s2);

          s.pop(s3);

          strcpy(temp,"(");

          strcat(temp, s3);

          strcat(temp, s1);

          strcat(temp, s2);

          strcat(temp, ")");
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          s.push(temp);

       }

    }

    cout << "\nInfi x expression is:" << temp;

 }

 //defi nition of postfi x to prefi x conversion

 void postfi xtoprefi x()

 {

    char postfi x[20], prefi x[20];

    char s1[10], s2[10], s3[10], ch, temp[10];

    int i;

    Stack s;    //creating of object of class stack

    cout << "\nEnter the postfi x expression:";

    cin >> postfi x;

    i = 0;

    while(postfi x[i]! = ‘\0’)

    {

       ch = postfi x[i];i++;

       s1[0] = ch;

       s1[1] = ‘\0’;

       if(ch >= ‘a’ && ch <= ‘z’)

       {

          s.push(s1);

       }

       else

       {

          s.pop(s2);

          s.pop(s3);

          strcpy(temp, s1);

          strcat(temp, s3);

          strcat(temp, s2);

          s.push(temp);

       }

    }

    cout << "\nPrefi x expression is:" << temp;

 }

 //defi nition of prefi x to infi x conversion

 void prefi xtoinfi x()

 {

    char prefi x[20], infi x[20];

    char s1[10], s2[10], s3[10], ch, temp[10];
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    int i;

    Stack s;    //creating of object of class stack

    cout << "\nEnter the prefi x expression:";

    cin >> prefi x;

    for(i = strlen(prefi x); i >= 0; i−−)

    {

       ch = prefi x[i];

       s1[0] = ch;

       s1[1] = ‘\0’;

       if(ch >= ‘a’ && ch <= ‘z’)

    {

          s.push(s1);

    }

    else

    {

          s.pop(s2);

          s.pop(s3);

          strcpy(temp, "(");

          strcat(temp, s2);

          strcat(temp, s1);

          strcat(temp, s3);

          strcat(temp,")");

          s.push(temp);

    }

    }

    cout << "\nInfi x expression is:" << temp;

 }

 //defi nition of prefi x to postfi x conversion

 void prefi xtopostfi x()

 {

    char prefi x[20];

    Stack s;    //creating of object of class stack

    char s1[10], s2[10], s3[10], ch, temp[10];

    int i;

    cout << "\nEnter the prefi x expression:";

    cin >> prefi x;

    for(i = strlen(prefi x); i >= 0; i−−)

    {

       ch = prefi x[i];

       s1[0] = ch;
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       s1[1] = ‘\0’;

       if(ch> = ‘a’ && ch <= ‘z’)

       {

          s.push(s1);

       }

          else

       {

          s.pop(s2);

          s.pop(s3);

          strcpy(temp, s2);

          strcat(temp, s3);

          strcat(temp, s1);

          s.push(temp);

       }

    }

    cout << "\nPostfi x expression is:" << temp;

 }

 //defi nition of main function

 void main()

 {

    int choice;

    clrscr();

    do

    {

       cout << "\n...........menu...........";

       cout << "\n1.postfi x to infi x.........$";

       cout << "\n2.postfi x to prefi x........$";

       cout << "\n3.prefi x to infi x..........$";

       cout << "\n4.prefi x to postfi x........$";

       cout << "\n5.exit.....................$";

       cout << "\n\nEnter your choice";

       cin >> choice;

       switch(choice)

       {

          //function call of functions

          case 1:

             postfi xtoinfi x();

             break;

         case 2:

             postfi xtoprefi x();

             break;
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           case 3:

             prefi xtoinfi x();

             break;

          case 4:

             prefi xtopostfi x();

             break;

          default:

             cout << "\n\nSorry, wrong choice";

       }

    }while(choice < 5);

    getch();

 }

3.9 PROcESSing Of functiOn callS

One natural application of stacks, which arises in computer programming, is the 
processing of function calls and their terminations. The program must remember the 
place where the call was made so that it can return there after the function is complete. 
Suppose we have three functions, say, A, B, and C, and one main program. Let the main 
invoke A, A invoke B, and B in turn invoke C. Then, B will not have fi nished its work until 
C has fi nished and returned. Similarly, main is the fi rst to start work, but it is the last 
to be fi nished, not until sometime after A has fi nished and returned. Thus, the sequence 
by which a function actively proceeds is summed up as the LIFO or FILO  property, as 
shown in Fig. 3.14. The output is shown in Fig. 3.15.

From the output in Fig. 3.15, it can be observed that the main program is invoked 
fi rst but fi nished last, whereas the function C is invoked last but fi nished fi rst. Hence, to 
keep track of the return addresses ra, rb, and rc the only data structure required here 
is the stack.

main() 
{ 
cout<<“main()
begins”; 
… 

ABC();
ra;
…
cout<<“main()
ends”;

PQR()
{
cout<< “B
begins”;

XYZ(); 
rc; 
… 
cout<<“B
ends\n”; 
}

XYZ()
{
cout<< “C
begins”;
…
…
…
cout<< “C ends”;
} 

ABC()
{ 
cout<<“A
begins\n”;
 
PQR();
rb:
…
cout<<“A 
ends\n”;
}

Fig. 3.14  Processing of function calls
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main() begins ←

←

←

←

First in

main()

ABC() begins ABC()

main()

PQR()begins PQR()

…

…

ABC()

main()

XYZ() begins Last in XYZ()

PQR()

ABC()

main()…

XYZ ends First out

PQR()

…

ABC()

main()

PQR ends PQR()

ABC()

… main()

ABC ends ABC()

main()
…

main() ends Last out

Fig. 3.15  Use of stack for processing of function calls

3.10 REVERSing a StRing WitH a Stack

Suppose a sequence of elements is presented and it is desired to reverse the sequence. 
Various methods could be used for this, and in the beginning, the programmer will 
usually suggest a solution using an array. A conceptually simple solution, however, 
is based on using a stack. The LIFO property of the stack access guarantees the  
reversal.

Suppose the sequence ABCDEF is to be reversed. With a stack, one simply scans the 
sequence, pushing each element onto the stack as it is encountered, until the end of the 
sequence is reached. The stack is then popped repeatedly, with each popped element sent 
to the output, until the stack is empty. Table 3.13 illustrates this algorithm:
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Table 3.13 Reversal of a string using a stack

Input Action Stack Display
ABCDEF Push A A ¨ top of stack –

BCDEF Push B AB ¨ top of stack –

CDEF Push C ABC ¨ top of stack –

DEF Push D ABCD ¨ top of stack –

EF Push E ABCDE ¨ top of stack –

F Push F ABCDEF ¨ top of stack –

End Pop and display ABCDE ¨ top of stack F

Pop and display ABCD ¨ top of stack FE

Pop and display ABC ¨ top of stack FED

Pop and display AB ¨ top of stack FEDC

Pop and display A ¨ top of stack FEDCB

Pop and display Stack empty FEDCBA

Stop

Reading a string character and writing it backward can be accomplished by pushing 
each character on to a stack as it is read. When the string is fi nished, pop the characters 
off the stack, and they will come out in the reverse order. This process is illustrated in 
Program Code 3.7. 

program CoDe 3.7

 main()

 {

    Stack S;    // here Stack is the character stack

    char str[], ch;

    int i;

    ch = str[0];

    i = 1;

    while(ch !=’\0’)

    {

       S.push(ch);

       Ch = str[i++];

    }

    while(!S.Isempty())

    {

       cout << S.pop();

    }

 }
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3.11 cHEcking cORREctnESS Of WEll-fORMED PaREntHESES

Consider a mathematical expression that includes several sets of nested parentheses. For 
example, Z - ((X ¥ ((X + Y/J - 2)) + Y)/3).

To ensure that the parentheses are nested correctly, we need to check that 

1. there are equal numbers of right and left parentheses
2. every right parenthesis is preceded by a matching left parenthesis

Expressions such as ((X + Y) or (X + Y)) violate condition 1, and expressions such as 
(X + Y) - ( or (X + Y))(-A + B) violate condition 2.

To solve this problem, let us define the parentheses count at a particular point in an 
 expression as the number of left parenthesis minus the number of right parenthesis that 
have been encountered in the left-to-right scanning of the expression at that particular 
point. The two conditions that must hold if the parentheses in an expression form an  
admissible pattern are as follows:

1. The parenthesis count at each point in the expression is non-negative.
2. The parenthesis count at the end of the expression is 0.

A stack may also be used to keep track of the parentheses count. Whenever a left 
 parenthesis is encountered, it is pushed onto the stack, and whenever a right parenthesis 
is encountered, the stack is examined. If the stack is empty, then the string is declared to 
be invalid. In addition, when the end of the string is reached, the stack must be empty; 
otherwise, the string is declared to be invalid.

3.12 REcuRSiOn

In C/C++, a function can call itself, that is, one of the statements of the function is a call 
to itself. Such functions are called recursive functions and can be used to implement 
 recursive problems in an elegant manner.

To solve a recursive problem using functions, the problem must have an end condition 
that can be stated in non-recursive terms. For example, in the case of factorials, we know 
that 1! = 1. If no such condition exists, then the recursive calls will indefinitely continue 
until the computer runs or the program is terminated by the operating system.

Consider the recursive implementation of factorial given that

1! = 1  and  n! = n ¥ (n - 1)!

The recursive function in C++ is given by the following statement:

  long int factorial (unsigned int n)
  {
     if(n <= 1)
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        return(1);
     else
        return(n * factorial(n − 1));
  }

As we can see, the C++ function represents the recursive mathematical definition of 
n!. To see how it works, consider the computation of 5!. 

The function calls will proceed as follows:

              factorial(5) = 5 * factorial(4)
              = 5 * (4* factorial (3))
   = 5 * (4* (3 * factorial (2)))
   = 5 * (4 *(3 * (2 * factorial (1))))
   = 5 * (4 * (3 * (2 * 1)))
   = 5 * (4 * (3 * 2))
   = 5 * (4 * 6)
   = 5 * 24
   = 120

As the starting number is not 1, the function calls itself with the value 5 - 1, that is, 4. 
Therefore, the original function call is kept incomplete and pending, and a second call 
is made to the factorial with value 4. This process continues until the fifth call is made, 
with the value 1. In this call, the function terminates without any further recursion and 
returns the desired value of 1!, which is 1. Subsequently, each of the pending func-
tion calls is completed upto the original factorial (5) function call, which returns the 
computed value as 120. In the preceding piece of code, parentheses have been used to 
show how the recursive calls proceed from left to right and the computations are made 
from right to left.

A program to print the first 15 factorials is given in the following code:

   #include <iostream>
   long int factorial(unsigned int n)
   void main(void)
   {
      int i;
      for(i = 1; i <= 15; i++)
         cout << "The factorial of" << i << "is =" << factorial(i);
   }

Recursion is a technique that allows us to break down a problem into one or more 
sub-problems that are similar in form to the original problem. Recursive programs are 
most inefficient as regards their name and space complexities. Hence, there is a need to 
convert them into iterative ones. To achieve this conversion stacks need to be used. This 
is discussed in detail in Chapter 4.
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3.13 PaRSing cOMPutER PROgRaMS

Parsing is a special phase of compilation. While parsing a semantic expression, we 
need a parsing stack to hold the operands for expressions. The stack must hold both the 
value of the expression and its type. The purpose of the expression value stack is to turn 
infix expressions such as 1 + 2 into postfix expressions where all the required operands 
are saved on the stack by the parser. The operation is then performed by popping the 
correct number of arguments off the stack and pushing back the single result value.

3.14 BacktRacking algORitHMS

A backtracking algorithm systematically considers all possible outcomes for each 
decision and performs much better than an exhaustive search. To explore a solution 
space of the problem, depth-first traversal of the solution space can be performed. 
This traversal uses the stack data structure.

3.15 cOnVERting DEciMal nuMBERS tO BinaRY

To convert a number from decimal to binary, we simply divide the number by 2 until a 
quotient of 0 is reached. Then, use the successive remainders in reverse order as the binary 
representation. For example, to convert decimal 35 to binary, we perform the following 
computation:

2 135

117
08
04
02
11

Division operation 

If you examine the remainders from the last division to the first one, writing them down 
as you go, you will get the following sequence: 100011.

100011base2 = 35base10

The division generates a one-bit result at every step. These bits are generated in the 
reverse order, that is, the most significant bit is generated first and the least significant 
bit is generated at the end. Hence, the result is the reverse of the actual resultant binary 
number. We need some intermediate storage that will hold the result and finally send 
the output as the correct result. If we store every bit generated in a stack, we will get the 
correct result at the end. This is because the working behaviour of the stack is LIFO. 
Hence, using stack operations, we can write a procedure that accepts a non-negative 
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base 10 integer as a parameter and then write its binary representation. An example is 
illustrated in Example 3.6.

 example 3.6  Convert the decimal number 254 to its binary equivalent.

Solution Divide the number by 2; then divide what is left by 2, and so on until there 
is nothing left. Write down the remainder (which is either 0 or 1) at each division stage. 
Once there are no more divisions, list the remainder values in reverse order. This is the 
binary equivalent.

 254/2 gives 127 with a remainder of 0
 127/2 gives 63 with a remainder of 1
 63/2 gives 31 with a remainder of 1
 31/2 gives 15 with a remainder of 1
 15/2 gives 7 with a remainder of 1
 7/2 gives 3 with a remainder of 1
 3/2 gives 1 with a remainder of 1
 1/2 gives 0 with a remainder of 1

Therefore, the binary equivalent is 11111110. The corresponding program is illustrated 
in Program Code 3.8.

program CoDe 3.8

 void Dec2Bin(int DecNum)

 {

   int count = 0, bit;

   Stack S;

   while(DecNum >= 0)

   {

    bit = DecNum % 2;

    S.push(bit);

    DecNum = DecNum/2;

    count++;

   }

   cout << "The binary equivalent of" << DecNum << "is =";

   while(count > 0)

   {

    cout << S.pop();

    count−−;

   }

 }
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Contiguous stack The simplest way to rep-
resent a stack is by using a one-dimensional 
array. A stack implemented using an array is also 
called as a contiguous stack.

GetTop The getTop() function gives information 
about the topmost element. It returns the element on 
the top of the stack. In this operation, only a copy 
of the element, which is at the top of the stack, is 
returned. Hence, the top is still set to the same ele-
ment.

Polish notation A Polish mathematician Han Lu-
kasiewicz suggested a notation called  Polish nota-
tion, which gives two alternatives to represent an 
arithmetic expression. The notations are the post-
fi x and prefi x notations.

Pop The pop operation deletes an element, which 
is at the top of the stack and returns the same to 
the user. The pop() function modifi es the top as 
the element below the current topmost element 
becomes the top element.

Push The push operation inserts an element on the 
top of the stack. The recently added element is 
always at the top of the stack. 

Recursion Recursion is a technique that allows us 
to break down a problem into one or more sub-
problems that are similar in form to the original 
problem.

Stack A stack is an ordered list where all insertions 
and deletions are made at one end, called the top.

kEY tERMS

REcaPitulatiOn

•  A stack is an  ordered  list where  all  insertions 
and deletions are made at one end, called the 
top. Adding an element is called pushing the 
element  onto  the  stack.  The  function,  which 
does this, is called push. Removing an element 
from  the  stack  is  called  popping the element 
from  the  stack,  and  the  function,  which  does 
this, is called pop.

•  A stack can be  implemented using arrays or 
linked lists. For array implementation, its size 
should be predefi ned, and its implementation 
time also should not exceed the run-time.

•  A stack is used in a wide number of applica-
tions  such  as  recursion,  expression  conver-
sion, well-formed  parenthesis  check,  and  so 
on. The most frequent application of stack is in 
the evaluation of arithmetic expressions. The 
conventional  way  of  writing  the  expression 
is called infi x,  because  the  binary  operators 

occur in between the operands and the unary 
operators precede their operand.

•  The  Polish  mathematician  Han  Lukasiewicz 
suggested a notation called Polish notion, which 
gives  two  alternatives  to  represent  an  arith-
metic  expression.  The  notations  are  postfi x 
and prefi x notations. In the postfi x notation, the 
operator is written after its operands, whereas 
in the prefi x notation the operator precedes its 
operands.

•  The  postfi x  expressions  can  be  evaluated 
easily. Hence, an infi x expression is converted 
into a postfi x expression using a stack.

•  In computer programming,  the processing of 
function calls and their terminations use stack. 
A stack is used to remember the place where 
the call was made so that  it can return there 
after the function is complete.
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Multiple choice questions

 1. The following sequence of operations is 
performed on a stack push(1), push(2), pop, 
push(1), push(2), pop, pop, pop, push(2), 
pop. The sequence of the popped out values is

 (a) 2, 2, 1, 1, 2
 (b) 2, 2, 1, 2, 2
 (c) 2, 1, 2, 2, 1
 (d) 2, 1, 2, 2, 2
 2. In evaluating the arithmetic expression 2 ¥ 3 - 

(4 + 5) using stacks to evaluate its equivalent 
postfi x form, which of the following stack 
confi gurations is not possible?

(a) (b)

5

4 4

6 6

(d)

9

3

2

(c)

9

6

 3. Stack A has the entries a, b, c (with a on top). 
Stack B is empty. An entry popped out of Stack 
A can be printed immediately or pushed to 
Stack B. An entry popped out of Stack B can 
only be printed. In this agreement, which of 
the following permutations of a, b, and c is not 
possible?

 (a) bac
 (b) bca
 (c) cab
 (d) abc
 4. Which is the postfi x expression for the following 

infi x expression?
 A + B ¥ (C + D)/F + D ¥ E
 (a) AB + CD + ¥ F/D + E¥
 (b) ABCD +¥ F/+ DE¥+
 (c) A ¥ B + CD/F¥DE++
 (d) A +¥BCD/F ¥ DE++
 5 The infi x priorities of +, ¥, ^, / could be
 (a) 5, 1, 2, 7

 (b) 7, 5, 2, 1
 (c) 1, 2, 5, 7
 (d) 5, 2, 2, 4
 6 The expression 1 ¥ 2 ^ 3 ¥ 4 ^ 5 ¥ 6 when 

evaluated gives the value 
 (a) 3230

 (b) 16230

 (c) 49152
 (d) 173458
 7. The prefi x form of A - B/(C¥D$E) is
 (a) -1¥$ACBDE
 (b) -ABCD¥$DE
 (c) -A/B¥C$DE
 (d) -A/BC¥$DE
 8. What is the postfi x form of the following prefi x 

expression?
 ¥+ AB - CD
 (a) AB + CD - ¥
 (b) ABC +¥-
 (c) AB + ¥ CD-
 (d) AB + ¥ CD-
 9. The postfi x form of the infi x expression (A + B) 

¥ (C + D - E) ¥ F is 
 (a) AB + CD + E -¥ F¥
 (b) AB + CDE + -¥ F¥
 (c) AB + CD - EF + - ¥¥
 (d) ABCDEF¥-+¥+
10. Which of the following is essential for effi ciently 

converting an infi x expression to its postfi x 
form?

 (a) An operator stack
 (b) An operand stack
 (c) An operand stack and an operator stack
 (d) A parse tree

Review questions

 1. Transform the following infi x expressions into 
their equivalent postfi x expressions:

 (a) (A - B) ¥ (D/E)
 (b) (A + B ^ D)/(E - F) + G

EXERciSES
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 (c) A ¥ (B + D)/E - F ¥ (G + H/K)
 (d) (A + B) ¥ (C $ (D - E) + F)/G) $ (H - J)
 2. Transform the following infix expressions into 

their equivalent prefix expressions:
 (a) (A - B) ¥ (D/E)
 (b) (A + B ^ D)/(E - F) + G
 (c) A ¥ (B + D)/E - F ¥ (G + H/K)
 3. Transform the following prefix expressions into 

their equivalent infix expressions:
 (a) + A - BC 
 (b) ++ A -¥ $ BCD /+ EF ¥ GHI
 (c) + -$ ABC ¥ D ¥¥ EFG
 4. Transform the following postfix expressions to 

their equivalent infix expressions.
 (a) ABC+
 (b) AB - C + DEF - +$
 (c) ABCDE - +$¥ EF¥-
 5. Write short notes on 
 (a) The pros and cons of recursion
 (b) Multi stack
 (c) Infix expression evaluation
 (d) Polish notation
 (e) Use of stack in function calls
 6. Stacks are called FILO queues because the first 

element pushed onto the stack is always the last 
one popped. Using push(), pop(), and any 

other functions you need, write a program that 
reads a line from the terminal and determines 
whether it is a palindrome or not. Hint: A 
palindrome is a string that is the same spelled 
forward or backward. For example, ‘Madam was 
I pop I saw Madam.’

 7. Explain the concept of multiple stacks with an 
example. What are the different ways for the 
implementation of multiple stacks? 

 8. What is ADT? Give the ADT for a stack.
 9. Represent two stacks in a 1D array such that 

the space utilization is maximum. Give the 
C++ declaration and also give C++ functions 
to perform push and pop operations on 
the desired stack.

10.  Write a recursive version of strlen(). Is the 
recursive version better or worse than the 
iterative version? Explain your answer.

11.  Write a function in C++ called copyStack() 
that copies the contents of one stack into another. 
The algorithm passes two stacks—the source 
stack and the destination stack. The order of the 
stacks must be identical. (Hint: Use a temporary 
stack to preserve the order.) 

12. Write a function in C++ to check whether the 
contents of two stacks are identical.

Answers to multiple choice questions

1. (a)
2. (d) The postfix equivalent is 2 3 ¥ 4 5 + -. For evaluating this using a stack, starting from the left, we 
have to scan the expression character by character. If it is an operator, pop it twice, apply the operator 
on the popped out entries, and push the result onto the stack. If we follow this, we can find that the 
configuration in option (d) is not possible.
3. (c)  4. (b)  5. (d)  6. (c)  7. (c)  8. (a)  9. (b)  10. (a)



recursion4

Functions are the most basic and useful feature of any programming language. A set 
of instructions that performs logical operations, which could be very complex and 

numerous in number, can be grouped together as functions (also called procedures). 
Functions may call themselves or other functions, and the called functions in turn may 
call the calling function. This process is called  recursion and such functions are called 
 recursive functions. A recursive function makes the program compact and readable. This 
chapter covers the important aspects of recursion.

4.1 introDuction

Good programming practices emphasize the writing of programs that are readable, easy 
to understand, and error free. Functions are the most useful feature that accomplish 
this. A function is called using a function name and its parameters through instructions. 
Given the input–output specifi cation of a function, the caller simply makes a call to 
it . This v iew  of the f unct ion implies that it is invoked, executed, and returned (with 
or without results) to the place where it was called in the calling function. When a 
function calls itself, either directly or indirectly, it is said to be making  a recursive 
call. A program becomes compact and readable with recursive functions. Recursion is 
extremely powerful as it enables the programmer to express complex processes easily. 
Recursive programs are used in a variety of applications ranging from calculating the 
factorial of a number to playing complex games against human intelligence.

oBJectiVes

After completi ng this chapter, the reader will be able to understand the following:
 • The power of recursion and its working
 • Identifi cation of the base case and the general case of a recursively defi ned problem
 • Comparison of iterative and recursive solutions
 • The steps to write, implement, test, and debug recursive functions
 • The method of implementing recursion using stacks
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Let us consider an example of computing the factorial of a number. Factorial is a math-
ematical term. The factorial of a number, say n, is equal to the product of all the integers 
from 1 to n. The factorial of n is denoted as

 n! = 1 ¥ 2 ¥ 3 ¥ º ¥ n or n! = n ¥ n - 1 ¥ º ¥ 1 (4.1)

For example, 10! = 1 ¥ 2 ¥ 3 ¥ 4 ¥ 5 ¥ 6 ¥ 7 ¥ 8 ¥ 9 ¥ 10. The simplest program to 
calculate the factorial of a number is by using a loop with a product variable.

Algorithm 4.1 states the iterative process of computing the factorial of n as 
10! = 10 ¥ 9 ¥ 8 ¥ ... ¥ 1.

algorithm 4.1

An iterative version of an algorithm to compute the factorial of a 

number

1. start

2.  Let n be the number whose factorial is to be computed and let 

Factorial = 1

3. while(n > 1) do

   begin

    Factorial = Factorial * n

    n = n – 1

   end

4. stop

The iterative process of computing the factorial of n in Algorithm 4.1 can also be written 
as in Algorithm 4.2.

algorithm 4.2

An iterative version of the algorithm to compute the factorial of a 

number

1. start

2.  Let n be the number whose factorial is to be computed and let 

Factorial = 1

3. for I = 1 to n do       // I can also be initialized to 2

   begin

      Factorial = Factorial * I

   end

4. stop
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Algorithms 4.1 and 4.2 are iterative algorithms for computing the factorial of n. It is pos-
sible to give a recursive defi nition for factorial too. The mathematical function defi ned in 
Eq. (4.1) for factorial of n can also be defi ned recursively as 

 n! = n ¥ (n - 1)!, wh ere 1! = 1 (4.2)

This recursive defi nition of factorial has two steps, as follows:

1. If n = 1, then factorial of n = 1
2. Otherwise, factorial of n = n ¥ factorial of (n - 1)

Program Code 4.1 demonstrates the recursive code for Algorithm 4.1.

Program CoDE 4.1

int Factorial(int n)

{

   if(n == 1)    // end condition

      return 1;

   else 

      return Factorial(n - 1) * n;

}

The Factorial() function is an example of a recursive function. In the second 
return statement, the function calls itse lf.  The important thing to remember when creat-
ing a recursive function is to give an  end condition. In Program Code 4 .1, the recursion 
stops when n becomes 1. In each call of the function, the value of n keeps decreasing. 
However, when the value reaches 1, the function ends. On the other hand, this function 
will run infi nitely if the initial value of n is less than 1, which means that the function is 
not perfect. Therefore, the condition n = 1 should be changed to n ≤ 1. L et us rewrite 
the Factorial() function as in Program Code 4.2.

Program CoDE 4.2

int Factorial(int n)

{

   if(n == 1)    // end condition

      return 1;

   els e

      return Factorial(n - 1) * n;

}
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Program Code 4.2 takes advantage of the fact that the factorial of any integer n can be 
defined recursively as the product of n and the factorial of n − 1. For example, 5! = 5 ¥ 4!

4.2 recurrence

A recurrence is a well-defined mathematical function where the function being defined 
is applied within its own definition. The factorial we defined as n! = n ¥ (n - 1)! is an 
example of recurrence with 1! = 1 as the end condition. Take the Fibonacci sequence as 
an example. The Fibonacci sequence is the sequence of numbers 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

The first two numbers of the sequence are both 1, whereas each succeeding number is 
the sum of the preceding two numbers (we arrived at 55 as the 10th number; it is the sum 
of 21 and 34, the eighth and ninth numbers). Let us define a function F(n) that returns the 
(n + 1)th Fibonacci number. First, we define the base cases as represented by the follow-
ing functions:

F(1) = 1 and
F(2) = 1

Now, we consider the other numbers. To get the (n + 1)th Fibonacci number, we just 
add the nth and the (n - 1)th Fibonacci numbers.

 F(n) = F(n - 1) + F(n - 2) (4.3)

This function F is called recurrence since it computes the nth value in terms of (n - 1)th 
and (n - 2)th Fibonacci values. The problems that can be described using recurrence are 
easily expressed as recursive functions in programming.

The process of recursion occurs when a function calls itself. Recursion is useful in 
situations where solving one or more smaller versions of the same problem can solve the 
problem. Computing the value of three to the fourth power can be considered as

34 = 3 ¥ 33

Three cubed can be defined as

33 = 3 ¥ 32 

Three squared is

32 = 3 ¥ 3 

Finally,

3 = 3 ¥ 30 = 3 ¥ 1

The recurrence for this computation is

 XY = X ¥ XY−1 (4.4)
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In each of these cases, the problem is reduced to a smaller version of itself.
Program Code 4.3 is a recursive code for computation of Eq. (4.4). 

Program CoDE 4.3

Long int Power(int x, int y)

{

   if(y == 0)   // end condition

      return(1);

   else

      return( x * Power(x, y – 1);

      // This is the “recursive call”

}

The end condition in Program Code 4.3 can be y = 1; then the return value will be x 
(Program Code 4.6). The iterative version of the same computation is demonstrated in 
Program Code 4.4.

Program CoDE 4.4

Long int Power(int x, int y)

{

   int result = 1;

   for(int i = 1; i <= y; i++)

      result = result * x;

   return(result);

}

4.3 use of stack in recursion

We have studied stack as a data structure in Chapter 3. The stack is a special area of 
memory where temporary variables are stored. It acts on the LIFO principle. To under-
stand how recursive functions use the stack, let us discuss Program Code 4.2. The core 
steps are given in the following code:

if(n <= 1) 

   return 1;

else

   return n * Factorial(n − 1);

Let n = 3; that is, let us compute the value of 3!, which is 3 ¥ 2 ¥ 1 = 6. When the func-
tion is called f or the fi rst  time, n holds the value 3, so the else statement is executed. The 
function knows the value of n but not of Factorial(n − 1), so it pushes n (value = 3) 
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onto the stack and calls itself for the second time with the value 2. This time, the else 
statement is again executed, and n (value = 2) is pushed onto the stack as the function 
calls itself for the third time with the value 1. Now, the if statement is executed and as 
n = 1, the function returns 1. Since the value of Factorial(1) is now known, it reverts 
to its second execution by popping the last value 2 from the stack and multiplying it by 1. 
This operation gives the value of Factorial(2), so the function reverts to its first 
execution by popping the next value 3 from the stack and multiplying it with the factorial, 
giving the value 6, which the function finally returns.

From this example, we notice the following: 

1. The Factorial() function in Program Code 4.2 runs three times for n = 3, out of 
which it calls itself two times. The number of times a function calls itself is known as 
the recursive depth of that function.

2. Each time the function calls itself, it stores one or more variables on the stack. Since 
stacks hold a limited amount of memory, the functions with a high recursive depth 
may crash because of non-availability of memory. Such a situation is known as stack 
overflow.

3. Recursive functions usually have (and in fact should have) a terminating (or end) 
condition. The Factorial() function in Program Code 4.2 stops calling itself 
when n = 1. If this condition was not present, the function would keep calling itself 
with the values 3, 2, 1, 0, -1, -2, and so on. Such recursion is known as endless 
recursion.

4. All recursive functions go through two distinct phases. The first phase, winding, occurs 
when the function calls itself and pushes values onto the stack. The second phase, 
unwinding, occurs when the function pops values from the stack, usually after the end 
condition.

4.4 Variants of recursion

Depending on the following characterization, the recursive functions are categorized as 
direct, indirect, linear, tree, and tail recursions. Recursion may have any one of the fol-
lowing forms:

1. A function calls itself.
2. A function calls another function which in turn calls the caller function.
3. The function call is part of the same processing instruction that makes a recursive 

function call.

A few more terms that are used with respect to recursion are explained in the following 
section.

Binary recursion A binary recursive function calls itself twice. Fibonacci numbers 
computation, quick sort, and merge sort are examples of binary recursion.
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Program Code 4.5 is an example of a binary recursion as the function Fib() calls 
itself twice.

Program CoDE 4.5

int Fib(n)

{

   if(n == 1 ||n == 2)

      return 1;

   else

      return(Fib(n -  1) + Fib(n - 2));

}

n-ary recursion and permutations The most general form of recursion is n-ary 
recursion, where n is not a constant but some parameter of a function. Functions of this 
kind are useful in generating combinatorial objects such as permutations.

4.4.1  Direct recursion

Recursion is when a function calls itself. Recursion is said to be direct when a func-
tion calls itself directly, and it is said to be indirect when it calls another function 
which in turn calls it. The Factorial() function we discussed in Program Code 
4.2 is an example of direct recursion. The Power() function in Program Code 4.6 is 
for computing the value of Eq. (4.4) recursively. It is a slightly modifi ed version of 
Program Code 4.3.

Program CoDE 4.6

int Power(int x, int y)

{

    if(y == 1)

      return x;

   else

      return (x * Power(x, y - 1));

}

4.4.2  indirect recursion

A function is said to be indirectly recursive if it calls another function, which in turn calls 
it. Program Code 4.7 is an example of an indirect recursion, where the function Fact() 
calls the function Dummy(), and the function Dummy() in turn calls Fact().
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Program CoDE 4.7

int Fact(int n)

{

   if(n <= 1)

      return 1;

   else

      return (n * Dummy(n - 1));

}

void Dummy(int n)

{

   Fact(n);

}

4.4.3  tail recursion

A recursive function is said to be tail recursive if there are no pending operations to be 
performed on return from a recursive call. Tail recursion is also used to return the value 
of the last recursive call as the value of the function. Tail recursion is advantageous as 
the amount of information that must be stored during computation is independent of the 
number of recursive calls. The Factorial() function in Program Code 4.2 is an example 
of a non-tail recursive function. The Binary_Search() function in Program Code 4.8 is 
an example of a tail recursive function.

Program CoDE 4.8

int Binary_Search(int A[], int low, int high, int key)

{

   int mid;

   if(low <= high)

   {

      mid = (low + high)/2;

      if(A[mid] == key)

         return mid;

      else if(key < A[mid])

         return Binary_Search(A, low, mid - 1, key);

      else

         return Binary_Search(A, mid + 1, high, key);

   }

   return -1;

}
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4.4.4 Linear recursion

Depending on the way the recursion grows, it is classified as linear or tree. A recur-
sive function is said to be linearly recursive when no pending operation involves another 
recursive call, for example, the Fact() function. This is the simplest form of recursion and 
occurs when an action has a simple repetitive structure consisting of some basic steps fol-
lowed by the action again. The Factorial() function in Program Code 4.2 is an example 
of linear recursion.

4.4.5 tree recursion

In a recursive function, if there is another recursive call in the set of operations to be 
completed after the recursion is over, this is called a tree recursion. Examples of tree 
recursive functions are the quick sort and merge sort algorithms, the FibSeries algorithm, 
and so on.

The Fibonacci function FibSeries() is defined as

FibSeries(n)    = 0,       if n = 0
           = 1,       if n = 1
           = FibSeries(n - 1) + FibSeries(n - 2),    otherwise
Let n = 5.
FibSeries(0) = 0
FibSeries(1) = 1
FibSeries(2) = FibSeries(0) + FibSeries(1) = 1
FibSeries(3) = FibSeries(1) + FibSeries(2) = 2
FibSeries(4) = FibSeries(2) + FibSeries(3) = 3
FibSeries(5) = FibSeries(3) + FibSeries(4) = 5

Figure 4.1 demonstrates this explanation for n = 4. 

Fig. 4.1  Recursive calls in Fibonacci recursive function for n = 4

FibSeries(4)

FibSeries(3) FibSeries(2)

FibSeries(2) FibSeries(1) FibSeries(1) FibSeries(0)

FibSeries(1) FibSeries(0)



156 data structures using c++

4.5 eXecution of recursiVe caLLs

Let us now see how recursive calls are executed. At every recursive call, all reference  
parameters and local variables are pushed onto the stack along with the function value and 
return address. The data is conceptually placed in a stack frame, which is pushed onto the 
system stack. A stack frame contains four different elements:

1.  The reference parameters to be processed by the called function
2.  Local variables in the calling function
3.  The return address
4.  The expression that is to receive the return value, if any

Consider the following two lines from the Factorial() function in Program Code 4.2:

if(n <= 1) return 1;

else return n * Factorial(n - 1);

Consider the first call as Factorial(4). Now,

1. n = 4
Hence, statement 2, which is a recursive call, is executed.
Push 4 onto the stack and call Factorial(4 − 1).

4 Stack

Top

2. n = 3
Hence, push 3 onto the stack and call Factorial(2).

43

Top

3. n = 2
Hence, push 2 onto the stack and call Factorial(1).

432

Top
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4. n = 1
Now execute statement 1, which returns 1.

5. Pop the contents and n = 2, so now the expression becomes 2 ¥ 1.
6. Now, n = 3 after popping the top of the stack contents.

Therefore, the expression is 3 ¥ 2 ¥ 1.
7. After popping the top of the stack contents applying n = 4, the expression is 4 ¥ 3 ¥ 2 

¥ 1 = 24.
8. After popping the top of the stack contents, we get to know that the stack is empty, and 

the answer is 4! = 24.

At the end condition, when no more recursive calls are made, the following steps are 
performed:

1. If the stack is empty, then execute a normal return.
2. Otherwise, pop the stack frame, that is, take the values of all the parameters that are on 

the top of the stack and assign these values to the corresponding variables.
3. Use the return address to locate the place where the call was made.
4. Execute all the statements from that place (address) where the call was made.
5. Go to step 1.

4.6 recursiVe functions

Recursion is usually viewed by students as a mystical technique that is useful only for 
some very special class of problems such as computing factorials or the Fibonacci series. 
This is not true. Practically, any function written using an iterative code can be converted 
into a recursive code. Of course, this does not guarantee that the resulting program will be 
easy to understand, but often, the program results in a compact and readable code.

Let us see when recursion is an appropriate solution. One instance is when the problem 
itself is recursively defined. Appropriate examples of this could be factorial and binomial 
coefficients.

1. n! = n ¥ (n - 1)! {if n = 1, n! = 1}

2. 

3. Fib(n) = Fib(n - 1) + Fib(n - 2)
4. xy = x ¥ xy-1

Recursive functions are often simple and elegant, and their correctness can be easily ver-
ified. Many mathematical functions are defined recursively, and their translation into a 
programming language is often easy. Recursion is natural in Ada, Algol, C, C++, Haskell, 
Java, Lisp, ML, Modula, Pascal, and many other programming languages. When used 
carelessly, recursion can sometimes result in an inefficient function. Recursive func-
tions are closely related to inductive definitions of functions in mathematics. To evaluate 
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whether an algorithm is to be written using recursion, we must first try to deduce an  
inductive definition of the algorithm.

Algorithms that are by nature recursive, such as the factorial, Fibonacci, or power, can 
be implemented as either iterative or recursive code. However, recursive functions are 
generally smaller and more efficient than their looping equivalents.

Let us consider an example. Consider a given set of cardinality n ≥ 1. The problem 
is to print all the permutations of the set. For example, if the set is {1, 2, 3}, then all the 
permutations are as follows:

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and {3, 2, 1}

The total number of possible permutations of a set of cardinality n is n!. The easiest 
way to generate these permutations is as follows:

Let S = {a, b, c, d}

Generate each permutation by printing the following:

1. a followed by the permutations of set {b, c, d}
2. b followed by the permutations of set {a, c, d}
3. c followed by the permutations of set {a, b, d}
4. d followed by the permutations of set {a, b, c}

Here, the phrase ‘followed by’ is the part that introduces recursion. This approach im-
plies that we can solve the problem for a set with n elements if we had an algorithm that 
worked on (n - 1) elements. These considerations lead to Algorithm 4.3. 

algorithm 4.3

Perm(A, i, n)
begin
   if(i = n) then
      print(A) and return
   B = A
   for j = i to n do 
   begin
      Interchange(A, i, j)
      Perm(A, i + 1, n)
      A = B
   end
end

Moreover, recursion is also useful when the data structure that the algorithm is to oper-
ate on is recursively defined. Examples of such data structures are linked lists and trees. 
One more instance when recursion is valuable is when we use ‘divide and conquer’ and 
‘backtracking’ as algorithm design paradigms. Divide and conquer is a technique where, 
for a function to compute n inputs, the strategy suggests splitting the inputs into k distinct 
subsets, 1 < k £ n, yielding k sub-problems. These sub-problems must then be solved and 
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should be combined to get the final solution. If the sub-problem is still large, the tech-
nique is reapplied. The reapplication is expressed better by the recursive function. Recur-
sion is a technique that allows us to break down a problem into one or more sub-problems 
that are similar in form to the original problem. Examples include binary search, merge 
sort, and quick sort.

4.6.1 Writing recursive code

The general approach to writing a recursive function is listed in the following sequence:

1. Write the function header so you are sure what the function will do and how it will 
be called. Identify some unit of measure for the size of the problem the function or 
procedure will work on. Then, pretend that the task is to write a function that will work 
on problems of all sizes.

2. Decompose the problem into sub-problems. Identify clearly the non-recursive 
case of the problem. Make it as small as possible. The function will nearly always 
begin by testing for this non-recursive case, also known as the base case or the end 
condition.

3. Write recursive calls to solve those sub-problems whose form is similar to that of the 
original problem.

4. Write the code to combine, enhance, or modify the results of the recursive call(s), if 
necessary, to construct the desired return value or create the desired side effects.

5. Write the end condition(s) to handle any situations that are not handled properly by the 
recursive portion of the program.

4.6.2 tower of Hanoi: an example of recursion

The use of recursion often makes everything simpler. First, find out the recurring data and 
the essential feature of the problem that should change as the function calls itself. In the 
Tower of Hanoi solution, one recurs on the largest disk to be moved. That is, one has to write 
a recursive function that takes the largest disk as a parameter in the tower to be moved. The 
function should take three parameters indicating from which peg the tower should be moved 
(source), to which peg it should go (dest), and the last peg (spare), which is used temporarily.

Let us consider the initial position of the problem as in Fig. 4.2.

Fig. 4.2  Tower of Hanoi—initial position

A B C
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1

2

3

4

5

A



160 data structures using c++

We can break this into three basic steps.

1. Move the disk 4 and the ones smaller than that from the peg A (source) to peg C (spare), 
using peg B (dest) as a spare. We achieve it by recursively using the same function. After 
finishing this, we will have all the disks smaller than disk 4 on peg C (Fig. 4.3).

Fig. 4.3 Tower of Hanoi—step 1

A B C

1

0

2

3

4

2. Now, with all the smaller disks on the spare peg C, we can move disk 5 from peg A to 
peg B (Fig. 4.4).

Fig. 4.4 Tower of Hanoi—step 2

A B C

3. Finally, we want disk 4 and the smaller disks to be moved from peg C to peg B. 
We do this recursively using the same function again. At the end, we have disk 5 and 
the smaller ones on peg B (Fig. 4.5).

Fig. 4.5  Tower of Hanoi—final step

A B C
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In Algorithm 4.4, at the caller function, a call is made to HTower with disk = 5, source = A, 
dest = B, and spare = C. 

algorithm 4.4

HTower(disk, source, dest, spare)

if disk == 0, then 

   move disk from source to dest

else

   HTower(disk - 1, source, spare, dest)   // Step 1

   move disk from source to dest   // Step 2

   HTower(disk - 1, spare, dest, source)   // Step 3

end if

Note that the pseudocode adds a base case when disk = 0, that is, the smallest disk. 
In this case, we do not need to worry about smaller disks, so we can just move the disk 
directly. In the other cases, we follow the three-step recursive function already described 
for disk 5.

The tree representation of recursive calls is shown in Fig. 4.6.

Fig. 4.6  Tower of Hanoi—Call tree for three disks

HTower(3, A, B, C)

HTower(2, A, C, B) HTower(2, C, B, A)

HTower(1, A, B, C) HTower(1, B, C, A) HTower(1, C, A, B) HTower(1, A, B, C)

(0, A, C, B) (0, C, B, A) (0, B, A, C) (0, B, A, C)(0, A, C, B) (0, A, C, B)(0, C, B, A) (0, C, B, A)

The root represents the first call to the function. The function call is represented as a node 
in the tree. The child nodes of the node n represent the function calls made by n. For 
example, HTower(2, A, C, B) and HTower(2, C, B, A) are the child nodes of HTower(3, 
A, B, C ) since these are the two function calls that HTower(3, A, B, C ) makes. The leaf 
nodes represent the base cases.

4.6.3 checking for correctness

One of the most difficult aspects of programming recursively is the process of  
accepting that the recursive call will do the right thing. The following checklist pro-
vides the five conditions that must hold true for recursion to work. If each of these  
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conditions holds for a recursive function, one may conclude that the recursion will 
work correctly.

1. A recursive function must have at least one end condition and one recursive case.
2. The test for the end condition has to execute prior to the recursive call.
3. The problem must be broken down in such a way that the recursive call is closer to the 

base case than the top level call. This condition is actually not quite strong or sufficient. 
Moving towards the end condition alone is not sufficient; it must also be true that the 
base case is reached in a finite number of recursive calls.

4. The recursive call must not skip over the base case.
5. Verify that the non-recursive code of the function is operating correctly.

4.6.4 things to remember

The following points should be kept in mind while doing recursive programming:

1. Recursive functions call themselves within their own definition.
2. Recursive functions must have a non-recursive terminating condition; otherwise, an 

infinite loop will occur.
3. Recursion, though easy to code, is often but not always, memory starving.

4.7 iteration Versus recursion

Recursion is a top–down approach of problem solving. It divides the problem into pieces 
or selects one key step, postponing the rest. On the other hand, iteration is more of a  
bottom–up approach. It begins with what is known and from this constructs the solution 
step by step. It is hard to say that the non-recursive version is better than the recursive 
one or vice versa. However, a few languages do not support writing recursive code, such 
as FORTRAN or COBOL. The non-recursive version is more efficient as the overhead of 
parameter passing in most compilers is heavy.

4.7.1 Demerits of recursive algorithms

Although with many merits, recursive algorithms have their limitations. They are as follows:

1. Many programming languages do not support recursion; hence, recursive mathematical 
function is to be implemented using iterative methods.

2. Even though mathematical functions can be easily implemented using recursion, it is 
always at the cost of additional execution time and memory space. For example, let us 
take the case of a recursion tree for generating six numbers in a Fibonacci series. It is 
known that a Fibonacci series is of the form 0, 1, 1, 2, 3, 5, 8, 13, …, n, where each number 
from the third is the sum of the preceding two numbers. It can be noticed that F(n - 2) 
is computed twice, F(n - 3) is computed thrice, and F(n - 4) is computed four times.

3. A recursive function can be called from within or outside itself, and to ensure proper 
functioning, it has to save the return addresses in some order so that the return to the 
proper location will yield the desired result when the return to a calling statement is made.
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4.7.2 Demerits of iterative Methods

Although the iterative method has various merits, it has its own limitations too. They are 
as follows:

1. Iterative code is not readable and hence not easy to understand.
2. In iterative techniques, looping of statements is necessary and needs a complex logic.
3. The iterations may result in a lengthy code.

4.8 siMuLating recursion using stack (eLiMinating recursion)

Wherever a data object/process/relation is defined recursively, it is often easy to describe 
the algorithms recursively. If a programming language does not support recursion or one 
needs a non-recursive code, then a recursive code can be translated to a non-recursive one. 
Once a recursive function is written and is verified for its correctness, one can remove 
recursion for efficiency. This can be done using the following rules:

1. At the beginning of the recursive function, a code is inserted to create an empty stack. 
This stack is to be used to hold the values of parameters, the local variables, the function 
value, and the return address for each recursive call.

2. The jump label is attached to the first executable statement, say label_1. Now, replace 
each recursive call by a set of instructions that perform the following:
(a) Push the values of all parameters and local variables on the stack.
(b) Create the ith new label, label_i and store i in the stack. The value i of this label 

will be used to compute the return address. This label is placed in the program as 
described in step 2(e).

(c) Evaluate the arguments of this call, which may be part of the expression. Assign 
these values to the appropriate formal parameters.

(d) Insert an unconditional branch to the beginning of the function.
(e) Attach the label created in step 2(b) to the statement immediately following the 

unconditional branch. Attach the label to a statement that retrieves the function 
value from the top of the stack. Then, make use of this value in whatever way the 
recursive program describes.

3. Once all the recursive calls have been eliminated, replace all the return statements 
using the following steps:
(a) If the stack is empty, then execute a normal return.
(b) Otherwise, take the current value of all the output parameters (explicitly or 

implicitly understood to be of type output or input) and assign these values to the 
corresponding variables that are on top of the stack.

(c) Now, insert a code that removes the index of the return address from the stack if 
any has been placed there. Assign this address to some unused variable.

(d) Remove the values of all local variables and parameters from the stack and assign 
them to their corresponding variables.
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(e) If this is a function, insert instructions to evaluate the expression immediately 
following return() and store the result on the top of the stack.

(f) Use the index of the label of the return address to execute a branch to that label.

If all these rules are followed carefully, one can convert recursion to an iterative code.
C++ supports recursion and it is handled using a run-time stack. For each function 

call, all the actual parameters are pushed onto the stack. This is also called as activation 
record. This activation record contains memory for the return value—a pointer to the base 
of the previous stack frame in the stack. It includes the return address, that is, the address  
of the instruction to be executed after the function call is completed. It also includes 
memory for all the parameters and for all the local variables of the function. The working 
of recursion is as described earlier.

4.9 aPPLications of recursion

The following are the major areas where the process of recursion can be applied:
1. Artifi cial intelligence
2. Search techniques
3. Game playing
4. Computational linguistics and natural language processing
5. Expert systems
6. Pattern recognition and computer vision
7. Robotics

recaPituLation

•  A  function may  call  itself  or  other  functions, 
and the called functions in turn may again call 
the calling function. Such functions are called 
recursive functions.

•  Any  correct  iterative  code  can  be  converted 
into  its  equivalent  recursive  code  and  vice 
versa.

•  The  basic  concepts  and  ideas  involved with 
recursion  are  simple—a  function  that  has  to 
be solved  is  treated as a big problem and  it 
solves  itself by using  itself  to solve a slightly 
smaller  problem.  The  recurrence  relation  is 
easily converted to recursive code.

•  The working of recursion is fairly straightforward. 
However, to understand the working of recur-
sion better and to be able to use it well, one 
requires practice. The best way to obtain this 
is to write a lot of recursive functions.

•  Recursion can be used for divide and conquer-
based search and sort algorithms to increase 
the effi ciency of these operations.

•  For  most  problems  such  as  the  Tower  of 
Hanoi,  recursion  presents  an  incredibly  ele-
gant solution that is easy to code and simple 
to understand.
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Binary recursion A simple unary recursive func-
tion calls itself once, whereas the binary recursive 
function calls itself twice. A factorial is a unary 
function, whereas Fibonacci is a binary recursion.

Depth of recursion The number of times a func-
tion calls itself is known as the recursive depth of 
that function.

Direct and indirect recursion When a recursive 
function calls itself directly, it is called direct re-
cursion and when the function calls another func-
tion, which in turn calls the fi rst function, it is 
called an indirect recursion.

End condition Recursive functions usually have and 
in fact should have a condition that would terminate 
the recursive calls. This terminating condition is 
called end condition. In the function factorial, when 
n = 1 the function returns 1. If this condition were 
not present, the function would keep calling itself 
with the values 3, 2, 1, 0, -1, -2, and so on till infi n-
ity. Such recursion is known as endless recursion.

Linear and tree recursion Depending on the way 
the recursion grows, it is classifi ed as linear or 
tree. A recursive function is said to be linearly 
recursive when no pending operation involves an-
other recursive call. If there is another recursive 
call in the set of operations to be completed after 
the recursion is over, then it is called a tree recur-
sion. Factorial is an example of linear recursion 
and Fibonacci is an example of tree recursion.

Recurrence relation A recurrence is a well-de-
fi ned mathematical function written in terms of 
itself; it is a mathematical function defi ned recur-
sively such as n! = n × (n - 1)!

Recursive functions A function may call itself 
or call other functions and the called functions 
in turn again may call the calling function. Such 
functions are called recursive functions.

Stack overfl ow in recursion Each time a function 
calls itself, it stores one or more variables on the 
stack. Since the stack holds a limited amount of 
memory, functions with a high recursive depth 
may crash because of the non-availability of 
memory. Such a situation is known as stack over-
fl ow.

Tail recursion A recursive function is said to be 
tail recursive if there are no pending operations 
to be performed on return from a recursive call; 
otherwise it is called a non-tail recursion. The 
factorial function is an example of non-tail recur-
sion, whereas binary search is an example of tail 
recursion.

Winding and unwinding of recursion All recur-
sive functions go through two distinct phases. The 
fi rst phase, winding, occurs when the function is 
calling itself and pushing values onto the stack. 
The second phase, unwinding, occurs when the 
function is popping values from the stack, usually 
after the end condition.

keY terMs

Multiple choice questions

 1. Infi nite recursion occurs when
 (a) a base case is omitted
 (b) a base case is never reached
 (c) both (a) and (b)
 (d) none of the above

 2. Fibonacci function Fib(n) = Fib(n - 1) + Fib(n - 
2) is an example of

 (a) direct recursion
 (b) tree recursion
 (c) linear recursion
 (d) both (a) and (b)

eXercises
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 3. Any recursive function can be converted into 
an all equivalent non-recursive function  

 (a) always
 (b) never
 (c) sometimes
 (d) if the function is tail recursive
 4. Which of the following algorithm strategies 

results in an inherently recursive code?
 (a) Greedy paradigm
 (b) Divide and conquer paradigm
 (c) Dynamic paradigm
 (d) Both (a) and (c)
 5. The advantage of recursion is that the 
 (a) code size is less
 (b) time complexity is less
 (c) space complexity is less
 (d) none of the above
 6. The data structure used for recursion is
 (a) stack
 (b) queue
 (c) tree
 (d) none of the above
 7. Consider the following code:

void foo(int n, int sum 0) 

{

   int k = 0, j = 0;

   if(n == 0) return;

   k = n % 10; j = n/10;

   sum = sum + k;
   foo(j, sum);
   printf(“%d,”, k);
}

int main()
{
   int a = 2048, sum = 0;
   foo(a, sum);

   printf(“%d\n”, sum);
}

 What does this program print?
 (a) 8, 4, 0, 2, 14
 (b) 8, 4, 0, 2, 0
 (c) 2, 0, 4, 8, 14

 (d) 2, 0, 4, 8, 0 
 8. Consider the following code:

int f(int n) 

{

   static int i = 1;
   if(n >= 5) return n;
   n = n + i;
   i++;
   return(f(n));
}

 What would be the value returned by f(1)?
 (a) 5
 (b) 6
 (c) 7
 (d) 8
 9. The following code is an example of _______ 

recursion.
funA()

{

   funB();

}

funB()

{

   funA();

}

 (a) direct
 (b) indirect
 (c) both (a) and (b)
 (d) none of these
10. The following code is an example of ______ 

recursion.
funA()

{

       .
       .
       .

     funA();

       .
       .
       .

     funA();

}

 (a) linear
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 (b) tree
 (c) both (a) and (b)
 (d) none of these

Review questions

 1. Write a recursive algorithm to check whether a 
specified character is in a string.

 2. Write a recursive algorithm to count all 
occurrences of a specified character in a string.

 3. Write a recursive algorithm that removes all 
occurrences of a specified character in a string.

 4. Write a recursive algorithm that finds all 
occurrences of a substring in a string.

 5. Write a recursive algorithm that changes an 
integer to a binary number.

 6. In binary search, the given key is compared with 
the middle element of an array. If a match occurs, 
the search is successful; else the comparison 
decides whether the search would be restricted 
to either the upper half or the lower half of the 
array. Write a recursive function Binary(key, A, 
n), where n is the size of the array A.

 7. Write a recursive function in C++ to count 
the number of occurrences of a given integer 
in an array. The function should have three 
parameters—an array, the number of elements in  
the array, and the count.

 8. Write a recursive function in C++ that counts the 
number of occurrences of a particular digit in the 
decimal representation of a given integer. For 
example, if the parameters to the function are 8 
and 382885, the function should return 3 as there 
are three occurrences of the digit 8 in 382885.

 [Hint: Remember that n % 10 will give the 
remainder of n divided by 10, whereas n/10 will 
give the integer part of n divided by 10.]

 9. Write a recursive function in C++ to replace 
every occurrence of a specified character in 
a string with another character. The function 
should be a void function and should have three 
parameters—a string, a character to be replaced, 
and the character with which it is to be replaced.

10. Write a recursive function in C++ to compute the 
square root of a number.

11. Write a recursive function in C++ to convert 
decimal integers to their radix r representation 
by successive divisions.

12. Write a recursive function in C++ that takes an 
integer as input and displays the reverse of the 
number on the screen.

13. The function F(n, r) can be defined recursively 
as F(n - 1, r) + F(n - 1, r - 1). Write a recursive 
program to compute F(n, r).

14. Using the following recursive definitions, write a 
recursive function in C++.

15. Write the C++ function for the recursive 
algorithm that prints the elements of a list in the 
reverse order.

Answers to multiple choice questions

1. (c)  2. (d)  3. (a)  4. (b)  5. (a)  6. (a)  7. (d)  8. (c)  9. (b) 
10. (b)



We have studied linear data structures, namely, arrays and stacks. In arrays, element 
insertion at and deletion from any position causes a lot of data movement. On the 

other hand, in stacks, these operations are performed at only one end, the top. A  queue 
is a special type of data structure that performs insertions at one end called the rear and 
deletions at the other end called the front. Let us discuss the concept and functioning of 
queues in this chapter.

5.1 ConCePT of QueueS

In our daily life, we have experienced standing in queues for various reasons such as pur-
chasing tickets or getting admission to educational institutes. In all such places, we have 
to wait in a queue for our turn to get the service.

Similarly a queue is a common example of a linear list or an ordered list where data can 
be inserted at and deleted from different ends. The end at which data is inserted is called 
the  rear and that from which it is deleted is called the  front. These limits guarantee that 
the data is processed in the sequence in which they are entered. In short, a queue is a  fi rst 
in fi rst out (FIFO) or  last in last out (LILO) structure.

Consider an ordered list L = {a1, a2, a3, a4, …, an}. If we assume that L represents a 
queue, then a1 is the front-en d element and an is the rear-end  element. In addition, ai is 
behind ai−1.

Let us consider a queue Q of customers standing at a ticket counter.

Q = {Shweta, Anup, Saurabh, Vishnu, Shivadmika, Alan, Devanarayanan, Anagha}

In the queue Q, Shweta is at the front end and Anagha is at the re ar end.

QueueS5

oBJeCTiVeS

After completing this chapter, the reader will be able to understand the following:
 • Restricted linear lists—queues
 • Implementation of queues using arrays
 • Implementation of circular queues
 • Use of queues in simulations, jo b scheduling, and other applications
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Queues are one of the most common data processing structures. They are frequently 
used in most system software such as operating systems, network and database implemen-
tations, and other areas. Queues are very useful in time-sharing and distributed computer 
systems where many widely distributed users share the system simultaneously. Whenever a 
user places a request, the operating system adds the request at the end of the queue of jobs 
waiting to be executed. The CPU executes the job at the front of the queue.

5.2 Queue AS ABSTRACT DATA TYPe

Look at the queue at the bus stop in Fig. 5.1. Here, the person to get inside the bus is the 
one who is at the front. The new person joining would stand at the rear end.

Front Rear

Fig. 5.1 Example of queue—passengers waiting at bus stop

To realize a queue as an abstract data type (ADT), we need a suitable data structure for 
storing the elements in the queue and the functions operating on it. The basic operations 
performed on the queue include adding and deleting an element, traversing the queue, 
checking whether the queue is full or empty, and finding who is at the front and who is 
at the rear ends.

A minimal set of operations on a queue is as follows:

1. create()—creates an empty queue, Q
2. add(i,Q)—adds the element i to the rear end of the queue, Q and returns the new queue
3. delete(Q)—takes out an element from the front end of the queue and returns the 

resulting queue
4. getFront(Q)—returns the element that is at the front position of the queue
5. Is_Empty(Q)—returns true if the queue is empty; otherwise returns false

The complete specification for the queue ADT is given in Algorithm 5.1.

algorithm 5.1
class queue(element)
   declare create() Æ queue
   add(element, queue) Æ queue
   delete(queue) Æ queue
   getFront(queue) Æ queue
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   Is_Empty(queue) Æ Boolean;
   For all Q Œ queue, i Œ element let
   Is_Empty(create()) = true
   Is_Empty(add(i,Q)) = false
   delete(create()) = error
   delete(add(i,Q)) =
      if Is_Empty(Q) then create
      else add(i, delete(Q))
   getFront(create) = error
   getFront(add(i, Q)) = 
      if Is_Empty(Q) then i
      else getFront(Q)
   end
end queue

Since a queue is a linear data structure, it can be implemented using either arrays or 
linked lists. For the former, we use static memory allocation and for the latter, we use 
dynamic memory allocation. Let us see how a queue can be implemented using arrays.

5.3 ReAlizATion of QueueS uSing ARRAYS

We already know that an array is not a suitable data structure for frequent insertion and deletion 
of data elements. Another drawback of arrays is that they use static memory allocation, and 
so they can store only a fixed number of elements. In many practical applications, we come 
across a situation where the size of the data set keeps changing by such frequent insertions and 
deletions. Let us see the implementation of the various operations on the queue using arrays.

Create This operation should create an empty queue. Here max is the maximum initial 
size that is defined.

#define max 50
int Queue[max];
int Front = Rear = −1;

In addition to a one-dimensional array Queue, we need two more variables, Front and 
Rear. This declaration creates an empty queue of size max. The two variables Front and 
Rear are initialized to represent an empty queue. In general, it is suitable to set Front to 
one position behind the actual front of the queue and set the rear to the last element in the 
queue. Thus, the condition Front = Rear indicates an empty queue. As our array index 
ranges between 0 and (max − 1), the front and rear are initialized to -1.

Is_Empty This operation checks whether the queue is empty or not. This is confirmed 
by comparing the values of Front and Rear. If Front = Rear, then Is_Empty returns 
true, else returns false.

bool Is_Empty()
{
   if(Front == Rear)
      return 1;
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   else
      return 0;
}

Is_Full In the definition of the queue ADT, the function for checking the Queue_Full 
condition is not included. When we go in for an array implementation, due to its fixed 
size, we need to check the state of the queue for being full. It is recommended that before 
we delete an element from the queue, we must check whether the queue is empty or not. 
Similarly, before insertion, the queue must be checked for the Queue_Full state. When 
Rear points to the last location of the array, it indicates that the queue is full, that is, there 
is no space to accommodate any more elements.

bool Is_Full()
{
   if(Rear == max − 1)
      return 1;
   else
      return 0;
}

Add This operation adds an element in the queue if it is not full. As Rear points to the 
last element of the queue, the new element is added at the (rear + 1)th location.

void Add(int Element)

{
   if(Is_Full())
      cout << “Error, Queue is full”;
   else
       Queue[++Rear] = Element;
}

Delete This operation deletes an element from the front of the queue and sets Front 
to point to the next element. Front can be initialized to one position less than the actual 
front. We should first increment the value of Front and then remove the element.

int Delete()
{
   if(Is_Empty())
      cout << “Sorry, queue is Empty”;
   else
      return(Queue[++Front]);
}

getFront The operation getFront returns the element at the front, but unlike delete, 
this does not update the value of Front.

int getFront()
{
   if(Is_Empty())
      cout << “Sorry, queue is Empty”;
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   else
      return(Queue[Front + 1]);
}

Program Code 5.1 shows one way of realization of the queue ADT using arrays.

program CoDe 5.1

//Queue ADT

class queue

{

   private:

      int Rear, Front;

      int Queue[50];

      int max;

      int Size;

   public:

      queue()

      {

         Size = 0; max = 50;

         Rear = Front = −1 ;

      }

      int Is_Empty();

      int Is_Full();

      void Add(int Element);

      int Delete();

      int getFront();

};

int queue :: Is_Empty()

{

   if(Front == Rear)

      return 1;

   else

      return 0;

}

int queue :: Is_Full()

{

   if(Rear == max − 1)

      return 1;

   else

      return 0;

}

void queue :: Add(int Element)
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{

   if(!Is_Full())

      Queue[++Rear] = Element;

   Size++;

}

int queue :: Delete()

{

   if(!Is_Empty())

      {

         Size−−;

         return(Queue[++Front]);

      }

}

int queue :: getFront()

{

   if(!Is_Empty())

      return(Queue[Front + 1]);

}

This implementation of queues using arrays has some fl aws in it. Let us discuss these 
fl aws through Program Code 5.2.

program CoDe 5.2

void main(void)

{

   queue Q;

   Q.Add(11);

   Q.Add(12);

   Q.Add(13);

   cout << Q.Delete() << endl;

   Q.Add(14);

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   Q.Add(15);

   Q.Add(16);

   cout << Q.Delete() << endl;

}
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Let Q be an empty queue with Front = Rear = -1. Let max = 5.

0 1 2 3 4 Front = −1

Q Rear = −1

Consider the following statements:
1. Q.Add(11)

11

Rear

0 1 2 3 4 Front = −1

Q Rear = 0

2. Q.Add(12)

11 12

Rear

0 1 2 3 4 Front = −1

Q Rear = 1

3. Q.Add(13)

11 12 13

Rear

0 1 2 3 4 Front = −1

Q Rear = 2

4. A = Q.Delete()
 Here, A = Q[++Front] = Q[0] = 11

12 13

RearFront

0 1 2 3 4 Front = 0

Q Rear = 2
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5. Q.Add(14)

12 13 14

RearFront

0 1 2 3 4 Front = 0

Q Rear = 3

6. A = Q.Delete()
 A = Q[++ Front] = Q [1] = 12

13 14

RearFront

0 1 2 3 4 Front = 1

Q Rear = 3

7. A = Q.Delete()
 A = 13

14

RearFront

0 1 2 3 4 Front = 2

Q Rear = 3

8. A = Q.Delete()

RearFront

0 1 2 3 4 Front = 3

Q Rear = 3

9. A = Q.Delete()
 Here we get the Queue_empty error condition as Front = Rear = 3
 Let us execute a few more statements.
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10. Q.Add(15)

15

RearFront

0 1 2 3 4 Front = 3

Q Rear = 4

11. Q.Add(16)

This statement will generate the message Queue_Full because Rear = 4. If one care-
fully observes whether the queue is really full, it actually is not. The Queue_Full state 
should have five elements in it, whereas currently, there is only one element in the queue. 
This means that the implementation needs to be modified.

The precision of this implementation may be established in a manner similar to that 
used for stacks. With this setup, notice that unless the front regularly catches up with the 
rear and both the pointers are reset to zero, the Queue_Full condition does not neces-
sarily indicate that it is full. One obvious thing to do when Queue_Full is signalled is 
to move the entire queue to the left so that the first element is again at the 0th location 
and Front = -1. This is obviously not a feasible solution as it is time consuming and 
involves a lot of data movement. This becomes impractical, especially when the queue is 
of a large size. The queue we have discussed so far is called the linear queue. There are 
two solutions to this problem: one is using a circular queue and the other is using a linked 
organization for realization of the queue. Let us discuss circular queues in Section 5.4.

5.4 CiRCulAR Queue

From the demonstration of the execution of a few push and pop operations it can be 
concluded that the linear queues using arrays have certain drawbacks listed as follows:

1. The linear queue is of a fixed size. So the user does not have the flexibility to dynamically 
change the size of the queue.

2. An arbitrarily declared maximum size of queues leads to poor utilization of memory. 
For example, the queue is declared of size 1000 and only 20 of them are used.

3. We need to write a suitable code to make the front regularly catch up with the rear and 
reset both. Array implementation of linear queues leads to the Queue_Full state even 
though the queue is not actually full.

4. To avoid this, when Queue_Full is signalled, we need to rewind the entire queue to the 
original start location (if there are empty locations) so that the first element is at the 0th 
location and Front is set to -1. Such movement of data is an efficient way to avoid this 
drawback.

The technique that essentially allows the queue to wraparound upon reaching the end 
of the array eliminates these drawbacks. Such a technique which allows the queues to 
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wraparound from end to start is called a circular queue. Virtually, we want the insertion 
process and the rear to wraparound the queue.

Hence, a more efficient queue representation is obtained by implementing the array Q 
as circular. Here, as we go on adding elements to the queue and reach the end of the array, 
the next element is stored in the first slot of the array if it is empty. Suppose the queue Q 
is of size n. Now, if we go on adding elements in the queue, we may reach the location 
n - 1. If it is not circular, no more elements can be added even though there are empty 
locations at the front of the array. Instead, if there are empty locations at the front, using 
a circular queue we can add elements at that location rather than signalling an error as the 
queue is full or is shifting the data.

The empty slots will be filled with new incoming elements even though Rear = n - 1. 
Hence, the circular queue allows us to continue adding elements even though we have reached 
the end of the array. The queue is said to be full only when there are n elements in the queue. 
The pictorial representation of a circular queue is shown in Figs 5.2(a) and 5.2(b).

Fig. 5.2 Circular queue (a) Conceptual view (b) Physical view

(a)

0

1

n − 1

n − 2

n − 3

(b)

Wraps around, towards the start
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Let us consider the queue Q which is of size n. We have already studied the operations 
on linear queues using arrays. We also studied its corresponding functions in the C++ lan-
guage. Let us see whether the same functions can be used for circular queues. In a circular 
queue, when the rear is n - 1 and a new element is to be added, the rear should be set to 0.

Initially, both the front and the rear are set to -1. The value of front will always be one 
less than that of the actual front. The functions to add and delete elements are rewritten 
with a few modifi cations in Program Code 5.3.

program CoDe 5.3

#include<iostream.h>

class Cqueue

{

   private:

      int Rear, Front;

      int Queue[50];

      int Max;

      int Size;

   public:

      Cqueue() {Size = 0; Max = 50; Rear = Front = −1;}

      int Empty();

      int Full();

      void Add(int Element);

      int Delete();

      int getFront();

};

int Cqueue :: Empty()

{

   if(Front == Rear)

      return 1;

   else

      return 0;

}

int Cqueue :: Full()

{

   if(Rear == Front)

      return 1;

   else

      return 0;

}
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void Cqueue :: Add(int Element)

{

   if(!Full())

      Rear = (Rear + 1) % Max;

   Queue[Rear] = Element;

   Size++;

}

int Cqueue :: Delete()

{

   if(!Empty())

      Front = (Front + 1) % Max;

   Size−−;

   return(Queue[Front]);

}

int Cqueue :: getFront()

{

   int Temp;

   if(!Empty())

      Temp = (Front + 1) % Max;

   return(Queue[Temp]);

}

void main(void)

{

   Cqueue Q;

   Q.Add(11);

   Q.Add(12);

   Q.Add(13);

   cout << Q.Delete() << endl;

   Q.Add(14);

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   cout << Q.Delete() << endl;

   Q.Add(15);

   Q.Add(16);

   cout << Q.Delete() << endl;

}
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The implementation of a circular queue using an array is provided in Program Code 5.3. 
Let us see its working with an example. Consider max = 5 and initially, Front = Rear = 0. 
The iterations are shown in Table 5.1. 

Table 5.1 Implementation of circular queue

0 1 2 3 4 Front Rear Action
0 0 Q_Empty

11 0 1 Insert 11
11 12 0 2 Insert 12
11 12 13 0 3 Insert 13
11 12 13 14 0 4 Insert 14
11 12 13 14 0 Insert 15

Can’t insert 15 as Q_Full 
since Rear = (4 + 1)%5 = 0 which is equal 
to Front

– 12 13 14 1 4 Delete 
– 13 14 2 4 Delete

– 14 3 4 Delete
– 4 4 Delete

Can’t delete as Front = Rear 
makes Q_Empty

To check the Queue_Full and Queue_Empty conditions, we need to check whether the 
values of Front and Rear are equal. In the programming languages C/C++, the array 
index varies from 0 to n - 1, so that one location of the circular queue always remains 
unused. Such is not the case in languages such as Pascal. Hence, in a circular queue that 
uses arrays in C/C++, we can store n - 1 elements, where n is declared as the size of the 
array. Hence, for storing n elements, we should declare the array of size n + 1.

5.4.1 Advantages of using Circular Queues

The following are the merits of using circular queues:
1. By using circular queues, data shifting is avoided as the front and rear are modified by 

using the mod() function. The mod()operation wraps the queue back to its beginning.
2. If the number of elements to be stored in the queue is fixed (i.e., if the queue size is 

specific), the circular queue is advantageous.
3. Many practical applications such as printer queue, priority queue, and simulations use 

the circular queue.

5.5 MulTi-QueueS

If more number of queues is required to be implemented, then an efficient data structure 
to handle multiple queues is required. It is possible to utilize all the available spaces in 
a single array. When more than two queues, say n, are represented sequentially, we can 
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divide the available memory A[size] into n segments and allocate these segments to n 
queues, one to each. For each queue i we shall use Front[i] and Rear[i]. We shall use 
the condition Front[i] = Rear[i] if and only if the ith queue is empty, and the condi-
tion Rear[i] = Front[i] if and only if the ith queue is full.

If we want five queues, then we can divide the array A[100] into equal parts of 20 
and initialize front and rear for each queue, that is, Front[0] = Rear[0] = 0 and 
Front[1] = Rear[1] = 20, and so on for other queues (Fig. 5.3). 

Fig. 5.3 A multi-queue

queue 00 queue 1 queue 2 queue 3 queue 4

Front[0] Front[1] 99

Rear[0] Rear[1]

A

After adding elements 5 and 8 in the second queue, the resultant queue will be as in 
Fig. 5.4.

A 0 1 2 3 4

5 8

0 19 39 59 79 99

Fig. 5.4 Queue in Fig. 5.3 after addition of elements

5.6 DeQue

The word deque is a short form of double-ended queue. It is pronounced as ‘deck’. Deque 
defines a data structure where elements can be added or deleted at either the front end or 
the rear end, but no changes can be made elsewhere in the list. Thus, deque is a general-
ization of both a stack and a queue. It supports both stack-like and queue-like capabili-
ties. It is a sequential container that is optimized for fast index-based access and efficient 
insertion at either of its ends. Deque can be implemented as either a continuous deque or 
as a linked deque. Figure 5.5 shows the representation of a deque.

Fig. 5.5 Representation of a deque

InsertionDeletion

Insertion Front Rear Deletion

11 22 33 44 55
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The deque ADT combines the characteristics of stacks and queues. Similar to stacks 
and queues, a deque permits the elements to be accessed only at the ends. However, a 
deque allows elements to be added at and removed from either end. We can refer to the 
operations supported by the deque as EnqueueFront, EnqueueRear, DequeueFront, 
and DequeueRear. When we complete a formal description of the deque and then imple-
ment it using a dynamic, linked implementation, we can use it to implement both stacks 
and queues, thus achieving significant code reuse.

The following are the four operations associated with deque:

1. EnqueueFront()—adds elements at the front end of the queue
2. EnqueueRear()—adds elements at the rear end of the queue
3. DequeueFront()—deletes elements from the front end of the queue
4. DequeueRear()—deletes elements from the rear end of the queue

For stack implementation using deque, EnqueueFront and DequeueFront are used as 
push and pop functions, respectively.

Applications of deque Deque is useful where the data to be stored has to be ordered, 
compact storage is needed, and the retrieval of data elements has to be faster.

Variations of deque We can have two variations of a deque: the input-restricted deque 
and the output-restricted deque. The output-restricted deque allows deletions from only 
one end and the input-restricted deque allows insertions only at one end.

The functions to operate an output-restricted deque could be as follows:

DequeueFront()(or DequeueRight()),  EnqueueFront(), and EnqueueRear()

The functions to operate an input-restricted deque are as follows:

DequeueFront(),  DequeueRight(), and EnqueueFront()(or EnqueueRear())

5.7 PRioRiTY Queue

A priority queue is a collection of a finite number of prioritized elements. Priority queues 
are those in which we can insert or delete elements from any position based on some 
fundamental ordering of the elements. Elements can be inserted in any order in a priority 
queue, but when an element is removed from the priority queue, it is always the one with 
the highest priority.

In other words a priority queue is a collection of elements where the elements are 
stored according to their priority levels. The order in which the elements should be  
removed is decided by the priority of the element. The following rules are applied to 
maintain a priority queue:

1. The element with a higher priority is processed before any element of lower priority.
2. If there were elements with the same priority, then the element added first in the queue 

would get processed first.
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Priority queues are used for implementing job scheduling by the operating system 
where jobs with higher priority are to be processed first. Another application of priority 
queues is in simulation systems where the priority corresponds to event times. The fol-
lowing are some examples of a priority queue:

1. A list of patients in an emergency room; each patient might be given a ranking 
that depends on the severity of the patient’s illness.

2. A list of jobs carried out by a multitasking operating system; each background job 
is given a priority level. Suppose in a computer system, jobs are assigned three 
priorities, namely, P, Q, R as first, second, and third, respectively. According to 
the priority of the job, it is inserted at the end of the other jobs having the same 
priority. Consider the priority queue given in Fig. 5.6.

P1 Q1 P2 R1 P5 P6 Priorities are being
assigned

Fig. 5.6 System queue

There are two ways to implement priority queues. 

Implementation method 1 The priority queue implementation in the first case can be 
visualized as three separate queues, each following the FIFO behaviour strictly as shown 
in Figs 5.7(a)–(c). In this example, jobs are always removed from the front of the queue. 
The elements in the second queue are removed only when the first queue is empty, and 
the elements from the third queue are removed only when the second queue is empty, 
and so on.

P1 P2 P3 P4 P5 P6 Priority 1

(a)

Q1 Q2 Q3 Q4 Q5 Q6 Priority 2

(b)

R1 R2 R3 R4 R5 R6 Priority 3

(c)

1 2 3 4 5 6

Fig. 5.7 System queues for each priority level (a) Priority 1 queue 
(b) Priority 2 queue (c) Priority 3 queue
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Operations on a priority queue The following is the list of operations performed on the 
priority queue PQ:

1. Initialize PQ to be the empty priority queue.
2. Determine if PQ is empty.
3. Determine if PQ is full.
4. If PQ is not full, insert an element X into PQ.
5. If PQ is not empty, remove an element X of the highest priority.

Implementation method 2 The second way of priority queue implementation is by 
using a structure for a queue. This is explained in the following statement:

typedef struct
{
   int Data;
   int priority;
}Element;

class PriorityQueue
{
   Private:
      Element PQueue[max];
   public:
      // member functions here 
}

Figure 5.8 represents an example of a priority queue.

Data 15 10 3 30 8

Priority 4 2 2 1 0

RearFront

Fig. 5.8 Priority queue

After inserting 81 with priority 3, the updated queue is given in Fig. 5.9.

Data 15 81 10 3

Priority 4 3 2 2

30

1

8

0

RearFront

Fig. 5.9 Priority queue after insertion
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The highest priority element is at the front and that of the lowest priority is at the rear. 
Here, when element 81 of priority 3 is to be added, it is inserted in between priorities 4 
and 2 as shown in Fig. 5.9. When we want to delete an element, it behaves as a normal 
queue, that is, the element at front, which has the highest priority, is deleted first. The ele-
ments are sorted according to their priorities in descending order.

Hence, the two ways to implement a priority queue are sorted list and unsorted list.

Sorted list A sorted list is characterized by the following features: 

1. Advantage—Deletion is easy; elements are stored by priority, so just delete from the 
beginning of the list.

2. Disadvantage—Insertion is hard; it is necessary to find the proper location for insertion.
3. A linked list is convenient for this implementation such as the list in Fig. 5.9.

Unsorted list An unsorted list is characterized by the following features: 

1. Advantage—Insertion is easy; just add elements at the end of the list.
2. Disadvantage—Deletion is hard; it is necessary to find the highest priority element first.
3. An array is convenient for this implementation.

5.7.1 Array implementation of Priority Queue

Like stacks and queues, even a priority queue can be represented using an array. However, 
if any array is used to store elements of a priority queue, then insertion of elements to the 
queue would be easy, but deletion of elements would be difficult. This is because while in-
serting elements in the priority queue, they are not inserted in an order. As a result, deleting 
an element with the highest priority would require examining the entire array to search for 
such an element. Moreover, an element in a queue can be deleted from the front end only.

There is no satisfactory solution to this problem. However, it would be more efficient 
if we store the elements in a priority queue. Each element in an array can have the fol-
lowing structure:

typedef struct
{
   int Data;
   int priority;
   int order;
}Element;

where priority represents the priority of the element and order represents the order in 
which the element has been added to the queue.

5.8 APPliCATionS of QueueS

The most useful application of queues is the simulation of a real world situation so that 
it is possible to understand what happens in a real world in a particular situation without 
actually observing its occurrence. 
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Queues are also very useful in a time-sharing computer system where many users 
share a system simultaneously. Whenever a user requests the system to run a particular 
program, the operating system adds the request at the end of the queue of jobs waiting to 
be executed. Now, when the CPU is free, it executes the job that is at the front of the job 
queue. Similarly, there are queues for shared I/O devices too. Each device maintains its 
own queue of requests.

Another useful operation of queues is the solution of problems involving searching a 
non-linear collection of states. A queue is used for finding a path using the breadth-first 
search of graphs.

5.8.1 Josephus Problem

Let us consider a problem that can be solved in an easy manner using a circular 
queue. The problem is known as the Josephus problem, and it postulates a group 
of soldiers surrounded by an irresistible enemy force. There is no hope for victory 
without reinforcements, and there is only a single horse available for escape. The 
soldiers form a circle and a number n is picked. The name of one of the soldiers is 
also picked from a hat. Beginning with the soldier whose name is picked they begin 
to count clockwise around the circle. When the count reaches n, that soldier is re-
moved from the circle, and the count begins again with the next soldier. The process 
continues so that each time the count reaches n, another soldier is removed from the 
circle. Any soldier removed from the circle is no longer counted. The last soldier 
left takes the horse and escapes. The problem is that, given a number n, the ordering 
of the soldiers in the circle, and the soldier from whom the count begins, one needs 
to determine the order in which soldiers are eliminated from the circle and which 
soldier escapes.

The input to the program is the number n and a list of names, which is the clockwise 
ordering of the circle, beginning with the soldier from whom the count is to start. The last 
input line contains the string end, indicating the end of the input. The program should 
print the names in the order in which they are eliminated and the name of the soldier who 
finally escapes.

For example, suppose that n = 3 and that there are five soldiers named A, B, C, D, 
and E. We count three soldiers starting at A so that C is eliminated first. We then begin 
at D and count D, E and then back to A so that A is eliminated next. Then we count B, D, 
and E (C has already been eliminated), and finally B, D, and B. Now, D is the one who 
escapes. 

Clearly, a circular list in which each node represents one soldier is a natural data 
structure to use in solving this problem. It is possible to reach any node from any other 
by counting around the circle. To represent the removal of a soldier from the circle, a 
node is deleted from the circular list. Finally, when only one node remains on the list, 
the result is determined. The algorithm for this problem is given in Algorithm 5.2.
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algorithm 5.2
1. Let n be the number of members
2. Get the first member 
3. Add all members to the queue
4. while (there is more than one member in the queue)
   begin
      count through n − 1 members in the queue;
      print the name of the nth member;
      Remove the nth member from the queue;
   end
5. Print the name of the only member in the list.

5.8.2 Job Scheduling

In the job-scheduling problem, we are given a list of n jobs. Every job i is associated with 
an integer deadline di ≥ 0 and a profit pi ≥ 0. For any job i, profit is earned if and only if 
the job is completed within its deadline. A feasible solution with the maximum sum of 
profits is to be obtained.

To find the optimal solution and feasibility of jobs, we are required to find a subset J 
such that each job of this subset can be completed by its deadline. The value of a feasible 
solution J is the sum of profits of all the jobs in J.

The steps in finding the subset J are as follows:

1. S pi ¥ i Œ J is the objective function chosen for the optimization measure.
2. Using this measure, the next job to be included should be the one that increases S pi ¥ 

i Œ J.
3. Begin with J = ∆, S pi = 0, and i Œ J.
4. Add a job to J, which has the largest profit. 
5. Add another job to J bearing in mind the following conditions:

(a) Search for the job that has the next maximum profit.
(b) See if this job in union with J is feasible.
(c) If yes, go to step 5 and continue; else go to (d).
(d) Search for the job with the next maximum profit and go to step 2. 

6. Terminate when addition of no more jobs is feasible. 

Example 5.1 shows a job scheduling algorithm that works to yield an optimized high 
profit solution.

 example 5.1  Consider five jobs with profits (p1, p2, p3, p4, p5) = (20, 15, 10, 5, 1) and 
maximum delay allowed (d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3).

Here, the maximum number of jobs that can be completed is

Min(n, maxdelay(di)) = Min(5, 3) = 3
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Hence, there is a possibility of doing 3 jobs, and there are 3 units of time, as shown  
in Table 5.2.

Table 5.2 Job scheduling

Time slot Profit Job
0–1 20 1

1–2 15 2

2–3 0 3 cannot be accommodated

2–3 5 4

Total profit = 40

In the first unit of time, job 1 is done and a profit of 20 is gained; in the second unit, 
job 2 is done and a profit of 15 is obtained. However, in the third unit of time, job 3 is not 
available, so job 4 is done with a gain of 5. Further, the deadline of job 5 has also passed; 
hence three jobs 1, 2, and 4 are completed with a total profit of 40.

5.8.3 Simulation

Any process or situation that we wish to simulate is considered as a system. A system 
may be defined as a group of objects interacting to produce some result. For example, an 
industry is a group of people and machines working together to produce some product.

A powerful tool that can be used to study the behaviour of systems is simulation.
Simulation is the process of forming an abstract model of a real world scenario to 

understand the effect of modifications and the introduction of various strategies on the 
situation. It allows the user to experiment with real and proposed situations without actu-
ally observing its occurrence. The major advantage of simulation is that it permits experi-
mentation without modifying the real solution.

A model of the system must be produced to simulate a situation. Moreover, to de-
termine the structure of a model, the entities, attributes, and activities of the system 
should be determined. Entities represent the objects of interest in the simulation. At-
tributes denote the characteristics of these entities. An activity is a process that causes 
a change of system state. An event is an occurrence of an activity at a particular in-
stant of time. The state of the system at any given time is specified by the attributes of 
the entities and the relation between the entities at that time. The simulation program 
must schedule the events in the simulation so that the activities will occur in the cor-
rect time sequence.

Let us consider an example. Suppose that a person has to deposit his telephone bill. 
There are four service windows that can accept the bill. A person can deposit his bill 
at any of the service windows. Suppose a person enters the office at a specific time (t1) 
to deposit the bill, the transaction may be expected to take a certain period of time (t2) 
before it is completed. If a service window is free, the person can immediately deposit 
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the bill and leave the office at the time (t1 + t2) spending exactly the time required to 
deposit the bill.

If it so happens that none of the windows is free and there is a line waiting at each 
window, the person joins the end of the shortest line and waits until all the persons ahead 
have deposited their bills and have left the line. At that time, this person can deposit his 
bill. In this case, the time spent by the person in the bill office is t2 plus the time spent 
waiting in the line.

Let us try to compute the average time spent by the person in the bill office. To do 
this, we write a program to simulate the actions of the persons. The arrival of a person is 
modelled as an input of data consisting of the arrival time and the duration of the expected 
time to be spent in depositing the bill.

These data pairs are ordered by increasing arrival time. The four service windows are 
represented by four queues. Each person waiting in the line is represented by a node in 
that queue. The node at the front of the queue represents a person currently being served 
at the window.

In this case, a person is an entity. The state of the system might change whenever a 
person leaves or enters the bill office. We can therefore define five events that can change 
the status of the system—a person entering the office and the four cases of a person leav-
ing a particular queue.

The first event to occur is the arrival of the first customer. The event list is therefore ini-
tialized by reading the first input line. All the four service windows are initially free. The 
first node from the event list is removed and placed in the shortest of the queues. When 
the person is at the front of the window, a node representing the departure of the person 
is added to the event list, and the next input line is read. An arrival node corresponding 
to the arrival of the next person is placed on the event list. As soon as one arrival node is 
removed from the event list, another is added to the list so that there is exactly one arrival 
node on the event list unless there are no more inputs.

When a departure node is removed from the event list, the amount of time spent by the 
departing person is computed and added to a total and the node representing the person is 
removed from the front of the queue. After a node has been deleted from the front of the 
queue, the next person in the queue becomes the first to be served by that window and a 
departure node is added for that person to the event list.

At the end of the simulation, when the event list is empty, the total is divided by the 
number of persons to get the average time spent by a person.

5.9 QueueS uSing TeMPlATe

The queue in Program Code 5.1, implemented using an array, is defined to operate on 
integer data. When we want to define a queue of floating point data, we need to change 
int Queue[] to float Queue[] in the declaration of the data members of the class. This 
can be done each time the data type of array elements varies, by editing the code using 
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the text editor and then recompiling it. A template is a variable that can be instantiated to 
any data type. This data type could be of the built-in or the user-defi ned types. Program 
Code 5.4 represents a queue using templates.

program CoDe 5.4

template<class T>

class queue : public Queue<T>

{

   private:

        int Front;     // 1 counterclockwise from the 

Front element

      int Rear;     // position of the Back element

      int ArrayLength;     // queue capacity

      T *Queue;     // element array

   public:

      queue(int InitialCapacity = 20);

      ~ queue()

      {

         delete[] queue;

      }

      bool Empty() const

      {

         return Front == Rear;

      }

      int Size() const

      {

         return(Rear − Front + ArrayLength) % ArrayLength;

      }

      T& Front()

      {

         if(Front == Rear)

            cout << “Sorry queue empty” << endl;

            return Queue[(Front + 1) % ArrayLength];

      }

      T& Back()

      {

         // return Rear element

         if(Front == Rear)

            cout << “Sorry queue empty” << endl;

            return Queue[Rear];

      }

      void Delete()
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      {

         // remove Front element

         if(Front == Rear)

            cout << “Sorry Queue Empty” << endl;

            Front = (Front + 1) % ArrayLength;

            Queue[Front].~T();

      }

      void Add(const T& Element);

};

template<class T>

queue <T> :: queue(int InitialCapacity)

{

   ArrayLength = InitialCapacity;

   Queue = new T[ArrayLength];

   Front = 0;

   Rear = 0;

}

template<class T>

void queue <T> :: Add(const T&  Element)

{

   if((theBack + 1) % arrayLength == Front)

      cout << “Sorry queue is full” << endl;

   else

      Rear = (Rear + 1) % ArrayLength;

      Queue[Rear] = Element;

}

int main(void)

{

   queue <int> Q(10);

   int Data;

   Q.Add(1);

   Q.Add(2);

   Data = Q.Delete();

   cout << Data;

   Q.Add(3);

   Data = Q.Delete();

   cout << Data;

   Q.Add(4);

}
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A queue implemented using an array has many disadvantages, as arrays provide static 
declaration and hence are less fl exible with respect to run-time changes in the size of the 
queue. We shall discuss the implementation of queues using a linked list, which over-
comes these drawbacks, in Chapter 6.

ReCAPiTulATion

• A queue is an ordered list where all insertions 
are done at one end called the rear and dele-
tions at another end called the front. These 
limits guarantee that the data is processed in 
the sequence in which it is entered. In short, a 
queue is a fi rst in fi rst out (FIFO) or last in last 
out (LILO) structure.

• A queue is a linear data structure as it can 
be implemented using with the help of arrays 
(using static memory allocation) or linked lists 
(using dynamic memory allocation). An array 
is not a suitable data structure for frequent 
insertion and deletion of data elements. In 
addition, it uses static memory allocation so 
that it can store a fi xed number of elements. 
Hence, array implementation is not suitable 
for frequent insertions and deletions.

• These drawbacks can be avoided by imple-
menting the queue using a circular array. In a 
circular queue, as we go on adding elements 
to the queue and reach the end of the array, 
the next element is stored in the fi rst slot of the 
array if it is free.

• There are variations of queues such as circular 
queue, multi-queues, and deque. Deque defi nes 
a data structure where elements can be added or 
deleted at either the front end or the rear end but 
no changes can be made elsewhere in the list.

• Queues are used in many applications such 
as simulation, priority queue, job queue, and 
so on. Priority queues are those in which we 
can insert or delete elements from any posi-
tion based on some fundamental ordering with 
respect to the priorities of the elements.

Add This operation adds an element at the rear of 
the queue if the queue is not full. This operation is 
also named as enqueue and insert.

Circular queue The technique that essentially al-
lows the queues to wrap around upon reaching the 
end of the array is called a circular queue.

Delete This operation deletes an element from the 
front of the queue and returns the same. This op-
eration is also named as dequeue. 

Deque The word deque is a short form of double-
ended queue. It is pronounced as ‘deck’. Deque 
defi nes a data structure where elements can be 
added or deleted at either the front end or the rear 
end, but no changes can be made elsewhere in the 

list. Thus, a deque is a generalization of both a 
stack and a queue.

FIFO A queue is a fi rst in fi rst out (FIFO) or last 
in last out (LILO) structure to guarantee that the 
data are processed in the sequence in which they 
are entered.

Multi-queue If more number of queues is required 
to be implemented, then an effi cient data structure 
to handle multiple queues is required. It is pos-
sible to utilize all the available space in a single 
array. When more than two queues, say n, are rep-
resented sequentially, we can divide the available 
memory into n segments and allocate these seg-
ments to n queues, one each.

KeY TeRMS
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Multiple choice questions

 1. The initial confi guration of a queue is a, b, c, d 
(a is at the front end). To get the confi guration d, 
c, b, a, one needs a minimum of

 (a) 2 deletions and 3 additions
 (b) 3 deletions and 2 additions
 (c) 3 deletions and 3 additions
 (d) 3 deletions and 4 additions
 2. A priority queue is used to implement a stack S 

that stores characters. The operation Push(C) 
is implemented as insert(Q, C, K) where 
K is an appropriate integer key chosen by 
the implementation. Pop is implemented as 
Deletemin(Q). For a sequence of operations, 
the keys chosen are in

 (a) non-increasing order
 (b) non-decreasing order
 (c) strictly increasing order
 (d) strictly decreasing order
 3. A linear list of elements in which deletion can 

be done from one end (front) and insertion can 
take place only at the other end is known as

 (a) queue
 (b) stack
 (c) tree
 (d) branch
 4. In a queue (where Q.rear and Q.front are 

pointers to the ends of a queue) 
 (a) the number of total elements is fi xed
 (b) if Q.rear > Q.front, it is empty
 (c) the number of elements at any time is 

(Q.rear – Q.front - 1)
 (d) none of these

 5. A queue 
 (a)  can be created by setting up an ordinary 

contiguous array to hold the elements
 (b)  can take care of the delete operation 

automatically
 (c)  needs one pointer to handle addition and 

deletion of an element
 (d) none of these
 6. n elements of a queue are to be reversed using 

another queue. The number of add and remove 
operations required to do so is

 (a) 2 ¥ n
 (b) 4 ¥ n
 (c) n
 (d) The task cannot be accomplished.
 7. A queue is 
 (a) a linear data structure
 (b) a non-linear data structure
 (c) both (a) and (b)
 (d) none of these
 8. The end at which a new element gets added to a 

queue is called the
 (a) front
 (b) rear
 (c) top
 (d) bottom
 9. The end from which an element gets deleted 

from a queue is called the
 (a) front
 (b) rear
 (c) top
 (d) bottom

Priority queue A priority queue is a collection of 
a fi nite number of prioritized elements. Priority 
queues are the queues where we can insert elements 
or delete elements from any position based on some 
fundamental ordering of the elements. Elements can 
be inserted in any order in a priority queue, but when 

an element is removed from the priority queue, it is 
always the one with the highest priority.

Queue A queue is a common example of a linear 
list or an ordered list in which the data can be 
inserted at one end, called the rear, and deleted 
from another end, called the front.

eXeRCiSeS
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10. A queue is also called a 
 (a) last in first out data structure
 (b) first in last out data structure
 (c) first in first out data structure
 (d) last in last out data structure

Review questions

1. A dequeue is a list where additions and deletions 
can be made at either the head or the tail. With 
dequeue stored as a circularly linked list, provide 
an algorithm to add and delete a node from either 
end of a dequeue.

2. What is a circular queue? Write a C++ program 
to insert an element in the circular queue. Write 
a C++ function for printing the elements of the 
queue in reverse order.

3. A queue Q containing n elements and an empty 
stack S are given. It is required to transfer the queue 
to the stack so that the element at the front of the 
queue is on the top of the stack and the order of all 
the other elements is preserved. Show how this can 
be done in O(n) time using only a constant amount 
of additional storage. Note that the only operations 
that can be performed on the queue and stack are 
delete, insert, push, and pop. Do not assume 
any implementation of the queue or the stack.

4 Suppose a stack implementation supports, in 
addition to push and pop, an operation reverse, 
which reverses the order of the elements on the 
stack.

 (a)  To implement a queue using such a stack 
implementation, show how to implement 

Enqueue using a single operation and 
Dequeue using a sequence of three opera-
tions.

 (b)  Evaluate the following postfix expression 
containing single digit operands and arith-
metic operators + and ¥ using a stack.

52 ¥ 34 + 52 ¥¥ +

5. Suppose we wish to have two sequentially 
allocated queues occupying a single vector x[1, 
2, ..., n]. The front of both the queues are the 
end points of the array x, with one queue moving 
down whereas the other is moving up. Write a 
C++ program to insert a new element in each 
queue. In addition, find the number of elements 
in each queue at a given time.

6. Assume that a circular queue is stored in an 
array. Write down the necessary C++ language 
declarations to define 50 different circular 
queues having integer values with a maximum 
size of 100 each.

7. Represent a circular queue of maximum size n 
in an array A(0, 1, ..., n − 1). Assume 
that each node in a queue contains an integer. 
Write the C++ declaration for the circular queue. 
In addition, write two C++ functions to add an 
element to the queue and to remove the element 
form the queue.

8. Write the algorithm for the job-scheduling 
method.

9.  Solve for four jobs with profits (100, 10, 15, 27) 
and delays (2, 1, 2, 1).

Answers to multiple choice questions

1. (c)  2. (d)  3. (a)  4. (d)  5. (a)  6. (d)  7. (a)  8. (b)  9. (a)
10. (c) and (d)



6

Until now, we have studied arrays and realization of stacks and queues using arrays. 
One of the drawbacks of an array is that it is a static data structure, that is, the maximum 

capacity of an array should be known before the compilation process. Therefore, we must 
explicitly defi ne its size before compilation. Practically, defi ning such static sizes before 
the compilation of a program reduces effective space utilization. Accurate predictions 
about data structure sizes are very diffi cult. Another drawback of arrays is that the 
elements in an array are stored a fi xed distance apart, and the insertion and deletion of 
elements in between require a lot of data mov ement. The linked list is the solution to 
overcome all these problems. A linked list using dynamic memory management follows 
this principle—allocate and use memory when you need it and release it (free or de-
allocate) when you are done.

A linked list is a very effective and effi cient dynamic data structure for linear lists. 
Items may be added or deleted from it at any position more easily as compared to arrays. 
A programmer does not need to worry about how many data items a program will have to 
store. This enables the programmer to make effective use of the memory, since it works 
on the principle of need and supply. This reduces the maintenance of the program, as 
program maintenance often includes the need to increase the capacity of a program to 
handle larger collections.

We shall study the linked list, its variations, and its pros and cons in this chapter.

6.1 intROdUCtiOn

Arrays and linked lists are examples of linear lists. Linear lists are those in which each mem-
ber has a unique successor. Arrays contain consecutive memory locations that are a fi xed 

Linked Lists

ObJeCtiVes

After reading this chapter, the reader will be able to understand the following:
 • The limitations of static data structures
 • The need for a data structure that can dynamically shrink and grow
 • Linked list as a dynamic data structure and its fl exibility
 • The variations in linked lists and their applications
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distance apart, whereas linked lists do not necessarily contain consecutive memory locations. 
These data items can be stored anywhere in the memory in a scattered manner. To maintain 
the specific sequence of these data items, we need to maintain link(s) with a successor (and/
or a predecessor). It is called as a linked list as each node is linked with its successor (and/
or predecessor). Figures 6.1 and 6.2 show the realization of a linear list using a linked list.

Member_1 Member_2 Member_i Member_n

Fig. 6.1 A linked list of n elements

Monday Tuesday Wednesday Thursday Friday

Saturday Sunday

Fig. 6.2 A linked list of days in a week

The linked list, as a data structure in programming, is used quite frequently since it is 
very efficient. To use linked lists effectively, the concepts of pointers must be very clear 
to the programmer. In fact, frequent use of linked lists makes the concept of pointers very 
clear to the programmer. This study of the linked list will introduce us to its strengths and 
weaknesses. This study gives us an appreciation of the time, space, and code complexity 
issues. Linked list examples are a classic combination of algorithms and manipulation of 
pointers. Let us now learn about the linked list.

6.2 Linked List

A linked list is an ordered collection of data in which each element (node) contains  a 
minimum of two values, data and link(s) to its successor (and/or predecessor). A list with 
one link field using which every element is associated to its successor is known as a singly 
linked list (SLL). In a linked list, before adding any element to the list, a memory space 
for that node must be allocated. A link is made from each item to the next item in the list 
as shown in Fig. 6.3.

NodeNode Node

Element Link Element Link Element Link

X1 X2 X3 Null

Fig. 6.3 Linked list
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Each node of the linked list has at least the following two elements:

1. The data member(s) being stored in the list.
2. A pointer or link to the next element in the list.

The last node in the list contains a null pointer (or a suitable value like -1) to indicate 
that it is the end or tail of the list, and by suitable means we identify the first node. As 
elements are added to a list, memory for a node is dynamically allocated. Therefore, the 
number of elements that may be added to a list is limited only by the amount of memory 
available. To understand the linked list concept better, let us consider Examples 6.1 and 6.2.

 example 6.1  We all are aware of the very interesting game of treasure hunt. In this 
game, a team member is provided the primary hint of the first locality. From the first 
location’s hint, the participant gets the second, and so on. To reach the final target, the 
participant has to go through each and every location in a specific order. Even if the order of 
one of the locations is wrong, the participant will not obtain the clue for reaching the next 
location, and hence, the player will not be able to find the final destination of the treasure. 

          example         6.2           Assume that there are 10 books in a library, which form a specific 
sequence. This ordered set of 10 books is to be kept in a shelf. There are two ways to 
arrange the books. One of the arrangements is to keep all the 10 books in 10 continuous 
empty slots (similar to an array). The second possible arrangement is to place the books 
at available locations in a distributed manner (similar to a linked list) by keeping track of 
the various locations of the books. 

Let Books = {book1, book2, book3, …, book10}

As the books form a specific sequence, both the arrangements must preserve the 
sequence. Let us analyse both the arrangements. Table 6.1 shows the first arrangement.

Table 6.1 Shelf and books arranged sequentially

Shelf 
position

S S + 1 S + 2 S + 3 S + 4 S + 5 S + 6 S + 7 S + 8 S + 9

Book 
Number

Book1 Book2 Book3 Book4 Book5 Book6 Book7 Book8 Book9 Book10

The following are the requisites for this arrangement.

1. In a shelf, we need an empty slot that can accommodate all the 10 books.
2. We need to be aware of the position of the first book.
3. The order is maintained by keeping the books in sequence as book1, book2, and so on 

till book10, in successive empty locations.
4. Referring to the ith location directly with respect to the first location, one can access the 

ith book. In short, we have direct access to any ith book.
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Now, consider the following situation. An empty slot sufficient to accommodate 10 books 
is not available in the shelf, but 10 empty scattered locations are available. 

Let us take a look at the second arrangement as shown in Table 6.2. Here, we need 10 
empty locations available in the shelf. These 10 locations could be distributed and need 
not necessarily be a continuous block.

Location S + 1 S + 2 S + 3 S + 4 S + 5 S + 6 S + 7

Book no.

Already
occupied

First book

Already
occupied

Already
occupied

Book 1 Book 5 Book 7 Book 2

Next
book
link

goto

S + 7

goto

S + 14

goto

S + 10

goto

S + 11

S + 8 S + 9 S + 10 S + 11 S + 12 S + 13 S + 14 S + 15

Already
occupied

Empty

Book 8 Book 10 Book 6

goto

S + 13

Book 3

goto

S + 9

Book 4

goto

S + 4
Null

Book 9

goto

S + 12

goto

S + 6

Last book

Location

Book no.

Next
book
link

S

Already
occupied

Table 6.2 Shelf and books arranged in a distributed manner 

The following steps are used for this arrangement:

1. Let us use some means to preserve the sequence. Let us keep the first book in the first 
free location found. Do note the location of the first book. Let us keep the second 
book at the second empty location in the shelf. Attach a tag as a link to the first 
book to remember where the second book is kept. This tag has the location ID of  
the second book. Put the third book in the next empty location. Attach a tag to link  
to the second book. The second book’s link stores the location ID of the third book, 
and so on.

2. Remember only the first book’s position.
3. We cannot refer to the third book directly. Only the link attached to the second book 

can indicate where the third book is. The second book’s position is available at the 
first book’s link. Hence, to get the ith book, we have to go through all the books in a 
sequence: book1, book2, and so on till book(i - 1). The tag attached to the (i - 1)th 
book would tell where the ith book is. 
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The first arrangement is similar to arrays, a sequential organization. The second arrange-
ment is a linked list, a linked organization. Now, let us compare both the arrangements. 
The first method needs continuous empty spaces to accommodate 10 books, whereas the 
second method can accommodate books in any of the 10 empty places, which may or may 
not be continuous. Hence, even if a continuous space to keep the 10 books is not available 
in the second method, the books can be accommodated.

In the first method, we have direct access to any ith book in the sequence, whereas in 
the second method, until we traverse through the first i books sequentially, we cannot find 
where the (i + 1)th book is kept. In the first method, we must know well in advance how 
many books are to be kept so that we can reserve the space for the same. However, in the 
second method, we can keep every new book in the empty location found anywhere in the 
shelf; we need not reserve a location for the same.

The next point to be taken into consideration is the utilization of shelf space. In the 
first method, if the number of the books to be kept in a continuous space is not known in 
advance, this creates two problems. First, we reserve a continuous block say, m, of arbi-
trary size. In general, m denotes maximum size. Suppose the number of books to be kept 
is n, which is much smaller than m. Then, (m - n) locations remain unused. The second 
problem is when the number of books n is greater than the reserved space m, we will not 
be able to accommodate the books in the continuous block.

The next aspect for comparison is with respect to the various operations on the data 
elements such as insertion and deletion of a book. In the first method, inserting a book 
at the ith location needs a shifting of (i to n) books to the right side, each by one position. 
Similarly, taking out the ith book from the shelf creates an empty space in the sequence of 
books. Hence, we need to shift (i + 1 to n) books to the left, each by one position.

The second method needs no shifting of data elements to insert or delete a data element. 
It only needs a few changes in the tags of the books, which are called as links. For the appli-
cations where the data elements to be stored are of varying sizes, that is, sequential represen-
tation, arrays are inadequate. This leads to an elegant solution, that is, linked organization.

6.2.1 Comparison of sequential and Linked Organizations

Although linked lists are often used in computing, they are not simple to master.  
However, the flexibility and performance they offer is worth the pain of learning and 
using them. The brief features of sequential and linked organizations are described here.

Sequential organization The features of this organization are the following:

1. Successive elements of a list are stored a fixed distance apart.
2. It provides static allocation, which means, the space allocation done by a compiler 

once cannot be changed during execution, and the size has to be known in advance.
3. As individual objects are stored a fixed distance apart, we can access any element 

randomly.
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4. Insertion and deletion of objects in between the list require a lot of data movement.
5. It is space inefficient for large objects with frequent insertions and deletions.
6. An element need not know/store and keep the address of its successive element.

Linked organization The features of this organization include the following:

1. Elements can be placed anywhere in the memory.
2. Dynamic allocation (size need not be known in advance), that is, space allocation as 

per need can be done during execution.
3. As objects are not placed in consecutive locations at a fixed distance apart, random 

access to elements is not possible.
4. Insertion and deletion of objects do not require any data shifting.
5. It is space efficient for large objects with frequent insertions and deletions.
6. Each element in general is a collection of data and a link. At least one link field is a must.
7. Every element keeps the address of its successor element in a link field.
8. The only burden is that we need additional space for the link field for each element. 

However, additional space is not a severe penalty when large objects are to be stored.
9. Linked organization needs the use of pointers and dynamic memory allocation. 

A linked list can be implemented using arrays, dynamic memory management, and 
pointers. The second implementation requires dynamic memory management where one 
can allocate memory at run-time, that is, during the execution of a program. Linked lists 
are generally implemented using dynamic memory management. Each linked list has 
a head pointer that refers to the first node of the list and the data nodes storing data 
member(s). The linked list may have a header node, tail pointer, and so on.

6.2.2 Linked List terminology

The following terms are commonly used in discussions about linked lists:

Header node A header node is a special node that is attached at the beginning of the 
linked list. This header node may contain special information (metadata) about the linked 
list as shown in Fig. 6.4.

Head

Name3 DoB Babli Abhay Alka

Header
node

Data
node Tail

Fig. 6.4 Linked list with header node

This special information could be the total number of nodes in the list, date of creation, 
type, and so on. The header node may or may not be identical to the data nodes.
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Data node The list contains data nodes that store the data members and link(s) to its 
predecessor (and/or successor).

Head pointer The variable (or handle), which represents the list, is simply a pointer 
to the node at the head of the list. A linked list must always have at least one pointer 
pointing to the first node (head) of the list. This pointer is necessary because it is the 
only way to access the further links in the list. This pointer is often called head pointer, 
because a linked list may contain a dummy node attached at the start position called the 
header node.

Tail pointer Similar to the head pointer that points to the first node of a linked list, we 
may have a pointer pointing to the last node of a linked list called the tail pointer.

6.2.3 Primitive Operations

The following are basic operations associated with the linked list as a data structure: 

 1. Creating an empty list
 2. Inserting a node
 3. Deleting a node
 4. Traversing the list

Some more operations, which are based on the basic operations, are as follows:

 5. Searching a node
 6. Updating a node
 7. Printing the node or list
 8. Counting the length of the list
 9. Reversing the list
10. Sorting the list using pointer manipulation
11. Concatenating two lists
12. Merging two sorted lists into a third sorted list

In addition, operations such as merging the second sorted list into the first sorted list 
and many more are possible by the use of these operations.

6.3 ReaLizatiOn Of Linked Lists

In a linked organization, the data elements are not necessarily placed in continuous loca-
tions. The relationship between data elements is by means of a link. Along with each data 
element, the address of the next element is stored. Thus, the associated link with each 
data element to its successor is often referred to as a pointer. In general, a node is a col-
lection of data and link(s). Data is a collection of one or more items. Each item in a node 
is called a field. A field contains either a data item or a link. Every node must contain at 
least one link field.
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6.3.1 Realization of Linked List Using arrays

Let L be a set of names of months of the year.

L = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}

Here, L is an ordered set. The linked organization of this list using arrays is shown in 
Fig. 6.5. The elements of the list are stored in the one-dimensional array, Data. The ele-
ments are not stored in the same order as in the set L. They are also not stored in a con-
tinuous block of locations. Note that the data elements are allowed to be stored anywhere 
in the array, in any order.

To maintain the sequence, the second array, Link, is added. The values in this array are 
the links to each successive element. Here, the list starts at the 10th location of the array. 
Let the variable Head denote the start of the list.

L = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}

Data Index Link

Jun 1 4

Sep 2 7

Feb 3 8

Jul 4 12

5

Dec 6 −1

Oct 7 14

Mar 8 9

Apr 9 11

Head Jan 10 3

May 11 1

Aug 12 2

13

Nov 14 6

15

Fig. 6.5 Realization of linked list using 1D arrays

Here, Head = 10 and Data[Head] = Jan. 
Let us get the second element. The location where the second element is stored  

at is Link[Head] = Link[10]. Hence, Data[Link[Head]] = Data[Link[10]] = 
Data[3] = Feb.

Let us get the third data element through the second element. Data[Link[3]] = 
Data[8] = Mar, and so on.
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Continuing in this manner, we can list all the members in the sequence. The link value 
of the last element is set to -1 to represent the end of the list. Figure 6.6 shows the same 
representation as in Fig. 6.5 but in a different manner.

Head 

= 10
Jan 3 Feb 8 Mar 9 Dec −1

Fig. 6.6 Linked organization

The unused locations are omitted and the list is drawn in the sequence of elements in the list L.
Figure 6.6 shows that the first element of the ordered list L is at the 10th position. The 

link value of the first element is 3. This indicates that the second element is at Data[3]. 
The link value of the second element is 8. This indicates that the third element is at 
Data[8], and so on. Here, -1 is stored at link[6], which indicates the end of the list.

Even though data and link are shown as two different arrays, they can be imple-
mented using one 2D array as follows:

int Linked_List[max][2];

Figure 6.7 illustrates the realization of a linked list using a 2D array where L = {100, 
102, 20, 51, 83, 99, 65}, Max = 10 and Head = 2.

Index Data Link

0 20 3

1 99 7

Head 2 100 5

3 51 6

4

5 102 0

6 83 1

7 65 −1

8

9

Fig. 6.7 Realization of linked list using 2D arrays

6.3.2 Linked List Using dynamic Memory Management

We learnt that unlike arrays, linked lists need not be stored in adjacent locations. Individual 
elements can be stored anywhere in the memory. Each data element is called a node. Each 
node contains at least two fields namely data and link. Every node holds a link to the next 
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node in the list. During run-time (execution of a program), as per the need, a node is allocated 
(i.e., memory is allocated for a new node). In other words, a new node of the list will be cre-
ated dynamically. We just remember the pointer to the list at the end, that is, pointer to the first 
node. In addition, the last node’s link field can be set to 0 to mark the end of the list. The 0 here 
represents null. A linked list thus maintains the data elements in a logical order rather than in a 
physical order or in other words separates the physical view from the logical view.

Empty Linked List

An empty linked list is a head pointer with the value Null. An empty list is also called a 
null list. The length of a null or empty list is 0.

We should note the following facts while creating and inserting a node in a linked list:

1. The nodes may not actually reside in sequential locations.
2. The locations of nodes may change during different runs of program.
3. Therefore, when we write a program that works on lists, we should never look for a 

specific address except when we test for 0 (i.e., null).

We need the following for the implementation of linked list:

1. A means for allocating memory for a node that has at least one link field.
2. A mechanism to verify whether the allocation is successful.
3. A mechanism to release the allocated node and add to free pool of memory, as and 

when needed.

These tasks can be performed using the dynamic memory management functions in 
C++. To verify the memory allocation process, the address returned by the memory allo-
cation function is compared with the value Null. A non-null address returned indicates 
that the process is successful. In C++, new and delete are the operators used for the same.

6.4 dynaMiC MeMORy ManageMent

Many languages permit a programmer to specify an array’s size at run-time. Such languages 
have the ability to calculate and assign, during execution, the memory space required by the 
variables in a program. The process of allocating memory at run-time is known as dynamic 
memory allocation. Let us look at the memory allocation process shown in Fig. 6.8.

Local variables

Free memory

Global variables

 Program instructions

Stack

Heap

Permanent storage area

Fig. 6.8 Memory allocation process
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The program instructions and global and static variables are stored in a region known 
as the permanent storage area, and the local variables are stored in another area called the 
stack. The memory space allocated between these two regions is available for dynamic 
allocation during the execution of the program. This free memory region is called the 
heap. The size of the heap keeps changing when a program is executed because of the 
creation and deletion of the variables that are local to the functions and blocks. Therefore, 
it is possible to encounter memory overflow during the dynamic allocation process. In 
such situations, the memory allocation functions as discussed in and returns a null pointer 
when it fails to locate enough memory requested Section 6.4.1.

6.4.1  dynamic Memory Management in C++ with new and delete 
Operators

A special area of main memory, called the heap, is reserved for the dynamic variables. 
Any new dynamic variable created by a program consumes some memory in the heap. The 
heap is a pool of memory from which the new operator allocates memory. The memory 
allocated from the system heap using the new operator is de-allocated (released) using the 
delete operator. C++ enables programmers to control the allocation and de-allocation 
of memory in a program. The users can dynamically allocate and de-allocate memory for 
any built-in or user-defined data structure.

The new Operator

The new operator creates a new dynamic object of a specified type and returns a pointer 
that points to this new object (if it fails to create the desired object, it returns 0). In 
standard C++, a program that uses dynamic memory management should include a 
standard header <new>, which provides access to the standard version of the operator 
new. Consider the following declaration and statement:

MyType *ptr;

ptr = new MyType;

These statements create a new dynamic object of the type MyType of the proper 
size and return a pointer of the type specified to the right of the operator new, that is, 
MyType *.

Syntax

Pointer_Type_Variable = new Data_Type;

Note that new can be used to dynamically allocate any primitive type (such as int or 
double) or class type as follows:

1. int *Number;
  Number = new int(20);

2. Time *timeptr; timeptr = new Time;
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3. Date *B_Date_Ptr, *Today;
  B_Date_ptr = new Date(20, 1, 1969);

  Today = new Date(20, 1, 2005);

Here in example 3, Date is a class. If the type is a class with a constructor, the default 
constructor is called for the newly created dynamic variable. Initialization can be done by 
calling the appropriate constructor. If the program creates too many dynamic variables, it 
will consume all the memory in the heap. If this happens, any additional calls to new will 
fail. Hence, we should always check to see whether a call to the new operator is successful 
or not. With earlier C++ compliers, if all the memory in the heap has been used and new 
cannot create the requested dynamic variable, then it returns a special pointer named Null.

The Null Pointer

Null is a special constant pointer value that is used to give a value to a pointer variable 
that would not otherwise have a value. It can be assigned to a pointer variable of any type. 
In earlier compliers, a check was needed by the user for the successful operation of new. 
Newer compliers do not require such a check. Current compilers throw the exception 
std::badalloc and the program automatically aborts with an error message. We need 
no explicit check in the code. The users can ‘catch’ the exception.

The delete Operator

The object created exists till it is explicitly deleted, or till the function/program runs. To 
destroy a dynamically allocated variable/object and free the space occupied by the object, 
the delete operator is used.

delete ptr;

The delete operator eliminates a dynamic variable and returns the memory that it had 
occupied in the heap. The memory can now be reused to create new dynamic variables. 
After a call to delete, the value of the pointer variable, such as ptr, is undefined (except 
when the dynamic variable is an array). These undefined pointer variables are known as 
dangling pointers. One way to avoid dangling pointers is to set any such variable as null.

If we want to free a dynamically allocated array, the following is the syntax:

delete[] pointer_variable;

Such a statement will delete the entire array pointed to by pointer_variable. The 
square brackets tell C++ that a dynamic array variable is being eliminated, so the system 
checks the size of the array and removes that many indexed variables.

double* DoubleArrayPtr;

DoubleArrayPtr = new double[array_size];

We can use delete to release the dynamic array.

delete[] DoubleArrayPtr;
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Similar to other operators, new and delete operators can be overloaded. Program 
Code 6.1 demonstrates dynamic variables, new and delete operators, and pointers.

program CoDe 6.1

#include<iostream.h>

int main()

{

   int *ptr1, *ptr2;

   ptr1 = new int;

   *ptr1 = 52;

   cout << "*ptr1 = " << *ptr1 << endl;

   cout << "*ptr2 = " << *ptr2 << endl;

   *ptr2 = 63;

   cout << "*ptr1 = " << *ptr1 << endl;

   cout << "*ptr2 = " << *ptr2 << endl;

   ptr1 = new int;

   *ptr1 = 98;

   cout << "*ptr1 = " << *ptr1 << endl;

   cout << "*ptr2 = " << *ptr2 << endl;

   return 0;

}

Output:

   *ptr1 = 52

   *ptr2 = Garbage

   *ptr1 = 52

   *ptr2 = 63

   *ptr1 = 98

   *ptr2 = 63

6.5 Linked List abstRaCt data tyPe

Although a linked list can be implemented in a variety of ways, the most fl exible implemen-
tation is by using pointers. To implement the same in C++, we can view the entire linked list 
as an object of the class LList. Figure 6.9 shows an abstract representation of a linked list.

5 7 2 Null

Fig. 6.9 Abstract representation of linked list

Each linked list has to have a special external link (or pointer), say, Head. We call 
it an external link because it is not stored in the list. We shall now extend the abstract 
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notation to show the external link. Figure 6.10 illustrates the list with the external 
link, Head.

5

Head

7 2 Null

Fig. 6.10 Linked list with head pointer

To represent this linked list (Fig. 6.10), we consider it as an object of class LList whose 
defi nition is as follows:

class LList
{
   private:
      Node *Head;
   public:
      LList();
      ~LList();
      :
      : 

¸
˝
˛
 member functions here

      :
};

The LList class has only one data member, the Head pointer, which points to the fi rst 
node of the list, which is used to access the list. The member functions including the 
constructor and the destructor are used to process the list. Note that the Head is private 
and all other member functions are public. This is because particular nodes of the list are 
accessible to outside objects through pointers; the nodes are made inaccessible to outside 
objects by declaring Head private so that the information hiding principle is not really 
compromised. This is illustrated in Program Code 6.2.

program CoDe 6.2

class LList

{

   private:

      Node *Head;

      Node *Tail;      // optional data members

      int Size;

   public:

      LList()

      {

         Head = Tail = Null;
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         Size = 0;

      }

      void Create();

      void Traverse();

      void Insert( int data, position);

      void Append(int data);

      void Delete(int position);

      void Reverse();

};

6.5.1 data structure of node

Each node has data and link fi elds. The data fi eld holds data element(s) and the link 
fi eld(s) stores the address of its successor (and/or predecessor, if any). As the link fi eld is 
a pointer to its successor, it should be a pointer variable, which should hold the address 
of its successor. The successor node is of the same type as that of the node itself. Hence, 
every node has one member, which points to a node of the same type as itself. As every 
node is a group of two (or more) data elements which are of different data types, they 
are logically grouped using the data type, object. The link fi eld of a node is a pointer that 
references to a node of the same type as itself. Hence, we need a  self-referential object.

The declaration of the data structure of a node is given as follows:

class Node
{
   public:
      int data;
      Node *link;
};

class List
{
   private:
      Node *Head;
      public:
      .
      . 

¸
˝
˛
 member functions here

      .
};

Here, within the class, the statement Node *link  defi nes the link fi eld of a node. Here, 
Node is a data type of the pointer variable link. 

Consider the following piece of code:

class Node
{

   public:



210 data structures using c++

   int data;
   Node *link;
} *fi rst, A;
fi rst = &A;
A.data = 10;
A.link = Null;

Now, the statement 

   cout << fi rst->data;

will print the output 10.
We discussed the node structure of the linked list. Let us now discuss the various 

operations on a linked list, illustrated in Program Code 6.3.

program CoDe 6.3

class Node

{

   public :

      int data;

      Node *link;

};

class Llist

{

   private:

      Node *Head,*Tail;

      void Recursive_Traverse(Node *tmp)

      {

         if(tmp == Null)

            return;

         cout << tmp->data << "\t";

         Recursive_Traverse(tmp->link);

      }

   public:

      Llist()

      {

         Head = Null;

      }

      void Create();

      void Display();

      Node* GetNode();

      void Append(Node* NewNode);

      void Insert_at_Pos( Node *NewNode, int position);

1010

first A

Address of A is 1010

10
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      void R_Traverse()

      {

         Recursive_Traverse(Head);

         cout << endl;

      }

      void DeleteNode(int del_position);

};

void Llist :: ~Llist()

{

   Node *Temp;

   while(Head != Null)

   {

      Temp = Head;

      Head = Head->link;

      delete Temp;

   }

}

void Llist :: Create()

{

   char ans;

   Node *NewNode;

   while(1)

   {

      cout << "Any more nodes to be added (Y/N)";

      cin >> ans;

      if(ans == 'n') break;

      NewNode = GetNode();

      Append(NewNode);

   }

}

void Llist :: Append(Node* NewNode)

{

   if(Head == Null)

   {

      Head = NewNode;

      Tail = NewNode;

   }

   else

   {
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      Tail->link = NewNode;

      Tail = NewNode;

   }

}

Node* Llist :: GetNode()

{

   Node *Newnode;

   Newnode = new Node;

   cin >> Newnode->data;

   Newnode->link = Null;

   return(Newnode);

}

void Llist :: Display()

{

   Node *temp = Head;

   if(temp == Null)

      cout << "Empty List";

   else

   {

      while(temp != Null)

      {

         cout << temp->data << "\t";

        temp = temp->link;

      }

   }

   cout << endl;

}

void main()

{

   Llist L1;

   L1.Create();

   L1.Display();

}

6.5.2 insertion of a node

Depending on the type of list or need of the user, insertion can be made at the beginning, 
middle, or at the end of the list. If the list is an ordered list, the insertion should not affect 



Linked Lists 213

the order and this may require inserting the data at proper locations so that the order is 
preserved. The information about where the node is to be inserted can be decided by 
searching through the list, obtaining the position, and then inserting the same.

Note that the symbol  shown in all figures in this chapter indicates the end of list 
marker representing null. We shall use the same notation throughout the book.

Insertion of a Node at a Middle Position

Assume that a node is to be inserted at some position other than the first position. Let 
Prev refer to the node after which NewNode node is to be inserted.

We need the following two steps:

NewNode->link = Prev->link;

Prev->link = NewNode;

The node NewNode is to be inserted between Prev and the successor of Prev. The link 
manipulation required to accomplish this is shown in Fig. 6.11 with dotted lines.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.11 Link manipulations for insertion of a node

The steps to perform the link manipulation are as follows:

1. NewNode is a node to be inserted after Prev. The node that is a successor of Prev will 
now become the successor of NewNode. Currently, Prev->link holds the pointer to 
the successor of Prev. Set the link field of the NewNode such that Prev’s successor 
node becomes the successor of NewNode.

NewNode->link = Prev->link;

 In other words, NewNode becomes the predecessor of the node whose predecessor was 
Prev, because NewNode is to be placed in between Prev and its successor (Fig. 6.12).

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.12 Link manipulations for insertion of a node (Step 1)
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2. Now, let us make NewNode the successor of Prev. This can be achieved by setting the 
link field of Prev to NewNode (Fig. 6.13).

Prev->link = NewNode; 

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.13 Link manipulations for insertion of a node (Step 2)

Insertion of a Node at the First Position

Let us consider a situation when the node is to be inserted at the first position. As per the 
steps discussed for insertion of a node at the middle, we need Prev, which is a pointer to 
the node after which NewNode is to be added. To insert a node at the first position, there 
exists no Prev node.

The link manipulations needed to add a node at the first location is shown in Fig. 6.14 
using dotted lines.

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.14 Link manipulations for insertion of a node at the first position

Head is the pointer variable pointing to the starting node of the list. The insertion of 
NewNode at the first position should make Head point to NewNode, and in addition, the 
current node which is at the first position should become the second node of the list. 
Hence, the link field of NewNode should be set to point to the current first node, that is, the 
node pointed by the pointer First. 

The following two steps will insert NewNode at the beginning of the linked list.

NewNode->link = Head;

Head = NewNode; 

Figure 6.15 shows NewNode to be inserted in the list.
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ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.15 Insertion of a node at the first position (Initial step)

Step 1 This step is represented in Fig. 6.16.

NewNode->link = Head;

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.16 Insertion of a node at the first position (Step 1)

Step 2 This step is represented in Fig. 6.17.

Head = NewNode;

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.17 Insertion of a node at the first position (Step 2)

Insertion of a Node at the End

The steps for inserting a node in the middle of a list also work for inserting a node at the 
end of the list. As the node is to be inserted after the last node, Prev is a pointer to the last 
node. Let the node to be inserted be NewNode as shown in Fig. 6.18.

ChikuHead Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.18 Link manipulations for insertion of a node at the end of a list
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1. NewNode->link = Prev->link
 As Prev is the last node, Prev->link = Null. Hence, this step can be replaced by the 

statement NewNode->link = Null if we know that Prev is the last node as in Fig. 6.19.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.19 Insertion of a node at the end of the list (Step 1)

2.  Prev->link = NewNode;
 This will make the node NewNode the successor of Prev. This is shown in Fig. 6.20.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.20 Insertion of a node at the end of the list (Step 2)

This will insert the node NewNode at the last position, that is, make the node NewNode the 
last node of the list.

Generalized Insert Routine

Let us write a single insert routine which would insert a node at any random position in 
a list. Let us assume that the position i at which the node is to be inserted is known. We 
traverse the list till the (i - 1)th node to insert a new node at the ith position. Now, let the 
(i - 1)th node be the previous node referenced by the pointer Prev. The function can be 
suitably modifi ed when instead of the position, the node before or after which the new 
node is to be inserted is known. In that case, the proper location can be searched and then 
the node can be inserted. This is illustrated in Program Code 6.4.

program CoDe 6.4

void Llist :: Insert_at_Pos( Node *NewNode, int position)

{

   Node *temp = Head;

   int count = 1,fl ag = 1;

   if(position == 1)      // inserting at fi rst position
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   {

      NewNode->link = temp;

      Head = NewNode;      // update head

   }

   else

   {

      while(count != position − 1)

      {

         temp = temp->link;

         if(temp == Null)

         {

            fl ag = 0; break;

         }

         count ++;

      }

      if(fl ag == 1)

      {

         NewNode->link = temp->link;

         temp->link = NewNode;

      }

      else

         cout << "Position not found" << endl;

   }

}

void main()

{

   int pos;

   Node *NewNode;

   Llist L1;      // L1 is object of list.

   L1.Create();

   L1.Display();

   NewNode = L1.GetNode();

   cout << "Enter position where node is to be inserted" 

<< endl;

   cin >> pos;

   L1.Insert_at_Pos(NewNode, pos);

   L1.Display();

}

Program Code 6.4 demonstrates the steps involved in inserting a node at a specifi ed position in 
a linked list. A similar function can be written to insert a node before or after a specifi ed node.
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6.5.3 Linked List traversal

List traversal is the basic operation where all elements in the list are processed sequen-
tially, one by one. Processing could involve retrieving, searching, sorting, computing the 
length, and so on. List traversal requires a looping algorithm (Algorithm 6.1). To traverse 
the linked list, we have to start from the fi rst node. We can access the fi rst node through a 
pointer variable Head. Once we access the fi rst node, through its link fi eld, we can access 
the second node; through the second node’s link fi eld, we can access the third, and so on, 
as every node points to its successor till the last node.

algorithm 6.1

1. Get the address of the fi rst node, call it current; current = Head.
2. if current is Null,  goto step 6.
3. Process the data fi eld of the current node (node pointed by current). Here, the process 

may include printing data, updating, and so on
4. Move to the next node–current  =  current->link
 (Now current should point to the next node. The address of next node is in the link 

fi eld of current. Hence, set current to the link fi eld of current}
5. goto step 2
6. stop

Non-recursive Method

The non-recursive function for list traversal is shown in Program Code 6.5.

program CoDe 6.5

void Llist :: Traverse()

// just displaying the list members

{

   Node *temp = Head;

   if(temp == Null)

      cout << "Empty List";

   else

   {

      while(temp != Null)

      {

         cout << temp->data << "\t";

         temp = temp->link;

      }

   }

   cout << endl;

}
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This function can be called by any function. The same function can also be used to 
print, search, update, and count length by adding a few statements.

Here, the data element may not necessarily be just one. The node may hold more than 
one data element. Let us see output for list L pictorially.

L = {21, 22, 23}

1. Current = Head

21Head 22 23

2. After execution of statement 1

21Head 22

Current

23

3. As current != Null, statements 3, 4, and 5 are executed.

21Head 22

Current

23

4.

 

21Head

Current

22 23

5.

 
21Head 22 23

 Now Current = Null is true, while loop condition is false; hence stop.

Output
21

21    22

21    22    23

Recursive Traversal Method

Program Code 6.6 is the recursive code for traversing the linked list.
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program CoDe 6.6

class Llist

{

   private:

      Node *Head, *Tail;

      void Recursive_Traverse(Node *tmp)

      {

         //Recursive traversal code

         if(tmp == Null)

            return;

         cout << tmp->data << "\t";

         Recursive_Traverse(tmp->link);

      }

   public:

      void Create();

      void Display();

      void R_Traverse()

      {

         Recursive_Traverse(Head);

         //call to recursive traversal

         cout << endl;

      }

};

void main()

{

   Llist L1;

   L1.Create();

   L1.R_Traverse();

}

Output:

21  22  23

Let us change the sequence of the last two statements in the recursive traverse function 
in Program Code 6.6.
void Llist :: Recursive_Traverse(Node *tmp)
{
   if(tmp == Null)
      return;
   Recursive_Traverse(tmp->link);
   cout << tmp->data << "\t";
}

What will be the output now? Will it be 21 22 23 or 23 22 21? Do verify.
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6.5.4 deletion of a node

There may be nodes that are to be deleted from a list. Linear lists may very often require 
insertion and deletion of nodes. Linked lists are the most suitable data structures for this 
purpose. We discussed how to insert a node in a list. Let us learn about how to delete a 
node from a list.

Let us assume that the node to be deleted contains data x. We need the following steps 
to delete the same. Let x = 13 and let it be pointed to by the pointer Curr. To delete this 
node, the required link manipulations are shown in Fig. 6.21 with dotted lines.

12 13 14 15
Head

Prev Curr

11

Fig. 6.21 Link manipulations for deletion of a node

To delete the node Curr, we need to modify the link between Curr and its previous node, 
and the link between Curr and its successor.

We need to modify them as shown in Fig. 6.21. The Prev is pointing to Curr as its 
current successor. As the Curr is to be deleted, the Prev’s link should be modified such 
that it points to the successor of Curr. This makes  the successor of Curr the successor of 
Prev. This deletes the node Curr from the linked list. 

Note that we need the address of the node to be deleted as well as its predecessor to 
modify the links such that the node is deleted.

This can be achieved by the following steps shown in Algorithm 6.2.

algorithm 6.2

1. Let both Curr and Prev be set to Head.
2. Traverse the list and search the node to be deleted.
3. Let Curr point to the node to be deleted and Prev be its previous node.
4. Modify the link field of Prev so that it skips Curr and points to its next.
 Prev->link = Curr->link

5. Free the memory allocated for the node Curr.
6. Stop

The node to be deleted can be at any position. It could be the first, middle, or last node.

Deleting the First Node

Deleting the first node is also referred to as deleting a header node. If the node at the first 
position is to be deleted, then we need to modify the pointer pointing to the first node 
(also called as the head pointer), say Head.
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Deletion of the fi rst node needs the link manipulations shown in Fig. 6.22 with 
dotted lines.

12 13 14 15
Head

11

Curr

Fig. 6.22 Link manipulations for deletion of the fi rst node

We should also release the fi rst node using the delete operator. Hence, this can be 
accomplished in two steps as

1. Set another pointer to the fi rst node before modifying Head, which is the pointer 
pointing to the fi rst node. Set Head to point to the second node. This can be 
accomplished by the statements,
Curr = Head;

Head = Head->link;

2. Now, release the memory allocated for the fi rst node.
delete Curr;

These two statements will delete the fi rst node, and Head will point to the second node 
so that the second node becomes the fi rst node. Later, the memory allocated for the fi rst 
node is freed.

Deleting a Middle Node

Let curr point to the node to be deleted, and prev be the predecessor of curr. Then, the 
following statements will delete the node curr.

prev->link = curr->link;

delete curr;

These two statements will also delete the last node of the list. Let us work out a func-
tion for the deletion of a node that may be at any position (Program Code 6.7).

program CoDe 6.7

void Llist :: DeleteNode(int pos)

{

   int count = 1, fl ag = 1;

   Node *curr, *temp;
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   temp = Head;

   if(pos == 1)

   {

      Head = Head->link;

      delete temp;

   }

   else

   {

      while(count != pos − 1)

      {

         temp = temp->link;

         if(temp == Null)

         {

            fl ag = 0; break;

         }

         count++;

      }

      if(fl ag == 1)

      {

         curr = temp->link;

         temp->link = curr->link;

         delete curr;

      }

      else

         cout << "Position not found" << endl;

   }

}

void main()

{

   int pos,del_position;

   Llist L1;      // L1 is object of list.

   L1.Create();

   L1.Display();

    cout << "Enter position of the node to be deleted" 

<< endl;

   cin >> del_position;

   L1.DeleteNode(del_position);

   L1.R_Traverse();

}
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6.6 Linked List VaRiants

The basic idea of a linked list serves as the starting point for many useful variations. There 
are some variants of linked lists. In the following sections, we shall look at a few of them 
which have proven to be essential tools for computer scientists and software engineers.

6.6.1 Head Pointer and Header node

A linked list must always have at least one pointer pointing to the first node of the list. 
This pointer is a must because otherwise, we have no way to access the linked list. 
This pointer is many times called a head pointer, because a linked list may contain a 
dummy node (exam) attached at the start position called header node. A header node 
is a special node that is attached at the front of the linked list. This header node may 
contain special information in data fields. The information could be the total number 
of nodes in the list. 

Note that the header node may be of the same type as the node of the linked list or it 
may have a different data type with some special (additional) fields in it. A linked list with 
header node is called header-linked list.

Figure 6.23 is a header-linked list where the header node is of the same data type as 
that of the other nodes of the list.

Head
4 Vishnu Anagha Deven Shivadmik

Header node

Fig. 6.23 Header-linked list 

Here, the data field of the header node stores 4, which indicates that the linked list con-
tains 4 records ahead. For example, suppose there is an application where the number of 
items in a list is often calculated. Usually, we need to traverse the whole list to count the 
length. However, if the current length is maintained in the header node, the information 
can be accessed easily. Figure 6.24 has a special header node whose data type is not the 
same as that of the other nodes of the list.

Head
3 Kochin 1999Agriculture Rajeev Rashmi Rajesh

Header node

Fig. 6.24 Header-linked list with header node different from other nodes

In this list, the header node has some special fields such as length, city, department, year, 
and so on. Such a node will have the link field that points to the node of the linked list, as 
illustrated in Program Code 6.8.
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program CoDe 6.8

class Head_Node 

{

   public:

      int count;

      char City[15];

      char Dept[30];

      int Est_Year;

      .

      .

      .

      Node *link;

      // header node links to fi rst node of the list

};

class Node

{

   public:

      emp_name[20];

      Node *link;

       // every node links to its successor of the same 

type

};

The most popular convention is to call the pointer that points to the fi rst node of the list 
as head pointer no matter whether the header node is present or not.

6.6.2 types of Linked List

We studied that in a linked list, every node must have at least one linked fi eld. Thus, each 
node provides information about its predecessor and/or successor in the list. It may also 
have the knowledge about where the previous node lies in the memory. Thus, linked lists 
can be classifi ed broadly as follows:

1. Singly linked list
2. Doubly linked list

The list and operations we discussed so far had only one link pointing to its successor and 
is called as singly linked list.

 Singly Linked List

A linked list in which every node has one link fi eld, to provide information about where 
the next node of the list is, is called as singly linked list (SLL). It has no knowledge about 
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where the previous node lies in the memory. In SLL, we can traverse only in one direc-
tion. We have no way to go to the ith node from (i + 1)th node, unless the list is traversed 
again from the first node (Fig. 6.25).

4 Indira Sindhu Ranjita Lisa

Head

Fig. 6.25 Singly linked list

Often SLL is just referred to as a linked list.

Doubly Linked List

In a doubly linked list (DLL), each node has two link fields to store information about the 
one to the next and also about the one ahead of the node. Hence, each node has knowl-
edge of its successor and also its predecessor. In DLL, from every node, the list can be 
traversed in both the directions (Fig. 6.26).

Head 23 57 99 45

Fig. 6.26 Doubly linked list

Both SSL and DLL may or may not contain a header node. The one with a header 
node is explicitly mentioned in the title as a header-SLL and a header-DLL.These  
are also called as singly linked list with header node and doubly linked list with 
header node.

6.6.3 Linear and Circular Linked Lists

The other classification of linked lists based on their method of traversal is as follows:

1. Linear linked list
2. Circular linked list

Linear Linked List

The linked lists that we have seen so for are known as linear linked lists. All elements of 
such a linked list can be accessed by traversing a list from the first node of the list.

Circular Linked List

Although a linear linked list is a useful and popular data structure, it has some shortcom-
ings. For example, consider an SLL. Given a pointer A to a node in a linear list, we cannot 
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reach any of the nodes that precede the node to which A is pointing. This disadvantage 
can be overcome by making a small change. This change is without any additional data 
structure. The link field of the last node is set to Null in a linear list to mark the end of the 
list. This link field of the last node can be set to point to the first node rather than Null. 
Such a linked list is called a circular linked list (Fig. 6.27).

Head Mon Tue Wed Sun

Fig. 6.27 Circular linked list

From any node in such a list, it is possible to reach any other node in the list. A circu-
lar list could be singly circular or doubly circular list and with or without a header node. 
Circular lists have many applications. We shall study those in further topics.

Linear lists are also called non-circular or grounded lists. The last node’s link field 
of a linear list is set to Null. It is pictorially denoted using the ‘ground’ symbol used in 
electronic circuits. Let us discuss the DLL and its operations.

6.7 dOUbLy Linked List

In SLL, each node provides information about where the next node is. It has no knowl-
edge about where the previous node is. For example, if we are at the ith node in the list 
currently, then to access the (i - 1)th node or (i - 2)th node, we have to traverse the list 
right from the first node. In addition, it is not possible to delete the ith node given only a 
pointer to the ith node. It is also not possible to insert a node before the ith node given only 
a pointer to the ith node (there are other ways that are without link manipulations such as 
using data exchange).

For handling such difficulties, we can use DLLs where each node contains two links, 
one to its predecessor and other to its successor (Fig. 6.28).

Fig. 6.28 Doubly linked list of four nodes

Head
10 20 30 40

Each node of a DLL has three fields in general but must have at least two link fields 
(Fig. 6.29).
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Data field

Pointer to predecessor Pointer to successor45

Fig. 6.29 Node structure of doubly linked list

Program Code 6.9 shows the class of a doubly linked list node.

program CoDe 6.9

class DLL_Node

{

   Public:

      int Data;

      DLL_Node *Prev, *Next;

      DLL_Node()

      {

         Prev = Next = Null;

      }

};

A DLL may either be linear or circular and it may or may not contain a header node. 
DLLs are also called  two-way lists.

6.7.1 Creation of doubly Linked List

Creation of DLL has the same procedure as that of SLL, as shown in Program Code 6.10. 
The only difference is that each node must be linked to both its predecessor and successor.

program CoDe 6.10

class DLL_Node

{

   public:

      int Data;

      DLL_Node *Prev, *Next;

      DLL_Node()

      {

         Prev = Next = Null;
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      }

};

class DList

{

   private:

      DLL_Node  *Head, *Tail;

   public:

      DList()

      {

         Head = Tail = Null;

      }

      void Create();

      DLL_Node* GetNode();

      void Append(DLL_Node* NewNode);

      void Traverse();

      void DeleteNode(int val);

      void Delete_Pos(int pos);

      void Insert_Before(int val);

      void Insert_After(int val);

      void Insert_Pos(DLL_Node *NewNode, int pos);

};

DLL_Node* DList :: GetNode()

{

   DLL_Node *Newnode;

   Newnode = new DLL_Node;

   cout << "Enter Data";

   cin >> Newnode->Data;

   Newnode->Next = Newnode->Prev = Null;

   return(Newnode);

}

void DList :: Append(DLL_Node* NewNode)

{

   if(Head == Null)

   {

      Head = NewNode;

      Tail = NewNode;

   }
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   else

   {

      Tail->Next = NewNode;      //Attach to last node

      NewNode->Prev = Tail;

      Tail = NewNode;

   }

}

void DList :: Create()

{

   char ans;

   DLL_Node *NewNode;

   while(1)

   {

      cout << "Any more nodes to be added (Y/N)";

      cin >> ans;

      if(ans == 'n') break;

      NewNode = GetNode();

      Append(NewNode);

   }

}

void DList :: Traverse()

{

   DLL_Node *Curr;

   Curr = Head;

   if(Curr == Null)

      cout << "The list is empty \n";

   else

      while(Curr != Null)

      {

         cout << Curr->Data << "\t";

         Curr = Curr->Next;

      }

      cout << endl;

}

void main()

{

   DList L2;

   L2.Create();

   L2.Traverse();
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6.7.2 deletion of a node from a doubly Linked List 

Deleting from a DLL needs the deleted node’s predecessor, if any, to be pointed to the 
deleted node’s successor. In addition, the successor, if any, should be set to point to 
the predecessor node as shown in Fig. 6.30.

curr

curr

(a)

(b)

(c)

(d)

46 57 68

46 57 68

46 68

46 68

Fig. 6.30 Deletion node in doubly linked list   (a) Links modifi ed on deletion of node  
(b) Memory of the deleted node freed   (c) Realignment of nodes   (d) After node deletion

The core steps involved in this process are the following:

(curr->Prev)->Next = curr->Next;

(curr->Next)->Prev = curr->Prev;

delete curr;

The C++ code for the same is as shown in Program Code 6.11.

program CoDe 6.11

void DList :: DeleteNode(int val)

{

   DLL_Node *curr, *temp;
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   curr = Head;

   while(curr!=Null)

   {

      if(curr->Data == val)

         break;

      // curr is pointing to the node to be deleted

      curr = curr->Next;

   }

   if(curr != Null)

   {

      if(curr == Head)      // delete fi rst node

      {

         Head = Head->Next;

         Head->Prev = Null;

         delete curr;

      }

      else

      {

         if(temp == Tail)      // delete last node

         {

            Tail = temp->Prev;

            (temp->Prev)->Next = Null;

            delete temp;

         }

         else

         {

            (curr->Prev)->Next = curr->Next;

            (curr->Next)->Prev = curr->Prev;

            delete curr;

         }

      }

      if(Head == Null)

      {

         Tail = Null;

      }

   }

   else

      cout << "Node to be deleted is not found \n";

}

void DList :: Delete_Pos(int pos)

{

   DLL_Node *temp = Head;
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   {

      if(pos == 1)      // delete header node

      {

         Head = Head->Next;

         Head->Prev = Null;

         delete temp;

      }

      else

      {

         while(count != pos)

         {

            temp = temp->Next;

            if(temp != Null)

               count++;

            else

            break;

         }

         if(count == pos)

         {

            if(temp == Tail)      // delete last node

            {

               Tail = temp->Prev;

               (temp->Prev)->Next = Null;

               delete temp;

            }

            else

            {

               (temp->Prev)->Next = temp->Next;

               (temp->Next)->Prev = temp->Prev;

               delete temp;

            }

         }

         else

             cout << "The node to be deleted is not 

found" << endl;

      }

   }

}

void main()

  int count = 1;

   if(Head != Null)
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{

   int val,pos;

   DList L2;

   L2.Create();

   L2.Traverse();

   cout << "Enter Node Data to be deleted-->";

   cin >> val;

   L2.DeleteNode( val);

   L2.Traverse();

   cout << "Enter Node position to be deleted-->";

   cin >> pos;

   L2.Delete_Pos(pos);

   L2.Traverse();

}

6.7.3 insertion of a node in a doubly Linked List 

Now, let us discuss inserting a node in DLL. To insert a node, say Current, we have 
to modify four links as each node points to its predecessor as well as successor. Let us 
assume that the node Current is to be inserted in between the two nodes say node1 and 
node2. We have to modify the following links:

node1->Next, node2->Prev, Current->Prev, and Current->Next

When the Current node is inserted in between node1 and node2, node1’s succes-
sor node changes. Hence, we need to modify node1->Next. For the node node2, its 
predecessor changes. Therefore, we need to modify node2->Prev This is shown in 
Fig. 6.31. 

node1 node2

Current

46 57

55

Fig. 6.31 Inserting a node current

Current is a new node to be inserted. We need to set both its predecessor and succes-
sor by setting the links as Current->Prev and Current->Next
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After the insertion of Current, the resultant modified links should be shown as in 
Fig. 6.32.

node1 node2

Current

46 57

55

Fig. 6.32 Link modification for insertion of a node in a DLL

Hence, to modify the links, the statements would be

1. To modify node1->Next we use the operation
node1->Next = Current;

2. To modify node2->Prev we use the operation
node2->Prev = Current;

3. To set curr->Next, we use the operation
Current->Next = node2; 

4. To set curr->Prev, we use the operation
Current->Prev = node1; 

In brief, the statements to insert a node in between node1 and node2 are as follows:

node1->Next = Current;

node2->Prev = Current;

Current->Next = node2;

Current->Prev = node1;

These statements are with respect to Fig. 6.32, where we considered that the node 
is to be inserted in between node1 and node2.

Though the new node is to be inserted between node1 and node2, we need to know 
only about node1. The node2 is the successor of node1, which can be accessed through 
node1->Next. Practically, the node can be inserted in DLL given only one node after 
which (or before which) the node is to be inserted.

Let us consider the insertion of a node given one node before or after which the node 
is to be inserted, say before node2. Then, the four statements could be

(node2->Prev)->Next = Current;

Current->Prev = node2->Prev;



236 data structures using c++

Current->Next = node2;

node2->Prev = Current;

In brief, a node can be inserted anywhere in the DLL given a node after/before which 
it is to be inserted. The function can be written by passing to it either a node after/before 
which to insert or the position where to insert. One of the parameters would be the node 
to be inserted. Let us see how to insert a node at the fi rst position. We are given a pointer 
to the DLL say Head.

We have to modify the links as shown in Fig. 6.33.

Current

Head

Fig. 6.33 Inserting a node before fi rst node

This is represented by the following statements:

Current->Next = Head;

Head->Prev = Current;

Head = Current;

Current->Prev = Null;

6.7.4 traversal of dLL

Given a head pointer to the DLL; traversal is the same as that of an SLL. The advantage 
of DLL over SLL is, given a pointer P pointing to any of the nodes of list, the list can be 
traversed only in one (forward) direction in SLL, whereas the list can be traversed in both 
(forward and backward) directions in DLL. Again, if we have a circular DLL, it has more 
advantages. It helps us keep the traversal procedure an unending one. Program Code 6.12 
shows the traversal of a DLL.

program CoDe 6.12

void DList :: Insert_Pos(DLL_Node* NewNode, int pos)

{

   DLL_Node *temp = Head;

   int count = 1;

   if(Head == Null)

      Head = Tail = NewNode;
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program CoDe 6.12

void DList :: Insert_Pos(DLL_Node* NewNode, int pos)

{

   DLL_Node *temp = Head;

   int count = 1;

   if(Head == Null)

      Head = Tail = NewNode;

   else if(pos == 1)      // insert before head

   {

      NewNode->Next = Head;

      Head->Prev = NewNode;

      Head = NewNode;

   }

   else

   {

      while(count != pos)

      {

         temp = temp->Next;

         if(temp != Null)

            count++;

         else

            break;

      }

      if(count == pos)

      {

         (temp->Prev)->Next = NewNode;

         NewNode->Prev = temp->Prev;

         temp->Prev = NewNode;

      }

      else

         cout << "The node position is not found" << endl;

   }

}

6.8  CiRCULaR Linked List

The linked lists that we have seen so far are known as linear linked lists. All elements of 
such a linked list can be accessed by fi rst setting up a pointer pointing to the fi rst node 
in the list and then traversing the entire list. Although a linear linked list is a useful data 
structure, it has some drawbacks. For example, consider an SLL. Given a pointer Cur-
rent to a node in an SLL, we cannot reach any of the nodes that precede the Current node 
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(this is not the case with DLL as DLL has two, one backward and one forward, links). 
This drawback can be overcome by making a small change, and this change is without 
any additional data structure. In a singly linear list, the last nodes link field is set to Null. 
Instead of that, store the address of the first node of the list in that link field. This change 
will make the last node point to the first node of the list. Such a linked list is called circu-
lar linked list , shown in Fig. 6.34.

Head
P Q R S

Fig. 6.34 Circular linked list

From any node in such a list, it is possible to reach to any other node in the list. We 
need not traverse the list again right from the first node. Circular linked list is used in 
many applications. Circular linked list is used to keep track of free space (unused nodes) 
in memory. In a circular list, traversal can be continued from current node. It helps us 
to keep the traversal procedure an unending one. The two primary applications of circular 
list is time slicing and memory management.

We can have a circular SLL or DLL. Both alternatives are possible. Similarly, circular 
linked lists could be with or without header nodes.

6.8.1 singly Circular Linked List 

Let us consider an SLL without a header node as shown in Fig. 6.35.

Head
P Q R S

Fig. 6.35 Singly circular linked list

In a singly circular list, the pointer head points to the first node of the list. From the last 
node, we can access the first node. Remember that we cannot access the last node through 
the header node; we have access to only the first node. We need to traverse the whole list 
to reach to the last node. An elegant solution to this is set the pointer Head to point to the 
last node instead of the first node. This is illustrated in Fig. 6.36.

Head
P Q R S

Fig. 6.36 Singly circular linked list
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Now, through Head we have access to the last node, and it also (Head->next) gives us 
the address of the first node.

6.8.2 Circular Linked List with Header node

Consider a circular list with a single node in the list (Fig. 6.37).

Fig. 6.37 Singly circular linked list with two nodes

Head
P Q

Circular list with a single node has a problem of checking end of traversal as

(while(x->link != Head));

This would enter an infinite loop.
So, we can use a circular linked list with header node as shown in Fig. 6.38.

Fig. 6.38 Singly circular linked list with header node

Head

3

Q R S

The circular list with header node drawn in Fig. 6.38 can be redrawn as in Fig. 6.39.

Head Q R S3

Fig. 6.39 Singly circular linked list with header node—representation 2

Suppose we want to insert a new node at the front of this list. We have to change the 
link field of the last node. In addition, we have to traverse the whole list to reach till  
the last node as the link field of the last node is also to be updated. Hence, it is conve-
nient if the head pointer points to the last node rather than the header node, which is 
the first node of the list.

If the singly headed circular linked list has a head pointer as shown in Fig. 6.40, then a 
node can easily be inserted at the front and also at the rear of the list.
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Q R S
Head

Header node

3

Fig. 6.40 Singly headed circular linked list with head pointing to last node

This procedure will have constant time complexity for both insert at front and at rear.

6.8.3 doubly Circular Linked List

In doubly circular linked list, the last node’s next link is set to the first node of the list and 
the first node’s previous link is set to the last node of the list. This gives access to the last 
node directly from the first node (Fig. 6.41).

Fig. 6.41 Doubly circular list

Head 56 28 92 94

Figure 6.41 represents the doubly circular linked list without a header node. Figure 
6.42 is the doubly circular linked list with header node. Header node may store some 
relevant information of the list.

Head

X Y Z T

4

Fig. 6.42 Headed doubly circular list

The operations on circular linked list—insert, delete, create and traverse—
follow the same method as that of linear list except for a few changes. We can redraw the 
circular list with header node as in Fig. 6.43.

Fig. 6.43 Headed doubly circular list—representation 2

Head 4 X Y Z T
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6.9 POLynOMiaL ManiPULatiOns

We have already studied the representation and operations of polynomials using arrays. 
Let us now learn the representation of single variable polynomials using linked list. The 
manipulation of symbolic polynomials is a good application of list processing. Let the 
polynomial we want to represent using a linked list be A(x). It is expanded as,

A(x) = k1x
m + … + kn-1x

2 + knx
1

where ki is a non-zero coeffi cient with exponent m such that m > m - 1> ... > 2 > 1 ≥ 0. 
A node of the linked list will represent each term. A node will have 3 fi elds, which rep-
resent the coeffi cient and exponent of a term and a pointer to the next term (Fig. 6.44).

Coefficient Exponent Link

Fig. 6.44 Polynomial node

For instance, the polynomial, say A = 6x7 + 3x5 + 4x3 + 12 would be stored as in Fig. 6.45.

Head A 76 53 34 012

Fig. 6.45 Polynomial A = 6x7 + 3x5 + 4x3 + 12

The polynomial B = 8x5 + 9x4 - 2x2 -10 would be stored as in Fig. 6.46.

Head B 58 49 2−2 0−10

Fig. 6.46 Polynomial B = 8x5 + 9x4 - 2x2 - 10

The function for the creation of a polynomial can be written as follows. Here, as the 
polynomial is stored in the SLL, the create procedure remains the same as that of the 
linked list we studied before. The difference is the data fi eld we used earlier had single 
integer data fi elds, whereas here, we have two data fi elds and one linked fi eld. The two 
data fi elds are the exponent and the coeffi cient of each term of the polynomial. Program 
Code 6.13 shows the creation of a polynomial.

program CoDe 6.13

class PolyNode

{

   public:

      int coef;

     int exp;
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      PolyNode *link;

};

class Poly

{

   private:

      PolyNode *Head, *Tail;

   public:

      Poly() {Head = Tail = Null;}      // constructor

      void Create();

      PolyNode *GetNode();

      void Append(PolyNode* NewNode);

      void Display();

      Poly PolyMult(Poly A);

      Poly PolyAdd(Poly A);

      void Insert(PolyNode*);

      int Evaluate(int val );

};

void Poly :: Create()

{

   char ans;

  PolyNode *NewNode;

   while(1)

   {

      cout << "Any term to be added? (Y/N)\n";

     cin >> ans;

     if(ans == 'N'|| ans == 'n')

         break;

      NewNode = GetNode();

      if(Head == Null)

      {

         Head = NewNode;

         Tail = NewNode;

      }

      else

         Append(NewNode);

   }

}

void Poly :: Append(PolyNode* NewNode)

{

   if(Tail == Null)

      Head = Tail = NewNode;
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   else

   {

      Tail->link = NewNode;

      Tail = NewNode;

   }

}

PolyNode* Poly :: GetNode()

{

   PolyNode *NewNode;

   NewNode = new PolyNode;

   if(NewNode == Null)

   {

      cout << "Error in memory allocation \ n";

      // exit(0);

   }

   cout << "Enter coeffi cient and exponent";

   cin >> NewNode->coef;

   cin >> NewNode->exp;

   NewNode->link = Null;

   return(NewNode);

}

6.9.1 Polynomial evaluation

The function traversal of SLL can be used with a few modifi cations for polynomial 
evaluation. Given a value of x, we have to evaluate the polynomial as shown in Program 
Code 6.14.

program CoDe 6.14

int Poly :: Evaluate(int val)

{

   int j, result = 0,Power;

   PolyNode *tmp = Head;

   while(tmp != Null)

   {

      Power = 1;

      for(j = 1; j <= tmp->exp; j++)

         Power = Power * val;

      result += (tmp->coef) *Power;

      tmp = tmp->link;

   }

   return result;

}
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6.9.2 Polynomial addition

Let two polynomials A and B be 

A = 4x9 + 3x6 + 5x2 + 1
B = 3x6 + x2 - 2x

The polynomial A and B are to be added to yield the polynomial C. The assumption 
here is the two polynomials are stored in linked list with descending order of exponents.

The two polynomials A and B are stored in two linked lists with pointers ptr1 and 
ptr2 pointing to the first node of each polynomial, respectively. To add these two poly-
nomials, let us use the paper–pencil method. Let us use these two pointers ptr1 and ptr2 
to move along the terms of A and B.

Paper–Pencil Method

If the exponents of the two terms are equal, then their coefficients are added and a new 
term is created for the resultant polynomial C. If the exponent of the current term in A is 
less than the exponent of the current term of B, then a duplicate of the term in B is created 
and attached to C. The pointer ptr2 is advanced to the next term. Similar action is taken 
on A if the exponent of the current term of A is greater than the exponent of the current 
term of B.

Each time a new node is generated, its exponent and coefficient fields are set accord-
ingly, and the resultant term is attached to the end of the resultant term C. For polyno-
mial C, we have ptr3 to move along the resultant polynomial C. It always points to the 
newly appended term, that is, points to the last term of C. This avoids traversal of list C 
to append to the node each time. Attaching a node to a polynomial is the same as that of 
inserting a node at the end of a list. Only when the first node is added, the appropriate 
steps are carried out to initialize ptr3.

An algorithm to attach the term NewTerm to a polynomial, say C, with pointer ptr3 is 
as follows:

1. if(c_ptr = Null)
      then c_ptr = NewTerm;
   else
      c_ptr->link = NewTerm;
   c_ptr = NewTerm;
2. stop

Polynomial Addition Algorithm

The following are the steps to add two polynomials A and B to yield the polynomial C.

1. Let A_ptr and B_ptr be pointers to polynomials A and B, respectively
2. Let C_ptr = Null, be a pointer to C
3. while(A_ptr != Null and B_ptr != Null)
   begin
      allocate node say NewTerm
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      NewTerm->link = Null
      if(A_ptr->exponent = B_ptr->exponent)
      then
      begin
         NewTerm->exponent = A_ptr->exponent 
         NewTerm->coeffi cient = A_ptr->coeffi cient + B_ptr->coeffi cient
         A_ptr = A_ptr->link
         B_ptr = B_ptr->link
      end
      else if(A_ptr->exponent > B_ptr->exponent)
      begin
         NewTerm->exponent = A_ptr->exponent
         NewTerm->coeffi cient = A_ptr->coeffi cient
         A_ptr = A_ptr->link
      end
      else
      begin
         NewTerm->exponent = B_ptr->exponent
         NewTerm->coeffi cient = B_ptr->coeffi cient
         B_ptr = B_ptr->link
      end
   attach NewTerm to C
4. while(A_ptr != Null)
   begin
      allocate new node
      NewTerm->link = Null
      NewTerm->exponent = A_ptr->exponent
      NewTerm->coeffi cient = A_ptr->coeffi cient
      A_ptr = A_ptr->link
      Attach NewTerm to C
end
5. while(B_ptr != Null)
   begin
      allocate new node
      NewTerm->link = Null
      NewTerm->exponent = B_ptr->exponent
      NewTerm->coeffi cient = B_ptr->coeffi cient
      B_ptr = B_ptr->link
      Attach NewTerm to C
   end
6. stop

Program Code 6.15 illustrates the code for polynomial addition.

program CoDe 6.15

poly Poly :: PolyAdd(Poly P2)

{

   PolyNode *Aptr = Head;

   PolyNode *Bptr = P2.Head;
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   Poly C;

   PolyNode *NewTerm;

   while(Aptr != Null && Bptr != Null)

   {

      NewTerm = new PolyNode;

      NewTerm->link = Null;

      if(Aptr->exp == Bptr->exp)

      {

         NewTerm->coef = Aptr->coef + Bptr->coef;

         NewTerm->exp = Aptr->exp;

         C.Append(NewTerm);

         Aptr = Aptr->link;

         Bptr = Bptr->link;

      }

      else if(Aptr->exp > Bptr->exp)

      {

         NewTerm->coef = Aptr->coef;

         NewTerm->exp = Aptr->exp;

         C.Append(NewTerm);

         Aptr = Aptr -> link;

      }

      else

      {

         NewTerm->coef = Bptr->coef;

         NewTerm->exp = Bptr->exp;

         C.Append(NewTerm);

         Bptr = Bptr -> link;

      }

   }      // end of while

   while(Aptr != Null)

   {

      NewTerm = new PolyNode;

      NewTerm->link = Null;

      NewTerm->coef = Aptr->coef;

      NewTerm->exp = Aptr->exp;

      C.Append(NewTerm);

      Aptr = Aptr->link;

   }

   while(Bptr != Null)

   {

      NewTerm = new PolyNode;
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      NewTerm->link = Null;

      NewTerm->coef = Bptr->coef;

      NewTerm->exp = Bptr->exp;

      C.Append(NewTerm);

      Bptr = Bptr->link;

   }

   return C;

}

6.9.3 Polynomial Multiplication

Let A = 4x9 + 3x6 + 5x3 + 1 and B = 3x6 + x2 - 2x be the two polynomials to be multiplied 
and the resultant polynomial be C. Let us revise the paper–pencil method. Polynomial A 
is multiplied by each term of B. We get n partial products if B has n terms in it. Finally, 
we add all these partial products to get the result.

This method generates partial products each of length m, where m is the length of the 
polynomial A. Such n partial products are generated, stored, and fi nally added to get the 
resultant polynomial. Here, m and n are input-dependent. Let us devise a better approach 
where we need not generate, store, and then add all partial products. Hence, a better solution 
is to pick up a term from the polynomial B and multiply it with each term of the polynomial 
A. One term of B and one term of A when multiplied yield one resultant term. This term can 
be immediately added to the resultant polynomial C, and this process is repeated.

To add a resultant term to polynomial C, it is compared with each term of the resultant 
polynomial C to insert the new term at the appropriate location in polynomial C. If the 
new term with equal exponent is found, then the term is added, else it is inserted in the 
resultant polynomial at the appropriate position. This process is repeated for each term of 
B with each term of A. The major steps can be listed as follows:

1. Let A and B be two polynomials.
2. Let the number of terms in A be M and number of terms in B be N.
3. Let C be the resultant polynomial to be computed as C = A ¥ B
4. Let us denote the ith term of the polynomial B as tBi. For each term tBi of the polynomial 

B, repeat steps 5 to 7 where i = 1 to N.
5. Let us denote the jth term of the polynomial A as tAj. For each term of tAj of the 

polynomial A, repeat steps 6 to 7 where j = 1 to M.
6. Multiply tAj and tBi. Let the new term be tCk = tAj ¥ tBi.
7. Compare tCk with each term of the polynomial C. If a term with equal exponent is 

found, then add the new term tCk to that term of the polynomial C, else search for the 
appropriate position for the term tCk and insert the same in the polynomial C.

8. Stop.
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Program Code 6.16 shows the multiplication of two polynomials.

program CoDe 6.16

poly Poly :: PolyMult(Poly P2)

{

   PolyNode *Aptr = Head;

   PolyNode *Bptr = P2.Head;

   Poly C;

   PolyNode *NewTerm;

   while(Bptr != Null)

   {

      Aptr = Head;

      while(Aptr != Null)

      {

         NewTerm = new PolyNode;

         NewTerm->link = Null;

         NewTerm->coef = Aptr->coef * Bptr->coef;

         NewTerm->exp = Aptr->exp + Bptr->exp;

         C.Insert(NewTerm);

         Aptr = Aptr->link;

         cout << "\n C \n";

         C.Display();

      }

      Bptr = Bptr->link;

   }

   return C;

}

void Poly :: Insert(PolyNode *NewTerm)

{

   PolyNode *prev = Head, *Curr = Head;

   if(Head == Null)       // if 1

      Head = Tail = NewTerm;

   else

   {

      Curr = Head;

      while(Curr != Null)

      {

         if(Curr->exp == NewTerm->exp)      //if 2

         {

            Curr->coef += NewTerm->coef;
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            break;

         }

         else      // else2

         {

            if(Curr->exp < NewTerm->exp)      //if 3

            {

               if(Curr == Head)      //if 4

               {

                  NewTerm->link = Head;

                  Head = NewTerm;

                  break;

               }

               else      // else 4

               {

                  prev->link = NewTerm;

                  NewTerm->link = Curr;

                  break;

               }

            }      // end if 3

         }      // end else 2

        prev = Curr;

        Curr = Curr->link;

      }      // end of while

      if(Curr == Null)      // add at end

      {

         prev->link = NewTerm;

         Tail = NewTerm;

      }

   }      // end of else

}      // end of function

void main()

{

   Poly P1, P2, P3;

   P1.Create();

   P1.Display();

   P2.Create();

   P2.Display();

   P3 = P1.PolyMult(P2);

   P3.Display();

   getch();

}
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6.10 RePResentatiOn Of sPaRse MatRix Using Linked List

We have studied the sparse matrix representation 
using arrays, which is a sequential allocation scheme. 
Representing a sparse matrix sequentially allows 
faster execution of matrix operations, and it is more 
storage efficient than linked allocation schemes. 
However, it has many shortcomings. The insertion 
and deletion of elements need the movement of many 
other elements. In applications with frequent insertions and deletions, a linked represen-
tation can be adopted. A basic node structure as shown in Fig. 6.47 is required to represent 
each matrix element.

The value, row, and column fields contain the value, row, and column indices, respec-
tively, of one matrix element. The fields row_link and column_link are pointers to the next 
element in a circular list containing matrix elements for row and column, respectively.

Here, row_link points to the next node in the same row and column_link points to the 
next node in the same column. The principle is that all the nodes, particularly in a row (or 
column), are circularly linked with each other; each row and column contains a header 
node. Thus, for a sparse matrix of order m ¥ n, we have to maintain m header nodes for all 
rows and n header nodes for all columns, plus one extra node, the header node.

Header nodes for each row and column are used such that more efficient insertion 
and deletion algorithms can be implemented. The header node of each row contains 0 in 
the column field, and that of each column contains 0 in the row field. During the imple-
mentation in any programming language, 0 can be replaced by any other suitable value 
such as -1. Header is one additional header node that points to the starting address of the 
sparse matrix.

Header Nodes

1. Row field contains the number of rows.
2. Column field contains the total number of non-zero entries.
3. Row_link field contains pointer to the header node of the first row.
4. Column_link field contains pointer to the header node of the first column.

We may have arrays of pointers A Column[] and A Row[] that contain pointers to the 
header nodes of each column and row, respectively. In Fig. 6.48, both the header nodes 
pointing to the first header node of row and column and the array pointers are shown. The 
header node can provide the pointer to the header nodes linked list of both rows and col-
umns, but it is through sequential traversal. However, arrays of pointers A Column and A 
Row can provide direct access to each row header node and column header node. Further 
element access will be obviously through sequential traversal. Hence, we may implement 
both or either of A Row/A Column and header node.

Row_link Column_link

Value Row Column

Fig. 6.47 Node structure for 
linked sparse matrix
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Header

A Row (1)

10 6 0

0

0 2 2 1

10 3 1

7 2 4

3 6 4

12 4 3

8 2 5 4 2 7

5 6 7

0

0

0

0

6 1 3 9 1 5

0 0 0 0 0 07

A Row (2)

A Row (3)

A Row (4)

A Row (5)

A Row (6)

Row pointers

Column headers A Col (1) A Col (2) A Col (3) A Col (4) A Col (5) A Col (6) A Col (7)

Fig. 6.48 Multilinked sparse matrix

6.11 Linked staCk

In Chapter 3, we have implemented stacks using arrays. However, an array implementa-
tion has certain limitations. One of the limitations is that such a stack cannot grow or 
shrink dynamically. This drawback can be overcome by using linked implementation. 
We have studied linked list implementation of a linear list. Let us study the same linked 
list with restriction on addition and deletion of a node to use it as a stack. A stack imple-
mented using a linked list is also called linked stack.

Each element of the stack will be represented as a node of the list. The addition and 
deletion of a node will be only at one end. The first node is considered to be at the top of 
the stack, and it will be pointed to by a pointer called top. The last node is the bottom of 
the stack, and its link field is set to Null. An empty stack will have Top = Null. A linked 
stack with elements (X, Y, Z) in order (X on top) may be represented as in Fig. 6.49.

Top X Y Z

Fig. 6.49 Linked stack of  elements (X, Y, Z)
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Figure 6.49 shows a pictorial representation of the stack S containing three elements 
(X, Y, Z). Here, top is a pointer pointing to the top element of the stack. X is at the top 
of the stack and Z is at the bottom of the stack. SLL is suitable to implement stack using 
linked organization as we operate at one end of the list only.

6.11.1 Class for Linked stack

The node of the list structure is defi ned in Program Code 6.17.

program CoDe 6.17

class Stack_Node

{

   public:

      int data;

      Stack_Node *link;

};

class Stack

{

   private:

      Stack_Node *Top;

      int Size;

      int IsEmpty();

   public:

      Stack()

      {

         Top = Null;

         Size = 0;

      }

      int GetTop();

      int Pop();

      void Push( int Element);

      int CurrSize();

};

Here, the stack can have any data type such as int, char, fl oat, struct, and so on for 
the data fi eld. The link fi eld is a pointer pointing to the node below (next to) it. The Top 
serves the purpose of the variable associated with the data structure stack here. Similar 
to array implementation, an empty stack can be created by initializing the Top. This is 
going to hold the address of a node. It is a pointer rather than an integer as in contiguous 
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stack. Hence to represent an empty stack, Top is initialized to Null. Every insert and 
delete of a node will be only at the end pointed by the pointer variable Top. Figure 
6.50 represents the insertion of data in a linked stack considering the following sequence 
of instruction:

S.Create(), S.Push(Z), S.Push(Y), S.Pop(), S.Push(X)

1. Create S

Top = Null

2. S.Push(Z)

top

3. S.Push(Y)

4. S.Pop()

5. S.Push(X)

Y Z

top X Z

top Z

top Z

Fig. 6.50 Insertion of data in linked stack

Here, the stack grows and also shrinks at Top. Let us see the functions required to 
implement a stack using a linked list.

6.11.2 Operations on Linked stack

The memory for each node is dynamically allocated on the heap.  So when an item is 
pushed, a node for it is created, and when an item is popped, its node is freed (using 
delete). The only difference is that the capacity of a linked stack is generally greater 
than that of a contiguous stack since a linked stack will not become full until the dynamic 
memory is exhausted  Program Code 6.18 shows operations on a linked stack. Figure 6.51 
shows a logical view of the linked stack. 
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program CoDe 6.18

class Stack_Node

{

   public:

      int data;

      Stack_Node *link;

};

class Stack

{

   private:

      Stack_Node *Top;

      int Size;

      int IsEmpty();

   public:

      Stack()

      {

         Top = Null;

         Size = 0;

      }

      int GetTop();

      int Pop();

      void Push(int Element);

      int CurrSize();

};

int Stack :: IsEmpty()

{

   if(Top == Null)

      return 1;

   else

      return 0;

}

int Stack :: GetTop()

{

   if(!IsEmpty())

      return(Top->data);

}

Fig. 6.51 Logical view
of a linked stack

7

6

5

Top
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void Stack :: Push(int value)

{

   Stack_Node* NewNode;

   NewNode = new Stack_Node;

   NewNode->data = value;

   NewNode->link = Null;

   NewNode->link = Top;

   Top = NewNode;

}

int Stack :: Pop()

{

   Stack_Node* tmp = Top;

   int data = Top->data;

   if(!IsEmpty())

   {

      Top = Top->link;

      delete tmp;

      return(data);

   }

}

We have designed the functions for operations on stack, where the stack is imple-
mented using linked organization. The Top is initialized to Null to indicate empty stack. 
The Push() function dynamically creates a new node. After creating a new node, the 
pointer variable Top should point to the newly added node in the stack.

void main()
{
   Stack S;
   S.Push(5);
   S.Push(6);
   cout << S.GetTop()<<endl;
   cout << S.Pop()<<endl;
   S.Push(7);
   cout << S.Pop()<<endl;
   cout << S.Pop()<<endl;
}

Output
   6
   6
   7
   5
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6.12  Linked QUeUe

We studied about how to represent queues using sequential organization in Chapter 5. 
Such a representation is effi cient if we have a circular queue of fi xed size. However, 
there are many drawbacks of implementing queues using arrays. The fi xed sizes do not 
give fl exibility to the user to dynamically exceed the maximum size. The declaration 
of arbitrarily maximum size leads to poor utilization of memory. In addition, the major 
drawback is the updating of front and rear. For correctness of the said implementation, 
the shifting of the queue to the left is necessary and to be done frequently. Here is a good 
solution to this problem which uses linked list. We need two pointers, front and rear. 
Figure 6.52 shows a linked queue which is easy to handle.

Rear

Front

Fig. 6.52 The linked queue

Notice that the direction link for nodes is to facilitate easy insertion and deletion of 
nodes. One can easily add a node at the rear and delete a node from the front.

One of the node structures could be as in Program Code 6.19.

program CoDe 6.19

class Student

{

   public:

      int Roll_No;

      char Name[30];

      int Year;

      char Branch[8];

      Student *link;

};

class Queue

{

   Student *front, *rear;

   public:

      Queue()

      {

         front = rear = Null;

      }

};
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Let us consider the following node structure for studying the linked queue and 
operations:

class QNode
{
   public:
      int data;
      QNode *link;
};

class Queue
{
   QNode *Front, *Rear;
   int IsEmpty();
   public:
      Queue()
      {
         Front = Rear = Null;
      }
      void Add( int Element);
      int Delete();
      int FrontElement();
      ~Queue();
};

int Queue :: IsEmpty()
{
   if(Front == Null)
      return 1;
   else
      return 0;
}

The queue element is declared using the class QNode. Each node contains the data 
declaration and the link pointer to the next element in the queue. This declaration creates 
an empty queue and initializes the pointers front and rear to Null. Here, front always 
points to the first node of queue and rear points to the last node of queue.

Queue empty condition is simply checked by comparing the front with Null. The 
function IsEmptyQ returns 1 (i.e., true) if the queue is empty and returns 0 (i.e., false), 
otherwise.

int Queue :: IsEmpty()
{
   if(Front == Null)
      return 1;
   else
      return 0;
}
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FrontElement() returns the data element at the front of the queue. Here, the front 
is not updated. FrontElement() just reads what is at front.

int Queue :: GetFront()
{
   if(!IsEmpty())
      return(Front->data);
}

Note that if the NewNode is a node getting added in an empty queue, then along with 
the rear, the front should also be set to point to the newly added node, which is at the 
front of the queue. Hence, as both the front and the rear may get updated. Program 
Code 6.20 shows the addition of an element to a linked queue.

program CoDe 6.20

void Queue :: Add(int x)

{

   QNode *NewNode;

   NewNode = new QNode;

   NewNode->data = x;

   NewNode->link = Null;

   // if the new is a node getting added in empty queue

   //then front should be set so as to point to new

   if(Rear == Null)

   {

      Front = NewNode;

      Rear = NewNode;

   }

   else

   {

      Rear->link = NewNode;

      Rear = NewNode;

   }

}

Delete() function fi rst verifi es if there is any data element in the queue. If there is an 
element, Delete() gets and returns the data at the front of the queue to the caller func-
tion. Then, the front is set to point to the new queue front node, which is next to the 
node being deleted. If the last node is being deleted, then the deleted node’s next pointer is 
guaranteed to be Null. Note that if the current deletion of a node results in queue empty 
state, then along with the front, the rear should also be set to Null.

int Queue :: Delete()
{
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   int temp;
   QNode *current = Null;
   if(!IsEmpty())
   {
      temp = Front->data;
      current = Front;
      Front = Front->link;
      delete current;
      if(Front == Null)
         Rear = Null;
      return(temp);
   }
}

int Queue :: FrontElement()
{
   if(!IsEmpty())
      return(Front->data);
}

void main()
{
   Queue Q;
   Q.Add(11);
   Q.Add(12);
   Q.Add(13);
   cout << Q.Delete() << endl;
   Q.Add(14);
   cout << Q.Delete() << endl;
   cout << Q.Delete() << endl;
   cout << Q.Delete() << endl;
   Q.Add(15);
   Q.Add(16);
   cout << Q.Delete() << endl;
   cout << Q.Delete() << endl;
}

Output
11
12      // due to FrontElement
12
13
14
15
16

6.12.1 erasing a Linked Queue

The following function in Program Code 6.21 traverses through the whole queue and also 
releases the memory allocated for each node. This task is handled by a destructor.
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program CoDe 6.21

void Queue :: ~Queue()

{

   QNode *temp;

   while(Front! = Null)

   {

      temp = Front;

      Front = Front->link;

      delete temp;

   }

   Front = Rear = Null;

}

The linked queue may have the fi rst node on a queue as a header node where the data 
fi eld may hold some relevant information. In such a list, the fi rst node, that is, the header 
node, is ignored (i.e. skipped) during Delete() operation. Similarly, the Add() function 
and queue empty condition will be changed accordingly.

6.13  geneRaLized Linked List

We have defi ned and represented linear list, which contains series of data elements, all of 
which had the same data type. In this topic, we shall extend the notion of list even further. 
We shall study generalized lists, which may be a list of lists.

Generalized lists are defi ned recursively as lists whose members may be single data 
elements or other generalized lists. Generalized lists are the most fl exible and use-
ful structures. We can use such lists to represent virtually all of the data structures. 
In addition, generalized lists provide the key data structure for several programming 
languages, such as LISP. Other languages, such as T and Miranda, include generalized 
lists and their operations as built-in capabilities. This widespread inclusion of general-
ized lists in many languages and environments attests the value of such lists in many 
applications.

6.13.1 defi nition

A generalized list is a linear list (non-indexed) of zero or more data elements or general-
ized lists. In other words, a generalized list is a fi nite sequence of n ≥ 0 elements, a1, a2, 
... an, which we write as list A = (a1, a2, ..., an), where ai is either an atom or the list. The 
elements of ai, where 1 £ i £ n, which are not atoms are said to be the sub-lists of the list. 
Here A is the name of generalized list and n is its length.

Thus, a generalized list may be made up of a number of components, some of which 
are data elements (atoms) and others are generalized lists.
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Let us use the common terms being referred to with respect to the generalized list, 
Head and Tail. These terms refer to parts of the generalized list, that is, Head is the first 
component in the generalized list, and Tail is the list with the first component removed. If 
n £ 1, then a1 is the head of list whereas (a2, ... an) is the tail of list.

Some examples of generalized lists are the following:

1. A = () The empty (or null) list.
2. B = (a, (b, c), d)  List of three elements—the first element is a, the second 

element is list (b, c), and the third element is d.
3. C = (B, B, A)  List of length 3 with the first and the second element as 

list B and the third element as list A, which is a null list.
4. D = (a, b, D)  List of length 3 which is recursive as it includes itself as 

one of the elements. It can also be written as 

D = (a, b, (a, b, (a, b, ...) ...

In example 2, A is a list made up of three components. The first component is an 
atom, the second component is a list made up of two atoms, and the third component 
is the atom d.

One of the better approaches to visualize the generalized lists is using a header node. In 
this approach, each generalized list has a header node labelled Head. Figure 6.53 shows 
the pictorial representation of list B.

B Head a d

b

c

Head

Fig. 6.53 Representation of B = (a, (b, c), d)

In example 3, the list C has three components: the first component is list B, the second 
component is again list B, and the third component is list A. This can be pictorially viewed 
as in Fig. 6.54.

Head
Head

BC Head
B

Head
A

Fig. 6.54 Representation of C = (B, B, A)
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The list D in example 4 can be viewed as Fig. 6.55.

D Head a b Head
D

Fig. 6.55 Representation of D = (a, b, D)

These cases represent the categories of generalized lists in the order of implementation 
complexity. The lists could be one of the following categories:

1. Lists with no shared references—The components of one list are not members of any 
other list. In example 2, B is a list with no shared references.

2. Lists with shared references—The components of one list can be the members of 
another list. The logical interpretation of lists leads to two categories as the following:
(a) Static interpretation—The current status of the referenced list is anticipated. The 

referenced list is copied into the referencing list.
(b) Dynamic interpretation—The list itself is anticipated. Any future changes in the 

referenced list should be reflected in the referencing list.
3. Recursive list—A recursive list is the one that directly or indirectly references itself. 

Here D is a recursive list.

Here, the referenced list is the one that is a member of the other list, and the referencing 
list is the one being created.

6.13.2 applications

The generalized list is the most flexible data structure that can be used for almost every 
data structure that is linear or non-linear. Let us represent the set and the polynomial 
using a generalized list to learn why generalized list is said to be the supreme data 
structure. For simplicity, we shall learn the implementation of generalized list with no 
shared references and no recursive lists. Such list has members that are not shared refer-
ences, that is, members of list would not reference to other list and the list would not 
have the member that directly or indirectly refers itself. The popular implementation  
of such lists uses the linked list with a header node as in Figs. 6.56–6.58. Let us consider 
three lists L1, L2, and L3 as L1 = (a, b, c, d), L2 = (a, (b), (c,d), e), and L3 = (a, ((b)), c). 
The pictorial representation of these lists using header node is shown in Figs 6.56–6.58, 
respectively.

L1
Head a b c d

Fig. 6.56 GLL with header nodes for L1 = (a, b, c, d)
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L2 a Head Head e

b c

d

Head

Fig. 6.57 GLL with header nodes for L2 = (a, (b), (c,d), e)

L3
Head Head

b

Head

c

Fig. 6.58 GLL with header nodes for L3 = (a, ((b)), c)

Here, L1 has four members which are atoms, L2 too has four members but two of them 
are lists, and L3 has three members in it one of which is a list that has the list as a member 
again. The pictorial representation very clearly reveals it. Now, we need to reflect this data 
type and implement the code for the generalized linked list. We need to clearly distinguish 
between a member that is an atom and a member that is a list. In a linked representation 
of the generalized list, each node has fields as either

1. Data and nLink—the data field(s) would store data and the nLink field refers to the 
next member node which could be an atom or a list or

2. Header node that has two links dlink and nLink, where dlink  is used to refer to the 
first node of the list member (which could be an atom or a list) and the nLink refers to 
the next member node (which could be an atom or a list) (Fig. 6.59).

Data nLink dLink nLink

Data node Header node

Fig. 6.59 Node structure of a generalized list
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In general, it indicates that nLink is the fi eld that holds 
the address of the next node that represents the member, 
which could be an atom or a header node of the list. The 
fi rst fi eld of each node is either data or dLink in case 
of Header node. Hence, we need to differentiate the fi rst 
fi eld clearly. One of the solutions is to add an additional 
fi led, say tag, to indicate whether the fi rst fi eld is data or 
dLink that would clearly differentiate between the data 
and Header node (Fig. 6.60).

Here, when Tag = 1, it indicates that the second fi eld 
is data, and Tag = 0 indicates that it is the header node where the second fi eld holds the 
address of the fi rst node of the list member.

Further, we notice that the second fi eld at any instant holds either data or dLink 
but not both. Two of these are of different data types. Hence, it would be effi cient to 
share memory location. This leads to the use of union (also known as variant records) 
of programming language. The node structure now can be defi ned as in Program 
Code 6.22.

program CoDe 6.22

class GNode

{

   int Tag;

   union

   {

      <data type> Data;

      GNode *dLink;

   }

   GNode * nLink;

};

class GLL

{

   private:

      GNode * Head;

   public:

      GLL() {Head = Null;}

      void InsertNode();

      void PrintGLL();

};

Tag Data

or1/0

dLink

nLink

Data/header node

Fig. 6.60 Tag for differentiating 
between data node and 

header node
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Let us now see how we can use the generalized linked list to efficiently represent multi-
variable polynomials and sets.

6.13.3  Representation of Polynomials Using generalized Linked List 

We have learned the use of linked list for the representation and operations of polynomial 
with a single variable. In practice, we often need to process a polynomial with more than 
one variable. Consider the following polynomial P with three variables x ,y, and z. Con-
sider the two-variable polynomial Q of x and y.

Q(x, y) =  5x4y3 + 6x6y5 + 3x5y2 + xy

Now, similar to a single variable polynomial, we can  represent this polynomial Q(x,y) 
as a sequential organization with four fields: coefficient, Exp_X, Exp_Y, and nLink as  
in Fig. 6.61.

Coefficient Exp_X Exp_Y nLink

Fig. 6.61 Two-variable polynomial

Similarly, for P(x, y, z) = 9x8y2z + 4x4y3z3 + x6y5z4 + 8x5y2z + 7x4y6z + 4xyz + 3xz we can  
represent this polynomial P(x, y, z) as a sequential organization with five fields: coeffi-
cient, Exp_X, Exp_Y, Exp_Z, and nLink as in Fig. 6.62.

Coefficient Exp_X Exp_Y Exp_Z nLink

Fig. 6.62 Three-variable polynomial

However, such representations denote that the polynomials in different number of vari-
ables would need a different number of fields. These nodes would have to differ in size 
depending on the number of variables. Such representations would lead to complexity in 
storage management for the polynomials with two, three, or more variables. We need to 
devise an efficient representation of multiple variable polynomials. An elegant solution is 
to go for a generalized list with fixed size nodes, which would represent the polynomial 
with any number of variables. Let us see how can we achieve it.

Consider the following polynomial:

P(x,y,z) = 5x9y4z3 + 6x7y4z3 + 3x8y2z3 + 3x5y3z + 8x3y3z + 2y2z

This polynomial can be rewritten as

((5x9 + 6x7)y4 + (3x8)y2)z3 + ((3x5 + 8x3)y3 + 2y2)z
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We can write such a polynomial as one with a single variable whose each term node 
would be as in Fig. 6.63. 

Tag

Coefficient

or

dLink

Variable Exponent nLink

Fig. 6.63 Representation of multi-variable polynomial as single variable polynomial

For example, the term as 9z2 would be represented as in Fig. 6.64.

Tag = 1 9 Z 2 nLink

Fig. 6.64 Representation of the term 9z2

The term as (2y3 + 3x2)z2 would be represented as in Fig. 6.65.

Tag = 2 dLink Z 2 nLink

Head

Fig. 6.65 Representation of the term (2y3 +3x2)z2

We notice that for a polynomial of z with 10 terms, the third field of all nodes would be set to 
z for all term nodes. Can we avoid storing z for all terms of a polynomial? This is possible by 
storing it only once using the header node. For the header node, the fields Tag, nLink, and 
dLink are used, and the remaining two fields remain unused and it can be used for storing the 
variable.

Now, the node structure becomes as in Fig. 6.66.

Fig. 6.66 Representation of multi-variable 
polynomial as single variable polynomial 

Tag = 0/1/2
Variable,

coefficient, or

dLink 

Exponent nLink
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The multi-variable polynomial that is represented as a single variable polynomial whose 
coeffi cient is either constant or another polynomial, can now be very well stored using a 
linked list with such a node structure.

For example, the three-variable polynomial P(x,y,z) can be represented factoring out a 
variable z, followed by the second variable y.

Let P(x, y, z) be 5x9y4z3 + 6x7y4z3 + 3x8y2z3 + 3x5y3z2 + 8x3y3z2 + 6y2z

This polynomial can be rewritten as

(5x9y4+ 6x7y4 + 3x8y2)z3 + (3x5y3 + 8x3y3)z2 + 6y2z

On observation of P(x, y, z), we can notice that there are two terms in the variable z, BZi + 
CZj + DZk, where B, C, and D are polynomials themselves of variables x and y.

Now, the polynomial can further be rewritten as

((5x9 + 6x7)y4 + (3x8)y2)z3 + ((3x5 + 8x3)y3)z2+ ((6x0)y2 )z.

Now, C(x, y), B(x, y), and D(x, y) are of the form Eym + … + Fyn, where E and F are poly-
nomials of x. Continuing in this way, we see that every polynomial consists of a variable 
plus coeffi cient and exponent pairs, and the coeffi cient  itself could be a polynomial.

Each node would be one of the three—the header node (Fig. 6.67), data node with 
constant coeffi cient (Fig. 6.68), and the data node whose coeffi cient is a polynomial 
(Fig. 6.69). These can be pictorially viewed as follows:

Fig. 6.67 Representation of header node

Tag Variable nLink

0 z nil

 
Fig. 6.68 Representation of data node with 

constant coeffi cient

Tag Coefficient Exponent nLink

1 12 3

Fig. 6.69 Representation of data node with 
polynomial coeffi cient

Tag dLink Exponent nLink

2 4

Thus, every polynomial, regardless of the number of variables in it, can be represented 
using nodes. This is presented in  Program Code 6.23:

program CoDe 6.23

class GLLPolyNode

{
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   int Tag;

   union

   {

      char variable;

      fl oat coeffi cient;

      GLLPolyNode *dLink;

   };

   int exponent;

   GLLPolyNode *nLink;

};

class GLLPoly

{

   private:

      GLLPolyNode *Head;

   public:

      GLLpoly() {Head = Null;}

      void InsertNode();

      void PrintGLL();

};

Pictorially, this can be viewed as in Fig. 6.70. Here, dLink is the downlink and nLink is 
the next link.

Variable

Coefficient
Tag
0/1/2

dLink

Exponent nLink

Fig. 6.70 The GLL node for polynomial 

The following are a few examples to elucidate this concept:

1. P(x,y) = 9x2y2 + 6xy2 + y + x2

 This polynomial of two variables can be rewritten as

P = y2(9x2 + 6x) + y + x2y0

This is represented in Figs 6.71(a) and (b).

2. Q = 8x3y3z3 + 3x3y2z3 + y2z2 + xy2z2 + 8x + 9y

This can be rewritten as z3(x3(8y3 + 3y2)) + z2(y2 (1 + x)) + 8xz0 + 9yz0. The pictorial 
representation of the Q is shown in Fig. 6.72.

Note that only three fi elds of the nodes are shown for convenience and the unused one 
is omitted.
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Fig. 6.71 Polynomial representation (a) The GLL for 9x2y2 + 6xy2 + y + x2 (b) The 
GLL with three fields, omitting unused field

0 y nil

1 1 1

0 x

0 x

1 9 2 1 6 1

1 1 2

2 02 nil

(a)

(b)

0y

1 1

x 0

g 2 6 1

21

0 00 2

Head

x 0

Fig. 6.72 The GLL for 8x3y3z3 + 3x3y2z3 + y2z2 + xy2z2 + 8x + 9y

z 0 3
Head

2 00

3 0y 19

0y 2

0x 18

110x 01

0y 38 23

0x

6.13.4 Representation of sets Using generalized Linked List

Let A be a set, A = {a, b, {c, d, { }}, {e, f}, g}. Here, A consists of elements that are either 
atoms or sets. Hence, we need a GLL node to convey whether the member of set is an 
atom or a set. The generalized list can be represented using the node structure as Fig. 6.73. 
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Fig. 6.73 Generalized list representation using node structure 

Tag Data/dLink nLink

Here, the tag field is set to 0 if the member is an atom and is set to 1 if it is another list. 
Accordingly, the second field would represent the data or downlink, respectively.

Figure 6.74 shows the GLL representation for the following sets:

1. B = (a, (b, c), d)
2. C = (B, B, ())
3. D = (a, D)

Figure 6.75 shows the GLL representation for the set A = {{a, b}, {{c, d}, e}}.

B 0 1

0 b

1

0 a

1

1

0 d

0 c

1 0

a

C

D

Fig. 6.74 The GLL representation for B, C, and D 

Fig. 6.75 The GLL representation for A 

A 1

1

0 c 1 d

1

0 b

0 e

0 a

The set X  = {L, M, {N, {O, P}}, {Q, {R, {S, T}}, A, {B, C}} is pictorially represented 
using a generalized linked list in Fig. 6.76. 
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0 0 1 1

11

L M 0 1A

0 Q0 N

0 P0 0

0 B

0 1R

0 S 0 T

0 C

Fig. 6.76 The GLL for set X 

We have represented the polynomials and sets using generalized linked list. Let us write 
the functions for traversing and printing the generalized linked list.

Printing Generalized Linked Lists

Program Code 6.24 gives the code for printing a GLL.

program CoDe 6.24

void GLL :: PrintGLL()

{

   Stack S;

   GLLNode *curr = Null;

   S.Push(Head);

   curr = Head;

   while(1)

   {      

      if(curr == Null)

      {      

         if !S.IsEmpty()

            curr = S.Pop();

         if(currÆtag == 1)

            cout << currÆdata;

         curr = currÆnlink;

         else if(currÆnlink != Null)

            S.push(currÆnlink)

         curr = currÆdlink

      }      //end if

   }      // end while

}      // end print
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6.14 MORe On Linked Lists

The function traversal of SLL can be used with a few modifi cations for polynomial evalua-
tion. Given a value of x, we have to evaluate the polynomial as shown in Program Code 6.14.

6.14.1 Copying a Linked List

Consider the Copy_List() function, shown in Program Code 6.25, that takes a list and 
returns a complete copy of that list. One pointer can iterate over the original list in the 
usual way. Two other pointers can keep track of the new list: one head pointer and one tail 
pointer, which always points to the last node in the new list. The fi rst node is done as a 
special case, and then the tail pointer is used in the standard way for the others.

program CoDe 6.25

Node *Llist :: CopyList()

{

   Node *current = Head;

   Node *newList = Null; 

   Node *Tail = Null; 

   while(current != Null)

   {

      if(newList == Null)

      {

         newList = new Node;

         newList->Data = current->Data;

         newList->link = Null;

         Tail = newList;

      }

      else

      {

         Tail->link = new Node;

         Tail = Tail->link;

         Tail->Data = current->Data;

         Tail->link = Null;

      }

      current = current->link;

   }

   return(newList);

}

16.4.2 Computing the Length of a Linked List

The Length() function, in Program Code 6.26, takes a linked list and computes the num-
ber of elements in the list.
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Length() is a simple list function, but it demonstrates several concepts, which will be 
used later in more complex list functions.

program CoDe 6.26

int Llist :: Length()

{

   Node *current = Head;

   int count = 0;

   while(current != Null)

   {

      count++;

      current = current->link;

   }

   return count;

}

Calling Length()

Program Code 6.27 is a typical code that calls Length(). It fi rst calls create() to make 
a list and store the head pointer in a local variable. It then calls Length() on the list and 
catches the int result in a local variable.

program CoDe 6.27

void LengthTest() 

{

   Llist myList; 

   mylist.Create();

   int len = mylist.Length(); 

}

6.14.3 Reversing singly Linked List Without temporary storage

The procedure for reversing a singly linked list without temporary storage is illustrated 
by Program Code 6.28.

program CoDe 6.28

void Llist :: Reverse()

{

   Node *curr, *prev, *next;

   prev = Head;

   curr = Head->link;
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   prev->link = Null

   while(temp != Null)

   {

      next = temp->link;

      temp->link = prev;

      prev = temp;

      temp = next;

   }

   head = prev;

}

6.14.4 Concatenating two Linked Lists

Concatenation of two linked lists is illustrated by Program Code 6.29.

program CoDe 6.29

void Llist :: concatanate(Llist A)

{

   Node *X, *Y;

   X = Head;

   Y = A.Head;

   while(X->link != Null)

   {

      X = X->link;

   }

   X->link = Y;

   Head = X;

}

//A call to concatenate:

{

   Llist L1, L2;

   L1.Create(); L2.Create();

   L1.Concatanate(L2);

}

Here, X and Y are concatenated, and X is the pointer to the fi rst node of the resultant list.

6.14.5  erasing the Linked List

The procedure for erasing a linked list and returning all nodes to the free pool of memory 
is illustrated by Program Code 6.30.
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program CoDe 6.30

void Llist :: ~Llist()

{

   Node *temp;

   while(Head != Null)

   {

      temp = Head;

     Head = Head->link;

      delete temp;

   }

}

6.15 aPPLiCatiOn Of Linked List—gaRbage COLLeCtiOn 

Memory is just an array of words. After a series of memory allocations and de-alloca-
tions, there are blocks of free memory scattered throughout the available heap space. To 
be able to reuse this memory, the memory allocator will usually link the freed blocks 
together in a free list by writing pointers to the next free block in the block itself. An 
external free list pointer points to the fi rst block in the free list. When a new block of 
memory is requested, the allocator will generally scan the free list looking for a free 
block of suitable size and delete it from the free list (relinking the free list around the 
deleted block).

One of the components of an operating system is the memory management module. 
This module maintains a list, which consists of unused memory cells. This list very often 
requires the operations to be performed on the list, such as insert, delete, and search 
(traversal). Such a list implemented as a linked organization is called the list of available 
space, free storage list, or the free pool.

Suppose some memory block is freed by the program. The space available can be used 
for future use. One way to do so is to add the blocks in the free pool. For good memory 
utilization, the operating system periodically collects all the free blocks and inserts into 
the free pool. Any technique that does this collection is called  garbage collection. Gar-
bage collection usually takes place in two phases. First, the process runs through all the 
lists, tagging those cells, which are currently in use. In the second phase, the process runs 
through memory, collecting all untagged blocks and inserting the same in free pool. In 
general, garbage collection takes place when either overfl ow or underfl ow occurs. In addi-
tion, when the CPU is idle, the garbage collection starts. Note that the garbage collection 
is invisible to the programmer.

Overfl ow Sometimes, a new data node is to be inserted into data structure, but there is 
no available space, that is, free pool is empty. This situation is called overfl ow.
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Circular linked list The linked list whose link 
fi eld of last node is set to point to the fi rst node 
rather than Null is called a circular linked list.

delete operator To destroy a dynamically allo-
cated variable/object and free the space for the 
object, the operator delete is used.

Doubly linked list In doubly linked list , each node 
has two link fi elds to store information about the 
one next to and also about the one ahead of the 
node. Hence, each node has knowledge of its suc-
cessor and also its predecessor. In doubly linked 
list, the list can be traversed in both the directions 
from every node.

Dynamic memory allocation The process of al-
locating memory at run-time is known as dynamic 
memory allocation.

Generalized lists Generalized lists are defi ned re-
cursively as lists whose members may be single 
data elements or other generalized lists. A gener-
alized list is a linear list (non-indexed) of zero or 
more data elements or generalized lists. In other 
words, a generalized list is a fi nite sequence of 
n ≥ 0 elements, a1, a2, ...an, which we write as list 
A = (a1, a2, ..., an), where ai is either an atom or 
a list. The elements of ai, where 1 £ i £ n, which 
are not atoms are said to be the sub-lists of list.

ReCaPitULatiOn

• Linear list is the list where each element has 
a unique predecessor and a unique succes-
sor. Linear lists are of two categories, namely 
general and restricted. General list is the one 
where data can be inserted or deleted any-
where in the list, whereas in restricted lists, 
there are a few restrictions. 

• Linear list can be implemented using arrays 
and pointers. An implementation that uses 
pointers and dynamic memory allocation 
is called as linked list. A linked list is a very 
effective and effi cient dynamic data structure. 
Items may be added or deleted from it at any 
position much easily as compared to arrays.

• Linked lists are useful data structures, espe-
cially if you need to automatically allocate and 

de-allocate space in a list. The basic opera-
tions are create list, transverse the list, 
insert, and delete a node.

• There are two variations of linked list, namely 
SLL and  DLL. Both the linked lists can be cir-
cular lists. The linked list could be with or with-
out a header node. Header node is used to 
store some information about the list so that it 
can be accessed without traversing the same. 
Information could be total number of nodes in 
the list, and similarly any other.

• Linked list is the most popular data structure 
used. It has many applications such as pro-
cess queue, print queue, garbage collection, 
and so on.

Underfl ow This refers to the situation where the programmer wants to delete a node 
from the empty list.

The most suitable data structure for garbage collection is circular DLL. It allows the 
process of search to be unending traversal through list process as it is circular; DLL 
allows to traverse on both the sides. 

key teRMs
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Linear linked list The linked list that we have seen 
so far are known as linear linked lists. All elements 
of such a linked list can be accessed by traversing 
the list from the fi rst node of the list.

Linked list A linked list is an ordered collection of 
data where each element contains minimum two 
values, data and link(s), to its successor (and/or 
predecessor).

Linked stack and queue A stack implemented us-
ing a linked list is called a linked stack and imple-
mentation of queue using a linked list is called as 
a linked queue.

new operator The new operator creates a new 
dynamic object of a specifi ed type and returns a 
pointer that points to this new object.

Null Null is a special constant pointer value that 
is used to give a value to a pointer variable that 
would not otherwise have a value. Null can be as-
signed to a pointer variable of any type.

Singly linked list A linked list where every node 
has one link fi eld, to provide information about 
where the next node of the list is, is called as sin-
gly linked list.

Multiple choice questions

 1. The concatenation of two lists is to be 
performed in O(1) time. Which of the following 
implementations of a list should be used ?

 (a) Singly linked list
 (b) Doubly linked list
 (c) Circular doubly linked list
 (d) Array implementation of list
 2. Which of the following operations is performed 

more effi ciently by a doubly linked list than by 
a linear linked list?

 (a) Deleting nodes whose location is given
 (b) Searching an unsorted list for a given item
 (c)  Inserting a node after the node with a given 

location
 (d) Traversing the list to process each node
 3. Consider the linked list of n elements. What 

is the time taken to insert an element after an 
element pointed by some pointer?

 (a) O(1)
 (b) O(log2n)
 (c) O(n)
 (d) O(n log2n)
 4. In a linked list, the logical order of elements 
 (a) is the same as their physical arrangement
 (b) is determined by their physical arrangement

 (c)  cannot be determined from their physical 
arrangement

 (d) none of these
 5. Underfl ow condition in a linked list may occur 

when attempting to
 (a)  insert a new node when there is no free 

space for it
 (b) delete a non-existent node in the list
 (c) delete a node in empty list
 (d) none of these
 6. Overfl ow condition in a linked list may occur 

when attempting to 
 (a)  create a node when free space pool is 

empty 
 (b)  traverse the nodes when free space pool is 

empty
 (c) create a node when linked list is empty
 (d) none of these
 7. Deletion of a node in a linked list involves 

keeping track of the address of the node 
 (a)  which immediately follows the node that is 

to be deleted
 (b)  which immediately precedes the node that 

is to be deleted
 (c) that is to be deleted
 (d) none of these

exeRCises
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 8. Header of a linked list is a special node at the 
 (a) end of the linked list
 (b) at the middle of the linked list
 (c) beginning of the linked list
 (d) none of these
 9. A header-linked list where the last node points 

to the header node is called 
 (a) grounded header list
 (b) circular header list
 (c) general header list
 (d) none of these
10. It is required to insert a node at the end of a 

singly connected linked list having n nodes. 
How many nodes are to be traversed for this 
insertion?

 (a) 1
 (b) n/2 
 (c) n 
 (d) none of these

Review questions

 1. How is an element in an array different from the 
element in a linked list?

 2. What are the fields of a node in a linked list?
 3. What is the function of the pointer field in a 

linked list?
 4. How do you point to the first node in a linked 

list?
 5.  What is a singly linked list?
 6. In most programming languages, an array is 

a static data structure. When you define an 
array, the size is fixed. What problem will this 
restriction create?

 7. A linked list is a dynamic data structure. The 
size of a linked list can be changed dynamically 
(during program execution). How does this 
feature benefit a programmer?

 8. Which operation do you think is easier for the 
following different cases? Justify your answer.

 (a)  Adding an element to an array, or adding an 
element to a linked list

 (b)  Deleting an element to an array, or deleting 
an element to a linked list

 (c)  Accessing an element to an array, or 
accessing an element to a linked list

 (d)  Sorting an element to an array, or sorting an 
element to a linked list

 9. What is a linked list? How is it represented?
10. What is a dynamic memory allocation? How does 

it help in building complex programs?
11. What is the principal difference between the 

functions malloc and calloc?
12. Why a linked list is called a dynamic data structure? 

What are the advantages of using linked lists over 
arrays?

13. Describe different types of linked lists.
14. Represent the following polynomials using 

GLL. 
 (a) x3(y3(3z4 - yz3 + z) - y(z2 + z) - xyz
 (b) x10y3z2 + x4y4z + 2yz
 (c) -x3y2z4 + xz2x3y - xyz + zy3

15. Write a C++ program with functions for the 
following using a suitable variant of the linked 
list (singly, doubly, even, and circular with or 
without header node): 

 (a)  Compute length, Reverse list, Print in 
Reverse order, Insert/Delete node, Search 
a node, Print list, Create sorted list, 
Concatenate two lists.

 (b) Evaluate a polynomial of a single variable.
 (c)  Compute addition, subtraction, and 

multiplication of two polynomials.
 (d) Read and print sparse matrix.
 (e)  Store string and Compute length, Reverse 

string from a particular character, search and 
change substring, Insert/Delete character, 
Search a character; Sort the string without 
using another list, Concatenate two strings, 
Compare two strings.

 (f)  Compute 1’s complement and 2’s 
complement of a binary number.

 (g) Add two binary numbers.
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 (h)  Appointment scheduling for a day: Set 
bounds by taking starting time and ending 
time of a day. Display free slots. Ask for 
a new appointment. Check for validity 
and insert. Delete cancelled appointment. 
Display all appointments of a day.

 (i)  A function move() which would move a 
node forward n positions in the linked list.

 (j) Sort a list using pointer manipulation.
 (k) Merge two sorted lists into third.
 (l) Merge second sorted list into first sorted list.
 (m)  Create sorted list and insert element in the 

same.
 (n)  Check whether a string stored is palindrome 

or not.
 (o)  Create two lists to store two sets. Compute 

intersection, union, difference, and 
symmetric difference of the same. Compute 
power set of a set.

16. Write a program that reads the name, age, and 
salary of 10 persons and maintains them in a 
linked list sorted by name.

17. There are two linked lists A and B containing the 
following data:

 A: 3, 7, 10, 15, 16, 9, 22, 17, 32
 B: 16, 2, 9, 13, 37, 8, 10, 1, 28

 Write a program to create
 (a)  a linked list C that contains only those 

elements that are common in linked lists  
A and B

 (b)  a linked list D that contains all elements 
of A as well as B ensuring that there is no 
repetition of elements.

18. A linked list contains some positive numbers 
and some negative numbers. Using this linked 
list, write a program to create two more linked 
lists, one containing all positive numbers and the 
other containing all negative numbers.

19. Write a C++ program that accepts a list 
implemented using linked list, traverses it, and 
returns the data in the node with the smallest key 
value.

20. Write a C++ program that traverses a list 
implemented using a linked list and deletes the 
node following a node with a negative key.

21. Create two linked lists to represent the following 
polynomials:

 (a) 3x2y + 9xy3 + 15xy + 3
 (b) 13x3y2 + 7x2y + 22xy + 9y3 
 Write a function add() to add these polynomials 

and print the resulting linked list. 

Answers to multiple choice questions

1. (c)  2. (a)  3. (a)  4. (c)  5. (c)  6. (a)  7. (b) 8. (c)  9. (b)
10. (d)
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In computer science, a tree is a widely used data structure that emulates a tree structure 
with a set of linked nodes. Trees are used popularly in computer programming. They 

can be used for improving database search times (binary search trees, AVL trees, red–
black trees), in game programming (minmax trees, decision trees, path fi nding trees), 3D 
graphics programming (binary trees, quadtrees, octrees), arithmetic scripting languages 
(arithmetic precedence trees), data compression (Huffman trees), and even fi le systems 
(btrees, sparse indexed trees, trie trees). Let us learn about trees in this chapter.

7.1 inTRoDUcTion

Let us fi rst revise the classifi cation of data structures as linear and non-linear. A data 
structure is said to be linear if its elements form a sequence or a linear list. In a linear data 
structure, every data element has a unique successor and a unique predecessor. There are 
two basic ways of representing linear structures in memory.  One way is to have the rela-
tionship between the elements by means of pointers (links), called as linked lists. Another  
way is using sequential organization, that is, arrays.

Non-linear data structures are used to represent the data containing hierarchical or 
network relationship between the elements. Trees and graphs are examples of non-linear 
data structures. In non-linear data structures, every data element may have more than one 
predecessor as well as successor. Elements do not form any particular linear sequence.

Non-linear data structures are capable of expressing more complex relationships than 
linear data structures. In general, wherever the hierarchical relationship among data is to 
be preserved, the tree is used. Well-known examples of such structures are family trees, 
hierarchy of positions in organization, and so on. Tree, a non-linear data structure, is a 

TRees

oBJecTives

After completing this chapter, the reader will be able to understand the following:
 • Hierarchical representation of data using trees
 • Binary search trees (BSTs) that allow both rapid retrievals by key and inorder 
traversals

 • The use of trees as a fl exible data structure for solving a wide range of problems
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means to maintain and manipulate data in 
many applications. Consider the following 
example:

The operating system of a computer sys-
tem organizes files into directories and sub-
directories. Directories are also referred to 
as folders. The operating system organizes 
folders and files using a tree structure as in 
Fig. 7.1. 
A folder contains other folders (subfold-
ers) and files. This can be viewed as the tree 
drawn in Fig. 7.1. Note that the root here is 
desktop. The common uses of trees include 
the following:

1. Manipulating hierarchical data
2. Making information easily searchable
3. Manipulating sorted lists of data

A tree is a graph called the directed acyclic graph. So let us first discuss the basic termi-
nology related to trees.

7.1.1 Basic Terminology
We should first learn about a general graph because trees can be viewed as restricted graphs. 
A graph G consists of a non-empty set V, a set E, and a mapping from the set E to set V. 
Here, V is the set of nodes, also called as vertices points, of the graph, and E is the set of 
edges of the graph. For finite graphs, V and E are finite. We can represent them as G = (V, E).

Adjacent Nodes

If an edge e Œ E is associated with a pair of nodes (a, b) where a, b Œ V, then it is said that 
the edge e joins or connects the nodes a and b. Any two nodes that are connected with an 
edge are called as adjacent nodes.

Directed and Undirected Graphs

In a graph G(V, E), an edge that is directed from one node to another is called a directed 
edge, whereas an edge that has the no specific direction is called an undirected edge. 
A graph where every edge is directed is called as a directed graph or diagraph. A graph 
where every edge is undirected is called as an undirected graph. If some of edges are 
directed and some are undirected in a graph, the graph is called as a mixed graph.

A city map showing only the one-way streets is an example of a directed graph where 
the intersections are vertices and the edges are streets. A map showing only the two-way 
streets is an example of an undirected graph, and a map showing all the one-way and two-
way streets is an example of a mixed graph.

Fig. 7.1 Folder and subfolders organization

My Computer

A drive

Windows Program
Files

Office Studio FTP

AccessExcelWord

C driveD, E
drives
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Let (V, E) be a graph and let e Œ E be a directed edge associated with the ordered pair 
of nodes (a, b). Then, the edge e is said to be initiating or originating in the node a and 
terminating or ending in the node b. The nodes a and b are also called the initial and ter-
minal nodes respectively, of the edge e. An edge e Œ E that joins the nodes a and b, be it 
directed or undirected, is said to be incident to the nodes a and b, respectively.

An edge of a graph that joins a node to itself is called a loop (sling). Note that this loop 
is different from the loop in a program. The direction of the loop has no significance.

Parallel Edges and Multigraph

The graph given in Fig. 7.2(a) has only one 
edge between any pair of nodes. In the direct-
ed edges, the two possible edges between the 
pair of nodes that are opposite in direction are 
considered distinct. In some directed as well as 
undirected graphs, there may exist more than 
one edge incident to the same pair of nodes, 
say a and b.

In Fig. 7.2(b), the edges e1, e2, and e3 are 
incident to vertices a and b. Such edges are 
called as parallel edges. Here, e1, e2, and e3 
are three parallel edges. In addition, e5 and e6 
are two parallel edges. Any graph that contains 
parallel edges is called a multigraph. On the 
other hand, a graph that has no parallel edges 
is called a simple graph.

Weighted Graph

A graph where weights are assigned to every 
edge is called a weighted graph. Weights can 
also be assigned to vertices. A graph of areas 
and streets of a city may be assigned weights according to its traffic density. A graph of 
areas and connecting roads may be assigned weights such that the distance between the 
cities is assigned to edges and area population is assigned to vertices.

Null Graph and Isolated Vertex

In a graph, a node that is not adjacent to any other node is called an isolated node. A graph 
containing only isolated nodes is called a null graph. Hence, the set of edges is an empty 
set in a null graph.

Let V = set of students, E = {there exists an edge incident to two students if they share 
books}. Let V = {a, b, c}. If no two students among a, b, and c shares books, then the 
graph G = {V, E} is represented as shown in Fig. 7.3(a).
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3

4 5

(b)

(a)

b
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d

c
g

e4

e3

e2

e1

e7

e5

e6

e8

Fig. 7.2  Classification based on edges 
(a) Simple graph (b) Multigraph
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a
(a) (b)

b

c

a

c d

b

e

Fig. 7.3  Classification based on nodes (a) Null 
graph (b) Graph with isolated vertex

Here, G is a null graph, and a, b, and c are isolated vertices. In Fig. 7.3(b), V = {a, b, c, 
d, e} and E = {(a, b), (a, c), (b, c), (c, d), (b, d)}, and e is an isolated vertex.

Degree of Vertex

In a directed graph, for any node V, the number of edges that have V as its initial node 
is called the outdegree of the node V. In other words, the number of edges incident from 
a node is its outdegree (outgoing degree), and the number of edges incident to it is an 
indegree (incoming degree). The sum of indegree and outdegree is the total degree of a 
node (vertex). In an undirected graph, the total degree or degree of a node is the number 
of edges incident to the node. The isolated vertex degree is zero. The degree of vertex a in 
Fig. 7.4 is 3, whereas the degree of vertex f is 1. For vertex 1 in Fig. 7.2(a), the incoming 
degree is 2 and the outgoing degree is 2.

Paths and Circuits

Let G = (V, E) be a simple graph. Consider a se-
quence of edges of G such that the terminal node 
of any edge in the sequence is the initial node of 
the next edge, if any, in the sequence (Fig. 7.4).

Here, G = (V, E), V = {a, b, c, d}, and 
E = {e1, e2, e3, e4, e5, e6, e7}.

An example of such a sequence is given by 
{e1, e2, e4, e5}.

The sequence {e1, e2, e4, e5} can also be written as 
{a, b, c, d, b}.

In addition, {e6, e2, e1, e3, e4, e2, e5} is another 
sequence. Note that not all edges and nodes appearing 
in a sequence need to be distinct. In addition, for a given 
graph, any arbitrary set of nodes such as {a, f, b} that is 
written in any order does not give a sequence as required. 
In fact, each node appearing in the sequence must be ad-
jacent to the nodes appearing just before and after it in 
the sequence, except for the first and the last nodes.

Consider the graph in Fig. 7.5.

a

b
f

d

ce1 e2

e6

e4

e5

e7

e3

Fig. 7.4 Graph G

1 2e1

e2e5

e7

e3

e4

e6

3
4

Fig. 7.5 Graph with self loop
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A sequence of edges of a graph such that the terminal node of any edge in the sequence 
is the initial node of the edge, if any, appearing next in the sequence, defines the path of a 
graph. The number of edges appearing in the path is called the length of the path.

Example paths for the graph in Fig. 7.5 are as follows:

P1 = {(2, 4)}, also written as {e2}
P2 = {(2, 3), (3, 1), (1, 4)}, also written as {e3, e6, e5}
P3 = {e1, e2, e4, e3, e1, e5} or {(1, 2), (2, 4), (4, 3), (3, 2), (2, 1), (1, 4)}

A path where no edge is traversed more than once is called a simple path (or edge 
simple path). A path where no vertex is traversed (visited) more than once is called an 
elementary path (node simple path). For example, {e1, e2, e4, e6, e5} is a simple path but 
not elementary as the vertex 1 is traversed (visited) twice.

A path that originates and ends at the same node is called a cycle (circuit). A cycle is 
elementary if each node is traversed once (except origin) and is simple if every edge of the 
cycle is traversed once. For example, the following are the cycles for the graph in Fig. 7.5.

C1 = {(2, 2)}, also represented as {e7}
C2 = {(1, 2), (2, 4), (4, 1)}, also represented as {1, 2, 4, 1} or {e1, e2, e5}
C3 = {e3, e2, e5, e6} or {3, 2, 4, 1, 3}

Here, the cycle {e1, e2, e5} in both simple and elementary cycles is also referred to as 
a closed path.

Connectivity

A graph is said to be connected if and only if there exists a path between every pair of 
vertices. Some examples are shown in Figs 7.6(a) and (b).

The graph G = (V, E) drawn in Fig. 7.6(a) with V = {a, b, c, d, e} is a disconnected 
graph. It contains two connected components. A connected graph has a single connected 
component. The graph shown in Fig. 7.6(b) is a connected graph.

(a)

a

c

d

b
e

(b)

a

c

d

b
e

Fig. 7.6  Graph connectivity  (a) Graph with two connected components 
(b) Connected graph with one connected component

Acyclic Graph

A simple graph that does not have any cycles is called acyclic graph. Such graphs do not 
have any loops.
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Trees

A class of graphs that is acyclic is termed as trees.
Let us now discuss an important class of graphs called trees and its associated 

terminology.
Trees are useful in describing any structure that involves hierarchy. Familiar exam-

ples of such structures are family trees, the hierarchy of positions in an organization, 
and so on.

Forest and Trees

A forest is a graph that contains no cycles, and a connected forest is a tree. For example, 
Fig. 7.7 shows a forest with three components, each of which is a tree.

Fig. 7.7 Forest with three trees

Note that trees and forests are simple graphs. The following terminology belongs to trees.

Directed tree An acyclic directed graph is a directed tree.

Root A directed tree has one node called its root, with indegree zero, whereas for all 
other nodes, the indegree is 1.

Terminal node (leaf node) In a directed tree, any node that has an outdegree zero is a 
terminal node. The terminal node is also called as leaf node (or external node).

Branch node (internal node) All other nodes whose outdegree is not zero are called as 
branch nodes.

Level of node The level of any node is its path length from the root. The level of the 
root of a directed tree is zero, whereas the level of any node is equal to its distance from 
the root. Distance from the root is the number of edges to be traversed to reach the root.

7.1.2 General Tree

A tree T is defined recursively as follows:

1. A set of zero items is a tree, called the empty tree (or null tree).
2. If T1, T2, ..., Tn are n trees for n > 0 and R is a node, then the set T containing R and the 

trees T1, T2, ..., Tn are a tree. Within T, R is called the root of T, and T1, T2, ..., Tn are 
called subtrees.
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The tree in Fig. 7.8(a) is the empty tree since there are no nodes. The tree in Fig. 7.8(b) 
has only one node, the root. The tree in Fig. 7.8(c) has 16 nodes. The root node has four 
subtrees. The roots of these subtrees are called the children of the root. There are 16 nodes 
in the tree, so there are 15 non-empty subtrees. The nodes with no subtrees are called 
terminal nodes or more commonly, leaves. These are 10 leaves in the tree in Fig. 7.8(c).

(c)

Root = Null

(a) (b)

Root a

Root

b

fedc

g h i j k l

m n o p q

1

0

Level

2

3

Fig. 7.8  Degree of a tree  (a) Empty tree—degree undefined  (b) Tree with 
a single node—degree 0  (c) Tree of height 3—degree 4

The degree of a node is the number of subtrees it has. Thus, the degree of the nodes in 
Fig. 7.8(c) ranges from zero to four. By definition, the degree of each leaf node is zero. 
The degree of a tree is the maximum degree of a node in the tree. As the tree in Fig. 7.8(a) 
has no nodes, there is no maximum degree of a node, and the degree of the tree is not 
defined. The tree in Fig. 7.8(b) has degree zero, and the tree in Fig. 7.8(c) has degree four.

Since family relationships can be modelled as trees, we often call the root of a tree (or 
subtree) the parent, and the roots of the subtrees the children. Consequently, the children 
of the same node are called siblings.

The advantage of the relationship between a parent and its children is that a directed 
edge (or, simply an edge) extends from a parent to its children. Thus, the edges connect a 
root with the roots of each subtree. For example, in Fig. 7.8(c), an edge extends from the 
root b to each of the nodes c, d, e, and f. Similarly, edges extend from e to i and from d to 
g. An undirected edge extends in both directions between a parent and a child. Thus, the 
undirected edges would also extend from i to e and from g to d.

A directed path (or simply path) is a sequence of directed edges e1, e2, ..., en, where the 
node at the end of one edge serves as the beginning of the next edge. An undirected path 
is a similar sequence of undirected edges.
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For example, in Fig. 7.8(c), one path containing three edges begins at the root and ex-
tends through nodes f, k, and p. Similarly, the path beginning at node h and containing the 
nodes e, b, and d is an undirected path. In this chapter and chapters 8 and 9, edge refers to 
a directed edge from a parent to its child. Following the analogy of family hierarchies, if a 
path exists from one node to another, it is common to state that the first node is an ancestor 
of the second, and the second is a descendent of the first.

The length of a path is the number of edges it contains (which is one less than the 
number of nodes on the path). The depth or level of a node is the length of a node, which 
is the length of a directed path from the root to that node. The height of a tree is the length 
of the path from the root to a node at the lowest level. In other words, the height of a tree 
is the maximum path length in the tree. Thus, the level of the root of a tree is zero, and the 
level of each child of the root is one. Equivalently, the height of a tree is the largest level 
number of any node in the tree.

There are three common ways to symmetrically order (or list) the nodes in a tree: pre-
order, inorder, and postorder. For each of these orderings, an empty tree gives rise to an 
empty list, and the tree with one node yields the list with one node. For trees with more 
than one node, the following statements are true:

1. The preorder list contains the root followed by the preorder list of nodes of the subtrees 
of the root from left to right.

2. The inorder list contains the inorder list of the leftmost subtree, the root, and the inorder 
list of each of the other subtrees from left to right.

3. The postorder list contains the postorder list of subtrees of the root from left to right 
followed by the root.

Figure 7.9 shows a tree whose nodes are labelled with numbers rather than letters.

Root

1

2 3

765

9 10

8

4

0

Level

3

2

1

Fig. 7.9  Sample tree

The following is a list of terms for review using the example tree in Fig. 7.9.
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Subtrees The nodes labelled 2, 3, and 4 are the roots of the subtrees (children) of the node 
labelled 1. The nodes labelled 5, 6, and 7 are the roots of the subtrees (children) of the node 
labelled 3. The node labelled 8 is the root of the subtree (child) of the node labelled 4. The 
nodes labelled 9 and 10 are the roots of the subtrees (children) of the node labelled 8.

Leaves The nodes labelled 2, 5, 6, 7, 9, and 10 are the terminal nodes or leaf nodes.

Degree The nodes labelled 1 and 3 have degree 3. The node labelled 8 has degree 2. The 
node labelled 4 has degree 1. All the leaf nodes have degree 0. The degree of the tree is 3, 
because the maximum degree of any node is 3.

Levels The level number appears on the right of the tree. The level of the root is 0, the 
level of the nodes labelled 2, 3, and 4 is 1, the level of the nodes labelled 5, 6, 7, and 8  
is 2, and that of the nodes labelled 9 and 10 is 3.

Family relationships The node labelled 1 is the parent of the nodes labelled 2, 3, and 4. 
The node labelled 3 is the parent of the nodes labelled 5, 6, and 7. The node labelled 4 is 
the parent of the node labelled 8, which in turn is the parent of the nodes labelled 9 and 
10. The nodes labelled 2, 3, and 4 are siblings similar to the nodes labelled 9 and 10. Note 
that the node labelled 8 is not the sibling of the nodes labelled 5, 6, and 7.

Paths and path lengths Paths exist from all parents to children. A unique path exists 
from the root to each leaf node as shown in Fig. 7.9. Since any sub-path is a path, all the 
paths are represented. This is shown in the next page:

1 Æ 2 Length: 1

1 Æ 3 Æ 5 Length: 2

1 Æ 3 Æ 6 Length: 2

1 Æ 3 Æ 7 Length: 2

1 Æ 4 Æ 8 Æ 9 Length: 3

1 Æ 4 Æ 8 Æ 10 Length: 3

Height and depth The height of the tree is 3, the maximum level. The depth of the 
nodes labelled 2, 3, and 4 is 1. The depth of the nodes labelled 5, 6, 7, and 8 is 2. The 
depth of the nodes labelled 9 and 10 is 3, which is the same as the height of the tree. The 
depth of the nodes on the lowest level is always the same as the height of the tree.

Orderings The preorder, inorder, and postorder orderings of the nodes are given in the 
following sequence:

1 Æ 2 Æ 3 Æ 5 Æ 6 Æ 7 Æ 4 Æ 8 Æ 9 Æ 10 (preorder)
2 Æ 1 Æ 5 Æ 3 Æ 6 Æ 7 Æ 9 Æ 8 Æ 10 Æ 4 (inorder)
2 Æ 5 Æ 6 Æ 7 Æ 3 Æ 9 Æ 10 Æ 8 Æ 4 Æ 1 (postorder)

We shall learn about these orderings in Section 7.7.
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7.1.3 Representation of a General Tree

We can use either a sequential organization or a linked organization for representing a 
tree. If we wish to use a generalized linked list, then a node must have a varying number 
of fields depending upon the number of branches. However, it is simpler to use algorithms 
for the data where the node size is fixed.

Data Link 1 Link 2 ... Link n

For a fixed size node, we can use a node with data and pointer fields as in a generalized 
linked list.

Data

Tag
0/1 Link

(down)

Link
(next)

Figure 7.10 shows a sample tree.
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D
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K

Fig. 7.10  Sample tree

The list representation of this tree is shown in Fig. 7.11.

0 0A 1 1 1

0 E 0 LK

F

0 C 0 0G 0 D 1 0 H

0 I 0 0M

0 J 0

0 B 1 0 0

0 0

Fig. 7.11 List representation



290 daTa sTRucTuREs using c++

7.2 Types of TRees

In this section, we shall study some important types of trees.

1. Free tree
2. Rooted tree
3. Ordered tree
4. Regular tree
5. Binary tree
6. Complete tree
7. Position tree

Free tree A free tree is a connected, acyclic 
graph. It is an undirected graph. It has no node 
designated as a root. As it is connected, any node 
can be reached from any other node through a 
unique path. The tree in Fig. 7.12 is an example of 
a free tree.

Rooted tree Unlike free tree, a rooted tree is a directed 
graph where one node is designated as root, whose incoming 
degree is zero, whereas for all other nodes, the incoming 
degree is one (Fig. 7.13).

Ordered tree In many 
applications, the relative 
order of the nodes at any 
particular level assumes some significance. It is easy to 
impose an order on the nodes at a level by referring to a 
particular node as the first node, to another node as the 
second, and so on. Such ordering can be done from left 
to right (Fig. 7.14). Just like nodes at each level, we can 
prescribe order to edges. If in a directed tree, an ordering 
of a node at each level is prescribed, then such a tree is 
called an ordered tree.

Regular tree A tree where each branch node vertex has the same outdegree is 
called a regular tree. If in a directed tree, the outdegree of every node is less than 
or equal to m, then the tree is called an m-ary tree. If the outdegree of every node is 
exactly equal to m (the branch nodes) or zero (the leaf nodes), then the tree is called 
a regular m-ary tree.

Binary tree A binary tree is a special form of an m-ary tree. Since a binary tree is 
important, it is frequently used in various applications of computer science.

Fig. 7.12 Free tree

Root

Fig. 7.13 Rooted tree

Fig. 7.14 Ordered tree
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We have defined an m-ary tree (general tree). A binary tree is an m-ary position tree 
when m = 2. In a binary tree, no node has more than two children.

Complete tree A tree with n nodes and of depth k is complete if and only if its nodes 
correspond to the nodes that are numbered from 1 to n in the full tree of depth k.

A binary tree of height h is complete if and only if one of the following holds good:

1. It is empty.
2. Its left subtree is complete of height h - 1 and its right subtree is completely full of 

height h - 2.
3. Its left subtree is completely full of height h - 1 and its right subtree is complete of 

height h - 1.

A binary tree is completely full if it is of height h and has (2h+1 - 1) nodes.

Full binary tree A binary tree is a full binary tree if it contains the maximum possible 
number of nodes in all levels. Figure 7.15 shows a full binary tree of height 2.

In a full binary tree, each node has two children or no child 
at all. The total number of nodes in a full binary tree of height 
h is 2h+1 - 1 considering the root at level 0.

It can be calculated by adding the number of nodes of each 
level as in the following equation:

20 + 21 + 22 + ... + 2h = 2h+1 - 1 

Figure 7.15 has 22+1 - 1 = 8 - 1 = 7 nodes.

Complete binary tree A binary tree is said to be a complete binary tree if all its levels 
except the last level have the maximum number of possible nodes, and all the nodes of the 
last level appear as far left as possible. In a complete binary tree, all the leaf nodes are at 
the last and the second last level, and the levels are filled from left to right.

Figure 7.16 is a complete binary tree.
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52

4

8 9 10 11 12

Fig. 7.16  Complete binary tree

Applications such as the priority queue and heap sort use the complete binary tree.
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65
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4

Fig. 7.15 Full binary tree
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Left skewed binary tree If the right subtree is missing in every node of a tree, we call it 
a left skewed tree (Fig. 7.17).

If the left subtree is missing in every node of a tree, we call it as right subtree (Fig. 7.18).

C

B

A

Fig. 7.17 Left skewed tree

C

B

A

Fig. 7.18 Right skewed tree

Strictly binary tree If every non-terminal node in 
a binary tree consists of non-empty left and right sub-
trees, then such a tree is called a strictly binary tree.

In Fig. 7.19, the non-empty nodes D and E have 
left and right subtrees. Such expression trees are 
known as strictly binary trees.

Extended binary tree A binary tree T with 
each node having zero or two children is called 
an extended binary tree. The nodes with two 
children are called internal nodes, and those 
with zero children are called external nodes. 
Trees can be converted into extended trees by 
adding a node (Fig. 7.20).

Position tree A position tree, also known as a 
suffix tree, is one that represents the suffixes of a string S and such representation facilitates 
string operations being performed faster. Such a tree’s edges are labelled with strings, such  
that each suffix of S corresponds to exactly one path from the tree’s root to a leaf node. The 
space and time requirement is linear in the length of S. After its construction, several operations 
can be performed quickly, such as locating a substring in S, locating a substring if a certain 
number of mistakes are allowed, locating matches for a regular expression pattern, and so on.

7.3 BinaRy TRee

One of the most commonly used classes of trees is a binary tree. A binary tree has the 
degree two, with each node having at most two children. This makes the implementation 
of trees easier. In addition, binary trees have a wide range of applications. We shall study 
these in this section. 

B C

A

ED

F G H I

Fig. 7.19 Strictly binary tree

print

end read

goto

Fig. 7.20  Extended binary tree
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Definition A binary tree

1. is either an empty tree or
2. consists of a node, called root, and two children, left and right, each of which is itself 

a binary tree.

The definition is recursive as we have defined a binary tree in terms of itself. All 
the internal nodes of a binary tree are themselves the roots of smaller binary trees 
(Fig. 7.21).

B C

A

ED F G

H

Fig. 7.21 Binary tree

Let us consider the two distinct binary trees in Fig. 7.22.

B

C

A

C

B

D

Fig. 7.22 Two binary trees

The definition implies that every non-empty node has two children, either of which may 
be empty. Here A’s right child and B’s left child are empty trees (represented by shaded 
boxes). Usually, empty trees in a binary tree are not shown.

7.3.1 properties of a Binary Tree

A tree is a connected acyclic graph. In many ways, a tree is the simplest non-trivial type 
of graph. It has several good properties such as the fact that there exists a unique path 
between every two vertices. The following theorems list some simple properties of trees:

Let T be a tree. Then the following properties hold true:

1. There exists a unique path between every two vertices.
2. The number of vertices is one more than the number of edges in the tree.
3. A tree with two or more vertices has at least two leaves.
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Let us refer to Fig. 7.23 for proving these properties.

(a) (b)

Fig. 7.23  Binary trees  (a) Sample 1
(b) Sample 2

Property 1

Property 1 comes from the definition of a tree. As a tree is a connected graph, there ex-
ists at least one path between every two vertices. However, if there are two or more paths 
between a pair of vertices, there would be a circuit in the graph and so the graph cannot 
be a tree.

Property 2

Property 2 can be proved using mathematical induction. Let there be a tree T with the total 
number of edges e and the total number of vertices v.

Induction step A tree with one vertex contains no edge, and a tree with two vertices has 
one edge.

Induction hypothesis Let us consider that there is an edge {a, b} in T such that the 
removal of the edge {a, b} divides T into two disjoint trees T1 and T2, where T1 contains 
the vertex a and all the vertices whose paths to a in T do not contain the edge {a, b}, 
and T2 contains the vertex b and all the vertices whose paths to b do not contain the 
edge {a, b}.

Since both T1 and T2 have utmost v - 1 vertices, it follows from the hypothesis that

for T1 fi e1 = v1 - 1 and
for T2 fi e2 = v2 - 1,

where e1 and e2 are the number of edges and v1 and v2 are the number of vertices in T1 
and T2, respectively.

Thus e1 + e2 = v1 + v2 - 2
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Since e = e1 + e2 + 1 and v = v1 + v2, we have e = v - 1, as shown in the following 
figure:

1

32

e1 = v1 − 1 e2 = v2 − 1

Property 3

Property 3 follows from Property 2, that is, the sum of degrees of the vertices in any 
graph is equal to 2e, which is equal to 2v - 2, in a tree. Since a tree with more than one 
vertex cannot have any isolated vertex, there must be at least two vertices of indegree 1  
in the tree.

Other Properties

1. The maximum number of nodes of level i in a binary tree is 2i−1, where i ≥ 1.
2. The maximum number of nodes of depth d in a binary tree is 2d−1 , where d ≥ 1.

Let us prove these properties using induction. Assume the root is only one node at 
level 1.

Hence, the maximum number of nodes is 2i−1, that is, 21−1 = 20 = 1.
By induction hypothesis, let i be any arbitrary positive integer greater than 1. Then, the 

maximum number of nodes on level i - 1 is 2i−1−1 =  2i−2.
Hence, it is proved that the maximum number of nodes at level i is 2i−1.
Note: If we assume the root at level 0, then the expression is 2i.
Since each node in a binary tree has a maximum degree 2, the maximum number of 

nodes at level i is 2i−1.
The maximum number of nodes of depth d of a binary tree is given by

i

d

i

d

=1 =1
∑ ∑(maximum no. of nodes at level i) d= −2 1

Relation Between Number of Leaf Nodes and Degree-2 Nodes

In any non-empty tree T, if there are n0 leaf nodes and n2 nodes of degree 2, then 

n0 = n2 + 1

Let n1 be the number of nodes of degree 1 and n be the total number of nodes.
Since all nodes in T are with the utmost degree 2, then 

 n = n0
 + n1 + n2 + ... (7.1)
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If the number of branches is B, then n = B + 1. For a binary tree, all the branches stem out 
from a node of degree 1 or 2. Thus, 

B = n1 + 2 ¥ n2

So, n = B + 1
 B = n1 + 2 ¥ n2 + 1 (7.2)

Subtracting Eq. (7.2) from Eq. (7.1) we get

n0 = n2 + 1

Binary Tree With n Nodes Having n + 1 External Nodes

Taking the base case of a tree with only one node, that is the root, it has two external nodes 
or null links. So, if n = 1, then the number of external nodes is n + 1, that is, 2.

From this base case, if there are n internal nodes where the left subtree has L nodes, 
then the right subtree has n - L - 1 internal nodes (1 for the root).

By induction hypothesis, the number of external nodes of the left subtree is L + 1.
The number of external nodes of the right subtree is (n - L - 1) + 1 = n - L. So, the 

total number of external nodes is L + 1 + n - L = n + 1.

7.4 BinaRy TRee aBsTRacT DaTa Type

We have defined a binary tree. Let us now define it as an abstract data type (ADT), which 
includes a list of operations that process it.

ADT btree
 1. Declare create()Æbtree
 2. makebtree(btree, element, btree)Æbtree
 3. isEmpty(btree)Æboolean
 4. leftchild(btree)Æbtree
 5. rightchild(btree)Æbtree
 6. data(btree)Æelement

 7. for all l,r Œ btree, e Œ element, Let
 8. isEmpty(create) = true
 9. isEmpty(makebtree(l,e,r)) = false
10. leftchild(create()) = error
11. rightchild(create()) = error
12. leftchild(makebtree(l,e,r)) = l
13. rightchild(makebtree(l,e,r)) = r
14. data(makebtree(l,e,r)) = e
15. end
end btree

The six functions with their domains and ranges are declared in lines 1 through 6. 
Lines 7 through 14 are the set of axioms that describe how the functions are related. 
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The create() operation creates an empty binary tree; the isEmpty()operation checks 
whether btree is empty or not and returns the Boolean value true or false, respectively; 
leftchild(btree) and rightchild(btree) return the left  and right  subtrees, respec-
tively; data(btree) returns the data element.

Program Code 7.1 states the class defi nition of the operations that process the 
tree ADT.

program CoDe 7.1

class TreeNode

{

   public:

      char Data;

      TreeNode *Lchild;

      TreeNode *Rchild;

};

class BinaryTree

{

   private:

      TreeNode *Root;

   public:

      BinaryTree(){Root  =  Null};

      // constructor creates an empty tree

      TreeNode * GetNode();

      void InsertNode(TreeNode*);

      void DeleteNode( TreeNode*);

;

Operations on binary tree The basic operations on a binary tree can be as listed as 
follows:

1. Creation—Creating an empty binary tree to which the ‘root’ points
2. Traversal—Visiting all the nodes in a binary tree
3. Deletion—Deleting a node from a  non-empty binary tree
4. Insertion—Inserting a node into an existing (may be empty) binary tree
5. Merge—Merging two binary trees
6. Copy—Copying a binary tree
7. Compare—Comparing two binary trees
8. Finding a replica or mirror of a binary tree
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7.5 RealizaTion of a BinaRy TRee

In this section, we shall study the basic realization of a binary tree and discuss its capabili-
ties for supporting various operations. The implementation of a binary tree should represent 
the hierarchical relationship between a parent node and its left and right children. We have 
studied the elementary data structures such as linked list and arrays. Now, we shall extend 
these concepts to the binary tree structures. We shall give more emphasis to the linked 
implementation as it is more popular than the corresponding sequential structure due to the 
following two main reasons:

1. A binary tree has a natural implementation in a linked storage.
2. The linked structure is more convenient for insertions and deletions.

Let us study both the implementations.

7.5.1 array implementation of Binary Trees

One of the ways to represent a tree using an array is to store the nodes level-by-level, start-
ing from the level 0 where the root is present. Such a representation requires sequential 
numbering of the nodes, starting with the nodes on level 0, then those on level 1, and so on.

We have defined a complete tree. A complete binary tree of height h has (2h+1 - 1) 
nodes in it. The nodes can be stored in a one-dimensional array, tree, with the node num-
bered at the location tree(i). An array of size 2h+1 - 1 is needed for the same.

The root node is stored in the first memory location as the first element in the array. 
The following rules can be used to decide the location of any ith node of a tree:
For any node with index i, 0 £ i £ n - 1,

1. Parent(i) = Î(t - 1)/2˚ if i π 0; if i = 0, then it is the root that has no parent.
2. Lchild(i) = 2 ¥ i + 1 if 2i + 1 £ n - 1; if 2i ≥ n, then i has no left child.
3.  Rchild(i) = 2i + 2 if 2i + 2 £ n - 1; if (2i + 1) ≥ n, then i has no right child.

Let us consider the complete binary tree in Fig. 7.24.

1

0

2

6543

A

B

C D

E

F G

Fig. 7.24  Complete binary tree

The representation of the binary tree in Fig. 7.24 using an array is as follows:

0 1 2 3 4 5 6 7 8

– –A B E C D F G

Let us consider one more example as in Fig. 7.25.
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8
G

7
F

3
D

1
B

E

A

9
H

C

10
I

4

2

0

Fig. 7.25 Tree with 11 nodes

Now, the array representation of the tree in Fig. 7.25 is as follows:

A

Level

B C D E – – F G H I – – – – …

0 1 2 3

1 2 3

4 5 6 7 8 9 10 11 12 13 14 19…

0

Let us consider one more example of a skewed tree as in Fig. 7.26.

A

B

C

D
E15

7

3

1

0

Fig. 7.26  Sample skewed tree

This tree has the following array representation:

A B – C – – – D – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
15 19

…

This representation of binary trees using an array seems to be the easiest. Certainly, it 
can be used for all binary trees. However, such a representation has certain drawbacks. 
In most of the representations, there will be a lot of unused space. For complete binary 
trees, the representation seems to be good as no space in an array is wasted between 
the nodes. Certainly, the space is wasted as we generally declare an array of some  
arbitrary maximum limit. From the examples, we can make out that for the skewed tree, 
however, less than half of the array is only used and more is left unused. In the worst 
case, a skewed tree of depth k will require 2k+1 - 1 locations of array, and occupy just 
a few of them.
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In addition, even though the representation seems to be good for complete binary trees, 
it is not useful for many other binary trees. In addition, the representation has drawbacks 
of sequential representation, which have been discussed. A major drawback of sequential 
representation is that the data movement of potentially many nodes is needed when the 
insertion or deletion of a node occurs. Here, the movement of nodes is needed to reflect 
the change in the level number of these nodes.

These problems can be overcome by the use of linked representation.

Advantages The various merits of representing binary trees using arrays are as follows:

1. Any node can be accessed from any other node by calculating the index.
2. Here, the data is stored without any pointers to its successor or predecessor.
3. In the programming languages, where dynamic memory allocation is not possible 

(such as BASIC, FORTRAN), array representation is the only means to store a tree.

Disadvantages The various demerits when representing binary trees using arrays are 
as follows:

1. Other than full binary trees, majority of the array entries may be empty.
2. It allows only static representation. The array size cannot be changed during the execution.
3. Inserting a new node to it or deleting a node from it is inefficient with this representation, 

because it requires considerable data movement up and down the array, which demand 
excessive amount of processing time.

7.5.2 linked implementation of Binary Trees

Binary tree has a natural implementation in a linked storage. In a linked organization, we 
wish that all the nodes should be allocated dynamically. Hence, we need each node with 
data and link fields. Each node of a binary tree has both a left and a right subtree. Each node 
will have three fields—Lchild, Data, and Rchild. Pictorially, this node is shown in Fig. 7.27.

Data
Data

Rchild

Rchild

Lchild

Lchild

Fig. 7.27 Tree node

A node does not provide information about the parent node. However, it is still  
adequate for most of the applications. If needed, the fourth parent field can be included. 
The binary tree in Fig. 7.28 will have the linked representation as in Fig. 7.29. The root 
of the tree is stored in the data member root of the tree. This data member provides an 
access pointer to the tree.
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Here, 0 (zero) stored at Lchild or Rchild fields represents that the respective child is not 
present. Let us consider one more example as in Fig. 7.29.

In this node structure, Lchild and Rchild are the two link fields to store the addresses 
of left child and right child of a node; data is the information content of the node. With 
this representation, if we know the address of the root node, then using it, any other node 
can be accessed.

Each node of a binary tree (as the root of some subtree) has both left and right 
subtrees, which can be accessed through pointers as follows.

A

B

D

H I

E F G

C

B

Root

C

0 0G

0 0F

0 0E

0 0I0 0H

D

A

Fig. 7.28  Sample tree 1 and its linked 
representation

D

Root

D

C

B

A A 0

B 0

C 0

00

Fig. 7.29  Sample tree 2 and its linked representation
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Program Code 7.1 described the ADT for a binary tree. Program Code 7.2 is a class for 
the binary tree that shows specifi cations for the ADT. Implementation of these functions 
is covered in the forthcoming topics.

program CoDe 7.2

class TreeNode

{

   public:

      char Data;

         TreeNode *Lchild;

      TreeNode *Rchild;

};

class BinaryTree

{

   private:

      TreeNode *Root;

   public:

      BinaryTree() {Root = Null;}      // constructor

      // int BTree_Equal(BinaryTree, BinaryTree);

      TreeNode *GetNode();

      void InsertNode(TreeNode*);

      void DeleteNode(TreeNode*);

      void Postorder(TreeNode*);

      void Inorder(TreeNode*);

      void Preorder(TreeNode*);

      TreeNode *TreeCopy(); 

      void Mirror();

      int TreeHeight(TreeNode*);

      int CountLeaf(TreeNode*);

      int CountNode(TreeNode*);

      void BFS_Tree();

      void DFS_Tree();

       TreeNode *Create_Btree_InandPre_Traversal(char 

preorder[max], char inorder[max]);

      void Po storder_Non_Recursive(void);

      void Inorder_Non_Recursive();

      void Preorder_Non_Recursive();

      int BTree_Equal( BinaryTree, BinaryTree);

      TreeNode *TreeCopy(TreeNode*);

      void Mirror(TreeNode*);

};
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Using this declaration for a linked representation, the binary tree representation can be 
logically viewed as in Fig. 7.30. The physical representation shows the memory alloca-
tion of nodes.

A

C

G

IH

FE

B

D

750 A 460

620 C 580

660 G 7400 F 0

0 H 0 0 I 0

0 E 00 D 0

500 B 400

Address Nodes

Child Data Rchild

500 0 D 0

750 500 B 400

400 0 E 0

890 750 A 460

620 0 F 0

460 620 C 580

660 0 H 0

580 660 G 740

740 0 I 0

(b)

(a)

(c)

890

750

500 400

460

580

740660

620

Fig. 7.30 Tree and its views (a) Binary tree (b) Physical view (c) Logical view 

Advantages The merits of representing binary trees through liked representations are 
as follows:

1. The drawbacks of the sequential representation are overcome in this representation. 
We may or may not know the tree depth in advance. In addition, for unbalanced trees, 
the memory is not wasted.



304 daTa sTRucTuREs using c++

2. Insertion and deletion operations are more efficient in this representation.
3. It is useful for dynamic data.

Disadvantages The demerits of representing binary trees through linked representation 
are as follows: 

1. In this representation, there is no direct access to any node. It has to be traversed from 
the root to reach to a particular node.

2. As compared to sequential representation, the memory needed per node is more. This 
is due to two link fields (left child and right child for binary trees) in the node.

3. The programming languages not supporting dynamic memory management would not 
be useful for this representation.

7.6 inseRTion of a noDe in BinaRy TRee

The insert() operation inserts a new node at any position in a binary tree. The node to 
be inserted could be a branch node or a leaf node. The branch node insertion is generally 
based on some criteria that are usually in the context of a special form of a binary tree. 
Let us study a commonly used case of inserting a node as a leaf node.

The insertion procedure is a two-step process.

1. Search for the node whose child node is to be inserted. This is a node at some level i, 
and a node is to be inserted at the level i + 1 as either its left child or right child. This 
is the node after which the insertion is to be made.

2. Link a new node to the node that becomes its parent node, that is, either the Lchild or 
the Rchild.

This is represented in Fig. 7.31.

A

FB

C G

ED0 0 0 0

0 0

0

Fig. 7.31 Insertion of node G as the Rchild of node F

7.7 BinaRy TRee TRaveRsal

Traversal is a frequently used operation. Traversal of a tree means stepping through the 
nodes of a tree by means of the connections between parents and children, which is also 
called walking the tree, and the action is a walk of the tree. Traversal means visiting every 
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node of a binary tree. There are many operations that are often performed on a tree such 
as search a node, print some information, insert a node, delete a node, and so on. All such 
operations need the traversal through a tree.

This operation is used to visit each node (exactly once). A full traversal of a tree visits 
nodes of a tree in a certain linear order. This linear order could be familiar and useful. For 
example, if the binary tree contains an arithmetic expression, then its traversal may give 
us the expression in infix, postfix, or prefix notations.

There are various traversal methods. For a systematic travers-
al, it is better to visit each node (starting from the root) and its 
two subtrees in the same way. In other words, when traversing, 
we need to treat each node and its subtree in the same fashion. If 
we let L, D, and R stand for moving left, data, and moving right,  
respectively (Fig. 7.32), when at a node, then there are six pos-
sible combinations—LDR, LRD, DLR, DRL, RDL, and RLD. 

Consider the binary tree shown in Fig. 7.33. This tree represents a binary tree. 
We have studied all the notations of an expression tree and its inter-conversions in 
Chapter 3.

Fig. 7.33 A binary tree representing an 
arithmetic expression

Root

6 /

×

48

−

+

5 3

Let us see the result of each of the six traversals.

LDR: 5 - 6 + 3 ¥ 8 / 4

LRD: 5 6 - 3 8 4 / ¥ +

DLR: + - 5 6 ¥ 3 / 8 4

DRL: + ¥ / 4 8 3 - 6 5

RDL: 4 / 8 ¥ 3 + 6 - 5

RLD: 4 8 / 3 ¥ 6 5 - +

We can notice that DLR and RLD, LDR and RDL, and LRD and DRL are mirror 
symmetric. If we adopt the convention that traversing is done left before right, only then, 
the three traversals, that is, LDR, LRD, and DLR, are fundamental. These are called as  

R

D

L

Fig. 7.32  Components 
of a subtree
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inorder, postorder, and preorder traversals because there is a natural correspondence 
between these traversals producing the infix, postfix, and prefix forms of an arithmetic 
expression, respectively.

7.7.1 preorder Traversal

In this traversal, the root is visited first followed by the left subtree in preorder and then 
the right subtree in preorder. The tree characteristics lead to naturally implement the tree 
traversals recursively. It can be defined in the following steps:

Preorder (DLR) Algorithm

1. Visit the root node, say D.
2. Traverse the left subtree of the node in preorder.
3. Traverse the right subtree of the node in preorder.

Let us consider the tree in Fig. 7.34.
A preorder traversal of the tree in Fig. 7.34 visits the 

node in a sequence: A B D E G C F. For an expression tree, 
the preorder traversal yields a prefix expression (Fig. 7.35).

+

×

A B

D Preorder traversal
yields +×ABD

Fig. 7.35  Expression tree and its preorder traversal

The preorder traversal says, ‘visit a node, traverse left, and continue moving. When you 
cannot continue, move right and begin again or move back, until you can move right and 
stop’. The Preorder() function can be written as both recursive and non recursive.

void BinaryTree :: Preorder(TreeNode*)
{
   if(Root != Null)
   {
      cout << Root->Data;
      Preorder(Root->Lchild);
      Preorder(Root->Rchild);
   }
}

Let us consider the tree in Fig. 7.36. This tree contains an arithmetic expression with 
the binary operators add (+), multiply (¥), divide (/), exponentiation (^), and variables A, 
B, C, D, and E.

FD E

G

B

A

C

Fig. 7.34 Binary tree

R

1

2 3

D

L
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A

B

∧

×

+

/

C

D

E

Fig. 7.36  Binary tree for expression

It gives us the prefix expression +¥/A ^ BCDE. The preorder traversal is also called as 
depth-first traversal.

7.7.2 inorder Traversal

In this traversal, the left subtree is visited first in inorder followed by the root and then the 
right subtree in inorder. This can be defined as the following:

Inorder (LDR) Algorithm

1. Traverse the left subtree of the root node in inorder.
2. Visit the root node node.
3. Traverse the right subtree of the root node in inorder.

Let us consider the binary tree in Fig. 7.34. An inorder traversal of a tree visits the node 
in the following sequence.

Inorder sequence: D B E G A F C An inorder expression traversal of the tree in Fig. 
7.35, which is an expression tree, yields an inorder expression as A ¥ B + D and for Fig. 
7.36 yields an inorder expression as ((A/B ^ C) ¥ D) + E.

The Inorder() function simply calls for moving down the tree towards the left until it 
can no longer proceed. So next, we visit the node, move one node to the right, and continue 
again. If we cannot move, move one node to the right and continue again. If we cannot move 
to the right, go back one more node and then continue. The inorder traversal is also called as 
symmetric traversal. This traversal can be written as a recursive function as follows:

void BinaryTree :: Inorder(TreeNode*)
{
   if(Root  != Null)
   {
      Inorder(RootÆLchild);
      cout << RootÆData;
      Inorder(RootÆRchild);
   }
}

R

2

1 3

D

L
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7.7.3 postorder Traversal

In this traversal, the left subtree is visited first in postorder followed by the right subtree 
in postorder and then the root. This is defined as the following:

Postorder (LRD) Algorithm

1. Traverse the root’s left child (subtree) of the root node in postorder.
2. Traverse the root’s right child (subtree) of the root node in postorder.
3. Visit the root node.

Let us consider the binary tree in Fig. 7.34. The postorder traversal yields the following 
sequence:

Postorder sequence: D G E B F C A For the expression tree in Fig. 7.35, the postorder 
traversal yields a postfix expression as the following:

= A B ¥ D +

For the tree in Fig. 7.36, the postfix expression by the postorder traversal is ABC¥¥/
D¥E+. The postorder traversal says, “traverse left and continue again. When you cannot 
continue, move right and begin again or move back until you can move right and visit 
the node.”

void BinaryTree :: Postorder(TreeNode*)
{
   if(Root  != Null)
   {
      Postorder(RootÆLchild);
      Postorder(RootÆRchild);
      cout << RootÆData;
   }
}

7.7.4 non-recursive implementation of Traversals

We have defined the recursive traversals. These are easy to read and understand. However, 
a language translator such as a compiler will be burdened to carry out the execution. Let us 
go for the other non-recursive approach for these algorithms. Let us write a non-recursive 
implementation using stacks. Here, at the time of left or right traversal, when the left or right 
node is the root of the other subtree, the current node is to be stacked for further traversal.

Non-recursive Preorder Algorithm
1. Tmp = Root
2. while(stack not empty) do
   begin
      if(Tmp is not null) then
      begin
         visit(TmpÆData)
         Push(TmpÆLchild)

R

3

1 2

D

L
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         Tmp = Tmp->Lchild
      else if(stack is empty)
         then exit
      else
         Tmp = Pop()
         Tmp = Tmp->Rchild
      end
   end
3. stop

The C++ implementation of the non-recursive preorder algorithm is given in Program 
Code 7.3.

program CoDe 7.3

void BinaryTree :: Preorder_Non_Recursive()

{

   TreeNode *Tmp = Root;

   stack S;

   while(1)

   {

       while(Tmp != Null)

      // traverse left till left is null and push

      {

         S.Push(Tmp);

         cout << Tmp ->Data;

         Tmp = Tmp->Lchild;

      }

      if(S.IsEmpty()) return;

       //if stack is not empty then pop one and go to 

right

      Tmp = S.Pop();

      Tmp = Tmp->Rchild;

      // if stack is empty stop the process

   }

}

We need stack and queue for tree operations such as depth-fi rst and breadth-fi rst traversals. 
Program Code 7.4 uses these two data structures:

program CoDe 7.4

class stack

{

   public:

      TreeNode *stk[max];
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      int data,top;

      stack *S;

   public:

      stack()

      {

         top = −1;

      }

      int IsEmpty()

      {

         if(top == −1)

            return 1;

         else

            return 0;

      }

      void Push(TreeNode *x)

      {

         stk[top++] = x;

      }

      TreeNode *Pop()

      {

         TreeNode *x;

         x = stk[top−−];

         return(x);

      }

};

class stack1

{

   public:

      char stk1[max];

      int data,top;

   public:

      stack1()

      {

         top = −1;

      }

      int IsEmpty1()

      {

         if(top == −1)

            return 1;

        else

            return 0;

      }
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      void Push1(char x)

      {

         stk1[top++] = x;

      }

      char Pop1()

      {

         char x;

         x = stk1[top−−];

         return(x);

      }

};

class queue

{

   TreeNode *que[max];

   int data, rear, front;

   public:

      queue()

      {

         rear = front = −1;

      }

      int Empty()

      {

         if(rear == front)

            return 1;

         else

            return 0;

      }

      int Full()

      {

         if(rear == max)

            return 1;

         else

            return 0;

      }

     void Add(TreeNode *x)

      {

         if(Full())

            cout << "\n Queue Overfl ow";

        else

          que[++rear] = x;

      }

      TreeNode *Del()
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      {

         TreeNode *x;

         if(Empty())

         {

            cout << "\n Queue is empty";

            //return −1;

         }

         else

         {

            x = que[front++];

            return(x);

         }

      }

};

Non-recursive Inorder Algorithm

Algorithm 7.1 is for non-recursive inorder traversal of a binary tree.

algorithm 7.1
1. Tmp = Root
2. while(1) do
   begin
      while(Tmp != Null) then
      begin
         push(Tmp)
         Tmp = TmpÆLchild
      end
      if(stack is empty) then exit
      Tmp = Pop()
      visit(TmpÆdata)
      Tmp = TmpÆRchild
   end while
3. Stop

The C++ implementation of Algorithm 7.1 is stated in Program Code 7.5.

program CoDe 7.5

void BinaryTree :: Inorder_Non_Recursive()

{

   TreeNode *Tmp;

   stack S;

   Tmp = Root;

  while(1)
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   {

      while(Tmp != Null)

      {

         S.Push(Tmp);

         Tmp = Tmp->Lchild;

      }

      if(S.IsEmpty())

         return;

         //if stack is not empty then pop one and go to 

right

      Tmp = S.Pop();

      cout << Tmp->Data;

      Tmp = Tmp->Rchild;

   }

}

Non-recursive Postorder Algorithm

Algorithm 7.2 is for non-recursive postorder traversal of a binary tree. As compared to 
earlier algorithms, in postorder traversal, we require the Pop operation when returning 
from the left and right subtrees.

algorithm 7.2

1. When we return from the left subtree, perform the following operations:
(a) Tmp = Pop

(b) Tmp = TmpÆRchild.

2. When we re turn from the right subtree, perform the following operations:
(a) Tmp = Pop

(b) Print TmpÆdata (that is, visit  and process the node, if required) 
(c) Tmp = Pop

Hence, we need to differentiate between the return operation from the left subtree and 
right subtree. Let us use the stack that stores the status: ‘L’ for left , and ‘R’ for righ t. For 
performing the extra Pop operation while returning from the right subtree, we need to 
assign Tmp = Null. Program Code 7.6 demonstrates this.

program CoDe 7.6

void BinaryTree :: Postorder_Non_Recursive(void)

{

   TreeNode * Tmp = Root;

   stack S;
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   stack1 S1;

   char fl ag;

   // stack S stores the node and S1 stores the fl ag ‘L’ or ‘R’

   while(1)

   {

      while(Tmp != Null)

      // traverse tree left till not Null

      {

         S.Push(Tmp);

         S1.Push1('L');

         // push node in S and ‘L’ in S1

         Tmp = Tmp->Lchild;

      }

      if(S.IsEmpty())

         return;

      else

      {

         Tmp = S.Pop();

         //pop node

         fl ag = S1.Pop1();

         if(fl ag == 'R')

         // if fl ag is 'R' display data

         {

            cout << Tmp->Data;

            Tmp = Null;

         }

         else      // if fl ag is 'L'

         {

            S.Push( Tmp);

            // push Tmp with fl ag 'R'

            S1.Push1('R');

            Tmp = Tmp->Rchild;

            // move to right

         }

      }

   }

}

7.7.5 formation of Binary Tree from its Traversals

Sometimes, we need to construct a binary tree if its traversals are known. From a sin-
gle traversal, a unique binary tree cannot be constructed. However, if two traversals are 
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known, then the corresponding tree can be drawn uniquely. Let us examine these possi-
bilities and then chalk out the algorithm for the same.

The basic principle for formulation is as follows:

1. If the preorder traversal is given, then the first node is the root node. If the postorder 
traversal is given, then the last node is the root node.

2. Once the root node is identified, all the nodes in all left and right subtrees of the root 
node can be identified.

3. Same techniques can be applied repeatedly to form the subtrees.

We can conclude that for the binary tree, construction and traversals are essential out 
of which one should be inorder traversal and another should be preorder or postorder 
traversal. Alternatively, for the given preorder and postorder traversals, the binary tree 
cannot be obtained uniquely.

Consider the following sequences of traversal as in Example 7.1.

 example 7.1  Construct a binary tree using the following two traversals:

Inorder : D B H E A I F J C G
Preorder: A B D E H C F I J G

Solution From the preorder traversal, it is evident that A is the root node. In addition, 
in the inorder traversal, all the nodes that are to the left side of A belong to the left subtree 
and those to the right side of A belong to the right subtree (Fig. 7.37).

(a)

In: DBHE
Pre: BDEH

In: IFJCG
Pre: CFIJG

A

JIH

GFED

C

A

B

(b) (c)

In: D
B D

H
H

HE
EH IFJ

C IFJG
G

E

JIH

GFED

CB

A

F
I

I J
J

Fig. 7.37  Binary tree from inorder and preorder traversals (a) Two subtrees as a 
being the root from  two traversals (b) Repeated application (c) Final binary tree
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Example 7.2 shows the construction of a binary tree from a sequence of inorder and post-
order traversals.

 example 7.2  Construct a binary tree from its inorder and postorder traversals.

Inorder : 1   2   3   4   5   6   7   8   9
Postorder: 1   3   5   4   2   8   7   9   6

Solution As 6 is the last node traversed in postorder, 6 is the root (Fig. 7.38). The 
fi nal binary tree constructed is as in Fig. 7.39.

1

8
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9

53

4
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2

Fig. 7.39 Final binary tree

1

1

1

2

2

3

3 5

54

4

3 5

43 5

3 5

8

8

8

8

87

7 9

9

7

7

6

4

Fig. 7.38  Sample tree

Using the inorder and preorder traversals, a binary tree can be constructed. Program 
Code 7.7 is the implementat ion of the same.

program CoDe 7.7

// code to construct tree using preorder and inorder 

// sequences

class TreeNode

{

   public:

      char Data;

      TreeNode *Lchi ld, *Rchild;

};

//Function to create a tree using preorder and inorder 

sequences

TreeNode *BinaryTree :: Create_Btree_InandPre_Traversal

(char  preorder[max], char inorder[max])

{

   //to store divided inorder and preorder sequence

    char in1[max],in2[max],pre1[max],pre2[max];
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   TreeNode *Tmp;

   int  i,j,k;

   if(strlen(preorder) == 0)

      return Null;

      Tmp = new TreeNode;

      Tmp->Data = preorder[0] ;

      //following code is for dividing inorder sequence

      for(i = 0;inor der[i] != preorder[0]; i++)

         in1[i] = inorder[i];

      in1[i] = '\0';

      i++;

      k =  0;

      for(j = i; inorder[j] != '\0'; j++)

         in2[k++] = inorder[j];

      in2[k] = '\0';

      cout << " in " << in1 << "   " << in2;

      //following code is for dividing preorder sequence

      i = j = 0;k = 1;

      for(k = 1; preorder[k] != '\0'; k++)

       {

         if(strchr(in1,preorder[k]) != Null)

          //  strchr function used to check char is 

present in string  or not

            pre1[i++]=preorder[k];

         else

            pre2[j++]=preorder[k];

      }

      pre1[i]='\0';

       pre2[j]='\0';

       Tmp->Lchild = Create_Bt ree_InandPre_Traversal

(pre1,in1);

       Tmp->Rchild = Create_Btree_InandPre_Traversal

(pre2,in2);

      return Tmp;

}

7.7.6 Breadth- and Depth-fi rst Traversals

As defi ned earlier, we know that the traversal of a tree means visiting through the nodes 
of a tree. A traversal where the node is visited before its children is called a breadth-fi rst 
traversal; a walk where the children are visited prior to the parent is called a depth-
fi rst traversal.
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 Depth-fi rst Traversal

A traversal where the children are visited (operated on) before 
the parent is called the depth-fi rst traversal. We have already 
seen a few ways to traverse the elements of a tree. For example, 
look at the tree in Fig. 7.40.

A preorder traversal would visit the elements in the order: j, 
f, a, d, h, k, z.

This type  of traversal is called a depth-fi rst traversal as it 
tries to go deeper in the tree before exploring the siblings. For 
example, the traversal visits all the descendants of f (i.e., keeps going deeper) before visit-
ing f’s sibling k (and any of k’s descendants).

The two other traversal orders are inorder and postorder. An inorder traversal 
would give us the following sequence: a, d, f, h, j, k, z. A postorder traversal would 
give us the following sequence: d, a, h, f, z, k, j. These traversals also try to go 
deeper fi rst.

For example, the inorder traversal visit s a and d before it explores a’s sibling 
h. Likewise, it visits all of the j’s left subtree (i.e., a, d, f, h) before exploring j’s 
right subtree (i.e., k, z). The same is tru e for the postorder traversal. It visits all 
of the j ’s left subtree (i.e., d, a, h, f) before exploring any part of the right subtree 
(i.e., z, k).

Le t us see how it is implemented non-recursively using stack. Progr am Code 7.8 is the 
implementation of non-recursive depth-fi rst traversal using stack.

program CoDe 7.8

void BinaryTree :: DFS_Tree()

{

   stack S;

   TreeNode *Tmp=Root;

   do

   {

      cout << Tmp->Data;

      if(Tmp->Rchild != Null)

         S.Push(Tmp->Rchild);

      if(Tmp->Lchild != Null)

        S.Push(Tmp->Lchild);

      if(S.IsEmpty()) break;

      Tmp = S.Pop();

   }

   while(1);

}

Rootj

h

f k

za

d

Fig. 7.40  Sample tree
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Breadth-first Traversal

Depth-first is not the only way to go through the el-
ements of a tree. Another way is to go through them 
level-by-level (Fig. 7.41). For example, each ele-
ment exists at a certain level (or depth) in the tree.

So, if we want to visit the elements level-by-
level (and left to right, as usual), we would start at 
level 0 with j, then go to level 1 for f and k, then go 
to level 2 for a, h, and z, and finally go to level 3 for 
d. This level-by-level traversal is called a breadth-first traversal because we explore the 
breadth, that is, the full width of the tree at a given level, before going deeper. One may 
think about why we should ever traverse a tree breadth wise. Well, there are many reasons 
for the same.

Tree of officers Suppose you have a tree 
representing some command structure as 
in Fig. 7.42.

This tree is meant to represent who is in 
charge of the lower ranking of officers. For 
example, Mr X is directly responsible for 
Mr Y and Mr Z. People of the same rank are 
at the same level in the tree. However, to dis-
tinguish between people of the same rank, 
those with more experience are on the left and those with less experience are on the right 
(i.e., experience from left to right). One way the command would follow to trace the path is 
to list the officers in the tree in the breadth-first order. This would give the following result:

Mr X at the top level, say manager; then his subordinates, say department heads as.  
Mr Y and Mr Z and their subordinates as Mr A, Mr B, Mr C, Mr D, and Mr E.

In this case, traversing the tree breadth-first makes more 
sense as we want to print the results post wise from the high-
est level. As we have seen, the tree traversals go deeper in 
the tree first using stack as a helper data structure. Instead, 
if we are going to implement a breadth-first traversal of a 
tree, we will need the queue as a helper data structure. Let 
us consider the tree drawn as in Fig. 7.43.

When we are at element f, that is the only time we have the 
access to its two immediate children, a and h. So, when we are at f, we need the data struc-
ture that holds its children. Obviously then, f must have been in the data structure before 
them, since we would have put f in when we were at f’s parent. So, if we put the parent in 
the data structure before its children, we need to select the data structure that will give us the 
order we need. A queue will give us the order we want! A queue enforces the first-in-first-
out (FIFO) order, and we have to process the parent first before its descendants.

Level 0

Level 1

Level 2

Level 3

j

h

f k

za

d

Fig. 7.41  Tree of level 3

Mr X

Mr D

Mr A

Mr E

Mr B

Mr Y Mr Z

Mr C

Fig. 7.42  Officers tree

f

ha

d

Fig. 7.43  Breadth-first 
traversal—sample tree
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Non-recursive breadth-fi rst traversal is implemented in Program Code 7.9 using a queue.

program CoDe 7.9

void BinaryTree :: BFS_Tree()

{

   queue Q;

   TreeNode *Tmp = Root;

   do

   {

      cout << Tmp->Data;

      if((Tmp->Lchild) != Null)

         Q.Add(Tmp->Lchild);

      if(Tmp->Rchild != Null)

         Q.Add(Tmp->Rchild);

      if(Q.Empty()) break;

      Tmp = Q.Del();

   }

   while(1);

}

7.8 oTHeR TRee opeRaTions

Using traversal as a basic operation, many other operations can be performed on a tree, 
such as fi nding the height of the tree, computing the total number of nodes, leaf nodes, 
and so on. Let us study a few of such operations.

7.8.1 counting nodes

CountNode() is the function that returns the total count of nodes in a linked binary 
tree.

int  BinaryTree :: CountNode(TreeNode *Root)
{
   if(Root == Null)
      return 0;
   else
      return(1 + CountNode(Root->Rchild) + CountNode(Root->Lchild));
}

7.8.2 counting leaf nodes

The CountLeaf() operation counts the total number of leaf nodes in a linked binary tree. 
Leaf nodes are those with no left or right children.

int BinaryTree :: CountLeaf(TreeNode *Root)
{
   if(Root == Null)
      return 0;
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   else if((Root->Rchild == Null) && (Root->Lchild == Null))
      return(1);
   else
      return(CountLeaf(Root->Lchild) + CountLeaf(Root->Rchild));
}

7.8.3 computing Height of Binary Tree

The TreeHeight() operation computes the height of a linked binary tree. Height of a 
tree is the maximum path length in the tree. We can get the path length by traversing the 
tree depthwise. Let us consider that an empty tree’s height is 0 and the tree with only one 
node has the height 1.

int BinaryTree :: TreeHeight(TreeNode *Root)
{
   int heightL, heightR;
   if(Root == Null)
      return 0;
   if(Root->Lchild == Null && Root->Rchild == Null)
      return 0;
   heightL = TreeHeight(Root->Lchild);
   heightR = TreeHeight(Root->Rchild);
   if(heightR > heightL)
      return(heightR + 1);
   return(heightL + 1);
}

7.8.4 Getting Mirror, Replica, or Tree interchange of Binary Tree

The Mirror() operation finds the mirror of the tree that will interchange all left and right 
subtrees in a linked binary tree.

void BinaryTree :: Mirror(TreeNode *Root)
{
   TreeNode *Tmp;
   if(Root != Null)
   {
      Tmp = Root->Lchild;
      Root->Lchild = Root->Rchild;
      Root->Rchild = Tmp;
      Mirror(Root->Lchild);
      Mirror(Root->Rchild);
   }
}

7.8.5 copying Binary Tree

The TreeCopy() operation makes a copy of the linked binary tree. The function should 
allocate the necessary nodes and copy the respective contents into them.

TreeNode *BinaryTree :: TreeCopy()
{
   TreeNode *Tmp;
   if(Root == Null)
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      return Null;
   Tmp = new TreeNode;
   TmpÆLchild = TreeCopy(RootÆLchild);
   TmpÆRchild = TreeCopy(RootÆRchild);
   TmpÆData = RootÆData;
   return Tmp;
}

7.8.6 equality Test

The BTree_Equal() operation checks whether two binary trees are equal. Two trees are 
said to be equal if they have the same topology, and all the corresponding nodes are equal. 
The same topology refers to the fact that each branch in the first tree corresponds to a 
branch in the second tree in the same order and vice versa.

int BinaryTree :: BTree_Equal(Binarytree T1 , BinaryTree T2)
{
   if(Root == Null && T2.Root == Null)
      return 1;
   return(Root && T2.Root);
   &&(Root->Data == T2.Root->Data);
   &&BTree_Equal(Root->Lchild ,T2.Root->Lchild);
   &&BTree_Equal(Root->Rchild, T2.Root->Rchild));
}

7.9 conveRsion of GeneRal TRee To BinaRy TRee

A general tree is one where each node can have an outgoing degree n, where n ≥ 0. Each 
node may have many applications such as charts, genesis, networks, and so on. In this 
section, we shall study that every general tree can be represented as a binary tree. We can 
make out from the study of representations of trees that the representation of a binary tree 
is easier than the general tree representation.

Binary trees are the trees where the maximum degree of any node is two. Any general 
tree can be represented as a binary tree using the following algorithm:

1. All nodes of a general tree will be the nodes of a binary tree.
2. The root T of a general tree is the root of a binary tree.
3. To obtain a binary tree, we use a relationship between the nodes that can have the 

following two characteristics:
(a) The first or the leftmost child–parent relationship
(b) Node-next right sibling relationship

Use the following steps to obtain T' from T:

1. Connect (insert an arrow from) each node to its right sibling (if one exists).
2. Disconnect (remove arrows from) each node from (to) all but the leftmost child.

Examples 7.3 and 7.4 demonstrate the conversion of a general tree into a binary tree.
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 example 7.3  Convert the general tree in 
Fig. 7.44 into its corresponding binary tree.

Solution In this tree, the leftmost child 
of 2 is 3 and the next right child of 2 is 4.  
The binary tree corresponding to the tree is 
obtained by connecting together all siblings 
of each node (Fig. 7.45) and deleting all links 
from a node to its children except for the link 
to its leftmost child. The binary tree obtained is 
shown in Fig. 7.46.

Fig. 7.45 Step 1
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Fig. 7.46  Binary tree for tree in Fig. 7.44

 example 7.4  Convert the general tree in Fig. 7.47 into its corresponding binary tree.
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Fig. 7.47 General tree
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Fig. 7.44 General tree
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Solution The binary tree representation of Fig. 7.47 is shown in Fig. 7.48.

Fig. 7.48  Binary tree for tree in Fig. 7.47
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This binary tree can also be drawn in a more familiar format as in Fig. 7.49.
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Fig. 7.49  Resultant binary tree in format 2

Note that if the order of the children in a tree is not im-
portant (unordered tree), then any of the children of a node 
could be its leftmost child and any of its siblings could be its 
next right siblings. For the sake of definiteness, we choose 
the nodes based upon how the tree is drawn. The node 
structure for a binary tree can be shown as in Fig. 7.50.

Data

Child Sibling

Fig. 7.50  Node structure 
for binary tree
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In addition, notice that the transformation from the resultant binary tree to the 
original n-ary tree is reversible. That is, given a binary tree representation of a general 
tree, we can re-create the general tree. A left node is the leftmost child of its parent. 
A right node is a sibling of its parent 

Example 7.5 illustrates the conversion of a given tree to a binary tree.

 example 7.5  Convert the following tree in Fig. 7.51 into a binary tree.

1

2 3 4

5 6 7 8 9

Fig. 7.51 Given general tree

Solution Let us connect the siblings and drop all the pointers from the parent to the 
children except to the first child as in Fig. 7.52.

Now every child becomes a left child, every sibling becomes a right child, and the 
resultant tree is a binary tree as in Fig. 7.53.
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Fig. 7.53 Resultant binary tree
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Fig. 7.52 Step 1

7.10 BinaRy seaRcH TRee

We know that the sequential search with O(n) searches is slower compared to the bi-
nary search with O(log2 n) searches. If the list is an ordered list stored in a contiguous 
sequential storage, the binary search is faster. Though the list is stored, if it is stored in a 
linked list, the binary search cannot work as it does not support direct access. However, 
when we frequently need to make changes in the list, that is, inserting a new entry or  
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deleting an old entry, then it is much slower to use a contiguous sequential list than a 
linked list, as insert() and delete() operations need data movement. On the other 
hand, in a linked organization, we need only a few pointer manipulations for insertion 
and deletions. If so, we can then find an implementation for an ordered list where we 
can search quickly (as with binary search) and insert or delete elements quickly (as with 
linked list). A binary tree provides an excellent solution to this problem.

1. We can make entries of an ordered list into the nodes of a binary tree. We shall see that 
we can search a target key in O(log2 n) steps, and in addition, we can insert and delete 
the key in time O(log2 n).

2. The binary search tree (BST) is a binary tree with the property that the value in a node 
is greater than any value in a node’s left subtree and less than any value in the node’s 
right subtree.

3. This property guarantees fast search time provided the tree is relatively balanced. 

The BSTs are classified as static trees and dynamic trees. Static tree is a BST where the set of 
values in the nodes is known in advance and never changes. Dynamic tree is a BST where the 
values in a tree may change over time. We shall study the ways of building and balancing these 
search trees to guarantee that the trees remain balanced so that the search time is minimum.

Binary search tree A BST is a binary tree that is either empty or where every node 
contains a key and satisfies the following conditions:

1. The key in the left child of a node, if it exists, is less than the key in its parent node.
2. The key in the right child of a node, if it exists, is greater than the key in its parent node.
3. The left and right subtrees of a node are again BSTs.

The definition ensures that no two entries in a BST can have equal keys. It is possible 
to change the definition to allow entries with equal keys but doing so makes an algorithm 
more complicated. We assume that all keys are unique.

Figure 7.54 represents two BSTs.
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Fig. 7.54 Binary search trees
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The following are the operations commonly performed on a BST:

1. Searching a key
2. Inserting a key
3. Deleting a key
4. Traversing the tree

Program Code 7.10 demonstrates the class for a BST showing the node structure and the 
function prototypes to operate on.

program CoDe 7.10

class TreeNode

{

   <data type> Key;

   TreeNode *Lchild, *Rchild;

};

class BSTree

{

   private:

      TreeNode *Root;

   public:

      BSTree() {Root = Null;}      // constructor

      void InsertNode(int Key);

      void DeleteNode(int key);

      void Search(int Key);

      bool IsEmpty();

};

7.10.1 inserting a node

To insert a new node into a BST, the keys should remain in proper order so that the result-
ing tree satisfi es the defi nition of a BST. 

Let us consider the insertion of the keys Esha, Beena, Deepa, Gilda, Amit, Geeta, and 
Chetan, into an initially empty tree in the given order as shown in Fig. 7.55.

If the tree is empty, then the fi rst entry, Esha, when inserted, becomes the root, as 
shown in Fig. 7.55(a). Since Beena is less than Esha, insertion goes into the left subtree 
of Esha, and so on for all keys. If the tree is not empty, then we must compare the key 
with the one in the ro ot. Insert() function can be written both recursively as well as 
non-recursively.
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Esha

(a) (b) (c)

(d) (e)

(f) (g)

Esha

Beena

Deepa

Gilda
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Fig. 7.55 Insertion in BST (a) Insert Esha (b) Insert Beena (c) Insert Deepa 
(d) Insert Gilda (e) Insert Amit (f) Insert Geeta (g) Insert Chetan
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The BST ADT was given in Program Code 7.10. The code for the function to insert a node 
is listed in Program Code 7.11.

program CoDe 7.11

TreeNode *BSTree :: Insert(int Key)

{

   TreeNode *Tmp, NewNode;

   NewNode = new BSTNode;

   NewNode->Data = Key;

   NewNode->Lchild = NewNode->Rchild = Null:

   if(Root == Null)

   {

      Root = NewNode;

      return;

   }

   Tmp = Root;

   while(Tmp  != Null)

   {  

      if(Tmp->Data < Key)

      {      

         if(Tmp->Lchild == Null) 

         {      

            Tmp->Lchild = NewNode;

            return;

         }      

         Tmp = Tmp->Lchild;

         else if(Tmp->Rchild == Null) 

         {

            Tmp->Rchild = NewNode;

            return;

         }

      }

   }

   Tmp = Tmp->Rchild;

}

Initially, the tree is empty. The tree is built through the Insert() function.
Example 7.6 shows the construction of a BST from a given set of elements.
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 example 7.6  Build a BST from the following set of elements—100, 50, 200, 300, 
20, 150, 70, 180, 120, 30—and traverse the tree built in inorder, postorder, and preorder.

Solution The BST is constructed through the following steps:

Step 1: Initially, Root = Null. Now let us insert 100.

100

Head

Step 2: Insert 50. As it is less than the root, that is, 100, and its left child is Null, we 
insert it as a left child of the root.

100

50

Step 3: Insert 200. As it is greater than the root, that is, 100, and its right child is Null, 
we insert it as a right child of the root.

100

50 200

Step 4: Insert 300. As it is greater than the root, that is, 100, we move right to 200. It 
is greater than 200, and its right child is Null, so we insert it as a right child of 200.

100

50 200

300
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Similarly, we insert the other nodes. 

Step 5: Insert 20.

100

50

20

200

300

Step 6: Insert 150.

100

50

20 150

200

300

Step 7: Insert 70.

100
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20 15070
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Step 8: Insert 180.
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332 daTa sTRucTuREs using c++

Step 9: Insert 120.

100

50

20 150

180120

70

200

300

Step 10: Insert 30.

100

50

20 150

180

70

12030

200

300

Traverse the built tree in inorder, postorder, and preorder and display the sequence of 
numbers.

Preorder: 100 50 20 30 70 200 150 120 180 300
Inorder: 20 30 50 70 100 120 150 180 200 300
Postorder: 30 20 70 50 120 180 150 300 200 100

Note that the inorder traversal of a BST generates the data in ascending order.

7.10.2 searching for a Key

To search for a target key, we first compare it with the key at the root of the tree. If it is 
the same, then the algorithm ends. If it is less than the key at the root, search for the target 
key in the left subtree, else search in the right subtree. Let us, for example, search for the 
key ‘Saurabh’ in Fig. 7.56.
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Jyoti

Rekha

Teena
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abh

kaust-
ubh

Kasturi

Anita

Amit

Abolee

Gilda

Deepa

Fig. 7 .56 Binary search tree

We fi rst compare ‘Saurabh’ with the key of the root, ‘Jyoti’. Since ‘Saurabh’ comes after 
‘Jyoti’ in alphabetical order, we move to the right side and next compare it with the key 
‘Rekha’. Since ‘Saurabh’ comes after ‘Rekha’, we move to the right again and compare 
with ‘Teena’. Since ‘Saurabh’ comes before ‘Teena’, we move to the left.

Now the question is to identify what event will be the terminating condition for the 
search. The solution is if we fi nd the key, the function fi nishes successfully. If not, we 
continue searching until we hit an empty subtree.

Program Code 7.12 shows the implementation of search() function, both non-
recursive and recursive implementat ions.

program CoDe 7.12

TreeNode *BSTree :: Search(int Key)

{

   TreeNode *Tmp = Root;

   while(Tmp)

   {

      if(Tmp->Data == Key)

         return Tmp;

      else if(Tmp->data < Key)

         Tmp = Tmp->Lchild;

      else

         Tmp = Tmp->Rchild;

   }

   return Null;

}
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class BSTree

{

   private:

      TreeNode * Root;

       TreeNode*BSTree :: Rec_Search(TreeNode *root, 

int key);

   public:

      BSTree() {Root = Null;}      // constructor

      void InsertNode(int Key);

      void DeleteNode(int key);

      void Search(int Key);

      bool IsEmpty();

      TreeNode* BSTree:: Recursive_Search(int key)

      {

         Rec_Search(Root, int Key);

      }

};

TreeNode *BSTree :: Rec_Search(TreeNode *root, int key)

{

   if(root == Null)

      return(root);

   else

   {

      if(root->Data < Key)

         root = Rec_Search(root->Lchild);

      else if(root->data > Key)

         root = Rec_Search(root->Rchild);

   }

}

The class with recursive function is given in this program code.

7.10.3 Deleting a node

Deletion of a node is one of the frequently performed operations. Let T be a BST and X be 
the node of key K to be deleted from T, if it exists in the tree. Let Y be a parent node of X. 
There are three cases when a node is to be deleted from a BST. Let us consider each case:

1. X is a leaf node.
2. X has one child.
3. X has both child nodes.
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Case 1: Leaf node deletion If the node to be deleted, say X, is a leaf node, then the 
process is easy. We need to change the child link of the parent node, say Y of node to be 
deleted to Null, and free the memory occupied by the node to be deleted and then return. 
Consider the following tree given in Fig. 7.57. Here, 5 is the node to be deleted.

5
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14

15

13

16

9

Fig. 7.57 Binary search tree

After deleting the node with data = 5, the BST becomes as in Fig. 7.58.
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Fig. 7.58 BST after deletion 
of node with data = 5

Case 2(a): Node not having right subtree If the node to be deleted has a single child link, 
that is, either right child or left child is Null and has only one subtree, the process is still 
easy. If there is no right subtree, then just link the left subtree of the node to be deleted to its 
parent and free its memory. If X denotes the node to be deleted and Y is its parent with X as a 
left child, then we need to set Y->Lchild = X->Lchild and free the memory. If X denotes the 
node to be deleted and Y is its parent with X as a right child, then we need to set Y->Rchild = 
X->Lchild and free the memory. Let the node to be deleted be with data = 16 and data = 8; 
the resultant tree is as shown in Figs 7.59(a) and (b), respectively.

Case 2(b): Node not having left subtree If there is no left subtree, then just link the right 
subtree of the node to be deleted to its parent and free its memory. If X denotes the node to be 
deleted and Y is its parent with X as a left child, then we need to set Y->Lchild = X->Rchild and 
free the memory. If X denotes the node to be deleted and Y is its parent with X as a right child, 
then we need to set Y->Rchild = X->Rchild and free the memory. Let the node to be deleted be 
with data = 5 and data = 12; the resultant tree is as in Figs 7.59(c) and (d), respectively.
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Fig. 7.59 Resultant tree after deletion of node with no left or right subtree 
(a) Delete 16 (b) Delete 8 (c) Delete 5 (d) Delete 12
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Case 3: Node having both subtrees Consider the case when the node to be deleted 
has both right and left subtrees. This problem is more difficult than the earlier cases. The 
question is which subtrees should the parent of the deleted node be linked to, what should 
be done with the other subtrees, and where should the remaining subtrees be linked. One 
of the solutions is to attach the right subtree in place of the deleted node, and then attach 
the left subtree onto an appropriate node of the right subtree. This is pictorially shown  
in Fig. 7.60.
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Fig. 7.60 Deleting node with both subtrees  (a) Delete x 
(b) Delete  16 (c) Resultant tree after deletion
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Another way to delete X from T is by fi rst deleting the inorder successor of the node 
X, say Z, then replace the data content in the node X by the data content in the node Z 
(successor of the node X). Inorder successor means the node that comes after the node X 
during the inorder traversal of T. 

Let us consider Fig. 7.61, and let the node to be deleted be the node with data 12.
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Fig. 7.61 Deleting the node with data = 12

In this process, we are actually trying to maintain the properties and the structure of a 
binary tree as much as possible. While deleting a node with both subtrees, we attempt 
searching the best suitable node to place at the deleted node. There are two alternatives 
to achieve so:

1. One can search for the largest data in the deleted node’s left subtree and replace the 
deleted node with it.

2. One can search for the smallest data from the deleted node’s right sub tree and replace 
the deleted node with it.

Program Code 7.13 includes implementation of the delete() functi on with all cases such 
as the node to be deleted being a leaf node or the node having one child or the node having 
both child nodes.

program CoDe 7.13

// function to delete a node from BST

TreeNode *BSTree :: del(int deldata)

{

   int found = 0;

   int fl ag;

   TreeNode *temp = Root, *parent, *x;

   if(Root == Null)

   {

      cout << endl << "\t BST is empty";

      return Null;

   }
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   else

   {

      parent = temp;

      //Search a BST node to be deleted & its parent

      while(temp != Null)

      {

         if(temp->Data == deldata )

            break;      // found

         if(deldata < temp->Data)

         {

            parent = temp;

            temp = temp->Lchild;

         }

         else

         {

            parent = temp;

            temp = temp->Rchild;

         }

      }      // end of search

      if(temp == Null)

         return(Null);

      else

      {

         //case of BST node having right children

         if(temp->Rchild != Null)

         {

            //fi nd leftmost of right BST node

            //cout << "\n Temp is having right child";

            parent = temp;

            x = temp->Rchild;

            while(x->Lchild != Null)

            {

               parent = x;

               x = x->Lchild;

            }

            temp->Data = x->Data;

            temp = x;

         }

         //case of BST node being a leaf Node

         if(temp->Lchild == Null && temp->Rchild == Null)

         {

            //cout << "\n Leaf node";

           if(temp != root)
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            {

               if(parent->lLchild == temp)

                  parent->Rchild = Null;

               else

                  parent->Rchild = Null;

            }

            else

               root = Null;

            delete temp;

            return(root);

         }

          else if(temp->Lchild!=Null&&temp->Rchild == 

Null)

            //case of BST node having left children

         {

            //cout << “\n only left”;

            if(temp != root)

            {

               if(parent->Lchild == temp)

                  parent->Lchild = temp->Lchild;

               else

                  parent->Rchild = temp->Lchild;

            }

            else

               root = temp->Lchild;

            delete temp;

            return(root);

         }

      }

   }

}

7.10.4 Binary Tree and Binary search Tree

We have studied both binary tree and BST. A BST is a special case of the binary tree. The 
comparison of both yields the following points: 

1. Both of them are trees with degree two, that is, each node has utmost two children. 
This makes the implementation of both easy.

2. The BST is a binary tree with the property that the value in a node is greater than any 
value in a node’s left subtree and less than any value in a node’s right subtree.
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3. The BST guarantees fast search time provided the tree is relatively balanced, whereas 
for a binary tree, the search is relatively slow.

Consider the binary tree and BST shown in Fig. 7.62.
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Fig. 7.62 Binary tree and binary search tree

In these trees, if we search for a node with data = 7, the number of searches varies in both 
trees as we need 5 comparisons for binary tree and 2 comparisons for BST.

Given a binary tree with no duplicates, we can construct a BST from a binary tree. The 
process is easy; one can traverse the binary tree and construct a BST for it by inserting 
each node in an initially empty BST.

7.11 THReaDeD BinaRy TRee 

We have studied the linked implementation of binary trees and the fundamental opera-
tions such as inserting a node, deleting a node, and traversing the tree. There are two 
key observations—first is that for all leaf nodes and those with one child the Lchild and/
or Rchild fields are set to Null. The second observation is in the traversal process. The 
traversal functions use stack to store information about those nodes whose processing has 
not been finished. In case of non-recursive traversals, user-defined stack is used, and in 
case of recursive traversals internal stack is used. There is additional time for processing, 
but additional space for storing the stack is required. This is not a perceptible problem 
when a tree is of larger size. 

To solve this problem, we can modify the node structure to hold information about 
other nodes in the tree such as parent, sibling, and so on. A.J. Perlis and C. Thornton 
have suggested replacing all the Null links by pointers, called threads. A tree with a 
thread is called a threaded binary tree (TBT). Note that both threads and tree pointers 
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are pointers to nodes in the tree. The difference is that the threads are not structural 
pointers of the tree. They can be removed but still the tree does not change. Tree pointers 
are the pointers that join and hold the tree together. Threads utilize the Null pointers’ 
waste space to improve the processing efficiency. One such application is to use these 
Null pointers to make traversals faster. In a left Null pointer, we store a pointer to the 
node’s inorder successor. This allows us to traverse the tree both left to right and right 
to left without recursion.

Though advantageous, we need to differentiate between a thread and a pointer. In the 
pictorial representation in Fig. 7.63, we draw the threads as dashed lines and the non-
threads as solid lines. 

Thread

Pointer

Fig. 7.63 Representation of threads and pointers

However, we need to differentiate between the thread and the pointer in actual imple-
mentation, that is, in the memory representation of a tree.

Let us use two additional fields—Lbit and Rbit to distinguish between a thread and 
a pointer.

Let us also use a function IsThread() that returns true if the pointer is a thread, and 
false if it is the conventional pointer to the child in the tree.

Lbit(node) = 1  if Left(node) is a thread

= 0 if Left(node) is a child pointer

Rbit(node) = 1  if Right(node) is a thread

= 0 if Right(node) is a child pointer

Class TBTNode
{
   boolean Lbit, Rbit;
   <Datatype> Data;
   TBTNode *Left, *Right;
}; y

Let us consider a tree and also a tree with threads as in Figs 7.64(a) and (b),  
respectively.
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Root Root

(a)
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5 54 4
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Fig. 7.64 Threaded binary tree (a) Tree (b) Corresponding threaded binary tree

In Fig. 7.64, note that the two threads Left(4) 
and Right(7) have been left dangling. To avoid 
such dangling pointers, we use an additional 
node, a head node of all threaded trees. The tree 
T is the left subtree of the head node. An empty 
tree is represented in Fig. 7.65.

The tree in Fig. 7.64 has its TBT drawn. In the TBT as in Fig. 7.65, two threads that 
are the left thread of a node with data = 4 and the right thread of a node with data = 7 are 
dangling as they remain unassigned. To avoid this, a head node is added in the tree. The 
tree in Fig. 7.64 can be redrawn as in Fig. 7.66.

0 1

0 01

0 02 0 03

0 04 1 15 1 16 1 17

1 18

−

Fig. 7.66  Memory representation of TBT in Fig. 7.64

Here, 1 (true) shows it’s a thread and 0 (false) represents that it’s not a thread but a pointer 
to the child subtree.

Lbit

1 0−

RbitLeft Data Right

Fig. 7.65  An empty threaded binary tree
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7.11.1 Threading a Binary Tree

To build a threaded tree, first build a standard binary tree. Then, traverse the tree, chang-
ing the Null right pointers to point to their successors, for inorder TBT. Let succ(N) be 
a function that returns the inorder successor of the node N. Let pred(N) be a function that 
is an inorder predecessor of node N. The successor of N is the node that would be printed 
after N when traversing the tree in inorder. The predecessor of N is the node that imme-
diately precedes the node N when traversing the tree in inorder. Hence, for inorder TBT, 
we replace Right(N) (if Null) to succ(N) and replace Left(N) (if Null) to pred(N). 
In Fig. 7.66, the inorder successor of 8 is 2, so the right child of 8 is made a thread which 
is pointing to 2 and Rbit field is made 4.

If we are given a binary tree, it is natural to think how to set threads so that the tree 
becomes a threaded tree. Threading a binary tree is an interesting problem. The first 
idea could be to find each Null pointer and insert the proper thread. However, when 
we reach a Null pointer, we have no way to determine what the proper thread is. The 
proper approach would be based on taking any non-leaf (branch) node and setting the 
threads that would point to it. The successor and predecessor of a node A are defined 
as follows:

1. successor—the leftmost node in A’s right subtree
2. predecessor—the rightmost node in A’s left subtree

The algorithm must traverse the tree level-by-level, setting all the threads that should 
point to each node as it processes the node. Therefore, each thread set before the node 
containing the thread is processed. In fact, if the node is a leaf node, it need not be pro-
cessed at all.

Let us use a queue to traverse the tree by level. We need to traverse the tree once using 
the helper data structure for threading, and it can later be traversed without any helper 
data structure such as stack. After the threads are inserted to the node being processed, its 
children go on the queue. During preprocessing, the thread to the header must be inserted 
in the tree’s leftmost node as the left thread, and the thread to the header must be inserted 
in the tree’s rightmost node as the right thread.

In fact, there are three ways to thread a binary tree while corresponding to inorder, 
preorder, and postorder traversals.

1. The TBT corresponding to inorder traversal is called inorder threading.
2. The TBT corresponding to preorder traversal is called preorder threading.
3. The TBT corresponding to postorder traversal is called postorder threading.

To build a TBT, there is one more method that is popularly used. In this method, the 
threads are created while building the binary tree. Program Code 7.14 is the C++ code to 
demonstrate this method.
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program CoDe 7.14

// function to create inorder threaded binary search tree

void ThreadedBinaryTree :: create()

{      

   Char ans;

   int fl ag;

   TBTNode *node, *temp;

   Head = new TBTNode;      // create head

   Head->Left = Head;

   Head->Right = Head;

   Head->Rbit = Heat->Lbit = 1;

   // create root for TBST

   Root = new TBTNode;

   cout << “\n Enter data for root”;

   cin >> Root->data;

   Root->Left = Head;

   Root->Right = Head;

   // attach root to left of Head

   Head->Left = Root;

   // make thread bit of root 0

   Root->Lbit = Root->Rbit = 0;

   do

   {

      //  create new node for a tree

      node = newTBTNode;

      cout << “\n Enter data”;

      cin >> node- data;

      node->Lbit = node->Rbit = 1;

      temp = Root;

      while

      {

         if(node->data < temp->data)

         {

             if(temp->Lbit == 1)

            // check leaf node and attach

            {

               node->Left = temp->Left;

               node->Right = temp;

               // attach node to left of temp

               temp->Lbit = 0;
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               temp->Left = node;

               break;

            }

            else

               temp = temp->Left;

         }

         else

         {

            if(temp->Rbit == 1)      // is thread?

            {

               node->Left = temp;

               node->Right = temp->Right;

               // attaching node to right of temp

               temp->Right = node;

               temp->Rbit = 0; 

               break;

            }

            else

               temp = temp->Right;

         }

      }       // end of while

      cout >> “Do you want to add more?”;

      cin >> ans;

   }

   while(ans == ’y’||ans == ’Y’);

}      // end of create

Sample Run

1. Insert root data 50 (Fig. 7.67).

0 0

1 150

Fig. 7.67  Insert root 50
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2. Attach the node with data 30 (Fig. 7.68).

0 1

0 150

1 1

Node

Temp

30

Fig. 7.68  Insert 30

Attach the left of temp copy to the left of the temp node to make the right child of the 
node as temp.

3. Attach the node with data 60 (Fig. 7.69).

0 1

0 150

1 1

Node

Temp

30 1 160

Fig. 7.69  Insert 60

Copy the right of temp to the right of the node to make the left of node as temp. Attach 
the node to the right of temp to make  Rbit 0.

4. Attach the node with data 55 (Fig. 7.70).
Copy the left of temp to the left of node. Make the right of node as temp. Then, attach 

tnode to the left of temp. Make the Lbit of temp 0.
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0 050
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Node

Temp

30 0 160

1 155

Fig. 7.70 Insert 55

The implementation of function for creating a TBT is given in Program Code 7.15.

program CoDe 7.15
//Function to create a tree as per user choice

void TBTree::create()

{

   TBTNode *temp,*prev;

   char ch,x;

   Root = Null;

   do

   {

      temp = new TBTNode;

      temp->left = temp->right = head;

      temp->lbit = temp->rbit = 0;

      cout << “\nEnter the char data:”;

      cin >> temp->data;

      if(Root == Null)

      {

         Root = temp;

         head->left = Root;

         head->lbit = 1;

      }

      else

     {
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         prev = Root;

         while(prev != Null)

         {

             cout << "Left child or Right child of (r/l): 

" << prev->data << " :";

            cin >> x;

            if(x == 'l' || x == 'L')

            {

               if(prev->lbit == 0)

               {

                  temp->left = prev->left;

                  prev->left = temp;

                  prev->lbit = 1;

                  temp->right = prev;

                  break;

               }

               else

                  prev = prev->left;

            }

            else

            {

               if(x == 'r' || x == 'R')

               {

                  if(prev->rbit == 0)

                  {

                     temp->right = prev->right;

                     prev->right = temp;

                     prev->rbit = 1;

                     temp->left = prev;

                     break;

                  }

                  else

                     prev = prev->right;

               }

            }

         }

      }

      cout <<"Do you want to Add more?";

      cin >> ch;

   }

   while(ch == 'y' || ch == 'Y');

}
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7.11.2 Right-threaded Binary Tree

In a right-threaded binary tree each Null right link is re placed by a special link to the suc-
ces sor of that node under inorder traversal, called a right thread. The right thread will help 
us to traverse freely in inorder since we need to only follow either an ordinary link or a 
thread to fi nd the next node to visit. When we replace each Null left link by a special link 
to the predecessor of the node (left thread) under inorder traversal, the result is fully a TBT.

7.11.3 inorder Traversal

It can be realized that the inorder traversal in an inorder TBT is very easy. However, the 
other traversals are a bit diffi cult. If the preorder or postorder threading of a binary tree is 
known, then the corresponding traversal  can be obtained effi ciently.

The code for inorder traversal of a TBT is listed in Program Code 7.16. 

program CoDe 7.16
// Traverse a threaded tree in inorder

void TBTree::Inorder()

{

   TBTNode *temp;

   temp = Root;

   int fl ag = 0;

   if(Root == Null)

   {

      cout << “\nTree not present”;

   }

   else

   {

      while(temp != head)

      {

          if(temp->lbit == 1 && fl ag == 0)

         // go to left till Lbit is 1(till child)

         {

            temp = temp->left;

         }

         else

         {

             cout << temp->data << “ ”;     // display data

             if(temp->rbit == 1)     // go to right by child

            {

               temp = temp->right;

               fl ag = 0;
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            }

            else      // go to right by thread

            {

               temp = temp->right;

               fl ag = 1;

            }

         }

      }

   }

}

Note that this traversal does not use stack, whereas for non-threaded binary tree, we 
require a stack as an intermediate data structure.

The computing time is O(n) for a binary tree with n nodes.

Example of inorder traversal of threaded binary tree Figure 7.71 shows a TBT 
whose inorder traversal sequence is—Megha, Amit, Arvind, Varsha, Abolee, Hemant, 
Saurabh.

Amit

Saurabh

Abolee

HemantVarsha

Arvind

Megha

Fig. 7.71 Inorder traversal of a TBT
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7.11.4 preorder Traversal

These threads also simplify the algorithm for preorder and postorder traversals. Program 
Code 7.17 is the C++ routine for preorder travers al of a TBT.

program CoDe 7.17
// Traverse a threaded tree  in preorder

void TBTree :: preorder()

{

   TBTNode *temp;

   int fl ag = 0;

   temp = Root;

    while(temp != head)

   { 

      if(fl ag == 0) cout << temp->data <<" ";

       if(temp->lbit == 1 && fl ag == 0)      // go left till 

lbit is 1

      {

         temp = temp->left;

      }

      else if(temp->rbit == 1)      // go to right by child

      {

         temp = temp->right;

         fl ag = 0;

      }

      else      // go to right by thread

      {

         temp = temp->right;

         fl ag = 1;

      }

   }

}      //End of function

7.11.5 insert to Right of a node

Consider Figs 7.72(a) and (b). We want to insert the node t to the right of the node s in 
both the threaded trees.



TREEs 353

A

B C
s s

t t
D

A

B C

D

A

B

C D

H
t

s

E

F G

A

B

C D
H

t

(b)

(a)

s

E

F G

Fig. 7.72 Inserting nodes in a TBT  (a) Inserting node D  (b) Inserting node H
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7.11.6 Deleting a node

Consider Fig. 7.73. We want to delete the node labelled D from the TBT.

A

B

C D

H

E

F G

A

B

C
H

E

F G

Fig. 7.73  Deleting a node from a TBT

7.11.7 pros and cons

A TBT has some advantages and disadvantages over a non-threaded binary tree. They are 
as follows:

1. The traversal for a TBT is straightforward. No recursion or stack is needed. Once we 
locate the leftmost node, we loop following the thread to the next node. When we find 
the null thread, the traversal is complete.
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2. At any node, the node’s successor and predecessor can be located. In case of non-
threaded binary tree, this task is time consuming and difficult. In addition, stack is 
needed for the same.

3. Threads are usually more upward, whereas links are downward. Thus, in a threaded 
tree, we can traverse in either direction, and the nodes are in fact circularly linked. 
Hence, any node can be reached from any other node.

4. Insertions into and deletions from a threaded tree are time consuming as the link and 
thread are to be manipulated.

7.12 applicaTions of BinaRy TRees

There is a vast set of applications of the binary tree in addition to searching. The applica-
tions discussed in this section are gaming, expression tree, Huffman tree for coding, and 
decision trees.

7.12.1 expression Tree

A binary tree storing or representing an arithmetic expression is called as expression tree. 
The leaves of an expression tree are operands. Operands could be variables or constants. 
The branch nodes (internal nodes) represent the operators. A binary tree is the most suit-
able one for arithmetic expressions as it contains either binary or unary operators. The 
expression tree for expression E, is shown in Fig. 7.74.

Let E  =  ((A ¥ B) + (C - D))/(C - E)

A B C D

C

E

/

+

× −

−

Fig. 7.74  Expression tree for E = ((A × B) 
+ (C − D))/(C − E)

We have studied that the Polish notations are very useful in the compilation process. 
There is a close relationship between binary trees and expressions in prefix and postfix 
notations.



356 daTa sTRucTuREs using c++

In the expression tree as in Fig. 7.74, an infix expression is represented by representing 
the node as an operator, and the left and right subtrees are the left and right operands of 
that operator.

If we traverse this tree in preorder, we visit the nodes in the order of: / + ¥ AB - CD - 
CE, and this is a prefix form of the infix expression. On the other hand, if we traverse the 
tree in postorder, the nodes are visited in the following order: AB ¥ CD - E - /, which is 
a postfix equivalent of the infix notation.

Example 7.7 represents the postfix equivalent of a given infix notation.

 example 7.7  Represent AB + D ¥ EFAD ¥ + / + C + as an expression tree.

Solution Figure 7.75 represents the given expression in the form of a tree.

A
A

B

C

D

D

F

E

/

+

+

+

+
×

×

Fig. 7.75  Expression tree for E = AB + D ¥ EFAD ¥ + / + C +

Construction of Expression Tree

We have studied the binary tree representation of an expression. Let us study how to con-
struct a tree when the infix expression is given. First, the infix expression is converted to 
a postfix expression. Use Algorithm 7.3 to construct an expression tree.

algorithm 7.3

(Scan the postfix expression from left to right.)

1. Get one token from expression E.
2. Create a node say curr for it.
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3. If (symbol is operand) then
(a) push a node curr onto a stack.

4. else if (symbol is operator) then
(a) T2 = pop()
 T1 = pop()
 Here T1 and T2 are pointers to left trees and right subtrees of the operator, 

respectively.
(b) Attach T1 to left and T2 to the right of curr.
(c) Form a tree whose root is the operator and T1 and T2 are left and right children, 

respectively.
(d) Push the node curr having attached left and right subtrees onto a stack.

5. Repeat steps 1–4 till the end of expression.
6. Pop the node curr from the stack, which is a pointer to the root of expression tree.

Example 7.8 shows the steps to construct an expression tree for a given expression, E.

 example 7.8  Represent E = (a + b ¥ c)/d as an expression tree.

Solution Let us consider the expression E = (a + b ¥ c)/d

Postfix expression = abc ¥+ d/ 
The following steps of operations are performed:

1. The operands a, b, c will be pushed onto the stack by forming a one-node tree of each 
and pushing a pointer to each onto a stack (Fig. 7.76).

Stack

abc ×+ d/

ba c

Fig. 7.76 Step 1

2. When the operator ¥ has been encountered, the top two pointers are popped. A tree is 
formed with ¥ as a root and the two popped pointers as children. The pointer to the root 
is pushed onto a stack (Fig. 7.77).



358 daTa sTRucTuREs using c++

Stack

abc ×+ d/

×a

b c

Fig. 7.77 Step 2

3. After the operator + has been encountered, the procedure as in step 2 is executed 
(Fig. 7.78).

Stack

abc ×+ d/

+

a ×

b c

Fig. 7.78  Step 3

4. As the operand d has been encountered, it is pushed as a pointer to the one-node 
tree (Fig. 7.79).

Stack

abc ×+ d/

+

a ×

b c

d

Fig. 7.79  Step 4
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5. After the operator has been encountered, it follows the procedure as in step 2  
(Fig. 7.80).

Stack

abc ×+ d/

/

a
d

+

a ×

b c

Fig. 7.80 Step 5

6. Pop the stack as the expression has been processed. This returns a pointer to the 
expression tree’s root.

7.12.2 Decision Tree

In practice there are many applications which use trees to store data for rapid retrieval, 
the most useful application being decision making. These applications, along with a 
tree as one of the data structures, often oblige some additional structures on the tree. 
Consider an example tree, a BST. In the BST, the data in a left or right subtree has a 
particular relationship with the data in the node (such as being greater than or smaller 
than the data). 

We can use trees to arrange the outcomes of various decisions in the required order. We 
can denote these actions in the form of a tree, called the decision tree. 

The decision tree is a classifier in the form of a tree where each node is either a branch 
node or a leaf node. Here the leaf node denotes the value of the target attribute (class) of 
examples and the branch node is a decision node that denotes some test to be carried out 
and takes a decision based on a single attribute value, with one branch and subtree for 
each possible outcome of the test. A decision tree can be used for classification by starting 
at the root of the tree and moving through it until a leaf node that provides the classifica-
tion of the instance is reached. The decision tree training is a typical inductive approach 
to gain the knowledge on classification.

For example, consider the execution of a C program. The initial part of the program 
contains pre-processor directives followed by global variables and functions including 
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the main function. Initially, the operating systems need to load the code and constants, 
initialize  variables (if any), read the input data, and print the required information.  The 
sequence of these actions depends on the code written. Generally, most programs involve 
more than simple input and output statements. The program includes conditional state-
ments that use if or case statements. It may also include unconditional loops (for loop) 
or conditional loops (while and repeat loops). 

In such cases, the program execution flow depends on the results of testing the val-
ues of the variables and expressions. For example, after testing a Boolean expression 
in an if statement, the program may execute the statements following it or the state-
ments in the corresponding else part. Similarly, after examining a while condition, 
the program may repeat the code within the loop, or may continue with the code fol-
lowing the loop.

We can visualize these different ways in which a program may execute through a 
decision tree. Execution of a C program starts with a call to the function main(), or 
we can represent the root of the decision tree with the code that is always run at the 
start of a program till the first conditional statement. However, at the first conditional 
statement, the program executes one code segment or another depending upon the 
value of the condition. In such a situation, the decision tree can be drawn with a child 
of the root for each code option that the program code follows. For an if statement, 
there are two children of the root—one if the Boolean expression is true where the 
then clause is executed, and another in case the expression is false. For a case state-
ment, a different child is drawn for each different case identified by the code, because 
different paths are followed for each of these situations. Figure 7.81 illustrates all such  
cases.

If statement

Then

Case statement

Case 1 Case 2 Case 3 Case 4 Case 5 Case n

Else

While loop

Execute
0 times

Execute
once

Execute
twice

Execute
thrice

Execute 4 or
more times

Fig. 7.81  Decision trees for program structures
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Figure 7.80 represents pseudo-structures for the Pascal language. In the figure, for a 
while loop, the body of the loop might be executed 0, 1, 2, 3, or more times, after which 
the program execution continues with the code that follows the while statement. Con-
versely, the execution flow first tests the exit condition and then either exits the loop or 
starts the body of the loop for the first time. If the loop is executed for the first time, then 
the execution arrives at the exit condition a second time and either exits the loop or con-
tinues with the loop a second time. The work within the loop continues until the system 
tests the exit condition and determines that the loop should not continue. In tracing the 
program execution, we add each individual decision into another branch inside a general 
decision tree.

The example demonstrates the usefulness of the decision trees to demonstrate and test 
all possible execution paths that might be followed within a program or a piece of code. 
Decision trees not only provide a mechanism for demonstrating the code execution but they 
also provide a structure for examining how general algorithms might work. Consider an 
example of searching an element in a sorted list.  We can use a decision tree to demonstrate 
the working of searching of member in the list. For binary search to be applied on the sorted 
list, various comparisons are required for deciding which set of elements are to be further 
searched or whether the search is to be terminated.  In a BST, when an element is initially 
compared with the root, if the search is successful, the process terminates. If the element 
is lesser than the root, then it is searched in the left subtree, and otherwise in right subtree.

The advantages of decision trees are the following:

1. Decision trees are most suitable for listing all possible decisions from the current state.
2. They are suitable for classification without the need for many computations.

Decision trees are popularly used in expert systems. Although decision trees seem to be 
very useful, they suffer from a few drawbacks, such as the following:

1. Decision trees are prone to errors in classification problems with more classes
2. They can be computationally expensive for complex problems. 

7.12.3 Huffman’s coding

One of the most important applications of the binary tree is in communication. Con-
sider an example of transmitting an English text. We need to represent this text by a 
sequence of 0s and 1s. To represent the message made of English letters in binary, we 
represent each alphabet in the binary form, that is, as a sequence of 0s and 1s. Each 
alphabet must be represented with a unique binary code. We need to assign a code, each 
of length 5 to each letter in the alphabet as 24 < 26 < 25. Now to send a message, we have 
to simply transmit a long string of 0s and 1s containing the sequences for the letters in 
the message. At the receiving end, the message received will be divided into sequences 
of length 5, and the corresponding message is recognized.
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Let us consider that a sequence of 1000 letters is to be sent. Now, the total bits to be 
transmitted will be 1000 ¥ 5, as we represent each letter with 5 bits. It may happen that 
among those 1000 letters, the letters a, i, r, e, t, and n appeared maximum number of times 
in the sequence.

It is observed that the letters in the alphabet are not used with uniform frequencies. 
For example, the letters e and t are used more frequently than x and z. Hence, we may 
represent the more frequently used letters with shorter sequences and less frequently used 
letters with longer sequences so that the overall length of the string will be reduced. In 
this example, if a, i, r, e, t, and n are assigned say in the sequence of length 2, and let us 
assume that each one of them appeared 100 times among the sequence of 1000 letters. 
Now, the length will be reduced by a factor

= (3 × 100 × 6)

each of a, i, r, e, t, and n

appeared 100 times

length is reduced by 3

Such a coding is called as variable length coding. Even though the variable length 
coding reduces the overall length of the sequence to be transmitted, an interesting 
problem arises. When we represent the letters by the sequences of various lengths, 
there is the question of how one at the receiving end can unambiguously divide a long 
string of 0s and 1s into the sequences corresponding to the letters. Let us consider an 
example. Let us use the sequence 00 to represent the letter ‘a’, 01 to represent letter 
‘n’, and 0001 to represent the letter ‘t’. Suppose we want to transmit a text of two let-
ters ‘an’ by transmitting the sequence 0001. Now, at the receiving end, it is difficult 
to determine whether the transmitted sequence was ‘an’ or ‘t’. This is because 00 is a 
prefix of the code 0001. We must assign variable sequences to the letters such that no 
code is the prefix of the other.

A set of sequences is said to be a prefix code if no sequence in the set is the prefix 
of another sequence in the set. For example, the set {000, 001, 01, 10, 11} is a pre-
fix code, whereas the set {1, 00, 000, 0001} is not. Hence we must use prefix codes 
to represent the letters in alphabet. If we represent the letters in the alphabet by the 
sequences in a prefix code, it will always be possible to divide a received string into 
sequences representing the letters in a message unambiguously. One of the most use-
ful applications of binary tree is in generating the prefix codes for a given binary tree. 
We label the two edges incident from each branch node with 0 and 1. To each leaf, 
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assign a code that is a sequence of labels of the edges in the path from the root to that 
of leaf (Fig. 7.82).

0

0 0

0

{000} {001}

{01} {10} {11}

1

1 1

1

Fig. 7.82  Prefix codes

It is always possible to divide a received sequence of 0s and 1s into the sequences that 
are in a prefix code. Starting at the root of the binary tree, we shall trace a downward path 
in the tree according to the bits in the received sequence. At a branch node, we shall fol-
low the edge labelled with 0 if we encounter a 0 in the received sequence, and we shall 
follow the edge labelled with a 1 if we encounter a 1 in the received sequence. When the 
downward path reaches a leaf, it shows that the prefix code has been detected. For the 
next sequence, we should return to the root of the tree. This process clearly assures that 
the variable length code, which is the prefix code, has no ambiguity.

Now the problem is about constructing a binary tree. Suppose we are given a set of 
weights w1, w2, ..., wn. Let us assume that w1 £ w2 £ ... £ wn. A binary tree that has n leaves 
with weights w1, w2, ..., wn assigned to the leaves is called as binary tree for weight w1, 
w2, ..., wn. Our aim is to assign smaller code to the leaf of higher weights, as the weights 
here denote the frequency of occurrence. The length of sequence of bits assigned to a leaf 
node is path length of that node. Hence, we want lesser path length to the leaf nodes with 
higher weights.

Let the weight of a tree T be denoted by w(T). The weight of a binary tree for weights 
w1, w2, ..., wn is given by

w w L w
n

i i( ) ( ), whereT =
i=1∑

L(wi) = path length of node of weight wi.

A binary tree for weights w1, w2, ..., wn is said to be an optimal binary tree if 
its weight is minimum. Hence, our aim is to construct a tree such that w(T) is 
minimum.
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D.A. Huffman has given a very elegant procedure to construct an optimal binary tree. 
Suppose we want an optimal tree for the weights w1, w2, ..., wn. Let a be a branch node of 
largest path length in the tree. Suppose the weights assigned to the sons of a are wb and 
wc. Thus, l(wb) ≥ l(w1), and l(wb) ≥ l(w2). In addition, since the tree is optimal, we should 
have l(wb) £ l(w1), and l(wb) £ l(w2).

Huffman’s algorithm The algorithm is given as follows:

1. Organize the data into a row as ascending order frequency weights. Each character is 
the leaf node of a tree.

2. Find two nodes with the smallest combined weights and join them to form the third 
node. This will form a new two-level tree. The weight of the new third node is the 
addition of two nodes.

3. Repeat step 2 till all the nodes on every level are combined to form a single tree.

7.12.4 Game Trees

One of the most exciting applications of trees is in games such as tic-tac-toe, chess, nim, 
checkers, go, and so on. We shall consider tic-tac-toe as an example for explaining this 
application of trees.

The game starts with an empty board and each time a player tries for the best move 
from the given board position. Each player is initially assigned a symbol of either 'X' 
or 'O'. Depending on the board position the user has to decide how good the position 
seems to be for a player. For implementation we need to compute a value say, Win-
Value, which of course will have the largest possible value for a winning position, 
and the smallest value for a losing position. An example of such a WinValue compu-
tation could be the difference between the number of rows, columns, and diagonals 
that are left open for one player and those left open for the opponent game partner. 
Here we can omit the values 9 and −9 as they represent the values for a position that 
wins and loses, respectively. While computing this value we need not further search 
for other possible board positions that might result from the current positions, as it 
just estimates a motionless board position. We can write a function while implement-
ing this game that computes and returns the WinValue. Let us name such a function 
as ComputeWinValue(). Considering all the possible positions, it is possible to con-
struct a tree of the possible board positions that may result from each possible move, 
called a game tree.

Now with a given board position, we need to determine the next best move and 
for that we need to consider all the possible moves and respective resulting positions 
after the move. For a player the best move is the one that results in a board position 
with the highest WinValue. Careful observation leads to the conclusion that this cal-
culation however, does not always yield the best move. A sample position and the 
five possible moves that player with symbol X can make from that current position is 
shown in Fig. 7.83. 
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Fig. 7.83  An example game tree and WinValues of each possible move

Now if we compute WinValue for the five resulting positions, using the ComputeWin-
Value() function, we get the values as shown in Fig. 7.83. Among them four of the 
moves result with the same maximum WinValue. One can note that the move in the fourth 
position definitely leads to the victory for the player with the marking symbol X, and the 
other three moves would lead to the victory of the opponent with the symbol 0. 

This shows that the move that yields the smallest WinValue is better than the moves 
that yield a higher WinValue. The static ComputeWinValue() function, therefore, is not 
sufficient to guess the result of the game. Hence we need to revise this function. We can 
have such a function for simple games such as tic-tac-toe, but often, games such as chess 
are too complex for static functions to determine the best possible move computation.

The best way to predict and play is to look ahead of several moves so as to get a sig-
nificantly better choice of the next move. Let the variable LookAhead be the number of 
future moves to be taken care of. Considering all the possible positions, it is possible to 
construct a tree of the possible board positions that may result from each possible move 
as shown in Fig. 7.84 which shows the game tree for a tic-tac-toe game considering a 
look-ahead of level of 2.
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+ + + + + + + + + + + +

1

1 −1
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x x x x x
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x x x x x
0

000

0 00
0

0

00

0
0

0

−2

−1 −1 −2

−
x

x

1 1 1 102

− −

Fig. 7.84  A game tree for tic-tac-toe
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Here the height of the tree is the maximum level of the nodes which represents 
the look-ahead level of the game. Let us denote the player who must begin the game 
with the ‘+’ symbol (plus sign) and his or her opponent as ‘-’ symbol (minus sign). 
Now we need to compute the best move for ‘+’ from the root position. The remaining 
nodes of the tree may be designated as ‘+’ nodes or ‘-’ nodes, depending upon which 
player must move from that node’s position. Each node of Fig. 7.84 is marked as a ‘+’ 
node or ‘-' node, depending upon which player must move from that node’s position. 
Consider the case where the game positions of all the child nodes of a ‘+’ node have 
been evaluated for player ‘+’. Then obviously, a ‘+’ should select the move that paves 
the way to the maximum WinValue. Thus, the value of a ‘+’ node to player ‘+’ is the 
maximum of the values of its child nodes. On the other hand, once ‘+’ moves, ‘-’ will 
choose the move that results in the minimum of the values of its child nodes.

For a player with the symbol 0, Fig. 7.85 shows the best possible moves.

x
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x
x x x

x
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x
x
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x
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0

000

x

−3

−4

−4 −3 −3 −3 −3 −2 −2

−3

0

000

+ + +

+

+ + + + +

−−

Fig. 7.85  Game tree showing best moves for a player with symbol 0

Note that the designation of ‘+’ and ‘-’ depends on whose move is being calculated. 
The best move for a player from a given position may by determined by fi rst construct-
ing the game tree and applying a static ComputeWinValue() function to the leaf nodes. 
Each node of the game tree must include a representation of the board and an indication 
of whether the node is a ‘+’node or a ‘-’ node.

RecapiTUlaTion

•  Non-linear  data  structures  are  those  where 
every data element may have more than one 
predecessor as well as successor. Elements 
do  not  form  any  particular  linear  sequence. 

Tree and graph are two examples of non-linear 
data structure. Non-linear data structures are 
capable of expressing more complex relation-
ship than linear data structure.
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•  Tree,  a  non-linear  data  structure,  is  a mean 
to  maintain  and  manipulate  data  in  many 
applications. Wherever  the  hierarchical  rela-
tionship among data  is  to be preserved,  tree 
is used.

•  A binary tree  is a special  form of a tree.  It  is 
important and frequently used in various appli-
cations of computer science. A binary tree has 
degree  two,  and  each  node  has  utmost  two 
children.  This  makes  the  implementation  of 
tree easier. The implementation of binary tree 
should represent the hierarchical relationship 
between the parent node and its left and right 
children.

•  Binary  tree  has  the  natural  implementation 
in  a  linked  storage.  In  a  linked organization, 
we wish that all nodes should be allocated 
dynamically. Hence, we need each node with 
data and link fi elds. Each node of a binary tree 
has both a left and a right subtree. Each node 
will have three fi elds Lchild, Data, and Rchild.

•  The operations on  a binary  tree  include  insert 
node, delete node, and traverse tree. Traversal 
is one of  the key operations. Traversal means 
visiting every node of a binary tree. There are 

various  traversal  methods.  For  a  systematic 
traversal, it is better to visit each node (starting 
from root) and its both subtrees in the same way.

•  Let L  represent  the  left  subtree, R  represent 
the right subtree, and D be node data. Three 
traversals  are  fund amental:  LDR,  LRD,  and 
DLR. The se are called as inorder, postorder, 
and preorder traversals because there is a 
natural correspondence between these tra-
versal s  producing  the  infi x,  postfi x,  and  pre-
order  forms  of  an  arithmetic  expressions, 
respectively. In addition, a traversal w here the 
node is visited before its children are visited is 
called a breadth-fi rst traversal; a walk where 
the children are visited prior to the parent is 
called a depth-fi rst traversal.

•  The  binary  search  tree  is  a  binary  tree with 
the property that the value in a node is greater 
than any value in a node’s left subtree and 
less than any value in the node’s right subtree. 
This property guarantees  fast search time pro-
vided the tree is relatively ba lanced.

•  The key applications of tree include the follow-
ing: expression tree, gaming, Huffman coding, 
and decision tree.

Binary search tree A binary search tree (BST) is 
 a binary tree that is either empty or where every 
node contains a key and satisfi es the following 
conditions: 

1. The key in the left child of a node, if it 
exists, is less than the key in its parent 
node.

2. The key in the right child of a node, if it 
exists, is greater than the key in its parent 
node.

3. The left and the right subtrees of the node 
are again BSTs.

Binary tree A binary tree has degree two, each 
node has atmost two children. A binary tree is ei-
ther: an empty tree; or  consists of a node, called 
root and two children, left and right, each of which 
are themselves binary trees. 

Breadth- and depth-fi rst traversals A traversal 
where the node is visited before its children are 
visited is called a breadth-fi rst traversal; a walk 
where the children are visited prior to the parent 
is called a depth-fi rst traversal.

Decision tree Decision tree is a classifi er in the 
form of a tree structure, where each node is either: 

Key TeRMs
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Multiple choice questions

 1. Consider the following tree:

4

2 3

1

5 6 7

 If the postorder traversal gives (ab - cd +), then 
the label of the nodes 1, 2, 3, 4, 5, 6 will be

 (a) +, -, ¥, a, b, c, d
 (b) a, -, b, +, c, ¥, d
 (c) a, b, c, d, -, ¥, +
 (d) -, a, b, +, ¥, c, d
 2. A list of integers is read one at a time, and a BST 

is constructed. Next, the tree is traversed and the 
integers are printed. Which traversal would print 
the result in the original order of the input?

 (a) Preorder

 (b) Postorder
 (c) Inorder
 (d) None of the above
 3. A binary tree T h as n leaf nodes. The number of 

nodes of degree 2 in T is 
 (a) log2 n
 (b) n - 1
 (c) n
 (d) 2n

 4. Which is the most effi cient tree for accessing 
data from a database?

 (a) BST
 (b) B-tree
 (c) OBST
 (d) AVL tree
5. A binary tree where every non-leaf node has 

non-empty left and right subtrees is called a 
strictly binary tree. Such a tree wi th 10 leaves 

 (a) cannot have more than 19 nodes.

a leaf node—indicates the value of the target at-
tribute (class) of examples; or a  decision node—
specifi es some test to be carried out on a single 
attribute-value, with one branch and sub-tree for 
each possible outcome of the test.

Expression tree A binary tree storing or repre-
senting an arithmetic expression is ca lled as an 
expression tree. The leaves of an expression tree 
are operands. Operands could be variables or con-
stants. The branch nodes (internal nodes) repre-
sent the operators.

Inorder traversal In this traversal, the left subtree 
is visited fi rst in inorder, th en the root, and fi nally 
the right subtree in inorder.

Non-linear data structures Non-linear data struc-
tures are used to represent the data containing 
hierarchical or network relationship between the 
elements. Trees and graphs are examples of non-
linear data structure.

Pre-order traversal In this traversal, the root is 
visited fi rst, then the left subtree in preorder, and 
fi nally the right subtree in preorder.

Threaded binary tree A.J. Perlis and C. Thornton 
have suggested to replace all the null links in bi-
nary tree by pointers, called threads. A tree with 
thread is called as threaded binary tree.

Tree traversal Traversal of tree means stepping 
through the nodes of a tree by means of the con-
nections between parents and children; it is also 
called walking the tree, and the action is called the 
walk of the tree.

Tree Tree, a non-linear data structure, is a mean 
to maintain and manipulate data in  many appli-
cations. Non-linear data structures are capable of 
expressing more complex relationship than linear 
data structure.  A class of graphs that are acyclic 
are termed as trees. Trees are useful in describing 
any structure that involves hierarchy. 

eXeRcises
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 (b) has exactly 19 nodes.
 (c) has exactly 17 nodes.
 (d) cannot have more than 17 nodes.
 6. The depth of a complete binary tree with n 

nodes is 
 (a) log2 (n + 1) - 1
 (b) log2n
 (c) log2 (n - 1) + 1
 (d) log2n + 1
 7. Which of the following traversal techniques 

lists the nodes of a BST in ascending order?
 (a) Postorder
 (b) Inorder
 (c) Preorder
 (d) All of a, b, c
 8. A binary tree has a height of 5. What is the 

minimum number of nodes it can have?
 (a) 31
 (b) 15
 (c) 5
 (d) 1
 9. A binary tree is generated by inserting an 

inorder as 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 
60, 24. The number of nodes in the left and 
right subtree, respectively is given by

 (a) (4, 7)
 (b) (7, 4)
 (c) (8, 3)
 (d) (3, 8)
10. A BST contains the values 1, 2, 3, 4, 5, 6, 7, 8. 

The tree is traversed in preorder and the values 
are printed. The valid output is

 (a) 53124786
 (b) 53126487
 (c) 53241678
 (d) 53124768
11. In _________ traversal, the right subtree is 

processed last.
 (a) a preorder
 (b) an inorder
 (c) a postorder
 (d) (a) or (b)

Review questions

 1. Consider the binary tree in the following figure.

7

1 3

2 5

8

64

 (a) What structure is represented by the binary 
tree?

 (b)  Give the different steps for deleting the node 
with key 5 so that the structure is preserved.

 (c)  Outline a procedure in pseudo code to delete 
an arbitrary node from such a binary tree 
with n nodes that preserves the structure. 
What is the worst case time complexity of 
your procedure?

 2. Prove by the principal of mathematical 
induction that for any binary tree where every  
non-leaf node has 2 descendants, the number of 
leaves in the tree is one more than the number of 
non-leaf nodes.

 3. A 3-ary tree is a tree where every internal node 
has exactly 3 children. Use induction to prove 
that the number of leaves in a 3-ary tree with n 
internal nodes is 2(n - 1) + 3.

 4. A rooted tree with 12 nodes has its numbers 
from 1 to 12 in preorder. When the tree is 
traversed in postorder, the nodes are visited in 
following order: 3, 5, 4, 2, 7, 8, 6, 10, 11, 12, 
9, 1. Reconstruct the original tree from this 
information, that is, find the parent of each node. 
Show the tree diagrammatically.

 5. What is the number of binary trees with 3 nodes 
which when traversed in postorder give the 
sequence A, B, C? Draw all these binary trees.

 6. A size-balanced binary tree is a binary tree 
where for every node, the difference between the 
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number of nodes in the left and right subtree is 
utmost 1. The distance of a node from the root is 
the length of the path from the root to the node. 
The height of a binary tree is the maximum 
distance of a leaf node from the root.

 (a)  Prove by induction on h that a size-balance 
binary tree of height h contains at least 2h 
nodes.

 (b)  In a size-balanced tree of height h £ 1, how 
many nodes are at a distance h - 1 from the 
root?

 7. Let A be an n ¥ n matrix such that the elements 
in each row and each column are arranged in 
ascending order. Draw a decision tree that finds 
first, second, and third smallest elements in 
minimum number of comparisons.

 8. In a binary tree, a full node is defined to be a node 
with 2 children. Use induction on the height of a 
binary tree to prove that the number of full nodes 
plus one is equal to the number of leaves.

 9. (a) Draw a BST (initially empty) that results 
from inserting the records with the keys

E A S Y Q U E S T I O N

 (b) Delete the key Q from the constructed BST.
10. Write a recursive function in C++ that creates a 

mirror image of a binary tree.
11. What is a BST? Write a recursive C++ 

function to search for an element in a given  
BST. Write a non-recursive version of the same.

12. Write a non-recursive C++ function to traverse a 
binary tree containing integers in preorder.

13. Write a C++ function for insertion of a node into 
a BST.

14. Write C++ function that traverses a TBT in 
inorder.

15. Represent a binary tree using pointers and write 
a function to traverse and point nodes of a tree 
level-by-level.

16. Represent a binary tree using pointers and write 
a function to traverse a given tree in inorder.

17. Given the following inorder and postorder 
sequences of nodes of binary tree, draw the 
corresponding binary tree. Show the steps.

 (a) Inorder     :  1 3 5 6 4 2 7
 (b) Postorder :  6 5 4 3 7 2 1
18. From the given traversals, construct the binary 

tree.
 (a) Inorder: D B F E A G C L J H K
 (b) Postorder: D F E B G L J K H C A
19. Write a pseudocode C++ for non-recursive 

postorder and inorder traversal for binary tree.
20. List down the steps to convert a general tree to a 

binary tree. Convert the following general tree to 
a binary tree.

A

C

G

B

F
E

D

21. Explain the array representation of binary trees 
using the following figures and state and explain 
the limitations of this representation.

A

B

C

D

P

Q
R

S T

U

V

(b)(a)
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22. Write a pseudocode for deleting a node from a 
BST. Simulate your algorithm with a BST of 10 
nodes and show the deletion process. Especially, 
show the deletion of the interior nodes and not 
just the leaf nodes.

23. Write a C ++ function to find the following:
 (a) Height of a given binary tree
 (b) Width (breadth) of a binary tree

Answers to multiple choice questions

1. (a)  The postorder traversal yields 4, 5, 2, 6, 7, 3, 1. Comparing with a, b, -, c, d, ¥, +, we get the 
labels of nodes 1, 2, 3, 4, 5, 6, 7 as +, -, ¥, a, b, c, d, respectively.

2. (d)  3. (b)  4. (c)  5. (b) A regular (strictly) binary tree with n leaves must have 
(2n - 1) nodes. 6. (a)  7. (b)  8. (c)  9. (b)  10. (d)  11. (d)



In many application areas such as cartography, sociology, chemistry, geography, math-
ematics, electrical engineering, and computer science, we often need a representation that 

refl ects an arbitrary relationship among the objects. One of the most powerful and natural 
solutions that models such a relationship is a  graph. There are many concrete, practical 
problems such as electrical circuits, Königsberg’s bridges, and Instant Insanity that have 
been simplifi ed and solved using graphs.

Non-linear data structures are used to represent the data containing a network or 
hierarchical relationship among the elements. Graphs are one of the most important non-
linear data structures. In non-linear data structures, every data element may have more 
than one predecessor as well as successor. Elements do not form any particular linear 
sequence. We shall study various representations of graphs and important algorithms for 
processing them in this chapter.

8.1 inTRoDUCTion

The   seven bridges of Königsberg is an ancient classic problem. It was creatively solved 
by the great Swiss mathematician Leonhard Euler in 1736, which laid the foundations 
of graph theory. Another example is Instant Insanity. It is a puzzle consisting of four 
cubes where each of the four faces of these cubes is painted with one of the four different 
 colours—red, blue, white, or green. The problem is to stack the cubes, one on the top of 
the other so that whether the cubes are viewed from front, back, left, or right, one sees all 
the four colours. Since 331,776 different stack combinations are possible, solving it by 
hand or by the trial-and-error method is impractical. However, the use of graphs makes it 
possible to discover a solution in a few minutes!

There are many such problems that can be represented and solved using graphs. Find-
ing an abstract mathematical model of the concrete problem can be a diffi cult task, which 

GRAPHS8

oBJECTivES

After completing this chapter, the reader will be able to understand the following:
 • Graphs as one of the most important non-linear data structures
 • The representation that models various kinds of graphs
 • Some useful graph algorithms
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may require both skill and experience. Some real-world applications of graphs include 
communication networking, analysis of electrical circuits, activity network, linguistics, 
and so on.

8.2 GRAPH ABSTRACT DATA TYPE

Graphs as non-linear data structures represent the relationship among data elements, 
having more than one predecessor and/or successor. A graph G is a collection of nodes 
(vertices) and arcs joining a pair of the nodes (edges). Edges between two vertices repre-
sent the relationship between them. For finite graphs, V and E are finite. We can denote 
the graph as G = (V, E).

Let us define the graph ADT. We need to specify both sets of vertices and edges. Basic 
operations include creating a graph, inserting and deleting a vertex, inserting and deleting 
an edge, traversing a graph, and a few others.
A graph is a set of vertices and edges {V, E} and can be declared as follows:

graph
     create()Æ Graph
     insert_vertex(Graph, v)Æ Graph
     delete_vertex(Graph, v)Æ Graph
     insert_edge(Graph, u, v)Æ Graph
     delete_edge(Graph, u, v)Æ Graph
     is_empty(Graph)ÆBoolean;
end graph

These are the primitive operations that are needed for storing and processing a graph.

Create

The create operation provides the appropriate framework for the processing of graphs. 
The create() function is used to create an empty graph. An empty graph has both V and 
E as null sets. The empty graph has the total number of vertices and edges as zero. However, 
while implementing, we should have V as a non-empty set and E as an empty set as the 
mathematical notation normally requires the set of vertices to be non-empty.

Insert Vertex 

The insert vertex operation inserts a new vertex into a graph and returns the modified 
graph. When the vertex is added, it is isolated as it is not connected to any of the vertices 
in the graph through an edge. If the added vertex is related with one (or more) vertices in 
the graph, then the respective edge(s) are to be inserted.

Figure 8.1(a) shows a graph G(V, E), where V = {a, b, c} and E = {(a, b), (a, c), (b, c)}, 
and the resultant graph after inserting the node d. The resultant graph G is shown in 
Fig. 8.1(b). It shows the inserted vertex with resultant V = {a, b, c, d}. We can show the 
adjacency relation with other vertices by adding the edge. So now, E would be E = {(a, b), 
(a, c), (b, c), (b, d)} as shown in Fig. 8.1(c).
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(a) (b) (c)

a

c

b

d

a

c

b

d

a

c

b

Fig. 8.1 Inserting a vertex in a graph (a) Graph G 
(b) After inserting vertex d (c) After adding an edge 

Delete Vertex

The delete vertex operation deletes a ver-
tex and all the incident edges on that ver-
tex and returns the modified graph.

Figure 8.2(a) shows a graph G(V, E) 
where V = {a, b, c, d} and E = {(a, b), (a, c), 
(b, c), (b, d)}, and the resultant graph after 
deleting the node c is shown in Fig. 8.2(b) 
with V = {a, b, d} and E = {(a, b), (b, d)}.

Insert Edge

The insert edge operation adds an edge incident between two vertices. In an undirected 
graph, for adding an edge, the two vertices u 
and v are to be specified, and for a directed 
graph along with vertices, the start vertex and 
the end vertex should be known.

Figure 8.3(a) shows a graph G(V, E) where V 
= {a, b, c, d} and E = {(a, b), (a, c), (b, c), (b, d)} 
and the resultant graph after inserting the edge 
(c, d) is shown in Fig. 8.3(b) with V = {a, b, c, d} 
and E = {(a, b), (a, c), (b, c), (b, d), (c, d)}.

Delete Edge

The delete edge operation removes one edge 
from the graph. Let the graph G be G(V, E). 
Now, deleting the edge (u, v) from G deletes 
the edge incident between vertices u and v 
and keeps the incident vertices u, v.

Figure 8.4(a) shows a graph G(V, E), 
where V = {a, b, c, d} and E = {(a, b), 
(a, c), (b, c), (b, d)}. The resultant graph 
after deleting the edge (b, d) is shown in 
Fig. 8.4(b) with V = {a, b, c, d} and E = {(a, b), (a, c), (b, c)}.

Fig. 8.2 Deleting a vertex from a graph 
(a) Graph G (b) Graph after deleting vertex c

(a) (b)

a b

d

a

c

b

d

(a) (b)

a

c

b

d

a

c

b

d

Fig. 8.3 Inserting an edge in a graph 
(a) Graph G (b) After inserting edge (c, d)

(a) (b)

a

c

b

d

a

c

b

d

Fig. 8.4 Deleting edge in graph (a) Graph G 
(b) Graph after deleting the edge (b, d)
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Is_empty

The is_empty operation checks whether the graph is empty and returns true if empty else 
returns false. An empty graph is one where the set V is a null set.

These are the basic operations on graphs, and a few more include getting the set of 
adjacent nodes of a vertex or an edge and traversing a graph. Checking the adjacency 
between vertices means verifying the relationship between them, and the relationship is 
maintained using a suitable data structure.

Graph traversal is also known as searching through a graph. It means systematically 
passing through the edges and visiting the vertices of the graph. A graph search algorithm 
can help in listing all vertices, checking connectivity, and discovering the structure of a 
graph. We shall discuss traversals in Section 8.4.

8.3 REPRESEnTATion of GRAPHS

We need to store two sets V and E to represent a graph. Here V is a set of vertices and E is 
a set of incident edges. These two sets basically represent the vertices and adjacency rela-
tionship among them. There are two standard representations of a graph given as follows:

1. Adjacency matrix (sequential representation) and
2. Adjacency list (linked representation)

Using these two representations, graphs can be realized using the adjacency matrix, adja-
cency list, or adjacency multilist. Let us study each of them.

8.3.1 Adjacency Matrix

Adjacency matrix is a square, two-dimensional array with one row and one column for 
each vertex in the graph. An entry in row i and column j is 1 if there is an edge incident 
between vertex i and vertex j, and is 0 otherwise. If a graph is a weighted graph, then the 
entry 1 is replaced with the weight. It is one of the most common and simple representa-
tions of the edges of a graph; programs can access this information very efficiently.

For a graph G = (V, E), suppose V = {1, 2, …, n}. The adjacency matrix for G is a two-
dimensional n ¥ n Boolean matrix A and can be represented as
A[i][   j] =  {1  if there exists an edge <i, j>
    0  if edge <i, j> does not exist}

The adjacency matrix A has a natural implementation as in the following:
A[i][   j] is 1 (or true) if and only if vertex i is adjacent to vertex j. If the graph is undi-

rected, then

A[i][   j] = A[   j][i] = 1

If the graph is directed, we interpret 1 stored at A[i][   j], indicating that the edge from i 
to j exists and not indicating whether or not the edge from j to i exists in the graph.

The graphs G1, G2, and G3 of Fig. 8.5 are represented using the adjacency matrix in 
Fig. 8.6, among which G2 is a directed graph.
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G3

4 5 6 7

1

32

G1

A B

D C

G2

1 2 3

Fig. 8.5 Graphs G1, G2, and G3

A B C D

A 0 1 0 1

B 1 0 1 0

C 0 1 0 1

D 1 0 1 0

G1

1 2 3

1 0 0 1

2 1 0 1

3 0 0 0

G2

1 2 3 4 5 6 7

1 0 1 1 0 0 0 0

2 1 0 1 1 1 0 0

3 1 1 0 0 0 1 1

4 0 1 0 0 1 0 0

5 0 1 0 1 0 0 0

6 0 0 1 0 0 0 1

7 0 0 1 0 0 1 0

G3

Fig. 8.6 Adjacency matrix for G1, G2, and G3 of Fig. 8.5

For a weighted graph, the matrix A is represented as

A[i][ j] = {weight if the edge <i, j> exists
             0  if there exists no edge <i, j>}
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Here, weight is the label associated with the edge of the graph. For  example, 
Figs 8.7(a) and (b) show the weighted graph and its associated adjacency matrix.

1 2 3 4

1 0 8 14 6

2 8 0 7 11

3 14 7 0 4

4 6 11 4 0

3

76

4

1 2

11

4

8

14

(a)

(b)

1 2 3 4 5

1 0 9 0 0 0

2 4 0 0 8 15

3 0 17 0 0 0

4 7 0 2 0 0

5 3 0 12 5 0

23

12

2

7

8

5

1

9

15

4 4

17

3
5

Fig. 8.7 Adjacency matrix (a) Directed weight graph and its adjacency 
matrix (b) Undirected weight graph and its adjacency matrix

We can note that the adjacency matrix for an undirected graph is symmetric whereas the 
adjacency matrix for a directed graph need not be symmetric.

Program Code 8.1 shows the class defi ned for graph implementation  using an adja-
cency matrix with some basic functions.

Program CoDE 8.1

class Graph

{

   private:

      int Adj_Matrix[Max_Vertex];    // Adjacency matrix

      int Vertex;    // Number of vertices 

      int Edge;    // Number of edges

   public:
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      Graph();    // Constructor

      bool IsEmpty();

      void Insert_Edge(int u, int v);

      void Insert_Vertex(int u);

      void Delete_Edge(int u, int v);

      void Delete_Vertex(int u);                        .

};

Program Code 8.1 depicts a class and its member functions for a graph as an adjacency 
matrix. In the adjacency matrix representation, the time required to access an element is inde-
pendent of the size of V and E. The space needed to represent a graph using adjacency matrix 
is n2 locations, where |V| = n. When the graph is undirected, we need to store only the upper 
or lower triangular matrix, as the matrix is symmetric and this reduces the space required.

As we represent the edge of a graph using the adjacency matrix, we can place an edge 
query. For example, to determine whether an edge is incident between the vertices i and 
j, just examine Adj_Matrix[i][j] in constant time O(1). We may need to get all vertices 
adjacent to a particular vertex, say i. Finding all the adjacent vertices requires searching 
the complete ith row in O(n) time.

Most of the algorithms need to process almost all edges and also need to check whether 
the graph is connected or not. Such queries examine almost all entries in the adjacency 
matrix. Hence, we need to examine n2 entries. If we omit diagonal entries, (n2 - n) entries 
of the matrix are to be examined (as diagonal entries are 0 in graph without self loops) 
in O(n2) of time.

When the graph is sparse, most of the vertices have a few neighbours, that is, a few 
vertices adjacent to them. Consider the graph in Fig. 8.7. In the adjacency matrix of the 
graph, very few entries are non-zero. When we need a list of adjacent vertices of a par-
ticular vertex, say i, we need to transverse the complete ith row though there are very few 
non-zero entries. Instead, if we keep one list per vertex and list only the vertices adjacent 
to it, a rapid retrieval in time O(e + n) is possible when we need to process almost all 
edges. Here e is the number of edges in the graph, and the graph is sparse, that is, e << 
(n2/2). Such a structure that has a list for each vertex containing all its adjacent vertices is 
called as adjacency list. Let us learn more about adjacency list.

8.3.2  Adjacency List

In this representation, the n rows of the adjacency list are represented as n-linked lists, 
one list per vertex of the graph. The adjacency list for a vertex i is a list of all vertices 
adjacent to it. One way of achieving this is to go for an array of pointers, one per vertex. 
For example, we can represent the graph G by an array Head, where Head[i] is a pointer 
to the adjacency list of vertex i. For list, each node of the list has at least two fi elds: ver-
tex and link. The vertex fi eld contains the vertex id, and the link fi eld stores a pointer to 
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the next node that stores another vertex adjacent to i. Figure 8.8(b) shows an adjacency list 
representation for a directed graph in Fig. 8.8(a).

(a) (b)

1

4

2

3

42

3

3

3

4

1

Head

2

3

4

Fig. 8.8 Adjacency list representation (a) Graph G1 (b) Adjacency list for G1

Program Code 8.2 lists the class for the node required for adjacency list representation 
of the graph.

Program CoDE 8.2 

// Class for the node of the weighted graph

#defi ne max 10

class GraphNode

{

   public:

      int vertex;

      int weight;

      // optional for weight associated with edge

      GraphNode* next;

      GraphNode()

      {

         vertex = 0;

         weight = 0;

         // optional for weight associated with edge

         next = null;

      }

};   

class Graph   // class for storing graph as adjacency list

{

   GraphNode* headnodes[max];

   // headnodes list for connected vertices.

   int n;

   int visited[max];
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   public:

      Graph();

      // Constructor to initialize all headnodes to null.

};

Graph :: Graph()

{

   for(int i = 0;i<max;i++)

      headnodes[i] = null;

}

The graph in Fig. 8.8(a) is a directed graph. If the graph is a weighted graph, a weight fi eld 
can be added in the node structure of the list. Figures 8.9(a) and (b) show the adjacency 
list representation of a weighted directed graph. 

(a)

5

4

8

6 2 3

(b)

1

4

2

3

42

3

3

3

4

5 2 6

3

8

4

1

2

3

4

Fig. 8.9 Adjacency list of weighted graph (a) Weighted graph G2 (b) Adjacency list of G2

Here, each node has three fi elds—the fi rst one showing an adjacent node, second showing 
the weight associated with an edge, and the third showing the link to the next node.

The adjacency list representation of a directed graph requires the storage proportional 
to the sum of the number of vertices plus the number of edges. It is often used when the 
number of edges is much lesser, that is, e << n2/2. In case of an undirected graph, with 
n vertices and e edges, this representation requires 2e list nodes. Both directed and undi-
rected graphs require n head nodes per node.

As we represent the edge between the vertices using the adjacency list, we can place an 
edge query. For example, to determine whether an edge is incident between the vertices 
i and j, verify by searching the complete list of m nodes adjacent to vertex i in O(m) time 
and if m < n. In worst case, the search time is O(n) when the vertex i has all the remaining 
n - 1 vertices adjacent to it, whereas in adjacency matrix representation, the search time 
is O(1).

Finding the degree of any vertex, that is, counting the total number of vertices adjacent 
to it, in an undirected graph may be determined by counting the number of nodes in its 
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adjacency list in O(n) time. In addition, when all the edges are to be processed, the total 
edges of G may be processed in time O(n + e).

In case of a directed graph, the outgoing degree of any vertex i may be determined by 
counting the number of nodes on its adjacency list. For computing an incoming degree of 
vertex i, we have to traverse the adjacency lists of each of the other vertices to confi rm 
whether it is incident on i. In other words, we will have to search for the vertex i in the 
adjacency lists of all other vertices. This is a tedious task; hence, it is better to keep another 
set of lists in addition to the adjacency list called  inverse adjacency lists. The inverse adja-
cency list for a vertex i is a list of all vertices j to which i is adjacent to. Inverse adjacency 
list can be used to compute the incoming degree of a vertex. We shall learn about inverse 
adjacency list in Section 8.3.4.

Program Code 8.3 depicts the implementation of storing a graph as an adjacency list.

Program CoDE 8.3

// Class for the node of the graph class GraphNode

{

   public:

      int vertex;     // The adjacent node

      GraphNode* next;

      GraphNode()

      {

         vertex = 0;

         next = null;

      }

};

// class for storing graph as adjacency list

class Graph

{

   // List of headnodes containing list of connected 

   // vertices

   GraphNode* headnodes[max];

   int n;

   int visited[max];

   public:

       Graph();     // Constructor to initialize all 

headnodes to null

      void create();     // To create graph

      // To initialize the visited array to false

      void initialize_visited();

      void BFS(int v);     // B readth-fi rst search
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      void DFS(int v);     // D epth-First Search

      int examine_n() const {return n;}

      // Return value of n.

};

Graph :: Graph()

{

   for(int i = 0; i < max; i++)

      headnodes[i] = null;

}

// Function to create a graph

void Graph :: create()

{     

// Method to create a Graph represented by adjacency 

list

   GraphNode *curr,*prev;

   int n1, i, j, vertex, done = false;

   cout << endl << "Enter the no. of vertices :- ";

   cin >> n;

   for(i = 0; i < n; i++)

   {

       if(!(headnodes[i] = new GraphNode))     // Allocate 

  memory for new node

      {

         cout << endl << "Insuffi cient memory";

   exit(0);

      }

      headnodes[i]->vertex = i + 1;

       cout << endl << "Enter the no. of vertices 

connected to" << (i+1) << ":";

      cin >> n1;

      prev = headnodes[i];

      for(j = 0; j < n1; j++)

      {

         if(!(curr = new GraphNode))

   {

      cout << endl << "Insuffi cient memory.";

      exit(0);

   }

   done = false;

   do

   {
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       cout << endl << "Enter vertex no. of 

connected vertex :";

      cin >> vertex;

      if(vertex > n && vertex < 1)

      {

         cout << endl << "Vertex out of range";

         cout << endl << "Valid range :- 1 - " << n;

      }

      else

      {

         curr->vertex = vertex;

         prev->next = curr;

         prev = curr;               // Next node

         done = true;

      }

   }

         while(!done);

      }

      if(n1 == 0)

         prev->next = null;  

   }

   return;

}

8.3.3  Adjacency Multilist

In the adjacency list representation of an undirected graph, each edge (vi, vj) is repre-
sented by two entries, one on the list of vi and the other on the list of vj. For the graph G1 
in Fig. 8.9, the edge connecting the vertices 1 and 2 is represented twice, in the lists of 
vertices 1 and 2. In applications such as minimum spanning tree computation, if we pro-
cess any edge once, then it has to be marked as a processed one. To avoid processing of 
that edge again, we need to fi nd the other entries for that particular edge and mark it as 
processed. This adds to time complexity, which should be avoided. This can be achieved 
if the adjacency list is maintained as multilists such that the nodes are shared among sev-
eral lists. For each edge, there will be exactly one node, but this node will be in two lists, 
that is, the adjacency lists for each of the two nodes it is incident on. The node structure 
of such a list can be represented as follows:

Visited
tag

V1 V2 Link1 for V1 Link2 for V2
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Here, the visited tag is a one bit mark field that indicates whether or not the edge has 
been examined. This tag would be set accordingly when the edge is processed. We can 
note that the storage requirements for this are the same as that of the normal adjacency 
lists except the tag field. Figure 8.10 shows the adjacency multilists for the graph G1.

1

Vertex
N1 N2 N421

N2 N3 N431

N3 0 N54

Edge (1, 2)

Edge (2, 4)

Edge (2, 3)

Edge (1, 4)

Edge (1, 3)

1

N4 N5 032

N5 0 042

2

3

4

(a) (b)

1 2

4 3

Fig. 8.10 Adjacency multilist (a) Graph G1 (b) Adjacency multilist for G1 

For Fig. 8.10, the lists are as follows:

Vertex 1:  N1 Æ N2 Æ N3

Vertex 2:  N1 Æ N4 Æ N5

Vertex 3:  N2 Æ N5 
Vertex 4:  N3 Æ N5

Sometimes, the edges of a graph have weights assigned when the graph is a weighted 
graph. This weight information can be represented using an adjacency matrix or can also 
be shown by including an additional field in the node.

8.3.4 inverse Adjacency List

An inverse adjacency list is a set of lists that contains one list for each vertex. Each list 
contains a node per vertex adjacent to the vertex it represents. Figure 8.11(b) represents 
the inverse adjacency list for the graph G2 in Fig. 8.11(a).

(a) (b)

2

2

1

Head

1

2

31 2 3

Fig. 8.11 Inverse adjacency list (a) Graph G2 
(b) Inverse adjacency list of G2 
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8.3.5 Comparison of Sequential and Linked Representations

Adjacency matrix representation always requires an n ¥ n matrix with n vertices, regard-
less of the number of edges. It needs more memory asymptotically. If the graph is sparse, 
many of the entries are null. However, since it provides direct access, it is suitable for 
many applications.

Linked representation (adjacency list) of a graph has an advantage of space complexity 
when a graph is sparse but does not provide direct access. The probable disadvantage of 
adjacency list is that it does not allow direct access, and hence, we cannot quickly deter-
mine whether an edge between any two vertices is incident or not.

When a graph is sparse, the number of edges |E| is much lesser than V2. The adjacency 
list representation is usually preferred as it provides a compact way to represent them. For 
dense graphs, adjacency matrix representation may be preferred since |E| is closer to V2 
and when we also want fast access to information such as whether the edge between any 
two vertices is incident or not, the weight associated to each edge, and so on.

Though the list representation is asymptotically as efficient as a matrix representa-
tion, the simplicity of the matrix is preferred when the graph is small. In addition, for 
a weighted graph, an additional field is needed in the graph node, whereas for matrix 
representation, the same matrix can be used. Considering all these aspects, the matrix 
representation of a graph is more powerful than all the other forms.

8.4 GRAPH TRAvERSAL

To solve many problems modelled with graphs, we need to visit all the vertices and edges 
in a systematic fashion called graph traversal. We shall study two types—depth-first tra-
versal and breadth-first traversal. Traversal of a graph is commonly used to search a ver-
tex or an edge through the graph; hence, it is also called a search technique. Consequently, 
depth-first and breadth-first traversals are popularly known as depth-first search (DFS) 
and breadth-first search (BFS), respectively.

8.4.1 Depth-first Search

In DFS, as the name indicates, from the currently visited vertex in the graph, we keep 
searching deeper whenever possible. All the vertices are visited by  processing a vertex 
and its descendents before processing its adjacent vertices. This procedure can be writ-
ten either recursively or non-recursively. For recursive code, the internal stack would be 
used, and for non-recursive code, we would use a stack.

Depth-first search works by selecting one vertex, say v of G as a start vertex; v is 
marked as visited. Then, each unvisited vertex adjacent to v is searched using the DFS 
recursively. Once all the vertices that can be reached from v have been visited, the search 
for v is complete. If some vertices remain unvisited, we select an unvisited vertex as a new 
start vertex and then repeat the process until all the vertices of G are marked as visited.
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For non-recursive implementation, whenever we reach a node, we shall push it (vertex 
or node address) onto the stack. We would then pop the vertex, process it, and push all its 
adjacent vertices onto the stack. Suppose we have a directed graph G where all the verti-
ces are initially marked as  unvisited. In a graph, we can reach any vertex more than once 
through different paths. Hence, to assure that each vertex is visited once, we mark each as 
visited whenever it is processed. Let us use an array say visited for the same. Initially, 
all vertices are marked unvisited. Marking visited[i] to 0 indicates that the vertex i is 
unvisited. Whenever we push the vertex say j onto the stack, we mark it visited by setting 
its visited[j] to 1.

The recursive algorithm for DFS can be outlined as in Algorithm 8.1.
Algorithm 8.1 shows the recursive working of DFS of a graph.

algorithm 8.1
1. for v = 1 to n do  
    visited[v] = 0       {unvisited}
2. i = 1       {Let us start at vertex 1)
3. DepthFirstSearch(i)
  begin
     visited[i] = 1
     for each vertex j adjacent to i do
        if(visited[j] = 0)  then 
             DepthFirstSearch(j)
        end
4. stop

When we need to show its equivalent non-recursive code, we need to use a stack. Non-
recursive DFS can be implemented by using a stack for pushing all unvisited vertices 
adjacent to the one being visited and popping the stack to find the next unvisited 
vertex.

Consider the graph in Fig. 8.12(a) and its adjacency list in Fig. 8.12(b).

(a) (b)

1

4 5 6 7

2 3

8

21

2

3

4

5

6

7

8

3

1 4 5

1 6

2 8

2 8

3 8

3 8

4 5 6 7

7

Fig. 8.12 Sample graph for traversal  (a) Graph G  (b) Adjacency list representation of G
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Let us initiate a traversal from the vertex 1. The order of traversal will be 1, 2, 4, 8, 5, 6, 
3, 7. Another possible traversal could be 1, 3, 7, 8, 6, 5, 2, 4. O(n + e) time is required by 
the DFS for adjacency list representation and O(n2) for adjacency matrix representation.
Program Code 8.4 is the implementation of the DFS traversal in C++ where the graph is 
stored as an adjacency matrix.

Program CoDE 8.4 

// Depth-fi  rst search using adjacency matrix

void Graph :: DepthFirstSearch(int i)

{

   int k;

   for(k = 0; k < Vertex; k++)

   visited[k] = 0;

   visited[i] = 1;

   for(k = 0; k < Vertex; k++)

   {

      if(Adj_Matrix[i, k] && !visited[k])

      {

         cout << i + 1;

         void DepthFirstSearch(i);

      }

   }

}

// Function for Depth-fi rst search using adjacency list

void Graph :: DFS(int v)

{

   GraphNode *curr;

   int w;

   curr = headnodes[v];

   cout << “\t” << curr->vertex;

   visited[v] = true;

   curr = curr ->next;

   while(curr ! = null)

   // For each vertex adjacent to v

   {

      if(!visited[w = (curr->vertex − 1)])

         DFS(w);

      curr = curr->next;

   }

   return;

}
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Depth-first search for an undirected graph works in a similar way as for a  directed 
graph as shown in Algorithm 8.2. The start vertex i is marked visited. Next, an unvis-
ited vertex j adjacent to i is selected and a DFS from j is initiated. When a vertex k 
is reached such that all its adjacent vertices have been visited, the search returns to 
the last vertex visited which has an unvisited vertex j adjacent to it and then initial-
izes the DFS from j. The search terminates when no unvisited vertex can be reached 
from any of the visited vertices. If the graph G is represented by its adjacency lists, 
the adjacent vertices j from i can be easily searched by following the chain of links 
through the list of vertex i.

algorithm 8.2 
1. Let us start search at vertex j
2. Push j onto stack
3. Mark all vertices as unvisited 
   for i = 1 to n do 
      visited[i] = 0
4. while(not empty (stack)) do
   begin
      v = pop(stack)
      if(not visited(v))
     begin
       visited[v] = 1
       push all adjacent vertices of v onto stack
    end
   end
5. stop

Let us now consider the graph in Fig. 8.13.

4 7 8 9

2 3

1 5

6

Fig. 8.13 Sample graph

Let us traverse the graph using a non-recursive algorithm that 
uses stack. Let 1 be the start vertex. Note that the stack is empty 
initially.

1. Initially, V = set of visited vertices = f. Push 1 onto the stack.
2. As the stack is not empty, vertex = pop(); we get 1. As 1 is not visited, mark it as 

visited. 

1

Top
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Now V = {1}. Push all the adjacent vertices of 1 onto the stack.
Since the stack is not empty, vertex = pop(); we get 2.

2 5 4

Top

3. As 2 is not visited, mark it as visited, and now V = {1, 2}. Then, push all the adjacent 
vertices of 2.

3 5 1 5 4

Top

4. Since the stack is not empty, vertex = pop(); we get 3. As 3 is not visited, mark it 
as visited. Now V = {1, 2, 3}. We then push all the adjacent vertices of 3 onto the stack.

6 5 1 5 4

Top

5. Since the stack is not empty, vertex = pop(); we get 6. As 6 is not visited, mark it 
as visited. Now V  =  {1, 2, 3, 6}. We then push all the adjacent vertices of 6 onto the 
stack.

3 5 1 5 4

Top

6. Since the stack is not empty, vertex = pop(); we get 3. As 3 is visited, pop again 
vertex = pop(); we then get 5. As 5 is not visited, mark it as visited. Now V = {1, 
2, 3, 6, 5}. Push all the adjacent vertices onto the stack.

7 1 2 1 5 4

Top

7. As the stack is not empty, vertex = pop(); we get 7, which is not visited. Hence, 
V = {1, 2, 3, 6, 5, 7}; we now push all the adjacent vertices of 7 onto the stack.
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8 4 5 1 2 1 5 4

Top

 8. As the stack is not empty, vertex = pop(); we get 8, which is not visited. Hence, 
V = {1, 2, 3, 6, 5, 7, 8}. Push all the adjacent vertices of 8 onto the stack.

7 9 4 5 1 2 1 5 4

Top

 9. As the stack is not empty, vertex = pop() = 7, which is visited; vertex = pop() = 
9, which is not visited. Hence, V = {1, 2, 3, 6, 5, 7, 8, 9}. Push all the adjacent vertices 
of 9 onto the stack.

8 4 5 1 2 1 5 4

Top

10. As the stack is not empty, vertex = pop() = 8, which is visited; so again vertex = 
pop() =  4, which is not visited. Hence, V = {1, 2, 3, 6, 5, 7, 8, 9, 4}. Push all the 
adjacent vertices of 4 onto the stack.

7 1 5 1 2 1 5 4

Top

11. The stack is not empty. So the following operations yield:

vertex = pop() we get 7, visited
vertex = pop() we get 1, visited
vertex = pop() we get 5, visited
vertex = pop() we get 1, visited
vertex = pop() we get 2, visited
vertex = pop() we get 1, visited
vertex = pop() we get 5, visited
vertex = pop() we get 4, visited

12. The stack is now empty, Hence, we stop.
The set V = {1, 2, 3, 6, 5, 7, 8, 9, 4} represents the order in which they are visited. 

Hence, the DFS of the graph (Fig. 8.13) gives the sequence as 1, 2, 3, 6, 5, 7, 8, 9, and 4. 
This is shown in Fig. 8.14.
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4
9

7

6

8

7 8

9

2
2

3
3

1

1
Start

5 5

6

4

Fig. 8.14  Depth-first traversal for graph in Fig. 8.13

The label at each of the vertices in Fig. 8.14 is the sequence of visit of the traversal. The 
DFS of the graph is roughly analogous to the preorder traversal of an ordered tree. To find 
the vertices adjacent to the current vertex, we use a data struc-
ture that stores the graph to be traversed. This could be one of 
the suitable data structures used for graphs, such as adjacency 
matrix or adjacency list. The sequence in which they are pushed 
onto the stack and then popped depends on the graph’s storage. 
Hence, the same graph with two different adjacency lists may 
generate two sequences for DFS, specially, when the graph is an 
undirected one. A sample graph is given in Fig. 8.15.

If the adjacency list is as in Fig. 8.16, then the DFS gives the sequences as the follow-
ing: 1, 2, 3, 4, where the start vertex is 1.

1

4

2

3

4

3

4

1

2

1

3

2

1

2

3

4

Fig. 8.16 Sample graph G and its adjacency list representation

If the adjacency list for the same graph is as in Fig. 8.17, then the DFS sequence will 
be 1, 4, 3, 2 where the start vertex is 1 and 4, 1, 2, 3 where the start vertex is 4.

1

4

2

3

1

2

3

4

2

1

2

3

4

3

1

4

Fig. 8.17 Alternate adjacency list representation of sample graph G

1

4

2

3

Fig. 8.15 Sample graph
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8.4.2 Breadth-first Search

Another systematic way of visiting the vertices is the breadth-first search (BFS). The 
BFS differs from DFS in a way that all the unvisited vertices adjacent to i are visited 
after visiting the start vertex i and marking it visited. Next, the unvisited vertices adja-
cent to these vertices are visited and so on until the entire graph has been traversed. The 
approach is called ‘breadth-first’ because from the vertex i that we visit, we search as 
broadly as possible by next visiting all the vertices adjacent to i. For example, the BFS 
of the graph of Fig. 8.13 results in visiting the nodes in the following order: 1, 2, 3, 4, 
5, 6, 7, and 8.

This search algorithm uses a queue to store the vertices of each level of the graph as 
and when they are visited. These vertices are then taken out from the queue in sequence, 
that is, first in first out (FIFO), and their adjacent vertices are visited until all the vertices 
have been visited. The algorithm terminates when the queue is empty. The working of the 
BFS is given in Algorithm 8.3. The algorithm initializes the Boolean array visited[] to 
0 (false), that is, marks each vertex as unvisited.

algorithm 8.3
Breadth-first search (vertex j)
1. Let us start search at vertex j
2. Mark all vertices as unvisited 
      for i = 1 to n do
         visited[i] = 0
3. Mark j as visited
      visited[j] = 1
4. Add j in queue
5. while not queue empty do
   begin
      i = delete from queue
      for all vertices j adjacent to i do
      begin
         if(not visited[j] = 1)
            Add j in queue
            visited[j] = 1
         end
      end
6. stop

In the step 5 of Algorithm 8.3, the while loop is executed n times. Here, n is the num-
ber of vertices, and each vertex is inserted in the queue once. If the adjacency list repre-
sentation is used, then the adjacent nodes are computed in the for loop. The for loop is 
executed e number of times. Hence, BFS needs O(n + e) time for adjacency list and O(n2) 
for adjacency matrix representation.

In Program Code 8.5, we use queue Q as a data structure for traversal.
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Program CoDE 8.5 

// Breadth-fi rst t raversal using adjacency matrix

void Graph :: BreadthFirstSearch(int i)

{

   int k, visited[max];

   queue Q;

   for(k = 1; k <= n; k++)

     visited[k] = 0;

   visited[i] = 1;

   Q.Add(i);

   while(!Q.IsEmpty())

   {

     j = Q.Delete();

     for(k = 1; k <= n; k++)

     {

        if(Adj_Matrix [j,k] && !visited[k])

        {

           Q.Add(k);

           visited[k] = 1;

        }

     }

   }

}

// Function for breadth-fi rst s earch

void Graph :: BFS(int v)

{

   Queue q;

   GraphNode* curr;

   visited[v] = true;

   cout << "\t" << headnodes[v]->vertex;

   q.addq(headnodes[v]);

   while(!q.emptyq())

   {

     curr = q.deleteq();

     curr = curr->next;

     while(curr ! = null)

     {

        if(!visited[curr->vertex − 1])

        {

           q.addq(headnodes[curr->vertex − 1]);

           cout << "\t" << curr->vertex;
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           visited[curr->vertex − 1] = true;

        }

        curr = curr->next;

     }

   }

   return;

}

Here, add() and delete() are the member functions for adding and deleting the ele-
ments from the queue, respectively. Let us consider Fig. 8.13, the graph, again for BFS. 
Let us traverse the graph using a non-recursive algorithm that uses a queue. Let 1 be the 
start vertex. Initially, the queue is empty, and the initial set of visited vertices, V = f.

1. Add 1 to the queue. Mark 1 as visited. V = {1}.

1

Front
Rear

2. As the queue is not empty, vertex = delete() from queue, and we get 1. 
 Add all the un-visited adjacent vertices of 1 to the queue. In addition, mark them as 
visited. 
Now, V = {1, 2, 5, 4}.

2 5 4

Front Rear

3. As the queue is not empty, vertex = delete() and we get 2. 
Add all the adjacent, un-visited vertices of 2 to the queue and mark them as visited.
Now V = {1, 2, 5, 4, 3}.

5 4 3

Front Rear

4. As the queue is not empty, vertex = delete() from queue, and we get 5.
 Now, add all the adjacent, un-visited vertices adjacent to 5 to the queue and mark 
them as visited.
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Now, V = {1, 2, 5, 4, 3, 7}.

4 3 7

Front Rear

5. As the queue is not empty, vertex = delete() from queue, and we get 4.
 Now, add all the adjacent, not visited vertices adjacent to 4 to the queue. The vertices 
1 and 7 are adjacent to 4 and hence are already visited. Now the next element we get 
from the queue is 3. 
 Now, we add all the un-visited vertices adjacent to 3 to the queue, making V = {1, 2, 
5, 4, 3, 7, 6}.

3 7 6

Front Rear

6. As the queue is not empty, vertex = delete() and we get 7.
 Add all the adjacent, un- visited vertices of 7 to the queue and mark them as visited. 
Now, V = {1, 2, 5, 4, 3, 7, 6, 8}.

6 8

Front Rear

7. As the queue is not empty, vertex = delete(), and we get 6.
Then, add all the un-visited adjacent vertices of 6 to the queue and mark them as visited.
Now V = {1, 2, 5, 4, 3, 7, 6, 8}.

8

Front
Rear

8. As queue is not empty, vertex = delete() and we get 8.
Add its adjacent un-visited vertices to the queue and mark them as visited.
V = {1, 2, 5, 4, 3, 7, 6, 8, 9}.

9

Front
Rear
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 9. As the queue is not empty, vertex = delete() = 9.
Here, note that no adjacent vertices of 9 are un-visited.

10. As the queue is empty, we stop. 
The sequence in which the vertices are visited by the BFS is 1, 2, 5, 4, 3, 7, 6, 8, 9
This is represented in Fig. 8.18.

44 7

6

8

8 9

9

2

2

3

5

1

1

5 3

6

7

Fig. 8.18  Breadth-first search sequence 
for the graph in Fig. 8.13

8.5 SPAnninG TREE

A tree is a connected graph with no cycles. A spanning tree is a sub-graph of G that has all 
vertices of G and is a tree. A minimum spanning tree of a weighted graph G is the span-
ning tree of G whose edges sum to minimum weight.

There can be more than one minimum spanning tree for a graph. Figure 8.19 shows a 
graph, one of its spanning trees, and a minimum spanning tree.

(a) (b)

(c)

1 2

5

8

4

3 5 3

6

6

4

7
2 8

6

4

2

1 2

5

4

3

5 3

4

2

1 2

5

4

3

Fig. 8.19 Spanning trees  (a) Graph 
(b) Spanning tree  (c) Minimum spanning tree
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Minimum spanning trees are useful in many applications such as finding the least amount 
of wire needed to connect a group of computers, houses, or cities. A minimum spanning 
tree minimizes the total length over all possible spanning trees.

We want to compute a minimum spanning tree efficiently. In theory, we could enumerate 
all the spanning trees of a weighted graph and simply choose the tree of least weight. How-
ever, if the graph is a complicated one, this is not an easy and efficient way to get it. In this 
section, we shall study the two most efficient ways discovered in the 1950s by J.B. Kruskal 
and R.C. Prim. Both the algorithms are greedy algorithms which produce a minimum span-
ning tree by adding an edge at each stage making the best choice of the next edge. These 
two popular methods used to compute the minimum spanning tree of a graph are

1. Prim’s algorithm
2. Kruskal’s algorithm

Before discussing these algorithms, let us learn about connected components.

8.5.1 Connected Components

An undirected graph is connected if there is at least one 
path between every pair of vertices in the graph. A con-
nected component of a graph is a maximal connected 
sub-graph, that is, every vertex in a connected compo-
nent is reachable from the vertices in the component.

Consider the graph G1 in Fig. 8.20. 
In this undirected graph, there is only one connected 
component, the graph G1 itself.

If we delete the edges e4 and e5 from the graph G1, we get a graph G2 with two connected 
components: ({V1, V2, V3}, {E1, E2, E3}) and ({V4}, Ø). This is represented in Fig. 8.21.

V1 V2

E2

E3
E1

V3 V4

Fig. 8.21 Graph G2 with 
two connected components

8.5.2 Prim’s Algorithm

All vertices of any connected graph are included in a minimum cost spanning tree of a 
graph G. Prim’s algorithm starts from one vertex and grows the rest of the tree by adding 
one vertex at a time, by adding the associated edges. This algorithm builds a tree by 
iteratively adding edges until a minimal spanning tree is obtained, that is, when all nodes 

V1 V2
E2

E3 E5

E4

E1

V3 V4

Fig. 8.20 Sample graph G1 with 
one connected component
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are added. At each iteration, a next minimum weight edge is added that adds a new vertex 
to the tree, if adding that edge does not form a cycle. 

Let G = (V, E) be the original graph. Let T be 
a spanning tree. T = (A, B), where A and B are 
empty sets initially. Let us select an arbitrary vertex 
i from V and add it to set A. Now A = {i}. At each 
step, Prim’s algorithm looks for the shortest pos-
sible edge <u, v> such that u Œ A and v Œ V − A. 
It then adds v to A making A = A » {v} and adds 
the edge <u, v> to B. In this way, the edges in B at 
any instant form a minimum spanning tree for the 
vertices in A. We continue thus as long as A π V. 
To illustrate the algorithm, let us consider the graph 
in Fig. 8.22.

Let us select node 1 as the starting node. Table 8.1 shows the edge of a minimum 
weight selected and the set of vertices A.

Table 8.1 Construction of spanning tree for graph in Fig. 8.22

Step no. Edge <u, v> Set A
Initial – {1}

1 <1, 2> {1, 2}

2 <2, 3> {1, 2, 3}

3 <1, 4> {1, 2, 3, 4}

4 <4, 5> {1, 2, 3, 4, 5}

5 <4, 7> {1, 2, 3, 4, 5, 7}

6 <7, 6> {1, 2, 3, 4, 5, 7, 6}

When the algorithm stops, B contains the chosen edges B = {<1,2>, <2,3>, <1,4>, 
<4,5>,<4,7>,<7,6>}. The resultant spanning tree is drawn in Fig. 8.23, which is of 
weight 177.

1
11 20

40 

33

33
40

2 3

4 5

7

6

Fig. 8.23 Minimum spanning tree 
for graph in Fig. 8.22  
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Fig. 8.22 A weighted graph
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Algorithm 8.4 is an informal statement of the algorithm. Here, G is a graph and T is a 
spanning tree to be computed.

algorithm 8.4
1. Let G = {V, E} and T = {A, B}
     A = f and B = f
2. Let i Œ V, i is a start vertex
3. A = A » {i}
4. while A π V do
  begin
  find edge <u,v> Œ E of minimum length
   such that u Œ A and v Œ V − A
   A = A » {v} and
   B = B » {<u,v>}
  end
5. stop

To obtain a simple implementation in any programming language say C++, suppose that 
the vertices of G are numbered from 1 to n so that V = {1, 2, …, n}. Let the matrix M give 
the length of each edge and L[i][j] = • if the edge <i,j> œ E, that is, edge <i,j> 
does not exist. Let us use two arrays—Nearest[] and Min_Dist[]. Let T = {A, B} be 
the minimum spanning tree where initially A and B are empty. For each vertex i Œ V − A, 
the array Nearest[i] gives the vertex in A that is nearest to i. Similarly, for each vertex 
i Œ V − A, the array Min_Dist[i] gives the distance from i to this nearest vertex. For a 
vertex i Œ A, we set Min_Dist[i] = −1. In this way, we can find out whether a vertex 
is in A or not. The set A arbitrarily initializes to {1}.

Consider the graph in Fig. 8.24.
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Fig. 8.24 Sample graph

Using Prim’s algorithm, we get a spanning tree for this graph in the following steps:

 1. Let f be the start vertex.
 Among vertices e, b, g, and j, the vertex b is the nearest one with edge <f, b> and 

weight 10.
w(f, e) = 40
w(f, b) = 10   ¨  min
w(f, g) = 30   
w(f, j) = 20

b

f
10
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 2. Among the vertices adjacent to b and f, the vertex a is the nearest one with edge 
<b, a> and weight 20.

20 ba

f
10

w(b, a) = 20    ¨  min
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(f, j) = 20

 3. Similarly, the nearest vertex adjacent to one of a, b, and f is j with the edge <f, j> and 
weight 20.

w(a, e) = 30
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(f, j) = 20    ¨  min

20 ba

j

f
10

20

 4. Similarly, the next edge added is <a, e> with weight 30.

w(a, e) = 30    ̈   min
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(j, i) = 30
w(j, k) = 30

20 ba

j

fe
30 10

20

 5.  Edge selected = <j, i> with weight 30.

w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(j, i) = 30    ¨  min
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40

20 ba

ji

fe

30

30 10

20

 6.  Edge selected = <f, g> with weight 30.

w(b, c) = 30
w(f, e) = 40
w(f, g) = 30    ¨  min
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40

20 ba

ji

fe
g30

30

30 10

20
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 7.  Edge selected = <g, k> with weight 10.

20 ba

j ki

fe
g30

30

30 10

20 10

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20
w(g, k) = 10    ¨  min
w(g, h) = 30

 8.   Edge selected = <k, l> with weight 10.

20 ba

k lji

fe
g

10

30

30

30 10

20 10

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20
w(g, h) = 30
w(k, l) = 10    ̈   min

 9.  Edge selected = <g, c> with weight 20.

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20    ¨  min
w(g, h) = 30
w(l, h) = 30

20 ba c

ji lk

fe g

10

30

30

30 10

20

20

10

10. Edge selected = <c, d> with weight 10.

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, h) = 30
w(l, h) = 30
w(c, d) = 10    ¨  min

20 ba c d

ji lk

fe g
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30 10

30 10

20

20

10

11.  Finally the edge selected = <g, k> with weight 30.
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As all the vertices are added, the algorithm ends. The resultant spanning tree is shown in  
Fig. 8.25 with a total weight of 220.

20 ba c d

ji k l

fe
g

h

10

30

10

30

30

30 10

1020

20

Fig. 8.25 Minimum cost spanning 
tree for the graph in Fig. 8.24

8.5.3 Kruskal’s Algorithm
We studied Prim’s algorithm to find the minimum spanning tree. Another way to construct 
a minimum spanning tree for a graph G is to start with a graph T = (V', E' = ø) con-
sisting of the n vertices of G and having no edges. Each vertex is therefore a connected 
component in itself. In Prim’s algorithm, we start with one connected component, add a 
vertex to have one connected component and no cycles, and end up with one connected 
component. Here, we start with n connected components; at each step, the number of 
connected components would reduce by one and end up with one connected component. 
Here, n indicates the total number of vertices in a graph.

We start with all vertices; each vertex is therefore a connected component in itself. As 
the algorithm progresses, we add an edge to T = (V', E' = ø) by examining the edges 
from E. If the edge connects two vertices in two different connected components, then we 
add the edge to T. In other words, if the edge does not form a cycle in T, only then an edge 
is added. If an edge joins two vertices of two different connected components, we add it 
to T. Consequently, the two connected components now form only one component, and 
the total number of connected components would be decremented by one. If it forms a  
cycle, that is, if the edge connects two vertices in the same component, then we discard 
the edge. At the end of the algorithm, only one connected component remains, so T is 
then a minimum spanning tree for all the vertices of G. To build a bigger component, we 
examine the edges of G in the increasing order of their associated weights.

To illustrate the method, consider the graph in Fig. 8.26.
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Fig. 8.26 Sample graph
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Let us arrange the edges in an increasing order of their weights: <1, 2>, <2, 3>, <4, 5>, 
<6, 7>, <1, 4>, <2, 5>, <4, 7>, <3, 5>, <2, 4>, <3, 6>, <5, 7>, and <5, 6> with weights 
11, 20, 33, 33, 40, 40, 40, 50, 61, 80, 72, and 81, respectively. Selection and addition of 
edges in a step-by-step manner is shown in Table 8.2.

Table 8.2 Construction of spanning tree for graph in Fig. 8.26

Step no. Edge considered Action Connected component
Initial – – {1} {2} {3} {4} {5} {6} {7}

1 <1, 2> Add {1, 2} {3} {4} {5} {6} {7}

2 <2, 3> Add {1,2,3} {4} {5} {6} {7}

3 <4, 5> Add {1,2,3} {4,5} {6} {7}

4 <6, 7> Add {1,2,3} {4,5} {6,7}

5 <1, 4> Add {1,2,3,4,5} {6,7}

6 <2, 5> Rejected {1,2,3,4,5} {6,7}

7 <4, 7> Add {1,2,3,4,5,6,7}

When the algorithm stops, T contains the chosen edges <1, 2>, <2, 3>, <4, 5>, <6, 7>, 
<1, 4>, and <4, 7>. This minimum spanning tree has the weight as 177 and is drawn in  
Fig. 8.22. Algorithm 8.5 states these steps in brief.

algorithm 8.5
1. Let G = {V, E} and T = {A, B}
2. A = V and B = f, |A| = n and |B| = 0
3. while(|B| < n − 1) do
   begin
     find edge <u,v> of minimum length and add to B 
     only if addition of edge <u,v> does not complete a cycle in T
   end
4. stop

The graph T initially consists of the vertices of G but no edges. At each iteration, we 
add an edge <u, v> to T having minimum weight that does not complete a cycle in T. 
When T gets (n − 1) edges, the algorithm stops. To implement the algorithm, we have to 
handle a certain number of sets that include vertices of each connected component. Two 
operations have to be carried out:

1. Member(x) tells us which connected component the vertex x is a member of.
2. Merge(u, v) is to merge two connected components u and v.

Let us rewrite Algorithm 8.5 by elaborating these steps in Algorithm 8.6.

algorithm 8.6
1. Sort E in increasing order of weights
2. Let G = (V, E) and T = (A, B), A = V and E = Null set
   And let n = length (V)
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3. Initialize n sets, each containing a different element of v 
4. while(|B| < n − 1) do
   begin
     e = <u,v> the shortest edge not yet considered
     U = Member(u)
   V = Member(v)
   if(U π V)
   {
     Merge(U,V)
     Union(B,u,v)
   }
   end
5. T is the minimum spanning tree
6. stop

In step 4 of Algorithm 8.6, when the edge <u,v> 
with minimum weight is to be added in an exist-
ing tree, the function Member() checks for u and 
v for the connected component they belong to. 
If they are members of two different connected 
components, the edge is added as it would not 
form a cycle. If they belong to the same con-
nected component, then adding the edge forms 
a cycle.

Consider the graph as in Fig. 8.27
Let us use Kruskal’s algorithm.

Step 1: The edge with minimum weight is selected edge = <c, d>.
Weight of the selected edge = 10.
As the addition of edge to the existing tree does not form a cycle, an edge is added.

c d10

Step 2: Selected edge <k, l> with weight 10.

c d

k
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Fig. 8.27 Sample graph for Prim’s 
spanning tree computation
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Step 3: Selected edge <b, f> with weight 10.

b c d

k
l

f

10

10

10

Step 4: Selected edge <g, k> with weight 20.

b c d

k l

f

10

10

10

10

g

Step 5: Selected edge <a, b> weight 20.

b

f
10

20a c d

k l

10

10
10

g

Step 6: Selected edge <f, j> with weight 20.

b c d

k l

f

j

10

10

20 10
10

g

20a

Step 7: Selected edge <c, g> with weight 30.
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g
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20a
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Step 8: Selected edge <j, k> with weight 30.

b c d

k l

f

j
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20
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g
20

20a

30

Step 9: Selected edge <g, h> with weight 30.
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Step 10: Selected edge <i, j> with weight 30.
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Figure 8.28 is a spanning tree with weight 220.
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Fig. 8.28 Spanning tree for graph in Fig. 8.27
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8.5.4 Biconnected Components

Depth-first search traversal of a graph, one of the most important techniques used for 
solving a variety of problems is described in Section 8.4.1. DFS can be used to find the 
connected components of an undirected graph. There are a few non-trivial graph algorith-
mic problems to be considered. 

Consider a graph modelling a communication network problem. We expect the net-
work to be robust under failures of any of the nodes. Even if a node fails, the remaining 
network should still remain connected. A graph is said to be biconnected if this condition 
is satisfied. 

Often, we need to test whether a given undirected graph is biconnected or not. A bicon-
nected component is a maximal biconnected sub-graph of the graph G = (V, E). Edges and 
non-separation vertices belong to exactly one component, whereas separation vertices 
belong to at least two. Biconnected components contain no separation vertices or edges. 
A separation vertex or edge is one whose removal disconnects G. Between any two ver-
tices, there exists at least two disjoint paths, and G has a simple cycle containing them. 
Any connected graph can be decomposed into a tree of biconnected components called 
the block tree of the graph. The blocks are attached to each other at shared vertices called 
cut vertices or articulation points. Specifically, a cut vertex is any vertex, which, when 
removed increases the number of connected components. In Fig. 8.29, the separation edge 
e1 is between A and B, and the separation vertex is E.

A

e1

e2

e5

e4

e7

e6

e8

e3

B

C

E

D

G

F

Fig. 8.29 Sample graph with biconnected components
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8.5.5 Disjoint Set operations

In minimum spanning tree computation algorithms, we have used two important set oper-
ations. Similar to those, there are many algorithms in which a disjoint-set data structure 
is used. This data structure keeps track of a set of elements partitioned into a number of 
disjoint subsets. A union–find algorithm is one that performs two useful operations (i.e., 
find and union) on such a data structure.

Find This is a membership check of the element. It determines the set in which a 
particular element is located and is also useful for determining whether two elements are 
in the same set or not.

Union This operation combines or merges two sets into a single set.
These two operations are supported by a disjoint-set data structure. Hence, it is also 

called as a union–find data structure or merge–find set. 

8.6 SHoRTEST PATH ALGoRiTHM

A weighted graph is a graph where the values are assigned to the edges and the length of a 
path is the sum of the weight of the edges in the path. We let w(i, j) denote the weight 
of edge (i, j). In a weighted graph, we often need to find the shortest path. The shortest 
path between two given vertices is the path having minimum length. This problem can be 
solved by one of the greedy algorithms, by Edger W. Dijkstra, often called as Dijkstra’s 
algorithm.

Consider a directed graph G = {A, B}. Each edge has a non-negative length. One 
of the nodes is the source vertex. Suppose we are to determine the shortest path from 
a to the destination vertex z. Let us use two sets of vertices, visited and unvisited. Let 
V denote the set of visited vertices that contains the vertices that have already been 
chosen and the minimal distance from the source is already known for every vertex in 
V. The set U contains all other vertices whose minimal distance from the source is not 
yet known.

Let an array Dist hold the length of the shortest distance and the array Path hold the 
shortest path between the source and each of the vertices. At each step, Dist[i] shows 
the shortest distance between a and i, and Path[i] shows the shortest path between a 
and i. The basic idea of the algorithm is to determine the minimum cost from i to one 
vertex at each of the iterations and call it j, mark j as visited, and recalculate the cost 
from i to each of the unvisited vertices going through j.

Initially, a is the only vertex in V. At each step we add to V, another vertex, for which 
the shortest path from a has been determined. The array Dist[] is initialized by set-
ting Dist[i] to the weight of the edge from a to i if it exists and to • if it does not. 
To determine which vertex to add to V at each step, we apply the criteria of choosing 
the vertex j with the smallest distance recorded in Dist such that j is not the visited 
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one. When we add j to V (set of visited vertices), we must update the entries of Dist by 
checking, for each vertex k that is not in V, whether a path through j and then directly 
to k is shorter than the previously recorded distance of k. That is, we replace Dist[k] 
by Dist[j] + weight of the edge from j to k if the value of the latter quantity is lesser. 
Here, j is the currently selected vertex. Let k be a vertex whose distance is updated. If the 
distance is updated, then the path is also updated. Then, path[k] becomes the path of j 
followed by k.

In brief,

if Dist[k] > (Dist[j] + weight<j,k>) then
   Dist[k] = Dist[j] + w <j,k>

and
   Path[k] = Path[j] U{k}

Algorithm 8.7 is for computing the shortest path from the source vertex to the destination 
vertex.

algorithm 8.7
1. Let G = (A, B) where A = set of vertices
2. Initially, let V = {a} and U = V − {a}
3. Let U be the unvisited and V be the visited vertices
4. Let Dist[t] = w[(a, t)] for every vertex a Œ A
5.  Select the vertex in U that has the smallest value Dist[x]. Let  

x denote this vertex.
6.  If x is the vertex we wish to reach from a, goto 9. If not, let  

V = V − {x} and U = U − {x}
7. For every vertex t in A, compute Dist[t] with respect to V as,
      Dist[t] = min{Dist[t], Dist[t] + w (x,t)}
8. Repeat steps 5, 6, and 7 
9. Stop

Let us consider the graph in Fig. 8.30, and let us compute the shortest path between a 
and all other vertices using this algorithm.

2
a 5

3
6

2
e

4

d 2 c

1

6

2

b

Fig. 8.30 Directed weighted graph
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1. Initial step
 The set V = {a}, where a is the source vertex
 and U = {b, c, d, e} is the set of unvisited vertices.
 Dist[ ] = {−, 5, 3, •, 2}. This array can also be written as

b c d e
Distance

5 3 ∞ 2

This Dist[ ] array represents the current shortest distance between a and other vertices.
 Path = {Ø, ab, ac, Ø, ac}
2.  Now, the distance to vertex e is the shortest, so e is added to set V.
 We get, V = {a, e}; let us update Dist array now.

b c d e
Distance

5 3 6 2

The weight of the edge between the current selected vertex e and d is 4 and the dis-
tance from a to e is 2; hence the distance between a and d becomes 6 as it is less than •. 

Hence, the path is also updated for vertex d by the path of current selected vertex, that is, 
the path of e.

Path = {Ø, ab, ac, aed, ae}

3. Now the distance to vertex c among the unvisited vertices is the shortest. Hence, c is 
current selected vertex which gets to V.

  Therefore V = {a, e, c}. Let us update Dist array now.

b c d e
Distance

4 3 5 2

Here, the shortest distance between the source a to b and d are updated as,

Dist[b] = min{5, Dist[c] + w(c, b)}
= min{5, 3 + 1}
= 4
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and

Dist[d] = min{6, Dist[c] + w(c, d)}
= min {6, 3 + 2}
= 5

As the shortest distance of b and d are updated, their respective paths are also updated 
as in the following expression:

Path = {Ø, acb, ac, acd, ae}

The path vector can also be shown as follows:

b c d e
Path

acb ac acd ae

4. Now b is the vertex that has the shortest distance and is unvisited.

Hence, V = {a, e, c, b}

b c d e
Distance

4 3 5 2

Here, none of the shortest distances is updated. Hence, the path also remains unchanged.

b c d e
Path

acb ac acd ae

5.  Now d is the next selected vertex, and the final distance and path vectors are the same 
as stated. Hence, the shortest distances between a and {b, c, d, e} are {4, 3, 5, 2}, 
respectively. In addition, the shortest path between a and {b, c, d, e} are {acb, ac, acd, 
ae}, respectively.
In the final two steps, adding the vertices b and d to V yield the paths and distances as 

shown in Fig. 8.31.
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Fig. 8.31 Shortest paths and distances

To implement this algorithm in C++, let us use an adjacency matrix implementation as 
it facilitates random access to all the vertices of a graph. Moreover, by storing the weights 
in the matrix, we can use the matrix to give weights as well as adjacencies. We shall place 
a special large value 9999 (to represent •) in positions for which the corresponding edge 
does not exist (Program Code 8.6).

Program CoDE 8.6 

// Shortest distance using Dijkstra’s algorithm

#include<iostream.h>

#include<conio.h>

#defi ne infi nite 999

class graph

{

   int Graph[20][20];

   // Adjacency Matrix int No_of_Vertices;

   public:

      void Accept();

      void Display();

      int Calc_Shortest_Dist();

};

void graph :: Accept()

{

   int i,j;

   cout << "Enter no of vertex";

   cin >> No_of_Vertices;

   for(i = 1; i<= No_of_Vertices; i++)

  {

      for(j = 1; j<= No_of_Vertices; j++)

     {
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         Graph[i][j] = infi nite;

      }

   }

   for(i = 1; i<= No_of_Vertices; i++)

   {

      for(j = i + 1; j<= No_of_Vertices; j++)

      {

          cout << “\n Please enter weight from 

"<<i<<"to"<<j<<":";

         cin>> Graph[i][j];

         Graph[j][i] = Graph[i][j];

      }

   }

}

void graph :: Display()

{

    int i,j;

    cout << "Graphs Adjacency Matrix is\n";

    for(i = 1; i<= No_of_Vertices; i++)

    {

       for(j = 1; j<= No_of_Vertices; j++)

       {

          cout << “\t”<< Graph [i][j];

       }

       cout << “\n”;

     }

}

int graph :: Calc_Shortest_Dist()

{

    int cost, curr, src, cost1 = 0, desti, start, new1, 

i, k = 1, temp;

   int  visited[20], dist[20];

   cout << "\nEnter the source";

   cin >> src;

   cout << "\nEnter the destination";

   cin >> desti;

   for(i = 0; i<= No_of_Vertices; i++)

   {

      visited[i] = 0;

      dist[i] = infi nite;

   }
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   visited[src] = 1;

   dist[src] = 0;

   curr = src;

   cout << "\nPath is"<<src;

   while(curr ! = desti)

   {

      cost = infi nite;

      start = dist[curr];

      for(i = 1; i<= No_of_Vertices; i++)

      {

         if(visited[i] == 0)

         {

            new1 = start + Graph[curr][i];

            if(new1 < dist[i])

          dist[i] = new1;

          if(dist[i]<cost)

          {

            cost = dist[i];

            temp = i;

          }

       }

    }

    curr = temp;

    visited[curr] = 1;

    cout << “\nCurr node is”<<curr;

    // cost1 = cost1 + cost;

   }

return cost1;

}

void main()

{

   clrscr();

   graph G;

   int Shortest_Distance;

   G.Accept();

   G.Display();

   Shortest_Distance = G. Calc_Shortest_Dist();

   cout << "\ndistance is"<< Shortest_Distance;

   getch();

}
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RECAPiTULATion

•  Graphs  are  one  of  the  most  important  non-
linear data structures. A graph is a represen-
tation of relation. Vertices represent elements 
and edges represent relationships. In other 
words, a graph is a collection of nodes (ver-
tices) and arcs joining pairs of the nodes 
(edges). The edges between two vertices rep-
resent the relationship between them.

•  Graphs  are  classifi ed  as  directed  and  undi-
rected graphs. In an undirected graph, an 
edge is a set of two vertices where order does 
not make any relevance, whereas in a directed 
graph, an edge is an ordered pair.

•  Graphs are implemented using an array or a 
linked list representation. An adjacency list 
is a data structure for representing a graph 
by keeping a list of the neighbour vertices for 
each vertex. An adjacency matrix is a data 
structure for representing a graph as a Boolean 
matrix where 0 means no edge and 1 corre-
sponds to an edge.

•  There  are  two  standard  graph  traversals—
depth-fi rst and brea dth-fi rst.

•  A m inimum spanning  tree  is  a  tree,  contain-
ing all the vertices of a graph, where the total 
weight of the edges is minimum. The two pop-
ularly used algorithms to compute minimum 
spanning tree are Prim’s and Kruskal’s algo-
rithms.

•  A biconnected component  is a maximal sub-
graph. A component of biconnected graph is 
useful in modelling a robust communication 
network.

•  A disjoint  set  is a  type of data structure  that 
keeps track of a set of elements partitioned 
into a number of disjoint subsets. Operations 
such as union and fi nd are performed on it for 
respectively merging two sets into one and 
determining the location of a given set.

•  Dijkstra’s algorithm is another common algo-
rithm  for  graphs  to  fi nd  the  shortest  path 
between two vertices of a graph.

Adjacency list In an adjacency list, the n rows of 
the adjacency list are represented as n-linked lists, 
one list per vertex of the graph. We can represent 
G by an array Head, where Head[i] is a pointer to 
the adjacency list of vertex i. Each node of the list 
has at least two fi elds: vertex and link. The vertex 
fi eld contains the vertex id, and link fi eld stores 
the pointer to the next node storing another vertex 
adjacent to i.

Adjacency matrix The graphs represented using a 
sequential representation using matrices is called 
an adjacency matrix.

Adjacency multilist Multilists are lists where 
nodes may be shared among several other lists. 
For each edge, instead of two, there will be exact-

ly one node, but this node will be in two lists, that 
is, the adjacency lists for each of the two nodes it 
is incident on.

Biconnected component A biconnected compo-
nent is a maximal biconnected sub-graph of graph 
G = (V, E) containing no separation vertices or 
edges.

Breadth-fi rst search  (BFS) In BFS, all the unvis-
ited vertices adjacent to i are visited after visiting 
the start vertex i and marking it visited. Next, the 
unvisited vertices adjacent to these vertices are 
visited and so on until the entire graph has been 
traversed.

Connected component An undirected graph is 
connected if there is at least one path between 

KEY TERMS
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EXERCiSES

Multiple choice questions

 1. Consider an undirected unweighted graph G. 
Let a breadth-fi rst travers al be done starting 
from a node r. Let the distance d(r, u) and d(r, 
v) be the lengths of the shortest paths from r to 
u and v, respectively, in G. If u is visited before 
v during the breadth-fi rst travers al, which of the 
following statements is correct?

 (a) d(r, u) < d (r, v)
 (b) d(r, u) > d(r, v)
 (c) d(r, u) £ d(r, v)
 (d) None of these
 2. Kruskal’s algorithm for fi nding a minimum 

spanning tree of a weighted graph G with n 
vertices and m edges has the time complexity of 

 (a) O(n2)
 (b) O(m, n)
 (c) O(m + n)
 (d) (m log n)
 (e) O(m2)

 3. Consider a simple connected graph G with n 
vertices and n edges (n > 2). Then, which of the 
following statements is true?

 (a) G has no cycles
 (b)  The graph obtained by removing any edge 

from G is not connected
 (c) G has at least one cycle
 (d)  The graph obtained by removing any two 

edges from G is not connected
 (e) None of the above
 4. Which of the following statements is false?
 (a)  Optimal binary search tree construction 

can be performed effi ciently using dynamic 
programming.

 (b)  BFS cannot be used to fi nd the component 
of a graph.

 (c)  The prefi x and postfi x walks over a binary 
tree cannot be uniquely constructed.

 (d)  DFS can be used to fi nd the connected 
components of a graph.

every pair of vertices in the graph. A connected 
component of a graph is a maximal connected 
sub-graph, that is, every vertex in a connected 
component is reachable from the vertices in the 
component.

Depth-fi rst search (D FS) DFS differs from 
BFS. It starts at the vertex v of G as a start ver-
tex and v is marked as visited. Then, each un-
visited vertex adjacent to v is searched using the 
DFS recursively. Once all the vertices that can 
be reached from v have been visited, the search 
of v is complete. If some vertices remain unvis-
ited, we select an unvisited vertex as a new start 
vertex and then repeat the process until all the 
vertices of G are marked visited.

Disjoint set This is a type of data structure that 
keeps track of a set of elements partitioned into a 
number of disjoint subsets.

Graph traversal Visiting all the vertices and 
edges in a systematic fashion is called as a graph 
traversal. The two most common traversals are 
depth-fi rst traversal  and breadth-fi rst travers al.

Graph A graph G is a discrete structure consist-
ing of nodes (vertices) and the lines joining the 
nodes (edges). For fi nite graphs, V and E are fi -
nite. We can write a graph as G = (V, E).

Inverse adjacency list Inverse adjacency lists is a 
set of lists that contain one list for vertex. Each list 
contains a node per vertex adjacent to the vertex 
it represents.

Spanning tree A tree is a connected graph with 
no cycles. A spanning tree is a sub-graph of G 
that has all vertices of G and is a tree. A mini-
mum spanning tree of a weighted graph G is the 
spanning tree of G whose edges sum to minimum 
weight.
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 5. The number of distinct simple graphs with upto 
3 nodes is

 (a) 15
 (b) 10
 (c) 7
 (d) 9
 6. Let G be a graph with 100 vertices numbered 1 

to 100. Two vertices i and j are adjacent iff |i − 
j| = 8 or |i − j| = 12. The number of connected 
components in G is 

 (a) 8
 (b) 4
 (c) 12
 (d) 25
 7. The number of articulation points of the 

following graph is 
 (a) 0
 (b) 1
 (c) 2
 (d) 3
 8. Let G be an undirected graph. Consider a 

DFS of G, and let T be the resulting DFS tree. 
Let u be a vertex in G and let v be the first 
new (unvisited) vertex. After using u in the 
traversal, which of the following statements is 
always true?

 (a)  {u, v} must be an edge in G, and u is a 
descendent of u in T.

 (b)  {u, v} must be an edge in G, and v is a 
descendent of u in T.

 (c)  If {u, v} is not an edge in G, then u is a leaf 
in T.

 (d)  If {u, v} is not an edge in G, then u and v 
must have the same parent in T.

 9. Which is the most appropriate matching for the 
following pairs? 

X: depth-first search 1: heap
Y: breadth-first search 2: queue
Z: sorting 3: stack

 (a) X–1, Y–2, Z–3

 (b) X–3, Y–1, Z–2
 (c) X–3, Y–2, Z–1
 (d) X–2, Y–3, Z–1
10. Let G be an undirected connected graph with 

distinct edge weights. Let emax be the edge 
with maximum weight and emin be the edge 
with minimum weight. Which of the following 
statements is false?

 (a)  Every minimum spanning tree of G must 
contain emin

 (b)  If emax is a minimum spanning tree, then its 
removal must disconnect G

 (c) No minimum spanning tree contains emax

 (d) G has a unique minimum spanning tree

Review questions

 1. Give the adjacency list representation for the 
following graph.

4

2
1 3

 2. Suggest a suitable node structure for a weighted 
graph’s adjacency list representation. Give the 
adjacency list for the following weighted graph 
using the suggested node structure.

1 2

5

8

4

3
5 3

6

6

4

7
2

 3. Draw a graph for the following adjacency list.
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3

3

3

2

1

2

1

2

3

 4. Compute the shortest path and the distance 
between the vertices a and z in the following 
graph.

1

1

5

64

7b d

z

ec

a 2

2

3

 5. For the following graph, compute the shortest path 
and distance between the vertices a and h.

3

1
f

1 1

16 4

5b e

8
h

d

ca
5

3
2

2

2

2

g

 6. For the following graph, give the result of depth-
first and breadth-first traversals.

7

8

4

5

6
3

2

1

 7. Consider the following specification of a graph G:

V(G) = {1, 2, 3, 4)
E(G) = {(1, 2), (1, 3), (3, 3), (3, 4), 
(4, 1)}

 (a) Draw a picture of the undirected graph.
 (b) Draw its adjacency matrix.
 8. Write a non-recursive pseudo algorithm for the 

DFS of a graph.
 9. Construct a minimum spanning tree (step-by-

step) from the following graph using Kruskal’s 
algorithm.

12

1
3

2

6

14

1019

17
15

A

E D

E

B

C

10. Construct an adjacency matrix and adjacency list 
for the graph in question 9.

11. Construct a minimum spanning tree using Prim’s 
algorithm for the graph in question 9.

12. Write pseudo C++ algorithms for the following:
 (a) BFS
 (b) DFS
 (c) Kruskal’s algorithm
 (d) Prim’s algorithm
 (e) Dijkstra’s algorithm
13. Show that all vertices in an undirected finite 

graph cannot have distinct degrees if the graph 
has at least two vertices.

14. A complete, undirected, weighted graph G is 
given on the vertex set {0, 1, …, n − 1} for 
any fixed n. Draw the minimum spanning tree 
of G if 

 (a) the weight of the edge (u, v) is |u − v|
 (b) the weight of the edge (u, v) is u + v
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15. For the graph in the following figure:

G

F H

13

3

8

2
6

4

7

5 5

A

D

E

B C

 (a) Give the depth-first traversal.

 (b) Give the breadth-first traversal.
 (c) Draw three spanning trees.
 (d) Give the adjacency matrix representation.
 (e) Give the adjacency list representation.
 (f ) Find minimum spanning tree.
 (g)  Find the shortest path and distance between 

A and all other vertices.
16. Explain the terms connected components, 

biconnected components, block tree, and cut 
vertex.

17 Describe the disjoint set operations union and 
find. Write algorithms for these operations. 

Answers to multiple choice questions

1. (c)  2. (c)  3. (c)  4. (b)  5. (a)  6. (a)  7. (d)  8. (b)  9. (c)
10. (c)



9

One of the most common and time consuming tasks in computer science is the 
retrieval of target information from huge data, which needs searching. Searching 

is the process of fi nding the location of the target among a list of objects. The two basic 
search techniques are the following:

1. S equential search 
2. B inary se arch

There are certain ways of organizing data, which make the search process more effi -
cient. If the data is kept in a proper order,  it is much easier to search. Sorting is a process 
of organizing data in a certain order to help retrieve  it more effi ciently.

In this chapter, we shall study searching and sorting methods. We shall also analyse the 
a lgorithms in terms of time complexity.

9.1  Searching

The proce ss of locating target data is known as searching. Consider a situation wh ere you 
are trying to get the phone number of your friend from a telephone directory. The tele-
phone directory can be thought of as a table or a fi le, which is a collection of records. Each 
record has one or more fi elds such as name, address, and telephone number. The fi elds, 
which are used to distinguish records, are known as keys. While searching, we are asked 
to fi nd the record which contains information along with the target key. When we think of 
a telephone directory, the search is usually by name. However, when we try to locate the 
record corresponding to a given telephone number, the key will be the telephone number. 

Searching anD Sorting

oBJectiVeS

After completing this chapter, the reader will be able to understand the following:
 • Basic search and sort algorith ms
 • Algorithms with respect to time and space complexity
 • Appropriate algorithms suitable for practical applications
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If given an address and the person’s name and telephone number need to be located, the 
person’s address will be the key.

If the key is unique and if it determines a record uniquely, it is called a primary key. For 
example, telephone number is a primary key. As any field of a record may serve as the key 
for a particular application, keys may not always be unique. For example, if we use ‘name’ 
as the key for a telephone directory, there may be one or more persons with the same 
name. In addition, sorted organization of a directory makes searching easier and faster.

We may use one of the two linear data structures, arrays and linked lists, for storing the 
data. Search techniques may vary according to data organization. The data may be stored 
on a secondary storage or permanent storage area. If the search is applied on the table that 
resides at the secondary storage (hard disk), it is called as external searching, whereas 
searching of a table that is in primary storage (main memory) is called as internal search-
ing which is faster than external searching.

A searching algorithm accepts two arguments as parameters—a target value to be 
searched and the list to be searched. The search algorithm searches a target value in the 
list until the target key is found or can conclude that it is not found.

One of the most popular applications of search algorithms is adding a record in the 
collection of records. While adding, the record is searched by key and if not present, it is 
inserted in the collection. Such a technique of searching the record and inserting it if not 
found is known as search and insert algorithm.

9.2 Search techniqueS

Depending on the way data is scanned for searching a particular record, the search tech-
niques are categorized as follows:

1. Sequential search
2. Binary search
3. Fibonacci search
4. Index sequential search
5. Hashed search

The performance of a searching algorithm can be computed by counting the number of 
comparisons to find a given value. We shall study these algorithms with respect to arrays. 
For sequential search, the same concept applies for searching data in linked lists as well 
as files.

9.2.1 Sequential Search

The easiest search technique is a sequential search. This is a technique that must be used 
when records are stored without any consideration given to order, or when the storage 
medium lacks any type of direct access facility. For example, magnetic tape and linked 
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list are sequential storage media where the data may or may not be ordered. There are 
two ways for storing the collection of records namely, sequential and non-sequential. For 
the time being, let us assume that we have a sequential file F, and we wish to retrieve a 
record with a certain key value k. If F has n records with the key value ki such as i = 1 to 
n, then one way to carry out the retrieval is by examining the key values in the order of 
their arrangement until the correct record is located. Such a search is known as sequential 
search since the records are examined sequentially from the first till the last.

Hence, a sequential search begins with the first available record and proceeds to the 
next available record repeatedly until we find the target key or conclude that it is not 
found. Sequential search is also called as linear search.

Algorithm 9.1 depicts the steps involved in sequential search.

algorithm 9.1
1. Set i = 0, flag = 0
2. Compare key[i] and target
   if(key[i] = target)
      Set flag = 1, location = i and goto step 5
3. Move to next data element
   i = i + 1
4. if(i < n) goto step 2
5. if(flag = 1) then
      return i as position of target located
   else
      report as ‘Target not found’
6. stop

Figure 9.1 shows a sample sequential unordered data and traces the search for the target 
data of 89.

Index 0 1 2 3 4 5 6 7 8

Elements 23 12 9 10 11 89 78 66 88

Target location

Target data

Fig. 9.1 Sequential search for target data of 89

Initially, i = 0 and the target element 89 is to be searched. At each pass, the target 89 is 
compared with the element at the ith location till it is found or the index i exceeds the size. 
At i = 5, the search is successful.

Algorithm 9.1 for sequential search is implemented in C++ as shown in Program Code 9.1. 
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program CoDe 9.1

int SeqSearch (int A[max], int key, int n)

{

   int i,  fl ag = 0, position;

   for(i = 0; i < n; i++)

   {

      if(key == A[i])

      {

         position = i;

         fl ag = 1;

         break;

      }

   }

   if(fl ag == 1)      // if found return position

      return(position);

   else      // return −1 if not found

      return(−1);

}

The function SeqSearch() is defi ned with three parameters—the element to be 
searched, the array A where the element is to be searched, and the total number of ele-
ments in the array. The function SeqSearch() returns the location of the element if found 
or returns -1 if the element is not found.

Let us compute the amount of time the sequential search needs to search for a target 
data. For this, we must compute the number of times the comparisons of keys is done. In 
general, for any search algorithm, the computational complexity is computed by consid-
ering the number of comparisons made.

The number of comparisons depends on where the target data is stored in the search list. 
If the target data is placed at the fi rst location, we get it in just one comparison. Two com-
parisons are needed if the target data is in the second location. Similarly, i comparisons are 
required if the target data is at the ith location and n comparisons, if it is at the nth location. 
As the total number of comparisons depends on the position of the target data, let us com-
pute the average complexity of the algorithm. Average complexity is the sum of number 
of comparisons for each position of the target data divided by n and is given as follows:

Average number of comparisons = (1 + 2 + 3 + … + n)/n
= (Sn)/n
= ((n(n + 1))/2) ¥ 1/n
= (n + 1)/2
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Hence, the average number of comparisons done by the sequential search method in 
the case of a successful search is (n + 1)/2. An unsuccessful search is given by n compari-
sons. The number of comparisons is n and the complexity is denoted as O(n).

The worst case complexity is n, which means that the target data element is at the nth 
location and hence requires n comparisons. The best case complexity is 1, as the target 
data element is at the first location and requires only a single comparison. Sequential 
search is suitable when the data is stored in an unordered manner and also when there is 
no way to directly access the data elements. For example, to search the data record stored 
on a magnetic tape, it has to be searched sequentially from the first location till the nth 
location. The linear list implemented using a linked list cannot access any ith element 
directly except (i = 1). We need to search through the whole list to retrieve a target data. 
Hence, sequential search is used if the data is unsorted and if the storage does not provide 
direct access to the data.

Pros and Cons of Sequential Search

The following lists detail the pros and cons of sequential searching:

Pros

1. A simple and easy method 
2. Efficient for small lists
3. Suitable for unsorted data
4. Suitable for storage structures which do not support direct access to data, for example, 

magnetic tape, linked list, etc.
5. Best case is one comparison, worst case is n comparisons, and average case is (n + 1)/2 

comparisons
6. Time complexity is in the order of n denoted as O(n).

Cons

1. Highly inefficient for large data
2. In the case of ordered data other search techniques such as binary search are found 

more suitable.

Variations of Sequential Search

The time complexity of sequential search is O(n); this amounts to one comparison in the 
best case, n comparisons in the worst case, and (n + 1)/2 comparisons in the average case. 
The algorithm starts at the first location and the search continues till the last element. We 
can make a few changes leading to a few variations in the sequential search algorithm. 
There are three such variations:

1. Sentinel search
2. Probability search
3. Ordered list search
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 Sentinel search We note that in steps 2–4 of Algorithm 9.1, there are two comparisons—
one for the element (key) to be searched and the other for the end of the array. The 
algorithm ends either when the target is found or when the last element is compared. The 
algorithm can be modifi ed to eliminate the end of list test by placing the target at the end 
of list as just one additional entry. This additional entry at the end of the list is called as 
a sentinel. Now, we need not test for the end of list condition within the loop and merely 
check after the loop completes whether we found the actual target or the sentinel. This 
modifi cation avoids one comparison within the loop that varies n times. The only care to 
be taken is not to consider the sentinel entry as a data member.

Algorithm 9.2 depicts the steps involved in sentinel search.

algorithm 9.2
1. Set i = 0
2. list[n] = target {add sentinel}
3. Compare key[i] and target
  if(key[i] = target)
    Set location = i and goto step 6
4. Move to next data element
   i = i + 1
5. goto step 3
6. if(location < n) then
     return location as position of target
7. else
     report as ‘Target not found’ and return −1
8. stop

Algorithm 9.2 is implemented in C++ as in Program Code 9.2.

program CoDe 9.2

int SeqSearch_sentinel (int A[max], int key, int n)

{

   int i, position;

   A[n] = key;      // place target at end of the list

   while(key != A[i])

   {

      i = i + 1;

   }

   //if found at sentinel then return position

   if(i < n)

      return(i);

   else      // return −1 if not found

      return(−1);

}
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Probability search In probability search, the elements that are more probable are placed 
at the beginning of the array and those that are less probable are placed at the end of the 
array.

Ordered list search When elements are ordered, binary search (discussed in Section 9.2.2) 
is preferred. However, when data is ordered and is of smaller size, sequential search with a 
small change is preferred to binary search. In addition, when the data is ordered but stored 
in a data structure such as a linked list, modified sequential search is preferred. While 
searching an ordered list, we need not continue the search till the end of list to know that the 
target element is not in the list. While searching in an ascending ordered list, whenever an 
element that is greater than or equal to the target is encountered, the search stops. We can 
also add a sentinel to avoid the end of list test.

9.2.2 Binary Search 

As discussed, sequential search is not suitable for larger lists. It requires n comparisons in 
the worst case. We have a better method when the data is sorted. Let us consider a typical 
game played by kids. You are asked to guess the number thought of by your friend in the 
range of 1 to 100. You are to guess by asking him a minimum number of questions. Of 
course, you are not allowed to ask him the number itself. The easiest approach is to start 
asking him, ‘Is it 1?’ In case the answer is ‘No’, then ask, ‘Is it 2?’ Continue this process 
in the ascending order of integers till you get the answer as ‘Yes’.

What if the number your friend has in mind is 99? Obviously, this approach is not 
an efficient one. The solution to this problem is to ask him a question, ‘Is it 50?’ If no, 
another question to be asked is, ‘is it greater than 50?’ If the answer is ‘Yes’, then the 
range to be searched is 51 to 100, which is half of the previous range. If the answer is 
‘No’, the range is 1 to 49, which is again half of the original. You may continue doing so 
till you guess the number. Surely, the second approach reduces the total number of ques-
tions asked on an average.

This method is called binary search, as we have divided the list to be searched every time 
into two lists and the search is done in only one of the lists. Consider that the list is sorted in 
ascending order. In binary search algorithm, to search for a particular element, it is first 
compared with the element at the middle position, and if it is found, the search is successful, 
else if the middle position value is greater than the target, the search will continue in the first 
half of the list; otherwise, the target will be searched in the second half of the list. The same 
process is repeated for one of the halves of the list till the list is reduced to size one.

Algorithm 9.3 depicts the logic behind this type of search.

algorithm 9.3
1. Let n be size of the list
   Let target be the element to be searched
   Let flag = 0, low = 0, high = n-1
2. if low £ high, then
      middle = (low + high)/2
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   else goto step (5)
3. if(key[middle] = target)
      Position = middle, fl ag = 1
   Goto step (5)
   else if(key[middle] > target) then
      high = middle − 1
   else
      low = middle + 1
4. Goto step(2)
5. if fl ag = 1
      report as target element found at location ‘position’
   else
      report that element is not found in the list
6. stop

The effectiveness of the binary search algorithm lies in its continual halving of the list 
to be searched. For an ordered list of 50,000 keys, the worst case effi ciency is a mere 16 
accesses. One may note that the dramatic increase in effi ciency is noticed as the list gets 
larger. We can check with a calculator as to how many times 50,000 must be halved to be 
reduced to 1. The same list that would have necessitated an average wait of two minutes 
using a sequential search will give a virtually instantaneous response when the binary 
search is used. In more precise algebraic terms, the halving method yields a worst case 
search effi ciency of log2n.
A non-recursive code in C++ that demonstrates the implementation of Algorithm 9.3 is 
given in Program Code 9.3 and a recursive code for the same is given in Program Code 9.4.

program CoDe 9.3

int Binary_Search_non_recursive(int A[], int n, int key)

{

   int low = 0,high = n − 1,mid;

   while(low <= high)

   {  //iterate while fi rst <= last

      mid = (low + high)/2;      //calculate

      mid = (fi rst + last)/2)

      if(A[mid] == key)      //found

         return mid;      // return position (mid)

      else if(key<A[mid])

         //not found; look in upper half of list

         high = mid − 1;

      else

         low = mid + 1;      //look in lower half

   }

   return −1;      //return "not found"

}
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Although this is a more direct implementation it uses needless stack space, and is much 
slower on most systems. In addition, this form of recursion is called tail recursion, which 
is the most wasteful form of recursion. Recursion is a powerful tool, which must be used 
with care. A recursive function is said to be tail recursive if there are no pending opera-
tions to be performed on return from a recursive call. Tail recursion is also used to return 
the value of the last recursive call as the value of the function. It is advantageous as the 
amount of information which must be stored during computation is independent of the 
number of recursive calls.

Program Code 9.4 is the recursive code in C++ that demonstrates the implementation 
of Algorithm 9.3 of binary search.

program CoDe 9.4

// Function binary search (recursive)

int Binary_Search(int A[],int low,int high,int key)

{

   int mid;

   if(low <= high)

   {

      mid = (low + high)/2;

      if(A[mid] == key)

         return mid;

      else if(key < A[mid])

         return Binary_Search(A, low, mid − 1, key);

      else

         return Binary_Search(A,mid + 1,high, key);

   }

   return −1;

}

Time Complexity Analysis

Time complexity of binary search is O(log(n)) as it halves the list size in each step. It is a 
large improvement over linear search; for a list with 10 million entries, linear search will 
need 10 million key comparisons in the worst case, whereas binary search will need just 
about 24 comparisons. 
The time complexity can be written as a recurrence relation as

  T(1),     n = 1T(n) = { T(n/2) + c, n > 1

The most popular and easiest way to solve a recurrence relation is to repeatedly make 
substitutions for each occurrence of the function T on the right-hand side until all such 
occurrences disappear.
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 Therefore, T(n) = T(n/2) + c  =  T(n/22) + 2c (after 2nd substitution)
 = T(n/33) + 3c  (after 3rd substitution)

.

.

.
 = T(n/2i) + ic  (after ith substitution)

.

.

.
 = T(2k/2k) + kc (after k steps)

= T(1)
where 2k = n, k = log2n

T(n) = O(log2n)

Although binary search is good, it can again be slightly improved using Fibonacci search. 

Pros and Cons of Binary Search

The following are the pros and cons of a binary search:

Pros

1. Suitable for sorted data
2. Efficient for large lists
3. Suitable for storage structures that support direct access to data
4. Time complexity is O(log2(n))

Cons

1. Not applicable for unsorted data
2. Not suitable for storage structures that do not support direct access to data, for example, 

magnetic tape and linked list
3. Inefficient for small lists

9.2.3 Fibonacci Search 

We all know about Fibonacci numbers. It has many diverse applications from estimation 
of the number of cells in successive reproductions to the number of leaves on branches. 
The Fibonacci series has 0 and 1 as the first two terms, and each successive term is the 
sum of the previous two terms. Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... with 
Fn = Fn−1+ Fn−2 for n ≥ 2 where, F0 = 0 and F1 = 1.

Fibonacci search modifies the binary search algorithm slightly. Instead of halving the 
index for a search, a Fibonacci number is subtracted from it. The Fibonacci number to be 
subtracted decreases as the size of the list decreases.

Fibonacci search starts searching for the target by comparing it with the element at the 
Fk

th location. Here, Fk ≥ n and Fk−1 < n. The Fibonacci search works like the binary search 
but with a few modifications. In binary search, we have low, high, and mid positions for 
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the sub-list. Here, we have mid = n - Fk−1 + 1, F1 = Fk−2, and F2 = Fk−3.  The target to be 
searched is compared with A[mid]. mid is computed as follows:

Case 1 if equal the search terminates;

Case 2  if the target is greater and F1 is 1, then the search terminates with an unsuccessful 
search; else the search continues at the right of the list with new values of low, 
high, and mid as

mid = mid + F2, F1 = Fk−4, and F2 = Fk−5

Case 3  if the target is smaller and F2 is 0, then the search terminates with an unsuccessful 
search; else the search continues at the left of the list with new values of low, 
high, and mid as

mid = mid - F2, F1 = Fk−3 and F2 = Fk−4

The search continues by either searching at the left of mid or at the right of mid in the list. 
Algorithm 9.4 explains the working of this search technique.

algorithm 9.4
1. Set k = m
2. if k = 0, fi nish and display message “not found” and goto 6
3. if item = A[Fk−1],  print “found” and goto 6
4.  if(item <  A[Fk−1]),  discard entries from positions Fk−1 + 1 to n, 

set k = k − 1, and goto 2
5.  if item > A[Fk−1], discard entries from positions 1 to Fk-1, renumber 

remaining entries from 1 to Fk−2, set k = k − 2, and goto 2
6. stop

Program Code 9.5 implements Algorithm 9.4.

program CoDe 9.5

// Function to fi nd nth Fibonacci number  

int fi bo(int n)

{

   if(n == 0 || n == 1)

      return 1;

   else

      return(fi bo(n − 1) + fi bo(n − 2));

}

// Function for Fibonacci search

int Fibonacci_Search(int A[],int n, int key)

{

   int f1, f2, t, mid, j, f;

   j = 1;

   while(fi bo(j) <= n)
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   {      //fi nd fi bo(j) such that fi bo(j) >= n

      j++;

   }

   f = fi bo(j);

   f1 = fi bo(j − 2);      //fi nd lower Fibonacci numbers

   f2 = fi bo(j − 3);

   mid = n − f1 + 1;

   while(key != A[mid])      // if not found

   {

      if(mid < 0||key > A[mid])

      {      //look in lower half

         if(f1 == 1)

            return −1;

         mid = mid + f2;      //decrease Fibonacci numbers

         f1 = f1 − f2;

         f2 = f2 − f1;

      }

      else

      {     //look in upper half

         if(f2 == 0)      //if not found return −1

            return −1;

         mid = mid − f2;      //decrease Fibonacci numbers

         t = f1 − f2;      //this time, decrease more

         f1 = f2;      //for smaller list

         f2 = t;

      }

   }

   return mid;

}

Example 9.1 illustrates a Fibonacci search in a given list.

 example 9.1  Search for 81 using Fibonacci search in the list {6, 14, 23, 36, 55, 67, 
76, 78, 81, 89}, where n = 10.

Solution

Step 1: Compute Fk such that Fk ≥ 10
   fi bo(7) = 13, which is greater than 10. Hence, k = 7.

Step 2: Compute the initial values of mid, F1 and F2.
  Now, F1 = fi bo(7 - 2) = fi bo(5) = 5
           F2 = fi bo(7 - 3) = fi bo(4) = 3
           mid = 10 - F1 + 1 = 10 - 5 + 1 = 6
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Step 3: Let us search the target by comparing it at A[mid]. Now,
         (a) compare A[mid], that is 76, and the number to be searched, that is 78, which 

are not equal.
        (b) 78 > A[mid], and F1 is not 1; hence, let us compute mid, F1, and F2.
        (c) mid = mid + F2 = 6 + 3 = 9, and F1 = 2, and F2 = 1.

Step 4: Again, 78 is not equal to A[9] and is lesser. Hence, let us search the lower half as
  mid = mid - F2 = 9 - 1 = 8, F1 = 1, and F2 = 1

Step 5: Now, compare 78 and A[mid], which are equal; hence, the search stops.
The search terminates with a successful search by locating the target at the eighth location 
in the second iteration.

Time Complexity of Fibonacci Search
When we solve a recurrence relation Fn = Fn−1 + Fn−2 for Fibonacci numbers, we get 
the solution as Fn = (1/sqrt(5)) ¥ [((1 + sqrt(5))/2)n + ((1 + sqrt(5))/2)n]. For large n, the 
term ((1 - sqrt(5))/2)n tends to zero. Hence Fn is bounded by ((1 - sqrt(5))/2)n. Hence, 
Fn £ n ¥ log[(1 + sqrt(5))/2]. The number of comparisons is of the order of n, and the time 
complexity is O(log(n)).

Hence, the algorithm for Fibonacci search is O(log(n)) algorithm. Consider an exam-
ple where for a list of 10 numbers, each element of the 10 numbers is to be searched once. 
For an unsuccessful search, the algorithm needs a total of 13 searches. In case of binary 
search, the number of comparisons would be 40, and for Fibonacci search, it will be 41. 
Since this is a small-scale example, binary search will score, but in larger instances, it 
may be the other way around.

Fibonacci search is more efficient than binary search for large lists. However, it is inef-
ficient in case of small lists.

Pros

1. Faster than binary search for larger lists
2. Suitable for sorted lists

Con

1. Inefficient for smaller lists

9.2.4 indexed Sequential Search
Indexed sequential search is suitable for sequential files. A sequential file with an associated 
index is just like an index associated with books. File index is a data structure similar to a list 
of keys and their location or reference to the location of the record associated with the key. 

We discussed the drawbacks associated with searching a record sequentially in a file 
or a table. An index file can be used to effectively overcome the problem associated with 
sequential files and to speed up the key search. The simplest indexing structure is the 
single-level one: a file whose records are pairs (key and a pointer), where the pointer is 
the position in the data file of the record with the given key. Only a subset of data records, 
evenly spaced along the data file, is indexed to mark the intervals of data records.
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A key search then proceeds as follows: the search key is compared with the index to 
find the highest index key preceding the search, and a linear search is performed from the 
current record until the search key is matched or until the record pointed by the next index 
entry is reached. In spite of the double file access (index + data) needed by this kind of 
search, the decrease in access time with respect to a sequential file is significant.

Consider the data file as in Table 9.1.

Table 9.1 Data file

Record position Emp. no. Name Occupation
1 100 Saurabh Developer
2 500 Abolee Project head
3 300 Shweta Developer
4 200 Vaishali Project head
5 400 Santosh Developer

Its corresponding index file is given in Table 9.2.

Table 9.2 Index file of Table 9.1

Emp. no. (Key) Record position
100 1
200 4
300 3
400 5
500 2

Searching a record from this index file involves the following issues:

1. The index file is ordered, so the searching can be done using the binary search method.
2. The search is successful if we find the target element in the index.
3. The record position is used to access the details of that record from the data file.

Consider, for example, the case of a simple linear search on a file with 1000 records. 
With the sequential organization, an average of 500 target element comparisons is neces-
sary (assuming uniformly distributed search target elements among the data). However, 
using an evenly spaced index with 100 entries, the number of comparisons is reduced to 
50 in the index file, and 50 in the data file—a 5:l reduction in the number of operations.

This method can apparently be hierarchically extended. An index is a sequential file in 
itself, amenable to be indexed in turn by a second level index, thus exploiting the hierar-
chical decomposition of the searches more to decrease the access time. Obviously, if the 
layering of indices is pushed too far, a point is reached when the advantages of indexing 
are hampered by the increased storage costs and by the index access times as well. Con-
sider Program Code 9.6 which illustrates the indexed sequential search.
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program CoDe 9.6

void createIndex(int index[],int isize,int A[],int asize)

{

   int i, j;

   for(i = 0, j = 0; i < asize; i+=8, j++)

   {

      index[j] = A[i];

   }

   index[j] = A[asize − 1];

}

int indexSeqSearch(int val, int index[], int isize, int A[], 

int asize)

{

   int i = 0, j = 0, pos = 0;

   int high = 0,low = 0;

   if(val > index[isize − 1] && val < index[0])

      return −1;

   while(i < isize)

   {

      if(val == index[i])

      {

         pos = 8 * i;      // here 8 is the step size

         return pos;

      }

      if(val < index[i])

      {

         low = 8 * (i − 1);

         high = 8 * i;

         break;

      }

      else

      {

         low = 8 * i;

         high = 8 * (i + 1);

      }

      i++;

   }

   printf("\n low = %d, high = %d", low, high);

    while(low < high)

   // search in array from index low to high
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   {

      if(val == A[low])

         return low;

      else

         low++;

   }

   return −1;

}

int main()

{

    int A[max] = {8,20,26,38,90,105,206,221,229,287,309,312,

340,367,483,492,502,551,618,641,698,711,764,796};

   int index[(max/8) + 1] = {0};

   int position;

   int key, i, choice;

   int opt = 0, pos = 0;

   cout << "Enter number to be searched : ";

   cin >> key;

   createIndex(&index[0],(max/8) + 1,&A[0], max);

   pos = indexSeqSearch(key, index, (max/8) + 1, A, max);

   if(pos != −1)

   {

      cout << "found at position" << pos;

   }

   else

      cout << "not found";

   return 0;

}

/*********************Output***********************

Enter number to be searched: 20

low = 0, high = 8

20 found at position 1

Enter number to be searched: 711

low = 16, high = 24

711 found at position 21

Enter number to be searched: 200

low = 0, high = 8

200 not found

***************************************************/
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9.2.5 hashed Search

A hash table is a data structure that uses a hash function to map keys (e.g., a student ID, 
book accession number) to their associated values (e.g., student name, telephone number, 
book details, etc.). Therefore, a hash table implements an associative array. The hash func-
tion is used to transform the key into the index of an array element where the corresponding 
value is to be sought. The data organized using a hash table makes searching very efficient.

Consider the following example. Suppose we want to store six records in a file where 
the key of each record is a person’s name. The key can be hashed by taking the address 
from the ASCII representations of the first character of the name. Table 9.3 is of size 26, 
that is, one slot for each letter of the alphabet.

Let us assume the names of the persons are Deepa, Alka, Beena, Govind, Ekta, and Zinat.

Table 9.3 Storing  records in a hash table

Index Symbol
0 Alka
1 Beena
2
3 Deepa
4 Ekta
5
6 Govind

25 Zinat

Hashing is a method of directly computing the index of the table by using a suitable 
mathematical function called as hash function. The hash function operates on the name 
to be stored in the symbol table or whose attributes are to be retrieved from the symbol 
table. If h is a hash function and A is a name, then h(A) gives the index of the table, where 
A along with its attributes can be stored. If A is already stored in the table, then h(A) gives 
the index of the table, where it is stored to retrieve the attributes of A from the table.

Therefore, the hash table seems to be the best option for the realization of the symbol 
table, but there is one problem associated with hashing, that is collision. Hash collision 
occurs when two identifiers are mapped into the same hash value. This happens because 
a hash function defines mapping from a set of valid identifiers to the set of those integers 
that are used as indices of the table.

Hash table is widely used in the language translation process. It is referred to as a symbol 
table when used by an assembler or a compiler. A symbol table is nothing but a set of pairs 
(name, value), where the value represents the collection of attributes associated with the name.

Therefore, when we implement a hash table, a suitable collision-handling mechanism 
is to be provided, which will be activated when there is a collision. The computational 
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complexity of all these techniques is proportional to n, where n is the number of data 
elements. Hence, these search techniques are also called as quantity-dependent search 
techniques.

Searching and sorting are the two very important operations performed most com-
monly on a large amount of information. We have studied various algorithms to search 
a record, and we notice that it is much easier to find any information that is organized in 
some proper order. For example, if we want to find any name in the telephone directory, 
which contains names in any random order, we perhaps have to go through the whole 
directory sequentially to find the name. Similarly, consider the trouble we might have to 
take to search for a book in a library where the books are placed anywhere without any 
order. We can imagine the ease if these books are assigned a specific position and are 
shelved in a specific order. In general, sorting is performed in business data-processing 
applications to retrieve information more efficiently. Let us see more details of sorting 
and methods associated with it. More details on the hash table are covered in Chapter 11.

9.3 Sorting

One of the fundamental problems in computer science is ordering a list of items. There 
are plenty of solutions to this problem, commonly known as sorting algorithms. Some 
sorting algorithms are simple and iterative, such as the bubble sort. Others such as the 
quick sort are extremely complicated but produce lightning-fast results.

Sorting is the operation of arranging the records of a table according to the key value 
of each record, or it can be defined as the process of converting an unordered set of ele-
ments to an ordered set.

A table or a file is an ordered sequence of records r[1], r[2], …, r[n], each containing 
a key k[1], k[2], … , k[n]. This key is usually one of the fields of the entire record. The 
table is said to be sorted on the key if i < j implies that k[i] precedes k[j] in some ordering 
on the keys.

9.3.1 types of Sorting 

Sorting algorithms are divided into two categories: internal and external sorts.
If all the records to be sorted are kept internally in the main memory, they can be 

sorted using an internal sort. However, if there are a large number of records to be 
sorted, they must be kept in external files on auxiliary storage. They have to be sorted 
using external sort.

Internal Sorting

Any sort algorithm that uses main memory exclusively during the sorting is called as an 
internal sort algorithm. This assumes high-speed and random access to all data members. 
All the methods described in this chapter assume that all the data is stored in high-speed 
main memory of the computer and are therefore internal sorting techniques, except for 
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merge sort. Internal sorting is faster than external sorting. The various internal sorting 
techniques are the following:

 1. Bubble sort
 2. Insertion sort
 3. Selection sort
 4. Quick sort
 5. Heap sort
 6. Shell sort
 7. Bucket sort
 8. Radix sort
 9. File sort
10. Merge sort

External Sorting

Any sort algorithm that uses external memory, such as tape or disk, during the sorting is 
called as an external sort algorithm. Merge sort uses external memory. Do note that the 
other algorithms may read the initial values from a magnetic tape or write sorted values 
to a disk, but this is not using external memory during the sort.

Most of the methods to be described involve the movement of records within the table. 
For example, consider Fig. 9.2(a) where a table of four records is shown. Figure 9.2(b) 
shows a sorted table, which results when the table of Fig. 9.2(a) is sorted in an increasing 
order on the numeric key.

#2

#3

#4

Key Other fields Key Other fields

10

13

20

5

Shalu 5 Usha

Gilda 10 Gilda

Raj

20 Raj

13 Shalu

Usha

(a) (b)

#1

Fig. 9.2 Movement of records within tables  (a) Before 
sorting  (b) After sorting

In this case, the actual records are moved from one place to another in the table.
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In certain applications, the records can be quite long, and it is very expensive to move 
the actual data. One way to reduce record movement is to use an auxiliary table of point-
ers, each pointing to one record of the table to be sorted. Then, we can move these point-
ers instead of moving the actual records. For example, consider Fig. 9.3 which contains a 
table to be sorted and shows sorting using pointers. 

10

13

20

5

Shalu

Gilda

Raj

Usha

#2

#3

#4
Before sort

#1

#2

#3

#4
After sort

#1

Pointers Other fields PointersKey

Fig. 9.3 Sorting with pointers

The table at the left is the initial table of pointers. These pointers are adjusted during the 
sorting process to produce the final table of pointers as on the right of the original table.

We may note the actual records in the table are not moved. While describing the algorithms 
ahead, we assume that we are moving the actual records, and we will only sort the keys.

9.3.2 general Sort concepts

Let us now discuss some general terms related to sorting.

Sort Order

Data can be ordered either in ascending or in descending order. The order in which the 
data is organized, either ascending or descending, is called sort order. For example, the 
percentages of marks obtained by students in the examination are organized in descend-
ing order to decide ranks, whereas the names in the telephone directory are organized 
alphabetically in ascending order.

Sort Stability

A sorting method is said to be stable if at the end of the method, identical elements occur 
in the same relative order as in the original unsorted set. While sorting, we must take care 
of the special case—when two or more of the records have the same key, it is important 
to preserve the order of records in this case of duplicate keys. A sorting algorithm is said 
to be stable if it preserves the order for all records with duplicate keys; that means, if for 
all records i and j is such that k[i] is equal to k[j] and if r[i] precedes to r[j] in the unsorted 
table, then r[i] precedes to r[j] in the sorted table too. Bubble sort, selection sort, and 
insertion sort are the stable sort methods. Example 9.2 illustrates examples of both stable 
and unstable sort methods.
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 example 9.2  Consider the following unsorted sequence of marks to be sorted in 
descending order. Sort this sequence using the stable and unstable sort methods.

Name Uma Saurabh Sanika Kasturi Ashish Harsha Lelo

Marks 80 90 93 95 83 90 83

Solution The stable sort method will sort the sequence as

Name

Marks 

Kasturi Sanika Saurabh Harsha Ashish Lelo Uma

95 93 90 90 83 83 80

whereas, the unstable sort method may sort the same sequence as

Name

Marks 

Kasturi Sanika SaurabhHarsha AshishLelo Uma

95 93 90 90 83 83 80

Sort Efficiency

Each sorting method may be analysed depending on the amount of time necessary for 
running the program and the amount of space required for the program. The amount of 
time for running a program is proportional to the number of key comparisons and the 
movement of records or the movement of pointers to records.

Sort efficiency is a measure of the relative efficiency of a sort. It is usually an estimate of 
the number of comparisons and data movement required to sort the data. We will discuss 
various sorting algorithms in Sections 9.3.3–9.3.12. While analysing our sorting methods, 
we will concentrate on these aspects of the sorting algorithms. We will start with simple 
methods such as bubble sort, selection sort, and insertion sort and proceed to more com-
plex and efficient ones such as quick sort, shell sort, and bucket sort.

Passes

During the sorted process, the data is traversed many times. Each traversal of the data 
is referred to as a sort pass. Depending on the algorithm, the sort pass may traverse the 
whole list or just a section of the list. In addition, the characteristic of a sort pass is the 
placement of one or more elements in a sorted list.

9.3.3 Bubble Sort 

The bubble sort is the oldest and the simplest sort in use. Unfortunately, it is also the slow-
est. The bubble sort works by comparing each item in the list with the item next to it and 
swapping them if required. The algorithm repeats this process until it makes a pass all the 
way through the list without swapping any items (in other words, all items are in the cor-
rect order). This causes larger values to ‘bubble’ to the end of the list while smaller values 
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‘sink’ towards the beginning of the list. In brief, the bubble sort derives its name from the 
fact that the smallest data item bubbles up to the top of the sorted array. Figure 9.4 dem-
onstrates the bubble technique by showing numbers and their moves during each pass.

3

1

2

4

5

9

3

1

2

4

5

9

3

1

2

4

5

9

3

1

2

4

5

9

2

1

3

4

5

9

Compare and
swap, if
required

1

3

4

5

9

2

1

3

4

5

2

9

1

3

4

2

5

9

1

3

2

4

5

9

1

3

2

4

5

9

3

1

2

4

5

9

(a)

(b)

A = 1 2 3 4 5 9

(c)

Fig. 9.4 Bubble sort  (a) Pass 1 (i = 1)  (b) Pass 2 (i = 2) 
(c) the resultant sorted array after pass (n − 1) (i = 5), 

Algorithm 9.5 depicts the logic behind bubble sort.

algorithm 9.5
1. Let A be the array to be sorted
2. for i = 1 to n − 1
   for j = 0 to n − i
   begin
      if A[j] > A[j+1] then 
         Swap A[j] with A[j + 1] as follows
         temp = A[j]
         A[j] = A[j + 1]
         A[j + 1] = temp
      end
   end
3. stop
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Figure 9.5 illustrates a bubble sort using an array of size 7. 

Array 76 67 36 55 23 14 6

Step 1 67 76 36 55 23 14 6

Step 2 67 36 76 55 23 14 6

Step 3 67 36 55 76 23 14 6

Step 4 67 36 55 23 76 14 6

Step 5 67 36 55 23 14 76 6

Pass 1

Step 6 67 36 55 23 14 6 76

Step 1 36 67 55 23 14 6 76

Step 2 36 55 67 23 14 6 76

Step 3 36 55 23 67 14 6 76

Step 4 36 55 23 14 67 6 76

Pass 2

Step 5 36 55 23 14 6 67 76

Step 1 36 55 23 14 6 67 76

Step 2 36 23 55 14 6 67 76

Step 3 36 23 14 55 6 67 76
Pass 3

Step 4 36 23 14 6 55 67 76

Step 1 23 36 14 6 55 67 76

Step 2 23 14 36 6 55 67 76Pass 4

Step 3 23 14 6 36 55 67 76

Step 1 14 23 6 36 55 67 76

Pass 5

Pass 6

Step 2 14 6 23 36 55 67 76

Step 1 6 14 23 36 55 67 76

Final sorted array 6 14 23 36 55 67 76

76 67 36 55

(a)

(b)

23 14 06

Fig. 9.5 Example of bubble sorting (a) Initial array
(b) Final sorted array with passes
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Program Code 9.7 illustrates the bubble sort function.

program CoDe 9.7

// function for bubble sort for array A having n elements 

void bubblesort(int A[max], int n)

{

   int i, j,temp;

   for(i = 1; i < n; i++)      // number of passes

   {

       for(j = 0; j < n − i; j++)      // j varies from 0 to 

 // n − i

      {

          if( A[j] > A[j + 1] )      // compare two successive 

 // numbers

         {

            temp = A[j];      // swap A[j] with A[j + 1]

            A[j] = A[j + 1];

            A[j + 1] = temp;

         }

      }

   }

}

For descending order of sorting, only the comparison condition should be changed in 
Program Code 9.7.

if(A[j] < A[j + 1] )   // change as  < 
{
   temp = A[j];      // swap A[j] with A[j + 1]
   A[j] = A[j + 1];
   A[j + 1] = temp;
}

Analysis of Bubble Sort

The algorithm begins by comparing the top item of the array with the next and swapping 
them if necessary. After n - 1 comparisons, the largest among a total of n items descends 
to the bottom of the array, that is, to the nth location. The process is then repeated to the 
remaining n - 1 items in the array. For n data items, the method requires n(n - 1)/2 com-
parisons and on an average, almost one-half as many swaps. The bubble sort, therefore, is 
very ineffi cient in large sorting jobs.

The analysis of this routine is a bit diffi cult. If we do not stop iterations when the array 
is sorted, the analysis is simple.
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The number of comparisons made at each of the iterations is as follows: 
 (n - 1) comparisons in the first iteration, (n - 2) comparisons in the second iteration, 
..., one comparison in the last iteration
This totals up to

(n - 1) + (n - 2) + (n - 3) + … + 1 = n(n - 1)/2

Thus, the total number of comparisons is n(n - 1)/2, which is O(n2). 
Hence, the time complexity for each of the cases is given by the following:

1. Average case complexity = O(n2)
2. Best case complexity = O(n2) 
3. Worst case complexity = O(n2)

9.3.4 insertion Sort

The insertion sort works just like its name suggests—it inserts each item into its proper 
place in the final list. The simplest implementation of this requires two list structures: the 
source list and the list into which the sorted items are inserted.

Let us consider a list L = {3, 6, 9, 14}. Given this sorted list, we need to insert a new 
element 5 in it. The commonly used process would involve the following steps:

1. Compare the new element 5 and the last element 14
2. Shift 14 right to get 3, 6, 9, ,14
3. Shift 9 right to get 3, 6, ,9, 14
4. Shift 6 right to get 3, ,6, 9, 14
5. Insert 5 to get 3, 5, 6, 9, 14

These steps could be coded as the following piece of code:

// insert t into a[0:i − 1]
int j;
// let X be the element to be inserted
// shift elements from the last member to right by one position 
// till you get a smaller one
for(j = i − 1; j >= 0 && X < a[j]; j−−)
   a[j + 1] = a[j];
// Insert t at j + 1 location
a[j + 1] = X;

These steps when done for each element of the list are to be sorted by considering 
another list and starting with one element in it. The steps for inserting an element in the 
sorted list can then be repeatedly used to yield the sorted list. Let us consider the follow-
ing list of numbers: L = {7, 3, 5, 6, 1}. The following steps are required to sort this list.

1. Start with 7 and insert 3 => 3, 7
2. Insert 5 => 3, 5, 7
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3. Insert 6 => 3, 5, 6, 7
4. Insert 1 => 1, 3, 5, 6, 7

The piece of code needed to do this will look like

for(int i = 1; i < n; i++)
{  // insert a[i] into a[0:i − 1]
   // code to insert comes here
}

After adding the code for insertion we have already built, the resultant code  
will be 

for(int i = 1; i < n; i++)
{   // insert a[i] into a[0:i − 1]
   int t = a[i];
   int j;
   for(j = i − 1; j >= 0 && t < a[j]; j−−)
      a[j + 1] = a[j];
   a[j + 1] = t;
}

To save memory, most implementations use an in-place sort that works by moving the 
current item past the already sorted items and repeatedly swapping it with the preceding 
item until it is in place. The main idea behind the insertion sort is to insert the ith element, 
in the ith pass, into A(1), A(2), ..., A(i), in the right place. Algorithm 9.6 lists the steps for 
insertion sort.

algorithm 9.6 
1. Set J = 2, where J is an integer
2.  Check if list (J) < list (J − 1): if so interchange them; set J = J −1  

and repeat step (2) until J = 1
3. Set J = 3, 4, 5,. . ., N and keep on executing step (2)

The following steps in Example 9.3 essentially define the insertion sort as applied to 
sorting into ascending order an array list containing N elements:

 example 9.3  Consider the given unsorted array. Sort this array in ascending order 
using insertion sort.

Original unsorted array

Elements 76 67 36 55 23 14 6

Index 0 1 2 3 4 5 6
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Solution Pass 1: Consider the first list is sorted, and insert the second number 67 in 
the first list.

Elements  

Index 10 2 3 4 5 6

Unsorted array

67 36 55 23 14  6

Sorted array

76

Pass 2: Insert number 36 in the first list.

Sorted array

Elements 7667

Index 0 1

Unsorted array

36 55 23 14  

2 3 4 5 5

6

Pass 3: Insert number 55 in the first list.

Sorted array

Elements  766736

Index 0 1 2

Unsorted array

55 23 14

3 4 5 6

6

Pass 4: Insert number 23 in the first list.

Elements

Index

Unsorted array

 614

4 5 6

Sorted array

235536 67

0 1 2 3

76

Pass 5: Insert number 14 in the first list.

Unsorted array

Elements 6

Index 5 6

Sorted array

36 55
 

0 1 2 3 4

67 7623 14

Pass 6: Insert number 6 in the first list.

Unsorted array

Elements 6

Index 6

Sorted array

36 55

0 1 2 3 4 5

67 762314
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The fi nal sorted array is 

Sorted array

Elements 6 14 23 36 55 67 76

Index 0 1 2 3 4 5 6

Program Code 9.8 defi nes the InsertionSort() function.

program CoDe 9.8

void InsertionSort(int A[], int n)

{

   int i, j, element;

   for(i = 1; i < n; i++)

   {

       element = A[i];

      // insert ith element in 0 to i − 1 array
      j = i;

       while((j > 0) && (A[j − 1] > element))
      //compare if A[j − 1] > element
      {

         A[j] = A[j − 1];      // shift elements
         j = j − 1;
      }

      A[j] = element;      // place element at jth position

   }

}

Analysis of Insertion Sort

Although the insertion sort is almost always better than the bubble sort, the time required 
in both the methods is approximately the same, that is, it is proportional to n2, where n is 
the number of data items in the array.

The total number of comparisons is given as follows:

(n - 1) + (n - 2) + …. + 1 = (n - 1) ¥ n/2

which is O(n2).
If the data is initially sorted, only one comparison is made on each pass so that the sort 

time complexity is O(n). The number of interchanges needed in both the methods is on an 
average (n2)/4, and in the worst case is about (n2)/2.

When the data is already partially ordered, the insertion sort will normally take less 
time than the bubble sort. The insertion sort is highly effi cient if the array is already in an 
almost sorted order. Example 9.4 provides a pictorial representation of the insertion sort.
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 example 9.4  Figure 9.6 is an example of insertion sort.

3 1 4 1 5 9 2 6 5 4

3 1 4 1 5 9 2 6 5 4

i = 1

i = 0

1 3 4 1 5 9 2 6 5 4

i = 2

i = 3

1 3 4 1 5 9 2 6 5 4

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

1 1 3 4 5 9 2 6 5 4

1 1 3 4 5 9 2 6 5 4

1 1 3 4 5 9 2 6 5 4

1 1 2 3 4 5 9 6 5 4

1 1 2 3 4 5 6 9 5 4

1 1 2 3 4 5 5 6 9 4

1 1 2 3 4 4 5 5 6 9

Fig. 9.6 Insertion sorting

9.3.5 Selection Sort

The selection sort algorithms construct the sorted sequence, one element at a time, by 
adding elements to the sorted sequence in order. At each step, the next element to be 
added to the sorted sequence is selected from the remaining elements.

Because the elements are added to the sorted sequence in order, they are always added 
at one end. This makes the selection sorting different from the insertion sorting. In inser-
tion sorting, the elements are added to the sorted sequence in an arbitrary order. There-
fore, the position in the sorted sequence at which each subsequent element is inserted is 
arbitrary.

Both selection and insertion sorts sort the arrays in-place.
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In this method, we sort a set of unsorted elements in two steps. In the fi rst step, fi nd the 
smallest element in the structure. In the second step, swap the smallest element with the ele-
ment at the fi rst position. Then, fi nd the next smallest element and swap with the element at 
the second position. Repeat these steps until all elements get arranged at proper positions.

This is illustrated in Program Code 9.9.

program CoDe 9.9

void SelectionSort(int A[], int n)

{

   int i, j;

   int minpos, temp;

   for(i = 0; i < n − 1; i++)

   {

      minpos = i;

      for(j = i + 1; j < n; j++)

      //fi nd the position of min element as minpos from

      //i + 1 to n − 1

      {

         if(A[j] < A[minpos])

            minpos = j;

      }

      if(minpos != i)

      {

         temp = A[i];

         // swap the ith element and minpos element

         A[i] = A[minpos];

         A[minpos] = temp;

      }

   }

}

Look at following array of unsorted integers.  The working of selection sort is shown in 
Table 9.4 with the resultant array after each pass where the updated values of index vari-
able i and minpos after each pass are indicated.

Original unsorted array

Elements 76 67 36 55 23 14 6

Index 0 1 2 3 4 5 6
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Table 9.4 Selection sort

Index 0 1 2 3 4 5 6 i minpos
76 67 36 55 23 14 6 0 6

Pass 1 6 67 36 55 23 14 76 1 5
Pass 2 6 14 36 55 23 67 76 2 4
Pass 3 6 14 23 55 36 67 76 3 4
Pass 4 6 14 23 36 55 67 76 4 4
Pass 5 6 14 23 36 55 67 76 5 5

Sorted array 6 14 23 36 55 67 76

The same can be done in reverse order also to arrange the elements. That is, first find the 
largest element in the structure. In the second step, swap the largest element with the element 
at the last position. Then, find the next largest element and swap with the element at the last but 
one position, and so on. Let us have look at one more example on the working of selection sort.

 example 9.5  Figure 9.7 shows an unsorted array and the sorting process with the 
resultant array after each pass.

3 1 4 1 5 9 2 6 5 4

3 1 4 1 5 4 2 6 5 9

i = 9

i = 10

3 1 1 5 4 2 5 6 9

i = 8

i = 7

3 1 4 1 5 4 2 5 6 9

i = 6

i = 5

i = 4

i = 3

i = 2

i = 1

3 1 4 1 2 4 5 5 6 9

3 1 4 1 2 4 5 5 6 9

3 1 2 1 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

4

Fig. 9.7 Selection sort sample run
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Analysis of Selection Sort

In Program Code 9.9, we can note that there are two loops, one nested within the other. 
During the first pass, (n - 1) comparisons are made. In the second pass, (n - 2) compari-
sons are made. In general, for the ith pass, (n - i) comparisons are required.

The total number of comparisons is as follows:

(n - 1) + (n - 2) + … + 1 = n(n -1)/2

Therefore, the number of comparisons for the selection sort is proportional to n2, which 
means that it is O(n2). The different cases are as follows:

Average case: O(n2)  Best case: O(n2)  Worst case: O(n2)
The maximum number of interchanges required is (n - 1) as there is utmost one inter-

change required for each pass. However, the actual number of interchanges depends on 
the ordering of the original table, because if the smallest key is already at its proper place, 
the algorithm makes no interchanges.

The selection sort and insertion sort are more efficient than bubble sort. Selection sort 
is recommended for lists. When records are large, the keys are simple as the selection 
sort requires lesser swaps than the insertion sort and more comparisons than the inser-
tion sort. If the records are small and the keys are difficult to compare, insertion sort is 
recommended.

9.3.6 quick Sort

Quick sort is based on the divide-and-conquer strategy. This sort technique initially 
selects an element called as pivot that is near the middle of the list to be sorted, and then 
the items on either side are moved so that the elements on one side of pivot are smaller 
and on the other side are larger. Now, the pivot is at the right position with respect to the 
sorted sequence. These two steps, selecting the pivot and arranging the elements on either 
side of pivot, are now applied recursively to both the halves of the list till the list size 
reduces to one.

Quick sort is thus an in-place, divide-and-conquer-based, massively recursive sort 
technique. This technique reduces unnecessary swaps and moves the element at a great 
distance in one move.

To choose the pivot, there are several strategies. The popular way is considering the 
first element as the pivot.

Thus, the recursive algorithm consists of four steps:

1. If the array size is 1, return immediately.
2. Pick an element in the array to serve as a ‘pivot’ (usually the left-most element in the 

list).
3. Partition the array into two parts—one with elements smaller than the pivot and 

the other with elements larger than the pivot by traversing from both the ends and 
performing swaps if needed.

4. Recursively repeat the algorithm for both partitions.
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Let us consider an example. Let the list of numbers to be sorted be {13, 11, 14, 11, 15, 
19, 12, 16, 15, 13, 15, 18, 19}. Now, the first element 13 becomes pivot. We need to place 
13 at a proper location so that all elements to its left are smaller and the right are greater.

A 13 11 14 11 15 19 12 16 15 13 15 18 19

Initially, the array is pivoted about its first element A[pivot] = 13.

0 1 2 3 4 5 6 7 8 9 10 11 12

13 11 14 11 15 19 12 16 15 13 15 18 19

Let us first find the elements larger than the pivot, that is, 13. In addition, let us find 
the last element not larger than the pivot. These elements are in positions 2 and 9. Let us 
swap those.

13 11 14 11 15 19 12 16 15 13 15 18 19

13 11 13 11 15 19 12 16 15 14 15 18 19

Let us again start scanning from both the directions.

13 11 13 11 15 19 12 16 15 14 15 18 19

The elements 12 and 15 are to be swapped to get the following sequence:

13 11 13 11 12 19 15 16 15 14 15 18 19

Let us repeat the steps to get the following sequence:

13 11 13 11 12 19 15 16 15 14 15 18 19
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Here, the lower and upper bounds have crossed. So let us now swap the pivot-with  
element 12.

12 11 13 11 13 19 15 16 15 14 15 18 19

Here, we get two partitions as represented in the following sequence:

12 11 13 11 13 19 15 16 15 14 15 18 19

Recursively applying similar steps to each sub-list on the right and left side of the 
pivot, we get,

11 11 12 13 13 15 15 15 16 18 19 19

This is the final sorted array.
Algorithm 9.7 is written by assuming an array A with locations A[Low] to A[High] to 
be sorted.

algorithm 9.7
Repeat process till low < high
1. Select pivot = A[Low], pivot location P = low
2. i = low and j = high;
3. Increment index i till A[i] >= pivot  
4. Decrement index j till A[i] <= pivot  
5. Swap A[i] with A[j]
6. Repeat steps 4, 5, 6 till i < j
7. if i < j
      Swap a[P] with a[j]
8. call Quicksort(low, j − 1)
9. call Quicksort(j + 1, high)
10. Stop

With the first seven steps of the process, the elements lesser than the key value are 
placed at the left side and the elements greater than the key value are placed at the right 
side of the key value.

Choice of Pivot We can choose any entry in the list as the pivot. The choice of the first entry 
as pivot is popular but often a poor choice. If the list is already sorted, then there will be no 
element less than the first element selected as pivot, and so one of the sub-lists will be empty.



454 data structures using c++

DSUC    c09    V6   November 21, 2012 11:50 AM   Page 454

Hence, we choose a pivot near the centre of the list, in the hope that our choice will posi-
tion the list in such a manner that about half the elements will come on each side of the pivot.

The choice of the pivot near the centre is also arbitrary, and hence, it is not necessary 
that it will always divide the list into half. A good way to choose a pivot is to use a random 
number generator to choose the position of the next pivot in each of the activations of 
quick sort. Quick sort is illustrated in Program Code 9.10.

program CoDe 9.10

#defi ne max 20

void read(int A[max], int n)

{

   int i;

   for(i = 0; i < n; i++)

      cin >> A[i];

}

void display(int A[max], int n)

{

   int i;

   for(i = 0; i < n; i++)

      cout << A[i];

}

void swap(int *x, int *y)

{

   int temp;

   temp = *x;

   *x = *y;

   *y = temp;

}

void qsort(int A[], int low, int high)

{

   int k;

   if(low < high)

   {

      K = partition(A, low, high);

      qsort(A, low, j − 1);

      qsort(A, j + 1, high);

   }
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}

int partition(int A[],int low, int high)

{

   int pivot, i, j;

   pivot = A[low];

   j = high + 1; i = low;

   do

   {

      i++;

      while(A[i] < pivot && low <= high)

      do

      {

         j++;

      } while(pivot < A[j]);

      if(i < j)

        swap(A[i],A[j]);

   } while(i < j);

   A[low] = A[j];

   A[j] = pivot;

   return j;

}

main()

{

   int A[max], n;

   int i, choice;

   cout << "Enter number of numbers:";

   cin >> n;

   cout << "Enter numbers:";

   read(A, n);

   qsort(A, 0, n − 1);

   cout << "Sorted array is:";

   display(A, n);

}

/********************** Output *************************

 Enter number of numbers: 7

 Enter numbers: 10     5     23     67     20     30     60

 Sorted array is: 5   10   20   23   30   60   67

***********************************************************/
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Analysis of Quick Sort

Now, let us see the efficiency of quick sort. On the first pass, every element in the array 
is compared to the pivot, so there are n comparisons. The array is then divided into two 
parts each of size (n/2). We assume that the array is divided into approximately one-half 
each time. For each of these sub-arrays, (n/2) comparisons are made and four sub-arrays 
of size (n/4) are formed. So at each level, the number of sub-arrays doubles. It will take 
log2n divisions if we are dividing the array approximately one-half each time. Therefore, 
quick sort is O(nlog2n) on the average.

If the original array is sorted and array[left] is chosen as a pivot, then order of quick sort 
turns out to be O(n2). Therefore, when we choose array[left] as pivot, quick sort works best 
for files that are completely unsorted and worst for files that are completely sorted. In the case 
of nearly sorted arrays, choose a random element as a pivot value. The time required to sort 
the left sub-list and the right sub-lists where we assume that each has the size n/2 is as follows:

T(n) = c ¥ n + 2 ¥  T(n/2)

where c is a constant and T(n/2) is the time required to sort the list of size n/2.
Similarly, the time required to sort the list of size n/2 is equal to the sum of the time 

required to place the key element at its proper position in the list of size n/2 and the time 
required to sort the left and right sub-lists each assumed to be of size n/4, T(n/2). This 
turns out to be in the following form:

T(n/2) = c ¥  n/2+-2 ¥  T(n/4)

where T(n/4) is the time required to sort the list of size n/4

\ T(n/4) = c ¥  n/4 + 2 ¥ T(n/8)

This process continues, and finally we get T(1) = 1.
\ T(n) = c ¥ n + 2(c ¥ n(n/2) + 2T(n/4))
\ T(n) = c ¥ n + c ¥ n + 4T(n/4)) = 2 ¥ c ¥ n + 9T(n/9) = 2 ¥ c ¥ n + 9(c ¥ (n/9) + 2T(n/8))
\ T(n) = 2 ¥ c ¥ n + c ¥ n + 8T(n/8) = 3 ¥ c ¥ n + 8T(n/8)
\ T(n) = (logn) ¥ c ¥ n + nT(n/n) = (logn) ¥ c ¥ n + nT(1) = n + n ¥ (logn) ¥ c
\ T(n) a nlog(n)

The average complexity of the quick sort algorithm is O(nlogn). However, the worst case 
time complexity is O(n2).

9.3.7 heap Sort

Heap sort is one of the fastest sorting algorithms, which achieves the speed of quick sort and 
merge sort. The advantages of heap sort are that it does not use recursion, and it is efficient 
for any data order. There is no worst case scenario in the case of heap sort. We shall discuss 
heap sort in detail in Chapter 12. Heap sort is a sorting technique that sorts a list of length n 
with O(nlog 2(n)) comparisons and movement of entries, even in the worst case.
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Hence, it achieves the worst case bounds better than those of quick sort; and for the list, 
it is better than merge sort since it needs only a small and constant amount of space apart 
from the list being sorted. The steps for building a heap sort are as follows:

1. Build the heap tree.
2. Start delete heap operations storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to the order in the 
heap tree. Hence, if we want the elements to be sorted in ascending order, we need to build 
the heap tree in descending order—the greatest element will have the highest priority.

Note that we use only one array, treating its parts differently:

1. When building the heap tree, a part of the array will be considered as the heap, and the 
rest will be the original array.

2. When sorting, a part of the array will be the heap, and the rest will be the sorted array.

Algorithm  9.8 provides the steps followed in sorting data using a heap.

algorithm 9.8
1. Build a heap tree with a given set of data
2. Delete root node from heap
   Rebuild the heap after deletion
   Place the deleted node in the output
3. Continue with step 2 until the heap tree is empty

Program Code 9.11 illustrates Algorithm 9.8 in C++.

program CoDe 9.11

// reheapup operation is required when a new value is 

inserted at the ith location

void reheapdown(int a[], int n, int i)

{

   int temp, j;

   while(2 * i + 1 < n)

   {

       j = 2 * i + 1;      // j index shows the left child of 

the node

      if(j + 1 < n && a[j + 1] > a[j])

      // fi nding max from left and right child

         j = j + 1;

         if(a[i] > a[j]) break;

         // if root > children then break
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      else

      {

         // swap a[i] with a[j]

         temp = a[i];

         a[i] = a[j];

         a[j] = temp;

         i = j;

      }

   }      // end of while

}

Void Heap_Sort (int a[], int n)

{

   // create heap

   int i, temp;

   for(i = (n − 1)/2; i >= 0; i−−)

      reheapdown(a, n, i);

   // delete fi rst value and swap it with last

   while(n > 0)

   {

      //swap fi rst and last element

      temp = a[0];

      a[0] = a[n − 1];

      a[n − 1] = temp;

      n−−;      // decrement count

      reheapdown(a, n, 0);

   }

}

void main()

{

   int a[10], n, i;

   cout << "Enter N";

   cin >> n;

   cout << "Enter the elements";

   for(i = 0; i < n; i++)

      cin >> a[i];

   Heap_Sort(a, n);

   cout << "The sorted elements are";

   for(i = 0; i < n; i++)
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      cout << a[i];

}

/*************** Output ******************************

Enter N: 12

Enter the elements: 44   33   11   55   77   90   40   

60   99   22   88   66

The sorted elements are 11  22  33  40  44  55  60  66  

77  88  90  99

******************************************************

In each pass of the while loop in the function reheapdown(a,n,0), the position i is 
double; hence, the number of passes cannot exceed log(n/i). Therefore, the computation 
time is of the order O(logn/i).
For building the heap, the reheapdown procedure is called n/2 times. Hence, the total 
number of iterations will be as follows:

log(n) + log(n/2) + ... + log(n/n/2)

lo= g( / )n i
i=
∑

1

n/2

= n/21og(n) - log(n/2)

This turns out to be some constant times n.
If we analyse the processing phase, a heap of size i requires O(log2i) comparisons and 

interchanges even in the worst case.
Therefore, the required number of comparisons and interchanges, on the average, is

i = 2

n

i = 2

n

∑∑ +log2 i log2 i
1

2

This is (n - 1) log2n. The worst case is quite comparable to the average case, and the 
number of comparisons and interchanges in this case is given by the following expression:

i = 2

n

i = 2

n

∑∑ +2(n−1) log2 n log2 i log2 i










Therefore, heap sort is defi nitely O(nlog2n).
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The time complexity analysis of heap sort is as follows:

1. Best case: O(nlogn)
2. Average case: O(nlogn)
3. Worst case: O(nlogn)

9.3.8  Shell sort

The technique used by shell sort (named after its inventor Donald Shell) is interesting. The 
algorithm is easy to program, and it runs fairly quickly. Its analysis, however, is very dif-
fi cult. Shell sort is a sorting algorithm, which is an improved version of insertion sort. It 
makes repetitive use of insertion sort.

In this technique, the elements at a fi xed distance are compared. Later, this distance 
is decremented in the next pass by some value and again the comparisons are made. The 
fi xed distance is called as gap. The algorithm begins with the initial gap as n/2, where n 
is the total number of elements to be sorted. Later, in the next pass, the gap is modifi ed as 
n/4, n/8, and so on till it becomes 1. When gap is 1, it becomes an ordinary insertion sort 
(Program Code 9.12).

program CoDe 9.12

void shell_sort(int A[], int n)

{

   int temp, gap, i;

   int swapped;

   gap = n/2;

   do

   {

      do

      {

         swapped = 0;

         for(i = 0; i < n − gap; i++)

            if(A[i] > A[i + gap])

            {

               temp = A[i];

               A[i] = A[i + gap];

               A[i + gap] = temp;

               swapped = 1;

            }

      } while(swapped == 1);

   } while((gap = gap/2) >= 1);

}
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Figure 9.8 illustrates the sample run using shell sort.

7 19 24 13 31 8 82 18 44 63 5 29

7 18 24 13 5 8 82 19 44 63 31 29

5 8 24 13 7 18 31 19 44 63 82 29

5 7 8 13 8 24 31 19 29 63 82 44

5 7 8 13 18 19 29 24 31 44 82 63

5 7 8 13 18 19 24 29 31 44 63 82

Fig. 9.8 Shell sort sample run

The time complexity of shell sort lies between O(nlog2n) and O(n1.5).

9.3.9 Bucket Sort 

Bucket sort is possibly the simplest distribution sorting algorithm. In bucket sort, initially, 
a fixed number of buckets are selected. For example, suppose that we are sorting elements 
from the set of integers in the interval [0, m - 1]. The bucket sort uses m buckets or coun-
ters. The ith counter/bucket keeps track of the number of occurrences of the ith element of 
the list. Figure 9.9 illustrates how this is done for m = 9.

3 1 4 1 5 9 2 6 5 4 data

data

counts0 2 1 1 2 2 1 0 0 1

1 1 2 3 4 4 5 5 6 9

0 1 2 3 4 5 6 7 8 9

Fig. 9.9 Bucket sort
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In Fig. 9.9, the buckets are assumed to be {0, 1, ..., 9}. Therefore, 10 counters are 
required to keep track of the number of 0s, number of 1s, and so on till 9. A single pass 
through the data counts the frequency (count indicating number of times the element 
occurs) of each element. Once the counts have been determined, the sorted sequence is 
easily obtained. Here, each bucket need not to be sorted again as equal numbers lie in 
the same bucket. Though this techniques seems to be very simple, the number of buckets 
required depends on the size of the list to be sorted. Program Code 9.13 illustrates the 
BucketSort() function.

program CoDe 9.13

void BucketSort(int A[], int n)

{

   int i, j;

   int bucket[max];

   //counters/buckets can store numbers maximum 20

   for(i = 0; i < max; i++)

      bucket[i] = 0;

   for(j = 0; j < n; j++)

   {

      ++bucket[A[j]];

      // counting number for each bucket

   }

   for(i = 0, j = 0; i < max; i++)

      for(;bucket[i] > 0; --bucket[i])

      { A[j] = i; j++; }

}

/*******************  Output  ****************************

 Enter number of numbers: 7

 Enter numbers value < 20: 12 15 07 05 12 09 07

 bucket[12]=1

 bucket[15]=1

 bucket[7]=1

 bucket[5]=1

 bucket[12]=2

 bucket[9]=1

 bucket[7]=2

 Sorted array is 5 7 7 9 12 12 15

*************************************************/
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9.3.10 radix Sort

Radix sort is a generalization of bucket sort and works in three steps:

1. Distribute all elements into m buckets. Here m is a suitable integer, for example, to sort 
decimal numbers with radix 10. We take 10 buckets numbered as 0, 1, 2, …, 9. For 
sorting strings, we may need 26 buckets, and so on.

2. Sort each bucket individually.
3. Finally, combine all buckets.

To sort each bucket, we may use any of the other sorting techniques or radix sort 
recursively. To use radix sort recursively, we need more than one pass depending upon 
the range of numbers to be sorted. For sorting single digit number, we need only one pass, 
which is discussed in Section 9.3.9. For sorting numbers with two digits mean ranging 
between 00 and 99, we would need two passes; for the range from 0 to 999, we would 
need three passes, and so on.

Let us consider a set of two digit number to be sorted. In the first pass, we would 
distribute numbers in buckets 0 to 9 using the most significant digit (MSD). Now, in 
the bucket 0, we have all numbers with MSD 0, and all numbers with MSD 1 are in 
bucket 1, and so on. In the second pass, the numbers in each bucket would be sorted 
based on the second most significant digit. The buckets are combined to yield a 
sorted list.

Let us consider a set of numbers to be sorted {07, 10, 99, 02, 80, 14, 25, 63,  
88, 33, 11, 72, 68, 39, 21, 50}. Table 9.5 illustrates a sample run for this list using 
radix sort.

Pass 1
Bucket Numbers

0 02, 07
1 10, 11, 14
2 21, 25
3 39, 33
4
5 50
6 68, 63
7 72
8 80, 88
9 99

Table 9.5 Sample run for radix sort

(Continued)
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Table 9.5 (Continued)

Pass 2 (only non-empty buckets are shown for 
distribution based on the second signifi cant digit)
Bucket Numbers

Buckets based on 
second signifi cant digit

Numbers

0 2 02
7 07

1 0 10
1 11
4 14

2 1 21
5 25

3 3 33
9 39

4
5 0 50
6 3 63

8 68
7 2 72
8 0 80

8 88
9 9 99

The amount of space needed by a bucket sort depends on how the buckets are stored. 
If every bucket is to consist of a set of sequential locations (e.g., an array), then each must 
be allocated enough space to hold the maximum number of elements that might belong in 
one bucket, and that is n. As the number of buckets increases, the speed of the algorithm 
increases but so does the amount of space used. Linked lists would be better, which would 
need the space for n elements plus links and a list head for each bucket. Program Code 
9.14 illustrates this.

program CoDe 9.14

#defi ne max 20

void radixsort(int A[max], int n)

{

   int i, j, temp;

   int bucket[10][15];

   int count[10], digit, k, p, x, nopass, maxval;

   maxval = A[0];
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   for(i = 0; i < n; i++)

      if(maxval < A[i]) maxval = A[i];

   nopass = 0;

   while(maxval != 0)

   {

      maxval = maxval/10;

      nopass++;

   }

   p = 0;

   do

   {

      x = 1;

      for(i = 0; i < 10; i++) count[i] = 0;

      for(i = 0; i < n ; i++)

      {

         digit = (A[i]/x) % 10;

          bucket[digit]*[count[digit]] = A[i];

         // setting up bucket

         count[digit]++;

       }

       k = 0;

       for(i = 0; i < 10; i++)

       {

          if(count[i] != 0)

          {

             for(j = 0; j < count[i]; j++)

             A[k++] = bucket[i][j];

          }

       }

       cout << "Pass" << p;

       display(A, n);

       x = x * 10;

       p++;

    }while(p < nopass);

}

9.3.11  File Sort

The sorting algorithms discussed so far use array to hold and process the data to be sorted 
that resides in memory. Quite often, voluminous fi les, such as a master fi le for all the 
employees in a large corporation, must exist on external storage devices because of their 
size. These on-line storage devices, such as tapes and disks, carry with them specifi c soft-
ware and hardware considerations relating to the access of stored data.
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One of the solutions is to bring only portions of large files into the main memory 
and sort them. The portion of a file that can reside in main memory is a block. The 
sorted block can be sent back to the external storage medium and the next block can 
be brought in. Finally, the partially sorted blocks must be merged into a completely 
sorted file.

Because of the nature of secondary storage devices, bringing a block of data items 
into the main memory takes a longer time than processing it. For instance, it takes time 
to position the read–write head over the appropriate track of a disk, and more time for the 
disk to rotate to bring the correct block to the read–write head. An average input/output 
operation to and from an auxiliary storage device (not bucketing processing in memory) 
may take as 200 milliseconds. When we design sort algorithms for files on external media, 
we must consider this time delay.
There are numerous algorithms used to perform sorts external to the computer’s main 
memory. Among the many external sort methods, the polyphase sort is more efficient in 
terms of speed and utilization of resources. However, it is more complicated, and there-
fore, in some situations, the other algorithms could be more applicable. In practice, inter-
nal sorts are already supplementing these sorting methods. Thus, a number of records 
from each tape would be read into the main memory and sorted using an internal sort and 
then output to the tape rather than one record at a time, as was the case initially. Let us 
study the merge sort method. Merge sort technique is commonly used for external sort 
and is suitable for internal sort too.

9.3.12 Merge Sort

The most common algorithm used in external sorting is the merge sort. Merging is the 
process of combining two or more sorted files into the third sorted file. We can use a 
technique of merging two sorted lists. Divide and conquer is a general algorithm design 
paradigm that is used for merge sort. Merge sort has three steps to sort an input sequence 
S with n elements:

1. Divide—partition S into two sequences S1 and S2 of about n/2 elements each
2. Recur—recursively sort S1 and S2
3. Conquer—merge S1 and S2 into a sorted sequence

A file (or sub-file) is divided into two files, f1 and f2. These two files are then com-
pared, one pair of records at a time, and merged. This is done by writing them on two 
separate new files M1 and M2. Elements that do not pair off are simply rewritten into the 
new files. The records in M1 and M2 are now blocked with two records in each block. 
The two blocks (i.e., four records), one from M1 and one from M2, are merged and writ-
ten onto the original files f1 and f2. The length of the blocks in each of f1 and f2 is now 
increased to four; the merge process is applied again, and the new files are written to M1 
and M2. The process is continued until one of the two files, f1 or f2, is empty. Merge sort 
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is a divide-and-conquer algorithm. Note that the function mergesort() calls itself recur-
sively. Algorithm 9.9 is derived based on the steps discussed.

algorithm 9.9
List mergesort(list L, int n)
{
   if(n == 1)
      return(L);
   else
   {
      split L into two halves L1 and L2;
      return(merge(mergesort(L1, n/2), (mergesort(L2, n/2))
   }
}

Time Complexity

Let T(n) be the running time of merge sort on an input list of size n. Then,

T(n) < C1 (if n = 1), where C1 is a constant and
T(n) < 2T(n/2) + C2n

Here, 2T(n/2) is for two recursive calls, and C2n is the cost of merging the two sorted lists.
Now, by the substitution method,

T(n) = 2T(n/2) + C2n

If n = 2k for some k, it can be shown that after k steps

T(n) = 2kT(n/2k) + C2C2
k

Hence, for n = 2k

T(n) = nlog2n

That is, T(n) = O(nlogn)
Let us implement the merge technique for two arrays instead of working on fi les. Let 

us write a routine that accepts two sorted arrays, A and B containing elements n1 and n2, 
respectively and merges them into a third array C containing n3 elements. Here, the array 
A is from low to mid, array B is from mid + 1 to high, and array C gives the merging of 
A and B This is shown in Program Code 9.15.

program CoDe 9.15

void merge (int A[],int low, int high, int mid)

{

   int i, j, k, C[max];

   i = low;      // index for fi rst part
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   j = mid + 1;      // index for second part

   k = 0;      // index for array C

    while((i <= mid) && (j <= high))

   // merge arrays A & B in array C

   {

      if(A[i] < A[j])

         C[k] = A[i++];

      else

         C[k] = A[j++];

      k++;

   }

   while(i <= mid)

      C[k++] = A[i++];

   while(j <= high)

      C[k++]=A[j++];

   for(i = low, j = 0; i < = high; i++, j++)

    // copy array C contents back to array A

   {

      A[i] = C[j];

   }

}

void MergeSort(int A[], int low, int high)

{

   int mid;

   if(low < high)

   {

      mid = (low + high)/2;

      MergeSort(A, low, mid);

      MergeSort(A, mid + 1, high);

      merge(A, low, high, mid);

   }

}

When merge sort is used for fi les as described in Program Code 9.15, each merge 
operation requires reading and writing of two fi les, both of which are on the average about 
n/2 records long. Thus, the total number of blocks read or written in a merge operation is 
approximately 2n/c, where c is the number of records in a block. The number of blocks 
accessed for the whole operation is O((n(log2n))/c), which amounts to O(log2n) passing 
through the entire original fi le. This is a considerable improvement over the O(n) passes 
needed in the preceding algorithms.
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9.4 MuLtiWaY Merge anD PoLYPhaSe Merge

We have already studied external sorting in Section 9.3.11. It broadly works in the 
following three steps:

1. Split the data into small sets that fit into main memory.
2. Now sort each of the subsets with a conventional sorting algorithm.
3. Finally merge those so-called runs and get a complete sorted data set.

This merging procedure can obviously be applied to more than two runs at every time 
and it is called n-way merge or multiway merge. The sophisticated multiway merge algo-
rithms include polyphase merge.

A non-balanced k-way merge that reduces the number of output files needed by reus-
ing the emptied input file or device as one of the output devices is called polyphase 
merge. This is most efficient if the number of output runs in each output file is different. 
Combining the run creation and run merging calculations together, we find that the over-
all complexity is O(nlog2n). The repeated merging is referred to as polyphase merging. 
Polyphase merge sorts are ideal for sorting and merging large files. Two pairs of input 
and output files are opened as file streams. At the end of each iteration, input files are 
deleted; output files are closed and reopened as input files. The use of file streams makes 
it possible to sort and merge files that cannot be loaded into the computer’s main memory. 
It is a method of merging, where the keys are kept in more than one backup store or file. 
Items are merged from the source files to another file. Whenever one of the source files is 
exhausted, it immediately becomes the destination of the merge operations from the non-
exhausted and earlier destination files. When there is only one file left, the process stops.

9.4.1 comparison of ordinary Merge Sort and Polyphase Sort

Typically, a merge sort splits items into sorted runs and then recursively merges each run 
into larger runs. When there is only one run left, it is termed as the sorted result. An ordi-
nary merge sort could use four working files organized as a pair of input files and a pair 
of output files. At each iteration, two input files are read. The odd-numbered runs of the 
two input files are merged to the first output file, and the even-numbered runs are merged 
to the second output file. When the input is exhausted, the new output files are used as the 
input for the next iteration. The number of runs decreases by a factor of 2 at each iteration. 
At each iteration, the same level/phase of merge occurs—a file is either completely read 
or completely written during the iteration.

If the four files were on four separate tape drives, an ordinary merge sort would pro-
vide some interesting details. In the first iteration, only one input drive is used and the 
other input file is empty. In subsequent iterations, each input drive runs at half speed, 
while one output drive runs at full speed and the second output drive stands idle waiting 
for the next run. The situation is even worse when six tape drives are used, out of which at 
least two stand idle. It would be ideal if the idle drives could be put to more use.
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Perfect Three-file Polyphase Merge Sort

It is easiest to look at the polyphase merge from its end conditions and working back-
wards. At the start of each iteration, there are two input files and one output file. At the 
end of the iteration, one input file is completely consumed and becomes the output file for 
the next iteration. The current output file will become an input file for the next iteration. 
The remaining files (just one in the three-file case) are only partially consumed, and their 
remaining runs are the input for the next iteration.

In the following instance, File 1 is just emptied, and it becomes the new output file. One 
run is left on each input tape, and merging those runs together will make the sorted file.

File 1 (out):                                           <1 run> *        (the sorted file)
File 2 (in): ... | <1 run> *            -->      ... <1 run> | *          (consumed)
File 3 (in):     | <1 run> *                          <1 run> | *          (consumed)

Here,
... denotes the possible runs that have already been read
| marks the read pointer of the file
* marks end of file

In the previous iteration, we read from Files 1 and 2. One run is merged from both files 
before File 1 goes empty. Notice that File 2 is not completely consumed; it has one run 
left to match the final merge.

File 1 (in): ... | <1 run> *                         ... <1 run> | *
File 2 (in):     | <2 run> *            -->            <1 run> | <1 run> *
File 3 (out):                                                  <1 run> *

Stepping back another iteration, two runs are merged from Files 1 and 3 before File 3 
goes empty.

File 1 (in ):     | <3 run> *                        ... <2 run> | <1 run> *
File 2 (out):                                 -->            <2 run> *
File 3 (in ): ... | <2 run> *                            <2 run> | *

Moving to the previous iteration, three runs are merged from Files 2 and 3 before File 2 
goes empty.

File 1 (out):                                                  <3 run> *
File 2 (in ): ... | <3 run> *           -->        ... <3 run> | *
File 3 (in ):     | <5 run> *                            <3 run> | <2 run> *

Moving further back, five runs are merged from Files 1 and 2 before File 1 goes empty.

File 1 (in ): ... | <5 run> *                        ... <5 run> | *
File 2 (in ):     | <8 run> *           -->            <5 run> | <3 run> *
File 3 (out):                                                  <5 run> *



searching and sorting 471

DSUC    c09    V6   November 21, 2012 11:50 AM   Page 471

The number of runs merged working backwards—1, 2, 3, 5, …,—reveals a Fibonacci 
sequence. For everything to work out right, the initial file to be sorted must be distributed 
to the proper input files, and each input file must have the correct number of runs on it. In 
the example, this would mean that an input file with 13 runs writes 5 runs to File 1 and 8 
runs to File 2.

In practice, the input file might not have a Fibonacci number of runs (which would not 
be known until after the file has been read). The fix is to pad the input files with dummy 
runs to obtain the required Fibonacci sequence.

For comparison, the ordinary merge sort combines 16 runs in 4 passes using 4 files. 
The polyphase merge combines 13 runs in 5 passes using only 3 files. Alternatively, a 
polyphase merge combines 17 runs in 4 passes using 4 files (sequence: 1, 1, 1, 3, 5, 9, 
17, 31, 57, ...).

An iteration (or pass) in an ordinary merge sort involves reading and writing the entire 
file. An iteration in a polyphase sort does not read or write the entire file, so a typical 
polyphase iteration takes lesser time than a merge sort iteration.

Two-phase, Multiway Merge Sort

The basic idea behind the two-phase, multiway merge sort is simple, and is described as 
follows:

Phase 1: Repeat the following until all data items have been visited once.
1. Fill a designated region R of main memory with as many data items as it can hold.
2. Sort the data items in R using an internal sort.
3. Write the sorted data items back to new blocks on disk, which yields a sorted ‘sub-list’ 

of the original data items.

Phase 2: At the conclusion of the following steps, a sorted file will emerge.
1. Read a block from each of the sub-lists from Phase 1 into a main memory buffer; in 

addition, set aside an output buffer.
2. Merge the sub-lists into a sorted file by repeating the following steps as often as 

necessary.
3. Fill the output buffer by repeatedly selecting the smallest (or the largest, depending 

on the sorting order) remaining data item in the buffers from the sorted sub-lists. 
If all of the items in a sub-list buffer have been examined, read the next block for 
that sub-list (if there is no such block, then do not examine the associated buffer 
anymore).

4. Write the output buffer to disk and reinitialize the buffer for the next output block.

9.5 coMPariSon oF aLL Sorting MethoDS

Table 9.6 compares and comments on the sorting methods discussed in this chapter.
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(Continued)

Sorting
method

Technique in brief Best case Worst 
case

Memory 
requirement

Is stable? Pros Cons

Bubble sort Repeatedly stepping 
through the list to be 
sorted, comparing each 
pair of adjacent items 
and swapping them if 
they are in the wrong 
order

O(n2) O(n2) No extra 
space needed

Yes 1. A simple and 
easy method
2. Efficient for 
small lists n > 100

Highly inefficient for 
large data

Selection 
sort

Finds the minimum 
value in the list and 
then swaps it with the 
value in the first position, 
repeats these steps for 
the remainder of the list 
(starting at the second 
position and advancing 
each time)

O(n2) O(n2) No extra 
space needed

No 1. Recommended 
for small files
2. Good for 
partially sorted 
data

Inefficient for large lists

Insertion sort Every repetition of 
insertion sort removes 
an element from the 
input data, inserts it into 
the correct position in 
the already sorted list 
until no input elements 
remain. The choice of 
which element to remove 
from the input is arbitrary 
and can be made using 
almost any choice of 
algorithm

O(n) O(n2) No extra 
space needed

Yes 1. Relatively 
simple and easy 
to implement
2. Good for 
almost sorted 
data

Inefficient for large lists

Table 9.6 Comparison of sorting techniques
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Table 9.6 (Continued)

(Continued)

Quick sort Picks an element, called 
a pivot, from the list.
Reorders the list so 
that all elements with 
values less than the pivot 
come before the pivot, 
whereas all elements 
with values greater than 
the pivot come after it 
(equal values can go 
either way). After this 
partitioning, the pivot is 
in its final position. This 
is called the partition 
operation.
Recursively sorts the 
sub-list of the lesser 
elements and the sub-list 
of the greater elements.

O(nlog2n) O(n2) No extra 
space needed

No 1. Extremely fast
2. Inherently 
recursive

Very complex algorithm

Shell sort It is a generalization 
of insertion sort, which 
exploits the fact that 
insertion sort works 
efficiently on input 
that is already almost 
sorted. It improves on 
insertion sort by allowing 
the comparison and 
exchange of elements 
that are far apart. The 
last step of shell sort is 
a plain insertion sort, 
but by then, the array of 
data is guaranteed to be 
almost sorted

O(n1.5) O(nlog2n) No extra 
space needed

No 1. It is faster than 
a quick sort for 
small arrays
2. Its speed and 
simplicity makes 
it a good choice 
in practice

Slower for sufficiently 
big arrays
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*n is the number of data items to be sorted.

Table 9.6 (Continued)

Sorting
method

Technique in brief Best case Worst 
case

Memory 
requirement

Is 
stable?

Pros Cons

Radix sort
(most 

significant 
digit)

Numbers are placed 
at proper locations by 
processing individual 
digits and by comparing 
individual digits that share 
the same significant 
position.

O(n) O(n) Extra space 
proportional to 

n is needed

Yes 1. Radix sort is very 
simple and fast
2. In-Place, 
recursive, and 
one of the fastest 
sorting algorithms 
for numbers or 
strings of letters

Radix sort can also take 
more space than other 
sorting algorithms since 
in addition to the array 
that will be sorted, there 
needs to be a sub-list 
for each of the possible 
digits or letters

Merge sort If the list is of length 0 or 
1, then it is already sorted. 
Otherwise, the algorithm 
divides the unsorted list 
into two sub-lists of about 
half the size
Then, it sorts each sub-list 
recursively by reapplying 
the merge sort and then 
merges the two sub-lists 
back into one sorted list.

O(nlog2n) O(nlog2n) Extra space 
proportional to 

n is needed

Yes 1. Good for 
external file 
sorting
2.Can be applied 
to files of any size

1. It requires twice the 
memory of the heap sort 
because of the second 
array used to store the 
sorted list.
2. It is recursive, which 
can make it a bad 
choice for applications 
that run on machines 
with limited memory

Heap sort Heap sort begins by 
building a heap out of 
the data set, and then 
removing the largest item 
and placing it at the end of 
the partially sorted array. 
After removing the largest 
item, it reconstructs the 
heap, removes the largest 
remaining item, and 
places it in the next open 
position from the end of 
the partially sorted array. 
This is repeated until there 
are no items left in the 
heap and the sorted array 
is full

O(nlog2n) O(nlog2n) No extra 
space needed

No 1. Advantageous 
as it does not use 
recursion and that 
heap sort works 
just as fast for 
any data order. 
That is, there is 
basically no worst 
case scenario
2. Heaps work 
well for small 
tables and the 
tables where 
changes are 
infrequent

Do not work well for 
most large tables
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recaPituLation

• Searching means locating a target element in 
the list. There are basically two search tech-
niques: sequential (also known as linear search) 
and binary search. Sequential search is used 
when the list is not sorted, and binary search is 
preferred when the list is in sorted order.

• The variations of linear search include senti-
nel search and probabilistic search. In sentinel 
search, the check for the end of list is avoided 
by placing the target at the end of list. The 
probability search orders the list by placing 
the most probable elements at the beginning 
of the list.

• In binary search, the target is fi rst searched at 
the mid of the list. As the list is sorted (ascend-
ing or descending), if the target is not found at 
the mid, then it is searched either in upper half 
or in lower half. If the list is in ascending order 
and if the target is smaller than the element 
at mid, then it is searched in upper half, else 
the target is searched in the lower half using 
binary search.

• The time complexity of linear is O(n), whereas 
it is O(log2n) for binary search.

• In case of hashed search, the target key is 
transformed to address using algorithmic 
computation. The function used for this trans-
formation is called as hash function. There are 
different hash functions: modulus, digit extrac-
tion, mid_square, folding.

• Sorting means arranging the elements in a par-
ticular order. Sorting techniques are broadly 
classifi ed as internal and external. In internal 
sorting, during sorting, all the data to be sorted 
is held in primary storage. In external sorting too, 
the data to be sorted is held in primary storage, 
and the data that does not fi t in the primary stor-
age is held in secondary storage. Both internal 
and external sorting methods have their relative 
effi ciencies in different applications.

• If the equal targets maintain their relative input 
order in the output, then the sorting method is 
called as the stable sorting method.

• Internal sort techniques are broadly classifi ed 
as insertion, selection, and exchange. Inser-
tion sorting include insertion sort and shell 
sort. Selection sorting methods are selection 
and heap sort. Heap sort is an improved ver-
sion of selection sort. Bubble sort and quick 
sort are two exchange sort techniques.

• Quick sort is faster and handles arrays of het-
erogeneous data fairly effi ciently. The shell 
short is more effi cient than the bubble sort, 
selection sort, and insertion sort.

• Sorting of larger fi les that cannot fi t in main 
memory is best accomplished by external 
sorting techniques such as the merge sort.

• Polyphase merge and multiway merge are 
two sort methods used in the external sorting 
technique.

Binary search In binary search algorithm, to 
search a particular element, it is first compared 
with the element at the middle position, and if 
found, the search is successful. However, if the 
middle position value is greater than the target, 
the search will continue in the first half of the list, 
else the target will be searched in the second half 

of the list. The same process is repeated for one of 
the halves of the list till the list reduces to the list 
of size one.

External sort Any sort algorithm that uses exter-
nal memory, such as tape or disk, during the sort-
ing is called as external sort algorithm. Merge sort 
is used in external sorting.

KeY terMS
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Multiple choice questions

 1. The number of swappings needed to sort the 
numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending 
order using bubble sort is 

 (a) 11
 (b) 12
 (c) 13
 (d) 14
 2. Given two sorted lists of size m and n, 

respectively, the number of comparisons needed 
in the worst case by the merge sort algorithm 
will be

 (a) mn
 (b) max(m, n)
 (c) min(m, n)
 (d) m + n - 1
 3. The average successful search time taken by 

binary search on a sorted array of 10 items is
 (a) 2.6
 (b) 2.7

 (c) 2.8
 (d) 2.9
 4. Which of the following sorting algorithms has a 

worst case running time of O(n2)?
 (a) Insertion sort
 (b) Merge sort
 (c) Quick sort
 (d) Bubble sort
 5. Choose the correct statements from the 

following:
  Note: More than one statement could be cor-

rect.
 (a)  Internal sorting is used if the number of 

items to be sorted is very large
 (b)  External sorting is used if the number of 

items to be sorted is very large
 (c) External sorting needs auxiliary storage
 (d) Internal sorting needs auxiliary storage
 6. A sorting technique that guarantees that records 

with the same primary key occurs in the same 

eXerciSeS

Internal sort Any sort algorithm that uses main 
memory exclusively during the sorting is called 
as internal sort algorithm.

Linear search The search begins with the first 
available record and proceeds to the next avail-
able record repeatedly until we find the target key 
or conclude that it is not found. Such search is 
known as sequential search and is also called as 
linear search.

Multiway merge This refers to combining more 
than two sorted data streams into a single sorted 
stream.

Passes During the sorting process, the data is tra-
versed many times. Each traversal of the data is 
referred to as a sort pass.

Polyphase merge This is a non-balanced k-way 
merge that reduces the number of output files 
needed by reusing the emptied input file or device 
as one of the output devices.

Searching The process of locating target data is 
known as searching.

Sort efficiency Sort efficiency is a measure of 
the relative efficiency of a sort. It is usually an 
estimate of the number of comparisons and data 
movement required to sort the data.

Sort order Data can be ordered either in ascend-
ing order or in descending order. The order in 
which the data is organized, that is, ascending 
order or descending order, is called as a sort 
order.

Sort stability A sorting method is said to be stable 
if at the end of the method, identical elements oc-
cur in the same order as in the original unsorted set.

Sorting Sorting is the operation of arranging the 
records of a table according to the key value of 
each record, or sorting is a process of converting 
an unordered set of elements to an ordered set of 
elements.
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order in the sorted list as in the original unsorted 
list is said to be

 (a) stable
 (b) consistent
 (c) external
 (d) linear
 7. You want to check whether a given set of items 

is sorted or not. Which of the following sorting 
methods will be the most efficient if it is already 
in sorted order?

 (a) Bubble sort
 (b) Selection sort
 (c) Insertion sort
 (d) Merge sort
 8. The average number of comparisons performed 

by the merge sort algorithm in merging two 
sorted lists of length 2 is

 (a) 8/3
 (b) 8/5
 (c) 11/7
 (d) 11/6
 9. Which of the following sorting methods will be 

the best if the number of swappings done is the 
only measure of efficiency?

 (a) Bubble sort
 (b) Selection sort
 (c) Insertion sort
 (d) Quick sort
10. As part of maintenance work, you are entrusted 

with the work of rearranging the library books 
in a shelf in proper order at the end of each day. 
The ideal choice will be

 (a) Bubble sort
 (b) Insertion sort
 (c) Selection sort
 (d) Heap sort

Review questions

 1. A sorted list of integers in ascending order (with 
no duplication) is available. Write a function that 
reads a number and searches this number in the 
list. If the number is not present, the function 
will add the number at its proper position. Print 

the scanned list in descending order starting 
from the position of this number.

 2. Write an algorithm for merge sort. Give the time 
complexity of your algorithm. Show the stepwise 
execution of the algorithm for the following list 
of data:

 (a) 10, 20, 45, 27, 15, 7, 28, 59, 61, 33
 (b) 10, -5, 0, 20, -15, 50, 40, -20, 30
 (c) 25, 57, 48, 37, 12, 92, 86, 33
 (d) 26, 5, 37, 1, 61, 11, 59, 15, 48, 19
 State the time complexity of quick sort for 

average case and best case.
 3. Write a pseudo C++ algorithm for merge sort 

of integers. Give the number of comparisons 
required for the best case and the worst case of 
inputs with examples.

 4. Write a pseudo C++ algorithm for quick sort of 
integers.

 5. Discuss with suitable examples any three sorting 
techniques. Complete them with respect to the 
computing time giving the best cases and the 
worst cases of each.

 6.  Discuss internal and external sorting with 
suitable examples of each type.

 7. Write an algorithm to implement selection sort 
with suitable example.

 8. What is the purpose of searching an algorithm?
 9. What are the two major types of searches? How 

do they differ?
10. Using the selection sort algorithm, manually 

sort the following list and show your work in 
each pass: 7, 23, 31, 40, 56, 78, 9, 2.

11. Using the bubble sort algorithm, manually sort 
the following list and show your work in each 
pass: 7, 23, 31, 40, 56, 78, 9, 2.

12. A list contains the following elements: 7, 23, 
31, 40, 56, 78, 9, 2. Using the binary search 
algorithm, trace the steps followed to find 88. 

13. Trace the series of recursive calls performed 
by quick sort during the process of sorting the 
following array: 3, 1, 4, 5, 9, 2, 6, 10, 7, 8.

14. Describe the behaviour of the quick sort algorithm 
when the input is already sorted. How would this 
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be different if instead of the first element we 
selected the mid point as the pivot value?

15. For bubble sort, give the time complexity for 
average case and best case. Justify your answer.

16. Which of the sorting algorithms has the best 
performance in terms of storage and time 
complexity? Justify your answer.

17. Repeated merging is referred to as polyphase 
merging. Comment.

18. List the situations where polyphase merge is to 
be used.

19. Elaborate the advantages of multiway merge.

Answers to multiple choice questions

1. (d)
2. (d)  Each comparison puts one element in the final stored array. So, in the worst case, m + n - 1 

comparisons are necessary.
3. (d)  For 10 items i1, i2, ..., i10, to match i5, the number of comparisons needed is 1; for i2, it is 2, for i8 it 

is 2, for i1 it is 3, and so on. So, the average is (1 + (2 + 2) + (3 + 3 + 3 + 3) + (4 + 4 + 4)/10, i.e., 2.9.
4. (b)  5. (a), (b)  6. (a)  7. (c)
8. (a)  Merge sort combines two given sorted lists into one sorted list. For this problem, let the final sorted 

order be a, b, c, d. The 2 lists (of length 2 each) should fall into one of the following three categories:
 (i) a, b and c, d
 (ii) a, c and b, d
 (iii)  a, d and b, c
 The number of comparisons needed in each case will be 2, 3, 3. So, average number of comparisons 

will be (2 + 3 + 3)/3 = 8/3
 Here is a better way of solving:
 Let list L1 have the items a, c and L2 have the items b, d.
 The following tree depicts the different possible cases—a and b means a is compared with b. If a 

is smaller, the edge will be labelled a. The number within the circle, beside the leaf nodes, is the 
number of comparisons, needed to reach it.

2
a, b, c, d

1
a , b, c d

a

a

c

9. (b)  10. (b)
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We have discussed the non-linear data structure, tree, and one of its most popular 
variations, the search tree, in Chapter 7. The binary search tree (BST) is one of the 

fundamental data structures extensively used for searching the target in a set of ordered 
data. BSTs are widely used for retrieving data from databases, look-up tables, and storage 
dictionaries. It is the most effi cient search technique having a time complexity that is 
logarithmic to the size of the set. There are two cases with respect to BST const ruction. The 
fi rst case is a set of keys and the probabilities with wh ich they are searched, which is known 
in advance. The second is when knowledge about the keys is not available in advance and 
the keys occur dynamically. These two cases lead to the following two kinds of search trees:

1.  Static BST—is one that  is not allowed to update its structure once it is constructed. In 
other words, the static BST is an offl ine algorithm, which is presumably  aware of the 
access sequence beforehand.

2.  Dynamic BST—is one that changes during the access sequence. We assume that the 
dynamic BST is an online algorithm, which does not have prior information about the 
sequence.

In this chapter, we shall study about these two BSTs and the concept of symbol tables.

10.1  SyMbOL TAbLe

While compilers and assemblers are scanning a prog ram, each identifi er must be exam-
ined to determine if it is a keyword. This information concerning the keywords in a pro-
gramming language is stored in a symbol table. Consider the following C++ statement:

                        int limit;

SeARch TReeS

ObJecTIveS

Afte r completing this chapter, the reader will be able to u nderstand the following:
 • Variations in binary search trees—static and dynamic
 • Ways of building trees of each type to ensure that they remain balanced
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When a compiler processes this statement, it will identify that int is a keyword and 
limit is an identifier. However, a question arises as to how a compiler classifies them as 
a keyword and a user-defined identifier. For identifying int as a keyword, the compiler 
is provided with a table of keywords. For faster search through a list of keywords, the 
symbol table is used as an efficient data structure.

The symbol table is a kind of a ‘keyed table’ which stores <key, information> pairs with 
no additional logical structure.
The operations performed on symbol tables are the following:

1. Inserting the <key, information> pairs into the collection.
2. Removing the <key, information> pairs by specifying the key.
3. Searching for a particular key.
4. Retrieving the information associated with a key.

When a compiler stores information that can be retrieved by some unique key value, 
it means we are using a keyed table. The field that contains the value by which we want 
to retrieve the information is the key field. When keyed tables are used in a compiler and 
an assembler, where the key (the symbol) is the programmer’s identifier and the informa-
tion is the location assigned by the assembler to that identifier, the keyed tables are called 
symbol tables.

10.1.1 Representation of Symbol Table

There are two different techniques for implementing a keyed table, namely, the symbol 
table and the tree table.

Static Tree Tables

When symbols are known in advance and no insertion and deletion is allowed, such a 
structure is called a static tree table. An example of this type of table is a reserved word 
table in a compiler. This table is searched once for every occurrence of an identifier in a 
program. If an identifier is not present in the reserved word table, then it is searched for in 
another table. When we know the keys and their probable frequencies of being searched, 
we can optimize the search time by building an optimal binary search tree (OBST). The 
keys have history associated with their use, which is referred to as their probability of oc-
currence. There are four options for searching:

1. Static tree table can be stored as a sorted sequential list and binary search (O(log2n)) 
can be used to search a symbol.

2. Balanced BST can be used to find symbols having equal probabilities.
3. Hash tables, having the search time O(1), can be used to store a symbol table.
4. OBST is used when different symbols are searched with different probabilities.
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Dynamic Tree Tables

A dynamic tree table is used when symbols are not known in advance but are inserted as 
they come and deleted if not required. Dynamic keyed tables are those that are built on-
the-fly. The keys have no history associated with their use. The dynamically built tree that 
is a balanced BST is the best choice.

Let us now look into each of these trees in detail.

10.2 OPTIMAL bInARy SeARch TRee

Before we study OBSTs, let us revise BSTs. A BST is one of the most important data 
structures in computer science. When arrays are used to store ordered data, we use the 
very efficient searching technique, that is, binary search. However, its insertion and dele-
tion algorithms are inefficient as they require shifting of data in the array. An alternative 
is to use a linked list to store ordered data, which although provides efficient insertion and 
deletion algorithms, its sequential searching algorithm is inefficient. Therefore, a BST  
is the only data structure left that not only has an efficient searching algorithm but also 
efficient insertion and deletion algorithms.
A BST can be defined as a key-based tree with the following properties:

1. Every element has a key, and no two elements have the same key (i.e., keys are 
unique).

2. The keys (if any) in the left subtree are smaller than the key in the root.
3. The keys (if any) in the right subtree are greater than the key in the root.
4. Each subtree in itself is a BST.

A BST has a few problems which are to be overcome. Consider the BST shown in 
Fig. 10.1.

25

30

35272210

20

Fig. 10.1 Sample binary search tree

The inorder traversal produces 10, 20, 22, 25, 27, 30, 35. For the same set of keys, 
depending on their sequence of arrival, the other two search trees can be constructed as 
in Fig. 10.2.
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25

20

10

3022

3527

20

35

30

27

25

2210

(a) (b)

Fig. 10.2 Sample BSTs for keys (25, 10, 35, 27, 35, 20, 22)  (a) Sample 1  (b) Sample 2

Note that the left BST in Fig. 10.2(a) requires utmost four comparisons to search the tar-
get in the tree, whereas for searching the target in the right tree (Fig. 10.2b), the maximum 
comparisons needed are five. We can say that the first BST has a better average behaviour 
than the second.

When the target is at the root (level 0), we need just one comparison; if the target is 
at level 1, we need two comparisons, and so on. Since the number of comparisons, or in 
other words iterations, through the search loop determines the cost of search, the cost 
should be minimum, that is, optimal. Hence, the optimality criteria for a static BST can 
be stated as minimizing the cost of the BST under a given access sequence. Such a cost 
can be defined as follows:

Cost(T) =
= 1

l ai( )
i

n

∑  (10.1)

Here, the total number of nodes are n, and l(ai) is the length of the ith key, a.
Here, we assume that all the keys are searched with equal probabilities. However, in 

reality, the keys are searched with different probabilities, and it should be taken care of 
while constructing the tree so that the keys searched more often should require less time 
as compared to those searched rarely. This can be achieved by placing the more frequent-
ly searched key nodes closer to the root as compared to those that are searched rarely, to 
reduce the total number of average searches. A node is said to be closer to the root when 
its path length is lesser than that of the other nodes. 
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In brief, cost of a tree is computed with respect to its node’s probability of search and 
path length. Hence, 

Cost(T) = ×∑W Li i
i

n

= 1

 (10.2)

where,
Wi = frequency or probability (also called as weight of the ith node)
Li = level of a particular node calculated from the root node treated from level 0
Assume that there are four keys {P, Q, R, S} that are to be searched with probabilities 

0.1, 0.2, 0.4, and 0.3, respectively. There are 14 possible BSTs. A few of them are shown 
in Fig. 10.3.

Q

P

P

Q

R

SP

Q

R

S

R

S

Fig.10.3 Three sample BSTs for keys {P, Q, R, S}

Now, we need to find out which of these 14 trees is the optimal one. One way to do this 
is to construct all possible BSTs. However, as the number of keys (n) increases, the total 
number of search trees also increases. So this approach is unrealistic for a large n. An 
alternative is to use a general algorithm.

Consider the keys {k1, k2, …, kn} such that k1 < k2 < k3 < … < kn. Every successful 
search for the key ki has the probability p(i). In addition, every unsuccessful search for 
the key x has the probability of failure q(i) for 0 £ i £ n, and ki < x < ki+1. We can add a 
fictitious node as a child for every leaf node.

For the BSTs in Fig. 10.4, all the keys represent internal nodes; all successful searches 
will always end at an internal node; all squares denote external nodes, which are fictitious; 
all unsuccessful searches will end at some external node. If there are n keys, there are n + 1 
external nodes. So all the keys that are not a part of a BST belong to one of (n + 1) equivalence 
classes Ei for 0 £ i £ n. The class E0 contains all keys m < k1. The class E1 contains all keys 
m such that k1 < m < k2. In general, the class Ei contains all keys m such that ki < m < ki+1. 
So if an unsuccessful search reaches at the node Ei at level l, it means that l - 1 compari-
sons are already performed. Hence, the cost of such node is q(i) ¥ (level(Ei) - 1). Similarly, 
every successful search that stops at the key ki at level l has the cost p(i) ¥ level(ki).
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Hence, the cost of a BST is given as follows:

1 0≤ ≤ ≤ ≤
∑ ∑+ −1
i n

i
i n

ip i k q i E( ) ) ( ) )× ×level( level(  (10.3)

Equation (10.3) defines the cost of a BST in terms of the probabilities of successful and 
unsuccessful searches and the level of a node. Now, let us define an OBST. We need a 
BST with an optimal cost. An OBST is a BST with the minimum cost. Let us see how to 
build it by taking Example 10.1.

 example 10.1  Given the keys = {while, do, if} and probabilities p(i) = q(i) = 1/7 for 
all i. Compute the cost of all possible BSTs and find the OBST.

Solution We get five possible BSTs for the given keys as shown in Fig. 10.4.

(e)

do

while

if

if

whiledo

E E E E

(d)

do

if

while

(c)

(b)(a)

if

while

do

while

if

do E

E E

E

Fig. 10.4 BSTs for the keys {do, while, if}  (a) BST1 
(b) BST2  (c) BST3  (d) BST 4  (e) BST 5
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Let us compute the cost of each BST.
For Fig. 10.4(a),

Cost level( level( A B

A

= × + × = +

=
≤ ≤ ≤ ≤
∑ ∑p i k q i E

p i

i
i

0 i
i( ) ) ( ) )

( )

1 3 3

1−

11 3
1 1 2 2 3 3

≤ ≤
∑ × = × + × + ×

i
ik p k p k p klevel( level level level) ( ) ( ) ( )

= 1/7(2 + 2 + 1)
= 5/7

B level( ) level( ) level( )0= × = × ×
≤ ≤0 i

q i q E q E

q
3

0
1 1 1∑ − − + −

+

( ) ( )Ei

22
1 1× ×level( ) level( )2 3 3E q E− + −

1 1

= 1/7(2 + 2 + 2 + 2)
= 8/7

Therefore, cost = (5/7) + (8/7) = 13/7
For Fig. 10.4(b), total cost = A + B

 
A level( )= × =

1 3

1

7
1 2 3

≤ ≤
∑ + +

i

p i( ) ( )ki

= 6/7

 
B level( )

0 3

= × =
≤ ≤i

iE∑ + + +q i( ) ( )
1

7
3 3 2 1

= 9/7

Therefore, cost = (6/7) + (9/7) = 15/7
Similarly, for Figs 10.4(c)–(e), the cost of each subtree = 15/7.
The cost of the tree in Fig. 10.4(a) is the least; hence, it is the OBST.
Practically, we cannot use such an approach to find an OBST as we will need to draw 

all possible BSTs and then find the cost of all BSTs. As the number of keys increases, the 
number of BSTs also increases. Dynamic programming approach can be used to construct 
an OBST by considering the probabilities of both successful and unsuccessful searches 
for the given set of keys.

We construct an OBST step-by-step using the following three formulae:

w(i, j) = p(j) + q(j) + w(i, j - 1)
c(i, j) = min(i < a £ j){c(i, a - 1) + c(a, j)} + w(i, j)
r(i, j) = a

where
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where,
w(i, j)is the weight of node (i, j)
c(i, j)is the cost of node (i, j)
c(i, a - 1)is the cost of left subtree
c(a, j)is the cost of right subtree
r(i, j)is the root of the tree

The dynamic programming approach can be used to construct an OBST stepwise, where 
the principal of optimality should hold at each step. Assume that there are n keys {k1, k2, 
…, kn} where k1 < k2 < k3 < … < kn. So at some step, if ka is the root of a tree, then the 
resultant tree is as in Fig. 10.5.

OBST for
k1, …, ka−1

Subtree l Subtree r

OBST for
ka+1, …, kn

ka

Fig. 10.5 Resultant OBST

Since this is a BST, the left subtree l has keys k1, k2, …, ka-1, and external nodes E0, 
E1, ..., Ea-1.

Therefore, using Eq. (10.3), the cost of the left subtree l is 

Cost( ) level( ) ( ) level( ) 1
01 ( )

l p i k q i Ea i
i ai a

= × + × −
≤ −≤ −
∑∑ ( )
( )11

 (10.4)

Similarly, the cost of right subtree using Eq. (10.3) is 

Cost( ) ( ) level( ) ( ) level( ) 1
( 1)

r p i k q i E
a i n

a
a i n

i= × + × −
+ ≤ ≤ ≤ ≤
∑ ∑  (10.5)
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Therefore, the cost of the tree in Fig. 10.5 is the sum of probability of the node ka, cost 
of the left subtree l, cost of the right subtree r, weight of the nodes from 0 to a - 1, and 
weight of the nodes from a to n. In notation, this can be stated as follows:

p(a) + cost(l) + cost(r) + w(0, a - 1) + w(a, n) (10.6)

Cost(l) and cost(r) are determined considering their roots at level 1. If cost(l) is mini-
mum and cost(r) is also minimum, then the cost of Eq. (10.5) is also minimum, and thus, 
we can conclude that the tree in Fig. 10.4(a) is optimal.

Let c(i, j) denote the cost of an OBST tij having keys ki+1, …, kj and external nodes 
Ei, …, Ej.. So for the left subtree l of OBST in Fig. 10.5, cost (l) = c(0, a - 1) and for its 
right subtree r, cost(r) = c(a, n).

Hence,

p(a) + c(0, a - 1) + c(a, n) + w(0, a - 1) + w(a, n) (10.7)

Equation (10.4) gives the cost of a tree having nodes from k0 to kn. In general, we can 
write an equation that gives the cost for a subtree having nodes from ki to kj as

p(a) + c(i, a - 1) + c(a, j) + w(i, a - 1) + w(a, j) (10.8)

Obviously, Eq. (10.7) gives the minimum cost only if a is chosen properly. So we have 
to solve Eq. (10.6) for different values of a and then select the minimum. Hence, we can 
generalize Eq. (10.7) to get the following equation:

c
i a j

c i a c a j w i a p a w a j( )i, j = min
[ ( , ) ( , ) ( , ) ( ) ( , )]

< ≤
− + + − + +1 1  (10.9)

The steps to find OBST are as follows:

1. We begin by considering all unsuccessful probabilities as initially there are no nodes 
in the tree. c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ n, where n is the number 
of keys.

2. Compute c(i, j) for j - i = 1, that is, we are constructing a node of level 1. In addition, 
compute w(i, j) = p(j) + q(j) + w(i, j - 1), and the root r(i, j) is the value of a which 
minimizes c(i, j).

c
i a j

c i a a w i j( )i, j c j= min
[ ( , ) ( , ) ( , )]

< ≤
− + +1

3. Compute c(i, j) for j - i = 2. In addition, compute w(i, j) and r(i, j) as in the previous step.
4. Continue the process till j - i = n. Here, won, con, and ron denote the weight, cost, and 

root of OBST, respectively.
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5. Finally, we can construct an OBST having the root ron = a, which means that the key 
ka is the root.

In general, let rij be any node in an OBST, whose value is a. Then, its left node is ri,a-1 and 
its right node is ra,j. It is shown in Fig. 10.6.

rij = a

ri, a–1 ra, j

Fig. 10.6 OBST

Using this, we can construct a tree until we get rij = 0 at all the nodes and these are the 
external nodes of a tree.

The initial cost table of the dynamic programming algorithm for constructing an OBST 
is shown in Fig. 10.7.

0

0 1 ... j n

C[ i ][ j ]

1

i

n + 1

0

0

0

0

0

P1

P2

Pn

Fig. 10.7 Initial cost table of OBST

The values needed for computing C[i][j] are shaded in Fig. 10.7. They are the values 
in row i and to the left of column j, and the values in column j and the rows below 
row i.

Consider an OBST tree node having the following structure:

class leaf
{
   char name[10];
} leaf[max];

Program Code 10.1 implements the logic for building an OBST and computing its cost 
using C++.
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pROGRam CODe 10.1

#include<stdio.h>

#defi ne max 20

int i, j, k, n, min, r[max][max];

fl oat p[max], q[max], w[max][max], c[max][max];

void OBST();

void print(int, int);

void print_tab();

main()

{

   cout << “\n Enter no. of leaves in tree:”

   cin > > n;

   cout << “\n Enter leaf label”;

   for(i = 1; i <=  n; i++)

       cin >> leaf[i].name;

    cout << “\n Enter the probability of successful 

search:”;

   f or(i = 1; i <= n; i++)

    {

      cout << “p[“<<i<<”]”;

      cin >> sp[i];

    }

    cout << “\n Enter the probability of unsuccessful 

search: ”;

   for(i = 0; i <= n; i++)

    {

      cout << “q[“<<i<<”]”;

      cin >> q[i];

   } 

   cout <<  “\ninput:\n<<Leaf  (“<<n<<”)”;

   for(i = 1;  i <= n; i++)

   {

      cout << “leaf[“<<i<<”].name”;

      cout << “n p(1:“<<n<<”)”;

   }

   for(i = 1; i  <= n; i++)

   {

      co ut << “p[“<<i<<”]”;

      cout << “\nq(0:“<< n<<”)=”;

   }

   for(i = 0;  i <= n; i++)
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      cout <<  “\t<<q[i]”;

   OBST();

   print_tab();

    print(0, n);

}

void OBST()

{

   for(i = 0; i < n; i++)

   {

      r[i][i] = c[i][i] = 0; w[i][i] = q[i];

      w[i][i + 1] = p[i + 1] + q[i + 1] + w[i][i];

      c[i][i + 1] = w[i][i + 1];

      r[i][i + 1] = i + 1;

   }

   c[n][n] = 0.0; r[n][n] = 0.0; w[n][n] = q[n];

   for(i = 2; i <= n; i++)

   {

      for(j = 0; j <= n − i; j++)

      {

          w[j][j + i] = w[j][j + i − 1] + p[j + i] + q[j 

+ i];

         c[j][j + i] = 999;

         for(k = j + 1; k < j + i; k++)

            if(c[j][j + i] > c[j][k − 1] + c[k][j + i])

            {

               c[j][j + i] = c[j][k − 1] + c[k][j + i];

               r[j][j + i] = k;

            }

         c[j][j+i]+=w[j][j+i];

      }

   }

}

void print(int l, int rr)

{

   if(l >= rr) return;

   if(r[l][r[l][rr] − 1] != 0)

       cout <<  “\nleft child of “<<leaf[r[l][rr]].name  
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<<”\ t”<<leaf[r[l][r[l][rr] − 1]].name;

   if(r[r[l][rr]][rr] != 0)

       cout << “\nright child of”<< leaf[r[l][rr]].name 

<<“\t” <<leaf[r[r[l][rr]][rr]]. name;

   print(l,r[l][rr] − 1);

   print(r[l][rr],rr);

}

void print_tab()

{

   cout << “\noutput:\n”;

    cout <<“-------------------------------------------

---- ----------\n”;

    for(i = 0; i <= n; i++)

      cout << “w” << i << i << “=” << w[i][i] << “\n”;

   for(i = 0; i <=  n; i++)

      cout << “w” << i << i << “=” << c[i][i] << “\n”;

   for(i = 0; i <= n;  i++)

      cout << “w” << i << i << “=” << r[i][i] << “\n”;

    cout << “---------- --------------------------------

---------------\n”;

    k = 1;

   while(k <= n)

   {

      for(i = 0, j = i + k; i < n, j <= n; i++, j++)

         cout << “w” << i << j << “=” << w[i][j] << “\n”;

      for(i = 0 , j = i + k; i < n, j <= n; i++, j++)

         cout << “C” << i << j << “=” << c[i][j] << “\n”;

      for(i = 0, j  = i + k; i < n, j <= n; i++, j++)

         cout << “R” << i << j << “=” << r[i][j] << “\n”;

       cout <<“----- -----------------------------------

-----------------\n”;

       k++;

           }

     cout << “\nOBST:c[0][n]<<w[0][n]<<leaf[r[0][n]]

.name”

     cout << \nO BST:c[0][%d] = %0.2f w[0][%d] = %0.2f 

r[0][%d] = %s”, n,   c[0][n], n, w[0][n], n, leaf[r[0]

[n]].name);

}
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Program Code 10.1 is the implementation of the OBST construction through the dynamic 
approach we just discussed. Let us see its working with Example 10.2.

 example 10.2  Find an OBST using a dynamic programming for n = 4 and keys 
(k1 < k2 < k3 < k4) = (do, if, int, while) given that p(1:4) = (3, 3, 1, 1) and q(0:4) = (2, 
3, 1, 1, 1).

Solution

Step 1: Initially, c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ 4.
Hence, w(0, 0) = 2, w(1, 1) = 3, w(2, 2) = w(3, 3) = w(4, 4) = 1
This is shown in Table 10.1.

Table 10.1 OBST computation for Example 10.2 after step 1

0 1 2 3 4 Initial  
values

¨0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1

2

3

4

Step 2: w(i, j) = p(j) + q(j) + w(i, j - 1)

c
i a j

c i a a w i j( )i, j c j= min
[ ( , ) ( , ) ( , )]

< ≤
− + +1

    r = (i, j) = value of a which minimizes c(i, j)
Let us compute c(i, j) for j - i = 1

w(0, 1) = p(1) + q(1) + w(0, 0)
  = 3 + 3 + 2 = 8
 c(0, 1) = w(0, 1) + min[c(0, 0) + c(1, 1)] for a = 1
  = 8 + [0 + 0] = 8
  r(0, 1) = 1
 w(1, 2) = p(2) + q(2) + w(1, 1) = 3 + 1 + 3 = 7
  c(1, 2) = w(1, 2) + min[c(1, 1) + c(2, 2)] = 7 + [0 + 0] = 7 for a = 2
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  r(1, 2) = 2
 w(2, 3) = p(3) + q (3) + w(2, 2) = 1 + 1 + 1 = 3
 c(2, 3) = w(2, 3) + min[c(2, 2) + c(3, 3)] = 3 + [0 + 0] = 3 for a = 3
 r(2, 3) = 3
w(3, 4) = p(4) + q(4) + w(3, 3) = 1 + 1 + 1 = 3
 c(3, 4) = w(3, 4) + min[c(3, 3) + c(4, 4)] = 3 + [0 + 0] = 3
 r(3, 4) = 4

This computation is shown in Table 10.2.

Table 10.2 OBST computation for Example 10.2 after step 2

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

Here j − i = 1, 
that is, while 
calculating cij, 
a took only 
one value, 
that is, j.

2

3

4

Step 3: Compute c(i, j) for j - i = 2
w(0, 2) = p(2) + q(2) + w(0, 1)
  = 3 + 1 + 8 = 12
c(0, 2) = w(0, 2) + min[c(0, 0) + c(1, 2) for a = 1,
 c(0, 1) + c(2, 2) for a = 2]
  = 12 + min[0 + 7, 8 + 0]
  = 12 + 7 = 19
r(0, 2)  = 1
w(1, 3) = p(3) + q(3) + w(1, 2) = 1 + 1 + 7 = 9
c(1, 3) = w(1, 3) + min[c(1, 1) + c(2, 3) for a = 2,
 c(1, 2) + c(3, 3) for a = 3]
  = 9 + min[0 + 3, 7 + 0]
  = 9 + 3 = 12
 r(1, 3) = 2
w(2, 4) = p(4) + q(4) + w(2, 3) = 1 + 1 + 3 = 5
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 c(2, 4) = w(2, 4) + min[c(2, 2) + c(3, 4) for a = 3 , c(2, 3) + c(4, 4)]
    for a = 4
  = 5 + min[0 + 3, 3 + 0]
  = 5 + 3 = 8
 r(2, 4)  = 3

Table 10.3 shows this computation.

Table 10.3  OBST computation for Example 10.2 after step 3

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

Here, j − i = 2, 
that is, while 
calculating 
cij, a took two 
values. 3

4

Step 4: Compute c(i, j) for j - i = 3
w(0, 3) = p(3) + q(3) + w(0, 2) = 1 + 1 + 12 = 14
 c(0, 3) = w(0, 3) + min[c(0, 0) + c(1, 3) for a = 1, c(0, 1) + 
 c(2, 3) for a = 2, c(0, 2) + c(3, 4) for a = 3]
 = 14 + min[0 + 12, 8 + 3, 19 + 3]
 = 14 + min[12, 11, 22]
 = 14 + 11 = 25
 r(0, 3) = 2
w(1, 4) = p(4) + q(4) + w(1, 3) = 1 + 1 + 9 = 11
 c(1, 4) = w(1, 4) + min[c(1, 1) + c(2, 4) for a = 2, c(1, 2) +
 c(3, 4) for a = 3, c(1, 3) + c(4, 4) for a = 4]
 = 11 + min[0 + 8, 7 + 3, 12 + 0]
 = 11 + min[8, 10, 12]
 = 11 + 8 = 19
 r(1, 4) = 2

This computation is shown in Table 10.4.



search trees 495

DSUC    c10    V6   November 26, 2012 11:08 AM   Page 495

Table 10.4  OBST computation for Example 10.2 after step 4

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

3 w03 = 14
c03 = 25
r03 = 2

w14 = 11
c14 = 19
r14 = 2

Here j − i = 3, 
that is, while 

calculating cij, 
a took three 

values.4

Step 5: Compute c(i, j) for j - i = 4
w(0, 4) = p(4) + q(4) + w(0, 3) = 1 + 1 + 14 = 16
 c(0, 4) = w(0, 4) + min[c(0, 0) + c(1, 4) for a = 1, c(0, 1) + c(2, 4) for a = 2, 
 c(0, 2) + c(3, 4) for a = 3, c(0, 3) + c(4, 4) for a = 4]
 = 16 + min[0 + 19, 8 + 8, 19 + 3, 25 + 0]
 = 16 + min[19, 16, 22, 25]
 = 16 + 16 = 32
 r(0, 4) = 2

All these computations are shown in Table 10.5.
Table 10.5 OBST computation for Example 10.2 after step 5

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

3 w03 = 14
c03 = 25
r03 = 2

w14 = 11
c14 = 19
r14 = 2

4 w04 = 16
c04 = 32
r04 = 2



496 data structures using c++

DSUC    c10    V6   November 26, 2012 11:08 AM   Page 496

In the last step, we obtained w04 = 16, c04 = 32, r04 = 2, which denote that for 
the given keys = (do, if, int, while), an OBST has weight 16, cost 32, and root 
k2 = if.

In Table 10.5, row i and column j shows the result of w(j, i + j), c(j, i + j), and r(j, i + j), 
respectively. The calculation proceeds row-by-row.

The r values are shown in Fig. 10.8.

r04 = 2

r00 = 0 r11 = 0 r22 = 0 r34 = 4

r33 = 0 r44 = 0

r01 = 1 r24 = 3

Fig. 10.8 Tree and r values

Let us construct an OBST as shown in Fig. 10.9 from the calculations based on these 
r values. 

intdo

while

if

k1 k3

k4

k2

Fig. 10.9 OBST for Example 10.2

Let us now see another example of OBST construction through dynamic approach in 
Example 10.3.
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 example 10.3  Find an OBST using the dynamic programming approach for n = 4, 
keys = (count, float, if, while). Compute w(i, j), r(i, j), and c(i, j) for 0 £ i £ j £ 4 given 
that p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) = 1/20, q(0) = 1/5, 7(1) = 1/10, q(2) = 1/5, 
q(3) = 1/20, and q(4) = 1/20. Using r(i, j), construct an OBST.

Solution

p( : ) , , , ( . , . , . , . )1 4
1

20

1

5

1

10

1

20
0 05 0 2 0 1 0 05= =

q( : ) , , , , ( . , . , . , . , .0 4
1

5

1

10

1

5

1

20

1

20
0 2 0 1 0 2 0 05 0 05= = ))

Step 1: c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ 4
Hence, w00 = 0.2, w11 = 0.1, w22 = 0.2, w33 = 0.05, w44 = 0.05.

Step 2: w(i, j) = q( j) + p( j) + w(i, j - 1)

c
c i a a w i j

i a j
( )i, j

c j= min [ ( , ) ( , ) ( , )]− + +
< ≤

1

r(i, j) = value of a which minimizes c(i, j)
Compute c(i, j) for j - i = 1.
w(0, 1) = p(1) + q(1) + w(0, 0)
 = 0.05 + 0.1 + 0.2 = 0.35
 c(0, 1) = w(0, 1) + min[c(0, 0) + c(1, 1)]
 = 0.35 + [0 + 0] = 0.35
 r(0, 1) = 1
w(1, 2) = p(2) + q(2) + w(1, 1) = 0.2 + 0.2 + 0.1 = 0.5
c(1, 2) = w(1, 2) + min[c(1, 1) + c(2, 2)] = 0.5 + [0 + 0] = 0.5
 r(1, 2) = 2
w(2, 3) = p(3) +q (3) +w(2, 2) = 0.1 + 0.05 + 0.2 = 0.35
 c(2, 3) = w(2, 3) + min[c(2, 2) + c(3, 3)] = 0.35 + [0 + 0] = 0.35
 r(2, 3) = 3
w(3, 4) = p(4) + q(4) + w(3, 3) = 0.05 + 0.05 + 0.05 = 0.15
 c(3, 4) = w(3, 4) + min[c(3, 3) + c(4, 4)] = 0.15 + [0 + 0] = 0.15
 r(3, 4) = 4

Step 3: Compute c(i, j) for j - i = 2.
w(0, 2) = p(2) + q(2) + w(0, 1)
 = 0.2 + 0.2 + 0.35 = 0.75
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 c(0, 2) = w(0, 2) + min[c(0, 0) + c(1, 2), c(0, 1) + c(2, 2)]
 = 0.75 + min[0 + 0.5, 0.35 + 0]
 = 0.75 + 0.35 = 1.10
 r(0, 2) = 2
w(1, 3) = p(3) + q(3) + w(1, 2) = 0.1 + 0.05 + 0.5 = 0.65
 c(1, 3) = w(1, 3) + min[c(1, 1) + c(2, 3), c(1, 2) + c(3, 3)]
 = 0.65 + min[0 + 0.35, 0.5 + 0]
 = 0.65 + 0.35 = 1.00
 r(1, 3) = 2
w(2, 4) = p(4) + q(4) + w(2, 3) = 0.05 + 0.05 + 0.35 = 0.45
 c(2, 4) = w(2, 4) + min[c(2, 2) + c(3, 4), c(2, 3) + c(4, 4)]
 = 0.45 + min[0 + 0.15, 0.35 + 0]
 = 0.45 + 0.15 = 0.60
 r(2, 4) = 3

Step 4: Compute c(i, j) for j - i = 3.
w(0, 3) = p(3) + q(3) + w(0, 2)
 = 0.1 + 0.05 + 0.75 = 0.90
 c(0, 3) = w(0, 3) + min[c(0, 0) + c(1, 3), c(0, 1) + c(2, 3), c(0, 2) + c(3, 3)]
 = 0.9 + min[0 + 1, 0.35 + 0.35, 1.1 + 0]
 = 0.9 + 0.7 = 1.6
 r(0, 3) = 2
w(1, 4) = p(4) + q(4) + w(1, 3) = 0.05 + 0.05 + 0.65 = 0.75
 c(1, 4) = w(1, 4) + min[c(1,1) + c(2, 4), c(1, 2) + c(3, 4), c(1, 3) + c(4, 4)]
 = 0.75 + min[0 + 0.6, 0.5 + 0.15, 1 + 0]
 = 0.75 + min[0.6, 0.65, 1]
 = 0.75 + 0.6 = 1.35
 r(1, 4) = 2

Step 5: Compute c(i, j) for j - i = 4.
w(0, 4) = p(4) + q(4) + w(0, 3) = 0.05 + 0.05 + 0.9 = 1.00
 c(0, 4) = w(0, 4) + min[c(0, 0) + c(1, 4), c(0, 1) + c(2, 4), c(0, 2) + c(3, 4), 
                c(0, 3) + c(4, 4)]
 = 1 + min[0 + 1.35, 0.35 + 0.6, 1.1 + 0.15, 1.6 + 0]
 = 1 + min[1.35, 0.95, 1.25, 1.6]
 = 1 + 0.95 = 1.95
 r(0, 4) = 2

Hence, for the keys (k1, k2, k3, k4) = (count, float, if, while), an OBST has weight w04 = 1, 
cost c04 = 1.95 and root r04 = 2.

These calculations can be written in the table form as in Table 10.6.
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Table 10.6 OBST computations for Example 10.3 

0 1 2 3 4

0 w00 = 0.2
c00 = 0
r00 = 0

w11 = 0.1
c11 = 0
r11 = 0

w22 = 0.2
c22 = 0
r22 = 0

w33 = 0.05
c33 = 0
r33 = 0

w44 = 0.05
c44 = 0
r44 = 0

1 w01 = 0.35
c01 = 0.35
r01 = 1

w12 = 0.5
c12 = 0.5
r12 = 2

w23 = 0.35
c23 = 0.35
r23 = 3

w34 = 0.15
c34 = 0.15
r34 = 4

2 w02 = 0.75
c02 = 1.1
r02 = 2

w13 = 0.65
c13 = 1
r13 = 2

w24 = 0.45
c24 = 0.6
r24 = 3

3 w03 = 0.9
c03 = 1.6
r03 = 2

w14 = 0.75
c14 = 1.35
r14 = 2

4 w04 = 1
c04 = 1.95
r04 = 2

Figure 10.10 shows the calculated r values.

r04 = 2

r01 = 1

r00 = 0 r11 = 0 r22 = 0 r34 = 4

r33 = 0 r44 = 0

r24 = 3

Fig. 10.10 Keys and r value

Figure 10.11 is the OBST obtained for Example 10.3 based on these r values.

float

cout if

while

k4

k3

k2

k1

Fig. 10.11 OBST for Example 10.3
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10.3 AvL TRee (heIghT-bALAnced TRee)

In many applications, insertions and deletions occur frequently with no predictable  
order. Sometimes, it is important to optimize the search times by keeping the tree bal-
anced at all times. The resulting BST is called AVL tree. It was described by two Russian 
mathematicians G. M. Adelson-Velskii and E. M. Landis in 1962.

An AVL tree is a BST where the heights of the left and right subtrees of the root differ 
by utmost 1 and the left and right subtrees are again AVL trees. The formal definition is 
as follows:

Definition: An empty tree is height-balanced, if T is a non-empty binary tree with T
L
 

and T
R
 as its left and right subtrees, respectively, with the following properties:

1. T
L
 and T

R
 are height-balanced.

2. -1 £ ΩhL – hRΩ£ 1, where h
L
 and h

R
 are the heights of T

L
 and T

R
, respectively.

In an AVL tree with n nodes, the searches, insertions, and deletions can all be achieved 
in time O(log n), even in the worst case. To keep the tree height-balanced, we have to find 
out the balance factor of each node in the tree after every insertion or deletion.

The balance factor of a node T, BF(T), in a binary tree is hL - hR, where hL and hR are 
the heights of the left and right subtrees of T, respectively. For any node T in an AVL tree, 
the BF(T) is equal to -1, 0, or 1.

For example, consider the BST as shown in Fig. 10.12.

 BF(Fri) = 0
 BF(Mon) = +1
 BF(Sun) = +2

Because BF(Sun) = +2, the tree is no longer height-balanced, and it should be restruc-
tured.

+2

+1

0

Fri

Mon

Sun

Fig. 10.12 Unbalanced BST

If a node is inserted or deleted from a balanced tree, then it may become unbalanced. So to 
rebalance it, the position of some nodes can be changed in proper sequence. This can be 
achieved by performing rotations of nodes. For example, consider the BST as in Fig. 10.13.
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+2

+1

0

0

0

0Fri

Fri

Mon

Mon

Sun

Sun

BF (Fri) = 0

Rotate Sun
towards right
around Mon

BF (Mon) = +1

BF (Sun) = +2

(a) (b)

Fig. 10.13 Balancing a tree by rotating towards right  (a) Unbalanced tree  (b) Balanced tree

Similarly, the rotation can be performed towards left as shown in Fig. 10.14.

Fig. 10.14 Balancing a tree by rotating towards left  (a) Unbalanced tree  (b) Balanced tree

0

0

0

Fri

Mon

Sun

BF (Fri) = −2

Rotate Fri
towards Left
around Mon

BF (Mon) = −1

BF (Sun) = 0

(a) (b)

0

Fri
−2

−1

Mon

Sun

Let X be an inserted node and A be an unbalanced node after insertion whose BF = ±2. 
It depends on the scenario whether a rotation should be performed towards left or right. 
An unbalanced tree is balanced using one of the following four ways: (a) Left of left (LL)  
(b) Right of right (RR) (c) Left of right (LR) (d) Right of left (RL).

Case 1: LL (Left of Left) Consider the BST in Fig. 10.15. Note that the nodes drawn 
as squares represent subtrees.

+

+

+

+

Fig. 10.15 Case LL for unbalanced tree due to insertion at left of left of a node  
(a) Unbalanced tree due to increase in height of BL  (b) Balanced tree
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Suppose the node A in Fig. 10.15 becomes unbalanced when X is inserted to the left of left 
of A, that is, in the left subtree of the left subtree of A, then the rule of rotation as in Fig. 
10.15 should be used for balancing.

As shown in Fig. 10.15, BL is to the left of the left child of A. When the height of BL in-
creases, then node A becomes unbalanced. To rebalance the tree, node B becomes the root 
of the subtree. As it is a BST and BL < B in a rebalanced tree, BL remains the left child of 
B. As B < A, node A becomes the right child of B. As A < AR, AR remains the right child of 
A. Now, the question is where to place BR. Because BR > B, it will be placed to the right of 
B. However, BR < A, so it will be placed to the left of A. Hence, BR becomes the left child 
of A. Thus, in Fig.10.15, right rotation of A is performed around the node B.

Case 2: RR (Right of Right) When X is inserted to the right of right of A, that is, in 
the right subtree of the right subtree of A, the rule of rotation as in Fig. 10.16 should be 
used for balancing.

Fig. 10.16 Case RR for unbalanced tree due to insertion at right of right of a node  
(a) Unbalanced tree due to increase in height of BR  (b) Balanced tree

−

−

−

As shown in Fig. 10.16, BR is to the right of the right child of A. When the height of BR 
increases, then node A becomes unbalanced. To rebalance the tree, node B is made the 
root of the tree. As it is a BST and BR > B in the rebalanced tree, BR remains the right child 
of B. As A < B in the rebalanced tree, A becomes the left child of B. As AL < A, AL remains 
the left child of A. Now, the question is where to place BL. As BL < B, it will be on the left 
side of B. Since BL > A, it will be to the right of A, and BL becomes the right child of A. In 
other words, BL is less than B and greater than A. Thus, it should be inserted in the left of 
B and right of A. Thus, in Fig. 10.16, left rotations of A are performed around B.

Case 3: LR (Left of Right) When X is inserted to the left of right of A, that is, in the 
left subtree of the right subtree of A, the rules of rotation as in Fig. 10.17 should be used 
for balancing.

In Fig. 10.17, the case LR is depicted using three different scenarios. Scenario 1  
depicts a simplified tree where A has no right child, B has no left child, and C has no 
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children. Node A is unbalanced due to the insertion of C to the right of the left child 
of A. To rebalance the tree, C becomes the root of the subtree. As C < A, A becomes the 

Fig. 10.17 Case LR for unbalanced tree due to insertion in left of right of a node  
(a) LR rotation  (b) Scenario 2—LR rotation after insertion of new node   

(c) Scenario 3

+

+

−

+

−

−

+

−

+

+

+
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right child of C. As B < C, B remains the left child of C and thus remains at its position in 
the subtree.

In scenario 2, node A is unbalanced due to the increase in the height of CL. 
Figure 10.17(c) depicts how node A is unbalanced due to 
the increase in the height of CR. For both the cases, solu-
tion is the same. In the rebalanced trees, node C becomes 
the root of the subtree. As C < A < AR, A becomes the right 
child of C and AR remains the right child of A. In addition, 
as BL < B < C, B becomes the left child of C and BL remains 
the left child of B. Till this step, the subtree looks as shown 
in Fig.10.18.

Now, the question is where to place CL and CR. As CL < C, 
it will be placed on the left of C. Since CL > B, it becomes the 
right child of B. Similarly, CR > C, so it will be inserted to the right of C. Since CR < A, it 
becomes the left child of A.

To summarize the case LR, node C becomes the root of the rebalanced subtree. As CL 
< C and B < C, they are placed on the left of C. As CR > C and A > C, they are placed on 
the right of C.

Case 4: RL (Right of left) When X is inserted to the right of left of A, that is, in the 
right subtree of the left subtree of A, the rules of rotation as in Fig. 10.19 should be used 
for balancing.

In Fig. 10.19, the case RL is depicted using three different scenarios. In scenario 1, it 
is considered that A has no left child, B has no right child, and C has no children. Hence, 
Fig. 10.19(a) looks simplified. Here, node A becomes unbalanced due to the insertion of 
node C. To rebalance it, node C becomes the root of the subtree. As A < C, A becomes the 
left child of C and remains at the same position in the rebalanced tree.

Figure 10.19(b) depicts how node A becomes unbalanced due to the increase in the 
height of CL. In Fig. 10.19(c), scenario 3 depicts how node A becomes unbalanced due to 
the increase in the height of CR. In both Scenarios 2 and 3, solution is the same. To rebal-
ance the subtrees, node C becomes the root of the subtrees. As AL < A < C, AL remains 
the left child of A, and A becomes the left child of C. As C < B < BR, BR remains the right 
child of B, and B becomes the right child of C. Upto this step, the subtree looks as shown 
in Fig.10.20.

Now, the question is where to place CL and CR. As CL < C, it will be inserted to the left 
side of C. As CL > A, it becomes the right child of A. Similarly, as CR > C, CR becomes the 
right child of C. However, CR < B; hence, it becomes the left child of B.

To summarize the case RL, node C becomes the root of the rebalanced subtree. As A < 
C and CL < C, they are placed on the left of C. In addition, B > C and CR > C; hence, they 
are placed to the right of C.

C

B A

BL AR

Fig. 10.18 Partial subtree 
in the LR case 
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Fig.10.19 Case RL for unbalancing due to insertion in right of left of a node 
(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

−+

−

−

−

−

−
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Fig. 10.20 Partial subtree in case RL

C

B A

AL BR

Let us see an example to illustrate the process involved in maintaining a height- 
balanced BST in Example 10.4.

 example 10.4  Consider a list of subjects studied in a computer engineering course. 
Assume that the insertions are made in the following order:

 MP, MBS, MMT, NCP, AI, ACA, OOCS, DC, DS, OOP, OOMD

Solution: The steps of insertions and the brief explanations are listed and illustrated 
as follows.

(a) Insert MP. 

0

MP

(b) Insert MBS.

0

MP

MBS

+1

(c) Insert MMT. In the BST, MMT is placed to the right of left of MP, and MP is 
unbalanced. Hence go for LR rotation for rebalancing. 

0

0

0

0

+2

MP

MPMBSMBS
LR

MMT

MMT

−1
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(d) Insert NCP. 

−1

0

0

NCP

MPMBS

MMT

−1

(e) Insert AI. 

0

0 0

MP

NCPAI

MBS

MMT

+1
−1

(f) Insert ACA. ACA is placed to the left of left of MBS, and MBS is unbalanced. 
Hence use LL rotation to rebalance it. 

+1

+1 0

0

MP

LL

NCPAI

ACA

MBS

MMT

+2 −1

0

0 0 0

MP

NCPACA MBS

AI

MMT

0 −1

(g)  Insert OOCS. OOCS is placed to the right of right of MP and now MP is  
unbalanced. Hence use RR rotation for rebalancing. 
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RR

−1

−1

MP

NCP

0

OOCS

ACA MBS

AI

MMT

0

0 0

−2

0

0

NCP

OOCSACA MPMBS

AI

MMT

0

0 0 0

0

(h) Insert DC. 

+1

+1 0

NCP

OOCSMPMBS

DC

ACA

AI

MMT

−1 0

00

0

(i)  Insert DS. DS is placed to the right of left of MBS due to which MBS is unbal-
anced. Hence use rotation LR for rebalancing. 

LR

+2

+2 0

NCP

TCSMPMBS

0

DS

DC

ACA

AI

MMT

−2 0

00

−1

+1

0 0

NCP

OOCSMPDS

0

MBSDC

ACA

AI

MMT

−1 0

00

0
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(j)  Insert OOP. 

0

0 −1

NCP

OOCS

0

OOP

MPMBS

0

MBSDC

ACA

AI

MMT

−1 −1

00

0

(k)  Insert OOMD. OOMD is placed to the left of right of OOCS because of which 
OOCS is unbalanced. Hence use RL rotation for rebalancing.

−1

0 −2

NCP

OOCS

+1

OOP

MPDS

0

MBSDC

ACA

AI

MMT

−1 −2

00

0

OOMD

0

0

0 0

NCP

OOMD

OOP

MPDS

0

MBSDC

ACA

AI

MMT

−1 −1

00

RL

0

OOCS

0 0

10.3.1 Implementation of AvL Technique

Example 10.4 demonstrates the working procedure to balance a BST. Let us write an  
algorithm for it. In general, a node in a tree stores data of and pointers to the left and right 
children. In an AVL tree, each node stores these three fields. To simplify the work, we 
can store the height of its subtree in each node. Hence, we will define each AVL tree node 
having as four fields.

Consider an AVL tree node that has the following structure:

class AVLNode
{
   KeyType key;
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   AVLNode *Left, *Right;
   int height;
};

Assume that getNode() is a function which allocates memory for a new AVLNode, 
initializes all the fi elds, and returns a pointer to it.

Let height(n) be a function that returns the heigh t of the subtree with root n, oth-
erwise returns -1 if null. Let balancefactor(n) be a function which returns the bal-
ance factor of node n in its tree. Note that in Example 10.3 we considered the following: 
when the balance factor of a node n is +2, the tree is unbalanced due to the increase 
in the height of the left subtree and there are only two possibilities, either go for LL 
or LR. When the balance factor of node n is - 2, then the tree is unbalanced due to the 
increase in the height of the right subtree and there are only two possibilities, either go 
for RR or RL.

Let us write a function insert() which will insert a given key in the AVL tree at 
its proper position, and rebalance the tree if needed using one  of the four rotations: 
LL, RR, LR, RL. This is illustrated in Program Code 10.2.

pROGRam CODe 10.2

AVLNode *AVLNode :: insert(int NewKey, AVLNode *root)

{

   AVLNode *NewNode;

   int lh, rh; 

   root->height = height(root);

   if(root == null)

   {

      NewNode = new AVLNode;

      NewNode->key = NewKey;

      NewNode->left = null;

      NewNode->right =  null;

      root = NewNode;

   }

   else

   {

      if(NewKey < root->key)

      {

         root->left = insert(NewKey,root->left);

          if(balancefactor(root) == 2)

         {

            // Tree is unbalanced due to increase



search trees 511

DSUC    c10    V6   November 26, 2012 11:08 AM   Page 511

            // in height of left subtree

            if(NewKey < root->left->key)

            {

               cout << “\n LL rotation \n”;

               root = LL(root);

            }

            else

            {

               cout << “\n LR rotation \n”;

               root = LR(root);

            }

         }

      }

      else if(NewKey > root->key)

      {

         root->right = insert(NewKey, root->right);

         if(balancefactor(root) == −2)
         {

            // Tree is u nbalanced due to increase 

            // in height of right subtree

            if(NewKey > root->right->key)

            {

               cout << “\n RR rotation \n”;

               root = RR(root);

            }

            else

            {

               cout << “\n RL rotation \n”;

               root = RL(root);

            }

         }

      }

      else

         cout << “Duplicate key”;

   }

   // After insertion, modify fi eld height of the root

   root->height = height(root); 

   return root;

}
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We now know the four rules of rotation. Let us write a code for Case 1: LL. Consider the 
scenario as in Fig. 10.21 where Program Code 10.3 simulates its operations.

A

B

C

0 0

0

0
0

1

2

0

0

0LL

CL

B

C A

CR

BR CL CR BR AR

AR

Fig. 10.21 Scenario for case LL

pROGRam CODe 10.3

// rotation: Left 

AVLNode *AVLNode :: Left(AVLNode *A) 

//function is called with unbalanced node as a parameter

{

   AVLNode *B;

   B = A->right;

   A->right = B->left;

   B->left = A;

   A->height = height(A);

   B->height = height(B);

   return B;      // Set new root to B

}

// Rotation : Right 

 AVLNode *AV LNode::Right(AVLNode *A)

{

   AVLNode *B;

    B = A->left;

   A->left = B->right;

   B->right = A;

   A->height = height(A);

   B->height = height(B);
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   return B;      // Set new root to B

}

// Case 1 of rotation : LL

AVLNode *AVLNode :: LL(AVLNode *root)

{

   root = Right(root);

   return root;

}

// Case 2 of rotation : RR 

AVLNode *AVLNode :: RR(AVLNode *root)

{

   root = Left(root);

   return root;

}

Similarly, the function RR() can be written for Case 2. Program Code 10.3 shows the 
simulation of RR. Now, consider Case 3: LR (Fig. 10.22a) and Case 4: RL (Fig. 10.22b).

Fig. 10.22 Scenario for case (a) LR (b) RL

−
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We can use the functions LL() and RR() to write the LR() and RL() functions as in 
Program Code 10.4.

pROGRam CODe 10.4

// Case 3 of rotation:LR

AVLNode *AVLNode :: LR(AVLNode *root)

{

   root->left = Left(root->left);

   root = Right(root);

   return root;

}

//* Case 4 of rotation : RL

AVLNode *AVLnode :: RL( AVLNode *root)

{

   root->right = Right(root->right);

   root = Left(root );

   return  root;

}

Similarly, the function RL() can be written for case 4. Program Code 10.4 depicts the 
simulation of it.

10.3.2 Insertions and deletions in AvL Tree

Insertions and deletions in AVL tree are performed as in BSTs and followed by rota-
tions to correct the imbalances in the outcome trees. In the case of insertions, one 
rotation is suffi cient. In the case of deletions, utmost O(logn) rotations are needed 
from the fi rst point of discrepancy going up towards the root.

Figure 10.23 demonstrates the deletion of a node in a given AVL tree. The origi-
nal tree is shown in Fig. 10.23(a). Figure 10.23(b) shows the tree after deletion of 
node 4. Note that in Fig. 10.23(c), the imbalance at node 3 implies an LL rotation 
around node 2 and the imbalance at node 5 in Fig. 10.23(d) implies a n RR rotation 
around node 8.

Program Code 10.5 illustrates a function to delete an element from AVL tree.
Examples 10.5–10.7 illustrate the construction of an AVL tree for different sets 

of data.
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5

0

00 0

0

1

Fig. 10.23 Deletion of a node in AVL tree  (a) Original tree  (b) Af ter deletion of 4 
(c) LL rotation around node 2  (d) RR rotation around node 8

pROGRam CODe 10.5 

//Function to delete an element from AVL tree

AVLNode *AVLNode :: del(AVLNode *root,int dval)

{

   AVLNode *temp;

   if (root != null)

   {

      if (dval < r oot->key)

      {

         root->left = del(root->left,dval);

         if(balancefactor(root) == −2)

         {

            if(balancefactor(root->right)  <= 0)
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            {

               cout << “\n RR rotation \n”;

               root = RR(root);

            }

            else

            {

               cout << “\n RL rotation \n”;

               root = RL(root);

            }

         }

      }

      else if(dval > root->key)

      {

         root->right = del(root->right, dval);

         if(balancefactor(root) == 2)

         {

            if(balancefactor(root->left) >= 0)

            {

               cout << “\n LL rotation \n”;

               root = LL(root);

            }

            else

            {

               cout << “\n LR rotation \n”;

               root = LR(root);

            }

         }

      }

      else

      {

         if(root->right == null)      // No right tree

            return(root->left);

         else

         {

            // fi nd leftmost of right

            temp = root->right;

            while(temp->left != null)

               temp = temp->left;

            root->key = temp->key;

            temp->right = del(root->right, temp->key);

            if(balancefactor(root) == 2)

            {

               if(balancefactor(root->left) >= 0)
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                  root = LL(root);

               else

                  root = LR(root);

            }

         }

       }

   }

   else

      return null;

   // Update height of root node

   root->height = height(root);

   return(root);

}

 EXAMPLE 10.5  Construct an AVL tree for the following data:

30, 31, 32, 23, 22, 28, 24, 29, 26, 27, 34, 36

Solution Let us solve and show the balance factor and the type of rotation 
performed (if any) at each insertion. Table 10.7 demonstrates the same through the 
steps stated here.

30 30

31

32

23

RR

0

−1

−2

−1

1

1

30

31
0

30

31

32

0

0
0

30

31

32

0

30

31

32

23

0

0

No balancing required

No balancing required

No balancing required

Data
inserted

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

Table 10.7 Construction of AVL tree for Example 10.5

(Continued)



518 data structures using c++

DSUC    c10    V6   November 26, 2012 11:08 AM   Page 518

30

30

31

31

32

32

23 23

22 28

28

22

22

28

LL

LR

1

1

2

2

−1 −1

2

0

30

31

32

23

22

0

30

31

3223

22

0

0

0

0

0

0

0

00

0

1

0

0

29

24

29

28

31

31

32

23

22

24

−1 −1

0

1

0

0

0

0

28

31

31

32

23

22

24

0

−1

−1

−1

1
0

0

No balancing required

No balancing required

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

Data
inserted

Table 10.7 (Continued)

(Continued)
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Table 10.7 (Continued)

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

26

−1

29

28

30

31

32

24

23

26

0
1

1

22

0
0

0

0

0

27

2926

28

30

31

24

23

27 32

1

1

−1

−1−1

22

0

0 0

0

0

2

−1

−1

−1

29

28

30

31

32

23

22

24
0

1

2

26

0

−1

−2 −1

0

0

28

28

30

31

32

24

23

22 26
0

1

27

1 0

0

0

−1

−1

−2

34

2826

28

30

32

24

23

27

34

0

0

1

22

0

0

−1

−1

0

0

0

0

0

31

2926

28

30

31

24

23

27

32

34

00

0

1

22

0

−2

0

31

34
30

31

36

36

22 22

32

32

36

34

3024

28

23 23

27

28

24

2729

29

0

0

0 0

0
0

0
0

0 0

0
0

0

0

1

1

1

1

−1

−1

−1

−2

RL

LR

RR

RR

Data
inserted

 example 10.6  Construct an AVL tree for the following data:

STA, ADD, LDA, MOV, jMP, TRIM, xCHG, MVI, DIV, NOP, IN, jNz

Solution Figure 10.24 demonstrates the steps involved to construct the AVL tree for 
the given sequence.
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Fig.10.24 Construction of AVL tree for Example 10.6  (a) Key = STA  (b) Key = ADD 
(c) Key = LDA  (d) Key = MOV  (e) Key = JMP  (f) Key = TRIM

(a) (b)

(c)

(d)

(e)

STA

LDA

LDA

LDA

LDA

MOV

MOV

STA

STA

STA

STA

STA

ADD

ADD

ADD

ADD

ADD

JMP

0
1

1

2

LR

1

1
−1

−1

0

0

00

0

0

0

0

0

No balancing required

1. Insert STA

3. Insert LDA

4. Insert MOV

5. Insert JMP

6. Insert TRIM

2. Insert ADD

No balancing required

(f)

No balancing required

LDA

MOV TRIM
JMP

STAADD −1

0

0

0

0 0

(Continued)
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Fig.10.24 (Continued)  (g) Key = XCHG  (h) Key = MVI 
(i)  Key = DIV  (j) Key = NOP

LDA

MOV TRIM

XCHG

JMP

STAADD −1

0

0
00

0

0

LDA

MOV

MVI

TRIM

XCHG

JMP

STAADD −1

−1 −1

−1

−1

0

0

0

0

LDA

MOV

MVI

TRIM

XCHG

JMP

STA

ADD
−1−1

0
00

0

0

0

LDA

MOV

DIV

DIV

MVI

TRIM

XCHG

JMP

STA
RLADD

−1

−1
−2

−1

0

0

0 1

0

0

No balancing required

(g)

(h)

(i)

(j)

−1

−1

0

0 0

0

0

0

0 0

LDA

MOV

MVI NOP

TRIM

XCHG

JMP

STA

ADD

DIV

7. Insert XCHG

8. Insert MVI

9. Insert DIV

10. Insert NOP

(Continued)
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−

−

−

−

11. Insert IN

12. Insert JNZ

Fig.10.24 (Continued) (k) Key = IN (l) Key = JNZ

 example 10.7  Construct an AVL tree for the set of keys = {50, 55, 60, 15, 10, 40, 20, 
45, 30, 70, 80}.

Solution Figure 10.25 demonstrates the construction of an AVL tree for the given 
set of keys.

1. After insertion of (50, 55, and 60):

50

55

RR LL LR

15

15

55 55

50

60

40

60 60

10

10 50

−2

−1

−1

2

1

2

10

0

0

0

0

0

2
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2. After insertion of (15, 10, 40, 20, 45, and 30):

−−

−

++

−−

3. After insertion of 70 and 80:

Fig.10.25 Construction of AVL tree for Example 10.7

+

+ −

RecAPITULATIOn

• Search trees are of great importance in an algo-
rithm design.

• It is always desirable to keep the search time 
of each node in a tree minimal.

• OBST maintains the optimal average search 
time of all the nodes.

• In an AVL tree, after insertion of each node, it 
is checked wh ether the tree i s balanced or no t. 
If unbalanced , it is  rebalanc ed immediately.

• Rebalancing of AVL tree is performed using 
one of the four ro tations: LL, RR, LR, RL.

• AVL trees work by ensuring that all nodes of 
the left and right subtrees differ in height by 
utmost 1, which ensures that a tree cannot get 
too deep.

• Compilers use hash tables to keep track of the 
declared variables in a  source code called as 
a symbol table.

• Unbalancing of an AVL tree due to insertion is 
removed in a single rotation. However, unbal-
ancing due to the deletion may require multiple 
steps for balancing.
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AVL tree An AVL tree is a BST where the heights 
of the left and right subtrees of the root differ by 
utmost 1. In addition, the left and right  subtrees of 
the root are again AVL trees.

Keyed table Keyed tables are a very useful data 
structure. They store <key, information> pairs 
with no additional logical structure.

OBST Optimal binary search tree is a binary 

search tree having an average search time of all 
keys as the optimal value.

Symbol table While compilers and assemblers 
scan a program, each identifi er must be examined 
to determine if it is a keyword. This informa-
tion concerning the keywo rds and identifi er in a 
programming language is stored in  a table called 
symbol table.

Key TeRMS

eXeRcISeS

Multiple choice questions

 1. Which of the following is true?
 (a) The cost of searching an AVL tree is O(logn) 

but that of a BST is O(n).
 (b)  The cost of searching an AVL tree is O(logn) 

but that of a complete binary tree is O(nlogn).
 (c) The cost of searching a BST is O(logn) but 

that of an AVL tree is O(n).
 (d) The cost  of searching an AVL tree is 

O(logn) but that of a BST is O(n) 
 2. In the following AVL tree, the stru cture has to 

be balanced, so we have to rotate it

−2

−1

0

3

5

11

 (a) clockwise
 (b) counter clockwise
 (c) in both the directions
 (d) none of the above
 3. What is the maximum height of an AVL tree 

with seven nodes? 
 Note: Assume that the height of a tree with a single 

node is 0.

 (a) 2
 (b) 3
 (c) 4
 (d) 5
 4. The worst case height of an AVL tree with n 

nodes is 
 (a) 1.44log(n + 2)
 (b) 2.44log(n + 2)
 (c) 3.44log(n + 2)
 (d) 1.44log(n + 2)
 5. What will be the time complexity for inserting a 

node into an AVL tree?
 (a) O(n)
 (b) O(logn)
 (c) n
 (d) n2

 6. Which of the following properties of OBST is 
true?

 (a)  The left subtree of a node contains only 
the nodes with keys less than the node’s 
key.

 (b)  The right subtree of a node contains only 
the nodes with keys greater than the node’s 
key.

 (c)  Both the left and r  ight subtrees must also be 
BSTs.

 (d) All of the above
 7. To fi nd the cost of the given OBST,
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10

14

E7

5

11

12E4

4

E0 E1

8

E2 E3

E5 E6

 we have to consider
 (a) successful search of internal nodes.
 (b) unsuccessful search of internal nodes.
 (c)  successful search of internal nodes and 

unsuccessful search of external nodes.
 (d) unsuccessful search of external nodes.
 8. What is the time complexity of an OBST?
 (a) O(n3)
 (b) O(nlogn)
 (c) O(logn)
 (d) O(n2)
 9. The OBST is an example of
 (a) static symbol table
 (b) dynamic symbol table
 (c) all of the above
 (d) none of the above
10. Compute the total cost of the given OBST, 

if the probability of successful search is (p1, 
p2, p3) = (1/7, 1/7, 1/7) and the probability of 
unsuccessful search is (q0, q1, q2, q3) = (1/7, 
1/7, 1/7, 1/7)

P1

P2 P3

Q0 Q1 Q2 Q3

 (a) 2
 (b) 15/7

 (c) 16/7
 (d) 12/7

Review questions

1. A size-balanced binary tree in which for every 
node, the difference between the number of 
nodes in the left and right subtree is utmost 1. 
The distance of a node from the root is the length 
of path from the root to the node. The height of 
a binary tree is the maximum distance of a leaf 
node from the root.

 (a)  Prove by using induction on h that a size-
balanced binary tree of height h contains at 
least 2n nodes.

 (b)  In a fixed-balanced binary tree of height  
h £ 1, how many nodes are at distance h - 1 
from the root?

2. (a)  In a binary tree, a full node is defined to be 
a node with two children. Use induction on 
the height of the binary tree to prove that the 
number of full nodes plus one is equal to the 
number of leaves.

 (b)  Draw the min-heap that results from the 
insertion of the following elements in order 
into an initially empty min-heap: 7, 6, 5, 4, 
2, 3, 1. Show the result after the deletion of 
the root of this heap.

3. Consider the following array and draw the heap 
that this array represents.

90 80 40 50 60 10 20 30

4. What is OBST? Derive the various equations 
to calculate the cost and weight of each node 
in OBST. Write the pseudo-C++ code for the 
OBST algorithm. 

5. Insert the following numbers in an AVL tree and 
show at each stage the required trans formations:

  50, 60, 108, 8, 0, 48, 32, 40
   Show the BF of each node throughout the 

process.
6. Compare OBST with AVL tree.  
7. Give one example for each of the four types of 

rotations possible in an AVL tree.
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Answers to multiple choice questions

1. (a)  2. (b)  3. (b)  4. (a)  5. (b)  6. (d)
7. (c) The expected cost of an optimal BST is

P a Q Eii × × −∑ ∑level ( ) level ( )i
n

n

i
n

n

0=1=
+ ( )1

where,
Internal node: successful search, Pi 
External node: unsuccessful search, Qi 

8. (a) Construction of OBST
   for i = 0 to n do

      wi,i = qi

      ci,i = 0

      ri,i = 0

   for length = 1 to n do

      for i = 0 to n − length do

         j = i + length

         wi,j = wi,j−1 + pj + qj
         m =  value of k (with i < k £ j) which minimizes (ci,k−1 + ck,j)
         ci,j = wi,j + ci,m-1 + cm,j
         ri,j = m

         Leftson(ri,j) = ri,m-1
         Rightson(ri,j) = rm,j
The time complexity of this algorithm is O(n3).

9. (a) 10. (b) The formula to find the cost of OBST is as follows:

P a Q Ei i× × −∑ ∑level ( ) level ( )i
n

n

i
n

n

=1 =0
+ ( )1

Hence, cost(tree) = [ (1/7 ¥ 1) + ( 2 ¥ 1/7 + 2 ¥ 1/7)] + [1/7 ¥ (3 - 1) + 1/7 ¥ (3 - 1) + 1/7 ¥ (3 - 1) + 
  1/7 ¥ (3 - 1)]
 = 5/7 + 8/7
 = 13/7
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One of the most frequent and prolonged tasks in computer science is searching for a 
particular data record from a large amount of data. The expectation is to retrieve data 

within average constant time. Searching is the process of fi nding  the location of the target 
among the list of objects using a key. Key is a fi eld or combination of more than one fi eld 
within the data record. It is used to uniquely identify the record and also to manage its 
access and usage. 

We have discussed search techniques in Chapter 9. In both sequential and binary 
searches as well as in Fibonacci search, we need to perform many operations to locate the 
target data. The operations include computing the search index, comparing the target with 
the record at that index, and modifying the index again if not found. In an ideal situation, 
we expect the target to be searched in one or fewer attempts. One way to achieve this is 
that we should know (or should be able to obtain) the address of the record where it is 
stored.  Hashing is a method of directly computing the address of the record with the help 
of a key by using a suitable mathematical function called the  hash function. A  hash table 
is an array-ba sed structure used to store <key, information> pairs. In this chapter, we will 
learn about hashing, hash functions, and other related aspects. 

11.1 INTRODUCTION

For many applications, we want to retrieve the target in one access or in constant aver-
age time. Hashing is fi nding an address where the data is to be stored or to locate using 
a key with the help of an arithmetic function. One of the applications this fi nds use in is 
language translators,  such as assemblers and compilers. The compiler keeps all the vari-
ables used in a p rogram in a symbol table, where the key is an arbitrary character string 
that corresponds to the identifi ers in the language. The operations performed on a symbol 
table are those of dictionary operations. A hash table is an effective data structure for 

HASHING

OBJECTI V ES

After completing this  chapter, the reader will be able to u nderstand the following:
 • Use of hashing techniques that support very fast retrieval via a key
 • Factors that affect the performance of hashing
 • Collision resolution strategies
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implementing it. There are many such applications. Let us consider an array implementa-
tion for better understanding. The concept can be easily extended to other structures such 
as files. 

Consider an example of an institute that has many departments in it. There is a central 
library and a departmental library for each department. Suppose we want to make a table 
of books for the departmental library using their unique identification number, say Ac-
cession No (Acc_No) as a key. A set of departmental library books is a subset of central 
library books, and the set of central library books is large enough. As the data is large 
enough, the range of Acc_No is 0000001 to 9999999; with 107 (may be minus one as 
we may omit 0000000) possible values. Let us assume that the departmental library has 
20,000 books. Let us use an array for storing the book records and call it as Array_Book[]. 
As these books are from the central library, their Acc_No population is greater than the 
size of the storage area. 

One way to access the book using one attempt is to store a book with Acc_No at 
(Acc_No)th location of Array_Book[] and for that we need an array of size 1,000,000. 
Instead of taking an array of size 1,000,000, we can use array of size just 20,000 and use 
the function f(x) to map the numbers in the domain [0, …, 9,999,999] to the range [0, …, 
19,999]. Figure 11.1 represents such mapping.

Acc_No

0

9,999,999
19,999

Range 0–9,999,999

1

Book array
index

0

Range 0–19,999

1

f (x).
.
.

.

.

.

Fig. 11.1 Hash function

The function f(x) will take Acc_No and return the indices where the book record is 
to be stored in the array and is called the hash function. Now each departmental book’s 
address, which is an index in the table named Array_book, is calculated while storing as 
well as retrieving it. This concept of hashing is shown in Fig. 11.2.

Hash functions transform a key into an 
address. Hashing is a technique used for storing 
and retrieving information associated with it that 
makes use of the individual characters or digits in 
the key itself.

Key

Hash(Key) Address

Fig. 11.2 Hashing concept
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The resulting address is used as the basis for storing and retrieving records and this address 
is called the home address of the record. For an array to store a record in a hash table, the hash 
function is applied to the key of the record being stored, returning an index within the range 
of the hash table. The item is then stored in the table at that index position. To retrieve an item 
from a hash table, the same scheme that was used to store the record is followed.

Hashing is similar to indexing as it involves associating a key with a relative record 
address. However, it differs from indexing in the following two important ways:

1. With hashing, the address generated appears to be random—there is no obvious 
connection between the key and the location of the corresponding record, even though 
the key is used to determine the location of the record. For this reason, hashing is 
sometimes referred to as randomizing.

2. With hashing, two different keys may be transformed to the same address, so two 
records may be sent to the same place in a file. When this occurs, it is called a collision 
and some means must be found to deal with it. The two or more records that result in 
the same home address are known as synonyms. 

11.2 KEY TERMS AND ISSUES

A problem arises, however, when the hash function returns the same value when applied 
to two different keys. To handle the situation, where two records need to be hashed to the 
same address we can implement a table structure, so as to have a room for two or more 
members at the same index positions. However, what happens if a third key hashes to the 
same index value? Before discussing such issues let us see some terms associated with 
hashing and the hash table:

Hash table Hash table is an array [0 to Max − 1] 
of size Max.

Hash function Hash function is one that maps 
a key in the range [0 to Max − 1], the result of 
which is used as an index (or address) in the hash 
table for storing and retrieving records. One more 
way to define a hash function is as the function 
that transforms a key into an address. The address 
generated by a hashing function is called the home 
address. All home addresses refer to a particular 
area of the memory called the prime area.

Bucket A bucket is an index position in a hash 
table that can store more than one record. Tables 
11.1 and 11.2 show a bucket of size 1 and size 
2, respectively. When the same index is mapped 

Table 11.1 Table with bucket size 1
Index Bucket of  size 1

0 Alka
1 Bindu
2
3 Deven
4 Ekta
5
6 Govind

13 Monika

18 Sharmila

25 Zinat
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with two keys, both the records are stored in the same bucket. The assumption is that the 
buckets are equal in size.

Consider the following example. Suppose we want to store 5 records with the key of 
each record as the person’s name. The key can be hashed by taking the address from the 
ASCII representations of the first characters of the name. The table is of size 26, i.e., one 
bucket for each alphabet with size 2 (Table 11.2a) or size 3 (Table 11.2b).

Table 11.2(a) Table with bucket size 2

Index Bucket of  size 2
0 Alka Abhay
1 Bindu Babali
2
3 Deepa Deven
4 Ekta Esha
5
6 Govind Gopal

13 Monika Meera

18 Sharmila Sindhu

25 Zinat Ziya  

Table 11.2(b) Table with bucket size 3

Index Bucket of  size 3
0 Alka Abhay Asmita
1 Bindu Babali Bhanu
2
3 Deepa Deven Deepak
4 Ekta Esha Eshwar
5
6 Govind Gopal Gautam

13 Monika Meera Manisha

18 Sharmila Sindhu Shilpi

25 Zinat Ziya Zeba

Probe Each action of address calculation and check for success is called as a probe.

Collision The result of two keys hashing into the same address is called collision.

Synonym Keys that hash to the same address are called synonyms.

Overflow The result of many keys hashing to a single address and lack of room in the bucket 
is known as an overflow. Collision and overflow are synonymous when the bucket is of size 1.

Open or external hashing When we allow records to be stored in potentially unlimited 
space, it is called as open or external hashing.

Closed or internal hashing When we use fixed space for storage eventually limiting 
the number of records to be stored, it is called as closed or internal hashing.

Hash function Hash function is an arithmetic function that transforms a key into an 
address which is used for storing and retrieving a record.

Perfect hash function The hash function that transforms different keys into different 
addresses is called a perfect hash function. The worth of a hash function depends on how 
well it avoids collision. 
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Load density The maximum storage capacity, that is, the maximum number of records 
that can be accommodated, is called as loading density.

Full table A full table is one in which all locations are occupied. Owing to the 
characteristics of hash functions, there are always empty locations, rather a hash function 
should not allow the table to get filled in more than 75%. 

Load factor Load factor is the number of records stored in a table divided by the 
maximum capacity of the table, expressed in terms of percentage. 

Rehashing Rehashing is with respect to closed hashing. When we try to store the record 
with Key1 at the bucket position Hash(Key1) and find that it already holds a record, 
it is collision situation. To handle collision, we use a strategy to choose a sequence of 
alternative locations Hash1(Key1), Hash2(Key1), and so on within the bucket table so as 
to place the record with Key1. This is known as rehashing.

Issues in hashing In case of collision, there are two main issues to be considered:

1. We need a good hashing function that minimizes the number of collisions.
2. We want an efficient collision resolution strategy so as to store or locate synonyms. 

Let us learn about these two issues and techniques to resolve them in Sections 11.3 and 
11.4, respectively.

11.3 HASH FUNCTIONS

To store a record in a hash table, a hash function is applied to the key of the record  
being stored, returning an index within the range of the hash table. The record is stored at  
that index position, if it is empty. With direct addressing, a record with key K is stored 
in slot K. With hashing, this record is stored at the location Hash(K), where Hash(K) is 
the function. The hash function Hash(K) is used to compute the slot for the key K. Let 
us discuss some issues regarding the design of good hash functions and also study the 
schemes for their creation.

11.3.1 Good Hash Function

The average performance of hashing depends on how the hash function distributes the set 
of keys among the slots. An assumption is that any given record is equally likely to hash 
into any of the slots, independent of whether any other record has been already hashed to 
it or not. This assumption is known as simple uniform hashing. A good hash function is 
one which satisfies this assumption. 

If the probability that a key ‘Key’ occurs in our collection is P(Key), and for M slots in 
our hash table, a uniform hashing function, Hash(Key), should ensure that for 0 £ Key £ 
M - 1, S P(Key) = 1, are all equiprobable with probability 1/M. The hash function should 
ensure that they are hashed to different locations.
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Sometimes, this is easy to ensure. For example, if the keys are randomly distributed 
in [0 ... r], with 0 to M - 1 locations then, Hash(Key) = floor((M ¥ Key)/r) will provide 
uniform hashing.

Features of a Good Hashing Function

1. Addresses generated from the key are uniformly and randomly distributed.
2. Small variations in the value of the key will cause large variations in the record 

addresses to distribute records (with similar keys) evenly.
3. The hashing function must minimize the occurrence of collision.

There are many methods of implementing hash functions, let us discuss a few of them.

11.3.2 Division Method

One of the required features of the hash function is that the resultant index must be within 
the table index range. One simple choice for a hash function is to use the modulus division 
indicated as MOD (the operator % in C/C++). The function MOD returns the remainder 
when the first parameter is divided by the second parameter. The result is negative only if 
the first parameter is negative and the parameters must be integers. The function returns 
an integer. If any parameter is NULL, the result is NULL.

Hash(Key) = Key % M

Key is divided by some number M, and the remainder is used as the hash address. This 
function gives the bucket addresses in the range of 0 through (M - 1), so the hash table 
should at least be of size M. The choice of M is critical. While using this method, we usu-
ally avoid certain values of M. Binary keys of length in powers of two are usually avoided. 
A good choice of M  is that it should be a prime number greater than 20.

11.3.3 Multiplication Method

Another hash function that has been widely used in many applications is the multiplica-
tion method. The multiplication method works as follows:

1. Multiply the key ‘Key’ by a constant A in the range 0 < A < 1 and extract the fractional 
part of Key ¥ A.

2. Then multiply this value by M and take the floor of the result.

Hash(Key) = ÎM ¥ ((Key ¥ A) MOD 1)˚,

 where Key ¥ A MOD 1 is the fractional part of Key ¥ A,
 that is, Key ¥ A - ÎKey ¥ A˚ and one of the commonly used values of A = (sqrt(5) - 1/2 

= 0.6180339887).
An advantage of the multiplication method is that the value of M is not critical. We 

typically choose it M = 2p for some integer p, since we can then easily implement the 
function in any programming language as:
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1. Choose M = 2p.
2. Multiply the w bits of Key by floor (A ¥ 2w) to obtain a 2w bit product.
3. Extract the p most significant bits of the lower half of this product as address.

Note that we have used the function floor; floor and ceil are the commonly used math func-
tions available in the library of almost all programming languages. These functions map a 
real number to the largest preceding or the smallest following integer, respectively. More 
precisely, floor(x) = Îx˚ is the largest integer not greater than x and ceil(x) = Èx˘ is the 
smallest integer not less than x.

11.3.4 Extraction Method

When a portion of the key is used for address calculation, the technique is called as the 
extraction method. In digit extraction, a few digits are selected, extracted from the key 
and are used as the address. For example, if the book accession number is of six digits and 
we require an address of 3 digits, then we can select the odd number digits—first, third, 
and fifth—which can be used as the address for the hash table.

For example, Table 11.3 shows the keys with 
their respective hashed addresses using digit ex-
traction.
Another way is to extract the first two and the 
last one or two digits. For example, for key 
345678, the address is 3478 if the first two and 
the last two digits are extracted or 348 if the first 
two and the last digit are extracted.

If the portion of the key is carefully selected, it can be sufficient for hashing, provided 
the remaining portion distinguishes the keys in an insufficient way. 

11.3.5 Mid-square Hashing

Mid-square hashing suggests to take the square of the key and extract the middle digits 
of the squared key as the address. The difficulty is when the key is large. As the entire 
key participates in the address calculation, if the key is large, then it is very difficult to 
store its square as it should not exceed the storage limit. So mid-square is used when 
the key size is less than or equal to 4 digits. For example, Table 11.4 shows the keys 
with their hashed addresses. If the key is a string, it has to be preprocessed to produce 
a number.

Table 11.4 Keys and addresses using mid-square

Key Square Hashed address
2341 5480281 802
1671 2792241 922

Table 11.3 Keys and addresses using 
digit extraction

Key Hashed address
345678 357
234137 243
952671 927
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The difficulty of storing the squares of larger numbers can be overcome if we use fewer 
digits of the key (instead of the whole key) for squaring. If the key is large, we can select 
a portion of the key and square it. For example, Table 11.5 gives the keys and the squares 
of the first three digits with their hashed addresses. 

Table 11.5 Keys and addresses using squares of fewer digits

Key Square Hashed address
234137 234 ¥ 234 = 54756 475

567187 567 ¥ 567 = 321489 148

11.3.6 Folding Technique

In this technique, the key is subdivided into subparts that are combined or folded and then 
combined to form the address. For a key with digits, we can subdivide the digits into three 
parts, add them up, and use the result as an address. Here the size of the subparts of the 
key is the same as that of the address. 
There are two types of folding methods: 

1. Fold shift—Key value is divided into several parts of the size of the address. Left, right, 
and middle parts are added.

2. Fold boundary—Key value is divided into parts of the size of the address. Left and 
right parts are folded on the fixed boundary between them and the centre part.

For example, if the key is 987654321, it is understood as
Left 987     Centre 654     Right 321

For fold shift, the sum is 987 + 654 + 321 = 1962. Now discard digit 1 and the address 
is 962. For fold boundary, sum of the reverse of the parts is 789 + 456 + 123 = 1368.  Dis-
card digit 1 and the address is 368.

11.3.7 Rotation

When the keys are serial, they vary only in the last digit and this leads to the creation of 
synonyms. Rotating the key would minimize this problem. This method is used along 
with other methods. Here, the key is rotated right by one digit and then folding technique 
is used to avoid synonyms. For example, let the key be 120605, when it is rotated we get 
512060. Then the address is calculated using any other hash function.

11.3.8 Universal Hashing

Sometimes wrong operations are performed deliberately, such as choosing N keys all of 
which hash to the same slot, yielding an average retrieval time of O(n). Any fixed hash 
function is helpless to this sort of worst-case behaviour. The only effective way to im-
prove the situation is to choose the hash function randomly in a way that is independent 
of the keys that are actually going to be stored. This approach is called universal hashing 
and yields good performance on the average, no matter what keys are chosen.
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The main idea behind universal hashing is to select the hash function at random at run-
time from a carefully designed set of functions. Because of randomization, the algorithm 
can behave differently on each execution; even for the same input. This approach guaran-
tees good average case performance, no matter what keys are provided as input.

11.4 COLLISION RESOLUTION STRATEGIES

No hash function is perfect. If Hash(Key1) = Hash(Key2), then Key1 and Key2 are syn-
onyms and if bucket size is 1, we say that collision has occurred. As a consequence, we 
have to store the record Key2 at some other location. A search is made for a bucket in 
which a record is stored containing Key2, using one of the several collision resolution 
strategies. The collision resolution strategies are as follows:

1. Open addressing
(a) Linear probing
(b) Quadratic probing
(c) Double hashing 
(d) Key offset

2. Separate chaining (or linked list)
3. Bucket hashing (defers collision but does not prevent it)

The most important factors to be taken care of to avoid collision are the table size and 
choice of the hash function. As we know, no hash function is perfect and we have a limita-
tion on the table size too. Let us learn a few techniques to resolve this collision.

11.4.1 Open Addressing

In open addressing, when collision occurs, it is resolved by finding an available empty 
location other than the home address. If Hash(Key) is not empty, the positions are probed 
in the following sequence until an empty location is found. When we reach the end of 
table, the search is wrapped around to start and the search continues till the current col-
lision location. 

N(Hash(Key) + C(1)), N(Hash(Key) + C(2)), …, N(Hash(Key) + C(i)), … (11.1)

Here N is the normalizing function, Hash(Key) is the hashing function, and C(i) is the 
collision resolution (or probing) function with the ith probe. The normalizing function is 
required when the resulting index is out of range. A commonly used normalization func-
tion is MOD. 

Closed hash tables use open addressing. In open addressing, all records are stored in 
the hash table itself also said to be resolving in the prime area which contains all home 
addresses. In case of chaining, the collisions are resolved by storing them at a separate 
area known as the overflow area. 

In open addressing, when collision occurs, the table is searched for empty locations 
to store synonyms. Each table entry either contains a record or is empty. While searching 
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for a record, we systematically examine table slots until the desired record is found or it 
is clear that the record is not in the table. 

While open addressing, to store the record, we successively examine, or probe, the 
hash table until we find an empty slot. Three techniques are commonly used to compute 
the probe sequences required for open addressing—linear probing, quadratic probing, 
and rehashing.

Linear Probing

A hash table in which a collision is resolved by placing the item in the next empty place 
following the occupied place is called linear probing. This strategy looks for the next free 
location until it is found. The function that we can use for probing linearly from the next 
location is as follows: 

(Hash(x) + C(i)) MOD Max (11.2)

As C(i) = i for linear probing in Eq. (11.1), the function becomes 

(Hash(x)+ i) MOD Max

Initially i = 1, if the location is not empty then it becomes 2, 3, 4, …, and so on till an 
empty location is found. We simply add one to the current address when collision occurs 
or till we find an empty location within the hash table limits. Alternatively, we can also 
add 2, subtract 2, or add 4, etc. Here Max is the table size or the nearest prime number 
greater than the table size. The use of MOD wraps the linear probing to the table start, if 
it reaches the end.

Let Max be 100, consider Table 11.6.
Let Key1 be 1044, now it hashes to location 44 and let us save it at that location. Now let 
Key2 be 3544 that also maps to address 44 and collision occurs as the table location 44 is 
already occupied. Here 1044 and 3544 are synonyms. Now the locations HashTable[45], 
HashTable[46], and so on are to be examined until a free location is found. The location 
45 is found empty and the key 3544 is stored there.

Linear probing is easy to implement and the 
synonyms are stored nearer to the home address 
resulting in faster searches. When many synonyms 
are clustered around the home address, it is known 
as primary clustering. High degree of clustering 
increases the number of probes for locating data, 
increasing the average search time. Although lin-
ear probing is easy to implement, it tends to form 
clusters of synonyms, resulting in secondary clus-
tering. The secondary clustering occurs when data 
is widely distributed in the hash table and have 
formed clusters throughout the table.

Table 11.6 Keys and Address

Index Key
0
1
2

44 1044
3544

98
99
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Linear probing can be done using the following:

1. With replacement—If the slot is already occupied by the key there are two possibilities, 
that is, either it is the home address (collision) or the location is occupied by some key. 
If the key’s actual address is different, then the new key having the address at that slot 
is placed at that position and the key with the other address is placed in the next empty 
position.

 For example, in hash table of size 100, suppose Key1 = 127 is stored at address 25 and 
a new Key2 = 1325 is to be stored. Address for Key2 (1325 MOD 100) is 25. Now 
as the location 25 is occupied by Key1, the with replacement strategy places Key2 at 
location 25 and searches for an empty location for Key1 = 127.

2. Without replacement—When some data is to be stored in the hash table, if the slot is 
already occupied by the key, then another empty location is searched for a new record. 
There are two possibilities when the location is occupied—it is either its home address 
or not. In both the cases, the without replacement strategy searches for empty positions 
for the key that is to be stored.

Example 11.1 provides a better insight into linear probing.

 example 11.1  Store the following data into a hash table of size 10 and bucket size 1. 
Use linear probing for collision resolution.

12, 01, 04, 03, 07, 08, 10, 02, 05, 14

Assume buckets from 0 to 9 and bucket size = 1 using hashing function key % 10.

Solution Let us use both techniques with and without replacement, as follows:

Linear probing with replacement For linear probing with replacement, when collision 
occurs, if the location is occupied by a record whose home address is not that location, it is 
replaced and the current record is stored there. Table 11.7 demonstrates all the operations.

Table 11.7 MOD as hash function and linear probing with replacement

Bucket Initially 
empty

Insert 
12

Insert 
01

Insert 
04

Insert 
03

Insert 
07

Insert 
08

Insert 
10

Insert 
02

Insert     
05

Insert
14

0 10 10 10 10
1 01 01 01 01 01 01 01 01 01
2 12 12 12 12 12 12 12 12 12 12
3 03 03 03 03 03 03 03
4 04 04 04 04 04 04 04 04
5 02 05 05
6 02 02
7 07 07 07 07 07 07
8 08 08 08 08 08
9 14
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Here when key 02 is to be stored, it is hashed to address 2. However, that location is 
already occupied by 12. As 2 is the home address of 12, it resides there itself, and we 
linearly probe for the next empty location for key 02 to be stored. The location 5 is found 
empty and 02 is stored there.

When key 05 is to be stored, it maps to location 5 and is fi lled with key 02. Location 5 
is not the home address of 02 and hence it is replaced. Key 05 is stored at location 5 and 
we again probe for the next empty location for 02 and store it at location 6.

 Linear probing without replacement For linear probing without replacement when 
collision o ccurs, if the location is occupied, the next empty l ocation is linearly probed for 
synonyms. Table 11.8 shows linear probing without replacement. 

Table 11.8 MOD as hash function and linear probing with out replacement

Bucket Initially 
empty

Insert 
12

Insert 
01

Insert  
04

Insert 
03

Insert 
07

Insert 
08

Insert 
10

Insert 
02

Insert 
05

Insert 
14

0 10 10 10 10
1 01 01 01 01 01 01 01 01 01
2 12 12 12 12 12 12 12 12 12 12
3 03 03 03 03 03 03 03
4 04 04 04 04 04 04 04 04
5 02 02 02
6 05 05
7 07 07 07 07 07 07
8 08 08 08 08 08
9 14

Program Code 11.1 defi nes a function for inserting a record using linear probing without 
replacement.

pROGRam CODe 11.1 

//hash function to get position

int hash(int key)

{

   return( key % MAX);

}

//function for inserting a record using linear probe

int linear_prob(int Hashtable[], int key)

{

   int pos, i;

   pos = Hash(Key);

   if(Hashtable[pos] == 0)      // empty slot
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   {

      Hashtable[pos] = key;

      return pos;

   }

   else      // slot is not empty

   {

      for(i = pos + 1; i % MAX != pos; i++)

      {

         if(Hashtable[i] == 0)

         {

            Hashtable[i] = key;

            return i;

         }

      }

   }

   // Table overfl ow

   return -1;

}

 Quadratic Probing

In quadratic probing, we add the offset as the square of the collision probe numb er.  In 
quadratic probing,  the empty location is searched by using the following formula:

(Hash(Key) + i2) MO D Max where i lies between 1 and (Max - 1)/2 (11.3)

Here if Max is a prime number of the form (4 ¥ integer + 3), quadratic probing covers all 
the buckets in the table. 

Quadratic probing works much better than linear  probing, but to make full use of the 
hash table, there a re constraints on the values of i and Max so that the address lies within 
th e table boundaries. In addition, if two keys have the same initial probe position, then 
their sequences are the same. Similar to linear probing, the initial probe determines the 
entire sequence and hence maximum distinct probe s equences are used. As the offset 
added is not 1, quadratic probing slows down the growth of primary clusters. 

Program Code 11.2 depicts this logic.

pR OGRam CODe 11.2

//hash function to get posi tion

int hash(int key)

{

   return(key  % MAX);

}
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//function for inserting record using linear probe

int quadratic_prob(int Hashtable[], int key)

{

   int pos, i;

   pos = hash(key);

   for(i = 0; i % MAX != pos; i++)

   {

      pos = (pos + i * i ) % MAX;

      if(Hashtable[pos] key == 0) // empty slot

      {

         Hashtable[pos] = key;

         return pos;

      }

   }      // Table overfl ow

   return -1;

}

Let us see Examples 11.2 and 11.3, which use linear probing and quadratic probing, 
respectively.

 example 11.2  Suppose Max = 8 and keys A, B, C, D have ha sh values Hash(A) = 3, 
Hash(B) = 0, Hash(C)  = 4, and Hash(D) = 3. Use linear probing for collision resolution.

Solution Linear probing is the simplest strategy where Hash(Key)  = Hash((Key + i) 
MOD Max).

Suppose we wish to insert D and fi nd that bucket 3 has been fi lled already, then we would 
try buckets 4, 5, 6, 7, 0, 1, and 2 in sequence. We fi nd bucket 5 empty and we store  D.

0 B
1
2
3 A
4 C
5 D
6
7

 example 11.3  Consider the keys 22, 17, 32, 16, 5, and 24. Let Max = 7. Let us use 
quadratic probing to handle synonyms. 

Solution Let the hash functions be (Key MOD Max); for quadratic probing 
 (Hash(Key) ± i2) MOD Max. 
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After storing 22, 17, 32, 5, and 7, the table looks as shown in the left column of Table 11.9.

Table 11.9 Keys and quadratic probing

Index Key Index Key

0 0 24

1 22 1 22

2 2 16

3 17

16

3 17

4 32 4 32

5 5 5 5

6 6

insert 24

We can see that while inserting 24, the address we get is 

Hash(24) = 24 MOD 7
= 3

It is also noted that the location 3 is already occupied. 
We may now go for the quadratic function as 

[Hash(24) - (1)2 MOD 7] 
= (24 MOD 7) + 1 MOD 7
= (3 + 1) MOD 7 = 4 which is not occupied.

Hence, Hash(24) + (2)2 MOD 7
= (3 + 4) MOD 7 = 0

which is empty, so store 24 there.

Double Hashing

Double hashing uses two hash functions, one for accessing the home address of a Key 
and the other for resolving the conflict. The sequence for probing is generated as follows: 

(Hash1(Key), (Hash1(Key) + i ¥ Hash2(Key)), …. i = 1, 2, 3, 4, …

and the resultant address is modulo Max. Example 11.4 illustrates the double hashing 
concept.

 example 11.4  Let the hash function be Key % 10, Max = 10, and the keys be 12, 01, 
18, 56, 79, 49. Perform double hashing.

Solution Table 11.10 demonstrates all insertions and collision handling using double 
hashing.
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Table 11.10 Double hashing

Initially empty Insert 12 Insert 01 Insert 18 Insert 56 Insert 79 Insert 49
0
1 01 01 01 01 01
2 12 12 12 12 12 12
3
4
5 49
6 56 56 56
7
8 18 18 18 18
9 79 79

While inserting 49, the hashed location 9 is found occupied by key 79, so let us use 
Hash2(Key) = R - (Key MOD R), where R is a small prime number, even smaller than the 
table size. Let us use R = 7.

To insert 49, using Hash1(Key) = 49 % 10, we get 9 which is already occupied, so we 
use Hash2 as follows: 

Hash2(49) = 7 - (49 % 7) =7 - 0 = 7

Hence by double hashing,

 Hash(49) = [Hash1(49) + Hash2(49)] % 10
= (9 + 7) % 10
= 6 and location 6 is not empty, so let us recompute again. 

 Hash(49) = [Hash1(49) + 2 ¥ Hash2(49)] % 10
= 9 + 2 ¥ 7
= 25 % 10
= 5 and is empty, so store key 49 there.

Example 11.5 illustrates the various types of open addressing.

 example 11.5  Given the input {4371, 1323, 6173, 4199, 4344, 9699, 1889} and hash 
function as Key % 10, show the results for the following:

1. Open addressing using linear probing
2. Open addressing using quadratic probing
3. Open addressing using double hashing h2(x) = 7 - (x MOD 7)

Solution The results are as follows:
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1. Open addressing using linear probing
These keys are inserted using linear probing as shown in Table 11.11

Table 11.11 Inserting keys using linear probing

Initially 
empty

Insert 
4371

Insert 
1323

Insert 
6173

Insert 
4199

Insert 
4344

Insert 
9699

Insert 
1889

0 9699 9699
1 4371 4371 4371 4371 4371 4371 4371
2 1889
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5 4344 4344 4344
6
7
8
9 4199 4199 4199 4199

Using linear probing, while inserting 9699 and 1889, as the hashed locations are not 
empty, the keys are stored at the next empty locations probed in circular at positions 0 
and 2, respectively.

2. Open addressing using quadratic probing
Let us insert these keys using quadratic probing now as shown in Table 11.12. 

Table 11.12 Inserting keys using quadratic probing

Initially 
empty

Insert 
4371

Insert 
1323

Insert 
6173

Insert 
4199

Insert 
4344

Insert 
9699

Insert 
1889

0 9699 9699
1 4371 4371 4371 4371 4371 4371 4371
2
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5 4344 4344 4344
6
7
8 1889
9 4199 4199 4199 4199

For 6173, the hashed address 6173 % 10 gives 3 and it is not empty, hence using quadratic 
probing we get the address as follows: Hash(6173) = (6173 + 12) % 10 = 4 and as it is 
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empty, the key 6173 is stored there. Now while inserting 4344, the location 4 is not empty 
and hence quadratic probing generates the address as Hash(4344 + 12) % 10 = 5 and as is 
empty 4344 is stored. For key 9699, the address is Hash(9699 + 12) % 10 = 0 and is empty 
so store it there. While inserting 1889, the address Hash(1889 + 12) % 10 = 0 is not empty 
so probe again. The address Hash(1889 + 22) % 10 = 3 is not empty so probe again. The 
address Hash(1889 + 32) % 10 = 8 is empty so store 1889 at location 8.

3. Open addressing using double hash function
Table 11.13 shows the status of the hash table after inserting each key using open address-
ing using double hashing

Table 11.13 Open addressing using double hash

Initially 
empty

Insert  
4371

Insert 
1323

Insert 
6173

Insert 
4199

Insert 
4344

Insert  
9699

Insert 
1889

0 1889
1 4371 4371 4371 4371 4371 4371 4371
2 9699 9699
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5
6
7 4344 4344 4344
8
9 4199 4199 4199 4199

While inserting 6173, the address is Hash1(6173) = 6173 % 10 = 3 and 3 is not empty. Let 
us use double hashing. Hence the address is as follows:

Hash(6173) = [Hash1(6173) + Hash2(6173)] % 10 
= 3 + (R - 6173 % R) (let R be 7)
= 3 + (7 - 6) = 4

Since 4 is empty, we store 6173 at location 4.
Now let us store 4344. The address 4344 % 10 = 4 and as location 4 is not empty, we 

use double hashing and we get Hash(4344) = 7. Now for 9699 double hashing generates 
address 2 and as it is empty, we store it there. For key 1889, double hashing generates 
address 0 and as it is empty, we store 1889 at location 0.

Rehashing

If the table gets full, insertion using open addressing with quadratic probing might fail or 
it might take too much time. The solution for this problem is to build another table that 
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is about twice as big and scan down the entire original hash table, compute the new hash 
value for each record, and insert them in a new table.

For example, if initially, the table is of size 7 and the hash function is key % 7 then, 
this would be as shown in Table 11.14.

As the table is more than 70% full, a new table is created (Table 11.15) and the values 
are inserted in the new table. The size of the new table is 17, that is next prime of double 
of 7 that is 14. Rehashing is very expensive, as its running time is O(N).

Table 11.14 Table of size 7

Insert 7, 15, 13, 74, 73
0 7
1 15
2
3 73
4 74
5
6 13

Table 11.15  New table of size 17 when 
Table 11.14 is 70% full

0

1

2

3

4

5 73
6 74

7 7

8
9

10

11

12

13 13

14

15 15

16

11.4.2 Chaining

We have discussed three techniques that are used to compute probe sequences (to relocate 
synonyms) namely, linear probing, quadratic probing, and rehashing. Of course, we can 
store the linked lists inside the hash table, in the unused hash table slots. The technique 
used to handle synonyms is chaining; it chains together all the records that hash to the 
same address. Instead of relocating synonyms, a linked list of synonyms is created whose 
head is the home address of synonyms. In Chapter 6, we have discussed implementing a  
linked list within an array. However, we need to handle pointers to form a chain of syn-
onyms. The extra memory is needed for storing pointers.
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In Fig. 11.3, a hash table with Max = 10, both keys 322 and 262 probe to address 2. 
A chain, a linked list, stores all items at a particular home address (home address is an 
address within the hash table itself).

0

1

2

Max – 1

322 262

Fig. 11.3 An example of chaining

Let us compare rehashing and chaining (Table 11.16).

Table 11.16 Comparison of chaining and rehashing

Chaining Rehashing
Unlimited number of synonyms can be 
handled.

A limited but good number of synonyms are taken 
care of.

Additional cost to be paid is an overhead 
of multiple linked lists.

The table size is doubled but no additional fi elds of 
links are to be maintained.

Sequential search through the chain 
takes more time.

Searching is faster when compared to chaining.

Program Code 11.3 illustrates chaining.

pROGRam CODe 11.3

#defi ne MAX 10

class node

{

   public:

      int key;

      struct node *next;

};

Node *hashtab le[max]; 
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void int() 

{

   int i;

   for(i = 0; i < n; i++)

   {

      Hashtable[i] = null;

   }

}

int hash(int key)

{

   return(key % 10);

}

void insert(int k)

{

   int pos;

   Node *Curr, *Temp;

   Curr = new node;

   Curr->key = k;

   Curr->next = null;

   pos = hash(Curr->key);

   if(Hashtable[pos] == null)

      Hashtable[pos] = Curr;

   else

   {

      // goto last node and attach

      Temp = Hashtable[pos];

      while(Temp->next != null)

         Temp = Temp->next;

         // attach

         Temp->next = Curr;

   }

}

void display()

{

   Node *Curr;

   for(i = 0; i < 10; i++)

   {

      Curr = Hashtable[i];
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      while(curr != null)

      {

         cout << curr->key << “\t”;

         Curr = Curr->next;

      }

   }

}

void search(int x)

{

   Node *Curr;

   pos = hash(x);

   Curr = Hashtable[pos];

   while(curr != null && Curr->key != x)

   {

      cout << curr->key << “\t”;

      Curr = Curr->next;

   }

   if(Curr == null)

      cout << “\n Not Found”;

   else

      cout << “\n  Key Found”;

}

11.5  HASH TABLE OVERFLOW

Even if a hashing algorithm (function) is very good, it is likely that collisions will 
occur. The identifi  ers that have hashed into the same bucket, as discussed earlier, are 
called synonyms. 

An overfl ow is said to occur when a new identifi er is mapped or hashed into a full 
bucket. When the bucket size is one , a collision and an overfl ow occur simultaneously. 
Therefore, any hashing program must incorporate some method for dealing with records 
 that cannot fi t into their home addresses. There are a number of techniques for handling 
overfl ow of records .

11.5.1  Open Addressing for Overfl ow Handling

We shall study two ways to handle overfl ows—open addressing and chaining. In open ad-
dressing, we assume that the hash  table is an array. When a new identifi er is hashed into 
a full bu cket, we need to fi nd another bucket for this identifi er. The simplest  solution is to 
fi nd the closest unfi lled bucket through linear probing or linear open addressing.
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When linear open addressing is used to handle overflows, a hash table search for an 
identifier I proceeds as follows:

1. Compute Hash(I)
2. Examine identifiers position 
 Table[Hash(I)], Table[Hash(I) + 1], …, Table[Hash[I] + i], in order until:

(a) If Table[Hash(I) + j] = I then
    In this case I is found.
(b) If Table[Hash(I) + j] is NULL, then I is not in the table.
(c) If we return to the start position Hash(I), then the table is full and I is not in the 

table.
One of the problems with linear open addressing is that it tends to create clusters of 

identifiers. Moreover, these clusters tend to merge as more identifiers are entered, leading 
to big clusters. An alternative method to retard the growth of clusters is to use a series of 
hash functions h1, h2, …, hm. This method is called as rehashing. Buckets hi(x), 1 £ i £ m 
are examined in that order.

11.5.2 Overflow Handling by Chaining

Linear probing and its variations are inefficient as the search for an identifier involves 
comparison with identifiers that have different hash values. Consider the following hash 
table shown in Fig. 11.4.

0 1 2 3 4 5 6 7 8 9 10 11 25

A A2 A1 D A3 A4 GA G ZA E L … Z

Fig. 11.4 Chaining

In the above hash table of 25 buckets, one slot per bucket, searching for the identi-
fier ZA involves comparisons with the buckets Table[0] to Table[7], even though none 
of the identifiers in these buckets had a collision with Table[25] and so cannot possibly 
be ZA. Many of the comparisons can be saved if we maintain lists of identifiers, one 
list per bucket, each list containing all the synonyms for that bucket. If this is done, a 
search involves computing the hash address Hash(I) and examining only those identi-
fiers in the list for Hash(I). Since the sizes of these lists are not known in advance, the 
best way to maintain them is as linked chains. In each slot, additional space is required 
for a link. Each chain has a head node. The head node, however, usually is much 
smaller than the other nodes, since it has to retain only a link. As the list is accessed at 
random, the head nodes should be sequential. We assume that they are numbered 0 to 
n - 1, if hash function Hash() has range 0 to n - 1.

For hash table in Fig. 11.4 can be represented as hash table in Fig. 11.5 using the hash 
chains.
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Fig. 11.5 Hash chains

To insert a new identifier, I, into a chain, we must first verify that it is not currently in 
chain. Then, if not present, I is inserted at any position in the chain.

11.6 EXTENDIBLE HASHING

If linear probing or separate chaining is used for collision handling, then in case of col-
lision, several blocks are required to be examined to search a key and when table is full, 
then expensive rehash should be used. For fast searching and less disk access, extendible 
hashing is used. It is a type of hash system, which treats a hash as a bit string, and uses a 
trie for bucket lookup. 

For example, assume that the hash function Hash(Key) returns a binary number. 
The first i bits of each string will be used as indices to figure out where they will go in 

the hash table. Additionally, i is the smallest number such that the first i bits of all keys 
are different.
The keys to be used are as follows: 

1. h(key1) = 100101
2. h(key2) = 011110
3. h(key3) = 110110
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Let us assume that for this particular example, the buck-
et size is 1. The first two keys to be inserted, key1 and 
key2, can be distinguished by the most significant bit, and 
would be inserted into the table as follows:

When key3 is hashed to the table, it would not be 
enough to distinguish all three keys by one bit (because 
key3 and key1 have 1 as their leftmost bit). Also, because 
the bucket size is one, the table would overflow. Because 
comparing the first two most significant bits would give 
each key a unique location, the directory size is doubled 
as follows: 

And so now key1 and key3 have unique locations 
being distinguished by the first two leftmost bits. Since 
key2 is in the top half of the table, both 00 and 01 point 
to it because there is no other key that begins with a 0 to 
compare.

The root of the tree contains four pointers determined 
by the leading two bits of data. Each leaf has upto 4 records. D will be represented by the 
number of bits used by the root, which is known as a directory.

11.7 DICTIONARY

A set is an unordered collection of distinct elements. Each element has a field called 
key that is usually unique. The requirement of uniqueness is sometimes circumvented 
and is known as a multiset or a bag. Multiset is a set whose members are not nec-
essarily distinct. The most common operations performed on a set or multiset are 
searching, inserting, and deleting elements from a group. A dictionary is a data struc-
ture for efficiently implementing these operations. The simplest way to implement a 
dictionary is through the use of arrays. Arrays are efficient for searching an element, 
whereas insertion and deletion cannot be easily performed. The proficient implemen-
tation has to balance the efficiency of searching with the other two operations. Other 
sophisticated ways to implement a dictionary is using hashing and balanced search  
trees.

A typical dictionary includes the following operations:

1. Empty—checks whether the dictionary is empty or not
2. Size—determines the dictionary size  
3. Insert—inserts a pair into the dictionary
4. Search—searches the pair with a specified key
5. Delete—deletes the pair with a specified key

0 Bucket A for key2

Directory

1 Bucket B for key1

00 Bucket A for key2

01

10 Bucket B for key1

11 Bucket C for key3

Directory
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11.8 SKIP LIST

A balanced tree is one of the most popular data structures used for searching. One of the 
variants of balanced trees is the skip list. The skip list is a probabilistic data structure that has 
become the method of choice for many search-based applications instead of balanced trees.

A skip list stores the sorted data in the form of a linked list. These items are stored as 
a hierarchy of linked lists where each list links increasingly sparse subsequences of the 
items. These supplementary lists result in an item search that is as efficient as that of bal-
anced binary search trees. Since each link of the sparser lists skips over many items of the 
full list in one step, the list is called skip list. These forward links are added on the basis of 
the probability of the element search. Hence, insert, search, and delete operations are per-
formed in logarithmic expected time. The links may also be added in a non-probabilistic 
way. Skip list algorithms have the same asymptotic expected time bounds as balanced 
trees and are simpler, faster, and use less space. Figure 11.6 shows the diagrammatic 
representation of a skip list.

Fig. 11.6 Diagrammatic representation of a skip list

Nil

11 12 13 14 15 16 17 18 19 20

Nil

Nil

Nil

Head

11.9 COMPARISON OF HASHING AND SKIP LISTS

The following is a list of similarities and differences between hashing and skip lists:

• The hash table is a simple array of items; hashing algorithms calculate an index from 
the data item’s key and use this index to place the data into the array. A hash table is an 
alternative method for representing a dictionary. It is a popular data structure which is 
simple and easy to implement.

• The skip list is a linked list augmented with layers of pointers for quickly jumping 
over a large numbers of elements and then descending to the next layer. This process 
continues down to the bottom layer, which is the actual list. Skip lists are interesting 
data structures which are powerful and flexible.

• Skip lists are one way of implementing a dictionary abstract data type, which stores a 
set of items and allows us to add, remove, and search for items. Though hash tables are 
more popular, skip lists improve the performance of insert and delete operations.

• The expected performance of search and delete operations on skip lists is O(logn); 
however, the worst-case performance is Q(n). The hash table is used in many 
applications. In ideal situations, the hash table search, insert, or delete takes Q(1). 
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RECAPITULATION

• Many applications need a dynamic set of 
operations that supports only insert, member 
search, and delete. A keyed table is an effec-
tive data structure for implementing them.

• Hashing is an excellent technique for imple-
menting keyed tables. A hash table is an 
array-based structure used to store <key, 
information> pairs.

• Hash tables are used to implement insertions 
and searches in constant average time. To 
store an item in a hash table, a hash function 
is applied to the   key of the item being stored, 
returning an index within the range of the hash 
table.

• Hashing is a technique that is used for storing 
and retrieving information associated with and 

that makes use of the individual characters or 
digits in the key itself. 

• A p roblem arises, however, when the hash 
function returns the same value when applied 
to two different keys called collision. However, 
t here are various collision resolution tech-
niques to overcome these problems.

• Dictionary and skip lists are types of data 
structures used for storing data in the form 
of an array and linked list, respectively. How-
ever, skip list is more effi cient and thus the 
preferred option for performing search opera-
tions on a given data set as it is simpler, faster, 
and uses less space when compared to other 
techniques.

Bucket An index position in hash table that stores 
a fi xed number of buckets.

Collision The result of two keys hashing into the 
same bucket (index positions).

Dictionary A dictionary is a type of data structure 
that can effi ciently implement operations such as 
searching, inserting, and deleting elements on a 
set or multiset from a group.

Hash function To store an item in a hash table, a 
hash function is applied to the key of the item be-
ing stored, returning a n index within the range of 
th e hash table.

Hashing Hashing is a technique that is used for 
storing and retrieving information associated with 
and that makes use of the individual characters 

or digits in the key itself. Hashin g is an excellent 
technique for implementing keyed tables.

Hash table A hash table is an array-based structure 
used to store <key, information> pairs. In other 
words, we can say that the hash table is a table for 
storing key and related inf  ormation.

Overfl ow When more than one key has the same 
index and if there is no space in bucket, we say 
that overfl ow has occurred.

Skip list A skip list is one of the variants of bal-
anced trees, which is used most effi ciently for 
searching operations.

Synonym K eys that hash to the same bucket are 
called synonyms.

KEY TERMS

• There are many issues associated with hash tables such as the choice of the hash 
function, overfl ow handling, and the size (i.e., number of buckets) of the hash table.
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Multiple choice questions

 1. A hash  table with 10 buckets with one slot 
per bucket is depicted. The symbols S1 to S7 

are initially entered using a hashing function 
with linear probing. The maximum number of 
comparisons needed in searching an item that is 
not present is

 (a) 4
 (b) 5
 (c) 6
 (d) 3
 2. A hash function f defi ned as f(key) = key MOD 

7, with linear  probing, is used to insert the keys 
37, 38, 72, 48, 98, 11, 56 into a table indexed 
from 0 to 6. 11 will be stored in the location

 (a) 3
 (b) 4
 (c) 5
 (d) 6
 3.  A text is made up of characters a, b, c, d, e each 

with probability 0.12, 0.4, 0.15, 0.08, and 0.25, 
respectively. The optimal coding will give the 
average length of 

 (a) 2.15
 (b) 3.01
 (c) 2.3
 (d) 1.78
 4. The average search time of hashing, with linear 

probing will be less if the load factor 
 (a) is much less than one
 (b) equals one
 (c) is far greater than one
 (d) none of the above
 5. A hash table can store a maximum of 10  

records. Currently, there are records in locations 
1, 3, 4, 7, 8, 9, 10. The probability of a new 
record going into location 2, with hash function 
resolving collision by linear probing is

 (a) 0.1
 (b) 0.6

 (c) 0.2
 (d) 0.5
 6. A hash table has space for 100 records. What 

is the probability of collision before the table i s 
10% full?

 (a) 0.45
 (b) 0.5
 (c) 0.3
 (d) 0.34

Review questions

 1. What is hashing? What is a hashing function? 
Give at least two examples  of a hashing function. 
Discuss about the characteristics  of a good 
hashing function. How is synonym resolution 
done during hashing?

 2. What are the advantages and disadvantages of 
the following synonym resolution methods?

 (a) Overfl ow fi le
 (b) Open addressing methods
 3. Defi ne: 
 (a) Key
 (b) Hash function
 (c) Synonym
 4. Write an al gorithm for chaining with replacement 

used as a technique for synonym resolution.
 5. Discuss MOD as a hash function.
 6. Describe the overfl ow handling techniques in a 

hash table.
 7. Using the modulo-division method and linear 

probing, store the following keys in an array 
with 19 records. How many collisions occurred? 
What is the density of the list after all the keys 
 have been inserted?

 224562 137456       214562
 140145 214575       162145
 144467 199645       234534
 8. Repeat review question 7 using a linked list 

meth od for collision. Compare these results with 
the results obtained in the previous question.

EXERCISES
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 9. Explain the term dictionary. List the suitable  
data structures for implementation of diction-
aries.

10. In what way is a skip list a more suitable data 
structure for implementing dictionaries?

11. Compare skip lists and hashing.

Answers to multiple choice questions

1. (b)  It will be one more than the size of the biggest cluster (which is 4 here). This is because assume 
a search key hashing onto bin 8. By linear probing, the next location for searching is bin 9, then 
0, and then 1. If all these resulted in a mess, we try at bin 2 and stop as it is vacant. Of course, 
this logic will not work if deletion is performed before search.

S7 S1 S4 S2 S5 S6 S3

0 1 2 3 4 5 6 7 8 9

2. (c) 
3. (a) Using Huffman code, a is 1111, b is 0, c is 110, d is 1110, e is 10.
  Average code length = (4 ¥ 0.12) + (1 ¥ 0.4) + (3 ¥ 0.15) + (4 ¥ 0.08)
                                       + (2 ¥ 0.25)
                                    = 2.15
4. (a)  Load factor is the ratio of the number records that are currently present and the total number 

of records that can be present. If the load factor is less, free space will be more. Hence, the 
probability of collision is less. So the search time will be less.

5. (b)  If the new record hashes onto one of the six locations 7, 8, 9, 10, 1 or 2, the location will receive 
a new record. The probability is 6/10 as 10 is the total possible number of locations.

6. (a)



12

We have studied binary search trees (BSTs) in Chapter 7. In practice, BSTs are rarely 
used to sort data. In case there is a fi xed amount of data and sorting does not need 

to take place until all the data is collected, the data can be placed in an array and sorted 
using the quicksort algorithm. On the other hand, when the data must be simultaneously 
inserted and sorted, there is a data structure which, in practice works more effi ciently than 
BSTs, known as heaps.

12.1 BAsIC CONCEPTs

A  heap is a binary tree having the following properties:

1. It is a complete binary tree, that is, each level of the tree is completely fi lled, except the 
bottom level, where it is fi lled from left to right.

2. It satisfi es the heap-order property , that is, the key value of each node is greater than 
or equal to the key value of its children, or the key value of each node is lesser than or 
equal to the key value of its children.

All the binary trees of Fig. 12.1 are heaps, whereas the binary trees of Fig. 12.2 
are  not.

The second condition is violated in Fig. 12.2(a) as the content of the child node 80 is 
greater than its parent node 70. The fi rst condition is violated in Fig. 12.2(b) as at level 
2, 30 has a right chil d but  no left child, that is, at this level, it should be fi lled from left 
to right.

HEAPs

OBJECTIVEs

After completing this chapter, the reader will be able to understand the following:
 • A specialized tre e-based data structure known as heap
 • Usage of heaps effi ciently for applications such as priority queues
 • Implementation of heaps using arrays
 • More applications such as selection problem and event simulation
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Fig. 12.1 Sample heaps  (a) Heap with height three 
(b) Heap with height two  (c) Heap with height one
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80 30 7

30
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14

20

(a) (b)

Fig. 12.2  Binary trees but not heaps  (a) Sample 1  (b) Sample 2

12.1.1 Min-heap and Max-heap

In this section we discuss two types of heaps, the min-heap and the max-heap.

Min-heap

The structure shown in Fig. 12.3 is called min-heap. 
In min-heap, the key value of each node is lesser than or equal to the key value of its 

children. In addition, every path from root to leaf should be sorted in ascending order. 
Figure 12.4 is an example of a min-heap.

All ≥ Data All ≥ Data

Data

Fig. 12.3 Structure of min-heap

10

2

1

7 9

5

Fig. 12.4 An example of a min-heap
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Max-heap

A max-heap is where the key value of a node is greater than or equal to the key value of 
its children. In general, whenever the term ‘heap’ is used by itself, it refers to a max-heap 
as shown in Fig. 12.5.

In addition, every path from the root to leaf should be sorted in descending order.  
Figure 12.6 is an example of a max-heap.

All ≤ Data All ≤ Data

Data

Fig. 12.5 A max-heap

6

8

9

2 3

4

Fig. 12.6 An example of a max-heap

Formally, a binary heap tree must satisfy two properties:

1. Structure property
2. Heap-order property

Let us discuss these properties in detail.

Structure property This property is described by the following list:

1. A binary tree is complete if it is of height h and has 2h+1 - 1 nodes.
2. A binary tree of height h is complete iff

(a) it is empty, or
(b) its left subtree is complete of height h - 1 and its right subtree is completely full 

of height h - 2, or
(c) its left subtree is completely full of height h - 1 and its right subtree is complete 

of height h - 1.

3. A complete tree is filled from the left when
(a) all the leaves are on

(i) the same level or
(ii) two adjacent ones

(b) all nodes at the lowest level are as far to the left as possible

Heap-order property This property is described by the following:

1. A binary tree has the heap property iff
(a) it is empty or
(b) the key in the root is larger than either children and both subtrees have the heap 

property
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12.2 IMPLEMENTATION OF HEAP

To implement heaps using array is an easy task. We 
simply number the nodes in the heap from top to bot-
tom, number the nodes on each level from left to right, 
and store the ith node in the ith location of the array. 
The root of the tree is stored at index 0, its left child at 
index 1, its right child at index 2, and so on.

For example, consider Fig 12.7.
Figure 12.8 shows the corresponding array representation of the heap.

Data

Index

9

0

8

1

4

2

6

3

2

4

3

5 6 7

Fig 12.8  Array representation of heap in Fig. 12.7

In this array,

1. parent of the node at index i is at index (i - 1)/2
2. left child of the node at index i is at index 2 ¥ i + 1
3. right child of the node at index i is at index 2 ¥ i + 2

For example, in Fig. 12.8, 

1. the node having value 8 is at the 1st location.
2. Its parent is at 0/2, that is, at the 0th location (value is 9).
3. Its left child is at 2 ¥ 1 + 1, that is, at the 3rd location (value is 6).
4. Its right child is at 2 ¥ 1 + 2, that is, at the 4th location (value is 2).

Let us consider the heap tree in Fig. 12.9 in its logical form.

35 2 13 09

46

68

22

Fig. 12.9 A heap tree

The physical representation of the heap tree of Fig. 12.9 is shown in Fig. 12.10. We rep-
resent the tree using an array as in Fig. 12.10 using the rules stated.

6

8

9

2 3

4

Fig. 12.7 Sample heap
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Data

Index
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13 09
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Fig. 12.10  Representation of heap in Fig. 12.9 as array

12.3 HEAP As ABsTRACT DATA TYPE

A heap is a complete binary tree, which satisfies the heap-order property, that is, the key 
value of each node is greater than or equal to the key value of its children (or the key value 
of each node is lesser than or equal to the key value of its children). The basic operations 
on heap are insert, delete, max-heap, and min-heap.

ADT Heap

1. Create()ÆHeap

2. Insert(Heap, Data)ÆHeap

3. DeleteMaxVal(Heap)ÆHeap

4. ReHeapDown(Heap, Child)ÆHeap

5. ReHeapUp(Heap, Root)ÆHeap

End

The C++ class declaration for this ADT is as follows:

class HeapNode
{
   int A[max];
   int n;       //No. of elements heap contains
};

class Heap
{
   private:
      HeapNode *Root;
      void ReHeapUp(int i);
      void ReHeapDown(int i);
   public:
      Heap();
      {
         for(int i = 0; i < max; i++)
            A[i] = 0;
      }
   void Create();
   void Insert(int i);
   void DeleteMaxVal();
};
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12.3.1 Operations on Heaps

The basic operations on heaps are listed as follows:

1. Create—creates an empty heap to which the root points
2. Insert—inserts an element into the heap
3. Delete—deletes max (or min) element from the heap
4. ReheapUp—rebuilds the heap when we use the insert() function
5. ReheapDown—rebuilds the heap when we use the delete() function

A heap is generally not traversed, searched, or printed. To implement the insert and  
delete operations, we need two other operations: reheapUp and reheapDown. The advanced 
operations include merge, which merges two heaps.

ReheapUp

If we have a nearly complete binary tree with n elements, the first n - 1 elements 
satisfy the order property of heaps, but the last element does not. That is, the structure 
would be a heap if the last element was not there. The reheapUp operation repairs the 
structure so that it is a heap by lifting the last element up the tree until that element reaches 
a proper position in the tree. This restructuring can be graphically viewed in Fig. 12.11.

ReheapUp

Fig. 12.11 ReheapUp operation

We can note that in Fig. 12.11 the last node in the heap was out of order. After the 
reheap, it is in its correct location, and the heap has been extended by one node.

As a heap is a complete or nearly complete tree, the node must be placed in the last leaf 
level at the first leftmost empty position as in Fig. 12.11. If 
the new node’s key is larger than its parent, it is lifted up the 
tree by exchanging the child and parent keys and the data. The 
data eventually moves to the correct position in the heap by 
repeatedly exchanging child–parent keys and data. In brief, 
reheapUp repairs a broken heap by lifting the last element up 
the tree until it reaches the correct location in the heap.

Figure 12.12 shows a general heap structure.
Let us consider an example.

Fig. 12.12 General heap 
structure
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Figure 12.13 shows a tree which is not a heap after adding 36.

53

43

31

32

23

21 3626

27

24

41

Fig. 12.13 A tree, not a heap

Here, 36 is greater than its parent, 23; hence, it is an invalid heap. We therefore  
exchange 36 and 23 and call reheapUp to test its current position in the heap. We obtain 
the tree as shown in Fig. 12.14.

53

43

31

32

36

21 2326

27

24

41

Fig. 12.14 36 moved up

Once again, 36 is greater than its parent, 32. Therefore, we again exchange the data and 
find that when reheapUp is called, the node is placed at the correct position, and hence, 
the operation stops. We get the heap as shown in Fig. 12.15.

53

43

31

36

32

21 2326

27

24

41

Fig. 12.15 A heap after 36 is moved up

Let us see this process through a C++ code given in Program Code 12.1.
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Program CoDE 12.1

// ReheapUp operation is required when a new value is 

// inserted at the ith location

void Heap :: ReHeapUp(int i)

{

   int temp;

   while(i > 0 and a[i] > a[(i − 1) /2])

   {

      // swap a[i] with its parent, i.e., [(i − 1)/2]th element

     temp = a[i]; A[i] = a[(i − 1)/2]; A[(i − 1)/2] = temp;

     i = i/2;

   }

}

// Following is the function code for inserting a number 

// into heap.

void Heap :: Insert(int x)

{

 // new element x is inserted at last position of an array

   a[n] = x;

 // reheap operation is called after inserting new value

   ReHeapUp(n);

}

 ReheapDown

When we have a nearly complete binary tree that satisfi es the heap-order property except 
in the root position, we need the reheapDown operation. Suc h situations occur when the 
root is deleted from the tree, leaving two disjointed heaps. To correct such situations, we 
move the data in the last tree node to the root. Obviously, such actions disturb the tree’s 
heap properties. To restore the heap, we need an operation that will sink the root down 
until the heap ordering property is satisfi ed and thus the operation reheapDown comes 
into action. Figure 12.16 shows a reheapDown operation.

Fig. 12.16 ReheapDown

ReheapDown
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Let us consider a broken heap as in Fig. 12.17.

21

43

31

32

23

26

27

24

41

Fig. 12.17 Original tree, not a heap

Here, the root 21 is smaller than its subtrees. We examine them and select the larger of the 
two to exchange it with the root, which is now 43.

Having made the exchange, as in Fig. 12.18, we check whether 21 is smaller than 
its keys. 

43

21

31

32

23

26

27

24

41

Fig. 12.18  Root 21 moved down to the right

Once again, we exchange 21 with the larger subtree 41 and get the tree as in Fig. 12.19.

43

41

31

32

23

26

27

24

21

Fig. 12.19  21 moved down again yielding a heap
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From Fig. 12.19, we can see that we have reached a leaf and can stop now.
Let us see how this can be implemented using C++ in Program Code 12.2.

Program CoDE 12.2

// ReheapDown operation is required when deleting an 

// element from top location  

void Heap :: ReHeapDown(int i)

{

   int temp;

   while(2 * i < n)

   {

      j = 2 * i + 1;

      // j index s hows the left  child of the node

      if(j + 1 < n && a[j + 1] > a[j])

      // fi nding max from left and right child

         j = j + 1;

      if(a[i] > a[j]) break;

      // if root > children then break

      else

      {

         // swap a[i] with a[j]

         temp = a[i];

         a[i] = a[j];

         a[j] = temp;

         i = j;

      }

   }      // end of while 

}

// Following is the code for function for deleting

// maximum value from heap.

void Heap :: Delete_MaxVal()

{

   int temp;

   // swap 0th element with last value of an array

   temp = a[0];

   a[0] = a[n − 1];

   a[n − 1] = temp;
    // reheapdown operation is called to delete max 

value from fi rst location

   ReHeapDown(0);

}
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Insert

A node can be inserted in a heap which has already been built, if there is an empty location 
in the array. To insert a node, we need to search the first empty leaf in the array. We find it 
immediately after the last node in the tree. To insert a node, we move the new data to the first 
empty leaf and perform reheapUp. Let us consider the heap already built as in Fig. 12.20.

98

52

43

76

2865

87

39

Heap

To be inserted

98 76 52 65 28 43 39 87

Fig. 12.20 Sample heap

The heap in Fig. 12.20 has seven elements in it. Let us consider that the element 87 is 
to be inserted. Initially, 87 is stored at the last empty location as the first empty leaf of the 
heap. Thus, we heapify it to store the element in the proper position. The resultant heap 
is shown in Fig. 12.21.

98

52

43

87

2876

65

39

Heap

98 87 52 76 28 43 39 65

Fig. 12.21  Heap after insertion of 87

Delete

While removing a node from a heap, the most common and meaningful logic is to delete 
the root. The heap is thus left without a root. To reconstruct the heap, we move the data 
in the last heap node to the root and perform reheapDown. Let us consider the heap tree 
as shown in Fig. 12.22. The data at the top of the heap is returned by the delete operation.
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80

34

25

69

1058

47

21

80 69 34 58 10 25 21 47 ...

Fig. 12.22  Sample heap

When the delete operation is performed for the 
heap in Fig. 12.22, it returns the element 80 at the 
root. In the delete operation, 47 (the last node value) 
is placed at the root value. Now, reheapDown is per-
formed again to reconstruct a heap. The reconstructed 
heap is shown in Fig. 12.23.

Creating a Heap

The unsorted keys are taken sequentially one at a time and added into a heap. The size of 
the heap grows with the addition of each key. The ith key (ki) is added into an existing heap 
of size i - 1 and a heap of size i is obtained. Initially, the node is placed in the heap of size 
i - 1 in such a way that an almost complete constraint is satisfied. The value of ki is then 
compared with its parent’s key value. If ki is greater, the contents of the newly added node 
and that of the parent’s node are exchanged. This process continues until either ki is at 
the root node or the parent’s key value is not less than ki. The final tree is a heap of size i.

Let us assume that the heap is housed in an array where the relationships of the tree 
are not physically represented by link fields. Instead, they are implicit in the way we store 
them in the array. We store the binary tree in the array level-by-level, left to right. For 
example, Fig. 12.24 shows a binary tree. 

Figure 12.25 shows its corresponding rep-
resentation as an array.

30

40

35

25

2820 45

Fig. 12.24  Binary tree

69

34

25

58

1047 21

Fig. 12.23 Reconstructed heap 
after deletion of 80 

[0]

[1]

[2]

[3]

[4]

[5]

[6]

25

20

28

35

45

40

30

Fig. 12.25  Array representation of Fig. 12.24
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The root is stored in heap[0] and the last node in heap[maxnodes], where maxnodes is 
the number of nodes in the heap. We may note that for any node heap[i], its two children 
reside in heap[i × 2 + 1] and heap[i ¥ 2 + 2]. If we want to know the parent of any node[k], 
we can get it at the node[(k - 1)/2].

Now, let us write an algorithm as shown in Algorithm 12.1 to create a heap of size i by 
adding a key to a heap of size i − 1 where i ≥ 1.

algorithm 12.1
s = i;
/* find the parent node of i in the array */
parent = (s − 1)/2;
key[s] = newkey;
while(s >= 0 && key[parent] <= key[s])
{
   /* interchange parent and child */
   temp = key[parent];
   key[parent] = key [s];
   key[s] = temp;
   /* advance one level up in the tree */
   s = parent;
   parent = (s − 1)/2;
}

This algorithm is called for each addition of a new key to the heap.
For example, consider the following unsorted list of keys.

 8, 20, 9, 4, 15, 10, 7, 22, 3, 12

Figures 12.26(a)–(j) show the building of a heap using this list of keys.

8

(a)

(b)

8

8

20

20

(c)

20

8 9

(d)

20

9

4

8

(e)

20 20

415

15

4

9 98

8
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Fig. 12.26  Building a heap  (a) Heap size 1  (b) Heap size 2  (c) Heap size 3  (d) Heap size 4 
(e) Heap size 5  (f) Heap size 6  (g) Heap size 7  (h) Heap size 8  (i) Heap size 9  (j) Heap size 10

(i)

8 9

4 3

20

22

15

10

7

(j)

8 9 9

4

20 20

2222

15

1010

7

3 12

12

4

15

3 8

7

(f) (g)

20 20 20

151515

10

10 10

74 4 4

9

9 98 8 8

20 20

8 89 94

4

22

22

15 1510 10

77

(h)

88 99

4 4

20

20

22

22

15 15

1010

7 7
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 Let us see how w e can create a f unction for inserting one element at a time through C++ 
in Program Code 12.3.

Program CoDE 12.3

void Heap :: Create()

{

   int i, data;

   cout << “\n Enter number of  elements: ”;

   cin >> n;

   cout << “\n  Enter data:”;

   for(i = 0; i < n; i++)

   {

      cin >> data;

      insert(data);

    }

}

There is one more way of heap creation that has linear time complexity. The steps for 
creation are as follows:

1. Organize the entire collection of data elemen ts as a binary tree stored in an array 
indexed from 0 to n-1, where for any node at index i, its two children, if they exist, 
will be stored at indexes 2 ¥ i + 1 and 2 ¥ i + 2.

2. Divide the binary  tree  into  two parts:  the top part in which the data elements are in their 
original order and the bottom part in which the data elements are in their heap order, 
where each node is in higher order tha n its children, if any.

3. Start the bottom part with the half of the array, which contains only leaf nodes. Of 
course, it is in heap order, because the leaf nodes have no children.

4. Move the last node from the top part to the bottom part, compare its order with its 
children, and swap  its location with its highest order child if its order is lower than any 
child. Repeat the comparison and swapping to ensure the bottom part is in heap order 
again with this new node added.

5. Repeat step 4 until the top part is empty. At this time, the bottom part bec omes a 
complete heap tree.

Array 33

Index

44

0 1 2 3 4

11 55 77

5

90

6

40 60

7

99

8

22

9

88

10

66

11

The steps to build the heap are shown in Fig. 12.27.
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44

33

55

60 99 22

77 90 40

11

88 66

44

33

55

60 99 22

88 90 40

11

77 66

(a) (b)

44

33

99

60 55 22

88 90 40

11

77 66

44

99

33

60 55 22

88 11 40

90

77 66

(c) (d)

99

44

60

33 55 22

88 66 40

90

77 11

(e) (f)

44

99

60

33 55 22

88 66 40

90

77 11

99

88

60

33 55 22

77 66 40

90

44 11

(g) (h)

99

88

60

33 55 22

44 66 40

90

77 11

Fig. 12.27  Steps to build a heap for the array (44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66)
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After building the heap, its array will be as follows:

99 88 90 60 77 66 40 33 55 22 44 11

Its implementation using C++ code is as follows:

void Heap :: CreateHeap()
{
   // create heap
   int i;
   for(i = (n − 1)/2; i >= 0; i−−)
   reheapdown(i);
}

12.4 HEAP APPLICATIONs

Heaps are commonly used in the following operations:

1. Selection problem
2. Scheduling and prioritizing (priority queue)
3. Sorting

Let us discuss them in detail.

Selection problem

For the solution to the problem of determining the kth element, we can create the heap 
and delete k - 1 elements from it, leaving the desired element at the root. So the selection 
of the kth element will be very easy as it is the root of the heap. For this, we can easily 
implement the algorithm of the selection problem using heap creation and heap deletion 
operations. This problem can also be solved in O(nlogn) time using priority queues.

Scheduling and prioritizing (priority queue)

The heap is usually defined so that only the largest element (that is, the root) is removed at 
a time. This makes the heap useful for scheduling and prioritizing. In fact, one of the two 
main uses of the heap is as a priority queue, which helps systems decide what to do next.

Implementing and programming this structure is not as difficult as it was with a normal 
BST because the denseness and fullness allow us to conveniently represent the heap with 
an array. In a 0-indexed array, the first element has the index 0; a node at the index n has 
a parent node at (n - 1)/2, rounded down. The major advantage of using heaps here is that 
they are fast, efficient, and require minimal storage space.

Applications of priority queues where heaps are implemented include the following:

1. CPU scheduling
2. I/O scheduling
3. Process scheduling
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Sorting

Other than as a priority queue, the heap has one other important usage, heap sort. Heap 
sort is one of the fastest sorting algorithms, achieving speed as that of the quicksort and 
merge sort algorithms. The advantages of heap sort are that it does not use recursion, and 
it is efficient for any data order. There is no worst-case scenario in the case of heap sort. 
Let us discuss heap sort in detail.

12.5 HEAP sORT

The steps for building heap sort are as follows:

1. Build the heap tree.
2. Start deleteHeap operations, storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to that in the heap tree. 
Hence, if we want the elements to be sorted in ascending order, we need to build the heap 
tree in descending order—the greatest element will have the highest priority. Note that we 
use only one array, treating its parts differently.

1. When building the heap tree, a part of the array will be considered as the heap, and the 
remaining part will be the original array.

2. When sorting, a part of the array will be the heap, and the remaining part will be the 
sorted array.

Consider the array 13, 17, 11, 6, 15, 8 as an example for heap sort. Using this example, 
let us illustrate both the steps for heap sort.

Build heap tree The given array is represented as a tree, complete, but not ordered.

17 15 11 6 13 8

17

15 11

6 813

The following steps illustrate sorting by performing the deleteHeap operation till the  
heap is empty.

Delete top element 17 The following steps illustrate the deletion of element 17.

Step 1: Store 17 in a temporary place. A hole is created at the top as shown in the following 
figure.
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17

15 11 6 13 8

15 11

6 813

Step 2: Swap 17 with the last element of the heap. As 8 will be adjusted in the heap, its 
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

8

15 11 6

Heap
Sorted array

13 17

Step 3: Penetrate down the hole (8 is less than 15, so it cannot be inserted in the previous hole).

15

11

6

8

13

Step 4: Penetrate once more (as 8 is less than 13, here also it cannot be inserted in the 
previous hole).

8

15 11 613 17

15

11

6

8

13
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Now, 8 can be inserted in the hole.

15 13 11 6 8 17

15

13 11

6 8

Delete top element 15 The following steps illustrate the deletion of the top element, 15.

Step 1: Store 15 in a temporary place. A hole is created at the top.

15

1113 6 8 17

13 11

6 8

Step 2: Swap 15 with the last element of the heap. As 8 will be adjusted in the heap, its 
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted 
array.

8

13 11 6 15 17

13 11

6

8
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Step 3: Penetrate down the hole, as 8 is less than 13.

13

11

6

8

Step 4: This is the representation of the heap after the penetration.

13 1511 68 17

13

11

6

8

Delete top element 13 The following steps illustrate the deletion of element 13.

Step 1: Store 13 in a temporary place. A hole is created at the top.

13

1511 68 17

11

6

8

Step 2: Swap 13 with the last element of the heap. As 6 will be adjusted in the heap, its 
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

6

1511 138 17

11

6

8
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Step 3: Penetrate down the hole, as 6 is less than 11.

11 6

8

Step 4: The heap looks like this after the penetration.

11 6 15138 17

11

68

Delete top element 11 The following steps illustrate the deletion of the top element 11.

Step 1: Store 11 in a temporary place. A hole is created at the top.

11

156 138 17

68

Step 2: Swap 11 with the last element of the heap. As 6 will be adjusted in the heap, its 
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

6

1511 138 17

8

8

Step 3: Penetrate down the hole, as 6 is less than 8.

8 6
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Step 4: The heap looks like this after the penetration.

8 11 13 156 17

8

6

Delete top element 8 The following steps illustrate the deletion of the top element 8.

Step 1: Store 8 in a temporary place. A hole is created at the top.

8

1511 136 17

6

Step 2: Swap 8 with the last element of the heap. As 6 will be adjusted in the heap,  
its cell will no longer be a part of the heap. Instead, it becomes a cell from the 
sorted array.

6

1511 138 17

6

Step 3: The heap looks like this after the penetration.

6 1511 138 17

6
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Delete top element 6 The following steps illustrate the deletion of the top element 6.

Step 1: Store 6 in a temporary place. A hole is created at the top.

6 1511 138 17

Empty heap Now, the heap is empty, so we stop and finally get the sorted array.

6 1511 138 17

12.6 BINOMIAL TREEs AND HEAPs

A binomial heap is a collection of binomial trees. We shall discuss binomial trees and 
heaps in more detail in Sections 12.6.1 and 12.6.2.

12.6.1 Binomial Trees

A binomial tree is an ordered tree defined recursively. Figure 12.28 shows the binomial trees.

(b)

B1B0 B2 B3

Depth

0

1

2

3

(a)

Bk

B0

Bk−1

Bk−1

Fig. 12.28 Binomial trees (a) Recursive definition of the binomial tree Bk
(b) Binomial tree B0 through B3
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Fig. 12.28  Binomial trees  (c) Another way of 
looking at the binomial tree Bk

(c)

Bk−1

Bk−2

Bk

B2

B1

B0

...

As shown in Fig. 12.28(a), the binomial tree B0 consists of a single node.
For the binomial tree Bk,

1. there are 2k nodes
2. the height of the tree is k

3. there are exactly k
i( ) nodes at depth i for i = 0, 1, …, k

4. the root has degree k, which is greater than that of any other node; moreover, if the 
children of the root are numbered from left to right by k - 1, k - 2, …, 0, the child i is 
the root of a subtree

Always remember that the maximum degree of any node in n-node binomial tree is 
logn.

12.6.2 Binomial Heap

A binomial heap H is a set of binomial trees that satisfies the following binomial heap 
properties.

1. Each binomial tree in H follows the min-heap property. We say that each such tree is 
min-heap ordered.

2. For any non-negative integer k, there is utmost one binomial tree in H whose root has 
degree k.

Figure 12.29 shows an example of a binomial heap H.
From Fig. 12.29, it is clear that the heap consists of three binomial trees B0, B1, B2, 

and B3. Since each binomial tree is min-heap-ordered, the key of any node is less than 
that of its parent. Also shown is the root list, which is a linked list of roots in the order of 
increasing degree.
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11 2

2613

19

9

1812

29

7

3116

40

head[H]

Fig. 12.29  A binomial heap with 13 nodes

12.6.3 Representation of Binomial Heap

The node of a binomial heap can be represented by five tuples as shown in Fig. 12.30.

Parent Points to the parent node

Key Key value, that is, data

Degree Degree of each node, that is, the number of 
children it has

Child Points to any of its child node (mostly pointing to 
its leftmost child)

Siblings Points to a sibling node, that is, used to maintain 
the singly-circular lists of siblings

As shown in Fig. 12.31, the roots of the binomial trees are 
organized in a linked list, which we refer to as root list. 

Null

11

Null

1

Null

2

2

13

1

26

Null

0

19

Null

0

Null

Null

head[H]

Fig. 12.31  Representation of binomial heap of Fig. 12.29 using five-tuple node

Parent

Key

Degree

Child Sibling

Fig. 12.30 Representation of 
a node of binomial heap
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The binomial heap H is accessed by the field head[H], which is simply a pointer to the 
first root in the root list of H.

12.6.4 Operations on Binomial Heaps

There are various operations of binomial heaps. They are as follows:

1. CreateBHeap—Creates an empty binomial heap, that is, simply allocates and returns 
an object H, where head[H] = null.

2. FindMinimumKey—Returns a pointer to the node with the minimum key in an n-node 
binomial heap H.

3. UnitingTwoBHeap—Takes the union of the two binomial heaps.
4. InsertNode—Inserts a node into binomial heap H.
5. ExtractMinimumKeyNode—Extracts the node with the minimum key from a binomial 

heap H and returns the pointer to the extracted node.
6. DecreaseKey—Decreases the key of a node in a binomial heap H to a new value k.
7. DeleteKey—Deletes the specified key from binomial heap H.

12.7 FIBONACCI HEAP

Similar to the binomial heap, Fibonacci heap is a collection of min-heap-ordered 
trees. The trees in a Fibonacci are not constrained to be binomial trees. Figure 12.32 
shows an example of the Fibonacci heap consisting of 5 min-heap-ordered trees and 
15 nodes.

9

23

15 18 36

30

5

33

2124 40

min[H]

12 2 19 25

Fig. 12.32  An example of Fibonacci heap

The solid double line indicates the root list. The min[H] pointing to the minimum node 
of the heap contains the minimum key. If the Fibonacci heap is empty, then min[H] will 
be null. Unlike binomial heap (which is ordered), the trees within Fibonacci heaps are 
rooted but unordered.

12.7.1 Representation of Fibonacci Heap

Fibonacci heap can be represented using the Fibonacci heap nodes. The representation of 
such a node is shown in Fig. 12.33.
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The node of a Fibonacci heap can be represented by seven tuples.

Parent Points to the parent node

Key Key value, that is, data

Degree Degree of each node, that is, the number of children 
it has

Child Points to any of its child node (mostly pointing to its 
leftmost child)

Mark The Boolean-valued field indicates whether the node 
has lost a child since the last time the node was made the child 
of another node. The newly created nodes are unmarked (i.e., 
the default value is false)

Left Points to the left sibling node, that is, used to maintain the doubly circular lists of siblings

Right Points to the right sibling node, that is, used to maintain the doubly circular lists 
of siblings

The roots of all the trees in Fibonacci heap are linked together using left and right pointers 
into circular doubly-linked list called root list of the Fibonacci heap (Fig. 12.34).

Null

False

9

0

False

15

1

False

False

23

0

False

30

0

18

1

False

36

0

False

5

0

Null

False

12

3

Null

False

2

1

Null

Null

Null Null

Null

Fig. 12.34  Representation of binomial heap of Fig. 12.32 using seven-tuple node

Parent

Key

Mark

Degree

Left Child Right

Fig. 12.33 Representation 
of a node of Fibonacci heap
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12.7.2 Operations on Fibonacci Heaps

There are various operations of binomial heaps. They are as follows:

1. CreateFHeap—Creates an empty Fibonacci Heap, that is, simply allocates and returns 
an object H, where min[H]=null

2. FindMinimumKey—Returns min[H], a pointer to the node with the minimum key in 
an n-node Fibonacci heap H

3. UnitingTwoFHeap—Takes the union of the two Fibonacci heaps
4. InsertNode—Inserts a node into Fibonacci heap H
5. ExtractMinimumKeyNode—Extracts the node with minimum key from Fibonacci 

heap H and returns the pointer to the extracted node
6. DecreaseKey—Decreases the key of a node in a Fibonacci heap H to a new value k.
7. DeleteKey—Deletes the specifi ed key from Fibonacci heap H.

RECAPITULATION

•  A  complete  or  nearly  complete  binary  tree 
where each node is greater or equal to its chil-
dren with each subtree satisfying this property 
is called as heap.

•  The basic operations on heap are insert, delete, 
reheapUp, and reheapDown.

•  Heap can be implemented using an array as 
it is a complete binary tree. It is easy to main-
tain fi xed relationship between a node and its 
children.

•  Among  many  applications  of  heap,  the  key 
ones are priority queue, sorting, and selection.

•  Priority queue is  implemented using heap by 
maintaining its relationship of element with 
other members in a list.

•  One of the popular sorting techniques is heap 
sort that uses heaps.

•  The  heap  is  popularly  used  in  applications 
where at each stage, the largest element is to 
be picked up for processing known as selection 
problem.

KEY TERMs

Delete from heap A key can be deleted from a heap 
if it is the root value. After deletion, the heap with-
out root is repaired by the reheapDown operation. 
The last node key is placed at the root and then re-
heapDown operation places it at the proper location.

Heap A heap is a complete binary tree (or nearly 
complete binary tree) having the key in a node 
greater than the key in its entire subtree. Each 
subtree is also a heap.

Insert into heap A new key can be inserted into a 
heap. Initially, a new key is inserted by locating 

the fi rst empty leaf location in an array, and the 
reheapUp operation places it in a proper location 
in the heap.

ReheapDown When a key is pushed down the 
heap, the reheapDown operation ensures that it is 
less than its children (may be one or more), and if 
it is, exchanges it with larger key.

ReheapUp A broken heap is repaired using the re-
heapUp operation by fl oating the last element up 
the tree until it reaches its correct location in the 
heap.
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EXERCIsEs

Multiple choice questions

 1. For the given array representation of a heap, 
which of these represents a min-heap?

  (i) 0 2 4 7 5 5 6
  (ii) 5 7 8 6 9 9 10
 (a) (i) only 
 (b) (ii) only
 (c) Both (i) and (ii)
 (d) None
 2. What will be the array representation of a max-

heap with the following insertions?
 40, 80, 35, 90, 45, 50, 70
 (a) 90 80 70 40 45 35 50
 (b) 90 80 70 45 40 50 35
 (c) 90 70 80 40 45 35 50
 (d) 90 70 80 45 40 50 35
 3. If 100 is added to the heap 40, 80, 35, 90, 45, 50, 

70, what will be the new array representation?
 (a) 90 80 70 40 45 35 50 100
 (b) 100 90 70 80 45 35 50 40
 (c) 100 90 80 70 40 45 35 50
 (d) 100 80 90 70 40 45 35 50
 4. What is the minimum and maximum number of 

elements in a heap of size h?
 (a) 2(h - 1), (2h + 1) - 1
 (b) 2h, (2h + 1) - 1
 (c) 2(h - 1), (2h) - 1 
 (d) (2h) - 1, (2h + 1) - 1
 5. What feature of heaps allows them to be 

effi ciently implemented using a partially fi lled 
array?

 (a) Heaps are binary search trees.
 (b) Heaps are complete binary trees.
 (c) Heaps are full binary trees.
 (d) Heaps contain only integer data.
 6. What will be the number of elements in the 

left subtree and right subtree of the heap if the 
following elements are inserted in the order: 45, 
26, 84, 63, 27, 94, 47?

 (a) (3, 3)
 (b) (2, 4)

 (c) (4, 3)
 (d) (4, 2)
 7. For the following heap, what will be the 

corresponding array representation?

a

b

c d f g

e

 (a) a b e c d f g
 (b) a b e c f d g
 (c) a b e d f c g
 (d) a b e c d f g
(Hint: Perform breadth-fi rst traversal.)
 8. A priority queue is implemented as a max-heap. 

Initially, it has fi ve elements. The level order 
traversal of the heap is given here.

  10, 8, 5, 3, 2
 The two new elements 1 and 7 are inserted in the 

heap in that order. A level order traversal of the 
heap after the insertion of the elements is:

 (a) 10, 8, 7, 5, 3, 2, 1
 (b) 10, 8, 7, 2, 3, 1, 5
 (c) 10, 8, 7, 1, 2, 3, 5
 (d) 10, 8, 7, 3, 2, 1, 5
 9. In a heap with n elements with the smallest 

element at the root, the 7th smallest element can 
be found in time

 (a) _(nlogn)
 (b) _(n) 
 (c) _(logn)
 (d) _(1)
10. A data structure is required for storing a set 

of integers such that each of the following 
operations can be done in (logn) time, where n 
is the number of elements in the set.

  (i) Deletion of the smallest element
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  (ii)  Insertion of an element if it is not 
already present in the set

 Which of the following data structures can be 
used for this purpose?

 (a) A heap can be used but not a balanced BST.
 (b) A balanced BST can be used but not a heap.
 (c) Both balanced BST and heap can be used.
 (d)  Neither balanced BST nor heap can be 

used.

Review questions

 1. Which of the following sequences are heaps?
 (a) 42 35 37 20 14 18 7 10
 (b) 42 35 18 20 14 30 10
 (c) 20 20 20 20 20 20 
 2. Show which item would be deleted from the 

following heaps after calling the delete algorithm 
thrice:

 50 30 40 20 10 25 35 10 5
 3. Show the resulting heap after 33, 22, and 8 are 

added to the following heap:
 50 30 40 20 10 25 35 10 5
 4. Show the step-by-step creation of a binary heap 

for the given keys: 
 11, 19, 17, 5, 80, 14, 1, 10, 23, 34, 22
 5. Write a function to insert a node in binary heap. 

Give an example.
 (a) Show the array implementation of heap
 (b)  Apply the deletion operation to the heap. 

Repair the heap after deletion
 (c)  Insert 38 into the following heap. Repair the 

heap after insertion

40

23

11
13

32

25

8 10

21

 (d)  Using the delete operation, delete root 40 
and replace with the last value 10 at the root 
and reheapDown for the following tree.

10

23

11
13

32

25

8

21

 (e) Insert 38 into the following heap. Repair the 
heap after insertion.

32

23

11
13

25

10

8 38

21

 6. Define max-heap. Write a pseudo C++ code for 
the following operations on max-heap. Mention 
time complexity of each operation.

 (a) Insertion of an element in max-heap
 (b) Deletion of max element from max-heap
 7. Write an algorithm to take n elements and do the 

following operations:
 (a) Insert them into the heap one by one.
 (b) Build a heap in linear time.
 8. Write a pseudo C++ code to convert a given 

complete binary tree into a min-heap. Analyse 
your algorithm for computation time.

 9. Show the result of inserting 10, 12, 1, 14, 6, 5, 
8, 15, 3, 9, 7, 4, 11, 13, 2, one element at a time, 
into an initially empty binary heap.
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10. After creating the heap for question 9, delete the 
element 8 from the heap. How do you repair the 
heap?

11. Write a C++ code to implement binomial heap 
and its operations.

12. Write a C++ code to implement Fibonacci heap 
and its operations.

13. Compare binomial heap and Fibonacci heap.
14. Create a priority queue using the following data. 

The first number is a priority and the letter is the 
data: 3-A 5-B 3-C 2-D 1-E 2-F 3-G 2-H 2-I 2-J

15. Show the contents of the priority queue 11, 19, 
17, 5, 80, 14, 1, 10, 23, 34, 22 after deleting the 
items from the queue.

16. Show the contents of the priority queue 11, 19, 
17, 5, 80, 14, 1, 10, 23, 34, 22 after deleting three 
elements from it.

17. Write a pseudo C++ code for reheapUp to build 
a minimum heap.

18. Write a pseudo C++ code for reheapDown to 
create a minimum heap.

Answers to multiple choice questions

1. (a)  2. (a)  3. (b) 

90

100

80 45 35 50

40

70

4. (c) Given: Minimum number of nodes with height n(h) = 1
Number of nodes upto height n(hi – 1) = (2h – 1) - 1 
Thus, the min. number of nodes at height = Sum of preceding two equations

= (2h - 1) - 1 + 1 = 2h - 1
The maximum number of nodes at height = 2h - 1.
Thus, the option is 3.
5. (d) By definition. To make a guess, a bridge in real life connects two parts. Hence, its removal should 

separate them.
6. (a) The final heap will be
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27

26

63 45 94 84

47

One need not even construct the tree. The simplest way is that there are seven nodes, that is, six nodes 
for left and right subtree. For a heap, it’s quite obvious that the division has to be 3–3, as a heap is a 
complete binary tree.
7. (d)  8. (d)  9. (d)
With large n, the number of comparisons required for finding the 7th smallest element becomes 
irrelevant of the height (logn) of the heap. It can be found out in constant time. Hence, the answer 
is option (d).
 10. (c) 



An important area in computer science is information retrieval. An information 
retrieval application, a database, which may contain a wide variety of data structures, 

is maintained on an online basis using large random access fi les. These fi les are searched 
for requested information based on index items generated from a user query. One of the 
problems associated with information retrieval systems and especially automated library 
systems is creating a good indexing scheme. We shall learn about indexing schemes in 
this chapter.

13.1 INTRODUCTION

 A fi le is a collection of records, each  record having one or more fi elds. The fi elds used 
to distinguish among the records are known as keys. File organization describes the way 
in which records are stored in a fi le. File organization is concerned with representing 
data records on an external storage media. The choice of such a representation depends 
on the environment where the fi le is to operate, for example,  real-time, batched, simple 
query, one key, or multiple keys. When there is only one key, the records may be stored 
on this key and stored sequentially either on a tape or a disk. This results in a sequentially 
ordered fi le. This organization is good for fi les operating in batched retrieval and update 
modes when the number of transactions batched is large enough to make the  processing 
cost effective. When the number of keys is more than one or when real time responses are 
need ed, a sequential organization is not adequate. I n a general situation, several indices 
may have to be maintained. In these cases, the fi le organization breaks down into two 
more aspects:

INDEXING AND  MULTIWAY 
TREES13

OBJECTIVES

After completing this chapter, the reader will be able to u nderstand the following:
 • Indexing techniques
 • B-trees which prove invaluab le for problems of external information re trieval
 • A class of trees called tries, which share some properties of table lookup
 • Important uses of  trees in many search techniques
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Directory for the collection of indices

File organization for the physical organization of records

Many alternative file organizations exist, each suitable in a particular situation. File orga-
nization is the way records are organized on a physical storage. One such organization 
is sequential (ordered and unordered). In this general framework, processing a query or 
updating a request would proceed in two steps:

1. The indices would be interrogated to determine the parts of the physical file to be 
searched.

2. These parts of the physical file will be searched.

Depending upon the kinds of indices maintained, the second stage may involve only 
the accessing of records satisfying the query or may involve retrieving non-relevant 
records too.

Let us study about indexing and the different indexing schemes.

13.2 INDEXING

One of the most popular indices is a book index. An index of a book is a table contain-
ing a list of topics (keys) and page numbers where the topic can be found (reference 
fields).

An index, whether it is a book or a data file index (in computer memory), is based 
on the basic concepts such as keys and reference fields. The index to a book provides 
a way to find a topic quickly. Imagine a book that does not have a good index. Then, 
we have only one solution, that is, to scan the whole book sequentially for finding a 
particular topic. In general, indexing is a way of finding things quickly.

To search some topics in a book is a problem which cannot be solved by methods we 
have studied in Chapter 9, searching and sorting. Rearranging all the words in the book 
in alphabetical order certainly would make finding any particular term easier, but would 
obviously have disastrous effects on the meaning of the book. Even though this book 
example, where the words in the book are referred to as pinned records, is absurd, it 
clearly underscores the power and importance of the index as a conceptual tool. Indexing 
works on indirect addressing. An index lets us impose order on a file without rearranging 
the file.

One more example where indexing is used is a library. To locate a book by a specific 
author, title, or subject, we can take the card catalog. The card catalog is actually a set 
of three indices, each using a different key field and all of them using the same cata-
log number as a reference field. Another use of indexing is to provide multiple access 
paths to a file. The advantage of indexing is that it gives keyed access to variable length 
records.
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13.2.1 Indexing Techniques

A directory is a collection of indices. It may contain one index for every key or only one 
index for some of the keys. If an index contains an entry for every record, then it is called 
a dense index. If an index contains an entry for only some of the records, then it is non-
dense index. In some cases, all the indices may be integrated into one large index.

The index is a collection of pairs of the form (key value, address). For example, con-
sider the sample data for employee file as in Table 13.1.

Table 13.1 Employee records
Record Emp. no. Name Occupation Disk address

A

B

C

D

E

100

500

300

200

400

Saurabh

Abolee

Anagha

Abhijeet

Devnarayanan

Developer

Project head

Developer

Project head

Developer

P1

P2

P3

P4

P5

Suppose P1, P2, P3, P4, P5 are the disk addresses where these records are stored. Let 
‘Emp. no.’ be the key. Then, the index will have the entries (100, P1), (500, P2), (300, P3), 
(200, P4), and (400, P5). This is a dense index because the key is distinct for all records 
and there is an entry for each record. If we keep ‘Occupation’ as the key, then the index 
will be (Developer, q1), (Project Head), q2), where q1 is a disk address that stores the list 
of addresses of all developers, that is, P1, P3, and P5, and q2 is a disk address that stores 
the list of addresses of all project heads, that is, P2 and P4. This is also a dense index.

Index can also be maintained as the key value—address1, address2, …, addressn. 
However, if the number of records associated with each key varies, then it results in vari-
able size nodes and complex storage management.

Different operations on the index are searching a key, modifying some entry in the 
index, inserting a new entry, and deleting an entry from the index. An index is too large 
and has to be maintained on the external storage. Let us see some indexing techniques.

Cylinder-surface Indexing

This is the simplest type of index organization. It is useful only for the primary key index 
of a sequentially ordered file. In a sequentially ordered file, the physical sequence of 
records is ordered by the key, called the primary key. The employee file in Table 13.1 is 
not sequentially ordered if ‘Emp. no.’ is a primary key because that field is not sorted. 
The sequentially ordered file can be stored on a tape or a disk. Disk memory has many 
surfaces, each surface having tracks. A cylinder j consists of track j on all the surfaces. So, 
the sequential interpretation of disk memory can be done in the following way. First, all 
tracks on cylinder 1 are accessed, then cylinder 2, and so on. So the read/write heads are 
moved one cylinder at a time. This is shown in Fig. 13.1.
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Surface 1
Surface 1

Surface S

2 Surface 2 Surface S...

Cylinder 1 Cylinder 2

Cylinder C

Cylinder C...

Cylinder j
.
.
.

Fig. 13.1 Cylinder-surface indexing

The cylinder-surface index consists of a cylinder index and several surface indices. 
If the file requires 1 through C cylinders, then there are C entries in the cylinder index. 
There is one entry corresponding to the largest key value in each cylinder. For each cyl-
inder, there is a surface index. If the disk has S usable surfaces, then each surface index 
has S entries. The total number of surface index entries is C ¥ S. For example, consider 
Table 13.2.

Table 13.2 Employee records cylinder-surface indexing

Emp. no. Emp. name Cylinder Surface
1

2

3

4

5

6

7

8

Abolee

Anand

Amit

Amol

Rohit

Santosh

Saurabh

Shila

1

1

1

1

2

2

2

2

1

1

2

2

1

1

2

2

Let there be two surfaces and two records stored per track. The file is organized 
sequentially on the field ‘Emp. name’. The corresponding cylinder index is given in 
Table 13.3.

Table 13.3 Cylinder index for Table 13.2

Cylinder Highest key value
1

2

Amol

Shila

The surface index for cylinder 1 is the surface highest key value: Anand, Amol.
The surface index for cylinder 2 is the surface highest key value: Santosh, Shila.
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A search for a record with a particular key value K is done in the following way. 
First, the key cylinder index is read into memory. In general, it has a few hundred 
entries, so it fits in one track. The cylinder index is searched to determine the required 
cylinder number, and then, for this cylinder, its surface index is read into memory and 
searched for the track. Then, this track is read in and searched for the key. For example, 
if we search for a record with the key ‘Rohit’, then the cylinder index tells that the 
record is either on cylinder 2 or not in the file. If the surface index of cylinder 2 is 
searched, then it shows that the record is either on surface 1 or not in the file. So in the 
second track t2, 1 is read and searched for. The desired record is found on this track. So 
the total number of disk accesses to get a record is three—one for the cylinder index, 
one for the surface index, and one for the track of records. If the track sizes are very 
large, then a sector index is maintained. If several disks are used to store a file, then a 
disk index is also maintained.

This method of maintaining a file and index is referred to as indexed sequential access 
method (ISAM). It is the simplest file organization for single key files but not useful for 
multiple key files.

Hashed Indexing

The operations related to hashed indices are the same as those for hash tables. This has 
been discussed in detail in Chapter 11.

13.3 TYPES OF SEARCH TREES

We have studied BSTs (binary search trees), AVL trees, optimal binary search trees, and 
heaps in Chapter 7. These were binary trees with outgoing degree two. For large data, 
these trees grow to a great height. To avoid these problems, we retain the properties of 
BSTs and increase the outgoing degree more than two. In a BST, the node maintains two 
links for its left and right child, whereas in a multiway search tree, each node can maintain 
more than two links for its more than two subtrees. Such search trees have vast applica-
tions such as dictionary, spell checks, and external file indices.

13.3.1 Multiway Search Tree

Binary search trees generalize directly to multiway search trees. A multiway search 
tree is a tree of order m, where each node has utmost m children. Here m is an integer. 
If k £ m is the number of children, then the node contains exactly k - 1 keys, which 
partition all the keys in the subtrees into k subsets. If some of these subsets are empty, 
then the corresponding children in the tree are empty. Figure 13.2 shows a 5-way 
search tree.

We always want to construct a multiway search tree that will minimize file accesses. 
So the height of the tree should be as small as possible, for example, B-tree and  
B+ tree.
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d

b

a f g i m n o q s t u

h j k l r w x y zc

e p v

Fig. 13.2 5-way search tree

13.3.2 B-tree

When we want to locate and retrieve records stored in a disk file, the time required for a 
single access is thousand times greater for external retrieval than for internal information 
retrieval.

Our goal in external searching is to minimize the number of disk access since each 
access takes so long compared to internal computation. Multiway trees are especially 
appropriate for external searching.

A B-tree is a balanced multiway tree. A node of the tree contains many records or keys 
of records and pointers to children.

To reduce disk access, the following points are applicable:

1. Height is kept minimum.
2. All leaves are kept at the same level.
3. All nodes other than leaves must have at least minimum number of children.

B-tree Definition

A B-tree of order m is a multiway tree with the following properties:

1. The number of keys in each internal node is one less than the number of its non-empty 
children, and these keys partition the keys in the children in the fashion of the search 
tree.

2. All leaves are on the same level.
3. All internal nodes except the root have utmost m non-empty children and at least Èm/2˘ 

non-empty children.
4. The root is either a leaf node, or it has from two to m children.
5. A leaf node contains no more than m - 1 keys.

Its node structure is given in Fig. 13.3.
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Ptr1 Key1 Ptr2 Key2 Ptri Keyi … Key(n–1) Ptrn

X

X < Key 1

X

Key(i–1) <X < Keyi

X

X > Key(n–1)

Fig. 13.3 Node structure for B-tree

The B-tree of order 5 for Fig. 13.3 shown in Fig. 13.4.

l

d

a e h i j kf m n p q r t u v x y zb c

g o s w

Fig. 13.4 B-tree of order 5

The maximum number of items in a B-tree of order m and height h is shown in 
Table 13.4.

Table 13.4 B-tree of order m and height h

Level Number of keys
Root m - 1

Level 1 m(m - 1)

Level 2 m2(m - 1)

Level h mh(m - 1)

So, the total number of items is

 (1 + m + m2 + m3 + … + mh)(m - 1) = [(mh+1 - 1)/ (m - 1)] (m - 1) = mh+1 - 1 (13.1)

When m = 5 and h = 2, Eq. (13.1) gives 53 - 1 = 124.
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We will describe a B-tree of order 5 using a C++ structure. The declaration of B-tree 
node is given in Fig. 13.5.

Data 1

Child 0 Child 1 Child 2 Child 3 Child 4

Data 2 Data 3 Data 4

Fig. 13.5 Node structure of 5-way B-tree

Let us see how this can be implemented using the C++ code as in Program Code 13.1.

program CoDe 13.1

#defi ne max 4

#defi ne min 2

// Maximum number of keys in a node is m − 1, 

// therefore max_keys = m − 1 = 5 − 1 = 4

// Minimum number of keys in a node is [m/2] − 1,

// therefore min_keys = [m/2] − 1

// = [5/2] − 1 = 2

class btnode

{

   public:

      int count;

      int data[max + 1];

      btnode *child[max + 1];

};

class btree

{

   int push_down(int, btnode*, int*, btnode**);

   void pushin(int, btnode*, btnode*, int);

    void split_node(int, btnode*, btnode*, int, int*, 

btnode**);

   void del_node(int, btnode*);

   void remove_key(btnode*, int);

   void successor(btnode*, int);

   void restore(btnode*, int);

   void move_right(btnode*, int);

   void move_left(btnode*, int);

   void combine_nodes(btnode*, int);

  int search_node(int, btnode*, int*);
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   btnode*search(int, btnode*, int*);

   public:

      btnode* root;

      void display();

      btnode* del(int, btnode*);

      void pre_rec(btnode*);

      btnode* insert(int, btnode*);

};

Reasons for using B-trees B-trees are widely used for the following reasons:

1. The cost of each disk transfer is high when the searching tables are held on disk and do 
not depend much on the amount of data transferred, especially if the consecutive items 
are transferred. Consider a condition of the B-tree of order 101. We can transfer each 
node in one disk read operation.

2. A B-tree of order 101 and height 3 can hold 1014 - 1 items (approximately 100 million), 
and any item can be accessed with three disk reads (assuming we hold the root in memory).

3. When a balanced tree is required and if we take m = 3, we get a ‘2–3 tree’, where the 
non-leaf nodes have two or three children (i.e., one or two keys).

4. B-trees are always balanced (since the leaves are all at the same level), so 2-3 trees 
make a good type of balanced tree.

Operations on B-tree

The following are the operations performed on a B-tree.

Searching a node The function search_node() determines if the new key is in 
the current node and if not, fi nds which of the children should be searched for. This is 
described in Program Code 13.2.

program CoDe 13.2

/* Search_node() searches a new key in the current node. 

If found returns its position in the current node, else 

returns child which should be searched next */

int btree :: search_node(int newkey, btnode *curr, int 

*pos)

{

   if(newkey < curr->data[1])

   {

      *pos = 0;

      return 0;

   }
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   else

   {

      *pos = curr->count;

      while((newkey < curr->data[*pos]) && (*pos > 1))

         (*pos)--;

      if(newkey == curr->data[*pos])

         return 1;

      else 

         return 0;

   }

}

Searching a B-tree In Program Code 13.3, the search() function traverses the B-tree.

program CoDe 13.3

btnode * btree :: search(int newkey, btnode *root, int 

*pos)

{

   if(!root)

   {

      return null;

   }

   else if(search_node(newkey, root, pos))

      return root;

   else

      return search(newkey, root->child[*pos], pos);

}

If a new key is present in it, then it returns the pointer to the node and the position of the 
new key in it; otherwise, it returns null.

Inserting a key into a B-tree Binary search trees grow at their leaves, but the B-trees 
grow at the root. The general method of insertion is as follows:

1. First, the new key is searched in the tree. If the new key is not found, then the search 
terminates at a leaf.

2. Attempt to insert the new key into a leaf.
3. If the leaf node is not full, then the new key is added to it and the insertion is fi nished.
4. If the leaf node is full, then it splits into two nodes on the same level, except that the 

median key is sent up the tree to be inserted into the parent node.
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5. If this would result in the parent becoming too big, split the parent into two, promoting 
the middle key.

6. This strategy might have to be repeated all the way to the top.
7. If necessary, the root is split into two and the middle key is promoted to a new root, 

making the tree one level higher.

Let us see one example to build a B-tree of order 5 for the following data: 78, 21, 14, 11, 
97, 85, 74, 63, 45, 42, 57, 20, 16, 19, 52, 30, 21. This is illustrated in Figs 13.6(a)–(g). 
First the numbers 78, 21, 14, and 11 are inserted. The tree looks as in Fig. 13.6(a) post 
insertion. Then 97 is inserted, an overflow occurs at 21, and the tree is split as in Fig. 
13.6(b). The numbers 85, 74, and 63 are inserted and again the tree is split as shown in 
Fig. 13.6(c). Figure 13.6(d) shows the split tree after insertion of 45, 42, and 57; Fig. 
13.6(e) shows the split tree after insertion of 20, 16, and 19. Finally 52, 30, and 21 are 
inserted as shown in Fig. 13.6(f) and the final tree after split is shown in Fig. 13.6(g). The 
overflow in each step is depicted by encircling the number.

(a)

(b)

(c)

(d)

(e)

21

21

11 14 21 78

16 21 57 78

11 14

11 14

21 78 785721

785721

11 1411 14

78 97

11 14 42 45 63 74 85 9785 97

42 45 63 74 85 97 11 14 19 20 42 45 63 74 85 97

63 74 85 97

21 78 97

42 45 57 63 74

11 14 16 19 20

63 74 78 85 97

11 14

21 78
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Fig. 13.6 Building a B-tree  (a) Step 1  (b) Step 2  (c) Step 3
(d) Step 4  (e) Step 5  (f) Step 6  (g) Final tree

(f)

(g)

42

85 9763 7419 2011 14

11 14

16 21 57 78

19 20 21 30 45 52 63 74 85 97

21 30 42 45 52

16 21 57 78

In step 6, because of the overflow, data 42 moves up the root, and then the root becomes 

16 21 42 57 78

So the root also overflows and splits. So 42 becomes the root of the final B-tree.
We should note two important points in the growth of B-trees.

1. When a node splits, it produces two nodes that are now only half full. So, later insertions 
may be made without any split again. Hence, one split prepares the way for several 
simple insertions.

2. It is always the median key that is sent upward. This improves the balance of the tree, 
no matter in what order the keys happen to arrive.

As shown in Fig. 13.7, the current node is split if it is full. After split, ‘current’ will be 
a left child and medright will be a right child, and meddata is a median key.

Current

p q r s p q r s

Current medright

meddatanewdata

Fig. 13.7 Splitting the B-tree

The function insert() inserts newdata into the B-tree and then returns the root. 
This is shown in Program Code 13.4.
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program CoDe 13.4

/* Function to insert newdata in B-tree */

btnode *btree :: insert(int newdata, btnode *root)

{

   int meddata;

   btnode *medright, *newroot;

   if(push_down(newdata, root, &meddata, &medright))

   {

      /* Tree if growing */

      newroot = new btnode;

      newroot->count = 1;

      newroot->data[1] = meddata;

      newroot->child[0] = root;

      newroot->child[1] = medright;

      return newroot;

   }

   return root;

}

In Program Code 13.5, push_down() recursively moves down the B-tree searching for 
new data. newdata is inserted into the subtree to which the node ‘current’ points. If true 
is returned, then the height of the subtree is increased and meddata should be reinserted 
higher in the tree, with subtree medright on its right.

program CoDe 13.5

Int btree :: push_down(int newdata, btnode *curr, int 

*meddata, btnode **medright)

{

   int pos;

   if(curr == null)

   {

      /* cannot insert into empty subtree, so terminate */

      *meddata = newdata;

      *medright = null;

      return 1;

   }

  else

   {

      /* Search the current node */

     if(search_node(newdata, curr, &pos))
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          cout << "\n\nError Duplicate Keys Cannot Be 

Inserted!!";

       if(push_down(newdata, curr->child[pos], meddata, 

medright))

      {

         if(curr->count < max)

         {

            /* Reinsert median key */

            pushin(*meddata, *medright, curr, pos);

            return 0;

         }

         else

         {

            /* Split node */

             split_node(*meddata, *medright, curr, pos, 

meddata, medright);

            return 1;

         }

      }

      return 0;

   }

}

In Program Code 13.6, pushin() inserts the key meddata and its right-hand pointer 
medright into the node *curr at index pos.

program CoDe 13.6

void btree :: pushin(int meddata, btnode *medright, 

btnode *curr, int pos)

{

   int p;

   for(p = curr->count; p > pos; p--)

   {

       /* Shift all the keys and child pointers to the 

right */

      curr->data[p + 1] = curr->data[p];

      curr->child[p + 1] = curr->child[p];

   }

   curr->data[pos + 1] = meddata;

   curr->child[pos + 1] = medright;

   curr->count++;

}
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Splitting a full node The split_node() function splits a full node *curr with data 
meddata, and child pointer medright at index pos into nodes *curr and *newright and 
leaves the median key in the new median. The C++ code for splitting node is provided in 
Program Code 13.7.

program CoDe 13.7

void btree :: split_node(int meddata, btnode *medright, 

btnode *curr, int pos, int *newmedian, btnode **newright)

{

   int p, median;

   if(pos <= min)

      median = min;

   else

      median = min + 1;

   /* Create a new node and put it on the right */

   *newright = new btnode;

   for(p = median + 1; p <= max; p++)

   {

      /* Move half the keys */

      (*newright)->data[p - median] = curr->data[p];

      (*newright)->child[p - median] = curr->child[p];

   }

   (*newright)->count = max - median;

   curr->count = median;

   if(pos <= min)

   {

      pushin(meddata, medright, curr, pos);

   }

   else

   {

      pushin(meddata, medright, *newright, pos - median);

   }

   *newmedian = curr->data[curr->count];

   (*newright)->child[0] = curr->child[curr->count];

   curr->count--;

}

Deleting from a B-tree During insertion, the key always goes into a leaf. For deletion, 
if we wish to remove from a leaf, there are three possible ways mentioned as follows:

1. If the key is already in a leaf node and removing it does not cause that leaf node to have 
too few keys, then simply remove the key to be deleted.
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2. If the key is not in a leaf, then it is guaranteed (by the nature of a B-tree) that its 
predecessor or successor will be in a leaf—in this case, we can delete the key and 
promote the predecessor or successor key to the non-leaf deleted key’s position.

3. If these two conditions lead to a leaf node containing less than the minimum number of 
keys, then we have to look at the siblings immediately adjacent to the leaf in questions 
listed as follows:
(a) If one of them has more than the minimum number of keys, then we can promote 

one of its keys to the parent and take the parent key into our lacking leaf.
(b) If neither of them has more than the minimum number of keys, then the lacking 

leaf and one of its neighbours can be combined with their shared parent (the 
opposite of promoting a key), and the new leaf will have the correct number of 
keys; if this step leaves the parent with very few keys, then we repeat the process 
up to the root itself, if required.

If the leaf contains more than the minimum number of entries, then the data can be deleted 
with no further action.

Consider the example as in Figs 13.8(a) and (b).

a b

(a)

j

c f m r

d e g h i k l n p s t u x

Now, delete h.

(b)

j

c f m r

a b d e g i k l n p s t u x

Fig. 13.8 Sample tree  (a) Before deleting h  (b) After deleting h

If the node contains the minimum number of entries, then look at the two leaves that are 
immediately adjacent to each other and are children of the same node. If one of these has 
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more than the minimum number of entries, then one of them can be moved into the parent 
node, and the entry from the parent can be moved into the leaf where the deletion occurs.

Figure 13.9 shows the B-tree when the leaf node r is deleted from Fig. 13.8(b).

j

c f m s

a b d e g i k l n p t u x

Fig. 13.9 Tree after r is deleted and s is moved to parent

Figure 13.10 shows the tree after deletion of p.

Fig. 13.10 Tree after p is deleted, s is moved down, and t is moved up to the parent

j

c f m t

a b d e g i k l n s u x

If the adjacent leaf has only the minimum number of entries, then the two leaves and 
the median entry from the parent can be combined as one new leaf, which will contain no 
more than the maximum number of entries allowed.

The process is repeated if required.
From the B-tree in Fig. 13.10, the leaf node d is deleted. The process of deleting and 

combining is shown in Figs 13.11(a)–(c).

(a)

j

c f m t

a d e g i k l n s u xb

Combine
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Fig. 13.11 Deleting and combining operations  (a) Deletion of node d 
(b) Combining  (c) Final B-tree 

(c)

a e g i n sk l u xb c

f tj m

(b)

j

f m t

a e g i k l n s u xb c

Combine

This is the fi nal B-tree after the deletion of d. The combine process is repeated twice.
Let us see how the deletion operation can be implemented using C++ as shown in 

Program Code 13.8.

program CoDe 13.8

// DeleteBtree() deletes targetkey from the B-tree and 

// returns the root

btnode *btree :: del(int key, btnode *root)

{

   btnode *oldroot;

   del_node(key, root);

   if(root->count == 0)

   {

      oldroot = root;

      root = root->child[0];

      delete oldroot;

   }

   return root;

}

In Program Code 13.9, del_node() searches the targetkey in the curr node. If 
it is found and the node is a leaf, then the immediate successor of the key is found and 
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is placed in the current node, and the successor is deleted. After deletion, the function 
checks to see if enough entries remain in the appropriate node, and if not, move entries 
as required.

program CoDe 13.9

void btree :: del_node(int key, btnode *curr)

{

   int pos;

   if(!curr)

   {

      cout << "\n\n Target Not Found";

      return ;

   }

   else

   {

      if(search_node(key, curr, &pos))

      {

         if(curr->child[pos − 1])

         {

             /* targetkey found, replace data [pos] by 

it successor */

            successor(curr, pos);

             del_node(curr->data[pos], curr->child[pos]);

         }

         else

             remove_key(curr,pos); /* removes key from 

pos of *current */

      }

      else       /* Target key not found in the current 

node, search a subtree */

         del_node(key, curr->child[pos]);

      if(curr->child[pos])

      {

          if(curr->child[pos]->count < min)

             restore(curr, pos);

      }

   }

}

The remove_key() function removes the target key from pos in the curr node and 
shifts the remaining keys one position ahead. The implementation of this operation is as 
in Program Code 13.10.
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program CoDe 13.10

void btree :: remove_key (btnode *curr, int pos)

{

   int p;

   for(p = pos + 1; p <= curr->count; p++)

   {

      curr->data[p − 1] = curr->data[p];

      curr->child[p − 1] = curr->child[p];

   }

   curr->count−−;

}

void btree :: successor (btnode *curr, int pos)

{

   btnode *leaf;

   leaf = curr->child[pos];

   while(leaf->child[0])

      leaf = leaf->child[0];

   curr->data[pos] = leaf->data[1];

}

The function restore() restores the minimum number of entries. It fi rst searches the sib-
ling on the left to take an entry and uses the right sibling only when there are no entries to spare 
in the left one. The working is shown in Program Code 13.11 using the function restore().

program CoDe 13.11

void btree :: restore (btnode *curr, int pos)

{

   if(pos == 0)      /* leftmost key */

   {

      if(curr->child[1]->count > min)

         move_left(curr, 1);

      else

         combine_nodes(curr, 1);

   }

   else if(pos == curr->count)

   {

      if(curr->child[pos − 1]->count > min)

         move_right(curr, pos);

      else

         combine_nodes(curr, pos);
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         /* Remaining cases */

   }

   else if(curr->child[pos − 1]->count > min)

      move_right(curr, pos);

   else if(curr->child[pos + 1]->count > min)

      move_left(curr, pos + 1);

   else

      combine_nodes(curr, pos);

}

Figure 13.12 shows the working of the move_right() function.

Current

Move right

v

t u w vt

u

w

a b c d a b c d

Fig. 13.12 Move right function

The move_right() function as given in Program Code 13.12, moves data from *curr 
node into the child[pos] and then moves the rightmost data from child[pos − 1] into 
the current node.

program CoDe 13.12

void btree :: move_right (btnode *curr, int pos)

{

   int p;

   btnode *temp;

   /* Set temp to right node of current */

   Temp = curr->child[pos];

   for(p = temp->count; p > 0; p−−)

   {

       /* Shift all keys in the right node one position 

ahead */

      temp->data[p + 1] = temp->data[p];

      temp->child[p + 1] = temp->child[p];

   }
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   temp->child[1] = temp->child[0];

   /* Increase count of right node */

   temp->count++;

    /* Move data from current to fi rst place of right 

node */

   temp->data[1] = curr->data[pos];

   temp = curr->child[pos − 1];

   /* Move last data from left node into current */

   curr->data[pos] = temp->data[temp->count];

    curr->child[pos]->child[0] = temp->child[temp->count];

   /* Decrease count of left node */

   temp->count−−;

}

Similarly, we can write a move_left() function given in Program Code 13.13, which 
moves data from *curr node into the child[pos − 1] and then moves the leftmost entry 
from child[pos] into *curr node.

program CoDe 13.13

void btree :: move_left (btnode *curr, int pos)

{

   int p;

   btnode *temp;

   temp = curr->child[pos − 1];

   /* Increase count of right node */

    /* Move data from current into last place of left 

node and increase its count */

   temp->count++;

   temp->data[temp->count] = curr->data[pos];

    temp->child[temp->count] = curr->child[pos]->child[0];

   /* Set temp to right node of current */

   temp = currentÆchild[pos];

    /* Move data from fi rst place of right node 

into last place of current and decrease count of 

right node */

  curr->data[pos] = temp->data[1];

   temp->child[0] = temp->child[1];

   temp->count−−;

   /* Shift all keys in right node one position left */

  for(p = 1; p <= temp->count; p++)
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   {

      temp->data[p] = temp->data[p + 1];

      temp->child[p] = temp->child[p + 1];

   }

}

Figure 13.13 illustrates the combining of nodes.
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Fig. 13.13 Combining nodes

Program Code 13.14 elaborates the working of the function combine_nodes(). 

program CoDe 13.14

void btree :: combine_nodes(btnode *curr, int pos)

{

   int p;

   btnode*left, *right;

   left = curr->child[pos − 1];

   right = curr->child[pos];

    /* Move data from current into left node and 

increase count of left, decrease count of current 

*/

   left->count++;

   left->data[left->count] = curr->data[pos];

   left->child[left->count] = right->child[0];

    /* Copy all data and child pointers from right node 

into left node */

   for(p = 1; p <= right->count; p++)

  {

      left->count++;

      left->data[left->count] = right->data[p];

      left->child[left->count] = right->child[p];

   }
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   /* Delete the data from current which is moved into 

left node and shift the remaining data one position 

left */

   for(p = pos; p < curr->count; p++)

   {

      curr->data[p] = curr->data[p + 1];

      curr->child[p] = curr->child[p + 1];

   }

   curr->count−−;

   delete right;

}

This function combines the adjacent nodes at child[pos − 1] and child[pos] of 
*curr node into one node. In addition, data at pos in *curr node is moved into the com-
bined node.

B-tree as Abstract Data Type

We have studied the implementation of various functions for a B-tree. The B-tree as an 
ADT is defi ned in Program Code 13.15.

program CoDe 13.15

/*****Implementation of B-tree*****/

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<process.h>

#defi ne max 4

#defi ne min 2

class btnode;

class qnode

{

   public:

      btnode* data;

      qnode* next;

      qnode(btnode* t){data = t; next = null;}

};

class queue

{

   qnode* front;

   qnode* rear;
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   public:

      queue(){front = null; rear = null;}

      void add(btnode* t);

      btnode* remove();

       int isempty(){if(front == null)return 1;else 

return 0;}

};

void queue :: add(btnode* t)

{

   if(front == null)

      front = rear = new qnode(t);

   else

      rear = rear->next = new qnode(t);

}

btnode* queue :: remove()

{

   btnode* t;

   if(isempty())

      return 0;

   qnode* x = front;
   t = front->data;
   front = x->next;
   delete x;

   return t;

}

class btnode

{

   public:

      int count;

      int data[max + 1];
      btnode *child[max + 1];
};

class btree

{

   int push_down(int, btnode*, int*, btnode**);

   void pushin(int, btnode*, btnode*, int);

    void split_node(int, btnode*, btnode*, int, int*, 

btnode**);

   void del_node(int, btnode*);
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   void remove_key(btnode*, int);

   void successor(btnode*, int);

   void restore(btnode*, int);

   void move_right(btnode*, int);

   void move_left(btnode*, int);

   void combine_nodes(btnode*, int);

   int search_node(int, btnode*, int*);

   btnode*search(int, btnode*, int*);

   public:

      btnode* root;

      void display();

      btnode* del(int, btnode*);

      void pre_rec(btnode*);

      btnode* insert(int, btnode*);

};

void btree :: display()

{

   queue q;

   btnode* m;

   m = root;
   while(m)

   {

      for(int i = 0; i < m->count; i++)
         cout << m->data[i] << "   ";

      for(i = 0; i < 5; i++)
      {

         if(m->child[i])

            q.add(m->child[i]);

      }

      m = q.remove();
      cout << "\n";

   }

}

void btree :: pre_rec(btnode *n)

{

   int i;

   if(n != null)
   {

      cout << endl << endl;

      for(i = 1; i <= n->count; i++)
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       {

         cout << "\t" << n->data[i];

      }

      for(i = 0; i < n->count; i = i + 2)
      { 

         pre_rec(n->child[i]);

         pre_rec(n->child[i + 1]);
      }

      if(n->count%2 = = 0)
      {

         pre_rec(n->child[n->count]);

      }

   }

}

btnode * btree :: del(int key, btnode *root)

{

   btnode *oldroot;

   del_node(key, root);

   if(root->count = = 0)
   {

      oldroot = root;
      root = root->child[0];
      delete oldroot;

   }

   return root;

}

void btree :: del_node(int key, btnode *curr)

{

   int pos;

   if(!curr)

   {

      cout << "\n\n Target Not Found";

      return;

   }

   else

   {

      if(search_node(key, curr, &pos))

         if(curr->child[pos - 1])
         {

            successor(curr, pos);
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            del_node(curr->data[pos], curr->child[pos]);

         }

         else

         {

            remove_key(curr, pos);

         }

         else

            del_node(key, curr->child[pos]);

         if(curr->child[pos])

         {

            if(curr->child[pos]->count < min)

               restore(curr, pos);

         }

   }

}

void btree :: remove_key (btnode *curr, int pos)

{

   int p;

   for(p = pos + 1; p <= curr->count; p++)
   {

      curr->data[p - 1] = curr->data[p];
      curr->child[p - 1] = curr->child[p];
   }

   curr->count- -;
}

void btree :: successor (btnode *curr, int pos)

{

   btnode *leaf;

   leaf = curr->child[pos];
   while(leaf->child[0])

      leaf = leaf->child[0];
      curr->data[pos] = leaf->data[1];
}

void btree :: restore (btnode *curr, int pos)

{

   if(pos = = 0)
      if(curr->child[1]->count > min)

         move_left(curr, 1);

      else
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         combine_nodes(curr, 1);

      else if(pos = = curr->count)
         if(curr->child[pos - 1]->count > min)
         {

            move_right(curr, pos);

         }

         else

         {

            combine_nodes(curr, pos);

         }

         else if(curr->child[pos - 1]->count > min)
            move_right(curr, pos);

         else if(curr->child[pos + 1]->count > min)
            move_left(curr, pos + 1);
         else

            combine_nodes(curr, pos);

}

void btree :: move_right (btnode *curr, int pos)

{

   int p;

   btnode *temp;

   temp = curr->child[pos];
   for(p = temp->count; p > 0; p- -)
   {

      temp->data[p + 1] = temp->data[p];
      temp->child[p + 1] = temp->child[p];
   }

   temp->child[1] = temp->child[0];
   temp->count++;
   temp->data[1] = curr->data[pos];
   temp = curr->child[pos - 1];
   curr->data[pos] = temp->data[temp->count];
    curr->child[pos]->child[0] = temp->child[temp-

>count];

   temp->count- -;
}

void btree :: move_left (btnode *curr, int pos)

{

   int p;

   btnode *temp;
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   temp = curr->child[pos - 1];
   temp->count++;
   temp->data[temp->count] = curr->data[pos];
    temp->child[temp->count] = curr->child[pos]-

>child[0];

   temp = curr->child[pos];
   curr->data[pos] = temp->data[1];
   temp->child[0] = temp->child[1];
   temp->count- -;
   for(p = 1; p <= temp->count; p++)
   {

      temp->data[p] = temp->data[p + 1];
      temp->child[p] = temp->child[p + 1];
   }

}

void btree :: combine_nodes (btnode *curr, int pos)

{

   int p;

   btnode*left, *right;

   left = curr->child[pos - 1];
   right = curr->child[pos];
   left->count++;
   left->data[left->count] = curr->data[pos];
   left->child[left->count] = right->child[0];
   for(p = 1; p <= right->count; p++)
   {

      left->count++;
      left->data[left->count] = right->data[p];
      left->child[left->count] = right->child[p];
   }

   for(p = pos; p < curr->count; p++)
   {

      curr->data[p] = curr->data[p + 1];
      curr->child[p] = curr->child[p + 1];
   }

   curr->count- -;
   delete right;

}

int btree :: search_node(int newkey, btnode *curr, 

int *pos)
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{

   if(newkey < curr->data[1])

   {

      *pos = 0;
      return 0;

   }

   else

   {

      *pos = curr->count;
      while((newkey < curr->data[*pos]) && (*pos > 1))

         (*pos)- -;
      if(newkey = = curr->data[*pos])
         return 1;

      else

         return 0;

   }

}

btnode * btree :: search(int newkey, btnode *root, int 

*pos)

{

   if(!root)

   {

      return null;

   }

   else if(search_node(newkey, root, pos))

      return root;

   else

      return search(newkey, root->child[*pos], pos);

}

btnode *btree :: insert(int newdata, btnode *root)

{

   int meddata;

   btnode *medright, *newroot;

   if(push_down(newdata, root, &meddata, &medright))

   {

      newroot = new btnode;
      newroot->count = 1;
      newroot->data[1] = meddata;
      newroot->child[0] = root;
      newroot->child[1] = medright;
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      return newroot;

   }

   return root;

}

int btree :: push_down(int newdata, btnode *curr, int 

*meddata, btnode **medright)

{

   int pos;

   if(curr = = null)
   {

      *meddata = newdata;
      *medright = null;
      return 1;

   }

   else

   {

      if(search_node(newdata, curr, &pos))

          cout << "\n\nError Duplicate Keys Cannot Be 

Inserted!!";

       if(push_down(newdata, curr->child[pos], meddata, 

medright))

         if(curr->count < max)

         {

            pushin(*meddata, *medright, curr, pos);

            return 0;

         }

         else

         {

             split_node(*meddata, *medright, curr, pos, 

meddata, medright);

            return 1;

         }

         return 0;

   }

}

void btree :: pushin(int meddata, btnode *medright, 

btnode *curr, int pos)

{

   int p;

   for(p = curr->count; p > pos; p- -)
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   {

      curr->data[p + 1] = curr->data[p];
      curr->child[p + 1] = curr->child[p];
   }

   curr->data[pos + 1] = meddata;
   curr->child[pos + 1] = medright;
   curr->count++;
}

void btree :: split_node(int meddata, btnode *medright, 

btnode *curr, int pos, int *newmedian, btnode *newright)

{

   int p, median;

   if(pos <= min)
   {

      median = min;
   }

   else

   {

      median = min + 1;
   }

   *newright = new btnode;
   for(p = median + 1; p <= max; p++)
   {

      (*newright)->data[p - median] = curr->data[p];
      (*newright)->child[p - median] = curr->child[p];
   }

   (*newright)->count = max − median;

   curr->count = median;

   if(pos <= min)

   {

      pushin(meddata, medright, curr, pos);

   }

   else

   {

      pushin(meddata, medright, *newright, pos − median);

   }

   *newmedian = curr->data[curr->count];

   (*newright)->child[0] = curr->child[curr->count];

   curr->count−−;

}
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void main()

{

   int ch, c, n;

   char ans;

   btree b;

   b.root = null;

   clrscr();

   do

   {

       cout << "\n\t\t>>>>>>>B-tree operations main 

menu<<<<<<<<<<<"

      <<"\n\n 1. Insert a key"

      <<"\n\n 2. Display the B-tree"

      <<"\n\n 3. Delete a key"

      <<"\n\n 4. Exit"

      <<"\n\n Enter choice:";

      ch = getche();
      ch = ch - '0';
      switch(ch)

      {

      case 1:

      do

      {

         cout << "\n\n\n\n Enter data:";

         cin >> n;

         b.root = b.insert(n, b.root);
         cout << "\n\n Do you want to insert more keys?";

         ans = getche();
         if(ans = = 'n' || ans = = 'N')
         break;

      }while(1);

      getch();

      break;

      case 2:

         b.pre_rec(b.root);

         getch();

      break;

      case 3:

         cout << "\n\n Enter key to be deleted: ";

         cin >> n;

         b.root = b.del(n, b.root);
         getch();
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      break;

     case 4:

         exit(0);

         default:

          cout << "\n\tYou Have Entered An Invalid 

Choice!!!!!!!";

         getch();

      break;

   }

   }while(1);

}

/*********************** OUTPUT ***********************

 >>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 1

Enter data:10

Do you want to insert more keys? y

Enter data: 20

Do you want to insert more keys?  y

Enter data: 30

Do you want to insert more keys? n

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

   10   20   30

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 1

Enter data: 40

Do you want to insert more keys? y

Enter data: 50
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Do you want to insert more keys? n

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

   30   10   20   40   50

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 3

Enter key to be deleted: 10

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

   20   30   40   50

13.3.3  B+ Tree

B+ trees are internal data structures. That is, the nodes contain whatever information is 
associated with the key as well as the key values. A variant of B-trees is often used as an 
index tree. A B+ tree combines the features of ISAM and B-trees as follows:

1. In an index tree, the pointers in the internal nodes point to other index nodes.
2. The pointers in the leaf nodes are not nil, but rather point to where the information 

associated with each key is stored on disk.
3. Each key must appear in a leaf node.
4. B-trees whose keys are only in the internal nodes of the tree and whose pointers in 

the leaf nodes print to where the related information is stored externally are called 
B+ trees.

5. Leaves are connected to form a linked list of keys in sequential order.
6. It has two parts—the index part consists of interior nodes and the sequence set consists 

of leaf nodes.
7. B+ trees are used to store index sequential fi le organization; the key values in the 

sequence set are the key values of record collections.
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B+ Tree Structure

The structure of a B+ tree can be understood from the following points:

1. A B+ tree is in the form of a balanced tree where every path from the root of the tree 
to a leaf of the tree is of the same length.

2. Each non-leaf node (internal node) in the tree has between Èn/2˘ and n children, where 
n is fixed.

3. The pointer (Ptr) can point to either a file record or a bucket of pointers so as to point 
to a file record.

4. Searching time is less in B+ trees but has some problem of wasted space.

Nodes of B+ Tree

A typical node structure of a  B+ tree is shown in Fig. 13.14 with the nodes having the 
following characteristics:

1. Internal node of a B+ tree with q -1 search values.
2. Leaf node of a B+ tree with q - 1 search values and q - 1 data pointers.

P1 K1 P2 K2 Pi Ki ...

... ...

Kn−1 Pn

(a)

(b)

Tree pointer

Data
pointer

Data
pointer

Data
pointer

Data
pointer

Pointer to next
leaf node
in tree

Tree pointer

X

X < K1

X

Ki−1 < X < Ki

X

X > Kn−1

Tree pointer

K1 Pr K2 Ki PrPr Kq−1 Prq−1 Pnext

Fig. 13.14 Nodes of a B+ tree  (a) Internal node of a B+ tree with q -1 search values 
(b) Leaf node of a B+ tree with q - 1 search values and q - 1 data pointers

Non-leaf nodes form a multi-level sparse index on the leaf nodes.

1. Each leaf can hold up to n - 1 values and must contain at least È(n - 1)/2˘ values.
2. Non-leaf node pointers point to tree nodes (leaf nodes). Non-leaf nodes can hold up to 

n pointers and must hold at least Èn/2˘ pointers.
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This seemingly minor change has some major effects on the algorithms. For example, 
the leaf nodes and the internal nodes are treated differently when they split. When a leaf 
node splits, a copy of the middle key is moved up to be a separator at the next level. When 
an internal (index) node splits, the key itself is moved up to act as a separator.

Inserting nodes into a B+ tree The key value determines a record’s placement in a 
B+ tree. The leaf nodes are maintained in sequential order and a doubly linked list (not 
shown) connects each leaf page with its sibling page(s). This doubly linked list speeds the 
data movement as the pages grow and contract.

We must consider three scenarios when we add a record to a B+ tree. Each scenario 
causes a different action.

1. If the leaf is not full and index (internal) is not full
(a) Place the record in sorted position in the appropriate leaf node.

2. If the leaf is full and index is not full
(a) Split the leaf node.
(b) Place the middle key in the index node in sorted order.
(c) Left leaf node contains records with keys below the middle key.
(d) Right leaf node contains records with keys equal to or greater than the middle key.

3. If the leaf is full and index is full
(a) Split the leaf node.
(b) The records with keys < middle key go to the left leaf node.
(c) The records with keys ≥ middle key go to the right leaf node.
(d) Split the index node.
(e) The keys < middle key go to the left index node.
(f) The keys > middle key go to the right index node.
(g) The middle key goes to the next (higher level) index.

If the next level index node is full, continue splitting the index node.
For example, inserting a, d, g, f, and k produces the B+ tree as in Fig. 13.15.

f

a d f g k

Fig. 13.15 Representation of insert operation

The arrow from the leaf nodes point to where the information associated with the key can 
be found.
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Deleting nodes from a B+ tree The delete algorithm for B+ trees is listed as follows:

1. Leaf node not having keys < minimum keys and internal or index nodes not below the 
fill factor.

Delete the record from the leaf page. Arrange keys in ascending order to fill void. 
If the key of the deleted record appears in the index page, use the next key to replace it.

2. Leaf node having keys < minimum keys and internal or index nodes not below the fill 
factor.

Combine the leaf page and its sibling. Change the index page to reflect the change.

3. Leaf node having keys < minimum keys and internal or index nodes below the fill 
factor.
(a) Combine the leaf page and its sibling.
(b) Adjust the index page to reflect the change.
(c) Combine the index page with its sibling.

Continue combining index pages until you reach a page with the correct fill factor or you 
reach the root page.

Another change is that the keys are deleted only from the leaf nodes. If a key to be 
deleted is also a part of the indexing structure (that is, appears in an internal node), it can 
remain in the index, for example, deleting f and j from the tree in Fig. 13.16 gives the
 B+ tree as in Fig. 13.17.

f j

a d j m r sf h i

Fig. 13.16 Sample B+ tree

f j

a d h i m r s

Fig. 13.17 Resultant tree after deletion 
of f and i from Fig. 13.16

The index says that all keys less than f are in the left subtree and those greater than or 
equal to f are in the right subtree. Likewise, all keys less than j are in the right subtree, all 
keys less than j are in the left subtree, and those greater than or equal to g are in the right 
subtree. This is still true.

Borrowing and coalescing are also slightly different because the old separator key can 
be discarded.

For example, deleting g from the B+ tree as in Fig. 13.18 leaves the leftmost node one 
key short.

Figure 13.19 is the result of borrowing h.
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h k

a g k m r sh i j

Fig. 13.18 Sample tree for 
deletion of g

i k

a h i j k m r s

Fig. 13.19 Resultant tree after 
borrowing h from Fig. 13.18

Notice the difference in the B-tree. We rotated keys 
from one sibling to parent to other sibling. Here, the 
borrowed key goes directly into the sibling node and a 
copy of the new leftmost node becomes the separator 
in the parent. If we borrow from the left, however, a 
copy of the borrowed key becomes the separator.

If we coalesce, the keys h, i, and j go into the left-
most node. This is shown in Fig. 13.20.

Since the pointers in the leaf nodes are not nil, we 
must have another way to recognize a leaf node. One 
way is to have a field in each node to mark the node as either an internal node or a leaf 
node. Another way is to continue using the leftmost child pointer as the flag because we 
need M - 1 pointers to point to the storage locations for M - 1 keys. By convention, we 
could let the pointer to the right of a key point to the data, and we could let the leftmost 
pointer be nil in a leaf node. This scheme handles the pointer consistently on insertion 
because the new pointer in the recursive call is stored to the right of the separator key 
being inserted.

If we do not use to the leftmost pointer to determine if we are at a leaf node, we can 
use it to link all the leaf nodes together. Having the leaf nodes linked together allows us 
to process the items in the file in order as well as access the items randomly via the index.

Advantages of B+ Trees over Indexed Sequential Access Method

The B+ tree is a dynamic index structure that adjusts gracefully to insertions and deletions  
It has the following advantages:

1. It is a balanced tree.
2. The leaf pages are not allocated sequentially. They are linked together through pointers 

(a doubly linked list).

13.3.4 Trie Tree

Instead of searching a tree using the entire key, we can consider the key to be a sequence 
of characters (letters or digits, for example), and use these characters to determine a 
multiway branch at each step. If we consider alphabetic keys, then we make a lexical  

k

a h i j k m r s

Fig. 13.20 Resultant tree after 
coalescing the keys h, i, and j into 

the leftmost node of Fig. 13.19
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26-ary tree. At the first level, take a branch according to the first letter; at the second level 
of a tree, take a branch according to the second letter, and so on. If we consider the keys 
made up of three letters p, q, r, of maximum size 3, then the lexical tree will be 3-ary tree 
of level 3; nodes at first level having 3 pointers and 3 nodes at second level having 3 point-
ers each. So we get a total of 3 ¥ 3 pointers at the second level and 3 ¥ 3 ¥ 3 pointers at 
the third level. Finally, we store the actual key at a leaf.

The largest word determines the height of the lexical tree. So the drawback of the lexi-
cal tree is that after a few levels, it becomes very large. One solution is to prune from the 
tree all the branches that do not lead to any key. The resulting tree is called a trie (short 
for reTRIEvaL and pronounced ‘try’).

Consider a trie describing the words made only from the letters p, q, and r. The pruned 
branch can be shown as a null pointer marked with a cross in the node. Along with the 
branches to the next level of the trie, each node contains a data pointer to a key. Figure 
13.21 shows a trie tree.

p q r

p q r p q r p q r

p q r

p q r

p q r

p q r

p

pr qr

qrq

q r

qrp

Fig. 13.21 Example of a trie tree

So the number of steps needed to search a trie is proportional to the number of char-
acters in a key.

Declaration for Trie Tree

In each node of a trie tree, we have pointers to the next level and a pointer to the data. 
Program Code 13.16 is implementation of trie tree and the various operations that can be 
performed on it.
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program CoDe 13.16

#defi ne maxchar 3 /* Key is formed using 3 letters p, 

q, r only */

#defi ne max_key_length 5

class trieNode

{

   public:

      TrieNode *branch[maxchar];

      TrieData *dataptr;

};

typedef char key[max_key_length];

// SearchTrie() searches for the data starting from 

// the root. 

// If found, returns corresponding dataptr, otherwise 

// returns null

TrieNode *SearchTrie(TrieNode *root, Key data)

{

   int p;

   for(p = 0; p < max_key_length&&root!=null; p++)

   {

      if(data[p]=='\0')

         break;

          /* data found, and root is pointing to the 

node having pointer to data */

      else

         root = rootÆbranch[data[p] – 'p'];

   }

   if(root != null && rootÆdataptr == null)

      return null;

      return root;

}

13.3.5  Splay Tree

Of the many other variations on balanced binary trees, perhaps the most intriguing are the 
splay trees, introduced by Sleator and Tarjan, which are self-adjusting.

Splay trees are a form of BSTs. A splay tree maintains a balance without any explicit 
balance condition such as colour. Instead, ‘splay operations’, which involve rotations, 
are performed within the tree every time an access is made. The amortized cost of 
each operation on an n-node tree is O(log2n). One application of splay trees simplifi es 
dynamic trees.
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In an amortized analysis, the time required to perform a sequence of data structure 
operations is averaged over all the operations performed. Amortized analysis can be used 
to show that the average cost of an operation is small, if one averages over a sequence of 
operations, even though a single operation might be expensive. Amortized analysis differs 
from the average case analysis where the probability is not involved; an amortized analy-
sis guarantees the average performance of each operation in the worst case.

Let us consider Example 13.1 to understand how indexing and search trees help in 
implementing practical applications efficiently.

 example 13.1  Consider a hospital management system maintaining patient records. 
A patient who is currently in the hospital is said to be an active record, being consulted 
and updated continuously by attending physicians and nurses. When the patient leaves 
the hospital, the records become passive but still needed occasionally by the patient’s 
physician or others. If, later, the patient is readmitted to the hospital, then the record 
becomes active again. The process of making such records active should be done faster.

Solution If we use a BST or even an AVL tree, then the records of the newly admitted 
patient’s records will go to a leaf position, far from the root, and the access will be slower. 
Instead, we want to keep the records that are newly inserted or frequently accessed very 
near to the root, while the inactive records are kept far off, that is, in the leaf positions. 
However, we do not want to rebuild the tree into the desired shape. Instead, we need to 
make a tree a self-adjusting data structure that automatically changes its shape to bring 
the records closer to the root as they are used frequently, allowing inactive records to drift 
slowly down towards the leaves. Such trees are called as splay trees.

Splay trees are BSTs that achieve our goals by being self-adjusting in the following 
way: every time we access a node of the tree, whether for insertion or retrieval, we per-
form radical survey on the tree, lifting the newly accessed node all the way up so that it 
becomes the root of the modified tree. Other nodes are pushed out of the way as neces-
sary to make space for this new root and not spacing them too far from the top position. 
Inactive nodes, on the other hand, will slowly be pushed farther and farther from the root.

13.3.6 Red–black Tree

A BST of height h can implement any of the basic dynamic set of operations in O(h) time. 
Here, the operations are fast and the height of the search tree is small, but if its height is 
more, the performance may be no better than the linked list. Red-black trees are one of 
many search-tree schemes that are balanced. In order to guarantee that basic dynamic set 
operations, take O(log2n) time in the worst case.

Definition: A red–black tree is a BST with one extra bit of storage per node: its colour, 
which can either be red or black. Red–black trees were invented by R. Bayer under the 
same name ‘symmetric binary B-trees’. Guibas and Sedgewick studied their properties at 
length and introduced the red/black colour convention.
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The tree is balanced by constraining the way nodes can be coloured on any path from the 
root to a leaf; red-black tree ensures that no such path is more than twice as long as any other.

Properties of red–black trees Red–black trees have all the characteristics of BSTs. In 
addition, red-black trees have the following properties. In other words, a BST is a red-
black tree if it satisfies the following properties.

Each node of a tree contains these fields: colour, key, left, right, parent (and an optional 
field rank). If a child or the parent of a node does not exist, the corresponding pointer field 
of the node contains the value null.

1. Every node is either red or black.

Red node Black node

2. All the external nodes (leaf nodes) are black.
3. The rank in a tree goes from zero upto the maximum rank which occurs at the root. The 

rank of two consecutive nodes differs by utmost 1. Each leaf node has a rank 0.
4. If a node is red, then both its children are black. In other words, consecutive red nodes 

are disallowed. This means every red node is followed by a black node; on the other 
hand, a black node may be followed by a black or a red node. This implies that utmost 
50% of the nodes on any path from external node to root are red.

5. The number of black nodes on any path from but not including the node x to leaf is 
called as black height of the node x, denoted as bh(x).

Every simple path from the root to a leaf contains the same number of black nodes. 
In addition, every simple path from a node to a descendent leaf contains the same 
number of black nodes.

6. If a black node has a rank r, then its parent has the rank r + 1.

Red

Red

Black Black

BlackBlack

r + 1 r + 1 r + 1

rrr

7.  If a red node has a rank r, then its parent will have the rank r as well.

Red

RedRed

Blackr r

rr
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Example of a red–black tree Figure 13.22 is an example of a red–black tree with five 
levels. We have set ranks starting at the bottom.

Rank of the root = 3

2

2 2

2

2

3

1 1

1 1

1 1

1

1

1
1

1 1

00

0 0

00

00

00

00

00

00

00

00

Fig. 13.22 Red–black tree

13.3.7 K-dimensional Tree

A K-dimensional tree (KD-tree) is a data structure used in computer science during 
orthogonal range searching, for instance, to find the set of points that fall into a given 
rectangle in a plane. Given a KD-tree of the points in question, it is possible to find the 
resulting points in O(sqrt(n) + k) time, where n is the number of points and k is the number 
of resultant points.

An example of KD-tree is shown in Fig. 13.23.

(a) (b)

Fig. 13.23 KD-trees (a) Input (b) Output

Input description Let there be a set S of n points in k-dimensions.

Problem Construct a tree which partitions the space by half-planes such that each point 
is contained in its own region.
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Although many different flavours of KD-trees have been devised, their purpose is 
always to hierarchically decompose space into a relatively small number of cells such 
that no cell contains too many input objects. This provides a fast way to access any input 
object by position. We traverse down the hierarchy until we find the cell containing the 
object and then scan through the few objects in the cell to identify the right one.

Typical algorithms construct KD-trees by partitioning point sets. Each node in the 
tree is defined by a plane through one of the dimensions that partition the set of points 
into left/right (or up/down) sets, each with half the points of the parent node. These chil-
dren are again partitioned into equal halves, using places through a different dimension. 
Partitioning stops after logn levels, with each point in its own leaf cell. Alternative KD-
tree construction algorithms insert points incrementally and divide the appropriate cell 
although such trees can become seriously unbalanced.

A KD-tree can be constructed using  Algorithm 13.1.

algorithm 13.1

Input: A set of points P and depth the current depth
Output: The root of a KD-tree storing P
 1. if P contains only one point then
 2. return a leaf storing this point
 3. else if depth is seven then
 4. Split P into two subsets with a vertical line 1 through the median x-coordinate of the 

points in P. Let P1 be the set of points to the left and P2 be the set of points to the 
right. The points exactly on the line belong to P1

 5. else
 6. Split P into two subsets with a horizontal line 1 through the median y-coordinate of 

the points in P. Let P1 be the set of points above 1 and P2 be the points below 1. The 
points exactly on the line belong to P1

 7. Vright = Build Kd-tree(P1, depth + 1)
 8. Vleft = Build Kd-tree(P2, depth + 1)
 9. Create a node V with Vright and Vleft as its right and left children, respectively
10. return V

This algorithm can be run in O(nlogn) time and uses O(n) storage. 
The time constraint of O(nlogn) assumes that the median can be found in O(n) time. 

This is rather complicated in the general case but in our case can be made simply by pre-
sorting all the vertices in both x and y directions. Sorting takes O(nlogn) time and does 
therefore not worsen the time complexity of the overall algorithm.

13.3.8 AA Tree

We studied BSTs. A BST of n nodes is said to be balanced if the height is O(logn). A 
balanced tree supports efficient operations since most operations only have to traverse or 



indexing and Multiway trees 635

DSUC    c13    V6   January 24, 2013 10:01 AM   Page 635

on two root-to-leaf paths. There are many implementations of balanced BSTs, including 
AVL trees, red–black trees, and AA trees. An AA tree is another alternative to AVL trees. 
An AA tree is a balanced BST with the following properties:

1. Every node is coloured either red or black.
2. The root is black.
3. If a node is red, both of its children are black.
4. Every path from a node to a null reference has the same number of black nodes.
5. Left children may not be red.

Figure 13.24 is an example of an AA tree.
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Fig. 13.24 AA tree

Advantages of AA Trees

AA trees are more advantageous as they simplify the algorithms. The following list 
explains the advantages:

1. They eliminate half the reconstructing cases.
2. They simplify deletion by removing an annoying case.

(a) If an internal node has only one child, that child must be a red child.
(b) We can always replace a node with the smallest child in the right subtree; it will 

either be a leaf node or have a red child.
3. An AA tree, which is a balanced BST, supports efficient operations, since most 

operations only have to traverse one or two root-to-leaf paths.

Representing Balance Information in AA Tree

In each node of AA tree, we store a level. The level is defined by the following rules:

1. If a node is a leaf, its level is one.
2. If a node is red, its level is the level of its parent.
3. If a node is black, its level is one less than the level of its parent.

Here, the level is the number of left links to a null reference.
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Multiple choice questions

1.  Which of the following remarks about the trie 
tree are false?

 Hint: More than one choice can be correct.

 (a)  It is effi cient in dealing with strings of 
variable length.

 (b)  It is effi cient if there are few number of data 
items.

EXERCISES

Links in an AA tree A horizontal link is a connection between a node and a child with 
equal levels. The properties of such horizontal links are as follows:

1. Horizontal links are right references.
2. There cannot be two consecutives horizontal links.
3. Nodes at level two or higher must have two children.
4. If a node has no right horizontal link, its two children are at the same level.

KEY TERMS

File organization A fi le is a collection of re-
cords, each record having one or more fi elds. 
The fi elds are used to distinguish among the re-
cords using keys. File organization is all about 
the way in which the records are stored in a fi le 
in an external storage media.

Index The index is a collection of pairs of the 
form (key value, address). It is an indirect ad-
dressing that imposes order on a fi le without 
rearranging it.

KD-tree A KD-tree is a data structure used in com-
puter science during orthogonal range searching, 

for instance to fi nd the set of points that fall into a 
given rectangle in a plane.

Multiway search tree In multiway search tree, 
there are 0 to m subtrees for each node, the node 
having k subtrees (k £ m) with k pointers and 
k - 1 value entries. The key values in the fi rst 
subtree are all less than the key in the fi rst entry; 
the key value in the other subtrees are all greater 
than or equal to the key in their parent entry.

Red–black tree A red-black tree is a BST with one 
extra bit of storage per node: its colour, which can 
either be red or black.

RECAPITULATION

• A node of a BST has only one key value entry 
stored in it. A multiway tree has many key val-
ues stored in each node and thus each node 
may have multiple subtrees.

• Different indexing techniques are used to 
search a record in O(1) time. The index is a 
pair of key value and address. It is an indirect 
addressing that imposes order on a fi le with-
out rearranging the fi le.

• Indexing techniques are classifi ed as
 Hashed indexing
 Tree indexing

 B-tree
 B+ tree
 Trie tree

• Splay trees are self-adjusting trees.
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 (c)  The number of disk accesses cannot exceed 
the length of the particular string that is 
searched. 

 (d)  It can handle insertions and deletions, 
dynamically and efficiently.

2. Which of the following remarks about the trie 
tree are true?

 (a) It is an m-ary tree.
 (b) It is a search tree of order m.
 (c)  Successful searches should terminate in leaf 

nodes.
 (d)  Unsuccessful searches may terminate at any 

level of tree structure.
3. Indexing consists of 
 (a) a list of keys
 (b) pointers to the master file
 (c) both (a) and (b)
 (d) none of the above
4. An indexing operation 
 (a) sorts a file using a single key
 (b) sorts a file using two keys
 (c) establishes an index for a file
 (d) both (b) and (c)
5. Which of the following is an implementation of 

balanced BSTs?
 (a) AVL tree
 (b) Red-black tree
 (c) AA tree
 (d) All of the above
6. B+ trees are preferred to binary trees in databases 

because
 (a)  disk capacities are greater than memory 

capacities
 (b)  disk access is much slower than memory 

access

 (c)  disk data transfer rates are much less than 
memory data transfer rates

 (d) disks are more reliable than memory

Review questions

1. What is a B-tree? Draw the tree B-tree of order 3 
created by inserting data arriving in the following 
sequence:

82, 14, 7, 8, 12, 9, 23, 5, 6, 16, 19, 20, 78

2. Why do we need index file? Compare the linear 
and tree index organization. What are  static and 
dynamic indices? 

3. Explain the steps to build a B-tree of order 5 for 
the following data:

78, 21, 14, 11, 97, 85, 74, 63, 45, 42, 57, 20, 
16, 19, 52, 30, 21 

4. Draw diagrams to show the different stages 
during the building of a B+ tree for the keys 
arriving in the following sequence: A, Z, B, Y, C, 
X, D, W, E, V, F, M, R.

5. In each case of question 4, show the balance 
factors of all nodes and name the type of rotation 
used for balancing.

6. What are the advantages of the variations of 
balanced binary tree—splay tree, KD tree, and 
red–black tree?

7. Compare B-tree and B+ tree.
8. Write a C++ code for the following functions:
 (a) Searching in a B-tree
 (b) Traversing a trie and print in lexical order
 (c) Counting the nodes in a B-tree
 (d) Inserting and deleting in a B-tree

Answers to multiple choice questions

1. (a), (c), (d)  2. (a), (c), (d)  3. (c)  4. (c)  5. (a)  6. (b)



14.1 iNTRoDucTioN

The prime role of computers is pro blem solving and data proce ssing. In any computer 
application, the basic entity is data. Data can be either simple or it may have multiple 
attributes. One needs to select the appropriate data structure based on the nature of the 
application and data. 

Data can have one or more attributes (fi elds). For example, an entity Number_of_
Students can only be of the integer data type, whereas an entity Student may have multiple 
attributes or fi elds such as Roll_No, Name, DOB, City, and Sex to describe it. Each fi eld 
of Student can be of a different data type. In such situations, we need a structure that will 
accommodate an aggregation of dissimilar data types that represents one occurrence of 
such a complex entity. This object is called a  record.

Records that hold information about similar items of data are usually grouped together 
into a fi le. A fi le is a collection of records where each record consists of one or more 
fi elds.

For example, a fi le Student can have one or more records with fi elds such as Roll_No, 
Name, DOB, City, and Sex. Table 14.1 indicates the fi elds and their associated data type 
for this record.

Table 14.1 Student record

Field Roll_No Name DOB City Sex

Datatype Integer Array of 
characters

Array of 
characters

Array of 
characters

Character

FiLES14

oBJEcTivES

After completing this chapter, the reader will be able to  understand the following:
 • The purpose of standard data organization methods
 •   Various fi le organizations such as sequential, indexed sequential, and direct access, 
and their application-specifi c suitability

 • The advantages and disadvantages of fi le organizations 
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We have studied the representation of and operations on various data structures such 
as arrays, stacks, queues, linked lists, trees, and graphs. The storage representations and 
data manipulations described are applied only to data entities, which reside in the main 
memory. In many situations, all information that is to be processed does not reside in the 
main memory. There are two reasons for this. First, there are some large programs and 
data, which cannot fit conveniently into the main memory. Secondly, it is often desir-
able or necessary to store information from one run of a program to the next run. Let us 
consider a student’s information system. We need the data to be preserved even after the 
execution of the program is over. Therefore, large volumes of data and archival data are 
commonly stored in external memory as special data holding entities—files.

Each record contains attributes to describe one entity. Generally, all records for one 
entity type are usually of the same form. Mostly, each of them has the same fields in the 
same quantity, order, and length. Such records are known as fixed length records. Struc-
tures in C/C++ support this type of record. 

Records that are not necessarily of the same length are known as variable length 
records. C/C++ unions support this type of record. Variable length records are less com-
mon than fixed length records, as they are more difficult to handle. They tend to com-
plicate the storage schemes and are sometimes impractical for some structures. When 
variable records are used, we need to maintain more information about each record.

Magnetic tapes, floppy disks, and hard disks are a few examples of secondary storage 
devices. When data is organized in a file data structure, the data is non-volatile, which 
means that the data will reside on storage after data processing is over.

14.2 EXTERNAL SToRAgE DEvicES

For persistent storage, large volumes of data and archival data are commonly stored in  
external memory as special data holding entities, namely files. Before we learn about file 
organization and operations on files, let us discuss the storage devices, which hold the files.

The external storage devices are those on which information or data can be stored and 
from which it can be retrieved. The data resides on these devices as a non-volatile memory. 
The storage and retrieval operations are known as writing and reading, respectively. Capac-
ity of external storage devices is larger than that of the main memory and is also slower and 
less expensive per bit of information stored when compared to the main memory.

External storage devices are mainly used for the following:

1. Overlay or backup of programs during execution
2. Storage of programs for future use
3. Storage of information in files

We shall mainly concentrate on the third use, discuss the most common external stor-
age devices in the order of their uses, and study magnetic tapes, drums, and disk drives.
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14.2.1 Magnetic Tape

A tape is made up of a plastic material coated with a ferrite substance that is easily 
magnetized. The physical appearance of the tape is similar to the tape used for sound re-
cording. Computer tapes are wider with several thousand feet of tape wound on one reel, 
where information is encoded on the tape, character by character. A number of channels 
or tracks run along the length of the tape, one channel being required for each bit position 
in the binary coded representation of a character. Information is read or written on the 
tape through the use of a magnetic tape drive.

A limitation of magnetic tape devices is that records must be processed in the order 
in which they reside on the tape. Therefore, accessing a record requires the scanning of 
all records that precede it. This form of access is called sequential access. The magnetic 
tape is probably the cheapest form of external bulk storage. A reel of tape can be easily 
placed on and removed from a tape drive, and hence it can be used for off-line storage 
and data.

14.2.2 Magnetic Drum

A magnetic drum is a metal cylinder, from 10 to 36 inches in diameter, which has an 
outside surface coated with a magnetic recording material. The cylindrical surface of 
the drum is divided into a number of parallel bands called tracks. The tracks are further 
divided into either sectors or blocks, depending on the nature of the drum. The sector or 
block is the smallest addressable unit. A particular sector or block is directly addressable, 
that is, to access a sector or block of a drum, it is not necessary to access sectors or blocks 
1 to n - 1, as in the case of a sequential tape. Hence, a drum is called as a direct access 
storage device. 

The addressable units (sectors or blocks) on drums are rapidly accessed for data trans-
fers, and no scanning of extraneous data is required as with a magnetic tape. Also, unlike 
a magnetic tape, a drum cannot be removed from its shaft or drive. Hence, the maximum 
storage capacity for a drum device is limited to the capacity of a single drum.

14.2.3 Magnetic Disk

The magnetic disk is a direct access storage device, which has become more widely used 
than the magnetic drum, mainly because of its lower cost. Disk devices provide relatively 
low access times and high-speed data transfer. There are two types of disk devices, name-
ly, fixed disks and exchangeable disks. For both types, the disk unit or pack consists of a 
number of metal platters, which are stacked on top of each other on a spindle. The upper 
and lower surfaces of each platter are coated with ferromagnetic particles that provide an 
information storage media.

The surfaces of each platter are divided into concentric bands called tracks. Each 
track is further divided into sectors (or blocks) that are addressable units. There are read/
write heads floating just above or below the surface of the disk while the disk is rotating.  
An exchangeable disk device has movable read/write heads. The heads are attached to a 
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movable arm to form a comb-like access assembly. When data on a particular track must 
be accessed, the whole assembly moves to position the read/write heads over the derived 
track. Although many heads may be in position for a read/write transaction at a given 
point in time, data transmission can only take place through one head at a time.

14.3 FiLE oRgANizATioN

Files contain records which are collection of information arranged in a specific manner. 
File organization mainly refers to the logical arrangement of data in a file system. In or-
der to be able to retrieve a target record from a file, it is preferred to be arranged in some 
defined or proper way. It is necessary to organize data records in a particular pattern. The 
proper arrangement of records within a file is known as file organization.

There are various ways in which records in a file can be stored. Files are presented to 
the application as a stream of bytes and at the end, it contains an EOF (end of file) mark. 
An attribute or combination of attribute values that are used to uniquely identify records 
within a file is called as a key. Keys are used to arrange and/or to retrieve records to/from 
a file. Primary key is one of the keys that can be used to identify a unique record in a file. 
Non-primary keys are called as secondary keys.

14.3.1 Schemes of File organization

Various schemes for file organization are available. All these schemes decide the way in 
which records are stored and accessed in a file. Some of the file organizations are as follows:

Sequential file In sequential file, records are stored in the sequential order of their entry. 
This is the simplest kind of data organization. In sequential files, the records are stored in 
ascending or descending order of keys. When the records are not arranged in an organized 
fashion, they are stored as per their sequence of arrival; this organization is known as 
serial organization.

Direct or random access file Though we search the records using a key, we still need 
to know the address of the record to retrieve it directly. The file organization that supports 
such access is called as direct or random file organization. The word ‘random’ refers to 
the fact that the records are not usually stored in sequence but randomized to individual 
storage positions. So to get the address of the record using a key, there must be some 
relationship between the key and the address. With direct access file, the address for record 
storage and retrieval is computed by using a ‘hashing’ algorithm. As we retrieve the record 
directly with the help of the key and the hash function, without considering the position of 
the record in the file, the organization is known as direct access file organization.

Indexed sequential file Records are stored sequentially but the index file is prepared 
for accessing the record directly. An index file contains records ordered by a record key. 
The record key uniquely identifies the record and determines the sequence in which it is 
accessed with respect to other records. 
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Multi-indexed file In a multi-indexed file, the data file is associated with one or more 
logically separated index files. Inverted files and multilist files are examples of multi-
indexed files.

14.3.2 Factors Affecting File organization 

File organization describes a way in which the records are stored in a file. The objective 
of file organization is to provide predefined and efficient means for the record storage, 
retrieval, and update. 

The update process includes changes in some of the existing fields of records, addi-
tion of new records, or deletion of some existing records. The retrieval of data is done by 
specifying values for some or all the keys. A query is a combination of key values formed 
for retrieval of a specific record. Some factors affect file organization and similarly, file 
organization affects the design of algorithms as it deals with the records in the file.

The factors that mainly affect file organization are the following:

Storage device The way data is arranged in a file depends on the storage device. The 
magnetic tape is suitable for sequential organization. Direct access devices such as hard 
disks are suitable for random access file organization.

Type of query Depending on the type of query, file organization will be affected. In a 
simple query, values for the single key are specified. In a range query, range for the keys 
is specified. Accordingly, the file organization needs to be changed.

Number of keys The file may or may not have a key. Each key may have one or more 
fields. Accessing the desired record is made easy with the keys.

Mode of retrieval/update of record The mode of retrieval or update may be real-time 
or batched. In real-time retrieval, the response time for any query should be minimum. In 
a railway reservation system, the availability of a particular train should be retrieved in 
minimum time, whereas in a payroll system all records are processed in a batch.

14.3.3 Factors involved in Selecting File organization

Choosing a specific file organization depends on the nature of data and the algorithm used 
in the application. The overall combination should achieve good performance. The fol-
lowing are the criteria used to choose file organization: 

Speed Rapid access to a single record or a collection of records

Operations Convenience of update, that is, addition, modification, or deletion of records

Capacity Efficiency of storage

Size Volume of transaction

Integrity Redundancy, being the method of ensuring data integrity
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Security Special backup and recovery processes must exist to prevent exposure to the 
risks of loss of accuracy

A file should be organized in such a way that the records are always available for pro-
cessing with no delay. This should be done in line with the activity and volatility of the 
information.

14.4 FiLES uSiNg c++

File handling is an important part of programming. Most of the applications have their 
own features to save data to the secondary storage and read from it again. File I/O classes 
in C++ simplify such file read/write operations.

14.4.1 File i/o classes

The I/O system of C++ contains a set of classes that define the file handling methods. 
They are ifstream, ofstream, and fstream. These classes are included in the ‘fstream.h’ 
header file.

ifstream This class provides input operations.

ofstream This class provides output operations.

fstream This class provides both input and output operations.

14.4.2 Primitive Functions

There are several ways of reading (or writing) the text from (or to) a file, however, all of 
them share a common approach as follows. 

1. Open the file
2. Read (or write) the data
3. Close the file

Opening a file Creating a file stream object to manage the stream using the ofstream, 
ifstream, or fstream classes is done using the following commands. The file name can be 
initialized while creating an object.

1. To create an object ofile and open a file with name student.dat for output only
ofstream ofile(“student.dat”);

2. To create an object ifile and open a file with name sports.dat for input only
ifstream ifile(“sports.dat”);

3. To create an object file1 and open a file with name employee.dat for input and 
output

fstream file1(“employee.dat”);
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4. To open a file using open()
ofstream.ofile;   // create an object ofile

ofile.open(“sports”);      // open file “sports” for output

fstream file;      // create object file of fstream class

file.open(filename, mode);

The file mode parameters are given 
in Table 14.2.
For example,

file.open(“data”, ios::out | 
ios::binary);      
// Binary file with name data 
is opened in output mode, 
i.e., for writing only

Reading a character from a 
file A single character is read from a stream using the get() function.

file.get(ch);      // read one character from the file and store it to ch

Writing a character to a file The put() function writes a character to a stream.

file.put(ch);      // write the character of ch to the file

Reading binary data from a file The read()function is used to read binary data from 
a file.

file.read((char *) &V, sizeof(V));       // Reads value in variable V  
// from file

Consider the following code:

class item_rec
{
   int id;
   char itemname[20];
};
item_rec item;      // object item
file.read((char *) &item, sizeof(item));       // Reads item record from 

// file

Writing binary data to a file The write() function is used to write binary data to a file.

file.write((char *) &V, sizeof(V));     // Writes value of V in file
file.write((char *) &item, sizeof(item));      // Writes item record  

// to file

Manipulating file pointers The seekg() function moves the input(get) pointer to 
a specific position.

seekg(offset, reference);

Table 14.2  File mode paratmeters

Mode Meaning

ios::app Append to the end of file

ios::ate Go to the end of file on opening 

ios::binary Binary file

ios::in Open file for reading

ios::nocreate Open fails if file does not exist

ios::out Open file for writing
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Here offset is the number of bytes and reference may be one of the following:

1. ios::beg—from the start of the fi le
2. ios::end—from the end of the fi le
3. ios::cur—from the current position of the fi le
4. seekp()—moves the output(put) pointer to a specifi c position
5. tellg()—gives the current position of the get position
6. tellp()—gives the current position of the put position

Checking end of fi le The eof() function is used to check the EOF.

   if(fi le.eof())
   cout << “\n EOF”;

or we can check eof using the following statement:

   if(!fi le)
   cout << “\n EOF”;

Closing a fi le To close a fi le, we can use the close() function as follows:

   fi le.close();
   ifi le.close();

File handling in C++ is demonstrated using Program Code 14.1.

PROGRAM CODE 14.1

//Sample program in C++ fo r fi le handling

#include<iostream. h>

#include<stdio.h>

#include<stdlib.h>

#include<fstream.h>

#include <string.h>

// class for storing passenger record

class passenger

{

   char f_name[15], l_name[15];

   int age;

  public:

      void get_data();

      void put_data();

};

// Function for getting passenger data

void passenger :: get_data()

{

   cout << endl << "Enter First name: ";
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   cin >> f_name;

   cout << endl << "Enter Last name: ";

   cin >> l_name;

   cout << endl << "Age: ";

   cin >> age;

}

// Function for displaying passenger data

void passenger :: put_data()

{

    cout << endl << " \t" << f_name << "\t" << l_name 

<< "\t" << age;

}

class PassengerFile

{

   private:

      char fname[12];

   public:

      void getfi lename()

      {

         cout << "\n Enter fi lename : " ;

         cin >> fname;

      }

      void create();

      void displayall();

};

void PassengerFile :: create()

{

   fstream fi le;

   int n, i;

   fi le.open(fname, ios::out | ios::binary);

   cout << "\nHow many records do you want to enter?";

   cin >> n;

   for(i = 0; i < n; i++)

   {

      p.get_data();

      fi le.write((char*) &p, sizeof(p));

      fl ushall();

   }

   fi le.close();

}
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void PassengerFile :: displayall()

{

   passenger p;      // object for passenger

   fstream fi le;

   fi le.open(fname, ios::in);

   if(fi le.bad())

      cout<<"\nOpening error...";

   else

   {

      cout << "\nid   Fname   Lname  Age \n";

      while(!fi le.eof())

      {

         fi le.read((char*) &p, sizeof(p));

         if(!fi le.eof())

         {

            p.put_data();

         }

      }

      fi le.close();

   }

}

void main()

{

   Passengerfi le pfi le;

   pfi le.getfi lename();

   pfi le.create();

   pfi le.displayall();

}

14.4.3 Binary and Text Files

The fi le in C++ is either a binary fi le or a text fi le. The difference between the two is due 
to the format in which data is organized within the fi le. The text fi le contains plain ASCII 
characters. It contains text data which is marked by ‘end_of_line’ at the end of each 
record. This end of record mark helps to perform operations such as read and write easily. 
A text fi le cannot store graphical data. On the other hand, a binary fi le consists of binary 
data. It can store text, graphics, and sound data in binary format. Binary fi les cannot be 
read directly. 

C++ uses the fopen(fi le, mode) statement to open a fi le and the mode identi-
fi es whether you are opening the fi le to read, write, or append and also whether the 
fi le is to be opened in binary or text mode. C++ opens a fi le by linking it to a stream 
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so we do not have to specify whether the fi le is to be opened in binary or text mode 
on the open statement. Instead the method that we use to read and/or write the fi le 
determines which mode we are using. If we use ‘<<’ to read from the fi le and the 
‘>>’ operator to write to the fi le, then the fi le will be accessed in binary mode.This is 
illustrated in Program Code 14.2.

PROGRAM CODE 14.2

//Imple mentation of a simp le text fi le in C++

#include <stdio.h>

#include<conio.h>

#include<iostream.h>

#include<fstream.h>

#include<string.h>

#include<process.h>

fstream fp, fp1; // declaration of fi le ob jects

//create a fi le by entering characters and at end enter #

class myfi le

{

   char fname[30];

   public:

      myfi le(char tname[30])

      {

         strcpy(fname,tname);

      }

      void create();

      void display();

      void display(char*);

      void count();

      void copy(char*);

};

void myfi le :: create()

{

   char ch;

    fp.open(fname, ios::out);      /* Open the fi le in 

write mode */

   cout << "\nEnter the text::\n";

   do

   {

      ch = getchar();      /* read character   */

      /* write character in fi le */

     if(ch != ’#’)
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         fp.write((char *)&ch, sizeof(ch));

   }while(ch != ’#’);

   fp.close();      // close a fi le

}

// Display a text fi le

void myfi le :: display()

{

   char ch;

    fp.open(fname, ios::in);      /* Open the fi le in 

read mode */

   while(!fp.eof())

   {

      /* read character from fi le */

      fp.read((char *)&ch, sizeof(ch));

      cout << ch;      /* display character */

   }

   fp.close();

}

// Display a text fi le

void myfi le :: display(char tname[30])

{

   char ch;

    fp.open(tname,ios::in);      /* Open the fi le in 

read mode */

   while(!fp.eof())

   {

      /* read character from fi le */

      fp.read((char*)&ch, sizeof(ch));

      cout << ch;      /* display character */

   }

   fp.close();

}

/* Function to count the number of lines, words, and 

characters */

void myfi le :: count()

{

   char ch;

   int c = 0, w = 0, line = 0;

   fp.open(fname, ios::in);
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   while(!fp.eof())

   {

      fp.read((char *)&ch, sizeof(ch));

      c++;

      if((ch == ‘ ‘ || ch == ‘\n’ || ch == ‘\t’))

         w++;

      if(ch == ‘\n’)

         line++;

   }

   fp.close();

    printf("\nNo of lines %d \nNo of words %d \nNo of 

chars %d", line, w, c);

}

// Copy source fi le to destination fi le

void myfi le :: copy(char dfname[30])

{

   char ch;

    fp.open(fname, ios::in);      /* Open source fi le in 

read mode */

    fp1.open(dfname, ios::out);      /* Open 

destination  fi le in write mode */

   while(!fp.eof())

   {

      /* read character from source fi le */

      fp.read((char *)&ch, sizeof(ch));

      /* write character to destination fi le */

      fp1.write((char *)&ch, sizeof(ch));

   }

   fp.close();

   fp1.close();

}

void main()

{

   int choice;

   myfi le fobj("c:\\vst\\stud.dat");

   char fname[30];

   clrscr();

   do

   {

     printf("\n\n Menu");

     printf("\n 1. Create");

     printf("\n 2. Display");
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      printf("\n 3. Count lines, words, characters");

      printf("\n 4. Copy fi le");

      printf("\n 5. Exit");

      printf("\nEnter your choice");

      scanf("%d", &choice);

      switch(choice)

      {

         case 1: fobj.create();

         break;

         case 2: fobj.display();

         break;

         case 3: fobj.count();

         break;

         case 4: 

            char dfname[30];

            cout << "\nEnter the destination fi lename : ";

            cin >> dfname;

            fobj.copy(dfname);

            fobj.display(dfname);

         break;

         case 5: exit(0);

      }

   }while(choice < 5);

   getch();

}

14.5  SEquENTiAL FiLE oRgANizATioN

A sequential fi le stores records in the order they are entered. The order of the records 
is fi xed. The records are stored and sorted in physical, contiguous blocks. Within each 
block, the records are in sequence. New records always appear at the end of the fi le. 
Therefore, the record found in the fi rst position is the oldest record and the last record 
in the fi le is the one most recently added. Records in these fi les can only be read or 
written sequentially. Records may be either fi xed or variable in length for this fi le type. 
This is a signifi cant advantage of sequential fi les. However the search time associated 
with sequential fi les is more because records are accessed sequentially from the begin-
ning of the fi le. Sequential fi les are compatible to the magnetic tape storage as shown 
in the following fi gure.

Record 1 Record 2 Record 3 Record 4 Record 5 … … End
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1. Here, if we want to access Record 5, then we have to access records from Record 1 to 
Record 5 sequentially.

2. If we want to add a record, it is added at the end.

Important data is usually processed in sequential files, the reason being security is easily 
ensured in sequential files. 

14.5.1 Primitive operations 

The set of primitive operations for a sequential file is small. The file pointer or currency 
pointer is a logical pointer to the current record in a file. Programming languages support 
explicit command to move file pointer, and a file pointer is also moved implicitly by primi-
tive operations.

Primitive operations are those provided by the basic file system, language, and 
operating system. The following are the primitive operations of the sequential file 
organization:

Open This operation opens the file and sets the file pointer to the first record.

Read-next This operation returns the next record to the user. If no record is present, 
then EOF condition will be set.

Close This operation closes the file and terminates access to the file.

Write-next File pointers are set to next of last record and this record is written to the file.

EOF If EOF condition occurs, this operation returns true, otherwise it returns false.

Search This operation searches for the record with a given key.

Update The current record is written at the same position with updated values.

The number of records in a sequential file is given as (size of file)/(size of a record). The 
basic file operations are discussed as follows: 

Add

Adding a record to the sequential file is a one-operation algorithm. The new record is sim-
ply appended to the end of the file. One physical write is required for appending a record 
in a file. Also many records can be collected in the buffer and a block of records can be 
written at a time in the file. The following are the steps involved in addition.

1. Add a record.
2. Open a file in append mode.
3. Read a record from user.
4. Write a record to the file.
5. Close the file.
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Search

A particular record is searched through the file using a key sequentially by comparing 
with each record key. The search starts from the first record and continues till the EOF. 
The following steps are involved in searching:

1. Open a file in read mode.
2. Read the value of the record key of the record to be searched.
3. Read the next record from the file.
4. If record key = value, display record and go to 7.
5. If not EOF, then go to 3.
6. Display ‘Record not found’.
7. Close the file.

Delete

There is no reasonable way to delete records from sequential file. Deletion is done in two 
ways:

1. Logical deletion
2. Physical deletion

Logical deletion When disk files are used, records may be logically deleted by 
just flagging them as having been deleted. This can be done by assigning a specific 
value to one of the attributes of the record. This method needs one extra field to be 
maintained with each record. The algorithm also needs to modify and check the flag 
field during operations.

Another method keeps a record of active and deleted records in a bit map file. A bit 
map is a one-dimensional array in which each bit represents a record in a file. The first 
bit refers to the first record, and so on. Bit value ‘1’ tells that the record is active and 
‘0’ indicates that the record is deleted. So to delete a record, its corresponding bit value 
in a bit map file is set to zero. However, the map array may be stored in a separate file 
or in the beginning of the same file, as one or more records. The following steps are 
involved in logical deletion:

1. Open a file in read + write mode.
2. Read the record key of the record to be deleted.
3. Read the next record from the file.
4. If record key = value

(a) Change status or deleted flag as 1
(b) Write record back to the same position
(c) Go to step 7

5. If not EOF, then go to 3.
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6. Display ‘Record not found’.
7. Close the file.

Physical deletion (pack or reorganize) For physical deletion of records, we need to 
copy the records to another file, skipping the deleted records, and rename the file. When 
the number of the logically deleted records is high, then it is advisable to delete them 
physically which is known as reorganization of file. The following steps are involved in 
physical deletion (pack):

 1. Open a file in read mode.
 2. Open ‘temporary’ file in write mode.
 3. Read the record key of the record to be deleted.
 4. Read the next record from the file.
 5. If record key ! = value, write the record to temporary file.
 6. If not EOF, then go to 4.
 7. Close both the files.
 8. Delete the original file.
 9. Rename temporary file as original file.
10. Close the file.

Updation (Modification)

A record is updated when one or more fields is changed by modifying the information. 
The following steps are involved in updation: 

1. Open a file in write mode.
2. Read the record key of the record to be modified.
3. Read the new attributes of the record to be modified.
4. If record key = value, modify record and go to 7.
5. If not EOF, then go to 4.
6. Display ‘Record not found’.
7. Close the file.

14.5.2 Advantages

The following are the main advantages of sequential file organization:

1. Owing to its simplicity, it can be used with a variety of media, including magnetic 
tapes and disks.

2. It is compatible with variable length records, while most other file organizations 
are not.

3. Security is ensured with ease.
4. For a run in which a high proportion of a block is hit, as compared to other file 

organizations, sequential file is efficient specially when processed in batches.
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14.5.3 Drawbacks

The following are some drawbacks of using sequential file organization:

1. Insertion and deletion of records in in-between positions cause huge data movement.
2. Accessing any record requires a pass through all the preceding records, which is time 

consuming. Therefore, searching a record also takes more time.
3. Needs reorganization of the file from time to time. If too many records are deleted logically, 

then the file must be reorganized to free the space occupied by unwanted records.

14.6 DiREcT AccESS FiLE oRgANizATioN

Files that have been designed to make direct record retrieval as easy and efficient as pos-
sible are known as directly organized files. This is achieved by retrieving a record with a 
key by getting the address of a record using the key. To achieve this, a suitable algorithm, 
called as hashing, is used to convert the keys to addresses.

Direct access files are of great use for immediate access to large amounts of informa-
tion. They are often used in accessing large databases. When a query concerning a par-
ticular subject arrives, we compute which block contains the answer and then read that 
block directly to provide the desired information. A random access file is one in which 
the records are accessed directly by referring to the address where it is placed in a file.

One way to achieve this is to use the record number or the primary key (unique iden-
tification) as an address of record. In this approach, Record_No gives the location of the 
record in a file. In this respect, the file looks like a one-dimensional array where each 
element in an array is a record and the subscript is a record number.

If the range of the record number or the primary key is larger than that of the the file 
size, it is difficult or rather impossible to adopt the aforementioned strategy. This hap-
pens in some applications where only some of the records are selected (randomly) out 
of the many records. For example, out of 1000 students from a university, the data of the 
100 computer science students is to be managed. However when they are admitted at a 
university, they are given a unique ID called an enrollment number, which ranges from  
1 to 1000. Hence, we cannot adopt this strategy of inserting the element in position as the 
enrollment number for direct access.

To achieve direct access by having a file size as total number of records, another tech-
nique is used. In this technique, mapping of a larger range is done to a smaller range. To do 
this, a function is used, which generates a natural address (whose range lies between 1 and 
file size) from primary key of larger range. This function is known as the hash function, for 
example, MOD (primary key MOD N). A synonym is defined as a key, which generates the 
same address as that generated by a different key. A good hashing function must minimize 
the creation of synonyms. We have discussed hashing in Chapter 11.

A well-designed direct access file gives a very fast response to random queries than a 
sequential file. Many applications need both sequential and random access files. Though 
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direct fi les can be processed sequentially, it would be much higher when sequential fi le is 
organized in a proper manner.

14.6.1 Primitive operations

The pr imitive operations for the dir ect access fi le are as follows:

Open It opens the fi le  and sets the fi le pointer to the fi rst record.

Read-next It returns the next record to user. If no records are present, then EOF (end of 
fi le) condition will be  set.

Read-direct It sets the fi le pointer to a specifi c position and gets the record for the user. 
If the slot is empty or out of range, then it gives error.

Write-direct It sets the fi le pointer to a specifi c position and writes the record to fi le at 
that position. If the slot is out of range, then it gives error.

Update Current record is written at the same position with updated values.

Close This will terminate the access to the fi le.

EOF If EOF condition occurs, it returns true otherwise it returns false.

We can use the fseek() function for direct access. The prototype of fseek() is :

int fseek(File *fp , long num-bytes, int origin);

The fs  eek() function sets the fi le position indicator. Here fp is a fi le pointer. The 
num-bytes parameter specifi es the number of bytes from the origin that will become 
the new current position and origin can be one of the following as shown in Table 14.3.

Table 14.3 File position indicators

Origin Value Macro name
Beginning of fi le 0 seek _set

Current position 1 seek_cur

End of fi le 2 seek _ end

The fseek() function returns 0 when successful, and a non-zero value in case of an 
error. The implementation of direct access fi le organization is demonstrated in Program 
Code 14.3.

PROGRAM CODE 14.3

/* Dire ct access fi le. Collision ha ndling to be done 

b y chaining without r eplacement for employee data as 

empcode, empname */
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#include<iostream.h>

#include<string.h>

#include<conio.h>

#include<fstream.h>

#include<process.h>

#include<math.h>

#defi ne max 15

class employee

{

   public:

      cha r name[max];

      int empid;

      int chain;

      int delfl ag;

};

class hashfi le

{

   fstream hfi le;

   public:

      hashfi le();

      int hash(int x){return x % 10;}

      void insert();

      void search();

      void display();

};

// function to initialize empty fi le 

hashfi le :: hashfi le()

{

   int i;

   employee rec2;

   fstream iofi le;

   iofi le.open("hfi le.dat", ios::out | ios::binary);

   strcpy(rec2.name, "\0");

   rec2.chain = -1;

   rec2.delfl ag = 0;

   for(i = 0; i < 10; i++)

   {

      rec2.empid = 0;

      iofi le.write((char*)&rec2, sizeof(rec2));

   }
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   iofi le.close();

}

// function to insert a record in hash fi le

void hashfi le :: insert()

{

   int i, fl ag = 0, pos, cnt = 0;

   long temp, start, size;

   fstream iofi le;

   employee insertrec, rec3, trec;

   cout << "Enter name";

   cin >> insertrec.name;

   cout << "Enter no. of empid";

   cin >> insertrec.empid;

   insertrec.chain = -1;

   insertrec.delfl ag = 0;

   size = sizeof(insertrec);

   pos = hash(insertrec.empid);

    iofi le.open("hfi le.dat", ios :: in | ios :: out | ios 

:: binary);

   iofi le.seekg(0);

   temp = pos * sizeof(insertrec);

   iofi le.seekg(temp);

   // move to position given by hash function

   fl ag = 0;

   iofi le.read((char*) &re c3, sizeof(rec3));

   if(rec3.empid == 0)      // slot is empty

  {

      fl ag = 1;

      temp = pos * sizeof(rec3);

       iofi le.seekp(temp);      /* move to position 

given by hash function */

      iofi le.write ((char*) &insertrec, sizeof(insertrec));

      return;

   }

   else      // slot is not empty

   {

      if(hash(rec3.empid) == hash(insertrec.empid))

      {

         while(rec3.chain != -1)

         {

            iofi le.seekg(rec3.chain * sizeof (rec3));
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            pos = rec3.chain;

           iofi le.read((char*) &rec3, sizeof(rec3));

         }

         fl ag = 2;

      }

      int nextpos = pos;

      trec = rec3;

      while(iofi le.read((char*) &rec3, sizeof(rec3)))

      // fi nd next empty position

      {

         if(rec3.empid == 0)      // empty slot

         {

            iofi le.seekp((nextpos+1) * sizeof(rec3));

            // move to position given by hash function

             iofi le.write((char*) &insertrec, 

sizeof(insertrec));

            if(fl ag == 2)

            {

               iofi le.seekp(pos * sizeof (rec3));

               trec.chain = nextpos + 1;

               iofi le.write ((char*) &trec, sizeof(trec));

            }

            fl ag = 1;

            break;

         }

         nextpos++;

      }

   }

   if(fl ag != 1)

   {

      cout << "Error this rec was not inserted";

      cout << "The fi le is full after this index";

      getch();      return;

   }

   getch();

   iofi le.close();

}      // end of insert

// function to search a record of hash fi le

void hashfi le :: search()

{

   int pos = 0, t_empid;
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   fstream iofi le;

   employee rec1;

   cout << "Enter the empid of the book to be searched";

   cin >> t_empid;

   pos = hash(t_empid);

   // get the position of search record

   iofi le.open("hfi le.dat", ios::in | ios::binary);

   iofi le.seekg(0);

   iofi le.seekg(pos*sizeof(rec1));

   while(iofi le.read((char *)&rec1, sizeof(rec1)))

   // read record at position

   {

      if(rec1.empid == t_empid)      // found

      {

         cout << "name" << rec1.name << "empid" << rec1.

empid;

         getch();

         iofi le.close();

         return;

      }

      else if(hash(rec1.empid) == pos)

      // if record is stored at position

      {

         iofi le.seekg(0);

         if(rec1.chain != -1)

            iofi le.seekg(rec1.chain*sizeof(rec1));

            // jump at position of chain

      }

   }

   cout << "error no. such rec exist";

   getch();

   iofi le.close();

}

void hashfi le :: display()

{

   int i = 0;

   employee rec2;

   fstream iofi le;

   cout << "\n\nserial\tempid\tname\tchain";

   iofi le.open("hfi le.dat", ios :: in | ios :: binary);

   while(iofi le.read((char *)&rec2, sizeof(rec2)))
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      cout << "\n\n" << i++;

      cout << "\t" << rec2.empid;

   {

      cout << "\t" << rec2.name;

      cout << "\t" << rec2.chain;

   }

   getch();

   iofi le.close();

}

void main()

{

   int ch, pos;

   fl oat fl ag = 1.1;

   hashfi le fi le1;

   // rec.init();

   // clrscr();

   do

   {

      cout << "\n 1.Insert a rec";

      cout << "\n 2.Disp  all rec";

      cout << "\n 3.Search a rec";

      cout << "\n 4.Exit";

      cout << "\n Enter choice";

      cin >> ch;

      switch(ch)

      {

         case 1:

            fi le1.insert();

         break;

         case 2:

            fi le1.display();

         break;

         case 3:

            fi le1.search();

         break;

         case 4:

            exit(0);

      }

   }while(ch != 4);

}
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14.7 iNDEXED SEquENTiAL FiLE oRgANizATioN

Sequential processing of data files makes up a larger proportion of data. However, there 
is often a need to refer to sequential files just to satisfy the queries. Such a need can be 
met by processing the whole file sequentially and looking for the records that are to be 
retrieved. This is very efficient when the file is huge, the query may take long time, which 
is not affordable for the application. One solution is to improve the speed of retrieving 
target by using indexed sequential file. 

A file that is loaded in key sequence but can be accessed directly by use of one or more 
indices is known as an indexed sequential file. A sequential data file that is indexed is 
called as indexed sequential file.

An indexed file contains records ordered by a record key. Each record contains a field 
that contains the record key. The record key uniquely identifies the record and determines 
the sequence in which it is accessed with respect to the other records. An indexed file can 
also use alternate indices, that is, record keys that let you access the file using a different 
logical arrangement of the records. For example, you could access the file through the 
employee department rather than through the employee number.

When indexed files are read or written sequentially, the sequence followed is that of the 
key values. Index is a data structure that allows particular records in a file to be located 
more quickly. An index can be sparse (record for only some of the search key values) or 
dense (index is maintained for each record), e.g., index in a book.

14.7.1 Types of indices

Indices may be of the following three types:

Primary index It is an index ordered in the same way as the data file, which is 
sequentially ordered according to a key. The indexing field is equal to this key.

Secondary index This is an index that is defined on a non-ordering field of the data file. 
In this case, the indexing field need not contain unique values.

Clustering index A data file can associate with utmost one primary index and several 
secondary indices. In this organization, key searches are improved. The single-level 
indexing structure is the simplest one where a file, whose records are pairs, contains a key 
and a pointer. This pointer is the position in the data file of the record with the given key. 

A key search is performed as follows: the search key is compared with the index keys 
to find the highest index key coming in front of the search key, while a linear search is 
performed from the record that the index key points to, until the search key is matched or 
until the record pointed to by the next index entry is reached. 

Hardware for indexed sequential organization is usually disk-based, rather than tape. 
Records are physically ordered by primary key and the index gives the physical location 
of each record. Records can be accessed sequentially or directly, via the index. The index 
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is stored in a file and read into memory at the point when the file is opened. The indices 
must also be maintained.

14.7.2 Structure of indexed Sequential File

The file structure is selected according to the physical storage device. The external stor-
age device should have the capability to access directly a record as per the key. Devices 
like magnetic tape can access all records sequentially. The magnetic drum or disk sup-
ports direct access. 

In primary area, actual data records are stored. Data records are stored as sequential 
file. The second area is an index area in which the index is stored and is automatically 
generated. An index file consists of three areas:

Primary storage area This includes some unused space to allow for additions made 
in data.

Separate index or indices Each query will reference this index first; it will redirect 
query to part of data file in which the target record is saved.

Overflow area This is optional separate overflow area.

A number of index levels may be involved in an index sequential file. The lowest level of 
an index is track index, which is written at track 0, i.e., first track of the cylinder. The track 
index contains two entries for each prime track of the cylinders for the index sequential 
file. The normal entry is composed of the address of prime track to which the entry is  
associated and the highest value of the keys for the records is stored on that track. The 
track index describes how records are stored on the track of cylinder and the cylinder 
index indicates how records are distributed over number of cylinders. In index sequential 
file, records are organized in sequence of key field known as primary key. For fast search-
ing, it is supported by index. Index is a pair of key and address where that record is stored 
in the main file. Number of records are same as number of blocks of the main file.

14.7.3 characteristics of indexed Sequential File

The following are the characterictics of an indexed sequential file:

1. Records are stored sequentially and a separate index file is maintained for accessing 
the record directly.

2. Records can be accessed randomly in constant time.
3. Magnetic tape is not suitable for indexed sequential storage.
4. Index is the address of physical storage of a record.
5. When very few records are to be accessed, then indexed sequential file is better.
6. This is a faster access method.
7. Additional overhead is that the index is to be maintained
8. Indexed sequential files are popularly used in many applications such as a digital library.
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Consider that an employee file is stored as an indexed sequential file. The entries are as 
shown in Fig. 14.1. 

Key Address pointer

1001 Address of Block1

2005 Address of Block2

2350 Address of Block2

Empid Block
ptr

1001

2005

2350

9050

Data file

1001

1003

1050

2005

2350

9050

Fig. 14.1 Index sequential file organization

This organization is slower than a sequential file. For a sequential file, retrieval and ac-
cess time for direct retrieval are greater than the well-designed direct access file. The 
advantage of such file organization is that it can handle requirements of mixed access  
application much better than other organizations.

Advantages

1. Accessing any record is more efficient than sequential file organization.
2. Large amount of data can be stored using this type of file organization.

Disadvantage

1. Often more than one index is needed which occupies a large storage area.

Program Code 14.4 demonstrates the implementation of index sequential file.
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PROGRAM CODE 14.4

//I ndex sequential fi le (one to one map index)

#include <stdio.h>

#include  <con io.h>

#include<iostr eam.h>

#include<fstream.h>

/* Item record */

struct itemrec

{

   int itemcode;

   char itemname[20];

   fl oat cost;

};

/* Index record */

struct indexrec

{

   int itemcode;

   int position;

   int fl ag;

};

/* Display the contents of index fi le */

void displayindexfi le()

{

   fstream indexfi le;

   struct indexrec index;

   indexfi le.open("index.dat", ios::in);

   cout << "\n Index fi le is n";

   cout << "\n Itemcode \t Position \t Del Flag";

   while(!indexfi le.eof())

   {

      indexfi le.read((char*)&index, sizeof(indexrec));

      if(indexfi le.eof())

         break;

      if(index.fl ag == 1)

          cout << endl << index.itemcode << 

index.position<<index.fl ag;

      else

          cout << "deleted=";

          cout << endl << index.itemcode << 

index.position << index.fl ag;



666 data structures using c++

   }

}

/* Insert a record */

void insertrecord()

{

   struct itemrec item;

   struct indexrec index;

   stream indexfi le, itemfi le;

   long position;

   cout << "\n Enter itemcode";

   cin >> item.itemcode;

   cout << "\n Enter itemname";

   cin >> item.itemname;

   cout << "\n Enter cost";

   cin >> item.cost;

   /* Get the position of the new record in item fi le */

   itemfi le.open("item.dat", ios::in);

   itemfi le.seekg(seek_end);

   position = itemfi le.tellg()/sizeof(item);

   itemfi le.close();

   /* Add a record in item fi le */

    itemfi le.open("item.dat", ios::in | ios::out | 

ios::app);

   itemfi le.write((char*)&item, sizeof(itemrec));

   itemfi le.close();

   /*Add a record in index fi le */

    indexfi le.open("index.dat", ios::in | ios::out | 

ios::app);

   index.itemcode = item.itemcode;

   index.position = position;

   index.fl ag = 1;

   indexfi le.write((char*)&index, sizeof(indexrec));

   indexfi le.close();

}

/* Search a record */

void search()

{

   int searchitcode;

   struct itemrec item;

   struct indexrec index;

  fstream indexfi le, itemfi le;

   long position, found = 0;
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   cout << "\n Enter itemcode to be searched";

   cin >> searchitcode;

   indexfi le.open("index.dat", ios::in);

   while(!indexfi le.eof())

   {

      indexfi le.read((char*)&index, sizeof(indexrec));

       if(index.itemcode == searchitcode && index.fl ag 

== 1)

      {

         found = 1;

          break;

      }

  }

   if(found == 1)

   {

      itemfi le.open("item.dat", ios::in);

       /*Take the position from index fi le and go to 

that record in item fi le */

      itemfi le.seekg((index.position) * sizeof(item));

      itemfi le.read((char*)&item, sizeof(item));

      cout << "\n Item Record is";

      cout << "\nItemcode \t Item name \t Cost";

       cout << item.itemcode << item.itemname << 

item.cost;

      itemfi le.close();

   }

   else

     cout << "\n Record not found";

      indexfi le.close();

}

/* Delete a record */

void deleterecord()

{

   int searchitcode;

   struct indexrec index;

   fstream indexfi le;

   long position,found = 0, c;

   cout << "\n Enter itemcode to be deleted";

   cin >> searchitcode;

    indexfi le.open("index.dat", ios::in | ios::out | 

ios::app);

   c = 0;

   while(!indexfi le.eof())
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   {

      indexfi le.read((char*)&index, sizeof(indexrec));

       if(index.itemcode == searchitcode && index.fl ag 

== 1)

      {

         found = 1;

         break;

      }

      c++;

   }

   if(found == 1)

   {

      indexfi le.seekg(c * sizeof(index));

      index.fl ag = 0;      // Make a delete fl ag 0

      indexfi le.write((char*)&index, sizeof(index));

   }

   else

      cout << "\n Record not found";

      indexfi le.close();

}

void main()

{

   int choice;

   clrscr();

   do

   {

       cout << "\n 1. Insert \n 2. Search \n 3. Delete a 

record";

      cout << "\n 4. Display Index fi le \n 5. Exit";

      cout << "\n Enter choice : ";

      cin >> choice;

      switch(choice)

      {

         case 1 : insertrecord(); 

         break;

         case 2 : search(); 

         break;

         case 3 : deleterecord();

         break;

         case 4 : displayindexfi le();

       break;

      }
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   }

   while(choice < 5);

}

14.8 LiNKED oRgANizATioN

In linked organization, the physical sequence of records is different from the logical se-
quence of records. The next logical record is obtained by following a link value from 
the present record. Records are linked according to increasing primary key, so insertion 
and deletion is easy. If index is not maintained, then direct searching is diffi cul t and only 
sequential search is possible.

14.8.1  Multilist Files 

To make searching easy, several indexes are maintained as per primary key and secondary   
keys, one index per key. The record may be present in different lists as per key. Consider 
the following fi le of offi ce staff in Table 14.4.

Table 14.4 Staff data

Staff ID Occupation Salary Record
106

150

360

400

700

Clerk

Accountant

Clerk

Accountant

Clerk

5000

4000

3000

3500

2000

A

B

C

D

E

We can maintain indices on the staff ID. We can group staff ID with ranges 
101–300, 301–600, 601–900, and so on. Now all the records with staff ID in the same 
range will be linked together as shown in Fig. 14.2.

Fig. 14.2 Sample multilist fi le

Staff ID range Link

101–300 rec A rec B

301–600 rec C rec D

601–900 rec E

Now each record will have values of all the fi elds as well as link to the next record in 
the group.

We can have multilist structure for fi le representation by maintaining different indices on 
different keys and allow records to be i  n more than one list. Suppose indices are maintained 
on occupation and salary fi elds, then the multilist structure will look as shown in Fig. 14.3.
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Id link

Occup link

Salary link

Staff ID index

Value 101–300 301–600 601–900

Length 2 2 1

Pointer A C E

A

C

Null

B

Null

D

C

C

E

D

D

Null

Null

Null

E

Null

Null

Null

Fig. 14.3 Linked organization

Table 14.5 lists the staff details and links for the following values of occupation 
and salary:

Salary index

Value <= 2000 <= 4000 <= 6000
Length 1 3 1

Pointer E B A

Occupation index

Value Clerk Accountant

Length 3 2

Pointer A B

Table 14.5 Staff data and links

Record Staff ID Occupation Salary Occupation link Salary link
A
B
C
D
E

106
150
360
400
700

Clerk
Accountant
Clerk
Accountant
Clerk

5000
4000
3000
3500
2000

C
D
E
–
–

–
C
D
–
–

When multilists are maintained, then length of the link is also maintained in the index. 
When two lists are searched simultaneously, then the search time can be reduced by 
searching the smaller list.

The logical order of records in the list may or may not be important according to the 
application. If salary index is not maintained in increasing order, then insertion can be 
done at the beginning or at the end of the list, otherwise we have to find a proper posi-
tion in the link to insert new record. Also because only single link is maintained, dele-
tion is difficult. This problem can be overcome by maintaining double link. But these 
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links require storage. So, if space is of importance, then the alternative is the coral ring 
structure.

14.8.2 coral Rings

In this, doubly linked multilist structure is used as shown in Fig.14.4. Each list is circular 
list with headnode.

Clerk

B link

A C

S

E

A link

B link

Fig. 14.4 Sample doubly linked list

‘A link’ field is used to link all records with same key value. ‘B link’ is used for some 
records back pointer and for others it is pointer to head node. ‘S’ is headnode of the list 
of ‘Clerk’. Owing to these back pointers, deletion is easy without going to start. Indexes 
are maintained as per multilists.

14.8.3 inverted Files 

The concept of the inverted files and multilists is similar. The difference is that, in multil-
ists records with the same key value are linked together and links are kept in each record. 
But in the inverted files, the link information is kept in the index itself. 

For example, consider the same file of office staff used in the link organization. The 
indices for fully inverted file are shown in Fig. 14.5.

106 A Accountant B, D

150 B Clerk A, C, E

360 C

400 D Salary index

Staff ID index
(increasing order) Occupation index

700 E 2000 E

4000 B, C, D

6000 A

Fig. 14.5 Inverted files

All these are dense indices and contain an entry for each record in the file. But now 
because links are kept in the indices, index entries become variable length and therefore 
index maintenance becomes more complex than for multilists.
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The inversion process is associated with the information of inverted list. Normally, 
a record is searched via a primary key. For example, if staff ID is a primary key, then 
records can be searched using staff ID. But the inverted list provides staff ID and further 
a particular staff’s name and other details can be accessed through index.

In inverted files, the record is accessed in two steps. First, the indices are searched to 
obtain a list of required records and then second, records are retrieved using these lists. 
The number of disk accesses required is equal to the number of records being retrieved 
plus the number to process the indices.

In inverted files, only the index structures are important. The records can be orga-
nized sequentially, random, or linked according to primary key. If a list of records is 
not very large, then it can be kept in main memory while processing. Inverted files may 
also result in space saving when record retrieval does not require retrieval of key fields. 
Then key fields may be deleted from the records. One of the major disadvantages of the 
inverted files is that the item values being inverted generally have to be included in both 
the inverted list and the master file.

14.8.4 cellular Partitions 

To decrease file search time, the storage media may be divided into cells. A cell may be 
an entire disk or a cylinder. Lists are localized to lie within a cell. If a cylinder is used as a 
cell, then all records on the same cylinder may be accessed without moving the read/write 
heads. We divide multilists organized on several different cylinders into several small lists 
which are stored on the same cylinder.

For example, consider Table 14.6, an example of a multilist structure with cellular 
partitioning for student–teacher data.

Table 14.6 Multilist structure with cellular partitioning

Primary key Secondary key
Position Student ID Course teacher ID Link

1

2

3

4

100

200

300

400

A

B

C

A

o

Null

Null

Null

1

2

3

4

500

600

700

800

D

B

A

D

O

Null

Null

Null

1

2

3

4

900

1000

1100

1200

E

C

D

A

Null

Null

Null

Null

Cell 1

Cell 2

Cell 3
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An entry is created in the secondary index whenever the item value occurs one or more 
times in a cellular partition. The relative secondary index records for the data in Table 
14.6 are shown in Table 14.7.

Table 14.7 Teacher’s data and secondary index

Course teacher ID Position Cell no. Length of link
A 1

3

4

1

2

3

2

1

1

B 2

2

1

2

1

1

C 3

2

1

3

1

1

D 1

3

2

3

2

1

E 1 3 1

The course teacher ID ‘A’ has entries in each cell, 
at two positions in cell 1, at one position in cell 2, 
and at one position in cell 3. Therefore, the entry 
of ‘A’ has three rows in the secondary index. The 
course teacher ID ‘E’ has entry only in cell 3 at posi-
tion 1, so in the secondary index, ‘E’ has only one 
row.

A multilist structure with cellular partitioning is 
primarily useful when there are a large number of 
records residing in a cell. If there are few records in 
each cell, then the link field can be omitted.

The length field and the relative record position 
can also be omitted. One such structure is cellular 
serial structure shown in Table 14.8.

One more type of structure is the cellular inverted 
list which is represented as a binary matrix. Each 
matrix element is either 0 meaning that the item is 
absent, or 1 meaning that the item is present in the cel-
lular partition. The structure is shown as in Table 14.9.

For cellular multilist structures, index entries 
may have to be updated with the addition or deletion 
of records or individual secondary index items. Such 
changes are minimal when cellular serial or cellular 

Table 14.8 Cellular serial structure

Course teacher ID Cell no.
A 1

2

3

B 1

2

C 1

3

D 2

3

E 3

Table 14.9 Cellular inverted list

Secondary  
index item Cell no.

A

B

C

D

E

1

1

1

0

0

1

1

0

1

0

1

0

1

1

1
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inverted lists are used. A major advantage of cellular partitioning is that several read 
operations can be initiated simultaneously and these operations can be overlapped with 
the query processing. But the disadvantage is that if there are many records per cell, then 
access time may be large.

REcAPiTuLATioN

• Data processing is one of the core tasks of 
computers. Large volumes of data and archival 
data need to be preserved even after execu-
tion of program is over. Such data is commonly 
stored in the external memory as special data 
holding entities, fi les.

• Magnetic tapes, fl oppy disks, and hard disks 
are a few examples of secondary storage 
devices. When we organize data in a fi le 
data structure, the data is non-volatile, which 
means data will reside on storage after data 
processing is over.

• Files contain records. In order to be able to 
retrieve a target record from a fi le, it is pre-
ferred to arrange in some defi ned or proper 
way. Necessity is to organize data records in a 
particular pattern. The proper arrangement of 
records within a fi le is called as fi le organization.

• Various schemes for fi le organization are 
available such as sequential, direct access, 
and index sequential organization. All these 

schemes decide the way in which records are 
stored and accessed in a fi le.

• In sequential fi les, records are stored in 
ascending or descending order of key and 
stored as per their sequence of arrival. This 
type of organization is known as serial organi-
zation. When data arises in sorted order, the 
serial organization becomes sequential orga-
nization.

• To get faster access, the records are organized 
randomly in a fi le by computing the address 
using key and hash function. File organization 
that supports direct access to record by comput-
ing its address using key is called as direct or 
random fi le organization.

• In index sequential fi le, the records are stored 
sequentially. For each record, its correspond-
ing address is saved as index in index fi le for 
accessing the record directly. 

• C++ supports fi le operations through library 
functions.

Direct access fi le organization The fi le organiza-
tion that supports direct access to record by com-
puting its address using key is called as direct or 
random fi le organization.

File Records that hold information about simi-
lar items of data are usually grouped togeth-
er into a fi le. A fi le is a collection of records 
where each record consists of one or more 
fi elds.

File organization File organization refers to the 
logical arrangement of data in a fi le system. Vari-
ous schemes for fi le organization are available 

such as sequential, direct access, and index se-
quential organization.

Index sequential fi le organization An index fi le 
contains records ordered by a record key. The re-
cord key uniquely identifi es the record and deter-
mines the sequence in which it is accessed with 
respect to other records.

Sequential fi le organization The simplest kind of 
data organization, sequential fi le organization is 
the one in which records are stored in the sequen-
tial order of their entry arising in ascending or de-
scending order of key.

KEY TERMS
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EXERciSES

Multiple choice questions

 1. Assume a fi le of 10,000 records distributed over 
100 blocks, i.e., every block has 100 records, 
also assume that every record is equally likely 
to be accessed. In trying to locate a particular 
record, we fi rst examine the index, which is 
assumed to be within a single block. To locate 
the block containing the required record, we 
have to examine each index entry. The number 
of comparisons required are

 (a) 1000
 (b) 110
 (c) 100
 (d) 101
 2. There are fi ve records in a database as follows:

Name Age Occupation Category
Rama 27 CON A

Abdul 22 ENG A

Jeniffer 28 DOC B

Maya 32 SER D

Dev 24 MUS C

 There is an index fi le associated with this and it 
contains the values 1, 3, 2, 5, and 4. Which one 
of the fi elds is the index built from?

 (a) Age
 (b) Name
 (c) Occupation
 (d) Category
 3. In the index allocation scheme of a block to 

a fi le, the maximum possible size of the fi le 
depends on

 (a) the size of the blocks and the size of the 
address of the blocks.

 (b) the number of blocks used for the index and 
the size of the blocks.

 (c)  the size of the blocks, the number of blocks 
used for the index, and the size of the 
address of the blocks.

 (d) None of the above

 4. Consider a fi le of 16,384 records. Each record is 
32 bytes long and its key fi eld is of size 6 bytes. 
The fi le is ordered on a non-key fi eld, and the 
fi le organization is unspanned. The fi le is stored 
in a fi le system with block size of 1024 bytes, 
and the size of the block pointer is 10 bytes. If 
the secondary index is built on the key fi eld of 
the fi le, and multi-level index scheme is used to 
store the secondary index, the number of fi rst-
level and second-level blocks in the multi-level 
index are respectively.

 (a) 8 and 0
 (b) 128 and 6
 (c) 256 and 4
 (d) 512 and 5
 5. What will happen if you execute the following 

program?

 #include "stdio.h"

 void main()

 {

    unsigned char c;

    fi le *fp;

    fp = fopen("test.txt", "r");

    while((c = fgetc(fp))!=EOF)

       printf("%c", c);

    fclose(fp);

    getch();

 }

 Given: //test.txt
 I am reading fi le handling in cmagical.blogspot.

com
 (a) It will print the content of the fi le text.txt. 
 (b) It will enter into an infi nite loop.
 (c) It will display nothing.
 (d) Error
 6. Which of the following fi le organization 

methods is most effi cient for a fi le with a high 
degree of fi le activity?

 (a) Sequential
 (b) ISAM
 (c) VSAM
 (d) B-tree index
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 7. The two basic types of record access methods 
are

 (a) sequential and random
 (b) sequential and indexed
 (c) direct and immediate
 (d) on-line and real time
 8. Which file organization is allowed by a direct 

access storage device?
 (a) Direct only
 (b) Sequential and direct only
 (c) Indexed and direct only
 (d) Sequential, indexed, and direct
 (e) None of the above
 9. Sequential file organization is most appropriate 

for which of the following applications?
 (a) Grocery store checkout
 (b) Bank checking account
 (c) Payroll
 (d) Airline reservations
 (e) None of the above
10. Which of the following file organization 

methods is most efficient for a file with a high 
degree of file activity?

 (a) Sequential
 (b) ISAM
 (c) VSAM
 (d) B-tree
 (e) All of the above
11. One disadvantage of a direct access file is
 (a) the delay in computing the storage address
 (b) duplication of address locations
 (c) unused, but available, storage locations
 (d) all of the above
12. Electronic spreadsheets are most useful in a 

situation where relatively ____________ data 
must be input but ____________ calculations 
are required.

 (a) little; simple
 (b) large; simple
 (c) large; complex
 (d) little; complex

Review questions

1. A file of employees records, has ‘employee no’ as 
a primary key and the ‘department code’ and the 
‘designation code’ as the secondary keys. Write 
a procedure to answer the following query—
‘Which employees from systems department are 
above designation level 4?’.

2. Compare sequential file organization with 
direct access file organization. Write a C 
implementation of primitives for either of the 
two organizations.

3. Write short notes on:
 (a) Factors affecting the file organization
 (b) Indexed sequential files
 (c) Indexing techniques
4. Compare sequential, indexed sequential, and 

direct access files.
5. Describe the basic types of file organization each 

with one example.
6. State the advantages, disadvantages, and 

primitive operation of sequential files.
7. What are indexed files? Explain with a suitable 

example. Compare sequential and direct access 
files.

8. Write notes on:
 (a) Inverted files
 (b) Cellular partition
9. What is a multi-index file? Give suitable 

examples.

Answers to multiple choice questions

1. (d)  2. (c)  3. (b)  4. (c)  5. (b)  6. (a)  7. (a)  8. (d)  9. (c)
10. (a)    11. (a)   12. (d)
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C++ classes provide information for creating a library of data structures. The STL is 
a part of the standard C++ class library and can be used as the standard approach 

for storing and processing data. In this chapter, we shall study the STL and learn how 
to use it. The C++ class allows for implementation of ADTs with appropriate hiding of 
implementation details. Let us discuss how to achieve this.

15.1 AbSTrACT DATA TyPe

One of the factors that contribute to the success of a software project is the choices made 
in the representation of data and algorithms designed to process the data. The proper 
choice of a data structure can be a key point in the design of many algorithms. Clearly, we 
need good ways to describe, organize, and process data.

A data type consists of a collection of values together with a set of basic operations 
defi ned on these values. A data type is called an ADT if a programmer can use it without 
having access to and also without knowing the details of how the values and operations 
are implemented.

Specifying a data structure by the details of its implementation means that if one wants 
to change the representation later, one has to fi nd every piece of code that manipulates the 
data and make sure that it corresponds to the new defi nition. The best way to avoid this 
problem is to make sure that all the data types we defi ne are ADTs. In addition, every soft-
ware professional wants a way to specify data which satisfi es the following properties: 

 Abstract Every user should be able to use it without knowing the details of its representation 
and implementation, thus making the code easier to understand and maintain.

STAnDArD TemPlATe 
librAry

obJeCTiveS

After completing this chapter, the reader will be able to understand the following:
 • Abstract data type (ADT) implementation in C++ and the rationale for using them
 • How ADTs aid code reuse
 • Five components of standard template library (STL)
 • How to simplify the task of writing application codes with the use of STL
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Safe A user should be able to use the data without having access to it. This provides 
control over the manipulation of data and keeps it safe.

Modifiable Representation of data should be in a way that enables easy modification.

Reusable Data and operations encapsulated together with abstraction make the code 
reusable. This is the motivation behind using ADTs.

15.1.1 Abstract Data Type and Data Structures

The term ADT describes a comprehensive collection of data values and operations. The 
term data structure refers to the study of data and how to represent data objects within 
a program, that is, the implementation of a structured relationship. The way in which 
software professionals view data structures has undergone an evolution in the last few 
years. They implement with the view of abstract properties of classes of data objects in 
addition to how these data objects might be represented in a program. Depending on the 
point of view, a data object is characterized by its type (for the user) or by its structure 
(for the implementer).

The topic of data structures has now been subsumed under the broader topic of 
ADTs: the study of classes of objects whose logical behaviour is defined by a set of 
operations.

The traditional model of studying data structures is based on the characteristic of the 
implementation of the structures. For example, stacks and queues are linear lists with 
restricted access. These data structures can be represented as last in first out (LIFO) and 
first in first out (FIFO), respectively. However, a user of these two ADTs does not care 
about the intricacies of the data structure and restricted access. In fact, the user does not 
(rather should not) care about what happens when an item is stored either in a stack or a 
queue; he/she is only interested in what is inserted into or deleted from the stack or the 
queue. Therefore, it is essential to revise the concept of data structures as an ADT and also 
learn how to implement them using C++.

15.1.2 Creating Abstract Data Types

To create an ADT, we specify the data by its operation rather than by its implementa-
tion, that is, we talk about what the data can do and how it is used, but not the details of 
the code that implemented it. An ADT’s specification describes what data can be stored, 
that is, its characteristics, and how it can be used, that is, the operations, but not how it is 
implemented in the program.

An ADT specification may be quite formal, written in a specific language, or may 
be an informal description in English. Likewise, an implementation could be a program 
in a particular programming language such as C++ or Pascal or could be a pseudocode 
description.
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15.1.3 Stack Abstract Data Type

Any set of elements of the same data type can be used as a data object for stacks. The 
meaning of ‘same data type’ is that all the elements in the stack should be of the same 
nature having common representational logical properties. A stack of integers, a stack of 
names of students, a stack of employee records, or a stack of records of processes of the 
operating system are some examples of data objects for the stack.

The following five functions comprise a functional definition of a stack:

1. create(S)—creates an empty stack.
2. push(i, S)—inserts the element i on the stack S and returns the modified stack.
3. pop(S)—removes the topmost element from the stack S and returns the modified 

stack.
4. getTop(S)—returns the topmost element of the stack S.
5. is_empty(S)—returns true if S is empty otherwise returns false.

When we choose to represent a stack, it must be possible to build these operations.  
However, before we do this let us formally describe the structure of the stack, as in 
Algorithm 15.1.

algorithm 15.1

ADT stack(element)
 1. Declare create() Æstack
 2. push(element, stack)Æstack
 3. pop(stack)Æstack
 4. getTop(stack)Æelement
 5. is_empty(stack)ÆBoolean;
 6. for all S Œ stack, e Œ element, Let
 7. is_empty(create) = true
 8. is_empty(push(e, S)) = false
 9. pop(create()) = error
10. pop(push(e,S)) = S
11. getTop(create) =  error
12. getTop(push(e, S)) = e
13. end
14. end stack

The five functions with their domains and ranges are declared in lines 1 through 5. 
Lines 6 through 13 are the set of axioms that describe how the functions are related. Lines 
10 and 12 are important because they define the LIFO behaviour of the stack. This defi-
nition describes an infinite stack for no upper bound or roof on the number of elements 
specified. To implement the ADT stack in C++, these operations are often implemented as 
functions to provide the data abstraction. A program, which uses stacks, would access the 
stacks only through these functions and would not be concerned about the implementation.
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15.2 Survey of ProgrAmming TeChniqueS

Let us have a short survey of programming techniques, also known as programming para-
digms. They are as follows:

1. Unstructured programming
2. Procedural programming
3. Modular programming
4. Object-oriented programming

Unstructured Programming

Usually, people start learning programming by writ-
ing small and simple programs consisting of one 
main program. Here the main program stands for a 
sequence of commands or statements that modify 
data which is global throughout the whole program. 
We can illustrate this as shown in Fig. 15.1.

As we all know, this programming technique 
provides tremendous disadvantages once the pro-
gram becomes sufficiently large. For example, if the same statement sequence is needed 
at different locations within the program, the sequence must be copied. This has led to 
the idea of extracting these sequences, naming them, and offering a technique to call and 
return from these procedures.

Procedural Programming

With procedural programming, we are able to com-
bine returning sequences of statements into one 
single place. A procedure call is used to invoke the 
procedure. After the sequence is processed, the flow 
of control proceeds right after the position where 
the call was made (Fig. 15.2).

With the introduction of parameters as well as 
procedures of procedures (sub-procedures), the 
programs can now be written in a more structured 
and error-free way. For example, if a procedure is 
correct, every time it is used, it produces correct 
results. Consequently, in case of errors, we can narrow our search to those places that are 
not proven to be correct.

Now, a program can be viewed as a sequence of procedure calls. The main pro-
gram is responsible to pass data to the individual calls; the data is processed by 
the procedures, and once the program is finished, the resulting data is pre-
sented. Thus, the flow of data can be illustrated as a hierarchical graph, a tree, 

Main program
data

Program

Fig. 15.1 Unstructured programming 

Main program Procedure

Fig. 15.2 Execution of procedures 
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as shown in Fig. 15.3 for a program 
with no sub-procedures.

To sum up, we now have a single 
program that is divided into small 
pieces called procedures. To enable 
the usage of general procedures or 
groups of procedures in other pro-
grams too, they must be separately 
available. For that reason, modular 
programming allows grouping of pro-
cedures into modules.

Modular Programming

With modular programming, procedures of a common functionality are grouped together 
into separate modules. A program therefore no longer consists of only one single part. It 
is now divided into several smaller parts that interact through procedure calls and form 
the whole program (Fig. 15.4).

The main program coordinates the calls to procedures in separate modules and hands 
over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an internal 
state which is modified by calls to procedures of this module. However, there is only one 
state per module, and each module exists utmost once in the whole program.

There are some problems in modular programming such as explicit creation and 
destruction, decoupled data and operations, and missing type safety.

Object-oriented Programming

Object-oriented programming (OOP) 
solves some of the aforementioned 
problems. In contrast to the other 
techniques, we now have a web of 
interacting objects, each housekeep-
ing its own state (Fig. 15.5).

Consider the multiple lists exam-
ple. The problem with modular pro-
gramming is that we must explicitly 
create and destroy the list handles. 
Then, we use the procedures of the 
module to modify each of the handles.

In contrast to this, in object-
oriented programming, we would 
have as many list objects as needed. 

Main program
data

Procedure 1 Procedure 2 Procedure 3

Program

Fig. 15.3 Procedural programming 

Main program
data

Procedure 1 Procedure 2 Procedure 3

Program

Module 1
Data + Data 1

Module 2
Data + Data 2

Fig. 15.4 Modular programming
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Instead of calling a procedure, which 
we must provide with the correct list 
handle, we would directly send a 
message to the list object in question. 
Roughly speaking, each object imple-
ments its own module allowing many 
lists to coexist.

Each object is responsible to ini-
tialize and destroy itself correctly. 
Consequently, there is no longer the 
need to explicitly call a creation or ter-
mination procedure. We shall discuss 
object-oriented design and program-
ming in detail in this section.

Object-oriented Design

Object-oriented design represents 
a fundamental change from the structured programming design method. Traditional 
structured programming has used algorithmic decomposition. Algorithmic or functional 
decomposition views software as a process. It decomposes the software/program into 
modules that represent steps of the process. These modules are implemented by language 
constructs such as procedures in Pascal, subroutines in FORTRAN, or functions in C.

Object-oriented decomposition views software as a set of well-defined objects that 
model entities in the application domain. These objects interact with each other to form 
a software system. Functional decomposition is addressed after the system has been 
decomposed into objects.

An object is a basic concept in OOP, which is used to model the real world through 
objects. In our real world, everything is an object, which can be identified from one 
another by the physical as well as behavioural point of view. Objects in the real world can 
be anything, be it an apple, a monkey, or a program.

Object-oriented programming Object-oriented programming is a method of imple-
mentation in which 

1. objects are the fundamental building blocks;
2. each object is an instance of some type (specification or class);
3. objects can interact with each other;
4. classes are related to each other by inheritance relationship.

Object-oriented language An object-oriented language is the one that

1. supports objects and programs divided into objects, 
2. contains objects belonging to a class, and
3. supports inheritance.

Program

Object 1 
data

Object 4
data

Object 3
data

Object 2
data

Fig. 15.5 Object-oriented programming
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Basic Concepts of Object-oriented Programming

We shall discuss some of the basic concepts of OOP.

Objects Objects are the basic runtime entities in an object-oriented system. A 
programming problem is analysed in terms of objects and the nature of communication 
between them. Each object contains data and code to manipulate the data.

Classes Object-oriented programming encapsulates data (attributes) and functions 
(behaviour) into packages called as classes. A class is a user-defined data type.

Data abstraction and encapsulation Combining a number of variables and functions 
into a single package, such as an object of some class, is called as encapsulation. 
Abstraction refers to the act of representing essential features without including the 
details of implementation. Generally, data members are made private and are accessible 
to only class member functions. This insulation of data from direct access by the program 
is called data hiding or information hiding.

Inheritance Inheritance is a process by which the objects of one class inherit the 
properties of another class. Classes in C++ support the concept of hierarchical classification.

Reusability The concept of inheritance provides the feature of reusability by additional 
features to the existing class without modifying the existing one leads to a new class.

Polymorphism Polymorphism means the ability to take more than one form. 
Polymorphism is a means by which we can request an object to do something without 
knowing exactly what kind of object it is, and the object will figure out how to process 
the request appropriately.

Dynamic binding Binding refers to the linking of a procedure call to the code to be 
executed in response to the call. Dynamic binding means that the code associated with a 
given procedure call is not known until the time of call at runtime. This is associated with 
polymorphism and inheritance.

Message passing An OOP consists of a set of objects that communicate with each 
other. Message for an object is a request for execution of a procedure and therefore will 
invoke a function in the receiving object that generates the desired result. Message passing 
involves specifying the name of the object, the name of the function (message), and the 
information to be sent.

List Abstract Data Type

We have studied about ADTs. An ADT consists of a data type and operations that manipu-
late the data. From the application program’s perspective, it is also independent of the 
data structure used to implement it. The user while using the list ADT is not aware of the 
implementation of how the data is manipulated and what data structure is used. Hence, 
we could implement the list using either an array or a linked list. Further, linked list can 
be realized using array or using pointers and dynamic memory management. Thus, if we 
implement a list using linked list, we could change the implementation from a linked 
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list to an array, and the application program would not need to be changed. To achieve 
this, in C++, we implement the list ADT using class template, which allows the applica-
tion programmer to declare the data while allowing the class to control it. The class also 
encapsulates all the list functions that use it. Let us see linked list implementation of list 
ADT. Figure 15.6  is the representation of ADT list structure.

The linked list is implemented as the LinkList class with its data encapsulated within 
the class. The data will be declared as private. We do not know what type of application 
data will be stored in the list. If our linked list class is to be able to store any type of data, 
we must have some way of letting the user defi ne them while writing the program through 
the use of templates.

A class template is a generic class declaration that allows the user to provide the data 
structure through parameters that the compiler resolved.

The structure template can be with two items: data and link. The link fi eld is declared 
with the node structure to be a self-referential pointer to the next node. The data will be 
mapped to a programmer-declared type when the program is compiled. Let us see the 
declaration using C++ in Program Code 15.1.

LinkList

May have other members
such as rear, count, etc.

Head

Key

Data Link

Other attributes

...

Fig. 15.6 Linked list ADT structure

Program CoDE 15.1

//Node template declaration

template <class type>

class Node
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{

   type data;

   Node *link;

};

//Class template

template <class type>

class LinkList

{

   private:

      Node <type>*Head;

   public:

      LinkList(void);

      void Insert(type x);

      void Display();

};

We have studied the linked list data structure as a way to store the data in the form of col-
lection of nodes storing data and links to other nodes. Nodes can be located anywhere in 
the memory, not necessarily in sequential locations. The links are established by storing 
the addresses of other node(s) (next or previous) in the link fi eld of each node.

Although the linked list can be implemented in a variety of ways, the most fl exible 
implementation is by using pointers. To implement the same in C++, we can view the 
entire linked list as an object of class LinkList. The individual data items or links are 
represented by the structure of type Node.

class Node
{
   int data;
   :
   : 

¸
˝
˛
     There could be more data members of the class

   :

   Node *link;
};

Abstract representation of a 
linked list is shown in Fig. 15.7 
with respect to the Node defi ni-
tion, with two fi elds in it—data 
and link.

Each linked list has to have a 
special external link (or pointer), 
Head. We call it an external link 
because it is not stored in the list. 

5 7 2 Null

Fig. 15.7 Abstract representation of linked list

5

Head

7 2 Null

Fig. 15.8 Linked list with header pointer
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We shall now extend the abstract notation to show the external link. Figure 15.8 illustrates 
the list with the external link, Head.

To represent this linked list as shown in Fig. 15.8, we represent the linked list as 
an object of the LinkList class. The definition of the class is shown in Program 
Code 15.2.

Program CoDE 15.2

class SLL      // Singly linked li st

{

   private:

     Node *Head;

   public:

      SLL();      // Constructor

      ~SLL();      // Destructor

      void Insert(int x);

      void Display();

      :

      : 
¸
˝
˛
    More member functions here

      :

};

The LinkList class has only one member data item, the Head pointer to the fi rst 
node of the list. The Head is used to access the list. The member functions including 
constructor and destructor are used to process the list. Note that the Head is private 
and all other member functions are public. This is because particular nodes of the list are 
accessible to outside objects through pointers. Nodes are made inaccessible to outside 
objects by declaring Head private so that the information hiding principle is not really 
compromised. In Program Code 15.3,

1. array stk[] and top are private members, which are hidden and cannot be accessed 
by outside functions;

2. methods push, pop, isFull, isEmpty are public, which can be accessed by outside 
functions;

3. the two main features data abstraction and encapsulation are satisfi ed in this declaration.

Program CoDE 15.3

/*Class of stack using array*/

#defi ne size 20

class stack

{

   int stk[size];
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   int top;

   public:

      stack(){top= −1;}

      // constructor to initialize top

      int isEmpty()

      {

         if(top  ==  −1) return 1;

            return 0;

      }

      int isFull()

      {

         if(top == size − 1) return 1;

            return 0;

      }

      void push(int element)

      {

         if(isFull())

            cout << "\n Stack Full";

         else

         {

            top++;

            stk[top] = element;

         }

      }

      int pop()

      {

         if(isEmpty())

            cout << "\n Stack is empty";

         else

            return(stk[top−−]);

      }

};      // end of class stack

We can defi ne the objects of the stack as in Program Code 15.4.

Program CoDE 15.4

void  main()

{

   stack s, s1, s2;       // defi ning 3 objects s, s1, 

s2 of the stack 

  // calling functions as
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   s.push(5);       // calling function push and 5 is 

pushed into stack s

   s.push(8);      // 8 is pushed into stack s

   s1.push(10);      // 10 is pushed into stack s1

}

Implementation of Stacks Using Linked List

In Section 15.1.3, we implemented the stack using arrays. However, an array implemen-
tation has certain limitations. One of the limitations is that stacks cannot grow or shrink 
during the execution of a program. This drawback can be overcome by using linked list 
organization for stacks. A stack implemented using linked list is also called as linked 
stack. This is illustrated in Program Code 15.5.

Program CoDE 15.5

/*Class of stack using linked list*/

class node

{

   public:

      int Data;

      node *link;

};

class stack

{

   node * top;      // top is pointer

   public:

      stack(){top = null;}

      // constructor to initialize top

      int isEmpty()

      {

         if(top ==  null) return 1;

            return 0;

      }

      void push(int element)

      {

         node *curr;

         if(isFull())

            cout << "\n Stack Full";

         else

         {

            curr = new node();
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            curr->Data = element;

            curr->link = null;

            if(top == null)

               top = curr;

            else

            {

               curr->next = top;

               top=curr;

               // change top as new node

            }

         }

      }      //end of push

      int pop()

      {

         node *curr; int element;

         if(isEmpty())

            cout << "\n Stack is empty";

         else

         {

            curr = top;

            element = top->Data;

            top = top->next;

            delete(curr);

            return(element);

         }

      }      // end of pop

};      // end of class stack

We can defi ne objects of the stack class in the same way as the previous stack class in 
Program Code 15.6.

Program CoDE 15.6

void main()

{

   stack s, s1, s2;       // defi ning 3 objects of stack 

s, s1, s2

   // calling functions same as previous class

   s.push(5);      // 5 is pushed in stack s

   s.push(8); );      // 8 is pushed in stack s

   s1.push(10); );      // 10 is pushed in stack s1

}
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In both implementations (using array and linked list), we can see that the implementation 
may be different and can be hidden. We also see that independent of the implementation, 
Program Codes 15.4 and 15.6 are the same.

Classes to Produce Abstract Data Types

A class is a type that we define, unlike types such as int and char that are already 
defined for us. A value for a class type is a set of values of the member variables. Consider 
the following class:

class student_account
{
   private:
   int BackAccountNo;
   :
   :
   public:
   void update();
   double getbalance();
   :
   :
};

The programmer who uses this class need not be concerned about how the member func-
tions are implemented.

Creating an Abstract Data Type

In order to define a class so that it is an ADT, we need to separate the specification of 
how the type is used by a programmer from the details of how the type is implemented. 
The separation should be so complete that if we change the implementation of the class, 
any program that uses the class ADT should not need any additional changes. Hence, the 
following steps must be adhered to:

1. Make all the member variables as private members of the class.
2. Make each of the basic operations for ADT either a public member, or a friend function, 

or an ordinary function, or an overloaded operator. Group the class definition and the 
function and operator prototypes together. This group along with comments is called the 
interface for ADT.

3. Fully specify how to use each of these functions or operators in comments given with 
the class or with the function or operator prototypes.

4. Make the implementation of basic operations unavailable to programmers who use 
ADT. The implementation consists of the function definitions and overloaded operator 
definitions; put them in different files.

5. Put all these definitions mentioned in a separate file called as the implementation file. This 
file must contain an include directive that names the interface file, say #include ‘student.h’.

 The interface file and implementation file traditionally have the same name but end 
with different suffixes. The interface file ends with .h and implementation file ends in 
the same suffix that we use for files that contain C++ code.
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6. Compile implementation file separately.
7. If we want to use the ADT in a program, we place the main part of the program, any additional 

function definitions, and constant declarations in another file called an application file. This 
file, also contains an include directive naming the interface file, as in, 

#include ‘student.h’.
8. We must first link the object code produced by compiling the application file and the 

object code produced by compiling the implementation file. In some systems, linking 
may be done automatically or semi-automatically.

15.3 STAnDArD TemPlATe librAry

C++ classes provide information for creating a library of data structures. The C++ STL is 
a collection of containers, adaptors, iterators, functions, and algorithms. The STL is a part 
of the standard C++ class library and can be used as a standard approach for storing and 
processing data. The task of writing complex application codes can be made easy with 
the use of STL. The C++ class allows for the implementation of ADTs with appropriate 
hiding of implementation details.

Standard template library was developed by Alexander Stepanov and Meng Lee of 
Hewlett Packard. In past, compiler vendors and many third party developers have offered 
libraries of container classes to handle the storage and processing of data. However, now, 
standard C++ includes its own built-in container class library, STL. C++ classes provide 
an excellent mechanism for creating a library of data structures. STL contains many kinds 
of entities. The three most important kinds are the following:

1. Containers
2. Algorithms
3. Iterators

The STL allows a programmer to use these classes and functions directly in programs to 
increase productivity.

15.3.1 Containers

Container is a way to store data whether the data consists of built-in types such as int 
and float, or of class objects, that is, container classes whose purpose is to contain other 
objects.

Many times, a programmer uses many objects of a particular class. For example, arrays. 
Array can be considered as one of the most basic and elementary containers. Arrays are 
one of the most powerful data structures. Many other data structures use array as a build-
ing block. If STL makes such a data structure available, a programmer will be able to use 
it as a ready-to-use data structure.

The STL makes seven basic kinds of containers available and three more that are 
desired from the basic kinds. In addition, we can create our own containers based on 
these basic kinds of containers.
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Use of containers is for achieving efficiency. We have learnt and used array as a data 
structure and its pros and cons. An array could be slow in many situations; and it might 
be time consuming to switch to other data structure, implement the same, and then use 
it. Use of STL is less time consuming. STL provides many kinds of containers. The 
programmer can choose one or a few of them as per the need of the application without 
knowing the implementation details. Table 15.1 lists some examples of container classes.

Table 15.1 List of container classes

Container class Description
Vector Array

List Doubly linked list

Slist Singly linked list

Queue Queue structure, that is, FIFO structure

Stack Stack structure, that is, LIFO structure

Deque Combination of stack and queue, having facility for insertion and removal 
from both ends

Set Set of unique elements

Map Store key and data pair

Containers are categorized into two types:

1. Sequence containers
2. Associative containers

Sequence Containers

A sequence container stores a set of elements which can be visualized as a line, similar to 
houses on a street. Each element is related to the other by its position along the line. Each 
element, except at ends, is preceded by one specific element and followed by a specific 
element. These containers refer to sequential organization of elements, such as in arrays.

The sequence containers are as follows:

1. Vectors
2. Lists
3. Deques

The containers that are derived from sequence containers are stacks, queues, and prior-
ity queues.To instantiate an STL container object, we must include an appropriate header 
file. We then use the template format with the kind of objects to be stored as the parameters.

For example,

   deque <int> intDeque; and
   list<student> SEcomp;
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Here, student is a defined data type. The containers take care of all memory alloca-
tions that a user need not specify.

Vectors The array data structure has certain limitations. Owing to its static 
implementation, it results into poor utilization and runtime difficulties of not exceeding 
the size. In addition, array size is to be specified at the compile time; that is, in the source 
code. All these difficulties can be overcome through the vector container provided by 
STL. The template class describes an object that controls a varying-length sequence of 
elements of type T.

A vector is a sequence container that supports random access iterators. It is optimized 
for insertions and deletions at the ends of the collection. Insertions and deletions any-
where else in the collection, such as the beginning or middle, take linear time. Storage 
management is handled automatically. It supports for any data type and for automatic 
resizing when adding elements.

Vector reallocation occurs when a member function must grow the controlled sequence 
beyond its current storage capacity.

Table 15.2 lists the common vector constructors, functions, and operators.

Table 15.2 List of vector constructors, functions, and operators

Function/constructor/operator Description
vector<T> v; Creates an empty vector of data type T

vector<T> v(n); Creates a vector of n default values

vector<T> v(n, e); Creates a vector of n copies of e

v.~vector<T>(); Destroys all elements and frees memory

i = v.size(); Gets the number of elements

I = v.capacity(); Maximum number of elements before reallocation

I = v.max_size(); Implementation of maximum number of elements

B = v.empty(); True, if empty. Same as v.size() = = 0

v.reserve(n); Sets the capacity to n before reallocation

v = v1; Assigns v1 to v

v[i] = e; Assigns the ith element as e

v.at(i) = e; At the ith position set element e

v.front() = e; Same as v[0] = e

v.back() =e; Same as v[v.size() - 1] = e

v.push_back(e); Adds e to the end of v. Expands v if necessary

v.pop_back(); Removes the last element of v

v.clear(); Removes all elements

iter = v.assign(n, e); Replaces the existing elements with n copies of e

(Continued)
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Table 15.2 (Continued)

Function/constructor/operator Description
iter = v.assign(beg, end); Replaces the existing elements with copies from the 

range beg–end

the iter2 = v.insert(iter, e); Inserts a copy of e at the iter position and returns its 
position

v.insert(iter, n, e); Inserts n copies of e starting at the iter position

v.insert(iter, beg, end); Inserts all the elements in the range beg–end, 
starting at iter position

iter2 = v.erase(iter); Removes an element at the iter position and returns 
position of next element

Iter = v.erase(beg, end); Removes range beg–end and returns position of 
next element

E = v[i]; Gets the ith element

E = v.at(i); Gets the element at the ith position

E = v.front(); Gets the fi rst element

E = v.back(); Gets the last element

Iter = v.begin(); Returns the iterator to the fi rst element

Iter = v.end(); Returns the iterator to after last element

Riter = v.rbegin(); Returns the iterator to the fi rst (in reverse order) 
element

Riter = v.rend(); Returns the  iterator to after the last (in reverse 
order) element

Program Code 15.7 shows how an integer vector uses STL and iterators and pro-
cesses them.

Program CoDE 15.7

// Integer vector using STL

#include <vector>

void main()

{

   const int size = 20;

   vector <int> A(size);

   //Defi ne an iterator for template class vector of int

   vector<int> :: iterator start, end, it;

   // Read int values

   int i, n;

   cout << "\n Enter how many numbers";

   cin >> n;

   for(i = 0; i < n; i++)
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   {

      cin >> A[i]);

   }

   start = A.begin();      // location of fi rst element

   end = start + n;       // one past the location last 

element of A

   cout << "All Numbers \n";

   for(it = start; it != end; it++)

   // Accessing vector elements using iterator

     cout << (*it) << "\t";

   // To remove element at position 2

   A.remove(2);

}

 Doubly e nded queue Deque is the container, which can be thought of as a combination 
of a stack and a queue. A stack is a LIFO structure, and a queue is a FIFO structure. A 
deque combines these approaches so we can insert and delete from either end and hence 
is called as doubly e nded queue.

Table 15.3 lists some functions related to deque as follows:

Table 15.3 List of functions for doubly ended queue
Function Description
at() Returns a reference to the element at a specifi ed location in the deque

back() Returns a reference to the last element of the deque

begin() Returns an iterator addressing the fi rst element in the deque

clear() Erases all the elements of a deque

Deque() Constructs a deque of a specifi c size

Empty() Tests if a deque is empty

end() Returns an iterator that addresses the location succeeding the last 
element in a deque

erase() Removes an element or a range of elements in a deque from specifi ed 
positions

front() Returns a reference to the fi rst element in a deque

insert() Inserts an element or a number of elements or a range of elements 
into the deque at a specifi ed position

pop_back() Deletes the element at the end of the deque

pop_front() Deletes the element at the beginning of the deque

push_back() Adds an element to the end of the deque

push_front() Adds an element to the beginning of the deque

size() Returns the number of elements in the deque
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The implementation of deque of integers using STL is given in Program Code 15.8.

Program CoDE 15.8

// Deque of integer data using STL

#include <deque>

#include <iostream>

using namespace std;

void print_contents(deque);

void main()

{

   int choice;

   char ele;

   //create

   deque <char> DQueue;

   do

   {

      cout << "1. Insert at Begin" << endl;

      cout << "2. Insert at End" << endl;

      cout << "3. Delete from Begin" << endl;

      cout << "4. Delete from End" << endl;

      cout << "5. Display" << endl;

      cout << "6. Exit" << endl;

      cout << "Enter your Choice:";

      cin >> choice;

      switch(choice)

      {

          case 1: cout << "You are inserting at the 

beginning of queue" << endl;

         cout << "Enter Element:";

         cin >> ele;

         DQueue.insert(DQueue.begin(), ele);

         //print out the contents

         print_contents(DQueue);

         break;

          case 2 :cout << "You are inserting at end of 

queue" << endl;

         cout << "Enter Element:";

         cin >> ele;

         DQueue.insert(DQueue.end(), ele);

         //print out the contents

        print_contents(DQueue);

        break;
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         case 3:       // erase the begin element

         cout << "Deleting front element:";

         if(!DQueue.empty())

         {

            cout << DQueue.front() << endl;

            DQueue.erase(DQueue.begin());

         }

         //print out the contents

         print_contents(DQueue);

         break;

         case 4:      // erase the End element

         cout << "Deleting rear element:";

         if(!DQueue.empty())

         {

            cout << DQueue.back() << endl;

            DQueue.erase(DQueue.end());

         }

         //print out the contents

         print_contents(DQueue);

         break;

         case 5:      // print out the contents

         print_contents(DQueue);

      }      // end of switch

   }while(choice < 6);

}

//function to print the contents of deque

void print_contents(dqueue DQueue)

{

   dqueue<char> :: iterator pdeque;

   cout << "The output is:";

   if(!dqueue.empty())

   {

       for(pdeque = dqueue.begin(); pdeque != dqueue.

end(); pdeque++)

      {

         cout << *pdeque << " ";

      }

      cout << endl;

   }

   else

      cout << "DQ is empty";

}
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 List One more problem associated with arrays is that the insertion and deletion 
operations at the middle need a lot of data movement. To solve this problem, the STL 
provides the list container, which is based on the idea of a linked list. A list sequence 
container provides support for the bidirectional iterators with constant time insert and 
delete operations anywhere in the list; however, it does not support random access to the 
elements. Thus, the list is specially designed for sequential access. Storage management 
is handled automatically.

The list sequence container is an implementation of various operations on the nodes of a 
linked list. The STL implements a list as a generic doubly link ed list (DLL) with pointers to 
the head and to the tail. An instance of such list that stores integers could be used in a pro-
gram. The class list can be used in a program only if it is included as #<include> <list>.

A new list is generated with the instruction

 list <data_type> L1;

where data_type can be any data type. If it is user-defi ned, the type must also include 
a default constructor which is required for initialization of new nodes. Various mem-
ber functions such as insert(), empty(), clear(), remove(), reverse(), and many more are 
included in the list container.

Table 15.4 lists some functions available in STL.

Table 15.4 List of a few functions for list in STL

Method Description
list() Creates an empty list

list(size_type n) Creates a list of n elements initialized to their default value

T &back(void) Returns a reference to the last element in the list

T &front(void) Returns a reference to the fi rst element in the list

void push_back(const T &value) Inserts a value to the end of the list

void push_front(const T &value) Inserts a value to the beginning to the list

void pop_back(void) Deletes the last element of the list

void pop_front(void) Deletes the fi rst element of the list

void remove(const T &value) Deletes all elements that match the value. Comparison is 
performed using the = = operator

void reverse(void) Reverses the order of elements in the list

void sort(void) Sorts the entries contained in the list using the < operator

Table 15.4 lists the set of commonly used functions for list operations. Program Code 
15.9 demonstrates the use for them for creating a list of students using STL.

Program CoDE 15.9

// List operations using STL

#include 

#include <iostream>
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using namespace std;

class student

{

   private:

      int roll;

      char name[20];

      fl oat marks;

   public:

      void getdata()

      {

         cout << "\n Enter roll, name, marks of student:";

         cin >> roll >> name >> marks;

      }

      void displaydata()

      {

          cout << "\n" << roll << "\t\t" << name << 

"\t\t" << marks;

      }

      int getroll() 

      {

         return roll;

      }

};

void main()

{

   student s;      // object of student

   list <student> student_list;      // list of students

   list <student> :: iterator sptr;

   int choice;

   int ele;

   do

   {

      cout << "\n Menu \n";

      cout << "1. Add" << endl;

      cout << "2. Display" << endl;

     cout << "3. Delete" << endl;

     cout << "4. Insert" << endl;

      cout << "5. Exit";

      cout << "\nEnter your choice:";

      cin >> choice;

      switch(choice)

      {

         case 1:
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            cout << "\n Enter student record:\n";

            s.getdata();

            student_list.push_back(s);

         break;

         case 2:

            cout << "Roll   Name   Marks" << endl;

            if(!student_list.empty())

            {

                for(sptr = student_list.begin(); sptr 

!= student_list.end(); sptr++)

                 sptr->displaydata();

            }

            else

               cout << "\n List is empty";

         break;

         case 3 : 

            int r;

             cout << "\n Enter roll no to be deleted :: ";

            cin >> r;

            if(!student_list.empty())

            {

                for(sptr = student_list.begin(); 

sptr != student_list.end(); sptr++)

               {

                  if(sptr->getroll() == r)

                  {

                     cout << "\n Deleting \n";

                     sptr->displaydata();

                     student_list.erase(sptr);

                     break;

                  }

               }

            }

            else

               cout << "\n List is empty";

         break;

         case 4 : 

            int br;

             cout << "\n Enter record to be inserted : ";

            s.getdata();

             cout << "\n Enter roll no before which to 

be inserted :: ";
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            cin >> br;

               if(!student_list.empty())

               {

                   for(sptr=student_list.begin(); sptr 

!= student_list.end(); sptr++)

                  {

                     if(sptr->getroll() == br)

                     {

                        cout << "\n Inserting \n";

                        sptr->displaydata();

                        student_list.insert(sptr, s);

                        break;

                     }

                  }

               }

               else

                  cout << "\n List is empty";

       }

   }while(choice < 5);

}

 Stack T he template class describes an object that controls a varying-length sequence 
of elements, having the functions empty(), size(), top(), push(), and pop(). This is 
illustrated in Program Code 15.10.

Program CoDE 15.10

// Stack using STL

#include <stack>

#include <iostream>

using namespace std;

void main()

{

   stack <int> stack1;//

   int choice;

   int ele;

   do

   {

      cout << "1. Push " << endl;

      cout << "2. Pop" << endl;

      cout << "3. Exit" << endl;
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      cout << "Enter your choice : ";

     cin >> choice;

      switch(choice)

      {

          case 1: cout << "Pushg an Element in Stack" 

<< endl;

            cout << "Enter Element:";

            cin >> else;

            stack1.push(ele);

         break;

          case 2: cout << "Pop element from stack" << 

endl;

            if(!stack1.empty())

            {

                cout << "top returned" << stack1.top() 

<< endl;

               stack1.pop();

            }

            else

               cout << "\n Stack is empty";

         break;

      }

   }while(choice < 3);

}

Table 15.5 summarizes the characteristics of STL sequence container including the 
ordinary C++ array.

Table 15.5 List of containers and their characteristics

Container Characteristics Advantages/disadvantages

C++ array (not container) Fixed size • Quick random access
• Slow insert and delete
• Size cannot be changed at runtime

Vector Relocating, expandable 
array

• Quick random access
• Slow insert/delete in middle
• Quick insert/delete at ends

List Doubly linked  list • Quick insert/delete
• Quick access at ends
• Slow random access

Deque Like vector but can be 
accessed at either ends

• Quick random access
• Slow inset or delete in middle
• Quick insert or delete at the ends
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Associative Containers

An associative container is a collection of stored objects that allow fast retrieval using a 
key. In each container, the key must be unique. There are four standard associative con-
tainers classified into two classes:

1. Sets
(a) Set 
(b) Multiset

2. Maps
(a) Map 
(b) Multimap list

An associative container is not sequential; instead, it uses keys to access data. The 
keys, typically numbers or strings, are used automatically by the container to arrange 
the stored elements in a specific order. It is like an ordinary English dictionary where 
we access data by searching in alphabetical order. Both the containers, sets and maps, 
store data in tree structure, which offer fast searching, insertion, and deletion. Map con-
tainer supports unique key and bidirectional iterators. It provides fast retrieval of values 
of another type based on the keys. A multimap is an associative container that supports 
duplicate keys and bidirectional iterators.

A set is an associative container that supports unique key and bidirectional iterators. 
Sets are simpler and more commonly used than maps. A set stores a number of items 
that contain keys. The keys are attributes used to order the items. For example, a set of 
books might be ordered as per the unique ID number or can be ordered alphabetically on 
author’s name. The desired author’s book can be quickly located by searching for a book 
specified by the author name.

A map stores pairs of objects: a key object and a value object. A map is often used as 
a container that is somewhat like an array, except that the index used for accessing the 
element is the key object.

15.3.2 Algorithms

An algorithm is a function that processes the items in a container. Algorithms in STL are 
not member functions or even friends of container classes. They can be used with built-in 
C++ arrays or with container classes created by us.The header <algorithm> defines a 
collection of functions especially designed to be used on ranges of elements. These algo-
rithms can be divided into six groups:

1. Minimum and maximum algorithms
2. Numeric algorithms
3. Non-mutating sequence algorithms
4. Sorting algorithms
5. Set operations on sorted sequence
6. Heap operation
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For example, suppose we create an array of type int storing the marks of a student. Then,

 int marks[6] = {73, 44, 42, 51, 59, 50}

We can use STL sort() as

 sort(marks, marks + 6)

Here, marks and marks + 6 are the start and end addresses, respectively.
Other example of sorting a vector is as follows:

vector<int> m;
// having values 73, 44, 42, 51, 59, 50
sort(m.begin(), m.end());
// Output is 42, 44, 50, 51, 59, 73 
sort(v.begin(), v.end(), greater<int>()); 
// Output is 73, 59, 51, 50, 44, 42

For reversing, we can use the reverse algorithm as the following:

vector<int> m;
// vector m having values 73, 44, 42, 51, 59, 50
reverse(m.begin(), m.end());
// vector m changed as 50 59, 51, 42, 44, 73

Table 15.6 lists some of the functions in <algorithm>.

Table 15.6 List of functions with their brief descriptions available in STL

Functions Description
find() Find value in range

find_if() Find element in range

count() Count appearances of value in range

equal() Test whether the elements in two ranges are equal

copy() Copy the range of elements

swap() Exchange values of two objects

replace() Replace value in range

fill() Fill range with value

remove() Remove value from range

reverse() Reverse range

sort() Sort elements in range

partial_sort() Partially sort elements in range

nth_element() Sort element in range

binary_search() Test if value exists in sorted array

merge() Merge sorted ranges

min() Return the lesser of two arguments

max() Return the greater of two arguments

Min_element() Return the smallest element in range

max_element() Return the largest element in range
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We know that an algorithm processes the items in a container. Algorithms in STL can 
be used with built-in C++ arrays or with container classes created by us. Program Code 
15.11 demonstrates its use for sorting the list of persons.

Program CoDE 15.11

// Sort elements in a sequence

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

using namespace std;

class person

{

   public:

      int id;

      char fi rst_name[20];

      char last_name[20];

      long phone;

};

bool operator < (person &a, person &b) 

{

   // function used to select fi eld for sort

   if(strcmp(a.last_name, b.last_name) < 0)

      return(1);

      return(0);

}

void main()

{

   const int vector_size = 20;

   vector<person> Per(vector_size);

    //Defi ne an iterator for template class vector of 

strings

   vector<person> :: iterator start, end, it ;

   // Read person records

   int i, size;

   char ans;

   i = 0;

  cout << 

  do

  {

      cout << "\n Enter person id : ";
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      cin >> Per[i].id;

      cout << "\n Enter person fi rst name : ";

      cin >> Per[i].fi rst_name;

      cout << "\n Enter person last name : ";

      cin >> Per[i].last_name;

      cout << "\n Enter pnone : ";

      cin >> Per[i].phone;

      i++;

      cout << "More? (y/n)";

      cin >> ans;

   }

   while(ans == 'y' || ans == 'Y');

      size = i;

     start = Per.begin();

      // location of fi rst element of Person

      end = Per.end();

      // one past the location last element of Person

      cout << "Before calling partial_sort\n" << endl ;

      // print content of Person

      cout << "\n All records of person \n" ;

      for(it = start; it != start + i; it++)

          cout << (*it).id << " " << (*it).fi rst_name << 

"\t" << (*it).last_name << "\t" << it->phone 

<< endl;

         // sort elements of person on last name

         sort(Per.begin(), Per.begin() + size);

          cout << "After calling sort elements of 

person on last name \n" << endl;

         cout << "\n All records of person \n";

         for(it = start; it != start + i; it++)

             cout << (*it).id << " " << (*it).fi rst_name 

<< "\t" << (*it).last_name << "\t" << it-

>phone << endl;

            cout << endl;

}

15.3.3  iterators

Iterators are pointer-like entities that are used to access individual data items in a con-
tainer. They work like regular pointers in C++. They can be used to store and retrieve 
objects in C++. They are often used to move sequentially from element to element, a 
process called iterating, through the container. We can increment iterators with the ++ 
operator so they point to the next element, and dereference them with the * operator to 
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obtain the value of the element they point to. In the STL, an iterator is represented by the 
object of an iterator class.

STL defines five different iterators:

1. Input
2. Output
3. Forward
4. Bidirectional
5. Random access

Input Iterator

An input iterator can be used only to retrieve a value from the input stream; it cannot be 
used to store a value. It can only move in the forward direction, retrieving the objects one 
by one. It cannot go backward and it cannot jump to any arbitrary position. Figure 15.9 
elaborates the concept better.

Object 1 Object 2 Object 3

Iterator

Direction of iterator movement

Input steam

Object N

...

...

Fig. 15.9 STL input iterator

Output Iterator

An output iterator is used only to store a value in an output stream; it cannot be used to 
retrieve a value. It only moves in the forward direction, storing objects one by one. It can-
not go backward and it cannot jump. Figure 15.10 elaborates the concept.

Object 1 Object 2 Object 3

Iterator

Direction of iterator movement

Output steam

Object N

...

...

Fig. 15.10 STL output iterator
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Forward Iterator

A forward iterator can be used to both retrieve and store a value. It can only move in the 
forward direction, visiting the objects one by one. It cannot go backward and it cannot 
jump, that is, it cannot be set to an arbitrary location in the middle of the container.

Figure 15.11 describes the forward iterator.

Object 1 Object 2 Object 3

Iterator

Iterator movement

Container

Object N

...

...

Fig. 15.11 STL forward iterator

Forward iterator accomplishes the movement throughout its ++ operator.

Bidirectional Iterator

A bidirectional iterator can be used to both retrieve and store values. A bidirectional 
iterator can move backward as well as forward, so both its + + and - - operators are 
defined.

A bidirectional iterator too cannot be set to an arbitrary location like forward, input, 
and output iterators. It can move forward or backward, one object at a time. Figure 15.12 
describes a bidirectional iterator.

Object 1 Object 2 Object 3

Iterator

Iterator movement

Container

Object N

...

...

Fig. 15.12 Bidirectional iterator
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Random Access Iterator

A random access iterator, in addition to moving backward and forward, can jump to an 
arbitrary location. We can set the iterator to access any location i. Like a bidirectional 
iterator, it can move (rather jump) in both directions.

An input iterator points to an input device (cin or a file) to read sequential data items 
into a container, and an output iterator points to an output device (count or file) and 
write elements from a container to the device. While the values of forward, bidirec-
tional, and random access iterators can be stored, the values of input and output itera-
tors cannot be. This makes sense as the first three iterators point to memory locations, 
while the input and output iterators point to I/O devices for which the stored ‘pointer’ 
values have no meaning. Table 15.7 defines the characteristics of these different kinds 
of iterators.

Table 15.7 Iterator characteristics

Iterator type Read/write Iterator can 
 be saved

Direction Access

Random access Read and write Yes Forward and backward Random

Bidirectional Read and write Yes Forward and backward Linear

Forward Read and write Yes Forward only Linear

Input Read only No Forward only Linear

Output Write only No Forward only Linear

We can note that there is a hierarchical relation between the iterators. Every forward 
iterator is also an input and output iterator. Every bidirectional iterator is also a forward 
iterator. A random access iterator is also a bidirectional iterator. Figure 15.13 shows this 
hierarchical relationship among these five iterators.

Input Output

Forward

Bidirectional

Random access

Fig. 15.13 Hierarchical relationship among iterators
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Operators Supported by Iterators

Each iterator supports different operators as per its type. Table 15.8 shows the operators 
supported by each iterator.

Table 15.8 Iterator operators
Iterator Operator
Input

Output

Forward

Bidirectional

Random access

¥, =, ++, = =, !=, ã

¥, =, ++

¥, =, ++, = =, !=, ã

¥, =, ++, = =, !=, ã

+, =, ++, = =, !=, ->, - -, +, -

<, >, <=, >=, [ ]

Pros and Cons of Standard Template Library

The STL is a robust and versatile system. Errors tend to be caught at compile time rather 
than at runtime. The different algorithms and containers present a very consistent inter-
face; what works with one container or algorithm will usually work with another when 
used appropriately.

The sophistication of the STL’s template classes places a strain on compilers, and not 
all of them respond well. It is hard to find errors reported by the compiler. Errors could 
be reported as being deep in header file when they are actually in the class as user’s code. 
The STL may sometimes generate spurious compiler warnings, which appear to be harm-
less and can be ignored.

15.3.4 function objects

Some algorithms can take an object called a function object as an argument. A function 
object encapsulates a function. STL uses this strategy to pass a function to an algorithm or 
to a method in a container without using the traditional function pointer. A function object 
for the user is much like a template function. However, it is actually an object of a template 
class that has a single member function, the overload operator. In C++, the function call 
operator() can be treated as any other operator; in particular, it can be overloaded. It 
can return any type and take any number of arguments, but like the assignment operator, 
it can be overloaded only as a member function. Any object that includes a definition of 
the function call operator is called a function object. A function object is an object, but it 
behaves as if it were a function. When the function object is called, its arguments become 
the arguments of the function call operator.

Suppose we want to sort an array of Roll_Nos into descending order instead of 
ascending order. Program Code 15.12 shows how to do it using the greater<>(1) func-
tion object.
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Program CoDE 15.12

#include<iostream.h>

#include<functional>

#include<algorithm>

int Roll_No[] = {6, 7, 3, 1, 2, 5, 4};

int main()

{

   sort(Roll_No, Roll_No + 7, greater<int>());

   for(int j = 0; j < 7; j++)

      cout << Roll_No[j];

   cout << endl;

   return 0;

}

The sort() algorithm usually sorts in ascending order, but the use of greater<>() 
function object, the third argument of sort(), reverses the sorting order.

We get the output as 7, 6, 5, 4, 3, 2, 1

Besides comparisons, there are function objects for arithmetical and logical operators. 
User can substitute a user-written function for a function object.

reCAPiTulATion

• A data type is said to be an ADT if one can 
use it without having access to and without 
knowing the details of its implementation. The 
ADT concept can be best implemented in an 
object-oriented fashion.

• STL is a part of standard C++ library, which 
includes container class that provides an excel-
lent mechanism for storage and processing of 

data. STL consists of three main components: 
containers, algorithms, and iterators.

• Containers are of two categories: sequential, 
associative. Algorithms carry out operations 
on containers, such as sorting, copying, and 
searching. Iterators act like pointer to container 
element and provide connection between algo-
rithm and containers.

Algorithm An a  lgorithm is a function for process-
ing the items in a container. Algorithms in STL 
can be used with built-in C++ arrays or with con-
tainer classes created by us.

Container Container class contains other objects. 
Container is a way to store data, whether the data 
consists of built-in types such as int and fl oat, 
or of class objects.

Key TermS
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eXerCiSeS

Multiple choice questions

1. The acronym STL stands for 
 (a) Standard tools library
 (b) Standard template library
 (c) Simple tools library
 (d) Simple template library
2. The C++ language is a collection of 
 (a) Containers, functions, and classes
 (b) Containers, functions, iterators, and classes
 (c)  Containers, functions, iterators, algorithms, 

and adaptors
 (d)  Containers, functions, iterators, algorithms, 

and classes
3. The C++ STL containers are categorized into
 (a) associative containers and simple containers
 (b)  assembled containers and sequence containers
 (c)  associative containers and standard containers
 (d)  associative containers and sequence containers
4. For an algorithm in STL, which of the following 

is true?
 (a)  An algorithm is a function that processes 

the items in a container.
 (b)  Algorithms in STL are not member functions 

or even friends of container classes.
 (c)  Algorithms can be used with built-in C++ 

arrays or with container classes created 
by us.

 (d) All of the above

Review questions

 1. Use the STL algorithm to sort an element list 
into ascending order and search an element 
using binary search.

 2. Use the STL algorithm ‘count’ and compute the 
occurrence of zero in the array of integers.

 3. What is a container? What are the types of STL 
containers?

 4. What is an iterator? Defi ne the fi ve different 
types of iterators.

 5. Write the code for using STL containers and 
STL algorithms for the following:

 (a) To reverse a list
 (b)  To convert a decimal to binary form using 

stack
 (c) Queue operations
 6. Using STL, implement polynomial operations 

using linked list in C++.
 7. Write a program to create array of specifi ed size 

and use the algorithm fi ll to 
 (a) initialize it to value -1
 (b) set values of lower half to 99
 8. A test for 60 students has been conducted for 50 

marks for subject ‘Data Structures’. The passing 
is scoring 40% of total marks that is 20. Write a 

Iterator Iterator is pointer like entity, which is 
used to access individual data items in a container, 
and it is used to store and retrieve objects in C++.

Object An object is an entity that performs com-
putations and has a local state. It is also viewed 
as a combination of data and procedural (behav-
ioural) elements.

Object-oriented programming Object-oriented 
programming (OOP) is a programming paradigm 

that encapsulates data (attributes) and functions 
(behaviour) into package called as classes. Class 
is a user-defi ned data type.

Standard template library The C++ STL is 
a collection of containers, adaptors, iterators, 
functions, and algorithms. The STL is a part of 
the standard C++ class library and can be used 
as a standard approach for storing and process-
ing data.
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program to create an array of specified size for 
storing marks of 60 students in the class. Use 
STL algorithm ‘count’ and compute the total 
number of failures in the subject.

 9. The students’ club members (MemberID, name, 
phone, email) list is to be maintained. The 
common operations performed include these: 
add member, search member, delete member, 

and update the information. Write a program that 
uses list from STL to implement the same. 
Use iterator.

10. Implement doubly ended queue using STL. Use it 
for processing members queue of jobs submitted 
to printer. Make use of deque for stacking the 
members and process them as LIFO.

Answers to multiple choice questions

1. (b)  2. (c)  3. (d)  4. (d)



16

The study of algorithms is fundamental to computer science. An algorithm can be 
defi ned as a set of steps to solve a particular problem effectively and effi ciently. The 

study of algorithms includes learning tools for algorithm development, various design 
strategies, and analysis of algorithms.

The intention of this chapter is to present the foundation for these aspects associated 
with algorithm study.

16.1 INTRODUCTION

We have discussed data structures, programming languages, algorithms, and their analy-
sis in Chapter 1. Software development desires to utilize each of these effi ciently. The 
basic programming style is infl uenced by typical design approaches called algorithmic 
strategies. An algorithmic strategy (also known as design technique or paradigm) is a 
general approach to solving problems algorithmically. This methodology is appropriate 
for various problems suitable for different areas of computing.

It is true that devising an algorithm is an art that may never be fully automated. We shall 
study various design techniques that have proven to be useful to devise new algorithms. 
Dynamic programming is one such technique along with others such as divide-and-
conquer, greedy, and backtracking.

More than one technique may be applicable to a specifi c problem, but  it is often the case 
that an algorithm constructed using a particular approach is clearly superior to equivalent 
solutions built using alternative techniques. Hence, the choice of the design paradigm is 
an important feature of algorithm synthesis.

ALGORITHM ANALYSIS 
AND DESIGN

OBJECTIVES

After completing this chapter, the reader will be able to understand the following:
 • Basic tools needed to develop and analyse algorithms
 • Methods to compute the effi ciency of algorithms
 • Ways to make a wise choice among many solutions for a given problem
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16.1.1 Algorithm Analysis

In computer science, an algorithm is a way to formulate a stepwise solution to a prob-
lem. It outlines the initial conditions, processing steps/sequence, and final outcome of 
the problem. For any specific problem definition, more than one solution approach may 
exist. In other words, a problem can have multiple algorithms for its solution. If multiple 
algorithms provide solutions to the same problem, their performance will surely vary over 
a wide range of performance measuring parameters.

In practice, each algorithm’s performance is unique. Each algorithm’s way of solv-
ing a problem, its prerequisites, and presentation of the final solution is independent. 
Thus, suitability of each algorithm for problem solving varies from application to 
application.To measure the performance of each algorithm, we need analysis, and 
based on the appropriate analysis design, selection of efficient or better algorithms is 
possible. Hence, the study of algorithms and their analysis plays a vital role in software 
development.

The performance measuring parameters have been highlighted in Chapter 1. We can 
evaluate an algorithm’s efficiency in terms of its time and space consumption. These  
parameters are measured in terms of asymptotic complexity bounds of the algorithms. Let 
us discuss a few fundamental algorithmic strategies in relation with asymptotic complexi-
ties in the following sections.

16.1.2 Asymptotic Notations (W, p, O)

More than one solution may exist for a single problem. To identify the best among them, 
we need to quantify their performances with factors such as time and space complexi-
ties. Asymptotic complexity helps us to quantify the performance of the algorithms. 
Big O, omega (W), and theta (q) are the asymptotic notations used in this algorithmic 
analysis.

Big O or Oh

Definition The function f(n) = O(g(n)) is called ‘f(n) is the big O of g(n)’ if and only if 
there exist positive constants c and N, such that f(n) £ c ¥ g(n) for all n ≥ N.

Big O formally represents the upper bound of the algorithm’s time complexity as it 
suggests the maximum value or upper limit of the time taken by an algorithm to execute.

If an algorithm’s time complexity is represented as O(g(n)), then it indicates that in all 
possible data considerations of size n, at any instance, the algorithm would consume f(n) 
time, which is always less than constant c times g(n).

Let us consider an example of linear search. Linear search will consume maximum 
time if the element we want to search for, say x, lies either at the last location or is absent. 
In such situations, linear search will take n comparisons, where n is the data size. So, in 
the case of linear search, the upper limit for time complexity will be n in the worst pos-
sible situation. This is represented as O(n).
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Big Omega (W)

Definition The function f(n) = W(g(n)) is called ‘f(n) is omega of g(n)’ if and only if 
there exist positive constants c and N such that f(n) ≥ c ¥ g(n) for all n ≥ N.

Big Theta (Q)

Definition The function f(n) = Q(g(n)) is called ‘f(n) is theta of g(n)’, if and only if there 
exist positive constants c and N such that f(n) £ c × g(n) for n ≥ N.

Algorithms can be iterative or recursive; can make decisions randomly or approximate-
ly; can propagate the decision-making policies in the forward or backward manner. The al-
gorithmic strategies work on all such characteristics and are broadly classified as follows:

1. Divide-and-conquer
2. Greedy method
3. Dynamic programming

The study of algorithm and design strategies 

1. makes available templates suitable for solving a set of diverse problems;
2. can be translated into common control and data structures provided by most high-level 

languages;
3. analyses the temporal and spatial requirements of the algorithms in a precise manner.

16.2 DIVIDE-AND-CONQUER

Divide-and-conquer is one of the most popular algorithmic strategies. It works in two phases. 
In the first phase, the problem is divided into subproblems of smaller size till each prob-
lem can be easily solved. In the latter phase, the solutions to all such subproblems are 
gathered together to get the final solution. This approach, especially when used recur-
sively, often yields efficient solutions to problems in which the subproblems are smaller 
versions of the original problem and can be independently solved. 

Often, even the subproblems are relatively large, and the divide-and-conquer strategy 
is reapplied. In addition, the subproblems resulting from a divide-and-conquer design 
are of the same type as the original problem. For those cases, applying this design again 
is naturally expressed by a recursive procedure. The process of splitting the input into 
distinct subsets continues till these smaller subproblems, which are of the same kind, are 
small enough to be solved without further splitting. 

16.2.1 Unique Characteristics and Use
Popularly, the divide-and-conquer strategy is designed keeping in mind a single processor 
computer. However, it is ideally suited for parallel computations as each subproblem can 
be solved simultaneously by its own processor. The following are some unique character-
istics of the divide-and-conquer method:

1. The divide-and-conquer technique is well suited when a data set can be divided into 
smaller subsets of data elements and each data set can be independently processed.
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2. It is useful in cases where algorithms are inherently recursive.
3. It is not suitable for data elements that are not suitably subdivided and if the subtasks 

cannot be independently processed.

16.2.2 General Method

With n inputs in hand, the divide-and-conquer strategy recommends splitting the inputs 
into k distinct subsets, 1 < k £ n, yielding k subproblems. Each of the k subproblems is 
to be solved independently, and then by a suitable method these subsolutions should be 
combined to yield a solution to the whole. To each subproblem, divide-and-conquer is 
reapplied till the subproblem is small enough to be solved without further subdivision.

For a general method, let the n inputs to be processed be stored in a global array A[1, n]. 
Let D_and_C be a function that is initially invoked as D_and_C(1, n). D_and_C(i, j) 
solves a problem instance denied by the input A[i, j]. The following steps elaborate the 
general structure of the divide-and-conquer strategy.

1. If the data size n of problem P is fundamental, calculate the result of P(n) and go to 
step 4.

2. If the data size n of problem P is not fundamental, divide the problem P(n) into 
equivalent subproblems P(n1), P(n2), … P(ni) such that i ≥ 1.

3. Apply divide-and-conquer recursively to each individual subproblem P(n1), P(n2), …, 
P(ni).

4. Combine the results of all subproblems P(n1), P(n2),…, P(ni) to get the final solution 
of P(n).

Algorithm 16.1 illustrates the divide-and-conquer algorithm.

algorithm 16.1
Algorithm Divide_and_Conquer(A, lower, upper)
1. start
2. if small(lower, upper) then
     return Soln(lower, upper)
3. else Divide A into smaller instances say A1, A2, … Ak
4. for i = 1 to k do
     Apply Divide_and_Conquer to Ai
5. return conquer(Divide_and_Conquer(A1)),
     Divide_and_Conquer(A2),
     …
     Divide_and_Conquer(Ak))
6. stop

The computing time of D_and_C is described by the following recurrance relation:

g n( ), if n is small

otherwise( ) + ( ) +  + ( ) + 1 2 kT n T n T n f n),… (





T(n) =
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The complexity of many divide-and-conquer algorithms is given by a recurrence of the form 

T n

aT n b

(1)                                  = 1 

( / ) ++ ( )                  > 1 f n n





T(n) =

where a and b are known constants. We assume that T(1) is known and n is a power of b 
(i.e., n = bk). 

One of the methods for solving any such recurrence relation is the substitution method. 
This method repeatedly makes substitutions for each occurrence and the function T in the 
right hand side (RHS) until all such occurrences disappear.

16.2.3 Binary Search

The binary search algorithm, discussed in Chapter 9, is the best example of the divide-
and-conquer strategy. Often, sequential search is not suitable. For larger lists, it requires 
n comparisons in the worst case. Consider that one wants to search the name of a friend 
Zeenath sequentially in a list of students. If the list is not sorted alphabetically, the task 
becomes lengthy. Obviously, linear search through a directory is not an efficient method. 
Hence, a better method is to use binary search, when the data is sorted. 

This method is called binary search as we divide the list to be searched into two lists 
and search in only one of the lists. Consider that the list is sorted in ascending order. In a 
binary search algorithm, to search a particular element, it is first compared with the ele-
ment at the middle position; if found, the search is successful. Else, if the middle position 
value is greater than the target, the search will continue in the first half of the list; other-
wise, it will resume in the second half of the list. The same process is repeated for one of 
the halves of the list till the list reduces to size one.

The effectiveness of the binary search algorithm lies in its continual halving of the list 
to be searched. For an ordered list of 50,000 keys, the worst case efficiency is a mere 16 
accesses. The same file that would have necessitated an average wait of few minutes using 
a sequential search will permit a virtually instantaneous response when the binary search 
strategy is used. In more precise algebraic terms, the halving method yields a worst case 
search efficiency of log2n.

Let us discuss binary search as an example of the divide-and-conquer strategy with the 
help of an example. Let A be an array of size n, where n = 8. For the binary search to be 
effective, the array A must be presorted.

Element to be searched = 24

A

low mid high

1 2 3 4 5 6 7 8

2 4 6 8 10 22 24 60

mid = (low + high)/2 = 9/2 @ 4
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Check if A[mid] <= 24
Since A[4] = 8 which is less than 24, the right half needs to be searched.
Hence now, low = mid = 4; high= 8.

A

low mid high

1 2 3 4 5 6 7 8
2 4 6 8 10 22 24 60

mid = (low + high)/2 = 12/2 @ 6
Check if A[mid] <= 24    
Since A[6] = 22 which is less than 24, the right half needs to be searched.
Hence now,  low = mid = 6;   high = 8.

A

low mid high

1 2 3 4 5 6 7 8
2 4 6 8 10 22 24 60

mid = (low + high)/2 = 14/2 @  7
Check if A[mid] <= 24  
A[7] = 24 which is equal to 24. 
Since the required element is found, stop
Binary search is illustrated by Algorithm 16.2.

algorithm 16.2
int Binary_Search(int list[], int first, int last, int x)
{
   int mid;
   if(first <= last)
   {
      mid = (first + last)/2;
      if(list[mid] = = x)
         return mid;
      else if(x < list[mid])
         return Binary_Search(list, first, mid − 1, x);
      else
         return Binary_Search(list, mid + 1, last, x);
   }
   return −1;
}

Although this is a more direct implementation of the earlier description, it uses needless 
stack space and is much slower in most systems. In addition, this is known as tail recur-
sion, which is the most wasteful form of recursion. Recursion is a powerful tool, which 
must be used with care. 
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Binary search requires O(log(n)) as it halves the list size in each step. It is a large im-
provement over linear search; for a list with 10 million entries, linear search will need 10 
million key comparisons, whereas binary search will need just about 24.

Time complexity of binary search can be written as a recurrence relation as follows:

T n
T n

T n n
( )  =

(1) if  =1

( /2) + c if > 1





The most popular and easiest way to solve recurrence relation is to repeatedly make 
substitutions for each occurrence of the function T in the RHS until all such occurrences 
disappear.
Therefore, T(n) = T(n/2) + c
 = T(n/4) + 2c
 = T(n/8) + 3c

…

 = T(n/2k) + kc

…

 = T(n/n) + kc = T(1) + kc
where 2k = n; hence, k = log2n
\ T(n) = T(1) + clog2n
 T(n) = O(log2n)

16.2.4 Merge Sort

Merge sort is another example of the divide-and-conquer strategy. It is the most common 
technique used in external sorting. Initially, merge sort considers the individual elements. 
In the next step, it considers a group of two elements and sorts them. At the end of the sec-
ond step, subarrays of size two are available. In the next step, it considers two subarrays 
of size two and merges them. It repeats this procedure till all the elements are covered or 
until one of the two sublists is empty. The same concept of merge sort can be applied to 
file merging.

Let us discuss the implementation of the merge sort technique for two arrays. Algo-
rithm 16.3 describes the steps to sort two arrays A and B.

algorithm 16.3
Algorithm MergeSort(List L, int n)
begin
if(n = 1)then
   return(L);
else
   begin
   split L into two halves A and B
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   return(Merge(MergeSort(A, n/2), MergeSort(B, n/2)));
   end
end

Algorithm 16.4 accepts two sorted arrays A and B containing elements n1 and n2, re-
spectively, and merges them into a third array C containing n3 elements.

algorithm 16.4
Algorithm Merge(A, B, C, n1, n2, n3)
begin
i = j = k = 1;
while(i < n1 and j < n2)
   begin
      if(A[i] < B[j])
         begin
            C[k] = A[i]
            i = i + 1
         end
      else
         begin
            C[k] = B[j]
            j = j + 1
         end
         k = k + 1
   end
   while(i <=  n1)
      begin
         C[k] = A[i]
         i = i + 1
         k = k + 1
      end
   while(j <=  n2)
      begin
         C[k] = B[j]
         k = k + 1; j = j + 1;
      end
end

The merge sort algorithm illustrates all the facets of the divide-and-conquer strategy. 
When the number of elements to be sorted is greater than one, merge sort separates the list 
into two subinstances, solves each of these recursively, and then combines the two sorted 
halves to obtain the solution by calling Algorithm Merge.

Let T = {13, 11,14, 11, 15, 19, 12, 16, 13, 15, 18, 19}

T is split into two halves as follows:

A = {13, 11,14, 11, 15, 19}, B = {12, 16, 13, 15, 18, 19}
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A and B are recursively sorted again by calling merge sort for each as follows:

A = {11, 11, 13, 14, 15, 19}, B = {12, 13, 15, 16, 18, 19}

Now, a call to merge results in the following T:

T = {11, 11, 12, 13, 13, 14, 15, 15, 16, 18, 19, 19}

Time complexity of merge sort is O(nlogn).
When merge sort is used for files as described here, each merge operation requires 

reading and writing of two files, both of which are about n/2 records long. Thus, the 
total number of blocks read or written in a merge operation is approximately 2n/c, 
where c is the number of records in a segment. The number of segments accessed for 
the whole operation is O((n(log2n))/c), which amounts to O(log2n) passing through the 
entire original file.

 example 16.1  Suppose we have an external file containing the following data:

f: (2, 6, 3, 1, 4, 31, 23, 8, 11, 19, 21, 37, 14, 57, 28, 45, 30, 9, 35, 12, 13, 18, 5, 89, 77)
Apply merge sort.

Solution We divide the given data into two original files as follows:

f1: (2, 6, 3, 1, 4, 31, 23, 8, 11, 19, 21, 37)
f2: (14, 57, 28, 45, 30, 9, 35, 12, 13, 18, 5, 89, 77)

After the first pass of segments of length 1, we have

M1: ((2, 14), (3, 28), (4, 30), (23, 35), (11, 13), (5, 21))
M2: ((6, 57), (1, 45), (9, 31), (8, 12), (18, 19), (37, 89), 77)

After the second pass of segments of length 2 we have

f1: ((2, 6, 14, 57), (4, 9, 30, 31), (11, 13, 18, 19))
f2: ((1, 3, 28, 25), (8, 12, 23, 35), (5, 21, 37, 89), 77))

After the third pass of segments of length 4 we have

M1: ((1, 2, 3, 6, 14, 28, 45, 57), (5, 11, 13, 18, 19, 21, 37, 89)
M2: ((4, 8, 9, 12, 23, 30, 31, 35), 77))

After the fourth pass of segments of length 8 we have

f1: (1, 2, 3, 4, 6, 8, 9, 12, 14, 23, 28, 30, 31, 35, 45, 57)
f2: (5, 11, 13, 18, 19, 21, 37, 77, 89)

After the fifth pass of blocks of length 16 we get

M1: (1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 18, 19, 21, 23, 28, 30, 31, 35, 37, 45, 57, 
77, 89)
M2 is empty.

The algorithm was described beginning with segments of length 1. Substantially larger 
length segments can be stored in the main memory, so taking conveniently larger segments 
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can enhance the efficiency of the algorithm. For example, if an external file has 100,000  
records, and a segment of 1000 such records can be stored in the main memory, then the 
entire file can be sorted in seven passes. The segments in each pass can be ordered by a suit-
able sorting method such as the quick sort. The procedure for merge sort usually deals with 
an external file medium and is therefore system-dependent.

Analysis of Merge Sort

The merge sort algorithm has a property that its time complexity is O(nlogn) even in the 
worst case. If the time for the merging operation is proportional to n, then the computing 
time for merge sort is described by the following recurrence relation:

T(n)
a,

T n cn, n > 1
=





if n = 1

2 ( /2) + if

Here, a and c are constants. When n is a power of 2, n = 2i. We can solve this recurrence 
by the substitution method as shown here:

T(n) = 2T(n/2) + cn = 2[2T(n/4) + cn/2] + cn
= 4T(n/4) + 2cn = 4[2T(n/8) + cn/4] + 2cn
= 8T(n/8) + 3cn = 8[2T(n/16) + cn/8] + 3cn
= 16T(n/16) + 4cn

…
= 2i T(n/2i) + icn = 2log2

n·T(n/2log2n) + cnlog2n
= nT(1) + cnlog2n = an + cnlog2n

If 2i < n £ 2i+1, then T(n) £ T(2i+1).
Therefore, T(n) = O(nlogn).

Thus, the time complexity for merge sort is O(nlogn) even in the worst case. In merge 
sort, we perform a maximum of n comparisons in each pass. The number of passes is 
equivalent to the height of a binary tree. So, we can say that the worst case time complex-
ity of a merge sort is O(nlog2n).

16.2.5 Quick Sort

As the name suggests, the quick sort method is the fastest. It is an in-place, divide-and-
conquer, massively recursive sort. The algorithm is simple in theory but not so easy 
to code. The purpose of quick sort is to move a data item in the correct direction just 
enough for it to reach its final place in the array. The method, therefore, reduces un-
necessary swaps and moves an item a great distance in one move. A pivot item near the 
middle of the array is chosen, and then, items on either side are moved so that the data 
items on one side of the pivot are smaller than the pivot, whereas those on the other side 
are larger. The middle (pivot) item is now in its correct position. The procedure is then 
applied recursively to the two parts of the array, on either side of the pivot, until all the 
numbers are sorted. 
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The recursive algorithm consists of four steps:

1. If there is one element in the array to be sorted, return immediately. 
2. Pick an element in the array to serve as a ‘pivot’ point. Usually the leftmost element in 

the array is used.
3. Split the array into two parts—one with elements smaller than the pivot and the other 

with elements larger than the pivot. 
4. Recursively repeat the algorithm for both halves of the original array. 

In quick sort, the given array is divided into two subarrays so that the sorted subarrays 
need not be merged later. This is accomplished by rearranging the elements in A[1:n] 
such that A[i] < A[j] for all i between 1 and m and all j between m + 1 and n for 
some m, 1 £ m £ n. Thus, the elements in A[1:m] and A[m + 1:n] can be independently 
sorted. No merge is needed. 

The rearrangement of elements is accomplished by picking some element of array 
A[], say t = A[5] and then reordering the other elements so that all elements appearing 
before t in A[1:n] are less than or equal to t, and those appearing after t are greater than 
or equal to t. This rearrangement is called partitioning.

Let us assume that m represents the first position in a partition in Algorithm 16.5 which 
describes partitioning.

algorithm 16.5
Algorithm Partition(A, m, p)
begin
   v = A[m], i = m, j = p
   do
   begin
      // find first element lesser than pivot
      do i = i + 1 while(A(i) £ v);
      // find first element greater than pivot
      do j = j − 1 while(A(j) ≥ v);
      if i < j exchange(A(i), A(j))
   end
   while(i £ j);
       A(m) = A(j), A(j) = v      // place pivot at its correct 

position
   return(j);
end

Algorithm 16.6 is the quick sort algorithm.

algorithm 16.6
Algorithm qsort (p, q)
/* p and q are start and end positions of a partition */
begin
   if(p < q) then
      begin
         j = q + 1
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          m = partition (A, p, j)      // pivot has taken its correct 
position

         qsort(p, m − 1)      // sort left partition of pivot
         qsort(m + 1, q)      // sort right partition of pivot
      end
end

v

v

When pivot takes its
correct position

Left partition
contains elements

less than pivot

Left partition
sorted separately

Right partition
sorted separately

Process continues until each
partition reduces to size one

Right partition
contains elements
greater than pivot

p

v

p

m

q

q

v

p

m

q

Fig. 16.1 Quick sort

The partition algorithm takes care of partitioning. It takes three arguments. The first 
argument is an array A, which contains all the elements. The second argument m and the 
third argument p denote the start and end positions of a partition to be rearranged, respec-
tively. Here, the first element of the partition A[m] is being used as the pivot element v. 
Any element can be used as a pivot element, however, in practice, the first element is 
generally used. The algorithm will rearrange the elements A[m], A[m + 1], …, A[p] 
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such that the pivot element is at position j. All the elements from positions m to j − 1 
are smaller than the pivot element, that is, A[u] < A[j] for all m £ u < j. All the ele-
ments between j + 1 and p are greater than or equal to the pivot element, that is, A[u] 
≥ A[j] for all j < u £ p.

The algorithm qsort sorts the elements A[p], …, A[q], which belong to an array 
A[n] in an ascending order. The array A is defined as global. The algorithm stops when 
each partition reduces to size 1. This is checked by the condition p < q. If the condition 
is true, the process of partitioning continues. The whole process of quick sort can be rep-
resented graphically as in Fig. 16.1, assuming that the leftmost element is used as a pivot.

 example 16.2   Apply quick sort to an array A[9] that contains the elements 65, 70, 
75, 80, 85, 60, 55, 50, 45. 

Solution The first call will be qsort(1, 9), which generates the call partition (A, 
1, 10). When partition (A, 1, 10) starts execution, the pivot element v = A[1] = 65, 
m = 1, p = 10. Initial values of i and j will be 1 and 10, respectively. 

The scenario while partition (A, 1, 10) executes resembles the following: 

v = 65, m = 1, p = 10

Array A
i j 1 2 3 4 5 6 7 8 9

1 10 65 70 75 80 85 60 55 50 45

2 9 65 45 75 80 85 60 55 50 70

3 8 65 45 50 80 85 60 55 75 70

4 7 65 45 50 55 85 60 80 75 70

5 6 65 45 50 55 60 85 80 75 70

6 5 60 45 50 55 65 85 80 75 70

Partition(A, 1, 10) returns position 5. So, the next call will be qsort(1, 4) fol-
lowed by qsort(6, 10). qsort(1, 4) generates a call to Partition(A, 1, 5). The 
scenario while this executes resembles the following:

v = 60, m = 1, p = 5

Array A
i j 1 2 3 4 5 6 7 8 9

1 5 60 45 50 55 65 85 80 75 70

2 5

3 5

4 5

5 4 55 45 50 60
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Partition(A, 1, 5) returns position 4. So, the next call will be qsort(1, 3).
Similarly, the process continues until all the partitions reduce to size one. 

Analysis of Quicksort

Now, let us discuss the efficiency of quick sort. On the first pass, every element in the 
array is compared to the pivot, so there are n comparisons. The array is then divided into 
two parts. (We assume that the array is divided into approximately one half each time). 
For each of these subarrays, (n/2) comparisons are made and four subarrays of size (n/4) 
are formed. So at each level, the number of subarrays doubles. It will take log2n divisions 
if we are dividing the array approximately one half each time. Therefore, order of quick 
sort is O(nlogn) on the average. 

If the original array is sorted and array[left] is chosen as a pivot, the order of quick sort 
turns out to be O(n2). Therefore, when we choose array[left] as pivot, quick sort works 
best for files that are completely unsorted and worst for files that are completely sorted. In 
the case of nearly sorted arrays, a random element is chosen as the pivot value.

Let us analyse this again using another method.
When analysing qsort(), we count only the number of element comparisons C(n) and 

make the following assumption: 
The n elements to be sorted are distinct and the i/p distribution is such that partition 

element v = A[m] in the call to Partition (A, m, p) has an equal probability of being 
ith smallest element, 1 £ i £ (p – m) in A(m, p - 1).

Worst case At level one, only one call to a partition is made with n elements; at level 
two, utmost two calls are made with elements (n - 1), and so on. 

C(n) = O(n2)

Average case CA(n) A partition requires (n + 1) element comparisons on its first call. 
The partition element has an equal probability of being the ith smallest element in the 
array. 

∴ = + + +
≤ ≤
∑C C CA A A(n

n
k n(( k)

k n

1)
1

1)
1

− −

Multiplying by n we get 

n n n n k n k
k n

CA A
< <

A( ) = (  + 1) C C+ +∑ ( ) ( )− −1
1

= n(n + 1) + CA(0) + CA(1) + … + CA(n - 1) + CA(n - 1) + CA(n - 2) 
  + … + CA(0)

= n(n + 1) + 2 [CA(0) + CA(1) + … + CA(n - 1)] (16.1)

Replacing n by n - 1 we get

(n - 1) CA(n - 1) = (n - 1) n + 2 [CA(0) + CA(1) + … + CA (n - 2)] (16.2)
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Subtracting Eq. (16.2) from Eq. (16.1) we get

nCA(n) - (n - 1) CA(n - 1) = n(n + 1) - n(n - 1) + 2CA(n - 1)
nCA(n) = n2 + n - n2 + n + 2CA(n - 1) + (n - 1) CA(n - 1)

= 2n + CA(n - 1) (2 + n - 1)
nCA(n) = 2n + (n + 1) CA(n - 1) (16.3)
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However, CA(0) = CA(1) = 0.
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= 2(n + 1) ¥ [log(n + 1) - loge2]
= (2n + 2) log(n + 1) - 2n loge2 - 2loge2
= 2nlog(n + 1) + 2log(n + 1) - 2n loge 2 - 2 loge 2
= O(nlogn)
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16.2.6 Strassen’s Algorithm for Matrix Multiplication

The multiplication of two matrices is one of the most basic operations of linear algebra 
and scientific computing, and it has provided an important focus in the search for methods 
to speed up scientific computation.

Let A, B be two square matrices used to calculate the matrix product C = A × B.
Conventional matrix multiplication involves the following steps:

for(int i = 0; i < m; i++)
   for(int j = 0; j < n; j++) 
   {
      C[i][j] = 0.0;
      for(int k = 0; k < p; k++)
         C[i][j] += A[i][k] * B[k][j];
   }

The time complexity of the conventional approach is O(n3). Thus, any speed up in matrix 
multiplication can improve the performance of a wide variety of numerical algorithms. To 
calculate the matrix product C = A × B, Strassen’s algorithm partitions the data to reduce 
the number of multiplications performed. This algorithm requires M, N, and P to be pow-
ers of 2 and is described by the following steps:

1. Let us partition A, B, and C into four equal parts.
If the matrices A and B are not of type 2n ¥ 2n, we fill the missing rows and columns 

with zeros. We partition A, B, and C into equally sized block matrices as

A = B = C =
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A A

B B
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2. Generate the intermediate matrices:
1. M1 = (A11 + A22) (B11 + B22) 5. M5 = (A11 + A12) B22

2. M2 = (A21 + A22) B11 6. M6 = (A21 - A11) (B11 + B12)
3. M3 = A11(B12 - B22) 7. M7 = (A12 - A22) (B21 + B22)
4. M4 = A22(B21 - B11) 

These are then used to express Ci,j in terms of Mk. This eliminates one matrix multiplica-
tion and reduces the number of multiplications to seven (one multiplication for each Mk) 
and expresses Ci,j as in Step 3.

3. Now, construct the resultant matrix C using the intermediate matrices as follows:
 C11 = M1 + M4 - M5 + M7

 C12 = M3 + M5

 C21 = M2 + M4

 C22 = M1 - M2 + M3 + M6
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In brief, we follow the following three steps:
1. Partition A and B into quarter matrices.
2. Compute the intermediate matrices:
 (a)  If the sizes of the matrices are greater than a threshold value, multiply them 

recursively using Strassen’s algorithm.
 (b) Else, use the traditional matrix multiplication algorithm.
3. Construct C using the intermediate matrices.

With this construction, we have not yet reduced the number of multiplications. We still 
need eight multiplications to calculate the Ci,j matrices; the same number of multiplica-
tions needed while using the standard matrix multiplication. We iterate this division pro-
cess n times until the submatrices degenerate into numbers.

Practical implementations of Strassen’s algorithm result in standard methods of matrix 
multiplication for smaller submatrices, for which those algorithms are more efficient.

Let us compute the time complexity of this algorithm. The standard matrix multiplica-
tion takes approximately 2N3 (where N = 2n) arithmetic operations (additions and multi-
plications); the asymptotic complexity is O(N3). The number of additions and multiplica-
tions required in the Strassen’s algorithm can be calculated as follows: 

Let f(n) be the number of operations for a 2n ¥ 2n matrix. Then, by recursive applica-
tion of the Strassen’s algorithm, we see that T(n) = 7T(n - 1) + l4n for some constant that 
depends on the number of additions performed at each application of the algorithm. 
Hence, T(n) = (7 + O(1))n, that is, the asymptotic complexity for multiplying matrices of 
size N = 2n using the Strassen’s algorithm is 

O 7 + O 1 O OO 1( ) ( ) = ( ) ≈ ( )+ ( )n
N Nlog .2 7 2 807

Note the reduction in the number of arithmetic operations achieved at the additional cost 
of reduced numerical stability.

16.3 GREEDY METHOD

A greedy method is any algorithm that follows the problem-solving heuristic of mak-
ing the locally optimal choice at each stage with the hope of finding the optimum solu-
tion. For example, applying the greedy strategy to the travelling salesman problem yields 
the following algorithm: ‘At each stage, visit the unvisited city nearest to the current 
city’. In general, greedy algorithms are used for optimization problems. Often, we look at  
optimization problems whose performance is exponential. A feasible solution to which 
the optimization function has the best possible value is called an optimal solution. 

In greedy method, we attempt to construct an optimal solution in the sequence of 
choice. At each choice, we make a decision that appears to be the best at that time.  
A decision made at one choice is not changed at a later choice, so each decision should 
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assure feasibility. A greedy method could, at each choice, increase the total amount of 
change reflected to a great extent.

A greedy method is optimal for some change systems. To find a solution under normal 
circumstances, all the combinations are required and such combinations are many; in this 
case, the greedy algorithm reduces combinatonic explosions.

16.3.1 General Greedy Method

The greedy algorithm suggests that one can devise an algorithm that works in stages, 
considering one input at a time. At each stage, a decision is made based on whether or not 
a particular input is an optimal solution. 

Any subset of input that satisfies the given constraints is called a feasible solution. A 
feasible solution that maximizes or minimizes a given objective is called an optimal solu-
tion. There is usually an obvious way to determine a feasible solution but not necessarily 
an optimal solution. 

As mentioned earlier, this method considers one input at a time and based on whether 
a particular input is an optimal solution, a decision is arrived at each stage. This is done 
by considering the inputs in an order determined by some selection procedure. If the 
inclusion of the next input into the partially constructed optimal solution results in an 
infeasible solution, then this input is not added to the partial solution. Otherwise, it is 
added. The selection procedure itself is based on optimization measures. We need to find 
a feasible solution that either maximizes or minimizes a given objective function. The 
measure may be an objective function. 

In Algorithm 16.7, the function selects an input from an array a[] and removes it. The 
selected input value is assigned to x. feasible() is a Boolean-valued function that deter-
mines whether x can be included in the solution vector. The function union() combines 
x with the solution and updates the objective function. The function Greedy() describes 
the essential way that a greedy algorithm will look like once a particular problem is cho-
sen, and the functions select(), feasible(), and union() are properly implemented.

algorithm 16.7
Algorithm Greedy(a, n)
{ a[1:n] contains n inputs }
begin
solution = nil
for i = 1 to n do
   begin
      x = select(a)
      if feasible(solution, x) then
         solution = union(solution, x)
   end
return solution
end
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Elements of Greedy Strategy

To decide whether a problem can be solved using a greedy strategy, the following ele-
ments should be considered:

1. Greedy-choice property
2. Optimal substructure

Greedy-choice property A problem exhibits greedy-choice property if a globally optimal 
solution can be arrived at by making a locally optimal greedy choice. That is, we make the 
choice that seems best at that time without considering the results from the subproblems.

When the dynamic programming makes a choice at each step, it considers the solutions 
to the subproblems. So, it proceeds from smaller subproblems to larger ones in a bottom-up  
approach. However, when the greedy algorithm makes a choice at each step, it uses the choice 
that looks best at that time and then solves the problem. So, it never depends on future solu-
tions. Thus, it proceeds in a top-down manner and reduces each problem instance to a smaller 
one. It is often possible to design an efficient algorithm by making greedy choices quickly. 
This can be achieved by using the appropriate data structure or by preprocessing the input.

The concept of optimal substructure is explained in Section 16.4.2.

16.3.2 Knapsack Problem

We are given n objects and a knapsack or a bag. Each object has a positive weight wi and a 
positive profit pi for i = 1 to n. The maximum capacity of the knapsack is M. Our aim is to 
fill up the knapsack such that the profit is maximized while satisfying the constraint that 
the knapsack will not carry a total weight more than M. We assume that the objects can be 
taken in parts, that is, some fraction of total weight xj. In this case, the object i contributes 
xiwi to the total weight and xipi to the profit.

Hence, our aim is to fill up the knapsack such that

S x p
i

n

i i=1
 is Smaximum subject to S x w M

i

n

i i=
≤

1

where 0 £ x £ 1
We shall use a greedy algorithm to solve this problem. In terms of control abstraction, 

a feasible solution is one that satisfies these constraints.

In an optimal solution, S
i

n

=1
xiwi = M and S

i

n

=1
xipi

 is maximum.

Since we are working on a greedy algorithm, our strategy will be to select each object 
in some suitable order, to put as large a fraction as possible of the selected objects, and to 
stop when the knapsack is full. This is illustrated in Algorithm 16.8.

algorithm 16.8
Knapsack–Greedy(w[], p[], M)
begin
weight = 0, profit = 0
while(weight £ M) do
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   begin
   i = object with highest profit
   if(weight + w[i] £ M) then
      begin
      x[i] = 1
      weight = weight + w[i]
      end
   else
      begin
      x[i] = (w − weight)/w[i]
      weight = M
      end
   end
end

 example 16.3  Find an optimal solution for a knapsack problem with objects n = 5, 
maximum capacity of knapsack M = 100, profit P = {20, 30, 66, 40, 60}, and weight 
W = {10, 20, 30, 40, 50}.

Solution
Case 1: Let us choose the objects in decreasing order of profits. We first choose object 3 
with weight 30 and then object 5 with weight 50. Now, the total weight = 30 + 50 = 80. 

So, we have to fill the knapsack with the partial weight of object 4, which is given by

Maximum allowed weight Current weight

Weight of object 4 

− −= 100 80

40
== =20

40

1

2

So, the total weight of knapsack = 30 + 50 + (40/2) = 100.
Here, we have used whole objects 3 and 5, and half fraction of object 4. So, the total 

profit = profit of object 5 + profit of object 3 + half the profit of object 4 = 60 + 66 + (40/2) 
= 146. Hence, the total profit earned is 146 if we select the objects according to profit.
Case 2: Let us choose the objects in the increasing order of weights. So first, we choose ob-
ject 1 with weight 10, then object 2 with weight 20, followed by object 3 with weight 30, and 
finally object 4 with weight 40. So, the total weight = 10 + 20 + 30 + 40 = 100. All the objects 
are used as a whole. Thus, the total profit is equal to the sum of profits of all the objects. 

\ Total profit = 20 + 30 + 66 + 40 = 156.

Hence, the total profit is 156 if we choose the objects according to weight. 
Case 3: Let us choose objects in an order such that the object with maximum profit per 
unit weight is used. The profit/weight ratios of the given objects are calculated as follows:

Profit/weight ratios = 
20

10
, 

30

20
, 

66

30
, 

40

40
, 

60

50
2,

3

2








= 







, , ,
22

10
1

6

5

= {2, 1.5, 2.2, 1, 1.2}
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Since object 3 gives the maximum profit per unit, it is selected first, and its weight is 30. 
Then, object 1 with weight 10 is selected. Then, object 2 with weight 20 is selected.Total 
weight = 30 + 10 + 20 = 60. Now, object 5 with weight 50 is selected partially. So, the 
fraction of object 5 selected is equal to 

Maximum allowed weight Current weight

Weight of object 5

− −= 100 60

50
== =40

50

4

5

So, the total weight = 30 + 10 + 20 + 50 ¥ (4/5) = 100. Here, objects 3, 1, 2 are used as a 
whole and 4/5th of object 5 is used. So, the total profit = 66 + 20 + 30 + 60 ¥ (4/5) = 164.

Hence, the total profit is 164 if we choose objects in the order of profit per unit.

Conclusion If we observe the profits of three cases, Case 3 gives the maximum profit. 
This case actually uses the knapsack–greedy algorithm. So, the solution obtained is 
surely optimal.

 example 16.4  Find an optimal solution to the knapsack instance with objects n = 7, 
maximum capacity of knapsack M = 15, profits (p1, p2, …, p7) = (10, 5, 15, 7, 6, 18, 3), 
and weights (w1, w2, …, w7) = (2, 3, 5, 7, 1, 4, 1).

Solution Using the knapsack–greedy algorithm, we can directly select the objects 
such that the object with maximum profit per unit of weight is used. 

Profit/unit = 





10

2

5

3

15

5

7

7

6

1

18

4

3

1
, , , , , ,

 = (5, 1.67, 3, 1, 6, 4.5, 3)

Hence objects 5 and 1 with profits/unit of 6 and 5, respectively, are chosen as a whole. The 
next object with highest profit/unit ratio is object 6 which is chosen as a fraction.

16.4 DYNAMIC PROGRAMMING

Dynamic programming has evolved into a major paradigm of algorithm design in com-
puter science. However, its name is a mystery to many people. The name was coined 
in 1957 by Richard Bellman to describe a type of optimum control problem. The name 
originally described the problem rather than the technique of the solution. This type of 
programming denotes ‘a series of choices’, similar to the programming of a radio station. 
The word dynamic conveys the idea that these choices may depend on the current state 
rather than being decided ahead of time. A radio show where the listeners phone in their 
requests might be said to be dynamically programmed in contrast with the usual format 
where the selections of songs are decided before the show begins. Bellman described a 
method to solve dynamic programming problems, which has become an inspiration for 
many computer algorithms. The main feature of this method is that it has replaced an 
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exponential time computation by a polynomial time computation. This continues to be a 
common feature of dynamic programming algorithms.

In all the algorithms we have studied so far, achieving accuracy was easier than effi-
ciency. In optimization problems, we are interested in finding the solution that maximizes 
or minimizes the same function. In designing algorithms for an optimization problem, we 
must design one that gives the best possible solution.

Greedy algorithms, which take the best local decision of each step, occasionally pro-
duce a global optimum solution, but we need to prove the same. Dynamic programming 
is a technique for computing recurrence relations efficiently by sorting partial results.  
A dynamic programming algorithm stores results, or solutions, to small subproblems. 
Later it uses these stored solutions instead of recomputing them to solve larger subprob-
lems. Thus, dynamic programming is especially well suited to problems where a recur-
sive algorithm would solve many of the subproblems repeatedly.

We will introduce a characterization of dynamic programming algorithms that pro-
vides a unified framework for a wide variety of published algorithms that might seem 
quite different on the surface. This framework permits a recursive solution to be converted 
into a dynamic programming algorithm and provides a way to analyse its complexity. 

16.4.1 General Method of Dynamic Programming

Dynamic programming is an algorithm design method that can be used when the solution 
to a problem may be viewed as the result of a sequence of decisions. Similar to the greedy 
method, for many problems, it is not possible to make stepwise decisions (based only 
on local information) in such a manner that the sequence of decisions made is optimal. 
One way to solve such problems is to try out all possible decision sequences. We could 
enumerate all decision sequences and then choose the best. Dynamic programming often  
drastically reduces the amount of enumeration by avoiding the enumeration of some de-
cision sequences that cannot possibly be optimal. In dynamic programming, an optimal  
sequence of decisions is arrived at by making an explicit appeal to the principle of optimality. 

The following are the four steps to develop a dynamic programming algorithm:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up manner. This can also be 

done using the recursive method.
4. Construct an optimal solution from the computed information by making use of the 

computed results.

The generic problem structure is as follows:

t
if trivial (p)

otherwise
n =

constant value,

combine f (p1), f (p2), . . . , f (pn),
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16.4.2 Elements of Dynamic Programming

A dynamic programming solution has the following three components:

1. Formulate the answer as a recurrence relation or a recursive algorithm.
2. Show that the number of different instances of your recurrence is bounded by a 

polynomial.
3. Specify an order of evaluation for the recurrence.

To decide whether a problem can be solved using the dynamic programming method, the 
following three elements of dynamic programming should be considered:

1. Optimal substructure
2. Overlapping subproblems
3. Memorization

Optimal Substructure

A problem exhibits optimal substructure if an optimal solution to the problem contains 
within it optimal solutions to subproblems. It also means that dynamic programming (and 
greedy method) might apply. As the optimal solution to the problem is built from the  
optimal solution to the subproblems, this requirement becomes necessary.

The execution time of a dynamic programming algorithm depends on the product of 
two factors: the overall number of subproblems and the number of choices we look at for 
each subproblem.

Dynamic programming uses optimal substructure in a bottom-up manner. It first finds 
optimal solutions to the subproblems. When the subproblems are solved, then it finds an 
optimal solution to the problem.

Overlapping Subproblems

When a recursive algorithm revisits the same problem repeatedly, it is said that the opti-
mization problem has overlapping subproblems. This is beneficial for dynamic program-
ming. It solves each subproblem once and stores the answer in a table. This answer can be 
searched in constant time when required. This is contradictory to the divide-and-conquer 
strategy where a new problem is generated at each step of recursion.

Memorization

In general, dynamic programming maintains a table for the solutions to all subproblems. 
However, it uses the control structure similar to the recursive algorithm. In a memorized 
recursive algorithm, an entry is maintained in a table for the solution to each subproblem. 
Initially, all entries contain a special value, which indicates that the entry is not yet used. 
For each subproblem, which is encountered for the first time, its solution is computed and 
stored in the table. Next time, for that subproblem, its entry is searched and the value is 
used. This can be implemented using hashing.
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16.4.3 Principle of Optimality

The principle of optimality states that an optimal sequence of decisions has the property 
that whatever the initial state and decision are, the remaining decisions must constitute an 
optimal decision sequence with regard to the state resulting from the first decision.

Difference between Greedy Method and Dynamic Programming 

The essential difference between the greedy method and dynamic programming is that 
in greedy method only one decision sequence is generated. In dynamic programming, 
many decision sequences may be generated. However, sequences containing suboptimal 
subsequences will not be generated if the principle of optimality holds. One may feel that 
in this method, one has to look at all possible decision sequences to obtain an optimal 
decision sequence using dynamic programming. This is not the case as, due to the use 
of the principle of optimality, decision sequences containing subsequences that are sub-
optimal are not considered. Although the total number of different decision sequences is 
exponential, dynamic programming algorithms often have a polynomial complexity. An 
exponential number of decisions can be generated because if there are d choices for each 
of the n decisions to be made, then there are dn possible decision sequences.

Another important feature of the dynamic programming approach is that optimal so-
lutions to subproblems are retained to avoid recomputing their values. The use of these 
tabulated values makes it natural to recast the recursive equations into an iterative algo-
rithm. Most dynamic programming algorithms are often expressed in this way.

The following are the unique characteristics of dynamic programming:

1. The solution to a problem is viewed as a result of a sequence of decisions.
2. It avoids enumeration of some decision sequences that cannot be possibly optimal.
3. An optimal sequence of decisions is arrived at by making an explicit appeal to the 

principle of optimality.
4. In contrast to greedy method where only one decision sequence is ever generated, in 

dynamic programming, many decision sequences may be generated. However, sequences 
containing suboptimal sequences cannot be optimal and so will not be generated. 

5. There are two approaches to dynamic programming. Let (x1, x2, …, xn) be variables.
(a)  Forward approach: Decision xi is made in terms of optimal decision sequences 

for x1, …, xn.
(b)  Backward approach: Decision xi is made in terms of optimal decision sequences 

for x1, x2, …, xi-1.

6. Dynamic programming is a technique for solving problems with overlapping 
subproblems. Typically, these subproblems arise from a recurrence relating a solution 
to a given problem with solutions to its smaller subproblems of the same type.

7. Rather than repeatedly solving overlapping subproblems, dynamic programming 
suggests solving each of the smaller subproblems only once and recording the results 
in a table, from which we can obtain a solution to the original problem.
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8. Applicability of dynamic programming to an optimization problem requires the 
problem to satisfy the principle of optimality—an optimal solution to any of its 
instances must be made of optimal solutions to its subinstances. 

16.4.4 Limitations of Dynamic Programming

Dynamic programming can be applied to any problem that observes the principle of  
optimality. This means that partial solutions can be optimally extended with regard to the 
state after the partial solution instead of the partial solution itself. For example, to decide 
whether to extend an approximate string matching by a substitution, insertion, or dele-
tion, we need not know the exact sequence of operations performed. In fact, there may be 
several different edit sequences that achieve a cost of C on the first p characters of pattern 
P and t characters of string T. Future decisions will be made on the basis of the conse-
quences of previous decisions, and not the actual decisions themselves.

Problems in which the actual operations matter, as opposed to just the cost of the  
operations, do not satisfy the principle of optimality. Consider a form of edit distance 
where we are not allowed to use combinations of operations in a particular order.

The biggest limitation in using dynamic programming is the number of partial solutions 
we must keep track of. For all of the examples discussed here, the partial solutions can be 
completely described by specifying the stopping places in the input. This is because all 
the combinatorial objects being worked on (strings, numerical sequences, and polygons) 
have an implicit order defined upon their elements. This order cannot be scrambled with-
out completely changing the problem. Once the order is fixed, there are relatively a few 
possible stopping places or states, so we get efficient algorithms. However, if the objects 
are not firmly ordered, we would have an exponential number of possible partial solutions 
which require an infeasible amount of memory.

16.4.5 Knapsack Problem

We are given n objects and a knapsack. Object i has a weight wi and the knapsack has a 
capacity M. If xi = 1, the object i is placed into the knapsack and a profit pixi is earned. If 
xi = 0, the object is not added into the knapsack, and hence no profit is earned. The objec-
tive is to obtain a filling of the knapsack that minimizes the total profit earned. Since the 
capacity is M, we require the total weight of all the chosen objects to be almost M. This 
can be stated formally as follows:

Maximize S
i n1≤ ≤ pixi  subject to S

i n1≤ ≤  wixi £ M and xi = 0 or 1, where 1 £ i £ n

A feasible solution is any set (x1, x2, …, xn) satisfying these equations, and an optimal 
solution is a feasible solution for which Âpixi is maximum.

Let y1, y2, …, yn be an optimal sequence of 0/1 values for x1, x2, …, xn, respectively. If 
y1 = 0, then y2, y3, …, yn must constitute an optimal sequence for the problem knapsack(2, 
n, M). If it does not, then y1, y2, …, yn is not an optimal sequence for knapsack(1, n, M).
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If y1 = 1, then y2, y3, …, yn must be an optimal sequence for the problem knapsack(2, n, 
M - w1). If it is not, then there is another 0/1 sequence z2, z3, …, zn such that 

S w z M w
i n

i i
2

1≤
−

≤
≤

and 
S P z S P y
i n

i i
i n

i i
2 2≤ ≤

>
≤ ≤

Hence, y1, z2, z3, …, zn is a sequence for Âwixi with a greater value.
In dynamic programming, formulating the optimal sequence for a knapsack problem 

can be achieved either in forward or backward approach. Let x1, x2, …, xn be the variables 
for which a sequence of decisions has to be made. In the forward approach, the formula-
tion of decision xi is made in terms of optimal decision sequences for xi+1, …, xn. In the 
backward approach, the formulation for decision xi is made in terms of optimal deci-
sion sequences for x1, …, xi-1. In the forward approach, we look ahead on the decision 
sequence x1, x2, …, xn, and in the backward formulation, we look backwards on the deci-
sion sequence x1, x2, …, xn.

For an integer y such that 0 £ y £ M, fi(y) is an ascending function. 

y1 < y2 < … < yk such that 
fi(y1) < fi(y2) < … < fi(yk)

fi(y) = -• for y < y1

fi(y) = f(yk) for y ≥ yk

We use the ordered set 

fi(y) = Si = {(p, w) | 1 £ j £ k}

where p = fi(yj) and w = yj.
The following steps are used to solve all knapsack problems using dynamic program-

ming forward approach:

1. Initially S0 = {(0, 0)}
2. S i1 = {(p, w) | (p - pi), (w - wi) Œ Si}

That is, to obtain Si+1, we either include xi+1 or do not include xi+1.
(a) If xi+1 = 1 is not included, then S i1 = Si.
(b) If xi+1 = 1 is included, then the resulting states in S i1 are obtained by adding (pi+1, 

wi+1) to each state in Si. 
3. Si+1 can be computed by merging and purging the states in Si and S i1 together, using 

the dominance rule—if Si+1 contains two pairs (pa, wa) and (pb, wb), where pa £ pb and 
wa ≥ wb, then (pa, wa) is dominated by (pb, wb) pair. Hence, the pair (pa, wa) is discarded. 
In this way, dominated tuples get purged. We can also purge all pairs (p, w) with w > M 
because the knapsack capacity is M.

4. Repeat steps 2 and 3 until Sn is obtained. 
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5. fn(M) = Sn. Using this, we can find the solution to knapsack(1, n, m).
6. If the last pair in Sn is (p, w), then 

(a) set xn = 0 if (p, w) Œ Sn-1

(b) set xn = 1 if (p, w) œ Sn-1, and compute p = p - xn and w = w - wn.
7.  Repeat step 6 for x = n, …, 1.

Let us solve a few examples based on this concept.

 example 16.5  Generate the sets Si, 0 £ i £ 3, for the following knapsack instance: 
n = 3, (w1, w2, w3) = (2, 3, 4), (p1, p2, p3) = (1, 2, 5), and M = 6. In addition, find an optimal 
solution.

Solution

S0 = {(0, 0)}

S 01 is obtained by adding (p1, w1) = (1, 2) to each pair of S0.

S 01 = {(1, 2)}

S1 is obtained by merging and purging S0 and S 01.

S1 = {(0, 0), (1, 2)}

S1
1 is obtained by adding (p2, w2) = (2, 3) to each pair of S1.

S1
1 = {(2, 3), (3, 5)}

S2 is obtained by merging and purging S1 and S1
1.

S2 = {(0, 0), (1, 2), (2, 3), (3, 5)}

S 21 is obtained by adding (p3, w3) = (5, 4) to each pair of S2.

S 21 = {(5, 4), (6, 6), {(7, 7), (8, 9)}

S3 is obtained by merging and purging S2 and S 21.

S3 = {(0, 0), (1, 2), {(2, 3), (5, 4), (6, 6)}

The pair (3, 5) gets purged here by dominance rule. In addition, the pairs (7, 7) and (8, 9) 
get purged because w > M.

The last pair in S3 is (p, w) = (6, 6) œ S2; hence, x3 = 1. However, (p3, w3) = (5, 4).
Hence, (p, w) = (6 - 5, 6 - 4 ) = (1, 2).
Since (1, 2) Œ S2 and (1, 2) Œ S1, set x2 = 0.
Since (1, 2) œ S0; set x1 = 1. Hence, an optimal solution for the given knapsack problem 

is (x1, x2, x3) = (1, 0, 1). 

 example 16.6  Generate the sets Si, 0 £ i £ 4, for the following knapsack instance: n = 4; 
(w1, w2, w3, w4) = (10, 15, 6, 9); (p1, p2, p3, p4) = (2, 5, 8, 1); and M = 30.
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Solution

S0 = {(0, 0)}

By adding (p1, w1) = (2, 10) to each pair of S0 we get 

S 01 = {(2, 10)}

By merging and purging S0 and S 01 we get

S1 = {(0, 0), (2, 10)}

By adding (p2, w2) = (5, 15) to each pair of S1 we get

S1
1 = {(5, 15), (7, 25)}

By merging and purging S1 and S1
1 we get

S2 = {(0, 0), (2, 10), {(5, 15), (7, 25)}

By adding (p3, w3) = (8, 6) to each pair of S2 we get

S 21 = {(8, 6), (10, 16), {(13, 21), (15, 31)}

By merging and purging S2 and S 21 we get

S3 = {(0, 0), (8, 6), {(10, 16), (13, 21), (15, 31)}

The pairs (2, 10), (5, 15), (7, 25) get purged here by the dominance rule. 

By adding (p4, w4) = (1, 9) to each pair of S3 we get 

S 31 = {(1, 9), (9, 15), (11, 25), (14, 30), (16, 40)}

By merging and purging S3 and S 31 we get

S4 = {(0, 0), (8, 6), (9, 15), (10, 16), (13, 21), (14, 30), (15, 31), (16, 40)}

Here, we have to eliminate the pairs (10, 16), (13, 21), and (15, 31). With M = 30, search-
ing a Tuple with the value 30, we get (14, 30) in S4; so, x4 = 1. Similarly, we get x3 = 1, 
x2 = 1, and since ((5 - 5), (15 - 15)) = (0, 0), we get x1 = 0. Thus the optimal solution is 
(x1, x2, x3, x4)(0, 1, 1, 1).

 example 16.7  Generate the sets Si and find an optimal solution for the following 
knapsack instance: n = 6, (p1, p2, p3, p4, p5, p6) = (w1, w2, w3, w4, w5, w6) = (100, 50, 20, 
10, 7, 3), and M = 165.

Solution Here, pi = wi for all i; hence, each pair (p, w) = p.

S0 = {0}   S2 = {0, 50, 100, 150}

S 01 = {100}  S 21 = {20, 70, 120, 170}

S1 = {0, 100}  S3 = {0, 20, 50, 70, 100, 120, 150}

S1
1 = {50, 150}

Here, 170 is purged because 170 > M.

S 31 = {10, 30, 60, 80, 110, 130, 160}

S4 = {0, 10, 20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160}
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S 41 = {7, 17, 27, 37, 57, 67, 77, 87, 107, 117, 127, 137, 157, 167}

S5 = {0, 7, 10, 17, 20, 27, 30, 37, 50, 57, 60, 67, 70, 77, 80, 87, 100, 107, 110, 117, 120, 
127, 130, 137, 150, 157, 160}

S 51 = {3, 10, 13, 20, 23, 30, 33, 40, 53, 60, 63, 70, 73, 80, 83, 90, 103, 110, 113, 120, 
123, 130, 133, 140, 153, 160, 163}

S6 = {0, 3, 7, 10, 13, 17, 20, 23, 27, 33, 37, 40, 50, 53, 57, 60, 63, 67, 70, 73, 77, 80, 
83, 87, 90, 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 150, 153, 
157, 160, 163}

The value of F6(165) can be determined from S6. The last tuple in S6 is p = w = 163 œ S5. 
Hence, x6 = 1. However, p6 = w6 = 3. Hence, p - p6 = 163 - 3 = 160 Œ S5 and also, 160 Œ 
S4. Hence, x5 = 0. Now, 160 œ S3; hence, x4 = 1. However, p4 = 10; hence, p - p4 = 160 - 
10 = 150 Œ S3 and also, 150 Œ S2; hence, x3 = 0.

However, 150 œ S1; hence, x2 = 1.
Here, p2 = 50. Hence, p - p2 = 150 - 50 = 100 Œ S1 and 100 œ S0; hence, x1 = 1.
Hence, the optimal solution is 

(x1, x2, x3, x4, x5, x6) = (1, 1, 0, 1, 0, 1)

Let us write a function DKnapsack that takes four input parameters—an array p[1:n] 
for profits, an array w[1:n] for weights, number of objects n, and maximum capacity of 
knapsack M. This is shown in Algorithm 16.9.

algorithm 16.9
Algorithm DKnapsack (p, w, n, M)
begin
S0 = {(0, 0)}
for i = 0 to n − 1
begin
    S1

i = {(p, w) | for all (x, y) Œ Si, compute (p, w) = (x + pi + 1, 
y + wi + 1)}

   Si + 1 = MergeAndPurge(Si, S1
i)

end
Let (px, wx) be the last pair in S

n.
(py, wy) = (p¢ + pn¢ w¢ + wn),
where w¢ is the largest w in any pair in Sn such that w + wn £ M
Trace back for xn, xn−1, …, x1
if(px > py) then
   xn = 0
else
   xn = 1
Trace back for (xn-1, …, x1)
end

The complexity of the algorithm depends on how Si and S i1 are represented.
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16.5 PATTERN MATCHING

Pattern matching is the process of finding the presence of a particular string (pattern) 
in the given string (text). Let us consider an example of string S as ‘prospect’ and the 
pattern string P as ‘spe’. Here, the pattern P exists in the string S, whereas pattern 
‘spet’ does not exist in string S. There are plenty of applications where this concept is 
needed such as searching a name in the phone directory of a mobile or searching for 
document on the web that includes text of a particular pattern. A few such applications 
are as follows:

1. Database search 4. Intrusion detection
2. Search engine 5. Natural language processing
3. Text editors 6. Feature detection in digitized images

Starting from a simple approach, there exists a wide number of popular techniques for 
string pattern search. The most popular are the following:

1. Brute-force approach 4. Robin–Karp algorithm
2. Boyer–Moore algorithm 5. Text partitioning algorithm
3. Knuth–Morris–Pratt algorithm 6. Semi-numerical algorithm

Let us revise a few preliminary concepts related to string pattern search before learning a 
few of these popular techniques.

String A string is a finite 
sequence of symbols that are 
chosen from a set or alphabet 
(Fig. 16.2). Alphabet is a set 
of characters or symbols.

Substring A substring or subsequence of a string is a subset of the symbols in a string 
where the order of elements is preserved.

Suffix A suffix of S is a substring S[i, …, m − 1], where i ranges between 0 and m − 1. 
For example, let us consider string S = algorithm.
Possible suffixes of S are the following:

Algorithm, lgorithm, gorithm, orithm, rithm, ithm, thm, hm, m

Prefix Prefix is a letter or group of letters attached to the beginning of a word that partly 
indicates its meaning.

For example, sort S as in 
Fig. 16.3.
A prefix of S is a substring 
S[0, …, i] where i ranges between 0 and m − 1.

All possible prefixes of S are listed as follows:
Algorithm, algorithm, algorit, algori, algor, algo, alg, al, a

a l g o r i t h m

80

S =

Fig. 16.2 An example string

a l g o r i t h m

80

S =

Fig. 16.3 An example string
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16.5.1 Brute-force Approach

This is a simple straightforward approach based on the comparison of a pattern character 
by character with a string. Let the pattern P be a string with length m that is to be searched 
in text T, which is a complete string (or paragraph) with length n. In the brute-force 
approach, the first character of the pattern is compared with the first character of the text, 
and if we succeed, the process is repeated with the second character, and so on. If we 
come across a mismatch, then we slide the pattern ahead by one character and try again. 
When we find a match, we return the position of its starting location.

The steps involved in this approach are as follows:

1. Adjust the pattern P at the beginning of the text.
2. Start moving from left to right and compare the character of pattern to the corresponding 

character in text.
3. Continue with step 2 until successful (all characters of the pattern are matched) or 

unsuccessful (a mismatch is detected).

Let us consider string T as follows:
T[0…n − 1] = 

s a n j i v a n i

80

T =

where pattern P[0…m − 1] is given by

i v a

0 2

P

Let us search now.

Attempt 1 Here, the characters do not match. Try again by comparing P[0] with T[1] 
onwards. T[0] is compared with P[0].

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 2 Let us compare T[1] with P[0], where the characters do not match; let us 
try again by comparing P[0] with T[1] onwards.
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T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 3 Let us compare T[2] with P[0]. Here too, the characters do not match.

 

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 4 Now, T[3] is compared with P[0].

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Again, the match is not found.

Attempt 5 Now, let us compare T[4] with P[0], and the characters match.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P
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As the first character match is found, T[5] is compared with P[1], and here, the match 
is found. 

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Next, T[6] is compared with P[2]. Continue till position 8 of the text string.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Algorithm 16.10 illustrates this approach.

algorithm 16.10
1. Let T be text and P be pattern with size n and m, respectively
2. For i = 0 to n − m
   begin
      j = 0;
      while(j < m and T[i + j] = P[j])
         begin
         j = j + 1
         end
      if(j = m) Print “Match found at position i”, goto 4
   end
3. print “No match found”
4. end

This is a simple and straightforward approach with time complexity O(mn).

16.5.2 Boyer–Moore Algorithm

The brute-force approach is inefficient, especially when the alphabet is large (the 
number of symbols used for forming a string is more as in natural language) and 
when the pattern length is more. This approach is based on the logic that it is neces-
sary to examine every character in text to locate a pattern as a substring. To reduce 
the time complexity of brute-force approach, the researchers Boyer and Moore have 
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developed an efficient pattern matching algorithm. Instead of sliding by one character 
to the right at a time, in Boyer–Moore approach, the sliding to the right is done in 
longer steps.

The algorithm scans the character of pattern from right to left beginning with the right-
most character. If the text symbol compared with the rightmost pattern symbol does not 
occur in the pattern at all, then the pattern can be shifted by m positions (where m is length 
of pattern).

In this approach, the key is to use the information learned in failed match attempts to 
decide what to do next. This is done with the use of pre-computed tables. For text T of 
length n and pattern P of length m, the algorithm checks to see if we have a successful 
match of P at a particular location in T and work backwards. So, if we are checking to 
see if we have a match starting at T[i], we start by checking to see if P[m − 1] matches 
T[i + m − 1], and so on. 

The reason for this backwards approach is to make more progress in case the attempted 
match fails. For example, suppose we are trying to match the pattern P = ‘Sanj’ at posi-
tion i of the input T = ‘MrsKaleSanjivani’. However, at T[i + 4], we find the character 
‘r’. The character ‘r’ does not appear anywhere in ‘Sanj’, so we can skip ahead and start 
looking for a match at T[i + 5] since we know that ‘k’ prevents a match from occurring 
any earlier.

Let us consider an example.

T = BEHIND EVERY SUCCESSFUL MAN THERE IS A WOMAN
P = WOMAN

Now, the comparison between the D and W found a mismatch, so shift the pattern by five 
positions because D does not occur in the pattern.

The best case of Boyer–Moore algorithm is attained if at each attempt the first com-
pared text symbol does not occur in the pattern. The algorithm requires O(n/m).

16.5.3 Knuth–Morris–Pratt Algorithm

We have studied two approaches for searching a pattern in a string. The researchers 
Knuth, Morris, and Pratt proposed a linear time algorithm for the string matching prob-
lem. In this approach, a matching time of O(n) is achieved by avoiding comparisons with 
characters of T that have previously been 
involved in comparison with some ele-
ment of the pattern P to be matched so 
that backtracking is avoided.

Before we learn the algorithm, let us discuss its components.

Prefix Function p 

The prefix function p for a pattern embeds knowledge about how the pattern matches 
against its shifts. This information is to be used to avoid unnecessary shifts of the pattern 
P to avoid backtracking on the text T.

BEHINDEVERYSUCCESSFULMANTHEREISAWOMAN

WOMAN

WOMAN
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KMP Matcher

The KMP matcher finds the occurrence of the pattern P in text T and returns the number 
of shifts of P, after which the occurrence is found taking T, P, and prefix function p as 
inputs.

A pseudocode to compute the prefix function p is shown in Algorithm 16.11.

algorithm 16.11
1. start
2. Compute length of pattern m = length[P]
3. Initially, let p[1] =0 and k = 0
4. for i = 2 to m
   while(k > 0 and p[k + 1]!= p[q]) do
      begin
      k = p[k]
   if p[k + 1] = p[i]
      then k = k + 1
      p[i] = k
      end
5. return p

Let us consider an example for computing p (Fig. 16.4) for the following pattern P:

P = a   b   a   b   a   c   a 

The KMP matcher, with pattern P, text T, and prefix function p as the input finds a match 
of P in T. The pseudocode in Algorithm 16.12 computes the matching component of KMP 
algorithm.

algorithm 16.12
Algorithm KMP matcher
1. start
2. let n denote length of text T 
   Compute n = length[T] and m ¨ length[P]
3. p = compute prefix function(P)
4. j = 0
5. for i= 1 to n do
   while j > 0 and P[j + 1] != T[i] do
      begin
      j = p[j]
   if P[j + 1] = T[i]
      then j = j + 1
   if j = m
      then print “Pattern occurs with shift i − m”
      j = p[j]
      end
6. stop
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Initially: m = length[p] = 7

Step 1:

π[1] = 0
k = 0

q = 2, k = 0
π[2] = 0

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

1

1 2

1 2 3

1 2 3 1

1 2 3 1 1

1 2 3 1 1

Step 2: q = 3, k = 0
π[3] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 3: q = 4, k = 1
π[4] = 2

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 4: q = 5, k = 2
π[5] = 3

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 5: q = 6, k =3
π[6] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 6:

After iterating 6 times, the prefix
function computation is
complete:

q = 7, k = 1
π[7] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Fig. 16.4 An example for computing p

Note that KMP finds every occurrence of a P in text T, and hence, KMP does not termi-
nate; rather, it searches the remaining part of T for any more occurrences of P.

Let us consider T and pattern P as follows: 
Text T = 

b a c b a b a b a ac aca b

Pattern P = 
a b a b a c a
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Let us execute the KMP algorithm to find whether P occurs in the string S or not, and if 
yes, we find the number of its occurrences.

For P, the prefix function p was computed previously and is as follows:

Q 1 2 3 4 5 6 7

P a b a b a c a

π 0 0 1 2 3 1 1

Initially, n = size of S = 15
                 m = size of P = 7
Step 1: i = 1, q = 0

        Now, compare P[1] with S[1]. 
        We notice that P[1] does not match with S[1].
        So, let us shift P by one position to the right.

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 2: Now, i = 2, q = 0
        Comparing P[1] with S[2], we see that there is a match; P is not shifted.

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 3: Currently, i = 3, q = 1. Comparing P[2] with S[3], we notice that P[2] does 
not match with S[3]. 

S

P

b a c b a b a b a ac baa b

a b a b a c a
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Now, backtrack on P and compare P[1] and S[3].

Step 4: Here, i = 4, q = 0; comparing P[1] with S[4], we notice that P[1] does not 
match with S[4]. 

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 5: Currently, i = 5, q = 0; comparing P[1] with S[5], we notice that P[1] 
matches with S[5].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 6: For i = 6, q = 1, we compare P[2] with S[6]. We see that P[2] matches with 
S[6].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 7: For i = 7, q = 2, we compare P[3] with S[7], and we see that P[3] matches 
with S[7].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 8: With i = 8, q = 3, and when P[4] and S[8] are compared, it results in P[4] 
matching with S[8].
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S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 9: For i = 9, q = 4, we compare P[5] with S[9], and it is seen that P[5] matches 
with S[9].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 10: With i = 10, q = 5, we compare P[6] with S[10], and it is seen that they do 
not match. 

S

P

b a c b a b a b a ac baa b

a b a b a c a

Now, let us backtrack on P and compare P[4] with S[10], as after mismatch, q = p[5] = 3.

Step 11: With i = 11, q = 4 we see that P[5] matches with S[11].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 12: For i = 12 and q = 5, P[6] matches with S[12].

S

P

b a c b a b a b a ac baa b

a b a b a c a



ALGORITHM ANALYSIS AND DESIGN  753

DSUC    c16    V6   October 18, 2012 5:28 PM   Page 753

Step 13: With i = 13 and q = 6, P[7] matches with S[13].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Here, we notice that the pattern P has been found in S. The total number of shifts that took 
place for the matches to be found are i - m = 13 - 7 = 6 shifts.

Let us compute the time complexity of this algorithm. We can see that compute_pre-
fix_function(), uses for loop from step 4 to step 10 and runs m times. Steps 1–3 take 
constant time. Hence, the running time of compute_prefix_function() is Q(m). In KMP 
matcher, the for loop beginning in step 5 runs n times, that is, as long as the length of 
the string S. Since steps 1–4 take constant time, the running time is dominated by this for 
loop. Thus, the running time of the matching function is Q(n).

16.6 TRIES

We have discussed algorithms that efficiently search for pat-
terns in a text. Let us now learn about a compact data structure 
that represents a set of strings (such as all the words in a text) 
known as tries. A trie is a tree-based data structure for storing 
strings to make pattern matching faster. A trie helps in pattern 
matching in time that is proportional to the length of the pat-
tern. Tries can be used to perform prefix query for information 
retrieval. Prefix query searches for the longest prefix of a given string that matches a pre-
fix of some string in the tries. Figure 16.5 shows an example text used in a query search. 

A trie for this text is drawn as in Fig. 16.6.

b

o

o o

e t

s

i s l

c

i u

d y e

k

l h l pk

Fig. 16.6 An example trie

see a book? sell stock!

see a bush! stop!

bid stock! buy book!

stock sell? buy book!

Fig. 16.5 Example 
text for query search
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It is true that preprocessing the pattern speeds up pattern matching queries. Once pre-
processed, the pattern in time is proportional to the pattern length. The Boyer–Moore 
algorithm then searches an arbitrary English text in a time proportional to the text length. 
When the text is large enough, unchallengeable, and searched very often, it is suggested 
to preprocess the text instead of the pattern to perform pattern matching queries in time 
proportional to the pattern length.

There are variants of tries, which are listed as follows:

1. Standard tries
2. Compressed tries
3. Suffix tries

16.6.1 Standard Tries

We have already seen that a trie is a tree-based data structure for storing strings to make 
pattern matching faster. For pattern matching to be done in time that is proportional to the 
length of the pattern, trie has proved to be one of the best solutions. Among variants of 
tries, the standard trie is the most popular and simplest approach. 

The standard trie for a set of strings S is an ordered tree such that

1. each node but the root is labelled with a character;
2. the children of a node are alphabetically ordered;
3. the paths from the external nodes to the root yield the strings of S.

For example, consider the standard trie in Fig. 16.7 for the set of strings S = {bush, boil, 
bid, book, buy, sell, stock, stop}

b

o

o o

e t

s

i s l

c

i u

d y e

l h l pk

k

Fig. 16.7 An example of standard trie

A standard trie uses O(n) space. Operations (find, insert, remove) each take time O(dm), 
where

n = total size of the strings in S
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m = size of the string parameter of the operation
d = alphabet size

Another example is shown in Fig. 16.8.

  

b

e

a o

e t

s

l l l

c

i u

d y

l l l pr

k

Fig. 16.8 Another example of standard trie

16.6.2 Compressed Tries

Similar to the standard trie, a compressed trie (Fig. 16.9) is a tree-based data structure 
for storing strings in order to make pattern matching much faster. This is an optimized 
approach for pattern matching specially suitable for applications where time is a more 
crucial factor. Following are the unique characteristics of compressed trie:

1. A compressed trie (or Patricia trie) has internal nodes of degree at least 2.
2. It is obtained from standard trie by compressing chains of redundant nodes.

b

o

ok

ell to

s

il sh

id u

y ck p

Fig. 16.9 Compressed trie

16.6.3 Suffix Tries

A suffix trie is a compressed trie for all the suffixes of a text. This is a compressed trie, 
and hence, possesses all features a compressed trie and makes it more powerful for mak-
ing a search faster as it includes all suffixes of a text. Let us consider an example as in 
Fig. 16.10.
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e me ghavindd nd

ghavindvind nd ghavind nd

m e g h a v i n

1 2 3 4 5 6 7

d

80

Fig. 16.10 Suffi x trie

RECAPITULATION

• Algorithms are used as design tools for solv-
ing real world problems. 

• Asymptotic notation helps us to defi ne lower 
and upper bounds of time complexity.

• Commonly used algorithm strategies are divide-
and-conquer, greedy method, and dynamic pro-
gramming; each strategy has a set of unique 
characteristics. 

• Control abstraction is a procedure that mirrors 
the way an actual problem based on the said 
strategy will look like.

• Dynamic programming is an algorithm design 
method that can be used when the solution to 
a problem may be viewed as the result of a 
sequence of decisions.

• Pattern matching can be defi ned as the pro-
cess of fi nding the presence of a particular 
string (pattern) from the given string (text).

• A trie is a tree-based data structure for storing 
strings to make the pattern matching faster. 
A trie helps in pattern matching in time that is 
proportional to the length of the pattern.

KEY TERMS

Asymptotic analysis In computer science, the 
analysis of algorithms considers the performance 
of algorithms when applied to very large datasets. 
Asymptotic complexity helps us quantify the per-
formance measures of an algorithm.

Divide-and-conquer method This method is an 
algorithm design paradigm in which a problem is 

broken down into two or more subproblems of the 
same type, which are then solved independently. 
These solutions are then combined to provide a 
solution to the parent problem.

Dynamic programming Dynamic programming 
is well suited to problems where a recursive al-
gorithm would solve many of the subproblems 
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repeatedly. The dynamic programming algorithm 
stores results, or solutions, for small subproblems. 
Later on, it uses these stored solutions instead of 
recomputing them to solve larger subproblems.

Greedy method Greedy method is defi ned as an 
algorithm paradigm that follows the problem-
solving heuristic of making the locally optimal 
choice at each stage with the hope of fi nding the 
optimum solution.

Pattern matching It is the process of fi nding the 
presence of a particular string (pattern) from a 
given string (text).

Trie A trie is a tree-based data structure for storing 
strings to make pattern matching faster. It helps in 
pattern matching in time that is proportional to the 
length of pattern. It is useful in performing prefi x 
query for information retrieval.

EXERCISES

Multiple choice questions

1. Which of the following algorithm design 
techniques is used in quicksort algorithm?

 (a) Dynamic programming
 (b) Backtracking
 (c) Divide-and-conquer
 (d) Greedy 
2. Merge sort uses 
 (a) triangulization
 (b) quicksort
 (c) n-queens
 (d) heuristics
3. Dynamic programming is based on the principle 

of
 (a) optimality
 (b) heuristics
 (c) regularity
 (d) none of the above
4. The complexity function of which of the 

following strategies is generally in the form of a 
recurrence relation? 

 (a) Dynamic
 (b) Divide-and-conquer
 (c) Both (a) and (b)
 (d) None of the above
5. Time complexity of ternary search is
 (a) log3n
 (b) log23
 (c) log2n

 (d) n3

6. Time complexity is 
 (a) the space required by a program 
 (b) an amount of machine time necessary for 

running a program
 (c) the time required for a programmer to code
 (d) all of the above
7. The worst case complexity is (for instance, of 

size n)
 (a) a function defi ned by maximum number of 

steps taken 
 (b) a function defi ned by average number of 

steps taken
 (c) a function defi ned by minimum number of 

steps taken
 (d) all of the above
8. The best case complexity (for instance, of size 

n) is 
 (a) a function defi ned by maximum number of 

steps taken
 (b) a function defi ned by average number of 

steps taken
 (c) a function defi ned by minimum number of 

steps taken
 (d) all of the above

Review questions

1. What is an algorithm? Write the essential 
properties and the performance measures of an 
algorithm.
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2. Explain the characteristics and uses of greedy and 
dynamic programming algorithmic strategies.

3. What is big O notation? Arrange the following 
functions by growth value:

N, N , N2, Nlog2N, N Nlog2
2 , N2, N3, 2N

4. Write a C program for binary search and compute 
its time complexity.

5. Write a C program for ternary search and 
compute its time complexity.

6. What do you mean by best case, average case, 
and worst case time complexity? Give suitable 
examples. 

7. Find the frequency count of the following 
programs:

 (a) for(i = 1; i <= n; i++)
       for(j = 1; j <= i; j++)
          x = x + 1;

 (b) i = 1;
    while(i <= n)
    {
       x = x + 1;
       i = i + 1;
    }

8. Find the frequency count of the following 
programs:

 (a) for(i = 1; i <= n; i++)
       for(j = 1; j <= n; j++)
          a = a + 2;

 (b) i = 1;
    do {

       x = x + 2;
       i++;
    } while(i <= n);

 (c) for i = 1 to n do
       for j = i + 1 to n do
          for k = j + 1 to n  do
             x = x + 1;

 (d) i = 1
    do
    {
       x++;
       if(i == 10)
          break;
          i++;
    } while(i <= n);

9. Write the control abstraction for the following 
algorithm strategies:

 (a) Divide-and-conquer
 (b) Greedy method
 (c) Dynamic programming
10. Compare greedy and dynamic strategies.
11. Give typical applications in which the divide–

conquer is the best suitable algorithmic strategy.
12. Describe each of the following with respect to 

their unique characteristics, control abstraction, 
and an example:

 (a) Divide-and-conquer
 (b) Dynamic
 (c) Greedy
13. Write a quicksort algorithm. Analyse the same 

with respect to time complexity.

Answers to multiple choice questions

1. (c)  2. (c)  3. (a)  4. (c)  5. (a)  6. (b)  7. (a)  8. (c)



Objectives
Each chapter begins with a list 
of topics that the readers can 
expect to learn from that 
chapter.

RECURSION4

OBJECTIVES

After completi ng this chapter, the reader will be able to understand the following:
 • The power of recursion and its working
 • Identi cation of the base case and the general case of a recursively de ned problem
 • Comparison of iterative and recursive solutions
 • The steps to write, implement, test, and debug recursive functions
 • The method of implementing recursion using stacks

Functions are the most basic and useful feature of any programming language. A set 
of instructions that performs logical operations, which could be very complex and 

numerous in number, can be grouped together as functions (also called procedures). 
Functions may call themselves or other functions, and the called functions in turn may 
call the calling function. This process is called  recursion and such functions are called 
 recursive functions. A recursive function makes the program compact and readable. This 
chapter covers the important aspects of recursion.

4.1 INTRODUCTION

Good programming practices emphasize the writing of programs that are readable, easy 
to understand, and error free. Functions are the most useful feature that accomplish 
this. A function is called using a function name and its parameters through instructions. 
Given the input–output specifi cation of a function, the caller simply makes a call to 
it . This v iew  of the f unct ion implies that it is invoked, executed, and returned (with 
or without results) to the place where it was called in the calling function. When a 
function calls itself, either directly or indirectly, it is said to be making  a recursive 
call. Recursive functions help make the program compact and readable. Recursion is 
extremely powerful as it enables the programmer to express complex processes easily. 
Recursive programs are used in a variety of applications ranging from calculating the 
factorial of a number to playing complex games against human intelligence.

Flowcharts
Flowcharts are provided 
wherever required. They 
provide readers with 
a step-wise and clear 
representation of 
algorithms and concepts.
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In Algorithm 4.4, at the caller function, a call is made to HTower with disk = 5, source = A, 
dest = B, and spare = C. 

ALGORITHM 4.4

HTower(disk, source, dest, spare)

if disk == 0, then 

   move disk from source to dest

else

   HTower(disk - 1, source, spare, dest)   // Step 1

   move disk from source to dest   // Step 2

   HTower(disk - 1, spare, dest, source)   // Step 3

end if

Note that the pseudocode adds a base case when disk = 0, that is, the smallest disk. 
In this case, we do not need to worry about smaller disks, so we can just move the disk 
directly. In the other cases, we follow the three-step recursive function already described 
for disk 5.

The tree representation of recursive calls is shown in Fig. 4.6.

Fig. 4.6 Tower of Hanoi—Call tree for three disks

HTower(3, A, B, C)

HTower(2, A, C, B) HTower(2, C, B, A)

HTower(1, A, B, C) HTower(1, B, C, A) HTower(1, C, A, B) HTower(1, A, B, C)

(0, A, C, B) (0, C, B, A) (0, B, A, C) (0, B, A, C)(0, A, C, B) (0, A, C, B)(0, C, B, A) (0, C, B, A)

The root represents the fi rst call to the function. The function cal l is represented as a node 
in the tree. The child nodes of the node n represent the function calls made by n. For 
example, HTower(2, A, C, B) and HTower(2, C, B, A) are the child nodes of HTower(3, 
A, B, C ) since these are the two function calls that HTower(3, A, B, C ) makes. The leaf 
nodes represent the base cases.

4.6.3 Checking for Correctness

One of the most diffi cult aspects of programming recursively is the process of 
accepting that the recursive call will do the right thing. The following checklist pro-
vides the fi ve conditions that must hold true for recursion to work. If each of these 

Algorithms
All chapters contain plenty 
of algorithms to support 
the theoretical concepts. 
Each algorithm is depicted 
in a step-wise manner 
along with a description 
of its function and 
signifi cance. 
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Let us consider an example of computing the factorial of a number. Factorial is a 
mathematical term. The factorial of a number, say n, is equal to the product of all the 
integers from 1 to n. The  factorial of n is denoted as

 n! = 1 ¥ 2 ¥ 3 ¥ º ¥ n or n! = n ¥ n - 1 ¥ º ¥ 1 (4.1)

For example, 10! = 1 ¥ 2 ¥ 3 ¥ 4 ¥ 5 ¥ 6 ¥  7 ¥ 8 ¥ 9 ¥ 10. The sim plest program to 
calcula te the f actorial of a number is by using a loop with a product variable.

Algorithm 4.1 states the iterative process of computing the factorial of n.

ALGORITHM 4.1

An iterative version of an algorithm to compute the factorial of a 

number

1. start

2.  Let n be the number w hose factorial is to be computed and let 

Factorial = 1

3. while(n > 1) do

   begin

    Factorial = Factorial * n

    n = n – 1

   end

4. stop

The iterative process of computing the factorial of n in Algorithm 4.1 can also be written 
as in Algorithm 4.2.

ALGORITHM 4.2

An iterative version of the algorithm to compute the factorial of a 

number

1. start

2.  Let n be the number whose factorial is to be computed and let 

Factorial = 1

3. for I = 1 to n do

   begin

      Factorial = Factorial * I

   end

4. stop

Algorithms 4.1 and 4.2 are iterative algorithms for computing the factorial of n. It is pos-
sible to give a recursive defi nition for factorial too. The mathematical function defi ned in 
Eq. (4.1) for factorial of n can also be defi ned recursively as 

 n! = n ¥ (n - 1)!, wh ere 1! = 1 (4.2)Program Codes
Numerous program codes in 
C++ provide implementation 
of the concepts. Comments are 
provided wherever necessary 
thus making the code 
self-explanatory and easy to 
understand.
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This recursive defi nition of factorial has two steps, as follows:

1. If n = 1, then factorial of n = 1
2. Otherwise, factorial of n = n ¥ factorial of (n - 1)

Program Code 4.1 demonstrates the recursive code for Algorithm 4.1.

PROGRAM CODE 4.1

int Factorial(int n)

{

   if(n == 1)    // end condition

      return 1;

   else 

      return Factorial(n - 1) * n;

}

The Factorial() function is an example of a recursive function. In the second 
return statement, the function calls itse lf.  The important thing to remember when creat-
ing a recursive function is to give an  end condition. In Program Code 4 .1, the recursion 
stops when n becomes 1. In each call of the function, the value of n keeps decreasing. 
However, when the value reaches 1, the function ends. On the other hand, this function 
will run infi nitely if the initial value of n is less than 1, which means that the function is 
not perfect. Therefore, the condition n = 1 should be changed to n ≤ 1. L et us rewrite 
the Factorial() function as in Program Code 4.2.

PROGRAM CODE 4.2

int Factorial(int n)

{

   if(n <= 1)    // end condition

      return 1;

   els e

      return Factorial(n - 1) * n;

}

Program Code 4.2 takes advantage of the fact that the factorial of any integer n 
can be defi ned recursively as the product of n and the factorial of n − 1. For example, 
5! = 5 ¥ 4!

FEATURES OF THE BOOK
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We can break this into three basic steps.

1. Move the disk 4  and the ones smaller than that from the peg A (source) to peg C (spare), 
using peg B (dest) as a spare. We achieve it by recursively using the same function. After 
fi nishing this, we will have all the disks smaller than disk 4 on peg C (Fig. 4.3).

Fig. 4.3 Tower of Hanoi—step 1

A B C

2. Now, with all the smaller disks on the spare peg C, we can move disk 5 from peg A to 
peg B (Fig. 4.4).

Fig. 4.4 Tower of Hanoi—step 2

A B C

3. Finally, we want disk 4 and the smaller disks to be moved from peg C to peg B. 
We do this recursively using the same function again. At the end, we have disk 5 and 
the smaller ones on peg B (Fig. 4.5).

Fig. 4.5 Tower of Hanoi— nal step

A B C

Recapitulation
A summary of key topics at 
the end of each chapter helps 
the readers revise all the 
important concepts explained in 
that chapter. It is provided in 
point-wise form for a quick grasp 
of the concepts learnt. 
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(e) If this is a function, insert instructions to evaluate the expression immediately 
following return() and store the result on the top of the stack.

(f) Use the index of the label of the return address to execute a branch to that label.

If all these rules are followed carefully, one can convert recursion to an iterative code.
C++ supports recursion and it is handled using a run-time stack. For each function 

call, all the actual parameters are pushed onto the stack. This is also called as activation 
record. This activation record contains memory for the return value—a pointer to the base 
of the previous stack frame in the stack. It includes the return address, that is, the address  
of the instruction to be executed after the function call is completed. It also includes 
memory for all the parameters and for all the local variables of the function. The working 
of recursion is as described earlier.

4.9 APPLICATIONS OF RECURSION

The following are the major areas where the process of recursion can be applied:
1. Artifi cial intelligence
2. Search techniques
3. Game playing
4. Computational linguistics and natural language processing
5. Expert systems
6. Pattern recognition and computer vision
7. Robotics

RECAPITULATION

• A function may call itself or other functions, and the called functions in turn may 
again call the calling function. Such functions are called recursive functions.

• Any correct iterative code can be converted into its equivalent recursive code and 
vice versa.

• The basic concepts and ideas involved with recursion are simple—a function that 
has to be solved is treated as a big problem and it solves itself by using itself 
to solve a slightly smaller problem. The recurrence relation is easily converted to 
recursive code.

• The working of recursion is fairly straightforward. However, to understand the 
working of recursion better and to be able to use it well, one requires practice. The 
best way to obtain this is to write a lot of recursive functions.

• Recursion can be used for divide and conquer-based search and sort algorithms to 
increase the ef ciency of these operations.

• For most problems such as the Tower of Hanoi, recursion presents an incredibly 
elegant solution that is easy to code and simple to understand.

Key Terms
All chapters provide the reader 
with requisite revision of key terms 
along with their 
defi nitions.
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Binary recursion A simple unary recursive function calls itself once, whereas the binary 
recursive function calls itself twice. A factorial is a unary function, whereas Fibonacci is a 
binary recursion.

Depth of recursion The number of times a function calls itself is known as the recursive 
depth of that function.

Direct and indirect recursion When a recursive function calls itself directly, it is called 
direct recursion and when the function calls another function, which in turn calls the fi rst 
function, it is called an indirect recursion.

End condition Recursive functions usually have and in fact should have a condition that 
would terminate the recursive calls. This terminating condition is called end condition. In 
the function factorial, when n = 1 the function returns 1. If this condition were not present, 
the function would keep calling itself with the values 3, 2, 1, 0, -1, -2, and so on till infi n-
ity. Such recursion is known as endless recursion.

Linear and tree recursion Depending on the way the recursion grows, it is classifi ed as 
linear or tree. A recursive function is said to be linearly recursive when no pending opera-
tion involves another recursive call. If there is another recursive call in the set of operations 
to be completed after the recursion is over, then it is called a tree recursion. Factorial is an 
example of linear recursion and Fibonacci is an example of tree recursion.

Recurrence relation A recurrence is a well-defi ned mathematical function written in terms 
of itself; it is a mathematical function defi ned recursively such as n! = n × (n - 1)!

Recursive functions A function may call itself or call other functions and the called func-
tions in turn again may call the calling function. Such functions are called recursive 
functions.

Stack overfl ow in recursion Each time a function calls itself, it stores one or more variables 
on the stack. Since the stack holds a limited amount of memory, functions with a high 
recursive depth may crash because of the non-availability of memory. Such a situation is 
known as stack overfl ow.

Tail recursion A recursive function is said to be tail recursive if there are no pending op-
erations to be performed on return from a recursive call; otherwise it is called a non-tail 
recursion. The factorial function is an example of non-tail recursion, whereas binary search 
is an example of tail recursion.

Winding and unwinding of recursion All recursive functions go through two distinct 
phases. The fi rst phase, winding, occurs when the function is calling itself and push-
ing values onto the stack. The second phase, unwinding, occurs when the function is 
popping values from the stack, usually after the end condition.

KEY TERMS

Multiple Choice Questions
Multiple choice questions put to test 
the readers' theoretical knowledge 
that is gained after reading 
the chapter. Answers to these 
questions are provided at the end 
of every chapter.
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Multiple choice questions

 1. Infi nite recursion occurs when
 (a) a base case is omitted
 (b) a base case is never reached
 (c) both (a) and (b)
 (d) none of the above
 2. Fibonacci function Fib(n) = Fib(n - 1) + Fib(n - 2) is an example of
 (a) direct recursion
 (b) tree recursion
 (c) linear recursion
 (d) both (a) and (b)
 3. Any recursive function can be converted into an all equivalent non-recursive function  
 (a) always
 (b) never
 (c) sometimes
 (d) if the function is tail recursive
 4. Which of the following algorithm strategies results in an inherently recursive code?
 (a) Greedy paradigm
 (b) Divide and conquer paradigm
 (c) Dynamic paradigm
 (d) Both (a) and (c)
 5. The advantage of recursion is that the 
 (a) code size is less
 (b) time complexity is less
 (c) space complexity is less
 (d) none of the above
 6. The data structure used for recursion is
 (a) stack
 (b) queue
 (c) tree
 (d) none of the above
 7. Consider the following code:

void foo(int n, int sum 0) 

{

   int k = 0, j = 0;

   if(n == 0) return;

   k = n % 10; j = n/10;

   sum = sum + k;
   foo(j, sum);

EXERCISES

Review Questions
Numerous review questions at 
the end of every chapter test the 
readers' conceptual knowledge 
as well as help them think 
outside the box.
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10. The following code is an example of ______ recursion.
funA()

{

       .
       .
       .

     funA();

       .
       .
       .

     fun  A();

}

 (a) linear
 (b) tree
 (c) both (a) and (b)
 (d) none of these

Review questions

 1. Write a recursive algorithm to check whether a specifi ed character is in a string.
 2. Write a recursive algorithm to count all occurrences of a specifi ed character in a string.
 3. Write a recursive algorithm that removes all occurrences of a specifi ed character in a 

string.
 4. Write a recursive algorithm that fi nds all occurrences of a substring in a string.
 5. Write a recursive algorithm that changes an integer to a binary number.
 6. In binary search, the given key is compared with the middle element of an array. If a 

match occurs, the search is successful; else the comparison decides whether the search 
would be restricted to either the upper half or the lower half of the array. Write a recursive 
function Binary(key, A, n), where n is the size of the array A.

 7. Write a recursive function in C++ to count the number of occurrences of a given integer in 
an array. The function should have three parameters—an array, the number of elements in 
the array, and the count.

 8. Write a recursive function in C++ that counts the number of occurrences of a particular 
digit in the decimal representation of a given integer. For example, if the parameters to the 
function are 8 and 382885, the function should return 3 as there are three occurrences of 
the digit 8 in 382885.

 [Hint: Remember that n % 10 will give th e remainder of n divided by 10, whereas n/10 
will give the inte ger part of n divided by 10.]

 9. Write a recursive function in C++ to replace every occur rence  of a specifi ed character in 
a string with another character. The function should be a void function and should have 
three parameters—a string, a character to be replaced, and the character with which it is 
to be replaced.

10. Write a recursive function in C++ to compute the square root of a number.
11. Write a recursive function in C++ to convert decimal integers to their radix r representation 

by successive divisions.

FEATURES OF THE BOOK ix



APPendIX

The most suitable language for the implementation of abstract data types (ADTs) is 
the object-oriented C++, as it implements them as a class. We have already discussed 
ADTs in Chapter 1; let us now revise the concept of ADTs. 

A.1 AbsTrACT dATA TYPe

A data type consists of a collection of values together with a set of basic operations 
defi ned on these values. A data type is called an abstract data type if a programmer can 
use it without having access to it and without knowing the details of how the values and 
operations are implemented.

Specifying a data structure by the details of its implementation means that if the 
programmer wants to change the representation of the data type, he/she will have to 
fi nd every piece of code that manipulates the data and make sure it corresponds to the 
new defi nition. The best way to avoid this problem is to make sure that all data types 
defi ned are ADTs. 

An ADT expresses an all-inclusive collection of data values and operations. The term 
data structure means the study of data and refers to the representation of data objects 
within a program, that is, the implementation of a structured relationship.

A software professional’s idea of a data structure has undergone an evolution in the last 
few years. Data structures are implemented based on the abstract properties of the classes 
of data objects in addition to how these data objects might be represented in a program. 
Depending on this point of view, a data object is characterized by its type (for the user) or 
by its structure (for the implementer).

Hence, the study of data structures has now been popularly referred to as the study of 
ADTs, which covers the study of classes of objects whose logical behaviour is defi ned by 
a set of operations.

The traditional model of studying data structures is based on the characteristics of the 
implementation of structures. For example, consider the example of stacks and queues 
which are linear lists with restricted access. The properties of stacks and queues can be 
represented as last in fi rst out (LIFO) and fi rst in fi rst out (FIFO), respectively. However, 
the user of these two ADTs is not interested about the location where the data is being 
processed in the data structure or about the restricted access. In fact, the user does not 
(rather should not) care about what happens when an item is stored in a stack or a queue 
and  is only interested in what is inserted or what is deleted. Thus, it is essential to learn 
data structures as ADTs.

Let us now discuss how to implement ADTs using C++.

OVerVIeW OF 
C++ PrOGrAMMInG
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A.2 InTrOduCTIOn TO C++

To overcome some of the shortcomings of the C language, Bjarne Stroustrup of AT&T 
Bell Laboratories developed C++ in the early 1980s. Stroustrup designed C++ to be a 
better version of C. Most of C is a subset of C++, and so most C programs are also C++ 
programs. Thus, C++ is also known as C with classes. However, unlike C, C++ supports 
the object-oriented programming (OOP) paradigm. 

A.2.1 sample C++ Program

A typical C++ code uses two kinds of fi les—header fi les and source fi les. Header fi les 
have a ‘.h’ extension. They allow programmers to separate certain parts of the source code 
into reusable fi les. These fi les commonly contain forward declarations of classes, subrou-
tines, variables, and other identifi ers. Declarations of standardized identifi ers from more 
than one source fi le can be placed in a single header fi le, and programs can then include 
these fi les whenever the header contents are required. One such header fi le is <iostream.h>, 
which stands for input/output stream, as used in Progr am Cod e A.1. The header fi le 
iostream provides basic input and output services for C++ programs. It uses the objects 
cin, cout, cerr, and clog for sending data to and from the standard streams input, output, 
error, and log, respectively.

PROGRAM CODE A.1

//A  sample C++ progr am

#include<iostream.h>

int main()

{

   fl oat Base, Height, Area;

   cout << "Enter Base:";

   cin >> B ase;

   cout << "Enter Height:";

   cin >>  Height;

   Area = (Base * Height)/2;

   cout << "Area of Triangle = ";

   cout << Area;

   return;

}

Output:

   Enter Base: 7

   Enter Height:  6

   Area of Triangle  = 21
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In the beginning of this program, a header fi le <iostream.h> is included, which is system-
defi ned. These header fi les can also be user-defi ned. Source fi les are used to store C++ 
source code. The suffi x used is generally ‘.cpp’, which depends on the compiler in use.

A.2.2 C++ statements and Operators 

Syntax and semantics of statements in C++ are similar to that used in C. In addition, 
C++ operators are identical to operators in C except new and delete operators. Another 
difference is that C++ uses the shift left << and the shift right >> operators. However, 
an important difference is that C++ allows operator overloading, that is, an operator is 
allowed to have different functionalities depending on the type of operands.

A.2.3 Comments in C++

A programmer is often very clear about the objective and outcome of the code during the 
coding phase. However, when someone else tries to understand or modify the code, or 
even when the programmer returns to the program after a long period of time, it could be 
quite confusing and unclear. A comment is a text, used to annotate a code for future refer-
ence, that the compiler ignores but is useful for programmers. In C++, a programmer can 
use the  following two types of comments:

1. Block comment—used to include multiple lines as a comment
 /* block of statements
   …
   */
2. Line comment—used for single line comments
 // Comment line here

A.2.4 Input/Output i  n C++

To perform I/O in C++, we have to include the system-defi ned header fi le iostream.h. 
The keyword cout is used to output data to the standard output device is separated from 
each entity being printed by the << operator. The entries being output are printed from left 
to right on the standard output device. The shift left operator << is overloaded in C++. It is 
also called output operator or insertion operator. It can be used to display data of any 
type. Program Code A.2 illustrates the use of iostream in C++.

PROGRAM CODE A.2

// A C++ program explaining—I/O stream

#include<iostream.h>

main()

{

   int a = 110;

   fl oat b = 0.11;
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   char MyName[];

   cout << "a:" << a << endl ;

   cout << "b:" << b << endl ;

   cout << "Your name please:";

   cin << MyName;

    cout << "Welcome dear" << MyName << "to the world 

of C++!";

}

Output:

   a: 110

   b: 0.11

   Your name please: Saurabh

   Welcome dear Saurabh to the world of C++!

The keyword cin is used for input in C++. The operator >> is used to separate the 
variables being input or output. A whitespace is used to separate items corresponding 
to different variables on the standard input device. The shift right operator >> is over-
loaded by C++ for this purpose. It is also called input operator or extraction operator. 
Program Code  A.3 uses cin and cout for accepting two integers from the user and 
then displaying the sum of the two input numbers.

PROGRAM CODE A.3

//A sample C++ program for illustrating cin and cout

#include<iostream.h>

main()

{

   int a, b;

   cout << "Enter values of a & b:";

   cin >> a >> b;

   cout << a << " +" << b << "=" << a + b;

}

Output:

   Enter values of a & b: 5 6

   5 + 6 = 11 

An advantage of I/O in C++ is that it is format-free, that is, the programmer is not 
required to use formatting symbols to specify the type and order of items being input or 
output. Similar to other C++ operators, I/O operators can also be overloaded.
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A.3 FunCTIOns In C++

There are two kinds of functions in C++, namely regular functions and member functions. 
Member functions those that are associated with a specif ic C++ class. Both types of func-
tions are similar in all features excluding their scope.

A function consists of a function name, a list of arguments (input), a return type (out-
put), and a body (code that implements a function). In Program Code A.4 , Max is the func-
tion name, fl oat a a nd fl oat b are the list of arguments, where fl oat is the return type, and 
the statements between { and } form the body of the function. Similarly, Square() is a 
function with int a as argument and int as the return type. Here, SayHello() is another 
function that has no argument, and it does not return any value, so its return type is void.

PROGRAM CODE A.4

// A sample C++ program—function

void SayHello()

{

    cout << "Hello, welcome to the world of C with 

classes";

}

int Square(int a)

{

   return a * a;

}

fl oat max(fl oat a, fl oat b)

{

   if(a > b)

      return a;

   else

      return b;

}

void main()

{

   int x, y, z;

   SayHello();

   cout << endl;

  cout << "Enter number";

   cin >> x;

   cout << "Square of" << x << "is =" << Square(x);

   cout << "\nEnter two integers";

   cin >> y >> z;

    cout << "Maximum between" << y << "and" << z << 

"is" << max(y, z);

}
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Output:

Hello, welcome to the world of C with classes

Enter number 5

Square of 5 is 25

Enter two integers 9  4

Maximum between 9 and 4 is 9

All functions in C++ return a value. If a function is not meant to return anything, 
we use void to denote its return type. A value is returned from a function by using the 
return statement. The return statement must return a value that is of the same type 
as the function’s return type or should be converted to the desired type. The function 
terminates when a return statement is encountered. A function is invoked by supply-
ing the actual arguments. Some examples are as follows:

A call to function max(55.23,76.89) returns 76.89.
A call to function Square(5) returns 25.
A call to function SayHello displays the message "Hello, welcome to the 

world of C with classes".

A.3.1 Inline Function

An inline function is declared by adding the keyword inline to the function defi nition as 
in Program Code A.5. Fun ction PrintLine() is an inli ne function, whereas function 
PrintLine1() is not.

PROGRAM CODE A.5

// A sample C++ program—inline function

inline void PrintLine()

{

   cout << "----------";

   cout << endl;

}

void PrintLine1(int n, char ch)

{

   for(i = 1; i <= n; i++)

      cout << ch;

   cout << endl;

}

// calling function

void main()

{
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   PrintLine();

   PrintLine1(10, ‘$’);

}

Output:

----------

$$$$$$$$$$

The inline keyword instructs the compiler that any calls to the inline function Print-
line() must be replaced by the body of the called function. This eliminates the overhead 
from performing a function call and copying arguments when the program is executing. 
When a member function is defi ned within a class defi nition as in Program Code A.6, it 
is  automatically made inline.

The objective of the inline and const keywords is to avoid the use of preproces-
sor directives such as #defi ne. T his preprocessor directive has been traditionally used to 
perform macro substitution. A macro is similar to a function except for the difference 
that functions are called whereas macros are substituted.  Excessive use of preprocessor 
directives makes it hard to use programming tools such as debuggers and profi lers (used 
for debugging) effi ciently. 

The use of an inline function is  benefi cial for shorter code. However, as inline function calls 
are replaced by function defi nitions, this expansion results in larger code in case of lengthy 
functions. The compiler may ignore the demand to make a function inline in some cases when 
a function is recursive or it contains static variables or loop, switch, or goto statements.

PROGRAM CODE A.6

// A sample C++ program—inline function

#include<iostream.h>

class ABC

{

   int a, b, c;

   public:

      void GetData()

      {

         cin <<  a << b << c;

      }

};

void ABC :: ShowData()

{

   cout << a << "\t" << b << "\t" << c;

}
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Here, ShowData() is a member function whose code is written outside the class defi ni-
tion. The function GetData() is defi ned inside  the class defi nition, and hence is consid-
ered as an inline function. If the user wishes to defi ne a function outside the class and still 
wants to make it an inline function, it can be done by explicitly instructing the compiler 
to do so, as shown in Program Code A.7.

PROGRAM CODE A.7

// A sample C++ program with inline function outside 

class

#include<iostream.h>

class ABC

{

   int a, b, c;

   public:

      void GetData()

      {

         cin << a < < b << c;

      }

};

inline void ABC :: ShowData()

{

   cout << a << "\t" << b << "\t" << c;

}

We have discussed that an inline function call is replaced by its code, similar to 
macro expansion. However, there is one major difference between an inline function 
and a macro. Let us consider the code in Program Code A.8.

PROGRAM CODE A.8

// A sample C++ program with—macro and inline function

#include<iostream.h>

#defi ne Square1(x) x * x

inline int Square2(int x)

{

   return x * x;

}

int main()

{

   cout << "\n Using macro" << Square1(5 + 5);
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   cout << "\n Using inline function" << Square2(5 + 5);

}

Output:

   Using macro 30

   Using inline function 100

If we observe the output of the code, we see that the expected output is correctly provided 
by the inline function and not by the macro. This difference makes inline functions far 
superior to macros.

A.4 C++ ClAss And AbsTrACT dATA TYPe

Classes in C++ are a natural evolution of the C notation struct. C++ also has the con-
cept of structures. The only difference between a structure and a class in C++ is that, by 
default, the members of a class are private, whereas the members of a structure are public. 
Object-oriented programming encapsulates data (attributes) and functions (behaviour) 
into packages called classes.

A.4.1 Class

A class is a user-defi ned data type whose variables are objects. It is created using the key-
word class. A class is similar to a blue print. Based on a blue print, a builder can build 
one or more houses. Similarly, based on a class, a programmer can create one or more 
objects. One class can be reused many times to make many objects of the same class. 
Classes enable the programmer to model objects that have certain attributes (data mem-
bers) and behaviour (operations). A sample class defi nition is given in Program Code A.9.

PROGRAM CODE A.9

// A sample C++ class defi nition

class Time

{

   private:

      int Hour;

      int Minute;

      int Second;

   public:

      Time();

      void SetTime(int, int, int);

      void DisplayTime();

};
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A class specification has two parts—class declaration and definition of class member 
functions. The class declaration describes the type and scope of its members. The general 
form of class declaration is as follows:

class class_name
{
   private data members & member functions access_specifier:
   data members & member functions access_specifier:
   data members & member functions
   .
   .
   .
}object_list;

Here, object list is optional. The access specifier can be public, private, or protect-
ed. By default, the access specifier is private. Private data and functions can be accessed 
only by other member functions of the same class, whereas public data and functions are 
accessible by other parts of the program. The protected access specifier is needed only 
when a class is inherited. A class declaration combines data and code together in a single 
package. This binding of code and data, called encapsulation, keeps both safe from out-
side interference and misuse. 

Variables that are elements of a class are called data members or member variables 
while functions that are declared within a class are called member functions. Member 
functions can access all elements of the class of which they are a part. Data hiding is 
achieved by making the data members private. 

Note that the member functions listed in class Time in Program Code A.9 are function 
prototypes. A class definition generally contains only the prototypes of its member func-
tions. The definitions for the member functions can be defined elsewhere.

When a member function is defined outside the class declaration, then the definition 
must include the class name because there may be two or more classes that have member 
functions with the same name. The definition of a member function is similar to the con-
ventional function definition with a few differences.

Scope Resolution Operator (::)

The (::) operator is called the scope resolution operator, and it serves a purpose similar to 
that of the dot operator. Both the dot operator and the scope resolution operator are used to 
indicate which function is a member of which class. However, the scope resolution opera-
tor is used with a class name, whereas the dot operator is used with an object, that is, with 
a class variable. The scope resolution operator is denoted by two colons with no space 
between them. The class name preceding the scope resolution operator is often called type 
qualifier because it specifies (qualifies) the function name to one particular type.

Return type class_name :: functionname (parameter list)
{
   function body statemen
}



OVerView Of c++ PrOgramming  769

DSUC    App01    V6   July 30, 2012 11:41 AM   Page 769

PROGRAM CODE A.10

/* A sample C++ program with member function defi nition 

outside the class */

class Time

{

   int Hour;

   int Minute;

   int Second;

   Time();

   void SetTime(int, int, int);

   void DisplayTime();

};

void Time :: SetTime()

{

   cin >> Hour;

   cin >> Minute;

   cin >> Second;

}

void Time :: DisplayTime()

{

   cout << Hour << ":" << Minute << ":" <<  Second;

}

In Program Code A.10, the member function  Set Time() is defi ned. Note that here 
the data members Hour, Minute, and Second are used without providing the object and 
the dot operator. The defi nition of SetTime() will apply to all objects of type Time, but 
at this point, since the names of the objects are not known, they are not given.

Let us consider following piece of code:
The member function is called as 

Time Now;
Now.SetTime()

With the input as 10 10 10, the time would be set as 10:10:10.
All the member names in a function defi nition are specialized to the name of the call-

ing class. So, this function call is equivalent to the following (provided all three member 
variables are public):

void main()
{
   Time Now;
   cin >> Now·Hour >> Now·Minute >> Now·Second;
   Now.DisplayTime();
}
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A.4.2 Class Members: Public and Private

Consider Prog ram Code A.11. Here, the class defi nition Time has  one new feature that is 
designed to ensure that no programmer who uses this class can ever directly refer to any 
of its member variables. Note that the class contains the keyword private. All the mem-
ber variable names that are listed after this line are private members, that is, they cannot 
be accessed directly in the program except within the defi nition of a member function. If 
you try to access any of these members in the main() function of the program, the com-
piler will generate an error message.

PROGRAM CODE A.11

// A sample C++ program with Time as a class

class Time

{

   private:

      int Hour;

      int Minute;

      int Second;

   public:

      Time();

      void SetTime(int, int, int);

      void DisplayTime();

};

Time Birth_time;

Birth_Time·Hour = 6;   // illegal

Birth_Time·Second = 45;   // illegal

BirthTime.SetTime(10, 10, 10);   // legal

Any reference to these private variables  (or member functions) is illegal except in 
the defi nition of member functions. Let us consider another class defi nition as shown in 
Program Code A.12.

PROGRAM CODE A.12

// A sample C++ program with Time as a class

class Time

{

   private:

      int Hour, Minute, Second;

      void SetTime(int, int, int);

   public:

      Time();
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      void UpdateTime();

};

Time Birth_time;

BirthTime.SetTime(10, 10, 10); //   illegal as SetTime 

is private

Note that in this  class defi nition, the function SetTime() is declared a private func-
tion of the class Time. It is also possible to make a member function private. Similar to a 
private member variable, a private member function can be used in the defi nition of any 
other member function, but not elsewhere, such as the main() function.

void Time :: UpdateTime()
{
   SetTime(2, 30, 45);  // valid
}
void main()
{
   Time BirthTime;
    BirthTime·SetTime(2, 30, 45);    // illegal
   BirthTime·UpdateTime();  // valid
}

Th e keyword public is used to indicate public members the same way that pri-
vate is used to indicate private members. For example, consider the following class 
defi nition:

class SampleClass
{
   public:
      void AAA();
      int aa;
   private:
      void BBB()
      char bb;
   public:
      double CCC();
      double cc;
};

A public member can be used in the main body of a  program or in the defi nition of 
any function, even non-member functions. We can have any number of occurrences of the 
labels public and private in a class defi nition.

Every time a label public: is encountered, the list of members changes from private 
to public.

Every time a label private: is encountered, the list of members following the label 
becomes private members.



772 data structures using c++

DSUC    App01    V6   July 30, 2012 11:41 AM   Page 772

Let us consider the following class Date.

class Date
{
   int Day, Month, Year;
   void DisplayDate();
   void SetDate();
};

All the members in this class are by default private. Hence, the statements in the fol-
lowing function main() are illegal.

Date Today;
Today·DisplayDate();   // illegal
Today·Month = 3;   // illegal

By default the members of a class are private, and hence it is a good practice to always 
explicitly label each group of members as either public or private. The concept of public 
and private members can be better understood by the pictorial representation in Fig. A.1

Fig. A.1  Access specifier

Class

Private area

Data members

Function members

Public area

Data members

Function members

Way to access
from outside

A.4.3 Objects

Once a class is defined, an object, which is just a variable of the class type, can be declared 
in the same manner as variables of any other type. Object is an instance of a class. It has 
physical existence.

Time BirthTime;
Date Today, BirthDay;

These declarations create a variable BirthTime of type Time and two variables Today 
and BirthDay of type Date. These class variables are called objects in C++. No storage 
space is allocated when a class is declared. The storage space is allocated only when an 
object of the class is declared.
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A.5 sTATIC ClAss MeMbers

Both functions and data members of a class ca n be made static. Let us discuss each in detail.

A.5.1 static data Members

When a member variable’s declaration is preceded with a keyword static, the compiler 
understands that only one copy of that variable exists and all objects of the class share that 
variable. The characteristics of a static variable are listed as follows:

1. In the case of static variables, only one copy of that variable exists and all objects of 
the class share that variable. Unlike regular data members, individual copies of a static 
member variable are not made for each object.

2. All static variables are initialized to zero when the fi rst object is created.
3. When a static data member is declared within a class, storage is not allocated for it. It 

needs to be defi ned globally outside the class, and only then is memory allocated to it 
for storage.

4. Although a static variable is visible only within the class, its lifetime spans the entire 
program.

Consider Program Code A.13 with a class for a website with a  static member variable that 
keeps track of the number of visitors for the site along with other member

PROGRAM CODE A.13

// Demonstrating static variables

cla ss Website

{

   private:

     ...

  public:

      Website()   // constructor

      {

         No_of_Visitors++;

      }

      static int No_of_Visitors;

};

// defi ne static variables

int Website :: No_of_Visitors;

void main()

{

   Website V1, V2;

   ...

}
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A static variable can be accessed either by using an object or by using the class name 
and the scope resolution operator.  By using static member variables, the need for global 
variables  can be eliminated. Since static variables are associated with the class itself rather 
than the class object, they are also called class variables.

A.5.2 static Member Functions

Similar to a member variable, member functions can also be declared as static. There are 
some restrictions on member functions to be static, which are listed as follows:

1. They can access static members of the same class.
2. They do not have ‘this’ pointer.
3. There cannot be a static and a non-static version of the same function.
4.  They can be called using a class name as class_name :: function_name.

Program Code A.14 demonstrates the use of a static membe r function. For a particular compa-
ny, the record of all its salesmen is maintained as name, city, total sale amount, etc. The com-
pany has branches in Delhi, Cochin, Akola, and Nashik. The program reads information about 
its N salesmen and computes the sales amount in each city and also the total sales amount.

PROGRAM CODE A.14

// Sample program with static member fun ction

#include<iostream.h>

#include<conio.h>

#include<string.h>

class sale

{

    static int Delhi_Sale, Cochin_Sale, Akola_Sale, 

Nashik_Sale;

   static Total_Sale_Amount;

   char name[10], city[10];

   public:

      void get_data()

      {

          cout << "\nEnter name, city, & sale amount 

for a salesman:";

         cin  >> name;

         cin >> city;

         cin >> sale_amt;

      }

     void display_data()

      {

        cout << "\n" << name << city << sale_amt;

     }
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      void add_saleamt()

      {

         int x;

         x = strcmp(city, "Delhi");

         if(x == 0)

            Delhi_Sale = Delhi_Sale + sale_amt;

         x = strcmp(city, "Nashik");

         if(x == 0)

            Nashik_Sale = Nashik_Sale + sale_amt;

         x = strcmp(city, "Cochin");

         if(x == 0)

            Cochin _Sale = Cochin_Sale + sale_ amt;

         x = strcmp(city, "Akola");

         if(x == 0)

            Akola_Sale = Akola_Sale + sale_amt;

           Total_Sale_Amount = Akola_Sale + Cochin_Sale 

+ Delhi_Sale + Nashik_Sale;

      }

     // static member function

      static void display_saleamt()

      {

          cout << "\n Total sale amount in Akola = " << 

Akola_Sale;

          cout << "\n Total sale amount in Delhi = " << 

Delhi_Sale;

          cout << "\n Total sale amount in Cochin = " 

<< Cochin_Sale;

          cout << "\n Total sale amount in Nashik = " 

<< Nashik_Sale;

          cout << "\n Total sale amount of a company in 

all cities =";

         cout << Total_Sale_Amount;

      }

};   // end of class

//defi ne static variables

int sale :: Delhi_Sale, Cochin_Sale, Akola_Sale, 

Nashik_Sale;

int SALE :: Total_Sale_Amount;

void main()

{

   ...

   sale :: display_saleamt();

}   // end of main
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Note that as static variables are created before any object of its class, the fundamental 
use of static member functions is to initialize private static data before any object is actu-
ally created.

A.6 ObJeCT As FunCTIOn PArAMeTer

Similar to other parameters, objects may be passed to functions. They may be passed by 
value or by reference. The following sections explain this concept in more detail.

A.6.1 Passing Objects to Functions

If functions are invoked according to call-by-value then the function arguments are copied 
to the stack through copy constructors.  For larger objects, this affects the performance. 
Hence objects are normally passed by reference. This avoids costly duplication and al-
lows other functions to use the same object as the calling function.

A.6.2 returning Objects from Functions

A function may return an object to the caller. Program Code A.15 adds two complex 
numbers.

PROGRAM CODE A.15

// Adding two complex numbers

#include<iostre am.h>

#include<conio.h>

class complex

{

   int Real, Imag;

   public:

      void GetNo(int a, int b)

      {

         Real = a;

         Imag = b;

      }

      void GetNo()

      {

         cout << "\n Please Input Real = " << Real;

          cout << "\n Please Input Imaginary = " << 

Imag;

      }

      complex AddNo(complex.C2)

     {

        complex C3;
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        C3.Real = Real + C2.Real;

        C3.Imag = Imag + C2.Imag;

        return(C3);

     }

     void DisplayNo()

     {

        cout << Real << "+i" << Imag;

        cout << endl;

     }

};   // end of class

void main()

{

   complex C1, C2, C3;

   C1.GetNo(10, 20);

   C2.GetNo(30, 40);

   C3 = Cl.AddNo(C2);

   C1.DisplayNo();

   C2.DisplayNo();

   cout << "\n Sum of these two numbers is ";

   C3.DisplayNo();

}

Output:

10 + i20

30 + i40

Sum of these two numbers is 40 + i60

A.6.3 Arrays of Objects

Similar to any other variable, an array of objects can be created. Program Code A.16 
demonstrates the use of array of objects.

PROGRAM CODE A.16

// Array of objects

#include<iostream.h>

class sa mple

{

   int a;

   public:

      void GetA()
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      {

         cout << "\n Enter a = ";

         cin >> a;

      }

      void PutA()

      {

        cout << "\t" << a;

      }

};   end of class

void main()

{

    sample S[5];

   int i;

   for(i = 0; i < 5; i++)

   {

      S[i].GetA();

   }

   cout << "\n You entered the following values: ";

   for(i = 0; i < 5; i++)

      S[i].PutA();

}

Output:

Enter a = 1

Enter a = 2

Enter a = 3

Enter a = 4

Enter a = 5

You entered the fol lowing value s: 1 2 3 4 5 

A.6.4 Pointers to Objects

Public members of a class can be accessed through the dot (.) operator. Members of a 
class can be accessed through a pointer to the class. When accessing members of a class 
using a pointer to the object, we use the arrow (Æ) operator instead of the dot (.) operator 
as in Program Code A.17.

PROGRAM CODE A.17

// Pointer to class

#include<iostream.h>

class student
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{ 

   int RollNo;

   char Name[];

   public:

      void Getdata()

      {

         Cout << "\n Enter RollNo = ";

         cin >> RollNo;

          cout << "\n Enter Name = ";

         cin >> Name;

      }

      void Putdata()

      {

          cout << "\nRollNo = ";

         cout << RollNo;

         cout << "\n Name = ";

         cout << Name;

      }

};

void main()

{

   student S1, *p;

   P = &S1;

   p->Getdata(); // This is the same as s1.Getdata()

   p->Putdata(); // This is the  same as s1.Putdata()

}

A.7 ‘THIs’ POInTer

When a member function is called, it is automatically passed an implicit argument that is 
a pointer to the object which called the function. Such a pointer is called the ‘this’ pointer. 
Program Code A.18 uses this pointer. 

PROGRAM CODE A.18

// Use of ‘this’ pointer

#include<iostream.h>

class sample

{

    int a;

   fl oat b;

  char c;
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   public:

     void Getdata()

      {

         cout << "\n Enter integer value = ";

         cin >> a;

          cout << "\n Enter fl oat value = ";

         cin >> b;

         cout << "\n Enter a character = ";

         cin >> c;

      }

      void Putdata()

      {

         cout << "\n Integer = " << a;

         cout << "\n Float = " << b;

          cout << "\n Character = " << c;

      }

      void main()

      {

         sample S1;

         S1.Getdata();

         cout << "You have entered the following 

data:" << endl;

         S 1.Displaydata();

      }

}

/* Here, 'this' pointer points to the object 'S1'; 

'thisÆa' refers to object S1's copy of 'a'. So the 

functions get_data() and display_data() can be written 

as follows */

void Getdata1()

{

   cout << "Enter int, fl oat, char values = ";

   cin >> this->a;

   cin >> this->b;

   cin >> this->c;

}

void Displaydata2()

{

  cout << "Integer =" << this->a;

  cout << "Float = " << this->b;
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   cout << "Char = " << this->c;

}

Output:

Enter integer value = 5

Enter fl oat value = 7.8

Enter a character = g

You have entered the following data: 

Integer = 5

Float = 7.8;

Character = g

A.8 FunCTIOn OVerlOAdInG

Function overloading is the process of using the same name for two or more functions. 
However, each function should have either different types or different numbers of param-
eters. Through this difference, the compiler knows which function to call in any given 
situation. Program Code A.19 illustrates the use of overloaded functions.

PROGRAM CODE A.19

// To add two integers or two fl oat numbers

void main()

{

   int iN um1 = 5, iNum2 = 6;

   fl oat fNum1 = 5.5, fNum2 = 6.7;

   void AddNo(int, int);

   void AddNo(fl oat, fl oat);

   AddNo(iNum1, iNum2);   // calls version 1

   AddNo(fNum1, fNum2);   // calls version 2

}

void AddNo(int i1, int i2)   // version 1

{

   cout << "Addition of integers = " << (i1 + i2);

}

void AddNo(fl oat f1, fl oat f2)   // version2

{

   cout << "Addition of fl oat nos = " << (f1 + f2);

}
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A.8.1 Types of Polymorphism

Polymorphism is one of the important features of OOP. There are two types of  
polymorphism—compile-time and run-time. Compile-time polymorphism is achieved 
using function overloading and operator overloading, whereas run-time polymorphism is 
achieved using virtual functions.

A.9 COnsTruCTOrs And desTruCTOrs

Let us discuss about constructor, destructor, and overloading.

A.9.1 Constructors

Constructors are methods used to initialize an object during definition. Consider the 
following class definition:

class Car
{
   int mirror;
   int colour;
   public:
      Car()   // constructor
      {
         mirror = 0;   // no mirrors
         colour = 0;   // colour 0 means a white colour car
         cout << "A car is created\n";
      }
};

Here, the function Car() is a constructor.
Constructors have the same name as that of the class. They have no return value. How-

ever, similar to other functions, they can take arguments. For example, we may want to 
initialize a car to coordinates other than the default (0, 0). We, therefore, define a second 
constructor taking two integer arguments within the class as follows:

class Car
{
   int mirror, colour;
   public:
      Car()
      {
         mirror = colour = 0;
      }
      Car(const int M, const int C)   // Parameterized constructor
      {
         mirror = M;
         colour = C;
      }
      void setMirror(const int M);
      void setColour(const int C);
      int getMirror(){return mirror;}
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      int getColour(){return colour;}
};

Thus, constructors can be overloaded in this manner. Constructors are implicitly called 
when we define objects of their classes:

Point WhiteCar; calls  Car :: Car()
Point RedCar(2, 3); calls  Car :: Car(const int, const int)

To create a Point from another Point by copying the properties of one object to a newly 
created one, the copy process needs to be taken care of. Let us consider the class Point 
in the following code. In the class Point, we add a third constructor that takes care of 
copying values from one object to the newly created one.

class Point
{
   int _x, _y;
   public:
    Point()
    {
         _x = _y = 0;
      }
      Point(const int x, const int y)
      {
         _x = x;
         _y = y;
      }
      Point(const Point & from)   // Copy constructor
      {
         _x = from._x;
         _y = from._y;
      }
   void setX(const int val);
   void setY(const int val);
   int getX(){return _x;}
   int getY(){return _y;}
};

The third constructor takes a constant reference to an object of class Point as an argu-
ment and assigns _x and _y, the corresponding values of the provided object.

This type of constructor is important and is known as the copy constructor. It is highly 
recommended that each class includes such a constructor, even if it is as simple as the one 
in the example. The copy constructor is called in the following cases:

Point Apoint; calls Point :: Point()
Point Bpoint(apoint); calls Point :: Point(const Point &)
Point Cpoint = apoint; calls Point :: Point(const Point &)

The syntax for writing a copy constructor is as follows:

classname(const classname & 0)
{
   ...
}
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Here, 0 is a reference to the object, which is used to initialize another object. A construc-
tor is called once for global objects and for static objects. For local objects, the constructor 
is called each time the object declaration is encountered. With the help of constructors, one 
of the requirements of ADT implementation, namely initialization at definition time, is ful-
filled. We still need a mechanism that automatically destroys an object when it gets invalid 
(for example, because of leaving its scope). Therefore, destructors are defined. 

A.9.2 destructors

Consider a class List for a linked list. The elements of the list are dynamically appended 
and removed. The constructor helps in creating an initial empty list. However, when we 
leave the scope of the definition of a list object, we must ensure that the allocated memory 
is released. We, therefore, define a special method called destructor, which is called once 
for each object at its destruction time.

Destruction of an object takes place when the object leaves its scope of definition or 
is explicitly destroyed. The latter happens when we dynamically allocate an object and 
release it when it is no longer needed. Destructors are declared similar to constructors. 
Thus, they also use the class name, but are prefixed by a tilde (~).

class Point
{
   int _x, _y;
   public:
      Point()
      {
         _x = _y = 0;
      }
      Point(const int x, const int y)
      {
         _x = xval;
         _y = yval;
      }
      Point(const Point & from)
      {
         _x = from_x;
         _y = from_y;
      }
   // destructor definition
   ~Point(){/* Nothing to do!*/}
   void setX(const int val);
   void setY(const int val);
   int getX(){return _x;}
   int getY(){return _y;}
};   // end of class declaration

void main(void)
{
   point appoint;   // constructor point :: point()
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   : // called automatically.
   :
};   // here destructor for appoint is called automatically

Destructors have no arguments, and it is even improper to defi ne one. As they are implic-
itly called at destruction time, a user has no need to specify actual arguments. Destructors 
are the complements of constructors. Local objects are created when the respective block 
is entered, and destroyed when the block is exited from. Hence, the object’s respective 
constructor is called on block entry and the destructor is called on the block exit. Global 
objects are destroyed when the program terminates. So, their destructor is called auto-
matically on program termination.

A.9.3 Constructor with default Arguments

C++ allows a function to assign a parameter a default value when no argument corre-
sponding to that parameter is specifi ed in a call to that function. Program Code A.20 
shows a constructor with parameters.

PROGRAM CODE A.20

// Constructor with parameters

class Initialize

{

   int A;

   public:

       void Initialize(int A = 10)   // constructor

      {

         cout << A;

      }

      main()

      {

         Initialize();   // displays default 10

         Initialize(5);   // displays specifi ed 5

}

Output:

10

5

All parameters that take default values must appear to the right of those that do not, as 
follows:

Initialize(int A = 10, int B);   // incorrect
Initialize(int B, int A = 10);   // correct

Program Code A.21 is an example to fi nd the volume of a cube.
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PROGRAM CODE A.21

// To fi nd volume of a cube

#include<iostream.h>

class cube

{

   int x, y , z;

   public:

      cube(int i = 0, int j = 0, int k = 0)

      {

         x = i;

         y = j;

         z = k;

      }

     int volume()

     {

        int volume;

        volume = x * y * z;

        return volume;

     }

}

int main()

{

   cube A(2, 3, 4); B;

   cout << A.Volume() << endl;

   cout << B.Volume() << endl;

   return 0;

}

Output:

24

0

Writing a constructor with default parameters is advantageous. For the class Cube if, 
by default, the constructor is not written, then two constructors are to be defi ned: one with 
parameters for object A and other without parameters for object B.

A.10 InHerITAnCe

Inheritance is one of the key features of object-oriented languages. Reusability is achieved 
through inheritance wherein instead of creating a new class that is similar to the already 
existing one, we can reuse the existing one. The mechanism of deriving a new class from 
an existing one is called inheritance.
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We can define a general class that has common features related to a set of items. This 
class is called superclass or base class. A derived class inherits some or all the features of 
the base class. The superclass can be inherited by other classes, which can add their own 
unique features to it. These classes are called subclass or derived class. The syntax for a 
derived class is given as follows:

class derived class name: access right Base class name
{
 ... 
}

The phrase ‘inherits from’ is replaced by a colon in class definition. As an example, let us 
design a class for 3D points using the already existing class Point. Access right is also 
referred as visibility mode. The visibility mode is optional and if present may be either 
public or private. Visibility mode specifies whether the characteristics of the base class 
are privately or publicly derived.

class Point3D:public Point
{
   int _z;
   public:
      Point3D()
      {
         setX(0);
         setY(0);
         _z = 0;
      }
      Point3D(const int x, const int y, const int z)
      {
         setX(x);
         setY(y);
         _z = z;
      }
   ~Point3D(){/* Nothing to do */}
   int getZ(){return _z;}
   void setZ(const int val){_z = val;}
};

A.10.1 Types of Inheritance

In the definition, the keyword public is used in the first line of the class definition as its 
signature. This is necessary because C++ distinguishes two types of inheritance, public 
and private. By default, classes are privately derived from each other. We need to explic-
itly instruct the compiler to use public inheritance.

The type of inheritance influences the access rights to the elements of the base 
class. Using public inheritance, everything that is declared private in a base class 
remains private in the subclass. Similarly, everything that is public remains pub-
lic. When using private inheritance, the features are quite different as shown in  
Table A.1.
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Table A.1 Access rights and inheritance

Access rights of 
base class  
elements

Type of inheritance for sub/derived class

Private Public Protected
Private Cannot be accessed Cannot be accessed Cannot be accessed

Protected Private Protected Protected

Public Private Public Protected

In Table A.1, the leftmost column lists the possible access rights for the elements of a 
class. It also includes a third type, protected. Protected access right is used for elements 
that are directly usable in subclasses but are not accessible from outside. In other words, we 
can say that the access rights of protected elements lie between private and public elements 
such that they can be used within the class hierarchy rooted by the corresponding class.

The first, second, and third columns show the resulting access rights of the elements 
of a base class when the subclass is inherited using private, public, and protected access, 
respectively.

A.10.2 Multiple Inheritance

C++ allows a class to be derived from more than one base class, as already mentioned 
briefly. One can easily derive from more than one class by specifying the base classes in 
a comma-separated list, as follows.

class Son:public Mother, public Father
{
   ...
   public:
      Father(...):
      Mother(...),
      Father(...)
      {
         ...
      }
      ~Son(){...}
      ...
};

A.11 AbsTrACT ClAsses

An abstract class is one from which no objects are created. It is designed and used 
merely as a base class. Abstract classes are defined similar to ordinary classes. Howev-
er, a few of its member functions are designated to be necessarily defined by subclasses. 
We just mention their signature including their return type, name, and parameters, but 
indicating nothing in function body. This is expressed by appending ‘= 0’ after the 
method signatures.
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class Baseclass
{
   ...
   public:
      ...
      virtual void MemberFunction() = 0;   // Pure virtual  function
};

This class defi nition would force every derived class from which objects should be cre-
ated to defi ne a method MemberFunction(). These method declarations are also called 
pure methods.

A.11.1 Pure Virtual Functions

A pure virtual function is a virtual function that has no defi nition within the base class. 
This is illustrated in Program Code A.22.

PROGRAM CODE A.22

// Demonstrating inheritance

class BaseClass

{

   public:

      virtual void  VirFunc()

      {

          cout << "From Base class virtual f unction 

named VirFunc()\n";

      }

};

class DerivedClass1 : public BaseClass

{

   public:

      void VirFunc()

      {

          cout << "From Derived class1’s virtual 

function named VirFunc()\n"; 

      }

};

class DerivedClass2 : public DerivedC lass1

{

}
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void main()

{

   BaseClass *p, b;

   DerivedClass1 d1;

   DerivedClass2 d2;

   p = &b;

   bÆVirFunc();

   // access B ase class’s virtual function

   p = &d1;

   pÆVirFunc();

   // access derived class1’s virtual function

   p = &d2;

   pÆVirFunc();

   // As derived class2 does not have VirFunc()

}   // It will therefore access the derived class1’s

    //VirFunc()

Output:

From Base class virtual function named VirFunc()

From Derived class1’s virtual function named VirFunc()

From Derived class1’s virtual function named V irFunc()

As observed in Program Code A.22, when a virtual function is not redefi ned by a derived 
class, the version defi ned in the base class will be used. In many situations, there can be 
no meaningful defi nition of a virtual function in a base class or all derived classes would 
override a virtual function.

To handle these two cases, C++ supports pure virtual functions. A pure virtual function 
is one that has no defi nition with in the base class.

virtual type func_name(parameter_list) = 0;

When a virtual function is made pure, any derived class must provide its own defi nition; 
otherwise it results in a compile-time error. Program Code A.23 illustrates pure virtual 
functions.

PROGRAM CODE A.23 

// To draw different shapes

class shape

{

   public:

      virtual void Draw() = 0;

} ;

class line:public shape
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{

   int x1, y1, x2, y2;

   public:

      void Draw()

     {

         x1 = 10;

         y1 = 10;

         x2 = 100;

         y2 = 100;

         line (x1, y1, x2, y2);

      }

};

class circle:public shape

{

   int x1, y1, r;

   public:

      void Draw();

      {

         x1 = 100;

         y1 = 100;

         r = 50;

         circle(x1, y1, r);

      }

};

class rectangle:public shape

{

   int x1, y1, x2, y2;

   public:

      void Draw();

      {

         x1 = 100;

         y1 = 100;

         x2 = 200;

         y2 = 200;

         rectangle(x1, y1, x2, y2);

      }

};

void main()

{

   shape *p;
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   line L;

   circle C;

   rectangle R;

   int gd = detect, gm;

   initgraph(&gd, &gm, " ");

   p = &L;

   pÆDraw();   // draws a line

   p = &C;

   pÆDraw();   // draws a circle

   p = &R;

   pÆDraw();   // draws a rectangle

}

In Program Code A.23, since each derived class should implement its own Draw(), it 
should be pur e.  Pure methods must also be declared virtual because we only want to use 
objects from derived classes. Classes that defi ne pure methods are called abstract classes.

A.12 OPerATOr OVerlOAdInG

The mechanism of giving special meaning to an operator for the data type is calle d operator 
overloading. It helps to assign additional tasks to an operator and specify its meaning to 
a class to which the operator is applied. The general syntax for operator overloading is 
as follows:

return type class name::operator op(arguments list)

{
…
};

Here, op is the operator being overloaded, which is preceded by the keyword operator, 
and operator op is the function name.

Let us consider the ADT for complex numbers, Complex, as follows:

class Complex
{
   double Real, Imag;
   public:
      Complex()
      {
         Real = 0.0;
         Imag = 0.0
      }
      Complex(const double real, const double imag)
      {
         Real = real;
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         Imag = imag
      }
      Complex Add(const Complex op);
      Complex Mul(const Complex op);
      ...
};

We can now add two complex numbers by making a call to the function Add() as

   Complex A(1.0, 2.0), B(3.5, 1.2), C;
   C= A.Add(B);

Here, we add two complex numbers A and B and assign the sum to C. This expres-
sion can also be written  similar to integer or real number addition, that is, C = A + B. 
C++ allows this expression also. In C++, we can overload almost all operators for 
the newly created types. For example, we could define a ‘+’ operator for the class 
Complex as

class Complex
{
   ...
   public:
      ...
      Complex operator + (const Complex &op)   // member of a class
      {
         double real = Real + op.Real;
         imag = Imag + op.Imag;
         return(Complex(real, imag));
      }
      ...
};

In this case, we have made the operator ‘+’ as member of the class Complex. An ex-
pression of the form C = A + B is now allowed. Here, this statement is translated into 

C = A.operator + (B);

Thus, the binary operator ‘+’ needs only one argument. The first argument is implicitly 
provided by the invoking object (in this case A). However, an operator call can also be 
interpreted as a usual function call, as in

   C = operator + (A, B);

In this case, the overloaded operator is not a member of a class. Rather, it is defined out-
side as a normal overloaded function. For example, we could define ‘+’ operator as follows:

class Complex
{
   ...
   public:
      ...
      double real(){return Real;}
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      double imag(){return Imag;}
};

Complex operator + (Complex &op1, Complex &op2)
{
   double real = op1.Real() + op2.Real();
   imag = op1.Imag() + op2.Imag();
   return(Complex(real, imag));
}

In this case, we must define access methods for the real and imaginary parts because 
the operator is defined outside the scope of the class. However, the operator is so closely 
related to the class that it would make sense to allow the operator to access the private 
members. This can be done by declaring it to be a friend of the class Complex.

A.12.1 Comparing Function Overriding and Overloading

Let us compare function overriding with overloading. In function overriding, the proto-
type for a redefined virtual function must exactly match the prototype specified in the 
base class, whereas in function overloading, the prototypes must differ either in the num-
ber or type of parameters.

In function overriding, if we change the prototype while redefining a virtual function, 
then the function will be considered overloaded by the C++ compiler, and its virtual 
nature will be lost.

Virtual functions must be non-static members of the classes that they are a part of.
Virtual functions cannot be friends. Constructor functions cannot be virtual, but de-

structors can be virtual.

A.13 FrIend FunCTIOn

Friend functions can be used instead of member functions for overloading binary opera-
tors. We can define functions or classes to be friends of a class to allow them direct access 
to its private data members. For example, in Section A.12, we would like to have the non-
member function for the ‘+’ operator to have access to the private data members Real and 
Imag of the class Complex. Therefore, we declare the operator ‘+’ to be a friend of class 
Complex.

class Complex
{
   ...
   public:
      ...
      friend Complex operator +
      {
         const Complex &,
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         const Complex &
      };
};

Complex operator + (const Complex &op1, const Complex &op2)
   {
      double Real = op1.Real + op2.Real;
      Imag = op1.Imag + op2.Imag;
      return(Complex(real, imag));
}

The only change in using friend functions for operator overloading is that they do not 
have ‘this’ pointer. They cannot access the class members directly. They access class 
members using objects that are passed as arguments to them. They can be declared in the 
public or private sections of a class without any consequence.

A.14 GenerIC PrOGrAMMInG: TeMPlATes

A stack of integers is often defined as follows:

class Intstack
{
   int Top;
   int Data[20];
   public:
      Intstack()
      {
         Top = −1;
      }
      void Push(int);
      int TopElement();
      Pop();
} S1, S2;

This class can be used as a blue print for creating objects, which are stacks of integers 
such as S1 and S2. The class has private data members, such as Top and Data, and mem-
ber functions to operate on. When we need to create a stack of real numbers, we need to 
define a separate class as follows:

class Floatstack
{
   int Top;
   float Data[20];
   public:
      Floatstack()
      {
         Top = −1;
      }
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      void Push(float);
      float TopElement();
      Pop();
} S3, S4;

Here, S3 and S4 are stacks for storing real numbers. To avoid defining two similar stacks, 
which vary only in the type of data being processed, templates are used. When we need 
to perform the same operations on different data types, we can use function templates. 
Template is the most powerful feature of C++ that enables software reuse. Templates help 
in defining generic functions and classes. They allow the user to specify the type of data 
as a parameter.

Using templates, the two classes Intstack and Floatstack can be defined as a single 
class as follows:

template <class T>
class stack
{
   int Top;
   T Data[20];
   public:
      stack()
      {
         Top = −1;
      }
      void Push(T);
      T TopElement();
      Pop();
};

stack <int> S1, S2;   // integer stacks
stack <float> S3, S4;   // float stacks
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