
Head
Computer Science and IT Engineering Department

Matoshri College of Engineering and Research Centre
Nashik

1

VARSHA H. PATIL

Data Structures
Using C++

www.allitebooks.com

http://www.allitebooks.org

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2012

The moral rights of the author/s have been asserted.

First published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-806623-1
ISBN-10: 0-19-806623-6

Typeset in Times New Roman
by Laserwords, Chennai

Printed in India by Adage Printers (P) Ltd., Noida 201301 U.P.

www.allitebooks.com

http://www.allitebooks.org

Dedicated to

My parents, Ashatai and Motianna Gunjal

and

My in-laws, Sumantai and Kashiram Patil

www.allitebooks.com

http://www.allitebooks.org

Preface

The study of data structures serves as the foundation for several fields of computer science such
as programming, compiler design, and database management. Almost every program or software

uses data structures as an effective and efficient means of data storage and organization. Often, the
success of a program or software depends upon the way the data is represented and the algorithm used
to process the data. While programming, different kinds of data are required to be stored and processed
in the computer. Data can be stored in a generalized format using variables. A data structure uses a
collection of related variables that can be accessed individually or as a whole, and represents a set of
data items with a specific relationship amongst them. Thus, choosing an effective data structure is the
key to success in the design of algorithms.

For designing an effective algorithm, a programmer can choose the most efficient data structure from
a variety of available ones. Some common data structures include arrays, linked lists, hash tables, heaps,
trees, tries, stacks, and queues. Different kinds of data structures are suited for different kinds of ap-
plications. For example, arrays are popularly used in searching, sorting, and matrix-related operations.
Stacks, on the other hand, are used for converting infix=expressions to postfix and prefix forms, revers-
ing a string, processing function calls, parsing computer programs, and simulating recursion. Similarly,
queues are most useful in simulating complex real-world problems.

The data structures course has found its way into the undergraduate curriculum due to rapid devel-
opment and advances in the field of computer science. This course is taught using different program-
ming languages such as C, C++, and Java. We shall learn this course using C++, as it has emerged as
one of the leading object-oriented programming languages, and is used extensively in both academia
and industry.

about the book

Data Structures Using C++ is designed to serve as a textbook for undergraduate courses in computer
science and engineering and postgraduate courses in computer applications. This book seeks to incul-
cate a scientific aptitude in the readers by laying special emphasis on the understanding of the concepts
with the help of simple language and user-friendly presentation. It also intends to develop independent
thinking by focussing on real-world examples as well as the practical aspects of this course through
numerous chapter-end exercises.

The book emphasizes the following aspects of studying a course on data structures:
•	 the	skills	required	in	defining	the	level	of	abstraction	of	data	structures	and	algorithms;	
•	 the	ability	to	devise	alternate	implementations	of	a	data	structure;	and
•	 the	implementation	of	all	the	characteristics	of	data	structures	through	C++.

While developing the content for this book the aim has been to make the readers understand
the use of abstract data types (ADTs), classes, and various techniques for building simple data
structures.

www.allitebooks.com

http://www.allitebooks.org

Preface v

key features

•	 Each	concept	in	this	book	is	explained	by	an	algorithm	and	a	piece	of	program	code	implemented	
through C++, for imparting practical knowledge to the readers.

•	 Numerous	illustrations,	diagrams,	and	flowcharts	are	included	to	aid	the	understanding	of	concepts.
•	 A	glossary	is	provided	at	the	end	of	every	chapter,	which	helps	the	readers	assimilate	the	key	concepts	

efficiently.
•	 A	summary	is	given	at	the	end	of	every	chapter	for	a	quick	recapitulation	of	all	the	important	topics	

discussed.
•	 Extensive	chapter-end	exercises	consisting	of	 solved	multiple	choice	questions,	 review	questions,	

and programming exercises are included to facilitate revision.

organization of the book

The book is organized into 15 chapters.
Chapter 1 gives an introduction to programming, data structures, and related concepts. This chap-

ter covers the various types of data structures, structured programming, and development of software
through the software engineering approach.

Chapter 2 acquaints the reader with the concept of arrays, which is the most popular and easy-to-use
static data structure. Arrays are found in almost every high-level programming language as a built-in
data structure. This chapter describes arrays with respect to applications such as polynomials, strings,
and sparse matrices.

Chapter 3 covers the stack and its implementation as a static data structure. Applications of stacks,
such as recursion and infix expression conversion, are discussed.

Chapter 4 covers recursion and related concepts. This chapter helps us understand, evaluate, and
implement recursive functions. It also elaborates on how recursion works.

Chapter 5 illustrates the concept, realization, variations, and applications of queues. A queue is a
special type of data structure that performs insertions at one end called the ‘rear’ and deletions at another
end called the ‘front’.

Chapter 6 covers the basic concepts and realization of the linked list. This dynamic data structure is
a powerful tool and is described with respect to applications such as polynomials, strings, and sorting.

Chapter 7 deals with trees. A non-linear data structure, the tree is a means to maintain and manipulate
data	in	many	applications.	Non-linear	data	structures	are	capable	of	expressing	more	complex	relationships	
than linear data structures. Variations, implementation, and applications of trees are covered in this chapter.

Chapter 8 introduces the graph, its representation, traversal techniques, and algorithms used to pro-
cess it. In many areas of application such as cartography, sociology, chemistry, geography, mathematics,
electrical	engineering,	and	computer	science,	we	often	need	a	representation	that	reflects	arbitrary	rela-
tionships among the objects. One of the most powerful and natural solutions that models such relation-
ships is the graph.

www.allitebooks.com

http://www.allitebooks.org

vi Preface

Chapter 9 explains the basic search and sort techniques that help make the search process more
efficient. If the data is kept in proper order, it is much easier to search. Sorting is a process of orga-
nizing data in a certain order to help retrieve it more efficiently.

Chapter 10 discusses two variations of binary search trees (BSTs)—Adelson-Velskii–Landis (AVL)
and optimal binary search trees (OBSTs). A BST is a data structure that has efficient searching as well
as insertion and deletion algorithms.

Chapter 11 deals with hashing, hash functions, and related aspects. The concepts of searching tech-
niques and search trees have already been discussed in Chapters 9 and 10, respectively. In an ideal situa-
tion, we expect the target to be searched and identified in one attempt or a minimum number of attempts.
One way to achieve this is to know (or to be able to obtain) the address of the record where it is stored.
Hashing is a method of directly computing the address of the record with the help of a key, by using a
suitable mathematical function called the hash function.

Chapter 12 provides an overview of heaps. As discussed earlier, a BST is used for searching and an
array is used for sorting data of fixed size that is already collected. On the other hand, when data must be si-
multaneously inserted and sorted, then the data structure that works more efficiently than BSTs is the heap.

Chapter 13 discusses multiway search trees. Binary search trees generalize directly to multiway
search trees. A multiway search tree is a tree of order m, where each node has at most m children. Here
m is an integer. If k £ m is the number of children, then the node contains exactly k - 1 keys, which parti-
tion all the keys in the subtrees into k subsets. If some of these subsets are empty, then the corresponding
children in the tree are also empty.

Chapter 14 introduces files and organization. Files contain records that are a collection of informa-
tion arranged in a specific manner. File organization refers mainly to the logical arrangement of data in
a file system.

Chapter 15	briefly	covers	 the	standard	 template	 library	(STL)	and	its	usage.	C++ classes provide
information for creating libraries of data structures. The C++ class allows for implementation of ADTs,
with appropriate hiding of the implementation details. The STL is a part of the standard C++ class li-
brary, and can be used as the standard approach for storing and processing data.

Chapter 16 introduces the readers to the study of algorithmic strategies and their analyses. Asymptot-
ic notations are required to quantify the performance of a particular algorithm. The various algorithmic
strategies, namely, divide-and-conquer, greedy method, dynamic programming, and pattern matching
required to solve a particular problem effectively and efficiently are discussed in detail. A data structure
that represents a set of strings, called tries, is discussed towards the end. It aids in pattern matching by
making the process faster.

The appendix provides a thorough overview of the fundamentals of C++ programming. C++ has
proven to be the most suitable language for the implementation of abstract data types because of the
introduction of the concept of classes.

I sincerely hope that the readers will be able to make the most out of this book and apply the concepts
learnt in their academic and professional tenures. If you have any comments or suggestions that can be
incorporated in the future editions of this book, feel free to contact me at varsha.patil@gmail.com.

Varsha H. Patil

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTS

Preface iv

Acknowledgements vii

Features of the Book viii

 1. Fundamental Concepts 1

 2. Linear Data Structure Using Arrays 32

 3. Stacks 94

 4. Recursion 147

 5. Queues 168

 6. Linked Lists 195

 7. Trees 280

 8. Graphs 372

 9. Searching and Sorting 420

10. Search Trees 479

11. Hashing 527

12. Heaps 556

13. Indexing and Multiway Trees 589

14. Files 638

15. Standard Template Library 677

16. Algorithm Analysis and Design 714

Appendix: Overview of C++ Programming 759

Index 797

www.allitebooks.com

http://www.allitebooks.org

DETAILED CONTENTS

1. Fundamental Concepts 1
1.1 Introduction to Programming 1
1.2 Object-oriented Programming 3
1.3 Introduction to Data Structures 3

1.3.1 Data 4
1.3.2 Data type 4
1.3.3 Data object 5
1.3.4 Data structure 5
1.3.5 Abstract data type 6

1.4 Types of Data Structures 9
1.4.1 Primitive and non-primitive

data structures 9
1.4.2 Linear and non-linear

data structures 9
1.4.3 Static and dynamic data structures 10
1.4.4 Persistent and ephemeral

data structures 10
1.4.5 Sequential access and

direct access data structures 11
1.5 Introduction to Algorithms 11

1.5.1 Characteristics of algorithms 12
1.5.2 Algorithmics 13
1.5.3 Algorithm design tools:

Pseudocode and fl owchart 13
1.6 Pseudocode 14

1.6.1 Pseudocode notations 14
1.6.2 Algorithm header 14
1.6.3 Purpose 15
1.6.4 Condition and return statements 15
1.6.5 Statement numbers 16
1.6.6 Variables 16
1.6.7 Statement constructs 17
1.6.8 Subalgorithms 18

1.7 Relationship among data, data structures,
and algorithms 20

1.8 Implementation of data structures 21
1.9 Flowcharts 22
1.10 Analysis of Algorithms 22

1.10.1 Complexity of algorithms 22
1.10.2 Space complexity 23
1.10.3 Time complexity 24
1.10.4 Computing time complexity

of an algorithm 24
1.10.5 Big-O notation 25

1.11 From Problem to Program 26
1.12 Software Engineering 27

1.12.1 Analysis phase 27
1.12.2 Design phase 28
1.12.3 Implementation phase 28
1.12.4 Testing phase 29
1.12.5 Verifi cation phase 29

2. Linear Data Structure
Using Arrays 33

2.1 Sequential Organization 33
2.2 Linear Data Structure Using

Sequential Organization: Arrays 34
2.3 Array as an Abstract Data Type 36
2.4 Memory Representation and

Address Calculation 38
2.5 Class Array 40

2.5.1 Inserting an element into
an array 42

2.5.2 Deleting an element 44
2.6 Arrays Using Template 46
2.7 Multidimensional Arrays 47

2.7.1 Two-dimensional arrays 47
2.7.2 n-dimensional arrays 52

2.8 Concept of Ordered List 57
2.9 Single Variable Polynomial 58

Preface iv

Acknowledgements vii

Features of the Book viii

www.allitebooks.com

http://www.allitebooks.org

xii DetaileD Contents

2.9.1 Representation using arrays 58
2.9.2 Polynomial as array of structure 60
2.9.3 Polynomial evaluation 61
2.9.4 Polynomial addition 62
2.9.5 Polynomial multiplication 66

2.10 Array for Frequency Count 69
2.11 Sparse Matrix 70

2.11.1 Sparse matrix representation 72
2.11.2 Sparse matrix addition 73
2.11.3 Transpose of sparse matrix 77

2.12 String Manipulation Using Array 84
2.13 Pros and Cons of Arrays 89

2.13.1 Characteristics 89
2.13.2 Advantages 89
2.13.3 Disadvantages 90
2.13.4 Applications of arrays 90

3. Stacks 94
3.1 Concept of Stacks and Queues 94
3.2 Stacks 95

3.2.1 Primitive operations 96
3.3 Stack Abstract Data Type 99
3.4 Representation of Stacks Using

Sequential Organization (Arrays) 100
3.4.1 Create 102
3.4.2 Empty 102
3.4.3 GetTop 102
3.4.4 Push 103
3.4.5 Pop 103

3.5 Stacks Using Template 105
3.6 Multiple Stacks 107
3.7 Applications of Stack 110
3.8 Expression Evaluation and Conversion 110

3.8.1 Polish notation and
expression conversion 112

3.8.2 Need for prefix and
postfix expressions 113

3.8.3 Postfix expression evaluation 113
3.9 Processing of Function Calls 137
3.10 Reversing a String with a Stack 138
3.11 Checking Correctness of Well-formed

Parentheses 140

3.12 Recursion 140
3.13 Parsing Computer Programs 142
3.14 Backtracking Algorithms 142
3.15 Converting Decimal Numbers

to Binary 142

4. Recursion 147
4.1 Introduction 147
4.2 Recurrence 150
4.3 Use of Stack in Recursion 151
4.4 Variants of Recursion 152

4.4.1 Direct recursion 153
4.4.2 Indirect recursion 153
4.4.3 Tail recursion 154
4.4.4 Linear recursion 155
4.4.5 Tree recursion 155

4.5 Execution of Recursive Calls 156
4.6 Recursive Functions 157

4.6.1 Writing recursive code 159
4.6.2 Tower of Hanoi: An example

of recursion 159
4.6.3 Checking for correctness 161
4.6.4 Things to remember 162

4.7 Iteration Versus Recursion 162
4.7.1 Demerits of recursive algorithms 162
4.7.2 Demerits of iterative methods 163

4.8 Simulating Recursion Using Stack
(Eliminating Recursion) 163

4.9 Applications of Recursion 164

5. Queues 168
5.1 Concept of Queues 168
5.2 Queue as Abstract Data Type 169
5.3 Realization of Queues Using Arrays 170
5.4 Circular Queue 176

5.4.1 Advantages of using
circular queues 180

5.5 Multi-queues 180
5.6 Deque 181
5.7 Priority Queue 182

5.7.1 Array implementation
of priority queue 185

www.allitebooks.com

http://www.allitebooks.org

DetaileD Contents xiii

5.8 Applications of Queues 185
5.8.1 Josephus problem 186
5.8.2 Job scheduling 187
5.8.3 Simulation 188

5.9 Queues Using Template 189

6. Linked Lists 195
6.1 Introduction 195
6.2 Linked List 196

6.2.1 Comparison of sequential and
linked organizations 199

6.2.2 Linked list terminology 200
6.2.3 Primitive operations 201

6.3 Realization of Linked Lists 201
6.3.1 Realization of linked

list using arrays 202
6.3.2 Linked list using dynamic

memory management 203
6.4 Dynamic Memory Management 204

6.4.1 Dynamic memory
management in C++ with
new and delete operators 205

6.5 Linked List Abstract Data Type 207
6.5.1 Data structure of node 209
6.5.2 Insertion of a node 212
6.5.3 Linked list traversal 218
6.5.4 Deletion of a node 221

6.6 Linked List Variants 224
6.6.1 Head pointer and header node 224
6.6.2 Types of linked list 225
6.6.3 Linear and circular linked lists 226

6.7 Doubly Linked List 227
6.7.1 Creation of doubly linked list 228
6.7.2 Deletion of a node from

a doubly linked list 231
6.7.3 Insertion of a node in

a doubly linked list 234
6.7.4 Traversal of DLL 236

6.8 Circular Linked List 237
6.8.1 Singly circular linked list 238
6.8.2 Circular linked list with

header node 239

6.8.3 Doubly circular linked list 240
6.9 Polynomial Manipulations 241

6.9.1 Polynomial evaluation 243
6.9.2 Polynomial addition 244
6.9.3 Polynomial multiplication 247

6.10 Representation of Sparse Matrix
Using Linked List 250

6.11 Linked Stack 251
6.11.1 Class for linked stack 252
6.11.2 Operations on linked stack 253

6.12 Linked Queue 256
6.12.1 Erasing a linked queue 259

6.13 Generalized Linked List 260
6.13.1 Definition 260
6.13.2 Applications 262
6.13.3 Representation of polynomials

using generalized linked list 265
6.13.4 Representation of sets using

generalized linked list 269
6.14 More on Linked Lists 272

6.14.1 Copying a linked list 272
16.4.2 Computing the length of

a linked list 272
6.14.3 Reversing singly linked list

without temporary storage 273
6.14.4 Concatenating two linked lists 274
6.14.5 Erasing the linked list 274

6.15 Application of Linked
List—Garbage Collection 275

7. Trees 280
7.1 Introduction 280

7.1.1 Basic terminology 281
7.1.2 General tree 285
7.1.3 Representation of a general tree 289

7.2 Types of Trees 290
7.3 Binary Tree 292

7.3.1 Properties of a binary tree 293
7.4 Binary Tree Abstract Data Type 296
7.5 Realization of a Binary Tree 298

7.5.1 Array implementation
of binary trees 298

www.allitebooks.com

http://www.allitebooks.org

xiv DetaileD Contents

7.5.2 Linked implementation
of binary trees 300

7.6 Insertion of a Node in Binary Tree 304
7.7 Binary Tree Traversal 304

7.7.1 Preorder traversal 306
7.7.2 Inorder traversal 307
7.7.3 Postorder traversal 308
7.7.4 Non-recursive implementation

of traversals 308
7.7.5 Formation of binary tree from

its traversals 314
7.7.6 Breadth- and depth-first traversals 317

7.8 Other Tree Operations 320
7.8.1 Counting nodes 320
7.8.2 Counting leaf nodes 320
7.8.3 Computing height of

binary tree 321
7.8.4 Getting mirror, replica, or tree

interchange of binary tree 321
7.8.5 Copying binary tree 321
7.8.6 Equality test 322

7.9 Conversion of General Tree
to Binary Tree 322

7.10 Binary Search Tree 325
7.10.1 Inserting a node 327
7.10.2 Searching for a key 332
7.10.3 Deleting a node 334
7.10.4 Binary tree and

binary search tree 340
7.11 Threaded Binary Tree 341

7.11.1 Threading a binary tree 344
7.11.2 Right-threaded binary tree 350
7.11.3 Inorder traversal 350
7.11.4 Preorder traversal 352
7.11.5 Insert to right of a node 352
7.11.6 Deleting a node 354
7.11.7 Pros and cons 354

7.12 Applications of Binary Trees 355
7.12.1 Expression tree 355
7.12.2 Decision tree 359
7.12.3 Huffman’s coding 361
7.12.4 Game trees 364

8. Graphs 372
8.1 Introduction 372
8.2 Graph Abstract Data Type 373
8.3 Representation of Graphs 375

8.3.1 Adjacency matrix 375
8.3.2 Adjacency list 378
8.3.3 Adjacency multilist 383
8.3.4 Inverse adjacency list 384
8.3.5 Comparison of sequential

and linked representations 385
8.4 Graph Traversal 385

8.4.1 Depth-first search 385
8.4.2 Breadth-first search 392

8.5 Spanning Tree 396
8.5.1 Connected components 397
8.5.2 Prim’s algorithm 397
8.5.3 Kruskal’s algorithm 402
8.5.4 Biconnected components 407
8.5.5 Disjoint set operations 408

8.6 Shortest Path Algorithm 408

9. Searching and Sorting 420
9.1 Searching 420
9.2 Search Techniques 421

9.2.1 Sequential search 421
9.2.2 Binary search 426
9.2.3 Fibonacci search 429
9.2.4 Indexed sequential search 432
9.2.5 Hashed search 436

9.3 Sorting 437
 9.3.1 Types of sorting 437
 9.3.2 General sort concepts 439
 9.3.3 Bubble sort 440
 9.3.4 Insertion sort 444
 9.3.5 Selection sort 448
 9.3.6 Quick sort 451
 9.3.7 Heap sort 456
 9.3.8 Shell sort 460
 9.3.9 Bucket sort 461
9.3.10 Radix sort 463
9.3.11 File sort 465
9.3.12 Merge sort 466

DetaileD Contents xv

9.4 Multiway Merge and
Polyphase Merge 469
9.4.1 Comparison of ordinary merge

sort and polyphase sort 469
9.5 Comparison of All Sorting Methods 471

10. Search Trees 479
10.1 Symbol Table 479

10.1.1 Representation of
symbol table 480

10.2 Optimal Binary Search Tree 481
10.3 AVL Tree (Height-balanced Tree) 500

10.3.1 Implementation of
AVL technique 509

10.3.2 Insertions and deletions
in AVL tree 514

11. Hashing 527
11.1 Introduction 527
11.2 Key Terms and Issues 529
11.3 Hash Functions 531

11.3.1 Good hash function 531
11.3.2 Division method 532
11.3.3 Multiplication method 532
11.3.4 Extraction method 533
11.3.5 Mid-square hashing 533
11.3.6 Folding technique 534
11.3.7 Rotation 534
11.3.8 Universal hashing 534

11.4 Collision Resolution Strategies 535
11.4.1 Open addressing 535
11.4.2 Chaining 545

11.5 Hash Table Overflow 548
11.5.1 Open addressing for

overflow handling 548
11.5.2 Overflow handling by
chaining 549

11.6 Extendible Hashing 550
11.7 Dictionary 551
11.8 Skip List 552
11.9 Comparison of Hashing and

Skip Lists 552

12. Heaps 556
12.1 Basic Concepts 556

12.1.1 Min-heap and max-heap 557
12.2 Implementation of Heap 559
12.3 Heap as Abstract Data Type 560

12.3.1 Operations on heaps 561
12.4 Heap Applications 572
12.5 Heap Sort 573
12.6 Binomial Trees and Heaps 579

12.6.1 Binomial trees 579
12.6.2 Binomial heap 580
12.6.3 Representation of

binomial heap 581
12.6.4 Operations on binomial heaps 582

12.7 Fibonacci Heap 582
12.7.1 Representation of

Fibonacci heap 582
12.7.2 Operations on Fibonacci heaps 584

13. Indexing and Multiway
Trees 589

13.1 Introduction 589
13.2 Indexing 590

13.2.1 Indexing techniques 591
13.3 Types of Search Trees 593

13.3.1 Multiway search tree 593
13.3.2 B-tree 594
13.3.3 B+ tree 624
13.3.4 Trie tree 628
13.3.5 Splay tree 630
13.3.6 Red–black tree 631
13.3.7 K-dimensional tree 633
13.3.8 AA Tree 634

14. Files 638
14.1 Introduction 638
14.2 External Storage Devices 639

14.2.1 Magnetic tape 640
14.2.2 Magnetic drum 640
14.2.3 Magnetic disk 640

14.3 File Organization 641
14.3.1 Schemes of file organization 641

xvi DetaileD Contents

14.3.2 Factors affecting file
organization 642

14.3.3 Factors involved in
selecting file organization 642

14.4 Files Using C++ 643
14.4.1 File I/O classes 643
14.4.2 Primitive functions 643
14.4.3 Binary and text files 647

14.5 Sequential File Organization 651
14.5.1 Primitive operations 652
14.5.2 Advantages 654
14.5.3 Drawbacks 655

14.6 Direct Access File Organization 655
14.6.1 Primitive operations 656

14.7 Indexed Sequential File
Organization 662
14.7.1 Types of indices 662
14.7.2 Structure of indexed

sequential file 663
14.7.3 Characteristics of indexed

sequential file 663
14.8 Linked Organization 669

14.8.1 Multilist files 669
14.8.2 Coral rings 671
14.8.3 Inverted files 671
14.8.4 Cellular partitions 672

15. Standard Template Library 677
15.1 Abstract Data Type 677

15.1.1 Abstract data type and
data structures 678

15.1.2 Creating abstract data types 678
15.1.3 Stack abstract data type 679

15.2 Survey of Programming Techniques 680
15.3 Standard Template Library 691

15.3.1 Containers 691
15.3.2 Algorithms 703

15.3.3 Iterators 706
15.3.4 Function Objects 710

16. Algorithm Analysis and Design 714
16.1 Introduction 714

16.1.1 Algorithm analysis 715
16.1.2 Asymptotic notations (W, q, O) 715

16.2 Divide-and-Conquer 716
16.2.1 Unique characteristics

and use 716
16.2.2 General method 717
16.2.3 Binary search 718
16.2.4 Merge sort 720
16.2.5 Quick sort 723
16.2.6 Strassen’s algorithm for

matrix multiplication 729
16.3 Greedy Method 730

16.3.1 General greedy method 731
16.3.2 Knapsack problem 732

16.4 Dynamic Programming 734
16.4.1 General method of dynamic

programming 735
16.4.2 Elements of dynamic

programming 736
16.4.3 Principle of optimality 737
16.4.4 Limitations of dynamic

programming 738
16.4.5 Knapsack problem 738

16.5 Pattern Matching 743
16.5.1 Brute-force approach 744
16.5.2 Boyer–Moore algorithm 746
16.5.3 Knuth–Morris–Pratt

algorithm 747
16.6 Tries 753

16.6.1 Standard tries 754
16.6.2 Compressed tries 755
16.6.3 Suffix tries 755

Appendix: Overview of C++ Programming 759

Index 797

FuNDAMENTAL CONCEPTs 1

OBJECTIVEs

After completing this chapter, the reader will be able to understand the following:
 • th e well-defi ned, clear, and simple approach of program design
 • fundamental aspects of an algorit hm and its characteristics
 • basic concepts such as data, data type, data object, and data structure
 • the power of abstract data type (ADT)
 • the software development life cycle (SDLC)

Programming requires different kinds of information to be stored in the computer
and the input data to be processed. The information can be stored in a generalized

format using variables. In principle, one variable allows the storage of a single data
entity. However, a set of single variables may not solve complex problems effi ciently. A
data structure uses a collection of related variables that can be accessed individually or
as a whole. In other words, a data structure represents a set of data items with a specifi c
relationshi p between them. In this chapter, we shall study the fundamental concepts
related to programming and data structures.

1.1 INTRODuCTION TO PROGRAMMING

A computer is a programmable data processor that accepts input and ins tructions to pro-
cess the input (program) and generates the required output as shown in Fig. 1.1. Altho ugh

Program Data

Computer

Output

Fig. 1.1  P rocessing a program

2 data structures using c++

computers are competent to perform complex and difficult operations, they are inherently
simple and passive machines. They must be told precisely and explicitly in a language they
can understand, as to what is to be done. This sequence of instructions is known as a pro-
gram. A program that satisfies user needs as per his/her specifications is called software.
The physical machinery that actually executes these instructions is known as hardware.

The first phase of developing a program is to define the problem statement precisely.
We have to mention very clearly what a program shall do and what our expectations from
the program are. After defining the problem, we have to select the best suitable algorithm
to solve it. An algorithm is a stepwise description of an action that leads the problem from
its start state to its goal state. An algorithm must be very clear, definite, and efficient for
the problem it aims at solving. The art of programming consists of designing or choosing
algorithms and expressing them in a programming language. This phase of developing a
program is very important. Later the code is tested, debugged, and revised, if required.

All computer languages can be classified into the following three basic categories:

1. Machine language
2. Assembly language
3. High-level language

In most machine languages, binary digits (bits 0 and 1) represent everything, name-
ly, instructions, data, and variables. Binary numbers are composed entirely of zeros and
ones. Programs written in machine language can be executed very fast by computers. This
is because machine instructions are directly understood by the computer and no transla-
tion program is required. However, these programs consisting of a sequence of zeros and
ones are difficult to read, write, and interpret by humans.

Assembly languages are a major improvement over machine languages. In an assem-
bly language, a short name, rather than a big binary number, defines each instruction
and identifies each variable. In this language, programming numeric operation codes are
substituted by mnemonics. A mnemonic is any kind of mental technique we use to help
us represent numeric codes. Programs written in assembly language require a special
program called the assembler that translates assembly language instructions into machine
language instructions. Nowadays, programs are written in assembly language only when
the speed of execution is of high priority.

Assembly language is easier to understand as it uses symbolic names for complex
calculations and other processes, thus saving a lot of time and effort for the programmer.
Errors made in the assembly language are easier to find and correct. However, assembly-
level programming has a few drawbacks. Instructions vary from machine to machine and
are hence machine-dependent. Therefore, the programmer must be aware of a particular
machine’s characteristics, requirements, and instruction set.

A high-level language, instead of being machine-dependent, is oriented towards the
problem to be solved. These languages enable the programmer to write instructions using
English words and familiar mathematical symbols. Every instruction that the programmer
writes in a high-level language is translated into a set of machine language instructions.
This is known as one-to-many translation.

Fundamental concepts 3

Each language is considered the best to solve a particular class of problems but unsuit-
able to solve another class of problems. Today, there are over 200 high-level languages.
Some of the most common ones are C, C++, Java, Pascal, FORTRAN, and COBOL. A
system program that translates a high-level language such as C++ to a machine language
is called a compiler. It is thus a peculiar sort of program whose input is one program and
output is another program.

1.2 OBJECT-ORIENTED PROGRAMMING

Traditional structured programming has been used as algorithmic decomposition. Algorith-
mic or functional decomposition views software as a process. It decomposes the software/
program into modules, which represent the steps of the process. These modules are imple-
mented by language constructs such as procedures in Pascal, subroutines in FORTRAN,
or functions in C++. Object-oriented programming-based (OOP-based) design represents
a fundamental change from the structured programming design method. Object-oriented
decomposition views software as a set of well-defined objects that model entities in the ap-
plication domain. These objects interact with each other to form a software system. Func-
tional decomposition is addressed after the system has been decomposed into objects. The
basic concept in OOP is an object. Object-oriented programming is used to model the real
world through objects. In our real world, everything, from an apple to a car, is an object,
which can be distinguished from one another in the physical as well as the behavioural
point of view. An object is an entity that performs computations and has a local state. It is
also viewed as a combination of data and procedural (behavioural) elements.

The success of a software project often depends upon the choices made in the repre-
sentation of data and algorithms designed to process the data. The proper choice of a data
structure can be a key point in the design of many algorithms. Clearly, we need proper
ways to describe and process data.

A data type consists of a collection of values together with a set of basic operations
defined on these values. A data type is called an abstract data type (ADT) if the program-
mer can use it without having access to and also without knowing the details of how the
values and operations are implemented.

An object-oriented language such as C++ is a programming paradigm that has a direct
link to ADTs by implementing them as a class. We shall use C++ as the programming
language in this book.

1.3 INTRODuCTION TO DATA sTRuCTuREs

Computer science includes the study of data, its representation, and its processing by
computers. Hence, it is essential to study about the terms associated with data and its rep-
resentation. As mentioned in Section 1.2, the success of a software project often depends
upon the choices made in the representation of the data and the choice of algorithms, and
hence we need better methods to describe and process the data. The term data structure
refers to the organization of data elements and the interrelationships among them.

4 data structures using c++

The field of data structures is very important and central to the study of computer
science and programming. There is a clear distinction between the data structure speci-
fication and its realization. The specification comes before the programming language
application and its realization comes with a specific programming language. Again, it is
very important to study how these two processes can be accomplished successfully.

Specification of data structures requires explaining the functioning and overall be-
haviour of the data structure, whereas the implementation of the data structure requires
simulating the data structure in some programming language. There is a close relation-
ship among algorithms, data, and data structures. In this chapter, we are going to learn
about the fundamental concepts of data structures, various types, programming tools,
algorithms, and flowcharts.

1.3.1 Data

Data is nothing but a piece of information. Data input, data manipulation (or data pro-
cessing), and data output are the functions of computers. Hence all information taken as
input, processed within a computer, or provided as output to the user is nothing but data.
It can be a number, a string, or a set of many numbers and strings.

Atomic and Composite Data

Atomic data is the data that we choose to consider as a single, non-decomposable entity.
For example, the integer 1234 may be considered as a single integer value. Of course, we
can decompose it into digits, but the decomposed digits will not have the same character-
istics of the original integer; they will be four single digit integers ranging from 0 to 9. In
some languages, atomic data is known as scalar data because of its numeric properties.

The opposite of atomic data is composite data. Composite data can be broken down into
subfields that have meaning. For example, a student’s record consists of Roll_Number,
Name, Branch, Year, and so on. Composite data is also referred to as structured data and
can be implemented using a structure or a class in C++.

1.3.2 Data Type

Data type refers to the kind of data a variable may store. Whenever we try to implement
any algorithm in some programming language, we need variables. A variable may have
any value as per the facilities provided by that language. Data type is a term that specifies
the type of data that a variable may hold in the programming language.

Built-in Data Types

In general, languages have their built-in data types. However, they also allow the user to
define his or her own data types, called user-defined data types, using the built-in data
types; for example, in the C/C++ languages, int, float, and char are built-in data types.
Using these built-in data types, we can design (define) our own data types by means of
structures, unions, and classes.

Fundamental concepts 5

User-defined Data Types

Suppose we want to maintain a record of 100 students with the following fields in each
record: roll number, name of student, and percentage of marks of the students. Then we
use the C++ class as follows:

class Student
{
 private:
 int roll;
 char name[20];
 float percentage;
 public:
 void GetRecord();
 void PrintRecord();
 void SearchRecord();
}

Class, structure, and union are the user-defined data types in C++.

1.3.3 Data Object

A data object represents a container for data values — a place where data values may
be stored and later retrieved. A data object is characterized by a set of attributes, one of
the most important of which is its data type. The attributes determine the number and
type of values that the data object may contain and also determine the logical organization
of these values.

A data object is nothing but a set of elements, say D. The data object ‘alphabets’ can be
defined as D = {A, B, …, Z, a, b, …, z} and the data object ‘integers’ as D = {…, -3, -2,
-1, 0, 1, 2, 3, …}. The data object set may be finite or infinite.

A data object is a run-time instance of data structures. It is the run-time grouping
of one or more data pieces. Some of the data objects that exist during program execu-
tion are programmer-defined, such as variables, constants, arrays, and files. The
programmer explicitly creates and manipulates these data objects through declarations
and statements in the program. System-defined data objects are ordinarily generated au-
tomatically as needed during program execution without explicit specification by the
programmer.

1.3.4 Data structure

Data structures refer to data and representation of data objects within a program, that is,
the implementation of structured relationships. A data structure is a collection of atomic
and composite data types into a set with defined relationships. By structure, we mean a
set of rules that holds the data together. In other words, if we take a combination of data
types and fit them into a structure such that we can define the relating rules, we can have
data structures that consist of other data structures too.

6 data structures using c++

In brief, a data structure is

1. a combination of elements, each of which is either as a data type or another data
structure and

2. a set of associations or relationships (structures) involving the combined elements.

Most of the programming languages support several data structures. In addition, modern
programming languages allow programmers to create new data structures for an application.

We can define data structures as follows:

A data structure is a set of domains D, a designated domain d Œ D, a set of functions
F, and a set of axioms A. The triple structure (D, F, A) denotes the data structure with the
following elements:

Domain (D) This is the range of values that the data may have.

Functions (F) This is the set of operations for the data. We must specify a set of
operations for a data structure to operate on.

Axioms (A) This is a set of rules with which the different operations belonging to F can
actually be implemented.
Let us consider an example of a data structure of an integer.

Here, the data structure d = Integer

Integer
Domain D = {Integer, Boolean}
Set of functions F = {zero, ifzero, add, increment}
Set of axioms A = {
 ifzero(zero()) Æ true;
 ifzero(increment(zero()) Æ false
 add(zero(), x) Æ x
 add(increment(x), y) = increment(add(x, y))
 equal(increment(x), increment(y) = equal(x, y)
 }

end Integer

In general, the data type of a variable is the set of values that the variable may hold. An
ADT is a mathematical model that includes data with various operations defined. Imple-
mentation details of an ADT are hidden, which is why it is called abstract. To represent
the mathematical model underlying an ADT, we use the data structure, which is a collec-
tion of the variables and the data types inter-related in different ways.

1.3.5 Abstract Data Type

Software engineering is very close to computer science. Software engineering is the
establishment and the use of good engineering methodologies and a principle for
writing reliable software. One of the most important principles in accomplishing this

Fundamental concepts 7

is the use of abstraction. Abstraction allows us to organize the complexity of a task by
focussing on logical properties of data and actions rather than on the implementation
details. Logical properties refer to the ‘what’ and implementation details refer to the
‘how’. The abstraction is at the procedural and data level.

Data abstraction is the separation of logical properties of the data from details of how
the data is represented. Procedural abstraction means separation of the logical properties
of action from implementation. Procedural abstraction and data abstraction are closely
related as operations within the ADTs are procedural abstractions. An ADT encompasses
both procedural as well as data abstraction; the set of operations are defined for any data
type that might make up the set of values.

An ADT is the one in which the set of operations is defined at a formal, logical
level, without being restricted by the operational details. In other words, an ADT is
a data declaration packaged together with the operations that are meaningful for the
data type. We encapsulate the data and the operations on this data and hide them from
the user. In brief, an ADT includes declaration of data, implementation of operations,
and encapsulation of data and operations.

Consider the concept of a queue. At least three data structures will support a queue.
We can use an array, a linked list, or a file. If we place our queue in an ADT, users should
not be aware of the structure we use. As long as they can enqueue (insert) and dequeue
(retrieve) data, how we store the data should make no difference.

We are aware of the importance of hiding the implementation. The user need not know
the data structure to be able to use an ADT. For a queue, the application program should
have no knowledge of the data structure. All references to and manipulation of the data in
the queue must be handled through defined interfaces to the structure. Allowing the appli-
cation program to directly reference the data structure is a common fault in many applica-
tions that prevent the ADT from being fully portable to other applications.

We want a data specification method that has the following features:

Abstract It should help the programmer organize data by focussing on its logical
properties rather than on the implementation details, which in turn allows the user to hide
the complexity of a task.

Safe It should control the manipulation of the representation of data so that malfunctioning
can be avoided.

Modifiable It should make it relatively easy to modify the representation.

Reusable The data structure should be such that it is a reusable product for others.

Let us redefine ADT for the Integer.

Abstract data type Integer
 Operations
 zero() Æ int
 ifzero(int) Æ boolean

8 data structures using c++

 increment(int) Æ int
 add(int, int) Æ int
 equal(int, int) Æ boolean
 Rules/axioms for operations
 for all x, y Œ integer let
 ifzero(zero()) Æ true;
 ifzero(increment(zero()) Æ false
 add(zero(), x) Æ x
 add(increment(x), y) Æ increment(add(x, y))
 equal(increment(x), increment(y) Æ equal(x, y)
 end Integer

This is an example of the Integer data structure; five basic functions are defined on
a set of integer data object. These functions are as follows:

1. zero() Æ int — It is a function which takes no input but generates the integer zero
as result. That is, its output is 0.

2. ifzero(int) Æ Boolean — This function takes one integer input and checks whether
that number is 0 or not. It generates output of type True/False, that is, of the Boolean type.

3. increment(int) Æ int — This function reads one integer and produces its incremented
value, that is, (integer + 1), which is again an integer.

 For example, increment(3) Æ 4

4. add(int, int) Æ int — This function reads two integers and adds them producing
another integer.

5. equal(int, int) Æ Boolean — This function takes two integer values and checks
whether they are equal or not. Again, it gives output of the True/False type. So its
output is of Boolean type.

The set of axioms which describes the rules of operations is as follows:

1. ifzero(zero) Æ true — This axiom says that the zero() function which produces
an integer zero, is checked by the ifzero()function, and ultimately the result is true.

2. ifzero(increment(zero())) Æ false — The value of increment(zero) is 1
and hence ifzero(1) is false.

3. add(zero(), x) Æ x —This means that 0 + x = x.
4. add(increment (x), y) Æ increment (add(x, y))—Assuming x = 3 and y = 5,

this means that add(increment (3), 5) = increment(add(3, 5)) = add(4, 5) =
increment(8) = 9.

5. equal(increment(x), increment(y)) Æ equal(x, y)— This axiom specifies
that if x and y are equal, then x + 1 and y + 1 are also equal.

The axioms do not specify the form of implementation of the data structure. This is why
the ADT is an abstract one. An ADT can also be defined as a collection of variables together
with the functions necessary to operate on those variables. Variables represent the informa-
tion contained, whereas functions define the operations that can be performed on data.

Fundamental concepts 9

In OOP, we can create an object from an ADT. In fact, C++ provides ‘class’ decla-
ration precisely for the purpose of defining the ADT from which objects are created.
Creating an object involves setting aside a block of memory for the variables of that
object. In C++, functions that operate on variables of a class are called member func-
tions. An ADT is a way of defining a data structure so that we know what it does but
not how it does it.

1.4 TYPEs OF DATA sTRuCTuREs

We defined a data structure as a way of organizing data that specifies

1. a set of data elements, that is, a data object; and
2. a set of operations that are applied to this data object.

These two sets form a mathematical construct that may be implemented using a particular
programming language. The data structure is independent of their implementation. The
various types of data structures are as follows:

1. primitive and non-primitive
2. linear and non-linear
3. static and dynamic
4. persistent and ephemeral
5. sequential and direct access

1.4.1 Primitive and Non-primitive Data structures

Primitive data structures define a set of primitive elements that do not involve any other
elements as its subparts — for example, data structures defined for integers and charac-
ters. These are generally primary or built-in data types in programming languages.

Non-primitive data structures are those that define a set of derived elements such as
arrays. Arrays in C++ consist of a set of similar type of elements. Class and structure are
other examples of non-primitive data structures, which consist of a set of elements that
may be of different data types and functions to operate on.

1.4.2 Linear and Non-linear Data structures

Data structures are classified as linear and non-linear. A data structure is said to be linear
if its elements form a sequence or a linear list. In a linear data structure, every data ele-
ment has a unique successor and predecessor. There are two basic ways of representing
linear structures in memory. One way is to have the relationship between the elements by
means of pointers (links), called linked lists. The other way is using sequential organiza-
tion, that is, arrays.

Non-linear data structures are used to represent the data containing hierarchical or
network relationship among the elements. Trees and graphs are examples of non-linear

10 data structures using c++

data structures. In non-linear data structures, every data element may have more than one
predecessor as well as successor. Elements do not form any particular linear sequence.
Figure 1.2 depicts both linear and non-linear data structures.

1.4.3 static and Dynamic Data structures

A data structure is referred to as a static data structure if it is created before program ex-
ecution begins (also called during compilation time). The variables of static data structure
have user-specified names. An array is a static data structure.

In many applications, it is desirable to be able to start a program with the smallest
amount of memory necessary and then allocate extra memory as the need arises. This
facility is provided by many programming languages and in C++, through the operator
new. These functions allow programmers to allocate memory during execution. Hence,
the programmer can realize the data structure which dynamically grows and shrinks.

A data structure that is created at run-time is called dynamic data structure. The vari-
ables of this type are not always referenced by a user-defined name. These are accessed
indirectly using their addresses through pointers.

A linked list is a dynamic data structure when realized using dynamic memory
 management and pointers, whereas an array is a static data structure. Non-linear data struc-
tures are generally implemented in the same way as linked lists. Hence, trees and graphs
can be implemented as dynamic data structures.

1.4.4 Persistent and Ephemeral Data structures

Data structures comprise a set of operations and a set of data to operate on. The opera-
tions that process the data may modify the data. This may create two versions of a data
structure namely the recently modified (also called as updated) data structure and the pre-
vious version, which can be saved before performing any operation on it. Some languages

Linear Non-linear

Data structure

Hierarchical
relationship

(trees)

Network
relationship

(graphs)

Sequential
organization

(arrays)

Linked
organization
(linked lists)

Fig. 1.2  Classification of data structures

Fundamental concepts 11

such as ML have built-in data types such as the list. This data type has the associated
 operations—append and reverse. These operations preserve two copies of the data struc-
ture, list, as the recent version and the previous version.

A data structure that supports operations on the most recent version as well as the
previous version is termed as a persistent data structure. A persistent data structure is
partially persistent if any version can be accessed but only the most recent one can be
updated; it is fully persistent if any version can be both accessed and updated.

An ephemeral data structure is one that supports operations only on the most recent
version. The distinction between ephemeral and persistent data structure is essentially the
distinction between functional (also called effect free) and conventional imperative (also
called effect full) programming paradigms. The functional data structures are persistent
and the imperative data structures are ephemeral.

Data structures in conventional imperative languages are ephemeral as insertion into
a linked list mutates the list and the old version is lost. Data structures in functional
languages are persistent as inserting an element into a list yields a new list and the old
version still remains available. In addition, a stack can be implemented so that pushing
yields a new stack, leaving the old stack still available. The language ML supports both
persistent and ephemeral data structures.

1.4.5 sequential Access and Direct Access Data structures

This classification is with respect to the access operations associated with data structures.
Sequential access means that to access the nth element, we must access the preceding
(n - 1) data elements. A linked list is a sequential access data structure.
Direct access means that any element can be accessed without accessing its predecessor
or successor; we can directly access the nth element. An array is an example of a direct
access data structure.

1.5 INTRODuCTION TO ALGORIThMs

We define computers as a data processor or as a black box. A computer acting as a black
box accepts input (data and program) and generates output. A program is a set of in-
structions that tells the computer what to do with data. The instructions are in computer
 language, that is, a program is a set of instructions written in a computer language.

An algorithm, named after the ninth-century Persian mathematician Abu Jafar Mo-
hummed bin Musa al-Khwarizmi, is simply a set of rules for carrying out some task,
 either by hand or, more usually, on a machine. The real world performance of any soft-
ware depends on

1. the algorithm chosen and
2. the suitability and efficiency of various layers of implementation

12 data structures using c++

Good algorithm design is, therefore, crucial for the performance of all software sys-
tems. Moreover, the study of algorithms provides insight into the fundamental nature
of the problem. A study of the algorithms also provides insight into possible solution
techniques independent of the programming language, programming paradigm, computer
hardware, or any other implementation aspects.

A programmer should first solve the problem in a step-by-step manner and then try
to find the appropriate instruction or series of instructions that solves the problem. This
step-by-step solution is called an algorithm. An algorithm is independent of the computer
system and the programming language.

Each algorithm includes steps for

1. input,
2. processing, and
3. output.

1.5.1 Characteristics of Algorithms

An algorithm, as defined in Section 1.5, is simply a set of rules for carrying out some task,
either by hand or, more usually, on a machine. This set of rules is the idea behind a com-
puter program. This idea is independent of implementation. An algorithm stays the same
whether the program is in Pascal, running on a Cray in New York, in BASIC, running on
a Macintosh in Kathmandu, or in Fortran-90, running on Param 10000 in India!

An algorithm has to solve a general, specified problem. An algorithmic problem is
specified by describing the set of input instances it must work on and the desired proper-
ties that the output must have.

Let us redefine the term algorithm.
An algorithm is a well-defined computational procedure that transforms inputs into out-

puts achieving the desired input–output relationship. A computational problem is a speci-
fication of the desired input–output relationship. An instance of a problem is all the inputs
needed to compute a solution to the problem. A correct algorithm halts with the correct
output for every input instance. We can then say that the algorithm solves the problem.

In rather more detail, an algorithm is a finite and definite procedure for solving a prob-
lem. The finiteness is important. The definiteness is also important. We cannot accept
algorithmic methods that involve making inspired guesses, such as finding a clever sub-
stitution for an integral.

Hence, an algorithm is a finite ordered set of unambiguous and effective steps which,
when followed, accomplish a particular task by accepting zero or more input quantities
and generate at least one output.

The following are the characteristics of algorithms:

Input An algorithm is supplied with zero or more external quantities as input.

Output An algorithm must produce a result, that is, an output.

Fundamental concepts 13

Unambiguous steps Each step in an algorithm must be clear and unambiguous. This
helps the person or computer following the steps to take a definite action.

Finiteness An algorithm must halt. Hence, it must have finite number of steps.

Effectiveness Every instruction must be sufficiently basic, to be executed easily.
In brief, an algorithm is an ordered finite set of unambiguous and effective steps that

produces a result and terminates.

1.5.2 Algorithmics

Algorithmics is a field of computer science, defined as a study of algorithms. The overall
goal of algorithmics is to understand the complexity of algorithms. This study includes
design and analysis of algorithms.

When we set out to solve a problem, there may be a choice of algorithms available. In
such a case, it is important to decide on which one to use. Depending on our priorities and
on the limits of the equipment available, we may want to choose an algorithm that takes
the least time, uses the least storage, is the easiest to program, and so on. The answer can
depend on many factors, such as the number involved, the way the problem is presented,
or the speed and storage capacity of the available computing equipment.

It may be the case that none of the available algorithms is entirely suitable so that we
have to design a new algorithm of our own. Algorithmics is the science that lets us evalu-
ate the effect of the various external factors on the available algorithms so that we can
choose the one that best suits our particular circumstances; it is also the science that tells
us how to design a new algorithm.

Algorithmics include the following:

How to devise algorithms Devising an algorithm is an art that can never be fully
automated. By studying various techniques, that is, design strategies, it becomes easier to
devise new and useful algorithms.

How to validate algorithms Once an algorithm is devised, it is necessary to show that it
computes the correct answer for all possible legal inputs. The methods used for validation
include contradiction and mathematical induction.

How to analyse algorithms Analysis of algorithms refers to the task of determining
how much computing time and storage an algorithm requires.

1.5.3 Algorithm Design Tools: Pseudocode and Flowchart

The two popular tools used in the representation of algorithms are the following:

1. Pseudocode
2. Flowchart

Let us study each in detail.

14 data structures using c++

1.6 PsEuDOCODE

An algorithm can be written in any of the natural languages such as English, German,
French, etc. One of the commonly used tools to define algorithms is the pseudocode.
A pseudocode is an English-like presentation of the code required for an algorithm. It is
partly English and partly computer language structure code. The structure code is noth-
ing but syntax constructs of a programming language (in a slightly modified format). For
example, some language structure constructs such as arrays or pointers are not used in the
English language, hence they are borrowed from programming languages.

1.6.1 Pseudocode Notations

Pseudocode is a precise description of a solution as compared to a flowchart. To get a
complete description of the solution with respect to problem definition, pre–post condi-
tions and return value details are to be included in the algorithm header. In addition,
information about the variables used and the purpose are to be viewed clearly. To help
anyone get all this information at a glance, the pseudocode uses various notations such
as header, purpose, pre–post conditions, return, variables, statement numbers, and sub-
algorithms. Let us discuss the details of each.

1.6.2 Algorithm header

A header includes the name of the algorithm, the parameters, and the list of pre and post
conditions. This information is important to know about the algorithm just by reading the
header, not the complete algorithm. Therefore, the header information must be complete
enough to communicate to the programmer everything he or she must know to use the
algorithm. The header makes the pseudocode readable.

In Algorithm 1.1, there are two parameters, an array A and the total number of elements
in the array, that is, its size N. The parameters could be called either by reference (ref) or
by value (val). The type is included in pointed brackets after the identifier. The algorithm
is to sort the array A of size N.

algorithm 1.1

Algorithm sort(ref A<integer>, val N<integer>)
Pre array A to be sorted
Post sorted array A
Return None
1. if(N < 1) goto step (4)
2. M = N − 1
3. For I = 1 to M do
 For J = I + 1 to N do
 begin
 if(A(I) > A(J))
 then
 begin

Fundamental concepts 15

 T = A(I)
 A(I) = A(J)
 A(J) = T
 end
 end if
 end
4. stop

1.6.3 Purpose

The purpose is a brief description about what the algorithm does. It should be as brief as
possible, describing the general algorithm processing, but should not describe all of the
processing. For example, in Algorithm 1.1, the purpose just tells that this algorithm sorts the
array of integers and does not need to state that the array is sorted and where the result is stored.
Algorithm 1.2 searches for an element in an array.

algorithm 1.2

Algorithm search (val list<array>,val X<integer>)
Pre list containing data array to be searched and
 argument containing data to be located
Post None
Return Location

1.Let list be the array and X be the element to be searched
2.For I = 1 to N do
 begin
 if(List(I) = X)
 then
 Return I
 end if
 end
3.Return -1
4.stop

1.6.4 Condition and Return statements

The pre condition states the pre-requirements for the parameters, if any. For example,
in an algorithm for set operations, the pre condition may state that the input should be a
group of elements without duplicates. Sometimes, there are no pre conditions, in which
case, we still list the pre condition with the statement Nothing, as shown here.

Pre Nothing

If there are several input parameters, then the pre condition should be shown for each.
For example, a simple array search Algorithm 1.2 has the following header:

algorithm search (val list<array>, val argument<integer>)

16 data structures using c++

Search array for specific item and return index location.

Pre list containing data array to be searched, argument containing
data to be located in the list

Post None
Return Location if found else return −1 indicating that the element

is not found

In this search, two parameters are passed by value. The pre condition specifies that
the two input parameters, list and argument, must be initialized. If a binary search were
being used, the pre condition would also state that the array data must be ordered.

The post condition identifies any action taken and the status of any output parameters.
In Algorithm 1.1, the post condition is the array containing sorted data. If a value is re-
turned, it will be identified by a return condition.

1.6.5 statement Numbers

The statements in an algorithm are numbered sequentially. For conditional or un-conditional
jumps and also for iteration statements, numbering helps identify the statements uniquely.
Any label system such as the decimal or roman numbers or even alphabets can be used
to label the statements. If decimal notation is used, then the statements within the itera-
tive constructs can be numbered as 4.1, 4.2, and so on. This notation helps indent the
algorithm properly.

4 while(i < 10) do
 begin
 4.1 x = x * y
 4.2 i = i + 1
 end

1.6.6 Variables

Variables are needed in algorithms. We need not define every variable used in the algo-
rithm. The use of meaningful variable names is appreciated as the context of the data is
indicated by its name. Hungarian notation is suggested for variable naming. It is sug-
gested to use descriptive and meaningful variable names to guarantee that the meaning is
understood properly.

The variable name used in an algorithm can be continued to be used when the respec-
tive algorithm is coded in a particular language. These meaningful variables make the code
easier to understand, debug, and modify. It is suggested to follow a few thumb rules as:

1. It is better to use descriptive variable names instead of single character names. Often,
we use variables such as x, y, z, a, or b and i or j for index variables of loops, matrices,
and array indices. For example, instead of using i and j as index variables for a two-
dimensional array, it is suggested to use row and column as index variables. In searching
algorithms, the suggested variable for the element to be searched is target instead of x.

Fundamental concepts 17

For a table of weather information, City and Temperature will be a better row index
and column index variables, respectively.

2. It is suggested to avoid usage of short forms and generic names. For example, use
ListofColors instead of lcol or NumberOfStudents instead of nostud. The reason
being short forms do not necessarily mean what they intend. Commonly used generic
names are index, count, number, sum, total, row, column, etc. These variables are used
in various modules of a program and may have many instances. Adding a good qualifier to
the generic name results in better understanding to read, debug, or modify the code.

3. It is expected to use variable names so that the data type of the variable can be indicated.
For example, fAverageMarks, iNumberofColors, bAvailability for float, integer,
and Boolean data respectively.

1.6.7 statement Constructs

There are three statement constructs used for developing an algorithm. The objective is
that an algorithm should be made up of a combination of lesser constructs, say three, as
in the following:

1. sequence
2. decision
3. repetition

The use of only these constructs makes an algorithm easy to understand, debug, and
modify.

Sequence

An algorithm is a sequence of instructions, which can be a simple instruction (input, out-
put, or assignment) or either of the other two constructs. Figure 1.3 shows an example of
such a sequence construct. Algorithm 1.3 computes the area of a circle.

Sequence construct

do action 1

do action 2

 .

 .

 .

do action n

Algorithm 1.3

Pre None
Post None
Return None
1. Read Radius
2. AreaOfCircle = 2 * 3.142 * Radius * Radius
3. Print AreaOfCircle
4. Stop

Fig. 1.3  Sequence construct

www.allitebooks.com

http://www.allitebooks.org

18 data structures using c++

Decision

Some problems cannot be solved with the help of just a sequence of simple instructions.
Sometimes, we need to test the conditions. If the result of the testing is true, we follow a
sequence of instructions; if it is false, we follow a different sequence of instructions. This
is called decision or selection construct (Fig. 1.4).

Series of actions

Series of actions

If a condition is true,
Then

Else

Fig. 1.4  Decision construct

 example 1.1 Compare two numbers to print the maximum among them.

Solution The algorithm for comparing two numbers is listed in Algorithm 1.4.

algorithm 1.4
 Pre None
 Post None
 Return None
1. Read two numbers Num1 and Num2
2. If Num1 > Num2
 Then Print Num1
 Else Print Num2

3. Stop

Repetition

In some problems, we need to repeat a set of instructions. We can use repetition construct
for this purpose. Figure 1.5 shows a repetition construct and an example of computing
the sum of first N numbers, Â N (Algorithm 1.5).

1.6.8 subalgorithms

We studied three constructs — sequence, decision, and iteration — for developing
an algorithm for solvable problems. A solvable problem is a problem that has a solution
that can be described in the form of an algorithm.

Fundamental concepts 19

while a condition is true do

Action 1

Action 2

.

.

.

Action n

end while

Algorithm 1.5

Pre None
Post None
Return SUM
1. Read N
2. Let SUM = 0 and Index = 1
3. while Index <= N do

SUM = SUM + Index
Index = Index + 1
end while

4. Return SUM

Repetition construct

Fig. 1.5  Repetition construct

In structured programming, the problem solution is described in the form of smaller
modules. This modular design breaks an algorithm into smaller units called subalgo-
rithms. These units are referred by various names in programming languages such as
functions, subroutines, procedures, methods, and modules.

The goal of modular design in algorithms is to make the complex and lengthy algo-
rithms easy to read, write, verify, and debug. Each subalgorithm can, in turn, be divided
into subalgorithms, and the process of such subdivision may continue till each step
becomes effective.

 example 1.2 Write an algorithm to compute the following:

P = n!/(n − r)!

Solution Algorithms 1.6 computes the number of possible ways of arranging any
r of n elements.

algorithm 1.6

Pre None
Post None
Return Result

1. Read n and r
2. Let
 (a) A = FACT(n) and
 (b) B = FACT(n − r)
3. Result = A / B

20 data structures using c++

4. Print Result

5. Stop

Here FACT is the subalgorithm to compute the factorial of a number as

n! = n × (n - 1) × (n - 2) × ... × 1

subalgorithm FACT
1. Read n
2. Let Result = 1
3. while(n not equal to 1) do
 Result = Result × n
 n = n – 1
 end while
4. Return Result

Note that the subalgorithm makes the algorithm readable and compact. A read-
able algorithm is the one that, at one glance, gives the reader knowledge about the
overall computation process. A compact algorithm is without redundant code. You
must have noted in this algorithm that the factorial computation is required twice.
A subalgorithm FACT has avoided the redundancy of code to make the algorithm a
compact one.

1.7 RELATIONshIP AMONG DATA, DATA sTRuCTuREs, AND ALGORIThMs

There is an intimate relationship between the structuring of data and analysis of algo-
rithms. In fact, a data structure and an algorithm should be thought of as one single unit;
neither one making sense without the other. Let us consider the example of searching for
a person’s phone number in a directory. The procedure we follow to search a person and
get his/her phone number critically depends on how the phone number and names are
arranged in the directory. Let us consider two ways of organizing the data (phone numbers
and names) in the directory.

1. The data is organized randomly. Then to search a person by name, one has to
linearly start from the first name till the last name in the directory. There is no other
option.

2. If the data is organized by sorting the names (alphabetically sorted in ascending
order), then the search is much easier. Instead of linearly searching through all
records, one may search in a particular area for particular alphabets, similar to using
a dictionary.

As the data is in sorted order, both the binary search and a typical directory search meth-
ods work. Hence our ideas for algorithms become possible when we realize that we can
organize the data as we wish. We can say that there is a strong relationship between the

Fundamental concepts 21

structuring of data (along with inter-relationship among data structures) and the opera-
tions to process the data (algorithms). In fact, the way we process our data depends on the
way we organize it.

1.8 IMPLEMENTATION OF DATA sTRuCTuREs

A data structure is an aggregation of atomic and composite data types into a set with the
relationship among them defined. As defined in Section 1.3.4, a data structure D is a trip-
let, that is, D = (D, F, A), where D is a set of data object, F is a set of functions, and A is a
set of rules to implement the functions.

Let us consider an example of integer data type (int) in C++.

D = (0, ±1, ±2, ±3, …)
F = (+, -, *, /, %)
A = (a set of binary arithmetic rules to perform addition, subtraction, division, multi-

plication, and module operations)

The set of axioms A defines semantics of operations on D for F. An implementation
of a data structure D is a mapping from D to a set of other data structures E. This map-
ping specifies how every data object of D is to be represented by objects of E. More-
over, it requires that every function of D must be written using the functions of the
implementing data structures E. Thus, we may say that the integers are represented by
bit strings, the Boolean is represented by 0 and 1, and an array is represented by a set
of sequential locations in memory. We have also defined the term abstract data type,
which is a data structure in which rules (A — the set of axioms) do not imply a form of
representation.

Hence, another way of viewing implementation of a data structure is that it is a process
of refining an ADT until all the operations are expressed effectively so that they are de-
fined in terms of directly executable functions.

Hence, implementation of data structures can be viewed in terms of two phases: speci-
fication and implementation. Such a division of tasks is useful as it helps to control the
complexity of the entire process.

Phase I: Specification At the first stage, a data structure should be designed so that we
know what it does and not necessarily how it will do it.

Phase II: Implementation At this stage, we define all functions with respect to
the description of how to manipulate data. This can be done with algorithms so that
the details of the operation can be understood easily, and the reader can implement
them easily and effectively with the help of any programming language. Either of the
design tools, that is, an algorithm or a flowchart, can be used at this phase. We have
already learnt about algorithms as design tools; let us now learn about flowcharts.

22 data structures using c++

1.9 FLOwChARTs

A very effective tool to show the logic flow of a program is the
flowchart. A flowchart is a pictorial representation of an algo-
rithm. It hides all the details of an algorithm by giving a picture;
it shows how the algorithm flows from beginning to end. In a
programming environment, it can be used to design a complete
program or just a part of the program.

The primary purpose of a flowchart is to show the design of
the algorithm. At the same time, it relieves the programmers
from the syntax and details of a programming language while
allowing them to concentrate on the details of the problem to
be solved. This is in contrast to another programming design
tool, the pseudocode, which provides a textual design solution.
Both tools have their advantages, but a flowchart has the pictorial
power that other tools lack. Figure 1.6 is a flowchart that describes
the process of reading, adding, printing three numbers, and printing
the result.

1.10 ANALYsIs OF ALGORIThMs

Algorithms heavily depend on the organization of data. There can be several ways to orga-
nize data and/or write algorithms for a given problem. The difficulty lies in deciding which
algorithm is the best. We can compare one algorithm with the other and choose the best.
For comparison, we need to analyse the algorithms. Analysis involves measuring the per-
formance of an algorithm. Performance is measured in terms of the following parameters:

1. Programmer’s time complexity — Very rarely taken into account as it is to be paid for
once

2. Time complexity — The amount of time taken by an algorithm to perform the intended
task

3. Space complexity — The amount of memory needed to perform the task.

It is very convenient to classify algorithms on the basis of the relative amount of time
and space they require and specify the growth of time and space requirements as a func-
tion of the input size.

1.10.1 Complexity of Algorithms

Algorithms are measured in terms of time and space complexity. The time complexity of
an algorithm is a measure of how much time is required to execute an algorithm for a giv-
en number of inputs and is measured by its rate of growth relative to standard functions.

D = a + b + c

Start

Read a, b, c

Print D

Stop

Fig. 1.6  Flowchart for 
adding three numbers

Fundamental concepts 23

Space complexity is similar to time complexity. The space complexity of an algorithm
is a measure of how much storage is required by the algorithm. It is possible to design an
algorithm that uses more space and less time or less space and more time.

Typically, computer scientists are interested in minimizing the time complexity of al-
gorithms. The economics of storage versus the speed of computers is the principal factor
that determines the focus on time complexity. The cost of memory has decreased at an
exponential rate over the past 25 years, whereas the cost of central processing unit time
has not decreased at that rate. The bottleneck is the execution time. Hence, computer sci-
entists focus on the execution time of algorithms.

An algorithm can be characterized by a timing function T (n). T (n) is a measure
of how much time is required to execute an algorithm with the given n data values.
For example, the timing function for a sort operation specifies the time required to
sort n data values. The timing function for an algorithm that solves a system of linear
equations specifies the time required to solve n linear equations.

An algorithm O(n2), pronounced ‘oh of n squared’, indicates that its timing function
will grow no faster than the square of the number of data values it processes. Let us learn
more about these two measures of algorithms.

1.10.2 space Complexity

Space complexity is the amount of computer memory required during program execu-
tion as a function of the input size. Space complexity measurement, which is the space
requirement of an algorithm, can be performed at two different times:

1. Compile time
2. Run time

Compile Time Space Complexity

Compile time space complexity is defined as the storage requirement of a program at
compile time.

This storage requirement can be computed during compile time. The storage needed
by the program at compile time can be determined by summing up the storage size of
each variable using declaration statements. For example, the space complexity of a
non-recursive function of calculating the factorial of number n depends on the number
n itself.

Space complexity = Space needed at compile time

This includes memory requirement before execution starts.

Run-time Space Complexity

If the program is recursive or uses dynamic variables or dynamic data structures, then
there is a need to determine space complexity at run-time. In general, this dynamic storage

24 data structures using c++

size is dependent on some parameters used in a program. It is difficult to estimate
memory requirement accurately, as it is also determined by the efficiency of compiler.
Memory requirement is the summation of the program space, data space, and stack space.

Program space This is the memory occupied by the program itself.

Data space This is the memory occupied by data members such as constants and
variables.

Stack space This is the stack memory needed to save the function’s run-time
environment while another function is called. This cannot be accurately estimated
since it depends on the run-time call stack, which can depend on the program’s data
set. This memory space is crucially important for recursive functions.

1.10.3 Time Complexity

Time complexity T (P) is the time taken by a program P, that is, the sum of its compile
and execution times. This is system-dependent. Another way to compute it is to count the
number of algorithm steps. An algorithm step is a syntactically or semantically meaning-
ful segment of a program. We can determine the number of steps needed by a program to
solve a particular problem instance in one of the following two ways:

1. Introduce a new variable, count, into the program. This is a global variable with
initial value 0. Statements to increment count amount are introduced in the program
at appropriate locations. This is done so that each time the statement in the original
program is executed, the count is incremented by the step count of that statement. We
measure the run-time of an algorithm by counting the number of steps.

2. Manually compute the number of times each statement will be executed. The number of
times the statement is executed is its frequency count. Get the sum of frequency counts
of all statements. This sum is the number of steps needed to solve a given problem.

Best, Worst, and Average Cases

The best case complexity of an algorithm is the function defined by the minimum number
of steps taken on any instance of size n.

The worst case complexity of an algorithm is the function defined by the maximum
number of steps taken on any instance of size n.

The average case complexity of an algorithm is the function defined by an average
number of steps taken on any instance of size n.

Each of these complexities defines a numerical function — time versus size.

1.10.4 Computing Time Complexity of an Algorithm

The total time taken by the algorithm or program is calculated using the sum of the time
taken by each of the executable statements in an algorithm or a program. The time re-
quired by each statement depends on the following:

Fundamental concepts 25

1. the time required for executing it once
2. the number of times the statement is executed

The product of these two parameters gives the time required for that particular statement.
Compute the execution time of all executable statements. The summation of all the execu-
tion times is the total time required for that algorithm or program.

In general, when we sum up the frequency count of all the statements, we get a poly-
nomial. In an analysis, we are interested in the order of magnitude of an algorithm, that is,
we are interested in only those statements that have the greatest frequency count.

1.10.5 Big-O Notation

Given the speed of computers today, we are not concerned as much with the exact mea-
surement of an algorithm’s efficiency as we are with its general order of magnitude.
If the analysis of two algorithms shows that one executes 15 iterations while the other
executes 25 iterations, then they are both so fast that we cannot see the difference. On
the other hand, if one iterates 15 times and the other iterates 1500 times, we should be
concerned.

We have shown that the number of statements executed in the function for n elements
of data is a function of the number of elements, expressed as f(n). Although the equation
derived for a function may be complex, a dominant factor in the equation usually deter-
mines the order of magnitude of the result. Therefore, we do not need to determine the
complex measure of efficiency but only the factor that determines the magnitude. This
factor is the big-O, as in ‘on the order of’, and expressed as O(n), that is, on the order of n.

The simplification of efficiency is known as the big-O analysis. For example, if an
algorithm is quadratic, we would say its efficiency is O (n2) or on the order of n squared.

The big-O notation can be derived from f (n) using the following steps:

1. In each term, set the coefficient of the term to 1.
2. Keep the largest term in the function and discard the others. The terms are ranked from

the lowest to the highest as follows:

log2n … n … n log2n … n2 … n3 … nk … 2n … n!

For example,

1. To calculate the big-O notation for

f(n) = n ¥ (n + 1)
2

 = 1
2

 n2 + 1
2

 n

 we first remove all coefficients. This gives us

n2 + n

 which, after removing the smaller factors, gives us n2

26 data structures using c++

 which, in big-O notation, is stated as

O(f(n)) = O(n2)

2. To consider another example, let us look at the polynomial expression

f(n) = ajn
k + aj-1n

k-1 + … + a2n
2 + a1n + a0

 We first eliminate all the coefficients as follows:

f(n) = nk + nk-1 + … + n2 + n + 1

The largest term in the expression is the first one, so we can say that the order of this
polynomial expression is

O(f(n)) = O(nk)

Any measure of efficiency presumes that a sufficiently large sample is being consid-
ered. If you are dealing with only 10 elements and the time required is a fraction of a
second, there will be no meaningful difference between the two algorithms. On the other
hand, as the number of elements being processed grows, the difference between algo-
rithms can be staggering, for example, for n it is 10,000. Returning for a moment to the
question of why we should be concerned about efficiency, consider the situation in which
you can solve a problem in three ways: one is the linear method, another is the linear
logarithmic method, and the third is the quadratic method. We should be able to analyse
and select one among the many possible algorithms.

1.11 FROM PROBLEM TO PROGRAM

It is noticed that programmers spend most of their time in understanding what problems
to solve. Initially, most problems have no simple, precise specifications. Rather, there
are certain problems, such as creating a ‘gourmet’ recipe or preserving world peace, that
may be impossible to formulate in terms of a computer solution. Even if we feel that our
 problem can be solved on a computer, there is usually considerable scope in several prob-
lem parameters. Often, it is only through experimentation that reasonable values for these
parameters can be found.

If certain aspects of a problem can be expressed in terms of a formal model, it is usu-
ally beneficial to do so, for once a problem is formalized, we can look for solutions in
terms of a precise model and determine whether a program already exists to solve that
problem. Even if there is no existing program, we can at least discover what is known
about this model and use the properties of the model to help construct a good solution.
We shall now consider a systematic approach (or phases) to program development. Soft-
ware engineering is the field that emphasises on such a systematic approach for software

Fundamental concepts 27

development. Let us now discuss software engineering, which is important for both small
simple programs developed by beginners and complex software developed by a group
of programmers.

1.12 sOFTwARE ENGINEERING

Software engineering is the establishment and use of good engineering methods and prin-
ciples to obtain reliable software that works on real machines.

A fundamental concept in software engineering is the software development life cycle
(SDLC). Software, like many other products, goes through a cycle of repeating phases.
The development process in the software life cycle broadly involves four phases: analysis,
design, implementation, and testing. Figure 1.7 shows these phases as part of the develop-
ment process.

System development

Analysis

Design

Implementation

Testing

Fig. 1.7  System development phases

1.12.1 Analysis Phase

The development process starts with the analysis phase; the systems analyst defines
requirements that specify what the proposed system is to accomplish. The requirements
are usually stated in terms that the user understands. There are four steps in the analysis
phase: define the user, define the needs, define the requirements, and define the methods.

28 data structures using c++

Define the user A software package may be designed for a generic user or a specific
user. For example, an accounting package may be created for use by any firm. On the
other hand, a customized banking package may be created for a specific bank. The user of
the package must be clearly defined.

Define the needs After the user has been identified, the analysts clearly define the
needs. The user, or the representative of the user, clearly defines his/her expectations of
the package.

Define the requirements On the basis of the needs of the user, the analyst can exactly
define the requirements for the system. For example, if a package is to print cheques at the end
of the month for each employee, what level of security and accuracy should be implemented
needs to be clearly defined and studied. So one must study all levels of requirements of the
system to be developed.

Define the methods Finally, after the requirements are defined in clear terms, the
analyst can choose the appropriate methods to meet those requirements.

1.12.2 Design Phase

The design phase defines how the system will accomplish what was defined in the analy-
sis phase. In the design phase, the systems are determined, and the design of the files and/
or the databases is completed.

Modularity Today, the design phase uses a very well-established principle called
modularity. The whole package is divided into small modules. Each module is designed
and tested and is linked to other modules through a main program.

Tools The design phase uses several tools, the most common being a structure chart.
A structure chart shows how to break your package into logical steps; each step is a
separate module. The structure chart also shows the interaction among all the parts
(modules).

1.12.3 Implementation Phase

In the implementation phase, we create the actual programs.

Tools This phase uses several tools to show the logical flow of the program before
the actual writing of the code. One tool, still popular, is the flowchart. A flowchart uses
standard graphical symbols to represent the logical flow of data through a module. The
second tool used by programmers is the pseudocode. The language of the pseudocode is
partly English and partly logical, which describes what the program is to do in precise
algorithmic detail. This requires the steps to be defined in sufficient detail so that
conversion to a computer program can be accomplished easily.

Fundamental concepts 29

Coding After the production of a fl owchart, a pseudocode, or both, the programmer
actually writes the code in a language specifi c for the project. The choice of the language
is based on the effi ciency of the language for that particular application.

1.12.4 Testing Phase

Once the programs have been written, they must be tested. The testing phase can be a very
tedious and time-consuming part of program development. The programmers are com-
pletely responsible for testing the system as a whole, that is, testing to make sure all the
programs work properly together. There are two types of testing—black box and white
box. The system test that engineers and users do is black box testing. White box testing is
the responsibility of the programmer.

1.12.5 Verifi cation Phase

Program verifi cation is a process to prove that the program does what it is intended to do.
For simpler and smaller programs, verifi cation often consists of trying a few sample cases
to see whether the results of running the code match our expectations. However, such meth-
odology leaves certain errors undetected in the program, and hence it is avoided. Again, it is
not recommended to verify the program, after the running code is available, as the defects
detected are diffi cult to repair. It is said that ‘even verifi cation must be verifi ed’. This means,
along with the system, the tests prepared are also to be verifi ed. In addition, the quality of
every software must be verifi ed.

RECAPITuLATION

•  A computer is a programmable data process-
ing machine that accepts input, instructions to 
process  the  input  (program),  and  generates 
the  required  output.  The  data  and  the  pro-
gram  are  stored  in  the  computer’s memory. 
A  program  is  written  in  the  computer’s  lan-
guage.

•  The art of programming consists of designing 
or choosing algorithms and expressing  them 
in  a  programming  language. An  algorithm  is 
a stepwise description of actions that lead the 
problem from its start state to its goal state.

•  One of the common tools used to defi ne algo-
rithms  is  the  pseudocode.  The  pseudo code 

is an English-like  representation of  the  code 
required for an algorithm. It is part English and 
part structured code.

•  A very effective tool to show the logic fl ow of a 
program is the fl owchart. A fl owchart is a picto-
rial representation of an algorithm. It hides all 
the details of an algorithm by giving the whole 
picture,  that  is,  it  shows  how  the  algorithm 
fl ows from the beginning to the end.

•  A  data  structure  represents  a  set  of  data 
items  with  a  specifi c  relationship  between 
them. The success of a software project often 
depends on  the  choices made  in  the  repre-
sentation of data and algorithms designed to 

30 data structures using c++

process the data. The proper choice of a data 
structure can be a key point in the design of 
many algorithms.

•  Software engineering is the establishment and 
use  of  good  engineering method ologies  and 
the principle to writing reliable software. One 
of the most important principles in accomplish-
ing  this  is  the use of abstraction. Abstraction 
allows us to organize the complexity of a task 
by focusing on  logical properties of data and 
actions  rather  than  on  the  implementation 
details. Logical properties refer  to  the  ‘what’ 
and implementation details refer to the ‘how’. 
The abstraction is at the procedural and data 
levels. 

•  A data  structure  is  a way of  organizing data 
that specifi es  a set of data elements, that is, 
a data object, and a set of operations that are 
applied  to  this  data  object.  These  two  sets 
form  a  mathematical  construct  that  may  be 
implemented using a particular programming 
language. The data  structure  is  independent 

of  its  implementation.  The  various  types  of 
data structures are as follows: 

▪  primitive and non-primitive
▪  linear and non-linear
▪  static and dynamic
▪  persistent and ephemeral
▪  sequential and direct access

•  There is an intimate relationship between the 
structuring of data and analysis of algorithms. 
In  fact,  a  data  structure  and  an  algorithm 
should be thought of as a single unit, neither 
one making sense without the other. 

•  Algorithms depend heavily on the organization 
of data. There can be several organizations of 
data  and/or  algorithms  for  a  given  problem. 
The diffi culty lies in deciding which algorithm is 
the best. We can compare the algorithms and 
choose the best. For comparison, we need to 
analyze the algorithms. The analysis involves 
measuring the performance of an algorithm in 
terms of time and space complexity.

Abstract data type Data and the operations on the
data are encapsulated and hidden from the user.
An abstract data type is a data declaration pack-
aged together with the operations that are mean-
ingful for the data type. It includes the declaration
of data, implementation of operations, and encap-
sulation of data and operations.

Algorithm A step-by-step solution is called an al-
gorithm. An algorithm is independent of the com-
puter system and the programming language.

Assembler A software that translates assembly
language code to machine language is called an
assembler.

Compiler A software that translates higher level
language code to machine language is called a
compiler.

Data Data is nothing but a piece of information.
Data input, data manipulation (or data process-
ing), and data output are the themes of a com-
puter.

Data object A data object represents a container for
data values — a place where data values may be
stored and later retrieved from. A data object is a
run-time instance of the data structure.

Data structure Data structure refers to data and the
representation of data objects within a program, that
is, the implementation of structured relationships.
A data structure is a set of domains D, a designated
domain d Œ D, a set of functions F, and a set of axi-
oms A. The triple structure (D, F, A) denotes the data
structure which is usually denoted as d.

KEY TERMs

Fundamental concepts 31

Data type Data type is a term that specifi es the type of
data that a variable may hold in the programming lan-
guage.

Flowchart A pictorial representation of an algo-
rithm is called a fl owchart.

Non-linear data structure In non-linear data struc-
tures, every data element may have more than one
predecessor as well as successor. Elements do not
form any particular linear sequence.

Linear data structure A data structure is said to
be linear if its elements form a sequence or a lin-
ear list. In a linear data structure, every data ele-

ment has a unique successor and a unique prede-
cessor.

Program A set of instructions is called a program.
Pseudocode A pseudocode is partly English and

partly programming language used for writing
an algorithm.

Software engineering Software engineering is the
establishment and use of good engineering meth-
ods and principles to obtain reliable software that
works on real machines. Software engineering is
the fi eld that emphasizes on a systematic approach
for software development.

EXERCIsEs

Multiple choice questions

 1. The basic unit of information is the
 (a) byte
 (b) bit
 (c) block
 (d) sector
 2. The order of an algorithm that fi nds whether a

given Boolean function of n variables produces
an output of 1 is

 (a) constant
 (b) linear
 (c) logarithmic
 (d) exponential
 3. Software engineering primarily deals with
 (a) reliable software
 (b) cost-effective software
 (c) reliable and cost-effective software
 (d) none of the above
 4. A pictorial representation of an algorithm is

called
 (a) a fl owchart
 (b) a structure chart
 (c) a pseudocode
 (d) an algorithm
 5. An English-like representation of the code is

called

 (a) a fl owchart
 (b) a structure chart
 (c) a pseudocode
 (d) an algorithm
 6. A subalgorithm is also known as a
 (a) function
 (b) subroutine
 (c) module
 (d) all of the above
 7. A basic algorithm that arranges data according

to their values is known as
 (a) inquiry
 (b) sorting
 (c) searching
 (d) recursion
 8. Defi ning the user's needs, requirements, and

methods is a part of the
 (a) analysis phase
 (b) design phase
 (c) implementation phase
 (d) testing phase
 9. In the system development process, the

fl owchart is a tool used in the
 (a) analysis phase
 (b) design phase
 (c) implementation phase

32 data structures using c++

 (d) testing phase
10. In the system development process, a

pseudocode is a tool used in the
 (a) analysis phase
 (b) design phase
 (c) implementation phase
 (d) testing phase

Review questions

 1. What is programming? What are programming
languages and how are they classified?

 2. What is object-oriented programming?
 3. Define the terms data, data type, data structure,

and abstract data type.
 4. What are the types of data structures?
 5. Explain the relationship between data structure

and algorithm in the process of problem solving
with an example.

 6. What is the formal definition of an algorithm?
Write the essential properties and the
performance measures of an algorithm.

 7. How is a pseudocode related to an algorithm?
How is a flowchart related to an algorithm?

 8. Write a pseudocode to compute the sum of the
first N integers. Draw a flowchart for the same.

 9. Draw a flowchart for an algorithm that finds the
smallest number among N numbers.

10. Draw a flowchart for an algorithm that finds the
largest number among N numbers.

11. What is software engineering? What is software
development life cycle?

Answers to multiple choice questions

1. (b) 2. (d) 3. (c) 4. (a) 5. (d) 6. (d) 7. (b) 8. (a) 9. (b)
10. (b)

2 LINEAR DATA STRUCTURE
USING ARRAYS

ObJECTIVES

After completing this chapt er, the reader will be able to understand the following:
 • Sequential organization of data
 • Linear data structure and its implementation using sequential representation in the
form of arrays

 • Features of arrays
 • Ordered list and its representation
 • Effi cient use of arrays for representing and manipulating polynomials, strings, and 
sparse matrices

Data can be organized in a linear or non-linear form. In linear (or sequen tial) organiza-
tion, all the elements of the data can be arranged in a particular sequence, and each

element has a unique successor (and/or predecessor) in the sequence. When each element
may have one or more successors (or predecessors), it is called a non-linear data structure.
Linear list is one type of linear data structure. Linear data structures can be realized using
arrays as well as linked lists. In this chapter, we shall learn about the realization of linear
data structure using arrays. Almost all programming languages support the concept of
arrays. It is a very common and simple means of sequential data structuring. That is
why linear data structures deserve signifi cant attention. This chapter covers linear data
structure using arrays and its implementation, characteristics, and applications.

2.1 SEQUENTIAL ORGANIZATION

We have already studied that there are multiple ways to organize data (Chapter 1). Data
organization heavily affects programming logic. We therefore select data structures and
algorithms in such a way that the overall program proves to be effi cient in terms of space
and time complexities.

As the name suggests, sequential organization allows storing data a fi xed distance
apart. If the ith element is stored at location X, then the next sequential (i + 1)th element is

34 data structures using c++

stored at location X + C, where C is a constant. Linear arrays, linear stacks, and linear
queues are some examples of sequential organization. Figure 2.1 shows the four
elements 11, 34, 25, and 9 stored in sequential organization starting with address L,
where C = 1.

One major advantage of sequential or-
ganization is the direct or random access to
any data element of the list in constant time.
As sequential organization uses continuous
memory locations to store data, the data ac-
cess time remains constant for accessing any
element of the list, irrespective of the total
length or size of the data list. When perform-
ing in-between insertions or deletions of ele-
ments in sequential organization, we have to
perform data shifting to keep the organization
consistent and intact. So the in-between inser-
tions and deletions become much expensive
with respect to time and space complexities.

2.2 LINEAR DATA STRUCTURE USING SEQUENTIAL ORGANIZATION: ARRAYS

To store a group of data together in a sequential manner in computer’s memory, arrays
can be one of the possible data structures. Arrays enable us to organize more than one
element in consecutive memory locations; hence, it is also termed as structured or com-
posite data type. The only restriction is that all the elements we wish to store must be of
the same data type. It can be thought of as a box with multiple compartments, where each
compartment is capable of holding one data item. Arrays support direct access to any of
those data items just by specifying the name of the array and its index as the item’s posi-
tion (sequence number as subscript).

Arrays are the most general and easy to use of all the data structures. An array as a data
structure is defined as a set of pairs (index, value) such that with each index, a value
is associated.

index—indicates the location of an element in an array
value—indicates the actual value of that data element

Index allows the direct addressing (or accessing) of any element of an array. Most of
the time, an array is implemented by using continuous or consecutive memory locations
(Fig. 2.2). However, at other times, it may not necessarily be implemented by using mem-
ory locations that are a fixed distance apart.

Address Element

L 11

L + 1 34

L + 2 25

L + 3 9

Fig. 2.1 Elements at sequential locations

Linear data structure using arrays 35

This is internally handled by operating sys-
tems; for users, it is a sequentially arranged
data at consecutive locations.

An array is a finite ordered collection of
homogeneous data elements that provides
direct access to any of its elements. Arrays
can be used in any of their varied forms.
A one-dimensional array is the simplest
form of an array. Each word in the defini-
tion has a specific meaning:

Finite The number of elements in an
array is finite or limited.

Ordered collection The arrangement of
all the elements in an array is very specific,
that is, every element has a particular
ranking in the array.

Homogeneous All the elements of an
array should be of the same data type.
Let us see how to declare an array in C++.

int Array_A[20];

This statement will allocate a memory
space to store 20 integer elements, and the name assigned to the array is Array_A.

char Name[20];

Similarly, this statement will create an array Name that can store 20 character data type
elements in it.

The common terms associated with arrays are as follows:

Size of array The maximum number of elements that would be stored in an array is
the size of that array. It is also the length of that array. Arrays are static data structures
because once the size of an array is defined, it cannot be changed after compilation. For
the array Name, the size is 20.

Base The base address of an array is the memory location where the first element of an
array is stored. It is decided at the time of execution of a program. The value of this base
address varies at every program execution as it is decided at the run-time. It cannot be
decided or defined even by a programmer.

Data type of an array The data type of an array indicates the data type of elements
stored in that array. For the array Name, the data type is char.

Address (C = 2)

L 11

L + 2 34

L + 4 25

L + 6 9

Fig. 2.2  Array elements placed a fixed 
distance apart

36 data structures using c++

Index A user or a programmer can access the elements of an array by using subscripts
such as Name[0], Name[1], ..., Name[i]. This subscript is called the index of an
element. It indicates the relative position of every element in the array with respect to its
first element. Often, an array is also referred to as subscripted variable.

Range of index If N is the size of an array, then in C++, the range of index is 0 -
(N - 1) (whereas for languages such as Pascal it could be some integer, say, lower
bound (LB) to upper bound (UB), e.g., 2 to n + 1 or -3 to n - 4). The range is
language dependent.

Arrays help in storing a large amount of
information, all with the same name and
different indices. They provide direct access
to these elements. Arrays are suitable for
data items of fixed size. Figure 2.3 declares
an array of name Array_A of 100 integers.
The compiler generally allocates 2 bytes of
memory for each integer. Ultimately, the ar-
ray will need 200 bytes of memory in total.
The second statement stores the numeric
value 456 to the third element of the array
which is at Array_A[2].

The amount of storage per element de-
pends on the data type of the array. In C++,
the memory requirement for different data
types is given as follows:

1. 8 bits per element for each character,
2. 16 bits per element for integer variable, and
3. 32 bits per element for each floating point number.

One kind of data type is the generic data type where the operations are defined but the
types of the items being manipulated are not, that is, the set of operations is defined but
the set of values is not. The arrays are built-in generic data type in C/C++.

2.3 ARRAY AS AN AbSTRACT DATA TYpE

As defined in Section 2.2, an array is a set of pairs, index and value. For each index,
there exists one associated element of an array. For defining an array as an abstract data
type (ADT), we have to define the very basic operations or functions that can be per-
formed on it. The basic operations of arrays are creating an array, storing an element,
accessing an element, and traversing the array.

Array_A[0]

Array_A[1]

Array_A[2]

.

.

.

Array_A[99]

int Array_A[100];
Array_A[2] = 456;

456

Fig. 2.3 Storing elements at
any random location

Linear data structure using arrays 37

The function create() produces a new, empty array. Access() takes an array and an
index as input, and returns either the appropriate value or an error. Store() is used to
enter new index–value pairs. The axiom given in line 6 of the ADT definition reads ‘to
retrieve the jth item where x has already been stored at index i in Array_A is equivalent
to checking if i and j are equal, and if so, x, else search for the jth value in the remaining
array, Array_A’. This axiom was originally given by J. McCarthy. Notice how the axioms
are independent of any representation scheme. In addition, i and j need not necessarily
be integers, but we assume that they are, so that an equal() function can be devised.

If we restrict the index values to be integers, then assuming a conventional random
access memory, we can implement store() and access() so that they operate in a con-
stant amount of time. If we interpret the indices to be n-dimensional, (i1, i2, ..., in), then
the previous axiom by J. McCarthy defines the n-dimensional arrays.

Let us specify an ADT array in which we provide specifications with operations to be
performed.

ADT array(index, value)
1. declare create() Æ array
2. access(array, index) Æ value
3. store(array, index, value) Æ array
4. for all Array_A Œ array, x Œ value, and i, j Œ index let
5. access(create, i) = error
6. access(store(Array_A, i, x), j) = x if equal(i, j)
7. else access(Array_A, j)
8. end
end array

Formally, ADT is a collection of domains, operations, and axioms (or rules). Let us
discuss each of them.

Domain A domain is the intended set of values that any array may use either as an index
or as a value. We can say that a domain of an array is a collection of fixed, homogeneous
elements that may be atomic or structured. The restriction is that all the elements should
be homogeneous. Arrays use a set of indices or subscript values that have one-to-one
correspondence with the positive integer values. In C++, the index 0 is used for the first
element, index 1 is used for the second element, and so on till N - 1, for an array of size N.

Operations As shown in the ADT, the three basic operations of an array are described
as follows:

1. create() Æ array—This operation creates an empty, new array. Whenever a new
array is created, it is initially empty.

2. access(array, index) Æ value—This function takes an array and index as input
and accesses the data element of that position. When the array is newly created, this
operation must indicate an error because initially each array is by default empty.

www.allitebooks.com

http://www.allitebooks.org

38 data structures using c++

3. store(array, index, value) Æ array—This operation is used to store a value in
the array at a specified index position giving the updated array as an output.

Axioms The following are the axioms which form part of the ADT:

1. access(create, i) = error—This is the first axiom that explains the working of
the access() operation. If the array is newly created, it is initially empty. So if we try
to access an element at the ith position, it will be an erroneous operation.

2. access(store(Array_A, i, x), j) = x if equal(i, j) else access(Array_A, j)
—The second axiom states that accessing an element at index j, where x has been already
stored at index i in Array_A is one of the following two:
(a) if i = j then the accessed element is x itself.
(b) else the operation is equivalent to the operation of accessing element at index j,

from Array_A.

Usually, arrays are stored in contiguous allocation of memory as is the case of C, C++,
and Java. The ADT does not specify this. Let us learn more details of the array such as its
memory representation and address calculation used to facilitate direct access.

2.4 MEMORY REpRESENTATION AND ADDRESS CALCULATION

A computer’s memory can be considered as one long list of bits grouped together into bytes
and/or words. Each one of them can be referred to just one location so as to avoid machine-
dependent details, that is, whether memory is structured with a one-byte, two-byte, or n-
byte word. In addition, the addressing scheme varies with each computer such as byte ad-
dressable or word addressable. During compilation, the appropriate number of locations
is allocated for the array. The mechanism for allocating memory is much dependant on a
language. Regardless of machine and language dependency, when the space is actually al-
located, the location of an entire block of memory is referenced by the base address of the
first location. The remaining elements are stored sequentially at a fixed distance apart, say,
by a constant C. So if the ith element is mapped into a memory location of address x, then the
(i + 1)th element is mapped into the memory location with address (x + C) as shown in Fig. 2.4.

Here, C depends on the size of the element, that is, the number of locations required
per element, and also on the addressing of these locations.

The address of the ith element is calculated by the following formula:

(Base address) + (Offset of ith element from base address)

Here, base address is the address of the first element where array storage starts. In
Fig. 2.4, the base address is x and the offset is computed as

Offset of ith element = (Number of elements before ith element)
 ¥ (Size of each element)

Address of A[i] = Base + i ¥ Size of element

Linear data structure using arrays 39

Assuming the size of the element as one memory location, the memory representation
is shown in Fig. 2.4.

A0

A1

.

.

.

Ai x (Base)

Ai Ai + 1 x + 1

.

.

.

Ai + 2 x + 2

An − 1 :

:

Array A An − 1 x + (n − 1)

Fig. 2.4 Memory representation

Most of the languages use the base address plus offset for addressing. This way of
 addressing helps in direct access to an element with bounded time O(1) for access.

In brief, the Array_A[N] is implemented as follows:

1. Array_A is the name of the object/structure and is associated with a base (starting)
address in memory.

2. The [N] notation specifies the number of array elements from the beginning (offset),
which starts at zero.

3. The address of the ith element is then computed as base + i ¥ (Size of element), where
Size of element depends on the data type.

The index, address, and values are shown in Fig. 2.5 for an array of six real numbers.

40 data structures using c++

program CoDe 2.1

 class Array

 {

 private:

 int MaxSize;

 int A[20];

 int Size;

 public:

 Array() // constructor

 {

 MaxSize = 20;

 Size = 0;

 }

Fig. 2.5 Memory address and array of real numbers

Index[i] Address Value

0 6e80 11.56

1 6e84 34.00

2 6e88 25.65

3 6e8c 09.43

4 6e90 −67.55

5 6e94 35.12

All the elements of the array must be properly initialized before referring in any
expression. It is important to note that arrays and their sizes are mostly defi ned statically,
so it is not possible to change the size at the time of execution.

2.5 CLASS ARRAY

The array ADT can support various operations such as traversal, sorting, searching, inser-
tion, deletion, merging, and block movement. Some of these operations are detailed in
Program Code 2.1.

Linear data structure using arrays 41

 void Read_Array();

 void Display(); // Traverse_Forward()

 void Traverse_Backward();

 void Insert(int Location, int Element);

 void Delete(int Location);

 int Search(int Element);

 };

 void Array :: Read_Array()

 {

 int i, N;

 cout << "Enter size of array";

 cin >> N;

 if(N > MaxSize)

 {

 cout << "Array of this size cannot be created";

 cout << "Maximum size is" << MaxSize;

 return;

 }

 else

 {

 for(i = 0; i < N; i++)

 {

 cin >> A[i];

 }

 Size = N;

 }

 }

 void Array :: Display()

 {

 int i;

 for(i = 0; i < Size; i++)

 cout << A[i] << "\t";

 cout << endl;

 }

 void Array :: Traverse_Backward()

 {

 int i;

 for(i = Size - 1; i >= 0; i−−)

 cout << A[i] << "\t";

42 data structures using c++

2.5.1 Inserting an Element into an Array

The insert() operation inserts an element at a specifi ed location into the array. A lot of
data movement is involved in the insert() operation. To insert an element at the ith posi-
tion in an array of size N, all the elements originally at positions i, i + 1, i + 2, ..., N - 1
will be shifted to i + 1, i + 2, i + 3, ..., N, respectively so that each element gets shifted to
the right by one position. All the data shifting must be performed before the actual inser-
tion. Moreover, before insertion, room must be created for the element at the ith position,
and then the element is placed there.

Consider the following array:

0
A

1 2 3 4

a b c d

To insert ‘z’ at index = 2, that is at position 3, create room at 3 by data shifting.

A
0 1 2 3 4

a b c d

 cout << endl;

 }

 int Array :: Search(int Element)

 {

 int i;

 for(i = 0; i < Size - 1; i++)

 {

 if(Element == A[i])

 return(i);

 }

 return(-1);

 }

Linear data structure using arrays 43

Then insert ‘z’ at position 3.

A
0 1 2 3 4

a b z c d

If the array is already full before the insertion of a new element, the last element of the
array will be lost after insertion because of array overflow.
Now, consider the following array A:

A
0 1 2 3 4

a b c d e array size = 5

array A is full with LB = 0 and UB = 4

To insert ‘z’ at position 3, create room at the 3rd position by data shifting.

A
0 1 2 3 4

a b c d e

Then insert ‘z’ at position 3.

A
0 1 2 3 4

a b z c d e

As the element ‘e’ is shifted to index 5, ‘e’ becomes inaccessible as the UB is crossed,
and so the element ‘e’ may go beyond the scope of the array A. To handle such errors,
appropriate checks should be made and if needed a new array of higher size should be
created (when the size of the new array is double that of the original, it is known as array
doubling), into which the elements are copied, and then the array renamed.

44 data structures using c++

Data shifting can be performed using the following function:

 void Array :: Insert(int Location, int Element)

 {

 int i;

 if(Size >= MaxSize)

 {

 cout << "Sorry, Array Overfl ow";

 return;

 }

 for(i = Size - 1; i >= Location - 1; i--)

 {

 A[i + 1] = A[i]; // shifting element to right by

1 position

 }

 A[Location - 1] = Element;

 Size = Size + 1;

 }

2.5.2 Deleting an Element

The delete() operation removes the specifi ed element from the array. Deletion of an el-
ement is achieved by overwriting the element. After one deletion operation, one location
becomes empty, so all the elements should be shifted by one position after the deleted ele-
ment to fi ll in the empty location of the deleted element. In short, deletion can be handled
by simply overwriting the specifi ed location.

A 0 1 2 3 4 5

a b c d e f

Delete ‘c’ from the 3rd position, that is, index = 2.

A
0 1 2 3 4 5

a b d e f f

Linear data structure using arrays 45

Deletion can be performed using the following function:

 void Array :: Delete(int Location)

 {

 int i;

 for(i = Location; i < Size; i++)

 {

 A[i - 1] = A[i];

 // shifting elements to the left by 1 position

 }

 A[Size - 1] = 0;

 // Store 0 at the last location to mark it empty

 Size = Size - 1;

 }

 void main()

 {

 Array A;

 A.Read_Array();

 A.Display(); // Traverse_Forward()

 A.Traverse_Backward();

 A.Insert(3, 66); // insert at position 3

 A.Display();

 cout << endl;

 A.Delete(3); // delete 4th element

 A.Display();

 cout << endl;

 cout << A.Search(66);

 cout << A.Search(3);

 }

We have studied the basic operations for an array, such as reading an array and traversing it
along with some common operations such as inserting an element and deleting an element
in an array. Insertion and deletion operations need data shifting within the array.

The array and its operations in Program Code 2.1 are defi ned. To defi ne an array of
fl oating point data to operate on integer data, we need to change int A[] to fl oat A[] in
declaration of data members of class. This can be done each time the data type of array
elements varies by editing the code using text editor and then recompiling it. C++ has a
feature called template (also known as parameterized type). A template is a variable that
can be instantiated to any data type. This data type could be a built-in or a user-de fi ned type.

46 data structures using c++

2.6 ARRAYS USING TEMpLATE

Program Code 2.2 is an array class using the template T that can be used quite easily
for an array of int, fl oat, or any user-defined da ta type.

The class array defi ned in Program Code 2.1 can be rewritten using a template in C++
as in Program Code 2.2.

program CoDe 2.2

 template <class T>

 class Array

 {

 private:

 T * A;

 int Size;

 public:

 Array() { size = 20); // default constructor

 Array(in ArraySize); // user-defi n ed size

 void Read_Array();

 void Display();

 void Traverse_Backward();

 void Insert(int Location, const T&Element);

 void Delete(int Location);

 int Search(const T&Element);

 };

 template <class T>

 Array <T> :: Array(int ArraySize) : Size(ArraySize)

 {

 A = new T[Size];

 }

 template <class T>

 void Array <T> :: Read_Array()

 {

 // code to read members of the array here

 }

Other functions can be defi ned in a similar manner as in Program Code 2.1.

Linear data structure using arrays 47

Program Code 2.2 contains a template class definition for an array and implementation
of a few of its functions. The function is defined in a similar manner as in Program Code
2.1; that is, we replace int by T as the data type of the member of an array. In all member
functions header, Array() is now replaced by Array <T> ::. The following statements
instantiate the template class Array() to int and float, respectively. So P is an array of
type int and Q is an array of type float.

Array <int> P;
Array <float> Q;

Similarly, we can also have an array of any user-defined data type.

2.7 MULTIDIMENSIONAL ARRAYS

The array we used till now was a one-dimensional array. Most of the times, data is or-
ganized in multiple dimensions. In such situations, a one-dimensional array proves to be
insufficient, and we need two-dimensional, three-dimensional, or n-dimensional arrays.

2.7.1 Two-dimensional Arrays

A two-dimensional array A of dimension m ¥ n is a collection of m ¥ n elements in which
each element is identified by a pair of indices [i, j], where in general, 1 £ i £ m and
1 £ j £ n. For the C/C++ languages this range is 0 £ i < m and 0 £ j < n. A two-dimensional
array has m rows and n columns. Figure 2.6 shows the pictorial representation of a two-
dimensional array Student of size 100 ¥ 9.

[0]

[0]

[1]

[2]

[3]

.

.

.

.

.

.

[98]

[99]

[1] [2] [3] [4] [5] [6] [7] [8]

Student [0] [5]

Student
Columns

Rows

Student [98] [2]

Fig. 2.6 Two-dimensional array

The best example of two-dimensional arrays is the most popular mathematical
entity, matrix.

48 data structures using c++

Memory Representation of Two-dimensional Arrays

Let us consider a two-dimensional array A of dimension m ¥ n. Though the array is multi-
dimensional, it is usually stored in memory as a one-dimensional array. A multidimension-
al array is represented in memory as a sequence of m ¥ n consecutive memory locations.
The elements of a multidimensional array can be stored in the memory as

1. Row-major representation or
2. Column-major representation

Figure 2.7 shows matrix A of size m ¥ n.

Fig. 2.7  Matrix A of size m ¥ n

Col.1 Col. 2 Col. n...

Row 1 A11 A12 ... A1n

Row 2

.

.

.

.

.

.

.

.

.

.

.

.

A21 A22 ... A2n

Row m Am1 Am2 ... Amn
m × n

Columns

Rows

For understanding the matrix representations, let us take as the example a two-dimensional
array M of size 3 ¥ 4 (Fig. 2.8).

M =

3 × 4

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 2.8 A two-dimensional array M

The matrix M in Fig. 2.8 has 12 members in it, which can be accessed by row
and column indices such as the element in its second row, third column, is 7.

Row-major Representation

In row-major representation (Fig. 2.9), the elements of matrix M are stored row-wise, that
is, elements of the 0th row, 1st row, 2nd row, 3rd row, and so on till the mth row.

Linear data structure using arrays 49

Memory
locations

1 2 3 4 5 6 7 8 9 10 11 12

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3)

Row 0

Row 1

Row 1
Row 2

.

.

. .
.
.

Row m − 1

Row
m − 1

Row 0 Row 0

Row 1 Row 2

Fig. 2.9 Row-major arrangement

The address of the element of the ith row and the jth column for a matrix of size m ¥ n can
be calculated as

Address of (A[i][j]) = Base address + Offset
= Base address + (Number of rows placed before ith row

¥ Size of row) ¥ (Size of element) + (Number of elements
placed before in jth element in ith row) ¥ Size of element

Here, size of a row is actually the number of columns n. The base is the address of
A[0][0].

Address of A[i][j] = Base + (i ¥ n ¥ Size of element) + (j ¥ Size of element)

As row indexing starts from 0, the index i indicates the number of rows before the ith row
here and similarly for j. For Size of element = 1, the address is

Address of A[i][j] = Base + (i ¥ n) + j

In general,

Address of A[i][j] = ((i - LB1) ¥ (UB2 - LB2 + 1) ¥ size) + ((j - LB2) ¥ size)

where the number of rows placed before the ith row = (i - LB1), and LB1 is the lower
bound of the first dimension.

50 data structures using c++

Size of row = (Number of elements in row) ¥ (Size of element)

Number of elements in a row = (UB2 - LB2 + 1)

where UB2 and LB2 are the upper and lower bounds of the second dimension respectively.
For arrays in C/C++/Java, LB = 0 and UB = N - 1.

Column-major Representation

In column-major representation, m ¥ n elements of a two-dimensional array A are stored
as one single row of columns. The elements are stored in the memory as a sequence: first
the elements of column 0, then the elements of column 1, and so on, till the elements of
column n - 1.

For example, consider matrix M in Fig. 2.8. The column-major arrangement of ele-
ments would be as shown in Fig. 2.10.

.

.

.

1 5 9 2 6 10 3 7 11 4 8 12

(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2) (0, 3) (1, 3) (2, 3)

Col. 0 Col. 1 Col. 2

Col. 0

Col. 0

Col. 1

Col. 1

Col.3

Memory locations

. . .

. . . Col. n − 1

Col.
n − 1

Fig. 2.10 Column-major arrangement

Linear data structure using arrays 51

The address of A[i][j] is computed as

Address of (A[i][j]) = Base address + Offset

= Base address + (Number of columns placed before jth column
¥ size of column) ¥ (Size of element) + (Number of elements
placed before in ith element in ith row) ¥ Size of element

Here, the size of the column is the number of rows, that is, m. If the base is the address
of A[0][0], then

Address of A[i][j] = Base + (j ¥ m ¥ Size of element) + (i ¥ Size of element)

For Size of element = 1, the address is

Address of A[i][j] for column-major arrangement = Base + (j ¥ m) + i

In general, for column-major arrangement, the address of the element of the ith row and
the jth column is

Address of (A[i][j] = ((j - LB2) ¥ (UB1 - LB1 + 1) ¥ size) + ((i - LB1) ¥ size)

For arrays in C/C++/Java, LB = 0 and UB = n - 1 for an n-dimensional array. Example 2.1
shows the address calculation for row-major and column-major representations for a given
array of integers.

 example 2.1 Consider an integer array, int A[3][4] in C++. If the base address
is 1050, find the address of the element A[2][3] with row-major and column-major
representation of the array.

Solution For C++, the LB of index is 0, and we have m = 3, n = 4, and Base =
1050. Let us compute the address of the element A[2][3] using the address computation
formula derived in the Section 2.7.1.

Row-major representation:

Address of A[2][3] = Base + (i × n) + j

 = 1050 + (2 × 4) + 3

 = 1061

Figure 2.11 shows the row-major representation of the element A[2][3].

52 data structures using c++

Base

1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

(0, 0) (0, 1) (0, 2) (0, 3) (1, 0) (1, 1) (1, 2) (1, 3) (2, 0) (2, 1) (2, 2) (2, 3)

Row 0 Row 1 Row 2

Fig. 2.11 Row-major representation of A[2][3]

Column-major representation:

Address of A[2][3] = Base + (j ¥ m) + i
 = 1050 + (3 ¥ 3) + 2
 = 1050 + 11

 = 1061

Figure 2.12 represents the column-major representation of the element A[2][3].

(1, 0)(0, 0) (2, 0) (1, 1)(0, 1) (2, 1) (1, 2)(0, 2) (2, 2) (1, 3)(0, 3) (2, 3)

Base

1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

Col. 0 Col. 1 Col. 3Col. 2

Fig. 2.12 Column-major representation of A[2][3]

Here, the address of the element is the same because it is the last member of the last row
and the last column.

Let us compute the address of A[1][3]. For row-major, the address of A[1][3] = 1050
+ 1 ¥ 4 + 3 = 1057 and for column-major, the address of A[1][3] = 1050 + 3 ¥ 3 + 1 = 1060.

2.7.2 n-dimensional Arrays

An n-dimensional m1 ¥ m2 ¥ m3 ¥ ... ¥ mn array A is a collection of m1 ¥ m2 ¥ m3 ¥ … ¥ mn
elements in which each element is specified by a list of n integers such as k1, k2, … kn
called subscripts where 0 £ k1 £ m1 - 1, 0 £ k2 £ m2 - 1, …, 0 £ kn £ mn - 1. The element
of array A with subscripts k1, k2, …, kn is denoted by A[k1][k2] …[kn].

Consider the three-dimensional array A[2][3][4]. There are 2 ¥ 3 ¥ 4 = 24 elements in
array A. Its row-major arrangement is shown in Fig. 2.13.

Linear data structure using arrays 53

Memory address m1 = 2, m2 = 3, m3 = 4

Base A[0][0][0]

Base + 1 A[0][0][1]

Base + 2 A[0][0][2]

Base + 3 A[0][0][3]

Base + 4 A[0][1][0] Base + m3 × 1

Base + 5 A[0][1][1]

Base + 6 A[0][1][2]

Base + 7 A[0][1][3]

Base + 8 A[0][2][0] Base + m3 × 2

Base + 9 A[0][2][1]

Base + 10 A[0][2][2]

Base + 11 A[0][2][3]

Base + 12 A[1][0][0] Base + m3 × 3

Base + 13 A[1][0][1]

Base + 14 A[1][0][2]

Base + 15 A[1][0][3]

Base + 16 A[1][1][0] Base + m3 × 3 + m2

Base + 17 A[1][1][1]

Base + 18 A[1][1][2]

Base + 19 A[1][1][3]

Base + 20 A[1][2][0]

Base + 21 A[1][2][1]

Base + 22 A[1][2][2]

Base + 23 A[1][2][3]

Array elements

Fig. 2.13 Three-dimensional array with row-major memory representation

54 data structures using c++

A four-dimensional array A[2][3][4][2] with row-major representation would be stored in
memory as shown in Fig. 2.14.

Array elements Array elements

Base + 24 A[1][0][0][0]

Base + 25 A[1][0][0][1]

Base + 26 A[1][0][1][0]

Base + 27 A[1][0][1][1]

Base + 28 A[1][0][2][0]

Base + 29 A[1][0][2][1]

Base + 30 A[1][0][3][0]

Base + 31 A[1][0][3][1]

Base + 32 A[1][1][0][0]

Base + 33 A[1][1][0][1]

Base + 34 A[1][1][1][0]

Base + 35 A[1][1][1][1]

Base + 36 A[1][1][2][0]

Base + 37 A[1][1][2][1]

Base + 38 A[1][1][3][0]

Base + 39 A[1][1][3][1]

Base + 40 A[1][2][0][0]

Base + 41 A[1][2][0][1]

Base + 42 A[1][2][1][0]

Base + 43 A[1][2][1][1]

Base + 44 A[1][2][2][0]

Base + 45 A[1][2][2][1]

Base + 47 A[1][2][3][1]

Base + 46 A[1][2][3][0]

Memory address

Base A[0][0][0][0]

Base + 1 A[0][0][0][1]

Base + 2 A[0][0][0][2]

Base + 3 A[0][0][0][3]

Base + 4 A[0][0][1][0]

Base + 5 A[0][0][1][1]

Base + 6 A[0][0][1][2]

Base + 7 A[0][0][1][3]

Base + 8 A[0][0][2][0]

Base + 9 A[0][0][2][1]

Base + 10 A[0][0][2][2]

Base + 11 A[0][0][2][3]

Base + 12 A[0][1][0][0]

Base + 13 A[0][1][0][1]

Base + 14 A[0][1][0][2]

Base + 15 A[0][1][0][3]

Base + 16 A[0][1][1][0]

Base + 17 A[0][1][1][1]

Base + 18 A[0][1][1][2]

Base + 19 A[0][1][1][3]

Base + 20 A[0][1][2][0]

Base + 21 A[0][1][2][1]

Base + 22 A[0][1][2][2]

Base + 23 A[0][1][2][3]

Memory address

Fig. 2.14 Four-dimensional array with row-major memory representation

Linear data structure using arrays 55

Notice that the array indices are in increasing order, and hence row-major ordering is
also called lexicographic order.

Address Calculation for Multidimensional Array

For a sequential single dimension row-major representation of a multidimensional array,
let us try to get the address of any element A[i1][i2][i3]…[in] of an n-dimensional array
A. Let us consider the array A[2][3][4][2]. If the element A[0][0][0][0] is stored at the
address 0, then the element A[0][0][0][1] is at address 1; the element A[0][0][1][0] is at
address 2; the element A[0][0][1][1] is at address 3, and the element A[1][2][3][1] at ad-
dress 4, assuming one location per element. To derive a formula for a multidimensional
array, let us first see one-dimensional (1D), two-dimensional (2D), and three-dimension-
al (3D) arrays and their address calculations, and further, we can generalize it for an
n-dimensional array.

Address Calculation for One-dimensional Array

Let A[m1] be a one-dimensional array. Let A[0] be stored at the address Base = X. Now,
assuming one element per location, the address of A[1] is X + 1. The address of an arbi-
trary element A[i] is given by X + i, and the address of A[m1 − 1] is X + m1 − 1. This is
represented in Fig. 2.15.

A[0] A[1] A[2] ... A[i] ... A[m1 − 1]

X X + 1 X + 2 ... X + i ... X + (m1 − 1)

Fig. 2.15 One-dimensional array

Address Calculation for Two-dimensional Array

Now, consider a two-dimensional array A[m1][m2] that has m1 rows as Row1, Row2 ...
Row(m1 − 1), each row containing m2 elements as there are m2 columns (Fig. 2.16).

Col. 0 Col. 1 . . . Col. m2 − 1

Row 0

.

.

.

– – –

Row 1

Row m1 − 1

– – –

Aij

Fig. 2.16 Two-dimensional array

56 data structures using c++

Now, let A[0][0] be stored at address X; then A[0][1] would be stored at X + 1; A[0][i]
would be at X + i and so on till A[0][m2 − 1] at X + (m2 − 1). Now the address of A[i][0]
would be X + (i × m2).

In general, the address of A[i][j] is X + (i × m2) + j (Fig. 2.17).

Row m1 − 1

(i × m2) elements

m2 elements

Row 0 Row 1 … Row i …

Fig. 2.17 Row-major representation of 2D array

Address Calculation for Three-dimensional Array

Figure 2.18 shows a three-dimensional array A[m1][m2][m3]. This array is interpreted as
m1 two-dimensional arrays of dimension m2 × m3.

A [0][m2][m3] A [1][m2][m3] A [i][m2][m3] A [m1][m2][m3]

(i × m2 × m3) elements

.

Fig. 2.18 Row-major arrangement of a three-dimensional array

The address of A[i][0][0] is X + (i × m2 × m3). Therefore, the address of A[i][j][k] is
computed as

Addr of A[i][j][k] = X + i ¥ m2 ¥ m3 + j ¥ m3 + k

By generalizing this expression, we get the address of A[i1][i2][i3]…[in] in the
n-dimensional array A[m1][m2][m3]…[mn]

Considering the address of A[0][0][0]…[0] as X, then the address of A[i][0][0]…[0] =
X + (i1 ¥ m2 ¥ m3 ¥ … ¥ mn) and the address of A[i1][i2]…[0] = X + (i1 ¥ m2 ¥ m3 ¥ …
¥ mn) + (i2 ¥ m3 ¥ m4 ¥ … ¥ mn).

Continuing in a similar manner, the address of A[i1][i2][i3]…[in] will be

Address of A[i1][i2][i3]…[in]
 = X + (i1 ¥ m2 ¥ m3 ¥ … ¥ mn) + (i2 ¥ m3 ¥ m4 ¥ … ¥ mn)
 + (i3 ¥ m4 ¥ m5 ¥ … ¥ mn) + (i4 ¥ m5 ¥ m6 ¥ … ¥ mn) + … + in

Linear data structure using arrays 57

 = X
=1

+ ∑
j

n

ij × Aj where = Π
j

n

=1
mkAj 1 < j < n and An = 1

Similarly, we can derive the formula for column-major order too.

2.8 CONCEpT Of ORDERED LIST

Ordered list is the most common and frequently used data object. Linear elements of an
ordered list are related with each other in a particular order or sequence. The following
are some examples of ordered lists.

1. Odd numbers less than or equal to 15 = {1, 3, 5, 7, 9, 11, 13, 15}
2. Months = {January, February, March, April, May, June, July, August, September,

October, November, December}
3. Colors of the rainbow = {Violet, Indigo, Blue, Green, Yellow, Orange, Red}

There are many basic operations that can be performed on the ordered list. The following
list states them:

1. Find the length of the list.
2. Traverse the list from left to right or from right to left.
3. Access the ith element in the list.
4. Update (Overwrite) the value at the ith position.
5. Insert an element at the ith location.
6. Delete an element at the ith position.

Arrays are the most common data structures that can be used for representing an ordered list.
In an ordered list, members of the list follow some specific sequence. We need to select the
best suitable data structure to perform these operations efficiently. The best possible way to
organize them is in an array. Let L be the list; L = {a0, a1, a2, ..., an−1} having n elements.
If we store this list in an array, say list[n], then we can store the ith element at the ith location
(index) of the list. This representation would store a0 at list[0], a1 at list[1], and so on,
sequentially as ai and ai+1 at the ith and (i+1)th locations.

The representation of an ordered list L in array form is shown in Fig. 2.19.

list[0] list[1] list[2] list[n − 1]

a0 a1 a2 an − 1

 . . .

 . . .

Fig. 2.19 Ordered list stored in an array

Such representation is very efficient both to retrieve and to modify operations. It requires
a constant time to retrieve the ith element from the ith array location as the computer can

58 data structures using c++

access randomly any word in its memory. Similar to random access, one can traverse a
list in any direction by using a controlled subscript variable. Insert and delete operations
will require data movement.

2.9 SINGLE VARIAbLE pOLYNOMIAL

A polynomial of a single variable A(x) can be written as

anx
n + an−1x

n−1 + an−2x
n−2 + a1x + a0 where an π 0 and degree of A(x) is n.

This polynomial is a sum of terms C.xe where C is a coeffi cient, e is the exponent, and x
is a variable. A polynomial is one of the examples of an ordered list. When we think of a
polynomial as an ADT, the basic operations are as follows:

1. Creation of a polynomial
2. Addition of two polynomials
3. Subtraction of two polynomials
4. Multiplication of two polynomials
5. Polynomial evaluation

In Program Code 2.3, we have not defi ned the data members to represent a polynomial with
coeffi cients and exponents. We have defi ned function prototypes to operate on a polynomial.
To defi ne data members that are deciding a suitable data structure for a polynomial, we have
many options. For exponents and coeffi cients, we can use two separate one-dimensional arrays,
a two-dimensional array, an array of structures, and so on. Let us analyse a few of them.

program CoDe 2.3

 ADT Polynomial

 {

 private:

 // data members here

 public:

 void Read_Poly();

 double Evaluate(double value);

 Polynomial Add_Poly(Polynomial B);

 Polynomial Mult_Poly(Polynomial B);

 };

2.9.1 Representation Using Arrays

The polynomial of degree n represented as an ordered list of coeffi cients can be stored us-
ing an array of size n + 2. That is, n + 1 locations for storing coeffi cients of n + 1 terms
and one location for storing the degree of polynomial. Alternatively, we can also store

Linear data structure using arrays 59

them by mapping each term with the index so that the ith term is at the (n - i)th location of
the array. We store polynomials in the decreasing order of their exponents. The degree of
a polynomial is the highest exponent in the polynomial. For a polynomial of degree n, we
would need an array of size n + 1 and a store polynomial as follows:

For the term aix
i, let us store its coefficient ai at the [n − i]th index in an array, that is,

store a coefficient of the term with exponent i at the [n - i]th index.

Poly[n − i] = ai for i = 0 to n

This is represented in Fig. 2.20.

Poly[0] Poly[1] Poly[2] Poly[3] Poly[n − 2] Poly[n − 1]

an an − 1 an − 2 an − 3 a1 a0

 . . .

 . . .

Fig. 2.20 Storing polynomial as ordered list

int degree; float Poly[Max + 1];

Here, degree £ Max
This representation is very efficient with respect to operations such as store() and

retrieve() as it requires constant time O(1). The conventional algorithms of addi-
tion, subtraction, multiplication, and so on can be used for this representation very
efficiently.

Such representation is both time and space efficient when the polynomial is not a
sparse one such as polynomial P(x) of degree 3 where P(x) = 3x3 + x2 - 2x + 5 (Fig. 2.21).

Index

i
0 1 2 3 N − 1

Coefficient 3 1 −2 5 0

 . . .

 . . .

Fig. 2.21 Polynomial of degree 3—P(x) = 3x3 + x2 - 2x + 5

Figure 2.22 shows a polynomial of degree 8.

Index

i
0 1 2 3 8

Coefficient 11 0 5 1

4

2

5

0

6

−3

7

1 10

Fig. 2.22 Polynomial of degree 8—P(x) = 11x8 + 5x6 + x5 + 2x4 - 3x2+ x + 10

60 data structures using c++

However, when a polynomial is a sparse one such as A(x) = x99 + 78 for degree of n = 100,
then only two locations out of 101 would be used as shown in Fig. 2.23.

Index

i
0 1 2 3 99

Coefficient 1 0 0 0 78

 . . .

 . . .

Fig. 2.23 Polynomial of degree 99—P(x) = x99 + 78

In such cases, it is better to store the polynomial as pairs of coeffi cient and exponent.
We may go for two different arrays for each, or a structure having two members as two
arrays for each of coeffi cient and exponent, or an array of structure that consists of two
data members coeffi cient and exponent. Let us go for the structure having two data
members coeffi cient and exponent and its array.

2.9.2 polynomial as Array of Structure

In Program Code 2.4, the coeffi cient and exponent are bound together in a structure to
form one polynomial term, and then the array of ten such structures is used to represent
a polynomial.

program CoDe 2.4

 const int MaxSize = 100;

 typedef struct

 {

 fl oat coeffi cient;

 int exponent;

 } polynomial_term;

 class Polynomial

 {

 private:

 polynomial_term Poly[MaxSize];

 int Total_Terms;

 public:

 Polynomial() { Total_Terms = 0;}

 void Read_Poly();

 void Display_Poly();

 double Evaluate(double value);

 Polynomial Add_Poly(Polynomial B);

 Polynomial Mult_Poly(Polynomial B);

 };

Linear data structure using arrays 61

Figure 2.24 depicts such a polynomial.

Index

i
0 1 2 3 N − 1

Coefficient 3 1 −2 5

Exponent 3 2 1 0

. . .

. . .

. . .

Fig. 2.24 Polynomial representation—P(x) = 3x3 + x2 - 2x + 5

2.9.3 polynomial Evaluation

Polynomial evaluation is substituting the value of x and computing the result. For x = 2,
the polynomial P(x) = 3x3 + x2 - 2x + 5 results in 3 (2)3+ (2)2 - 2(2) + 5 = 29.

Program Code 2.5 provides implementation details of polynomial evaluation for a
given value of x. The functions are provided for reading and printing the polynomials.

program CoDe 2.5

 double Polynomial :: Evaluate(double Value)

 {

 int i = 0;

 double result = 0;

 while (i <= Total_Terms)

 {

 Result+=Poly[i].Coef*pow(val,Poly[i].Exp);

 // pow() is the exponential function to compute xy

 i++;

 }

 return result;

 }

 void Polynomial :: Read_Poly()

 {

 int i;

 cout << "Let us read the polynomial now" << endl;

 cout << "Enter total number of terms in polynomial";

 cin >> Total_Terms;

 for(i = 0; i <= Total_Terms; i++)

 {

 cout << "Enter Exponent of" << i+1 << "Term";

62 data structures using c++

 cin << Poly[i].Exp;

 cout<< "Enter Coeffi cient of" << i+1 << "Term";

 cin << Poly[i].Coef;

 }

 }

 void Polynomial :: Display_Poly()

 {

 int i;

 for(i = 0; i <= Total_Terms; i++)

 cout << Poly[i].Coef << "x^" << Poly[i].Exp << "+";

 cout << "\b" << endl;

 }

 void main()

 {

 Polynomial A;

 double answer;

 A.Read_Poly();

 answer = A.Evaluate(69.45);

// Let 69.45 be the value of x

 }

2.9.4 polynomial Addition

Let two polynomials A and B be

A = 4x9 + 8x6 + 5x3 + x2 + 4x
B = 3x7 + x3 - 2x + 5

Then,
C = A + B = 4x9 + 3x7 + 8x6 + 6x3 + x2 + 2x + 5

The polynomials A and B are to be added to get the resultant polynomial C. Here, we
assume that the two polynomials are in descending order of their exponents.

Let us revise the procedure of adding two polynomials. Let i, j, and k be the three
indices to keep track of the current term of the polynomials A, B, and C, respectively,
being processed. Initially, it tracks the fi rst term. The major steps involved can be listed
as follows:

1. If the exponents of the two terms of polynomials A and B are equal, then the coeffi cients
are added, and the new term is stored in the resultant polynomial C and advance i, j,
and k to track to the next term.

2. If the exponent of the term indicated by i in A is less than the exponent of the
current term specifi ed by j of B, then copy the current term of B pointed by j in the

Linear data structure using arrays 63

location pointed by k in polynomial C. The pointers j and k are advanced to the
next term.

3. If the exponent of the term pointed by j in B is less than the exponent of the current
term pointed by i of A, then copy the current term of A pointed by i in the location
pointed by k in polynomial C. Advance the pointer i and k to the next term.

Each time a new term is generated, its coefficient and exponent fields are set
accordingly. The resultant term then is attached to the end of the polynomial C. The
current term of polynomial C is indicated by k.

Figure 2.25 shows the pictorial representation of polynomials A, B, and C using a two-
dimensional array and indices.

(a)

(b)

(c)

Index

j
0 1 2 3

Coefficient 3 1 −2 5

Exponent 7 3 1 0

Index

i
0 1 2 3

Coefficient 4 8 5 1

Exponent 9 6 3 2

4

4

0

Index

K
0 1 2 3

Coefficient 4 3 8 6

Exponent 9 7 6 3

4 5 6

1 2 5

2 1 0

Fig. 2.25 Storing polynomials in a 2D array (a) P(x) = 4x9 + 8x6 + 5x3 + x2 + 4x
(b) P(x) = 3x7 + x3 - 2x + 5 (c) P(x) = 4x9 + 3x7 + 8x6 + 6x3 + x2 + 2x + 5

64 data structures using c++

The steps involved in polynomial addition are stated in Algorithm 2.1.

algorithm 2.1

1. Read two polynomials say A and B
2. Let M and N denote total terms in A and B respectively.
 Here, C is resultant polynomial.
4. Let i = j = k = 0
5. while (i < M and j < N) do
 begin // repeat till one of the polynomials is copied
 if(A[i].Exp = B[j].Exp)
 begin
 C[k].Coef = A[i].Coef+B[j].Coef
 C[k].Exp = A[i].Exp;
 i = i + 1; j = j + 1, k = k + 1
 end
 else
 if(A[i].Exp > B[j].Exp)
 begin
 C[k].Coef = A[i].Coef;
 C[k].Exp = A[i].Exp;
 i = i + 1
 k = k + 1
 end
 else
 begin
 C[k].Coef = B[j].Coef;
 C[k].Exp = B[j].Exp;
 j = j + 1
 k = k + 1
 end
 end
6. while(i < m) do
 begin // copy remaining terms
 C[k].Coef = A[i].Coef;
 C[k].Exp = A[i].Exp;
 i = i + 1
 k = k + 1
 end
7. while (j < n) do
 begin // copy remaining terms
 C[k].Coef = B[j].Coef;
 C[k].Exp = B[j].Exp;
 j = j + 1
 k = k + 1
 end
8) stop

Program Code 2.6 is for the polynomial addition function based on Algorithm 2.1.

Linear data structure using arrays 65

program CoDe 2.6

 Polynomial Polynomial :: Add_Poly(Polynomial B)

 {

 int i = j = k = 0;

 Polynomial C;

 while (i < A.Total_Terms && j < B.Total_Terms)

 {

 if(A.Poly[i].Exp == B.Poly[j].Exp)

 {

 C.Poly[k].Coef = A.Poly[i].Coef + B.Poly[j].Coef

 C.Poly[k].Exp = A.Poly[i].Exp;

 i++; j++; k++;

 }

 else if(A.Poly[i].Exp > B.Poly[j].Exp)

 {

 C.Poly[k].Coef = A.Poly[i].Coef;

 C.Poly[k].Exp = A.Poly[i].Exp;

 i++; k++;

 }

 else

 {

 C.Poly[k].Coef = B.Poly[j].Coef;

 C.Poly[k].Exp = B.Poly[j].Exp;

 j++; k++;

 }

 } // end of while

 while(i < A.Total_Terms)

 {

 C.Poly[k].Coef = A.Poly[i].Coef;

 C.Poly[k].Exp = A.Poly[i].Exp;

 i++; k++;

 }

 while(j < B.Total_Terms)

 {

 C.Poly[k].Coef = B.Poly[j].Coef;

 C.Poly[k].Exp = B.Poly[j].Exp;

 j++; k++;

 }

 C.Total_Terms = k - 1;

 return C;

 } // end of function

66 data structures using c++

 void main()

 {

 Polynomial A, B, C;

 double answer;

 A.Read_Poly();

 B.Read_Poly();

 .

 .

 .

 C = A.Add_Poly(B);

 }

2.9.5 polynomial Multiplication

Let A = 4x9 + 3x6 + 5x3 + 1 and B = 3x6 + x2 - 2x be the two polynomials to be multiplied,
and the resultant polynomial be C. Let us revise the paper-pencil method. The polynomial
A is multiplied by each term of B. We get n partial products if B has n terms in it. Finally,
we add all these partial products to get the resultant polynomial C.

This method generates partial products each of length m, where m is the length of the
polynomial A. n such partial products are generated and stored and fi nally added to get the
resultant polynomial. Here, m and n are input dependent. Let us devise a better approach
where we need not generate, store, and then add all partial products. A better solution is to
pick up a term of polynomial B and multiply it with each term of A. One term of B and one
term of A when multiplied yield one resultant term. This term can be immediately added
to the resultant polynomial C, and this process is to be repeated.

To add a resultant term to polynomial C, the resultant term is compared with each
term of the resultant polynomial C. Then the new term is inserted at the appropriate
location in polynomial C. If the new term with equal exponent is found, then the term
is added, else it is inserted in the resultant polynomial at an appropriate position. This
process is repeated for each term of B with each term of A. The major steps are listed
briefl y as follows:

1. Let A and B be two polynomials.
2. Let the number of terms in A be M, and number of terms in B be N.
3. Let C be the resultant polynomial to be computed as C = A ¥ B.
4. Let us denote the ith term of polynomial B as tBi. For each term tBi of polynomial B,

repeat steps 5 to 7 where i = 1 to N.
5. Let us denote the jth term of polynomial A as tAj. For each term of tAj of polynomial A,

repeat steps 6 and 7 where j = 1 to M.
6. Multiply tAj and tBi. Let the new term be tCk = tAj ¥ tBi.

Linear data structure using arrays 67

7. Compare tCk with each term of polynomial C. If a term with equal exponent is found,
then add the new term tCk to that term of polynomial C, else search for an appropriate
position for the term tCk and insert the same in polynomial C.

8. Stop.

Let A = 4x9 + 3x6 + 5x3 + 1, B = 3x6 + x2, and C be the resultant polynomial. Initially, C
is an empty polynomial.

1. We multiply each term of A with the first term of B. To start with, multiply 4x9 with 3x6
and the result is 12x15. Currently, C is empty, so there is no term in it with the exponent
15; therefore, we insert it in polynomial C. Now, polynomial C is

C = 12x15

Now, continue to multiply 3x6 with 3x6, and the result obtained is 9x12. There is no term
in polynomial C with exponent 12, so we insert it in polynomial C at an appropriate
location. Now, polynomial C is

C = 12x15 + 9x12

Continuing in a similar manner for the remaining two terms of polynomial A, we get
polynomial C as

C = 12x15 + 9x12 + 15x9 + 3x6

2. Now, multiply each term of A with the second term of B. Initially, multiply 4x9 with x2
and the result is 4x11. There is no term in C with exponent 11, we insert it in polynomial
C at an appropriate location. So now we get polynomial C as

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x6

Continue to multiply 3x6 with x2 and the result is 3x8. There is no term in polynomial C
with exponent 8, so we add it at an appropriate place. Now, the polynomial C is

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6

Let us now multiply 5x3 with x2 and we get 5x5. There is no term in C with exponent 5,
so we insert it in polynomial C at a proper location. Now,

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6 + 5x5

Let us now multiply the term 1 of A with x2; we get x2. There is no term in C with expo-
nent 2, so we insert it in polynomial C at an appropriate location. Therefore,

C = 12x15 + 9x12 + 4x11 + 15x9 + 3x8 + 3x6 + 5x5 + x2

This is the resultant polynomial C as a result of A ¥ B.

Program Code 2.7 includes the function for the multiplication of two polynomials as
per the procedure discussed.

68 data structures using c++

program CoDe 2.7

 Polynomial Polynomial :: Mult_Ploy(Polynomial B)

 {

 int fl ag, M, N;

 Polynomial C;

 int NewTerm_exp;

 fl oat NewTerm_coef;

 int i = j = k = 0;

 // i and j are indices indicating the current

// terms of polynomials A & B respectively

 // k is the index pointing to current position

// in C where new term is to be added

 int TmpIndex;

 // TmpIndex is used to traverse polynomial C for

// inserting new term at proper location

 M = Total_Terms;

 N = B.Total_Terms;

 while(i < M)

 {

 j = 0;

 while (j < N)

 {

 NewTerm_exp = Poly[i].Exp + B.Poly[j].Exp;

 NewTerm_coef = Poly[i].Coef * B.Poly[j].Coef;

 TmpIndex = 0;

 fl ag = 0;

 while(TmpIndex < k)

 // Insert NewTerm in Polynomial C

 {

 if(C.Poly[TmpIndex].Exp == NewTerm_exp)

 // search matching exponent

 {

 fl ag = 1;

 break;

 }

 else if(C.Poly[TmpIndex].Exp < NewTerm_exp)

 break;

 TmpIndex++;

 }

 if(fl ag) // if found add coeffi cients

Linear data structure using arrays 69

 C.Poly[k].Coef = C[k].Coef + NewTerm_coef;

 else // else add at last location or in between

 {

 if(TmpIndex==k) // add new term at end

 {

 C.Poly [k].Exp = NewTerm_exp;

 C.Poly [k].Coef = NewTerm_coef;

 k++;

 }

 else

 {

 // insert new term

 for(p = k; p < TmpIndex; p--)

 {

 C.Poly [p].Exp = C.Poly[p].Exp;

 C.Poly [k].Coef = C.Poly[p].Coef;

 }

 C.Poly[TmpIndex].Coef = NewTerm_exp;

 C. Poly[TmpIndex].Coef = NewTerm_Coef;

 k++;

 }

 j++;

 }

 i++;

 }

 return(C);

 }

 void main()

 {

 Polynomial A, B, C;

 B.Read_poly();

 B.Read_Poly();

 C = A.Mult_Poly(B);

 }

2.10 ARRAY fOR fREQUENCY COUNT

We can use an array to store the number of times a particular element occurs in any se-
quence. Suppose we have a set of 100 non-zero values ranging between 0 and 9 and we
want to know how many times 0 appeared, how many times 1 appeared, and so on up to 9.

70 data structures using c++

Let these elements be placed in an array named Numbers. Now, we can have another array of
10 elements that will show the frequency of each value in the list Numbers.

void Frequency_Count(int Freq[10], int A[100])
{
 int i;
 for(i = 0; i < 10; i++)
 Freq[i] = 0;
 for(i = 0; i < 100; i++)
 Freq[A[i]]++;
}

In Fig. 2.26, Frequency[0] indicates that 0 occurred once in the array Numbers, 1 ap-
peared 20 times, 2 appeared 5 times, and so on.

Fig. 2.26 Frequency count of numbers ranging from 0 to 9

 . . .

99

Numbers

0 2 4 6 7 9

Frequency

1 20 1016 2 1 15 30 14

0 1

3 51 8

This concept will be used in Section 2.11.3 for fast transpose.

2.11 SpARSE MATRIx

A matrix is a very commonly used mathematical object. To represent a matrix, we need
a two-dimensional array with two different indices for row and column references. The
representation of a matrix for operations on it should be efficient so that the space and
time requirement is less.

In many applications, the crucial aspect for algorithm design is space consideration.
So the developer has to take care of the representation of the matrix if it is large. In
many situations, the matrix size is very large but most of the elements in it are 0s (less
important or irrelevant data). Only a small fraction of the matrix is actually used. A
matrix of such type is called a sparse matrix, as the matrix is filled sparsely by data and
most of the positions are empty or contain non-relevant data. In such cases, the matrix
must be represented and stored with an alternate representation to achieve good space
utilization. Such representation avoids operations such as operations with 0s (addition
or multiplication of 0s). Consequently, a good time complexity along with efficient
storage is achieved if a sparse matrix is stored with an alternate representation rather
than the conventional way.

Linear data structure using arrays 71

Figure 2.27 illustrates the logical matrices LA and LB.

LA =

7 × 5

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

LB =

0 1 1 1 1

1 1 1 1 0

1 0 1 1 1

1 1 1 0 1

1 1 1 1 1

1 1 1 0 1

0 0 0 0 0

7 × 5

Fig. 2.27  Sparse logical matrix

In Fig. 2.27, the matrix LA is sparse with respect to 1s and dense with respect to 0s,
whereas LB is sparse with respect to 0s and dense with respect to 1s.

For a matrix of m rows and n columns, if m = n, then the matrix is called a square
matrix (Fig. 2.28).

A =

6 × 6

0 0 6 1 1 2

0 1 0 0 9 9

4 0 0 0 0 0

0 0 0 0 0 0

7 0 0 0 0 6

0 2 0 0 0 8

Fig. 2.28  Sparse square matrix

The matrix A in Fig. 2.28 has many 0 entries, and it may be called a sparse matrix.
There is no precise definition of when a matrix is sparse and when it is not. Here, 0s may
represent non-relevant data, or no change in consecutive readings of some experiment or
consecutive positions.

Two general types of n–square sparse matrices are represented in Figs 2.29 and 2.30.

B =

3 × 3

10 0 0

21 90 0

45 28 15

Fig. 2.29  Sparse triangular matrix

4 × 4

9 88 0 0

22 8 95 0

0 33 6 44

0 0 56 47

C =

Fig. 2.30  Sparse tridiagonal matrix

In the matrix in Fig. 2.29, all entries above the main diagonal are 0. A matrix in which
all non-zero entries occur only on or below the main diagonal is called a triangular matrix.

A matrix in which the non-zero entries can only occur on the diagonal or on elements
immediately above or below the diagonal is called a tridiagonal matrix (Fig. 2.30).

72 data structures using c++

2.11.1 Sparse Matrix Representation

A sparse matrix requires an alternate form of representation. While dealing with large
matrices that are sparse, we have to think about an alternative representation to store only
the non-zero elements for better space utilization.

Each element of the matrix is uniquely characterized by its row and column positions.
So a triple (i, j, value) can easily represent the non-zero elements of the matrix.

In the sparse representation of a matrix, there are three columns. In the first row, we
always specify the number of rows, columns, and non-zero elements (No_Of_Non-
ZeroValues) in columns 1, 2, and 3, respectively. From the second row onwards, we
store each non-zero element by its triple (i, j, value). So in a sparse matrix, there are
three columns and (No_Of_NonZeroValues + 1) rows. In general, for space reliability,
3 ¥ (No_Of_NonZeroValues + 1) should always be less than or equal to m ¥ n where
m = number of rows and n = number of columns.

No_Of_NonZeroValues = Number of non-zero elements

In brief, for the alternate representation, we should have

3 ¥ (No_Of_NonZeroValues + 1) £ m ¥ n

Consider the matrix A in Fig. 2.31(a). Among the 42 elements, 8 members are non-
zero. For conventional representation, we need 42 memory locations for storing the
matrix (assuming one location per element), whereas for its alternate representation as in
Fig. 2.31(b), we need (8 + 1) ¥ 3, that is, 27 memory locations.

(a) (b)
9 × 3

Rows Columns Non-zero
entries

1

2

3

2

3

1

9

6 7 8

0 0 1

8

3

4 3 5

4 4 4

5 2 2

5 3 3

6 × 7

0 0 0 0 0 0 1 0 0 0

0 0 9 8 0

0 3 0 0 0

0 0 0 5 4

0 0 2 3 0

0 0 0 0 0

Fig. 2.31  Sparse matrix representation (a) Sparse matrix A
(b) Alternate representation of sparse matrix A

In applications such as finite element analysis, image processing, simulations, and so on,
matrices are of the size 2048 ¥ 2048 or much higher. When m and n are large numbers and

Linear data structure using arrays 73

No_Of_NonZeroValues is much lesser, then the alternate representation saves consider-
able amount of memory and time of processing.

Program Code 2.8 represents the ADT for a sparse matrix.

program CoDe 2.8

 class Sparse_Matrix

 {

 private:

 const int Max = 20

 int S_Mat[Max][3];

 public:

 void Read_SparseMatrix();

 Sparse_Matrix Simple_Transpose();

 Sparse_Matrix Fast_Transpose();

 Sparse_Matrix Add_SparseMatrix(Sparse_Matrix B);

 Sparse_Matrix Mpy_SparseMatrix(Sparse_Matrix B);

 };

2.11.2 Sparse Matrix Addition

Along with the alternate representation, we have to think of appropriate algorithms for com-
mon matrix operations such as addition, subtraction, transpose, inverse, multiplication, and
division. Let us discuss two of them—addition and transpose.

Let A and B be two sparse matrices to be added, as in Fig. 2.32.

6 7

A B C

8

0 1 1

2

2

3

2

3

0

9

8

3
+ =

4 3 5

4 4 4

5 2 2

5 3 3

6 7 11

0 1 3

1

2

2

2

1

2

7

2

9

2 3 8

3 0 8

4 2 4

4

3 54

4 4

5

2 25

3 12

6 4 9

6 7 6

0 1 2

1

2

3

2

1

0

7

2

5

4 2 4

5 3 9

6 4 8

Fig. 2.32  Sparse matrix addition

74 data structures using c++

Only if the size of both the matrices is the same can they be added. Let A_Row and
B_Row be rows of matrix A and B respectively. M and N are the number of non-zero
elements in A and B, respectively. C is the resultant sparse matrix. Algorithm 2.2 describes
the procedure for adding two sparse matrices.

algorithm 2.2

1. Let A, B be the matrices to be added and stored in C
2. Let M and N be number of non-zero entries in A and B respectively.
3. Let i, j, and k be the three index variables used for the rows of A,

B, and C respectively.
4. Let i = j = k = 1, M = A[0][2], N = B[0][2]
5. C[0][0] = A[0][0]
 C[0][1] = A[0][1]
6. while(i £ M and j £ N) do
 begin

 if(A[i][0] = B[j][0]) //if1

 if(A[i][1] = B[j][1]) //if2
 then
 begin
 C[k][0] = A[i][0]
 C[k][1] = A[i][1]
 C[k][2] = A[i][2] + B[j][2]
 i = i + 1, j = j + 1, k = k + 1
 end

 else if(A[i][1] < B[j][1]) //if3 and else for if2
 then
 begin
 C[k][0] = A[i][0]
 C[k][1] = A[i][1]
 C[k][2] = A[i][2]
 k = k + 1, i = i + 1
 end

 else //else for if3
 begin
 C[k][0] = B[j][0]
 C[k][1] = B[j][1]
 C[k][2] = B[j][2]
 j = j + 1, k = k + 1
 end

 else if(A[i][0] < B[j][0]) //if4 and else for if1
 then
 begin
 C[k][0] = A[i][0]
 C[k][1] = A[i][1]
 C[k][2] = A[i][2]
 k = k + 1, i = i + 1
 end

Linear data structure using arrays 75

 else //else for if4
 begin
 C[k][0] = B[j][0]
 C[k][1] = B[j][1]
 C[k][2] = B[j][2]
 K = k + 1, j = j + 1
 end
 end while
 7. while(i < = M) do
 begin
 C[k][0] = A[i][0]
 C[k][1] = A[i][1]
 C[k][2] = A[i][2]
 k = k + 1, i = i + 1
 end
 8. while(j <= N) do
 begin
 C[k][0] = B[j][0]
 C[k][1] = B[j][1]
 C[k][2] = B[j][2]
 k = k + 1, j = j + 1
 end
 9. C[0][2] = k
10. stop

Program Code 2.9 includes the ADT for a sparse matrix and function for two sparse ma-
trix additions as per Algorithm 2.2.

program CoDe 2.9

 Sparse_Matrix Sparse_Matrix :: Add_SparseMatrix

(Sparse_Matrix B)

 {

 Sparse_Matrix C;

 int i, j, k, Row1, Row2, Col1, Col2, M1, M2;

 Row1 = S_Mat[0][0];

 Col1 = S_Mat[0][1];

 M1 = S_Mat[0][2];

 Row2 = B.S_Mat[0][0];

 Col2 = B.S_Mat[0][1];

 M2 = B.S_Mat[0][2];

 if(Row1 == Row2 && Col1 == Col2)

 // checking dimensions if1

 {

 i = j = k = 1;

 C. S_Mat[0][0] = S_Mat[0][0];

 C. S_Mat[0][1] = S_Mat[0][1];

76 data structures using c++

 while(i £ M1 and j £ M2) // while1

 {

 if(S_Mat[i][0] == B.S_Mat[j][0]) // if2

 {

 if(S_Mat[i][1] == B.S_Mat[j][1]) // if3

 {

 C.S_Mat[k] [0] = S_Mat[i][0];

 C.S_Mat[k] [1] = S_Mat[i][1];

 C.S_Mat[k][2] = S_Mat[i][2] + B.S_Mat[j][2];

 i++; j++; k++;

 } // end of if3

 else // else of if3

 {

 if(S_Mat[i][1] < B.S_Mat[j][1]) // if4

 {

 C.S_Mat[k][0] = S_Mat[i][0];

 C.S_Mat[k][1] = S_Mat[i][1];

 C.S_Mat[k][2] = S_Mat[i][2];

 k++; i++;

 } // end of if4

 else // else of if4

 {

 C.S_Mat[k][0] = B.S_Mat[j][0];

 C.S_Mat[k][1] = B.S_Mat[j][1];

 C.S_Mat[k][2] = B.S_Mat[j][2];

 j++; k++;

 } // end of else of if4

 } // end of else of if3

 } // end of if2

 else // else of if2

 {

 if(S_Mat[i][0] < B.S_Mat[j][0]) // if5

 {

 C.S_Mat[k][0] = S_Mat[i][0];

 C.S_Mat[k][1] = S_Mat[i][1];

 C.S_Mat[k][2] = S_Mat[i][2];

 k++ ; i++;

 } // end of if5

 else // else of if5

 {

 C.S_Mat[k][0] = B.S_Mat[j][0];

Linear data structure using arrays 77

 C.S_Mat[k][1] = B.S_Mat[j][1];

 C.S_Mat[k][2] = B.S_Mat[j][2];

 k++; j++;

 } // end of else of if5

 } // end of else of if2

 } // end of while1

 while(i £ M1) // while2

 {

 C.S_Mat[k][0] = S_Mat[i][0];

 C.S_Mat[k][1] = S_Mat[i][1];

 C.S_Mat[k][2] = S_Mat[i][2];

 k++; i++;

 } // end of while2

 while(j £ N) // while3

 {

 C.S_Mat[k][0] = B.S_Mat[j][0];

 C.S_Mat[k][1] = B.S_Mat[j][1];

 C.S_Mat[k][2] = B.S_Mat[j][2];

 k++; j++;

 } // end of while3

 C.S_Mat[0][2] = k;

 return C;

 } // end of if1 for checking dimensions

 else //else for if1

 cout << "Sorry, matrices cannot be added because

dimensions don’t match.\n";

 } // end of function

2.11.3 Transpose of Sparse Matrix

In the conventional approach, by interchanging rows and columns, we get the transpose
of the matrix as the elements at position [i][j] and [j][i] are swapped.

Let m and n be the number of rows and columns for matrix A. The transpose of A can
be obtained using the following code.

for(i = 1; i £ m; i++)
 for(j = 1; j £ n; j++)
 A[j][i] = A[i][j];

Time complexity of this technique is O(mn). In addition, the conventional transpose
(Fig. 2.33(a)) is not suitable for sparse matrix’s alternate representation. By just exchanging
the row and the column, we get the transpose of the sparse matrix as shown in Fig. 2.33(b).

78 data structures using c++

(a)

3 × 4

4 × 3

1 5 9

2

3

4

6

7

8

10

11

12

A =

B = BT =

AT =

1 2 3 4

5 6 7 8

9 10 11 12

(b)

6 7 5

1 2 7

2

3

5

4

6

0

2

5

4

5 3 9

6 1 8

7 6 5

2 1 7

4

6

0

2

3

5

2

5

4

3 5 9

1 6 8

Fig. 2.33  Transpose of matrices (a) Conventional matrix and its transpose 
(b) Sparse matrix and its transpose

The matrix in Fig. 2.33(b) is a simple sparse matrix of size 6 ¥ 7 with 5 non-zero elements
and its transpose.

We can notice that entries in BT are not sorted row and column wise; we need to sort
them further. Sorting further adds to time complexity. Let us learn two better approach-
es—the simple and fast transpose algorithms.

Simple Transpose

Let A be a matrix of size m ¥ n with T non-zero elements and let B be its transpose. One
of the easiest ways is to search for each column (column = 0 to n - 1) and sequentially
place each column as a row in the transposed matrix B by placing the interchanged entries
as row, column, and value (refer to Fig. 2.34 on page 80).

The steps to transpose a matrix are described in Algorithm 2.3 and the corresponding
program is described in Program Code 2.10.

algorithm 2.3

1. Row = A[0][0], Col = A[0][1] and T = A[0][2]
2. B[0][0] = Col , B[0][1] = Row and B[0][2] = T

Linear data structure using arrays 79

3. if T = 0 goto step(5)
4. Let i = 1
 for j = 0 to Col-1 do
 for k = 1 to T do
 if(A[k][1] = j)
 begin
 B[i][0] = A[i][1]
 B[i][1] = A[i][0]
 B[i][2] = A[i][2]
 i = i + 1
 end
5. stop

program CoDe 2.10

 Sparse_Matrix Sparse_Matrix :: Simple_Transpose()

 {

 Sparse_Matrix B;

 int Row, Col, i, j, k, T;

 Row = S_Mat[0][0];

 Col = S_Mat[0][1];

 T = S_Mat[0][2];

 if(T == 0) return;

 B.S_Mat[0][0] = Col;

 B.S_Mat[0][1] = Row;

 B.S_Mat[0][2] = T;

 i = 1;

 for(j = 0; j < Col; j++)

 {

 for(k = 1; k <= T; k++)

 {

 if(S_Mat [k][1] == j)

 {

 B.S_Mat[i][0] = S_Mat[i][1];

 B.S_Mat[i][1] = S_Mat[i][0];

 B.S_Mat[i][2] = S_Mat[i][2];

 i++;

 }

 }

 }

 return B;

 }

80 data structures using c++

In Algorithm 2.3, we first take the first row of matrix A as (m, n, t) and store it as (n,
m, t) in matrix B. In the second column (the 0th column being the first), we have stored
values that initially indicated columns as now indicating rows. This column is searched
for using col = 0 to n - 1.

For example, in the simple transpose in the following figure, the current row of matrix
A is initially set to 0 and no entry with column as 0. So the row is incremented and set to
1 and the process continues; the entry (2, 1, 21) in A is stored as (1, 2, 21) in matrix B, and
the current row value is updated each time. The next entry (3, 1, 31) is stored as (1, 3, 31)
in matrix B. Further, entry (1, 2, 12) is stored as (2, 1, 12) in matrix B. Similarly, it goes
on searching for each column value.

A = B = AT =

3 4 5

1 2 12

2

2

3

1

3

1

21

23

31

3 4 34

4 3 5

1 2 21

1

2

3

3

1

2

31

12

23

4 3 34

Fig. 2.34 Simple transpose

Step 4 of Algorithm 2.3 is repeated T times for each column. The time complexity is
O(nT) where n is the number of columns in matrix A and T is number of non-zero elements
in the matrix.

In a matrix, when all data is relevant, that is, all data members are non-zero, then
T = m ¥ n.

Now, the time complexity will be O(n · T) = O(n · mn) = O(mn2), which is worse than
the conventional transpose with time complexity O(mn). Let us learn a better approach
for transpose.

Fast Transpose

Let A be a sparse matrix of size m ¥ n with T non-zero elements. Its transpose will be
stored in matrix B. Let Freq and RowStartPos be two one-dimensional arrays of size n.
In Freq array, the frequency count of each column in matrix A is stored, and RowStart-
Pos will be computed and stored at the position where each row entry of matrix A is to be
inserted in matrix B. Then, the RowStartPos is computed using Freq. The corresponding
algorithm is as illustrated in Algorithm 2.4.

Linear data structure using arrays 81

algorithm 2.4

1. Row = A[0][0]
 Col = A[0][1]
 M = A[0][2]
2. B[0][0] = Col
 B[0][1] = Row
 B[0][2] = M
3. if M = 0 then goto step 9
4. for i = 0 to Col - 1 do
 Freq[i] = 0 {Here Freq array stores the frequency count of each
 column, initially set to 0}
5. for k = 1 to M do
 Tmp = A[k][1]
 Freq[Tmp] = Freq [Tmp] + 1;
6. RowStartPos[0] = 1 {We shall start storing elements in B matrix

from 2nd row that is B[1][] onwards}
7. for j = 1 to Col - 1 do
 RowStartPos[j] = RowStartPos[j - 1] + RowStartPos[j - 1];
 { Here RowStartPos n matrix gives the position to place an

element in resultant matrix}
8. for i = 1 to M + 1 do
 begin
 k = RowStartPos[A[i][1]]
 B[k][0] = A[i][1]
 B[k][1] = A[i][0]
 B[k][2] = A[i][2]
 RowStartPos[k] = RowStartPos[k] + 1
 end
9. stop

This algorithm will first find the number of non-zero elements in each column and
store it in an array Freq. The second array RowStartPos is used to store the starting ad-
dress of each column, which will be a row in the corresponding transposed matrix. The
starting address of each row in the transposed matrix is given by

RowStartPos[i] = RowStartPos[i - 1] + Freq[i - 1]

where,

Freq[i - 1] gives the number of non-zero elements in row[i - 1]
RowStartPos [i - 1] gives the starting row of row [i - 1]

If the starting position for any row, say 3, is 5 in a transposed matrix and there are 2 ele-
ments in row 3, then the starting position of row 4 will be 5 + 2 = 7. Sequentially, we read
the column index from matrix A and then get the location from the array RowStartPos,
and we store that element in matrix B at the specified location in the transposed form. This
is illustrated in Fig. 2.35.

82 data structures using c++

B[]

0

1

7

8

2

3

4

5

6

6 7 8

1 2 17

2 4 12

3 6 50

5 0 49

5 3 92

6 0 38

6 1 1.1

6 3 15

0

1

7

8

2

3

4

5

6

7 6 8

0 5 49

0 6 38

1 6 11

2 1 17

3 5 92

3 6 15

4 2 12

6 3 50

0

1

2

3

4

5

6

1 2

6

3

4

5

7

8

8

0

1

2

3

4

5

6

2

1

1

2

1

0

1

(a)

(b) (c) (d)

Freq [] RowStartPos [] BT []

Fig. 2.35 Storing column as row in fast transpose
(a) Input matrix B (b) Freq[i] (c) RowStartPos[i] (d) BT

Time and Space Complexity Analysis of Fast Transpose

There are three loops in Algorithm 2.4, which are executed n (no. of rows), T (no. of non-
zero members), n - 1, and T times, respectively, resulting in overall time complexity O(n + T).

In the worst case, that is, when T = m ¥ n (non-zero elements), the magnitude becomes
O(n + mn) = O(mn), which is the same as the conventional 2D transpose. However, the
constant factor associated with fast transpose is quite high. When T is sufficiently small
compared to its maximum of m ¥ n, fast transpose works faster.

As compared to simple transpose, time is saved but an extra space for two one-dimen-
sional arrays Freq and RowStartPos are required for the fast transpose. Program Code
2.11 implements the sparse matrix fast transpose.

Linear data structure using arrays 83

program CoDe 2.11

 Sparse_Matrix Sparse_Matrix ::Fast_Transpose()

 {

 Sparse_Matrix B;

 int m, n, t, i, j, Freq[], RowStartPos[];

 Row = S_Mat[0][0];

 Col = S_Mat[0][1];

 M = S_Mat[0][2];

 B.S_Mat[0][0] = Col;

 B.S_Mat[0][1] = Row;

 B.S_Mat[0][2] = M;

 if(M == 0) return;

 else

 {

 for(i = 0; i < col; i++)

 {

 Freq[i] = 0;

 }

 for(i = 1; i <= t; i++)

 {

 T = A[i][1];

 Freq[T]++;

 }

 RowStartPos [0] = 1;

 for(i = 1; i < n; i++)

 {

 RowStartPos[i] = RowStartPos[i − 1] + Freq[i − 1];

 }

 for(i = 1; i <= M; i++)

 {

 j = A[i][1] ;

 B[RowStartPos[j]][0] = S_Mat[i][1];

 B[RowStartPos[j]][1] = S_Mat[i][0];

 B[RowStartPos[j]][2] = S_Mat[i][2];

 RowStartPos[j] = RowStartPos[j] + 1;

 }

 }

 return B;

 }

84 data structures using c++

In this program, the number of elements in each column is determined initially. These are
actually going to be the number of columns in the transposed matrix. This information
helps us update the array RowStartPos, which tells us from where we should start storing
elements in the transposed array so that they are row wise sorted.

2.12 STRING MANIpULATION USING ARRAY

String is the most commonly used data object. It is usually formed from the character set
of the programming language. Suppose S = a1 a2 ... an.

The value n is the length of the character string S, where n ≥ 0. If n = 0, then S is called a
null string or empty string. There are various operations that can be performed on the string:

1. Finding the length of a string
2. Concatenating two strings
3. Copying a string
4. Reversing a string
5. Performing string compare
6. Palindrome check
7. Recognizing a sub string.

These operations using arrays are discussed in detail in the sections that follow.
Basically, a string is stored as a sequence of characters in a one-dimensional character

array, say A (Fig. 2.36).

Fig. 2.36 String stored in array

S T R I N G \0 – – –

0

A =

1 2 3 4 5 6 7 8 9

The simple C++ statement for storing ‘String’ in an array of size 10 is as follows:

char A[10] = "STRING";

Each string is terminated by a special character, that is, null character ‘\0’. This null char-
acter indicates the end or termination of each string. The function compare() in Program
Code 2.12 compares two strings to find whether they are equal.

To compare two strings, we first check whether their lengths are the same. If the
lengths are the same, then there is a further possibility that the strings are the same. The
lengths are to be compared if they have been precomputed or are known, else this adds to
the complexity. Then, we compare each character of string A with string B. If they match,
then the strings are the same; else they are not.

Linear data structure using arrays 85

program CoDe 2.12

 Class String

 {

 private:

 char Str[];

 public:

 String() {}

 int Length();

 void Concat(String B);

 int Substring(String S);

 };

 int String :: Length()

 {

 int length = 0, i;

 for(i = 0; Str[i] != ’\0’; i++)

 length++;

 return(length);

 }

 void String :: Concat(String B)

 {

 int len_A, i, j;

 // To concatenate B to A we need to traverse

 // string A till the end

 for(i = 0; Str[i] != ‘\0’; i++);

 len_A = i;

 // Let us concatenate B to A now

 for(i = len_A, j = 0; B.Str[j] != ‘\0’; j++,i++)

 {

 Str [i] = B.Str[j];

 }

 Str[i] = ‘\0’;

 }

 String String :: Copy()

 {

 String B;

 int i;

 for(i = 0; Str[i] != ‘\0’; i++)

86 data structures using c++

 B.Str[i] = Str[i];

 B.Str[i] = ‘\0’; // Append the termination character

 return B;

 }

 String String :: Copy_Reverse()

 {

 int i, l, Len_A;

 for(l = 0; Str[l] != ‘\0’; l++);

 // loop terminates after reaching end of A

 Len_A = l--

 for(i = l, j = 0; i >= 0; i--, j++)

 B.Str[j] = Str[i];

 B.Str[j] = ‘\0’; //Append termination character

 return B;

 }

 void String :: Rev_String()

 {

 int i, len = 0;

//exchange ith and jth characters till middle position

 char t;

 for(len = 0; Str[len] !=‘\0’,len++);

 for(i = 0, j = len - 1; i != j; i++, j--)

 {

 t = Str[i]; Str[i] = Str[j]; Str[j] = t;

 }

 }

 int String :: Str_cmp(String A, String B)

 {

 int i = 0;

 if (A.Length() != B.Length())

 return(0);

 while

 (A.Str[i] == B.Str[i] && A.Str[i] != ‘\0’ &&

 B.Str[i] != ‘\0’)

 ++ i;

 if(A.Str[i] == ‘\0’ && B.Str[i] == ‘\0’)

 return(1);

 else

 return(0);

 }

Linear data structure using arrays 87

Palindrome check Palindrome is a string that reads the same in forward and backward
directions. For example, madam and malayalam are palindromes (Fig. 2.37).

Fig. 2.37 Palindrome check

M A L A Y A L A M

0 1 2 3 4 5 6 7 8 n = 8

n/2

To check whether the string is a palindrome or not, there are two approaches:

1. We fi rst fi nd the reverse of the string and then compare it with the original string. If
they match, then the string is a palindrome; otherwise, it is not. This approach needs n
comparisons if the string length is n and an additional array to store the reversed string.

2. The other approach does not need n comparisons but just n/2 comparisons. We can
compare the fi rst character with the last. If they match, then again match the second
character with the second last. Continue this process till the middle of the string. We
can set two indices from both the ends and compare till the indices do not overlap. The
mismatch of characters indicates that the string is not a palindrome. This approach
does not need an additional data structure.

The program for checking a palindrome is given in Program Code 2.13.

program CoDe 2.13

 int String:: Palindrome_Check()

 {

 int i, j, l, fl ag = 0, k;

 for(l = 0; Str[l] != ‘\0’; l++); //loop terminates

 l--; k = l/2; //to avoid null char

 for(i = 0,j = l; i <= k; i++, j--)

 {

 if(Str[i] == Str[j])

 {

 fl ag = 1;

 continue;

 }

www.allitebooks.com

http://www.allitebooks.org

88 data structures using c++

 else

 {

 fl ag = 0;

 break;

 }

 }

 if(fl ag == 1)

 return 0;

 else

 return 1;

 }

Substring check For substring recognition, we will fi nd the occurrence of string B in
string A.
For example,

A = ‘A B C D’
B = ‘BC’ or ‘BCD’ and so on

There are two possibilities:

1. Either B is a substring of A or
2. B is not a substring of A.

Program Code 2.14 checks if a given string is a substring or not.

program CoDe 2.14

 int String :: substring(String B)

 {

 int j = 0, fl ag = 0;

 for(i = 0; A.Str[i] != ‘\0’ || B.Str[j] != ‘\0’; i++)

 {

 if(A.Str[i] == B.Str[j])

 {

 j++;

 fl ag = 1;

 }

 else

 {

 j = 0;

 fl ag = 0;

 }

 }

Linear data structure using arrays 89

 if(fl ag == 1)

 return 1;

 else

 return 0;

 }

2.13 pROS AND CONS Of ARRAYS

We have studied an array as an abstract data type and also its implementation. We have
also studied and analyzed a few applications that use an array as a data structure. Let us
list the characteristics, pros, and cons of an array as a data structure.

2.13.1 Characteristics

The characteristics of an array are as follows:

1. An array is a fi nite ordered collection of homogeneous data elements.
2. In an array, successive elements are stored at a fi xed distance apart.
3. An array is defi ned as a set of pairs—index and value.
4. An array allows direct access to any element.
5. In an array, insertion and deletion of elements in-between positions require data

movement.
6. An array provides static allocation, which means the space allocation done once during

the compile time cannot be changed during run-time.

2.13.2 Advantages

The various merits of the array as a data structure are as follows:

1. Arrays permit effi cient random access in constant time 0(1).
2. Arrays are most appropriate for storing a fi xed amount of data and also for high

frequency of data retrievals as data can be accessed directly.
3. Arrays are among the most compact data structures; if we store 100 integers in an

array, it takes only as much space as the 100 integers, and no more (unlike a linked list
in which each data element has an additional link fi eld).

4. Arrays are well known in applications such as searching, hash tables, matrix operations,
and sorting.

5. Wherever there is a direct mapping between the elements and their position, such as an
ordered list, arrays are the most suitable data structures.

6. Ordered lists such as polynomials are most effi ciently handled using arrays.
7. Arrays are useful to form the basis for several complex data structures such as heaps

and hash tables and can be used to represent strings, stacks, and queues.

90 data structures using c++

2.13.3 Disadvantages

Some of the disadvantages of arrays are as follows:

1. Arrays provide static memory management. Hence, during execution, the size can
neither be grown nor shrunk.

2. There is a solution to handle the problem, that is, to declare the array of some arbitrarily
maximum size. This leads to two other problems:
(a) In future, if the user still needs to exceed this limit, it is not possible.
(b) Higher the maximum, the more is the memory wastage because very often, many

locations remain unused but still allocated (reserved) for the program. This leads
to poor utilization of space.

3. Static allocation in an array is a problem associated with implementation in many
programming languages except a few such as JAVA.

4. An array is inefficient when often data is inserted or deleted as insertion or deletion of
an element in an array needs a lot of data movement.

5. Hence, an array is inefficient for the applications that often need insert and delete
operations in between.

6. A drawback due to the simplicity of arrays is the possibility of referencing a non-
existent element by using an index outside the valid range. This is known as exceeding
the array bounds. The result is a program working with incorrect data. In the worst
case, the whole system can crash. In C++, the powerful syntax is unfortunately prone
to this kind of error. Some languages have built-in bounds checking and do not index
an array outside of its permitted range.

2.13.4 Applications of Arrays

The following list indicates where arrays are most beneficial:

1. Although useful in their own right, arrays also form the basis for several more complex
data structures such as heaps and hash tables and can be used to represent strings,
stacks, and queues.

2. All these applications benefit from the compactness and direct access benefits of
arrays.

3. Arrays can be used to store two-dimensional data when represented as matrix and
matrix operations.

4. They can also be used for indexing, searching, and sorting keys, about which we shall
learn in the Chapters 9 and 10.

5. In some applications where the data is the same or is missing for most values of the
indices, or for large ranges of indices, space is saved by not storing an array at all. Such
an application is called sparse matrix representation. This has an associative array with
integer keys. There are many specialized data structures specifically for applications,
including address translation table and routing tables.

Linear data structure using arrays 91

RECApITULATION

•  Data  can  be  organized  in  either  a  linear  or 
a non-linear manner. In linear or sequential
organization, all the elements can be arranged 
in a particular sequence and each element
has a unique successor (and/or predecessor)
in the sequence.

•  Linear data organization can be realized using 
arrays. An array is a very common and simple
means of sequential (or linear) data structuring
and is supported by almost all programming
languages.

•  Sequential  organization  allows  storing  data 
at a fi xed distance apart.  If  the  ith element is
stored at location X,  then  the  next  sequen-
tial (i+1)th element is stored at location X + C,
where C is a constant.

•  An  array  allows  direct  or  random  access  to 
any data element of the list at a constant time, 

that  is, O(1) as sequential organization uses
continuous memory locations to store its data.
The data access time remains constant for
accessing any element of the list, irrespective 
of the total length or size of the data list.

•  For  in-between  insertions  or  deletions  of  ele-
ments, we need to perform data shifting to keep 
the organization consistent and intact, which is 
expensive with respect to time.

•  When  data  is  organized  in  multiple  dimen-
sions,  a  one-dimensional  array proves  to  be 
insuffi cient,  and  we  need  two-dimensional, 
three-dimensional, or multidimensional arrays. 
A multidimensional array is an extension of a 
two-dimensional array to three,  four, or more 
dimensions.

•  Arrays are effi ciently used for matrix, polyno-
mial, and string operations.

Array An array is a fi nite ordered collection of
homogeneous data elements that provides direct
access (or random access) to any of its elements.

Linear and non-linear data structure In linear
(or sequential) organization, all the elements can
be arranged in a particular sequence, and each ele-
ment has a unique successor (and/or predecessor)
in the sequence. When each element may have
one or more successors (or predecessors), it is
called a non-linear data structure.

Memory representation of array A computer’s
memory can be well thought-out as one long list of
bits grouped together into bytes and/or words. Each
of them can be referred to as just location to avoid
machine-dependent details about whether memory
is structured with a one–byte, two–byte, or an n-
byte word. In addition, the addressing scheme such
as byte addressable or word addressable varies.

Memory representation of two-dimensional ar-
rays Let us consider a two-dimensional array A

of dimension m × n. Though the array is multi-
dimensional, it is usually stored in memory as a
single-dimensional array. A multidimensional array
is represented in memory as a sequence of m × n
consecutive memory locations. The elements of a
multidimensional array can be stored in memory
as a row-major representation or a column-major
representation.

Sequential organization Sequential organization
allows storing data at a fi xed distance apart. If the
ith element is stored at location X, then the next
sequential (i+1)th element is stored at location X +
C, where C is a constant.

Sparse matrix In many situations, the matrix size
is very large but out of it, most of the elements
are 0s (not necessarily always 0s). Only a small
fraction of the matrix is actually used. A matrix of
such a type is called a sparse matrix, as the matrix
is fi lled sparsely by data and most of the positions
are empty or contain non-relevant data.

KEY TERMS

92 data structures using c++

Multiple choice questions

 1. An array is a
 (a) linear data structure
 (b) non-linear data structure
 (c) complex data structure
 (d) none of these
 2. Which of the following expressions access the

(i, j)th element of an m ¥ n matrix stored in
column-major form?

 (a) n ¥ (i - 1) + j
 (b) m ¥ (j - 1) + i
 (c) m ¥ (n - j) + j
 (d) n ¥ (m - i) + j
 3. An n ¥ n array V is defi ned as follows:
 V[i, j] = i - j for all i, j, where 1 < i £ n, 1 £

j £ n
 The sum of the elements of the array V is
 (a) 0
 (b) n - 1
 (c) n2 - 3n + 2
 (d) n2 (n + 1)/2
 4. The smallest element of an array’s index is

called its
 (a) lower bound
 (b) upper bound
 (c) range
 (d) extraction
 5. Pick out the correct answers from the following:
 (a) During array declaration, no storage is set

aside
 (b) Array defi nition precedes array declaration
 (c) Array declaration precedes array defi nition
 (d) Initialization cannot be done during array

declaration
 6. The parameter passing mechanism for an

array is
 (a) call by value
 (b) call by value-result
 (c) call by reference
 (d) none of the above

 7. If n has the value 3, then the statement a[++n] =
n++

 (a) assigns 3 to a[5]
 (b) assigns 4 to a[5]
 (c) assigns 4 to a[4]
 (d) produces unpredictable results
 8. Let A be a two-dimensional array declared as

follows:
 An array [1, ..., 10] [1, …, 15] of integers;

assuming that each integer takes one memory
location, the array is stored in row-majored
order, and that the fi rst element of the array is
stored at location 100, what is the address of the
element A[i][j]?

 (a) 15i + j + 84
 (b) 15j + i + 84
 (c) 10i + j + 89
 (d) 10j + i + 89
 9. To traverse an array means
 (a) to process each element in an array
 (b) to delete an element from an array
 (c) to insert an element into an array
 (d) to combine two arrays into a single array
 10. A matrix is said to be sparse when
 (a) most of the elements are non-zero
 (b) most of the elements are zero
 (c) all of its elements are non-zero
 (d) None of the above.

Review questions

 1. You have two arrays, A and B, each of 10
integers. Write an algorithm that tests if every
element of array A is equal to its corresponding
element in array B.

 2. Write an algorithm that reverses the elements
of an array so that the last element becomes the
fi rst, the second to the last becomes the second,
and so on.

 3. An m ¥ n matrix is said to have a saddle point if
some entry A[i, j] is of the smallest value in row

ExERCISES

Linear data structure using arrays 93

i and the largest value in column j. Write a C++
program that determines the location of a saddle
point, if one exists. What is the computing time
complexity of your program?

 4. Write a function in C++ called merge_

arrays() that takes two stored arrays and
merges them into one stored array. The function
header should be

 void merge_arrays()
 double *a, *b, *c;

 where a and b are pointers to the two stored
arrays and c is a pointer to the resulting merged
array.

 5. Modify merge_arrays() of Review Question
4 so that it eliminates duplicate entries.

 6. A lower triangular array a is an n ¥ n array in
which a[i][j] == 0, if i < j. What is the maximum
number of non-zero elements in such an array?
How can these elements be stored sequentially
in memory? Develop an algorithm for accessing
a[i][j], where i > j. Define an upper triangular
array in an analogous manner and do the same
for such an array as for the lower triangular array.

 7. Let a and b be two n ¥ n lower triangular arrays.
Show how an n × (n + 1) array c can be used to
contain the non-zero elements of the two arrays.
Which elements of c represent the elements a[i]
[j] and b[i][j], respectively?

 8. What is meant by the terms ‘row-major order’
and ‘column-major order’?

 9. The array data[15, 25] is stored in memory
in row-major order. If the base address is 500
and element size is 5, calculate the address of the
element data[7, 12].

10. Imagine N people have decided to commit
suicide by arranging themselves in a circle and
killing the Mth person around the circle, closing
ranks as each person drops out of the circle. Find
out which person is the last to die. Write a C++
program to simulate the execution sequence.

11. Write a C++ program to find out the maximum
and second maximum numbers from an array of
integers.

12. The mode of an array of numbers is the number
m in the array that is repeated most frequently.
If more than one number is repeated with equal
maximal frequencies, there is no mode. Write a
C++ program that accepts an array of numbers
and returns the mode or an indication that the
mode does not exist.

13. Write a C++ program to delete duplicate
elements from an array of 20 integers.

14. There are two arrays A and B. A contains 25
elements, whereas B contains 30 elements. Write
a function to create an array C that contains only
those elements that are common to A and B.

15. A magic square of size 5 ¥ 5 contains different
elements. Write a C++ function to verify whether
the sum of each individual column elements, the
sum of each individual row elements, and the
sum of diagonal elements are equal.

16. Write a C++ program to build a sparse matrix as
an array. Write functions to check if the sparse
matrix is a square, diagonal, lower triangular,
upper triangular, or tridiagonal matrix.

17. Write a C++ program to subtract two sparse
matrices implemented as an array.

Answers to multiple choice questions

1. (a) 2. (b) 3. (a) 4. (a) 5. (a), (b), (d) 6. (a)
7. (d) The output is compiler-dependent. 8. (a) 9. (b) 10. (b)

3

Stacks and queues are special data structures where insert and delete operations are
performed only at specifi c ends rather than at intermediate or any other random

positions. These are special cases of ordered lists. As we have seen in Chapter 2, linear
data structures such as arrays and linked lists allow us to insert or delete an element
from any position in the list; stacks and queues are linear lists with restrictions on these
operations. Let us discuss these concepts in detail.

3.1 cOncEPt Of StackS anD quEuES

Stacks and queues are the two data structures where insert and delete operations are
 applied at specifi c ends only. These are special cases of ordered lists and are also called
controlled linear lists. There is a wide variety of software applications where we need
these restricted data structure operations. The following are some examples where stacks
and queues are generally used:

1. Queues are widely used in applications that maintain a list of printing jobs waiting at a
network printer. Here, one queue that can hold all print requests from different users is kept.

2. Handling function calls in programs very often restricts access at one end to keep track of
the returning position. In such implementation, we need to use stacks. We can keep track of
the return address to earlier function after furnishing/fi nishing a function call using stacks.

We shall discuss stacks in this chapter and queues in Chapter 4.

StackS

OBJEctiVES

After completing this chapter, the reader will be able to understand the following:
 • All aspects of a stack as a data type such as

 ○ l ast in fi  rst out (LIFO) data access
 ○ push, pop, and other stack operations
 ○ contiguous implementation of a stack

 • Realization of a stack using arrays
 • Choosing appropriate realizations for practical applications
 • Implementation of multi-stacks
 • Use of stacks in expression conversi on, recursion, reversing data, and other applications

stacks 95

3.2 StackS

In our everyday life, we come across many examples of stacks, for example, a stack of
books, a stack of dishes, or a stack of chairs. The data structure stack is very similar to
these practical examples (Fig. 3.1).

Stack of books Stack of chairs Stack of cups

Fig. 3.1  Sample real world stacks

Consider a stack of books on a table. We can easily put a new book on the top of the
stack, and similarly, we can easily remove the topmost book as compared to the books
lying in-between or at the bottom positions. In the same way, only the topmost ele-
ment of a stack can be accessed while direct access of other intermediate positions
is not feasible. Elements may be added to or removed from only one end, called the
top of a stack.

The linear data structures such as arrays and linked lists allow users to insert or delete
an element at any position in the list, that is, we can insert or delete an element at the
beginning, at the end, or at any intermediate position.

A stack is defined as a restricted list where all insertions and deletions are made only
at one end, the top. Each stack abstract data type (ADT) has a data member, commonly
named as top, which points to the topmost element in the stack. There are two basic
operations push and pop that can be performed on a stack; insertion of an element in
the stack is called push and deletion of an element from the stack is called pop. In
stacks, we cannot access data elements from any intermediate positions other than the
top position.

Given a stack S = (a1, a2, ..., an). We say that as a1 is the bottommost element, an is on
top of the stack, and the element ai+1 is said to be on the top of ai, 1 < i £ n.

In Fig. 3.2, S = (A, B, C), where A is the bottommost element and C is the topmost
element.

Top

BottomA

B

C

Fig. 3.2  A stack of three letters A, B, and C

96 data structures using c++

3.2.1 Primitive Operations

The three basic stack operations are push, pop, and getTop. Besides these, there
are some more operations that can be implemented on a stack such as stack_
initialization, stack_empty, and stack_full. The stack_initialization
operation prepares the stack for use and sets it to a vacant state. The stack_empty
operation simply tests whether the stack is empty. The stack_empty operation is use-
ful as a safeguard against an attempt to pop an element from an empty stack. Popping
an empty stack is an error condition. The stack_empty condition is also termed stack
underflow. In ideal conditions, stacks should possess infinite capacity so that the sub-
sequent elements can always be pushed, regardless of the number of elements already
present on the stack. However, computers always have finite memory capacity, and we
do need to check the stack_full condition before doing push because pushing an
element in a full stack is also an error condition. Such a stack full condition is called
stack overflow.

Another stack operation is GetTop. This returns the top element of the stack without
actually popping it. A few more stack operations include traversing the stack, counting
the total number of elements in the stack, and copying the stack.

Let us quickly recall all the stack operations:

1. Push—inserts an element on the top of the stack
2. Pop—deletes an element from the top of the stack
3. GetTop—reads (only reading, not deleting) an element from the top of the stack
4. Stack_initialization—sets up the stack in an empty condition
5. Empty—checks whether the stack is empty
6. Full—checks whether the stack is full

Push

The push operation inserts an element on the top of the stack. The recently added element
is always at the top of the stack. Before every push, we must ensure whether there is a
room for a new element (Fig. 3.3).

Top

Top C

C

B

A

B
After push

A

Fig. 3.3  The push operation

stacks 97

When there is no space to accommodate the new element on the stack, the stack is said
to be full (Fig. 3.4). If the operation push is performed when the stack is full, it is said
to be in overflow state, that is, no element can be added when the stack is full. The push
operation modifies the top since the newly inserted element becomes the topmost
element (Fig. 3.3).

TopC

B

A

Stack full

Fig. 3.4  The stack full condition (stack capacity = 3)

Pop

The pop operation deletes an element from the top of the stack and returns the same
to the user. It modifies the stack so that the next element becomes the top element
(Fig. 3.5).

Top

C

C

B

A

BAfter pop

A

Top

Fig. 3.5  The pop operation

When there is no element available on the stack, the stack is said to be empty. If pop
is performed when the stack is empty, then the stack is said to be in an underflow state
(Fig. 3.6).

Empty stack

Fig. 3.6 The empty stack

98 data structures using c++

The pop operation should not be performed when the stack is empty, and hence before
every pop, we must ensure that the stack is not empty. After deleting the last element from
the stack, the stack should be set to an empty state.

GetTop

The getTop operation gives information about the topmost element and returns
the element on the top of the stack. In this operation, only a copy of the element, which
is at the top of the stack, is returned. Hence, the top is still set to the same element
(Fig. 3.7).

Top Top

After GetTop function

C

B

A

C

B

A

Fig. 3.7  The getTop operation 

This is the key difference between the pop and getTop operations. The getTop opera-
tion does not modify the variable top. It signals the stack underflow error if the stack
is empty.

As both insert and delete operations are allowed only at one end of the stack,
it retrieves data in the reverse order in which the data is stored. In Fig. 3.8, let
S = {A, B, C}.

A

push(A) push(B) push(C)

AAA

B

BB

C

C Top

Fig. 3.8  Stack and push operations

Suppose that the order of the operations is push(A), push(B), and then push(C). When
we remove these elements out of the stack, they will be removed in the order C, B, and
then A. This is shown in Fig. 3.9.

stacks 99

ABC

pop() pop() pop() Empty

AA

B

A

B

C

Fig. 3.9  Stack and pop operations

Elements are taken out in the reverse order of the insertion sequence. So a stack is often
called last in first out (LIFO) or first in last out (FILO) data structure.

3.3 Stack aBStRact Data tYPE

Let us now see the data object, operations, and axioms associated with the stack. Any sets
of elements that are of the same data type can be used as a data object for stacks. The
meaning of ‘same data type’ is that all the elements in the stack should be of the same na-
ture, having common representational logical properties. For example, stack of integers,
stack of names of students, stack of employee records, and stack of records of processes
of the operating system.

The following five functions comprise a functional definition of a stack:

1. Create(S)—creates an empty stack
2. Push(i, S)—inserts the element i on the stack S and returns the modified stack
3. Pop(S)—removes the topmost element from the stack S and returns the modified stack
4. GetTop(S)—returns the topmost element of stack S
5. Is_Empty(S)—returns true if S is empty, otherwise returns false

However, when we choose to represent a stack, it must be possible to build these opera-
tions. Before we do this, let us describe formally the structure stack.

ADT Stack(element)
 1. Declare Create() Æ stack
 2. push(element, stack) Æ stack
 3. pop(stack) Æ stack
 4. getTop(stack) Æ element
 5. Is_Empty(stack) Æ Boolean;
 6. for all S Œ stack, e Œ element, Let
 7. Is_Empty(Create) = true
 8. Is_Empty(push(e, S)) = false

100 data structures using c++

 9. pop(Create()) = error
 10. pop(push(e,S)) = S
 11. getTop(Create) = error
 12. getTop(push(e, S)) = e
 13. end
 14. end stack

The five functions with their domains and ranges are declared in lines 1 through 5.
Lines 6 through 13 are the set of axioms that describe how the functions are related.
Lines 10 and 12 are important because they define the LIFO behaviour of the stack. This
description shows an infinite stack of no upper bound or roof on the number of elements
specified. This will be discussed when we represent this structure using C++.

We studied the concept of ADT in Chapter 1. The ADT stack is defined in Section 3.3.
To implement the ADT stack in C++, the operations are often implemented as functions to
provide data abstraction. A program that uses stacks would access the stacks only through
these functions and would not be concerned about the implementation.

3.4 REPRESEntatiOn Of StackS uSing SEquEntial ORganizatiOn
(aRRaYS)

A stack can be implemented using both a static data structure (array) and a dynamic data
structure (linked list). The simplest way to represent a stack is by using a one-dimensional
array. A stack implemented using an array is also called a contiguous stack.

An array is used to store an ordered list of elements. A stack is an ordered collec-
tion of elements. Hence, it would be very simple to manage a stack when represented
using an array. The only difficulty with an array is its static memory allocation. Once
declared, the size cannot be modified during run-time. We have already read that this
leads to either poor utilization of the space or inability to accommodate all possible data
elements. This is because we declare an array to be of arbitrarily maximum size before
compilation.

Figure 3.10 shows the realization of a stack using arrays.

0 1 2

0 1 2Top n − 1

Top

A B C . . .

. . . C B A

n − 1

Fig. 3.10  Stack using array

stacks 101

Let Stack[n] be a one-dimensional array. When the stack is implemented using arrays,
one of the two sides of the array can be considered as the top (upper) side and the other as
the bottom (lower) side as in Fig. 3.10.

Let us discuss the top side, which is most commonly used. The elements are stored in
the stack from the fi rst location onwards. The fi rst element is stored at the 0th location of
the array Stack, which means at Stack[0], the second element at Stack[1], the ith ele-
ment at Stack[i - 1], and the nth element at Stack[n - 1]. Associated with the array
will be an integer variable, top, which points to the top element in the stack. The initial
value of top is -1 when the stack is empty. It can hold the elements from index 0, and can
grow to a maximum of n - 1 as this is a static stack using arrays.

Program Code 3.1 gives the defi nition of class Stack and lists the function prototypes
for a set of basic operations.

program CoDe 3.1

 class Stack

 {

 private:

 int Stack[50];

 int MaxCapacity;

 int top;

 public:

 Stack()

 {

 MaxCapacity = 50;

 top = −1;

 currentsize = 0;

 }

 int getTop();

 int pop();

 void push(int Element);

 int Empty();

 int CurrSize();

 int IsFull();

 };

The simplest way to implement an ADT stack is using arrays. We initialize the variable
top to -1 using a constructor to denote an empty stack. The bottom element is repre-
sented using the 0th position, that is, the fi rst element of the array. The next element is
stored at the 1st position and so on. The variable top indicates the current element at the
top of the stack.

102 data structures using c++

3.4.1 create

The stack when created is initially empty. The implementation of the stack could be using
an array or using a linked list implementation. For array implementation, its size should
be predefined, and its implementation time should not exceed run-time. However, in case
of a linked implementation, this limitation is overcome. Let us first look at a simple stack
implementation. At the end of this chapter, we shall study about other better array-based
implementations using C++ features such as templates and dynamic arrays.

For each and every stack, there is an operational end operator variable called the top
which points to the element at the top of the stack. Hence, this integer variable holds the
index of the array. It can also be implemented as a pointer variable. Let us currently use
it as an integer variable. Even though we call it as a pointer pointing to the top element of
the stack, it is an integer index variable.

The constructor must initialize the stack top, so as to represent an empty stack, to a
value that represents the top of the empty stack. We cannot initialize it to one of the values
in the range of 0 to n - 1 because these are the indices of the stack array. The indices 0
to n - 1 represent one of the locations going to hold the stack elements. However, it can
be initialized to any arbitrary integer value other than 0 to n - 1. Each push operation
increments top by one. This is to update top to point to a newly added element. When the
element is added to the empty stack, top should be set to 0 as the new element will be
stored at Stack[0]. Hence, it is suitable to initialize the top to -1. This is the most suit-
able initialization instead of any other arbitrary value.

int Stack[100];
int top = −1;

These statements create an empty stack of size 100, which will hold integer values, and
the variable top is initialized to -1.

3.4.2 Empty

Empty is an operation that takes the stack as an argument, checks whether it is empty or
not, and returns the Boolean value true or false, respectively.

The stack empty state can be checked by comparing the value of top with the value -1,
because top = -1 represents an empty stack.

if(top == −1)
 return 1;
else
 return 0;

3.4.3 gettop

The getTop operation checks for the stack empty state. If the stack is empty, it
reports the ‘stack underflow’ error message; else it returns a copy of the element that

stacks 103

is at the top of the stack. Here, top is not updated as the element is not deleted from the
stack; rather, the element is still at the top location. The element is just read from
the stack.

Hence, its behaviour can be described using the following statement:

if(top == −1)
 cout << "Stack underflow (empty)" << endl;
else
 return(Stack[top]);

3.4.4 Push

The push operation inserts an element onto the stack of maximum size MaxCapacity.
Element insertion is possible only if the stack is not full. We have not discussed the
full operation in ADT. The stack is practically full when the array size exceeds (or the
memory is full, which can happen when we use the linked list representation of the stack).
Hence, the stack full state can be verified by comparing the top with MaxCapacity - 1.
If the stack is not full, the top is incremented by 1 and the element is added on the top of
the stack. In brief,

if(top == MaxCapacity − 1)
 cout << "Stack overflow (full)";
else
{
 top ++; //increment top by one
 Stack[top] = Element; //add the element in new top position
}

3.4.5 Pop

The pop operation deletes the element at the top of the stack and returns the same. This
is done only if the stack is not empty. If the stack is empty, no deletion is possible. This is
checked by the empty() function. If the stack is not empty, then the element at the top of
the stack is returned and the top is decreased by one.

This is executed as

if(top == −1)
 cout << "Stack underflow\n";
else
 return(Stack[top−−]);

The stack full condition signals that more storage is needed, and in many applications
of stacks, the stack empty state signals the end of processing. Program Code 3.2 illustrates
the basic operations on a stack.

104 data structures using c++

program CoDe 3.2

 class Stack

 {

 private:

 int Stack[50];

 int MaxCapacity;

 int top;

 public:

 Stack()

 {

 MaxCapacity = 50;

 top = −1;

 }

 int getTop();

 int pop();

 void push(int Element);

 int Empty();

 int CurrSize();

 int IsFull();

 };

 int Stack :: getTop()

 {

 if(!Empty())

 return(Stack[top]);

 }

 int Stack :: pop()

 {

 if(!Empty())

 return(Stack[top−−]);

 }

 int Stack :: Empty()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

stacks 105

 int Stack :: IsFull()

 {

 if(top == MaxCapacity − 1)

 return 1;

 else

 return 0;

 }

 int Stack :: CurrSize()

 {

 return(top + 1);

 }

 void Stack :: push(int Element)

 {

 if(!IsFull())

 Stack[++top] = Element;

 }

 void main()

 {

 Stack S;

 S.pop();

 S.push(1);

 S.push(2);

 cout << S.getTop() << endl;

 cout << S.pop() << endl;

 cout << S.pop() << endl;

 }

3.5 StackS uSing tEMPlatE

The stack using an array and its operations in Program Code 3.2 is defi ned to operate on
integer data. To defi ne stack for fl oating point data, we need to change int Stack[] to
fl oat Stack[] in the declaration of data members of the class. This can be done each
time the data type of array elements varies, by editing the code using a text editor and then
recompiling it. A template is a variable that can be instantiated to any data type. This data
type could be of the built-in or user-defi ned type. Program Code 3.2 is rewritten using
templates as Program Code 3.3.

106 data structures using c++

program CoDe 3.3

 template <class T>

 class Stack

 {

 private:

 T * Stack; // stack using pointer

 int top;

 int Size;

 public:

 Stack(int StackSize = 20); // constructor

 T& getTop();

 T& pop();

 void push(const T& Element);

 bool IsEmpty();

 int CurrSize();

 };

 template <class T>

 Stack <T> :: Stack(int StackSize) : Size(StackSize)

 {

 Stack = new T[Size];

 top = −1;

 }

 template <class T>

 T& Stack :: getTop()

 {

 if !IsEmpty()

 return(Stack[top]);

 else

 cout << "Stack is Empty" << endl;

 }

 template <class T>

 T& Stack :: pop()

 {

 if !IsEmpty()

 return(Stack[top−−]);

 else

stacks 107

 cout << "Stack is Empty" << endl;

 }

 Bool Stack :: IsEmpty()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

 Bool Stack :: IsFull()

 {

 if(top == MaxCapacity − 1)

 return 1;

 else

 return 0;

 }

 int Stack :: CurrSize()

 {

 return(top + 1);

 }

 void Stack :: push(const T & Element)

 {

 if(!IsFull())

 cout << "Stack is Full" << endl;

 else

 Stack[++top] = Element;

 }

3.6 MultiPlE StackS

Often, data is represented using several stacks. The contiguous stack (stack using an
 array) uses separate arrays for more than one stack, if needed. The use of a contiguous
stack when more than one stack is needed is not a space-effi cient approach, because many
locations in the stacks are often left unused. An effi cient solution to this problem is to use
a single array to store more than one stack. Figure 3.11 shows two stacks using one array.

108 data structures using c++

Stack 1 Stack 2

A 1 . . . B A

0 1 2 n − 3

Top 1 = 3 Top 2 = n – 2

n − 2 n − 1

2

3 4

3 4

Fig. 3.11  Initial configuration for two stacks in A[0], …, A[n - 1]

Multiple stacks can be implemented by sequentially mapping these stacks into
A[0], ..., A[n − 1]. The solution is simple if we implement only two stacks. The
first stack grows towards A[n - 1] from A[0] and the second stack grows towards
A[0] from A[n − 1].

This way, we can make use of the space most efficiently so that the stack is full only
when the top of one stack reaches the top of other stack.

The difficulty arises when we have to represent m stacks in the memory. We can divide
A[0, ..., n - 1] into m segments and allocate one of these segments to each of the
m stacks. This initial division into segments may be done in proportion to the expected
sizes of the various stacks, if the sizes are known. In the absence of such information,
A[0, ..., n - 1] may be divided into equal segments. For each stack i, we shall use
s[i] to represent a position one less than the position in A for the bottommost element of
that stack as shown in Fig. 3.12.

t [0] t [1] t [2]

0 2[n/m] − 1

A

s[0] s[1] s[2] s[m − 1]

n − 1[n/m] − 1

Fig. 3.12  Initial configuration for m stacks in A [0, …, n - 1]

Here, t[i], 0 £ i £ m - 1 will point to the topmost element of the stack i.
We shall use the boundary condition s[i] = t[i] if the ith stack is empty.

Initially, s[i] = t[i] = [n/m] ¥ (i - 1), 0 £ i £ n - 1.
Stack[i] will grow from s[i] + 1 to s[i + 1] before it catches up with the

(i + 1)th stack. Using this scheme, the m_push and m_pop programs can be written as
in Program Code 3.4.

stacks 109

program CoDe 3.4

 Stack :: m_push(int i, char x)

 {

 // push x to the ith stack

 if(t[i] == s[i + 1])

 Stack_full(i);

 else

 {

 t[i] = t[i] + 1;

 A[t[i]] = x;

 }

 }

 char Stack::m_pop(int i)

 {

 // pop topmost element of stack i

 if(t[i] == s[i])

 Stack_empty(i);

 else

 {

 t[i] = t[i] - 1;
 return(A[t[i] + 1]);

 }

 }

Stack_full() and Stack_empty() are the functions to be written depending on the
strategy followed in each case. For example, if we permit the addition of elements to
stacks as long as there is some free space in array A, the following steps may be one of
the solutions to this:

1. Determine the last i < j £ m, such that there is a free space between the stacks j
and j + 1, that is, t[j] s[j + 1]. If there is such an A[j], we can move the stacks
i + 1, i + 2, ..., j one position to the right (treating A[n] as the rightmost) and
can create a space between the stacks i and i + 1.

2. If there is no j in step 1, then check the left side of stack i. Find the largest j such that 1
£ j £ i and there is space between the stacks j and j + 1, that is, t[j] < s[j + 1].
If there is such a j, then move the stacks j + 1, j + 2, ..., i by one space left,
creating a free space between the stacks i and i + 1.

3. If there is no such j satisfying the conditions of either steps 1 or 2, then all the n spaces
of A are utilized, and there is no free space.

110 data structures using c++

3.7 aPPlicatiOnS Of Stack

The stack data structure is used in a wide range of applications. A few of them are the
following:

1. Converting infix expression to postfix and prefix expressions
2. Evaluating the postfix expression
3. Checking well-formed (nested) parenthesis
4. Reversing a string
5. Processing function calls
6. Parsing (analyse the structure) of computer programs
7. Simulating recursion
8. In computations such as decimal to binary conversion
9. In backtracking algorithms (often used in optimizations and in games)

3.8 EXPRESSiOn EValuatiOn anD cOnVERSiOn

The most frequent application of stacks is in the evaluation of arithmetic expressions.
An arithmetic expression is made of operands, operators, and delimiters. When high-
level programming languages came into existence, one of the major difficulties faced by
computer scientists was to generate machine language instructions that could properly
evaluate any arithmetic expression.

A complex assignment statement such as

X = (A/B + C ¥ D - F ¥ G/Q)

might have several meanings, and even if the meanings were uniquely defined, it is
still difficult to generate a correct and reasonable instruction sequence. Fortunately, the
solution we have today is both elegant and simple. Till date, this conversion is considered
as one of the major aspects of compiler writing.

Let us see the difficulties in understanding the meaning of expressions. The first prob-
lem in understanding the meaning of an expression is to decide the order in which the
operations are to be carried out. This demands that every language must uniquely define
such an order.

For instance, consider the following expression:

X = a/b ¥ c - d

Let a = 1, b = 2, c = 3, and d = 4.

One of the meanings that can be drawn from this expression could be

X = (1/2) ¥ (3 - 4) = -1/2

stacks 111

Another way to evaluate the same expression could be

X = (1/(2 ¥ 3)) - 4 = -23/6

To avoid more than one meaning being drawn out of an expression, we have to specify
the order of operation by using parentheses. For instance,

X = (a/b) ¥ (c - d)

To fix the order of evaluation, assign each operator a priority. Even though we write
the expression in parentheses, we still query whether to evaluate (A/B) first or to evaluate
(C - D) first. Once the priorities are assigned, then within any pairs of parentheses the
 operators with the highest priority are to be evaluated first. While evaluating an expres-
sion, the following operation precedence is usually used:

The following operators are written in descending order of their precedence:

1. Exponentiation (^), Unary (+), Unary (-), and not (~)
2. Multiplication (¥) and division (/)
3. Addition (+) and subtraction (-)
4. Relational operators <, £ , =, π, ≥, >
5. Logical AND
6. Logical OR

Some integer values can be assigned as priority, as in Table 3.1.

Table 3.1 Operators and their priorities

Arithmetic, boolean, and relational
operators

Priority

Ÿ, Unary +, Unary - , ~ 1

¥, / 2

+, - 3

<, £, =, π, ≥, > 4

AND 5

OR 6

Note that all the relational operators have the same priority. Exponentiation (^) and unary
operators (+, -, and ~) have the highest priority. When there are two adjacent operators with
the same priority, again the question arises as to which one to evaluate first. For example, the
expression, A + B - C can be understood in two ways—(A + B) - C or A + (B - C).

This needs a decision on whether to evaluate the expression from right to left or
left to right. Expressions such as A + B - C and A ¥ B/C are to be evaluated from left
to right. However, the expression A ^ B ^ C is to be evaluated from right to left as

112 data structures using c++

A ^ (B ^ C). For example, to compute 2 ^ 3 ^ 2, we need to represent and evaluate it
as 2 ^ (3 ^ 2). When evaluated from left to right, the expression may be evaluated as
((2 ^ 3) ^ 2), which is wrong!

Hence, the operators need to decide on a rule for proceeding from left to right for all
expressions except the operator exponential. This order of evaluation, from left to right
or right to left, is called associativity. Exponentiation is right associative and all other
operators are left associative. When we write a parenthesized expression, these rules can
be overridden. In the parenthesized expressions, the innermost parenthesized expression
is evaluated first.
Let us consider the expression

X = A/B ^ C + D ¥ E - A ¥ C

By using priorities and associativity rules, the expression X is rewritten as

X = A/(B ^ C) + (D ¥ E) - (A ¥ C)

For example, let X be an infix expression as = ((2 + 3) ¥ 4)/2
We manually evaluate the innermost expression first as ((5) ¥ 4)/2, followed by the

next parenthesized inner expression (20)/2, which produces the result 10.
Still the question remains as to how a compiler can accept such an expression and

produce the correct code. The solution is to rework on the expression to a form called the
postfix notation.

3.8.1 Polish notation and Expression conversion

The Polish Mathematician Han Lukasiewicz suggested a notation called Polish notation,
which gives two alternatives to represent an arithmetic expression, namely the postfix
and prefix notations. The fundamental property of Polish notation is that the order in
which the operations are to be performed is determined by the positions of the operators
and operands in the expression. Hence, the advantage is that parentheses is not required
while writing expressions in Polish notation. The conventional way of writing the expres-
sion is called infix, because the binary operators occur between the operands, and unary
operators precede their operand. For example, the expression ((A + B) ¥ C)/D is an infix
expression. In postfix notation, the operator is written after its operands, whereas in prefix
notation, the operator precedes its operands. Table 3.2 shows one sample expression in
all three notations.

Table 3.2 Example expression in various forms—infix, prefix, and postfix

Infix Prefix Postfix

(operand)(operator)(operand) (operator)(operand)(operand) (operand)(operand)(operator)

(A + B) ¥ C ¥+ABC AB + C¥

stacks 113

In Example 3.1, the conversion of an expression to its postfix and prefix notations is dis-
cussed.

 example 3.1 Convert the following expression to its postfix and prefix notations:

X = A/B ^ C + D ¥ E - A ¥ C

Solution By applying the rules of priority and associativity, this expression can be
written in the following form:

X = ((A/(B ^ C)) + (D ¥ E) - (A ¥ C))

It can be reworked to get its equivalent postfix and prefix expressions.

Postfix: ABC ^/ DE ¥+ AC ¥-

Prefix: - +/ A ^ BC ¥ DE ¥ AC

3.8.2 need for Prefix and Postfix Expressions

We just studied that evaluation of an infix expression using a computer needs proper
code generation by the compiler without any ambiguity and is difficult because of
various aspects such as the operator’s priority and associativity. This problem can be
overcome by writing or converting the infix expression to an alternate notation such as
the prefix or the postfix. The postfix and prefix expressions possess many advantages
as follows:

1. The need for parenthesis as in an infix expression is overcome in postfix and prefix
notations.

2. The priority of operators is no longer relevant.
3. The order of evaluation depends on the position of the operator but not on priority and

associativity.
4. The expression evaluation process is much simpler than attempting a direct evaluation

from the infix notation.

Let us see how postfix expressions are evaluated.

3.8.3 Postfix Expression Evaluation

The postfix expression may be evaluated by making a left-to-right scan, stacking op-
erands, and evaluating operators using the correct number from the stack as operands
and again placing the result onto the stack. This evaluation process is much simpler
than attempting a direct evaluation from the infix notation. This process continues
till the stack is not empty or on occurrence of the character #, which denotes the end
of the expression.

114 data structures using c++

Algorithm 3.1 lists the steps involved in the evaluation of the postfix expression E.

algorithm 3.1

1. Let E denote the postfix expression
2. Let Stack denote the stack data structure to be used & let Top = −1
3. while(1) do
 begin
 X = get_next_token(E) // Token is an operator, operand, or delimiter
 if(X = #) {end of expression}
 then return
 if(X is an operand)
 then push(X) onto Stack
 else {X is operator}
 begin
 OP1 = pop() from Stack
 OP2 = pop() from Stack
 Tmp = evaluate(OP1, X, OP2)
 push(Tmp) on Stack
 end
 {If X is operator then pop the correct number of operands

from stack for operator X. Perform the operation and push the
result, if any, onto the stack}

 end
4. stop

It is assumed that the last character in E is ‘#’. A procedure get_next_token is used to
extract the next token from E. A token is an operand, an operator, or a #. A one-dimensional
array Stack[n] is used as a stack.

Let us consider an example postfix expression E = AB + C¥#. Now, let us scan this
expression from left to right, character by character, as represented in Fig. 3.13.

This evaluation process is much simpler than the evaluation of the infix expression.
Let us now devise an algorithm for converting an infix expression to a postfix notation. To
see how to devise an algorithm for translating from infix to postfix, note that the operands
in both notations appear in the same sequence. Let us also learn how we can manually
convert an infix expression into a postfix expression.

The following are the steps for manually converting an expression from one notation
to another:

1. Initially, fully parenthesize the given infix expression. Use operator precedence and
associativity rules for the same.

2. Now, move all operators so that they replace their corresponding right parenthesis.
3. Finally, delete all parentheses, and we get the postfix expression.

stacks 115

A

push A

A

B

push B
+ : B = pop(),

A A + B

A + B

C

A + B

× : C = pop(), pop() Output as: (A + B) × C

A = pop() push (A + B)

push C

Fig. 3.13  Evaluation of postfix expression AB + C¥

The evaluation of a postfix expression is simple, but now we need to convert an infix
expression to its postfix form. Let us consider an example E = A/B ^ C + D ¥ E - A ¥ C.

Let us fully parenthesize the same as

E = (((A/(B ^ C)) + (D ¥ E)) - (A ¥ C))

Let us move all operators to the corresponding right parenthesis and replace the same.

E = (((A /(B ^ C)) + (D × E)) − (A × C))

Now let us eliminate all parentheses. We get the postfix equivalent of the infix
expression.

E(postfix) = ABC ^/ DE ¥+ AC¥-

This method can be used to get an equivalent prefix notation too as follows:

(((A/(B ^ C)) + (D × E)) − (A × C))

116 data structures using c++

We now get the prefix expression after eliminating the parentheses as

E(prefix) = - +/ A ^ BC ¥ DE ¥ AC

This procedure is a suitable method to manually convert the expression only. Let us try
to work out the algorithm to convert an infix to a postfix (also to prefix).

We have observed that the order of the operand remains the same in the infix and the
postfix notations. The output of the conversion should be a postfix notation. This post-
fix expression has a sequence of operands which is the same as that of the input infix
expression. Hence, the operands from the infix expression can be immediately sent to
the output as they occur. To handle the operators, the operands are stored in the stack
until the right moment and they are unstacked (removed from the stack); they are then
passed to the output.

For example, Let E be an infix expression as

E = A + B ¥ C

After conversion, the expression should yield ABC¥+, that is, the sequence of stacking
them should be as given in Table 3.3.

Table 3.3 Infix to postfix conversion of the expression E = A + B ¥ C

Next character Stack Output
A Empty A

+ + A

B + AB

Now, we have to decide about the operator ¥. This is illustrated in Table 3.4(a).
Here, note that the algorithm must decide whether the operator ¥ gets placed on the top

of the stack or the operator + is to be popped off. Since operator ¥ has the highest priority,
we should stack it so as to get the sequence of operations for expression X2 as shown in
Table 3.4(b).

Table 3.4 Handling and stacking of the ¥ operator in expressions

(a) Handling of the ¥ operator
Infix Postfix

Examples X1 = (A + B) ¥ C
X2 = A + (B ¥ C)

AB + C ¥
ABC ¥+

(Continued)

stacks 117

Tabel 3.4 (Continued)

(b) Stacking of the ¥ operator

Next character Stack Output

A Empty A

+ + A

B + AB

¥ + ¥ AB

C + ¥ ABC

# (Pop all) +¥ ABC ¥+

In addition, when the input is exhausted, we should output all remaining operators in
the stack to get the postfix expression as ABC¥+.
Let us consider one more example. The infix expression A ¥ (B + C) ¥ D, after conver-
sion, should generate the postfix expression ABC +¥ D¥, and hence, the sequence of
operations should be as shown in Table 3.5.

Table 3.5 Infix to postfix conversion of the expression A ¥ (B + C) ¥ D

Next character Stack Output
A Empty A

¥ ¥ A

(¥(A

B ¥(AB

+ ¥(+ AB

C ¥(+ ABC

(Continued)

At this point, unstack the corresponding left parenthesis and then delete the left and
right parentheses; this should give the stack contents as follows:

Table 3.5 (Continued)

Next character Stack Output
) ¥ ABC+

¥ ¥ ABC+¥

D ¥ ABC +¥ D

Done Empty ABC +¥ D¥

From these examples and discussion, we can say that the operators are popped out of
the stack if their in-stack priority (ISP) is greater than the priority of the incoming opera-
tor that is to be added onto the stack.

118 data structures using c++

Consider the infix expression E = A ¥ B + C#. The conversion of this expression into
its postfix form is shown in Table 3.6.

Table 3.6 Infix to postfix conversion of the expression E = A ¥ B + C

Next character Stack Output
A Empty A

¥ ¥ A

B ¥ AB

+ + AB¥

C + AB ¥ C

# (Pop all) + AB ¥ C+

Now, let us consider the infix expression X = A ^ B ^ C
For its equivalent postfix expression, the sequence of push and pop operations should

be as given in Table 3.7.

Table 3.7 Infix to postfix conversion of the expression X = A Ÿ B Ÿ C

Next character Stack Output

A Empty A

Ÿ Ÿ A

B Ÿ AB

Ÿ

We have decided the strategy for pushing and popping out the operator from the stack.
In this example, the operator at the top of the stack and the operator to be pushed onto the
stack are the same. If this rule is applied, then the output is AB ^ C ^, which is wrong!
Hence, we need to add a few more checks. We must take into account the associativity of
operators and prepare a hierarchy scheme for the binary arithmetic operators and delimit-
ers. When an operator is at the top of the stack or in an expression (current token), they
are to be treated with different priorities, as shown in Table 3.8.

Table 3.8 The operator and its ISP and ICP

Symbol In-stack priority (ISP) Incoming priority (ICP)

) - -
Ÿ 3 4

¥/ 2 2

+ - 1 1

(0 4

stacks 119

Thus, we can say that when the operators are taken out from the stack, their ISP, is
greater than or equal to the ICP, of the new operator.

Hence, each operator is to be assigned two priorities—the incoming priority (ICP) and
the in-stack priority (ISP). Incoming priority is considered when the operator is located in
the given infix expression, whereas ISP is the priority when the operator is at the top of the
stack. In Example 3.1, we observed that the lower priority operators should spend more
time in the stack and the higher priority operators should be popped out earlier. To achieve
this, we need to assign the appropriate ICPs and ISPs to the operators. Table 3.8 shows
these values. If the incoming operator is the same as that of the in-stack operator and if the
operator is left associative, then the operator from the stack should be popped and printed.

For example, consider the infix expressions X = A ¥ B ¥ C and Y = A/B ¥ C
The expression X = A ¥ B ¥ C should yield the postfix expression as AB ¥ C ¥, and
Y = A/B ¥ C should generate the postfix expression as AB/C¥.

If the priority of the operator on the top of stack (in-stack operator) is greater than the
priority of the operator coming from the expression (incoming operator), then the incoming
operator is pushed onto the stack.

In short, the following points should be taken into consideration while assigning ICPs
and ISPs:

1. Higher priority operators should be assigned higher values of ISP and ICP.
2. For right associative operators, ISP should be lower than ICP. For example, A ̂ B ̂ C

should generate ABC^^, which means (A) ^ (B ^ C).
3. If ICP is higher than ISP, the operator should be stacked.
4. The ISP and ICP should be equal for left associative operators.

Summing up The following are the steps involved in the evaluation of an expression.

1. Assign priorities to all operators and define associativity (left or right).
2. Assign appropriate values of ICPs and ISPs accordingly. For left associative operators,

assign equal ISP and ICP. For right associative operators, assign higher ICP than ISP.
For example, assign a higher ICP for ‘^’ and for the right parenthesis ‘)’.

3. Scan the expression from left to right, character by character, till the end of expression.
4. If the character is an operand, then display the same.
5. If the character is an operator and if ICP > ISP
 then push the operator
 else
 while(ICP <= ISP)
 pop the operator and display it.
 end while
 Stack the incoming operator
6. Continue till end of expression

The expression could be in one of the three forms—infix, postfix, or prefix.

120 data structures using c++

An expression in one form can be converted to the other two forms. Let us write algo-
rithms for all these conversions.

1. Infix expression to postfix expression
2. Infix expression to prefix expression
3. Prefix expression to infix expression
4. Prefix expression to postfix expression
5. Postfix expression to infix expression
6. Postfix expression to prefix expression

Let E be the expression made of characters. Characters here include operators, operands,
and delimiters. In addition, let ‘#’ be the character denoting the end of the expression.

Infix to Postfix Conversion

Algorithm 3.2 illustrates the infix to postfix conversion.

algorithm 3.2

1. Scan expression E from left to right, character by character, till
character is ‘#’

 ch = get_next_token(E)
2. while(ch != ’#’}
 if(ch = ’)’) then ch = pop()
 while(ch !=‘(’)
 Display ch
 ch = pop()
 end while
 if(ch = operand) display the same
 if(ch = operator) then
 if(ICP > ISP) then push(ch)
 else
 while(ICP <= ISP)
 pop the operator and display it
 end while
 ch = get_next_token(E)
 end while
3. if(ch = #) then while(!emptystack()) pop and display
4. stop

For this algorithm, we refer to the operators and the respective ICPs and ISPs as
assigned in Table 3.8. Example 3.2 illustrates the conversion of an infix expression to its
postfix form (function in Program Code 3.5).

 example 3.2 Convert the following infix expression to its postfix form:

A ^ B ¥ C - C + D/A/(E + F)

Solution Conversion of infix to postfix form can be illustrated as in Table 3.9

stacks 121

Table 3.9 Infix to postfix conversion of the expression A Ÿ B ¥ C - C + D/A/(E + F)

Character scanned Stack contents Postfix expression
A Empty A
Ÿ Ÿ A

B Ÿ AB

¥ ¥ ABŸ

C ¥ AB Ÿ C

- - AB Ÿ C ¥
C - AB Ÿ C ¥ C

+ + AB Ÿ C ¥ C-
D + AB Ÿ C ¥ C - D
/ +/ AB Ÿ C ¥ C - D
A +/ AB Ÿ C ¥ C - DA
/ +/ AB Ÿ C ¥ C - DA/
(+/(AB Ÿ C ¥ C - DA/
E +/(AB Ÿ C ¥ C - DA/E

+ +/(+ AB Ÿ C ¥ C - DA/E
F +/(+ AB Ÿ C ¥ C - DA/EF
) +/ AB Ÿ C ¥ C - DA/EF+

Empty AB Ÿ C ¥ C - DA/EF+/+

Infix to Prefix Conversion

For converting the infix expression to a prefix expression, two stacks are needed—the
operator Stack and the display Stack. The display Stack stores the prefix expres-
sion. This approach is discussed in Algorithm 3.3.

algorithm 3.3

1. Scan expression E, character by character from right to left
 ch = get_next_token(E)
2. while(ch != ’#’) do
 if(ch = operand) then push(ch) in display Stack
 if (ch = ‘)’) then
 ch = pop()from operator Stack
 while(ch != ‘(’)
 push(ch) in display Stack
 ch = pop()
 end while
 if(ch = operator) then
 if ICP(op) >= ISP(op) then
 push ch in operator Stack
 else
 ch = pop()
 while(ICP < ISP)

122 data structures using c++

 ch = pop() from operator Stack and push ‘ch’ in
display Stack

 end while
 ch = get_next_token(E)
 end while
3. if (ch = ‘#’) then
 while(!emptystack(operator))
 ch = pop(operator)
 push ch on display stack
 end while
4. while(!emptystack(display))
 ch = pop(operator)
 display ch
 end while
5. stop

Example 3.3 illustrates the conversion of an infix expression to its prefix form.

 example 3.3 Convert the following infix expression to its corresponding prefix form:

A ^ B × C - C + D/A/(E + F)

Solution The conversion to prefix notation is as given in Table 3.10

Table 3.10 Infix to prefix conversion of the expression A Ÿ B ¥ C - C + D/A/(E + F)

Character scanned Stack Prefix expression
))
F) F
+)+ F
E)+ EF
(Empty +EF
/ / +EF
A / A + EF
/ // A + EF
D // DA + EF
+ + //DA + EF
C + C//DA + EF
- +- C//DA + EF
C +- CC//DA + EF
¥ +-¥ CC//DA + EF
B +-¥ BCC//DA + EF
Ÿ +-¥Ÿ BCC//DA + EF
A +-¥Ÿ ABCC//DA + EF

Empty +-¥ŸABCC//DA + EF

stacks 123

The corresponding program for infi x to prefi x conversion is illustrated in Program Code 3.5.

program CoDe 3.5

 #include<iostream.h>

 #include<conio.h>

 #include<string.h>

 #defi ne Max 20

 //class Stack

 class stack

 {

 char stack[Max]; // array of characters

 int top;

 public:

 Stack() // constructor to initialize top

 {

 top = −1;

 }

 int isempty(); // function to check empty condition

 int isfull(); // function to check full condition

 void push(char ch); // to push a character into stack

 char pop(); // function to pop a character from stack

 char getTop(); // function to get the top element of

 stack

 };

 int Stack::isempty()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

 int Stack::isfull()

 {

 if(top == Max − 1)

 return 1;

 else

 return 0;

 }

124 data structures using c++

 void Stack::push(char ch)

 {

 if(isfull())

 cout << "\nStack full";

 else

 {

 top++;

 stack[top] = ch;

 }

 }

 char Stack::pop()

 {

 char ch;

 if(isempty())

 cout << "\n stack empty \n";

 else

 {

 ch = stack[top];

 top−−;

 }

 return(ch);

 }

 char Stack::getTop()

 {

 char ch;

 if(isempty())

 cout << "\n stack empty \n";

 else

 {

 ch = stack[top];

 }

 return(ch);

 }

 // Function to get in-stack priority

 char isp(char ch)

 {

 switch(ch)

stacks 125

 {

 case ‘+’:

 case ‘−’:return 1;

 case ‘*’:

 case ‘/’:return 2;

 case ‘^’:return 3;

 case ‘(‘:return 0;

 case ‘#’:return −2;

 }

 }

 // Function to get incoming priority

 char icp(char ch)

 {

 switch(ch)

 {

 case ‘+’:

 case ‘−’:return 1;

 case ‘*’:

 case ‘/’:return 2;

 case ‘^’:return 3;

 case ‘(‘:return 4;

 }

 }

 void intopost(char infi x[20],char postfi x[20])

 {

 int i = 0;

 char ch, x;

 stack s;

 s.push(‘#’);

 while(infi x[i]! = ‘\0’)

 // extract character till end of expression

 {

 ch = infi x[i];

 i++;

 if(ch >= ‘a’ && ch <= ‘z’) // operand

 {

 cout << ch;

 }

 else // operator

126 data structures using c++

 {

 if(ch == ‘(‘)

 {

 while(s.getTop()! = ‘(‘)

 {

 x = s.pop();

 cout << x;

 }

 x = s.pop();

 }

 else

 {

 while(isp(s.getTop()) >= icp(ch))

 {

 x = s.pop();

 cout << x;

 }

 s.push(ch);

 }

 }

 }

 while(!s.isempty())

 {

 x = s.pop();

 if(x != ‘#’)

 cout << x;

 }

 }

 void intopre(char infi x[20],char prefi x[20])

 {

 int i, j;

 char ch, x;

 stack s;

 s.push(‘#’);

 i = strlen(infi x) − 1;

 j = 0;

 while(i! = −1)

 {

 ch = infi x[i];

stacks 127

 i−−;

 if(ch >= ‘a’ && ch <= ‘z’)

 {

 prefi x[j] = ch;

 j++;

 }

 else

 {

 if(ch == ‘(‘)

 {

 while(s.getTop()! = ‘)’)

 {

 x = s.pop();

 prefi x[j] = x;

 j++;

 }

 x = s.pop();

 }

 else

 {

 while(isp(s.getTop()) > icp(ch))

 {

 x = s.pop();

 prefi x[j] = x;

 j++;

 }

 s.push(ch);

 }

 }

 }

 while(!s.isempty())

 {

 x = s.pop();

 if(x! = ‘#’)

 prefi x[j] = x;

 j++;

 }

 prefi x[j] = ‘\0’;

 strrev(prefi x);

 }

128 data structures using c++

 void main()

 {

 char infi x[20], postfi x[20], prefi x[20];

 int choice;

 do

 {

 cout << "\nMenu............";

 cout << "\n1.Infi x to postfi x conversion";

 cout << "\n2.Infi x to prefi x conversion";

 cout << "\nEnter your choice:";

 cin >> choice;

 switch(choice)

 {

 case 1:

 cout << "\nEnter the infi x expression:";

 cin >> infi x;

 cout << "\nPostfi x expression is:";

 intopost(infi x,postfi x);

 break;

 case 2:

 cout << "\nEnter the infi x expression:";

 cin >> infi x;

 intopre(infi x,prefi x);

 cout << "\nPrefi x expression is:" << prefi x;

 break;

 }

 }

 while(choice < 3);

 }

 Postfi x to Infi x Conversion

Algorithm 3.4 illustrates the postfi x to infi x conversion.

algorithm 3.4

1. Scan expression E from left to right character by character
 ch = get_next_token(E)
2. while(ch !=’#’) do
 if(ch = operand) then push(ch)
 if(ch = operator) then
 begin
 t2 = pop() and t1 = pop()
 push(strcat[‘(‘, t1, ch, t2, ’)’]

stacks 129

 end
 ch = get_next_token(E)
 end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

Example 3.4 illustrates the conversion of a postfix expression to its infix form.

 example 3.4 Convert the following postfix expression to its infix form:

AB ^ C ¥ C - DA/EE +/+

Solution The conversion of the given postfix expression to its infix form is given in
Table 3.11.

Table 3.11 Postfix to infix conversion of the expression AB Ÿ C ¥ C - DA/EE+/+

Character scanned Stack contents
A A

B AB
Ÿ A Ÿ B

C A Ÿ B, C

¥ A Ÿ B ¥ C

C A Ÿ B ¥ C, C

- A Ÿ B ¥ C - C, D

D A Ÿ B ¥ C - C, D

A A Ÿ B ¥ C - C, D, A

/ A Ÿ B ¥ C - C, D/A

E A Ÿ B ¥ C - C, D/A, E

E A Ÿ B ¥ C - C, D/A, E, E

+ A Ÿ B ¥ C - C, D/A, E + E

/ A Ÿ B ¥ C - C, D/A/E + E

+ A Ÿ B ¥ C - C + D/A/E + E

Postfix to Prefix Conversion

Algorithm 3.5 illustrates the postfix to prefix conversion.

algorithm 3.5

1. Scan expression E from left to right character by character
 ch = get_next_token(E)
2. while(ch !=’#’) do
 if(ch = operand) then push(ch)
 if(ch = operator) then

130 data structures using c++

 begin
 t2 = pop() and t1 = pop()
 push(strcat[ch, t1, t2]
 end
 ch = get_next_token(E)
 end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

Example 3.5 illustrates the conversion of a postfix expression to its prefix form.

 example 3.5 Convert the following postfix expression to its prefix form:

AB ^ C × C - DA/EE+/+

Solution The conversion of the given postfix expression to its infix form is given in
Table 3.12.

Table 3.12 Postfix to prefix conversion of the expression AB ^ C × C − DA/E E+/+

Character scanned Stack contents

A A

B AB
Ÿ ŸAB

C ŸABC

¥ ¥ŸABC

C ¥ŸABC, C

- -¥ŸABCC

D -¥ŸABCC, D

A -¥ŸABCC, D, A

/ -¥ŸABCC, /DA

E -¥ŸABCC, /DA, E

E -¥ŸABCC, /DA, E, E

+ -¥ŸABCC, /DA, +EE

/ -¥ŸABCC, //DA + EE

+ +-ŸABCC//DA + EE

Prefix to Infix Conversion

Algorithm 3.6 illustrates the prefix to infix conversion.

algorithm 3.6

1. Scan expression E from right to left character by character
 ch = get_next_token(E)
2. while(ch !=’#’) do

stacks 131

 if(ch = operand) then push(ch)
 if(ch = operator) then
 begin
 t2 = pop() and t1 = pop()
 push(strcat[‘(‘, t1, ch, t2, ’)’]
 end
 ch = get_next_token(E)
 end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

 Prefi x to Postfi x Conversion

Algorithm 3.7 illustrates the prefi x to postfi x conversion.

algorithm 3.7

1. Scan expression E from left to right character by character
 ch = get_next_token(E)
2. while(ch ! =’#’) do
 if(ch = operand) then push(ch)
 if(ch = operator) then
 begin
 t2 = pop() and t1 = pop()
 push(strcat [t1, t2, ch]
 end
 ch = get_next_token(E)
 end while
3. if ch = ‘#’, while(!emptystack()) pop and display
4. stop

The corresponding program for postfi x to infi x conversion is illustrated in Program
Code 3.6.

program CoDe 3.6

 //postfi x to infi x conversion

 #include<conio.h>

 #include<iostream.h>

 #include<string.h>

 #defi ne Max 20

 //defi nition of class stack

 class stack

 {

 char stack[max][max]; //stack of string

 int top;

 public:

132 data structures using c++

 //constructor to initialize top

 stack()

 {

 top = −1;

 }

 //function declaration

 int isempty();

 int isfull();

 void push(char str[max]);

 void pop(char str[max]);

 };

 //defi nition of isempty condition

 int stack::isempty()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

 //defi nition of isfull condition

 int Stack::isfull()

 {

 if(top == Max − 1)

 return 1;

 else

 return 0;

 }

 //defi nition of push function

 void Stack::push(char str[Max])

 {

 if(isfull())

 cout << "\nStack full";

 else

 {

 top++;

 strcpy(stack[top], str);

 }

 }

stacks 133

 //defi nition of pop function

 void Stack::pop(char str[20])

 {

 if(isempty())

 cout << "\nStack empty";

 else

 {

 strcpy(str, stack[top]);

 top−−;

 }

 }

 //defi nition of postfi x to infi x conversion

 void postfi xtoinfi x()

 {

 char postfi x[20], infi x[20];

 char s1[10], s2[10], s3[10], ch, temp[10];

 int i;

 Stack s; //creating of object of class stack

 cout << "\nEnter the postfi x expression:";

 cin >> postfi x;

 i = 0;

 while(postfi x[i]! = ‘\0’)

 {

 ch = postfi x[i];

 i++;

 s1[0] = ch;

 s1[1] = ‘\0’;

 if(ch >= ‘a’ && ch <= ‘z’)

 {

 s.push(s1);

 }

 else

 {

 s.pop(s2);

 s.pop(s3);

 strcpy(temp,"(");

 strcat(temp, s3);

 strcat(temp, s1);

 strcat(temp, s2);

 strcat(temp, ")");

134 data structures using c++

 s.push(temp);

 }

 }

 cout << "\nInfi x expression is:" << temp;

 }

 //defi nition of postfi x to prefi x conversion

 void postfi xtoprefi x()

 {

 char postfi x[20], prefi x[20];

 char s1[10], s2[10], s3[10], ch, temp[10];

 int i;

 Stack s; //creating of object of class stack

 cout << "\nEnter the postfi x expression:";

 cin >> postfi x;

 i = 0;

 while(postfi x[i]! = ‘\0’)

 {

 ch = postfi x[i];i++;

 s1[0] = ch;

 s1[1] = ‘\0’;

 if(ch >= ‘a’ && ch <= ‘z’)

 {

 s.push(s1);

 }

 else

 {

 s.pop(s2);

 s.pop(s3);

 strcpy(temp, s1);

 strcat(temp, s3);

 strcat(temp, s2);

 s.push(temp);

 }

 }

 cout << "\nPrefi x expression is:" << temp;

 }

 //defi nition of prefi x to infi x conversion

 void prefi xtoinfi x()

 {

 char prefi x[20], infi x[20];

 char s1[10], s2[10], s3[10], ch, temp[10];

stacks 135

 int i;

 Stack s; //creating of object of class stack

 cout << "\nEnter the prefi x expression:";

 cin >> prefi x;

 for(i = strlen(prefi x); i >= 0; i−−)

 {

 ch = prefi x[i];

 s1[0] = ch;

 s1[1] = ‘\0’;

 if(ch >= ‘a’ && ch <= ‘z’)

 {

 s.push(s1);

 }

 else

 {

 s.pop(s2);

 s.pop(s3);

 strcpy(temp, "(");

 strcat(temp, s2);

 strcat(temp, s1);

 strcat(temp, s3);

 strcat(temp,")");

 s.push(temp);

 }

 }

 cout << "\nInfi x expression is:" << temp;

 }

 //defi nition of prefi x to postfi x conversion

 void prefi xtopostfi x()

 {

 char prefi x[20];

 Stack s; //creating of object of class stack

 char s1[10], s2[10], s3[10], ch, temp[10];

 int i;

 cout << "\nEnter the prefi x expression:";

 cin >> prefi x;

 for(i = strlen(prefi x); i >= 0; i−−)

 {

 ch = prefi x[i];

 s1[0] = ch;

136 data structures using c++

 s1[1] = ‘\0’;

 if(ch> = ‘a’ && ch <= ‘z’)

 {

 s.push(s1);

 }

 else

 {

 s.pop(s2);

 s.pop(s3);

 strcpy(temp, s2);

 strcat(temp, s3);

 strcat(temp, s1);

 s.push(temp);

 }

 }

 cout << "\nPostfi x expression is:" << temp;

 }

 //defi nition of main function

 void main()

 {

 int choice;

 clrscr();

 do

 {

 cout << "\n...........menu...........";

 cout << "\n1.postfi x to infi x.........$";

 cout << "\n2.postfi x to prefi x........$";

 cout << "\n3.prefi x to infi x..........$";

 cout << "\n4.prefi x to postfi x........$";

 cout << "\n5.exit.....................$";

 cout << "\n\nEnter your choice";

 cin >> choice;

 switch(choice)

 {

 //function call of functions

 case 1:

 postfi xtoinfi x();

 break;

 case 2:

 postfi xtoprefi x();

 break;

stacks 137

 case 3:

 prefi xtoinfi x();

 break;

 case 4:

 prefi xtopostfi x();

 break;

 default:

 cout << "\n\nSorry, wrong choice";

 }

 }while(choice < 5);

 getch();

 }

3.9 PROcESSing Of functiOn callS

One natural application of stacks, which arises in computer programming, is the
processing of function calls and their terminations. The program must remember the
place where the call was made so that it can return there after the function is complete.
Suppose we have three functions, say, A, B, and C, and one main program. Let the main
invoke A, A invoke B, and B in turn invoke C. Then, B will not have fi nished its work until
C has fi nished and returned. Similarly, main is the fi rst to start work, but it is the last
to be fi nished, not until sometime after A has fi nished and returned. Thus, the sequence
by which a function actively proceeds is summed up as the LIFO or FILO property, as
shown in Fig. 3.14. The output is shown in Fig. 3.15.

From the output in Fig. 3.15, it can be observed that the main program is invoked
fi rst but fi nished last, whereas the function C is invoked last but fi nished fi rst. Hence, to
keep track of the return addresses ra, rb, and rc the only data structure required here
is the stack.

main()
{
cout<<“main()
begins”;
…

ABC();
ra;
…
cout<<“main()
ends”;

PQR()
{
cout<< “B
begins”;

XYZ();
rc;
…
cout<<“B
ends\n”;
}

XYZ()
{
cout<< “C
begins”;
…
…
…
cout<< “C ends”;
}

ABC()
{
cout<<“A
begins\n”;

PQR();
rb:
…
cout<<“A
ends\n”;
}

Fig. 3.14  Processing of function calls

138 data structures using c++

main() begins ←

←

←

←

First in

main()

ABC() begins ABC()

main()

PQR()begins PQR()

…

…

ABC()

main()

XYZ() begins Last in XYZ()

PQR()

ABC()

main()…

XYZ ends First out

PQR()

…

ABC()

main()

PQR ends PQR()

ABC()

… main()

ABC ends ABC()

main()
…

main() ends Last out

Fig. 3.15  Use of stack for processing of function calls

3.10 REVERSing a StRing WitH a Stack

Suppose a sequence of elements is presented and it is desired to reverse the sequence.
Various methods could be used for this, and in the beginning, the programmer will
usually suggest a solution using an array. A conceptually simple solution, however,
is based on using a stack. The LIFO property of the stack access guarantees the
reversal.

Suppose the sequence ABCDEF is to be reversed. With a stack, one simply scans the
sequence, pushing each element onto the stack as it is encountered, until the end of the
sequence is reached. The stack is then popped repeatedly, with each popped element sent
to the output, until the stack is empty. Table 3.13 illustrates this algorithm:

stacks 139

Table 3.13 Reversal of a string using a stack

Input Action Stack Display
ABCDEF Push A A ¨ top of stack –

BCDEF Push B AB ¨ top of stack –

CDEF Push C ABC ¨ top of stack –

DEF Push D ABCD ¨ top of stack –

EF Push E ABCDE ¨ top of stack –

F Push F ABCDEF ¨ top of stack –

End Pop and display ABCDE ¨ top of stack F

Pop and display ABCD ¨ top of stack FE

Pop and display ABC ¨ top of stack FED

Pop and display AB ¨ top of stack FEDC

Pop and display A ¨ top of stack FEDCB

Pop and display Stack empty FEDCBA

Stop

Reading a string character and writing it backward can be accomplished by pushing
each character on to a stack as it is read. When the string is fi nished, pop the characters
off the stack, and they will come out in the reverse order. This process is illustrated in
Program Code 3.7.

program CoDe 3.7

 main()

 {

 Stack S; // here Stack is the character stack

 char str[], ch;

 int i;

 ch = str[0];

 i = 1;

 while(ch !=’\0’)

 {

 S.push(ch);

 Ch = str[i++];

 }

 while(!S.Isempty())

 {

 cout << S.pop();

 }

 }

140 data structures using c++

3.11 cHEcking cORREctnESS Of WEll-fORMED PaREntHESES

Consider a mathematical expression that includes several sets of nested parentheses. For
example, Z - ((X ¥ ((X + Y/J - 2)) + Y)/3).

To ensure that the parentheses are nested correctly, we need to check that

1. there are equal numbers of right and left parentheses
2. every right parenthesis is preceded by a matching left parenthesis

Expressions such as ((X + Y) or (X + Y)) violate condition 1, and expressions such as
(X + Y) - (or (X + Y))(-A + B) violate condition 2.

To solve this problem, let us define the parentheses count at a particular point in an
 expression as the number of left parenthesis minus the number of right parenthesis that
have been encountered in the left-to-right scanning of the expression at that particular
point. The two conditions that must hold if the parentheses in an expression form an
admissible pattern are as follows:

1. The parenthesis count at each point in the expression is non-negative.
2. The parenthesis count at the end of the expression is 0.

A stack may also be used to keep track of the parentheses count. Whenever a left
 parenthesis is encountered, it is pushed onto the stack, and whenever a right parenthesis
is encountered, the stack is examined. If the stack is empty, then the string is declared to
be invalid. In addition, when the end of the string is reached, the stack must be empty;
otherwise, the string is declared to be invalid.

3.12 REcuRSiOn

In C/C++, a function can call itself, that is, one of the statements of the function is a call
to itself. Such functions are called recursive functions and can be used to implement
 recursive problems in an elegant manner.

To solve a recursive problem using functions, the problem must have an end condition
that can be stated in non-recursive terms. For example, in the case of factorials, we know
that 1! = 1. If no such condition exists, then the recursive calls will indefinitely continue
until the computer runs or the program is terminated by the operating system.

Consider the recursive implementation of factorial given that

1! = 1 and n! = n ¥ (n - 1)!

The recursive function in C++ is given by the following statement:

 long int factorial (unsigned int n)
 {
 if(n <= 1)

stacks 141

 return(1);
 else
 return(n * factorial(n − 1));
 }

As we can see, the C++ function represents the recursive mathematical definition of
n!. To see how it works, consider the computation of 5!.

The function calls will proceed as follows:

 factorial(5) = 5 * factorial(4)
 = 5 * (4* factorial (3))
 = 5 * (4* (3 * factorial (2)))
 = 5 * (4 *(3 * (2 * factorial (1))))
 = 5 * (4 * (3 * (2 * 1)))
 = 5 * (4 * (3 * 2))
 = 5 * (4 * 6)
 = 5 * 24
 = 120

As the starting number is not 1, the function calls itself with the value 5 - 1, that is, 4.
Therefore, the original function call is kept incomplete and pending, and a second call
is made to the factorial with value 4. This process continues until the fifth call is made,
with the value 1. In this call, the function terminates without any further recursion and
returns the desired value of 1!, which is 1. Subsequently, each of the pending func-
tion calls is completed upto the original factorial (5) function call, which returns the
computed value as 120. In the preceding piece of code, parentheses have been used to
show how the recursive calls proceed from left to right and the computations are made
from right to left.

A program to print the first 15 factorials is given in the following code:

 #include <iostream>
 long int factorial(unsigned int n)
 void main(void)
 {
 int i;
 for(i = 1; i <= 15; i++)
 cout << "The factorial of" << i << "is =" << factorial(i);
 }

Recursion is a technique that allows us to break down a problem into one or more
sub-problems that are similar in form to the original problem. Recursive programs are
most inefficient as regards their name and space complexities. Hence, there is a need to
convert them into iterative ones. To achieve this conversion stacks need to be used. This
is discussed in detail in Chapter 4.

142 data structures using c++

3.13 PaRSing cOMPutER PROgRaMS

Parsing is a special phase of compilation. While parsing a semantic expression, we
need a parsing stack to hold the operands for expressions. The stack must hold both the
value of the expression and its type. The purpose of the expression value stack is to turn
infix expressions such as 1 + 2 into postfix expressions where all the required operands
are saved on the stack by the parser. The operation is then performed by popping the
correct number of arguments off the stack and pushing back the single result value.

3.14 BacktRacking algORitHMS

A backtracking algorithm systematically considers all possible outcomes for each
decision and performs much better than an exhaustive search. To explore a solution
space of the problem, depth-first traversal of the solution space can be performed.
This traversal uses the stack data structure.

3.15 cOnVERting DEciMal nuMBERS tO BinaRY

To convert a number from decimal to binary, we simply divide the number by 2 until a
quotient of 0 is reached. Then, use the successive remainders in reverse order as the binary
representation. For example, to convert decimal 35 to binary, we perform the following
computation:

2 135

117
08
04
02
11

Division operation

If you examine the remainders from the last division to the first one, writing them down
as you go, you will get the following sequence: 100011.

100011base2 = 35base10

The division generates a one-bit result at every step. These bits are generated in the
reverse order, that is, the most significant bit is generated first and the least significant
bit is generated at the end. Hence, the result is the reverse of the actual resultant binary
number. We need some intermediate storage that will hold the result and finally send
the output as the correct result. If we store every bit generated in a stack, we will get the
correct result at the end. This is because the working behaviour of the stack is LIFO.
Hence, using stack operations, we can write a procedure that accepts a non-negative

stacks 143

base 10 integer as a parameter and then write its binary representation. An example is
illustrated in Example 3.6.

 example 3.6 Convert the decimal number 254 to its binary equivalent.

Solution Divide the number by 2; then divide what is left by 2, and so on until there
is nothing left. Write down the remainder (which is either 0 or 1) at each division stage.
Once there are no more divisions, list the remainder values in reverse order. This is the
binary equivalent.

 254/2 gives 127 with a remainder of 0
 127/2 gives 63 with a remainder of 1
 63/2 gives 31 with a remainder of 1
 31/2 gives 15 with a remainder of 1
 15/2 gives 7 with a remainder of 1
 7/2 gives 3 with a remainder of 1
 3/2 gives 1 with a remainder of 1
 1/2 gives 0 with a remainder of 1

Therefore, the binary equivalent is 11111110. The corresponding program is illustrated
in Program Code 3.8.

program CoDe 3.8

 void Dec2Bin(int DecNum)

 {

 int count = 0, bit;

 Stack S;

 while(DecNum >= 0)

 {

 bit = DecNum % 2;

 S.push(bit);

 DecNum = DecNum/2;

 count++;

 }

 cout << "The binary equivalent of" << DecNum << "is =";

 while(count > 0)

 {

 cout << S.pop();

 count−−;

 }

 }

144 data structures using c++

Contiguous stack The simplest way to rep-
resent a stack is by using a one-dimensional
array. A stack implemented using an array is also
called as a contiguous stack.

GetTop The getTop() function gives information
about the topmost element. It returns the element on
the top of the stack. In this operation, only a copy
of the element, which is at the top of the stack, is
returned. Hence, the top is still set to the same ele-
ment.

Polish notation A Polish mathematician Han Lu-
kasiewicz suggested a notation called Polish nota-
tion, which gives two alternatives to represent an
arithmetic expression. The notations are the post-
fi x and prefi x notations.

Pop The pop operation deletes an element, which
is at the top of the stack and returns the same to
the user. The pop() function modifi es the top as
the element below the current topmost element
becomes the top element.

Push The push operation inserts an element on the
top of the stack. The recently added element is
always at the top of the stack.

Recursion Recursion is a technique that allows us
to break down a problem into one or more sub-
problems that are similar in form to the original
problem.

Stack A stack is an ordered list where all insertions
and deletions are made at one end, called the top.

kEY tERMS

REcaPitulatiOn

•  A stack is an  ordered  list where  all  insertions 
and deletions are made at one end, called the 
top. Adding an element is called pushing the
element  onto  the  stack.  The  function,  which 
does this, is called push. Removing an element 
from  the  stack  is  called  popping the element
from  the  stack,  and  the  function,  which  does 
this, is called pop.

•  A stack can be  implemented using arrays or 
linked lists. For array implementation, its size 
should be predefi ned, and its implementation 
time also should not exceed the run-time.

•  A stack is used in a wide number of applica-
tions  such  as  recursion,  expression  conver-
sion, well-formed  parenthesis  check,  and  so 
on. The most frequent application of stack is in 
the evaluation of arithmetic expressions. The 
conventional  way  of  writing  the  expression 
is called infi x,  because  the  binary  operators 

occur in between the operands and the unary 
operators precede their operand.

•  The  Polish  mathematician  Han  Lukasiewicz 
suggested a notation called Polish notion, which 
gives  two  alternatives  to  represent  an  arith-
metic  expression.  The  notations  are  postfi x
and prefi x notations. In the postfi x notation, the 
operator is written after its operands, whereas 
in the prefi x notation the operator precedes its 
operands.

•  The  postfi x  expressions  can  be  evaluated 
easily. Hence, an infi x expression is converted 
into a postfi x expression using a stack.

•  In computer programming,  the processing of 
function calls and their terminations use stack.
A stack is used to remember the place where 
the call was made so that  it can return there 
after the function is complete.

stacks 145

Multiple choice questions

 1. The following sequence of operations is
performed on a stack push(1), push(2), pop,
push(1), push(2), pop, pop, pop, push(2),
pop. The sequence of the popped out values is

 (a) 2, 2, 1, 1, 2
 (b) 2, 2, 1, 2, 2
 (c) 2, 1, 2, 2, 1
 (d) 2, 1, 2, 2, 2
 2. In evaluating the arithmetic expression 2 ¥ 3 -

(4 + 5) using stacks to evaluate its equivalent
postfi x form, which of the following stack
confi gurations is not possible?

(a) (b)

5

4 4

6 6

(d)

9

3

2

(c)

9

6

 3. Stack A has the entries a, b, c (with a on top).
Stack B is empty. An entry popped out of Stack
A can be printed immediately or pushed to
Stack B. An entry popped out of Stack B can
only be printed. In this agreement, which of
the following permutations of a, b, and c is not
possible?

 (a) bac
 (b) bca
 (c) cab
 (d) abc
 4. Which is the postfi x expression for the following

infi x expression?
 A + B ¥ (C + D)/F + D ¥ E
 (a) AB + CD + ¥ F/D + E¥
 (b) ABCD +¥ F/+ DE¥+
 (c) A ¥ B + CD/F¥DE++
 (d) A +¥BCD/F ¥ DE++
 5 The infi x priorities of +, ¥, ^, / could be
 (a) 5, 1, 2, 7

 (b) 7, 5, 2, 1
 (c) 1, 2, 5, 7
 (d) 5, 2, 2, 4
 6 The expression 1 ¥ 2 ^ 3 ¥ 4 ^ 5 ¥ 6 when

evaluated gives the value
 (a) 3230

 (b) 16230

 (c) 49152
 (d) 173458
 7. The prefi x form of A - B/(C¥D$E) is
 (a) -1¥$ACBDE
 (b) -ABCD¥$DE
 (c) -A/B¥C$DE
 (d) -A/BC¥$DE
 8. What is the postfi x form of the following prefi x

expression?
 ¥+ AB - CD
 (a) AB + CD - ¥
 (b) ABC +¥-
 (c) AB + ¥ CD-
 (d) AB + ¥ CD-
 9. The postfi x form of the infi x expression (A + B)

¥ (C + D - E) ¥ F is
 (a) AB + CD + E -¥ F¥
 (b) AB + CDE + -¥ F¥
 (c) AB + CD - EF + - ¥¥
 (d) ABCDEF¥-+¥+
10. Which of the following is essential for effi ciently

converting an infi x expression to its postfi x
form?

 (a) An operator stack
 (b) An operand stack
 (c) An operand stack and an operator stack
 (d) A parse tree

Review questions

 1. Transform the following infi x expressions into
their equivalent postfi x expressions:

 (a) (A - B) ¥ (D/E)
 (b) (A + B ^ D)/(E - F) + G

EXERciSES

146 data structures using c++

 (c) A ¥ (B + D)/E - F ¥ (G + H/K)
 (d) (A + B) ¥ (C $ (D - E) + F)/G) $ (H - J)
 2. Transform the following infix expressions into

their equivalent prefix expressions:
 (a) (A - B) ¥ (D/E)
 (b) (A + B ^ D)/(E - F) + G
 (c) A ¥ (B + D)/E - F ¥ (G + H/K)
 3. Transform the following prefix expressions into

their equivalent infix expressions:
 (a) + A - BC
 (b) ++ A -¥ $ BCD /+ EF ¥ GHI
 (c) + -$ ABC ¥ D ¥¥ EFG
 4. Transform the following postfix expressions to

their equivalent infix expressions.
 (a) ABC+
 (b) AB - C + DEF - +$
 (c) ABCDE - +$¥ EF¥-
 5. Write short notes on
 (a) The pros and cons of recursion
 (b) Multi stack
 (c) Infix expression evaluation
 (d) Polish notation
 (e) Use of stack in function calls
 6. Stacks are called FILO queues because the first

element pushed onto the stack is always the last
one popped. Using push(), pop(), and any

other functions you need, write a program that
reads a line from the terminal and determines
whether it is a palindrome or not. Hint: A
palindrome is a string that is the same spelled
forward or backward. For example, ‘Madam was
I pop I saw Madam.’

 7. Explain the concept of multiple stacks with an
example. What are the different ways for the
implementation of multiple stacks?

 8. What is ADT? Give the ADT for a stack.
 9. Represent two stacks in a 1D array such that

the space utilization is maximum. Give the
C++ declaration and also give C++ functions
to perform push and pop operations on
the desired stack.

10. Write a recursive version of strlen(). Is the
recursive version better or worse than the
iterative version? Explain your answer.

11. Write a function in C++ called copyStack()
that copies the contents of one stack into another.
The algorithm passes two stacks—the source
stack and the destination stack. The order of the
stacks must be identical. (Hint: Use a temporary
stack to preserve the order.)

12. Write a function in C++ to check whether the
contents of two stacks are identical.

Answers to multiple choice questions

1. (a)
2. (d) The postfix equivalent is 2 3 ¥ 4 5 + -. For evaluating this using a stack, starting from the left, we
have to scan the expression character by character. If it is an operator, pop it twice, apply the operator
on the popped out entries, and push the result onto the stack. If we follow this, we can find that the
configuration in option (d) is not possible.
3. (c) 4. (b) 5. (d) 6. (c) 7. (c) 8. (a) 9. (b) 10. (a)

recursion4

Functions are the most basic and useful feature of any programming language. A set
of instructions that performs logical operations, which could be very complex and

numerous in number, can be grouped together as functions (also called procedures).
Functions may call themselves or other functions, and the called functions in turn may
call the calling function. This process is called recursion and such functions are called
 recursive functions. A recursive function makes the program compact and readable. This
chapter covers the important aspects of recursion.

4.1 introDuction

Good programming practices emphasize the writing of programs that are readable, easy
to understand, and error free. Functions are the most useful feature that accomplish
this. A function is called using a function name and its parameters through instructions.
Given the input–output specifi cation of a function, the caller simply makes a call to
it . This v iew of the f unct ion implies that it is invoked, executed, and returned (with
or without results) to the place where it was called in the calling function. When a
function calls itself, either directly or indirectly, it is said to be making a recursive
call. A program becomes compact and readable with recursive functions. Recursion is
extremely powerful as it enables the programmer to express complex processes easily.
Recursive programs are used in a variety of applications ranging from calculating the
factorial of a number to playing complex games against human intelligence.

oBJectiVes

After completi ng this chapter, the reader will be able to understand the following:
 • The power of recursion and its working
 • Identifi cation of the base case and the general case of a recursively defi ned problem
 • Comparison of iterative and recursive solutions
 • The steps to write, implement, test, and debug recursive functions
 • The method of implementing recursion using stacks

148 data structures using c++

Let us consider an example of computing the factorial of a number. Factorial is a math-
ematical term. The factorial of a number, say n, is equal to the product of all the integers
from 1 to n. The factorial of n is denoted as

 n! = 1 ¥ 2 ¥ 3 ¥ º ¥ n or n! = n ¥ n - 1 ¥ º ¥ 1 (4.1)

For example, 10! = 1 ¥ 2 ¥ 3 ¥ 4 ¥ 5 ¥ 6 ¥ 7 ¥ 8 ¥ 9 ¥ 10. The simplest program to
calculate the factorial of a number is by using a loop with a product variable.

Algorithm 4.1 states the iterative process of computing the factorial of n as
10! = 10 ¥ 9 ¥ 8 ¥ ... ¥ 1.

algorithm 4.1

An iterative version of an algorithm to compute the factorial of a

number

1. start

2. Let n be the number whose factorial is to be computed and let

Factorial = 1

3. while(n > 1) do

 begin

 Factorial = Factorial * n

 n = n – 1

 end

4. stop

The iterative process of computing the factorial of n in Algorithm 4.1 can also be written
as in Algorithm 4.2.

algorithm 4.2

An iterative version of the algorithm to compute the factorial of a

number

1. start

2. Let n be the number whose factorial is to be computed and let

Factorial = 1

3. for I = 1 to n do // I can also be initialized to 2

 begin

 Factorial = Factorial * I

 end

4. stop

recursiOn 149

Algorithms 4.1 and 4.2 are iterative algorithms for computing the factorial of n. It is pos-
sible to give a recursive defi nition for factorial too. The mathematical function defi ned in
Eq. (4.1) for factorial of n can also be defi ned recursively as

 n! = n ¥ (n - 1)!, wh ere 1! = 1 (4.2)

This recursive defi nition of factorial has two steps, as follows:

1. If n = 1, then factorial of n = 1
2. Otherwise, factorial of n = n ¥ factorial of (n - 1)

Program Code 4.1 demonstrates the recursive code for Algorithm 4.1.

Program CoDE 4.1

int Factorial(int n)

{

 if(n == 1) // end condition

 return 1;

 else

 return Factorial(n - 1) * n;

}

The Factorial() function is an example of a recursive function. In the second
return statement, the function calls itse lf. The important thing to remember when creat-
ing a recursive function is to give an end condition. In Program Code 4 .1, the recursion
stops when n becomes 1. In each call of the function, the value of n keeps decreasing.
However, when the value reaches 1, the function ends. On the other hand, this function
will run infi nitely if the initial value of n is less than 1, which means that the function is
not perfect. Therefore, the condition n = 1 should be changed to n ≤ 1. L et us rewrite
the Factorial() function as in Program Code 4.2.

Program CoDE 4.2

int Factorial(int n)

{

 if(n == 1) // end condition

 return 1;

 els e

 return Factorial(n - 1) * n;

}

150 data structures using c++

Program Code 4.2 takes advantage of the fact that the factorial of any integer n can be
defined recursively as the product of n and the factorial of n − 1. For example, 5! = 5 ¥ 4!

4.2 recurrence

A recurrence is a well-defined mathematical function where the function being defined
is applied within its own definition. The factorial we defined as n! = n ¥ (n - 1)! is an
example of recurrence with 1! = 1 as the end condition. Take the Fibonacci sequence as
an example. The Fibonacci sequence is the sequence of numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

The first two numbers of the sequence are both 1, whereas each succeeding number is
the sum of the preceding two numbers (we arrived at 55 as the 10th number; it is the sum
of 21 and 34, the eighth and ninth numbers). Let us define a function F(n) that returns the
(n + 1)th Fibonacci number. First, we define the base cases as represented by the follow-
ing functions:

F(1) = 1 and
F(2) = 1

Now, we consider the other numbers. To get the (n + 1)th Fibonacci number, we just
add the nth and the (n - 1)th Fibonacci numbers.

 F(n) = F(n - 1) + F(n - 2) (4.3)

This function F is called recurrence since it computes the nth value in terms of (n - 1)th
and (n - 2)th Fibonacci values. The problems that can be described using recurrence are
easily expressed as recursive functions in programming.

The process of recursion occurs when a function calls itself. Recursion is useful in
situations where solving one or more smaller versions of the same problem can solve the
problem. Computing the value of three to the fourth power can be considered as

34 = 3 ¥ 33

Three cubed can be defined as

33 = 3 ¥ 32

Three squared is

32 = 3 ¥ 3

Finally,

3 = 3 ¥ 30 = 3 ¥ 1

The recurrence for this computation is

 XY = X ¥ XY−1 (4.4)

recursiOn 151

In each of these cases, the problem is reduced to a smaller version of itself.
Program Code 4.3 is a recursive code for computation of Eq. (4.4).

Program CoDE 4.3

Long int Power(int x, int y)

{

 if(y == 0) // end condition

 return(1);

 else

 return(x * Power(x, y – 1);

 // This is the “recursive call”

}

The end condition in Program Code 4.3 can be y = 1; then the return value will be x
(Program Code 4.6). The iterative version of the same computation is demonstrated in
Program Code 4.4.

Program CoDE 4.4

Long int Power(int x, int y)

{

 int result = 1;

 for(int i = 1; i <= y; i++)

 result = result * x;

 return(result);

}

4.3 use of stack in recursion

We have studied stack as a data structure in Chapter 3. The stack is a special area of
memory where temporary variables are stored. It acts on the LIFO principle. To under-
stand how recursive functions use the stack, let us discuss Program Code 4.2. The core
steps are given in the following code:

if(n <= 1)

 return 1;

else

 return n * Factorial(n − 1);

Let n = 3; that is, let us compute the value of 3!, which is 3 ¥ 2 ¥ 1 = 6. When the func-
tion is called f or the fi rst time, n holds the value 3, so the else statement is executed. The
function knows the value of n but not of Factorial(n − 1), so it pushes n (value = 3)

152 data structures using c++

onto the stack and calls itself for the second time with the value 2. This time, the else
statement is again executed, and n (value = 2) is pushed onto the stack as the function
calls itself for the third time with the value 1. Now, the if statement is executed and as
n = 1, the function returns 1. Since the value of Factorial(1) is now known, it reverts
to its second execution by popping the last value 2 from the stack and multiplying it by 1.
This operation gives the value of Factorial(2), so the function reverts to its first
execution by popping the next value 3 from the stack and multiplying it with the factorial,
giving the value 6, which the function finally returns.

From this example, we notice the following:

1. The Factorial() function in Program Code 4.2 runs three times for n = 3, out of
which it calls itself two times. The number of times a function calls itself is known as
the recursive depth of that function.

2. Each time the function calls itself, it stores one or more variables on the stack. Since
stacks hold a limited amount of memory, the functions with a high recursive depth
may crash because of non-availability of memory. Such a situation is known as stack
overflow.

3. Recursive functions usually have (and in fact should have) a terminating (or end)
condition. The Factorial() function in Program Code 4.2 stops calling itself
when n = 1. If this condition was not present, the function would keep calling itself
with the values 3, 2, 1, 0, -1, -2, and so on. Such recursion is known as endless
recursion.

4. All recursive functions go through two distinct phases. The first phase, winding, occurs
when the function calls itself and pushes values onto the stack. The second phase,
unwinding, occurs when the function pops values from the stack, usually after the end
condition.

4.4 Variants of recursion

Depending on the following characterization, the recursive functions are categorized as
direct, indirect, linear, tree, and tail recursions. Recursion may have any one of the fol-
lowing forms:

1. A function calls itself.
2. A function calls another function which in turn calls the caller function.
3. The function call is part of the same processing instruction that makes a recursive

function call.

A few more terms that are used with respect to recursion are explained in the following
section.

Binary recursion A binary recursive function calls itself twice. Fibonacci numbers
computation, quick sort, and merge sort are examples of binary recursion.

recursiOn 153

Program Code 4.5 is an example of a binary recursion as the function Fib() calls
itself twice.

Program CoDE 4.5

int Fib(n)

{

 if(n == 1 ||n == 2)

 return 1;

 else

 return(Fib(n - 1) + Fib(n - 2));

}

n-ary recursion and permutations The most general form of recursion is n-ary
recursion, where n is not a constant but some parameter of a function. Functions of this
kind are useful in generating combinatorial objects such as permutations.

4.4.1 Direct recursion

Recursion is when a function calls itself. Recursion is said to be direct when a func-
tion calls itself directly, and it is said to be indirect when it calls another function
which in turn calls it. The Factorial() function we discussed in Program Code
4.2 is an example of direct recursion. The Power() function in Program Code 4.6 is
for computing the value of Eq. (4.4) recursively. It is a slightly modifi ed version of
Program Code 4.3.

Program CoDE 4.6

int Power(int x, int y)

{

 if(y == 1)

 return x;

 else

 return (x * Power(x, y - 1));

}

4.4.2 indirect recursion

A function is said to be indirectly recursive if it calls another function, which in turn calls
it. Program Code 4.7 is an example of an indirect recursion, where the function Fact()
calls the function Dummy(), and the function Dummy() in turn calls Fact().

154 data structures using c++

Program CoDE 4.7

int Fact(int n)

{

 if(n <= 1)

 return 1;

 else

 return (n * Dummy(n - 1));

}

void Dummy(int n)

{

 Fact(n);

}

4.4.3 tail recursion

A recursive function is said to be tail recursive if there are no pending operations to be
performed on return from a recursive call. Tail recursion is also used to return the value
of the last recursive call as the value of the function. Tail recursion is advantageous as
the amount of information that must be stored during computation is independent of the
number of recursive calls. The Factorial() function in Program Code 4.2 is an example
of a non-tail recursive function. The Binary_Search() function in Program Code 4.8 is
an example of a tail recursive function.

Program CoDE 4.8

int Binary_Search(int A[], int low, int high, int key)

{

 int mid;

 if(low <= high)

 {

 mid = (low + high)/2;

 if(A[mid] == key)

 return mid;

 else if(key < A[mid])

 return Binary_Search(A, low, mid - 1, key);

 else

 return Binary_Search(A, mid + 1, high, key);

 }

 return -1;

}

recursiOn 155

4.4.4 Linear recursion

Depending on the way the recursion grows, it is classified as linear or tree. A recur-
sive function is said to be linearly recursive when no pending operation involves another
recursive call, for example, the Fact() function. This is the simplest form of recursion and
occurs when an action has a simple repetitive structure consisting of some basic steps fol-
lowed by the action again. The Factorial() function in Program Code 4.2 is an example
of linear recursion.

4.4.5 tree recursion

In a recursive function, if there is another recursive call in the set of operations to be
completed after the recursion is over, this is called a tree recursion. Examples of tree
recursive functions are the quick sort and merge sort algorithms, the FibSeries algorithm,
and so on.

The Fibonacci function FibSeries() is defined as

FibSeries(n) = 0, if n = 0
 = 1, if n = 1
 = FibSeries(n - 1) + FibSeries(n - 2), otherwise
Let n = 5.
FibSeries(0) = 0
FibSeries(1) = 1
FibSeries(2) = FibSeries(0) + FibSeries(1) = 1
FibSeries(3) = FibSeries(1) + FibSeries(2) = 2
FibSeries(4) = FibSeries(2) + FibSeries(3) = 3
FibSeries(5) = FibSeries(3) + FibSeries(4) = 5

Figure 4.1 demonstrates this explanation for n = 4.

Fig. 4.1  Recursive calls in Fibonacci recursive function for n = 4

FibSeries(4)

FibSeries(3) FibSeries(2)

FibSeries(2) FibSeries(1) FibSeries(1) FibSeries(0)

FibSeries(1) FibSeries(0)

156 data structures using c++

4.5 eXecution of recursiVe caLLs

Let us now see how recursive calls are executed. At every recursive call, all reference
parameters and local variables are pushed onto the stack along with the function value and
return address. The data is conceptually placed in a stack frame, which is pushed onto the
system stack. A stack frame contains four different elements:

1. The reference parameters to be processed by the called function
2. Local variables in the calling function
3. The return address
4. The expression that is to receive the return value, if any

Consider the following two lines from the Factorial() function in Program Code 4.2:

if(n <= 1) return 1;

else return n * Factorial(n - 1);

Consider the first call as Factorial(4). Now,

1. n = 4
Hence, statement 2, which is a recursive call, is executed.
Push 4 onto the stack and call Factorial(4 − 1).

4 Stack

Top

2. n = 3
Hence, push 3 onto the stack and call Factorial(2).

43

Top

3. n = 2
Hence, push 2 onto the stack and call Factorial(1).

432

Top

recursiOn 157

4. n = 1
Now execute statement 1, which returns 1.

5. Pop the contents and n = 2, so now the expression becomes 2 ¥ 1.
6. Now, n = 3 after popping the top of the stack contents.

Therefore, the expression is 3 ¥ 2 ¥ 1.
7. After popping the top of the stack contents applying n = 4, the expression is 4 ¥ 3 ¥ 2

¥ 1 = 24.
8. After popping the top of the stack contents, we get to know that the stack is empty, and

the answer is 4! = 24.

At the end condition, when no more recursive calls are made, the following steps are
performed:

1. If the stack is empty, then execute a normal return.
2. Otherwise, pop the stack frame, that is, take the values of all the parameters that are on

the top of the stack and assign these values to the corresponding variables.
3. Use the return address to locate the place where the call was made.
4. Execute all the statements from that place (address) where the call was made.
5. Go to step 1.

4.6 recursiVe functions

Recursion is usually viewed by students as a mystical technique that is useful only for
some very special class of problems such as computing factorials or the Fibonacci series.
This is not true. Practically, any function written using an iterative code can be converted
into a recursive code. Of course, this does not guarantee that the resulting program will be
easy to understand, but often, the program results in a compact and readable code.

Let us see when recursion is an appropriate solution. One instance is when the problem
itself is recursively defined. Appropriate examples of this could be factorial and binomial
coefficients.

1. n! = n ¥ (n - 1)! {if n = 1, n! = 1}

2.

3. Fib(n) = Fib(n - 1) + Fib(n - 2)
4. xy = x ¥ xy-1

Recursive functions are often simple and elegant, and their correctness can be easily ver-
ified. Many mathematical functions are defined recursively, and their translation into a
programming language is often easy. Recursion is natural in Ada, Algol, C, C++, Haskell,
Java, Lisp, ML, Modula, Pascal, and many other programming languages. When used
carelessly, recursion can sometimes result in an inefficient function. Recursive func-
tions are closely related to inductive definitions of functions in mathematics. To evaluate

158 data structures using c++

whether an algorithm is to be written using recursion, we must first try to deduce an
inductive definition of the algorithm.

Algorithms that are by nature recursive, such as the factorial, Fibonacci, or power, can
be implemented as either iterative or recursive code. However, recursive functions are
generally smaller and more efficient than their looping equivalents.

Let us consider an example. Consider a given set of cardinality n ≥ 1. The problem
is to print all the permutations of the set. For example, if the set is {1, 2, 3}, then all the
permutations are as follows:

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and {3, 2, 1}

The total number of possible permutations of a set of cardinality n is n!. The easiest
way to generate these permutations is as follows:

Let S = {a, b, c, d}

Generate each permutation by printing the following:

1. a followed by the permutations of set {b, c, d}
2. b followed by the permutations of set {a, c, d}
3. c followed by the permutations of set {a, b, d}
4. d followed by the permutations of set {a, b, c}

Here, the phrase ‘followed by’ is the part that introduces recursion. This approach im-
plies that we can solve the problem for a set with n elements if we had an algorithm that
worked on (n - 1) elements. These considerations lead to Algorithm 4.3.

algorithm 4.3

Perm(A, i, n)
begin
 if(i = n) then
 print(A) and return
 B = A
 for j = i to n do
 begin
 Interchange(A, i, j)
 Perm(A, i + 1, n)
 A = B
 end
end

Moreover, recursion is also useful when the data structure that the algorithm is to oper-
ate on is recursively defined. Examples of such data structures are linked lists and trees.
One more instance when recursion is valuable is when we use ‘divide and conquer’ and
‘backtracking’ as algorithm design paradigms. Divide and conquer is a technique where,
for a function to compute n inputs, the strategy suggests splitting the inputs into k distinct
subsets, 1 < k £ n, yielding k sub-problems. These sub-problems must then be solved and

recursiOn 159

should be combined to get the final solution. If the sub-problem is still large, the tech-
nique is reapplied. The reapplication is expressed better by the recursive function. Recur-
sion is a technique that allows us to break down a problem into one or more sub-problems
that are similar in form to the original problem. Examples include binary search, merge
sort, and quick sort.

4.6.1 Writing recursive code

The general approach to writing a recursive function is listed in the following sequence:

1. Write the function header so you are sure what the function will do and how it will
be called. Identify some unit of measure for the size of the problem the function or
procedure will work on. Then, pretend that the task is to write a function that will work
on problems of all sizes.

2. Decompose the problem into sub-problems. Identify clearly the non-recursive
case of the problem. Make it as small as possible. The function will nearly always
begin by testing for this non-recursive case, also known as the base case or the end
condition.

3. Write recursive calls to solve those sub-problems whose form is similar to that of the
original problem.

4. Write the code to combine, enhance, or modify the results of the recursive call(s), if
necessary, to construct the desired return value or create the desired side effects.

5. Write the end condition(s) to handle any situations that are not handled properly by the
recursive portion of the program.

4.6.2 tower of Hanoi: an example of recursion

The use of recursion often makes everything simpler. First, find out the recurring data and
the essential feature of the problem that should change as the function calls itself. In the
Tower of Hanoi solution, one recurs on the largest disk to be moved. That is, one has to write
a recursive function that takes the largest disk as a parameter in the tower to be moved. The
function should take three parameters indicating from which peg the tower should be moved
(source), to which peg it should go (dest), and the last peg (spare), which is used temporarily.

Let us consider the initial position of the problem as in Fig. 4.2.

Fig. 4.2  Tower of Hanoi—initial position

A B C

0

1

2

3

4

5

A

160 data structures using c++

We can break this into three basic steps.

1. Move the disk 4 and the ones smaller than that from the peg A (source) to peg C (spare),
using peg B (dest) as a spare. We achieve it by recursively using the same function. After
finishing this, we will have all the disks smaller than disk 4 on peg C (Fig. 4.3).

Fig. 4.3 Tower of Hanoi—step 1

A B C

1

0

2

3

4

2. Now, with all the smaller disks on the spare peg C, we can move disk 5 from peg A to
peg B (Fig. 4.4).

Fig. 4.4 Tower of Hanoi—step 2

A B C

3. Finally, we want disk 4 and the smaller disks to be moved from peg C to peg B.
We do this recursively using the same function again. At the end, we have disk 5 and
the smaller ones on peg B (Fig. 4.5).

Fig. 4.5  Tower of Hanoi—final step

A B C

recursiOn 161

In Algorithm 4.4, at the caller function, a call is made to HTower with disk = 5, source = A,
dest = B, and spare = C.

algorithm 4.4

HTower(disk, source, dest, spare)

if disk == 0, then

 move disk from source to dest

else

 HTower(disk - 1, source, spare, dest) // Step 1

 move disk from source to dest // Step 2

 HTower(disk - 1, spare, dest, source) // Step 3

end if

Note that the pseudocode adds a base case when disk = 0, that is, the smallest disk.
In this case, we do not need to worry about smaller disks, so we can just move the disk
directly. In the other cases, we follow the three-step recursive function already described
for disk 5.

The tree representation of recursive calls is shown in Fig. 4.6.

Fig. 4.6  Tower of Hanoi—Call tree for three disks

HTower(3, A, B, C)

HTower(2, A, C, B) HTower(2, C, B, A)

HTower(1, A, B, C) HTower(1, B, C, A) HTower(1, C, A, B) HTower(1, A, B, C)

(0, A, C, B) (0, C, B, A) (0, B, A, C) (0, B, A, C)(0, A, C, B) (0, A, C, B)(0, C, B, A) (0, C, B, A)

The root represents the first call to the function. The function call is represented as a node
in the tree. The child nodes of the node n represent the function calls made by n. For
example, HTower(2, A, C, B) and HTower(2, C, B, A) are the child nodes of HTower(3,
A, B, C) since these are the two function calls that HTower(3, A, B, C) makes. The leaf
nodes represent the base cases.

4.6.3 checking for correctness

One of the most difficult aspects of programming recursively is the process of
accepting that the recursive call will do the right thing. The following checklist pro-
vides the five conditions that must hold true for recursion to work. If each of these

162 data structures using c++

conditions holds for a recursive function, one may conclude that the recursion will
work correctly.

1. A recursive function must have at least one end condition and one recursive case.
2. The test for the end condition has to execute prior to the recursive call.
3. The problem must be broken down in such a way that the recursive call is closer to the

base case than the top level call. This condition is actually not quite strong or sufficient.
Moving towards the end condition alone is not sufficient; it must also be true that the
base case is reached in a finite number of recursive calls.

4. The recursive call must not skip over the base case.
5. Verify that the non-recursive code of the function is operating correctly.

4.6.4 things to remember

The following points should be kept in mind while doing recursive programming:

1. Recursive functions call themselves within their own definition.
2. Recursive functions must have a non-recursive terminating condition; otherwise, an

infinite loop will occur.
3. Recursion, though easy to code, is often but not always, memory starving.

4.7 iteration Versus recursion

Recursion is a top–down approach of problem solving. It divides the problem into pieces
or selects one key step, postponing the rest. On the other hand, iteration is more of a
bottom–up approach. It begins with what is known and from this constructs the solution
step by step. It is hard to say that the non-recursive version is better than the recursive
one or vice versa. However, a few languages do not support writing recursive code, such
as FORTRAN or COBOL. The non-recursive version is more efficient as the overhead of
parameter passing in most compilers is heavy.

4.7.1 Demerits of recursive algorithms

Although with many merits, recursive algorithms have their limitations. They are as follows:

1. Many programming languages do not support recursion; hence, recursive mathematical
function is to be implemented using iterative methods.

2. Even though mathematical functions can be easily implemented using recursion, it is
always at the cost of additional execution time and memory space. For example, let us
take the case of a recursion tree for generating six numbers in a Fibonacci series. It is
known that a Fibonacci series is of the form 0, 1, 1, 2, 3, 5, 8, 13, …, n, where each number
from the third is the sum of the preceding two numbers. It can be noticed that F(n - 2)
is computed twice, F(n - 3) is computed thrice, and F(n - 4) is computed four times.

3. A recursive function can be called from within or outside itself, and to ensure proper
functioning, it has to save the return addresses in some order so that the return to the
proper location will yield the desired result when the return to a calling statement is made.

recursiOn 163

4.7.2 Demerits of iterative Methods

Although the iterative method has various merits, it has its own limitations too. They are
as follows:

1. Iterative code is not readable and hence not easy to understand.
2. In iterative techniques, looping of statements is necessary and needs a complex logic.
3. The iterations may result in a lengthy code.

4.8 siMuLating recursion using stack (eLiMinating recursion)

Wherever a data object/process/relation is defined recursively, it is often easy to describe
the algorithms recursively. If a programming language does not support recursion or one
needs a non-recursive code, then a recursive code can be translated to a non-recursive one.
Once a recursive function is written and is verified for its correctness, one can remove
recursion for efficiency. This can be done using the following rules:

1. At the beginning of the recursive function, a code is inserted to create an empty stack.
This stack is to be used to hold the values of parameters, the local variables, the function
value, and the return address for each recursive call.

2. The jump label is attached to the first executable statement, say label_1. Now, replace
each recursive call by a set of instructions that perform the following:
(a) Push the values of all parameters and local variables on the stack.
(b) Create the ith new label, label_i and store i in the stack. The value i of this label

will be used to compute the return address. This label is placed in the program as
described in step 2(e).

(c) Evaluate the arguments of this call, which may be part of the expression. Assign
these values to the appropriate formal parameters.

(d) Insert an unconditional branch to the beginning of the function.
(e) Attach the label created in step 2(b) to the statement immediately following the

unconditional branch. Attach the label to a statement that retrieves the function
value from the top of the stack. Then, make use of this value in whatever way the
recursive program describes.

3. Once all the recursive calls have been eliminated, replace all the return statements
using the following steps:
(a) If the stack is empty, then execute a normal return.
(b) Otherwise, take the current value of all the output parameters (explicitly or

implicitly understood to be of type output or input) and assign these values to the
corresponding variables that are on top of the stack.

(c) Now, insert a code that removes the index of the return address from the stack if
any has been placed there. Assign this address to some unused variable.

(d) Remove the values of all local variables and parameters from the stack and assign
them to their corresponding variables.

164 data structures using c++

(e) If this is a function, insert instructions to evaluate the expression immediately
following return() and store the result on the top of the stack.

(f) Use the index of the label of the return address to execute a branch to that label.

If all these rules are followed carefully, one can convert recursion to an iterative code.
C++ supports recursion and it is handled using a run-time stack. For each function

call, all the actual parameters are pushed onto the stack. This is also called as activation
record. This activation record contains memory for the return value—a pointer to the base
of the previous stack frame in the stack. It includes the return address, that is, the address
of the instruction to be executed after the function call is completed. It also includes
memory for all the parameters and for all the local variables of the function. The working
of recursion is as described earlier.

4.9 aPPLications of recursion

The following are the major areas where the process of recursion can be applied:
1. Artifi cial intelligence
2. Search techniques
3. Game playing
4. Computational linguistics and natural language processing
5. Expert systems
6. Pattern recognition and computer vision
7. Robotics

recaPituLation

•  A  function may  call  itself  or  other  functions, 
and the called functions in turn may again call 
the calling function. Such functions are called 
recursive functions.

•  Any  correct  iterative  code  can  be  converted 
into  its  equivalent  recursive  code  and  vice 
versa.

•  The  basic  concepts  and  ideas  involved with 
recursion  are  simple—a  function  that  has  to 
be solved  is  treated as a big problem and  it 
solves  itself by using  itself  to solve a slightly 
smaller  problem.  The  recurrence  relation  is 
easily converted to recursive code.

•  The working of recursion is fairly straightforward. 
However, to understand the working of recur-
sion better and to be able to use it well, one 
requires practice. The best way to obtain this 
is to write a lot of recursive functions.

•  Recursion can be used for divide and conquer-
based search and sort algorithms to increase 
the effi ciency of these operations.

•  For  most  problems  such  as  the  Tower  of 
Hanoi,  recursion  presents  an  incredibly  ele-
gant solution that is easy to code and simple 
to understand.

recursiOn 165

Binary recursion A simple unary recursive func-
tion calls itself once, whereas the binary recursive
function calls itself twice. A factorial is a unary
function, whereas Fibonacci is a binary recursion.

Depth of recursion The number of times a func-
tion calls itself is known as the recursive depth of
that function.

Direct and indirect recursion When a recursive
function calls itself directly, it is called direct re-
cursion and when the function calls another func-
tion, which in turn calls the fi rst function, it is
called an indirect recursion.

End condition Recursive functions usually have and
in fact should have a condition that would terminate
the recursive calls. This terminating condition is
called end condition. In the function factorial, when
n = 1 the function returns 1. If this condition were
not present, the function would keep calling itself
with the values 3, 2, 1, 0, -1, -2, and so on till infi n-
ity. Such recursion is known as endless recursion.

Linear and tree recursion Depending on the way
the recursion grows, it is classifi ed as linear or
tree. A recursive function is said to be linearly
recursive when no pending operation involves an-
other recursive call. If there is another recursive
call in the set of operations to be completed after
the recursion is over, then it is called a tree recur-
sion. Factorial is an example of linear recursion
and Fibonacci is an example of tree recursion.

Recurrence relation A recurrence is a well-de-
fi ned mathematical function written in terms of
itself; it is a mathematical function defi ned recur-
sively such as n! = n × (n - 1)!

Recursive functions A function may call itself
or call other functions and the called functions
in turn again may call the calling function. Such
functions are called recursive functions.

Stack overfl ow in recursion Each time a function
calls itself, it stores one or more variables on the
stack. Since the stack holds a limited amount of
memory, functions with a high recursive depth
may crash because of the non-availability of
memory. Such a situation is known as stack over-
fl ow.

Tail recursion A recursive function is said to be
tail recursive if there are no pending operations
to be performed on return from a recursive call;
otherwise it is called a non-tail recursion. The
factorial function is an example of non-tail recur-
sion, whereas binary search is an example of tail
recursion.

Winding and unwinding of recursion All recur-
sive functions go through two distinct phases. The
fi rst phase, winding, occurs when the function is
calling itself and pushing values onto the stack.
The second phase, unwinding, occurs when the
function is popping values from the stack, usually
after the end condition.

keY terMs

Multiple choice questions

 1. Infi nite recursion occurs when
 (a) a base case is omitted
 (b) a base case is never reached
 (c) both (a) and (b)
 (d) none of the above

 2. Fibonacci function Fib(n) = Fib(n - 1) + Fib(n -
2) is an example of

 (a) direct recursion
 (b) tree recursion
 (c) linear recursion
 (d) both (a) and (b)

eXercises

166 data structures using c++

 3. Any recursive function can be converted into
an all equivalent non-recursive function

 (a) always
 (b) never
 (c) sometimes
 (d) if the function is tail recursive
 4. Which of the following algorithm strategies

results in an inherently recursive code?
 (a) Greedy paradigm
 (b) Divide and conquer paradigm
 (c) Dynamic paradigm
 (d) Both (a) and (c)
 5. The advantage of recursion is that the
 (a) code size is less
 (b) time complexity is less
 (c) space complexity is less
 (d) none of the above
 6. The data structure used for recursion is
 (a) stack
 (b) queue
 (c) tree
 (d) none of the above
 7. Consider the following code:

void foo(int n, int sum 0)

{

 int k = 0, j = 0;

 if(n == 0) return;

 k = n % 10; j = n/10;

 sum = sum + k;
 foo(j, sum);
 printf(“%d,”, k);
}

int main()
{
 int a = 2048, sum = 0;
 foo(a, sum);

 printf(“%d\n”, sum);
}

 What does this program print?
 (a) 8, 4, 0, 2, 14
 (b) 8, 4, 0, 2, 0
 (c) 2, 0, 4, 8, 14

 (d) 2, 0, 4, 8, 0
 8. Consider the following code:

int f(int n)

{

 static int i = 1;
 if(n >= 5) return n;
 n = n + i;
 i++;
 return(f(n));
}

 What would be the value returned by f(1)?
 (a) 5
 (b) 6
 (c) 7
 (d) 8
 9. The following code is an example of _______

recursion.
funA()

{

 funB();

}

funB()

{

 funA();

}

 (a) direct
 (b) indirect
 (c) both (a) and (b)
 (d) none of these
10. The following code is an example of ______

recursion.
funA()

{

 .
 .
 .

 funA();

 .
 .
 .

 funA();

}

 (a) linear

recursiOn 167

 (b) tree
 (c) both (a) and (b)
 (d) none of these

Review questions

 1. Write a recursive algorithm to check whether a
specified character is in a string.

 2. Write a recursive algorithm to count all
occurrences of a specified character in a string.

 3. Write a recursive algorithm that removes all
occurrences of a specified character in a string.

 4. Write a recursive algorithm that finds all
occurrences of a substring in a string.

 5. Write a recursive algorithm that changes an
integer to a binary number.

 6. In binary search, the given key is compared with
the middle element of an array. If a match occurs,
the search is successful; else the comparison
decides whether the search would be restricted
to either the upper half or the lower half of the
array. Write a recursive function Binary(key, A,
n), where n is the size of the array A.

 7. Write a recursive function in C++ to count
the number of occurrences of a given integer
in an array. The function should have three
parameters—an array, the number of elements in
the array, and the count.

 8. Write a recursive function in C++ that counts the
number of occurrences of a particular digit in the
decimal representation of a given integer. For
example, if the parameters to the function are 8
and 382885, the function should return 3 as there
are three occurrences of the digit 8 in 382885.

 [Hint: Remember that n % 10 will give the
remainder of n divided by 10, whereas n/10 will
give the integer part of n divided by 10.]

 9. Write a recursive function in C++ to replace
every occurrence of a specified character in
a string with another character. The function
should be a void function and should have three
parameters—a string, a character to be replaced,
and the character with which it is to be replaced.

10. Write a recursive function in C++ to compute the
square root of a number.

11. Write a recursive function in C++ to convert
decimal integers to their radix r representation
by successive divisions.

12. Write a recursive function in C++ that takes an
integer as input and displays the reverse of the
number on the screen.

13. The function F(n, r) can be defined recursively
as F(n - 1, r) + F(n - 1, r - 1). Write a recursive
program to compute F(n, r).

14. Using the following recursive definitions, write a
recursive function in C++.

15. Write the C++ function for the recursive
algorithm that prints the elements of a list in the
reverse order.

Answers to multiple choice questions

1. (c) 2. (d) 3. (a) 4. (b) 5. (a) 6. (a) 7. (d) 8. (c) 9. (b)
10. (b)

We have studied linear data structures, namely, arrays and stacks. In arrays, element
insertion at and deletion from any position causes a lot of data movement. On the

other hand, in stacks, these operations are performed at only one end, the top. A queue
is a special type of data structure that performs insertions at one end called the rear and
deletions at the other end called the front. Let us discuss the concept and functioning of
queues in this chapter.

5.1 ConCePT of QueueS

In our daily life, we have experienced standing in queues for various reasons such as pur-
chasing tickets or getting admission to educational institutes. In all such places, we have
to wait in a queue for our turn to get the service.

Similarly a queue is a common example of a linear list or an ordered list where data can
be inserted at and deleted from different ends. The end at which data is inserted is called
the rear and that from which it is deleted is called the front. These limits guarantee that
the data is processed in the sequence in which they are entered. In short, a queue is a fi rst
in fi rst out (FIFO) or last in last out (LILO) structure.

Consider an ordered list L = {a1, a2, a3, a4, …, an}. If we assume that L represents a
queue, then a1 is the front-en d element and an is the rear-end element. In addition, ai is
behind ai−1.

Let us consider a queue Q of customers standing at a ticket counter.

Q = {Shweta, Anup, Saurabh, Vishnu, Shivadmika, Alan, Devanarayanan, Anagha}

In the queue Q, Shweta is at the front end and Anagha is at the re ar end.

QueueS5

oBJeCTiVeS

After completing this chapter, the reader will be able to understand the following:
 • Restricted linear lists—queues
 • Implementation of queues using arrays
 • Implementation of circular queues
 • Use of queues in simulations, jo b scheduling, and other applications

queueS 169

Queues are one of the most common data processing structures. They are frequently
used in most system software such as operating systems, network and database implemen-
tations, and other areas. Queues are very useful in time-sharing and distributed computer
systems where many widely distributed users share the system simultaneously. Whenever a
user places a request, the operating system adds the request at the end of the queue of jobs
waiting to be executed. The CPU executes the job at the front of the queue.

5.2 Queue AS ABSTRACT DATA TYPe

Look at the queue at the bus stop in Fig. 5.1. Here, the person to get inside the bus is the
one who is at the front. The new person joining would stand at the rear end.

Front Rear

Fig. 5.1 Example of queue—passengers waiting at bus stop

To realize a queue as an abstract data type (ADT), we need a suitable data structure for
storing the elements in the queue and the functions operating on it. The basic operations
performed on the queue include adding and deleting an element, traversing the queue,
checking whether the queue is full or empty, and finding who is at the front and who is
at the rear ends.

A minimal set of operations on a queue is as follows:

1. create()—creates an empty queue, Q
2. add(i,Q)—adds the element i to the rear end of the queue, Q and returns the new queue
3. delete(Q)—takes out an element from the front end of the queue and returns the

resulting queue
4. getFront(Q)—returns the element that is at the front position of the queue
5. Is_Empty(Q)—returns true if the queue is empty; otherwise returns false

The complete specification for the queue ADT is given in Algorithm 5.1.

algorithm 5.1
class queue(element)
 declare create() Æ queue
 add(element, queue) Æ queue
 delete(queue) Æ queue
 getFront(queue) Æ queue

170 data StructureS uSing c++

 Is_Empty(queue) Æ Boolean;
 For all Q Œ queue, i Œ element let
 Is_Empty(create()) = true
 Is_Empty(add(i,Q)) = false
 delete(create()) = error
 delete(add(i,Q)) =
 if Is_Empty(Q) then create
 else add(i, delete(Q))
 getFront(create) = error
 getFront(add(i, Q)) =
 if Is_Empty(Q) then i
 else getFront(Q)
 end
end queue

Since a queue is a linear data structure, it can be implemented using either arrays or
linked lists. For the former, we use static memory allocation and for the latter, we use
dynamic memory allocation. Let us see how a queue can be implemented using arrays.

5.3 ReAlizATion of QueueS uSing ARRAYS

We already know that an array is not a suitable data structure for frequent insertion and deletion
of data elements. Another drawback of arrays is that they use static memory allocation, and
so they can store only a fixed number of elements. In many practical applications, we come
across a situation where the size of the data set keeps changing by such frequent insertions and
deletions. Let us see the implementation of the various operations on the queue using arrays.

Create This operation should create an empty queue. Here max is the maximum initial
size that is defined.

#define max 50
int Queue[max];
int Front = Rear = −1;

In addition to a one-dimensional array Queue, we need two more variables, Front and
Rear. This declaration creates an empty queue of size max. The two variables Front and
Rear are initialized to represent an empty queue. In general, it is suitable to set Front to
one position behind the actual front of the queue and set the rear to the last element in the
queue. Thus, the condition Front = Rear indicates an empty queue. As our array index
ranges between 0 and (max − 1), the front and rear are initialized to -1.

Is_Empty This operation checks whether the queue is empty or not. This is confirmed
by comparing the values of Front and Rear. If Front = Rear, then Is_Empty returns
true, else returns false.

bool Is_Empty()
{
 if(Front == Rear)
 return 1;

queueS 171

 else
 return 0;
}

Is_Full In the definition of the queue ADT, the function for checking the Queue_Full
condition is not included. When we go in for an array implementation, due to its fixed
size, we need to check the state of the queue for being full. It is recommended that before
we delete an element from the queue, we must check whether the queue is empty or not.
Similarly, before insertion, the queue must be checked for the Queue_Full state. When
Rear points to the last location of the array, it indicates that the queue is full, that is, there
is no space to accommodate any more elements.

bool Is_Full()
{
 if(Rear == max − 1)
 return 1;
 else
 return 0;
}

Add This operation adds an element in the queue if it is not full. As Rear points to the
last element of the queue, the new element is added at the (rear + 1)th location.

void Add(int Element)

{
 if(Is_Full())
 cout << “Error, Queue is full”;
 else
 Queue[++Rear] = Element;
}

Delete This operation deletes an element from the front of the queue and sets Front
to point to the next element. Front can be initialized to one position less than the actual
front. We should first increment the value of Front and then remove the element.

int Delete()
{
 if(Is_Empty())
 cout << “Sorry, queue is Empty”;
 else
 return(Queue[++Front]);
}

getFront The operation getFront returns the element at the front, but unlike delete,
this does not update the value of Front.

int getFront()
{
 if(Is_Empty())
 cout << “Sorry, queue is Empty”;

172 data StructureS uSing c++

 else
 return(Queue[Front + 1]);
}

Program Code 5.1 shows one way of realization of the queue ADT using arrays.

program CoDe 5.1

//Queue ADT

class queue

{

 private:

 int Rear, Front;

 int Queue[50];

 int max;

 int Size;

 public:

 queue()

 {

 Size = 0; max = 50;

 Rear = Front = −1 ;

 }

 int Is_Empty();

 int Is_Full();

 void Add(int Element);

 int Delete();

 int getFront();

};

int queue :: Is_Empty()

{

 if(Front == Rear)

 return 1;

 else

 return 0;

}

int queue :: Is_Full()

{

 if(Rear == max − 1)

 return 1;

 else

 return 0;

}

void queue :: Add(int Element)

queueS 173

{

 if(!Is_Full())

 Queue[++Rear] = Element;

 Size++;

}

int queue :: Delete()

{

 if(!Is_Empty())

 {

 Size−−;

 return(Queue[++Front]);

 }

}

int queue :: getFront()

{

 if(!Is_Empty())

 return(Queue[Front + 1]);

}

This implementation of queues using arrays has some fl aws in it. Let us discuss these
fl aws through Program Code 5.2.

program CoDe 5.2

void main(void)

{

 queue Q;

 Q.Add(11);

 Q.Add(12);

 Q.Add(13);

 cout << Q.Delete() << endl;

 Q.Add(14);

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 Q.Add(15);

 Q.Add(16);

 cout << Q.Delete() << endl;

}

174 data StructureS uSing c++

Let Q be an empty queue with Front = Rear = -1. Let max = 5.

0 1 2 3 4 Front = −1

Q Rear = −1

Consider the following statements:
1. Q.Add(11)

11

Rear

0 1 2 3 4 Front = −1

Q Rear = 0

2. Q.Add(12)

11 12

Rear

0 1 2 3 4 Front = −1

Q Rear = 1

3. Q.Add(13)

11 12 13

Rear

0 1 2 3 4 Front = −1

Q Rear = 2

4. A = Q.Delete()
 Here, A = Q[++Front] = Q[0] = 11

12 13

RearFront

0 1 2 3 4 Front = 0

Q Rear = 2

queueS 175

5. Q.Add(14)

12 13 14

RearFront

0 1 2 3 4 Front = 0

Q Rear = 3

6. A = Q.Delete()
 A = Q[++ Front] = Q [1] = 12

13 14

RearFront

0 1 2 3 4 Front = 1

Q Rear = 3

7. A = Q.Delete()
 A = 13

14

RearFront

0 1 2 3 4 Front = 2

Q Rear = 3

8. A = Q.Delete()

RearFront

0 1 2 3 4 Front = 3

Q Rear = 3

9. A = Q.Delete()
 Here we get the Queue_empty error condition as Front = Rear = 3
 Let us execute a few more statements.

176 data StructureS uSing c++

10. Q.Add(15)

15

RearFront

0 1 2 3 4 Front = 3

Q Rear = 4

11. Q.Add(16)

This statement will generate the message Queue_Full because Rear = 4. If one care-
fully observes whether the queue is really full, it actually is not. The Queue_Full state
should have five elements in it, whereas currently, there is only one element in the queue.
This means that the implementation needs to be modified.

The precision of this implementation may be established in a manner similar to that
used for stacks. With this setup, notice that unless the front regularly catches up with the
rear and both the pointers are reset to zero, the Queue_Full condition does not neces-
sarily indicate that it is full. One obvious thing to do when Queue_Full is signalled is
to move the entire queue to the left so that the first element is again at the 0th location
and Front = -1. This is obviously not a feasible solution as it is time consuming and
involves a lot of data movement. This becomes impractical, especially when the queue is
of a large size. The queue we have discussed so far is called the linear queue. There are
two solutions to this problem: one is using a circular queue and the other is using a linked
organization for realization of the queue. Let us discuss circular queues in Section 5.4.

5.4 CiRCulAR Queue

From the demonstration of the execution of a few push and pop operations it can be
concluded that the linear queues using arrays have certain drawbacks listed as follows:

1. The linear queue is of a fixed size. So the user does not have the flexibility to dynamically
change the size of the queue.

2. An arbitrarily declared maximum size of queues leads to poor utilization of memory.
For example, the queue is declared of size 1000 and only 20 of them are used.

3. We need to write a suitable code to make the front regularly catch up with the rear and
reset both. Array implementation of linear queues leads to the Queue_Full state even
though the queue is not actually full.

4. To avoid this, when Queue_Full is signalled, we need to rewind the entire queue to the
original start location (if there are empty locations) so that the first element is at the 0th
location and Front is set to -1. Such movement of data is an efficient way to avoid this
drawback.

The technique that essentially allows the queue to wraparound upon reaching the end
of the array eliminates these drawbacks. Such a technique which allows the queues to

queueS 177

wraparound from end to start is called a circular queue. Virtually, we want the insertion
process and the rear to wraparound the queue.

Hence, a more efficient queue representation is obtained by implementing the array Q
as circular. Here, as we go on adding elements to the queue and reach the end of the array,
the next element is stored in the first slot of the array if it is empty. Suppose the queue Q
is of size n. Now, if we go on adding elements in the queue, we may reach the location
n - 1. If it is not circular, no more elements can be added even though there are empty
locations at the front of the array. Instead, if there are empty locations at the front, using
a circular queue we can add elements at that location rather than signalling an error as the
queue is full or is shifting the data.

The empty slots will be filled with new incoming elements even though Rear = n - 1.
Hence, the circular queue allows us to continue adding elements even though we have reached
the end of the array. The queue is said to be full only when there are n elements in the queue.
The pictorial representation of a circular queue is shown in Figs 5.2(a) and 5.2(b).

Fig. 5.2 Circular queue (a) Conceptual view (b) Physical view

(a)

0

1

n − 1

n − 2

n − 3

(b)

Wraps around, towards the start

Front Rear

10 2 3

. . .

n − 1

.

.

.

178 data StructureS uSing c++

Let us consider the queue Q which is of size n. We have already studied the operations
on linear queues using arrays. We also studied its corresponding functions in the C++ lan-
guage. Let us see whether the same functions can be used for circular queues. In a circular
queue, when the rear is n - 1 and a new element is to be added, the rear should be set to 0.

Initially, both the front and the rear are set to -1. The value of front will always be one
less than that of the actual front. The functions to add and delete elements are rewritten
with a few modifi cations in Program Code 5.3.

program CoDe 5.3

#include<iostream.h>

class Cqueue

{

 private:

 int Rear, Front;

 int Queue[50];

 int Max;

 int Size;

 public:

 Cqueue() {Size = 0; Max = 50; Rear = Front = −1;}

 int Empty();

 int Full();

 void Add(int Element);

 int Delete();

 int getFront();

};

int Cqueue :: Empty()

{

 if(Front == Rear)

 return 1;

 else

 return 0;

}

int Cqueue :: Full()

{

 if(Rear == Front)

 return 1;

 else

 return 0;

}

queueS 179

void Cqueue :: Add(int Element)

{

 if(!Full())

 Rear = (Rear + 1) % Max;

 Queue[Rear] = Element;

 Size++;

}

int Cqueue :: Delete()

{

 if(!Empty())

 Front = (Front + 1) % Max;

 Size−−;

 return(Queue[Front]);

}

int Cqueue :: getFront()

{

 int Temp;

 if(!Empty())

 Temp = (Front + 1) % Max;

 return(Queue[Temp]);

}

void main(void)

{

 Cqueue Q;

 Q.Add(11);

 Q.Add(12);

 Q.Add(13);

 cout << Q.Delete() << endl;

 Q.Add(14);

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 cout << Q.Delete() << endl;

 Q.Add(15);

 Q.Add(16);

 cout << Q.Delete() << endl;

}

180 data StructureS uSing c++

The implementation of a circular queue using an array is provided in Program Code 5.3.
Let us see its working with an example. Consider max = 5 and initially, Front = Rear = 0.
The iterations are shown in Table 5.1.

Table 5.1 Implementation of circular queue

0 1 2 3 4 Front Rear Action
0 0 Q_Empty

11 0 1 Insert 11
11 12 0 2 Insert 12
11 12 13 0 3 Insert 13
11 12 13 14 0 4 Insert 14
11 12 13 14 0 Insert 15

Can’t insert 15 as Q_Full
since Rear = (4 + 1)%5 = 0 which is equal
to Front

– 12 13 14 1 4 Delete
– 13 14 2 4 Delete

– 14 3 4 Delete
– 4 4 Delete

Can’t delete as Front = Rear
makes Q_Empty

To check the Queue_Full and Queue_Empty conditions, we need to check whether the
values of Front and Rear are equal. In the programming languages C/C++, the array
index varies from 0 to n - 1, so that one location of the circular queue always remains
unused. Such is not the case in languages such as Pascal. Hence, in a circular queue that
uses arrays in C/C++, we can store n - 1 elements, where n is declared as the size of the
array. Hence, for storing n elements, we should declare the array of size n + 1.

5.4.1 Advantages of using Circular Queues

The following are the merits of using circular queues:
1. By using circular queues, data shifting is avoided as the front and rear are modified by

using the mod() function. The mod()operation wraps the queue back to its beginning.
2. If the number of elements to be stored in the queue is fixed (i.e., if the queue size is

specific), the circular queue is advantageous.
3. Many practical applications such as printer queue, priority queue, and simulations use

the circular queue.

5.5 MulTi-QueueS

If more number of queues is required to be implemented, then an efficient data structure
to handle multiple queues is required. It is possible to utilize all the available spaces in
a single array. When more than two queues, say n, are represented sequentially, we can

queueS 181

divide the available memory A[size] into n segments and allocate these segments to n
queues, one to each. For each queue i we shall use Front[i] and Rear[i]. We shall use
the condition Front[i] = Rear[i] if and only if the ith queue is empty, and the condi-
tion Rear[i] = Front[i] if and only if the ith queue is full.

If we want five queues, then we can divide the array A[100] into equal parts of 20
and initialize front and rear for each queue, that is, Front[0] = Rear[0] = 0 and
Front[1] = Rear[1] = 20, and so on for other queues (Fig. 5.3).

Fig. 5.3 A multi-queue

queue 00 queue 1 queue 2 queue 3 queue 4

Front[0] Front[1] 99

Rear[0] Rear[1]

A

After adding elements 5 and 8 in the second queue, the resultant queue will be as in
Fig. 5.4.

A 0 1 2 3 4

5 8

0 19 39 59 79 99

Fig. 5.4 Queue in Fig. 5.3 after addition of elements

5.6 DeQue

The word deque is a short form of double-ended queue. It is pronounced as ‘deck’. Deque
defines a data structure where elements can be added or deleted at either the front end or
the rear end, but no changes can be made elsewhere in the list. Thus, deque is a general-
ization of both a stack and a queue. It supports both stack-like and queue-like capabili-
ties. It is a sequential container that is optimized for fast index-based access and efficient
insertion at either of its ends. Deque can be implemented as either a continuous deque or
as a linked deque. Figure 5.5 shows the representation of a deque.

Fig. 5.5 Representation of a deque

InsertionDeletion

Insertion Front Rear Deletion

11 22 33 44 55

182 data StructureS uSing c++

The deque ADT combines the characteristics of stacks and queues. Similar to stacks
and queues, a deque permits the elements to be accessed only at the ends. However, a
deque allows elements to be added at and removed from either end. We can refer to the
operations supported by the deque as EnqueueFront, EnqueueRear, DequeueFront,
and DequeueRear. When we complete a formal description of the deque and then imple-
ment it using a dynamic, linked implementation, we can use it to implement both stacks
and queues, thus achieving significant code reuse.

The following are the four operations associated with deque:

1. EnqueueFront()—adds elements at the front end of the queue
2. EnqueueRear()—adds elements at the rear end of the queue
3. DequeueFront()—deletes elements from the front end of the queue
4. DequeueRear()—deletes elements from the rear end of the queue

For stack implementation using deque, EnqueueFront and DequeueFront are used as
push and pop functions, respectively.

Applications of deque Deque is useful where the data to be stored has to be ordered,
compact storage is needed, and the retrieval of data elements has to be faster.

Variations of deque We can have two variations of a deque: the input-restricted deque
and the output-restricted deque. The output-restricted deque allows deletions from only
one end and the input-restricted deque allows insertions only at one end.

The functions to operate an output-restricted deque could be as follows:

DequeueFront()(or DequeueRight()), EnqueueFront(), and EnqueueRear()

The functions to operate an input-restricted deque are as follows:

DequeueFront(), DequeueRight(), and EnqueueFront()(or EnqueueRear())

5.7 PRioRiTY Queue

A priority queue is a collection of a finite number of prioritized elements. Priority queues
are those in which we can insert or delete elements from any position based on some
fundamental ordering of the elements. Elements can be inserted in any order in a priority
queue, but when an element is removed from the priority queue, it is always the one with
the highest priority.

In other words a priority queue is a collection of elements where the elements are
stored according to their priority levels. The order in which the elements should be
removed is decided by the priority of the element. The following rules are applied to
maintain a priority queue:

1. The element with a higher priority is processed before any element of lower priority.
2. If there were elements with the same priority, then the element added first in the queue

would get processed first.

queueS 183

Priority queues are used for implementing job scheduling by the operating system
where jobs with higher priority are to be processed first. Another application of priority
queues is in simulation systems where the priority corresponds to event times. The fol-
lowing are some examples of a priority queue:

1. A list of patients in an emergency room; each patient might be given a ranking
that depends on the severity of the patient’s illness.

2. A list of jobs carried out by a multitasking operating system; each background job
is given a priority level. Suppose in a computer system, jobs are assigned three
priorities, namely, P, Q, R as first, second, and third, respectively. According to
the priority of the job, it is inserted at the end of the other jobs having the same
priority. Consider the priority queue given in Fig. 5.6.

P1 Q1 P2 R1 P5 P6 Priorities are being
assigned

Fig. 5.6 System queue

There are two ways to implement priority queues.

Implementation method 1 The priority queue implementation in the first case can be
visualized as three separate queues, each following the FIFO behaviour strictly as shown
in Figs 5.7(a)–(c). In this example, jobs are always removed from the front of the queue.
The elements in the second queue are removed only when the first queue is empty, and
the elements from the third queue are removed only when the second queue is empty,
and so on.

P1 P2 P3 P4 P5 P6 Priority 1

(a)

Q1 Q2 Q3 Q4 Q5 Q6 Priority 2

(b)

R1 R2 R3 R4 R5 R6 Priority 3

(c)

1 2 3 4 5 6

Fig. 5.7 System queues for each priority level (a) Priority 1 queue
(b) Priority 2 queue (c) Priority 3 queue

184 data StructureS uSing c++

Operations on a priority queue The following is the list of operations performed on the
priority queue PQ:

1. Initialize PQ to be the empty priority queue.
2. Determine if PQ is empty.
3. Determine if PQ is full.
4. If PQ is not full, insert an element X into PQ.
5. If PQ is not empty, remove an element X of the highest priority.

Implementation method 2 The second way of priority queue implementation is by
using a structure for a queue. This is explained in the following statement:

typedef struct
{
 int Data;
 int priority;
}Element;

class PriorityQueue
{
 Private:
 Element PQueue[max];
 public:
 // member functions here
}

Figure 5.8 represents an example of a priority queue.

Data 15 10 3 30 8

Priority 4 2 2 1 0

RearFront

Fig. 5.8 Priority queue

After inserting 81 with priority 3, the updated queue is given in Fig. 5.9.

Data 15 81 10 3

Priority 4 3 2 2

30

1

8

0

RearFront

Fig. 5.9 Priority queue after insertion

queueS 185

The highest priority element is at the front and that of the lowest priority is at the rear.
Here, when element 81 of priority 3 is to be added, it is inserted in between priorities 4
and 2 as shown in Fig. 5.9. When we want to delete an element, it behaves as a normal
queue, that is, the element at front, which has the highest priority, is deleted first. The ele-
ments are sorted according to their priorities in descending order.

Hence, the two ways to implement a priority queue are sorted list and unsorted list.

Sorted list A sorted list is characterized by the following features:

1. Advantage—Deletion is easy; elements are stored by priority, so just delete from the
beginning of the list.

2. Disadvantage—Insertion is hard; it is necessary to find the proper location for insertion.
3. A linked list is convenient for this implementation such as the list in Fig. 5.9.

Unsorted list An unsorted list is characterized by the following features:

1. Advantage—Insertion is easy; just add elements at the end of the list.
2. Disadvantage—Deletion is hard; it is necessary to find the highest priority element first.
3. An array is convenient for this implementation.

5.7.1 Array implementation of Priority Queue

Like stacks and queues, even a priority queue can be represented using an array. However,
if any array is used to store elements of a priority queue, then insertion of elements to the
queue would be easy, but deletion of elements would be difficult. This is because while in-
serting elements in the priority queue, they are not inserted in an order. As a result, deleting
an element with the highest priority would require examining the entire array to search for
such an element. Moreover, an element in a queue can be deleted from the front end only.

There is no satisfactory solution to this problem. However, it would be more efficient
if we store the elements in a priority queue. Each element in an array can have the fol-
lowing structure:

typedef struct
{
 int Data;
 int priority;
 int order;
}Element;

where priority represents the priority of the element and order represents the order in
which the element has been added to the queue.

5.8 APPliCATionS of QueueS

The most useful application of queues is the simulation of a real world situation so that
it is possible to understand what happens in a real world in a particular situation without
actually observing its occurrence.

186 data StructureS uSing c++

Queues are also very useful in a time-sharing computer system where many users
share a system simultaneously. Whenever a user requests the system to run a particular
program, the operating system adds the request at the end of the queue of jobs waiting to
be executed. Now, when the CPU is free, it executes the job that is at the front of the job
queue. Similarly, there are queues for shared I/O devices too. Each device maintains its
own queue of requests.

Another useful operation of queues is the solution of problems involving searching a
non-linear collection of states. A queue is used for finding a path using the breadth-first
search of graphs.

5.8.1 Josephus Problem

Let us consider a problem that can be solved in an easy manner using a circular
queue. The problem is known as the Josephus problem, and it postulates a group
of soldiers surrounded by an irresistible enemy force. There is no hope for victory
without reinforcements, and there is only a single horse available for escape. The
soldiers form a circle and a number n is picked. The name of one of the soldiers is
also picked from a hat. Beginning with the soldier whose name is picked they begin
to count clockwise around the circle. When the count reaches n, that soldier is re-
moved from the circle, and the count begins again with the next soldier. The process
continues so that each time the count reaches n, another soldier is removed from the
circle. Any soldier removed from the circle is no longer counted. The last soldier
left takes the horse and escapes. The problem is that, given a number n, the ordering
of the soldiers in the circle, and the soldier from whom the count begins, one needs
to determine the order in which soldiers are eliminated from the circle and which
soldier escapes.

The input to the program is the number n and a list of names, which is the clockwise
ordering of the circle, beginning with the soldier from whom the count is to start. The last
input line contains the string end, indicating the end of the input. The program should
print the names in the order in which they are eliminated and the name of the soldier who
finally escapes.

For example, suppose that n = 3 and that there are five soldiers named A, B, C, D,
and E. We count three soldiers starting at A so that C is eliminated first. We then begin
at D and count D, E and then back to A so that A is eliminated next. Then we count B, D,
and E (C has already been eliminated), and finally B, D, and B. Now, D is the one who
escapes.

Clearly, a circular list in which each node represents one soldier is a natural data
structure to use in solving this problem. It is possible to reach any node from any other
by counting around the circle. To represent the removal of a soldier from the circle, a
node is deleted from the circular list. Finally, when only one node remains on the list,
the result is determined. The algorithm for this problem is given in Algorithm 5.2.

queueS 187

algorithm 5.2
1. Let n be the number of members
2. Get the first member
3. Add all members to the queue
4. while (there is more than one member in the queue)
 begin
 count through n − 1 members in the queue;
 print the name of the nth member;
 Remove the nth member from the queue;
 end
5. Print the name of the only member in the list.

5.8.2 Job Scheduling

In the job-scheduling problem, we are given a list of n jobs. Every job i is associated with
an integer deadline di ≥ 0 and a profit pi ≥ 0. For any job i, profit is earned if and only if
the job is completed within its deadline. A feasible solution with the maximum sum of
profits is to be obtained.

To find the optimal solution and feasibility of jobs, we are required to find a subset J
such that each job of this subset can be completed by its deadline. The value of a feasible
solution J is the sum of profits of all the jobs in J.

The steps in finding the subset J are as follows:

1. S pi ¥ i Œ J is the objective function chosen for the optimization measure.
2. Using this measure, the next job to be included should be the one that increases S pi ¥

i Œ J.
3. Begin with J = ∆, S pi = 0, and i Œ J.
4. Add a job to J, which has the largest profit.
5. Add another job to J bearing in mind the following conditions:

(a) Search for the job that has the next maximum profit.
(b) See if this job in union with J is feasible.
(c) If yes, go to step 5 and continue; else go to (d).
(d) Search for the job with the next maximum profit and go to step 2.

6. Terminate when addition of no more jobs is feasible.

Example 5.1 shows a job scheduling algorithm that works to yield an optimized high
profit solution.

 example 5.1 Consider five jobs with profits (p1, p2, p3, p4, p5) = (20, 15, 10, 5, 1) and
maximum delay allowed (d1, d2, d3, d4, d5) = (2, 2, 1, 3, 3).

Here, the maximum number of jobs that can be completed is

Min(n, maxdelay(di)) = Min(5, 3) = 3

188 data StructureS uSing c++

Hence, there is a possibility of doing 3 jobs, and there are 3 units of time, as shown
in Table 5.2.

Table 5.2 Job scheduling

Time slot Profit Job
0–1 20 1

1–2 15 2

2–3 0 3 cannot be accommodated

2–3 5 4

Total profit = 40

In the first unit of time, job 1 is done and a profit of 20 is gained; in the second unit,
job 2 is done and a profit of 15 is obtained. However, in the third unit of time, job 3 is not
available, so job 4 is done with a gain of 5. Further, the deadline of job 5 has also passed;
hence three jobs 1, 2, and 4 are completed with a total profit of 40.

5.8.3 Simulation

Any process or situation that we wish to simulate is considered as a system. A system
may be defined as a group of objects interacting to produce some result. For example, an
industry is a group of people and machines working together to produce some product.

A powerful tool that can be used to study the behaviour of systems is simulation.
Simulation is the process of forming an abstract model of a real world scenario to

understand the effect of modifications and the introduction of various strategies on the
situation. It allows the user to experiment with real and proposed situations without actu-
ally observing its occurrence. The major advantage of simulation is that it permits experi-
mentation without modifying the real solution.

A model of the system must be produced to simulate a situation. Moreover, to de-
termine the structure of a model, the entities, attributes, and activities of the system
should be determined. Entities represent the objects of interest in the simulation. At-
tributes denote the characteristics of these entities. An activity is a process that causes
a change of system state. An event is an occurrence of an activity at a particular in-
stant of time. The state of the system at any given time is specified by the attributes of
the entities and the relation between the entities at that time. The simulation program
must schedule the events in the simulation so that the activities will occur in the cor-
rect time sequence.

Let us consider an example. Suppose that a person has to deposit his telephone bill.
There are four service windows that can accept the bill. A person can deposit his bill
at any of the service windows. Suppose a person enters the office at a specific time (t1)
to deposit the bill, the transaction may be expected to take a certain period of time (t2)
before it is completed. If a service window is free, the person can immediately deposit

queueS 189

the bill and leave the office at the time (t1 + t2) spending exactly the time required to
deposit the bill.

If it so happens that none of the windows is free and there is a line waiting at each
window, the person joins the end of the shortest line and waits until all the persons ahead
have deposited their bills and have left the line. At that time, this person can deposit his
bill. In this case, the time spent by the person in the bill office is t2 plus the time spent
waiting in the line.

Let us try to compute the average time spent by the person in the bill office. To do
this, we write a program to simulate the actions of the persons. The arrival of a person is
modelled as an input of data consisting of the arrival time and the duration of the expected
time to be spent in depositing the bill.

These data pairs are ordered by increasing arrival time. The four service windows are
represented by four queues. Each person waiting in the line is represented by a node in
that queue. The node at the front of the queue represents a person currently being served
at the window.

In this case, a person is an entity. The state of the system might change whenever a
person leaves or enters the bill office. We can therefore define five events that can change
the status of the system—a person entering the office and the four cases of a person leav-
ing a particular queue.

The first event to occur is the arrival of the first customer. The event list is therefore ini-
tialized by reading the first input line. All the four service windows are initially free. The
first node from the event list is removed and placed in the shortest of the queues. When
the person is at the front of the window, a node representing the departure of the person
is added to the event list, and the next input line is read. An arrival node corresponding
to the arrival of the next person is placed on the event list. As soon as one arrival node is
removed from the event list, another is added to the list so that there is exactly one arrival
node on the event list unless there are no more inputs.

When a departure node is removed from the event list, the amount of time spent by the
departing person is computed and added to a total and the node representing the person is
removed from the front of the queue. After a node has been deleted from the front of the
queue, the next person in the queue becomes the first to be served by that window and a
departure node is added for that person to the event list.

At the end of the simulation, when the event list is empty, the total is divided by the
number of persons to get the average time spent by a person.

5.9 QueueS uSing TeMPlATe

The queue in Program Code 5.1, implemented using an array, is defined to operate on
integer data. When we want to define a queue of floating point data, we need to change
int Queue[] to float Queue[] in the declaration of the data members of the class. This
can be done each time the data type of array elements varies, by editing the code using

190 data StructureS uSing c++

the text editor and then recompiling it. A template is a variable that can be instantiated to
any data type. This data type could be of the built-in or the user-defi ned types. Program
Code 5.4 represents a queue using templates.

program CoDe 5.4

template<class T>

class queue : public Queue<T>

{

 private:

 int Front; // 1 counterclockwise from the

Front element

 int Rear; // position of the Back element

 int ArrayLength; // queue capacity

 T *Queue; // element array

 public:

 queue(int InitialCapacity = 20);

 ~ queue()

 {

 delete[] queue;

 }

 bool Empty() const

 {

 return Front == Rear;

 }

 int Size() const

 {

 return(Rear − Front + ArrayLength) % ArrayLength;

 }

 T& Front()

 {

 if(Front == Rear)

 cout << “Sorry queue empty” << endl;

 return Queue[(Front + 1) % ArrayLength];

 }

 T& Back()

 {

 // return Rear element

 if(Front == Rear)

 cout << “Sorry queue empty” << endl;

 return Queue[Rear];

 }

 void Delete()

queueS 191

 {

 // remove Front element

 if(Front == Rear)

 cout << “Sorry Queue Empty” << endl;

 Front = (Front + 1) % ArrayLength;

 Queue[Front].~T();

 }

 void Add(const T& Element);

};

template<class T>

queue <T> :: queue(int InitialCapacity)

{

 ArrayLength = InitialCapacity;

 Queue = new T[ArrayLength];

 Front = 0;

 Rear = 0;

}

template<class T>

void queue <T> :: Add(const T& Element)

{

 if((theBack + 1) % arrayLength == Front)

 cout << “Sorry queue is full” << endl;

 else

 Rear = (Rear + 1) % ArrayLength;

 Queue[Rear] = Element;

}

int main(void)

{

 queue <int> Q(10);

 int Data;

 Q.Add(1);

 Q.Add(2);

 Data = Q.Delete();

 cout << Data;

 Q.Add(3);

 Data = Q.Delete();

 cout << Data;

 Q.Add(4);

}

192 data StructureS uSing c++

A queue implemented using an array has many disadvantages, as arrays provide static
declaration and hence are less fl exible with respect to run-time changes in the size of the
queue. We shall discuss the implementation of queues using a linked list, which over-
comes these drawbacks, in Chapter 6.

ReCAPiTulATion

• A queue is an ordered list where all insertions
are done at one end called the rear and dele-
tions at another end called the front. These
limits guarantee that the data is processed in
the sequence in which it is entered. In short, a
queue is a fi rst in fi rst out (FIFO) or last in last
out (LILO) structure.

• A queue is a linear data structure as it can
be implemented using with the help of arrays
(using static memory allocation) or linked lists
(using dynamic memory allocation). An array
is not a suitable data structure for frequent
insertion and deletion of data elements. In
addition, it uses static memory allocation so
that it can store a fi xed number of elements.
Hence, array implementation is not suitable
for frequent insertions and deletions.

• These drawbacks can be avoided by imple-
menting the queue using a circular array. In a
circular queue, as we go on adding elements
to the queue and reach the end of the array,
the next element is stored in the fi rst slot of the
array if it is free.

• There are variations of queues such as circular
queue, multi-queues, and deque. Deque defi nes
a data structure where elements can be added or
deleted at either the front end or the rear end but
no changes can be made elsewhere in the list.

• Queues are used in many applications such
as simulation, priority queue, job queue, and
so on. Priority queues are those in which we
can insert or delete elements from any posi-
tion based on some fundamental ordering with
respect to the priorities of the elements.

Add This operation adds an element at the rear of
the queue if the queue is not full. This operation is
also named as enqueue and insert.

Circular queue The technique that essentially al-
lows the queues to wrap around upon reaching the
end of the array is called a circular queue.

Delete This operation deletes an element from the
front of the queue and returns the same. This op-
eration is also named as dequeue.

Deque The word deque is a short form of double-
ended queue. It is pronounced as ‘deck’. Deque
defi nes a data structure where elements can be
added or deleted at either the front end or the rear
end, but no changes can be made elsewhere in the

list. Thus, a deque is a generalization of both a
stack and a queue.

FIFO A queue is a fi rst in fi rst out (FIFO) or last
in last out (LILO) structure to guarantee that the
data are processed in the sequence in which they
are entered.

Multi-queue If more number of queues is required
to be implemented, then an effi cient data structure
to handle multiple queues is required. It is pos-
sible to utilize all the available space in a single
array. When more than two queues, say n, are rep-
resented sequentially, we can divide the available
memory into n segments and allocate these seg-
ments to n queues, one each.

KeY TeRMS

queueS 193

Multiple choice questions

 1. The initial confi guration of a queue is a, b, c, d
(a is at the front end). To get the confi guration d,
c, b, a, one needs a minimum of

 (a) 2 deletions and 3 additions
 (b) 3 deletions and 2 additions
 (c) 3 deletions and 3 additions
 (d) 3 deletions and 4 additions
 2. A priority queue is used to implement a stack S

that stores characters. The operation Push(C)
is implemented as insert(Q, C, K) where
K is an appropriate integer key chosen by
the implementation. Pop is implemented as
Deletemin(Q). For a sequence of operations,
the keys chosen are in

 (a) non-increasing order
 (b) non-decreasing order
 (c) strictly increasing order
 (d) strictly decreasing order
 3. A linear list of elements in which deletion can

be done from one end (front) and insertion can
take place only at the other end is known as

 (a) queue
 (b) stack
 (c) tree
 (d) branch
 4. In a queue (where Q.rear and Q.front are

pointers to the ends of a queue)
 (a) the number of total elements is fi xed
 (b) if Q.rear > Q.front, it is empty
 (c) the number of elements at any time is

(Q.rear – Q.front - 1)
 (d) none of these

 5. A queue
 (a) can be created by setting up an ordinary

contiguous array to hold the elements
 (b) can take care of the delete operation

automatically
 (c) needs one pointer to handle addition and

deletion of an element
 (d) none of these
 6. n elements of a queue are to be reversed using

another queue. The number of add and remove
operations required to do so is

 (a) 2 ¥ n
 (b) 4 ¥ n
 (c) n
 (d) The task cannot be accomplished.
 7. A queue is
 (a) a linear data structure
 (b) a non-linear data structure
 (c) both (a) and (b)
 (d) none of these
 8. The end at which a new element gets added to a

queue is called the
 (a) front
 (b) rear
 (c) top
 (d) bottom
 9. The end from which an element gets deleted

from a queue is called the
 (a) front
 (b) rear
 (c) top
 (d) bottom

Priority queue A priority queue is a collection of
a fi nite number of prioritized elements. Priority
queues are the queues where we can insert elements
or delete elements from any position based on some
fundamental ordering of the elements. Elements can
be inserted in any order in a priority queue, but when

an element is removed from the priority queue, it is
always the one with the highest priority.

Queue A queue is a common example of a linear
list or an ordered list in which the data can be
inserted at one end, called the rear, and deleted
from another end, called the front.

eXeRCiSeS

194 data StructureS uSing c++

10. A queue is also called a
 (a) last in first out data structure
 (b) first in last out data structure
 (c) first in first out data structure
 (d) last in last out data structure

Review questions

1. A dequeue is a list where additions and deletions
can be made at either the head or the tail. With
dequeue stored as a circularly linked list, provide
an algorithm to add and delete a node from either
end of a dequeue.

2. What is a circular queue? Write a C++ program
to insert an element in the circular queue. Write
a C++ function for printing the elements of the
queue in reverse order.

3. A queue Q containing n elements and an empty
stack S are given. It is required to transfer the queue
to the stack so that the element at the front of the
queue is on the top of the stack and the order of all
the other elements is preserved. Show how this can
be done in O(n) time using only a constant amount
of additional storage. Note that the only operations
that can be performed on the queue and stack are
delete, insert, push, and pop. Do not assume
any implementation of the queue or the stack.

4 Suppose a stack implementation supports, in
addition to push and pop, an operation reverse,
which reverses the order of the elements on the
stack.

 (a) To implement a queue using such a stack
implementation, show how to implement

Enqueue using a single operation and
Dequeue using a sequence of three opera-
tions.

 (b) Evaluate the following postfix expression
containing single digit operands and arith-
metic operators + and ¥ using a stack.

52 ¥ 34 + 52 ¥¥ +

5. Suppose we wish to have two sequentially
allocated queues occupying a single vector x[1,
2, ..., n]. The front of both the queues are the
end points of the array x, with one queue moving
down whereas the other is moving up. Write a
C++ program to insert a new element in each
queue. In addition, find the number of elements
in each queue at a given time.

6. Assume that a circular queue is stored in an
array. Write down the necessary C++ language
declarations to define 50 different circular
queues having integer values with a maximum
size of 100 each.

7. Represent a circular queue of maximum size n
in an array A(0, 1, ..., n − 1). Assume
that each node in a queue contains an integer.
Write the C++ declaration for the circular queue.
In addition, write two C++ functions to add an
element to the queue and to remove the element
form the queue.

8. Write the algorithm for the job-scheduling
method.

9. Solve for four jobs with profits (100, 10, 15, 27)
and delays (2, 1, 2, 1).

Answers to multiple choice questions

1. (c) 2. (d) 3. (a) 4. (d) 5. (a) 6. (d) 7. (a) 8. (b) 9. (a)
10. (c) and (d)

6

Until now, we have studied arrays and realization of stacks and queues using arrays.
One of the drawbacks of an array is that it is a static data structure, that is, the maximum

capacity of an array should be known before the compilation process. Therefore, we must
explicitly defi ne its size before compilation. Practically, defi ning such static sizes before
the compilation of a program reduces effective space utilization. Accurate predictions
about data structure sizes are very diffi cult. Another drawback of arrays is that the
elements in an array are stored a fi xed distance apart, and the insertion and deletion of
elements in between require a lot of data mov ement. The linked list is the solution to
overcome all these problems. A linked list using dynamic memory management follows
this principle—allocate and use memory when you need it and release it (free or de-
allocate) when you are done.

A linked list is a very effective and effi cient dynamic data structure for linear lists.
Items may be added or deleted from it at any position more easily as compared to arrays.
A programmer does not need to worry about how many data items a program will have to
store. This enables the programmer to make effective use of the memory, since it works
on the principle of need and supply. This reduces the maintenance of the program, as
program maintenance often includes the need to increase the capacity of a program to
handle larger collections.

We shall study the linked list, its variations, and its pros and cons in this chapter.

6.1 intROdUCtiOn

Arrays and linked lists are examples of linear lists. Linear lists are those in which each mem-
ber has a unique successor. Arrays contain consecutive memory locations that are a fi xed

Linked Lists

ObJeCtiVes

After reading this chapter, the reader will be able to understand the following:
 • The limitations of static data structures
 • The need for a data structure that can dynamically shrink and grow
 • Linked list as a dynamic data structure and its fl exibility
 • The variations in linked lists and their applications

196 data structures using c++

distance apart, whereas linked lists do not necessarily contain consecutive memory locations.
These data items can be stored anywhere in the memory in a scattered manner. To maintain
the specific sequence of these data items, we need to maintain link(s) with a successor (and/
or a predecessor). It is called as a linked list as each node is linked with its successor (and/
or predecessor). Figures 6.1 and 6.2 show the realization of a linear list using a linked list.

Member_1 Member_2 Member_i Member_n

Fig. 6.1 A linked list of n elements

Monday Tuesday Wednesday Thursday Friday

Saturday Sunday

Fig. 6.2 A linked list of days in a week

The linked list, as a data structure in programming, is used quite frequently since it is
very efficient. To use linked lists effectively, the concepts of pointers must be very clear
to the programmer. In fact, frequent use of linked lists makes the concept of pointers very
clear to the programmer. This study of the linked list will introduce us to its strengths and
weaknesses. This study gives us an appreciation of the time, space, and code complexity
issues. Linked list examples are a classic combination of algorithms and manipulation of
pointers. Let us now learn about the linked list.

6.2 Linked List

A linked list is an ordered collection of data in which each element (node) contains a
minimum of two values, data and link(s) to its successor (and/or predecessor). A list with
one link field using which every element is associated to its successor is known as a singly
linked list (SLL). In a linked list, before adding any element to the list, a memory space
for that node must be allocated. A link is made from each item to the next item in the list
as shown in Fig. 6.3.

NodeNode Node

Element Link Element Link Element Link

X1 X2 X3 Null

Fig. 6.3 Linked list

Linked Lists 197

Each node of the linked list has at least the following two elements:

1. The data member(s) being stored in the list.
2. A pointer or link to the next element in the list.

The last node in the list contains a null pointer (or a suitable value like -1) to indicate
that it is the end or tail of the list, and by suitable means we identify the first node. As
elements are added to a list, memory for a node is dynamically allocated. Therefore, the
number of elements that may be added to a list is limited only by the amount of memory
available. To understand the linked list concept better, let us consider Examples 6.1 and 6.2.

 example 6.1 We all are aware of the very interesting game of treasure hunt. In this
game, a team member is provided the primary hint of the first locality. From the first
location’s hint, the participant gets the second, and so on. To reach the final target, the
participant has to go through each and every location in a specific order. Even if the order of
one of the locations is wrong, the participant will not obtain the clue for reaching the next
location, and hence, the player will not be able to find the final destination of the treasure.

 example 6.2 Assume that there are 10 books in a library, which form a specific
sequence. This ordered set of 10 books is to be kept in a shelf. There are two ways to
arrange the books. One of the arrangements is to keep all the 10 books in 10 continuous
empty slots (similar to an array). The second possible arrangement is to place the books
at available locations in a distributed manner (similar to a linked list) by keeping track of
the various locations of the books.

Let Books = {book1, book2, book3, …, book10}

As the books form a specific sequence, both the arrangements must preserve the
sequence. Let us analyse both the arrangements. Table 6.1 shows the first arrangement.

Table 6.1 Shelf and books arranged sequentially

Shelf
position

S S + 1 S + 2 S + 3 S + 4 S + 5 S + 6 S + 7 S + 8 S + 9

Book
Number

Book1 Book2 Book3 Book4 Book5 Book6 Book7 Book8 Book9 Book10

The following are the requisites for this arrangement.

1. In a shelf, we need an empty slot that can accommodate all the 10 books.
2. We need to be aware of the position of the first book.
3. The order is maintained by keeping the books in sequence as book1, book2, and so on

till book10, in successive empty locations.
4. Referring to the ith location directly with respect to the first location, one can access the

ith book. In short, we have direct access to any ith book.

198 data structures using c++

Now, consider the following situation. An empty slot sufficient to accommodate 10 books
is not available in the shelf, but 10 empty scattered locations are available.

Let us take a look at the second arrangement as shown in Table 6.2. Here, we need 10
empty locations available in the shelf. These 10 locations could be distributed and need
not necessarily be a continuous block.

Location S + 1 S + 2 S + 3 S + 4 S + 5 S + 6 S + 7

Book no.

Already
occupied

First book

Already
occupied

Already
occupied

Book 1 Book 5 Book 7 Book 2

Next
book
link

goto

S + 7

goto

S + 14

goto

S + 10

goto

S + 11

S + 8 S + 9 S + 10 S + 11 S + 12 S + 13 S + 14 S + 15

Already
occupied

Empty

Book 8 Book 10 Book 6

goto

S + 13

Book 3

goto

S + 9

Book 4

goto

S + 4
Null

Book 9

goto

S + 12

goto

S + 6

Last book

Location

Book no.

Next
book
link

S

Already
occupied

Table 6.2 Shelf and books arranged in a distributed manner

The following steps are used for this arrangement:

1. Let us use some means to preserve the sequence. Let us keep the first book in the first
free location found. Do note the location of the first book. Let us keep the second
book at the second empty location in the shelf. Attach a tag as a link to the first
book to remember where the second book is kept. This tag has the location ID of
the second book. Put the third book in the next empty location. Attach a tag to link
to the second book. The second book’s link stores the location ID of the third book,
and so on.

2. Remember only the first book’s position.
3. We cannot refer to the third book directly. Only the link attached to the second book

can indicate where the third book is. The second book’s position is available at the
first book’s link. Hence, to get the ith book, we have to go through all the books in a
sequence: book1, book2, and so on till book(i - 1). The tag attached to the (i - 1)th
book would tell where the ith book is.

Linked Lists 199

The first arrangement is similar to arrays, a sequential organization. The second arrange-
ment is a linked list, a linked organization. Now, let us compare both the arrangements.
The first method needs continuous empty spaces to accommodate 10 books, whereas the
second method can accommodate books in any of the 10 empty places, which may or may
not be continuous. Hence, even if a continuous space to keep the 10 books is not available
in the second method, the books can be accommodated.

In the first method, we have direct access to any ith book in the sequence, whereas in
the second method, until we traverse through the first i books sequentially, we cannot find
where the (i + 1)th book is kept. In the first method, we must know well in advance how
many books are to be kept so that we can reserve the space for the same. However, in the
second method, we can keep every new book in the empty location found anywhere in the
shelf; we need not reserve a location for the same.

The next point to be taken into consideration is the utilization of shelf space. In the
first method, if the number of the books to be kept in a continuous space is not known in
advance, this creates two problems. First, we reserve a continuous block say, m, of arbi-
trary size. In general, m denotes maximum size. Suppose the number of books to be kept
is n, which is much smaller than m. Then, (m - n) locations remain unused. The second
problem is when the number of books n is greater than the reserved space m, we will not
be able to accommodate the books in the continuous block.

The next aspect for comparison is with respect to the various operations on the data
elements such as insertion and deletion of a book. In the first method, inserting a book
at the ith location needs a shifting of (i to n) books to the right side, each by one position.
Similarly, taking out the ith book from the shelf creates an empty space in the sequence of
books. Hence, we need to shift (i + 1 to n) books to the left, each by one position.

The second method needs no shifting of data elements to insert or delete a data element.
It only needs a few changes in the tags of the books, which are called as links. For the appli-
cations where the data elements to be stored are of varying sizes, that is, sequential represen-
tation, arrays are inadequate. This leads to an elegant solution, that is, linked organization.

6.2.1 Comparison of sequential and Linked Organizations

Although linked lists are often used in computing, they are not simple to master.
However, the flexibility and performance they offer is worth the pain of learning and
using them. The brief features of sequential and linked organizations are described here.

Sequential organization The features of this organization are the following:

1. Successive elements of a list are stored a fixed distance apart.
2. It provides static allocation, which means, the space allocation done by a compiler

once cannot be changed during execution, and the size has to be known in advance.
3. As individual objects are stored a fixed distance apart, we can access any element

randomly.

200 data structures using c++

4. Insertion and deletion of objects in between the list require a lot of data movement.
5. It is space inefficient for large objects with frequent insertions and deletions.
6. An element need not know/store and keep the address of its successive element.

Linked organization The features of this organization include the following:

1. Elements can be placed anywhere in the memory.
2. Dynamic allocation (size need not be known in advance), that is, space allocation as

per need can be done during execution.
3. As objects are not placed in consecutive locations at a fixed distance apart, random

access to elements is not possible.
4. Insertion and deletion of objects do not require any data shifting.
5. It is space efficient for large objects with frequent insertions and deletions.
6. Each element in general is a collection of data and a link. At least one link field is a must.
7. Every element keeps the address of its successor element in a link field.
8. The only burden is that we need additional space for the link field for each element.

However, additional space is not a severe penalty when large objects are to be stored.
9. Linked organization needs the use of pointers and dynamic memory allocation.

A linked list can be implemented using arrays, dynamic memory management, and
pointers. The second implementation requires dynamic memory management where one
can allocate memory at run-time, that is, during the execution of a program. Linked lists
are generally implemented using dynamic memory management. Each linked list has
a head pointer that refers to the first node of the list and the data nodes storing data
member(s). The linked list may have a header node, tail pointer, and so on.

6.2.2 Linked List terminology

The following terms are commonly used in discussions about linked lists:

Header node A header node is a special node that is attached at the beginning of the
linked list. This header node may contain special information (metadata) about the linked
list as shown in Fig. 6.4.

Head

Name3 DoB Babli Abhay Alka

Header
node

Data
node Tail

Fig. 6.4 Linked list with header node

This special information could be the total number of nodes in the list, date of creation,
type, and so on. The header node may or may not be identical to the data nodes.

Linked Lists 201

Data node The list contains data nodes that store the data members and link(s) to its
predecessor (and/or successor).

Head pointer The variable (or handle), which represents the list, is simply a pointer
to the node at the head of the list. A linked list must always have at least one pointer
pointing to the first node (head) of the list. This pointer is necessary because it is the
only way to access the further links in the list. This pointer is often called head pointer,
because a linked list may contain a dummy node attached at the start position called the
header node.

Tail pointer Similar to the head pointer that points to the first node of a linked list, we
may have a pointer pointing to the last node of a linked list called the tail pointer.

6.2.3 Primitive Operations

The following are basic operations associated with the linked list as a data structure:

 1. Creating an empty list
 2. Inserting a node
 3. Deleting a node
 4. Traversing the list

Some more operations, which are based on the basic operations, are as follows:

 5. Searching a node
 6. Updating a node
 7. Printing the node or list
 8. Counting the length of the list
 9. Reversing the list
10. Sorting the list using pointer manipulation
11. Concatenating two lists
12. Merging two sorted lists into a third sorted list

In addition, operations such as merging the second sorted list into the first sorted list
and many more are possible by the use of these operations.

6.3 ReaLizatiOn Of Linked Lists

In a linked organization, the data elements are not necessarily placed in continuous loca-
tions. The relationship between data elements is by means of a link. Along with each data
element, the address of the next element is stored. Thus, the associated link with each
data element to its successor is often referred to as a pointer. In general, a node is a col-
lection of data and link(s). Data is a collection of one or more items. Each item in a node
is called a field. A field contains either a data item or a link. Every node must contain at
least one link field.

202 data structures using c++

6.3.1 Realization of Linked List Using arrays

Let L be a set of names of months of the year.

L = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}

Here, L is an ordered set. The linked organization of this list using arrays is shown in
Fig. 6.5. The elements of the list are stored in the one-dimensional array, Data. The ele-
ments are not stored in the same order as in the set L. They are also not stored in a con-
tinuous block of locations. Note that the data elements are allowed to be stored anywhere
in the array, in any order.

To maintain the sequence, the second array, Link, is added. The values in this array are
the links to each successive element. Here, the list starts at the 10th location of the array.
Let the variable Head denote the start of the list.

L = {Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec}

Data Index Link

Jun 1 4

Sep 2 7

Feb 3 8

Jul 4 12

5

Dec 6 −1

Oct 7 14

Mar 8 9

Apr 9 11

Head Jan 10 3

May 11 1

Aug 12 2

13

Nov 14 6

15

Fig. 6.5 Realization of linked list using 1D arrays

Here, Head = 10 and Data[Head] = Jan.
Let us get the second element. The location where the second element is stored

at is Link[Head] = Link[10]. Hence, Data[Link[Head]] = Data[Link[10]] =
Data[3] = Feb.

Let us get the third data element through the second element. Data[Link[3]] =
Data[8] = Mar, and so on.

Linked Lists 203

Continuing in this manner, we can list all the members in the sequence. The link value
of the last element is set to -1 to represent the end of the list. Figure 6.6 shows the same
representation as in Fig. 6.5 but in a different manner.

Head

= 10
Jan 3 Feb 8 Mar 9 Dec −1

Fig. 6.6 Linked organization

The unused locations are omitted and the list is drawn in the sequence of elements in the list L.
Figure 6.6 shows that the first element of the ordered list L is at the 10th position. The

link value of the first element is 3. This indicates that the second element is at Data[3].
The link value of the second element is 8. This indicates that the third element is at
Data[8], and so on. Here, -1 is stored at link[6], which indicates the end of the list.

Even though data and link are shown as two different arrays, they can be imple-
mented using one 2D array as follows:

int Linked_List[max][2];

Figure 6.7 illustrates the realization of a linked list using a 2D array where L = {100,
102, 20, 51, 83, 99, 65}, Max = 10 and Head = 2.

Index Data Link

0 20 3

1 99 7

Head 2 100 5

3 51 6

4

5 102 0

6 83 1

7 65 −1

8

9

Fig. 6.7 Realization of linked list using 2D arrays

6.3.2 Linked List Using dynamic Memory Management

We learnt that unlike arrays, linked lists need not be stored in adjacent locations. Individual
elements can be stored anywhere in the memory. Each data element is called a node. Each
node contains at least two fields namely data and link. Every node holds a link to the next

204 data structures using c++

node in the list. During run-time (execution of a program), as per the need, a node is allocated
(i.e., memory is allocated for a new node). In other words, a new node of the list will be cre-
ated dynamically. We just remember the pointer to the list at the end, that is, pointer to the first
node. In addition, the last node’s link field can be set to 0 to mark the end of the list. The 0 here
represents null. A linked list thus maintains the data elements in a logical order rather than in a
physical order or in other words separates the physical view from the logical view.

Empty Linked List

An empty linked list is a head pointer with the value Null. An empty list is also called a
null list. The length of a null or empty list is 0.

We should note the following facts while creating and inserting a node in a linked list:

1. The nodes may not actually reside in sequential locations.
2. The locations of nodes may change during different runs of program.
3. Therefore, when we write a program that works on lists, we should never look for a

specific address except when we test for 0 (i.e., null).

We need the following for the implementation of linked list:

1. A means for allocating memory for a node that has at least one link field.
2. A mechanism to verify whether the allocation is successful.
3. A mechanism to release the allocated node and add to free pool of memory, as and

when needed.

These tasks can be performed using the dynamic memory management functions in
C++. To verify the memory allocation process, the address returned by the memory allo-
cation function is compared with the value Null. A non-null address returned indicates
that the process is successful. In C++, new and delete are the operators used for the same.

6.4 dynaMiC MeMORy ManageMent

Many languages permit a programmer to specify an array’s size at run-time. Such languages
have the ability to calculate and assign, during execution, the memory space required by the
variables in a program. The process of allocating memory at run-time is known as dynamic
memory allocation. Let us look at the memory allocation process shown in Fig. 6.8.

Local variables

Free memory

Global variables

 Program instructions

Stack

Heap

Permanent storage area

Fig. 6.8 Memory allocation process

Linked Lists 205

The program instructions and global and static variables are stored in a region known
as the permanent storage area, and the local variables are stored in another area called the
stack. The memory space allocated between these two regions is available for dynamic
allocation during the execution of the program. This free memory region is called the
heap. The size of the heap keeps changing when a program is executed because of the
creation and deletion of the variables that are local to the functions and blocks. Therefore,
it is possible to encounter memory overflow during the dynamic allocation process. In
such situations, the memory allocation functions as discussed in and returns a null pointer
when it fails to locate enough memory requested Section 6.4.1.

6.4.1 dynamic Memory Management in C++ with new and delete
Operators

A special area of main memory, called the heap, is reserved for the dynamic variables.
Any new dynamic variable created by a program consumes some memory in the heap. The
heap is a pool of memory from which the new operator allocates memory. The memory
allocated from the system heap using the new operator is de-allocated (released) using the
delete operator. C++ enables programmers to control the allocation and de-allocation
of memory in a program. The users can dynamically allocate and de-allocate memory for
any built-in or user-defined data structure.

The new Operator

The new operator creates a new dynamic object of a specified type and returns a pointer
that points to this new object (if it fails to create the desired object, it returns 0). In
standard C++, a program that uses dynamic memory management should include a
standard header <new>, which provides access to the standard version of the operator
new. Consider the following declaration and statement:

MyType *ptr;

ptr = new MyType;

These statements create a new dynamic object of the type MyType of the proper
size and return a pointer of the type specified to the right of the operator new, that is,
MyType *.

Syntax

Pointer_Type_Variable = new Data_Type;

Note that new can be used to dynamically allocate any primitive type (such as int or
double) or class type as follows:

1. int *Number;
 Number = new int(20);

2. Time *timeptr; timeptr = new Time;

206 data structures using c++

3. Date *B_Date_Ptr, *Today;
 B_Date_ptr = new Date(20, 1, 1969);

 Today = new Date(20, 1, 2005);

Here in example 3, Date is a class. If the type is a class with a constructor, the default
constructor is called for the newly created dynamic variable. Initialization can be done by
calling the appropriate constructor. If the program creates too many dynamic variables, it
will consume all the memory in the heap. If this happens, any additional calls to new will
fail. Hence, we should always check to see whether a call to the new operator is successful
or not. With earlier C++ compliers, if all the memory in the heap has been used and new
cannot create the requested dynamic variable, then it returns a special pointer named Null.

The Null Pointer

Null is a special constant pointer value that is used to give a value to a pointer variable
that would not otherwise have a value. It can be assigned to a pointer variable of any type.
In earlier compliers, a check was needed by the user for the successful operation of new.
Newer compliers do not require such a check. Current compilers throw the exception
std::badalloc and the program automatically aborts with an error message. We need
no explicit check in the code. The users can ‘catch’ the exception.

The delete Operator

The object created exists till it is explicitly deleted, or till the function/program runs. To
destroy a dynamically allocated variable/object and free the space occupied by the object,
the delete operator is used.

delete ptr;

The delete operator eliminates a dynamic variable and returns the memory that it had
occupied in the heap. The memory can now be reused to create new dynamic variables.
After a call to delete, the value of the pointer variable, such as ptr, is undefined (except
when the dynamic variable is an array). These undefined pointer variables are known as
dangling pointers. One way to avoid dangling pointers is to set any such variable as null.

If we want to free a dynamically allocated array, the following is the syntax:

delete[] pointer_variable;

Such a statement will delete the entire array pointed to by pointer_variable. The
square brackets tell C++ that a dynamic array variable is being eliminated, so the system
checks the size of the array and removes that many indexed variables.

double* DoubleArrayPtr;

DoubleArrayPtr = new double[array_size];

We can use delete to release the dynamic array.

delete[] DoubleArrayPtr;

Linked Lists 207

Similar to other operators, new and delete operators can be overloaded. Program
Code 6.1 demonstrates dynamic variables, new and delete operators, and pointers.

program CoDe 6.1

#include<iostream.h>

int main()

{

 int *ptr1, *ptr2;

 ptr1 = new int;

 *ptr1 = 52;

 cout << "*ptr1 = " << *ptr1 << endl;

 cout << "*ptr2 = " << *ptr2 << endl;

 *ptr2 = 63;

 cout << "*ptr1 = " << *ptr1 << endl;

 cout << "*ptr2 = " << *ptr2 << endl;

 ptr1 = new int;

 *ptr1 = 98;

 cout << "*ptr1 = " << *ptr1 << endl;

 cout << "*ptr2 = " << *ptr2 << endl;

 return 0;

}

Output:

 *ptr1 = 52

 *ptr2 = Garbage

 *ptr1 = 52

 *ptr2 = 63

 *ptr1 = 98

 *ptr2 = 63

6.5 Linked List abstRaCt data tyPe

Although a linked list can be implemented in a variety of ways, the most fl exible implemen-
tation is by using pointers. To implement the same in C++, we can view the entire linked list
as an object of the class LList. Figure 6.9 shows an abstract representation of a linked list.

5 7 2 Null

Fig. 6.9 Abstract representation of linked list

Each linked list has to have a special external link (or pointer), say, Head. We call
it an external link because it is not stored in the list. We shall now extend the abstract

208 data structures using c++

notation to show the external link. Figure 6.10 illustrates the list with the external
link, Head.

5

Head

7 2 Null

Fig. 6.10 Linked list with head pointer

To represent this linked list (Fig. 6.10), we consider it as an object of class LList whose
defi nition is as follows:

class LList
{
 private:
 Node *Head;
 public:
 LList();
 ~LList();
 :
 :

¸
˝
˛
 member functions here

 :
};

The LList class has only one data member, the Head pointer, which points to the fi rst
node of the list, which is used to access the list. The member functions including the
constructor and the destructor are used to process the list. Note that the Head is private
and all other member functions are public. This is because particular nodes of the list are
accessible to outside objects through pointers; the nodes are made inaccessible to outside
objects by declaring Head private so that the information hiding principle is not really
compromised. This is illustrated in Program Code 6.2.

program CoDe 6.2

class LList

{

 private:

 Node *Head;

 Node *Tail; // optional data members

 int Size;

 public:

 LList()

 {

 Head = Tail = Null;

Linked Lists 209

 Size = 0;

 }

 void Create();

 void Traverse();

 void Insert(int data, position);

 void Append(int data);

 void Delete(int position);

 void Reverse();

};

6.5.1 data structure of node

Each node has data and link fi elds. The data fi eld holds data element(s) and the link
fi eld(s) stores the address of its successor (and/or predecessor, if any). As the link fi eld is
a pointer to its successor, it should be a pointer variable, which should hold the address
of its successor. The successor node is of the same type as that of the node itself. Hence,
every node has one member, which points to a node of the same type as itself. As every
node is a group of two (or more) data elements which are of different data types, they
are logically grouped using the data type, object. The link fi eld of a node is a pointer that
references to a node of the same type as itself. Hence, we need a self-referential object.

The declaration of the data structure of a node is given as follows:

class Node
{
 public:
 int data;
 Node *link;
};

class List
{
 private:
 Node *Head;
 public:
 .
 .

¸
˝
˛
 member functions here

 .
};

Here, within the class, the statement Node *link defi nes the link fi eld of a node. Here,
Node is a data type of the pointer variable link.

Consider the following piece of code:

class Node
{

 public:

210 data structures using c++

 int data;
 Node *link;
} *fi rst, A;
fi rst = &A;
A.data = 10;
A.link = Null;

Now, the statement

 cout << fi rst->data;

will print the output 10.
We discussed the node structure of the linked list. Let us now discuss the various

operations on a linked list, illustrated in Program Code 6.3.

program CoDe 6.3

class Node

{

 public :

 int data;

 Node *link;

};

class Llist

{

 private:

 Node *Head,*Tail;

 void Recursive_Traverse(Node *tmp)

 {

 if(tmp == Null)

 return;

 cout << tmp->data << "\t";

 Recursive_Traverse(tmp->link);

 }

 public:

 Llist()

 {

 Head = Null;

 }

 void Create();

 void Display();

 Node* GetNode();

 void Append(Node* NewNode);

 void Insert_at_Pos(Node *NewNode, int position);

1010

first A

Address of A is 1010

10

Linked Lists 211

 void R_Traverse()

 {

 Recursive_Traverse(Head);

 cout << endl;

 }

 void DeleteNode(int del_position);

};

void Llist :: ~Llist()

{

 Node *Temp;

 while(Head != Null)

 {

 Temp = Head;

 Head = Head->link;

 delete Temp;

 }

}

void Llist :: Create()

{

 char ans;

 Node *NewNode;

 while(1)

 {

 cout << "Any more nodes to be added (Y/N)";

 cin >> ans;

 if(ans == 'n') break;

 NewNode = GetNode();

 Append(NewNode);

 }

}

void Llist :: Append(Node* NewNode)

{

 if(Head == Null)

 {

 Head = NewNode;

 Tail = NewNode;

 }

 else

 {

212 data structures using c++

 Tail->link = NewNode;

 Tail = NewNode;

 }

}

Node* Llist :: GetNode()

{

 Node *Newnode;

 Newnode = new Node;

 cin >> Newnode->data;

 Newnode->link = Null;

 return(Newnode);

}

void Llist :: Display()

{

 Node *temp = Head;

 if(temp == Null)

 cout << "Empty List";

 else

 {

 while(temp != Null)

 {

 cout << temp->data << "\t";

 temp = temp->link;

 }

 }

 cout << endl;

}

void main()

{

 Llist L1;

 L1.Create();

 L1.Display();

}

6.5.2 insertion of a node

Depending on the type of list or need of the user, insertion can be made at the beginning,
middle, or at the end of the list. If the list is an ordered list, the insertion should not affect

Linked Lists 213

the order and this may require inserting the data at proper locations so that the order is
preserved. The information about where the node is to be inserted can be decided by
searching through the list, obtaining the position, and then inserting the same.

Note that the symbol shown in all figures in this chapter indicates the end of list
marker representing null. We shall use the same notation throughout the book.

Insertion of a Node at a Middle Position

Assume that a node is to be inserted at some position other than the first position. Let
Prev refer to the node after which NewNode node is to be inserted.

We need the following two steps:

NewNode->link = Prev->link;

Prev->link = NewNode;

The node NewNode is to be inserted between Prev and the successor of Prev. The link
manipulation required to accomplish this is shown in Fig. 6.11 with dotted lines.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.11 Link manipulations for insertion of a node

The steps to perform the link manipulation are as follows:

1. NewNode is a node to be inserted after Prev. The node that is a successor of Prev will
now become the successor of NewNode. Currently, Prev->link holds the pointer to
the successor of Prev. Set the link field of the NewNode such that Prev’s successor
node becomes the successor of NewNode.

NewNode->link = Prev->link;

 In other words, NewNode becomes the predecessor of the node whose predecessor was
Prev, because NewNode is to be placed in between Prev and its successor (Fig. 6.12).

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.12 Link manipulations for insertion of a node (Step 1)

214 data structures using c++

2. Now, let us make NewNode the successor of Prev. This can be achieved by setting the
link field of Prev to NewNode (Fig. 6.13).

Prev->link = NewNode;

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.13 Link manipulations for insertion of a node (Step 2)

Insertion of a Node at the First Position

Let us consider a situation when the node is to be inserted at the first position. As per the
steps discussed for insertion of a node at the middle, we need Prev, which is a pointer to
the node after which NewNode is to be added. To insert a node at the first position, there
exists no Prev node.

The link manipulations needed to add a node at the first location is shown in Fig. 6.14
using dotted lines.

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.14 Link manipulations for insertion of a node at the first position

Head is the pointer variable pointing to the starting node of the list. The insertion of
NewNode at the first position should make Head point to NewNode, and in addition, the
current node which is at the first position should become the second node of the list.
Hence, the link field of NewNode should be set to point to the current first node, that is, the
node pointed by the pointer First.

The following two steps will insert NewNode at the beginning of the linked list.

NewNode->link = Head;

Head = NewNode;

Figure 6.15 shows NewNode to be inserted in the list.

Linked Lists 215

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.15 Insertion of a node at the first position (Initial step)

Step 1 This step is represented in Fig. 6.16.

NewNode->link = Head;

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.16 Insertion of a node at the first position (Step 1)

Step 2 This step is represented in Fig. 6.17.

Head = NewNode;

ChikuHead Ginni

NewNode

Manju

Pinku

Fig. 6.17 Insertion of a node at the first position (Step 2)

Insertion of a Node at the End

The steps for inserting a node in the middle of a list also work for inserting a node at the
end of the list. As the node is to be inserted after the last node, Prev is a pointer to the last
node. Let the node to be inserted be NewNode as shown in Fig. 6.18.

ChikuHead Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.18 Link manipulations for insertion of a node at the end of a list

216 data structures using c++

1. NewNode->link = Prev->link
 As Prev is the last node, Prev->link = Null. Hence, this step can be replaced by the

statement NewNode->link = Null if we know that Prev is the last node as in Fig. 6.19.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.19 Insertion of a node at the end of the list (Step 1)

2. Prev->link = NewNode;
 This will make the node NewNode the successor of Prev. This is shown in Fig. 6.20.

Chiku
Head

Ginni

Prev

NewNode

Manju

Pinku

Fig. 6.20 Insertion of a node at the end of the list (Step 2)

This will insert the node NewNode at the last position, that is, make the node NewNode the
last node of the list.

Generalized Insert Routine

Let us write a single insert routine which would insert a node at any random position in
a list. Let us assume that the position i at which the node is to be inserted is known. We
traverse the list till the (i - 1)th node to insert a new node at the ith position. Now, let the
(i - 1)th node be the previous node referenced by the pointer Prev. The function can be
suitably modifi ed when instead of the position, the node before or after which the new
node is to be inserted is known. In that case, the proper location can be searched and then
the node can be inserted. This is illustrated in Program Code 6.4.

program CoDe 6.4

void Llist :: Insert_at_Pos(Node *NewNode, int position)

{

 Node *temp = Head;

 int count = 1,fl ag = 1;

 if(position == 1) // inserting at fi rst position

Linked Lists 217

 {

 NewNode->link = temp;

 Head = NewNode; // update head

 }

 else

 {

 while(count != position − 1)

 {

 temp = temp->link;

 if(temp == Null)

 {

 fl ag = 0; break;

 }

 count ++;

 }

 if(fl ag == 1)

 {

 NewNode->link = temp->link;

 temp->link = NewNode;

 }

 else

 cout << "Position not found" << endl;

 }

}

void main()

{

 int pos;

 Node *NewNode;

 Llist L1; // L1 is object of list.

 L1.Create();

 L1.Display();

 NewNode = L1.GetNode();

 cout << "Enter position where node is to be inserted"

<< endl;

 cin >> pos;

 L1.Insert_at_Pos(NewNode, pos);

 L1.Display();

}

Program Code 6.4 demonstrates the steps involved in inserting a node at a specifi ed position in
a linked list. A similar function can be written to insert a node before or after a specifi ed node.

218 data structures using c++

6.5.3 Linked List traversal

List traversal is the basic operation where all elements in the list are processed sequen-
tially, one by one. Processing could involve retrieving, searching, sorting, computing the
length, and so on. List traversal requires a looping algorithm (Algorithm 6.1). To traverse
the linked list, we have to start from the fi rst node. We can access the fi rst node through a
pointer variable Head. Once we access the fi rst node, through its link fi eld, we can access
the second node; through the second node’s link fi eld, we can access the third, and so on,
as every node points to its successor till the last node.

algorithm 6.1

1. Get the address of the fi rst node, call it current; current = Head.
2. if current is Null, goto step 6.
3. Process the data fi eld of the current node (node pointed by current). Here, the process

may include printing data, updating, and so on
4. Move to the next node–current = current->link
 (Now current should point to the next node. The address of next node is in the link

fi eld of current. Hence, set current to the link fi eld of current}
5. goto step 2
6. stop

Non-recursive Method

The non-recursive function for list traversal is shown in Program Code 6.5.

program CoDe 6.5

void Llist :: Traverse()

// just displaying the list members

{

 Node *temp = Head;

 if(temp == Null)

 cout << "Empty List";

 else

 {

 while(temp != Null)

 {

 cout << temp->data << "\t";

 temp = temp->link;

 }

 }

 cout << endl;

}

Linked Lists 219

This function can be called by any function. The same function can also be used to
print, search, update, and count length by adding a few statements.

Here, the data element may not necessarily be just one. The node may hold more than
one data element. Let us see output for list L pictorially.

L = {21, 22, 23}

1. Current = Head

21Head 22 23

2. After execution of statement 1

21Head 22

Current

23

3. As current != Null, statements 3, 4, and 5 are executed.

21Head 22

Current

23

4.

21Head

Current

22 23

5.

21Head 22 23

 Now Current = Null is true, while loop condition is false; hence stop.

Output
21

21 22

21 22 23

Recursive Traversal Method

Program Code 6.6 is the recursive code for traversing the linked list.

220 data structures using c++

program CoDe 6.6

class Llist

{

 private:

 Node *Head, *Tail;

 void Recursive_Traverse(Node *tmp)

 {

 //Recursive traversal code

 if(tmp == Null)

 return;

 cout << tmp->data << "\t";

 Recursive_Traverse(tmp->link);

 }

 public:

 void Create();

 void Display();

 void R_Traverse()

 {

 Recursive_Traverse(Head);

 //call to recursive traversal

 cout << endl;

 }

};

void main()

{

 Llist L1;

 L1.Create();

 L1.R_Traverse();

}

Output:

21 22 23

Let us change the sequence of the last two statements in the recursive traverse function
in Program Code 6.6.
void Llist :: Recursive_Traverse(Node *tmp)
{
 if(tmp == Null)
 return;
 Recursive_Traverse(tmp->link);
 cout << tmp->data << "\t";
}

What will be the output now? Will it be 21 22 23 or 23 22 21? Do verify.

Linked Lists 221

6.5.4 deletion of a node

There may be nodes that are to be deleted from a list. Linear lists may very often require
insertion and deletion of nodes. Linked lists are the most suitable data structures for this
purpose. We discussed how to insert a node in a list. Let us learn about how to delete a
node from a list.

Let us assume that the node to be deleted contains data x. We need the following steps
to delete the same. Let x = 13 and let it be pointed to by the pointer Curr. To delete this
node, the required link manipulations are shown in Fig. 6.21 with dotted lines.

12 13 14 15
Head

Prev Curr

11

Fig. 6.21 Link manipulations for deletion of a node

To delete the node Curr, we need to modify the link between Curr and its previous node,
and the link between Curr and its successor.

We need to modify them as shown in Fig. 6.21. The Prev is pointing to Curr as its
current successor. As the Curr is to be deleted, the Prev’s link should be modified such
that it points to the successor of Curr. This makes the successor of Curr the successor of
Prev. This deletes the node Curr from the linked list.

Note that we need the address of the node to be deleted as well as its predecessor to
modify the links such that the node is deleted.

This can be achieved by the following steps shown in Algorithm 6.2.

algorithm 6.2

1. Let both Curr and Prev be set to Head.
2. Traverse the list and search the node to be deleted.
3. Let Curr point to the node to be deleted and Prev be its previous node.
4. Modify the link field of Prev so that it skips Curr and points to its next.
 Prev->link = Curr->link

5. Free the memory allocated for the node Curr.
6. Stop

The node to be deleted can be at any position. It could be the first, middle, or last node.

Deleting the First Node

Deleting the first node is also referred to as deleting a header node. If the node at the first
position is to be deleted, then we need to modify the pointer pointing to the first node
(also called as the head pointer), say Head.

222 data structures using c++

Deletion of the fi rst node needs the link manipulations shown in Fig. 6.22 with
dotted lines.

12 13 14 15
Head

11

Curr

Fig. 6.22 Link manipulations for deletion of the fi rst node

We should also release the fi rst node using the delete operator. Hence, this can be
accomplished in two steps as

1. Set another pointer to the fi rst node before modifying Head, which is the pointer
pointing to the fi rst node. Set Head to point to the second node. This can be
accomplished by the statements,
Curr = Head;

Head = Head->link;

2. Now, release the memory allocated for the fi rst node.
delete Curr;

These two statements will delete the fi rst node, and Head will point to the second node
so that the second node becomes the fi rst node. Later, the memory allocated for the fi rst
node is freed.

Deleting a Middle Node

Let curr point to the node to be deleted, and prev be the predecessor of curr. Then, the
following statements will delete the node curr.

prev->link = curr->link;

delete curr;

These two statements will also delete the last node of the list. Let us work out a func-
tion for the deletion of a node that may be at any position (Program Code 6.7).

program CoDe 6.7

void Llist :: DeleteNode(int pos)

{

 int count = 1, fl ag = 1;

 Node *curr, *temp;

Linked Lists 223

 temp = Head;

 if(pos == 1)

 {

 Head = Head->link;

 delete temp;

 }

 else

 {

 while(count != pos − 1)

 {

 temp = temp->link;

 if(temp == Null)

 {

 fl ag = 0; break;

 }

 count++;

 }

 if(fl ag == 1)

 {

 curr = temp->link;

 temp->link = curr->link;

 delete curr;

 }

 else

 cout << "Position not found" << endl;

 }

}

void main()

{

 int pos,del_position;

 Llist L1; // L1 is object of list.

 L1.Create();

 L1.Display();

 cout << "Enter position of the node to be deleted"

<< endl;

 cin >> del_position;

 L1.DeleteNode(del_position);

 L1.R_Traverse();

}

224 data structures using c++

6.6 Linked List VaRiants

The basic idea of a linked list serves as the starting point for many useful variations. There
are some variants of linked lists. In the following sections, we shall look at a few of them
which have proven to be essential tools for computer scientists and software engineers.

6.6.1 Head Pointer and Header node

A linked list must always have at least one pointer pointing to the first node of the list.
This pointer is a must because otherwise, we have no way to access the linked list.
This pointer is many times called a head pointer, because a linked list may contain a
dummy node (exam) attached at the start position called header node. A header node
is a special node that is attached at the front of the linked list. This header node may
contain special information in data fields. The information could be the total number
of nodes in the list.

Note that the header node may be of the same type as the node of the linked list or it
may have a different data type with some special (additional) fields in it. A linked list with
header node is called header-linked list.

Figure 6.23 is a header-linked list where the header node is of the same data type as
that of the other nodes of the list.

Head
4 Vishnu Anagha Deven Shivadmik

Header node

Fig. 6.23 Header-linked list

Here, the data field of the header node stores 4, which indicates that the linked list con-
tains 4 records ahead. For example, suppose there is an application where the number of
items in a list is often calculated. Usually, we need to traverse the whole list to count the
length. However, if the current length is maintained in the header node, the information
can be accessed easily. Figure 6.24 has a special header node whose data type is not the
same as that of the other nodes of the list.

Head
3 Kochin 1999Agriculture Rajeev Rashmi Rajesh

Header node

Fig. 6.24 Header-linked list with header node different from other nodes

In this list, the header node has some special fields such as length, city, department, year,
and so on. Such a node will have the link field that points to the node of the linked list, as
illustrated in Program Code 6.8.

Linked Lists 225

program CoDe 6.8

class Head_Node

{

 public:

 int count;

 char City[15];

 char Dept[30];

 int Est_Year;

 .

 .

 .

 Node *link;

 // header node links to fi rst node of the list

};

class Node

{

 public:

 emp_name[20];

 Node *link;

 // every node links to its successor of the same

type

};

The most popular convention is to call the pointer that points to the fi rst node of the list
as head pointer no matter whether the header node is present or not.

6.6.2 types of Linked List

We studied that in a linked list, every node must have at least one linked fi eld. Thus, each
node provides information about its predecessor and/or successor in the list. It may also
have the knowledge about where the previous node lies in the memory. Thus, linked lists
can be classifi ed broadly as follows:

1. Singly linked list
2. Doubly linked list

The list and operations we discussed so far had only one link pointing to its successor and
is called as singly linked list.

 Singly Linked List

A linked list in which every node has one link fi eld, to provide information about where
the next node of the list is, is called as singly linked list (SLL). It has no knowledge about

226 data structures using c++

where the previous node lies in the memory. In SLL, we can traverse only in one direc-
tion. We have no way to go to the ith node from (i + 1)th node, unless the list is traversed
again from the first node (Fig. 6.25).

4 Indira Sindhu Ranjita Lisa

Head

Fig. 6.25 Singly linked list

Often SLL is just referred to as a linked list.

Doubly Linked List

In a doubly linked list (DLL), each node has two link fields to store information about the
one to the next and also about the one ahead of the node. Hence, each node has knowl-
edge of its successor and also its predecessor. In DLL, from every node, the list can be
traversed in both the directions (Fig. 6.26).

Head 23 57 99 45

Fig. 6.26 Doubly linked list

Both SSL and DLL may or may not contain a header node. The one with a header
node is explicitly mentioned in the title as a header-SLL and a header-DLL.These
are also called as singly linked list with header node and doubly linked list with
header node.

6.6.3 Linear and Circular Linked Lists

The other classification of linked lists based on their method of traversal is as follows:

1. Linear linked list
2. Circular linked list

Linear Linked List

The linked lists that we have seen so for are known as linear linked lists. All elements of
such a linked list can be accessed by traversing a list from the first node of the list.

Circular Linked List

Although a linear linked list is a useful and popular data structure, it has some shortcom-
ings. For example, consider an SLL. Given a pointer A to a node in a linear list, we cannot

Linked Lists 227

reach any of the nodes that precede the node to which A is pointing. This disadvantage
can be overcome by making a small change. This change is without any additional data
structure. The link field of the last node is set to Null in a linear list to mark the end of the
list. This link field of the last node can be set to point to the first node rather than Null.
Such a linked list is called a circular linked list (Fig. 6.27).

Head Mon Tue Wed Sun

Fig. 6.27 Circular linked list

From any node in such a list, it is possible to reach any other node in the list. A circu-
lar list could be singly circular or doubly circular list and with or without a header node.
Circular lists have many applications. We shall study those in further topics.

Linear lists are also called non-circular or grounded lists. The last node’s link field
of a linear list is set to Null. It is pictorially denoted using the ‘ground’ symbol used in
electronic circuits. Let us discuss the DLL and its operations.

6.7 dOUbLy Linked List

In SLL, each node provides information about where the next node is. It has no knowl-
edge about where the previous node is. For example, if we are at the ith node in the list
currently, then to access the (i - 1)th node or (i - 2)th node, we have to traverse the list
right from the first node. In addition, it is not possible to delete the ith node given only a
pointer to the ith node. It is also not possible to insert a node before the ith node given only
a pointer to the ith node (there are other ways that are without link manipulations such as
using data exchange).

For handling such difficulties, we can use DLLs where each node contains two links,
one to its predecessor and other to its successor (Fig. 6.28).

Fig. 6.28 Doubly linked list of four nodes

Head
10 20 30 40

Each node of a DLL has three fields in general but must have at least two link fields
(Fig. 6.29).

228 data structures using c++

Data field

Pointer to predecessor Pointer to successor45

Fig. 6.29 Node structure of doubly linked list

Program Code 6.9 shows the class of a doubly linked list node.

program CoDe 6.9

class DLL_Node

{

 Public:

 int Data;

 DLL_Node *Prev, *Next;

 DLL_Node()

 {

 Prev = Next = Null;

 }

};

A DLL may either be linear or circular and it may or may not contain a header node.
DLLs are also called two-way lists.

6.7.1 Creation of doubly Linked List

Creation of DLL has the same procedure as that of SLL, as shown in Program Code 6.10.
The only difference is that each node must be linked to both its predecessor and successor.

program CoDe 6.10

class DLL_Node

{

 public:

 int Data;

 DLL_Node *Prev, *Next;

 DLL_Node()

 {

 Prev = Next = Null;

Linked Lists 229

 }

};

class DList

{

 private:

 DLL_Node *Head, *Tail;

 public:

 DList()

 {

 Head = Tail = Null;

 }

 void Create();

 DLL_Node* GetNode();

 void Append(DLL_Node* NewNode);

 void Traverse();

 void DeleteNode(int val);

 void Delete_Pos(int pos);

 void Insert_Before(int val);

 void Insert_After(int val);

 void Insert_Pos(DLL_Node *NewNode, int pos);

};

DLL_Node* DList :: GetNode()

{

 DLL_Node *Newnode;

 Newnode = new DLL_Node;

 cout << "Enter Data";

 cin >> Newnode->Data;

 Newnode->Next = Newnode->Prev = Null;

 return(Newnode);

}

void DList :: Append(DLL_Node* NewNode)

{

 if(Head == Null)

 {

 Head = NewNode;

 Tail = NewNode;

 }

230 data structures using c++

 else

 {

 Tail->Next = NewNode; //Attach to last node

 NewNode->Prev = Tail;

 Tail = NewNode;

 }

}

void DList :: Create()

{

 char ans;

 DLL_Node *NewNode;

 while(1)

 {

 cout << "Any more nodes to be added (Y/N)";

 cin >> ans;

 if(ans == 'n') break;

 NewNode = GetNode();

 Append(NewNode);

 }

}

void DList :: Traverse()

{

 DLL_Node *Curr;

 Curr = Head;

 if(Curr == Null)

 cout << "The list is empty \n";

 else

 while(Curr != Null)

 {

 cout << Curr->Data << "\t";

 Curr = Curr->Next;

 }

 cout << endl;

}

void main()

{

 DList L2;

 L2.Create();

 L2.Traverse();

Linked Lists 231

6.7.2 deletion of a node from a doubly Linked List

Deleting from a DLL needs the deleted node’s predecessor, if any, to be pointed to the
deleted node’s successor. In addition, the successor, if any, should be set to point to
the predecessor node as shown in Fig. 6.30.

curr

curr

(a)

(b)

(c)

(d)

46 57 68

46 57 68

46 68

46 68

Fig. 6.30 Deletion node in doubly linked list (a) Links modifi ed on deletion of node
(b) Memory of the deleted node freed (c) Realignment of nodes (d) After node deletion

The core steps involved in this process are the following:

(curr->Prev)->Next = curr->Next;

(curr->Next)->Prev = curr->Prev;

delete curr;

The C++ code for the same is as shown in Program Code 6.11.

program CoDe 6.11

void DList :: DeleteNode(int val)

{

 DLL_Node *curr, *temp;

232 data structures using c++

 curr = Head;

 while(curr!=Null)

 {

 if(curr->Data == val)

 break;

 // curr is pointing to the node to be deleted

 curr = curr->Next;

 }

 if(curr != Null)

 {

 if(curr == Head) // delete fi rst node

 {

 Head = Head->Next;

 Head->Prev = Null;

 delete curr;

 }

 else

 {

 if(temp == Tail) // delete last node

 {

 Tail = temp->Prev;

 (temp->Prev)->Next = Null;

 delete temp;

 }

 else

 {

 (curr->Prev)->Next = curr->Next;

 (curr->Next)->Prev = curr->Prev;

 delete curr;

 }

 }

 if(Head == Null)

 {

 Tail = Null;

 }

 }

 else

 cout << "Node to be deleted is not found \n";

}

void DList :: Delete_Pos(int pos)

{

 DLL_Node *temp = Head;

Linked Lists 233

 {

 if(pos == 1) // delete header node

 {

 Head = Head->Next;

 Head->Prev = Null;

 delete temp;

 }

 else

 {

 while(count != pos)

 {

 temp = temp->Next;

 if(temp != Null)

 count++;

 else

 break;

 }

 if(count == pos)

 {

 if(temp == Tail) // delete last node

 {

 Tail = temp->Prev;

 (temp->Prev)->Next = Null;

 delete temp;

 }

 else

 {

 (temp->Prev)->Next = temp->Next;

 (temp->Next)->Prev = temp->Prev;

 delete temp;

 }

 }

 else

 cout << "The node to be deleted is not

found" << endl;

 }

 }

}

void main()

 int count = 1;

 if(Head != Null)

234 data structures using c++

{

 int val,pos;

 DList L2;

 L2.Create();

 L2.Traverse();

 cout << "Enter Node Data to be deleted-->";

 cin >> val;

 L2.DeleteNode(val);

 L2.Traverse();

 cout << "Enter Node position to be deleted-->";

 cin >> pos;

 L2.Delete_Pos(pos);

 L2.Traverse();

}

6.7.3 insertion of a node in a doubly Linked List

Now, let us discuss inserting a node in DLL. To insert a node, say Current, we have
to modify four links as each node points to its predecessor as well as successor. Let us
assume that the node Current is to be inserted in between the two nodes say node1 and
node2. We have to modify the following links:

node1->Next, node2->Prev, Current->Prev, and Current->Next

When the Current node is inserted in between node1 and node2, node1’s succes-
sor node changes. Hence, we need to modify node1->Next. For the node node2, its
predecessor changes. Therefore, we need to modify node2->Prev This is shown in
Fig. 6.31.

node1 node2

Current

46 57

55

Fig. 6.31 Inserting a node current

Current is a new node to be inserted. We need to set both its predecessor and succes-
sor by setting the links as Current->Prev and Current->Next

Linked Lists 235

After the insertion of Current, the resultant modified links should be shown as in
Fig. 6.32.

node1 node2

Current

46 57

55

Fig. 6.32 Link modification for insertion of a node in a DLL

Hence, to modify the links, the statements would be

1. To modify node1->Next we use the operation
node1->Next = Current;

2. To modify node2->Prev we use the operation
node2->Prev = Current;

3. To set curr->Next, we use the operation
Current->Next = node2;

4. To set curr->Prev, we use the operation
Current->Prev = node1;

In brief, the statements to insert a node in between node1 and node2 are as follows:

node1->Next = Current;

node2->Prev = Current;

Current->Next = node2;

Current->Prev = node1;

These statements are with respect to Fig. 6.32, where we considered that the node
is to be inserted in between node1 and node2.

Though the new node is to be inserted between node1 and node2, we need to know
only about node1. The node2 is the successor of node1, which can be accessed through
node1->Next. Practically, the node can be inserted in DLL given only one node after
which (or before which) the node is to be inserted.

Let us consider the insertion of a node given one node before or after which the node
is to be inserted, say before node2. Then, the four statements could be

(node2->Prev)->Next = Current;

Current->Prev = node2->Prev;

236 data structures using c++

Current->Next = node2;

node2->Prev = Current;

In brief, a node can be inserted anywhere in the DLL given a node after/before which
it is to be inserted. The function can be written by passing to it either a node after/before
which to insert or the position where to insert. One of the parameters would be the node
to be inserted. Let us see how to insert a node at the fi rst position. We are given a pointer
to the DLL say Head.

We have to modify the links as shown in Fig. 6.33.

Current

Head

Fig. 6.33 Inserting a node before fi rst node

This is represented by the following statements:

Current->Next = Head;

Head->Prev = Current;

Head = Current;

Current->Prev = Null;

6.7.4 traversal of dLL

Given a head pointer to the DLL; traversal is the same as that of an SLL. The advantage
of DLL over SLL is, given a pointer P pointing to any of the nodes of list, the list can be
traversed only in one (forward) direction in SLL, whereas the list can be traversed in both
(forward and backward) directions in DLL. Again, if we have a circular DLL, it has more
advantages. It helps us keep the traversal procedure an unending one. Program Code 6.12
shows the traversal of a DLL.

program CoDe 6.12

void DList :: Insert_Pos(DLL_Node* NewNode, int pos)

{

 DLL_Node *temp = Head;

 int count = 1;

 if(Head == Null)

 Head = Tail = NewNode;

Linked Lists 237

program CoDe 6.12

void DList :: Insert_Pos(DLL_Node* NewNode, int pos)

{

 DLL_Node *temp = Head;

 int count = 1;

 if(Head == Null)

 Head = Tail = NewNode;

 else if(pos == 1) // insert before head

 {

 NewNode->Next = Head;

 Head->Prev = NewNode;

 Head = NewNode;

 }

 else

 {

 while(count != pos)

 {

 temp = temp->Next;

 if(temp != Null)

 count++;

 else

 break;

 }

 if(count == pos)

 {

 (temp->Prev)->Next = NewNode;

 NewNode->Prev = temp->Prev;

 temp->Prev = NewNode;

 }

 else

 cout << "The node position is not found" << endl;

 }

}

6.8 CiRCULaR Linked List

The linked lists that we have seen so far are known as linear linked lists. All elements of
such a linked list can be accessed by fi rst setting up a pointer pointing to the fi rst node
in the list and then traversing the entire list. Although a linear linked list is a useful data
structure, it has some drawbacks. For example, consider an SLL. Given a pointer Cur-
rent to a node in an SLL, we cannot reach any of the nodes that precede the Current node

238 data structures using c++

(this is not the case with DLL as DLL has two, one backward and one forward, links).
This drawback can be overcome by making a small change, and this change is without
any additional data structure. In a singly linear list, the last nodes link field is set to Null.
Instead of that, store the address of the first node of the list in that link field. This change
will make the last node point to the first node of the list. Such a linked list is called circu-
lar linked list , shown in Fig. 6.34.

Head
P Q R S

Fig. 6.34 Circular linked list

From any node in such a list, it is possible to reach to any other node in the list. We
need not traverse the list again right from the first node. Circular linked list is used in
many applications. Circular linked list is used to keep track of free space (unused nodes)
in memory. In a circular list, traversal can be continued from current node. It helps us
to keep the traversal procedure an unending one. The two primary applications of circular
list is time slicing and memory management.

We can have a circular SLL or DLL. Both alternatives are possible. Similarly, circular
linked lists could be with or without header nodes.

6.8.1 singly Circular Linked List

Let us consider an SLL without a header node as shown in Fig. 6.35.

Head
P Q R S

Fig. 6.35 Singly circular linked list

In a singly circular list, the pointer head points to the first node of the list. From the last
node, we can access the first node. Remember that we cannot access the last node through
the header node; we have access to only the first node. We need to traverse the whole list
to reach to the last node. An elegant solution to this is set the pointer Head to point to the
last node instead of the first node. This is illustrated in Fig. 6.36.

Head
P Q R S

Fig. 6.36 Singly circular linked list

Linked Lists 239

Now, through Head we have access to the last node, and it also (Head->next) gives us
the address of the first node.

6.8.2 Circular Linked List with Header node

Consider a circular list with a single node in the list (Fig. 6.37).

Fig. 6.37 Singly circular linked list with two nodes

Head
P Q

Circular list with a single node has a problem of checking end of traversal as

(while(x->link != Head));

This would enter an infinite loop.
So, we can use a circular linked list with header node as shown in Fig. 6.38.

Fig. 6.38 Singly circular linked list with header node

Head

3

Q R S

The circular list with header node drawn in Fig. 6.38 can be redrawn as in Fig. 6.39.

Head Q R S3

Fig. 6.39 Singly circular linked list with header node—representation 2

Suppose we want to insert a new node at the front of this list. We have to change the
link field of the last node. In addition, we have to traverse the whole list to reach till
the last node as the link field of the last node is also to be updated. Hence, it is conve-
nient if the head pointer points to the last node rather than the header node, which is
the first node of the list.

If the singly headed circular linked list has a head pointer as shown in Fig. 6.40, then a
node can easily be inserted at the front and also at the rear of the list.

240 data structures using c++

Q R S
Head

Header node

3

Fig. 6.40 Singly headed circular linked list with head pointing to last node

This procedure will have constant time complexity for both insert at front and at rear.

6.8.3 doubly Circular Linked List

In doubly circular linked list, the last node’s next link is set to the first node of the list and
the first node’s previous link is set to the last node of the list. This gives access to the last
node directly from the first node (Fig. 6.41).

Fig. 6.41 Doubly circular list

Head 56 28 92 94

Figure 6.41 represents the doubly circular linked list without a header node. Figure
6.42 is the doubly circular linked list with header node. Header node may store some
relevant information of the list.

Head

X Y Z T

4

Fig. 6.42 Headed doubly circular list

The operations on circular linked list—insert, delete, create and traverse—
follow the same method as that of linear list except for a few changes. We can redraw the
circular list with header node as in Fig. 6.43.

Fig. 6.43 Headed doubly circular list—representation 2

Head 4 X Y Z T

Linked Lists 241

6.9 POLynOMiaL ManiPULatiOns

We have already studied the representation and operations of polynomials using arrays.
Let us now learn the representation of single variable polynomials using linked list. The
manipulation of symbolic polynomials is a good application of list processing. Let the
polynomial we want to represent using a linked list be A(x). It is expanded as,

A(x) = k1x
m + … + kn-1x

2 + knx
1

where ki is a non-zero coeffi cient with exponent m such that m > m - 1> ... > 2 > 1 ≥ 0.
A node of the linked list will represent each term. A node will have 3 fi elds, which rep-
resent the coeffi cient and exponent of a term and a pointer to the next term (Fig. 6.44).

Coefficient Exponent Link

Fig. 6.44 Polynomial node

For instance, the polynomial, say A = 6x7 + 3x5 + 4x3 + 12 would be stored as in Fig. 6.45.

Head A 76 53 34 012

Fig. 6.45 Polynomial A = 6x7 + 3x5 + 4x3 + 12

The polynomial B = 8x5 + 9x4 - 2x2 -10 would be stored as in Fig. 6.46.

Head B 58 49 2−2 0−10

Fig. 6.46 Polynomial B = 8x5 + 9x4 - 2x2 - 10

The function for the creation of a polynomial can be written as follows. Here, as the
polynomial is stored in the SLL, the create procedure remains the same as that of the
linked list we studied before. The difference is the data fi eld we used earlier had single
integer data fi elds, whereas here, we have two data fi elds and one linked fi eld. The two
data fi elds are the exponent and the coeffi cient of each term of the polynomial. Program
Code 6.13 shows the creation of a polynomial.

program CoDe 6.13

class PolyNode

{

 public:

 int coef;

 int exp;

242 data structures using c++

 PolyNode *link;

};

class Poly

{

 private:

 PolyNode *Head, *Tail;

 public:

 Poly() {Head = Tail = Null;} // constructor

 void Create();

 PolyNode *GetNode();

 void Append(PolyNode* NewNode);

 void Display();

 Poly PolyMult(Poly A);

 Poly PolyAdd(Poly A);

 void Insert(PolyNode*);

 int Evaluate(int val);

};

void Poly :: Create()

{

 char ans;

 PolyNode *NewNode;

 while(1)

 {

 cout << "Any term to be added? (Y/N)\n";

 cin >> ans;

 if(ans == 'N'|| ans == 'n')

 break;

 NewNode = GetNode();

 if(Head == Null)

 {

 Head = NewNode;

 Tail = NewNode;

 }

 else

 Append(NewNode);

 }

}

void Poly :: Append(PolyNode* NewNode)

{

 if(Tail == Null)

 Head = Tail = NewNode;

Linked Lists 243

 else

 {

 Tail->link = NewNode;

 Tail = NewNode;

 }

}

PolyNode* Poly :: GetNode()

{

 PolyNode *NewNode;

 NewNode = new PolyNode;

 if(NewNode == Null)

 {

 cout << "Error in memory allocation \ n";

 // exit(0);

 }

 cout << "Enter coeffi cient and exponent";

 cin >> NewNode->coef;

 cin >> NewNode->exp;

 NewNode->link = Null;

 return(NewNode);

}

6.9.1 Polynomial evaluation

The function traversal of SLL can be used with a few modifi cations for polynomial
evaluation. Given a value of x, we have to evaluate the polynomial as shown in Program
Code 6.14.

program CoDe 6.14

int Poly :: Evaluate(int val)

{

 int j, result = 0,Power;

 PolyNode *tmp = Head;

 while(tmp != Null)

 {

 Power = 1;

 for(j = 1; j <= tmp->exp; j++)

 Power = Power * val;

 result += (tmp->coef) *Power;

 tmp = tmp->link;

 }

 return result;

}

244 data structures using c++

6.9.2 Polynomial addition

Let two polynomials A and B be

A = 4x9 + 3x6 + 5x2 + 1
B = 3x6 + x2 - 2x

The polynomial A and B are to be added to yield the polynomial C. The assumption
here is the two polynomials are stored in linked list with descending order of exponents.

The two polynomials A and B are stored in two linked lists with pointers ptr1 and
ptr2 pointing to the first node of each polynomial, respectively. To add these two poly-
nomials, let us use the paper–pencil method. Let us use these two pointers ptr1 and ptr2
to move along the terms of A and B.

Paper–Pencil Method

If the exponents of the two terms are equal, then their coefficients are added and a new
term is created for the resultant polynomial C. If the exponent of the current term in A is
less than the exponent of the current term of B, then a duplicate of the term in B is created
and attached to C. The pointer ptr2 is advanced to the next term. Similar action is taken
on A if the exponent of the current term of A is greater than the exponent of the current
term of B.

Each time a new node is generated, its exponent and coefficient fields are set accord-
ingly, and the resultant term is attached to the end of the resultant term C. For polyno-
mial C, we have ptr3 to move along the resultant polynomial C. It always points to the
newly appended term, that is, points to the last term of C. This avoids traversal of list C
to append to the node each time. Attaching a node to a polynomial is the same as that of
inserting a node at the end of a list. Only when the first node is added, the appropriate
steps are carried out to initialize ptr3.

An algorithm to attach the term NewTerm to a polynomial, say C, with pointer ptr3 is
as follows:

1. if(c_ptr = Null)
 then c_ptr = NewTerm;
 else
 c_ptr->link = NewTerm;
 c_ptr = NewTerm;
2. stop

Polynomial Addition Algorithm

The following are the steps to add two polynomials A and B to yield the polynomial C.

1. Let A_ptr and B_ptr be pointers to polynomials A and B, respectively
2. Let C_ptr = Null, be a pointer to C
3. while(A_ptr != Null and B_ptr != Null)
 begin
 allocate node say NewTerm

Linked Lists 245

 NewTerm->link = Null
 if(A_ptr->exponent = B_ptr->exponent)
 then
 begin
 NewTerm->exponent = A_ptr->exponent
 NewTerm->coeffi cient = A_ptr->coeffi cient + B_ptr->coeffi cient
 A_ptr = A_ptr->link
 B_ptr = B_ptr->link
 end
 else if(A_ptr->exponent > B_ptr->exponent)
 begin
 NewTerm->exponent = A_ptr->exponent
 NewTerm->coeffi cient = A_ptr->coeffi cient
 A_ptr = A_ptr->link
 end
 else
 begin
 NewTerm->exponent = B_ptr->exponent
 NewTerm->coeffi cient = B_ptr->coeffi cient
 B_ptr = B_ptr->link
 end
 attach NewTerm to C
4. while(A_ptr != Null)
 begin
 allocate new node
 NewTerm->link = Null
 NewTerm->exponent = A_ptr->exponent
 NewTerm->coeffi cient = A_ptr->coeffi cient
 A_ptr = A_ptr->link
 Attach NewTerm to C
end
5. while(B_ptr != Null)
 begin
 allocate new node
 NewTerm->link = Null
 NewTerm->exponent = B_ptr->exponent
 NewTerm->coeffi cient = B_ptr->coeffi cient
 B_ptr = B_ptr->link
 Attach NewTerm to C
 end
6. stop

Program Code 6.15 illustrates the code for polynomial addition.

program CoDe 6.15

poly Poly :: PolyAdd(Poly P2)

{

 PolyNode *Aptr = Head;

 PolyNode *Bptr = P2.Head;

246 data structures using c++

 Poly C;

 PolyNode *NewTerm;

 while(Aptr != Null && Bptr != Null)

 {

 NewTerm = new PolyNode;

 NewTerm->link = Null;

 if(Aptr->exp == Bptr->exp)

 {

 NewTerm->coef = Aptr->coef + Bptr->coef;

 NewTerm->exp = Aptr->exp;

 C.Append(NewTerm);

 Aptr = Aptr->link;

 Bptr = Bptr->link;

 }

 else if(Aptr->exp > Bptr->exp)

 {

 NewTerm->coef = Aptr->coef;

 NewTerm->exp = Aptr->exp;

 C.Append(NewTerm);

 Aptr = Aptr -> link;

 }

 else

 {

 NewTerm->coef = Bptr->coef;

 NewTerm->exp = Bptr->exp;

 C.Append(NewTerm);

 Bptr = Bptr -> link;

 }

 } // end of while

 while(Aptr != Null)

 {

 NewTerm = new PolyNode;

 NewTerm->link = Null;

 NewTerm->coef = Aptr->coef;

 NewTerm->exp = Aptr->exp;

 C.Append(NewTerm);

 Aptr = Aptr->link;

 }

 while(Bptr != Null)

 {

 NewTerm = new PolyNode;

Linked Lists 247

 NewTerm->link = Null;

 NewTerm->coef = Bptr->coef;

 NewTerm->exp = Bptr->exp;

 C.Append(NewTerm);

 Bptr = Bptr->link;

 }

 return C;

}

6.9.3 Polynomial Multiplication

Let A = 4x9 + 3x6 + 5x3 + 1 and B = 3x6 + x2 - 2x be the two polynomials to be multiplied
and the resultant polynomial be C. Let us revise the paper–pencil method. Polynomial A
is multiplied by each term of B. We get n partial products if B has n terms in it. Finally,
we add all these partial products to get the result.

This method generates partial products each of length m, where m is the length of the
polynomial A. Such n partial products are generated, stored, and fi nally added to get the
resultant polynomial. Here, m and n are input-dependent. Let us devise a better approach
where we need not generate, store, and then add all partial products. Hence, a better solution
is to pick up a term from the polynomial B and multiply it with each term of the polynomial
A. One term of B and one term of A when multiplied yield one resultant term. This term can
be immediately added to the resultant polynomial C, and this process is repeated.

To add a resultant term to polynomial C, it is compared with each term of the resultant
polynomial C to insert the new term at the appropriate location in polynomial C. If the
new term with equal exponent is found, then the term is added, else it is inserted in the
resultant polynomial at the appropriate position. This process is repeated for each term of
B with each term of A. The major steps can be listed as follows:

1. Let A and B be two polynomials.
2. Let the number of terms in A be M and number of terms in B be N.
3. Let C be the resultant polynomial to be computed as C = A ¥ B
4. Let us denote the ith term of the polynomial B as tBi. For each term tBi of the polynomial

B, repeat steps 5 to 7 where i = 1 to N.
5. Let us denote the jth term of the polynomial A as tAj. For each term of tAj of the

polynomial A, repeat steps 6 to 7 where j = 1 to M.
6. Multiply tAj and tBi. Let the new term be tCk = tAj ¥ tBi.
7. Compare tCk with each term of the polynomial C. If a term with equal exponent is

found, then add the new term tCk to that term of the polynomial C, else search for the
appropriate position for the term tCk and insert the same in the polynomial C.

8. Stop.

248 data structures using c++

Program Code 6.16 shows the multiplication of two polynomials.

program CoDe 6.16

poly Poly :: PolyMult(Poly P2)

{

 PolyNode *Aptr = Head;

 PolyNode *Bptr = P2.Head;

 Poly C;

 PolyNode *NewTerm;

 while(Bptr != Null)

 {

 Aptr = Head;

 while(Aptr != Null)

 {

 NewTerm = new PolyNode;

 NewTerm->link = Null;

 NewTerm->coef = Aptr->coef * Bptr->coef;

 NewTerm->exp = Aptr->exp + Bptr->exp;

 C.Insert(NewTerm);

 Aptr = Aptr->link;

 cout << "\n C \n";

 C.Display();

 }

 Bptr = Bptr->link;

 }

 return C;

}

void Poly :: Insert(PolyNode *NewTerm)

{

 PolyNode *prev = Head, *Curr = Head;

 if(Head == Null) // if 1

 Head = Tail = NewTerm;

 else

 {

 Curr = Head;

 while(Curr != Null)

 {

 if(Curr->exp == NewTerm->exp) //if 2

 {

 Curr->coef += NewTerm->coef;

Linked Lists 249

 break;

 }

 else // else2

 {

 if(Curr->exp < NewTerm->exp) //if 3

 {

 if(Curr == Head) //if 4

 {

 NewTerm->link = Head;

 Head = NewTerm;

 break;

 }

 else // else 4

 {

 prev->link = NewTerm;

 NewTerm->link = Curr;

 break;

 }

 } // end if 3

 } // end else 2

 prev = Curr;

 Curr = Curr->link;

 } // end of while

 if(Curr == Null) // add at end

 {

 prev->link = NewTerm;

 Tail = NewTerm;

 }

 } // end of else

} // end of function

void main()

{

 Poly P1, P2, P3;

 P1.Create();

 P1.Display();

 P2.Create();

 P2.Display();

 P3 = P1.PolyMult(P2);

 P3.Display();

 getch();

}

250 data structures using c++

6.10 RePResentatiOn Of sPaRse MatRix Using Linked List

We have studied the sparse matrix representation
using arrays, which is a sequential allocation scheme.
Representing a sparse matrix sequentially allows
faster execution of matrix operations, and it is more
storage efficient than linked allocation schemes.
However, it has many shortcomings. The insertion
and deletion of elements need the movement of many
other elements. In applications with frequent insertions and deletions, a linked represen-
tation can be adopted. A basic node structure as shown in Fig. 6.47 is required to represent
each matrix element.

The value, row, and column fields contain the value, row, and column indices, respec-
tively, of one matrix element. The fields row_link and column_link are pointers to the next
element in a circular list containing matrix elements for row and column, respectively.

Here, row_link points to the next node in the same row and column_link points to the
next node in the same column. The principle is that all the nodes, particularly in a row (or
column), are circularly linked with each other; each row and column contains a header
node. Thus, for a sparse matrix of order m ¥ n, we have to maintain m header nodes for all
rows and n header nodes for all columns, plus one extra node, the header node.

Header nodes for each row and column are used such that more efficient insertion
and deletion algorithms can be implemented. The header node of each row contains 0 in
the column field, and that of each column contains 0 in the row field. During the imple-
mentation in any programming language, 0 can be replaced by any other suitable value
such as -1. Header is one additional header node that points to the starting address of the
sparse matrix.

Header Nodes

1. Row field contains the number of rows.
2. Column field contains the total number of non-zero entries.
3. Row_link field contains pointer to the header node of the first row.
4. Column_link field contains pointer to the header node of the first column.

We may have arrays of pointers A Column[] and A Row[] that contain pointers to the
header nodes of each column and row, respectively. In Fig. 6.48, both the header nodes
pointing to the first header node of row and column and the array pointers are shown. The
header node can provide the pointer to the header nodes linked list of both rows and col-
umns, but it is through sequential traversal. However, arrays of pointers A Column and A
Row can provide direct access to each row header node and column header node. Further
element access will be obviously through sequential traversal. Hence, we may implement
both or either of A Row/A Column and header node.

Row_link Column_link

Value Row Column

Fig. 6.47 Node structure for
linked sparse matrix

Linked Lists 251

Header

A Row (1)

10 6 0

0

0 2 2 1

10 3 1

7 2 4

3 6 4

12 4 3

8 2 5 4 2 7

5 6 7

0

0

0

0

6 1 3 9 1 5

0 0 0 0 0 07

A Row (2)

A Row (3)

A Row (4)

A Row (5)

A Row (6)

Row pointers

Column headers A Col (1) A Col (2) A Col (3) A Col (4) A Col (5) A Col (6) A Col (7)

Fig. 6.48 Multilinked sparse matrix

6.11 Linked staCk

In Chapter 3, we have implemented stacks using arrays. However, an array implementa-
tion has certain limitations. One of the limitations is that such a stack cannot grow or
shrink dynamically. This drawback can be overcome by using linked implementation.
We have studied linked list implementation of a linear list. Let us study the same linked
list with restriction on addition and deletion of a node to use it as a stack. A stack imple-
mented using a linked list is also called linked stack.

Each element of the stack will be represented as a node of the list. The addition and
deletion of a node will be only at one end. The first node is considered to be at the top of
the stack, and it will be pointed to by a pointer called top. The last node is the bottom of
the stack, and its link field is set to Null. An empty stack will have Top = Null. A linked
stack with elements (X, Y, Z) in order (X on top) may be represented as in Fig. 6.49.

Top X Y Z

Fig. 6.49 Linked stack of elements (X, Y, Z)

252 data structures using c++

Figure 6.49 shows a pictorial representation of the stack S containing three elements
(X, Y, Z). Here, top is a pointer pointing to the top element of the stack. X is at the top
of the stack and Z is at the bottom of the stack. SLL is suitable to implement stack using
linked organization as we operate at one end of the list only.

6.11.1 Class for Linked stack

The node of the list structure is defi ned in Program Code 6.17.

program CoDe 6.17

class Stack_Node

{

 public:

 int data;

 Stack_Node *link;

};

class Stack

{

 private:

 Stack_Node *Top;

 int Size;

 int IsEmpty();

 public:

 Stack()

 {

 Top = Null;

 Size = 0;

 }

 int GetTop();

 int Pop();

 void Push(int Element);

 int CurrSize();

};

Here, the stack can have any data type such as int, char, fl oat, struct, and so on for
the data fi eld. The link fi eld is a pointer pointing to the node below (next to) it. The Top
serves the purpose of the variable associated with the data structure stack here. Similar
to array implementation, an empty stack can be created by initializing the Top. This is
going to hold the address of a node. It is a pointer rather than an integer as in contiguous

Linked Lists 253

stack. Hence to represent an empty stack, Top is initialized to Null. Every insert and
delete of a node will be only at the end pointed by the pointer variable Top. Figure
6.50 represents the insertion of data in a linked stack considering the following sequence
of instruction:

S.Create(), S.Push(Z), S.Push(Y), S.Pop(), S.Push(X)

1. Create S

Top = Null

2. S.Push(Z)

top

3. S.Push(Y)

4. S.Pop()

5. S.Push(X)

Y Z

top X Z

top Z

top Z

Fig. 6.50 Insertion of data in linked stack

Here, the stack grows and also shrinks at Top. Let us see the functions required to
implement a stack using a linked list.

6.11.2 Operations on Linked stack

The memory for each node is dynamically allocated on the heap. So when an item is
pushed, a node for it is created, and when an item is popped, its node is freed (using
delete). The only difference is that the capacity of a linked stack is generally greater
than that of a contiguous stack since a linked stack will not become full until the dynamic
memory is exhausted Program Code 6.18 shows operations on a linked stack. Figure 6.51
shows a logical view of the linked stack.

254 data structures using c++

program CoDe 6.18

class Stack_Node

{

 public:

 int data;

 Stack_Node *link;

};

class Stack

{

 private:

 Stack_Node *Top;

 int Size;

 int IsEmpty();

 public:

 Stack()

 {

 Top = Null;

 Size = 0;

 }

 int GetTop();

 int Pop();

 void Push(int Element);

 int CurrSize();

};

int Stack :: IsEmpty()

{

 if(Top == Null)

 return 1;

 else

 return 0;

}

int Stack :: GetTop()

{

 if(!IsEmpty())

 return(Top->data);

}

Fig. 6.51 Logical view
of a linked stack

7

6

5

Top

Linked Lists 255

void Stack :: Push(int value)

{

 Stack_Node* NewNode;

 NewNode = new Stack_Node;

 NewNode->data = value;

 NewNode->link = Null;

 NewNode->link = Top;

 Top = NewNode;

}

int Stack :: Pop()

{

 Stack_Node* tmp = Top;

 int data = Top->data;

 if(!IsEmpty())

 {

 Top = Top->link;

 delete tmp;

 return(data);

 }

}

We have designed the functions for operations on stack, where the stack is imple-
mented using linked organization. The Top is initialized to Null to indicate empty stack.
The Push() function dynamically creates a new node. After creating a new node, the
pointer variable Top should point to the newly added node in the stack.

void main()
{
 Stack S;
 S.Push(5);
 S.Push(6);
 cout << S.GetTop()<<endl;
 cout << S.Pop()<<endl;
 S.Push(7);
 cout << S.Pop()<<endl;
 cout << S.Pop()<<endl;
}

Output
 6
 6
 7
 5

256 data structures using c++

6.12 Linked QUeUe

We studied about how to represent queues using sequential organization in Chapter 5.
Such a representation is effi cient if we have a circular queue of fi xed size. However,
there are many drawbacks of implementing queues using arrays. The fi xed sizes do not
give fl exibility to the user to dynamically exceed the maximum size. The declaration
of arbitrarily maximum size leads to poor utilization of memory. In addition, the major
drawback is the updating of front and rear. For correctness of the said implementation,
the shifting of the queue to the left is necessary and to be done frequently. Here is a good
solution to this problem which uses linked list. We need two pointers, front and rear.
Figure 6.52 shows a linked queue which is easy to handle.

Rear

Front

Fig. 6.52 The linked queue

Notice that the direction link for nodes is to facilitate easy insertion and deletion of
nodes. One can easily add a node at the rear and delete a node from the front.

One of the node structures could be as in Program Code 6.19.

program CoDe 6.19

class Student

{

 public:

 int Roll_No;

 char Name[30];

 int Year;

 char Branch[8];

 Student *link;

};

class Queue

{

 Student *front, *rear;

 public:

 Queue()

 {

 front = rear = Null;

 }

};

Linked Lists 257

Let us consider the following node structure for studying the linked queue and
operations:

class QNode
{
 public:
 int data;
 QNode *link;
};

class Queue
{
 QNode *Front, *Rear;
 int IsEmpty();
 public:
 Queue()
 {
 Front = Rear = Null;
 }
 void Add(int Element);
 int Delete();
 int FrontElement();
 ~Queue();
};

int Queue :: IsEmpty()
{
 if(Front == Null)
 return 1;
 else
 return 0;
}

The queue element is declared using the class QNode. Each node contains the data
declaration and the link pointer to the next element in the queue. This declaration creates
an empty queue and initializes the pointers front and rear to Null. Here, front always
points to the first node of queue and rear points to the last node of queue.

Queue empty condition is simply checked by comparing the front with Null. The
function IsEmptyQ returns 1 (i.e., true) if the queue is empty and returns 0 (i.e., false),
otherwise.

int Queue :: IsEmpty()
{
 if(Front == Null)
 return 1;
 else
 return 0;
}

258 data structures using c++

FrontElement() returns the data element at the front of the queue. Here, the front
is not updated. FrontElement() just reads what is at front.

int Queue :: GetFront()
{
 if(!IsEmpty())
 return(Front->data);
}

Note that if the NewNode is a node getting added in an empty queue, then along with
the rear, the front should also be set to point to the newly added node, which is at the
front of the queue. Hence, as both the front and the rear may get updated. Program
Code 6.20 shows the addition of an element to a linked queue.

program CoDe 6.20

void Queue :: Add(int x)

{

 QNode *NewNode;

 NewNode = new QNode;

 NewNode->data = x;

 NewNode->link = Null;

 // if the new is a node getting added in empty queue

 //then front should be set so as to point to new

 if(Rear == Null)

 {

 Front = NewNode;

 Rear = NewNode;

 }

 else

 {

 Rear->link = NewNode;

 Rear = NewNode;

 }

}

Delete() function fi rst verifi es if there is any data element in the queue. If there is an
element, Delete() gets and returns the data at the front of the queue to the caller func-
tion. Then, the front is set to point to the new queue front node, which is next to the
node being deleted. If the last node is being deleted, then the deleted node’s next pointer is
guaranteed to be Null. Note that if the current deletion of a node results in queue empty
state, then along with the front, the rear should also be set to Null.

int Queue :: Delete()
{

Linked Lists 259

 int temp;
 QNode *current = Null;
 if(!IsEmpty())
 {
 temp = Front->data;
 current = Front;
 Front = Front->link;
 delete current;
 if(Front == Null)
 Rear = Null;
 return(temp);
 }
}

int Queue :: FrontElement()
{
 if(!IsEmpty())
 return(Front->data);
}

void main()
{
 Queue Q;
 Q.Add(11);
 Q.Add(12);
 Q.Add(13);
 cout << Q.Delete() << endl;
 Q.Add(14);
 cout << Q.Delete() << endl;
 cout << Q.Delete() << endl;
 cout << Q.Delete() << endl;
 Q.Add(15);
 Q.Add(16);
 cout << Q.Delete() << endl;
 cout << Q.Delete() << endl;
}

Output
11
12 // due to FrontElement
12
13
14
15
16

6.12.1 erasing a Linked Queue

The following function in Program Code 6.21 traverses through the whole queue and also
releases the memory allocated for each node. This task is handled by a destructor.

260 data structures using c++

program CoDe 6.21

void Queue :: ~Queue()

{

 QNode *temp;

 while(Front! = Null)

 {

 temp = Front;

 Front = Front->link;

 delete temp;

 }

 Front = Rear = Null;

}

The linked queue may have the fi rst node on a queue as a header node where the data
fi eld may hold some relevant information. In such a list, the fi rst node, that is, the header
node, is ignored (i.e. skipped) during Delete() operation. Similarly, the Add() function
and queue empty condition will be changed accordingly.

6.13 geneRaLized Linked List

We have defi ned and represented linear list, which contains series of data elements, all of
which had the same data type. In this topic, we shall extend the notion of list even further.
We shall study generalized lists, which may be a list of lists.

Generalized lists are defi ned recursively as lists whose members may be single data
elements or other generalized lists. Generalized lists are the most fl exible and use-
ful structures. We can use such lists to represent virtually all of the data structures.
In addition, generalized lists provide the key data structure for several programming
languages, such as LISP. Other languages, such as T and Miranda, include generalized
lists and their operations as built-in capabilities. This widespread inclusion of general-
ized lists in many languages and environments attests the value of such lists in many
applications.

6.13.1 defi nition

A generalized list is a linear list (non-indexed) of zero or more data elements or general-
ized lists. In other words, a generalized list is a fi nite sequence of n ≥ 0 elements, a1, a2,
... an, which we write as list A = (a1, a2, ..., an), where ai is either an atom or the list. The
elements of ai, where 1 £ i £ n, which are not atoms are said to be the sub-lists of the list.
Here A is the name of generalized list and n is its length.

Thus, a generalized list may be made up of a number of components, some of which
are data elements (atoms) and others are generalized lists.

Linked Lists 261

Let us use the common terms being referred to with respect to the generalized list,
Head and Tail. These terms refer to parts of the generalized list, that is, Head is the first
component in the generalized list, and Tail is the list with the first component removed. If
n £ 1, then a1 is the head of list whereas (a2, ... an) is the tail of list.

Some examples of generalized lists are the following:

1. A = () The empty (or null) list.
2. B = (a, (b, c), d) List of three elements—the first element is a, the second

element is list (b, c), and the third element is d.
3. C = (B, B, A) List of length 3 with the first and the second element as

list B and the third element as list A, which is a null list.
4. D = (a, b, D) List of length 3 which is recursive as it includes itself as

one of the elements. It can also be written as

D = (a, b, (a, b, (a, b, ...) ...

In example 2, A is a list made up of three components. The first component is an
atom, the second component is a list made up of two atoms, and the third component
is the atom d.

One of the better approaches to visualize the generalized lists is using a header node. In
this approach, each generalized list has a header node labelled Head. Figure 6.53 shows
the pictorial representation of list B.

B Head a d

b

c

Head

Fig. 6.53 Representation of B = (a, (b, c), d)

In example 3, the list C has three components: the first component is list B, the second
component is again list B, and the third component is list A. This can be pictorially viewed
as in Fig. 6.54.

Head
Head

BC Head
B

Head
A

Fig. 6.54 Representation of C = (B, B, A)

262 data structures using c++

The list D in example 4 can be viewed as Fig. 6.55.

D Head a b Head
D

Fig. 6.55 Representation of D = (a, b, D)

These cases represent the categories of generalized lists in the order of implementation
complexity. The lists could be one of the following categories:

1. Lists with no shared references—The components of one list are not members of any
other list. In example 2, B is a list with no shared references.

2. Lists with shared references—The components of one list can be the members of
another list. The logical interpretation of lists leads to two categories as the following:
(a) Static interpretation—The current status of the referenced list is anticipated. The

referenced list is copied into the referencing list.
(b) Dynamic interpretation—The list itself is anticipated. Any future changes in the

referenced list should be reflected in the referencing list.
3. Recursive list—A recursive list is the one that directly or indirectly references itself.

Here D is a recursive list.

Here, the referenced list is the one that is a member of the other list, and the referencing
list is the one being created.

6.13.2 applications

The generalized list is the most flexible data structure that can be used for almost every
data structure that is linear or non-linear. Let us represent the set and the polynomial
using a generalized list to learn why generalized list is said to be the supreme data
structure. For simplicity, we shall learn the implementation of generalized list with no
shared references and no recursive lists. Such list has members that are not shared refer-
ences, that is, members of list would not reference to other list and the list would not
have the member that directly or indirectly refers itself. The popular implementation
of such lists uses the linked list with a header node as in Figs. 6.56–6.58. Let us consider
three lists L1, L2, and L3 as L1 = (a, b, c, d), L2 = (a, (b), (c,d), e), and L3 = (a, ((b)), c).
The pictorial representation of these lists using header node is shown in Figs 6.56–6.58,
respectively.

L1
Head a b c d

Fig. 6.56 GLL with header nodes for L1 = (a, b, c, d)

Linked Lists 263

L2 a Head Head e

b c

d

Head

Fig. 6.57 GLL with header nodes for L2 = (a, (b), (c,d), e)

L3
Head Head

b

Head

c

Fig. 6.58 GLL with header nodes for L3 = (a, ((b)), c)

Here, L1 has four members which are atoms, L2 too has four members but two of them
are lists, and L3 has three members in it one of which is a list that has the list as a member
again. The pictorial representation very clearly reveals it. Now, we need to reflect this data
type and implement the code for the generalized linked list. We need to clearly distinguish
between a member that is an atom and a member that is a list. In a linked representation
of the generalized list, each node has fields as either

1. Data and nLink—the data field(s) would store data and the nLink field refers to the
next member node which could be an atom or a list or

2. Header node that has two links dlink and nLink, where dlink is used to refer to the
first node of the list member (which could be an atom or a list) and the nLink refers to
the next member node (which could be an atom or a list) (Fig. 6.59).

Data nLink dLink nLink

Data node Header node

Fig. 6.59 Node structure of a generalized list

264 data structures using c++

In general, it indicates that nLink is the fi eld that holds
the address of the next node that represents the member,
which could be an atom or a header node of the list. The
fi rst fi eld of each node is either data or dLink in case
of Header node. Hence, we need to differentiate the fi rst
fi eld clearly. One of the solutions is to add an additional
fi led, say tag, to indicate whether the fi rst fi eld is data or
dLink that would clearly differentiate between the data
and Header node (Fig. 6.60).

Here, when Tag = 1, it indicates that the second fi eld
is data, and Tag = 0 indicates that it is the header node where the second fi eld holds the
address of the fi rst node of the list member.

Further, we notice that the second fi eld at any instant holds either data or dLink
but not both. Two of these are of different data types. Hence, it would be effi cient to
share memory location. This leads to the use of union (also known as variant records)
of programming language. The node structure now can be defi ned as in Program
Code 6.22.

program CoDe 6.22

class GNode

{

 int Tag;

 union

 {

 <data type> Data;

 GNode *dLink;

 }

 GNode * nLink;

};

class GLL

{

 private:

 GNode * Head;

 public:

 GLL() {Head = Null;}

 void InsertNode();

 void PrintGLL();

};

Tag Data

or1/0

dLink

nLink

Data/header node

Fig. 6.60 Tag for differentiating
between data node and

header node

Linked Lists 265

Let us now see how we can use the generalized linked list to efficiently represent multi-
variable polynomials and sets.

6.13.3 Representation of Polynomials Using generalized Linked List

We have learned the use of linked list for the representation and operations of polynomial
with a single variable. In practice, we often need to process a polynomial with more than
one variable. Consider the following polynomial P with three variables x ,y, and z. Con-
sider the two-variable polynomial Q of x and y.

Q(x, y) = 5x4y3 + 6x6y5 + 3x5y2 + xy

Now, similar to a single variable polynomial, we can represent this polynomial Q(x,y)
as a sequential organization with four fields: coefficient, Exp_X, Exp_Y, and nLink as
in Fig. 6.61.

Coefficient Exp_X Exp_Y nLink

Fig. 6.61 Two-variable polynomial

Similarly, for P(x, y, z) = 9x8y2z + 4x4y3z3 + x6y5z4 + 8x5y2z + 7x4y6z + 4xyz + 3xz we can
represent this polynomial P(x, y, z) as a sequential organization with five fields: coeffi-
cient, Exp_X, Exp_Y, Exp_Z, and nLink as in Fig. 6.62.

Coefficient Exp_X Exp_Y Exp_Z nLink

Fig. 6.62 Three-variable polynomial

However, such representations denote that the polynomials in different number of vari-
ables would need a different number of fields. These nodes would have to differ in size
depending on the number of variables. Such representations would lead to complexity in
storage management for the polynomials with two, three, or more variables. We need to
devise an efficient representation of multiple variable polynomials. An elegant solution is
to go for a generalized list with fixed size nodes, which would represent the polynomial
with any number of variables. Let us see how can we achieve it.

Consider the following polynomial:

P(x,y,z) = 5x9y4z3 + 6x7y4z3 + 3x8y2z3 + 3x5y3z + 8x3y3z + 2y2z

This polynomial can be rewritten as

((5x9 + 6x7)y4 + (3x8)y2)z3 + ((3x5 + 8x3)y3 + 2y2)z

266 data structures using c++

We can write such a polynomial as one with a single variable whose each term node
would be as in Fig. 6.63.

Tag

Coefficient

or

dLink

Variable Exponent nLink

Fig. 6.63 Representation of multi-variable polynomial as single variable polynomial

For example, the term as 9z2 would be represented as in Fig. 6.64.

Tag = 1 9 Z 2 nLink

Fig. 6.64 Representation of the term 9z2

The term as (2y3 + 3x2)z2 would be represented as in Fig. 6.65.

Tag = 2 dLink Z 2 nLink

Head

Fig. 6.65 Representation of the term (2y3 +3x2)z2

We notice that for a polynomial of z with 10 terms, the third field of all nodes would be set to
z for all term nodes. Can we avoid storing z for all terms of a polynomial? This is possible by
storing it only once using the header node. For the header node, the fields Tag, nLink, and
dLink are used, and the remaining two fields remain unused and it can be used for storing the
variable.

Now, the node structure becomes as in Fig. 6.66.

Fig. 6.66 Representation of multi-variable
polynomial as single variable polynomial

Tag = 0/1/2
Variable,

coefficient, or

dLink

Exponent nLink

Linked Lists 267

The multi-variable polynomial that is represented as a single variable polynomial whose
coeffi cient is either constant or another polynomial, can now be very well stored using a
linked list with such a node structure.

For example, the three-variable polynomial P(x,y,z) can be represented factoring out a
variable z, followed by the second variable y.

Let P(x, y, z) be 5x9y4z3 + 6x7y4z3 + 3x8y2z3 + 3x5y3z2 + 8x3y3z2 + 6y2z

This polynomial can be rewritten as

(5x9y4+ 6x7y4 + 3x8y2)z3 + (3x5y3 + 8x3y3)z2 + 6y2z

On observation of P(x, y, z), we can notice that there are two terms in the variable z, BZi +
CZj + DZk, where B, C, and D are polynomials themselves of variables x and y.

Now, the polynomial can further be rewritten as

((5x9 + 6x7)y4 + (3x8)y2)z3 + ((3x5 + 8x3)y3)z2+ ((6x0)y2)z.

Now, C(x, y), B(x, y), and D(x, y) are of the form Eym + … + Fyn, where E and F are poly-
nomials of x. Continuing in this way, we see that every polynomial consists of a variable
plus coeffi cient and exponent pairs, and the coeffi cient itself could be a polynomial.

Each node would be one of the three—the header node (Fig. 6.67), data node with
constant coeffi cient (Fig. 6.68), and the data node whose coeffi cient is a polynomial
(Fig. 6.69). These can be pictorially viewed as follows:

Fig. 6.67 Representation of header node

Tag Variable nLink

0 z nil

Fig. 6.68 Representation of data node with

constant coeffi cient

Tag Coefficient Exponent nLink

1 12 3

Fig. 6.69 Representation of data node with
polynomial coeffi cient

Tag dLink Exponent nLink

2 4

Thus, every polynomial, regardless of the number of variables in it, can be represented
using nodes. This is presented in Program Code 6.23:

program CoDe 6.23

class GLLPolyNode

{

268 data structures using c++

 int Tag;

 union

 {

 char variable;

 fl oat coeffi cient;

 GLLPolyNode *dLink;

 };

 int exponent;

 GLLPolyNode *nLink;

};

class GLLPoly

{

 private:

 GLLPolyNode *Head;

 public:

 GLLpoly() {Head = Null;}

 void InsertNode();

 void PrintGLL();

};

Pictorially, this can be viewed as in Fig. 6.70. Here, dLink is the downlink and nLink is
the next link.

Variable

Coefficient
Tag
0/1/2

dLink

Exponent nLink

Fig. 6.70 The GLL node for polynomial

The following are a few examples to elucidate this concept:

1. P(x,y) = 9x2y2 + 6xy2 + y + x2

 This polynomial of two variables can be rewritten as

P = y2(9x2 + 6x) + y + x2y0

This is represented in Figs 6.71(a) and (b).

2. Q = 8x3y3z3 + 3x3y2z3 + y2z2 + xy2z2 + 8x + 9y

This can be rewritten as z3(x3(8y3 + 3y2)) + z2(y2 (1 + x)) + 8xz0 + 9yz0. The pictorial
representation of the Q is shown in Fig. 6.72.

Note that only three fi elds of the nodes are shown for convenience and the unused one
is omitted.

Linked Lists 269

Fig. 6.71 Polynomial representation (a) The GLL for 9x2y2 + 6xy2 + y + x2 (b) The
GLL with three fields, omitting unused field

0 y nil

1 1 1

0 x

0 x

1 9 2 1 6 1

1 1 2

2 02 nil

(a)

(b)

0y

1 1

x 0

g 2 6 1

21

0 00 2

Head

x 0

Fig. 6.72 The GLL for 8x3y3z3 + 3x3y2z3 + y2z2 + xy2z2 + 8x + 9y

z 0 3
Head

2 00

3 0y 19

0y 2

0x 18

110x 01

0y 38 23

0x

6.13.4 Representation of sets Using generalized Linked List

Let A be a set, A = {a, b, {c, d, { }}, {e, f}, g}. Here, A consists of elements that are either
atoms or sets. Hence, we need a GLL node to convey whether the member of set is an
atom or a set. The generalized list can be represented using the node structure as Fig. 6.73.

270 data structures using c++

Fig. 6.73 Generalized list representation using node structure

Tag Data/dLink nLink

Here, the tag field is set to 0 if the member is an atom and is set to 1 if it is another list.
Accordingly, the second field would represent the data or downlink, respectively.

Figure 6.74 shows the GLL representation for the following sets:

1. B = (a, (b, c), d)
2. C = (B, B, ())
3. D = (a, D)

Figure 6.75 shows the GLL representation for the set A = {{a, b}, {{c, d}, e}}.

B 0 1

0 b

1

0 a

1

1

0 d

0 c

1 0

a

C

D

Fig. 6.74 The GLL representation for B, C, and D

Fig. 6.75 The GLL representation for A

A 1

1

0 c 1 d

1

0 b

0 e

0 a

The set X = {L, M, {N, {O, P}}, {Q, {R, {S, T}}, A, {B, C}} is pictorially represented
using a generalized linked list in Fig. 6.76.

Linked Lists 271

0 0 1 1

11

L M 0 1A

0 Q0 N

0 P0 0

0 B

0 1R

0 S 0 T

0 C

Fig. 6.76 The GLL for set X

We have represented the polynomials and sets using generalized linked list. Let us write
the functions for traversing and printing the generalized linked list.

Printing Generalized Linked Lists

Program Code 6.24 gives the code for printing a GLL.

program CoDe 6.24

void GLL :: PrintGLL()

{

 Stack S;

 GLLNode *curr = Null;

 S.Push(Head);

 curr = Head;

 while(1)

 {

 if(curr == Null)

 {

 if !S.IsEmpty()

 curr = S.Pop();

 if(currÆtag == 1)

 cout << currÆdata;

 curr = currÆnlink;

 else if(currÆnlink != Null)

 S.push(currÆnlink)

 curr = currÆdlink

 } //end if

 } // end while

} // end print

272 data structures using c++

6.14 MORe On Linked Lists

The function traversal of SLL can be used with a few modifi cations for polynomial evalua-
tion. Given a value of x, we have to evaluate the polynomial as shown in Program Code 6.14.

6.14.1 Copying a Linked List

Consider the Copy_List() function, shown in Program Code 6.25, that takes a list and
returns a complete copy of that list. One pointer can iterate over the original list in the
usual way. Two other pointers can keep track of the new list: one head pointer and one tail
pointer, which always points to the last node in the new list. The fi rst node is done as a
special case, and then the tail pointer is used in the standard way for the others.

program CoDe 6.25

Node *Llist :: CopyList()

{

 Node *current = Head;

 Node *newList = Null;

 Node *Tail = Null;

 while(current != Null)

 {

 if(newList == Null)

 {

 newList = new Node;

 newList->Data = current->Data;

 newList->link = Null;

 Tail = newList;

 }

 else

 {

 Tail->link = new Node;

 Tail = Tail->link;

 Tail->Data = current->Data;

 Tail->link = Null;

 }

 current = current->link;

 }

 return(newList);

}

16.4.2 Computing the Length of a Linked List

The Length() function, in Program Code 6.26, takes a linked list and computes the num-
ber of elements in the list.

Linked Lists 273

Length() is a simple list function, but it demonstrates several concepts, which will be
used later in more complex list functions.

program CoDe 6.26

int Llist :: Length()

{

 Node *current = Head;

 int count = 0;

 while(current != Null)

 {

 count++;

 current = current->link;

 }

 return count;

}

Calling Length()

Program Code 6.27 is a typical code that calls Length(). It fi rst calls create() to make
a list and store the head pointer in a local variable. It then calls Length() on the list and
catches the int result in a local variable.

program CoDe 6.27

void LengthTest()

{

 Llist myList;

 mylist.Create();

 int len = mylist.Length();

}

6.14.3 Reversing singly Linked List Without temporary storage

The procedure for reversing a singly linked list without temporary storage is illustrated
by Program Code 6.28.

program CoDe 6.28

void Llist :: Reverse()

{

 Node *curr, *prev, *next;

 prev = Head;

 curr = Head->link;

274 data structures using c++

 prev->link = Null

 while(temp != Null)

 {

 next = temp->link;

 temp->link = prev;

 prev = temp;

 temp = next;

 }

 head = prev;

}

6.14.4 Concatenating two Linked Lists

Concatenation of two linked lists is illustrated by Program Code 6.29.

program CoDe 6.29

void Llist :: concatanate(Llist A)

{

 Node *X, *Y;

 X = Head;

 Y = A.Head;

 while(X->link != Null)

 {

 X = X->link;

 }

 X->link = Y;

 Head = X;

}

//A call to concatenate:

{

 Llist L1, L2;

 L1.Create(); L2.Create();

 L1.Concatanate(L2);

}

Here, X and Y are concatenated, and X is the pointer to the fi rst node of the resultant list.

6.14.5 erasing the Linked List

The procedure for erasing a linked list and returning all nodes to the free pool of memory
is illustrated by Program Code 6.30.

Linked Lists 275

program CoDe 6.30

void Llist :: ~Llist()

{

 Node *temp;

 while(Head != Null)

 {

 temp = Head;

 Head = Head->link;

 delete temp;

 }

}

6.15 aPPLiCatiOn Of Linked List—gaRbage COLLeCtiOn

Memory is just an array of words. After a series of memory allocations and de-alloca-
tions, there are blocks of free memory scattered throughout the available heap space. To
be able to reuse this memory, the memory allocator will usually link the freed blocks
together in a free list by writing pointers to the next free block in the block itself. An
external free list pointer points to the fi rst block in the free list. When a new block of
memory is requested, the allocator will generally scan the free list looking for a free
block of suitable size and delete it from the free list (relinking the free list around the
deleted block).

One of the components of an operating system is the memory management module.
This module maintains a list, which consists of unused memory cells. This list very often
requires the operations to be performed on the list, such as insert, delete, and search
(traversal). Such a list implemented as a linked organization is called the list of available
space, free storage list, or the free pool.

Suppose some memory block is freed by the program. The space available can be used
for future use. One way to do so is to add the blocks in the free pool. For good memory
utilization, the operating system periodically collects all the free blocks and inserts into
the free pool. Any technique that does this collection is called garbage collection. Gar-
bage collection usually takes place in two phases. First, the process runs through all the
lists, tagging those cells, which are currently in use. In the second phase, the process runs
through memory, collecting all untagged blocks and inserting the same in free pool. In
general, garbage collection takes place when either overfl ow or underfl ow occurs. In addi-
tion, when the CPU is idle, the garbage collection starts. Note that the garbage collection
is invisible to the programmer.

Overfl ow Sometimes, a new data node is to be inserted into data structure, but there is
no available space, that is, free pool is empty. This situation is called overfl ow.

276 data structures using c++

Circular linked list The linked list whose link
fi eld of last node is set to point to the fi rst node
rather than Null is called a circular linked list.

delete operator To destroy a dynamically allo-
cated variable/object and free the space for the
object, the operator delete is used.

Doubly linked list In doubly linked list , each node
has two link fi elds to store information about the
one next to and also about the one ahead of the
node. Hence, each node has knowledge of its suc-
cessor and also its predecessor. In doubly linked
list, the list can be traversed in both the directions
from every node.

Dynamic memory allocation The process of al-
locating memory at run-time is known as dynamic
memory allocation.

Generalized lists Generalized lists are defi ned re-
cursively as lists whose members may be single
data elements or other generalized lists. A gener-
alized list is a linear list (non-indexed) of zero or
more data elements or generalized lists. In other
words, a generalized list is a fi nite sequence of
n ≥ 0 elements, a1, a2, ...an, which we write as list
A = (a1, a2, ..., an), where ai is either an atom or
a list. The elements of ai, where 1 £ i £ n, which
are not atoms are said to be the sub-lists of list.

ReCaPitULatiOn

• Linear list is the list where each element has
a unique predecessor and a unique succes-
sor. Linear lists are of two categories, namely
general and restricted. General list is the one
where data can be inserted or deleted any-
where in the list, whereas in restricted lists,
there are a few restrictions.

• Linear list can be implemented using arrays
and pointers. An implementation that uses
pointers and dynamic memory allocation
is called as linked list. A linked list is a very
effective and effi cient dynamic data structure.
Items may be added or deleted from it at any
position much easily as compared to arrays.

• Linked lists are useful data structures, espe-
cially if you need to automatically allocate and

de-allocate space in a list. The basic opera-
tions are create list, transverse the list,
insert, and delete a node.

• There are two variations of linked list, namely
SLL and DLL. Both the linked lists can be cir-
cular lists. The linked list could be with or with-
out a header node. Header node is used to
store some information about the list so that it
can be accessed without traversing the same.
Information could be total number of nodes in
the list, and similarly any other.

• Linked list is the most popular data structure
used. It has many applications such as pro-
cess queue, print queue, garbage collection,
and so on.

Underfl ow This refers to the situation where the programmer wants to delete a node
from the empty list.

The most suitable data structure for garbage collection is circular DLL. It allows the
process of search to be unending traversal through list process as it is circular; DLL
allows to traverse on both the sides.

key teRMs

Linked Lists 277

Linear linked list The linked list that we have seen
so far are known as linear linked lists. All elements
of such a linked list can be accessed by traversing
the list from the fi rst node of the list.

Linked list A linked list is an ordered collection of
data where each element contains minimum two
values, data and link(s), to its successor (and/or
predecessor).

Linked stack and queue A stack implemented us-
ing a linked list is called a linked stack and imple-
mentation of queue using a linked list is called as
a linked queue.

new operator The new operator creates a new
dynamic object of a specifi ed type and returns a
pointer that points to this new object.

Null Null is a special constant pointer value that
is used to give a value to a pointer variable that
would not otherwise have a value. Null can be as-
signed to a pointer variable of any type.

Singly linked list A linked list where every node
has one link fi eld, to provide information about
where the next node of the list is, is called as sin-
gly linked list.

Multiple choice questions

 1. The concatenation of two lists is to be
performed in O(1) time. Which of the following
implementations of a list should be used ?

 (a) Singly linked list
 (b) Doubly linked list
 (c) Circular doubly linked list
 (d) Array implementation of list
 2. Which of the following operations is performed

more effi ciently by a doubly linked list than by
a linear linked list?

 (a) Deleting nodes whose location is given
 (b) Searching an unsorted list for a given item
 (c) Inserting a node after the node with a given

location
 (d) Traversing the list to process each node
 3. Consider the linked list of n elements. What

is the time taken to insert an element after an
element pointed by some pointer?

 (a) O(1)
 (b) O(log2n)
 (c) O(n)
 (d) O(n log2n)
 4. In a linked list, the logical order of elements
 (a) is the same as their physical arrangement
 (b) is determined by their physical arrangement

 (c) cannot be determined from their physical
arrangement

 (d) none of these
 5. Underfl ow condition in a linked list may occur

when attempting to
 (a) insert a new node when there is no free

space for it
 (b) delete a non-existent node in the list
 (c) delete a node in empty list
 (d) none of these
 6. Overfl ow condition in a linked list may occur

when attempting to
 (a) create a node when free space pool is

empty
 (b) traverse the nodes when free space pool is

empty
 (c) create a node when linked list is empty
 (d) none of these
 7. Deletion of a node in a linked list involves

keeping track of the address of the node
 (a) which immediately follows the node that is

to be deleted
 (b) which immediately precedes the node that

is to be deleted
 (c) that is to be deleted
 (d) none of these

exeRCises

278 data structures using c++

 8. Header of a linked list is a special node at the
 (a) end of the linked list
 (b) at the middle of the linked list
 (c) beginning of the linked list
 (d) none of these
 9. A header-linked list where the last node points

to the header node is called
 (a) grounded header list
 (b) circular header list
 (c) general header list
 (d) none of these
10. It is required to insert a node at the end of a

singly connected linked list having n nodes.
How many nodes are to be traversed for this
insertion?

 (a) 1
 (b) n/2
 (c) n
 (d) none of these

Review questions

 1. How is an element in an array different from the
element in a linked list?

 2. What are the fields of a node in a linked list?
 3. What is the function of the pointer field in a

linked list?
 4. How do you point to the first node in a linked

list?
 5. What is a singly linked list?
 6. In most programming languages, an array is

a static data structure. When you define an
array, the size is fixed. What problem will this
restriction create?

 7. A linked list is a dynamic data structure. The
size of a linked list can be changed dynamically
(during program execution). How does this
feature benefit a programmer?

 8. Which operation do you think is easier for the
following different cases? Justify your answer.

 (a) Adding an element to an array, or adding an
element to a linked list

 (b) Deleting an element to an array, or deleting
an element to a linked list

 (c) Accessing an element to an array, or
accessing an element to a linked list

 (d) Sorting an element to an array, or sorting an
element to a linked list

 9. What is a linked list? How is it represented?
10. What is a dynamic memory allocation? How does

it help in building complex programs?
11. What is the principal difference between the

functions malloc and calloc?
12. Why a linked list is called a dynamic data structure?

What are the advantages of using linked lists over
arrays?

13. Describe different types of linked lists.
14. Represent the following polynomials using

GLL.
 (a) x3(y3(3z4 - yz3 + z) - y(z2 + z) - xyz
 (b) x10y3z2 + x4y4z + 2yz
 (c) -x3y2z4 + xz2x3y - xyz + zy3

15. Write a C++ program with functions for the
following using a suitable variant of the linked
list (singly, doubly, even, and circular with or
without header node):

 (a) Compute length, Reverse list, Print in
Reverse order, Insert/Delete node, Search
a node, Print list, Create sorted list,
Concatenate two lists.

 (b) Evaluate a polynomial of a single variable.
 (c) Compute addition, subtraction, and

multiplication of two polynomials.
 (d) Read and print sparse matrix.
 (e) Store string and Compute length, Reverse

string from a particular character, search and
change substring, Insert/Delete character,
Search a character; Sort the string without
using another list, Concatenate two strings,
Compare two strings.

 (f) Compute 1’s complement and 2’s
complement of a binary number.

 (g) Add two binary numbers.

Linked Lists 279

 (h) Appointment scheduling for a day: Set
bounds by taking starting time and ending
time of a day. Display free slots. Ask for
a new appointment. Check for validity
and insert. Delete cancelled appointment.
Display all appointments of a day.

 (i) A function move() which would move a
node forward n positions in the linked list.

 (j) Sort a list using pointer manipulation.
 (k) Merge two sorted lists into third.
 (l) Merge second sorted list into first sorted list.
 (m) Create sorted list and insert element in the

same.
 (n) Check whether a string stored is palindrome

or not.
 (o) Create two lists to store two sets. Compute

intersection, union, difference, and
symmetric difference of the same. Compute
power set of a set.

16. Write a program that reads the name, age, and
salary of 10 persons and maintains them in a
linked list sorted by name.

17. There are two linked lists A and B containing the
following data:

 A: 3, 7, 10, 15, 16, 9, 22, 17, 32
 B: 16, 2, 9, 13, 37, 8, 10, 1, 28

 Write a program to create
 (a) a linked list C that contains only those

elements that are common in linked lists
A and B

 (b) a linked list D that contains all elements
of A as well as B ensuring that there is no
repetition of elements.

18. A linked list contains some positive numbers
and some negative numbers. Using this linked
list, write a program to create two more linked
lists, one containing all positive numbers and the
other containing all negative numbers.

19. Write a C++ program that accepts a list
implemented using linked list, traverses it, and
returns the data in the node with the smallest key
value.

20. Write a C++ program that traverses a list
implemented using a linked list and deletes the
node following a node with a negative key.

21. Create two linked lists to represent the following
polynomials:

 (a) 3x2y + 9xy3 + 15xy + 3
 (b) 13x3y2 + 7x2y + 22xy + 9y3
 Write a function add() to add these polynomials

and print the resulting linked list.

Answers to multiple choice questions

1. (c) 2. (a) 3. (a) 4. (c) 5. (c) 6. (a) 7. (b) 8. (c) 9. (b)
10. (d)

7

In computer science, a tree is a widely used data structure that emulates a tree structure
with a set of linked nodes. Trees are used popularly in computer programming. They

can be used for improving database search times (binary search trees, AVL trees, red–
black trees), in game programming (minmax trees, decision trees, path fi nding trees), 3D
graphics programming (binary trees, quadtrees, octrees), arithmetic scripting languages
(arithmetic precedence trees), data compression (Huffman trees), and even fi le systems
(btrees, sparse indexed trees, trie trees). Let us learn about trees in this chapter.

7.1 inTRoDUcTion

Let us fi rst revise the classifi cation of data structures as linear and non-linear. A data
structure is said to be linear if its elements form a sequence or a linear list. In a linear data
structure, every data element has a unique successor and a unique predecessor. There are
two basic ways of representing linear structures in memory. One way is to have the rela-
tionship between the elements by means of pointers (links), called as linked lists. Another
way is using sequential organization, that is, arrays.

Non-linear data structures are used to represent the data containing hierarchical or
network relationship between the elements. Trees and graphs are examples of non-linear
data structures. In non-linear data structures, every data element may have more than one
predecessor as well as successor. Elements do not form any particular linear sequence.

Non-linear data structures are capable of expressing more complex relationships than
linear data structures. In general, wherever the hierarchical relationship among data is to
be preserved, the tree is used. Well-known examples of such structures are family trees,
hierarchy of positions in organization, and so on. Tree, a non-linear data structure, is a

TRees

oBJecTives

After completing this chapter, the reader will be able to understand the following:
 • Hierarchical representation of data using trees
 • Binary search trees (BSTs) that allow both rapid retrievals by key and inorder
traversals

 • The use of trees as a fl exible data structure for solving a wide range of problems

TREEs 281

means to maintain and manipulate data in
many applications. Consider the following
example:

The operating system of a computer sys-
tem organizes files into directories and sub-
directories. Directories are also referred to
as folders. The operating system organizes
folders and files using a tree structure as in
Fig. 7.1.
A folder contains other folders (subfold-
ers) and files. This can be viewed as the tree
drawn in Fig. 7.1. Note that the root here is
desktop. The common uses of trees include
the following:

1. Manipulating hierarchical data
2. Making information easily searchable
3. Manipulating sorted lists of data

A tree is a graph called the directed acyclic graph. So let us first discuss the basic termi-
nology related to trees.

7.1.1 Basic Terminology
We should first learn about a general graph because trees can be viewed as restricted graphs.
A graph G consists of a non-empty set V, a set E, and a mapping from the set E to set V.
Here, V is the set of nodes, also called as vertices points, of the graph, and E is the set of
edges of the graph. For finite graphs, V and E are finite. We can represent them as G = (V, E).

Adjacent Nodes

If an edge e Œ E is associated with a pair of nodes (a, b) where a, b Œ V, then it is said that
the edge e joins or connects the nodes a and b. Any two nodes that are connected with an
edge are called as adjacent nodes.

Directed and Undirected Graphs

In a graph G(V, E), an edge that is directed from one node to another is called a directed
edge, whereas an edge that has the no specific direction is called an undirected edge.
A graph where every edge is directed is called as a directed graph or diagraph. A graph
where every edge is undirected is called as an undirected graph. If some of edges are
directed and some are undirected in a graph, the graph is called as a mixed graph.

A city map showing only the one-way streets is an example of a directed graph where
the intersections are vertices and the edges are streets. A map showing only the two-way
streets is an example of an undirected graph, and a map showing all the one-way and two-
way streets is an example of a mixed graph.

Fig. 7.1 Folder and subfolders organization

My Computer

A drive

Windows Program
Files

Office Studio FTP

AccessExcelWord

C driveD, E
drives

282 daTa sTRucTuREs using c++

Let (V, E) be a graph and let e Œ E be a directed edge associated with the ordered pair
of nodes (a, b). Then, the edge e is said to be initiating or originating in the node a and
terminating or ending in the node b. The nodes a and b are also called the initial and ter-
minal nodes respectively, of the edge e. An edge e Œ E that joins the nodes a and b, be it
directed or undirected, is said to be incident to the nodes a and b, respectively.

An edge of a graph that joins a node to itself is called a loop (sling). Note that this loop
is different from the loop in a program. The direction of the loop has no significance.

Parallel Edges and Multigraph

The graph given in Fig. 7.2(a) has only one
edge between any pair of nodes. In the direct-
ed edges, the two possible edges between the
pair of nodes that are opposite in direction are
considered distinct. In some directed as well as
undirected graphs, there may exist more than
one edge incident to the same pair of nodes,
say a and b.

In Fig. 7.2(b), the edges e1, e2, and e3 are
incident to vertices a and b. Such edges are
called as parallel edges. Here, e1, e2, and e3
are three parallel edges. In addition, e5 and e6
are two parallel edges. Any graph that contains
parallel edges is called a multigraph. On the
other hand, a graph that has no parallel edges
is called a simple graph.

Weighted Graph

A graph where weights are assigned to every
edge is called a weighted graph. Weights can
also be assigned to vertices. A graph of areas
and streets of a city may be assigned weights according to its traffic density. A graph of
areas and connecting roads may be assigned weights such that the distance between the
cities is assigned to edges and area population is assigned to vertices.

Null Graph and Isolated Vertex

In a graph, a node that is not adjacent to any other node is called an isolated node. A graph
containing only isolated nodes is called a null graph. Hence, the set of edges is an empty
set in a null graph.

Let V = set of students, E = {there exists an edge incident to two students if they share
books}. Let V = {a, b, c}. If no two students among a, b, and c shares books, then the
graph G = {V, E} is represented as shown in Fig. 7.3(a).

2

1

3

4 5

(b)

(a)

b

a

d

c
g

e4

e3

e2

e1

e7

e5

e6

e8

Fig. 7.2  Classification based on edges 
(a) Simple graph (b) Multigraph

TREEs 283

a
(a) (b)

b

c

a

c d

b

e

Fig. 7.3  Classification based on nodes (a) Null 
graph (b) Graph with isolated vertex

Here, G is a null graph, and a, b, and c are isolated vertices. In Fig. 7.3(b), V = {a, b, c,
d, e} and E = {(a, b), (a, c), (b, c), (c, d), (b, d)}, and e is an isolated vertex.

Degree of Vertex

In a directed graph, for any node V, the number of edges that have V as its initial node
is called the outdegree of the node V. In other words, the number of edges incident from
a node is its outdegree (outgoing degree), and the number of edges incident to it is an
indegree (incoming degree). The sum of indegree and outdegree is the total degree of a
node (vertex). In an undirected graph, the total degree or degree of a node is the number
of edges incident to the node. The isolated vertex degree is zero. The degree of vertex a in
Fig. 7.4 is 3, whereas the degree of vertex f is 1. For vertex 1 in Fig. 7.2(a), the incoming
degree is 2 and the outgoing degree is 2.

Paths and Circuits

Let G = (V, E) be a simple graph. Consider a se-
quence of edges of G such that the terminal node
of any edge in the sequence is the initial node of
the next edge, if any, in the sequence (Fig. 7.4).

Here, G = (V, E), V = {a, b, c, d}, and
E = {e1, e2, e3, e4, e5, e6, e7}.

An example of such a sequence is given by
{e1, e2, e4, e5}.

The sequence {e1, e2, e4, e5} can also be written as
{a, b, c, d, b}.

In addition, {e6, e2, e1, e3, e4, e2, e5} is another
sequence. Note that not all edges and nodes appearing
in a sequence need to be distinct. In addition, for a given
graph, any arbitrary set of nodes such as {a, f, b} that is
written in any order does not give a sequence as required.
In fact, each node appearing in the sequence must be ad-
jacent to the nodes appearing just before and after it in
the sequence, except for the first and the last nodes.

Consider the graph in Fig. 7.5.

a

b
f

d

ce1 e2

e6

e4

e5

e7

e3

Fig. 7.4 Graph G

1 2e1

e2e5

e7

e3

e4

e6

3
4

Fig. 7.5 Graph with self loop

284 daTa sTRucTuREs using c++

A sequence of edges of a graph such that the terminal node of any edge in the sequence
is the initial node of the edge, if any, appearing next in the sequence, defines the path of a
graph. The number of edges appearing in the path is called the length of the path.

Example paths for the graph in Fig. 7.5 are as follows:

P1 = {(2, 4)}, also written as {e2}
P2 = {(2, 3), (3, 1), (1, 4)}, also written as {e3, e6, e5}
P3 = {e1, e2, e4, e3, e1, e5} or {(1, 2), (2, 4), (4, 3), (3, 2), (2, 1), (1, 4)}

A path where no edge is traversed more than once is called a simple path (or edge
simple path). A path where no vertex is traversed (visited) more than once is called an
elementary path (node simple path). For example, {e1, e2, e4, e6, e5} is a simple path but
not elementary as the vertex 1 is traversed (visited) twice.

A path that originates and ends at the same node is called a cycle (circuit). A cycle is
elementary if each node is traversed once (except origin) and is simple if every edge of the
cycle is traversed once. For example, the following are the cycles for the graph in Fig. 7.5.

C1 = {(2, 2)}, also represented as {e7}
C2 = {(1, 2), (2, 4), (4, 1)}, also represented as {1, 2, 4, 1} or {e1, e2, e5}
C3 = {e3, e2, e5, e6} or {3, 2, 4, 1, 3}

Here, the cycle {e1, e2, e5} in both simple and elementary cycles is also referred to as
a closed path.

Connectivity

A graph is said to be connected if and only if there exists a path between every pair of
vertices. Some examples are shown in Figs 7.6(a) and (b).

The graph G = (V, E) drawn in Fig. 7.6(a) with V = {a, b, c, d, e} is a disconnected
graph. It contains two connected components. A connected graph has a single connected
component. The graph shown in Fig. 7.6(b) is a connected graph.

(a)

a

c

d

b
e

(b)

a

c

d

b
e

Fig. 7.6  Graph connectivity  (a) Graph with two connected components 
(b) Connected graph with one connected component

Acyclic Graph

A simple graph that does not have any cycles is called acyclic graph. Such graphs do not
have any loops.

TREEs 285

Trees

A class of graphs that is acyclic is termed as trees.
Let us now discuss an important class of graphs called trees and its associated

terminology.
Trees are useful in describing any structure that involves hierarchy. Familiar exam-

ples of such structures are family trees, the hierarchy of positions in an organization,
and so on.

Forest and Trees

A forest is a graph that contains no cycles, and a connected forest is a tree. For example,
Fig. 7.7 shows a forest with three components, each of which is a tree.

Fig. 7.7 Forest with three trees

Note that trees and forests are simple graphs. The following terminology belongs to trees.

Directed tree An acyclic directed graph is a directed tree.

Root A directed tree has one node called its root, with indegree zero, whereas for all
other nodes, the indegree is 1.

Terminal node (leaf node) In a directed tree, any node that has an outdegree zero is a
terminal node. The terminal node is also called as leaf node (or external node).

Branch node (internal node) All other nodes whose outdegree is not zero are called as
branch nodes.

Level of node The level of any node is its path length from the root. The level of the
root of a directed tree is zero, whereas the level of any node is equal to its distance from
the root. Distance from the root is the number of edges to be traversed to reach the root.

7.1.2 General Tree

A tree T is defined recursively as follows:

1. A set of zero items is a tree, called the empty tree (or null tree).
2. If T1, T2, ..., Tn are n trees for n > 0 and R is a node, then the set T containing R and the

trees T1, T2, ..., Tn are a tree. Within T, R is called the root of T, and T1, T2, ..., Tn are
called subtrees.

286 daTa sTRucTuREs using c++

The tree in Fig. 7.8(a) is the empty tree since there are no nodes. The tree in Fig. 7.8(b)
has only one node, the root. The tree in Fig. 7.8(c) has 16 nodes. The root node has four
subtrees. The roots of these subtrees are called the children of the root. There are 16 nodes
in the tree, so there are 15 non-empty subtrees. The nodes with no subtrees are called
terminal nodes or more commonly, leaves. These are 10 leaves in the tree in Fig. 7.8(c).

(c)

Root = Null

(a) (b)

Root a

Root

b

fedc

g h i j k l

m n o p q

1

0

Level

2

3

Fig. 7.8  Degree of a tree  (a) Empty tree—degree undefined  (b) Tree with 
a single node—degree 0  (c) Tree of height 3—degree 4

The degree of a node is the number of subtrees it has. Thus, the degree of the nodes in
Fig. 7.8(c) ranges from zero to four. By definition, the degree of each leaf node is zero.
The degree of a tree is the maximum degree of a node in the tree. As the tree in Fig. 7.8(a)
has no nodes, there is no maximum degree of a node, and the degree of the tree is not
defined. The tree in Fig. 7.8(b) has degree zero, and the tree in Fig. 7.8(c) has degree four.

Since family relationships can be modelled as trees, we often call the root of a tree (or
subtree) the parent, and the roots of the subtrees the children. Consequently, the children
of the same node are called siblings.

The advantage of the relationship between a parent and its children is that a directed
edge (or, simply an edge) extends from a parent to its children. Thus, the edges connect a
root with the roots of each subtree. For example, in Fig. 7.8(c), an edge extends from the
root b to each of the nodes c, d, e, and f. Similarly, edges extend from e to i and from d to
g. An undirected edge extends in both directions between a parent and a child. Thus, the
undirected edges would also extend from i to e and from g to d.

A directed path (or simply path) is a sequence of directed edges e1, e2, ..., en, where the
node at the end of one edge serves as the beginning of the next edge. An undirected path
is a similar sequence of undirected edges.

TREEs 287

For example, in Fig. 7.8(c), one path containing three edges begins at the root and ex-
tends through nodes f, k, and p. Similarly, the path beginning at node h and containing the
nodes e, b, and d is an undirected path. In this chapter and chapters 8 and 9, edge refers to
a directed edge from a parent to its child. Following the analogy of family hierarchies, if a
path exists from one node to another, it is common to state that the first node is an ancestor
of the second, and the second is a descendent of the first.

The length of a path is the number of edges it contains (which is one less than the
number of nodes on the path). The depth or level of a node is the length of a node, which
is the length of a directed path from the root to that node. The height of a tree is the length
of the path from the root to a node at the lowest level. In other words, the height of a tree
is the maximum path length in the tree. Thus, the level of the root of a tree is zero, and the
level of each child of the root is one. Equivalently, the height of a tree is the largest level
number of any node in the tree.

There are three common ways to symmetrically order (or list) the nodes in a tree: pre-
order, inorder, and postorder. For each of these orderings, an empty tree gives rise to an
empty list, and the tree with one node yields the list with one node. For trees with more
than one node, the following statements are true:

1. The preorder list contains the root followed by the preorder list of nodes of the subtrees
of the root from left to right.

2. The inorder list contains the inorder list of the leftmost subtree, the root, and the inorder
list of each of the other subtrees from left to right.

3. The postorder list contains the postorder list of subtrees of the root from left to right
followed by the root.

Figure 7.9 shows a tree whose nodes are labelled with numbers rather than letters.

Root

1

2 3

765

9 10

8

4

0

Level

3

2

1

Fig. 7.9  Sample tree

The following is a list of terms for review using the example tree in Fig. 7.9.

288 daTa sTRucTuREs using c++

Subtrees The nodes labelled 2, 3, and 4 are the roots of the subtrees (children) of the node
labelled 1. The nodes labelled 5, 6, and 7 are the roots of the subtrees (children) of the node
labelled 3. The node labelled 8 is the root of the subtree (child) of the node labelled 4. The
nodes labelled 9 and 10 are the roots of the subtrees (children) of the node labelled 8.

Leaves The nodes labelled 2, 5, 6, 7, 9, and 10 are the terminal nodes or leaf nodes.

Degree The nodes labelled 1 and 3 have degree 3. The node labelled 8 has degree 2. The
node labelled 4 has degree 1. All the leaf nodes have degree 0. The degree of the tree is 3,
because the maximum degree of any node is 3.

Levels The level number appears on the right of the tree. The level of the root is 0, the
level of the nodes labelled 2, 3, and 4 is 1, the level of the nodes labelled 5, 6, 7, and 8
is 2, and that of the nodes labelled 9 and 10 is 3.

Family relationships The node labelled 1 is the parent of the nodes labelled 2, 3, and 4.
The node labelled 3 is the parent of the nodes labelled 5, 6, and 7. The node labelled 4 is
the parent of the node labelled 8, which in turn is the parent of the nodes labelled 9 and
10. The nodes labelled 2, 3, and 4 are siblings similar to the nodes labelled 9 and 10. Note
that the node labelled 8 is not the sibling of the nodes labelled 5, 6, and 7.

Paths and path lengths Paths exist from all parents to children. A unique path exists
from the root to each leaf node as shown in Fig. 7.9. Since any sub-path is a path, all the
paths are represented. This is shown in the next page:

1 Æ 2 Length: 1

1 Æ 3 Æ 5 Length: 2

1 Æ 3 Æ 6 Length: 2

1 Æ 3 Æ 7 Length: 2

1 Æ 4 Æ 8 Æ 9 Length: 3

1 Æ 4 Æ 8 Æ 10 Length: 3

Height and depth The height of the tree is 3, the maximum level. The depth of the
nodes labelled 2, 3, and 4 is 1. The depth of the nodes labelled 5, 6, 7, and 8 is 2. The
depth of the nodes labelled 9 and 10 is 3, which is the same as the height of the tree. The
depth of the nodes on the lowest level is always the same as the height of the tree.

Orderings The preorder, inorder, and postorder orderings of the nodes are given in the
following sequence:

1 Æ 2 Æ 3 Æ 5 Æ 6 Æ 7 Æ 4 Æ 8 Æ 9 Æ 10 (preorder)
2 Æ 1 Æ 5 Æ 3 Æ 6 Æ 7 Æ 9 Æ 8 Æ 10 Æ 4 (inorder)
2 Æ 5 Æ 6 Æ 7 Æ 3 Æ 9 Æ 10 Æ 8 Æ 4 Æ 1 (postorder)

We shall learn about these orderings in Section 7.7.

TREEs 289

7.1.3 Representation of a General Tree

We can use either a sequential organization or a linked organization for representing a
tree. If we wish to use a generalized linked list, then a node must have a varying number
of fields depending upon the number of branches. However, it is simpler to use algorithms
for the data where the node size is fixed.

Data Link 1 Link 2 ... Link n

For a fixed size node, we can use a node with data and pointer fields as in a generalized
linked list.

Data

Tag
0/1 Link

(down)

Link
(next)

Figure 7.10 shows a sample tree.

J

A

E

B

F

L G

C

I

M

D

H
K

Fig. 7.10  Sample tree

The list representation of this tree is shown in Fig. 7.11.

0 0A 1 1 1

0 E 0 LK

F

0 C 0 0G 0 D 1 0 H

0 I 0 0M

0 J 0

0 B 1 0 0

0 0

Fig. 7.11 List representation

290 daTa sTRucTuREs using c++

7.2 Types of TRees

In this section, we shall study some important types of trees.

1. Free tree
2. Rooted tree
3. Ordered tree
4. Regular tree
5. Binary tree
6. Complete tree
7. Position tree

Free tree A free tree is a connected, acyclic
graph. It is an undirected graph. It has no node
designated as a root. As it is connected, any node
can be reached from any other node through a
unique path. The tree in Fig. 7.12 is an example of
a free tree.

Rooted tree Unlike free tree, a rooted tree is a directed
graph where one node is designated as root, whose incoming
degree is zero, whereas for all other nodes, the incoming
degree is one (Fig. 7.13).

Ordered tree In many
applications, the relative
order of the nodes at any
particular level assumes some significance. It is easy to
impose an order on the nodes at a level by referring to a
particular node as the first node, to another node as the
second, and so on. Such ordering can be done from left
to right (Fig. 7.14). Just like nodes at each level, we can
prescribe order to edges. If in a directed tree, an ordering
of a node at each level is prescribed, then such a tree is
called an ordered tree.

Regular tree A tree where each branch node vertex has the same outdegree is
called a regular tree. If in a directed tree, the outdegree of every node is less than
or equal to m, then the tree is called an m-ary tree. If the outdegree of every node is
exactly equal to m (the branch nodes) or zero (the leaf nodes), then the tree is called
a regular m-ary tree.

Binary tree A binary tree is a special form of an m-ary tree. Since a binary tree is
important, it is frequently used in various applications of computer science.

Fig. 7.12 Free tree

Root

Fig. 7.13 Rooted tree

Fig. 7.14 Ordered tree

1

3

9

11
10

8

7

65
4

2

TREEs 291

We have defined an m-ary tree (general tree). A binary tree is an m-ary position tree
when m = 2. In a binary tree, no node has more than two children.

Complete tree A tree with n nodes and of depth k is complete if and only if its nodes
correspond to the nodes that are numbered from 1 to n in the full tree of depth k.

A binary tree of height h is complete if and only if one of the following holds good:

1. It is empty.
2. Its left subtree is complete of height h - 1 and its right subtree is completely full of

height h - 2.
3. Its left subtree is completely full of height h - 1 and its right subtree is complete of

height h - 1.

A binary tree is completely full if it is of height h and has (2h+1 - 1) nodes.

Full binary tree A binary tree is a full binary tree if it contains the maximum possible
number of nodes in all levels. Figure 7.15 shows a full binary tree of height 2.

In a full binary tree, each node has two children or no child
at all. The total number of nodes in a full binary tree of height
h is 2h+1 - 1 considering the root at level 0.

It can be calculated by adding the number of nodes of each
level as in the following equation:

20 + 21 + 22 + ... + 2h = 2h+1 - 1

Figure 7.15 has 22+1 - 1 = 8 - 1 = 7 nodes.

Complete binary tree A binary tree is said to be a complete binary tree if all its levels
except the last level have the maximum number of possible nodes, and all the nodes of the
last level appear as far left as possible. In a complete binary tree, all the leaf nodes are at
the last and the second last level, and the levels are filled from left to right.

Figure 7.16 is a complete binary tree.

73

1

6

52

4

8 9 10 11 12

Fig. 7.16  Complete binary tree

Applications such as the priority queue and heap sort use the complete binary tree.

7

3

1

65

2

4

Fig. 7.15 Full binary tree

292 daTa sTRucTuREs using c++

Left skewed binary tree If the right subtree is missing in every node of a tree, we call it
a left skewed tree (Fig. 7.17).

If the left subtree is missing in every node of a tree, we call it as right subtree (Fig. 7.18).

C

B

A

Fig. 7.17 Left skewed tree

C

B

A

Fig. 7.18 Right skewed tree

Strictly binary tree If every non-terminal node in
a binary tree consists of non-empty left and right sub-
trees, then such a tree is called a strictly binary tree.

In Fig. 7.19, the non-empty nodes D and E have
left and right subtrees. Such expression trees are
known as strictly binary trees.

Extended binary tree A binary tree T with
each node having zero or two children is called
an extended binary tree. The nodes with two
children are called internal nodes, and those
with zero children are called external nodes.
Trees can be converted into extended trees by
adding a node (Fig. 7.20).

Position tree A position tree, also known as a
suffix tree, is one that represents the suffixes of a string S and such representation facilitates
string operations being performed faster. Such a tree’s edges are labelled with strings, such
that each suffix of S corresponds to exactly one path from the tree’s root to a leaf node. The
space and time requirement is linear in the length of S. After its construction, several operations
can be performed quickly, such as locating a substring in S, locating a substring if a certain
number of mistakes are allowed, locating matches for a regular expression pattern, and so on.

7.3 BinaRy TRee

One of the most commonly used classes of trees is a binary tree. A binary tree has the
degree two, with each node having at most two children. This makes the implementation
of trees easier. In addition, binary trees have a wide range of applications. We shall study
these in this section.

B C

A

ED

F G H I

Fig. 7.19 Strictly binary tree

print

end read

goto

Fig. 7.20  Extended binary tree

TREEs 293

Definition A binary tree

1. is either an empty tree or
2. consists of a node, called root, and two children, left and right, each of which is itself

a binary tree.

The definition is recursive as we have defined a binary tree in terms of itself. All
the internal nodes of a binary tree are themselves the roots of smaller binary trees
(Fig. 7.21).

B C

A

ED F G

H

Fig. 7.21 Binary tree

Let us consider the two distinct binary trees in Fig. 7.22.

B

C

A

C

B

D

Fig. 7.22 Two binary trees

The definition implies that every non-empty node has two children, either of which may
be empty. Here A’s right child and B’s left child are empty trees (represented by shaded
boxes). Usually, empty trees in a binary tree are not shown.

7.3.1 properties of a Binary Tree

A tree is a connected acyclic graph. In many ways, a tree is the simplest non-trivial type
of graph. It has several good properties such as the fact that there exists a unique path
between every two vertices. The following theorems list some simple properties of trees:

Let T be a tree. Then the following properties hold true:

1. There exists a unique path between every two vertices.
2. The number of vertices is one more than the number of edges in the tree.
3. A tree with two or more vertices has at least two leaves.

294 daTa sTRucTuREs using c++

Let us refer to Fig. 7.23 for proving these properties.

(a) (b)

Fig. 7.23  Binary trees  (a) Sample 1
(b) Sample 2

Property 1

Property 1 comes from the definition of a tree. As a tree is a connected graph, there ex-
ists at least one path between every two vertices. However, if there are two or more paths
between a pair of vertices, there would be a circuit in the graph and so the graph cannot
be a tree.

Property 2

Property 2 can be proved using mathematical induction. Let there be a tree T with the total
number of edges e and the total number of vertices v.

Induction step A tree with one vertex contains no edge, and a tree with two vertices has
one edge.

Induction hypothesis Let us consider that there is an edge {a, b} in T such that the
removal of the edge {a, b} divides T into two disjoint trees T1 and T2, where T1 contains
the vertex a and all the vertices whose paths to a in T do not contain the edge {a, b},
and T2 contains the vertex b and all the vertices whose paths to b do not contain the
edge {a, b}.

Since both T1 and T2 have utmost v - 1 vertices, it follows from the hypothesis that

for T1 fi e1 = v1 - 1 and
for T2 fi e2 = v2 - 1,

where e1 and e2 are the number of edges and v1 and v2 are the number of vertices in T1
and T2, respectively.

Thus e1 + e2 = v1 + v2 - 2

TREEs 295

Since e = e1 + e2 + 1 and v = v1 + v2, we have e = v - 1, as shown in the following
figure:

1

32

e1 = v1 − 1 e2 = v2 − 1

Property 3

Property 3 follows from Property 2, that is, the sum of degrees of the vertices in any
graph is equal to 2e, which is equal to 2v - 2, in a tree. Since a tree with more than one
vertex cannot have any isolated vertex, there must be at least two vertices of indegree 1
in the tree.

Other Properties

1. The maximum number of nodes of level i in a binary tree is 2i−1, where i ≥ 1.
2. The maximum number of nodes of depth d in a binary tree is 2d−1 , where d ≥ 1.

Let us prove these properties using induction. Assume the root is only one node at
level 1.

Hence, the maximum number of nodes is 2i−1, that is, 21−1 = 20 = 1.
By induction hypothesis, let i be any arbitrary positive integer greater than 1. Then, the

maximum number of nodes on level i - 1 is 2i−1−1 = 2i−2.
Hence, it is proved that the maximum number of nodes at level i is 2i−1.
Note: If we assume the root at level 0, then the expression is 2i.
Since each node in a binary tree has a maximum degree 2, the maximum number of

nodes at level i is 2i−1.
The maximum number of nodes of depth d of a binary tree is given by

i

d

i

d

=1 =1
∑ ∑(maximum no. of nodes at level i) d= −2 1

Relation Between Number of Leaf Nodes and Degree-2 Nodes

In any non-empty tree T, if there are n0 leaf nodes and n2 nodes of degree 2, then

n0 = n2 + 1

Let n1 be the number of nodes of degree 1 and n be the total number of nodes.
Since all nodes in T are with the utmost degree 2, then

 n = n0
 + n1 + n2 + ... (7.1)

296 daTa sTRucTuREs using c++

If the number of branches is B, then n = B + 1. For a binary tree, all the branches stem out
from a node of degree 1 or 2. Thus,

B = n1 + 2 ¥ n2

So, n = B + 1
 B = n1 + 2 ¥ n2 + 1 (7.2)

Subtracting Eq. (7.2) from Eq. (7.1) we get

n0 = n2 + 1

Binary Tree With n Nodes Having n + 1 External Nodes

Taking the base case of a tree with only one node, that is the root, it has two external nodes
or null links. So, if n = 1, then the number of external nodes is n + 1, that is, 2.

From this base case, if there are n internal nodes where the left subtree has L nodes,
then the right subtree has n - L - 1 internal nodes (1 for the root).

By induction hypothesis, the number of external nodes of the left subtree is L + 1.
The number of external nodes of the right subtree is (n - L - 1) + 1 = n - L. So, the

total number of external nodes is L + 1 + n - L = n + 1.

7.4 BinaRy TRee aBsTRacT DaTa Type

We have defined a binary tree. Let us now define it as an abstract data type (ADT), which
includes a list of operations that process it.

ADT btree
 1. Declare create()Æbtree
 2. makebtree(btree, element, btree)Æbtree
 3. isEmpty(btree)Æboolean
 4. leftchild(btree)Æbtree
 5. rightchild(btree)Æbtree
 6. data(btree)Æelement

 7. for all l,r Œ btree, e Œ element, Let
 8. isEmpty(create) = true
 9. isEmpty(makebtree(l,e,r)) = false
10. leftchild(create()) = error
11. rightchild(create()) = error
12. leftchild(makebtree(l,e,r)) = l
13. rightchild(makebtree(l,e,r)) = r
14. data(makebtree(l,e,r)) = e
15. end
end btree

The six functions with their domains and ranges are declared in lines 1 through 6.
Lines 7 through 14 are the set of axioms that describe how the functions are related.

TREEs 297

The create() operation creates an empty binary tree; the isEmpty()operation checks
whether btree is empty or not and returns the Boolean value true or false, respectively;
leftchild(btree) and rightchild(btree) return the left and right subtrees, respec-
tively; data(btree) returns the data element.

Program Code 7.1 states the class defi nition of the operations that process the
tree ADT.

program CoDe 7.1

class TreeNode

{

 public:

 char Data;

 TreeNode *Lchild;

 TreeNode *Rchild;

};

class BinaryTree

{

 private:

 TreeNode *Root;

 public:

 BinaryTree(){Root = Null};

 // constructor creates an empty tree

 TreeNode * GetNode();

 void InsertNode(TreeNode*);

 void DeleteNode(TreeNode*);

;

Operations on binary tree The basic operations on a binary tree can be as listed as
follows:

1. Creation—Creating an empty binary tree to which the ‘root’ points
2. Traversal—Visiting all the nodes in a binary tree
3. Deletion—Deleting a node from a non-empty binary tree
4. Insertion—Inserting a node into an existing (may be empty) binary tree
5. Merge—Merging two binary trees
6. Copy—Copying a binary tree
7. Compare—Comparing two binary trees
8. Finding a replica or mirror of a binary tree

298 daTa sTRucTuREs using c++

7.5 RealizaTion of a BinaRy TRee

In this section, we shall study the basic realization of a binary tree and discuss its capabili-
ties for supporting various operations. The implementation of a binary tree should represent
the hierarchical relationship between a parent node and its left and right children. We have
studied the elementary data structures such as linked list and arrays. Now, we shall extend
these concepts to the binary tree structures. We shall give more emphasis to the linked
implementation as it is more popular than the corresponding sequential structure due to the
following two main reasons:

1. A binary tree has a natural implementation in a linked storage.
2. The linked structure is more convenient for insertions and deletions.

Let us study both the implementations.

7.5.1 array implementation of Binary Trees

One of the ways to represent a tree using an array is to store the nodes level-by-level, start-
ing from the level 0 where the root is present. Such a representation requires sequential
numbering of the nodes, starting with the nodes on level 0, then those on level 1, and so on.

We have defined a complete tree. A complete binary tree of height h has (2h+1 - 1)
nodes in it. The nodes can be stored in a one-dimensional array, tree, with the node num-
bered at the location tree(i). An array of size 2h+1 - 1 is needed for the same.

The root node is stored in the first memory location as the first element in the array.
The following rules can be used to decide the location of any ith node of a tree:
For any node with index i, 0 £ i £ n - 1,

1. Parent(i) = Î(t - 1)/2˚ if i π 0; if i = 0, then it is the root that has no parent.
2. Lchild(i) = 2 ¥ i + 1 if 2i + 1 £ n - 1; if 2i ≥ n, then i has no left child.
3. Rchild(i) = 2i + 2 if 2i + 2 £ n - 1; if (2i + 1) ≥ n, then i has no right child.

Let us consider the complete binary tree in Fig. 7.24.

1

0

2

6543

A

B

C D

E

F G

Fig. 7.24  Complete binary tree

The representation of the binary tree in Fig. 7.24 using an array is as follows:

0 1 2 3 4 5 6 7 8

– –A B E C D F G

Let us consider one more example as in Fig. 7.25.

TREEs 299

8
G

7
F

3
D

1
B

E

A

9
H

C

10
I

4

2

0

Fig. 7.25 Tree with 11 nodes

Now, the array representation of the tree in Fig. 7.25 is as follows:

A

Level

B C D E – – F G H I – – – – …

0 1 2 3

1 2 3

4 5 6 7 8 9 10 11 12 13 14 19…

0

Let us consider one more example of a skewed tree as in Fig. 7.26.

A

B

C

D
E15

7

3

1

0

Fig. 7.26  Sample skewed tree

This tree has the following array representation:

A B – C – – – D – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
15 19

…

This representation of binary trees using an array seems to be the easiest. Certainly, it
can be used for all binary trees. However, such a representation has certain drawbacks.
In most of the representations, there will be a lot of unused space. For complete binary
trees, the representation seems to be good as no space in an array is wasted between
the nodes. Certainly, the space is wasted as we generally declare an array of some
arbitrary maximum limit. From the examples, we can make out that for the skewed tree,
however, less than half of the array is only used and more is left unused. In the worst
case, a skewed tree of depth k will require 2k+1 - 1 locations of array, and occupy just
a few of them.

300 daTa sTRucTuREs using c++

In addition, even though the representation seems to be good for complete binary trees,
it is not useful for many other binary trees. In addition, the representation has drawbacks
of sequential representation, which have been discussed. A major drawback of sequential
representation is that the data movement of potentially many nodes is needed when the
insertion or deletion of a node occurs. Here, the movement of nodes is needed to reflect
the change in the level number of these nodes.

These problems can be overcome by the use of linked representation.

Advantages The various merits of representing binary trees using arrays are as follows:

1. Any node can be accessed from any other node by calculating the index.
2. Here, the data is stored without any pointers to its successor or predecessor.
3. In the programming languages, where dynamic memory allocation is not possible

(such as BASIC, FORTRAN), array representation is the only means to store a tree.

Disadvantages The various demerits when representing binary trees using arrays are
as follows:

1. Other than full binary trees, majority of the array entries may be empty.
2. It allows only static representation. The array size cannot be changed during the execution.
3. Inserting a new node to it or deleting a node from it is inefficient with this representation,

because it requires considerable data movement up and down the array, which demand
excessive amount of processing time.

7.5.2 linked implementation of Binary Trees

Binary tree has a natural implementation in a linked storage. In a linked organization, we
wish that all the nodes should be allocated dynamically. Hence, we need each node with
data and link fields. Each node of a binary tree has both a left and a right subtree. Each node
will have three fields—Lchild, Data, and Rchild. Pictorially, this node is shown in Fig. 7.27.

Data
Data

Rchild

Rchild

Lchild

Lchild

Fig. 7.27 Tree node

A node does not provide information about the parent node. However, it is still
adequate for most of the applications. If needed, the fourth parent field can be included.
The binary tree in Fig. 7.28 will have the linked representation as in Fig. 7.29. The root
of the tree is stored in the data member root of the tree. This data member provides an
access pointer to the tree.

TREEs 301

Here, 0 (zero) stored at Lchild or Rchild fields represents that the respective child is not
present. Let us consider one more example as in Fig. 7.29.

In this node structure, Lchild and Rchild are the two link fields to store the addresses
of left child and right child of a node; data is the information content of the node. With
this representation, if we know the address of the root node, then using it, any other node
can be accessed.

Each node of a binary tree (as the root of some subtree) has both left and right
subtrees, which can be accessed through pointers as follows.

A

B

D

H I

E F G

C

B

Root

C

0 0G

0 0F

0 0E

0 0I0 0H

D

A

Fig. 7.28  Sample tree 1 and its linked 
representation

D

Root

D

C

B

A A 0

B 0

C 0

00

Fig. 7.29  Sample tree 2 and its linked representation

302 daTa sTRucTuREs using c++

Program Code 7.1 described the ADT for a binary tree. Program Code 7.2 is a class for
the binary tree that shows specifi cations for the ADT. Implementation of these functions
is covered in the forthcoming topics.

program CoDe 7.2

class TreeNode

{

 public:

 char Data;

 TreeNode *Lchild;

 TreeNode *Rchild;

};

class BinaryTree

{

 private:

 TreeNode *Root;

 public:

 BinaryTree() {Root = Null;} // constructor

 // int BTree_Equal(BinaryTree, BinaryTree);

 TreeNode *GetNode();

 void InsertNode(TreeNode*);

 void DeleteNode(TreeNode*);

 void Postorder(TreeNode*);

 void Inorder(TreeNode*);

 void Preorder(TreeNode*);

 TreeNode *TreeCopy();

 void Mirror();

 int TreeHeight(TreeNode*);

 int CountLeaf(TreeNode*);

 int CountNode(TreeNode*);

 void BFS_Tree();

 void DFS_Tree();

 TreeNode *Create_Btree_InandPre_Traversal(char

preorder[max], char inorder[max]);

 void Po storder_Non_Recursive(void);

 void Inorder_Non_Recursive();

 void Preorder_Non_Recursive();

 int BTree_Equal(BinaryTree, BinaryTree);

 TreeNode *TreeCopy(TreeNode*);

 void Mirror(TreeNode*);

};

TREEs 303

Using this declaration for a linked representation, the binary tree representation can be
logically viewed as in Fig. 7.30. The physical representation shows the memory alloca-
tion of nodes.

A

C

G

IH

FE

B

D

750 A 460

620 C 580

660 G 7400 F 0

0 H 0 0 I 0

0 E 00 D 0

500 B 400

Address Nodes

Child Data Rchild

500 0 D 0

750 500 B 400

400 0 E 0

890 750 A 460

620 0 F 0

460 620 C 580

660 0 H 0

580 660 G 740

740 0 I 0

(b)

(a)

(c)

890

750

500 400

460

580

740660

620

Fig. 7.30 Tree and its views (a) Binary tree (b) Physical view (c) Logical view

Advantages The merits of representing binary trees through liked representations are
as follows:

1. The drawbacks of the sequential representation are overcome in this representation.
We may or may not know the tree depth in advance. In addition, for unbalanced trees,
the memory is not wasted.

304 daTa sTRucTuREs using c++

2. Insertion and deletion operations are more efficient in this representation.
3. It is useful for dynamic data.

Disadvantages The demerits of representing binary trees through linked representation
are as follows:

1. In this representation, there is no direct access to any node. It has to be traversed from
the root to reach to a particular node.

2. As compared to sequential representation, the memory needed per node is more. This
is due to two link fields (left child and right child for binary trees) in the node.

3. The programming languages not supporting dynamic memory management would not
be useful for this representation.

7.6 inseRTion of a noDe in BinaRy TRee

The insert() operation inserts a new node at any position in a binary tree. The node to
be inserted could be a branch node or a leaf node. The branch node insertion is generally
based on some criteria that are usually in the context of a special form of a binary tree.
Let us study a commonly used case of inserting a node as a leaf node.

The insertion procedure is a two-step process.

1. Search for the node whose child node is to be inserted. This is a node at some level i,
and a node is to be inserted at the level i + 1 as either its left child or right child. This
is the node after which the insertion is to be made.

2. Link a new node to the node that becomes its parent node, that is, either the Lchild or
the Rchild.

This is represented in Fig. 7.31.

A

FB

C G

ED0 0 0 0

0 0

0

Fig. 7.31 Insertion of node G as the Rchild of node F

7.7 BinaRy TRee TRaveRsal

Traversal is a frequently used operation. Traversal of a tree means stepping through the
nodes of a tree by means of the connections between parents and children, which is also
called walking the tree, and the action is a walk of the tree. Traversal means visiting every

TREEs 305

node of a binary tree. There are many operations that are often performed on a tree such
as search a node, print some information, insert a node, delete a node, and so on. All such
operations need the traversal through a tree.

This operation is used to visit each node (exactly once). A full traversal of a tree visits
nodes of a tree in a certain linear order. This linear order could be familiar and useful. For
example, if the binary tree contains an arithmetic expression, then its traversal may give
us the expression in infix, postfix, or prefix notations.

There are various traversal methods. For a systematic travers-
al, it is better to visit each node (starting from the root) and its
two subtrees in the same way. In other words, when traversing,
we need to treat each node and its subtree in the same fashion. If
we let L, D, and R stand for moving left, data, and moving right,
respectively (Fig. 7.32), when at a node, then there are six pos-
sible combinations—LDR, LRD, DLR, DRL, RDL, and RLD.

Consider the binary tree shown in Fig. 7.33. This tree represents a binary tree.
We have studied all the notations of an expression tree and its inter-conversions in
Chapter 3.

Fig. 7.33 A binary tree representing an
arithmetic expression

Root

6 /

×

48

−

+

5 3

Let us see the result of each of the six traversals.

LDR: 5 - 6 + 3 ¥ 8 / 4

LRD: 5 6 - 3 8 4 / ¥ +

DLR: + - 5 6 ¥ 3 / 8 4

DRL: + ¥ / 4 8 3 - 6 5

RDL: 4 / 8 ¥ 3 + 6 - 5

RLD: 4 8 / 3 ¥ 6 5 - +

We can notice that DLR and RLD, LDR and RDL, and LRD and DRL are mirror
symmetric. If we adopt the convention that traversing is done left before right, only then,
the three traversals, that is, LDR, LRD, and DLR, are fundamental. These are called as

R

D

L

Fig. 7.32  Components 
of a subtree

306 daTa sTRucTuREs using c++

inorder, postorder, and preorder traversals because there is a natural correspondence
between these traversals producing the infix, postfix, and prefix forms of an arithmetic
expression, respectively.

7.7.1 preorder Traversal

In this traversal, the root is visited first followed by the left subtree in preorder and then
the right subtree in preorder. The tree characteristics lead to naturally implement the tree
traversals recursively. It can be defined in the following steps:

Preorder (DLR) Algorithm

1. Visit the root node, say D.
2. Traverse the left subtree of the node in preorder.
3. Traverse the right subtree of the node in preorder.

Let us consider the tree in Fig. 7.34.
A preorder traversal of the tree in Fig. 7.34 visits the

node in a sequence: A B D E G C F. For an expression tree,
the preorder traversal yields a prefix expression (Fig. 7.35).

+

×

A B

D Preorder traversal
yields +×ABD

Fig. 7.35  Expression tree and its preorder traversal

The preorder traversal says, ‘visit a node, traverse left, and continue moving. When you
cannot continue, move right and begin again or move back, until you can move right and
stop’. The Preorder() function can be written as both recursive and non recursive.

void BinaryTree :: Preorder(TreeNode*)
{
 if(Root != Null)
 {
 cout << Root->Data;
 Preorder(Root->Lchild);
 Preorder(Root->Rchild);
 }
}

Let us consider the tree in Fig. 7.36. This tree contains an arithmetic expression with
the binary operators add (+), multiply (¥), divide (/), exponentiation (^), and variables A,
B, C, D, and E.

FD E

G

B

A

C

Fig. 7.34 Binary tree

R

1

2 3

D

L

TREEs 307

A

B

∧

×

+

/

C

D

E

Fig. 7.36  Binary tree for expression

It gives us the prefix expression +¥/A ^ BCDE. The preorder traversal is also called as
depth-first traversal.

7.7.2 inorder Traversal

In this traversal, the left subtree is visited first in inorder followed by the root and then the
right subtree in inorder. This can be defined as the following:

Inorder (LDR) Algorithm

1. Traverse the left subtree of the root node in inorder.
2. Visit the root node node.
3. Traverse the right subtree of the root node in inorder.

Let us consider the binary tree in Fig. 7.34. An inorder traversal of a tree visits the node
in the following sequence.

Inorder sequence: D B E G A F C An inorder expression traversal of the tree in Fig.
7.35, which is an expression tree, yields an inorder expression as A ¥ B + D and for Fig.
7.36 yields an inorder expression as ((A/B ^ C) ¥ D) + E.

The Inorder() function simply calls for moving down the tree towards the left until it
can no longer proceed. So next, we visit the node, move one node to the right, and continue
again. If we cannot move, move one node to the right and continue again. If we cannot move
to the right, go back one more node and then continue. The inorder traversal is also called as
symmetric traversal. This traversal can be written as a recursive function as follows:

void BinaryTree :: Inorder(TreeNode*)
{
 if(Root != Null)
 {
 Inorder(RootÆLchild);
 cout << RootÆData;
 Inorder(RootÆRchild);
 }
}

R

2

1 3

D

L

308 daTa sTRucTuREs using c++

7.7.3 postorder Traversal

In this traversal, the left subtree is visited first in postorder followed by the right subtree
in postorder and then the root. This is defined as the following:

Postorder (LRD) Algorithm

1. Traverse the root’s left child (subtree) of the root node in postorder.
2. Traverse the root’s right child (subtree) of the root node in postorder.
3. Visit the root node.

Let us consider the binary tree in Fig. 7.34. The postorder traversal yields the following
sequence:

Postorder sequence: D G E B F C A For the expression tree in Fig. 7.35, the postorder
traversal yields a postfix expression as the following:

= A B ¥ D +

For the tree in Fig. 7.36, the postfix expression by the postorder traversal is ABC¥¥/
D¥E+. The postorder traversal says, “traverse left and continue again. When you cannot
continue, move right and begin again or move back until you can move right and visit
the node.”

void BinaryTree :: Postorder(TreeNode*)
{
 if(Root != Null)
 {
 Postorder(RootÆLchild);
 Postorder(RootÆRchild);
 cout << RootÆData;
 }
}

7.7.4 non-recursive implementation of Traversals

We have defined the recursive traversals. These are easy to read and understand. However,
a language translator such as a compiler will be burdened to carry out the execution. Let us
go for the other non-recursive approach for these algorithms. Let us write a non-recursive
implementation using stacks. Here, at the time of left or right traversal, when the left or right
node is the root of the other subtree, the current node is to be stacked for further traversal.

Non-recursive Preorder Algorithm
1. Tmp = Root
2. while(stack not empty) do
 begin
 if(Tmp is not null) then
 begin
 visit(TmpÆData)
 Push(TmpÆLchild)

R

3

1 2

D

L

TREEs 309

 Tmp = Tmp->Lchild
 else if(stack is empty)
 then exit
 else
 Tmp = Pop()
 Tmp = Tmp->Rchild
 end
 end
3. stop

The C++ implementation of the non-recursive preorder algorithm is given in Program
Code 7.3.

program CoDe 7.3

void BinaryTree :: Preorder_Non_Recursive()

{

 TreeNode *Tmp = Root;

 stack S;

 while(1)

 {

 while(Tmp != Null)

 // traverse left till left is null and push

 {

 S.Push(Tmp);

 cout << Tmp ->Data;

 Tmp = Tmp->Lchild;

 }

 if(S.IsEmpty()) return;

 //if stack is not empty then pop one and go to

right

 Tmp = S.Pop();

 Tmp = Tmp->Rchild;

 // if stack is empty stop the process

 }

}

We need stack and queue for tree operations such as depth-fi rst and breadth-fi rst traversals.
Program Code 7.4 uses these two data structures:

program CoDe 7.4

class stack

{

 public:

 TreeNode *stk[max];

310 daTa sTRucTuREs using c++

 int data,top;

 stack *S;

 public:

 stack()

 {

 top = −1;

 }

 int IsEmpty()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

 void Push(TreeNode *x)

 {

 stk[top++] = x;

 }

 TreeNode *Pop()

 {

 TreeNode *x;

 x = stk[top−−];

 return(x);

 }

};

class stack1

{

 public:

 char stk1[max];

 int data,top;

 public:

 stack1()

 {

 top = −1;

 }

 int IsEmpty1()

 {

 if(top == −1)

 return 1;

 else

 return 0;

 }

TREEs 311

 void Push1(char x)

 {

 stk1[top++] = x;

 }

 char Pop1()

 {

 char x;

 x = stk1[top−−];

 return(x);

 }

};

class queue

{

 TreeNode *que[max];

 int data, rear, front;

 public:

 queue()

 {

 rear = front = −1;

 }

 int Empty()

 {

 if(rear == front)

 return 1;

 else

 return 0;

 }

 int Full()

 {

 if(rear == max)

 return 1;

 else

 return 0;

 }

 void Add(TreeNode *x)

 {

 if(Full())

 cout << "\n Queue Overfl ow";

 else

 que[++rear] = x;

 }

 TreeNode *Del()

312 daTa sTRucTuREs using c++

 {

 TreeNode *x;

 if(Empty())

 {

 cout << "\n Queue is empty";

 //return −1;

 }

 else

 {

 x = que[front++];

 return(x);

 }

 }

};

Non-recursive Inorder Algorithm

Algorithm 7.1 is for non-recursive inorder traversal of a binary tree.

algorithm 7.1
1. Tmp = Root
2. while(1) do
 begin
 while(Tmp != Null) then
 begin
 push(Tmp)
 Tmp = TmpÆLchild
 end
 if(stack is empty) then exit
 Tmp = Pop()
 visit(TmpÆdata)
 Tmp = TmpÆRchild
 end while
3. Stop

The C++ implementation of Algorithm 7.1 is stated in Program Code 7.5.

program CoDe 7.5

void BinaryTree :: Inorder_Non_Recursive()

{

 TreeNode *Tmp;

 stack S;

 Tmp = Root;

 while(1)

TREEs 313

 {

 while(Tmp != Null)

 {

 S.Push(Tmp);

 Tmp = Tmp->Lchild;

 }

 if(S.IsEmpty())

 return;

 //if stack is not empty then pop one and go to

right

 Tmp = S.Pop();

 cout << Tmp->Data;

 Tmp = Tmp->Rchild;

 }

}

Non-recursive Postorder Algorithm

Algorithm 7.2 is for non-recursive postorder traversal of a binary tree. As compared to
earlier algorithms, in postorder traversal, we require the Pop operation when returning
from the left and right subtrees.

algorithm 7.2

1. When we return from the left subtree, perform the following operations:
(a) Tmp = Pop

(b) Tmp = TmpÆRchild.

2. When we re turn from the right subtree, perform the following operations:
(a) Tmp = Pop

(b) Print TmpÆdata (that is, visit and process the node, if required)
(c) Tmp = Pop

Hence, we need to differentiate between the return operation from the left subtree and
right subtree. Let us use the stack that stores the status: ‘L’ for left , and ‘R’ for righ t. For
performing the extra Pop operation while returning from the right subtree, we need to
assign Tmp = Null. Program Code 7.6 demonstrates this.

program CoDe 7.6

void BinaryTree :: Postorder_Non_Recursive(void)

{

 TreeNode * Tmp = Root;

 stack S;

314 daTa sTRucTuREs using c++

 stack1 S1;

 char fl ag;

 // stack S stores the node and S1 stores the fl ag ‘L’ or ‘R’

 while(1)

 {

 while(Tmp != Null)

 // traverse tree left till not Null

 {

 S.Push(Tmp);

 S1.Push1('L');

 // push node in S and ‘L’ in S1

 Tmp = Tmp->Lchild;

 }

 if(S.IsEmpty())

 return;

 else

 {

 Tmp = S.Pop();

 //pop node

 fl ag = S1.Pop1();

 if(fl ag == 'R')

 // if fl ag is 'R' display data

 {

 cout << Tmp->Data;

 Tmp = Null;

 }

 else // if fl ag is 'L'

 {

 S.Push(Tmp);

 // push Tmp with fl ag 'R'

 S1.Push1('R');

 Tmp = Tmp->Rchild;

 // move to right

 }

 }

 }

}

7.7.5 formation of Binary Tree from its Traversals

Sometimes, we need to construct a binary tree if its traversals are known. From a sin-
gle traversal, a unique binary tree cannot be constructed. However, if two traversals are

TREEs 315

known, then the corresponding tree can be drawn uniquely. Let us examine these possi-
bilities and then chalk out the algorithm for the same.

The basic principle for formulation is as follows:

1. If the preorder traversal is given, then the first node is the root node. If the postorder
traversal is given, then the last node is the root node.

2. Once the root node is identified, all the nodes in all left and right subtrees of the root
node can be identified.

3. Same techniques can be applied repeatedly to form the subtrees.

We can conclude that for the binary tree, construction and traversals are essential out
of which one should be inorder traversal and another should be preorder or postorder
traversal. Alternatively, for the given preorder and postorder traversals, the binary tree
cannot be obtained uniquely.

Consider the following sequences of traversal as in Example 7.1.

 example 7.1 Construct a binary tree using the following two traversals:

Inorder : D B H E A I F J C G
Preorder: A B D E H C F I J G

Solution From the preorder traversal, it is evident that A is the root node. In addition,
in the inorder traversal, all the nodes that are to the left side of A belong to the left subtree
and those to the right side of A belong to the right subtree (Fig. 7.37).

(a)

In: DBHE
Pre: BDEH

In: IFJCG
Pre: CFIJG

A

JIH

GFED

C

A

B

(b) (c)

In: D
B D

H
H

HE
EH IFJ

C IFJG
G

E

JIH

GFED

CB

A

F
I

I J
J

Fig. 7.37  Binary tree from inorder and preorder traversals (a) Two subtrees as a 
being the root from  two traversals (b) Repeated application (c) Final binary tree

316 daTa sTRucTuREs using c++

Example 7.2 shows the construction of a binary tree from a sequence of inorder and post-
order traversals.

 example 7.2 Construct a binary tree from its inorder and postorder traversals.

Inorder : 1 2 3 4 5 6 7 8 9
Postorder: 1 3 5 4 2 8 7 9 6

Solution As 6 is the last node traversed in postorder, 6 is the root (Fig. 7.38). The
fi nal binary tree constructed is as in Fig. 7.39.

1

8

7

9

53

4

6

2

Fig. 7.39 Final binary tree

1

1

1

2

2

3

3 5

54

4

3 5

43 5

3 5

8

8

8

8

87

7 9

9

7

7

6

4

Fig. 7.38  Sample tree

Using the inorder and preorder traversals, a binary tree can be constructed. Program
Code 7.7 is the implementat ion of the same.

program CoDe 7.7

// code to construct tree using preorder and inorder

// sequences

class TreeNode

{

 public:

 char Data;

 TreeNode *Lchi ld, *Rchild;

};

//Function to create a tree using preorder and inorder

sequences

TreeNode *BinaryTree :: Create_Btree_InandPre_Traversal

(char preorder[max], char inorder[max])

{

 //to store divided inorder and preorder sequence

 char in1[max],in2[max],pre1[max],pre2[max];

TREEs 317

 TreeNode *Tmp;

 int i,j,k;

 if(strlen(preorder) == 0)

 return Null;

 Tmp = new TreeNode;

 Tmp->Data = preorder[0] ;

 //following code is for dividing inorder sequence

 for(i = 0;inor der[i] != preorder[0]; i++)

 in1[i] = inorder[i];

 in1[i] = '\0';

 i++;

 k = 0;

 for(j = i; inorder[j] != '\0'; j++)

 in2[k++] = inorder[j];

 in2[k] = '\0';

 cout << " in " << in1 << " " << in2;

 //following code is for dividing preorder sequence

 i = j = 0;k = 1;

 for(k = 1; preorder[k] != '\0'; k++)

 {

 if(strchr(in1,preorder[k]) != Null)

 // strchr function used to check char is

present in string or not

 pre1[i++]=preorder[k];

 else

 pre2[j++]=preorder[k];

 }

 pre1[i]='\0';

 pre2[j]='\0';

 Tmp->Lchild = Create_Bt ree_InandPre_Traversal

(pre1,in1);

 Tmp->Rchild = Create_Btree_InandPre_Traversal

(pre2,in2);

 return Tmp;

}

7.7.6 Breadth- and Depth-fi rst Traversals

As defi ned earlier, we know that the traversal of a tree means visiting through the nodes
of a tree. A traversal where the node is visited before its children is called a breadth-fi rst
traversal; a walk where the children are visited prior to the parent is called a depth-
fi rst traversal.

318 daTa sTRucTuREs using c++

 Depth-fi rst Traversal

A traversal where the children are visited (operated on) before
the parent is called the depth-fi rst traversal. We have already
seen a few ways to traverse the elements of a tree. For example,
look at the tree in Fig. 7.40.

A preorder traversal would visit the elements in the order: j,
f, a, d, h, k, z.

This type of traversal is called a depth-fi rst traversal as it
tries to go deeper in the tree before exploring the siblings. For
example, the traversal visits all the descendants of f (i.e., keeps going deeper) before visit-
ing f’s sibling k (and any of k’s descendants).

The two other traversal orders are inorder and postorder. An inorder traversal
would give us the following sequence: a, d, f, h, j, k, z. A postorder traversal would
give us the following sequence: d, a, h, f, z, k, j. These traversals also try to go
deeper fi rst.

For example, the inorder traversal visit s a and d before it explores a’s sibling
h. Likewise, it visits all of the j’s left subtree (i.e., a, d, f, h) before exploring j’s
right subtree (i.e., k, z). The same is tru e for the postorder traversal. It visits all
of the j ’s left subtree (i.e., d, a, h, f) before exploring any part of the right subtree
(i.e., z, k).

Le t us see how it is implemented non-recursively using stack. Progr am Code 7.8 is the
implementation of non-recursive depth-fi rst traversal using stack.

program CoDe 7.8

void BinaryTree :: DFS_Tree()

{

 stack S;

 TreeNode *Tmp=Root;

 do

 {

 cout << Tmp->Data;

 if(Tmp->Rchild != Null)

 S.Push(Tmp->Rchild);

 if(Tmp->Lchild != Null)

 S.Push(Tmp->Lchild);

 if(S.IsEmpty()) break;

 Tmp = S.Pop();

 }

 while(1);

}

Rootj

h

f k

za

d

Fig. 7.40  Sample tree

TREEs 319

Breadth-first Traversal

Depth-first is not the only way to go through the el-
ements of a tree. Another way is to go through them
level-by-level (Fig. 7.41). For example, each ele-
ment exists at a certain level (or depth) in the tree.

So, if we want to visit the elements level-by-
level (and left to right, as usual), we would start at
level 0 with j, then go to level 1 for f and k, then go
to level 2 for a, h, and z, and finally go to level 3 for
d. This level-by-level traversal is called a breadth-first traversal because we explore the
breadth, that is, the full width of the tree at a given level, before going deeper. One may
think about why we should ever traverse a tree breadth wise. Well, there are many reasons
for the same.

Tree of officers Suppose you have a tree
representing some command structure as
in Fig. 7.42.

This tree is meant to represent who is in
charge of the lower ranking of officers. For
example, Mr X is directly responsible for
Mr Y and Mr Z. People of the same rank are
at the same level in the tree. However, to dis-
tinguish between people of the same rank,
those with more experience are on the left and those with less experience are on the right
(i.e., experience from left to right). One way the command would follow to trace the path is
to list the officers in the tree in the breadth-first order. This would give the following result:

Mr X at the top level, say manager; then his subordinates, say department heads as.
Mr Y and Mr Z and their subordinates as Mr A, Mr B, Mr C, Mr D, and Mr E.

In this case, traversing the tree breadth-first makes more
sense as we want to print the results post wise from the high-
est level. As we have seen, the tree traversals go deeper in
the tree first using stack as a helper data structure. Instead,
if we are going to implement a breadth-first traversal of a
tree, we will need the queue as a helper data structure. Let
us consider the tree drawn as in Fig. 7.43.

When we are at element f, that is the only time we have the
access to its two immediate children, a and h. So, when we are at f, we need the data struc-
ture that holds its children. Obviously then, f must have been in the data structure before
them, since we would have put f in when we were at f’s parent. So, if we put the parent in
the data structure before its children, we need to select the data structure that will give us the
order we need. A queue will give us the order we want! A queue enforces the first-in-first-
out (FIFO) order, and we have to process the parent first before its descendants.

Level 0

Level 1

Level 2

Level 3

j

h

f k

za

d

Fig. 7.41  Tree of level 3

Mr X

Mr D

Mr A

Mr E

Mr B

Mr Y Mr Z

Mr C

Fig. 7.42  Officers tree

f

ha

d

Fig. 7.43  Breadth-first 
traversal—sample tree

320 daTa sTRucTuREs using c++

Non-recursive breadth-fi rst traversal is implemented in Program Code 7.9 using a queue.

program CoDe 7.9

void BinaryTree :: BFS_Tree()

{

 queue Q;

 TreeNode *Tmp = Root;

 do

 {

 cout << Tmp->Data;

 if((Tmp->Lchild) != Null)

 Q.Add(Tmp->Lchild);

 if(Tmp->Rchild != Null)

 Q.Add(Tmp->Rchild);

 if(Q.Empty()) break;

 Tmp = Q.Del();

 }

 while(1);

}

7.8 oTHeR TRee opeRaTions

Using traversal as a basic operation, many other operations can be performed on a tree,
such as fi nding the height of the tree, computing the total number of nodes, leaf nodes,
and so on. Let us study a few of such operations.

7.8.1 counting nodes

CountNode() is the function that returns the total count of nodes in a linked binary
tree.

int BinaryTree :: CountNode(TreeNode *Root)
{
 if(Root == Null)
 return 0;
 else
 return(1 + CountNode(Root->Rchild) + CountNode(Root->Lchild));
}

7.8.2 counting leaf nodes

The CountLeaf() operation counts the total number of leaf nodes in a linked binary tree.
Leaf nodes are those with no left or right children.

int BinaryTree :: CountLeaf(TreeNode *Root)
{
 if(Root == Null)
 return 0;

TREEs 321

 else if((Root->Rchild == Null) && (Root->Lchild == Null))
 return(1);
 else
 return(CountLeaf(Root->Lchild) + CountLeaf(Root->Rchild));
}

7.8.3 computing Height of Binary Tree

The TreeHeight() operation computes the height of a linked binary tree. Height of a
tree is the maximum path length in the tree. We can get the path length by traversing the
tree depthwise. Let us consider that an empty tree’s height is 0 and the tree with only one
node has the height 1.

int BinaryTree :: TreeHeight(TreeNode *Root)
{
 int heightL, heightR;
 if(Root == Null)
 return 0;
 if(Root->Lchild == Null && Root->Rchild == Null)
 return 0;
 heightL = TreeHeight(Root->Lchild);
 heightR = TreeHeight(Root->Rchild);
 if(heightR > heightL)
 return(heightR + 1);
 return(heightL + 1);
}

7.8.4 Getting Mirror, Replica, or Tree interchange of Binary Tree

The Mirror() operation finds the mirror of the tree that will interchange all left and right
subtrees in a linked binary tree.

void BinaryTree :: Mirror(TreeNode *Root)
{
 TreeNode *Tmp;
 if(Root != Null)
 {
 Tmp = Root->Lchild;
 Root->Lchild = Root->Rchild;
 Root->Rchild = Tmp;
 Mirror(Root->Lchild);
 Mirror(Root->Rchild);
 }
}

7.8.5 copying Binary Tree

The TreeCopy() operation makes a copy of the linked binary tree. The function should
allocate the necessary nodes and copy the respective contents into them.

TreeNode *BinaryTree :: TreeCopy()
{
 TreeNode *Tmp;
 if(Root == Null)

322 daTa sTRucTuREs using c++

 return Null;
 Tmp = new TreeNode;
 TmpÆLchild = TreeCopy(RootÆLchild);
 TmpÆRchild = TreeCopy(RootÆRchild);
 TmpÆData = RootÆData;
 return Tmp;
}

7.8.6 equality Test

The BTree_Equal() operation checks whether two binary trees are equal. Two trees are
said to be equal if they have the same topology, and all the corresponding nodes are equal.
The same topology refers to the fact that each branch in the first tree corresponds to a
branch in the second tree in the same order and vice versa.

int BinaryTree :: BTree_Equal(Binarytree T1 , BinaryTree T2)
{
 if(Root == Null && T2.Root == Null)
 return 1;
 return(Root && T2.Root);
 &&(Root->Data == T2.Root->Data);
 &&BTree_Equal(Root->Lchild ,T2.Root->Lchild);
 &&BTree_Equal(Root->Rchild, T2.Root->Rchild));
}

7.9 conveRsion of GeneRal TRee To BinaRy TRee

A general tree is one where each node can have an outgoing degree n, where n ≥ 0. Each
node may have many applications such as charts, genesis, networks, and so on. In this
section, we shall study that every general tree can be represented as a binary tree. We can
make out from the study of representations of trees that the representation of a binary tree
is easier than the general tree representation.

Binary trees are the trees where the maximum degree of any node is two. Any general
tree can be represented as a binary tree using the following algorithm:

1. All nodes of a general tree will be the nodes of a binary tree.
2. The root T of a general tree is the root of a binary tree.
3. To obtain a binary tree, we use a relationship between the nodes that can have the

following two characteristics:
(a) The first or the leftmost child–parent relationship
(b) Node-next right sibling relationship

Use the following steps to obtain T' from T:

1. Connect (insert an arrow from) each node to its right sibling (if one exists).
2. Disconnect (remove arrows from) each node from (to) all but the leftmost child.

Examples 7.3 and 7.4 demonstrate the conversion of a general tree into a binary tree.

TREEs 323

 example 7.3 Convert the general tree in
Fig. 7.44 into its corresponding binary tree.

Solution In this tree, the leftmost child
of 2 is 3 and the next right child of 2 is 4.
The binary tree corresponding to the tree is
obtained by connecting together all siblings
of each node (Fig. 7.45) and deleting all links
from a node to its children except for the link
to its leftmost child. The binary tree obtained is
shown in Fig. 7.46.

Fig. 7.45 Step 1

1

2

3

4

5

6 7

8

9

10

1

2

3 4

5

6

7

8 9 10

Fig. 7.46  Binary tree for tree in Fig. 7.44

 example 7.4 Convert the general tree in Fig. 7.47 into its corresponding binary tree.

c
b

d

n

f

j l
k

o q

p

m

ih

e

g

Fig. 7.47 General tree

2 5 7

3

4 6

8

9

10

1

Fig. 7.44 General tree

324 daTa sTRucTuREs using c++

Solution The binary tree representation of Fig. 7.47 is shown in Fig. 7.48.

Fig. 7.48  Binary tree for tree in Fig. 7.47

c

b

d

n

f

j lk

o qpm

ih

e

g

This binary tree can also be drawn in a more familiar format as in Fig. 7.49.

c

b

d

n

f

j

l

k

o

q

p

m
i

h

e
g

Fig. 7.49  Resultant binary tree in format 2

Note that if the order of the children in a tree is not im-
portant (unordered tree), then any of the children of a node
could be its leftmost child and any of its siblings could be its
next right siblings. For the sake of definiteness, we choose
the nodes based upon how the tree is drawn. The node
structure for a binary tree can be shown as in Fig. 7.50.

Data

Child Sibling

Fig. 7.50  Node structure 
for binary tree

TREEs 325

In addition, notice that the transformation from the resultant binary tree to the
original n-ary tree is reversible. That is, given a binary tree representation of a general
tree, we can re-create the general tree. A left node is the leftmost child of its parent.
A right node is a sibling of its parent

Example 7.5 illustrates the conversion of a given tree to a binary tree.

 example 7.5 Convert the following tree in Fig. 7.51 into a binary tree.

1

2 3 4

5 6 7 8 9

Fig. 7.51 Given general tree

Solution Let us connect the siblings and drop all the pointers from the parent to the
children except to the first child as in Fig. 7.52.

Now every child becomes a left child, every sibling becomes a right child, and the
resultant tree is a binary tree as in Fig. 7.53.

1

2

3

8

9

5

4

7

6

Fig. 7.53 Resultant binary tree

1

2 3 4

5 6 7 8 9

Fig. 7.52 Step 1

7.10 BinaRy seaRcH TRee

We know that the sequential search with O(n) searches is slower compared to the bi-
nary search with O(log2 n) searches. If the list is an ordered list stored in a contiguous
sequential storage, the binary search is faster. Though the list is stored, if it is stored in a
linked list, the binary search cannot work as it does not support direct access. However,
when we frequently need to make changes in the list, that is, inserting a new entry or

326 daTa sTRucTuREs using c++

deleting an old entry, then it is much slower to use a contiguous sequential list than a
linked list, as insert() and delete() operations need data movement. On the other
hand, in a linked organization, we need only a few pointer manipulations for insertion
and deletions. If so, we can then find an implementation for an ordered list where we
can search quickly (as with binary search) and insert or delete elements quickly (as with
linked list). A binary tree provides an excellent solution to this problem.

1. We can make entries of an ordered list into the nodes of a binary tree. We shall see that
we can search a target key in O(log2 n) steps, and in addition, we can insert and delete
the key in time O(log2 n).

2. The binary search tree (BST) is a binary tree with the property that the value in a node
is greater than any value in a node’s left subtree and less than any value in the node’s
right subtree.

3. This property guarantees fast search time provided the tree is relatively balanced.

The BSTs are classified as static trees and dynamic trees. Static tree is a BST where the set of
values in the nodes is known in advance and never changes. Dynamic tree is a BST where the
values in a tree may change over time. We shall study the ways of building and balancing these
search trees to guarantee that the trees remain balanced so that the search time is minimum.

Binary search tree A BST is a binary tree that is either empty or where every node
contains a key and satisfies the following conditions:

1. The key in the left child of a node, if it exists, is less than the key in its parent node.
2. The key in the right child of a node, if it exists, is greater than the key in its parent node.
3. The left and right subtrees of a node are again BSTs.

The definition ensures that no two entries in a BST can have equal keys. It is possible
to change the definition to allow entries with equal keys but doing so makes an algorithm
more complicated. We assume that all keys are unique.

Figure 7.54 represents two BSTs.

2

5

10

25

30

28

35

26

6

15

Apr

Aug

Dec

Jan

Mar

Jul

Nov
Feb

Jun

Fig. 7.54 Binary search trees

TREEs 327

The following are the operations commonly performed on a BST:

1. Searching a key
2. Inserting a key
3. Deleting a key
4. Traversing the tree

Program Code 7.10 demonstrates the class for a BST showing the node structure and the
function prototypes to operate on.

program CoDe 7.10

class TreeNode

{

 <data type> Key;

 TreeNode *Lchild, *Rchild;

};

class BSTree

{

 private:

 TreeNode *Root;

 public:

 BSTree() {Root = Null;} // constructor

 void InsertNode(int Key);

 void DeleteNode(int key);

 void Search(int Key);

 bool IsEmpty();

};

7.10.1 inserting a node

To insert a new node into a BST, the keys should remain in proper order so that the result-
ing tree satisfi es the defi nition of a BST.

Let us consider the insertion of the keys Esha, Beena, Deepa, Gilda, Amit, Geeta, and
Chetan, into an initially empty tree in the given order as shown in Fig. 7.55.

If the tree is empty, then the fi rst entry, Esha, when inserted, becomes the root, as
shown in Fig. 7.55(a). Since Beena is less than Esha, insertion goes into the left subtree
of Esha, and so on for all keys. If the tree is not empty, then we must compare the key
with the one in the ro ot. Insert() function can be written both recursively as well as
non-recursively.

328 daTa sTRucTuREs using c++

Esha

(a) (b) (c)

(d) (e)

(f) (g)

Esha

Beena

Deepa

Gilda

Esha

Beena

Deepa

Esha

Beena

Deepa

Esha

Beena

Gilda

Amit

Esha

Beena

Deepa

Gilda

Amit Geeta

Esha

Beena

Deepa

Gilda

Amit Geeta

Chetan

Fig. 7.55 Insertion in BST (a) Insert Esha (b) Insert Beena (c) Insert Deepa
(d) Insert Gilda (e) Insert Amit (f) Insert Geeta (g) Insert Chetan

TREEs 329

The BST ADT was given in Program Code 7.10. The code for the function to insert a node
is listed in Program Code 7.11.

program CoDe 7.11

TreeNode *BSTree :: Insert(int Key)

{

 TreeNode *Tmp, NewNode;

 NewNode = new BSTNode;

 NewNode->Data = Key;

 NewNode->Lchild = NewNode->Rchild = Null:

 if(Root == Null)

 {

 Root = NewNode;

 return;

 }

 Tmp = Root;

 while(Tmp != Null)

 {

 if(Tmp->Data < Key)

 {

 if(Tmp->Lchild == Null)

 {

 Tmp->Lchild = NewNode;

 return;

 }

 Tmp = Tmp->Lchild;

 else if(Tmp->Rchild == Null)

 {

 Tmp->Rchild = NewNode;

 return;

 }

 }

 }

 Tmp = Tmp->Rchild;

}

Initially, the tree is empty. The tree is built through the Insert() function.
Example 7.6 shows the construction of a BST from a given set of elements.

330 daTa sTRucTuREs using c++

 example 7.6 Build a BST from the following set of elements—100, 50, 200, 300,
20, 150, 70, 180, 120, 30—and traverse the tree built in inorder, postorder, and preorder.

Solution The BST is constructed through the following steps:

Step 1: Initially, Root = Null. Now let us insert 100.

100

Head

Step 2: Insert 50. As it is less than the root, that is, 100, and its left child is Null, we
insert it as a left child of the root.

100

50

Step 3: Insert 200. As it is greater than the root, that is, 100, and its right child is Null,
we insert it as a right child of the root.

100

50 200

Step 4: Insert 300. As it is greater than the root, that is, 100, we move right to 200. It
is greater than 200, and its right child is Null, so we insert it as a right child of 200.

100

50 200

300

TREEs 331

Similarly, we insert the other nodes.

Step 5: Insert 20.

100

50

20

200

300

Step 6: Insert 150.

100

50

20 150

200

300

Step 7: Insert 70.

100

50

20 15070

200

300

Step 8: Insert 180.

100

50

20 150

180

70

200

300

332 daTa sTRucTuREs using c++

Step 9: Insert 120.

100

50

20 150

180120

70

200

300

Step 10: Insert 30.

100

50

20 150

180

70

12030

200

300

Traverse the built tree in inorder, postorder, and preorder and display the sequence of
numbers.

Preorder: 100 50 20 30 70 200 150 120 180 300
Inorder: 20 30 50 70 100 120 150 180 200 300
Postorder: 30 20 70 50 120 180 150 300 200 100

Note that the inorder traversal of a BST generates the data in ascending order.

7.10.2 searching for a Key

To search for a target key, we first compare it with the key at the root of the tree. If it is
the same, then the algorithm ends. If it is less than the key at the root, search for the target
key in the left subtree, else search in the right subtree. Let us, for example, search for the
key ‘Saurabh’ in Fig. 7.56.

TREEs 333

Jyoti

Rekha

Teena

Saur-
abh

kaust-
ubh

Kasturi

Anita

Amit

Abolee

Gilda

Deepa

Fig. 7 .56 Binary search tree

We fi rst compare ‘Saurabh’ with the key of the root, ‘Jyoti’. Since ‘Saurabh’ comes after
‘Jyoti’ in alphabetical order, we move to the right side and next compare it with the key
‘Rekha’. Since ‘Saurabh’ comes after ‘Rekha’, we move to the right again and compare
with ‘Teena’. Since ‘Saurabh’ comes before ‘Teena’, we move to the left.

Now the question is to identify what event will be the terminating condition for the
search. The solution is if we fi nd the key, the function fi nishes successfully. If not, we
continue searching until we hit an empty subtree.

Program Code 7.12 shows the implementation of search() function, both non-
recursive and recursive implementat ions.

program CoDe 7.12

TreeNode *BSTree :: Search(int Key)

{

 TreeNode *Tmp = Root;

 while(Tmp)

 {

 if(Tmp->Data == Key)

 return Tmp;

 else if(Tmp->data < Key)

 Tmp = Tmp->Lchild;

 else

 Tmp = Tmp->Rchild;

 }

 return Null;

}

334 daTa sTRucTuREs using c++

class BSTree

{

 private:

 TreeNode * Root;

 TreeNode*BSTree :: Rec_Search(TreeNode *root,

int key);

 public:

 BSTree() {Root = Null;} // constructor

 void InsertNode(int Key);

 void DeleteNode(int key);

 void Search(int Key);

 bool IsEmpty();

 TreeNode* BSTree:: Recursive_Search(int key)

 {

 Rec_Search(Root, int Key);

 }

};

TreeNode *BSTree :: Rec_Search(TreeNode *root, int key)

{

 if(root == Null)

 return(root);

 else

 {

 if(root->Data < Key)

 root = Rec_Search(root->Lchild);

 else if(root->data > Key)

 root = Rec_Search(root->Rchild);

 }

}

The class with recursive function is given in this program code.

7.10.3 Deleting a node

Deletion of a node is one of the frequently performed operations. Let T be a BST and X be
the node of key K to be deleted from T, if it exists in the tree. Let Y be a parent node of X.
There are three cases when a node is to be deleted from a BST. Let us consider each case:

1. X is a leaf node.
2. X has one child.
3. X has both child nodes.

TREEs 335

Case 1: Leaf node deletion If the node to be deleted, say X, is a leaf node, then the
process is easy. We need to change the child link of the parent node, say Y of node to be
deleted to Null, and free the memory occupied by the node to be deleted and then return.
Consider the following tree given in Fig. 7.57. Here, 5 is the node to be deleted.

5

8

10

12

11

14

15

13

16

9

Fig. 7.57 Binary search tree

After deleting the node with data = 5, the BST becomes as in Fig. 7.58.

10

12

16

15

14

119

8

13

Fig. 7.58 BST after deletion
of node with data = 5

Case 2(a): Node not having right subtree If the node to be deleted has a single child link,
that is, either right child or left child is Null and has only one subtree, the process is still
easy. If there is no right subtree, then just link the left subtree of the node to be deleted to its
parent and free its memory. If X denotes the node to be deleted and Y is its parent with X as a
left child, then we need to set Y->Lchild = X->Lchild and free the memory. If X denotes the
node to be deleted and Y is its parent with X as a right child, then we need to set Y->Rchild =
X->Lchild and free the memory. Let the node to be deleted be with data = 16 and data = 8;
the resultant tree is as shown in Figs 7.59(a) and (b), respectively.

Case 2(b): Node not having left subtree If there is no left subtree, then just link the right
subtree of the node to be deleted to its parent and free its memory. If X denotes the node to be
deleted and Y is its parent with X as a left child, then we need to set Y->Lchild = X->Rchild and
free the memory. If X denotes the node to be deleted and Y is its parent with X as a right child,
then we need to set Y->Rchild = X->Rchild and free the memory. Let the node to be deleted be
with data = 5 and data = 12; the resultant tree is as in Figs 7.59(c) and (d), respectively.

336 daTa sTRucTuREs using c++

10

12

16

8

9 11

10

12

16

14

15

13
7

6

5

8

11

3 3

5

6

7
13

15

14

11

12

16

10

10

8
12

16

11

14

13

15

7

6

15

14

16

11

12

10

8

5

6

7

10

8

5

3

6

7 13

14

16

12

15 3

5

6

7 13

14

8

10

16

15

13

14

15

8

10

12

9 11

13
15

14

(a)

(b)

(c)

(d)

Node
to be

deleted

Node
to be

deleted

13

Fig. 7.59 Resultant tree after deletion of node with no left or right subtree
(a) Delete 16 (b) Delete 8 (c) Delete 5 (d) Delete 12

TREEs 337

Case 3: Node having both subtrees Consider the case when the node to be deleted
has both right and left subtrees. This problem is more difficult than the earlier cases. The
question is which subtrees should the parent of the deleted node be linked to, what should
be done with the other subtrees, and where should the remaining subtrees be linked. One
of the solutions is to attach the right subtree in place of the deleted node, and then attach
the left subtree onto an appropriate node of the right subtree. This is pictorially shown
in Fig. 7.60.

(a)

(b)

(c)

Delete
xx

y z y

z

10

8

5

3

6

7

11

12

16

14

13

15

18
20

17

10

8

5

3

6

7

11

12

14

13

15

18

20

17

Fig. 7.60 Deleting node with both subtrees (a) Delete x
(b) Delete 16 (c) Resultant tree after deletion

338 daTa sTRucTuREs using c++

Another way to delete X from T is by fi rst deleting the inorder successor of the node
X, say Z, then replace the data content in the node X by the data content in the node Z
(successor of the node X). Inorder successor means the node that comes after the node X
during the inorder traversal of T.

Let us consider Fig. 7.61, and let the node to be deleted be the node with data 12.

10

8

5 9
11

14

15

17

16

12

Delete
12

8

5 9
11

15 17

16

14

10

Fig. 7.61 Deleting the node with data = 12

In this process, we are actually trying to maintain the properties and the structure of a
binary tree as much as possible. While deleting a node with both subtrees, we attempt
searching the best suitable node to place at the deleted node. There are two alternatives
to achieve so:

1. One can search for the largest data in the deleted node’s left subtree and replace the
deleted node with it.

2. One can search for the smallest data from the deleted node’s right sub tree and replace
the deleted node with it.

Program Code 7.13 includes implementation of the delete() functi on with all cases such
as the node to be deleted being a leaf node or the node having one child or the node having
both child nodes.

program CoDe 7.13

// function to delete a node from BST

TreeNode *BSTree :: del(int deldata)

{

 int found = 0;

 int fl ag;

 TreeNode *temp = Root, *parent, *x;

 if(Root == Null)

 {

 cout << endl << "\t BST is empty";

 return Null;

 }

TREEs 339

 else

 {

 parent = temp;

 //Search a BST node to be deleted & its parent

 while(temp != Null)

 {

 if(temp->Data == deldata)

 break; // found

 if(deldata < temp->Data)

 {

 parent = temp;

 temp = temp->Lchild;

 }

 else

 {

 parent = temp;

 temp = temp->Rchild;

 }

 } // end of search

 if(temp == Null)

 return(Null);

 else

 {

 //case of BST node having right children

 if(temp->Rchild != Null)

 {

 //fi nd leftmost of right BST node

 //cout << "\n Temp is having right child";

 parent = temp;

 x = temp->Rchild;

 while(x->Lchild != Null)

 {

 parent = x;

 x = x->Lchild;

 }

 temp->Data = x->Data;

 temp = x;

 }

 //case of BST node being a leaf Node

 if(temp->Lchild == Null && temp->Rchild == Null)

 {

 //cout << "\n Leaf node";

 if(temp != root)

340 daTa sTRucTuREs using c++

 {

 if(parent->lLchild == temp)

 parent->Rchild = Null;

 else

 parent->Rchild = Null;

 }

 else

 root = Null;

 delete temp;

 return(root);

 }

 else if(temp->Lchild!=Null&&temp->Rchild ==

Null)

 //case of BST node having left children

 {

 //cout << “\n only left”;

 if(temp != root)

 {

 if(parent->Lchild == temp)

 parent->Lchild = temp->Lchild;

 else

 parent->Rchild = temp->Lchild;

 }

 else

 root = temp->Lchild;

 delete temp;

 return(root);

 }

 }

 }

}

7.10.4 Binary Tree and Binary search Tree

We have studied both binary tree and BST. A BST is a special case of the binary tree. The
comparison of both yields the following points:

1. Both of them are trees with degree two, that is, each node has utmost two children.
This makes the implementation of both easy.

2. The BST is a binary tree with the property that the value in a node is greater than any
value in a node’s left subtree and less than any value in a node’s right subtree.

TREEs 341

3. The BST guarantees fast search time provided the tree is relatively balanced, whereas
for a binary tree, the search is relatively slow.

Consider the binary tree and BST shown in Fig. 7.62.

1

2

5

6

8

3

9

4

7

2

1

5

6
8

3

9

4

7

Fig. 7.62 Binary tree and binary search tree

In these trees, if we search for a node with data = 7, the number of searches varies in both
trees as we need 5 comparisons for binary tree and 2 comparisons for BST.

Given a binary tree with no duplicates, we can construct a BST from a binary tree. The
process is easy; one can traverse the binary tree and construct a BST for it by inserting
each node in an initially empty BST.

7.11 THReaDeD BinaRy TRee

We have studied the linked implementation of binary trees and the fundamental opera-
tions such as inserting a node, deleting a node, and traversing the tree. There are two
key observations—first is that for all leaf nodes and those with one child the Lchild and/
or Rchild fields are set to Null. The second observation is in the traversal process. The
traversal functions use stack to store information about those nodes whose processing has
not been finished. In case of non-recursive traversals, user-defined stack is used, and in
case of recursive traversals internal stack is used. There is additional time for processing,
but additional space for storing the stack is required. This is not a perceptible problem
when a tree is of larger size.

To solve this problem, we can modify the node structure to hold information about
other nodes in the tree such as parent, sibling, and so on. A.J. Perlis and C. Thornton
have suggested replacing all the Null links by pointers, called threads. A tree with a
thread is called a threaded binary tree (TBT). Note that both threads and tree pointers

342 daTa sTRucTuREs using c++

are pointers to nodes in the tree. The difference is that the threads are not structural
pointers of the tree. They can be removed but still the tree does not change. Tree pointers
are the pointers that join and hold the tree together. Threads utilize the Null pointers’
waste space to improve the processing efficiency. One such application is to use these
Null pointers to make traversals faster. In a left Null pointer, we store a pointer to the
node’s inorder successor. This allows us to traverse the tree both left to right and right
to left without recursion.

Though advantageous, we need to differentiate between a thread and a pointer. In the
pictorial representation in Fig. 7.63, we draw the threads as dashed lines and the non-
threads as solid lines.

Thread

Pointer

Fig. 7.63 Representation of threads and pointers

However, we need to differentiate between the thread and the pointer in actual imple-
mentation, that is, in the memory representation of a tree.

Let us use two additional fields—Lbit and Rbit to distinguish between a thread and
a pointer.

Let us also use a function IsThread() that returns true if the pointer is a thread, and
false if it is the conventional pointer to the child in the tree.

Lbit(node) = 1 if Left(node) is a thread

= 0 if Left(node) is a child pointer

Rbit(node) = 1 if Right(node) is a thread

= 0 if Right(node) is a child pointer

Class TBTNode
{
 boolean Lbit, Rbit;
 <Datatype> Data;
 TBTNode *Left, *Right;
}; y

Let us consider a tree and also a tree with threads as in Figs 7.64(a) and (b),
respectively.

TREEs 343

Root Root

(a)

1 1

2
3 3

7 76 6
5 54 4

8 8

2

(b)

Fig. 7.64 Threaded binary tree (a) Tree (b) Corresponding threaded binary tree

In Fig. 7.64, note that the two threads Left(4)
and Right(7) have been left dangling. To avoid
such dangling pointers, we use an additional
node, a head node of all threaded trees. The tree
T is the left subtree of the head node. An empty
tree is represented in Fig. 7.65.

The tree in Fig. 7.64 has its TBT drawn. In the TBT as in Fig. 7.65, two threads that
are the left thread of a node with data = 4 and the right thread of a node with data = 7 are
dangling as they remain unassigned. To avoid this, a head node is added in the tree. The
tree in Fig. 7.64 can be redrawn as in Fig. 7.66.

0 1

0 01

0 02 0 03

0 04 1 15 1 16 1 17

1 18

−

Fig. 7.66  Memory representation of TBT in Fig. 7.64

Here, 1 (true) shows it’s a thread and 0 (false) represents that it’s not a thread but a pointer
to the child subtree.

Lbit

1 0−

RbitLeft Data Right

Fig. 7.65  An empty threaded binary tree

344 daTa sTRucTuREs using c++

7.11.1 Threading a Binary Tree

To build a threaded tree, first build a standard binary tree. Then, traverse the tree, chang-
ing the Null right pointers to point to their successors, for inorder TBT. Let succ(N) be
a function that returns the inorder successor of the node N. Let pred(N) be a function that
is an inorder predecessor of node N. The successor of N is the node that would be printed
after N when traversing the tree in inorder. The predecessor of N is the node that imme-
diately precedes the node N when traversing the tree in inorder. Hence, for inorder TBT,
we replace Right(N) (if Null) to succ(N) and replace Left(N) (if Null) to pred(N).
In Fig. 7.66, the inorder successor of 8 is 2, so the right child of 8 is made a thread which
is pointing to 2 and Rbit field is made 4.

If we are given a binary tree, it is natural to think how to set threads so that the tree
becomes a threaded tree. Threading a binary tree is an interesting problem. The first
idea could be to find each Null pointer and insert the proper thread. However, when
we reach a Null pointer, we have no way to determine what the proper thread is. The
proper approach would be based on taking any non-leaf (branch) node and setting the
threads that would point to it. The successor and predecessor of a node A are defined
as follows:

1. successor—the leftmost node in A’s right subtree
2. predecessor—the rightmost node in A’s left subtree

The algorithm must traverse the tree level-by-level, setting all the threads that should
point to each node as it processes the node. Therefore, each thread set before the node
containing the thread is processed. In fact, if the node is a leaf node, it need not be pro-
cessed at all.

Let us use a queue to traverse the tree by level. We need to traverse the tree once using
the helper data structure for threading, and it can later be traversed without any helper
data structure such as stack. After the threads are inserted to the node being processed, its
children go on the queue. During preprocessing, the thread to the header must be inserted
in the tree’s leftmost node as the left thread, and the thread to the header must be inserted
in the tree’s rightmost node as the right thread.

In fact, there are three ways to thread a binary tree while corresponding to inorder,
preorder, and postorder traversals.

1. The TBT corresponding to inorder traversal is called inorder threading.
2. The TBT corresponding to preorder traversal is called preorder threading.
3. The TBT corresponding to postorder traversal is called postorder threading.

To build a TBT, there is one more method that is popularly used. In this method, the
threads are created while building the binary tree. Program Code 7.14 is the C++ code to
demonstrate this method.

TREEs 345

program CoDe 7.14

// function to create inorder threaded binary search tree

void ThreadedBinaryTree :: create()

{

 Char ans;

 int fl ag;

 TBTNode *node, *temp;

 Head = new TBTNode; // create head

 Head->Left = Head;

 Head->Right = Head;

 Head->Rbit = Heat->Lbit = 1;

 // create root for TBST

 Root = new TBTNode;

 cout << “\n Enter data for root”;

 cin >> Root->data;

 Root->Left = Head;

 Root->Right = Head;

 // attach root to left of Head

 Head->Left = Root;

 // make thread bit of root 0

 Root->Lbit = Root->Rbit = 0;

 do

 {

 // create new node for a tree

 node = newTBTNode;

 cout << “\n Enter data”;

 cin >> node- data;

 node->Lbit = node->Rbit = 1;

 temp = Root;

 while

 {

 if(node->data < temp->data)

 {

 if(temp->Lbit == 1)

 // check leaf node and attach

 {

 node->Left = temp->Left;

 node->Right = temp;

 // attach node to left of temp

 temp->Lbit = 0;

346 daTa sTRucTuREs using c++

 temp->Left = node;

 break;

 }

 else

 temp = temp->Left;

 }

 else

 {

 if(temp->Rbit == 1) // is thread?

 {

 node->Left = temp;

 node->Right = temp->Right;

 // attaching node to right of temp

 temp->Right = node;

 temp->Rbit = 0;

 break;

 }

 else

 temp = temp->Right;

 }

 } // end of while

 cout >> “Do you want to add more?”;

 cin >> ans;

 }

 while(ans == ’y’||ans == ’Y’);

} // end of create

Sample Run

1. Insert root data 50 (Fig. 7.67).

0 0

1 150

Fig. 7.67  Insert root 50

TREEs 347

2. Attach the node with data 30 (Fig. 7.68).

0 1

0 150

1 1

Node

Temp

30

Fig. 7.68  Insert 30

Attach the left of temp copy to the left of the temp node to make the right child of the
node as temp.

3. Attach the node with data 60 (Fig. 7.69).

0 1

0 150

1 1

Node

Temp

30 1 160

Fig. 7.69  Insert 60

Copy the right of temp to the right of the node to make the left of node as temp. Attach
the node to the right of temp to make Rbit 0.

4. Attach the node with data 55 (Fig. 7.70).
Copy the left of temp to the left of node. Make the right of node as temp. Then, attach

tnode to the left of temp. Make the Lbit of temp 0.

348 daTa sTRucTuREs using c++

0 1

0 050

1 1

Node

Temp

30 0 160

1 155

Fig. 7.70 Insert 55

The implementation of function for creating a TBT is given in Program Code 7.15.

program CoDe 7.15
//Function to create a tree as per user choice

void TBTree::create()

{

 TBTNode *temp,*prev;

 char ch,x;

 Root = Null;

 do

 {

 temp = new TBTNode;

 temp->left = temp->right = head;

 temp->lbit = temp->rbit = 0;

 cout << “\nEnter the char data:”;

 cin >> temp->data;

 if(Root == Null)

 {

 Root = temp;

 head->left = Root;

 head->lbit = 1;

 }

 else

 {

TREEs 349

 prev = Root;

 while(prev != Null)

 {

 cout << "Left child or Right child of (r/l):

" << prev->data << " :";

 cin >> x;

 if(x == 'l' || x == 'L')

 {

 if(prev->lbit == 0)

 {

 temp->left = prev->left;

 prev->left = temp;

 prev->lbit = 1;

 temp->right = prev;

 break;

 }

 else

 prev = prev->left;

 }

 else

 {

 if(x == 'r' || x == 'R')

 {

 if(prev->rbit == 0)

 {

 temp->right = prev->right;

 prev->right = temp;

 prev->rbit = 1;

 temp->left = prev;

 break;

 }

 else

 prev = prev->right;

 }

 }

 }

 }

 cout <<"Do you want to Add more?";

 cin >> ch;

 }

 while(ch == 'y' || ch == 'Y');

}

350 daTa sTRucTuREs using c++

7.11.2 Right-threaded Binary Tree

In a right-threaded binary tree each Null right link is re placed by a special link to the suc-
ces sor of that node under inorder traversal, called a right thread. The right thread will help
us to traverse freely in inorder since we need to only follow either an ordinary link or a
thread to fi nd the next node to visit. When we replace each Null left link by a special link
to the predecessor of the node (left thread) under inorder traversal, the result is fully a TBT.

7.11.3 inorder Traversal

It can be realized that the inorder traversal in an inorder TBT is very easy. However, the
other traversals are a bit diffi cult. If the preorder or postorder threading of a binary tree is
known, then the corresponding traversal can be obtained effi ciently.

The code for inorder traversal of a TBT is listed in Program Code 7.16.

program CoDe 7.16
// Traverse a threaded tree in inorder

void TBTree::Inorder()

{

 TBTNode *temp;

 temp = Root;

 int fl ag = 0;

 if(Root == Null)

 {

 cout << “\nTree not present”;

 }

 else

 {

 while(temp != head)

 {

 if(temp->lbit == 1 && fl ag == 0)

 // go to left till Lbit is 1(till child)

 {

 temp = temp->left;

 }

 else

 {

 cout << temp->data << “ ”; // display data

 if(temp->rbit == 1) // go to right by child

 {

 temp = temp->right;

 fl ag = 0;

TREEs 351

 }

 else // go to right by thread

 {

 temp = temp->right;

 fl ag = 1;

 }

 }

 }

 }

}

Note that this traversal does not use stack, whereas for non-threaded binary tree, we
require a stack as an intermediate data structure.

The computing time is O(n) for a binary tree with n nodes.

Example of inorder traversal of threaded binary tree Figure 7.71 shows a TBT
whose inorder traversal sequence is—Megha, Amit, Arvind, Varsha, Abolee, Hemant,
Saurabh.

Amit

Saurabh

Abolee

HemantVarsha

Arvind

Megha

Fig. 7.71 Inorder traversal of a TBT

352 daTa sTRucTuREs using c++

7.11.4 preorder Traversal

These threads also simplify the algorithm for preorder and postorder traversals. Program
Code 7.17 is the C++ routine for preorder travers al of a TBT.

program CoDe 7.17
// Traverse a threaded tree in preorder

void TBTree :: preorder()

{

 TBTNode *temp;

 int fl ag = 0;

 temp = Root;

 while(temp != head)

 {

 if(fl ag == 0) cout << temp->data <<" ";

 if(temp->lbit == 1 && fl ag == 0) // go left till

lbit is 1

 {

 temp = temp->left;

 }

 else if(temp->rbit == 1) // go to right by child

 {

 temp = temp->right;

 fl ag = 0;

 }

 else // go to right by thread

 {

 temp = temp->right;

 fl ag = 1;

 }

 }

} //End of function

7.11.5 insert to Right of a node

Consider Figs 7.72(a) and (b). We want to insert the node t to the right of the node s in
both the threaded trees.

TREEs 353

A

B C
s s

t t
D

A

B C

D

A

B

C D

H
t

s

E

F G

A

B

C D
H

t

(b)

(a)

s

E

F G

Fig. 7.72 Inserting nodes in a TBT (a) Inserting node D (b) Inserting node H

354 daTa sTRucTuREs using c++

7.11.6 Deleting a node

Consider Fig. 7.73. We want to delete the node labelled D from the TBT.

A

B

C D

H

E

F G

A

B

C
H

E

F G

Fig. 7.73  Deleting a node from a TBT

7.11.7 pros and cons

A TBT has some advantages and disadvantages over a non-threaded binary tree. They are
as follows:

1. The traversal for a TBT is straightforward. No recursion or stack is needed. Once we
locate the leftmost node, we loop following the thread to the next node. When we find
the null thread, the traversal is complete.

TREEs 355

2. At any node, the node’s successor and predecessor can be located. In case of non-
threaded binary tree, this task is time consuming and difficult. In addition, stack is
needed for the same.

3. Threads are usually more upward, whereas links are downward. Thus, in a threaded
tree, we can traverse in either direction, and the nodes are in fact circularly linked.
Hence, any node can be reached from any other node.

4. Insertions into and deletions from a threaded tree are time consuming as the link and
thread are to be manipulated.

7.12 applicaTions of BinaRy TRees

There is a vast set of applications of the binary tree in addition to searching. The applica-
tions discussed in this section are gaming, expression tree, Huffman tree for coding, and
decision trees.

7.12.1 expression Tree

A binary tree storing or representing an arithmetic expression is called as expression tree.
The leaves of an expression tree are operands. Operands could be variables or constants.
The branch nodes (internal nodes) represent the operators. A binary tree is the most suit-
able one for arithmetic expressions as it contains either binary or unary operators. The
expression tree for expression E, is shown in Fig. 7.74.

Let E = ((A ¥ B) + (C - D))/(C - E)

A B C D

C

E

/

+

× −

−

Fig. 7.74  Expression tree for E = ((A × B)
+ (C − D))/(C − E)

We have studied that the Polish notations are very useful in the compilation process.
There is a close relationship between binary trees and expressions in prefix and postfix
notations.

356 daTa sTRucTuREs using c++

In the expression tree as in Fig. 7.74, an infix expression is represented by representing
the node as an operator, and the left and right subtrees are the left and right operands of
that operator.

If we traverse this tree in preorder, we visit the nodes in the order of: / + ¥ AB - CD -
CE, and this is a prefix form of the infix expression. On the other hand, if we traverse the
tree in postorder, the nodes are visited in the following order: AB ¥ CD - E - /, which is
a postfix equivalent of the infix notation.

Example 7.7 represents the postfix equivalent of a given infix notation.

 example 7.7 Represent AB + D ¥ EFAD ¥ + / + C + as an expression tree.

Solution Figure 7.75 represents the given expression in the form of a tree.

A
A

B

C

D

D

F

E

/

+

+

+

+
×

×

Fig. 7.75  Expression tree for E = AB + D ¥ EFAD ¥ + / + C +

Construction of Expression Tree

We have studied the binary tree representation of an expression. Let us study how to con-
struct a tree when the infix expression is given. First, the infix expression is converted to
a postfix expression. Use Algorithm 7.3 to construct an expression tree.

algorithm 7.3

(Scan the postfix expression from left to right.)

1. Get one token from expression E.
2. Create a node say curr for it.

TREEs 357

3. If (symbol is operand) then
(a) push a node curr onto a stack.

4. else if (symbol is operator) then
(a) T2 = pop()
 T1 = pop()
 Here T1 and T2 are pointers to left trees and right subtrees of the operator,

respectively.
(b) Attach T1 to left and T2 to the right of curr.
(c) Form a tree whose root is the operator and T1 and T2 are left and right children,

respectively.
(d) Push the node curr having attached left and right subtrees onto a stack.

5. Repeat steps 1–4 till the end of expression.
6. Pop the node curr from the stack, which is a pointer to the root of expression tree.

Example 7.8 shows the steps to construct an expression tree for a given expression, E.

 example 7.8 Represent E = (a + b ¥ c)/d as an expression tree.

Solution Let us consider the expression E = (a + b ¥ c)/d

Postfix expression = abc ¥+ d/
The following steps of operations are performed:

1. The operands a, b, c will be pushed onto the stack by forming a one-node tree of each
and pushing a pointer to each onto a stack (Fig. 7.76).

Stack

abc ×+ d/

ba c

Fig. 7.76 Step 1

2. When the operator ¥ has been encountered, the top two pointers are popped. A tree is
formed with ¥ as a root and the two popped pointers as children. The pointer to the root
is pushed onto a stack (Fig. 7.77).

358 daTa sTRucTuREs using c++

Stack

abc ×+ d/

×a

b c

Fig. 7.77 Step 2

3. After the operator + has been encountered, the procedure as in step 2 is executed
(Fig. 7.78).

Stack

abc ×+ d/

+

a ×

b c

Fig. 7.78  Step 3

4. As the operand d has been encountered, it is pushed as a pointer to the one-node
tree (Fig. 7.79).

Stack

abc ×+ d/

+

a ×

b c

d

Fig. 7.79  Step 4

TREEs 359

5. After the operator has been encountered, it follows the procedure as in step 2
(Fig. 7.80).

Stack

abc ×+ d/

/

a
d

+

a ×

b c

Fig. 7.80 Step 5

6. Pop the stack as the expression has been processed. This returns a pointer to the
expression tree’s root.

7.12.2 Decision Tree

In practice there are many applications which use trees to store data for rapid retrieval,
the most useful application being decision making. These applications, along with a
tree as one of the data structures, often oblige some additional structures on the tree.
Consider an example tree, a BST. In the BST, the data in a left or right subtree has a
particular relationship with the data in the node (such as being greater than or smaller
than the data).

We can use trees to arrange the outcomes of various decisions in the required order. We
can denote these actions in the form of a tree, called the decision tree.

The decision tree is a classifier in the form of a tree where each node is either a branch
node or a leaf node. Here the leaf node denotes the value of the target attribute (class) of
examples and the branch node is a decision node that denotes some test to be carried out
and takes a decision based on a single attribute value, with one branch and subtree for
each possible outcome of the test. A decision tree can be used for classification by starting
at the root of the tree and moving through it until a leaf node that provides the classifica-
tion of the instance is reached. The decision tree training is a typical inductive approach
to gain the knowledge on classification.

For example, consider the execution of a C program. The initial part of the program
contains pre-processor directives followed by global variables and functions including

360 daTa sTRucTuREs using c++

the main function. Initially, the operating systems need to load the code and constants,
initialize variables (if any), read the input data, and print the required information. The
sequence of these actions depends on the code written. Generally, most programs involve
more than simple input and output statements. The program includes conditional state-
ments that use if or case statements. It may also include unconditional loops (for loop)
or conditional loops (while and repeat loops).

In such cases, the program execution flow depends on the results of testing the val-
ues of the variables and expressions. For example, after testing a Boolean expression
in an if statement, the program may execute the statements following it or the state-
ments in the corresponding else part. Similarly, after examining a while condition,
the program may repeat the code within the loop, or may continue with the code fol-
lowing the loop.

We can visualize these different ways in which a program may execute through a
decision tree. Execution of a C program starts with a call to the function main(), or
we can represent the root of the decision tree with the code that is always run at the
start of a program till the first conditional statement. However, at the first conditional
statement, the program executes one code segment or another depending upon the
value of the condition. In such a situation, the decision tree can be drawn with a child
of the root for each code option that the program code follows. For an if statement,
there are two children of the root—one if the Boolean expression is true where the
then clause is executed, and another in case the expression is false. For a case state-
ment, a different child is drawn for each different case identified by the code, because
different paths are followed for each of these situations. Figure 7.81 illustrates all such
cases.

If statement

Then

Case statement

Case 1 Case 2 Case 3 Case 4 Case 5 Case n

Else

While loop

Execute
0 times

Execute
once

Execute
twice

Execute
thrice

Execute 4 or
more times

Fig. 7.81  Decision trees for program structures

TREEs 361

Figure 7.80 represents pseudo-structures for the Pascal language. In the figure, for a
while loop, the body of the loop might be executed 0, 1, 2, 3, or more times, after which
the program execution continues with the code that follows the while statement. Con-
versely, the execution flow first tests the exit condition and then either exits the loop or
starts the body of the loop for the first time. If the loop is executed for the first time, then
the execution arrives at the exit condition a second time and either exits the loop or con-
tinues with the loop a second time. The work within the loop continues until the system
tests the exit condition and determines that the loop should not continue. In tracing the
program execution, we add each individual decision into another branch inside a general
decision tree.

The example demonstrates the usefulness of the decision trees to demonstrate and test
all possible execution paths that might be followed within a program or a piece of code.
Decision trees not only provide a mechanism for demonstrating the code execution but they
also provide a structure for examining how general algorithms might work. Consider an
example of searching an element in a sorted list. We can use a decision tree to demonstrate
the working of searching of member in the list. For binary search to be applied on the sorted
list, various comparisons are required for deciding which set of elements are to be further
searched or whether the search is to be terminated. In a BST, when an element is initially
compared with the root, if the search is successful, the process terminates. If the element
is lesser than the root, then it is searched in the left subtree, and otherwise in right subtree.

The advantages of decision trees are the following:

1. Decision trees are most suitable for listing all possible decisions from the current state.
2. They are suitable for classification without the need for many computations.

Decision trees are popularly used in expert systems. Although decision trees seem to be
very useful, they suffer from a few drawbacks, such as the following:

1. Decision trees are prone to errors in classification problems with more classes
2. They can be computationally expensive for complex problems.

7.12.3 Huffman’s coding

One of the most important applications of the binary tree is in communication. Con-
sider an example of transmitting an English text. We need to represent this text by a
sequence of 0s and 1s. To represent the message made of English letters in binary, we
represent each alphabet in the binary form, that is, as a sequence of 0s and 1s. Each
alphabet must be represented with a unique binary code. We need to assign a code, each
of length 5 to each letter in the alphabet as 24 < 26 < 25. Now to send a message, we have
to simply transmit a long string of 0s and 1s containing the sequences for the letters in
the message. At the receiving end, the message received will be divided into sequences
of length 5, and the corresponding message is recognized.

362 daTa sTRucTuREs using c++

Let us consider that a sequence of 1000 letters is to be sent. Now, the total bits to be
transmitted will be 1000 ¥ 5, as we represent each letter with 5 bits. It may happen that
among those 1000 letters, the letters a, i, r, e, t, and n appeared maximum number of times
in the sequence.

It is observed that the letters in the alphabet are not used with uniform frequencies.
For example, the letters e and t are used more frequently than x and z. Hence, we may
represent the more frequently used letters with shorter sequences and less frequently used
letters with longer sequences so that the overall length of the string will be reduced. In
this example, if a, i, r, e, t, and n are assigned say in the sequence of length 2, and let us
assume that each one of them appeared 100 times among the sequence of 1000 letters.
Now, the length will be reduced by a factor

= (3 × 100 × 6)

each of a, i, r, e, t, and n

appeared 100 times

length is reduced by 3

Such a coding is called as variable length coding. Even though the variable length
coding reduces the overall length of the sequence to be transmitted, an interesting
problem arises. When we represent the letters by the sequences of various lengths,
there is the question of how one at the receiving end can unambiguously divide a long
string of 0s and 1s into the sequences corresponding to the letters. Let us consider an
example. Let us use the sequence 00 to represent the letter ‘a’, 01 to represent letter
‘n’, and 0001 to represent the letter ‘t’. Suppose we want to transmit a text of two let-
ters ‘an’ by transmitting the sequence 0001. Now, at the receiving end, it is difficult
to determine whether the transmitted sequence was ‘an’ or ‘t’. This is because 00 is a
prefix of the code 0001. We must assign variable sequences to the letters such that no
code is the prefix of the other.

A set of sequences is said to be a prefix code if no sequence in the set is the prefix
of another sequence in the set. For example, the set {000, 001, 01, 10, 11} is a pre-
fix code, whereas the set {1, 00, 000, 0001} is not. Hence we must use prefix codes
to represent the letters in alphabet. If we represent the letters in the alphabet by the
sequences in a prefix code, it will always be possible to divide a received string into
sequences representing the letters in a message unambiguously. One of the most use-
ful applications of binary tree is in generating the prefix codes for a given binary tree.
We label the two edges incident from each branch node with 0 and 1. To each leaf,

TREEs 363

assign a code that is a sequence of labels of the edges in the path from the root to that
of leaf (Fig. 7.82).

0

0 0

0

{000} {001}

{01} {10} {11}

1

1 1

1

Fig. 7.82  Prefix codes

It is always possible to divide a received sequence of 0s and 1s into the sequences that
are in a prefix code. Starting at the root of the binary tree, we shall trace a downward path
in the tree according to the bits in the received sequence. At a branch node, we shall fol-
low the edge labelled with 0 if we encounter a 0 in the received sequence, and we shall
follow the edge labelled with a 1 if we encounter a 1 in the received sequence. When the
downward path reaches a leaf, it shows that the prefix code has been detected. For the
next sequence, we should return to the root of the tree. This process clearly assures that
the variable length code, which is the prefix code, has no ambiguity.

Now the problem is about constructing a binary tree. Suppose we are given a set of
weights w1, w2, ..., wn. Let us assume that w1 £ w2 £ ... £ wn. A binary tree that has n leaves
with weights w1, w2, ..., wn assigned to the leaves is called as binary tree for weight w1,
w2, ..., wn. Our aim is to assign smaller code to the leaf of higher weights, as the weights
here denote the frequency of occurrence. The length of sequence of bits assigned to a leaf
node is path length of that node. Hence, we want lesser path length to the leaf nodes with
higher weights.

Let the weight of a tree T be denoted by w(T). The weight of a binary tree for weights
w1, w2, ..., wn is given by

w w L w
n

i i() (), whereT =
i=1∑

L(wi) = path length of node of weight wi.

A binary tree for weights w1, w2, ..., wn is said to be an optimal binary tree if
its weight is minimum. Hence, our aim is to construct a tree such that w(T) is
minimum.

364 daTa sTRucTuREs using c++

D.A. Huffman has given a very elegant procedure to construct an optimal binary tree.
Suppose we want an optimal tree for the weights w1, w2, ..., wn. Let a be a branch node of
largest path length in the tree. Suppose the weights assigned to the sons of a are wb and
wc. Thus, l(wb) ≥ l(w1), and l(wb) ≥ l(w2). In addition, since the tree is optimal, we should
have l(wb) £ l(w1), and l(wb) £ l(w2).

Huffman’s algorithm The algorithm is given as follows:

1. Organize the data into a row as ascending order frequency weights. Each character is
the leaf node of a tree.

2. Find two nodes with the smallest combined weights and join them to form the third
node. This will form a new two-level tree. The weight of the new third node is the
addition of two nodes.

3. Repeat step 2 till all the nodes on every level are combined to form a single tree.

7.12.4 Game Trees

One of the most exciting applications of trees is in games such as tic-tac-toe, chess, nim,
checkers, go, and so on. We shall consider tic-tac-toe as an example for explaining this
application of trees.

The game starts with an empty board and each time a player tries for the best move
from the given board position. Each player is initially assigned a symbol of either 'X'
or 'O'. Depending on the board position the user has to decide how good the position
seems to be for a player. For implementation we need to compute a value say, Win-
Value, which of course will have the largest possible value for a winning position,
and the smallest value for a losing position. An example of such a WinValue compu-
tation could be the difference between the number of rows, columns, and diagonals
that are left open for one player and those left open for the opponent game partner.
Here we can omit the values 9 and −9 as they represent the values for a position that
wins and loses, respectively. While computing this value we need not further search
for other possible board positions that might result from the current positions, as it
just estimates a motionless board position. We can write a function while implement-
ing this game that computes and returns the WinValue. Let us name such a function
as ComputeWinValue(). Considering all the possible positions, it is possible to con-
struct a tree of the possible board positions that may result from each possible move,
called a game tree.

Now with a given board position, we need to determine the next best move and
for that we need to consider all the possible moves and respective resulting positions
after the move. For a player the best move is the one that results in a board position
with the highest WinValue. Careful observation leads to the conclusion that this cal-
culation however, does not always yield the best move. A sample position and the
five possible moves that player with symbol X can make from that current position is
shown in Fig. 7.83.

TREEs 365

x

x

x

x x

x

x

x x

x

x

x

x

x x

x

12222

0

0

0 0 0

00000

0 0

Fig. 7.83  An example game tree and WinValues of each possible move

Now if we compute WinValue for the five resulting positions, using the ComputeWin-
Value() function, we get the values as shown in Fig. 7.83. Among them four of the
moves result with the same maximum WinValue. One can note that the move in the fourth
position definitely leads to the victory for the player with the marking symbol X, and the
other three moves would lead to the victory of the opponent with the symbol 0.

This shows that the move that yields the smallest WinValue is better than the moves
that yield a higher WinValue. The static ComputeWinValue() function, therefore, is not
sufficient to guess the result of the game. Hence we need to revise this function. We can
have such a function for simple games such as tic-tac-toe, but often, games such as chess
are too complex for static functions to determine the best possible move computation.

The best way to predict and play is to look ahead of several moves so as to get a sig-
nificantly better choice of the next move. Let the variable LookAhead be the number of
future moves to be taken care of. Considering all the possible positions, it is possible to
construct a tree of the possible board positions that may result from each possible move
as shown in Fig. 7.84 which shows the game tree for a tic-tac-toe game considering a
look-ahead of level of 2.

+

+ + + + + + + + + + + +

1

1 −1

x

x x x x x
x x

x x x x x
0

000

0 00
0

0

00

0
0

0

−2

−1 −1 −2

−
x

x

1 1 1 102

− −

Fig. 7.84  A game tree for tic-tac-toe

366 daTa sTRucTuREs using c++

Here the height of the tree is the maximum level of the nodes which represents
the look-ahead level of the game. Let us denote the player who must begin the game
with the ‘+’ symbol (plus sign) and his or her opponent as ‘-’ symbol (minus sign).
Now we need to compute the best move for ‘+’ from the root position. The remaining
nodes of the tree may be designated as ‘+’ nodes or ‘-’ nodes, depending upon which
player must move from that node’s position. Each node of Fig. 7.84 is marked as a ‘+’
node or ‘-' node, depending upon which player must move from that node’s position.
Consider the case where the game positions of all the child nodes of a ‘+’ node have
been evaluated for player ‘+’. Then obviously, a ‘+’ should select the move that paves
the way to the maximum WinValue. Thus, the value of a ‘+’ node to player ‘+’ is the
maximum of the values of its child nodes. On the other hand, once ‘+’ moves, ‘-’ will
choose the move that results in the minimum of the values of its child nodes.

For a player with the symbol 0, Fig. 7.85 shows the best possible moves.

x
x x

x
x x x

x
x

x
x

x
x
x

x x
00

x

0

000

x

−3

−4

−4 −3 −3 −3 −3 −2 −2

−3

0

000

+ + +

+

+ + + + +

−−

Fig. 7.85  Game tree showing best moves for a player with symbol 0

Note that the designation of ‘+’ and ‘-’ depends on whose move is being calculated.
The best move for a player from a given position may by determined by fi rst construct-
ing the game tree and applying a static ComputeWinValue() function to the leaf nodes.
Each node of the game tree must include a representation of the board and an indication
of whether the node is a ‘+’node or a ‘-’ node.

RecapiTUlaTion

•  Non-linear  data  structures  are  those  where 
every data element may have more than one 
predecessor as well as successor. Elements 
do  not  form  any  particular  linear  sequence. 

Tree and graph are two examples of non-linear 
data structure. Non-linear data structures are 
capable of expressing more complex relation-
ship than linear data structure.

TREEs 367

•  Tree,  a  non-linear  data  structure,  is  a mean 
to  maintain  and  manipulate  data  in  many 
applications. Wherever  the  hierarchical  rela-
tionship among data  is  to be preserved,  tree 
is used.

•  A binary tree  is a special  form of a tree.  It  is 
important and frequently used in various appli-
cations of computer science. A binary tree has 
degree  two,  and  each  node  has  utmost  two 
children.  This  makes  the  implementation  of 
tree easier. The implementation of binary tree 
should represent the hierarchical relationship
between the parent node and its left and right
children.

•  Binary  tree  has  the  natural  implementation 
in  a  linked  storage.  In  a  linked organization, 
we wish that all nodes should be allocated
dynamically. Hence, we need each node with 
data and link fi elds. Each node of a binary tree 
has both a left and a right subtree. Each node
will have three fi elds Lchild, Data, and Rchild.

•  The operations on  a binary  tree  include  insert 
node, delete node, and traverse tree. Traversal 
is one of  the key operations. Traversal means 
visiting every node of a binary tree. There are

various  traversal  methods.  For  a  systematic 
traversal, it is better to visit each node (starting 
from root) and its both subtrees in the same way.

•  Let L  represent  the  left  subtree, R  represent 
the right subtree, and D be node data. Three 
traversals  are  fund amental:  LDR,  LRD,  and 
DLR. The se are called as inorder, postorder, 
and preorder traversals because there is a
natural correspondence between these tra-
versal s  producing  the  infi x,  postfi x,  and  pre-
order  forms  of  an  arithmetic  expressions, 
respectively. In addition, a traversal w here the 
node is visited before its children are visited is
called a breadth-fi rst traversal; a walk where
the children are visited prior to the parent is
called a depth-fi rst traversal.

•  The  binary  search  tree  is  a  binary  tree with 
the property that the value in a node is greater
than any value in a node’s left subtree and
less than any value in the node’s right subtree.
This property guarantees  fast search time pro-
vided the tree is relatively ba lanced.

•  The key applications of tree include the follow-
ing: expression tree, gaming, Huffman coding, 
and decision tree.

Binary search tree A binary search tree (BST) is
 a binary tree that is either empty or where every
node contains a key and satisfi es the following
conditions:

1. The key in the left child of a node, if it
exists, is less than the key in its parent
node.

2. The key in the right child of a node, if it
exists, is greater than the key in its parent
node.

3. The left and the right subtrees of the node
are again BSTs.

Binary tree A binary tree has degree two, each
node has atmost two children. A binary tree is ei-
ther: an empty tree; or consists of a node, called
root and two children, left and right, each of which
are themselves binary trees.

Breadth- and depth-fi rst traversals A traversal
where the node is visited before its children are
visited is called a breadth-fi rst traversal; a walk
where the children are visited prior to the parent
is called a depth-fi rst traversal.

Decision tree Decision tree is a classifi er in the
form of a tree structure, where each node is either:

Key TeRMs

368 daTa sTRucTuREs using c++

Multiple choice questions

 1. Consider the following tree:

4

2 3

1

5 6 7

 If the postorder traversal gives (ab - cd +), then
the label of the nodes 1, 2, 3, 4, 5, 6 will be

 (a) +, -, ¥, a, b, c, d
 (b) a, -, b, +, c, ¥, d
 (c) a, b, c, d, -, ¥, +
 (d) -, a, b, +, ¥, c, d
 2. A list of integers is read one at a time, and a BST

is constructed. Next, the tree is traversed and the
integers are printed. Which traversal would print
the result in the original order of the input?

 (a) Preorder

 (b) Postorder
 (c) Inorder
 (d) None of the above
 3. A binary tree T h as n leaf nodes. The number of

nodes of degree 2 in T is
 (a) log2 n
 (b) n - 1
 (c) n
 (d) 2n

 4. Which is the most effi cient tree for accessing
data from a database?

 (a) BST
 (b) B-tree
 (c) OBST
 (d) AVL tree
5. A binary tree where every non-leaf node has

non-empty left and right subtrees is called a
strictly binary tree. Such a tree wi th 10 leaves

 (a) cannot have more than 19 nodes.

a leaf node—indicates the value of the target at-
tribute (class) of examples; or a decision node—
specifi es some test to be carried out on a single
attribute-value, with one branch and sub-tree for
each possible outcome of the test.

Expression tree A binary tree storing or repre-
senting an arithmetic expression is ca lled as an
expression tree. The leaves of an expression tree
are operands. Operands could be variables or con-
stants. The branch nodes (internal nodes) repre-
sent the operators.

Inorder traversal In this traversal, the left subtree
is visited fi rst in inorder, th en the root, and fi nally
the right subtree in inorder.

Non-linear data structures Non-linear data struc-
tures are used to represent the data containing
hierarchical or network relationship between the
elements. Trees and graphs are examples of non-
linear data structure.

Pre-order traversal In this traversal, the root is
visited fi rst, then the left subtree in preorder, and
fi nally the right subtree in preorder.

Threaded binary tree A.J. Perlis and C. Thornton
have suggested to replace all the null links in bi-
nary tree by pointers, called threads. A tree with
thread is called as threaded binary tree.

Tree traversal Traversal of tree means stepping
through the nodes of a tree by means of the con-
nections between parents and children; it is also
called walking the tree, and the action is called the
walk of the tree.

Tree Tree, a non-linear data structure, is a mean
to maintain and manipulate data in many appli-
cations. Non-linear data structures are capable of
expressing more complex relationship than linear
data structure. A class of graphs that are acyclic
are termed as trees. Trees are useful in describing
any structure that involves hierarchy.

eXeRcises

TREEs 369

 (b) has exactly 19 nodes.
 (c) has exactly 17 nodes.
 (d) cannot have more than 17 nodes.
 6. The depth of a complete binary tree with n

nodes is
 (a) log2 (n + 1) - 1
 (b) log2n
 (c) log2 (n - 1) + 1
 (d) log2n + 1
 7. Which of the following traversal techniques

lists the nodes of a BST in ascending order?
 (a) Postorder
 (b) Inorder
 (c) Preorder
 (d) All of a, b, c
 8. A binary tree has a height of 5. What is the

minimum number of nodes it can have?
 (a) 31
 (b) 15
 (c) 5
 (d) 1
 9. A binary tree is generated by inserting an

inorder as 50, 15, 62, 5, 20, 58, 91, 3, 8, 37,
60, 24. The number of nodes in the left and
right subtree, respectively is given by

 (a) (4, 7)
 (b) (7, 4)
 (c) (8, 3)
 (d) (3, 8)
10. A BST contains the values 1, 2, 3, 4, 5, 6, 7, 8.

The tree is traversed in preorder and the values
are printed. The valid output is

 (a) 53124786
 (b) 53126487
 (c) 53241678
 (d) 53124768
11. In _________ traversal, the right subtree is

processed last.
 (a) a preorder
 (b) an inorder
 (c) a postorder
 (d) (a) or (b)

Review questions

 1. Consider the binary tree in the following figure.

7

1 3

2 5

8

64

 (a) What structure is represented by the binary
tree?

 (b) Give the different steps for deleting the node
with key 5 so that the structure is preserved.

 (c) Outline a procedure in pseudo code to delete
an arbitrary node from such a binary tree
with n nodes that preserves the structure.
What is the worst case time complexity of
your procedure?

 2. Prove by the principal of mathematical
induction that for any binary tree where every
non-leaf node has 2 descendants, the number of
leaves in the tree is one more than the number of
non-leaf nodes.

 3. A 3-ary tree is a tree where every internal node
has exactly 3 children. Use induction to prove
that the number of leaves in a 3-ary tree with n
internal nodes is 2(n - 1) + 3.

 4. A rooted tree with 12 nodes has its numbers
from 1 to 12 in preorder. When the tree is
traversed in postorder, the nodes are visited in
following order: 3, 5, 4, 2, 7, 8, 6, 10, 11, 12,
9, 1. Reconstruct the original tree from this
information, that is, find the parent of each node.
Show the tree diagrammatically.

 5. What is the number of binary trees with 3 nodes
which when traversed in postorder give the
sequence A, B, C? Draw all these binary trees.

 6. A size-balanced binary tree is a binary tree
where for every node, the difference between the

370 daTa sTRucTuREs using c++

number of nodes in the left and right subtree is
utmost 1. The distance of a node from the root is
the length of the path from the root to the node.
The height of a binary tree is the maximum
distance of a leaf node from the root.

 (a) Prove by induction on h that a size-balance
binary tree of height h contains at least 2h
nodes.

 (b) In a size-balanced tree of height h £ 1, how
many nodes are at a distance h - 1 from the
root?

 7. Let A be an n ¥ n matrix such that the elements
in each row and each column are arranged in
ascending order. Draw a decision tree that finds
first, second, and third smallest elements in
minimum number of comparisons.

 8. In a binary tree, a full node is defined to be a node
with 2 children. Use induction on the height of a
binary tree to prove that the number of full nodes
plus one is equal to the number of leaves.

 9. (a) Draw a BST (initially empty) that results
from inserting the records with the keys

E A S Y Q U E S T I O N

 (b) Delete the key Q from the constructed BST.
10. Write a recursive function in C++ that creates a

mirror image of a binary tree.
11. What is a BST? Write a recursive C++

function to search for an element in a given
BST. Write a non-recursive version of the same.

12. Write a non-recursive C++ function to traverse a
binary tree containing integers in preorder.

13. Write a C++ function for insertion of a node into
a BST.

14. Write C++ function that traverses a TBT in
inorder.

15. Represent a binary tree using pointers and write
a function to traverse and point nodes of a tree
level-by-level.

16. Represent a binary tree using pointers and write
a function to traverse a given tree in inorder.

17. Given the following inorder and postorder
sequences of nodes of binary tree, draw the
corresponding binary tree. Show the steps.

 (a) Inorder : 1 3 5 6 4 2 7
 (b) Postorder : 6 5 4 3 7 2 1
18. From the given traversals, construct the binary

tree.
 (a) Inorder: D B F E A G C L J H K
 (b) Postorder: D F E B G L J K H C A
19. Write a pseudocode C++ for non-recursive

postorder and inorder traversal for binary tree.
20. List down the steps to convert a general tree to a

binary tree. Convert the following general tree to
a binary tree.

A

C

G

B

F
E

D

21. Explain the array representation of binary trees
using the following figures and state and explain
the limitations of this representation.

A

B

C

D

P

Q
R

S T

U

V

(b)(a)

TREEs 371

22. Write a pseudocode for deleting a node from a
BST. Simulate your algorithm with a BST of 10
nodes and show the deletion process. Especially,
show the deletion of the interior nodes and not
just the leaf nodes.

23. Write a C ++ function to find the following:
 (a) Height of a given binary tree
 (b) Width (breadth) of a binary tree

Answers to multiple choice questions

1. (a) The postorder traversal yields 4, 5, 2, 6, 7, 3, 1. Comparing with a, b, -, c, d, ¥, +, we get the
labels of nodes 1, 2, 3, 4, 5, 6, 7 as +, -, ¥, a, b, c, d, respectively.

2. (d) 3. (b) 4. (c) 5. (b) A regular (strictly) binary tree with n leaves must have
(2n - 1) nodes. 6. (a) 7. (b) 8. (c) 9. (b) 10. (d) 11. (d)

In many application areas such as cartography, sociology, chemistry, geography, math-
ematics, electrical engineering, and computer science, we often need a representation that

refl ects an arbitrary relationship among the objects. One of the most powerful and natural
solutions that models such a relationship is a graph. There are many concrete, practical
problems such as electrical circuits, Königsberg’s bridges, and Instant Insanity that have
been simplifi ed and solved using graphs.

Non-linear data structures are used to represent the data containing a network or
hierarchical relationship among the elements. Graphs are one of the most important non-
linear data structures. In non-linear data structures, every data element may have more
than one predecessor as well as successor. Elements do not form any particular linear
sequence. We shall study various representations of graphs and important algorithms for
processing them in this chapter.

8.1 inTRoDUCTion

The seven bridges of Königsberg is an ancient classic problem. It was creatively solved
by the great Swiss mathematician Leonhard Euler in 1736, which laid the foundations
of graph theory. Another example is Instant Insanity. It is a puzzle consisting of four
cubes where each of the four faces of these cubes is painted with one of the four different
 colours—red, blue, white, or green. The problem is to stack the cubes, one on the top of
the other so that whether the cubes are viewed from front, back, left, or right, one sees all
the four colours. Since 331,776 different stack combinations are possible, solving it by
hand or by the trial-and-error method is impractical. However, the use of graphs makes it
possible to discover a solution in a few minutes!

There are many such problems that can be represented and solved using graphs. Find-
ing an abstract mathematical model of the concrete problem can be a diffi cult task, which

GRAPHS8

oBJECTivES

After completing this chapter, the reader will be able to understand the following:
 • Graphs as one of the most important non-linear data structures
 • The representation that models various kinds of graphs
 • Some useful graph algorithms

Graphs 373

DSUC c08 V6 October 11, 2012 4:16 PM Page 373

may require both skill and experience. Some real-world applications of graphs include
communication networking, analysis of electrical circuits, activity network, linguistics,
and so on.

8.2 GRAPH ABSTRACT DATA TYPE

Graphs as non-linear data structures represent the relationship among data elements,
having more than one predecessor and/or successor. A graph G is a collection of nodes
(vertices) and arcs joining a pair of the nodes (edges). Edges between two vertices repre-
sent the relationship between them. For finite graphs, V and E are finite. We can denote
the graph as G = (V, E).

Let us define the graph ADT. We need to specify both sets of vertices and edges. Basic
operations include creating a graph, inserting and deleting a vertex, inserting and deleting
an edge, traversing a graph, and a few others.
A graph is a set of vertices and edges {V, E} and can be declared as follows:

graph
 create()Æ Graph
 insert_vertex(Graph, v)Æ Graph
 delete_vertex(Graph, v)Æ Graph
 insert_edge(Graph, u, v)Æ Graph
 delete_edge(Graph, u, v)Æ Graph
 is_empty(Graph)ÆBoolean;
end graph

These are the primitive operations that are needed for storing and processing a graph.

Create

The create operation provides the appropriate framework for the processing of graphs.
The create() function is used to create an empty graph. An empty graph has both V and
E as null sets. The empty graph has the total number of vertices and edges as zero. However,
while implementing, we should have V as a non-empty set and E as an empty set as the
mathematical notation normally requires the set of vertices to be non-empty.

Insert Vertex

The insert vertex operation inserts a new vertex into a graph and returns the modified
graph. When the vertex is added, it is isolated as it is not connected to any of the vertices
in the graph through an edge. If the added vertex is related with one (or more) vertices in
the graph, then the respective edge(s) are to be inserted.

Figure 8.1(a) shows a graph G(V, E), where V = {a, b, c} and E = {(a, b), (a, c), (b, c)},
and the resultant graph after inserting the node d. The resultant graph G is shown in
Fig. 8.1(b). It shows the inserted vertex with resultant V = {a, b, c, d}. We can show the
adjacency relation with other vertices by adding the edge. So now, E would be E = {(a, b),
(a, c), (b, c), (b, d)} as shown in Fig. 8.1(c).

374 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 374

(a) (b) (c)

a

c

b

d

a

c

b

d

a

c

b

Fig. 8.1 Inserting a vertex in a graph (a) Graph G
(b) After inserting vertex d (c) After adding an edge

Delete Vertex

The delete vertex operation deletes a ver-
tex and all the incident edges on that ver-
tex and returns the modified graph.

Figure 8.2(a) shows a graph G(V, E)
where V = {a, b, c, d} and E = {(a, b), (a, c),
(b, c), (b, d)}, and the resultant graph after
deleting the node c is shown in Fig. 8.2(b)
with V = {a, b, d} and E = {(a, b), (b, d)}.

Insert Edge

The insert edge operation adds an edge incident between two vertices. In an undirected
graph, for adding an edge, the two vertices u
and v are to be specified, and for a directed
graph along with vertices, the start vertex and
the end vertex should be known.

Figure 8.3(a) shows a graph G(V, E) where V
= {a, b, c, d} and E = {(a, b), (a, c), (b, c), (b, d)}
and the resultant graph after inserting the edge
(c, d) is shown in Fig. 8.3(b) with V = {a, b, c, d}
and E = {(a, b), (a, c), (b, c), (b, d), (c, d)}.

Delete Edge

The delete edge operation removes one edge
from the graph. Let the graph G be G(V, E).
Now, deleting the edge (u, v) from G deletes
the edge incident between vertices u and v
and keeps the incident vertices u, v.

Figure 8.4(a) shows a graph G(V, E),
where V = {a, b, c, d} and E = {(a, b),
(a, c), (b, c), (b, d)}. The resultant graph
after deleting the edge (b, d) is shown in
Fig. 8.4(b) with V = {a, b, c, d} and E = {(a, b), (a, c), (b, c)}.

Fig. 8.2 Deleting a vertex from a graph
(a) Graph G (b) Graph after deleting vertex c

(a) (b)

a b

d

a

c

b

d

(a) (b)

a

c

b

d

a

c

b

d

Fig. 8.3 Inserting an edge in a graph
(a) Graph G (b) After inserting edge (c, d)

(a) (b)

a

c

b

d

a

c

b

d

Fig. 8.4 Deleting edge in graph (a) Graph G
(b) Graph after deleting the edge (b, d)

Graphs 375

DSUC c08 V6 October 11, 2012 4:16 PM Page 375

Is_empty

The is_empty operation checks whether the graph is empty and returns true if empty else
returns false. An empty graph is one where the set V is a null set.

These are the basic operations on graphs, and a few more include getting the set of
adjacent nodes of a vertex or an edge and traversing a graph. Checking the adjacency
between vertices means verifying the relationship between them, and the relationship is
maintained using a suitable data structure.

Graph traversal is also known as searching through a graph. It means systematically
passing through the edges and visiting the vertices of the graph. A graph search algorithm
can help in listing all vertices, checking connectivity, and discovering the structure of a
graph. We shall discuss traversals in Section 8.4.

8.3 REPRESEnTATion of GRAPHS

We need to store two sets V and E to represent a graph. Here V is a set of vertices and E is
a set of incident edges. These two sets basically represent the vertices and adjacency rela-
tionship among them. There are two standard representations of a graph given as follows:

1. Adjacency matrix (sequential representation) and
2. Adjacency list (linked representation)

Using these two representations, graphs can be realized using the adjacency matrix, adja-
cency list, or adjacency multilist. Let us study each of them.

8.3.1 Adjacency Matrix

Adjacency matrix is a square, two-dimensional array with one row and one column for
each vertex in the graph. An entry in row i and column j is 1 if there is an edge incident
between vertex i and vertex j, and is 0 otherwise. If a graph is a weighted graph, then the
entry 1 is replaced with the weight. It is one of the most common and simple representa-
tions of the edges of a graph; programs can access this information very efficiently.

For a graph G = (V, E), suppose V = {1, 2, …, n}. The adjacency matrix for G is a two-
dimensional n ¥ n Boolean matrix A and can be represented as
A[i][j] = {1 if there exists an edge <i, j>
 0 if edge <i, j> does not exist}

The adjacency matrix A has a natural implementation as in the following:
A[i][j] is 1 (or true) if and only if vertex i is adjacent to vertex j. If the graph is undi-

rected, then

A[i][j] = A[j][i] = 1

If the graph is directed, we interpret 1 stored at A[i][j], indicating that the edge from i
to j exists and not indicating whether or not the edge from j to i exists in the graph.

The graphs G1, G2, and G3 of Fig. 8.5 are represented using the adjacency matrix in
Fig. 8.6, among which G2 is a directed graph.

376 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 376

G3

4 5 6 7

1

32

G1

A B

D C

G2

1 2 3

Fig. 8.5 Graphs G1, G2, and G3

A B C D

A 0 1 0 1

B 1 0 1 0

C 0 1 0 1

D 1 0 1 0

G1

1 2 3

1 0 0 1

2 1 0 1

3 0 0 0

G2

1 2 3 4 5 6 7

1 0 1 1 0 0 0 0

2 1 0 1 1 1 0 0

3 1 1 0 0 0 1 1

4 0 1 0 0 1 0 0

5 0 1 0 1 0 0 0

6 0 0 1 0 0 0 1

7 0 0 1 0 0 1 0

G3

Fig. 8.6 Adjacency matrix for G1, G2, and G3 of Fig. 8.5

For a weighted graph, the matrix A is represented as

A[i][j] = {weight if the edge <i, j> exists
 0 if there exists no edge <i, j>}

Graphs 377

DSUC c08 V6 October 11, 2012 4:16 PM Page 377

Here, weight is the label associated with the edge of the graph. For example,
Figs 8.7(a) and (b) show the weighted graph and its associated adjacency matrix.

1 2 3 4

1 0 8 14 6

2 8 0 7 11

3 14 7 0 4

4 6 11 4 0

3

76

4

1 2

11

4

8

14

(a)

(b)

1 2 3 4 5

1 0 9 0 0 0

2 4 0 0 8 15

3 0 17 0 0 0

4 7 0 2 0 0

5 3 0 12 5 0

23

12

2

7

8

5

1

9

15

4 4

17

3
5

Fig. 8.7 Adjacency matrix (a) Directed weight graph and its adjacency
matrix (b) Undirected weight graph and its adjacency matrix

We can note that the adjacency matrix for an undirected graph is symmetric whereas the
adjacency matrix for a directed graph need not be symmetric.

Program Code 8.1 shows the class defi ned for graph implementation using an adja-
cency matrix with some basic functions.

Program CoDE 8.1

class Graph

{

 private:

 int Adj_Matrix[Max_Vertex]; // Adjacency matrix

 int Vertex; // Number of vertices

 int Edge; // Number of edges

 public:

378 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 378

 Graph(); // Constructor

 bool IsEmpty();

 void Insert_Edge(int u, int v);

 void Insert_Vertex(int u);

 void Delete_Edge(int u, int v);

 void Delete_Vertex(int u); .

};

Program Code 8.1 depicts a class and its member functions for a graph as an adjacency
matrix. In the adjacency matrix representation, the time required to access an element is inde-
pendent of the size of V and E. The space needed to represent a graph using adjacency matrix
is n2 locations, where |V| = n. When the graph is undirected, we need to store only the upper
or lower triangular matrix, as the matrix is symmetric and this reduces the space required.

As we represent the edge of a graph using the adjacency matrix, we can place an edge
query. For example, to determine whether an edge is incident between the vertices i and
j, just examine Adj_Matrix[i][j] in constant time O(1). We may need to get all vertices
adjacent to a particular vertex, say i. Finding all the adjacent vertices requires searching
the complete ith row in O(n) time.

Most of the algorithms need to process almost all edges and also need to check whether
the graph is connected or not. Such queries examine almost all entries in the adjacency
matrix. Hence, we need to examine n2 entries. If we omit diagonal entries, (n2 - n) entries
of the matrix are to be examined (as diagonal entries are 0 in graph without self loops)
in O(n2) of time.

When the graph is sparse, most of the vertices have a few neighbours, that is, a few
vertices adjacent to them. Consider the graph in Fig. 8.7. In the adjacency matrix of the
graph, very few entries are non-zero. When we need a list of adjacent vertices of a par-
ticular vertex, say i, we need to transverse the complete ith row though there are very few
non-zero entries. Instead, if we keep one list per vertex and list only the vertices adjacent
to it, a rapid retrieval in time O(e + n) is possible when we need to process almost all
edges. Here e is the number of edges in the graph, and the graph is sparse, that is, e <<
(n2/2). Such a structure that has a list for each vertex containing all its adjacent vertices is
called as adjacency list. Let us learn more about adjacency list.

8.3.2 Adjacency List

In this representation, the n rows of the adjacency list are represented as n-linked lists,
one list per vertex of the graph. The adjacency list for a vertex i is a list of all vertices
adjacent to it. One way of achieving this is to go for an array of pointers, one per vertex.
For example, we can represent the graph G by an array Head, where Head[i] is a pointer
to the adjacency list of vertex i. For list, each node of the list has at least two fi elds: ver-
tex and link. The vertex fi eld contains the vertex id, and the link fi eld stores a pointer to

Graphs 379

DSUC c08 V6 October 11, 2012 4:16 PM Page 379

the next node that stores another vertex adjacent to i. Figure 8.8(b) shows an adjacency list
representation for a directed graph in Fig. 8.8(a).

(a) (b)

1

4

2

3

42

3

3

3

4

1

Head

2

3

4

Fig. 8.8 Adjacency list representation (a) Graph G1 (b) Adjacency list for G1

Program Code 8.2 lists the class for the node required for adjacency list representation
of the graph.

Program CoDE 8.2

// Class for the node of the weighted graph

#defi ne max 10

class GraphNode

{

 public:

 int vertex;

 int weight;

 // optional for weight associated with edge

 GraphNode* next;

 GraphNode()

 {

 vertex = 0;

 weight = 0;

 // optional for weight associated with edge

 next = null;

 }

};

class Graph // class for storing graph as adjacency list

{

 GraphNode* headnodes[max];

 // headnodes list for connected vertices.

 int n;

 int visited[max];

380 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 380

 public:

 Graph();

 // Constructor to initialize all headnodes to null.

};

Graph :: Graph()

{

 for(int i = 0;i<max;i++)

 headnodes[i] = null;

}

The graph in Fig. 8.8(a) is a directed graph. If the graph is a weighted graph, a weight fi eld
can be added in the node structure of the list. Figures 8.9(a) and (b) show the adjacency
list representation of a weighted directed graph.

(a)

5

4

8

6 2 3

(b)

1

4

2

3

42

3

3

3

4

5 2 6

3

8

4

1

2

3

4

Fig. 8.9 Adjacency list of weighted graph (a) Weighted graph G2 (b) Adjacency list of G2

Here, each node has three fi elds—the fi rst one showing an adjacent node, second showing
the weight associated with an edge, and the third showing the link to the next node.

The adjacency list representation of a directed graph requires the storage proportional
to the sum of the number of vertices plus the number of edges. It is often used when the
number of edges is much lesser, that is, e << n2/2. In case of an undirected graph, with
n vertices and e edges, this representation requires 2e list nodes. Both directed and undi-
rected graphs require n head nodes per node.

As we represent the edge between the vertices using the adjacency list, we can place an
edge query. For example, to determine whether an edge is incident between the vertices
i and j, verify by searching the complete list of m nodes adjacent to vertex i in O(m) time
and if m < n. In worst case, the search time is O(n) when the vertex i has all the remaining
n - 1 vertices adjacent to it, whereas in adjacency matrix representation, the search time
is O(1).

Finding the degree of any vertex, that is, counting the total number of vertices adjacent
to it, in an undirected graph may be determined by counting the number of nodes in its

Graphs 381

DSUC c08 V6 October 11, 2012 4:16 PM Page 381

adjacency list in O(n) time. In addition, when all the edges are to be processed, the total
edges of G may be processed in time O(n + e).

In case of a directed graph, the outgoing degree of any vertex i may be determined by
counting the number of nodes on its adjacency list. For computing an incoming degree of
vertex i, we have to traverse the adjacency lists of each of the other vertices to confi rm
whether it is incident on i. In other words, we will have to search for the vertex i in the
adjacency lists of all other vertices. This is a tedious task; hence, it is better to keep another
set of lists in addition to the adjacency list called inverse adjacency lists. The inverse adja-
cency list for a vertex i is a list of all vertices j to which i is adjacent to. Inverse adjacency
list can be used to compute the incoming degree of a vertex. We shall learn about inverse
adjacency list in Section 8.3.4.

Program Code 8.3 depicts the implementation of storing a graph as an adjacency list.

Program CoDE 8.3

// Class for the node of the graph class GraphNode

{

 public:

 int vertex; // The adjacent node

 GraphNode* next;

 GraphNode()

 {

 vertex = 0;

 next = null;

 }

};

// class for storing graph as adjacency list

class Graph

{

 // List of headnodes containing list of connected

 // vertices

 GraphNode* headnodes[max];

 int n;

 int visited[max];

 public:

 Graph(); // Constructor to initialize all

headnodes to null

 void create(); // To create graph

 // To initialize the visited array to false

 void initialize_visited();

 void BFS(int v); // B readth-fi rst search

382 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 382

 void DFS(int v); // D epth-First Search

 int examine_n() const {return n;}

 // Return value of n.

};

Graph :: Graph()

{

 for(int i = 0; i < max; i++)

 headnodes[i] = null;

}

// Function to create a graph

void Graph :: create()

{

// Method to create a Graph represented by adjacency

list

 GraphNode *curr,*prev;

 int n1, i, j, vertex, done = false;

 cout << endl << "Enter the no. of vertices :- ";

 cin >> n;

 for(i = 0; i < n; i++)

 {

 if(!(headnodes[i] = new GraphNode)) // Allocate

 memory for new node

 {

 cout << endl << "Insuffi cient memory";

 exit(0);

 }

 headnodes[i]->vertex = i + 1;

 cout << endl << "Enter the no. of vertices

connected to" << (i+1) << ":";

 cin >> n1;

 prev = headnodes[i];

 for(j = 0; j < n1; j++)

 {

 if(!(curr = new GraphNode))

 {

 cout << endl << "Insuffi cient memory.";

 exit(0);

 }

 done = false;

 do

 {

Graphs 383

DSUC c08 V6 October 11, 2012 4:16 PM Page 383

 cout << endl << "Enter vertex no. of

connected vertex :";

 cin >> vertex;

 if(vertex > n && vertex < 1)

 {

 cout << endl << "Vertex out of range";

 cout << endl << "Valid range :- 1 - " << n;

 }

 else

 {

 curr->vertex = vertex;

 prev->next = curr;

 prev = curr; // Next node

 done = true;

 }

 }

 while(!done);

 }

 if(n1 == 0)

 prev->next = null;

 }

 return;

}

8.3.3 Adjacency Multilist

In the adjacency list representation of an undirected graph, each edge (vi, vj) is repre-
sented by two entries, one on the list of vi and the other on the list of vj. For the graph G1
in Fig. 8.9, the edge connecting the vertices 1 and 2 is represented twice, in the lists of
vertices 1 and 2. In applications such as minimum spanning tree computation, if we pro-
cess any edge once, then it has to be marked as a processed one. To avoid processing of
that edge again, we need to fi nd the other entries for that particular edge and mark it as
processed. This adds to time complexity, which should be avoided. This can be achieved
if the adjacency list is maintained as multilists such that the nodes are shared among sev-
eral lists. For each edge, there will be exactly one node, but this node will be in two lists,
that is, the adjacency lists for each of the two nodes it is incident on. The node structure
of such a list can be represented as follows:

Visited
tag

V1 V2 Link1 for V1 Link2 for V2

384 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 384

Here, the visited tag is a one bit mark field that indicates whether or not the edge has
been examined. This tag would be set accordingly when the edge is processed. We can
note that the storage requirements for this are the same as that of the normal adjacency
lists except the tag field. Figure 8.10 shows the adjacency multilists for the graph G1.

1

Vertex
N1 N2 N421

N2 N3 N431

N3 0 N54

Edge (1, 2)

Edge (2, 4)

Edge (2, 3)

Edge (1, 4)

Edge (1, 3)

1

N4 N5 032

N5 0 042

2

3

4

(a) (b)

1 2

4 3

Fig. 8.10 Adjacency multilist (a) Graph G1 (b) Adjacency multilist for G1

For Fig. 8.10, the lists are as follows:

Vertex 1: N1 Æ N2 Æ N3

Vertex 2: N1 Æ N4 Æ N5

Vertex 3: N2 Æ N5
Vertex 4: N3 Æ N5

Sometimes, the edges of a graph have weights assigned when the graph is a weighted
graph. This weight information can be represented using an adjacency matrix or can also
be shown by including an additional field in the node.

8.3.4 inverse Adjacency List

An inverse adjacency list is a set of lists that contains one list for each vertex. Each list
contains a node per vertex adjacent to the vertex it represents. Figure 8.11(b) represents
the inverse adjacency list for the graph G2 in Fig. 8.11(a).

(a) (b)

2

2

1

Head

1

2

31 2 3

Fig. 8.11 Inverse adjacency list (a) Graph G2
(b) Inverse adjacency list of G2

Graphs 385

DSUC c08 V6 October 11, 2012 4:16 PM Page 385

8.3.5 Comparison of Sequential and Linked Representations

Adjacency matrix representation always requires an n ¥ n matrix with n vertices, regard-
less of the number of edges. It needs more memory asymptotically. If the graph is sparse,
many of the entries are null. However, since it provides direct access, it is suitable for
many applications.

Linked representation (adjacency list) of a graph has an advantage of space complexity
when a graph is sparse but does not provide direct access. The probable disadvantage of
adjacency list is that it does not allow direct access, and hence, we cannot quickly deter-
mine whether an edge between any two vertices is incident or not.

When a graph is sparse, the number of edges |E| is much lesser than V2. The adjacency
list representation is usually preferred as it provides a compact way to represent them. For
dense graphs, adjacency matrix representation may be preferred since |E| is closer to V2
and when we also want fast access to information such as whether the edge between any
two vertices is incident or not, the weight associated to each edge, and so on.

Though the list representation is asymptotically as efficient as a matrix representa-
tion, the simplicity of the matrix is preferred when the graph is small. In addition, for
a weighted graph, an additional field is needed in the graph node, whereas for matrix
representation, the same matrix can be used. Considering all these aspects, the matrix
representation of a graph is more powerful than all the other forms.

8.4 GRAPH TRAvERSAL

To solve many problems modelled with graphs, we need to visit all the vertices and edges
in a systematic fashion called graph traversal. We shall study two types—depth-first tra-
versal and breadth-first traversal. Traversal of a graph is commonly used to search a ver-
tex or an edge through the graph; hence, it is also called a search technique. Consequently,
depth-first and breadth-first traversals are popularly known as depth-first search (DFS)
and breadth-first search (BFS), respectively.

8.4.1 Depth-first Search

In DFS, as the name indicates, from the currently visited vertex in the graph, we keep
searching deeper whenever possible. All the vertices are visited by processing a vertex
and its descendents before processing its adjacent vertices. This procedure can be writ-
ten either recursively or non-recursively. For recursive code, the internal stack would be
used, and for non-recursive code, we would use a stack.

Depth-first search works by selecting one vertex, say v of G as a start vertex; v is
marked as visited. Then, each unvisited vertex adjacent to v is searched using the DFS
recursively. Once all the vertices that can be reached from v have been visited, the search
for v is complete. If some vertices remain unvisited, we select an unvisited vertex as a new
start vertex and then repeat the process until all the vertices of G are marked as visited.

386 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 386

For non-recursive implementation, whenever we reach a node, we shall push it (vertex
or node address) onto the stack. We would then pop the vertex, process it, and push all its
adjacent vertices onto the stack. Suppose we have a directed graph G where all the verti-
ces are initially marked as unvisited. In a graph, we can reach any vertex more than once
through different paths. Hence, to assure that each vertex is visited once, we mark each as
visited whenever it is processed. Let us use an array say visited for the same. Initially,
all vertices are marked unvisited. Marking visited[i] to 0 indicates that the vertex i is
unvisited. Whenever we push the vertex say j onto the stack, we mark it visited by setting
its visited[j] to 1.

The recursive algorithm for DFS can be outlined as in Algorithm 8.1.
Algorithm 8.1 shows the recursive working of DFS of a graph.

algorithm 8.1
1. for v = 1 to n do
 visited[v] = 0 {unvisited}
2. i = 1 {Let us start at vertex 1)
3. DepthFirstSearch(i)
 begin
 visited[i] = 1
 for each vertex j adjacent to i do
 if(visited[j] = 0) then
 DepthFirstSearch(j)
 end
4. stop

When we need to show its equivalent non-recursive code, we need to use a stack. Non-
recursive DFS can be implemented by using a stack for pushing all unvisited vertices
adjacent to the one being visited and popping the stack to find the next unvisited
vertex.

Consider the graph in Fig. 8.12(a) and its adjacency list in Fig. 8.12(b).

(a) (b)

1

4 5 6 7

2 3

8

21

2

3

4

5

6

7

8

3

1 4 5

1 6

2 8

2 8

3 8

3 8

4 5 6 7

7

Fig. 8.12 Sample graph for traversal (a) Graph G (b) Adjacency list representation of G

Graphs 387

DSUC c08 V6 October 11, 2012 4:16 PM Page 387

Let us initiate a traversal from the vertex 1. The order of traversal will be 1, 2, 4, 8, 5, 6,
3, 7. Another possible traversal could be 1, 3, 7, 8, 6, 5, 2, 4. O(n + e) time is required by
the DFS for adjacency list representation and O(n2) for adjacency matrix representation.
Program Code 8.4 is the implementation of the DFS traversal in C++ where the graph is
stored as an adjacency matrix.

Program CoDE 8.4

// Depth-fi rst search using adjacency matrix

void Graph :: DepthFirstSearch(int i)

{

 int k;

 for(k = 0; k < Vertex; k++)

 visited[k] = 0;

 visited[i] = 1;

 for(k = 0; k < Vertex; k++)

 {

 if(Adj_Matrix[i, k] && !visited[k])

 {

 cout << i + 1;

 void DepthFirstSearch(i);

 }

 }

}

// Function for Depth-fi rst search using adjacency list

void Graph :: DFS(int v)

{

 GraphNode *curr;

 int w;

 curr = headnodes[v];

 cout << “\t” << curr->vertex;

 visited[v] = true;

 curr = curr ->next;

 while(curr ! = null)

 // For each vertex adjacent to v

 {

 if(!visited[w = (curr->vertex − 1)])

 DFS(w);

 curr = curr->next;

 }

 return;

}

388 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 388

Depth-first search for an undirected graph works in a similar way as for a directed
graph as shown in Algorithm 8.2. The start vertex i is marked visited. Next, an unvis-
ited vertex j adjacent to i is selected and a DFS from j is initiated. When a vertex k
is reached such that all its adjacent vertices have been visited, the search returns to
the last vertex visited which has an unvisited vertex j adjacent to it and then initial-
izes the DFS from j. The search terminates when no unvisited vertex can be reached
from any of the visited vertices. If the graph G is represented by its adjacency lists,
the adjacent vertices j from i can be easily searched by following the chain of links
through the list of vertex i.

algorithm 8.2
1. Let us start search at vertex j
2. Push j onto stack
3. Mark all vertices as unvisited
 for i = 1 to n do
 visited[i] = 0
4. while(not empty (stack)) do
 begin
 v = pop(stack)
 if(not visited(v))
 begin
 visited[v] = 1
 push all adjacent vertices of v onto stack
 end
 end
5. stop

Let us now consider the graph in Fig. 8.13.

4 7 8 9

2 3

1 5

6

Fig. 8.13 Sample graph

Let us traverse the graph using a non-recursive algorithm that
uses stack. Let 1 be the start vertex. Note that the stack is empty
initially.

1. Initially, V = set of visited vertices = f. Push 1 onto the stack.
2. As the stack is not empty, vertex = pop(); we get 1. As 1 is not visited, mark it as

visited.

1

Top

Graphs 389

DSUC c08 V6 October 11, 2012 4:16 PM Page 389

Now V = {1}. Push all the adjacent vertices of 1 onto the stack.
Since the stack is not empty, vertex = pop(); we get 2.

2 5 4

Top

3. As 2 is not visited, mark it as visited, and now V = {1, 2}. Then, push all the adjacent
vertices of 2.

3 5 1 5 4

Top

4. Since the stack is not empty, vertex = pop(); we get 3. As 3 is not visited, mark it
as visited. Now V = {1, 2, 3}. We then push all the adjacent vertices of 3 onto the stack.

6 5 1 5 4

Top

5. Since the stack is not empty, vertex = pop(); we get 6. As 6 is not visited, mark it
as visited. Now V = {1, 2, 3, 6}. We then push all the adjacent vertices of 6 onto the
stack.

3 5 1 5 4

Top

6. Since the stack is not empty, vertex = pop(); we get 3. As 3 is visited, pop again
vertex = pop(); we then get 5. As 5 is not visited, mark it as visited. Now V = {1,
2, 3, 6, 5}. Push all the adjacent vertices onto the stack.

7 1 2 1 5 4

Top

7. As the stack is not empty, vertex = pop(); we get 7, which is not visited. Hence,
V = {1, 2, 3, 6, 5, 7}; we now push all the adjacent vertices of 7 onto the stack.

390 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 390

8 4 5 1 2 1 5 4

Top

 8. As the stack is not empty, vertex = pop(); we get 8, which is not visited. Hence,
V = {1, 2, 3, 6, 5, 7, 8}. Push all the adjacent vertices of 8 onto the stack.

7 9 4 5 1 2 1 5 4

Top

 9. As the stack is not empty, vertex = pop() = 7, which is visited; vertex = pop() =
9, which is not visited. Hence, V = {1, 2, 3, 6, 5, 7, 8, 9}. Push all the adjacent vertices
of 9 onto the stack.

8 4 5 1 2 1 5 4

Top

10. As the stack is not empty, vertex = pop() = 8, which is visited; so again vertex =
pop() = 4, which is not visited. Hence, V = {1, 2, 3, 6, 5, 7, 8, 9, 4}. Push all the
adjacent vertices of 4 onto the stack.

7 1 5 1 2 1 5 4

Top

11. The stack is not empty. So the following operations yield:

vertex = pop() we get 7, visited
vertex = pop() we get 1, visited
vertex = pop() we get 5, visited
vertex = pop() we get 1, visited
vertex = pop() we get 2, visited
vertex = pop() we get 1, visited
vertex = pop() we get 5, visited
vertex = pop() we get 4, visited

12. The stack is now empty, Hence, we stop.
The set V = {1, 2, 3, 6, 5, 7, 8, 9, 4} represents the order in which they are visited.

Hence, the DFS of the graph (Fig. 8.13) gives the sequence as 1, 2, 3, 6, 5, 7, 8, 9, and 4.
This is shown in Fig. 8.14.

Graphs 391

DSUC c08 V6 October 11, 2012 4:16 PM Page 391

4
9

7

6

8

7 8

9

2
2

3
3

1

1
Start

5 5

6

4

Fig. 8.14  Depth-first traversal for graph in Fig. 8.13

The label at each of the vertices in Fig. 8.14 is the sequence of visit of the traversal. The
DFS of the graph is roughly analogous to the preorder traversal of an ordered tree. To find
the vertices adjacent to the current vertex, we use a data struc-
ture that stores the graph to be traversed. This could be one of
the suitable data structures used for graphs, such as adjacency
matrix or adjacency list. The sequence in which they are pushed
onto the stack and then popped depends on the graph’s storage.
Hence, the same graph with two different adjacency lists may
generate two sequences for DFS, specially, when the graph is an
undirected one. A sample graph is given in Fig. 8.15.

If the adjacency list is as in Fig. 8.16, then the DFS gives the sequences as the follow-
ing: 1, 2, 3, 4, where the start vertex is 1.

1

4

2

3

4

3

4

1

2

1

3

2

1

2

3

4

Fig. 8.16 Sample graph G and its adjacency list representation

If the adjacency list for the same graph is as in Fig. 8.17, then the DFS sequence will
be 1, 4, 3, 2 where the start vertex is 1 and 4, 1, 2, 3 where the start vertex is 4.

1

4

2

3

1

2

3

4

2

1

2

3

4

3

1

4

Fig. 8.17 Alternate adjacency list representation of sample graph G

1

4

2

3

Fig. 8.15 Sample graph

392 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 392

8.4.2 Breadth-first Search

Another systematic way of visiting the vertices is the breadth-first search (BFS). The
BFS differs from DFS in a way that all the unvisited vertices adjacent to i are visited
after visiting the start vertex i and marking it visited. Next, the unvisited vertices adja-
cent to these vertices are visited and so on until the entire graph has been traversed. The
approach is called ‘breadth-first’ because from the vertex i that we visit, we search as
broadly as possible by next visiting all the vertices adjacent to i. For example, the BFS
of the graph of Fig. 8.13 results in visiting the nodes in the following order: 1, 2, 3, 4,
5, 6, 7, and 8.

This search algorithm uses a queue to store the vertices of each level of the graph as
and when they are visited. These vertices are then taken out from the queue in sequence,
that is, first in first out (FIFO), and their adjacent vertices are visited until all the vertices
have been visited. The algorithm terminates when the queue is empty. The working of the
BFS is given in Algorithm 8.3. The algorithm initializes the Boolean array visited[] to
0 (false), that is, marks each vertex as unvisited.

algorithm 8.3
Breadth-first search (vertex j)
1. Let us start search at vertex j
2. Mark all vertices as unvisited
 for i = 1 to n do
 visited[i] = 0
3. Mark j as visited
 visited[j] = 1
4. Add j in queue
5. while not queue empty do
 begin
 i = delete from queue
 for all vertices j adjacent to i do
 begin
 if(not visited[j] = 1)
 Add j in queue
 visited[j] = 1
 end
 end
6. stop

In the step 5 of Algorithm 8.3, the while loop is executed n times. Here, n is the num-
ber of vertices, and each vertex is inserted in the queue once. If the adjacency list repre-
sentation is used, then the adjacent nodes are computed in the for loop. The for loop is
executed e number of times. Hence, BFS needs O(n + e) time for adjacency list and O(n2)
for adjacency matrix representation.

In Program Code 8.5, we use queue Q as a data structure for traversal.

Graphs 393

DSUC c08 V6 October 11, 2012 4:16 PM Page 393

Program CoDE 8.5

// Breadth-fi rst t raversal using adjacency matrix

void Graph :: BreadthFirstSearch(int i)

{

 int k, visited[max];

 queue Q;

 for(k = 1; k <= n; k++)

 visited[k] = 0;

 visited[i] = 1;

 Q.Add(i);

 while(!Q.IsEmpty())

 {

 j = Q.Delete();

 for(k = 1; k <= n; k++)

 {

 if(Adj_Matrix [j,k] && !visited[k])

 {

 Q.Add(k);

 visited[k] = 1;

 }

 }

 }

}

// Function for breadth-fi rst s earch

void Graph :: BFS(int v)

{

 Queue q;

 GraphNode* curr;

 visited[v] = true;

 cout << "\t" << headnodes[v]->vertex;

 q.addq(headnodes[v]);

 while(!q.emptyq())

 {

 curr = q.deleteq();

 curr = curr->next;

 while(curr ! = null)

 {

 if(!visited[curr->vertex − 1])

 {

 q.addq(headnodes[curr->vertex − 1]);

 cout << "\t" << curr->vertex;

394 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 394

 visited[curr->vertex − 1] = true;

 }

 curr = curr->next;

 }

 }

 return;

}

Here, add() and delete() are the member functions for adding and deleting the ele-
ments from the queue, respectively. Let us consider Fig. 8.13, the graph, again for BFS.
Let us traverse the graph using a non-recursive algorithm that uses a queue. Let 1 be the
start vertex. Initially, the queue is empty, and the initial set of visited vertices, V = f.

1. Add 1 to the queue. Mark 1 as visited. V = {1}.

1

Front
Rear

2. As the queue is not empty, vertex = delete() from queue, and we get 1.
 Add all the un-visited adjacent vertices of 1 to the queue. In addition, mark them as
visited.
Now, V = {1, 2, 5, 4}.

2 5 4

Front Rear

3. As the queue is not empty, vertex = delete() and we get 2.
Add all the adjacent, un-visited vertices of 2 to the queue and mark them as visited.
Now V = {1, 2, 5, 4, 3}.

5 4 3

Front Rear

4. As the queue is not empty, vertex = delete() from queue, and we get 5.
 Now, add all the adjacent, un-visited vertices adjacent to 5 to the queue and mark
them as visited.

Graphs 395

DSUC c08 V6 October 11, 2012 4:16 PM Page 395

Now, V = {1, 2, 5, 4, 3, 7}.

4 3 7

Front Rear

5. As the queue is not empty, vertex = delete() from queue, and we get 4.
 Now, add all the adjacent, not visited vertices adjacent to 4 to the queue. The vertices
1 and 7 are adjacent to 4 and hence are already visited. Now the next element we get
from the queue is 3.
 Now, we add all the un-visited vertices adjacent to 3 to the queue, making V = {1, 2,
5, 4, 3, 7, 6}.

3 7 6

Front Rear

6. As the queue is not empty, vertex = delete() and we get 7.
 Add all the adjacent, un- visited vertices of 7 to the queue and mark them as visited.
Now, V = {1, 2, 5, 4, 3, 7, 6, 8}.

6 8

Front Rear

7. As the queue is not empty, vertex = delete(), and we get 6.
Then, add all the un-visited adjacent vertices of 6 to the queue and mark them as visited.
Now V = {1, 2, 5, 4, 3, 7, 6, 8}.

8

Front
Rear

8. As queue is not empty, vertex = delete() and we get 8.
Add its adjacent un-visited vertices to the queue and mark them as visited.
V = {1, 2, 5, 4, 3, 7, 6, 8, 9}.

9

Front
Rear

396 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 396

 9. As the queue is not empty, vertex = delete() = 9.
Here, note that no adjacent vertices of 9 are un-visited.

10. As the queue is empty, we stop.
The sequence in which the vertices are visited by the BFS is 1, 2, 5, 4, 3, 7, 6, 8, 9
This is represented in Fig. 8.18.

44 7

6

8

8 9

9

2

2

3

5

1

1

5 3

6

7

Fig. 8.18  Breadth-first search sequence 
for the graph in Fig. 8.13

8.5 SPAnninG TREE

A tree is a connected graph with no cycles. A spanning tree is a sub-graph of G that has all
vertices of G and is a tree. A minimum spanning tree of a weighted graph G is the span-
ning tree of G whose edges sum to minimum weight.

There can be more than one minimum spanning tree for a graph. Figure 8.19 shows a
graph, one of its spanning trees, and a minimum spanning tree.

(a) (b)

(c)

1 2

5

8

4

3 5 3

6

6

4

7
2 8

6

4

2

1 2

5

4

3

5 3

4

2

1 2

5

4

3

Fig. 8.19 Spanning trees (a) Graph
(b) Spanning tree (c) Minimum spanning tree

Graphs 397

DSUC c08 V6 October 11, 2012 4:16 PM Page 397

Minimum spanning trees are useful in many applications such as finding the least amount
of wire needed to connect a group of computers, houses, or cities. A minimum spanning
tree minimizes the total length over all possible spanning trees.

We want to compute a minimum spanning tree efficiently. In theory, we could enumerate
all the spanning trees of a weighted graph and simply choose the tree of least weight. How-
ever, if the graph is a complicated one, this is not an easy and efficient way to get it. In this
section, we shall study the two most efficient ways discovered in the 1950s by J.B. Kruskal
and R.C. Prim. Both the algorithms are greedy algorithms which produce a minimum span-
ning tree by adding an edge at each stage making the best choice of the next edge. These
two popular methods used to compute the minimum spanning tree of a graph are

1. Prim’s algorithm
2. Kruskal’s algorithm

Before discussing these algorithms, let us learn about connected components.

8.5.1 Connected Components

An undirected graph is connected if there is at least one
path between every pair of vertices in the graph. A con-
nected component of a graph is a maximal connected
sub-graph, that is, every vertex in a connected compo-
nent is reachable from the vertices in the component.

Consider the graph G1 in Fig. 8.20.
In this undirected graph, there is only one connected
component, the graph G1 itself.

If we delete the edges e4 and e5 from the graph G1, we get a graph G2 with two connected
components: ({V1, V2, V3}, {E1, E2, E3}) and ({V4}, Ø). This is represented in Fig. 8.21.

V1 V2

E2

E3
E1

V3 V4

Fig. 8.21 Graph G2 with
two connected components

8.5.2 Prim’s Algorithm

All vertices of any connected graph are included in a minimum cost spanning tree of a
graph G. Prim’s algorithm starts from one vertex and grows the rest of the tree by adding
one vertex at a time, by adding the associated edges. This algorithm builds a tree by
iteratively adding edges until a minimal spanning tree is obtained, that is, when all nodes

V1 V2
E2

E3 E5

E4

E1

V3 V4

Fig. 8.20 Sample graph G1 with
one connected component

398 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 398

are added. At each iteration, a next minimum weight edge is added that adds a new vertex
to the tree, if adding that edge does not form a cycle.

Let G = (V, E) be the original graph. Let T be
a spanning tree. T = (A, B), where A and B are
empty sets initially. Let us select an arbitrary vertex
i from V and add it to set A. Now A = {i}. At each
step, Prim’s algorithm looks for the shortest pos-
sible edge <u, v> such that u Œ A and v Œ V − A.
It then adds v to A making A = A » {v} and adds
the edge <u, v> to B. In this way, the edges in B at
any instant form a minimum spanning tree for the
vertices in A. We continue thus as long as A π V.
To illustrate the algorithm, let us consider the graph
in Fig. 8.22.

Let us select node 1 as the starting node. Table 8.1 shows the edge of a minimum
weight selected and the set of vertices A.

Table 8.1 Construction of spanning tree for graph in Fig. 8.22

Step no. Edge <u, v> Set A
Initial – {1}

1 <1, 2> {1, 2}

2 <2, 3> {1, 2, 3}

3 <1, 4> {1, 2, 3, 4}

4 <4, 5> {1, 2, 3, 4, 5}

5 <4, 7> {1, 2, 3, 4, 5, 7}

6 <7, 6> {1, 2, 3, 4, 5, 7, 6}

When the algorithm stops, B contains the chosen edges B = {<1,2>, <2,3>, <1,4>,
<4,5>,<4,7>,<7,6>}. The resultant spanning tree is drawn in Fig. 8.23, which is of
weight 177.

1
11 20

40

33

33
40

2 3

4 5

7

6

Fig. 8.23 Minimum spanning tree
for graph in Fig. 8.22

1
11 20

61 50 80 40 40

33

33

81

72
40

2 3

4 5

7

6

Fig. 8.22 A weighted graph

Graphs 399

DSUC c08 V6 October 11, 2012 4:16 PM Page 399

Algorithm 8.4 is an informal statement of the algorithm. Here, G is a graph and T is a
spanning tree to be computed.

algorithm 8.4
1. Let G = {V, E} and T = {A, B}
 A = f and B = f
2. Let i Œ V, i is a start vertex
3. A = A » {i}
4. while A π V do
 begin
 find edge <u,v> Œ E of minimum length
 such that u Œ A and v Œ V − A
 A = A » {v} and
 B = B » {<u,v>}
 end
5. stop

To obtain a simple implementation in any programming language say C++, suppose that
the vertices of G are numbered from 1 to n so that V = {1, 2, …, n}. Let the matrix M give
the length of each edge and L[i][j] = • if the edge <i,j> œ E, that is, edge <i,j>
does not exist. Let us use two arrays—Nearest[] and Min_Dist[]. Let T = {A, B} be
the minimum spanning tree where initially A and B are empty. For each vertex i Œ V − A,
the array Nearest[i] gives the vertex in A that is nearest to i. Similarly, for each vertex
i Œ V − A, the array Min_Dist[i] gives the distance from i to this nearest vertex. For a
vertex i Œ A, we set Min_Dist[i] = −1. In this way, we can find out whether a vertex
is in A or not. The set A arbitrarily initializes to {1}.

Consider the graph in Fig. 8.24.

20 ba c d

ji k
l

fe
g

h

10

30

30

30

3030

30
40

40

10

10
10

50

20

20

30

Fig. 8.24 Sample graph

Using Prim’s algorithm, we get a spanning tree for this graph in the following steps:

 1. Let f be the start vertex.
 Among vertices e, b, g, and j, the vertex b is the nearest one with edge <f, b> and

weight 10.
w(f, e) = 40
w(f, b) = 10 ¨ min
w(f, g) = 30
w(f, j) = 20

b

f
10

400 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 400

 2. Among the vertices adjacent to b and f, the vertex a is the nearest one with edge
<b, a> and weight 20.

20 ba

f
10

w(b, a) = 20 ¨ min
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(f, j) = 20

 3. Similarly, the nearest vertex adjacent to one of a, b, and f is j with the edge <f, j> and
weight 20.

w(a, e) = 30
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(f, j) = 20 ¨ min

20 ba

j

f
10

20

 4. Similarly, the next edge added is <a, e> with weight 30.

w(a, e) = 30 ̈ min
w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(j, i) = 30
w(j, k) = 30

20 ba

j

fe
30 10

20

 5. Edge selected = <j, i> with weight 30.

w(b, c) = 30
w(f, e) = 40
w(f, g) = 30
w(j, i) = 30 ¨ min
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40

20 ba

ji

fe

30

30 10

20

 6. Edge selected = <f, g> with weight 30.

w(b, c) = 30
w(f, e) = 40
w(f, g) = 30 ¨ min
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40

20 ba

ji

fe
g30

30

30 10

20

Graphs 401

DSUC c08 V6 October 11, 2012 4:16 PM Page 401

 7. Edge selected = <g, k> with weight 10.

20 ba

j ki

fe
g30

30

30 10

20 10

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20
w(g, k) = 10 ¨ min
w(g, h) = 30

 8. Edge selected = <k, l> with weight 10.

20 ba

k lji

fe
g

10

30

30

30 10

20 10

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20
w(g, h) = 30
w(k, l) = 10 ̈ min

 9. Edge selected = <g, c> with weight 20.

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, c) = 20 ¨ min
w(g, h) = 30
w(l, h) = 30

20 ba c

ji lk

fe g

10

30

30

30 10

20

20

10

10. Edge selected = <c, d> with weight 10.

w(b, c) = 30
w(f, e) = 40
w(j, k) = 30
w(e, i) = 40
w(e, f) = 40
w(g, h) = 30
w(l, h) = 30
w(c, d) = 10 ¨ min

20 ba c d

ji lk

fe g

10

30

30 10

30 10

20

20

10

11. Finally the edge selected = <g, k> with weight 30.

402 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 402

As all the vertices are added, the algorithm ends. The resultant spanning tree is shown in
Fig. 8.25 with a total weight of 220.

20 ba c d

ji k l

fe
g

h

10

30

10

30

30

30 10

1020

20

Fig. 8.25 Minimum cost spanning
tree for the graph in Fig. 8.24

8.5.3 Kruskal’s Algorithm
We studied Prim’s algorithm to find the minimum spanning tree. Another way to construct
a minimum spanning tree for a graph G is to start with a graph T = (V', E' = ø) con-
sisting of the n vertices of G and having no edges. Each vertex is therefore a connected
component in itself. In Prim’s algorithm, we start with one connected component, add a
vertex to have one connected component and no cycles, and end up with one connected
component. Here, we start with n connected components; at each step, the number of
connected components would reduce by one and end up with one connected component.
Here, n indicates the total number of vertices in a graph.

We start with all vertices; each vertex is therefore a connected component in itself. As
the algorithm progresses, we add an edge to T = (V', E' = ø) by examining the edges
from E. If the edge connects two vertices in two different connected components, then we
add the edge to T. In other words, if the edge does not form a cycle in T, only then an edge
is added. If an edge joins two vertices of two different connected components, we add it
to T. Consequently, the two connected components now form only one component, and
the total number of connected components would be decremented by one. If it forms a
cycle, that is, if the edge connects two vertices in the same component, then we discard
the edge. At the end of the algorithm, only one connected component remains, so T is
then a minimum spanning tree for all the vertices of G. To build a bigger component, we
examine the edges of G in the increasing order of their associated weights.

To illustrate the method, consider the graph in Fig. 8.26.

1
11 20

61 50 80 40 40

33

33

81

72
40

2 3

4 5

7

6

Fig. 8.26 Sample graph

Graphs 403

DSUC c08 V6 October 11, 2012 4:16 PM Page 403

Let us arrange the edges in an increasing order of their weights: <1, 2>, <2, 3>, <4, 5>,
<6, 7>, <1, 4>, <2, 5>, <4, 7>, <3, 5>, <2, 4>, <3, 6>, <5, 7>, and <5, 6> with weights
11, 20, 33, 33, 40, 40, 40, 50, 61, 80, 72, and 81, respectively. Selection and addition of
edges in a step-by-step manner is shown in Table 8.2.

Table 8.2 Construction of spanning tree for graph in Fig. 8.26

Step no. Edge considered Action Connected component
Initial – – {1} {2} {3} {4} {5} {6} {7}

1 <1, 2> Add {1, 2} {3} {4} {5} {6} {7}

2 <2, 3> Add {1,2,3} {4} {5} {6} {7}

3 <4, 5> Add {1,2,3} {4,5} {6} {7}

4 <6, 7> Add {1,2,3} {4,5} {6,7}

5 <1, 4> Add {1,2,3,4,5} {6,7}

6 <2, 5> Rejected {1,2,3,4,5} {6,7}

7 <4, 7> Add {1,2,3,4,5,6,7}

When the algorithm stops, T contains the chosen edges <1, 2>, <2, 3>, <4, 5>, <6, 7>,
<1, 4>, and <4, 7>. This minimum spanning tree has the weight as 177 and is drawn in
Fig. 8.22. Algorithm 8.5 states these steps in brief.

algorithm 8.5
1. Let G = {V, E} and T = {A, B}
2. A = V and B = f, |A| = n and |B| = 0
3. while(|B| < n − 1) do
 begin
 find edge <u,v> of minimum length and add to B
 only if addition of edge <u,v> does not complete a cycle in T
 end
4. stop

The graph T initially consists of the vertices of G but no edges. At each iteration, we
add an edge <u, v> to T having minimum weight that does not complete a cycle in T.
When T gets (n − 1) edges, the algorithm stops. To implement the algorithm, we have to
handle a certain number of sets that include vertices of each connected component. Two
operations have to be carried out:

1. Member(x) tells us which connected component the vertex x is a member of.
2. Merge(u, v) is to merge two connected components u and v.

Let us rewrite Algorithm 8.5 by elaborating these steps in Algorithm 8.6.

algorithm 8.6
1. Sort E in increasing order of weights
2. Let G = (V, E) and T = (A, B), A = V and E = Null set
 And let n = length (V)

404 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 404

3. Initialize n sets, each containing a different element of v
4. while(|B| < n − 1) do
 begin
 e = <u,v> the shortest edge not yet considered
 U = Member(u)
 V = Member(v)
 if(U π V)
 {
 Merge(U,V)
 Union(B,u,v)
 }
 end
5. T is the minimum spanning tree
6. stop

In step 4 of Algorithm 8.6, when the edge <u,v>
with minimum weight is to be added in an exist-
ing tree, the function Member() checks for u and
v for the connected component they belong to.
If they are members of two different connected
components, the edge is added as it would not
form a cycle. If they belong to the same con-
nected component, then adding the edge forms
a cycle.

Consider the graph as in Fig. 8.27
Let us use Kruskal’s algorithm.

Step 1: The edge with minimum weight is selected edge = <c, d>.
Weight of the selected edge = 10.
As the addition of edge to the existing tree does not form a cycle, an edge is added.

c d10

Step 2: Selected edge <k, l> with weight 10.

c d

k
l

10

10

20 ba c d

ji k
l

fe
g

h

10

30

30

30

3030

30
40

40

10

10
10

50

20

20

30

Fig. 8.27 Sample graph for Prim’s
spanning tree computation

Graphs 405

DSUC c08 V6 October 11, 2012 4:16 PM Page 405

Step 3: Selected edge <b, f> with weight 10.

b c d

k
l

f

10

10

10

Step 4: Selected edge <g, k> with weight 20.

b c d

k l

f

10

10

10

10

g

Step 5: Selected edge <a, b> weight 20.

b

f
10

20a c d

k l

10

10
10

g

Step 6: Selected edge <f, j> with weight 20.

b c d

k l

f

j

10

10

20 10
10

g

20a

Step 7: Selected edge <c, g> with weight 30.

b c d

k l

f

j

10

10

20

10

10

g
20

20a

406 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 406

Step 8: Selected edge <j, k> with weight 30.

b c d

k l

f

j

10

10

20
10

10

g
20

20a

30

Step 9: Selected edge <g, h> with weight 30.

b c d

k l

f

j

10

10

20
10

10

g
20

20a

30

h
30

Step 10: Selected edge <i, j> with weight 30.

b c d

f

10

10

20

g
20

20a

h
30

ji k l
3030 10

10

Figure 8.28 is a spanning tree with weight 220.

20 ba c d

ji k l

fe g h

10

30

3030

30 10

10
1020

20

Fig. 8.28 Spanning tree for graph in Fig. 8.27

Graphs 407

DSUC c08 V6 October 11, 2012 4:16 PM Page 407

8.5.4 Biconnected Components

Depth-first search traversal of a graph, one of the most important techniques used for
solving a variety of problems is described in Section 8.4.1. DFS can be used to find the
connected components of an undirected graph. There are a few non-trivial graph algorith-
mic problems to be considered.

Consider a graph modelling a communication network problem. We expect the net-
work to be robust under failures of any of the nodes. Even if a node fails, the remaining
network should still remain connected. A graph is said to be biconnected if this condition
is satisfied.

Often, we need to test whether a given undirected graph is biconnected or not. A bicon-
nected component is a maximal biconnected sub-graph of the graph G = (V, E). Edges and
non-separation vertices belong to exactly one component, whereas separation vertices
belong to at least two. Biconnected components contain no separation vertices or edges.
A separation vertex or edge is one whose removal disconnects G. Between any two ver-
tices, there exists at least two disjoint paths, and G has a simple cycle containing them.
Any connected graph can be decomposed into a tree of biconnected components called
the block tree of the graph. The blocks are attached to each other at shared vertices called
cut vertices or articulation points. Specifically, a cut vertex is any vertex, which, when
removed increases the number of connected components. In Fig. 8.29, the separation edge
e1 is between A and B, and the separation vertex is E.

A

e1

e2

e5

e4

e7

e6

e8

e3

B

C

E

D

G

F

Fig. 8.29 Sample graph with biconnected components

408 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 408

8.5.5 Disjoint Set operations

In minimum spanning tree computation algorithms, we have used two important set oper-
ations. Similar to those, there are many algorithms in which a disjoint-set data structure
is used. This data structure keeps track of a set of elements partitioned into a number of
disjoint subsets. A union–find algorithm is one that performs two useful operations (i.e.,
find and union) on such a data structure.

Find This is a membership check of the element. It determines the set in which a
particular element is located and is also useful for determining whether two elements are
in the same set or not.

Union This operation combines or merges two sets into a single set.
These two operations are supported by a disjoint-set data structure. Hence, it is also

called as a union–find data structure or merge–find set.

8.6 SHoRTEST PATH ALGoRiTHM

A weighted graph is a graph where the values are assigned to the edges and the length of a
path is the sum of the weight of the edges in the path. We let w(i, j) denote the weight
of edge (i, j). In a weighted graph, we often need to find the shortest path. The shortest
path between two given vertices is the path having minimum length. This problem can be
solved by one of the greedy algorithms, by Edger W. Dijkstra, often called as Dijkstra’s
algorithm.

Consider a directed graph G = {A, B}. Each edge has a non-negative length. One
of the nodes is the source vertex. Suppose we are to determine the shortest path from
a to the destination vertex z. Let us use two sets of vertices, visited and unvisited. Let
V denote the set of visited vertices that contains the vertices that have already been
chosen and the minimal distance from the source is already known for every vertex in
V. The set U contains all other vertices whose minimal distance from the source is not
yet known.

Let an array Dist hold the length of the shortest distance and the array Path hold the
shortest path between the source and each of the vertices. At each step, Dist[i] shows
the shortest distance between a and i, and Path[i] shows the shortest path between a
and i. The basic idea of the algorithm is to determine the minimum cost from i to one
vertex at each of the iterations and call it j, mark j as visited, and recalculate the cost
from i to each of the unvisited vertices going through j.

Initially, a is the only vertex in V. At each step we add to V, another vertex, for which
the shortest path from a has been determined. The array Dist[] is initialized by set-
ting Dist[i] to the weight of the edge from a to i if it exists and to • if it does not.
To determine which vertex to add to V at each step, we apply the criteria of choosing
the vertex j with the smallest distance recorded in Dist such that j is not the visited

Graphs 409

DSUC c08 V6 October 11, 2012 4:16 PM Page 409

one. When we add j to V (set of visited vertices), we must update the entries of Dist by
checking, for each vertex k that is not in V, whether a path through j and then directly
to k is shorter than the previously recorded distance of k. That is, we replace Dist[k]
by Dist[j] + weight of the edge from j to k if the value of the latter quantity is lesser.
Here, j is the currently selected vertex. Let k be a vertex whose distance is updated. If the
distance is updated, then the path is also updated. Then, path[k] becomes the path of j
followed by k.

In brief,

if Dist[k] > (Dist[j] + weight<j,k>) then
 Dist[k] = Dist[j] + w <j,k>

and
 Path[k] = Path[j] U{k}

Algorithm 8.7 is for computing the shortest path from the source vertex to the destination
vertex.

algorithm 8.7
1. Let G = (A, B) where A = set of vertices
2. Initially, let V = {a} and U = V − {a}
3. Let U be the unvisited and V be the visited vertices
4. Let Dist[t] = w[(a, t)] for every vertex a Œ A
5. Select the vertex in U that has the smallest value Dist[x]. Let

x denote this vertex.
6. If x is the vertex we wish to reach from a, goto 9. If not, let

V = V − {x} and U = U − {x}
7. For every vertex t in A, compute Dist[t] with respect to V as,
 Dist[t] = min{Dist[t], Dist[t] + w (x,t)}
8. Repeat steps 5, 6, and 7
9. Stop

Let us consider the graph in Fig. 8.30, and let us compute the shortest path between a
and all other vertices using this algorithm.

2
a 5

3
6

2
e

4

d 2 c

1

6

2

b

Fig. 8.30 Directed weighted graph

410 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 410

1. Initial step
 The set V = {a}, where a is the source vertex
 and U = {b, c, d, e} is the set of unvisited vertices.
 Dist[] = {−, 5, 3, •, 2}. This array can also be written as

b c d e
Distance

5 3 ∞ 2

This Dist[] array represents the current shortest distance between a and other vertices.
 Path = {Ø, ab, ac, Ø, ac}
2. Now, the distance to vertex e is the shortest, so e is added to set V.
 We get, V = {a, e}; let us update Dist array now.

b c d e
Distance

5 3 6 2

The weight of the edge between the current selected vertex e and d is 4 and the dis-
tance from a to e is 2; hence the distance between a and d becomes 6 as it is less than •.

Hence, the path is also updated for vertex d by the path of current selected vertex, that is,
the path of e.

Path = {Ø, ab, ac, aed, ae}

3. Now the distance to vertex c among the unvisited vertices is the shortest. Hence, c is
current selected vertex which gets to V.

 Therefore V = {a, e, c}. Let us update Dist array now.

b c d e
Distance

4 3 5 2

Here, the shortest distance between the source a to b and d are updated as,

Dist[b] = min{5, Dist[c] + w(c, b)}
= min{5, 3 + 1}
= 4

Graphs 411

DSUC c08 V6 October 11, 2012 4:16 PM Page 411

and

Dist[d] = min{6, Dist[c] + w(c, d)}
= min {6, 3 + 2}
= 5

As the shortest distance of b and d are updated, their respective paths are also updated
as in the following expression:

Path = {Ø, acb, ac, acd, ae}

The path vector can also be shown as follows:

b c d e
Path

acb ac acd ae

4. Now b is the vertex that has the shortest distance and is unvisited.

Hence, V = {a, e, c, b}

b c d e
Distance

4 3 5 2

Here, none of the shortest distances is updated. Hence, the path also remains unchanged.

b c d e
Path

acb ac acd ae

5. Now d is the next selected vertex, and the final distance and path vectors are the same
as stated. Hence, the shortest distances between a and {b, c, d, e} are {4, 3, 5, 2},
respectively. In addition, the shortest path between a and {b, c, d, e} are {acb, ac, acd,
ae}, respectively.
In the final two steps, adding the vertices b and d to V yield the paths and distances as

shown in Fig. 8.31.

412 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 412

2

e
3

a

cd

1

b

2
{5}

{a, c, d}

{a, e}

{2}

{a, c, b}

{a, c}

{3}

{4}

Fig. 8.31 Shortest paths and distances

To implement this algorithm in C++, let us use an adjacency matrix implementation as
it facilitates random access to all the vertices of a graph. Moreover, by storing the weights
in the matrix, we can use the matrix to give weights as well as adjacencies. We shall place
a special large value 9999 (to represent •) in positions for which the corresponding edge
does not exist (Program Code 8.6).

Program CoDE 8.6

// Shortest distance using Dijkstra’s algorithm

#include<iostream.h>

#include<conio.h>

#defi ne infi nite 999

class graph

{

 int Graph[20][20];

 // Adjacency Matrix int No_of_Vertices;

 public:

 void Accept();

 void Display();

 int Calc_Shortest_Dist();

};

void graph :: Accept()

{

 int i,j;

 cout << "Enter no of vertex";

 cin >> No_of_Vertices;

 for(i = 1; i<= No_of_Vertices; i++)

 {

 for(j = 1; j<= No_of_Vertices; j++)

 {

Graphs 413

DSUC c08 V6 October 11, 2012 4:16 PM Page 413

 Graph[i][j] = infi nite;

 }

 }

 for(i = 1; i<= No_of_Vertices; i++)

 {

 for(j = i + 1; j<= No_of_Vertices; j++)

 {

 cout << “\n Please enter weight from

"<<i<<"to"<<j<<":";

 cin>> Graph[i][j];

 Graph[j][i] = Graph[i][j];

 }

 }

}

void graph :: Display()

{

 int i,j;

 cout << "Graphs Adjacency Matrix is\n";

 for(i = 1; i<= No_of_Vertices; i++)

 {

 for(j = 1; j<= No_of_Vertices; j++)

 {

 cout << “\t”<< Graph [i][j];

 }

 cout << “\n”;

 }

}

int graph :: Calc_Shortest_Dist()

{

 int cost, curr, src, cost1 = 0, desti, start, new1,

i, k = 1, temp;

 int visited[20], dist[20];

 cout << "\nEnter the source";

 cin >> src;

 cout << "\nEnter the destination";

 cin >> desti;

 for(i = 0; i<= No_of_Vertices; i++)

 {

 visited[i] = 0;

 dist[i] = infi nite;

 }

414 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 414

 visited[src] = 1;

 dist[src] = 0;

 curr = src;

 cout << "\nPath is"<<src;

 while(curr ! = desti)

 {

 cost = infi nite;

 start = dist[curr];

 for(i = 1; i<= No_of_Vertices; i++)

 {

 if(visited[i] == 0)

 {

 new1 = start + Graph[curr][i];

 if(new1 < dist[i])

 dist[i] = new1;

 if(dist[i]<cost)

 {

 cost = dist[i];

 temp = i;

 }

 }

 }

 curr = temp;

 visited[curr] = 1;

 cout << “\nCurr node is”<<curr;

 // cost1 = cost1 + cost;

 }

return cost1;

}

void main()

{

 clrscr();

 graph G;

 int Shortest_Distance;

 G.Accept();

 G.Display();

 Shortest_Distance = G. Calc_Shortest_Dist();

 cout << "\ndistance is"<< Shortest_Distance;

 getch();

}

Graphs 415

DSUC c08 V6 October 11, 2012 4:16 PM Page 415

RECAPiTULATion

•  Graphs  are  one  of  the  most  important  non-
linear data structures. A graph is a represen-
tation of relation. Vertices represent elements
and edges represent relationships. In other
words, a graph is a collection of nodes (ver-
tices) and arcs joining pairs of the nodes
(edges). The edges between two vertices rep-
resent the relationship between them.

•  Graphs  are  classifi ed  as  directed  and  undi-
rected graphs. In an undirected graph, an
edge is a set of two vertices where order does
not make any relevance, whereas in a directed
graph, an edge is an ordered pair.

•  Graphs are implemented using an array or a 
linked list representation. An adjacency list
is a data structure for representing a graph
by keeping a list of the neighbour vertices for
each vertex. An adjacency matrix is a data
structure for representing a graph as a Boolean
matrix where 0 means no edge and 1 corre-
sponds to an edge.

•  There  are  two  standard  graph  traversals—
depth-fi rst and brea dth-fi rst.

•  A m inimum spanning  tree  is  a  tree,  contain-
ing all the vertices of a graph, where the total
weight of the edges is minimum. The two pop-
ularly used algorithms to compute minimum
spanning tree are Prim’s and Kruskal’s algo-
rithms.

•  A biconnected component  is a maximal sub-
graph. A component of biconnected graph is
useful in modelling a robust communication
network.

•  A disjoint  set  is a  type of data structure  that 
keeps track of a set of elements partitioned
into a number of disjoint subsets. Operations
such as union and fi nd are performed on it for 
respectively merging two sets into one and
determining the location of a given set.

•  Dijkstra’s algorithm is another common algo-
rithm  for  graphs  to  fi nd  the  shortest  path 
between two vertices of a graph.

Adjacency list In an adjacency list, the n rows of
the adjacency list are represented as n-linked lists,
one list per vertex of the graph. We can represent
G by an array Head, where Head[i] is a pointer to
the adjacency list of vertex i. Each node of the list
has at least two fi elds: vertex and link. The vertex
fi eld contains the vertex id, and link fi eld stores
the pointer to the next node storing another vertex
adjacent to i.

Adjacency matrix The graphs represented using a
sequential representation using matrices is called
an adjacency matrix.

Adjacency multilist Multilists are lists where
nodes may be shared among several other lists.
For each edge, instead of two, there will be exact-

ly one node, but this node will be in two lists, that
is, the adjacency lists for each of the two nodes it
is incident on.

Biconnected component A biconnected compo-
nent is a maximal biconnected sub-graph of graph
G = (V, E) containing no separation vertices or
edges.

Breadth-fi rst search (BFS) In BFS, all the unvis-
ited vertices adjacent to i are visited after visiting
the start vertex i and marking it visited. Next, the
unvisited vertices adjacent to these vertices are
visited and so on until the entire graph has been
traversed.

Connected component An undirected graph is
connected if there is at least one path between

KEY TERMS

416 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 416

EXERCiSES

Multiple choice questions

 1. Consider an undirected unweighted graph G.
Let a breadth-fi rst travers al be done starting
from a node r. Let the distance d(r, u) and d(r,
v) be the lengths of the shortest paths from r to
u and v, respectively, in G. If u is visited before
v during the breadth-fi rst travers al, which of the
following statements is correct?

 (a) d(r, u) < d (r, v)
 (b) d(r, u) > d(r, v)
 (c) d(r, u) £ d(r, v)
 (d) None of these
 2. Kruskal’s algorithm for fi nding a minimum

spanning tree of a weighted graph G with n
vertices and m edges has the time complexity of

 (a) O(n2)
 (b) O(m, n)
 (c) O(m + n)
 (d) (m log n)
 (e) O(m2)

 3. Consider a simple connected graph G with n
vertices and n edges (n > 2). Then, which of the
following statements is true?

 (a) G has no cycles
 (b) The graph obtained by removing any edge

from G is not connected
 (c) G has at least one cycle
 (d) The graph obtained by removing any two

edges from G is not connected
 (e) None of the above
 4. Which of the following statements is false?
 (a) Optimal binary search tree construction

can be performed effi ciently using dynamic
programming.

 (b) BFS cannot be used to fi nd the component
of a graph.

 (c) The prefi x and postfi x walks over a binary
tree cannot be uniquely constructed.

 (d) DFS can be used to fi nd the connected
components of a graph.

every pair of vertices in the graph. A connected
component of a graph is a maximal connected
sub-graph, that is, every vertex in a connected
component is reachable from the vertices in the
component.

Depth-fi rst search (D FS) DFS differs from
BFS. It starts at the vertex v of G as a start ver-
tex and v is marked as visited. Then, each un-
visited vertex adjacent to v is searched using the
DFS recursively. Once all the vertices that can
be reached from v have been visited, the search
of v is complete. If some vertices remain unvis-
ited, we select an unvisited vertex as a new start
vertex and then repeat the process until all the
vertices of G are marked visited.

Disjoint set This is a type of data structure that
keeps track of a set of elements partitioned into a
number of disjoint subsets.

Graph traversal Visiting all the vertices and
edges in a systematic fashion is called as a graph
traversal. The two most common traversals are
depth-fi rst traversal and breadth-fi rst travers al.

Graph A graph G is a discrete structure consist-
ing of nodes (vertices) and the lines joining the
nodes (edges). For fi nite graphs, V and E are fi -
nite. We can write a graph as G = (V, E).

Inverse adjacency list Inverse adjacency lists is a
set of lists that contain one list for vertex. Each list
contains a node per vertex adjacent to the vertex
it represents.

Spanning tree A tree is a connected graph with
no cycles. A spanning tree is a sub-graph of G
that has all vertices of G and is a tree. A mini-
mum spanning tree of a weighted graph G is the
spanning tree of G whose edges sum to minimum
weight.

Graphs 417

DSUC c08 V6 October 11, 2012 4:16 PM Page 417

 5. The number of distinct simple graphs with upto
3 nodes is

 (a) 15
 (b) 10
 (c) 7
 (d) 9
 6. Let G be a graph with 100 vertices numbered 1

to 100. Two vertices i and j are adjacent iff |i −
j| = 8 or |i − j| = 12. The number of connected
components in G is

 (a) 8
 (b) 4
 (c) 12
 (d) 25
 7. The number of articulation points of the

following graph is
 (a) 0
 (b) 1
 (c) 2
 (d) 3
 8. Let G be an undirected graph. Consider a

DFS of G, and let T be the resulting DFS tree.
Let u be a vertex in G and let v be the first
new (unvisited) vertex. After using u in the
traversal, which of the following statements is
always true?

 (a) {u, v} must be an edge in G, and u is a
descendent of u in T.

 (b) {u, v} must be an edge in G, and v is a
descendent of u in T.

 (c) If {u, v} is not an edge in G, then u is a leaf
in T.

 (d) If {u, v} is not an edge in G, then u and v
must have the same parent in T.

 9. Which is the most appropriate matching for the
following pairs?

X: depth-first search 1: heap
Y: breadth-first search 2: queue
Z: sorting 3: stack

 (a) X–1, Y–2, Z–3

 (b) X–3, Y–1, Z–2
 (c) X–3, Y–2, Z–1
 (d) X–2, Y–3, Z–1
10. Let G be an undirected connected graph with

distinct edge weights. Let emax be the edge
with maximum weight and emin be the edge
with minimum weight. Which of the following
statements is false?

 (a) Every minimum spanning tree of G must
contain emin

 (b) If emax is a minimum spanning tree, then its
removal must disconnect G

 (c) No minimum spanning tree contains emax

 (d) G has a unique minimum spanning tree

Review questions

 1. Give the adjacency list representation for the
following graph.

4

2
1 3

 2. Suggest a suitable node structure for a weighted
graph’s adjacency list representation. Give the
adjacency list for the following weighted graph
using the suggested node structure.

1 2

5

8

4

3
5 3

6

6

4

7
2

 3. Draw a graph for the following adjacency list.

418 data structures usinG c++

DSUC c08 V6 October 11, 2012 4:16 PM Page 418

3

3

3

2

1

2

1

2

3

 4. Compute the shortest path and the distance
between the vertices a and z in the following
graph.

1

1

5

64

7b d

z

ec

a 2

2

3

 5. For the following graph, compute the shortest path
and distance between the vertices a and h.

3

1
f

1 1

16 4

5b e

8
h

d

ca
5

3
2

2

2

2

g

 6. For the following graph, give the result of depth-
first and breadth-first traversals.

7

8

4

5

6
3

2

1

 7. Consider the following specification of a graph G:

V(G) = {1, 2, 3, 4)
E(G) = {(1, 2), (1, 3), (3, 3), (3, 4),
(4, 1)}

 (a) Draw a picture of the undirected graph.
 (b) Draw its adjacency matrix.
 8. Write a non-recursive pseudo algorithm for the

DFS of a graph.
 9. Construct a minimum spanning tree (step-by-

step) from the following graph using Kruskal’s
algorithm.

12

1
3

2

6

14

1019

17
15

A

E D

E

B

C

10. Construct an adjacency matrix and adjacency list
for the graph in question 9.

11. Construct a minimum spanning tree using Prim’s
algorithm for the graph in question 9.

12. Write pseudo C++ algorithms for the following:
 (a) BFS
 (b) DFS
 (c) Kruskal’s algorithm
 (d) Prim’s algorithm
 (e) Dijkstra’s algorithm
13. Show that all vertices in an undirected finite

graph cannot have distinct degrees if the graph
has at least two vertices.

14. A complete, undirected, weighted graph G is
given on the vertex set {0, 1, …, n − 1} for
any fixed n. Draw the minimum spanning tree
of G if

 (a) the weight of the edge (u, v) is |u − v|
 (b) the weight of the edge (u, v) is u + v

Graphs 419

DSUC c08 V6 October 11, 2012 4:16 PM Page 419

15. For the graph in the following figure:

G

F H

13

3

8

2
6

4

7

5 5

A

D

E

B C

 (a) Give the depth-first traversal.

 (b) Give the breadth-first traversal.
 (c) Draw three spanning trees.
 (d) Give the adjacency matrix representation.
 (e) Give the adjacency list representation.
 (f) Find minimum spanning tree.
 (g) Find the shortest path and distance between

A and all other vertices.
16. Explain the terms connected components,

biconnected components, block tree, and cut
vertex.

17 Describe the disjoint set operations union and
find. Write algorithms for these operations.

Answers to multiple choice questions

1. (c) 2. (c) 3. (c) 4. (b) 5. (a) 6. (a) 7. (d) 8. (b) 9. (c)
10. (c)

9

One of the most common and time consuming tasks in computer science is the
retrieval of target information from huge data, which needs searching. Searching

is the process of fi nding the location of the target among a list of objects. The two basic
search techniques are the following:

1. S equential search
2. B inary se arch

There are certain ways of organizing data, which make the search process more effi -
cient. If the data is kept in a proper order, it is much easier to search. Sorting is a process
of organizing data in a certain order to help retrieve it more effi ciently.

In this chapter, we shall study searching and sorting methods. We shall also analyse the
a lgorithms in terms of time complexity.

9.1 Searching

The proce ss of locating target data is known as searching. Consider a situation wh ere you
are trying to get the phone number of your friend from a telephone directory. The tele-
phone directory can be thought of as a table or a fi le, which is a collection of records. Each
record has one or more fi elds such as name, address, and telephone number. The fi elds,
which are used to distinguish records, are known as keys. While searching, we are asked
to fi nd the record which contains information along with the target key. When we think of
a telephone directory, the search is usually by name. However, when we try to locate the
record corresponding to a given telephone number, the key will be the telephone number.

Searching anD Sorting

oBJectiVeS

After completing this chapter, the reader will be able to understand the following:
 • Basic search and sort algorith ms
 • Algorithms with respect to time and space complexity
 • Appropriate algorithms suitable for practical applications

searching and sorting 421

DSUC c09 V6 November 21, 2012 11:50 AM Page 421

If given an address and the person’s name and telephone number need to be located, the
person’s address will be the key.

If the key is unique and if it determines a record uniquely, it is called a primary key. For
example, telephone number is a primary key. As any field of a record may serve as the key
for a particular application, keys may not always be unique. For example, if we use ‘name’
as the key for a telephone directory, there may be one or more persons with the same
name. In addition, sorted organization of a directory makes searching easier and faster.

We may use one of the two linear data structures, arrays and linked lists, for storing the
data. Search techniques may vary according to data organization. The data may be stored
on a secondary storage or permanent storage area. If the search is applied on the table that
resides at the secondary storage (hard disk), it is called as external searching, whereas
searching of a table that is in primary storage (main memory) is called as internal search-
ing which is faster than external searching.

A searching algorithm accepts two arguments as parameters—a target value to be
searched and the list to be searched. The search algorithm searches a target value in the
list until the target key is found or can conclude that it is not found.

One of the most popular applications of search algorithms is adding a record in the
collection of records. While adding, the record is searched by key and if not present, it is
inserted in the collection. Such a technique of searching the record and inserting it if not
found is known as search and insert algorithm.

9.2 Search techniqueS

Depending on the way data is scanned for searching a particular record, the search tech-
niques are categorized as follows:

1. Sequential search
2. Binary search
3. Fibonacci search
4. Index sequential search
5. Hashed search

The performance of a searching algorithm can be computed by counting the number of
comparisons to find a given value. We shall study these algorithms with respect to arrays.
For sequential search, the same concept applies for searching data in linked lists as well
as files.

9.2.1 Sequential Search

The easiest search technique is a sequential search. This is a technique that must be used
when records are stored without any consideration given to order, or when the storage
medium lacks any type of direct access facility. For example, magnetic tape and linked

422 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 422

list are sequential storage media where the data may or may not be ordered. There are
two ways for storing the collection of records namely, sequential and non-sequential. For
the time being, let us assume that we have a sequential file F, and we wish to retrieve a
record with a certain key value k. If F has n records with the key value ki such as i = 1 to
n, then one way to carry out the retrieval is by examining the key values in the order of
their arrangement until the correct record is located. Such a search is known as sequential
search since the records are examined sequentially from the first till the last.

Hence, a sequential search begins with the first available record and proceeds to the
next available record repeatedly until we find the target key or conclude that it is not
found. Sequential search is also called as linear search.

Algorithm 9.1 depicts the steps involved in sequential search.

algorithm 9.1
1. Set i = 0, flag = 0
2. Compare key[i] and target
 if(key[i] = target)
 Set flag = 1, location = i and goto step 5
3. Move to next data element
 i = i + 1
4. if(i < n) goto step 2
5. if(flag = 1) then
 return i as position of target located
 else
 report as ‘Target not found’
6. stop

Figure 9.1 shows a sample sequential unordered data and traces the search for the target
data of 89.

Index 0 1 2 3 4 5 6 7 8

Elements 23 12 9 10 11 89 78 66 88

Target location

Target data

Fig. 9.1 Sequential search for target data of 89

Initially, i = 0 and the target element 89 is to be searched. At each pass, the target 89 is
compared with the element at the ith location till it is found or the index i exceeds the size.
At i = 5, the search is successful.

Algorithm 9.1 for sequential search is implemented in C++ as shown in Program Code 9.1.

searching and sorting 423

DSUC c09 V6 November 21, 2012 11:50 AM Page 423

program CoDe 9.1

int SeqSearch (int A[max], int key, int n)

{

 int i, fl ag = 0, position;

 for(i = 0; i < n; i++)

 {

 if(key == A[i])

 {

 position = i;

 fl ag = 1;

 break;

 }

 }

 if(fl ag == 1) // if found return position

 return(position);

 else // return −1 if not found

 return(−1);

}

The function SeqSearch() is defi ned with three parameters—the element to be
searched, the array A where the element is to be searched, and the total number of ele-
ments in the array. The function SeqSearch() returns the location of the element if found
or returns -1 if the element is not found.

Let us compute the amount of time the sequential search needs to search for a target
data. For this, we must compute the number of times the comparisons of keys is done. In
general, for any search algorithm, the computational complexity is computed by consid-
ering the number of comparisons made.

The number of comparisons depends on where the target data is stored in the search list.
If the target data is placed at the fi rst location, we get it in just one comparison. Two com-
parisons are needed if the target data is in the second location. Similarly, i comparisons are
required if the target data is at the ith location and n comparisons, if it is at the nth location.
As the total number of comparisons depends on the position of the target data, let us com-
pute the average complexity of the algorithm. Average complexity is the sum of number
of comparisons for each position of the target data divided by n and is given as follows:

Average number of comparisons = (1 + 2 + 3 + … + n)/n
= (Sn)/n
= ((n(n + 1))/2) ¥ 1/n
= (n + 1)/2

424 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 424

Hence, the average number of comparisons done by the sequential search method in
the case of a successful search is (n + 1)/2. An unsuccessful search is given by n compari-
sons. The number of comparisons is n and the complexity is denoted as O(n).

The worst case complexity is n, which means that the target data element is at the nth
location and hence requires n comparisons. The best case complexity is 1, as the target
data element is at the first location and requires only a single comparison. Sequential
search is suitable when the data is stored in an unordered manner and also when there is
no way to directly access the data elements. For example, to search the data record stored
on a magnetic tape, it has to be searched sequentially from the first location till the nth
location. The linear list implemented using a linked list cannot access any ith element
directly except (i = 1). We need to search through the whole list to retrieve a target data.
Hence, sequential search is used if the data is unsorted and if the storage does not provide
direct access to the data.

Pros and Cons of Sequential Search

The following lists detail the pros and cons of sequential searching:

Pros

1. A simple and easy method
2. Efficient for small lists
3. Suitable for unsorted data
4. Suitable for storage structures which do not support direct access to data, for example,

magnetic tape, linked list, etc.
5. Best case is one comparison, worst case is n comparisons, and average case is (n + 1)/2

comparisons
6. Time complexity is in the order of n denoted as O(n).

Cons

1. Highly inefficient for large data
2. In the case of ordered data other search techniques such as binary search are found

more suitable.

Variations of Sequential Search

The time complexity of sequential search is O(n); this amounts to one comparison in the
best case, n comparisons in the worst case, and (n + 1)/2 comparisons in the average case.
The algorithm starts at the first location and the search continues till the last element. We
can make a few changes leading to a few variations in the sequential search algorithm.
There are three such variations:

1. Sentinel search
2. Probability search
3. Ordered list search

searching and sorting 425

DSUC c09 V6 November 21, 2012 11:50 AM Page 425

 Sentinel search We note that in steps 2–4 of Algorithm 9.1, there are two comparisons—
one for the element (key) to be searched and the other for the end of the array. The
algorithm ends either when the target is found or when the last element is compared. The
algorithm can be modifi ed to eliminate the end of list test by placing the target at the end
of list as just one additional entry. This additional entry at the end of the list is called as
a sentinel. Now, we need not test for the end of list condition within the loop and merely
check after the loop completes whether we found the actual target or the sentinel. This
modifi cation avoids one comparison within the loop that varies n times. The only care to
be taken is not to consider the sentinel entry as a data member.

Algorithm 9.2 depicts the steps involved in sentinel search.

algorithm 9.2
1. Set i = 0
2. list[n] = target {add sentinel}
3. Compare key[i] and target
 if(key[i] = target)
 Set location = i and goto step 6
4. Move to next data element
 i = i + 1
5. goto step 3
6. if(location < n) then
 return location as position of target
7. else
 report as ‘Target not found’ and return −1
8. stop

Algorithm 9.2 is implemented in C++ as in Program Code 9.2.

program CoDe 9.2

int SeqSearch_sentinel (int A[max], int key, int n)

{

 int i, position;

 A[n] = key; // place target at end of the list

 while(key != A[i])

 {

 i = i + 1;

 }

 //if found at sentinel then return position

 if(i < n)

 return(i);

 else // return −1 if not found

 return(−1);

}

426 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 426

Probability search In probability search, the elements that are more probable are placed
at the beginning of the array and those that are less probable are placed at the end of the
array.

Ordered list search When elements are ordered, binary search (discussed in Section 9.2.2)
is preferred. However, when data is ordered and is of smaller size, sequential search with a
small change is preferred to binary search. In addition, when the data is ordered but stored
in a data structure such as a linked list, modified sequential search is preferred. While
searching an ordered list, we need not continue the search till the end of list to know that the
target element is not in the list. While searching in an ascending ordered list, whenever an
element that is greater than or equal to the target is encountered, the search stops. We can
also add a sentinel to avoid the end of list test.

9.2.2 Binary Search

As discussed, sequential search is not suitable for larger lists. It requires n comparisons in
the worst case. We have a better method when the data is sorted. Let us consider a typical
game played by kids. You are asked to guess the number thought of by your friend in the
range of 1 to 100. You are to guess by asking him a minimum number of questions. Of
course, you are not allowed to ask him the number itself. The easiest approach is to start
asking him, ‘Is it 1?’ In case the answer is ‘No’, then ask, ‘Is it 2?’ Continue this process
in the ascending order of integers till you get the answer as ‘Yes’.

What if the number your friend has in mind is 99? Obviously, this approach is not
an efficient one. The solution to this problem is to ask him a question, ‘Is it 50?’ If no,
another question to be asked is, ‘is it greater than 50?’ If the answer is ‘Yes’, then the
range to be searched is 51 to 100, which is half of the previous range. If the answer is
‘No’, the range is 1 to 49, which is again half of the original. You may continue doing so
till you guess the number. Surely, the second approach reduces the total number of ques-
tions asked on an average.

This method is called binary search, as we have divided the list to be searched every time
into two lists and the search is done in only one of the lists. Consider that the list is sorted in
ascending order. In binary search algorithm, to search for a particular element, it is first
compared with the element at the middle position, and if it is found, the search is successful,
else if the middle position value is greater than the target, the search will continue in the first
half of the list; otherwise, the target will be searched in the second half of the list. The same
process is repeated for one of the halves of the list till the list is reduced to size one.

Algorithm 9.3 depicts the logic behind this type of search.

algorithm 9.3
1. Let n be size of the list
 Let target be the element to be searched
 Let flag = 0, low = 0, high = n-1
2. if low £ high, then
 middle = (low + high)/2

searching and sorting 427

DSUC c09 V6 November 21, 2012 11:50 AM Page 427

 else goto step (5)
3. if(key[middle] = target)
 Position = middle, fl ag = 1
 Goto step (5)
 else if(key[middle] > target) then
 high = middle − 1
 else
 low = middle + 1
4. Goto step(2)
5. if fl ag = 1
 report as target element found at location ‘position’
 else
 report that element is not found in the list
6. stop

The effectiveness of the binary search algorithm lies in its continual halving of the list
to be searched. For an ordered list of 50,000 keys, the worst case effi ciency is a mere 16
accesses. One may note that the dramatic increase in effi ciency is noticed as the list gets
larger. We can check with a calculator as to how many times 50,000 must be halved to be
reduced to 1. The same list that would have necessitated an average wait of two minutes
using a sequential search will give a virtually instantaneous response when the binary
search is used. In more precise algebraic terms, the halving method yields a worst case
search effi ciency of log2n.
A non-recursive code in C++ that demonstrates the implementation of Algorithm 9.3 is
given in Program Code 9.3 and a recursive code for the same is given in Program Code 9.4.

program CoDe 9.3

int Binary_Search_non_recursive(int A[], int n, int key)

{

 int low = 0,high = n − 1,mid;

 while(low <= high)

 { //iterate while fi rst <= last

 mid = (low + high)/2; //calculate

 mid = (fi rst + last)/2)

 if(A[mid] == key) //found

 return mid; // return position (mid)

 else if(key<A[mid])

 //not found; look in upper half of list

 high = mid − 1;

 else

 low = mid + 1; //look in lower half

 }

 return −1; //return "not found"

}

428 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 428

Although this is a more direct implementation it uses needless stack space, and is much
slower on most systems. In addition, this form of recursion is called tail recursion, which
is the most wasteful form of recursion. Recursion is a powerful tool, which must be used
with care. A recursive function is said to be tail recursive if there are no pending opera-
tions to be performed on return from a recursive call. Tail recursion is also used to return
the value of the last recursive call as the value of the function. It is advantageous as the
amount of information which must be stored during computation is independent of the
number of recursive calls.

Program Code 9.4 is the recursive code in C++ that demonstrates the implementation
of Algorithm 9.3 of binary search.

program CoDe 9.4

// Function binary search (recursive)

int Binary_Search(int A[],int low,int high,int key)

{

 int mid;

 if(low <= high)

 {

 mid = (low + high)/2;

 if(A[mid] == key)

 return mid;

 else if(key < A[mid])

 return Binary_Search(A, low, mid − 1, key);

 else

 return Binary_Search(A,mid + 1,high, key);

 }

 return −1;

}

Time Complexity Analysis

Time complexity of binary search is O(log(n)) as it halves the list size in each step. It is a
large improvement over linear search; for a list with 10 million entries, linear search will
need 10 million key comparisons in the worst case, whereas binary search will need just
about 24 comparisons.
The time complexity can be written as a recurrence relation as

 T(1), n = 1T(n) = { T(n/2) + c, n > 1

The most popular and easiest way to solve a recurrence relation is to repeatedly make
substitutions for each occurrence of the function T on the right-hand side until all such
occurrences disappear.

searching and sorting 429

DSUC c09 V6 November 21, 2012 11:50 AM Page 429

 Therefore, T(n) = T(n/2) + c = T(n/22) + 2c (after 2nd substitution)
 = T(n/33) + 3c (after 3rd substitution)

.

.

.
 = T(n/2i) + ic (after ith substitution)

.

.

.
 = T(2k/2k) + kc (after k steps)

= T(1)
where 2k = n, k = log2n

T(n) = O(log2n)

Although binary search is good, it can again be slightly improved using Fibonacci search.

Pros and Cons of Binary Search

The following are the pros and cons of a binary search:

Pros

1. Suitable for sorted data
2. Efficient for large lists
3. Suitable for storage structures that support direct access to data
4. Time complexity is O(log2(n))

Cons

1. Not applicable for unsorted data
2. Not suitable for storage structures that do not support direct access to data, for example,

magnetic tape and linked list
3. Inefficient for small lists

9.2.3 Fibonacci Search

We all know about Fibonacci numbers. It has many diverse applications from estimation
of the number of cells in successive reproductions to the number of leaves on branches.
The Fibonacci series has 0 and 1 as the first two terms, and each successive term is the
sum of the previous two terms. Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... with
Fn = Fn−1+ Fn−2 for n ≥ 2 where, F0 = 0 and F1 = 1.

Fibonacci search modifies the binary search algorithm slightly. Instead of halving the
index for a search, a Fibonacci number is subtracted from it. The Fibonacci number to be
subtracted decreases as the size of the list decreases.

Fibonacci search starts searching for the target by comparing it with the element at the
Fk

th location. Here, Fk ≥ n and Fk−1 < n. The Fibonacci search works like the binary search
but with a few modifications. In binary search, we have low, high, and mid positions for

430 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 430

the sub-list. Here, we have mid = n - Fk−1 + 1, F1 = Fk−2, and F2 = Fk−3. The target to be
searched is compared with A[mid]. mid is computed as follows:

Case 1 if equal the search terminates;

Case 2 if the target is greater and F1 is 1, then the search terminates with an unsuccessful
search; else the search continues at the right of the list with new values of low,
high, and mid as

mid = mid + F2, F1 = Fk−4, and F2 = Fk−5

Case 3 if the target is smaller and F2 is 0, then the search terminates with an unsuccessful
search; else the search continues at the left of the list with new values of low,
high, and mid as

mid = mid - F2, F1 = Fk−3 and F2 = Fk−4

The search continues by either searching at the left of mid or at the right of mid in the list.
Algorithm 9.4 explains the working of this search technique.

algorithm 9.4
1. Set k = m
2. if k = 0, fi nish and display message “not found” and goto 6
3. if item = A[Fk−1], print “found” and goto 6
4. if(item < A[Fk−1]), discard entries from positions Fk−1 + 1 to n,

set k = k − 1, and goto 2
5. if item > A[Fk−1], discard entries from positions 1 to Fk-1, renumber

remaining entries from 1 to Fk−2, set k = k − 2, and goto 2
6. stop

Program Code 9.5 implements Algorithm 9.4.

program CoDe 9.5

// Function to fi nd nth Fibonacci number

int fi bo(int n)

{

 if(n == 0 || n == 1)

 return 1;

 else

 return(fi bo(n − 1) + fi bo(n − 2));

}

// Function for Fibonacci search

int Fibonacci_Search(int A[],int n, int key)

{

 int f1, f2, t, mid, j, f;

 j = 1;

 while(fi bo(j) <= n)

searching and sorting 431

DSUC c09 V6 November 21, 2012 11:50 AM Page 431

 { //fi nd fi bo(j) such that fi bo(j) >= n

 j++;

 }

 f = fi bo(j);

 f1 = fi bo(j − 2); //fi nd lower Fibonacci numbers

 f2 = fi bo(j − 3);

 mid = n − f1 + 1;

 while(key != A[mid]) // if not found

 {

 if(mid < 0||key > A[mid])

 { //look in lower half

 if(f1 == 1)

 return −1;

 mid = mid + f2; //decrease Fibonacci numbers

 f1 = f1 − f2;

 f2 = f2 − f1;

 }

 else

 { //look in upper half

 if(f2 == 0) //if not found return −1

 return −1;

 mid = mid − f2; //decrease Fibonacci numbers

 t = f1 − f2; //this time, decrease more

 f1 = f2; //for smaller list

 f2 = t;

 }

 }

 return mid;

}

Example 9.1 illustrates a Fibonacci search in a given list.

 example 9.1 Search for 81 using Fibonacci search in the list {6, 14, 23, 36, 55, 67,
76, 78, 81, 89}, where n = 10.

Solution

Step 1: Compute Fk such that Fk ≥ 10
 fi bo(7) = 13, which is greater than 10. Hence, k = 7.

Step 2: Compute the initial values of mid, F1 and F2.
 Now, F1 = fi bo(7 - 2) = fi bo(5) = 5
 F2 = fi bo(7 - 3) = fi bo(4) = 3
 mid = 10 - F1 + 1 = 10 - 5 + 1 = 6

432 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 432

Step 3: Let us search the target by comparing it at A[mid]. Now,
 (a) compare A[mid], that is 76, and the number to be searched, that is 78, which

are not equal.
 (b) 78 > A[mid], and F1 is not 1; hence, let us compute mid, F1, and F2.
 (c) mid = mid + F2 = 6 + 3 = 9, and F1 = 2, and F2 = 1.

Step 4: Again, 78 is not equal to A[9] and is lesser. Hence, let us search the lower half as
 mid = mid - F2 = 9 - 1 = 8, F1 = 1, and F2 = 1

Step 5: Now, compare 78 and A[mid], which are equal; hence, the search stops.
The search terminates with a successful search by locating the target at the eighth location
in the second iteration.

Time Complexity of Fibonacci Search
When we solve a recurrence relation Fn = Fn−1 + Fn−2 for Fibonacci numbers, we get
the solution as Fn = (1/sqrt(5)) ¥ [((1 + sqrt(5))/2)n + ((1 + sqrt(5))/2)n]. For large n, the
term ((1 - sqrt(5))/2)n tends to zero. Hence Fn is bounded by ((1 - sqrt(5))/2)n. Hence,
Fn £ n ¥ log[(1 + sqrt(5))/2]. The number of comparisons is of the order of n, and the time
complexity is O(log(n)).

Hence, the algorithm for Fibonacci search is O(log(n)) algorithm. Consider an exam-
ple where for a list of 10 numbers, each element of the 10 numbers is to be searched once.
For an unsuccessful search, the algorithm needs a total of 13 searches. In case of binary
search, the number of comparisons would be 40, and for Fibonacci search, it will be 41.
Since this is a small-scale example, binary search will score, but in larger instances, it
may be the other way around.

Fibonacci search is more efficient than binary search for large lists. However, it is inef-
ficient in case of small lists.

Pros

1. Faster than binary search for larger lists
2. Suitable for sorted lists

Con

1. Inefficient for smaller lists

9.2.4 indexed Sequential Search
Indexed sequential search is suitable for sequential files. A sequential file with an associated
index is just like an index associated with books. File index is a data structure similar to a list
of keys and their location or reference to the location of the record associated with the key.

We discussed the drawbacks associated with searching a record sequentially in a file
or a table. An index file can be used to effectively overcome the problem associated with
sequential files and to speed up the key search. The simplest indexing structure is the
single-level one: a file whose records are pairs (key and a pointer), where the pointer is
the position in the data file of the record with the given key. Only a subset of data records,
evenly spaced along the data file, is indexed to mark the intervals of data records.

searching and sorting 433

DSUC c09 V6 November 21, 2012 11:50 AM Page 433

A key search then proceeds as follows: the search key is compared with the index to
find the highest index key preceding the search, and a linear search is performed from the
current record until the search key is matched or until the record pointed by the next index
entry is reached. In spite of the double file access (index + data) needed by this kind of
search, the decrease in access time with respect to a sequential file is significant.

Consider the data file as in Table 9.1.

Table 9.1 Data file

Record position Emp. no. Name Occupation
1 100 Saurabh Developer
2 500 Abolee Project head
3 300 Shweta Developer
4 200 Vaishali Project head
5 400 Santosh Developer

Its corresponding index file is given in Table 9.2.

Table 9.2 Index file of Table 9.1

Emp. no. (Key) Record position
100 1
200 4
300 3
400 5
500 2

Searching a record from this index file involves the following issues:

1. The index file is ordered, so the searching can be done using the binary search method.
2. The search is successful if we find the target element in the index.
3. The record position is used to access the details of that record from the data file.

Consider, for example, the case of a simple linear search on a file with 1000 records.
With the sequential organization, an average of 500 target element comparisons is neces-
sary (assuming uniformly distributed search target elements among the data). However,
using an evenly spaced index with 100 entries, the number of comparisons is reduced to
50 in the index file, and 50 in the data file—a 5:l reduction in the number of operations.

This method can apparently be hierarchically extended. An index is a sequential file in
itself, amenable to be indexed in turn by a second level index, thus exploiting the hierar-
chical decomposition of the searches more to decrease the access time. Obviously, if the
layering of indices is pushed too far, a point is reached when the advantages of indexing
are hampered by the increased storage costs and by the index access times as well. Con-
sider Program Code 9.6 which illustrates the indexed sequential search.

434 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 434

program CoDe 9.6

void createIndex(int index[],int isize,int A[],int asize)

{

 int i, j;

 for(i = 0, j = 0; i < asize; i+=8, j++)

 {

 index[j] = A[i];

 }

 index[j] = A[asize − 1];

}

int indexSeqSearch(int val, int index[], int isize, int A[],

int asize)

{

 int i = 0, j = 0, pos = 0;

 int high = 0,low = 0;

 if(val > index[isize − 1] && val < index[0])

 return −1;

 while(i < isize)

 {

 if(val == index[i])

 {

 pos = 8 * i; // here 8 is the step size

 return pos;

 }

 if(val < index[i])

 {

 low = 8 * (i − 1);

 high = 8 * i;

 break;

 }

 else

 {

 low = 8 * i;

 high = 8 * (i + 1);

 }

 i++;

 }

 printf("\n low = %d, high = %d", low, high);

 while(low < high)

 // search in array from index low to high

searching and sorting 435

DSUC c09 V6 November 21, 2012 11:50 AM Page 435

 {

 if(val == A[low])

 return low;

 else

 low++;

 }

 return −1;

}

int main()

{

 int A[max] = {8,20,26,38,90,105,206,221,229,287,309,312,

340,367,483,492,502,551,618,641,698,711,764,796};

 int index[(max/8) + 1] = {0};

 int position;

 int key, i, choice;

 int opt = 0, pos = 0;

 cout << "Enter number to be searched : ";

 cin >> key;

 createIndex(&index[0],(max/8) + 1,&A[0], max);

 pos = indexSeqSearch(key, index, (max/8) + 1, A, max);

 if(pos != −1)

 {

 cout << "found at position" << pos;

 }

 else

 cout << "not found";

 return 0;

}

/*********************Output***********************

Enter number to be searched: 20

low = 0, high = 8

20 found at position 1

Enter number to be searched: 711

low = 16, high = 24

711 found at position 21

Enter number to be searched: 200

low = 0, high = 8

200 not found

***/

436 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 436

9.2.5 hashed Search

A hash table is a data structure that uses a hash function to map keys (e.g., a student ID,
book accession number) to their associated values (e.g., student name, telephone number,
book details, etc.). Therefore, a hash table implements an associative array. The hash func-
tion is used to transform the key into the index of an array element where the corresponding
value is to be sought. The data organized using a hash table makes searching very efficient.

Consider the following example. Suppose we want to store six records in a file where
the key of each record is a person’s name. The key can be hashed by taking the address
from the ASCII representations of the first character of the name. Table 9.3 is of size 26,
that is, one slot for each letter of the alphabet.

Let us assume the names of the persons are Deepa, Alka, Beena, Govind, Ekta, and Zinat.

Table 9.3 Storing records in a hash table

Index Symbol
0 Alka
1 Beena
2
3 Deepa
4 Ekta
5
6 Govind

25 Zinat

Hashing is a method of directly computing the index of the table by using a suitable
mathematical function called as hash function. The hash function operates on the name
to be stored in the symbol table or whose attributes are to be retrieved from the symbol
table. If h is a hash function and A is a name, then h(A) gives the index of the table, where
A along with its attributes can be stored. If A is already stored in the table, then h(A) gives
the index of the table, where it is stored to retrieve the attributes of A from the table.

Therefore, the hash table seems to be the best option for the realization of the symbol
table, but there is one problem associated with hashing, that is collision. Hash collision
occurs when two identifiers are mapped into the same hash value. This happens because
a hash function defines mapping from a set of valid identifiers to the set of those integers
that are used as indices of the table.

Hash table is widely used in the language translation process. It is referred to as a symbol
table when used by an assembler or a compiler. A symbol table is nothing but a set of pairs
(name, value), where the value represents the collection of attributes associated with the name.

Therefore, when we implement a hash table, a suitable collision-handling mechanism
is to be provided, which will be activated when there is a collision. The computational

searching and sorting 437

DSUC c09 V6 November 21, 2012 11:50 AM Page 437

complexity of all these techniques is proportional to n, where n is the number of data
elements. Hence, these search techniques are also called as quantity-dependent search
techniques.

Searching and sorting are the two very important operations performed most com-
monly on a large amount of information. We have studied various algorithms to search
a record, and we notice that it is much easier to find any information that is organized in
some proper order. For example, if we want to find any name in the telephone directory,
which contains names in any random order, we perhaps have to go through the whole
directory sequentially to find the name. Similarly, consider the trouble we might have to
take to search for a book in a library where the books are placed anywhere without any
order. We can imagine the ease if these books are assigned a specific position and are
shelved in a specific order. In general, sorting is performed in business data-processing
applications to retrieve information more efficiently. Let us see more details of sorting
and methods associated with it. More details on the hash table are covered in Chapter 11.

9.3 Sorting

One of the fundamental problems in computer science is ordering a list of items. There
are plenty of solutions to this problem, commonly known as sorting algorithms. Some
sorting algorithms are simple and iterative, such as the bubble sort. Others such as the
quick sort are extremely complicated but produce lightning-fast results.

Sorting is the operation of arranging the records of a table according to the key value
of each record, or it can be defined as the process of converting an unordered set of ele-
ments to an ordered set.

A table or a file is an ordered sequence of records r[1], r[2], …, r[n], each containing
a key k[1], k[2], … , k[n]. This key is usually one of the fields of the entire record. The
table is said to be sorted on the key if i < j implies that k[i] precedes k[j] in some ordering
on the keys.

9.3.1 types of Sorting

Sorting algorithms are divided into two categories: internal and external sorts.
If all the records to be sorted are kept internally in the main memory, they can be

sorted using an internal sort. However, if there are a large number of records to be
sorted, they must be kept in external files on auxiliary storage. They have to be sorted
using external sort.

Internal Sorting

Any sort algorithm that uses main memory exclusively during the sorting is called as an
internal sort algorithm. This assumes high-speed and random access to all data members.
All the methods described in this chapter assume that all the data is stored in high-speed
main memory of the computer and are therefore internal sorting techniques, except for

438 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 438

merge sort. Internal sorting is faster than external sorting. The various internal sorting
techniques are the following:

 1. Bubble sort
 2. Insertion sort
 3. Selection sort
 4. Quick sort
 5. Heap sort
 6. Shell sort
 7. Bucket sort
 8. Radix sort
 9. File sort
10. Merge sort

External Sorting

Any sort algorithm that uses external memory, such as tape or disk, during the sorting is
called as an external sort algorithm. Merge sort uses external memory. Do note that the
other algorithms may read the initial values from a magnetic tape or write sorted values
to a disk, but this is not using external memory during the sort.

Most of the methods to be described involve the movement of records within the table.
For example, consider Fig. 9.2(a) where a table of four records is shown. Figure 9.2(b)
shows a sorted table, which results when the table of Fig. 9.2(a) is sorted in an increasing
order on the numeric key.

#2

#3

#4

Key Other fields Key Other fields

10

13

20

5

Shalu 5 Usha

Gilda 10 Gilda

Raj

20 Raj

13 Shalu

Usha

(a) (b)

#1

Fig. 9.2 Movement of records within tables (a) Before
sorting (b) After sorting

In this case, the actual records are moved from one place to another in the table.

searching and sorting 439

DSUC c09 V6 November 21, 2012 11:50 AM Page 439

In certain applications, the records can be quite long, and it is very expensive to move
the actual data. One way to reduce record movement is to use an auxiliary table of point-
ers, each pointing to one record of the table to be sorted. Then, we can move these point-
ers instead of moving the actual records. For example, consider Fig. 9.3 which contains a
table to be sorted and shows sorting using pointers.

10

13

20

5

Shalu

Gilda

Raj

Usha

#2

#3

#4
Before sort

#1

#2

#3

#4
After sort

#1

Pointers Other fields PointersKey

Fig. 9.3 Sorting with pointers

The table at the left is the initial table of pointers. These pointers are adjusted during the
sorting process to produce the final table of pointers as on the right of the original table.

We may note the actual records in the table are not moved. While describing the algorithms
ahead, we assume that we are moving the actual records, and we will only sort the keys.

9.3.2 general Sort concepts

Let us now discuss some general terms related to sorting.

Sort Order

Data can be ordered either in ascending or in descending order. The order in which the
data is organized, either ascending or descending, is called sort order. For example, the
percentages of marks obtained by students in the examination are organized in descend-
ing order to decide ranks, whereas the names in the telephone directory are organized
alphabetically in ascending order.

Sort Stability

A sorting method is said to be stable if at the end of the method, identical elements occur
in the same relative order as in the original unsorted set. While sorting, we must take care
of the special case—when two or more of the records have the same key, it is important
to preserve the order of records in this case of duplicate keys. A sorting algorithm is said
to be stable if it preserves the order for all records with duplicate keys; that means, if for
all records i and j is such that k[i] is equal to k[j] and if r[i] precedes to r[j] in the unsorted
table, then r[i] precedes to r[j] in the sorted table too. Bubble sort, selection sort, and
insertion sort are the stable sort methods. Example 9.2 illustrates examples of both stable
and unstable sort methods.

440 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 440

 example 9.2 Consider the following unsorted sequence of marks to be sorted in
descending order. Sort this sequence using the stable and unstable sort methods.

Name Uma Saurabh Sanika Kasturi Ashish Harsha Lelo

Marks 80 90 93 95 83 90 83

Solution The stable sort method will sort the sequence as

Name

Marks

Kasturi Sanika Saurabh Harsha Ashish Lelo Uma

95 93 90 90 83 83 80

whereas, the unstable sort method may sort the same sequence as

Name

Marks

Kasturi Sanika SaurabhHarsha AshishLelo Uma

95 93 90 90 83 83 80

Sort Efficiency

Each sorting method may be analysed depending on the amount of time necessary for
running the program and the amount of space required for the program. The amount of
time for running a program is proportional to the number of key comparisons and the
movement of records or the movement of pointers to records.

Sort efficiency is a measure of the relative efficiency of a sort. It is usually an estimate of
the number of comparisons and data movement required to sort the data. We will discuss
various sorting algorithms in Sections 9.3.3–9.3.12. While analysing our sorting methods,
we will concentrate on these aspects of the sorting algorithms. We will start with simple
methods such as bubble sort, selection sort, and insertion sort and proceed to more com-
plex and efficient ones such as quick sort, shell sort, and bucket sort.

Passes

During the sorted process, the data is traversed many times. Each traversal of the data
is referred to as a sort pass. Depending on the algorithm, the sort pass may traverse the
whole list or just a section of the list. In addition, the characteristic of a sort pass is the
placement of one or more elements in a sorted list.

9.3.3 Bubble Sort

The bubble sort is the oldest and the simplest sort in use. Unfortunately, it is also the slow-
est. The bubble sort works by comparing each item in the list with the item next to it and
swapping them if required. The algorithm repeats this process until it makes a pass all the
way through the list without swapping any items (in other words, all items are in the cor-
rect order). This causes larger values to ‘bubble’ to the end of the list while smaller values

searching and sorting 441

DSUC c09 V6 November 21, 2012 11:50 AM Page 441

‘sink’ towards the beginning of the list. In brief, the bubble sort derives its name from the
fact that the smallest data item bubbles up to the top of the sorted array. Figure 9.4 dem-
onstrates the bubble technique by showing numbers and their moves during each pass.

3

1

2

4

5

9

3

1

2

4

5

9

3

1

2

4

5

9

3

1

2

4

5

9

2

1

3

4

5

9

Compare and
swap, if
required

1

3

4

5

9

2

1

3

4

5

2

9

1

3

4

2

5

9

1

3

2

4

5

9

1

3

2

4

5

9

3

1

2

4

5

9

(a)

(b)

A = 1 2 3 4 5 9

(c)

Fig. 9.4 Bubble sort (a) Pass 1 (i = 1) (b) Pass 2 (i = 2)
(c) the resultant sorted array after pass (n − 1) (i = 5),

Algorithm 9.5 depicts the logic behind bubble sort.

algorithm 9.5
1. Let A be the array to be sorted
2. for i = 1 to n − 1
 for j = 0 to n − i
 begin
 if A[j] > A[j+1] then
 Swap A[j] with A[j + 1] as follows
 temp = A[j]
 A[j] = A[j + 1]
 A[j + 1] = temp
 end
 end
3. stop

442 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 442

Figure 9.5 illustrates a bubble sort using an array of size 7.

Array 76 67 36 55 23 14 6

Step 1 67 76 36 55 23 14 6

Step 2 67 36 76 55 23 14 6

Step 3 67 36 55 76 23 14 6

Step 4 67 36 55 23 76 14 6

Step 5 67 36 55 23 14 76 6

Pass 1

Step 6 67 36 55 23 14 6 76

Step 1 36 67 55 23 14 6 76

Step 2 36 55 67 23 14 6 76

Step 3 36 55 23 67 14 6 76

Step 4 36 55 23 14 67 6 76

Pass 2

Step 5 36 55 23 14 6 67 76

Step 1 36 55 23 14 6 67 76

Step 2 36 23 55 14 6 67 76

Step 3 36 23 14 55 6 67 76
Pass 3

Step 4 36 23 14 6 55 67 76

Step 1 23 36 14 6 55 67 76

Step 2 23 14 36 6 55 67 76Pass 4

Step 3 23 14 6 36 55 67 76

Step 1 14 23 6 36 55 67 76

Pass 5

Pass 6

Step 2 14 6 23 36 55 67 76

Step 1 6 14 23 36 55 67 76

Final sorted array 6 14 23 36 55 67 76

76 67 36 55

(a)

(b)

23 14 06

Fig. 9.5 Example of bubble sorting (a) Initial array
(b) Final sorted array with passes

searching and sorting 443

DSUC c09 V6 November 21, 2012 11:50 AM Page 443

Program Code 9.7 illustrates the bubble sort function.

program CoDe 9.7

// function for bubble sort for array A having n elements

void bubblesort(int A[max], int n)

{

 int i, j,temp;

 for(i = 1; i < n; i++) // number of passes

 {

 for(j = 0; j < n − i; j++) // j varies from 0 to

 // n − i

 {

 if(A[j] > A[j + 1]) // compare two successive

 // numbers

 {

 temp = A[j]; // swap A[j] with A[j + 1]

 A[j] = A[j + 1];

 A[j + 1] = temp;

 }

 }

 }

}

For descending order of sorting, only the comparison condition should be changed in
Program Code 9.7.

if(A[j] < A[j + 1]) // change as <
{
 temp = A[j]; // swap A[j] with A[j + 1]
 A[j] = A[j + 1];
 A[j + 1] = temp;
}

Analysis of Bubble Sort

The algorithm begins by comparing the top item of the array with the next and swapping
them if necessary. After n - 1 comparisons, the largest among a total of n items descends
to the bottom of the array, that is, to the nth location. The process is then repeated to the
remaining n - 1 items in the array. For n data items, the method requires n(n - 1)/2 com-
parisons and on an average, almost one-half as many swaps. The bubble sort, therefore, is
very ineffi cient in large sorting jobs.

The analysis of this routine is a bit diffi cult. If we do not stop iterations when the array
is sorted, the analysis is simple.

444 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 444

The number of comparisons made at each of the iterations is as follows:
 (n - 1) comparisons in the first iteration, (n - 2) comparisons in the second iteration,
..., one comparison in the last iteration
This totals up to

(n - 1) + (n - 2) + (n - 3) + … + 1 = n(n - 1)/2

Thus, the total number of comparisons is n(n - 1)/2, which is O(n2).
Hence, the time complexity for each of the cases is given by the following:

1. Average case complexity = O(n2)
2. Best case complexity = O(n2)
3. Worst case complexity = O(n2)

9.3.4 insertion Sort

The insertion sort works just like its name suggests—it inserts each item into its proper
place in the final list. The simplest implementation of this requires two list structures: the
source list and the list into which the sorted items are inserted.

Let us consider a list L = {3, 6, 9, 14}. Given this sorted list, we need to insert a new
element 5 in it. The commonly used process would involve the following steps:

1. Compare the new element 5 and the last element 14
2. Shift 14 right to get 3, 6, 9, ,14
3. Shift 9 right to get 3, 6, ,9, 14
4. Shift 6 right to get 3, ,6, 9, 14
5. Insert 5 to get 3, 5, 6, 9, 14

These steps could be coded as the following piece of code:

// insert t into a[0:i − 1]
int j;
// let X be the element to be inserted
// shift elements from the last member to right by one position
// till you get a smaller one
for(j = i − 1; j >= 0 && X < a[j]; j−−)
 a[j + 1] = a[j];
// Insert t at j + 1 location
a[j + 1] = X;

These steps when done for each element of the list are to be sorted by considering
another list and starting with one element in it. The steps for inserting an element in the
sorted list can then be repeatedly used to yield the sorted list. Let us consider the follow-
ing list of numbers: L = {7, 3, 5, 6, 1}. The following steps are required to sort this list.

1. Start with 7 and insert 3 => 3, 7
2. Insert 5 => 3, 5, 7

searching and sorting 445

DSUC c09 V6 November 21, 2012 11:50 AM Page 445

3. Insert 6 => 3, 5, 6, 7
4. Insert 1 => 1, 3, 5, 6, 7

The piece of code needed to do this will look like

for(int i = 1; i < n; i++)
{ // insert a[i] into a[0:i − 1]
 // code to insert comes here
}

After adding the code for insertion we have already built, the resultant code
will be

for(int i = 1; i < n; i++)
{ // insert a[i] into a[0:i − 1]
 int t = a[i];
 int j;
 for(j = i − 1; j >= 0 && t < a[j]; j−−)
 a[j + 1] = a[j];
 a[j + 1] = t;
}

To save memory, most implementations use an in-place sort that works by moving the
current item past the already sorted items and repeatedly swapping it with the preceding
item until it is in place. The main idea behind the insertion sort is to insert the ith element,
in the ith pass, into A(1), A(2), ..., A(i), in the right place. Algorithm 9.6 lists the steps for
insertion sort.

algorithm 9.6
1. Set J = 2, where J is an integer
2. Check if list (J) < list (J − 1): if so interchange them; set J = J −1

and repeat step (2) until J = 1
3. Set J = 3, 4, 5,. . ., N and keep on executing step (2)

The following steps in Example 9.3 essentially define the insertion sort as applied to
sorting into ascending order an array list containing N elements:

 example 9.3 Consider the given unsorted array. Sort this array in ascending order
using insertion sort.

Original unsorted array

Elements 76 67 36 55 23 14 6

Index 0 1 2 3 4 5 6

446 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 446

Solution Pass 1: Consider the first list is sorted, and insert the second number 67 in
the first list.

Elements

Index 10 2 3 4 5 6

Unsorted array

67 36 55 23 14 6

Sorted array

76

Pass 2: Insert number 36 in the first list.

Sorted array

Elements 7667

Index 0 1

Unsorted array

36 55 23 14

2 3 4 5 5

6

Pass 3: Insert number 55 in the first list.

Sorted array

Elements 766736

Index 0 1 2

Unsorted array

55 23 14

3 4 5 6

6

Pass 4: Insert number 23 in the first list.

Elements

Index

Unsorted array

 614

4 5 6

Sorted array

235536 67

0 1 2 3

76

Pass 5: Insert number 14 in the first list.

Unsorted array

Elements 6

Index 5 6

Sorted array

36 55

0 1 2 3 4

67 7623 14

Pass 6: Insert number 6 in the first list.

Unsorted array

Elements 6

Index 6

Sorted array

36 55

0 1 2 3 4 5

67 762314

searching and sorting 447

DSUC c09 V6 November 21, 2012 11:50 AM Page 447

The fi nal sorted array is

Sorted array

Elements 6 14 23 36 55 67 76

Index 0 1 2 3 4 5 6

Program Code 9.8 defi nes the InsertionSort() function.

program CoDe 9.8

void InsertionSort(int A[], int n)

{

 int i, j, element;

 for(i = 1; i < n; i++)

 {

 element = A[i];

 // insert ith element in 0 to i − 1 array
 j = i;

 while((j > 0) && (A[j − 1] > element))
 //compare if A[j − 1] > element
 {

 A[j] = A[j − 1]; // shift elements
 j = j − 1;
 }

 A[j] = element; // place element at jth position

 }

}

Analysis of Insertion Sort

Although the insertion sort is almost always better than the bubble sort, the time required
in both the methods is approximately the same, that is, it is proportional to n2, where n is
the number of data items in the array.

The total number of comparisons is given as follows:

(n - 1) + (n - 2) + …. + 1 = (n - 1) ¥ n/2

which is O(n2).
If the data is initially sorted, only one comparison is made on each pass so that the sort

time complexity is O(n). The number of interchanges needed in both the methods is on an
average (n2)/4, and in the worst case is about (n2)/2.

When the data is already partially ordered, the insertion sort will normally take less
time than the bubble sort. The insertion sort is highly effi cient if the array is already in an
almost sorted order. Example 9.4 provides a pictorial representation of the insertion sort.

448 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 448

 example 9.4 Figure 9.6 is an example of insertion sort.

3 1 4 1 5 9 2 6 5 4

3 1 4 1 5 9 2 6 5 4

i = 1

i = 0

1 3 4 1 5 9 2 6 5 4

i = 2

i = 3

1 3 4 1 5 9 2 6 5 4

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

1 1 3 4 5 9 2 6 5 4

1 1 3 4 5 9 2 6 5 4

1 1 3 4 5 9 2 6 5 4

1 1 2 3 4 5 9 6 5 4

1 1 2 3 4 5 6 9 5 4

1 1 2 3 4 5 5 6 9 4

1 1 2 3 4 4 5 5 6 9

Fig. 9.6 Insertion sorting

9.3.5 Selection Sort

The selection sort algorithms construct the sorted sequence, one element at a time, by
adding elements to the sorted sequence in order. At each step, the next element to be
added to the sorted sequence is selected from the remaining elements.

Because the elements are added to the sorted sequence in order, they are always added
at one end. This makes the selection sorting different from the insertion sorting. In inser-
tion sorting, the elements are added to the sorted sequence in an arbitrary order. There-
fore, the position in the sorted sequence at which each subsequent element is inserted is
arbitrary.

Both selection and insertion sorts sort the arrays in-place.

searching and sorting 449

DSUC c09 V6 November 21, 2012 11:50 AM Page 449

In this method, we sort a set of unsorted elements in two steps. In the fi rst step, fi nd the
smallest element in the structure. In the second step, swap the smallest element with the ele-
ment at the fi rst position. Then, fi nd the next smallest element and swap with the element at
the second position. Repeat these steps until all elements get arranged at proper positions.

This is illustrated in Program Code 9.9.

program CoDe 9.9

void SelectionSort(int A[], int n)

{

 int i, j;

 int minpos, temp;

 for(i = 0; i < n − 1; i++)

 {

 minpos = i;

 for(j = i + 1; j < n; j++)

 //fi nd the position of min element as minpos from

 //i + 1 to n − 1

 {

 if(A[j] < A[minpos])

 minpos = j;

 }

 if(minpos != i)

 {

 temp = A[i];

 // swap the ith element and minpos element

 A[i] = A[minpos];

 A[minpos] = temp;

 }

 }

}

Look at following array of unsorted integers. The working of selection sort is shown in
Table 9.4 with the resultant array after each pass where the updated values of index vari-
able i and minpos after each pass are indicated.

Original unsorted array

Elements 76 67 36 55 23 14 6

Index 0 1 2 3 4 5 6

450 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 450

Table 9.4 Selection sort

Index 0 1 2 3 4 5 6 i minpos
76 67 36 55 23 14 6 0 6

Pass 1 6 67 36 55 23 14 76 1 5
Pass 2 6 14 36 55 23 67 76 2 4
Pass 3 6 14 23 55 36 67 76 3 4
Pass 4 6 14 23 36 55 67 76 4 4
Pass 5 6 14 23 36 55 67 76 5 5

Sorted array 6 14 23 36 55 67 76

The same can be done in reverse order also to arrange the elements. That is, first find the
largest element in the structure. In the second step, swap the largest element with the element
at the last position. Then, find the next largest element and swap with the element at the last but
one position, and so on. Let us have look at one more example on the working of selection sort.

 example 9.5 Figure 9.7 shows an unsorted array and the sorting process with the
resultant array after each pass.

3 1 4 1 5 9 2 6 5 4

3 1 4 1 5 4 2 6 5 9

i = 9

i = 10

3 1 1 5 4 2 5 6 9

i = 8

i = 7

3 1 4 1 5 4 2 5 6 9

i = 6

i = 5

i = 4

i = 3

i = 2

i = 1

3 1 4 1 2 4 5 5 6 9

3 1 4 1 2 4 5 5 6 9

3 1 2 1 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

1 1 2 3 4 4 5 5 6 9

4

Fig. 9.7 Selection sort sample run

searching and sorting 451

DSUC c09 V6 November 21, 2012 11:50 AM Page 451

Analysis of Selection Sort

In Program Code 9.9, we can note that there are two loops, one nested within the other.
During the first pass, (n - 1) comparisons are made. In the second pass, (n - 2) compari-
sons are made. In general, for the ith pass, (n - i) comparisons are required.

The total number of comparisons is as follows:

(n - 1) + (n - 2) + … + 1 = n(n -1)/2

Therefore, the number of comparisons for the selection sort is proportional to n2, which
means that it is O(n2). The different cases are as follows:

Average case: O(n2) Best case: O(n2) Worst case: O(n2)
The maximum number of interchanges required is (n - 1) as there is utmost one inter-

change required for each pass. However, the actual number of interchanges depends on
the ordering of the original table, because if the smallest key is already at its proper place,
the algorithm makes no interchanges.

The selection sort and insertion sort are more efficient than bubble sort. Selection sort
is recommended for lists. When records are large, the keys are simple as the selection
sort requires lesser swaps than the insertion sort and more comparisons than the inser-
tion sort. If the records are small and the keys are difficult to compare, insertion sort is
recommended.

9.3.6 quick Sort

Quick sort is based on the divide-and-conquer strategy. This sort technique initially
selects an element called as pivot that is near the middle of the list to be sorted, and then
the items on either side are moved so that the elements on one side of pivot are smaller
and on the other side are larger. Now, the pivot is at the right position with respect to the
sorted sequence. These two steps, selecting the pivot and arranging the elements on either
side of pivot, are now applied recursively to both the halves of the list till the list size
reduces to one.

Quick sort is thus an in-place, divide-and-conquer-based, massively recursive sort
technique. This technique reduces unnecessary swaps and moves the element at a great
distance in one move.

To choose the pivot, there are several strategies. The popular way is considering the
first element as the pivot.

Thus, the recursive algorithm consists of four steps:

1. If the array size is 1, return immediately.
2. Pick an element in the array to serve as a ‘pivot’ (usually the left-most element in the

list).
3. Partition the array into two parts—one with elements smaller than the pivot and

the other with elements larger than the pivot by traversing from both the ends and
performing swaps if needed.

4. Recursively repeat the algorithm for both partitions.

452 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 452

Let us consider an example. Let the list of numbers to be sorted be {13, 11, 14, 11, 15,
19, 12, 16, 15, 13, 15, 18, 19}. Now, the first element 13 becomes pivot. We need to place
13 at a proper location so that all elements to its left are smaller and the right are greater.

A 13 11 14 11 15 19 12 16 15 13 15 18 19

Initially, the array is pivoted about its first element A[pivot] = 13.

0 1 2 3 4 5 6 7 8 9 10 11 12

13 11 14 11 15 19 12 16 15 13 15 18 19

Let us first find the elements larger than the pivot, that is, 13. In addition, let us find
the last element not larger than the pivot. These elements are in positions 2 and 9. Let us
swap those.

13 11 14 11 15 19 12 16 15 13 15 18 19

13 11 13 11 15 19 12 16 15 14 15 18 19

Let us again start scanning from both the directions.

13 11 13 11 15 19 12 16 15 14 15 18 19

The elements 12 and 15 are to be swapped to get the following sequence:

13 11 13 11 12 19 15 16 15 14 15 18 19

Let us repeat the steps to get the following sequence:

13 11 13 11 12 19 15 16 15 14 15 18 19

searching and sorting 453

DSUC c09 V6 November 21, 2012 11:50 AM Page 453

Here, the lower and upper bounds have crossed. So let us now swap the pivot-with
element 12.

12 11 13 11 13 19 15 16 15 14 15 18 19

Here, we get two partitions as represented in the following sequence:

12 11 13 11 13 19 15 16 15 14 15 18 19

Recursively applying similar steps to each sub-list on the right and left side of the
pivot, we get,

11 11 12 13 13 15 15 15 16 18 19 19

This is the final sorted array.
Algorithm 9.7 is written by assuming an array A with locations A[Low] to A[High] to
be sorted.

algorithm 9.7
Repeat process till low < high
1. Select pivot = A[Low], pivot location P = low
2. i = low and j = high;
3. Increment index i till A[i] >= pivot
4. Decrement index j till A[i] <= pivot
5. Swap A[i] with A[j]
6. Repeat steps 4, 5, 6 till i < j
7. if i < j
 Swap a[P] with a[j]
8. call Quicksort(low, j − 1)
9. call Quicksort(j + 1, high)
10. Stop

With the first seven steps of the process, the elements lesser than the key value are
placed at the left side and the elements greater than the key value are placed at the right
side of the key value.

Choice of Pivot We can choose any entry in the list as the pivot. The choice of the first entry
as pivot is popular but often a poor choice. If the list is already sorted, then there will be no
element less than the first element selected as pivot, and so one of the sub-lists will be empty.

454 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 454

Hence, we choose a pivot near the centre of the list, in the hope that our choice will posi-
tion the list in such a manner that about half the elements will come on each side of the pivot.

The choice of the pivot near the centre is also arbitrary, and hence, it is not necessary
that it will always divide the list into half. A good way to choose a pivot is to use a random
number generator to choose the position of the next pivot in each of the activations of
quick sort. Quick sort is illustrated in Program Code 9.10.

program CoDe 9.10

#defi ne max 20

void read(int A[max], int n)

{

 int i;

 for(i = 0; i < n; i++)

 cin >> A[i];

}

void display(int A[max], int n)

{

 int i;

 for(i = 0; i < n; i++)

 cout << A[i];

}

void swap(int *x, int *y)

{

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

void qsort(int A[], int low, int high)

{

 int k;

 if(low < high)

 {

 K = partition(A, low, high);

 qsort(A, low, j − 1);

 qsort(A, j + 1, high);

 }

searching and sorting 455

DSUC c09 V6 November 21, 2012 11:50 AM Page 455

}

int partition(int A[],int low, int high)

{

 int pivot, i, j;

 pivot = A[low];

 j = high + 1; i = low;

 do

 {

 i++;

 while(A[i] < pivot && low <= high)

 do

 {

 j++;

 } while(pivot < A[j]);

 if(i < j)

 swap(A[i],A[j]);

 } while(i < j);

 A[low] = A[j];

 A[j] = pivot;

 return j;

}

main()

{

 int A[max], n;

 int i, choice;

 cout << "Enter number of numbers:";

 cin >> n;

 cout << "Enter numbers:";

 read(A, n);

 qsort(A, 0, n − 1);

 cout << "Sorted array is:";

 display(A, n);

}

/********************** Output *************************

 Enter number of numbers: 7

 Enter numbers: 10 5 23 67 20 30 60

 Sorted array is: 5 10 20 23 30 60 67

***/

456 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 456

Analysis of Quick Sort

Now, let us see the efficiency of quick sort. On the first pass, every element in the array
is compared to the pivot, so there are n comparisons. The array is then divided into two
parts each of size (n/2). We assume that the array is divided into approximately one-half
each time. For each of these sub-arrays, (n/2) comparisons are made and four sub-arrays
of size (n/4) are formed. So at each level, the number of sub-arrays doubles. It will take
log2n divisions if we are dividing the array approximately one-half each time. Therefore,
quick sort is O(nlog2n) on the average.

If the original array is sorted and array[left] is chosen as a pivot, then order of quick sort
turns out to be O(n2). Therefore, when we choose array[left] as pivot, quick sort works best
for files that are completely unsorted and worst for files that are completely sorted. In the case
of nearly sorted arrays, choose a random element as a pivot value. The time required to sort
the left sub-list and the right sub-lists where we assume that each has the size n/2 is as follows:

T(n) = c ¥ n + 2 ¥ T(n/2)

where c is a constant and T(n/2) is the time required to sort the list of size n/2.
Similarly, the time required to sort the list of size n/2 is equal to the sum of the time

required to place the key element at its proper position in the list of size n/2 and the time
required to sort the left and right sub-lists each assumed to be of size n/4, T(n/2). This
turns out to be in the following form:

T(n/2) = c ¥ n/2+-2 ¥ T(n/4)

where T(n/4) is the time required to sort the list of size n/4

\ T(n/4) = c ¥ n/4 + 2 ¥ T(n/8)

This process continues, and finally we get T(1) = 1.
\ T(n) = c ¥ n + 2(c ¥ n(n/2) + 2T(n/4))
\ T(n) = c ¥ n + c ¥ n + 4T(n/4)) = 2 ¥ c ¥ n + 9T(n/9) = 2 ¥ c ¥ n + 9(c ¥ (n/9) + 2T(n/8))
\ T(n) = 2 ¥ c ¥ n + c ¥ n + 8T(n/8) = 3 ¥ c ¥ n + 8T(n/8)
\ T(n) = (logn) ¥ c ¥ n + nT(n/n) = (logn) ¥ c ¥ n + nT(1) = n + n ¥ (logn) ¥ c
\ T(n) a nlog(n)

The average complexity of the quick sort algorithm is O(nlogn). However, the worst case
time complexity is O(n2).

9.3.7 heap Sort

Heap sort is one of the fastest sorting algorithms, which achieves the speed of quick sort and
merge sort. The advantages of heap sort are that it does not use recursion, and it is efficient
for any data order. There is no worst case scenario in the case of heap sort. We shall discuss
heap sort in detail in Chapter 12. Heap sort is a sorting technique that sorts a list of length n
with O(nlog 2(n)) comparisons and movement of entries, even in the worst case.

searching and sorting 457

DSUC c09 V6 November 21, 2012 11:50 AM Page 457

Hence, it achieves the worst case bounds better than those of quick sort; and for the list,
it is better than merge sort since it needs only a small and constant amount of space apart
from the list being sorted. The steps for building a heap sort are as follows:

1. Build the heap tree.
2. Start delete heap operations storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to the order in the
heap tree. Hence, if we want the elements to be sorted in ascending order, we need to build
the heap tree in descending order—the greatest element will have the highest priority.

Note that we use only one array, treating its parts differently:

1. When building the heap tree, a part of the array will be considered as the heap, and the
rest will be the original array.

2. When sorting, a part of the array will be the heap, and the rest will be the sorted array.

Algorithm 9.8 provides the steps followed in sorting data using a heap.

algorithm 9.8
1. Build a heap tree with a given set of data
2. Delete root node from heap
 Rebuild the heap after deletion
 Place the deleted node in the output
3. Continue with step 2 until the heap tree is empty

Program Code 9.11 illustrates Algorithm 9.8 in C++.

program CoDe 9.11

// reheapup operation is required when a new value is

inserted at the ith location

void reheapdown(int a[], int n, int i)

{

 int temp, j;

 while(2 * i + 1 < n)

 {

 j = 2 * i + 1; // j index shows the left child of

the node

 if(j + 1 < n && a[j + 1] > a[j])

 // fi nding max from left and right child

 j = j + 1;

 if(a[i] > a[j]) break;

 // if root > children then break

458 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 458

 else

 {

 // swap a[i] with a[j]

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 i = j;

 }

 } // end of while

}

Void Heap_Sort (int a[], int n)

{

 // create heap

 int i, temp;

 for(i = (n − 1)/2; i >= 0; i−−)

 reheapdown(a, n, i);

 // delete fi rst value and swap it with last

 while(n > 0)

 {

 //swap fi rst and last element

 temp = a[0];

 a[0] = a[n − 1];

 a[n − 1] = temp;

 n−−; // decrement count

 reheapdown(a, n, 0);

 }

}

void main()

{

 int a[10], n, i;

 cout << "Enter N";

 cin >> n;

 cout << "Enter the elements";

 for(i = 0; i < n; i++)

 cin >> a[i];

 Heap_Sort(a, n);

 cout << "The sorted elements are";

 for(i = 0; i < n; i++)

searching and sorting 459

DSUC c09 V6 November 21, 2012 11:50 AM Page 459

 cout << a[i];

}

/*************** Output ******************************

Enter N: 12

Enter the elements: 44 33 11 55 77 90 40

60 99 22 88 66

The sorted elements are 11 22 33 40 44 55 60 66

77 88 90 99

**

In each pass of the while loop in the function reheapdown(a,n,0), the position i is
double; hence, the number of passes cannot exceed log(n/i). Therefore, the computation
time is of the order O(logn/i).
For building the heap, the reheapdown procedure is called n/2 times. Hence, the total
number of iterations will be as follows:

log(n) + log(n/2) + ... + log(n/n/2)

lo= g(/)n i
i=
∑

1

n/2

= n/21og(n) - log(n/2)

This turns out to be some constant times n.
If we analyse the processing phase, a heap of size i requires O(log2i) comparisons and

interchanges even in the worst case.
Therefore, the required number of comparisons and interchanges, on the average, is

i = 2

n

i = 2

n

∑∑ +log2 i log2 i
1

2

This is (n - 1) log2n. The worst case is quite comparable to the average case, and the
number of comparisons and interchanges in this case is given by the following expression:

i = 2

n

i = 2

n

∑∑ +2(n−1) log2 n log2 i log2 i

Therefore, heap sort is defi nitely O(nlog2n).

460 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 460

The time complexity analysis of heap sort is as follows:

1. Best case: O(nlogn)
2. Average case: O(nlogn)
3. Worst case: O(nlogn)

9.3.8 Shell sort

The technique used by shell sort (named after its inventor Donald Shell) is interesting. The
algorithm is easy to program, and it runs fairly quickly. Its analysis, however, is very dif-
fi cult. Shell sort is a sorting algorithm, which is an improved version of insertion sort. It
makes repetitive use of insertion sort.

In this technique, the elements at a fi xed distance are compared. Later, this distance
is decremented in the next pass by some value and again the comparisons are made. The
fi xed distance is called as gap. The algorithm begins with the initial gap as n/2, where n
is the total number of elements to be sorted. Later, in the next pass, the gap is modifi ed as
n/4, n/8, and so on till it becomes 1. When gap is 1, it becomes an ordinary insertion sort
(Program Code 9.12).

program CoDe 9.12

void shell_sort(int A[], int n)

{

 int temp, gap, i;

 int swapped;

 gap = n/2;

 do

 {

 do

 {

 swapped = 0;

 for(i = 0; i < n − gap; i++)

 if(A[i] > A[i + gap])

 {

 temp = A[i];

 A[i] = A[i + gap];

 A[i + gap] = temp;

 swapped = 1;

 }

 } while(swapped == 1);

 } while((gap = gap/2) >= 1);

}

searching and sorting 461

DSUC c09 V6 November 21, 2012 11:50 AM Page 461

Figure 9.8 illustrates the sample run using shell sort.

7 19 24 13 31 8 82 18 44 63 5 29

7 18 24 13 5 8 82 19 44 63 31 29

5 8 24 13 7 18 31 19 44 63 82 29

5 7 8 13 8 24 31 19 29 63 82 44

5 7 8 13 18 19 29 24 31 44 82 63

5 7 8 13 18 19 24 29 31 44 63 82

Fig. 9.8 Shell sort sample run

The time complexity of shell sort lies between O(nlog2n) and O(n1.5).

9.3.9 Bucket Sort

Bucket sort is possibly the simplest distribution sorting algorithm. In bucket sort, initially,
a fixed number of buckets are selected. For example, suppose that we are sorting elements
from the set of integers in the interval [0, m - 1]. The bucket sort uses m buckets or coun-
ters. The ith counter/bucket keeps track of the number of occurrences of the ith element of
the list. Figure 9.9 illustrates how this is done for m = 9.

3 1 4 1 5 9 2 6 5 4 data

data

counts0 2 1 1 2 2 1 0 0 1

1 1 2 3 4 4 5 5 6 9

0 1 2 3 4 5 6 7 8 9

Fig. 9.9 Bucket sort

462 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 462

In Fig. 9.9, the buckets are assumed to be {0, 1, ..., 9}. Therefore, 10 counters are
required to keep track of the number of 0s, number of 1s, and so on till 9. A single pass
through the data counts the frequency (count indicating number of times the element
occurs) of each element. Once the counts have been determined, the sorted sequence is
easily obtained. Here, each bucket need not to be sorted again as equal numbers lie in
the same bucket. Though this techniques seems to be very simple, the number of buckets
required depends on the size of the list to be sorted. Program Code 9.13 illustrates the
BucketSort() function.

program CoDe 9.13

void BucketSort(int A[], int n)

{

 int i, j;

 int bucket[max];

 //counters/buckets can store numbers maximum 20

 for(i = 0; i < max; i++)

 bucket[i] = 0;

 for(j = 0; j < n; j++)

 {

 ++bucket[A[j]];

 // counting number for each bucket

 }

 for(i = 0, j = 0; i < max; i++)

 for(;bucket[i] > 0; --bucket[i])

 { A[j] = i; j++; }

}

/******************* Output ****************************

 Enter number of numbers: 7

 Enter numbers value < 20: 12 15 07 05 12 09 07

 bucket[12]=1

 bucket[15]=1

 bucket[7]=1

 bucket[5]=1

 bucket[12]=2

 bucket[9]=1

 bucket[7]=2

 Sorted array is 5 7 7 9 12 12 15

***/

searching and sorting 463

DSUC c09 V6 November 21, 2012 11:50 AM Page 463

9.3.10 radix Sort

Radix sort is a generalization of bucket sort and works in three steps:

1. Distribute all elements into m buckets. Here m is a suitable integer, for example, to sort
decimal numbers with radix 10. We take 10 buckets numbered as 0, 1, 2, …, 9. For
sorting strings, we may need 26 buckets, and so on.

2. Sort each bucket individually.
3. Finally, combine all buckets.

To sort each bucket, we may use any of the other sorting techniques or radix sort
recursively. To use radix sort recursively, we need more than one pass depending upon
the range of numbers to be sorted. For sorting single digit number, we need only one pass,
which is discussed in Section 9.3.9. For sorting numbers with two digits mean ranging
between 00 and 99, we would need two passes; for the range from 0 to 999, we would
need three passes, and so on.

Let us consider a set of two digit number to be sorted. In the first pass, we would
distribute numbers in buckets 0 to 9 using the most significant digit (MSD). Now, in
the bucket 0, we have all numbers with MSD 0, and all numbers with MSD 1 are in
bucket 1, and so on. In the second pass, the numbers in each bucket would be sorted
based on the second most significant digit. The buckets are combined to yield a
sorted list.

Let us consider a set of numbers to be sorted {07, 10, 99, 02, 80, 14, 25, 63,
88, 33, 11, 72, 68, 39, 21, 50}. Table 9.5 illustrates a sample run for this list using
radix sort.

Pass 1
Bucket Numbers

0 02, 07
1 10, 11, 14
2 21, 25
3 39, 33
4
5 50
6 68, 63
7 72
8 80, 88
9 99

Table 9.5 Sample run for radix sort

(Continued)

464 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 464

Table 9.5 (Continued)

Pass 2 (only non-empty buckets are shown for
distribution based on the second signifi cant digit)
Bucket Numbers

Buckets based on
second signifi cant digit

Numbers

0 2 02
7 07

1 0 10
1 11
4 14

2 1 21
5 25

3 3 33
9 39

4
5 0 50
6 3 63

8 68
7 2 72
8 0 80

8 88
9 9 99

The amount of space needed by a bucket sort depends on how the buckets are stored.
If every bucket is to consist of a set of sequential locations (e.g., an array), then each must
be allocated enough space to hold the maximum number of elements that might belong in
one bucket, and that is n. As the number of buckets increases, the speed of the algorithm
increases but so does the amount of space used. Linked lists would be better, which would
need the space for n elements plus links and a list head for each bucket. Program Code
9.14 illustrates this.

program CoDe 9.14

#defi ne max 20

void radixsort(int A[max], int n)

{

 int i, j, temp;

 int bucket[10][15];

 int count[10], digit, k, p, x, nopass, maxval;

 maxval = A[0];

searching and sorting 465

DSUC c09 V6 November 21, 2012 11:50 AM Page 465

 for(i = 0; i < n; i++)

 if(maxval < A[i]) maxval = A[i];

 nopass = 0;

 while(maxval != 0)

 {

 maxval = maxval/10;

 nopass++;

 }

 p = 0;

 do

 {

 x = 1;

 for(i = 0; i < 10; i++) count[i] = 0;

 for(i = 0; i < n ; i++)

 {

 digit = (A[i]/x) % 10;

 bucket[digit]*[count[digit]] = A[i];

 // setting up bucket

 count[digit]++;

 }

 k = 0;

 for(i = 0; i < 10; i++)

 {

 if(count[i] != 0)

 {

 for(j = 0; j < count[i]; j++)

 A[k++] = bucket[i][j];

 }

 }

 cout << "Pass" << p;

 display(A, n);

 x = x * 10;

 p++;

 }while(p < nopass);

}

9.3.11 File Sort

The sorting algorithms discussed so far use array to hold and process the data to be sorted
that resides in memory. Quite often, voluminous fi les, such as a master fi le for all the
employees in a large corporation, must exist on external storage devices because of their
size. These on-line storage devices, such as tapes and disks, carry with them specifi c soft-
ware and hardware considerations relating to the access of stored data.

466 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 466

One of the solutions is to bring only portions of large files into the main memory
and sort them. The portion of a file that can reside in main memory is a block. The
sorted block can be sent back to the external storage medium and the next block can
be brought in. Finally, the partially sorted blocks must be merged into a completely
sorted file.

Because of the nature of secondary storage devices, bringing a block of data items
into the main memory takes a longer time than processing it. For instance, it takes time
to position the read–write head over the appropriate track of a disk, and more time for the
disk to rotate to bring the correct block to the read–write head. An average input/output
operation to and from an auxiliary storage device (not bucketing processing in memory)
may take as 200 milliseconds. When we design sort algorithms for files on external media,
we must consider this time delay.
There are numerous algorithms used to perform sorts external to the computer’s main
memory. Among the many external sort methods, the polyphase sort is more efficient in
terms of speed and utilization of resources. However, it is more complicated, and there-
fore, in some situations, the other algorithms could be more applicable. In practice, inter-
nal sorts are already supplementing these sorting methods. Thus, a number of records
from each tape would be read into the main memory and sorted using an internal sort and
then output to the tape rather than one record at a time, as was the case initially. Let us
study the merge sort method. Merge sort technique is commonly used for external sort
and is suitable for internal sort too.

9.3.12 Merge Sort

The most common algorithm used in external sorting is the merge sort. Merging is the
process of combining two or more sorted files into the third sorted file. We can use a
technique of merging two sorted lists. Divide and conquer is a general algorithm design
paradigm that is used for merge sort. Merge sort has three steps to sort an input sequence
S with n elements:

1. Divide—partition S into two sequences S1 and S2 of about n/2 elements each
2. Recur—recursively sort S1 and S2
3. Conquer—merge S1 and S2 into a sorted sequence

A file (or sub-file) is divided into two files, f1 and f2. These two files are then com-
pared, one pair of records at a time, and merged. This is done by writing them on two
separate new files M1 and M2. Elements that do not pair off are simply rewritten into the
new files. The records in M1 and M2 are now blocked with two records in each block.
The two blocks (i.e., four records), one from M1 and one from M2, are merged and writ-
ten onto the original files f1 and f2. The length of the blocks in each of f1 and f2 is now
increased to four; the merge process is applied again, and the new files are written to M1
and M2. The process is continued until one of the two files, f1 or f2, is empty. Merge sort

searching and sorting 467

DSUC c09 V6 November 21, 2012 11:50 AM Page 467

is a divide-and-conquer algorithm. Note that the function mergesort() calls itself recur-
sively. Algorithm 9.9 is derived based on the steps discussed.

algorithm 9.9
List mergesort(list L, int n)
{
 if(n == 1)
 return(L);
 else
 {
 split L into two halves L1 and L2;
 return(merge(mergesort(L1, n/2), (mergesort(L2, n/2))
 }
}

Time Complexity

Let T(n) be the running time of merge sort on an input list of size n. Then,

T(n) < C1 (if n = 1), where C1 is a constant and
T(n) < 2T(n/2) + C2n

Here, 2T(n/2) is for two recursive calls, and C2n is the cost of merging the two sorted lists.
Now, by the substitution method,

T(n) = 2T(n/2) + C2n

If n = 2k for some k, it can be shown that after k steps

T(n) = 2kT(n/2k) + C2C2
k

Hence, for n = 2k

T(n) = nlog2n

That is, T(n) = O(nlogn)
Let us implement the merge technique for two arrays instead of working on fi les. Let

us write a routine that accepts two sorted arrays, A and B containing elements n1 and n2,
respectively and merges them into a third array C containing n3 elements. Here, the array
A is from low to mid, array B is from mid + 1 to high, and array C gives the merging of
A and B This is shown in Program Code 9.15.

program CoDe 9.15

void merge (int A[],int low, int high, int mid)

{

 int i, j, k, C[max];

 i = low; // index for fi rst part

468 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 468

 j = mid + 1; // index for second part

 k = 0; // index for array C

 while((i <= mid) && (j <= high))

 // merge arrays A & B in array C

 {

 if(A[i] < A[j])

 C[k] = A[i++];

 else

 C[k] = A[j++];

 k++;

 }

 while(i <= mid)

 C[k++] = A[i++];

 while(j <= high)

 C[k++]=A[j++];

 for(i = low, j = 0; i < = high; i++, j++)

 // copy array C contents back to array A

 {

 A[i] = C[j];

 }

}

void MergeSort(int A[], int low, int high)

{

 int mid;

 if(low < high)

 {

 mid = (low + high)/2;

 MergeSort(A, low, mid);

 MergeSort(A, mid + 1, high);

 merge(A, low, high, mid);

 }

}

When merge sort is used for fi les as described in Program Code 9.15, each merge
operation requires reading and writing of two fi les, both of which are on the average about
n/2 records long. Thus, the total number of blocks read or written in a merge operation is
approximately 2n/c, where c is the number of records in a block. The number of blocks
accessed for the whole operation is O((n(log2n))/c), which amounts to O(log2n) passing
through the entire original fi le. This is a considerable improvement over the O(n) passes
needed in the preceding algorithms.

searching and sorting 469

DSUC c09 V6 November 21, 2012 11:50 AM Page 469

9.4 MuLtiWaY Merge anD PoLYPhaSe Merge

We have already studied external sorting in Section 9.3.11. It broadly works in the
following three steps:

1. Split the data into small sets that fit into main memory.
2. Now sort each of the subsets with a conventional sorting algorithm.
3. Finally merge those so-called runs and get a complete sorted data set.

This merging procedure can obviously be applied to more than two runs at every time
and it is called n-way merge or multiway merge. The sophisticated multiway merge algo-
rithms include polyphase merge.

A non-balanced k-way merge that reduces the number of output files needed by reus-
ing the emptied input file or device as one of the output devices is called polyphase
merge. This is most efficient if the number of output runs in each output file is different.
Combining the run creation and run merging calculations together, we find that the over-
all complexity is O(nlog2n). The repeated merging is referred to as polyphase merging.
Polyphase merge sorts are ideal for sorting and merging large files. Two pairs of input
and output files are opened as file streams. At the end of each iteration, input files are
deleted; output files are closed and reopened as input files. The use of file streams makes
it possible to sort and merge files that cannot be loaded into the computer’s main memory.
It is a method of merging, where the keys are kept in more than one backup store or file.
Items are merged from the source files to another file. Whenever one of the source files is
exhausted, it immediately becomes the destination of the merge operations from the non-
exhausted and earlier destination files. When there is only one file left, the process stops.

9.4.1 comparison of ordinary Merge Sort and Polyphase Sort

Typically, a merge sort splits items into sorted runs and then recursively merges each run
into larger runs. When there is only one run left, it is termed as the sorted result. An ordi-
nary merge sort could use four working files organized as a pair of input files and a pair
of output files. At each iteration, two input files are read. The odd-numbered runs of the
two input files are merged to the first output file, and the even-numbered runs are merged
to the second output file. When the input is exhausted, the new output files are used as the
input for the next iteration. The number of runs decreases by a factor of 2 at each iteration.
At each iteration, the same level/phase of merge occurs—a file is either completely read
or completely written during the iteration.

If the four files were on four separate tape drives, an ordinary merge sort would pro-
vide some interesting details. In the first iteration, only one input drive is used and the
other input file is empty. In subsequent iterations, each input drive runs at half speed,
while one output drive runs at full speed and the second output drive stands idle waiting
for the next run. The situation is even worse when six tape drives are used, out of which at
least two stand idle. It would be ideal if the idle drives could be put to more use.

470 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 470

Perfect Three-file Polyphase Merge Sort

It is easiest to look at the polyphase merge from its end conditions and working back-
wards. At the start of each iteration, there are two input files and one output file. At the
end of the iteration, one input file is completely consumed and becomes the output file for
the next iteration. The current output file will become an input file for the next iteration.
The remaining files (just one in the three-file case) are only partially consumed, and their
remaining runs are the input for the next iteration.

In the following instance, File 1 is just emptied, and it becomes the new output file. One
run is left on each input tape, and merging those runs together will make the sorted file.

File 1 (out): <1 run> * (the sorted file)
File 2 (in): ... | <1 run> * --> ... <1 run> | * (consumed)
File 3 (in): | <1 run> * <1 run> | * (consumed)

Here,
... denotes the possible runs that have already been read
| marks the read pointer of the file
* marks end of file

In the previous iteration, we read from Files 1 and 2. One run is merged from both files
before File 1 goes empty. Notice that File 2 is not completely consumed; it has one run
left to match the final merge.

File 1 (in): ... | <1 run> * ... <1 run> | *
File 2 (in): | <2 run> * --> <1 run> | <1 run> *
File 3 (out): <1 run> *

Stepping back another iteration, two runs are merged from Files 1 and 3 before File 3
goes empty.

File 1 (in): | <3 run> * ... <2 run> | <1 run> *
File 2 (out): --> <2 run> *
File 3 (in): ... | <2 run> * <2 run> | *

Moving to the previous iteration, three runs are merged from Files 2 and 3 before File 2
goes empty.

File 1 (out): <3 run> *
File 2 (in): ... | <3 run> * --> ... <3 run> | *
File 3 (in): | <5 run> * <3 run> | <2 run> *

Moving further back, five runs are merged from Files 1 and 2 before File 1 goes empty.

File 1 (in): ... | <5 run> * ... <5 run> | *
File 2 (in): | <8 run> * --> <5 run> | <3 run> *
File 3 (out): <5 run> *

searching and sorting 471

DSUC c09 V6 November 21, 2012 11:50 AM Page 471

The number of runs merged working backwards—1, 2, 3, 5, …,—reveals a Fibonacci
sequence. For everything to work out right, the initial file to be sorted must be distributed
to the proper input files, and each input file must have the correct number of runs on it. In
the example, this would mean that an input file with 13 runs writes 5 runs to File 1 and 8
runs to File 2.

In practice, the input file might not have a Fibonacci number of runs (which would not
be known until after the file has been read). The fix is to pad the input files with dummy
runs to obtain the required Fibonacci sequence.

For comparison, the ordinary merge sort combines 16 runs in 4 passes using 4 files.
The polyphase merge combines 13 runs in 5 passes using only 3 files. Alternatively, a
polyphase merge combines 17 runs in 4 passes using 4 files (sequence: 1, 1, 1, 3, 5, 9,
17, 31, 57, ...).

An iteration (or pass) in an ordinary merge sort involves reading and writing the entire
file. An iteration in a polyphase sort does not read or write the entire file, so a typical
polyphase iteration takes lesser time than a merge sort iteration.

Two-phase, Multiway Merge Sort

The basic idea behind the two-phase, multiway merge sort is simple, and is described as
follows:

Phase 1: Repeat the following until all data items have been visited once.
1. Fill a designated region R of main memory with as many data items as it can hold.
2. Sort the data items in R using an internal sort.
3. Write the sorted data items back to new blocks on disk, which yields a sorted ‘sub-list’

of the original data items.

Phase 2: At the conclusion of the following steps, a sorted file will emerge.
1. Read a block from each of the sub-lists from Phase 1 into a main memory buffer; in

addition, set aside an output buffer.
2. Merge the sub-lists into a sorted file by repeating the following steps as often as

necessary.
3. Fill the output buffer by repeatedly selecting the smallest (or the largest, depending

on the sorting order) remaining data item in the buffers from the sorted sub-lists.
If all of the items in a sub-list buffer have been examined, read the next block for
that sub-list (if there is no such block, then do not examine the associated buffer
anymore).

4. Write the output buffer to disk and reinitialize the buffer for the next output block.

9.5 coMPariSon oF aLL Sorting MethoDS

Table 9.6 compares and comments on the sorting methods discussed in this chapter.

4
7

2

d
a
ta

 s
tr

u
c
tu

r
es

 u
s
in

g
 c

++

D
SU

C
 c09 V6 N

ovem
ber 21, 2012 11:50 A

M
 Page 472

(Continued)

Sorting
method

Technique in brief Best case Worst
case

Memory
requirement

Is stable? Pros Cons

Bubble sort Repeatedly stepping
through the list to be
sorted, comparing each
pair of adjacent items
and swapping them if
they are in the wrong
order

O(n2) O(n2) No extra
space needed

Yes 1. A simple and
easy method
2. Efficient for
small lists n > 100

Highly inefficient for
large data

Selection
sort

Finds the minimum
value in the list and
then swaps it with the
value in the first position,
repeats these steps for
the remainder of the list
(starting at the second
position and advancing
each time)

O(n2) O(n2) No extra
space needed

No 1. Recommended
for small files
2. Good for
partially sorted
data

Inefficient for large lists

Insertion sort Every repetition of
insertion sort removes
an element from the
input data, inserts it into
the correct position in
the already sorted list
until no input elements
remain. The choice of
which element to remove
from the input is arbitrary
and can be made using
almost any choice of
algorithm

O(n) O(n2) No extra
space needed

Yes 1. Relatively
simple and easy
to implement
2. Good for
almost sorted
data

Inefficient for large lists

Table 9.6 Comparison of sorting techniques

s
ea

r
c
h

in
g

 a
n

d
 s

o
r

tin
g

4

7
3

D
SU

C
 c09 V6 N

ovem
ber 21, 2012 11:50 A

M
 Page 473

Table 9.6 (Continued)

(Continued)

Quick sort Picks an element, called
a pivot, from the list.
Reorders the list so
that all elements with
values less than the pivot
come before the pivot,
whereas all elements
with values greater than
the pivot come after it
(equal values can go
either way). After this
partitioning, the pivot is
in its final position. This
is called the partition
operation.
Recursively sorts the
sub-list of the lesser
elements and the sub-list
of the greater elements.

O(nlog2n) O(n2) No extra
space needed

No 1. Extremely fast
2. Inherently
recursive

Very complex algorithm

Shell sort It is a generalization
of insertion sort, which
exploits the fact that
insertion sort works
efficiently on input
that is already almost
sorted. It improves on
insertion sort by allowing
the comparison and
exchange of elements
that are far apart. The
last step of shell sort is
a plain insertion sort,
but by then, the array of
data is guaranteed to be
almost sorted

O(n1.5) O(nlog2n) No extra
space needed

No 1. It is faster than
a quick sort for
small arrays
2. Its speed and
simplicity makes
it a good choice
in practice

Slower for sufficiently
big arrays

4
7

4

d
a
ta

 s
tr

u
c
tu

r
es

 u
s
in

g
 c

++

D
SU

C
 c09 V6 N

ovem
ber 21, 2012 11:50 A

M
 Page 474

*n is the number of data items to be sorted.

Table 9.6 (Continued)

Sorting
method

Technique in brief Best case Worst
case

Memory
requirement

Is
stable?

Pros Cons

Radix sort
(most

significant
digit)

Numbers are placed
at proper locations by
processing individual
digits and by comparing
individual digits that share
the same significant
position.

O(n) O(n) Extra space
proportional to

n is needed

Yes 1. Radix sort is very
simple and fast
2. In-Place,
recursive, and
one of the fastest
sorting algorithms
for numbers or
strings of letters

Radix sort can also take
more space than other
sorting algorithms since
in addition to the array
that will be sorted, there
needs to be a sub-list
for each of the possible
digits or letters

Merge sort If the list is of length 0 or
1, then it is already sorted.
Otherwise, the algorithm
divides the unsorted list
into two sub-lists of about
half the size
Then, it sorts each sub-list
recursively by reapplying
the merge sort and then
merges the two sub-lists
back into one sorted list.

O(nlog2n) O(nlog2n) Extra space
proportional to

n is needed

Yes 1. Good for
external file
sorting
2.Can be applied
to files of any size

1. It requires twice the
memory of the heap sort
because of the second
array used to store the
sorted list.
2. It is recursive, which
can make it a bad
choice for applications
that run on machines
with limited memory

Heap sort Heap sort begins by
building a heap out of
the data set, and then
removing the largest item
and placing it at the end of
the partially sorted array.
After removing the largest
item, it reconstructs the
heap, removes the largest
remaining item, and
places it in the next open
position from the end of
the partially sorted array.
This is repeated until there
are no items left in the
heap and the sorted array
is full

O(nlog2n) O(nlog2n) No extra
space needed

No 1. Advantageous
as it does not use
recursion and that
heap sort works
just as fast for
any data order.
That is, there is
basically no worst
case scenario
2. Heaps work
well for small
tables and the
tables where
changes are
infrequent

Do not work well for
most large tables

searching and sorting 475

DSUC c09 V6 November 21, 2012 11:50 AM Page 475

recaPituLation

• Searching means locating a target element in
the list. There are basically two search tech-
niques: sequential (also known as linear search)
and binary search. Sequential search is used
when the list is not sorted, and binary search is
preferred when the list is in sorted order.

• The variations of linear search include senti-
nel search and probabilistic search. In sentinel
search, the check for the end of list is avoided
by placing the target at the end of list. The
probability search orders the list by placing
the most probable elements at the beginning
of the list.

• In binary search, the target is fi rst searched at
the mid of the list. As the list is sorted (ascend-
ing or descending), if the target is not found at
the mid, then it is searched either in upper half
or in lower half. If the list is in ascending order
and if the target is smaller than the element
at mid, then it is searched in upper half, else
the target is searched in the lower half using
binary search.

• The time complexity of linear is O(n), whereas
it is O(log2n) for binary search.

• In case of hashed search, the target key is
transformed to address using algorithmic
computation. The function used for this trans-
formation is called as hash function. There are
different hash functions: modulus, digit extrac-
tion, mid_square, folding.

• Sorting means arranging the elements in a par-
ticular order. Sorting techniques are broadly
classifi ed as internal and external. In internal
sorting, during sorting, all the data to be sorted
is held in primary storage. In external sorting too,
the data to be sorted is held in primary storage,
and the data that does not fi t in the primary stor-
age is held in secondary storage. Both internal
and external sorting methods have their relative
effi ciencies in different applications.

• If the equal targets maintain their relative input
order in the output, then the sorting method is
called as the stable sorting method.

• Internal sort techniques are broadly classifi ed
as insertion, selection, and exchange. Inser-
tion sorting include insertion sort and shell
sort. Selection sorting methods are selection
and heap sort. Heap sort is an improved ver-
sion of selection sort. Bubble sort and quick
sort are two exchange sort techniques.

• Quick sort is faster and handles arrays of het-
erogeneous data fairly effi ciently. The shell
short is more effi cient than the bubble sort,
selection sort, and insertion sort.

• Sorting of larger fi les that cannot fi t in main
memory is best accomplished by external
sorting techniques such as the merge sort.

• Polyphase merge and multiway merge are
two sort methods used in the external sorting
technique.

Binary search In binary search algorithm, to
search a particular element, it is first compared
with the element at the middle position, and if
found, the search is successful. However, if the
middle position value is greater than the target,
the search will continue in the first half of the list,
else the target will be searched in the second half

of the list. The same process is repeated for one of
the halves of the list till the list reduces to the list
of size one.

External sort Any sort algorithm that uses exter-
nal memory, such as tape or disk, during the sort-
ing is called as external sort algorithm. Merge sort
is used in external sorting.

KeY terMS

476 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 476

Multiple choice questions

 1. The number of swappings needed to sort the
numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending
order using bubble sort is

 (a) 11
 (b) 12
 (c) 13
 (d) 14
 2. Given two sorted lists of size m and n,

respectively, the number of comparisons needed
in the worst case by the merge sort algorithm
will be

 (a) mn
 (b) max(m, n)
 (c) min(m, n)
 (d) m + n - 1
 3. The average successful search time taken by

binary search on a sorted array of 10 items is
 (a) 2.6
 (b) 2.7

 (c) 2.8
 (d) 2.9
 4. Which of the following sorting algorithms has a

worst case running time of O(n2)?
 (a) Insertion sort
 (b) Merge sort
 (c) Quick sort
 (d) Bubble sort
 5. Choose the correct statements from the

following:
 Note: More than one statement could be cor-

rect.
 (a) Internal sorting is used if the number of

items to be sorted is very large
 (b) External sorting is used if the number of

items to be sorted is very large
 (c) External sorting needs auxiliary storage
 (d) Internal sorting needs auxiliary storage
 6. A sorting technique that guarantees that records

with the same primary key occurs in the same

eXerciSeS

Internal sort Any sort algorithm that uses main
memory exclusively during the sorting is called
as internal sort algorithm.

Linear search The search begins with the first
available record and proceeds to the next avail-
able record repeatedly until we find the target key
or conclude that it is not found. Such search is
known as sequential search and is also called as
linear search.

Multiway merge This refers to combining more
than two sorted data streams into a single sorted
stream.

Passes During the sorting process, the data is tra-
versed many times. Each traversal of the data is
referred to as a sort pass.

Polyphase merge This is a non-balanced k-way
merge that reduces the number of output files
needed by reusing the emptied input file or device
as one of the output devices.

Searching The process of locating target data is
known as searching.

Sort efficiency Sort efficiency is a measure of
the relative efficiency of a sort. It is usually an
estimate of the number of comparisons and data
movement required to sort the data.

Sort order Data can be ordered either in ascend-
ing order or in descending order. The order in
which the data is organized, that is, ascending
order or descending order, is called as a sort
order.

Sort stability A sorting method is said to be stable
if at the end of the method, identical elements oc-
cur in the same order as in the original unsorted set.

Sorting Sorting is the operation of arranging the
records of a table according to the key value of
each record, or sorting is a process of converting
an unordered set of elements to an ordered set of
elements.

searching and sorting 477

DSUC c09 V6 November 21, 2012 11:50 AM Page 477

order in the sorted list as in the original unsorted
list is said to be

 (a) stable
 (b) consistent
 (c) external
 (d) linear
 7. You want to check whether a given set of items

is sorted or not. Which of the following sorting
methods will be the most efficient if it is already
in sorted order?

 (a) Bubble sort
 (b) Selection sort
 (c) Insertion sort
 (d) Merge sort
 8. The average number of comparisons performed

by the merge sort algorithm in merging two
sorted lists of length 2 is

 (a) 8/3
 (b) 8/5
 (c) 11/7
 (d) 11/6
 9. Which of the following sorting methods will be

the best if the number of swappings done is the
only measure of efficiency?

 (a) Bubble sort
 (b) Selection sort
 (c) Insertion sort
 (d) Quick sort
10. As part of maintenance work, you are entrusted

with the work of rearranging the library books
in a shelf in proper order at the end of each day.
The ideal choice will be

 (a) Bubble sort
 (b) Insertion sort
 (c) Selection sort
 (d) Heap sort

Review questions

 1. A sorted list of integers in ascending order (with
no duplication) is available. Write a function that
reads a number and searches this number in the
list. If the number is not present, the function
will add the number at its proper position. Print

the scanned list in descending order starting
from the position of this number.

 2. Write an algorithm for merge sort. Give the time
complexity of your algorithm. Show the stepwise
execution of the algorithm for the following list
of data:

 (a) 10, 20, 45, 27, 15, 7, 28, 59, 61, 33
 (b) 10, -5, 0, 20, -15, 50, 40, -20, 30
 (c) 25, 57, 48, 37, 12, 92, 86, 33
 (d) 26, 5, 37, 1, 61, 11, 59, 15, 48, 19
 State the time complexity of quick sort for

average case and best case.
 3. Write a pseudo C++ algorithm for merge sort

of integers. Give the number of comparisons
required for the best case and the worst case of
inputs with examples.

 4. Write a pseudo C++ algorithm for quick sort of
integers.

 5. Discuss with suitable examples any three sorting
techniques. Complete them with respect to the
computing time giving the best cases and the
worst cases of each.

 6. Discuss internal and external sorting with
suitable examples of each type.

 7. Write an algorithm to implement selection sort
with suitable example.

 8. What is the purpose of searching an algorithm?
 9. What are the two major types of searches? How

do they differ?
10. Using the selection sort algorithm, manually

sort the following list and show your work in
each pass: 7, 23, 31, 40, 56, 78, 9, 2.

11. Using the bubble sort algorithm, manually sort
the following list and show your work in each
pass: 7, 23, 31, 40, 56, 78, 9, 2.

12. A list contains the following elements: 7, 23,
31, 40, 56, 78, 9, 2. Using the binary search
algorithm, trace the steps followed to find 88.

13. Trace the series of recursive calls performed
by quick sort during the process of sorting the
following array: 3, 1, 4, 5, 9, 2, 6, 10, 7, 8.

14. Describe the behaviour of the quick sort algorithm
when the input is already sorted. How would this

478 data structures using c++

DSUC c09 V6 November 21, 2012 11:50 AM Page 478

be different if instead of the first element we
selected the mid point as the pivot value?

15. For bubble sort, give the time complexity for
average case and best case. Justify your answer.

16. Which of the sorting algorithms has the best
performance in terms of storage and time
complexity? Justify your answer.

17. Repeated merging is referred to as polyphase
merging. Comment.

18. List the situations where polyphase merge is to
be used.

19. Elaborate the advantages of multiway merge.

Answers to multiple choice questions

1. (d)
2. (d) Each comparison puts one element in the final stored array. So, in the worst case, m + n - 1

comparisons are necessary.
3. (d) For 10 items i1, i2, ..., i10, to match i5, the number of comparisons needed is 1; for i2, it is 2, for i8 it

is 2, for i1 it is 3, and so on. So, the average is (1 + (2 + 2) + (3 + 3 + 3 + 3) + (4 + 4 + 4)/10, i.e., 2.9.
4. (b) 5. (a), (b) 6. (a) 7. (c)
8. (a) Merge sort combines two given sorted lists into one sorted list. For this problem, let the final sorted

order be a, b, c, d. The 2 lists (of length 2 each) should fall into one of the following three categories:
 (i) a, b and c, d
 (ii) a, c and b, d
 (iii) a, d and b, c
 The number of comparisons needed in each case will be 2, 3, 3. So, average number of comparisons

will be (2 + 3 + 3)/3 = 8/3
 Here is a better way of solving:
 Let list L1 have the items a, c and L2 have the items b, d.
 The following tree depicts the different possible cases—a and b means a is compared with b. If a

is smaller, the edge will be labelled a. The number within the circle, beside the leaf nodes, is the
number of comparisons, needed to reach it.

2
a, b, c, d

1
a , b, c d

a

a

c

9. (b) 10. (b)

10

We have discussed the non-linear data structure, tree, and one of its most popular
variations, the search tree, in Chapter 7. The binary search tree (BST) is one of the

fundamental data structures extensively used for searching the target in a set of ordered
data. BSTs are widely used for retrieving data from databases, look-up tables, and storage
dictionaries. It is the most effi cient search technique having a time complexity that is
logarithmic to the size of the set. There are two cases with respect to BST const ruction. The
fi rst case is a set of keys and the probabilities with wh ich they are searched, which is known
in advance. The second is when knowledge about the keys is not available in advance and
the keys occur dynamically. These two cases lead to the following two kinds of search trees:

1. Static BST—is one that is not allowed to update its structure once it is constructed. In
other words, the static BST is an offl ine algorithm, which is presumably aware of the
access sequence beforehand.

2. Dynamic BST—is one that changes during the access sequence. We assume that the
dynamic BST is an online algorithm, which does not have prior information about the
sequence.

In this chapter, we shall study about these two BSTs and the concept of symbol tables.

10.1 SyMbOL TAbLe

While compilers and assemblers are scanning a prog ram, each identifi er must be exam-
ined to determine if it is a keyword. This information concerning the keywords in a pro-
gramming language is stored in a symbol table. Consider the following C++ statement:

 int limit;

SeARch TReeS

ObJecTIveS

Afte r completing this chapter, the reader will be able to u nderstand the following:
 • Variations in binary search trees—static and dynamic
 • Ways of building trees of each type to ensure that they remain balanced

480 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 480

When a compiler processes this statement, it will identify that int is a keyword and
limit is an identifier. However, a question arises as to how a compiler classifies them as
a keyword and a user-defined identifier. For identifying int as a keyword, the compiler
is provided with a table of keywords. For faster search through a list of keywords, the
symbol table is used as an efficient data structure.

The symbol table is a kind of a ‘keyed table’ which stores <key, information> pairs with
no additional logical structure.
The operations performed on symbol tables are the following:

1. Inserting the <key, information> pairs into the collection.
2. Removing the <key, information> pairs by specifying the key.
3. Searching for a particular key.
4. Retrieving the information associated with a key.

When a compiler stores information that can be retrieved by some unique key value,
it means we are using a keyed table. The field that contains the value by which we want
to retrieve the information is the key field. When keyed tables are used in a compiler and
an assembler, where the key (the symbol) is the programmer’s identifier and the informa-
tion is the location assigned by the assembler to that identifier, the keyed tables are called
symbol tables.

10.1.1 Representation of Symbol Table

There are two different techniques for implementing a keyed table, namely, the symbol
table and the tree table.

Static Tree Tables

When symbols are known in advance and no insertion and deletion is allowed, such a
structure is called a static tree table. An example of this type of table is a reserved word
table in a compiler. This table is searched once for every occurrence of an identifier in a
program. If an identifier is not present in the reserved word table, then it is searched for in
another table. When we know the keys and their probable frequencies of being searched,
we can optimize the search time by building an optimal binary search tree (OBST). The
keys have history associated with their use, which is referred to as their probability of oc-
currence. There are four options for searching:

1. Static tree table can be stored as a sorted sequential list and binary search (O(log2n))
can be used to search a symbol.

2. Balanced BST can be used to find symbols having equal probabilities.
3. Hash tables, having the search time O(1), can be used to store a symbol table.
4. OBST is used when different symbols are searched with different probabilities.

search trees 481

DSUC c10 V6 November 26, 2012 11:08 AM Page 481

Dynamic Tree Tables

A dynamic tree table is used when symbols are not known in advance but are inserted as
they come and deleted if not required. Dynamic keyed tables are those that are built on-
the-fly. The keys have no history associated with their use. The dynamically built tree that
is a balanced BST is the best choice.

Let us now look into each of these trees in detail.

10.2 OPTIMAL bInARy SeARch TRee

Before we study OBSTs, let us revise BSTs. A BST is one of the most important data
structures in computer science. When arrays are used to store ordered data, we use the
very efficient searching technique, that is, binary search. However, its insertion and dele-
tion algorithms are inefficient as they require shifting of data in the array. An alternative
is to use a linked list to store ordered data, which although provides efficient insertion and
deletion algorithms, its sequential searching algorithm is inefficient. Therefore, a BST
is the only data structure left that not only has an efficient searching algorithm but also
efficient insertion and deletion algorithms.
A BST can be defined as a key-based tree with the following properties:

1. Every element has a key, and no two elements have the same key (i.e., keys are
unique).

2. The keys (if any) in the left subtree are smaller than the key in the root.
3. The keys (if any) in the right subtree are greater than the key in the root.
4. Each subtree in itself is a BST.

A BST has a few problems which are to be overcome. Consider the BST shown in
Fig. 10.1.

25

30

35272210

20

Fig. 10.1 Sample binary search tree

The inorder traversal produces 10, 20, 22, 25, 27, 30, 35. For the same set of keys,
depending on their sequence of arrival, the other two search trees can be constructed as
in Fig. 10.2.

482 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 482

25

20

10

3022

3527

20

35

30

27

25

2210

(a) (b)

Fig. 10.2 Sample BSTs for keys (25, 10, 35, 27, 35, 20, 22) (a) Sample 1 (b) Sample 2

Note that the left BST in Fig. 10.2(a) requires utmost four comparisons to search the tar-
get in the tree, whereas for searching the target in the right tree (Fig. 10.2b), the maximum
comparisons needed are five. We can say that the first BST has a better average behaviour
than the second.

When the target is at the root (level 0), we need just one comparison; if the target is
at level 1, we need two comparisons, and so on. Since the number of comparisons, or in
other words iterations, through the search loop determines the cost of search, the cost
should be minimum, that is, optimal. Hence, the optimality criteria for a static BST can
be stated as minimizing the cost of the BST under a given access sequence. Such a cost
can be defined as follows:

Cost(T) =
= 1

l ai()
i

n

∑ (10.1)

Here, the total number of nodes are n, and l(ai) is the length of the ith key, a.
Here, we assume that all the keys are searched with equal probabilities. However, in

reality, the keys are searched with different probabilities, and it should be taken care of
while constructing the tree so that the keys searched more often should require less time
as compared to those searched rarely. This can be achieved by placing the more frequent-
ly searched key nodes closer to the root as compared to those that are searched rarely, to
reduce the total number of average searches. A node is said to be closer to the root when
its path length is lesser than that of the other nodes.

search trees 483

DSUC c10 V6 November 26, 2012 11:08 AM Page 483

In brief, cost of a tree is computed with respect to its node’s probability of search and
path length. Hence,

Cost(T) = ×∑W Li i
i

n

= 1

 (10.2)

where,
Wi = frequency or probability (also called as weight of the ith node)
Li = level of a particular node calculated from the root node treated from level 0
Assume that there are four keys {P, Q, R, S} that are to be searched with probabilities

0.1, 0.2, 0.4, and 0.3, respectively. There are 14 possible BSTs. A few of them are shown
in Fig. 10.3.

Q

P

P

Q

R

SP

Q

R

S

R

S

Fig.10.3 Three sample BSTs for keys {P, Q, R, S}

Now, we need to find out which of these 14 trees is the optimal one. One way to do this
is to construct all possible BSTs. However, as the number of keys (n) increases, the total
number of search trees also increases. So this approach is unrealistic for a large n. An
alternative is to use a general algorithm.

Consider the keys {k1, k2, …, kn} such that k1 < k2 < k3 < … < kn. Every successful
search for the key ki has the probability p(i). In addition, every unsuccessful search for
the key x has the probability of failure q(i) for 0 £ i £ n, and ki < x < ki+1. We can add a
fictitious node as a child for every leaf node.

For the BSTs in Fig. 10.4, all the keys represent internal nodes; all successful searches
will always end at an internal node; all squares denote external nodes, which are fictitious;
all unsuccessful searches will end at some external node. If there are n keys, there are n + 1
external nodes. So all the keys that are not a part of a BST belong to one of (n + 1) equivalence
classes Ei for 0 £ i £ n. The class E0 contains all keys m < k1. The class E1 contains all keys
m such that k1 < m < k2. In general, the class Ei contains all keys m such that ki < m < ki+1.
So if an unsuccessful search reaches at the node Ei at level l, it means that l - 1 compari-
sons are already performed. Hence, the cost of such node is q(i) ¥ (level(Ei) - 1). Similarly,
every successful search that stops at the key ki at level l has the cost p(i) ¥ level(ki).

484 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 484

Hence, the cost of a BST is given as follows:

1 0≤ ≤ ≤ ≤
∑ ∑+ −1
i n

i
i n

ip i k q i E()) ())× ×level(level((10.3)

Equation (10.3) defines the cost of a BST in terms of the probabilities of successful and
unsuccessful searches and the level of a node. Now, let us define an OBST. We need a
BST with an optimal cost. An OBST is a BST with the minimum cost. Let us see how to
build it by taking Example 10.1.

 example 10.1 Given the keys = {while, do, if} and probabilities p(i) = q(i) = 1/7 for
all i. Compute the cost of all possible BSTs and find the OBST.

Solution We get five possible BSTs for the given keys as shown in Fig. 10.4.

(e)

do

while

if

if

whiledo

E E E E

(d)

do

if

while

(c)

(b)(a)

if

while

do

while

if

do E

E E

E

Fig. 10.4 BSTs for the keys {do, while, if} (a) BST1
(b) BST2 (c) BST3 (d) BST 4 (e) BST 5

search trees 485

DSUC c10 V6 November 26, 2012 11:08 AM Page 485

Let us compute the cost of each BST.
For Fig. 10.4(a),

Cost level(level(A B

A

= × + × = +

=
≤ ≤ ≤ ≤
∑ ∑p i k q i E

p i

i
i

0 i
i()) ())

()

1 3 3

1−

11 3
1 1 2 2 3 3

≤ ≤
∑ × = × + × + ×

i
ik p k p k p klevel(level level level) () () ()

= 1/7(2 + 2 + 1)
= 5/7

B level() level() level()0= × = × ×
≤ ≤0 i

q i q E q E

q
3

0
1 1 1∑ − − + −

+

() ()Ei

22
1 1× ×level() level()2 3 3E q E− + −

1 1

= 1/7(2 + 2 + 2 + 2)
= 8/7

Therefore, cost = (5/7) + (8/7) = 13/7
For Fig. 10.4(b), total cost = A + B

A level()= × =

1 3

1

7
1 2 3

≤ ≤
∑ + +

i

p i() ()ki

= 6/7

B level()

0 3

= × =
≤ ≤i

iE∑ + + +q i() ()
1

7
3 3 2 1

= 9/7

Therefore, cost = (6/7) + (9/7) = 15/7
Similarly, for Figs 10.4(c)–(e), the cost of each subtree = 15/7.
The cost of the tree in Fig. 10.4(a) is the least; hence, it is the OBST.
Practically, we cannot use such an approach to find an OBST as we will need to draw

all possible BSTs and then find the cost of all BSTs. As the number of keys increases, the
number of BSTs also increases. Dynamic programming approach can be used to construct
an OBST by considering the probabilities of both successful and unsuccessful searches
for the given set of keys.

We construct an OBST step-by-step using the following three formulae:

w(i, j) = p(j) + q(j) + w(i, j - 1)
c(i, j) = min(i < a £ j){c(i, a - 1) + c(a, j)} + w(i, j)
r(i, j) = a

where

486 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 486

where,
w(i, j)is the weight of node (i, j)
c(i, j)is the cost of node (i, j)
c(i, a - 1)is the cost of left subtree
c(a, j)is the cost of right subtree
r(i, j)is the root of the tree

The dynamic programming approach can be used to construct an OBST stepwise, where
the principal of optimality should hold at each step. Assume that there are n keys {k1, k2,
…, kn} where k1 < k2 < k3 < … < kn. So at some step, if ka is the root of a tree, then the
resultant tree is as in Fig. 10.5.

OBST for
k1, …, ka−1

Subtree l Subtree r

OBST for
ka+1, …, kn

ka

Fig. 10.5 Resultant OBST

Since this is a BST, the left subtree l has keys k1, k2, …, ka-1, and external nodes E0,
E1, ..., Ea-1.

Therefore, using Eq. (10.3), the cost of the left subtree l is

Cost() level() () level() 1
01 ()

l p i k q i Ea i
i ai a

= × + × −
≤ −≤ −
∑∑ ()
()11

 (10.4)

Similarly, the cost of right subtree using Eq. (10.3) is

Cost() () level() () level() 1
(1)

r p i k q i E
a i n

a
a i n

i= × + × −
+ ≤ ≤ ≤ ≤
∑ ∑ (10.5)

search trees 487

DSUC c10 V6 November 26, 2012 11:08 AM Page 487

Therefore, the cost of the tree in Fig. 10.5 is the sum of probability of the node ka, cost
of the left subtree l, cost of the right subtree r, weight of the nodes from 0 to a - 1, and
weight of the nodes from a to n. In notation, this can be stated as follows:

p(a) + cost(l) + cost(r) + w(0, a - 1) + w(a, n) (10.6)

Cost(l) and cost(r) are determined considering their roots at level 1. If cost(l) is mini-
mum and cost(r) is also minimum, then the cost of Eq. (10.5) is also minimum, and thus,
we can conclude that the tree in Fig. 10.4(a) is optimal.

Let c(i, j) denote the cost of an OBST tij having keys ki+1, …, kj and external nodes
Ei, …, Ej.. So for the left subtree l of OBST in Fig. 10.5, cost (l) = c(0, a - 1) and for its
right subtree r, cost(r) = c(a, n).

Hence,

p(a) + c(0, a - 1) + c(a, n) + w(0, a - 1) + w(a, n) (10.7)

Equation (10.4) gives the cost of a tree having nodes from k0 to kn. In general, we can
write an equation that gives the cost for a subtree having nodes from ki to kj as

p(a) + c(i, a - 1) + c(a, j) + w(i, a - 1) + w(a, j) (10.8)

Obviously, Eq. (10.7) gives the minimum cost only if a is chosen properly. So we have
to solve Eq. (10.6) for different values of a and then select the minimum. Hence, we can
generalize Eq. (10.7) to get the following equation:

c
i a j

c i a c a j w i a p a w a j()i, j = min
[(,) (,) (,) () (,)]

< ≤
− + + − + +1 1 (10.9)

The steps to find OBST are as follows:

1. We begin by considering all unsuccessful probabilities as initially there are no nodes
in the tree. c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ n, where n is the number
of keys.

2. Compute c(i, j) for j - i = 1, that is, we are constructing a node of level 1. In addition,
compute w(i, j) = p(j) + q(j) + w(i, j - 1), and the root r(i, j) is the value of a which
minimizes c(i, j).

c
i a j

c i a a w i j()i, j c j= min
[(,) (,) (,)]

< ≤
− + +1

3. Compute c(i, j) for j - i = 2. In addition, compute w(i, j) and r(i, j) as in the previous step.
4. Continue the process till j - i = n. Here, won, con, and ron denote the weight, cost, and

root of OBST, respectively.

488 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 488

5. Finally, we can construct an OBST having the root ron = a, which means that the key
ka is the root.

In general, let rij be any node in an OBST, whose value is a. Then, its left node is ri,a-1 and
its right node is ra,j. It is shown in Fig. 10.6.

rij = a

ri, a–1 ra, j

Fig. 10.6 OBST

Using this, we can construct a tree until we get rij = 0 at all the nodes and these are the
external nodes of a tree.

The initial cost table of the dynamic programming algorithm for constructing an OBST
is shown in Fig. 10.7.

0

0 1 ... j n

C[i][j]

1

i

n + 1

0

0

0

0

0

P1

P2

Pn

Fig. 10.7 Initial cost table of OBST

The values needed for computing C[i][j] are shaded in Fig. 10.7. They are the values
in row i and to the left of column j, and the values in column j and the rows below
row i.

Consider an OBST tree node having the following structure:

class leaf
{
 char name[10];
} leaf[max];

Program Code 10.1 implements the logic for building an OBST and computing its cost
using C++.

search trees 489

DSUC c10 V6 November 26, 2012 11:08 AM Page 489

pROGRam CODe 10.1

#include<stdio.h>

#defi ne max 20

int i, j, k, n, min, r[max][max];

fl oat p[max], q[max], w[max][max], c[max][max];

void OBST();

void print(int, int);

void print_tab();

main()

{

 cout << “\n Enter no. of leaves in tree:”

 cin > > n;

 cout << “\n Enter leaf label”;

 for(i = 1; i <= n; i++)

 cin >> leaf[i].name;

 cout << “\n Enter the probability of successful

search:”;

 f or(i = 1; i <= n; i++)

 {

 cout << “p[“<<i<<”]”;

 cin >> sp[i];

 }

 cout << “\n Enter the probability of unsuccessful

search: ”;

 for(i = 0; i <= n; i++)

 {

 cout << “q[“<<i<<”]”;

 cin >> q[i];

 }

 cout << “\ninput:\n<<Leaf (“<<n<<”)”;

 for(i = 1; i <= n; i++)

 {

 cout << “leaf[“<<i<<”].name”;

 cout << “n p(1:“<<n<<”)”;

 }

 for(i = 1; i <= n; i++)

 {

 co ut << “p[“<<i<<”]”;

 cout << “\nq(0:“<< n<<”)=”;

 }

 for(i = 0; i <= n; i++)

490 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 490

 cout << “\t<<q[i]”;

 OBST();

 print_tab();

 print(0, n);

}

void OBST()

{

 for(i = 0; i < n; i++)

 {

 r[i][i] = c[i][i] = 0; w[i][i] = q[i];

 w[i][i + 1] = p[i + 1] + q[i + 1] + w[i][i];

 c[i][i + 1] = w[i][i + 1];

 r[i][i + 1] = i + 1;

 }

 c[n][n] = 0.0; r[n][n] = 0.0; w[n][n] = q[n];

 for(i = 2; i <= n; i++)

 {

 for(j = 0; j <= n − i; j++)

 {

 w[j][j + i] = w[j][j + i − 1] + p[j + i] + q[j

+ i];

 c[j][j + i] = 999;

 for(k = j + 1; k < j + i; k++)

 if(c[j][j + i] > c[j][k − 1] + c[k][j + i])

 {

 c[j][j + i] = c[j][k − 1] + c[k][j + i];

 r[j][j + i] = k;

 }

 c[j][j+i]+=w[j][j+i];

 }

 }

}

void print(int l, int rr)

{

 if(l >= rr) return;

 if(r[l][r[l][rr] − 1] != 0)

 cout << “\nleft child of “<<leaf[r[l][rr]].name

search trees 491

DSUC c10 V6 November 26, 2012 11:08 AM Page 491

<<”\ t”<<leaf[r[l][r[l][rr] − 1]].name;

 if(r[r[l][rr]][rr] != 0)

 cout << “\nright child of”<< leaf[r[l][rr]].name

<<“\t” <<leaf[r[r[l][rr]][rr]]. name;

 print(l,r[l][rr] − 1);

 print(r[l][rr],rr);

}

void print_tab()

{

 cout << “\noutput:\n”;

 cout <<“---

---- ----------\n”;

 for(i = 0; i <= n; i++)

 cout << “w” << i << i << “=” << w[i][i] << “\n”;

 for(i = 0; i <= n; i++)

 cout << “w” << i << i << “=” << c[i][i] << “\n”;

 for(i = 0; i <= n; i++)

 cout << “w” << i << i << “=” << r[i][i] << “\n”;

 cout << “---------- --------------------------------

---------------\n”;

 k = 1;

 while(k <= n)

 {

 for(i = 0, j = i + k; i < n, j <= n; i++, j++)

 cout << “w” << i << j << “=” << w[i][j] << “\n”;

 for(i = 0 , j = i + k; i < n, j <= n; i++, j++)

 cout << “C” << i << j << “=” << c[i][j] << “\n”;

 for(i = 0, j = i + k; i < n, j <= n; i++, j++)

 cout << “R” << i << j << “=” << r[i][j] << “\n”;

 cout <<“----- -----------------------------------

-----------------\n”;

 k++;

 }

 cout << “\nOBST:c[0][n]<<w[0][n]<<leaf[r[0][n]]

.name”

 cout << \nO BST:c[0][%d] = %0.2f w[0][%d] = %0.2f

r[0][%d] = %s”, n, c[0][n], n, w[0][n], n, leaf[r[0]

[n]].name);

}

492 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 492

Program Code 10.1 is the implementation of the OBST construction through the dynamic
approach we just discussed. Let us see its working with Example 10.2.

 example 10.2 Find an OBST using a dynamic programming for n = 4 and keys
(k1 < k2 < k3 < k4) = (do, if, int, while) given that p(1:4) = (3, 3, 1, 1) and q(0:4) = (2,
3, 1, 1, 1).

Solution

Step 1: Initially, c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ 4.
Hence, w(0, 0) = 2, w(1, 1) = 3, w(2, 2) = w(3, 3) = w(4, 4) = 1
This is shown in Table 10.1.

Table 10.1 OBST computation for Example 10.2 after step 1

0 1 2 3 4 Initial
values

¨0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1

2

3

4

Step 2: w(i, j) = p(j) + q(j) + w(i, j - 1)

c
i a j

c i a a w i j()i, j c j= min
[(,) (,) (,)]

< ≤
− + +1

 r = (i, j) = value of a which minimizes c(i, j)
Let us compute c(i, j) for j - i = 1

w(0, 1) = p(1) + q(1) + w(0, 0)
 = 3 + 3 + 2 = 8
 c(0, 1) = w(0, 1) + min[c(0, 0) + c(1, 1)] for a = 1
 = 8 + [0 + 0] = 8
 r(0, 1) = 1
 w(1, 2) = p(2) + q(2) + w(1, 1) = 3 + 1 + 3 = 7
 c(1, 2) = w(1, 2) + min[c(1, 1) + c(2, 2)] = 7 + [0 + 0] = 7 for a = 2

search trees 493

DSUC c10 V6 November 26, 2012 11:08 AM Page 493

 r(1, 2) = 2
 w(2, 3) = p(3) + q (3) + w(2, 2) = 1 + 1 + 1 = 3
 c(2, 3) = w(2, 3) + min[c(2, 2) + c(3, 3)] = 3 + [0 + 0] = 3 for a = 3
 r(2, 3) = 3
w(3, 4) = p(4) + q(4) + w(3, 3) = 1 + 1 + 1 = 3
 c(3, 4) = w(3, 4) + min[c(3, 3) + c(4, 4)] = 3 + [0 + 0] = 3
 r(3, 4) = 4

This computation is shown in Table 10.2.

Table 10.2 OBST computation for Example 10.2 after step 2

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

Here j − i = 1,
that is, while
calculating cij,
a took only
one value,
that is, j.

2

3

4

Step 3: Compute c(i, j) for j - i = 2
w(0, 2) = p(2) + q(2) + w(0, 1)
 = 3 + 1 + 8 = 12
c(0, 2) = w(0, 2) + min[c(0, 0) + c(1, 2) for a = 1,
 c(0, 1) + c(2, 2) for a = 2]
 = 12 + min[0 + 7, 8 + 0]
 = 12 + 7 = 19
r(0, 2) = 1
w(1, 3) = p(3) + q(3) + w(1, 2) = 1 + 1 + 7 = 9
c(1, 3) = w(1, 3) + min[c(1, 1) + c(2, 3) for a = 2,
 c(1, 2) + c(3, 3) for a = 3]
 = 9 + min[0 + 3, 7 + 0]
 = 9 + 3 = 12
 r(1, 3) = 2
w(2, 4) = p(4) + q(4) + w(2, 3) = 1 + 1 + 3 = 5

494 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 494

 c(2, 4) = w(2, 4) + min[c(2, 2) + c(3, 4) for a = 3 , c(2, 3) + c(4, 4)]
 for a = 4
 = 5 + min[0 + 3, 3 + 0]
 = 5 + 3 = 8
 r(2, 4) = 3

Table 10.3 shows this computation.

Table 10.3 OBST computation for Example 10.2 after step 3

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

Here, j − i = 2,
that is, while
calculating
cij, a took two
values. 3

4

Step 4: Compute c(i, j) for j - i = 3
w(0, 3) = p(3) + q(3) + w(0, 2) = 1 + 1 + 12 = 14
 c(0, 3) = w(0, 3) + min[c(0, 0) + c(1, 3) for a = 1, c(0, 1) +
 c(2, 3) for a = 2, c(0, 2) + c(3, 4) for a = 3]
 = 14 + min[0 + 12, 8 + 3, 19 + 3]
 = 14 + min[12, 11, 22]
 = 14 + 11 = 25
 r(0, 3) = 2
w(1, 4) = p(4) + q(4) + w(1, 3) = 1 + 1 + 9 = 11
 c(1, 4) = w(1, 4) + min[c(1, 1) + c(2, 4) for a = 2, c(1, 2) +
 c(3, 4) for a = 3, c(1, 3) + c(4, 4) for a = 4]
 = 11 + min[0 + 8, 7 + 3, 12 + 0]
 = 11 + min[8, 10, 12]
 = 11 + 8 = 19
 r(1, 4) = 2

This computation is shown in Table 10.4.

search trees 495

DSUC c10 V6 November 26, 2012 11:08 AM Page 495

Table 10.4 OBST computation for Example 10.2 after step 4

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

3 w03 = 14
c03 = 25
r03 = 2

w14 = 11
c14 = 19
r14 = 2

Here j − i = 3,
that is, while

calculating cij,
a took three

values.4

Step 5: Compute c(i, j) for j - i = 4
w(0, 4) = p(4) + q(4) + w(0, 3) = 1 + 1 + 14 = 16
 c(0, 4) = w(0, 4) + min[c(0, 0) + c(1, 4) for a = 1, c(0, 1) + c(2, 4) for a = 2,
 c(0, 2) + c(3, 4) for a = 3, c(0, 3) + c(4, 4) for a = 4]
 = 16 + min[0 + 19, 8 + 8, 19 + 3, 25 + 0]
 = 16 + min[19, 16, 22, 25]
 = 16 + 16 = 32
 r(0, 4) = 2

All these computations are shown in Table 10.5.
Table 10.5 OBST computation for Example 10.2 after step 5

0 1 2 3 4

0 w00 = 2
c00 = 0
r00 = 0

w11 = 3
c11 = 0
r11 = 0

w22 = 1
c22 = 0
r22 = 0

w33 = 1
c33 = 0
r33 = 0

w44 = 1
c44 = 0
r44 = 0

1 w01 = 8
c01 = 8
r01 = 1

w12 = 7
c12 = 7
r12 = 2

w23 = 3
c23 = 3
r23 = 3

w34 = 3
c34 = 3
r34 = 4

2 w02 = 12
c02 = 19
r02 = 1

w13 = 9
c13 = 12
r13 = 2

w24 = 5
c24 = 8
r24 = 3

3 w03 = 14
c03 = 25
r03 = 2

w14 = 11
c14 = 19
r14 = 2

4 w04 = 16
c04 = 32
r04 = 2

496 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 496

In the last step, we obtained w04 = 16, c04 = 32, r04 = 2, which denote that for
the given keys = (do, if, int, while), an OBST has weight 16, cost 32, and root
k2 = if.

In Table 10.5, row i and column j shows the result of w(j, i + j), c(j, i + j), and r(j, i + j),
respectively. The calculation proceeds row-by-row.

The r values are shown in Fig. 10.8.

r04 = 2

r00 = 0 r11 = 0 r22 = 0 r34 = 4

r33 = 0 r44 = 0

r01 = 1 r24 = 3

Fig. 10.8 Tree and r values

Let us construct an OBST as shown in Fig. 10.9 from the calculations based on these
r values.

intdo

while

if

k1 k3

k4

k2

Fig. 10.9 OBST for Example 10.2

Let us now see another example of OBST construction through dynamic approach in
Example 10.3.

search trees 497

DSUC c10 V6 November 26, 2012 11:08 AM Page 497

 example 10.3 Find an OBST using the dynamic programming approach for n = 4,
keys = (count, float, if, while). Compute w(i, j), r(i, j), and c(i, j) for 0 £ i £ j £ 4 given
that p(1) = 1/20, p(2) = 1/5, p(3) = 1/10, p(4) = 1/20, q(0) = 1/5, 7(1) = 1/10, q(2) = 1/5,
q(3) = 1/20, and q(4) = 1/20. Using r(i, j), construct an OBST.

Solution

p(:) , , , (. , . , . , .)1 4
1

20

1

5

1

10

1

20
0 05 0 2 0 1 0 05= =

q(:) , , , , (. , . , . , . , .0 4
1

5

1

10

1

5

1

20

1

20
0 2 0 1 0 2 0 05 0 05= =))

Step 1: c(i, i) = 0, r(i, i) = 0, and w(i, i) = q(i) for 0 £ i £ 4
Hence, w00 = 0.2, w11 = 0.1, w22 = 0.2, w33 = 0.05, w44 = 0.05.

Step 2: w(i, j) = q(j) + p(j) + w(i, j - 1)

c
c i a a w i j

i a j
()i, j

c j= min [(,) (,) (,)]− + +
< ≤

1

r(i, j) = value of a which minimizes c(i, j)
Compute c(i, j) for j - i = 1.
w(0, 1) = p(1) + q(1) + w(0, 0)
 = 0.05 + 0.1 + 0.2 = 0.35
 c(0, 1) = w(0, 1) + min[c(0, 0) + c(1, 1)]
 = 0.35 + [0 + 0] = 0.35
 r(0, 1) = 1
w(1, 2) = p(2) + q(2) + w(1, 1) = 0.2 + 0.2 + 0.1 = 0.5
c(1, 2) = w(1, 2) + min[c(1, 1) + c(2, 2)] = 0.5 + [0 + 0] = 0.5
 r(1, 2) = 2
w(2, 3) = p(3) +q (3) +w(2, 2) = 0.1 + 0.05 + 0.2 = 0.35
 c(2, 3) = w(2, 3) + min[c(2, 2) + c(3, 3)] = 0.35 + [0 + 0] = 0.35
 r(2, 3) = 3
w(3, 4) = p(4) + q(4) + w(3, 3) = 0.05 + 0.05 + 0.05 = 0.15
 c(3, 4) = w(3, 4) + min[c(3, 3) + c(4, 4)] = 0.15 + [0 + 0] = 0.15
 r(3, 4) = 4

Step 3: Compute c(i, j) for j - i = 2.
w(0, 2) = p(2) + q(2) + w(0, 1)
 = 0.2 + 0.2 + 0.35 = 0.75

498 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 498

 c(0, 2) = w(0, 2) + min[c(0, 0) + c(1, 2), c(0, 1) + c(2, 2)]
 = 0.75 + min[0 + 0.5, 0.35 + 0]
 = 0.75 + 0.35 = 1.10
 r(0, 2) = 2
w(1, 3) = p(3) + q(3) + w(1, 2) = 0.1 + 0.05 + 0.5 = 0.65
 c(1, 3) = w(1, 3) + min[c(1, 1) + c(2, 3), c(1, 2) + c(3, 3)]
 = 0.65 + min[0 + 0.35, 0.5 + 0]
 = 0.65 + 0.35 = 1.00
 r(1, 3) = 2
w(2, 4) = p(4) + q(4) + w(2, 3) = 0.05 + 0.05 + 0.35 = 0.45
 c(2, 4) = w(2, 4) + min[c(2, 2) + c(3, 4), c(2, 3) + c(4, 4)]
 = 0.45 + min[0 + 0.15, 0.35 + 0]
 = 0.45 + 0.15 = 0.60
 r(2, 4) = 3

Step 4: Compute c(i, j) for j - i = 3.
w(0, 3) = p(3) + q(3) + w(0, 2)
 = 0.1 + 0.05 + 0.75 = 0.90
 c(0, 3) = w(0, 3) + min[c(0, 0) + c(1, 3), c(0, 1) + c(2, 3), c(0, 2) + c(3, 3)]
 = 0.9 + min[0 + 1, 0.35 + 0.35, 1.1 + 0]
 = 0.9 + 0.7 = 1.6
 r(0, 3) = 2
w(1, 4) = p(4) + q(4) + w(1, 3) = 0.05 + 0.05 + 0.65 = 0.75
 c(1, 4) = w(1, 4) + min[c(1,1) + c(2, 4), c(1, 2) + c(3, 4), c(1, 3) + c(4, 4)]
 = 0.75 + min[0 + 0.6, 0.5 + 0.15, 1 + 0]
 = 0.75 + min[0.6, 0.65, 1]
 = 0.75 + 0.6 = 1.35
 r(1, 4) = 2

Step 5: Compute c(i, j) for j - i = 4.
w(0, 4) = p(4) + q(4) + w(0, 3) = 0.05 + 0.05 + 0.9 = 1.00
 c(0, 4) = w(0, 4) + min[c(0, 0) + c(1, 4), c(0, 1) + c(2, 4), c(0, 2) + c(3, 4),
 c(0, 3) + c(4, 4)]
 = 1 + min[0 + 1.35, 0.35 + 0.6, 1.1 + 0.15, 1.6 + 0]
 = 1 + min[1.35, 0.95, 1.25, 1.6]
 = 1 + 0.95 = 1.95
 r(0, 4) = 2

Hence, for the keys (k1, k2, k3, k4) = (count, float, if, while), an OBST has weight w04 = 1,
cost c04 = 1.95 and root r04 = 2.

These calculations can be written in the table form as in Table 10.6.

search trees 499

DSUC c10 V6 November 26, 2012 11:08 AM Page 499

Table 10.6 OBST computations for Example 10.3

0 1 2 3 4

0 w00 = 0.2
c00 = 0
r00 = 0

w11 = 0.1
c11 = 0
r11 = 0

w22 = 0.2
c22 = 0
r22 = 0

w33 = 0.05
c33 = 0
r33 = 0

w44 = 0.05
c44 = 0
r44 = 0

1 w01 = 0.35
c01 = 0.35
r01 = 1

w12 = 0.5
c12 = 0.5
r12 = 2

w23 = 0.35
c23 = 0.35
r23 = 3

w34 = 0.15
c34 = 0.15
r34 = 4

2 w02 = 0.75
c02 = 1.1
r02 = 2

w13 = 0.65
c13 = 1
r13 = 2

w24 = 0.45
c24 = 0.6
r24 = 3

3 w03 = 0.9
c03 = 1.6
r03 = 2

w14 = 0.75
c14 = 1.35
r14 = 2

4 w04 = 1
c04 = 1.95
r04 = 2

Figure 10.10 shows the calculated r values.

r04 = 2

r01 = 1

r00 = 0 r11 = 0 r22 = 0 r34 = 4

r33 = 0 r44 = 0

r24 = 3

Fig. 10.10 Keys and r value

Figure 10.11 is the OBST obtained for Example 10.3 based on these r values.

float

cout if

while

k4

k3

k2

k1

Fig. 10.11 OBST for Example 10.3

500 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 500

10.3 AvL TRee (heIghT-bALAnced TRee)

In many applications, insertions and deletions occur frequently with no predictable
order. Sometimes, it is important to optimize the search times by keeping the tree bal-
anced at all times. The resulting BST is called AVL tree. It was described by two Russian
mathematicians G. M. Adelson-Velskii and E. M. Landis in 1962.

An AVL tree is a BST where the heights of the left and right subtrees of the root differ
by utmost 1 and the left and right subtrees are again AVL trees. The formal definition is
as follows:

Definition: An empty tree is height-balanced, if T is a non-empty binary tree with T
L

and T
R
 as its left and right subtrees, respectively, with the following properties:

1. T
L
 and T

R
 are height-balanced.

2. -1 £ ΩhL – hRΩ£ 1, where h
L
 and h

R
 are the heights of T

L
 and T

R
, respectively.

In an AVL tree with n nodes, the searches, insertions, and deletions can all be achieved
in time O(log n), even in the worst case. To keep the tree height-balanced, we have to find
out the balance factor of each node in the tree after every insertion or deletion.

The balance factor of a node T, BF(T), in a binary tree is hL - hR, where hL and hR are
the heights of the left and right subtrees of T, respectively. For any node T in an AVL tree,
the BF(T) is equal to -1, 0, or 1.

For example, consider the BST as shown in Fig. 10.12.

 BF(Fri) = 0
 BF(Mon) = +1
 BF(Sun) = +2

Because BF(Sun) = +2, the tree is no longer height-balanced, and it should be restruc-
tured.

+2

+1

0

Fri

Mon

Sun

Fig. 10.12 Unbalanced BST

If a node is inserted or deleted from a balanced tree, then it may become unbalanced. So to
rebalance it, the position of some nodes can be changed in proper sequence. This can be
achieved by performing rotations of nodes. For example, consider the BST as in Fig. 10.13.

search trees 501

DSUC c10 V6 November 26, 2012 11:08 AM Page 501

+2

+1

0

0

0

0Fri

Fri

Mon

Mon

Sun

Sun

BF (Fri) = 0

Rotate Sun
towards right
around Mon

BF (Mon) = +1

BF (Sun) = +2

(a) (b)

Fig. 10.13 Balancing a tree by rotating towards right (a) Unbalanced tree (b) Balanced tree

Similarly, the rotation can be performed towards left as shown in Fig. 10.14.

Fig. 10.14 Balancing a tree by rotating towards left (a) Unbalanced tree (b) Balanced tree

0

0

0

Fri

Mon

Sun

BF (Fri) = −2

Rotate Fri
towards Left
around Mon

BF (Mon) = −1

BF (Sun) = 0

(a) (b)

0

Fri
−2

−1

Mon

Sun

Let X be an inserted node and A be an unbalanced node after insertion whose BF = ±2.
It depends on the scenario whether a rotation should be performed towards left or right.
An unbalanced tree is balanced using one of the following four ways: (a) Left of left (LL)
(b) Right of right (RR) (c) Left of right (LR) (d) Right of left (RL).

Case 1: LL (Left of Left) Consider the BST in Fig. 10.15. Note that the nodes drawn
as squares represent subtrees.

+

+

+

+

Fig. 10.15 Case LL for unbalanced tree due to insertion at left of left of a node
(a) Unbalanced tree due to increase in height of BL (b) Balanced tree

502 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 502

Suppose the node A in Fig. 10.15 becomes unbalanced when X is inserted to the left of left
of A, that is, in the left subtree of the left subtree of A, then the rule of rotation as in Fig.
10.15 should be used for balancing.

As shown in Fig. 10.15, BL is to the left of the left child of A. When the height of BL in-
creases, then node A becomes unbalanced. To rebalance the tree, node B becomes the root
of the subtree. As it is a BST and BL < B in a rebalanced tree, BL remains the left child of
B. As B < A, node A becomes the right child of B. As A < AR, AR remains the right child of
A. Now, the question is where to place BR. Because BR > B, it will be placed to the right of
B. However, BR < A, so it will be placed to the left of A. Hence, BR becomes the left child
of A. Thus, in Fig.10.15, right rotation of A is performed around the node B.

Case 2: RR (Right of Right) When X is inserted to the right of right of A, that is, in
the right subtree of the right subtree of A, the rule of rotation as in Fig. 10.16 should be
used for balancing.

Fig. 10.16 Case RR for unbalanced tree due to insertion at right of right of a node
(a) Unbalanced tree due to increase in height of BR (b) Balanced tree

−

−

−

As shown in Fig. 10.16, BR is to the right of the right child of A. When the height of BR
increases, then node A becomes unbalanced. To rebalance the tree, node B is made the
root of the tree. As it is a BST and BR > B in the rebalanced tree, BR remains the right child
of B. As A < B in the rebalanced tree, A becomes the left child of B. As AL < A, AL remains
the left child of A. Now, the question is where to place BL. As BL < B, it will be on the left
side of B. Since BL > A, it will be to the right of A, and BL becomes the right child of A. In
other words, BL is less than B and greater than A. Thus, it should be inserted in the left of
B and right of A. Thus, in Fig. 10.16, left rotations of A are performed around B.

Case 3: LR (Left of Right) When X is inserted to the left of right of A, that is, in the
left subtree of the right subtree of A, the rules of rotation as in Fig. 10.17 should be used
for balancing.

In Fig. 10.17, the case LR is depicted using three different scenarios. Scenario 1
depicts a simplified tree where A has no right child, B has no left child, and C has no

search trees 503

DSUC c10 V6 November 26, 2012 11:08 AM Page 503

children. Node A is unbalanced due to the insertion of C to the right of the left child
of A. To rebalance the tree, C becomes the root of the subtree. As C < A, A becomes the

Fig. 10.17 Case LR for unbalanced tree due to insertion in left of right of a node
(a) LR rotation (b) Scenario 2—LR rotation after insertion of new node

(c) Scenario 3

+

+

−

+

−

−

+

−

+

+

+

504 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 504

right child of C. As B < C, B remains the left child of C and thus remains at its position in
the subtree.

In scenario 2, node A is unbalanced due to the increase in the height of CL.
Figure 10.17(c) depicts how node A is unbalanced due to
the increase in the height of CR. For both the cases, solu-
tion is the same. In the rebalanced trees, node C becomes
the root of the subtree. As C < A < AR, A becomes the right
child of C and AR remains the right child of A. In addition,
as BL < B < C, B becomes the left child of C and BL remains
the left child of B. Till this step, the subtree looks as shown
in Fig.10.18.

Now, the question is where to place CL and CR. As CL < C,
it will be placed on the left of C. Since CL > B, it becomes the
right child of B. Similarly, CR > C, so it will be inserted to the right of C. Since CR < A, it
becomes the left child of A.

To summarize the case LR, node C becomes the root of the rebalanced subtree. As CL
< C and B < C, they are placed on the left of C. As CR > C and A > C, they are placed on
the right of C.

Case 4: RL (Right of left) When X is inserted to the right of left of A, that is, in the
right subtree of the left subtree of A, the rules of rotation as in Fig. 10.19 should be used
for balancing.

In Fig. 10.19, the case RL is depicted using three different scenarios. In scenario 1, it
is considered that A has no left child, B has no right child, and C has no children. Hence,
Fig. 10.19(a) looks simplified. Here, node A becomes unbalanced due to the insertion of
node C. To rebalance it, node C becomes the root of the subtree. As A < C, A becomes the
left child of C and remains at the same position in the rebalanced tree.

Figure 10.19(b) depicts how node A becomes unbalanced due to the increase in the
height of CL. In Fig. 10.19(c), scenario 3 depicts how node A becomes unbalanced due to
the increase in the height of CR. In both Scenarios 2 and 3, solution is the same. To rebal-
ance the subtrees, node C becomes the root of the subtrees. As AL < A < C, AL remains
the left child of A, and A becomes the left child of C. As C < B < BR, BR remains the right
child of B, and B becomes the right child of C. Upto this step, the subtree looks as shown
in Fig.10.20.

Now, the question is where to place CL and CR. As CL < C, it will be inserted to the left
side of C. As CL > A, it becomes the right child of A. Similarly, as CR > C, CR becomes the
right child of C. However, CR < B; hence, it becomes the left child of B.

To summarize the case RL, node C becomes the root of the rebalanced subtree. As A <
C and CL < C, they are placed on the left of C. In addition, B > C and CR > C; hence, they
are placed to the right of C.

C

B A

BL AR

Fig. 10.18 Partial subtree
in the LR case

search trees 505

DSUC c10 V6 November 26, 2012 11:08 AM Page 505

Fig.10.19 Case RL for unbalancing due to insertion in right of left of a node
(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

−+

−

−

−

−

−

506 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 506

Fig. 10.20 Partial subtree in case RL

C

B A

AL BR

Let us see an example to illustrate the process involved in maintaining a height-
balanced BST in Example 10.4.

 example 10.4 Consider a list of subjects studied in a computer engineering course.
Assume that the insertions are made in the following order:

 MP, MBS, MMT, NCP, AI, ACA, OOCS, DC, DS, OOP, OOMD

Solution: The steps of insertions and the brief explanations are listed and illustrated
as follows.

(a) Insert MP.

0

MP

(b) Insert MBS.

0

MP

MBS

+1

(c) Insert MMT. In the BST, MMT is placed to the right of left of MP, and MP is
unbalanced. Hence go for LR rotation for rebalancing.

0

0

0

0

+2

MP

MPMBSMBS
LR

MMT

MMT

−1

search trees 507

DSUC c10 V6 November 26, 2012 11:08 AM Page 507

(d) Insert NCP.

−1

0

0

NCP

MPMBS

MMT

−1

(e) Insert AI.

0

0 0

MP

NCPAI

MBS

MMT

+1
−1

(f) Insert ACA. ACA is placed to the left of left of MBS, and MBS is unbalanced.
Hence use LL rotation to rebalance it.

+1

+1 0

0

MP

LL

NCPAI

ACA

MBS

MMT

+2 −1

0

0 0 0

MP

NCPACA MBS

AI

MMT

0 −1

(g) Insert OOCS. OOCS is placed to the right of right of MP and now MP is
unbalanced. Hence use RR rotation for rebalancing.

508 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 508

RR

−1

−1

MP

NCP

0

OOCS

ACA MBS

AI

MMT

0

0 0

−2

0

0

NCP

OOCSACA MPMBS

AI

MMT

0

0 0 0

0

(h) Insert DC.

+1

+1 0

NCP

OOCSMPMBS

DC

ACA

AI

MMT

−1 0

00

0

(i) Insert DS. DS is placed to the right of left of MBS due to which MBS is unbal-
anced. Hence use rotation LR for rebalancing.

LR

+2

+2 0

NCP

TCSMPMBS

0

DS

DC

ACA

AI

MMT

−2 0

00

−1

+1

0 0

NCP

OOCSMPDS

0

MBSDC

ACA

AI

MMT

−1 0

00

0

search trees 509

DSUC c10 V6 November 26, 2012 11:08 AM Page 509

(j) Insert OOP.

0

0 −1

NCP

OOCS

0

OOP

MPMBS

0

MBSDC

ACA

AI

MMT

−1 −1

00

0

(k) Insert OOMD. OOMD is placed to the left of right of OOCS because of which
OOCS is unbalanced. Hence use RL rotation for rebalancing.

−1

0 −2

NCP

OOCS

+1

OOP

MPDS

0

MBSDC

ACA

AI

MMT

−1 −2

00

0

OOMD

0

0

0 0

NCP

OOMD

OOP

MPDS

0

MBSDC

ACA

AI

MMT

−1 −1

00

RL

0

OOCS

0 0

10.3.1 Implementation of AvL Technique

Example 10.4 demonstrates the working procedure to balance a BST. Let us write an
algorithm for it. In general, a node in a tree stores data of and pointers to the left and right
children. In an AVL tree, each node stores these three fields. To simplify the work, we
can store the height of its subtree in each node. Hence, we will define each AVL tree node
having as four fields.

Consider an AVL tree node that has the following structure:

class AVLNode
{
 KeyType key;

510 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 510

 AVLNode *Left, *Right;
 int height;
};

Assume that getNode() is a function which allocates memory for a new AVLNode,
initializes all the fi elds, and returns a pointer to it.

Let height(n) be a function that returns the heigh t of the subtree with root n, oth-
erwise returns -1 if null. Let balancefactor(n) be a function which returns the bal-
ance factor of node n in its tree. Note that in Example 10.3 we considered the following:
when the balance factor of a node n is +2, the tree is unbalanced due to the increase
in the height of the left subtree and there are only two possibilities, either go for LL
or LR. When the balance factor of node n is - 2, then the tree is unbalanced due to the
increase in the height of the right subtree and there are only two possibilities, either go
for RR or RL.

Let us write a function insert() which will insert a given key in the AVL tree at
its proper position, and rebalance the tree if needed using one of the four rotations:
LL, RR, LR, RL. This is illustrated in Program Code 10.2.

pROGRam CODe 10.2

AVLNode *AVLNode :: insert(int NewKey, AVLNode *root)

{

 AVLNode *NewNode;

 int lh, rh;

 root->height = height(root);

 if(root == null)

 {

 NewNode = new AVLNode;

 NewNode->key = NewKey;

 NewNode->left = null;

 NewNode->right = null;

 root = NewNode;

 }

 else

 {

 if(NewKey < root->key)

 {

 root->left = insert(NewKey,root->left);

 if(balancefactor(root) == 2)

 {

 // Tree is unbalanced due to increase

search trees 511

DSUC c10 V6 November 26, 2012 11:08 AM Page 511

 // in height of left subtree

 if(NewKey < root->left->key)

 {

 cout << “\n LL rotation \n”;

 root = LL(root);

 }

 else

 {

 cout << “\n LR rotation \n”;

 root = LR(root);

 }

 }

 }

 else if(NewKey > root->key)

 {

 root->right = insert(NewKey, root->right);

 if(balancefactor(root) == −2)
 {

 // Tree is u nbalanced due to increase

 // in height of right subtree

 if(NewKey > root->right->key)

 {

 cout << “\n RR rotation \n”;

 root = RR(root);

 }

 else

 {

 cout << “\n RL rotation \n”;

 root = RL(root);

 }

 }

 }

 else

 cout << “Duplicate key”;

 }

 // After insertion, modify fi eld height of the root

 root->height = height(root);

 return root;

}

512 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 512

We now know the four rules of rotation. Let us write a code for Case 1: LL. Consider the
scenario as in Fig. 10.21 where Program Code 10.3 simulates its operations.

A

B

C

0 0

0

0
0

1

2

0

0

0LL

CL

B

C A

CR

BR CL CR BR AR

AR

Fig. 10.21 Scenario for case LL

pROGRam CODe 10.3

// rotation: Left

AVLNode *AVLNode :: Left(AVLNode *A)

//function is called with unbalanced node as a parameter

{

 AVLNode *B;

 B = A->right;

 A->right = B->left;

 B->left = A;

 A->height = height(A);

 B->height = height(B);

 return B; // Set new root to B

}

// Rotation : Right

 AVLNode *AV LNode::Right(AVLNode *A)

{

 AVLNode *B;

 B = A->left;

 A->left = B->right;

 B->right = A;

 A->height = height(A);

 B->height = height(B);

search trees 513

DSUC c10 V6 November 26, 2012 11:08 AM Page 513

 return B; // Set new root to B

}

// Case 1 of rotation : LL

AVLNode *AVLNode :: LL(AVLNode *root)

{

 root = Right(root);

 return root;

}

// Case 2 of rotation : RR

AVLNode *AVLNode :: RR(AVLNode *root)

{

 root = Left(root);

 return root;

}

Similarly, the function RR() can be written for Case 2. Program Code 10.3 shows the
simulation of RR. Now, consider Case 3: LR (Fig. 10.22a) and Case 4: RL (Fig. 10.22b).

Fig. 10.22 Scenario for case (a) LR (b) RL

−

514 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 514

We can use the functions LL() and RR() to write the LR() and RL() functions as in
Program Code 10.4.

pROGRam CODe 10.4

// Case 3 of rotation:LR

AVLNode *AVLNode :: LR(AVLNode *root)

{

 root->left = Left(root->left);

 root = Right(root);

 return root;

}

//* Case 4 of rotation : RL

AVLNode *AVLnode :: RL(AVLNode *root)

{

 root->right = Right(root->right);

 root = Left(root);

 return root;

}

Similarly, the function RL() can be written for case 4. Program Code 10.4 depicts the
simulation of it.

10.3.2 Insertions and deletions in AvL Tree

Insertions and deletions in AVL tree are performed as in BSTs and followed by rota-
tions to correct the imbalances in the outcome trees. In the case of insertions, one
rotation is suffi cient. In the case of deletions, utmost O(logn) rotations are needed
from the fi rst point of discrepancy going up towards the root.

Figure 10.23 demonstrates the deletion of a node in a given AVL tree. The origi-
nal tree is shown in Fig. 10.23(a). Figure 10.23(b) shows the tree after deletion of
node 4. Note that in Fig. 10.23(c), the imbalance at node 3 implies an LL rotation
around node 2 and the imbalance at node 5 in Fig. 10.23(d) implies a n RR rotation
around node 8.

Program Code 10.5 illustrates a function to delete an element from AVL tree.
Examples 10.5–10.7 illustrate the construction of an AVL tree for different sets

of data.

search trees 515

DSUC c10 V6 November 26, 2012 11:08 AM Page 515

(d)

0

1

5

72

9

10

11

12

1 3 6

8

1

0

0

0

000

0

0

(c)

−2

−1

2

31

6

7

8

11

10 12

9

5

1

1

1

0
0

0

00

0

(b)

−1

−1

1
1

1

1

2

2

3

1 6

7

8

11

10 12

9

5

0

0
0

0

(a)

−1

−1
1

1 1 1

1

2 4

3

6

7

8

11

10 12

9

5

0

00 0

0

1

Fig. 10.23 Deletion of a node in AVL tree (a) Original tree (b) Af ter deletion of 4
(c) LL rotation around node 2 (d) RR rotation around node 8

pROGRam CODe 10.5

//Function to delete an element from AVL tree

AVLNode *AVLNode :: del(AVLNode *root,int dval)

{

 AVLNode *temp;

 if (root != null)

 {

 if (dval < r oot->key)

 {

 root->left = del(root->left,dval);

 if(balancefactor(root) == −2)

 {

 if(balancefactor(root->right) <= 0)

516 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 516

 {

 cout << “\n RR rotation \n”;

 root = RR(root);

 }

 else

 {

 cout << “\n RL rotation \n”;

 root = RL(root);

 }

 }

 }

 else if(dval > root->key)

 {

 root->right = del(root->right, dval);

 if(balancefactor(root) == 2)

 {

 if(balancefactor(root->left) >= 0)

 {

 cout << “\n LL rotation \n”;

 root = LL(root);

 }

 else

 {

 cout << “\n LR rotation \n”;

 root = LR(root);

 }

 }

 }

 else

 {

 if(root->right == null) // No right tree

 return(root->left);

 else

 {

 // fi nd leftmost of right

 temp = root->right;

 while(temp->left != null)

 temp = temp->left;

 root->key = temp->key;

 temp->right = del(root->right, temp->key);

 if(balancefactor(root) == 2)

 {

 if(balancefactor(root->left) >= 0)

search trees 517

DSUC c10 V6 November 26, 2012 11:08 AM Page 517

 root = LL(root);

 else

 root = LR(root);

 }

 }

 }

 }

 else

 return null;

 // Update height of root node

 root->height = height(root);

 return(root);

}

 EXAMPLE 10.5 Construct an AVL tree for the following data:

30, 31, 32, 23, 22, 28, 24, 29, 26, 27, 34, 36

Solution Let us solve and show the balance factor and the type of rotation
performed (if any) at each insertion. Table 10.7 demonstrates the same through the
steps stated here.

30 30

31

32

23

RR

0

−1

−2

−1

1

1

30

31
0

30

31

32

0

0
0

30

31

32

0

30

31

32

23

0

0

No balancing required

No balancing required

No balancing required

Data
inserted

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

Table 10.7 Construction of AVL tree for Example 10.5

(Continued)

518 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 518

30

30

31

31

32

32

23 23

22 28

28

22

22

28

LL

LR

1

1

2

2

−1 −1

2

0

30

31

32

23

22

0

30

31

3223

22

0

0

0

0

0

0

0

00

0

1

0

0

29

24

29

28

31

31

32

23

22

24

−1 −1

0

1

0

0

0

0

28

31

31

32

23

22

24

0

−1

−1

−1

1
0

0

No balancing required

No balancing required

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

Data
inserted

Table 10.7 (Continued)

(Continued)

search trees 519

DSUC c10 V6 November 26, 2012 11:08 AM Page 519

Table 10.7 (Continued)

AVL tree after
insertion of BF

Rotation
performed

Rebalanced
AVL tree

26

−1

29

28

30

31

32

24

23

26

0
1

1

22

0
0

0

0

0

27

2926

28

30

31

24

23

27 32

1

1

−1

−1−1

22

0

0 0

0

0

2

−1

−1

−1

29

28

30

31

32

23

22

24
0

1

2

26

0

−1

−2 −1

0

0

28

28

30

31

32

24

23

22 26
0

1

27

1 0

0

0

−1

−1

−2

34

2826

28

30

32

24

23

27

34

0

0

1

22

0

0

−1

−1

0

0

0

0

0

31

2926

28

30

31

24

23

27

32

34

00

0

1

22

0

−2

0

31

34
30

31

36

36

22 22

32

32

36

34

3024

28

23 23

27

28

24

2729

29

0

0

0 0

0
0

0
0

0 0

0
0

0

0

1

1

1

1

−1

−1

−1

−2

RL

LR

RR

RR

Data
inserted

 example 10.6 Construct an AVL tree for the following data:

STA, ADD, LDA, MOV, jMP, TRIM, xCHG, MVI, DIV, NOP, IN, jNz

Solution Figure 10.24 demonstrates the steps involved to construct the AVL tree for
the given sequence.

520 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 520

Fig.10.24 Construction of AVL tree for Example 10.6 (a) Key = STA (b) Key = ADD
(c) Key = LDA (d) Key = MOV (e) Key = JMP (f) Key = TRIM

(a) (b)

(c)

(d)

(e)

STA

LDA

LDA

LDA

LDA

MOV

MOV

STA

STA

STA

STA

STA

ADD

ADD

ADD

ADD

ADD

JMP

0
1

1

2

LR

1

1
−1

−1

0

0

00

0

0

0

0

0

No balancing required

1. Insert STA

3. Insert LDA

4. Insert MOV

5. Insert JMP

6. Insert TRIM

2. Insert ADD

No balancing required

(f)

No balancing required

LDA

MOV TRIM
JMP

STAADD −1

0

0

0

0 0

(Continued)

search trees 521

DSUC c10 V6 November 26, 2012 11:08 AM Page 521

Fig.10.24 (Continued) (g) Key = XCHG (h) Key = MVI
(i) Key = DIV (j) Key = NOP

LDA

MOV TRIM

XCHG

JMP

STAADD −1

0

0
00

0

0

LDA

MOV

MVI

TRIM

XCHG

JMP

STAADD −1

−1 −1

−1

−1

0

0

0

0

LDA

MOV

MVI

TRIM

XCHG

JMP

STA

ADD
−1−1

0
00

0

0

0

LDA

MOV

DIV

DIV

MVI

TRIM

XCHG

JMP

STA
RLADD

−1

−1
−2

−1

0

0

0 1

0

0

No balancing required

(g)

(h)

(i)

(j)

−1

−1

0

0 0

0

0

0

0 0

LDA

MOV

MVI NOP

TRIM

XCHG

JMP

STA

ADD

DIV

7. Insert XCHG

8. Insert MVI

9. Insert DIV

10. Insert NOP

(Continued)

522 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 522

−

−

−

−

11. Insert IN

12. Insert JNZ

Fig.10.24 (Continued) (k) Key = IN (l) Key = JNZ

 example 10.7 Construct an AVL tree for the set of keys = {50, 55, 60, 15, 10, 40, 20,
45, 30, 70, 80}.

Solution Figure 10.25 demonstrates the construction of an AVL tree for the given
set of keys.

1. After insertion of (50, 55, and 60):

50

55

RR LL LR

15

15

55 55

50

60

40

60 60

10

10 50

−2

−1

−1

2

1

2

10

0

0

0

0

0

2

search trees 523

DSUC c10 V6 November 26, 2012 11:08 AM Page 523

2. After insertion of (15, 10, 40, 20, 45, and 30):

−−

−

++

−−

3. After insertion of 70 and 80:

Fig.10.25 Construction of AVL tree for Example 10.7

+

+ −

RecAPITULATIOn

• Search trees are of great importance in an algo-
rithm design.

• It is always desirable to keep the search time
of each node in a tree minimal.

• OBST maintains the optimal average search
time of all the nodes.

• In an AVL tree, after insertion of each node, it
is checked wh ether the tree i s balanced or no t.
If unbalanced , it is rebalanc ed immediately.

• Rebalancing of AVL tree is performed using
one of the four ro tations: LL, RR, LR, RL.

• AVL trees work by ensuring that all nodes of
the left and right subtrees differ in height by
utmost 1, which ensures that a tree cannot get
too deep.

• Compilers use hash tables to keep track of the
declared variables in a source code called as
a symbol table.

• Unbalancing of an AVL tree due to insertion is
removed in a single rotation. However, unbal-
ancing due to the deletion may require multiple
steps for balancing.

524 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 524

AVL tree An AVL tree is a BST where the heights
of the left and right subtrees of the root differ by
utmost 1. In addition, the left and right subtrees of
the root are again AVL trees.

Keyed table Keyed tables are a very useful data
structure. They store <key, information> pairs
with no additional logical structure.

OBST Optimal binary search tree is a binary

search tree having an average search time of all
keys as the optimal value.

Symbol table While compilers and assemblers
scan a program, each identifi er must be examined
to determine if it is a keyword. This informa-
tion concerning the keywo rds and identifi er in a
programming language is stored in a table called
symbol table.

Key TeRMS

eXeRcISeS

Multiple choice questions

 1. Which of the following is true?
 (a) The cost of searching an AVL tree is O(logn)

but that of a BST is O(n).
 (b) The cost of searching an AVL tree is O(logn)

but that of a complete binary tree is O(nlogn).
 (c) The cost of searching a BST is O(logn) but

that of an AVL tree is O(n).
 (d) The cost of searching an AVL tree is

O(logn) but that of a BST is O(n)
 2. In the following AVL tree, the stru cture has to

be balanced, so we have to rotate it

−2

−1

0

3

5

11

 (a) clockwise
 (b) counter clockwise
 (c) in both the directions
 (d) none of the above
 3. What is the maximum height of an AVL tree

with seven nodes?
 Note: Assume that the height of a tree with a single

node is 0.

 (a) 2
 (b) 3
 (c) 4
 (d) 5
 4. The worst case height of an AVL tree with n

nodes is
 (a) 1.44log(n + 2)
 (b) 2.44log(n + 2)
 (c) 3.44log(n + 2)
 (d) 1.44log(n + 2)
 5. What will be the time complexity for inserting a

node into an AVL tree?
 (a) O(n)
 (b) O(logn)
 (c) n
 (d) n2

 6. Which of the following properties of OBST is
true?

 (a) The left subtree of a node contains only
the nodes with keys less than the node’s
key.

 (b) The right subtree of a node contains only
the nodes with keys greater than the node’s
key.

 (c) Both the left and r ight subtrees must also be
BSTs.

 (d) All of the above
 7. To fi nd the cost of the given OBST,

search trees 525

DSUC c10 V6 November 26, 2012 11:08 AM Page 525

10

14

E7

5

11

12E4

4

E0 E1

8

E2 E3

E5 E6

 we have to consider
 (a) successful search of internal nodes.
 (b) unsuccessful search of internal nodes.
 (c) successful search of internal nodes and

unsuccessful search of external nodes.
 (d) unsuccessful search of external nodes.
 8. What is the time complexity of an OBST?
 (a) O(n3)
 (b) O(nlogn)
 (c) O(logn)
 (d) O(n2)
 9. The OBST is an example of
 (a) static symbol table
 (b) dynamic symbol table
 (c) all of the above
 (d) none of the above
10. Compute the total cost of the given OBST,

if the probability of successful search is (p1,
p2, p3) = (1/7, 1/7, 1/7) and the probability of
unsuccessful search is (q0, q1, q2, q3) = (1/7,
1/7, 1/7, 1/7)

P1

P2 P3

Q0 Q1 Q2 Q3

 (a) 2
 (b) 15/7

 (c) 16/7
 (d) 12/7

Review questions

1. A size-balanced binary tree in which for every
node, the difference between the number of
nodes in the left and right subtree is utmost 1.
The distance of a node from the root is the length
of path from the root to the node. The height of
a binary tree is the maximum distance of a leaf
node from the root.

 (a) Prove by using induction on h that a size-
balanced binary tree of height h contains at
least 2n nodes.

 (b) In a fixed-balanced binary tree of height
h £ 1, how many nodes are at distance h - 1
from the root?

2. (a) In a binary tree, a full node is defined to be
a node with two children. Use induction on
the height of the binary tree to prove that the
number of full nodes plus one is equal to the
number of leaves.

 (b) Draw the min-heap that results from the
insertion of the following elements in order
into an initially empty min-heap: 7, 6, 5, 4,
2, 3, 1. Show the result after the deletion of
the root of this heap.

3. Consider the following array and draw the heap
that this array represents.

90 80 40 50 60 10 20 30

4. What is OBST? Derive the various equations
to calculate the cost and weight of each node
in OBST. Write the pseudo-C++ code for the
OBST algorithm.

5. Insert the following numbers in an AVL tree and
show at each stage the required trans formations:

 50, 60, 108, 8, 0, 48, 32, 40
 Show the BF of each node throughout the

process.
6. Compare OBST with AVL tree.
7. Give one example for each of the four types of

rotations possible in an AVL tree.

526 data structures using c++

DSUC c10 V6 November 26, 2012 11:08 AM Page 526

Answers to multiple choice questions

1. (a) 2. (b) 3. (b) 4. (a) 5. (b) 6. (d)
7. (c) The expected cost of an optimal BST is

P a Q Eii × × −∑ ∑level () level ()i
n

n

i
n

n

0=1=
+ ()1

where,
Internal node: successful search, Pi
External node: unsuccessful search, Qi

8. (a) Construction of OBST
 for i = 0 to n do

 wi,i = qi

 ci,i = 0

 ri,i = 0

 for length = 1 to n do

 for i = 0 to n − length do

 j = i + length

 wi,j = wi,j−1 + pj + qj
 m = value of k (with i < k £ j) which minimizes (ci,k−1 + ck,j)
 ci,j = wi,j + ci,m-1 + cm,j
 ri,j = m

 Leftson(ri,j) = ri,m-1
 Rightson(ri,j) = rm,j
The time complexity of this algorithm is O(n3).

9. (a) 10. (b) The formula to find the cost of OBST is as follows:

P a Q Ei i× × −∑ ∑level () level ()i
n

n

i
n

n

=1 =0
+ ()1

Hence, cost(tree) = [(1/7 ¥ 1) + (2 ¥ 1/7 + 2 ¥ 1/7)] + [1/7 ¥ (3 - 1) + 1/7 ¥ (3 - 1) + 1/7 ¥ (3 - 1) +
 1/7 ¥ (3 - 1)]
 = 5/7 + 8/7
 = 13/7

11

One of the most frequent and prolonged tasks in computer science is searching for a
particular data record from a large amount of data. The expectation is to retrieve data

within average constant time. Searching is the process of fi nding the location of the target
among the list of objects using a key. Key is a fi eld or combination of more than one fi eld
within the data record. It is used to uniquely identify the record and also to manage its
access and usage.

We have discussed search techniques in Chapter 9. In both sequential and binary
searches as well as in Fibonacci search, we need to perform many operations to locate the
target data. The operations include computing the search index, comparing the target with
the record at that index, and modifying the index again if not found. In an ideal situation,
we expect the target to be searched in one or fewer attempts. One way to achieve this is
that we should know (or should be able to obtain) the address of the record where it is
stored. Hashing is a method of directly computing the address of the record with the help
of a key by using a suitable mathematical function called the hash function. A hash table
is an array-ba sed structure used to store <key, information> pairs. In this chapter, we will
learn about hashing, hash functions, and other related aspects.

11.1 INTRODUCTION

For many applications, we want to retrieve the target in one access or in constant aver-
age time. Hashing is fi nding an address where the data is to be stored or to locate using
a key with the help of an arithmetic function. One of the applications this fi nds use in is
language translators, such as assemblers and compilers. The compiler keeps all the vari-
ables used in a p rogram in a symbol table, where the key is an arbitrary character string
that corresponds to the identifi ers in the language. The operations performed on a symbol
table are those of dictionary operations. A hash table is an effective data structure for

HASHING

OBJECTI V ES

After completing this chapter, the reader will be able to u nderstand the following:
 • Use of hashing techniques that support very fast retrieval via a key
 • Factors that affect the performance of hashing
 • Collision resolution strategies

528 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 528

implementing it. There are many such applications. Let us consider an array implementa-
tion for better understanding. The concept can be easily extended to other structures such
as files.

Consider an example of an institute that has many departments in it. There is a central
library and a departmental library for each department. Suppose we want to make a table
of books for the departmental library using their unique identification number, say Ac-
cession No (Acc_No) as a key. A set of departmental library books is a subset of central
library books, and the set of central library books is large enough. As the data is large
enough, the range of Acc_No is 0000001 to 9999999; with 107 (may be minus one as
we may omit 0000000) possible values. Let us assume that the departmental library has
20,000 books. Let us use an array for storing the book records and call it as Array_Book[].
As these books are from the central library, their Acc_No population is greater than the
size of the storage area.

One way to access the book using one attempt is to store a book with Acc_No at
(Acc_No)th location of Array_Book[] and for that we need an array of size 1,000,000.
Instead of taking an array of size 1,000,000, we can use array of size just 20,000 and use
the function f(x) to map the numbers in the domain [0, …, 9,999,999] to the range [0, …,
19,999]. Figure 11.1 represents such mapping.

Acc_No

0

9,999,999
19,999

Range 0–9,999,999

1

Book array
index

0

Range 0–19,999

1

f (x).
.
.

.

.

.

Fig. 11.1 Hash function

The function f(x) will take Acc_No and return the indices where the book record is
to be stored in the array and is called the hash function. Now each departmental book’s
address, which is an index in the table named Array_book, is calculated while storing as
well as retrieving it. This concept of hashing is shown in Fig. 11.2.

Hash functions transform a key into an
address. Hashing is a technique used for storing
and retrieving information associated with it that
makes use of the individual characters or digits in
the key itself.

Key

Hash(Key) Address

Fig. 11.2 Hashing concept

HasHing 529

DSUC c11 V6 November 21, 2012 2:55 PM Page 529

The resulting address is used as the basis for storing and retrieving records and this address
is called the home address of the record. For an array to store a record in a hash table, the hash
function is applied to the key of the record being stored, returning an index within the range
of the hash table. The item is then stored in the table at that index position. To retrieve an item
from a hash table, the same scheme that was used to store the record is followed.

Hashing is similar to indexing as it involves associating a key with a relative record
address. However, it differs from indexing in the following two important ways:

1. With hashing, the address generated appears to be random—there is no obvious
connection between the key and the location of the corresponding record, even though
the key is used to determine the location of the record. For this reason, hashing is
sometimes referred to as randomizing.

2. With hashing, two different keys may be transformed to the same address, so two
records may be sent to the same place in a file. When this occurs, it is called a collision
and some means must be found to deal with it. The two or more records that result in
the same home address are known as synonyms.

11.2 KEY TERMS AND ISSUES

A problem arises, however, when the hash function returns the same value when applied
to two different keys. To handle the situation, where two records need to be hashed to the
same address we can implement a table structure, so as to have a room for two or more
members at the same index positions. However, what happens if a third key hashes to the
same index value? Before discussing such issues let us see some terms associated with
hashing and the hash table:

Hash table Hash table is an array [0 to Max − 1]
of size Max.

Hash function Hash function is one that maps
a key in the range [0 to Max − 1], the result of
which is used as an index (or address) in the hash
table for storing and retrieving records. One more
way to define a hash function is as the function
that transforms a key into an address. The address
generated by a hashing function is called the home
address. All home addresses refer to a particular
area of the memory called the prime area.

Bucket A bucket is an index position in a hash
table that can store more than one record. Tables
11.1 and 11.2 show a bucket of size 1 and size
2, respectively. When the same index is mapped

Table 11.1 Table with bucket size 1
Index Bucket of size 1

0 Alka
1 Bindu
2
3 Deven
4 Ekta
5
6 Govind

13 Monika

18 Sharmila

25 Zinat

530 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 530

with two keys, both the records are stored in the same bucket. The assumption is that the
buckets are equal in size.

Consider the following example. Suppose we want to store 5 records with the key of
each record as the person’s name. The key can be hashed by taking the address from the
ASCII representations of the first characters of the name. The table is of size 26, i.e., one
bucket for each alphabet with size 2 (Table 11.2a) or size 3 (Table 11.2b).

Table 11.2(a) Table with bucket size 2

Index Bucket of size 2
0 Alka Abhay
1 Bindu Babali
2
3 Deepa Deven
4 Ekta Esha
5
6 Govind Gopal

13 Monika Meera

18 Sharmila Sindhu

25 Zinat Ziya

Table 11.2(b) Table with bucket size 3

Index Bucket of size 3
0 Alka Abhay Asmita
1 Bindu Babali Bhanu
2
3 Deepa Deven Deepak
4 Ekta Esha Eshwar
5
6 Govind Gopal Gautam

13 Monika Meera Manisha

18 Sharmila Sindhu Shilpi

25 Zinat Ziya Zeba

Probe Each action of address calculation and check for success is called as a probe.

Collision The result of two keys hashing into the same address is called collision.

Synonym Keys that hash to the same address are called synonyms.

Overflow The result of many keys hashing to a single address and lack of room in the bucket
is known as an overflow. Collision and overflow are synonymous when the bucket is of size 1.

Open or external hashing When we allow records to be stored in potentially unlimited
space, it is called as open or external hashing.

Closed or internal hashing When we use fixed space for storage eventually limiting
the number of records to be stored, it is called as closed or internal hashing.

Hash function Hash function is an arithmetic function that transforms a key into an
address which is used for storing and retrieving a record.

Perfect hash function The hash function that transforms different keys into different
addresses is called a perfect hash function. The worth of a hash function depends on how
well it avoids collision.

HasHing 531

DSUC c11 V6 November 21, 2012 2:55 PM Page 531

Load density The maximum storage capacity, that is, the maximum number of records
that can be accommodated, is called as loading density.

Full table A full table is one in which all locations are occupied. Owing to the
characteristics of hash functions, there are always empty locations, rather a hash function
should not allow the table to get filled in more than 75%.

Load factor Load factor is the number of records stored in a table divided by the
maximum capacity of the table, expressed in terms of percentage.

Rehashing Rehashing is with respect to closed hashing. When we try to store the record
with Key1 at the bucket position Hash(Key1) and find that it already holds a record,
it is collision situation. To handle collision, we use a strategy to choose a sequence of
alternative locations Hash1(Key1), Hash2(Key1), and so on within the bucket table so as
to place the record with Key1. This is known as rehashing.

Issues in hashing In case of collision, there are two main issues to be considered:

1. We need a good hashing function that minimizes the number of collisions.
2. We want an efficient collision resolution strategy so as to store or locate synonyms.

Let us learn about these two issues and techniques to resolve them in Sections 11.3 and
11.4, respectively.

11.3 HASH FUNCTIONS

To store a record in a hash table, a hash function is applied to the key of the record
being stored, returning an index within the range of the hash table. The record is stored at
that index position, if it is empty. With direct addressing, a record with key K is stored
in slot K. With hashing, this record is stored at the location Hash(K), where Hash(K) is
the function. The hash function Hash(K) is used to compute the slot for the key K. Let
us discuss some issues regarding the design of good hash functions and also study the
schemes for their creation.

11.3.1 Good Hash Function

The average performance of hashing depends on how the hash function distributes the set
of keys among the slots. An assumption is that any given record is equally likely to hash
into any of the slots, independent of whether any other record has been already hashed to
it or not. This assumption is known as simple uniform hashing. A good hash function is
one which satisfies this assumption.

If the probability that a key ‘Key’ occurs in our collection is P(Key), and for M slots in
our hash table, a uniform hashing function, Hash(Key), should ensure that for 0 £ Key £
M - 1, S P(Key) = 1, are all equiprobable with probability 1/M. The hash function should
ensure that they are hashed to different locations.

532 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 532

Sometimes, this is easy to ensure. For example, if the keys are randomly distributed
in [0 ... r], with 0 to M - 1 locations then, Hash(Key) = floor((M ¥ Key)/r) will provide
uniform hashing.

Features of a Good Hashing Function

1. Addresses generated from the key are uniformly and randomly distributed.
2. Small variations in the value of the key will cause large variations in the record

addresses to distribute records (with similar keys) evenly.
3. The hashing function must minimize the occurrence of collision.

There are many methods of implementing hash functions, let us discuss a few of them.

11.3.2 Division Method

One of the required features of the hash function is that the resultant index must be within
the table index range. One simple choice for a hash function is to use the modulus division
indicated as MOD (the operator % in C/C++). The function MOD returns the remainder
when the first parameter is divided by the second parameter. The result is negative only if
the first parameter is negative and the parameters must be integers. The function returns
an integer. If any parameter is NULL, the result is NULL.

Hash(Key) = Key % M

Key is divided by some number M, and the remainder is used as the hash address. This
function gives the bucket addresses in the range of 0 through (M - 1), so the hash table
should at least be of size M. The choice of M is critical. While using this method, we usu-
ally avoid certain values of M. Binary keys of length in powers of two are usually avoided.
A good choice of M is that it should be a prime number greater than 20.

11.3.3 Multiplication Method

Another hash function that has been widely used in many applications is the multiplica-
tion method. The multiplication method works as follows:

1. Multiply the key ‘Key’ by a constant A in the range 0 < A < 1 and extract the fractional
part of Key ¥ A.

2. Then multiply this value by M and take the floor of the result.

Hash(Key) = ÎM ¥ ((Key ¥ A) MOD 1)˚,

 where Key ¥ A MOD 1 is the fractional part of Key ¥ A,
 that is, Key ¥ A - ÎKey ¥ A˚ and one of the commonly used values of A = (sqrt(5) - 1/2

= 0.6180339887).
An advantage of the multiplication method is that the value of M is not critical. We

typically choose it M = 2p for some integer p, since we can then easily implement the
function in any programming language as:

HasHing 533

DSUC c11 V6 November 21, 2012 2:55 PM Page 533

1. Choose M = 2p.
2. Multiply the w bits of Key by floor (A ¥ 2w) to obtain a 2w bit product.
3. Extract the p most significant bits of the lower half of this product as address.

Note that we have used the function floor; floor and ceil are the commonly used math func-
tions available in the library of almost all programming languages. These functions map a
real number to the largest preceding or the smallest following integer, respectively. More
precisely, floor(x) = Îx˚ is the largest integer not greater than x and ceil(x) = Èx˘ is the
smallest integer not less than x.

11.3.4 Extraction Method

When a portion of the key is used for address calculation, the technique is called as the
extraction method. In digit extraction, a few digits are selected, extracted from the key
and are used as the address. For example, if the book accession number is of six digits and
we require an address of 3 digits, then we can select the odd number digits—first, third,
and fifth—which can be used as the address for the hash table.

For example, Table 11.3 shows the keys with
their respective hashed addresses using digit ex-
traction.
Another way is to extract the first two and the
last one or two digits. For example, for key
345678, the address is 3478 if the first two and
the last two digits are extracted or 348 if the first
two and the last digit are extracted.

If the portion of the key is carefully selected, it can be sufficient for hashing, provided
the remaining portion distinguishes the keys in an insufficient way.

11.3.5 Mid-square Hashing

Mid-square hashing suggests to take the square of the key and extract the middle digits
of the squared key as the address. The difficulty is when the key is large. As the entire
key participates in the address calculation, if the key is large, then it is very difficult to
store its square as it should not exceed the storage limit. So mid-square is used when
the key size is less than or equal to 4 digits. For example, Table 11.4 shows the keys
with their hashed addresses. If the key is a string, it has to be preprocessed to produce
a number.

Table 11.4 Keys and addresses using mid-square

Key Square Hashed address
2341 5480281 802
1671 2792241 922

Table 11.3 Keys and addresses using
digit extraction

Key Hashed address
345678 357
234137 243
952671 927

534 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 534

The difficulty of storing the squares of larger numbers can be overcome if we use fewer
digits of the key (instead of the whole key) for squaring. If the key is large, we can select
a portion of the key and square it. For example, Table 11.5 gives the keys and the squares
of the first three digits with their hashed addresses.

Table 11.5 Keys and addresses using squares of fewer digits

Key Square Hashed address
234137 234 ¥ 234 = 54756 475

567187 567 ¥ 567 = 321489 148

11.3.6 Folding Technique

In this technique, the key is subdivided into subparts that are combined or folded and then
combined to form the address. For a key with digits, we can subdivide the digits into three
parts, add them up, and use the result as an address. Here the size of the subparts of the
key is the same as that of the address.
There are two types of folding methods:

1. Fold shift—Key value is divided into several parts of the size of the address. Left, right,
and middle parts are added.

2. Fold boundary—Key value is divided into parts of the size of the address. Left and
right parts are folded on the fixed boundary between them and the centre part.

For example, if the key is 987654321, it is understood as
Left 987 Centre 654 Right 321

For fold shift, the sum is 987 + 654 + 321 = 1962. Now discard digit 1 and the address
is 962. For fold boundary, sum of the reverse of the parts is 789 + 456 + 123 = 1368. Dis-
card digit 1 and the address is 368.

11.3.7 Rotation

When the keys are serial, they vary only in the last digit and this leads to the creation of
synonyms. Rotating the key would minimize this problem. This method is used along
with other methods. Here, the key is rotated right by one digit and then folding technique
is used to avoid synonyms. For example, let the key be 120605, when it is rotated we get
512060. Then the address is calculated using any other hash function.

11.3.8 Universal Hashing

Sometimes wrong operations are performed deliberately, such as choosing N keys all of
which hash to the same slot, yielding an average retrieval time of O(n). Any fixed hash
function is helpless to this sort of worst-case behaviour. The only effective way to im-
prove the situation is to choose the hash function randomly in a way that is independent
of the keys that are actually going to be stored. This approach is called universal hashing
and yields good performance on the average, no matter what keys are chosen.

HasHing 535

DSUC c11 V6 November 21, 2012 2:55 PM Page 535

The main idea behind universal hashing is to select the hash function at random at run-
time from a carefully designed set of functions. Because of randomization, the algorithm
can behave differently on each execution; even for the same input. This approach guaran-
tees good average case performance, no matter what keys are provided as input.

11.4 COLLISION RESOLUTION STRATEGIES

No hash function is perfect. If Hash(Key1) = Hash(Key2), then Key1 and Key2 are syn-
onyms and if bucket size is 1, we say that collision has occurred. As a consequence, we
have to store the record Key2 at some other location. A search is made for a bucket in
which a record is stored containing Key2, using one of the several collision resolution
strategies. The collision resolution strategies are as follows:

1. Open addressing
(a) Linear probing
(b) Quadratic probing
(c) Double hashing
(d) Key offset

2. Separate chaining (or linked list)
3. Bucket hashing (defers collision but does not prevent it)

The most important factors to be taken care of to avoid collision are the table size and
choice of the hash function. As we know, no hash function is perfect and we have a limita-
tion on the table size too. Let us learn a few techniques to resolve this collision.

11.4.1 Open Addressing

In open addressing, when collision occurs, it is resolved by finding an available empty
location other than the home address. If Hash(Key) is not empty, the positions are probed
in the following sequence until an empty location is found. When we reach the end of
table, the search is wrapped around to start and the search continues till the current col-
lision location.

N(Hash(Key) + C(1)), N(Hash(Key) + C(2)), …, N(Hash(Key) + C(i)), … (11.1)

Here N is the normalizing function, Hash(Key) is the hashing function, and C(i) is the
collision resolution (or probing) function with the ith probe. The normalizing function is
required when the resulting index is out of range. A commonly used normalization func-
tion is MOD.

Closed hash tables use open addressing. In open addressing, all records are stored in
the hash table itself also said to be resolving in the prime area which contains all home
addresses. In case of chaining, the collisions are resolved by storing them at a separate
area known as the overflow area.

In open addressing, when collision occurs, the table is searched for empty locations
to store synonyms. Each table entry either contains a record or is empty. While searching

536 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 536

for a record, we systematically examine table slots until the desired record is found or it
is clear that the record is not in the table.

While open addressing, to store the record, we successively examine, or probe, the
hash table until we find an empty slot. Three techniques are commonly used to compute
the probe sequences required for open addressing—linear probing, quadratic probing,
and rehashing.

Linear Probing

A hash table in which a collision is resolved by placing the item in the next empty place
following the occupied place is called linear probing. This strategy looks for the next free
location until it is found. The function that we can use for probing linearly from the next
location is as follows:

(Hash(x) + C(i)) MOD Max (11.2)

As C(i) = i for linear probing in Eq. (11.1), the function becomes

(Hash(x)+ i) MOD Max

Initially i = 1, if the location is not empty then it becomes 2, 3, 4, …, and so on till an
empty location is found. We simply add one to the current address when collision occurs
or till we find an empty location within the hash table limits. Alternatively, we can also
add 2, subtract 2, or add 4, etc. Here Max is the table size or the nearest prime number
greater than the table size. The use of MOD wraps the linear probing to the table start, if
it reaches the end.

Let Max be 100, consider Table 11.6.
Let Key1 be 1044, now it hashes to location 44 and let us save it at that location. Now let
Key2 be 3544 that also maps to address 44 and collision occurs as the table location 44 is
already occupied. Here 1044 and 3544 are synonyms. Now the locations HashTable[45],
HashTable[46], and so on are to be examined until a free location is found. The location
45 is found empty and the key 3544 is stored there.

Linear probing is easy to implement and the
synonyms are stored nearer to the home address
resulting in faster searches. When many synonyms
are clustered around the home address, it is known
as primary clustering. High degree of clustering
increases the number of probes for locating data,
increasing the average search time. Although lin-
ear probing is easy to implement, it tends to form
clusters of synonyms, resulting in secondary clus-
tering. The secondary clustering occurs when data
is widely distributed in the hash table and have
formed clusters throughout the table.

Table 11.6 Keys and Address

Index Key
0
1
2

44 1044
3544

98
99

HasHing 537

DSUC c11 V6 November 21, 2012 2:55 PM Page 537

Linear probing can be done using the following:

1. With replacement—If the slot is already occupied by the key there are two possibilities,
that is, either it is the home address (collision) or the location is occupied by some key.
If the key’s actual address is different, then the new key having the address at that slot
is placed at that position and the key with the other address is placed in the next empty
position.

 For example, in hash table of size 100, suppose Key1 = 127 is stored at address 25 and
a new Key2 = 1325 is to be stored. Address for Key2 (1325 MOD 100) is 25. Now
as the location 25 is occupied by Key1, the with replacement strategy places Key2 at
location 25 and searches for an empty location for Key1 = 127.

2. Without replacement—When some data is to be stored in the hash table, if the slot is
already occupied by the key, then another empty location is searched for a new record.
There are two possibilities when the location is occupied—it is either its home address
or not. In both the cases, the without replacement strategy searches for empty positions
for the key that is to be stored.

Example 11.1 provides a better insight into linear probing.

 example 11.1 Store the following data into a hash table of size 10 and bucket size 1.
Use linear probing for collision resolution.

12, 01, 04, 03, 07, 08, 10, 02, 05, 14

Assume buckets from 0 to 9 and bucket size = 1 using hashing function key % 10.

Solution Let us use both techniques with and without replacement, as follows:

Linear probing with replacement For linear probing with replacement, when collision
occurs, if the location is occupied by a record whose home address is not that location, it is
replaced and the current record is stored there. Table 11.7 demonstrates all the operations.

Table 11.7 MOD as hash function and linear probing with replacement

Bucket Initially
empty

Insert
12

Insert
01

Insert
04

Insert
03

Insert
07

Insert
08

Insert
10

Insert
02

Insert
05

Insert
14

0 10 10 10 10
1 01 01 01 01 01 01 01 01 01
2 12 12 12 12 12 12 12 12 12 12
3 03 03 03 03 03 03 03
4 04 04 04 04 04 04 04 04
5 02 05 05
6 02 02
7 07 07 07 07 07 07
8 08 08 08 08 08
9 14

538 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 538

Here when key 02 is to be stored, it is hashed to address 2. However, that location is
already occupied by 12. As 2 is the home address of 12, it resides there itself, and we
linearly probe for the next empty location for key 02 to be stored. The location 5 is found
empty and 02 is stored there.

When key 05 is to be stored, it maps to location 5 and is fi lled with key 02. Location 5
is not the home address of 02 and hence it is replaced. Key 05 is stored at location 5 and
we again probe for the next empty location for 02 and store it at location 6.

 Linear probing without replacement For linear probing without replacement when
collision o ccurs, if the location is occupied, the next empty l ocation is linearly probed for
synonyms. Table 11.8 shows linear probing without replacement.

Table 11.8 MOD as hash function and linear probing with out replacement

Bucket Initially
empty

Insert
12

Insert
01

Insert
04

Insert
03

Insert
07

Insert
08

Insert
10

Insert
02

Insert
05

Insert
14

0 10 10 10 10
1 01 01 01 01 01 01 01 01 01
2 12 12 12 12 12 12 12 12 12 12
3 03 03 03 03 03 03 03
4 04 04 04 04 04 04 04 04
5 02 02 02
6 05 05
7 07 07 07 07 07 07
8 08 08 08 08 08
9 14

Program Code 11.1 defi nes a function for inserting a record using linear probing without
replacement.

pROGRam CODe 11.1

//hash function to get position

int hash(int key)

{

 return(key % MAX);

}

//function for inserting a record using linear probe

int linear_prob(int Hashtable[], int key)

{

 int pos, i;

 pos = Hash(Key);

 if(Hashtable[pos] == 0) // empty slot

HasHing 539

DSUC c11 V6 November 21, 2012 2:55 PM Page 539

 {

 Hashtable[pos] = key;

 return pos;

 }

 else // slot is not empty

 {

 for(i = pos + 1; i % MAX != pos; i++)

 {

 if(Hashtable[i] == 0)

 {

 Hashtable[i] = key;

 return i;

 }

 }

 }

 // Table overfl ow

 return -1;

}

 Quadratic Probing

In quadratic probing, we add the offset as the square of the collision probe numb er. In
quadratic probing, the empty location is searched by using the following formula:

(Hash(Key) + i2) MO D Max where i lies between 1 and (Max - 1)/2 (11.3)

Here if Max is a prime number of the form (4 ¥ integer + 3), quadratic probing covers all
the buckets in the table.

Quadratic probing works much better than linear probing, but to make full use of the
hash table, there a re constraints on the values of i and Max so that the address lies within
th e table boundaries. In addition, if two keys have the same initial probe position, then
their sequences are the same. Similar to linear probing, the initial probe determines the
entire sequence and hence maximum distinct probe s equences are used. As the offset
added is not 1, quadratic probing slows down the growth of primary clusters.

Program Code 11.2 depicts this logic.

pR OGRam CODe 11.2

//hash function to get posi tion

int hash(int key)

{

 return(key % MAX);

}

540 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 540

//function for inserting record using linear probe

int quadratic_prob(int Hashtable[], int key)

{

 int pos, i;

 pos = hash(key);

 for(i = 0; i % MAX != pos; i++)

 {

 pos = (pos + i * i) % MAX;

 if(Hashtable[pos] key == 0) // empty slot

 {

 Hashtable[pos] = key;

 return pos;

 }

 } // Table overfl ow

 return -1;

}

Let us see Examples 11.2 and 11.3, which use linear probing and quadratic probing,
respectively.

 example 11.2 Suppose Max = 8 and keys A, B, C, D have ha sh values Hash(A) = 3,
Hash(B) = 0, Hash(C) = 4, and Hash(D) = 3. Use linear probing for collision resolution.

Solution Linear probing is the simplest strategy where Hash(Key) = Hash((Key + i)
MOD Max).

Suppose we wish to insert D and fi nd that bucket 3 has been fi lled already, then we would
try buckets 4, 5, 6, 7, 0, 1, and 2 in sequence. We fi nd bucket 5 empty and we store D.

0 B
1
2
3 A
4 C
5 D
6
7

 example 11.3 Consider the keys 22, 17, 32, 16, 5, and 24. Let Max = 7. Let us use
quadratic probing to handle synonyms.

Solution Let the hash functions be (Key MOD Max); for quadratic probing
 (Hash(Key) ± i2) MOD Max.

HasHing 541

DSUC c11 V6 November 21, 2012 2:55 PM Page 541

After storing 22, 17, 32, 5, and 7, the table looks as shown in the left column of Table 11.9.

Table 11.9 Keys and quadratic probing

Index Key Index Key

0 0 24

1 22 1 22

2 2 16

3 17

16

3 17

4 32 4 32

5 5 5 5

6 6

insert 24

We can see that while inserting 24, the address we get is

Hash(24) = 24 MOD 7
= 3

It is also noted that the location 3 is already occupied.
We may now go for the quadratic function as

[Hash(24) - (1)2 MOD 7]
= (24 MOD 7) + 1 MOD 7
= (3 + 1) MOD 7 = 4 which is not occupied.

Hence, Hash(24) + (2)2 MOD 7
= (3 + 4) MOD 7 = 0

which is empty, so store 24 there.

Double Hashing

Double hashing uses two hash functions, one for accessing the home address of a Key
and the other for resolving the conflict. The sequence for probing is generated as follows:

(Hash1(Key), (Hash1(Key) + i ¥ Hash2(Key)), …. i = 1, 2, 3, 4, …

and the resultant address is modulo Max. Example 11.4 illustrates the double hashing
concept.

 example 11.4 Let the hash function be Key % 10, Max = 10, and the keys be 12, 01,
18, 56, 79, 49. Perform double hashing.

Solution Table 11.10 demonstrates all insertions and collision handling using double
hashing.

542 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 542

Table 11.10 Double hashing

Initially empty Insert 12 Insert 01 Insert 18 Insert 56 Insert 79 Insert 49
0
1 01 01 01 01 01
2 12 12 12 12 12 12
3
4
5 49
6 56 56 56
7
8 18 18 18 18
9 79 79

While inserting 49, the hashed location 9 is found occupied by key 79, so let us use
Hash2(Key) = R - (Key MOD R), where R is a small prime number, even smaller than the
table size. Let us use R = 7.

To insert 49, using Hash1(Key) = 49 % 10, we get 9 which is already occupied, so we
use Hash2 as follows:

Hash2(49) = 7 - (49 % 7) =7 - 0 = 7

Hence by double hashing,

 Hash(49) = [Hash1(49) + Hash2(49)] % 10
= (9 + 7) % 10
= 6 and location 6 is not empty, so let us recompute again.

 Hash(49) = [Hash1(49) + 2 ¥ Hash2(49)] % 10
= 9 + 2 ¥ 7
= 25 % 10
= 5 and is empty, so store key 49 there.

Example 11.5 illustrates the various types of open addressing.

 example 11.5 Given the input {4371, 1323, 6173, 4199, 4344, 9699, 1889} and hash
function as Key % 10, show the results for the following:

1. Open addressing using linear probing
2. Open addressing using quadratic probing
3. Open addressing using double hashing h2(x) = 7 - (x MOD 7)

Solution The results are as follows:

HasHing 543

DSUC c11 V6 November 21, 2012 2:55 PM Page 543

1. Open addressing using linear probing
These keys are inserted using linear probing as shown in Table 11.11

Table 11.11 Inserting keys using linear probing

Initially
empty

Insert
4371

Insert
1323

Insert
6173

Insert
4199

Insert
4344

Insert
9699

Insert
1889

0 9699 9699
1 4371 4371 4371 4371 4371 4371 4371
2 1889
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5 4344 4344 4344
6
7
8
9 4199 4199 4199 4199

Using linear probing, while inserting 9699 and 1889, as the hashed locations are not
empty, the keys are stored at the next empty locations probed in circular at positions 0
and 2, respectively.

2. Open addressing using quadratic probing
Let us insert these keys using quadratic probing now as shown in Table 11.12.

Table 11.12 Inserting keys using quadratic probing

Initially
empty

Insert
4371

Insert
1323

Insert
6173

Insert
4199

Insert
4344

Insert
9699

Insert
1889

0 9699 9699
1 4371 4371 4371 4371 4371 4371 4371
2
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5 4344 4344 4344
6
7
8 1889
9 4199 4199 4199 4199

For 6173, the hashed address 6173 % 10 gives 3 and it is not empty, hence using quadratic
probing we get the address as follows: Hash(6173) = (6173 + 12) % 10 = 4 and as it is

544 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 544

empty, the key 6173 is stored there. Now while inserting 4344, the location 4 is not empty
and hence quadratic probing generates the address as Hash(4344 + 12) % 10 = 5 and as is
empty 4344 is stored. For key 9699, the address is Hash(9699 + 12) % 10 = 0 and is empty
so store it there. While inserting 1889, the address Hash(1889 + 12) % 10 = 0 is not empty
so probe again. The address Hash(1889 + 22) % 10 = 3 is not empty so probe again. The
address Hash(1889 + 32) % 10 = 8 is empty so store 1889 at location 8.

3. Open addressing using double hash function
Table 11.13 shows the status of the hash table after inserting each key using open address-
ing using double hashing

Table 11.13 Open addressing using double hash

Initially
empty

Insert
4371

Insert
1323

Insert
6173

Insert
4199

Insert
4344

Insert
9699

Insert
1889

0 1889
1 4371 4371 4371 4371 4371 4371 4371
2 9699 9699
3 1323 1323 1323 1323 1323 1323
4 6173 6173 6173 6173 6173
5
6
7 4344 4344 4344
8
9 4199 4199 4199 4199

While inserting 6173, the address is Hash1(6173) = 6173 % 10 = 3 and 3 is not empty. Let
us use double hashing. Hence the address is as follows:

Hash(6173) = [Hash1(6173) + Hash2(6173)] % 10
= 3 + (R - 6173 % R) (let R be 7)
= 3 + (7 - 6) = 4

Since 4 is empty, we store 6173 at location 4.
Now let us store 4344. The address 4344 % 10 = 4 and as location 4 is not empty, we

use double hashing and we get Hash(4344) = 7. Now for 9699 double hashing generates
address 2 and as it is empty, we store it there. For key 1889, double hashing generates
address 0 and as it is empty, we store 1889 at location 0.

Rehashing

If the table gets full, insertion using open addressing with quadratic probing might fail or
it might take too much time. The solution for this problem is to build another table that

HasHing 545

DSUC c11 V6 November 21, 2012 2:55 PM Page 545

is about twice as big and scan down the entire original hash table, compute the new hash
value for each record, and insert them in a new table.

For example, if initially, the table is of size 7 and the hash function is key % 7 then,
this would be as shown in Table 11.14.

As the table is more than 70% full, a new table is created (Table 11.15) and the values
are inserted in the new table. The size of the new table is 17, that is next prime of double
of 7 that is 14. Rehashing is very expensive, as its running time is O(N).

Table 11.14 Table of size 7

Insert 7, 15, 13, 74, 73
0 7
1 15
2
3 73
4 74
5
6 13

Table 11.15 New table of size 17 when
Table 11.14 is 70% full

0

1

2

3

4

5 73
6 74

7 7

8
9

10

11

12

13 13

14

15 15

16

11.4.2 Chaining

We have discussed three techniques that are used to compute probe sequences (to relocate
synonyms) namely, linear probing, quadratic probing, and rehashing. Of course, we can
store the linked lists inside the hash table, in the unused hash table slots. The technique
used to handle synonyms is chaining; it chains together all the records that hash to the
same address. Instead of relocating synonyms, a linked list of synonyms is created whose
head is the home address of synonyms. In Chapter 6, we have discussed implementing a
linked list within an array. However, we need to handle pointers to form a chain of syn-
onyms. The extra memory is needed for storing pointers.

546 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 546

In Fig. 11.3, a hash table with Max = 10, both keys 322 and 262 probe to address 2.
A chain, a linked list, stores all items at a particular home address (home address is an
address within the hash table itself).

0

1

2

Max – 1

322 262

Fig. 11.3 An example of chaining

Let us compare rehashing and chaining (Table 11.16).

Table 11.16 Comparison of chaining and rehashing

Chaining Rehashing
Unlimited number of synonyms can be
handled.

A limited but good number of synonyms are taken
care of.

Additional cost to be paid is an overhead
of multiple linked lists.

The table size is doubled but no additional fi elds of
links are to be maintained.

Sequential search through the chain
takes more time.

Searching is faster when compared to chaining.

Program Code 11.3 illustrates chaining.

pROGRam CODe 11.3

#defi ne MAX 10

class node

{

 public:

 int key;

 struct node *next;

};

Node *hashtab le[max];

HasHing 547

DSUC c11 V6 November 21, 2012 2:55 PM Page 547

void int()

{

 int i;

 for(i = 0; i < n; i++)

 {

 Hashtable[i] = null;

 }

}

int hash(int key)

{

 return(key % 10);

}

void insert(int k)

{

 int pos;

 Node *Curr, *Temp;

 Curr = new node;

 Curr->key = k;

 Curr->next = null;

 pos = hash(Curr->key);

 if(Hashtable[pos] == null)

 Hashtable[pos] = Curr;

 else

 {

 // goto last node and attach

 Temp = Hashtable[pos];

 while(Temp->next != null)

 Temp = Temp->next;

 // attach

 Temp->next = Curr;

 }

}

void display()

{

 Node *Curr;

 for(i = 0; i < 10; i++)

 {

 Curr = Hashtable[i];

548 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 548

 while(curr != null)

 {

 cout << curr->key << “\t”;

 Curr = Curr->next;

 }

 }

}

void search(int x)

{

 Node *Curr;

 pos = hash(x);

 Curr = Hashtable[pos];

 while(curr != null && Curr->key != x)

 {

 cout << curr->key << “\t”;

 Curr = Curr->next;

 }

 if(Curr == null)

 cout << “\n Not Found”;

 else

 cout << “\n Key Found”;

}

11.5 HASH TABLE OVERFLOW

Even if a hashing algorithm (function) is very good, it is likely that collisions will
occur. The identifi ers that have hashed into the same bucket, as discussed earlier, are
called synonyms.

An overfl ow is said to occur when a new identifi er is mapped or hashed into a full
bucket. When the bucket size is one , a collision and an overfl ow occur simultaneously.
Therefore, any hashing program must incorporate some method for dealing with records
 that cannot fi t into their home addresses. There are a number of techniques for handling
overfl ow of records .

11.5.1 Open Addressing for Overfl ow Handling

We shall study two ways to handle overfl ows—open addressing and chaining. In open ad-
dressing, we assume that the hash table is an array. When a new identifi er is hashed into
a full bu cket, we need to fi nd another bucket for this identifi er. The simplest solution is to
fi nd the closest unfi lled bucket through linear probing or linear open addressing.

HasHing 549

DSUC c11 V6 November 21, 2012 2:55 PM Page 549

When linear open addressing is used to handle overflows, a hash table search for an
identifier I proceeds as follows:

1. Compute Hash(I)
2. Examine identifiers position
 Table[Hash(I)], Table[Hash(I) + 1], …, Table[Hash[I] + i], in order until:

(a) If Table[Hash(I) + j] = I then
 In this case I is found.
(b) If Table[Hash(I) + j] is NULL, then I is not in the table.
(c) If we return to the start position Hash(I), then the table is full and I is not in the

table.
One of the problems with linear open addressing is that it tends to create clusters of

identifiers. Moreover, these clusters tend to merge as more identifiers are entered, leading
to big clusters. An alternative method to retard the growth of clusters is to use a series of
hash functions h1, h2, …, hm. This method is called as rehashing. Buckets hi(x), 1 £ i £ m
are examined in that order.

11.5.2 Overflow Handling by Chaining

Linear probing and its variations are inefficient as the search for an identifier involves
comparison with identifiers that have different hash values. Consider the following hash
table shown in Fig. 11.4.

0 1 2 3 4 5 6 7 8 9 10 11 25

A A2 A1 D A3 A4 GA G ZA E L … Z

Fig. 11.4 Chaining

In the above hash table of 25 buckets, one slot per bucket, searching for the identi-
fier ZA involves comparisons with the buckets Table[0] to Table[7], even though none
of the identifiers in these buckets had a collision with Table[25] and so cannot possibly
be ZA. Many of the comparisons can be saved if we maintain lists of identifiers, one
list per bucket, each list containing all the synonyms for that bucket. If this is done, a
search involves computing the hash address Hash(I) and examining only those identi-
fiers in the list for Hash(I). Since the sizes of these lists are not known in advance, the
best way to maintain them is as linked chains. In each slot, additional space is required
for a link. Each chain has a head node. The head node, however, usually is much
smaller than the other nodes, since it has to retain only a link. As the list is accessed at
random, the head nodes should be sequential. We assume that they are numbered 0 to
n - 1, if hash function Hash() has range 0 to n - 1.

For hash table in Fig. 11.4 can be represented as hash table in Fig. 11.5 using the hash
chains.

550 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 550

A3A4 A1 A2 A 00

D 0

0

0

0

0

0

0

0

E 0

ZA 0 Z 0

L 0

G 0 GA 0

.

.

.

0

1

2

3

4

5

6

7

8

9

10

11

2

25

Fig. 11.5 Hash chains

To insert a new identifier, I, into a chain, we must first verify that it is not currently in
chain. Then, if not present, I is inserted at any position in the chain.

11.6 EXTENDIBLE HASHING

If linear probing or separate chaining is used for collision handling, then in case of col-
lision, several blocks are required to be examined to search a key and when table is full,
then expensive rehash should be used. For fast searching and less disk access, extendible
hashing is used. It is a type of hash system, which treats a hash as a bit string, and uses a
trie for bucket lookup.

For example, assume that the hash function Hash(Key) returns a binary number.
The first i bits of each string will be used as indices to figure out where they will go in

the hash table. Additionally, i is the smallest number such that the first i bits of all keys
are different.
The keys to be used are as follows:

1. h(key1) = 100101
2. h(key2) = 011110
3. h(key3) = 110110

HasHing 551

DSUC c11 V6 November 21, 2012 2:55 PM Page 551

Let us assume that for this particular example, the buck-
et size is 1. The first two keys to be inserted, key1 and
key2, can be distinguished by the most significant bit, and
would be inserted into the table as follows:

When key3 is hashed to the table, it would not be
enough to distinguish all three keys by one bit (because
key3 and key1 have 1 as their leftmost bit). Also, because
the bucket size is one, the table would overflow. Because
comparing the first two most significant bits would give
each key a unique location, the directory size is doubled
as follows:

And so now key1 and key3 have unique locations
being distinguished by the first two leftmost bits. Since
key2 is in the top half of the table, both 00 and 01 point
to it because there is no other key that begins with a 0 to
compare.

The root of the tree contains four pointers determined
by the leading two bits of data. Each leaf has upto 4 records. D will be represented by the
number of bits used by the root, which is known as a directory.

11.7 DICTIONARY

A set is an unordered collection of distinct elements. Each element has a field called
key that is usually unique. The requirement of uniqueness is sometimes circumvented
and is known as a multiset or a bag. Multiset is a set whose members are not nec-
essarily distinct. The most common operations performed on a set or multiset are
searching, inserting, and deleting elements from a group. A dictionary is a data struc-
ture for efficiently implementing these operations. The simplest way to implement a
dictionary is through the use of arrays. Arrays are efficient for searching an element,
whereas insertion and deletion cannot be easily performed. The proficient implemen-
tation has to balance the efficiency of searching with the other two operations. Other
sophisticated ways to implement a dictionary is using hashing and balanced search
trees.

A typical dictionary includes the following operations:

1. Empty—checks whether the dictionary is empty or not
2. Size—determines the dictionary size
3. Insert—inserts a pair into the dictionary
4. Search—searches the pair with a specified key
5. Delete—deletes the pair with a specified key

0 Bucket A for key2

Directory

1 Bucket B for key1

00 Bucket A for key2

01

10 Bucket B for key1

11 Bucket C for key3

Directory

552 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 552

11.8 SKIP LIST

A balanced tree is one of the most popular data structures used for searching. One of the
variants of balanced trees is the skip list. The skip list is a probabilistic data structure that has
become the method of choice for many search-based applications instead of balanced trees.

A skip list stores the sorted data in the form of a linked list. These items are stored as
a hierarchy of linked lists where each list links increasingly sparse subsequences of the
items. These supplementary lists result in an item search that is as efficient as that of bal-
anced binary search trees. Since each link of the sparser lists skips over many items of the
full list in one step, the list is called skip list. These forward links are added on the basis of
the probability of the element search. Hence, insert, search, and delete operations are per-
formed in logarithmic expected time. The links may also be added in a non-probabilistic
way. Skip list algorithms have the same asymptotic expected time bounds as balanced
trees and are simpler, faster, and use less space. Figure 11.6 shows the diagrammatic
representation of a skip list.

Fig. 11.6 Diagrammatic representation of a skip list

Nil

11 12 13 14 15 16 17 18 19 20

Nil

Nil

Nil

Head

11.9 COMPARISON OF HASHING AND SKIP LISTS

The following is a list of similarities and differences between hashing and skip lists:

• The hash table is a simple array of items; hashing algorithms calculate an index from
the data item’s key and use this index to place the data into the array. A hash table is an
alternative method for representing a dictionary. It is a popular data structure which is
simple and easy to implement.

• The skip list is a linked list augmented with layers of pointers for quickly jumping
over a large numbers of elements and then descending to the next layer. This process
continues down to the bottom layer, which is the actual list. Skip lists are interesting
data structures which are powerful and flexible.

• Skip lists are one way of implementing a dictionary abstract data type, which stores a
set of items and allows us to add, remove, and search for items. Though hash tables are
more popular, skip lists improve the performance of insert and delete operations.

• The expected performance of search and delete operations on skip lists is O(logn);
however, the worst-case performance is Q(n). The hash table is used in many
applications. In ideal situations, the hash table search, insert, or delete takes Q(1).

HasHing 553

DSUC c11 V6 November 21, 2012 2:55 PM Page 553

RECAPITULATION

• Many applications need a dynamic set of
operations that supports only insert, member
search, and delete. A keyed table is an effec-
tive data structure for implementing them.

• Hashing is an excellent technique for imple-
menting keyed tables. A hash table is an
array-based structure used to store <key,
information> pairs.

• Hash tables are used to implement insertions
and searches in constant average time. To
store an item in a hash table, a hash function
is applied to the key of the item being stored,
returning an index within the range of the hash
table.

• Hashing is a technique that is used for storing
and retrieving information associated with and

that makes use of the individual characters or
digits in the key itself.

• A p roblem arises, however, when the hash
function returns the same value when applied
to two different keys called collision. However,
t here are various collision resolution tech-
niques to overcome these problems.

• Dictionary and skip lists are types of data
structures used for storing data in the form
of an array and linked list, respectively. How-
ever, skip list is more effi cient and thus the
preferred option for performing search opera-
tions on a given data set as it is simpler, faster,
and uses less space when compared to other
techniques.

Bucket An index position in hash table that stores
a fi xed number of buckets.

Collision The result of two keys hashing into the
same bucket (index positions).

Dictionary A dictionary is a type of data structure
that can effi ciently implement operations such as
searching, inserting, and deleting elements on a
set or multiset from a group.

Hash function To store an item in a hash table, a
hash function is applied to the key of the item be-
ing stored, returning a n index within the range of
th e hash table.

Hashing Hashing is a technique that is used for
storing and retrieving information associated with
and that makes use of the individual characters

or digits in the key itself. Hashin g is an excellent
technique for implementing keyed tables.

Hash table A hash table is an array-based structure
used to store <key, information> pairs. In other
words, we can say that the hash table is a table for
storing key and related inf ormation.

Overfl ow When more than one key has the same
index and if there is no space in bucket, we say
that overfl ow has occurred.

Skip list A skip list is one of the variants of bal-
anced trees, which is used most effi ciently for
searching operations.

Synonym K eys that hash to the same bucket are
called synonyms.

KEY TERMS

• There are many issues associated with hash tables such as the choice of the hash
function, overfl ow handling, and the size (i.e., number of buckets) of the hash table.

554 data structures using c++

DSUC c11 V6 November 21, 2012 2:55 PM Page 554

Multiple choice questions

 1. A hash table with 10 buckets with one slot
per bucket is depicted. The symbols S1 to S7

are initially entered using a hashing function
with linear probing. The maximum number of
comparisons needed in searching an item that is
not present is

 (a) 4
 (b) 5
 (c) 6
 (d) 3
 2. A hash function f defi ned as f(key) = key MOD

7, with linear probing, is used to insert the keys
37, 38, 72, 48, 98, 11, 56 into a table indexed
from 0 to 6. 11 will be stored in the location

 (a) 3
 (b) 4
 (c) 5
 (d) 6
 3. A text is made up of characters a, b, c, d, e each

with probability 0.12, 0.4, 0.15, 0.08, and 0.25,
respectively. The optimal coding will give the
average length of

 (a) 2.15
 (b) 3.01
 (c) 2.3
 (d) 1.78
 4. The average search time of hashing, with linear

probing will be less if the load factor
 (a) is much less than one
 (b) equals one
 (c) is far greater than one
 (d) none of the above
 5. A hash table can store a maximum of 10

records. Currently, there are records in locations
1, 3, 4, 7, 8, 9, 10. The probability of a new
record going into location 2, with hash function
resolving collision by linear probing is

 (a) 0.1
 (b) 0.6

 (c) 0.2
 (d) 0.5
 6. A hash table has space for 100 records. What

is the probability of collision before the table i s
10% full?

 (a) 0.45
 (b) 0.5
 (c) 0.3
 (d) 0.34

Review questions

 1. What is hashing? What is a hashing function?
Give at least two examples of a hashing function.
Discuss about the characteristics of a good
hashing function. How is synonym resolution
done during hashing?

 2. What are the advantages and disadvantages of
the following synonym resolution methods?

 (a) Overfl ow fi le
 (b) Open addressing methods
 3. Defi ne:
 (a) Key
 (b) Hash function
 (c) Synonym
 4. Write an al gorithm for chaining with replacement

used as a technique for synonym resolution.
 5. Discuss MOD as a hash function.
 6. Describe the overfl ow handling techniques in a

hash table.
 7. Using the modulo-division method and linear

probing, store the following keys in an array
with 19 records. How many collisions occurred?
What is the density of the list after all the keys
 have been inserted?

 224562 137456 214562
 140145 214575 162145
 144467 199645 234534
 8. Repeat review question 7 using a linked list

meth od for collision. Compare these results with
the results obtained in the previous question.

EXERCISES

HasHing 555

DSUC c11 V6 November 21, 2012 2:55 PM Page 555

 9. Explain the term dictionary. List the suitable
data structures for implementation of diction-
aries.

10. In what way is a skip list a more suitable data
structure for implementing dictionaries?

11. Compare skip lists and hashing.

Answers to multiple choice questions

1. (b) It will be one more than the size of the biggest cluster (which is 4 here). This is because assume
a search key hashing onto bin 8. By linear probing, the next location for searching is bin 9, then
0, and then 1. If all these resulted in a mess, we try at bin 2 and stop as it is vacant. Of course,
this logic will not work if deletion is performed before search.

S7 S1 S4 S2 S5 S6 S3

0 1 2 3 4 5 6 7 8 9

2. (c)
3. (a) Using Huffman code, a is 1111, b is 0, c is 110, d is 1110, e is 10.
 Average code length = (4 ¥ 0.12) + (1 ¥ 0.4) + (3 ¥ 0.15) + (4 ¥ 0.08)
 + (2 ¥ 0.25)
 = 2.15
4. (a) Load factor is the ratio of the number records that are currently present and the total number

of records that can be present. If the load factor is less, free space will be more. Hence, the
probability of collision is less. So the search time will be less.

5. (b) If the new record hashes onto one of the six locations 7, 8, 9, 10, 1 or 2, the location will receive
a new record. The probability is 6/10 as 10 is the total possible number of locations.

6. (a)

12

We have studied binary search trees (BSTs) in Chapter 7. In practice, BSTs are rarely
used to sort data. In case there is a fi xed amount of data and sorting does not need

to take place until all the data is collected, the data can be placed in an array and sorted
using the quicksort algorithm. On the other hand, when the data must be simultaneously
inserted and sorted, there is a data structure which, in practice works more effi ciently than
BSTs, known as heaps.

12.1 BAsIC CONCEPTs

A heap is a binary tree having the following properties:

1. It is a complete binary tree, that is, each level of the tree is completely fi lled, except the
bottom level, where it is fi lled from left to right.

2. It satisfi es the heap-order property , that is, the key value of each node is greater than
or equal to the key value of its children, or the key value of each node is lesser than or
equal to the key value of its children.

All the binary trees of Fig. 12.1 are heaps, whereas the binary trees of Fig. 12.2
are not.

The second condition is violated in Fig. 12.2(a) as the content of the child node 80 is
greater than its parent node 70. The fi rst condition is violated in Fig. 12.2(b) as at level
2, 30 has a right chil d but no left child, that is, at this level, it should be fi lled from left
to right.

HEAPs

OBJECTIVEs

After completing this chapter, the reader will be able to understand the following:
 • A specialized tre e-based data structure known as heap
 • Usage of heaps effi ciently for applications such as priority queues
 • Implementation of heaps using arrays
 • More applications such as selection problem and event simulation

Heaps 557

DSUC c12 V5 January 24, 2013 9:59 AM Page 557

5

13

65

9

70

50

4030

(a)

5

30

50

17

(b)

7

10

(c)

Fig. 12.1 Sample heaps (a) Heap with height three
(b) Heap with height two (c) Heap with height one

10

70

83

50

80 30 7

30

40

14

20

(a) (b)

Fig. 12.2  Binary trees but not heaps  (a) Sample 1  (b) Sample 2

12.1.1 Min-heap and Max-heap

In this section we discuss two types of heaps, the min-heap and the max-heap.

Min-heap

The structure shown in Fig. 12.3 is called min-heap.
In min-heap, the key value of each node is lesser than or equal to the key value of its

children. In addition, every path from root to leaf should be sorted in ascending order.
Figure 12.4 is an example of a min-heap.

All ≥ Data All ≥ Data

Data

Fig. 12.3 Structure of min-heap

10

2

1

7 9

5

Fig. 12.4 An example of a min-heap

558 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 558

Max-heap

A max-heap is where the key value of a node is greater than or equal to the key value of
its children. In general, whenever the term ‘heap’ is used by itself, it refers to a max-heap
as shown in Fig. 12.5.

In addition, every path from the root to leaf should be sorted in descending order.
Figure 12.6 is an example of a max-heap.

All ≤ Data All ≤ Data

Data

Fig. 12.5 A max-heap

6

8

9

2 3

4

Fig. 12.6 An example of a max-heap

Formally, a binary heap tree must satisfy two properties:

1. Structure property
2. Heap-order property

Let us discuss these properties in detail.

Structure property This property is described by the following list:

1. A binary tree is complete if it is of height h and has 2h+1 - 1 nodes.
2. A binary tree of height h is complete iff

(a) it is empty, or
(b) its left subtree is complete of height h - 1 and its right subtree is completely full

of height h - 2, or
(c) its left subtree is completely full of height h - 1 and its right subtree is complete

of height h - 1.

3. A complete tree is filled from the left when
(a) all the leaves are on

(i) the same level or
(ii) two adjacent ones

(b) all nodes at the lowest level are as far to the left as possible

Heap-order property This property is described by the following:

1. A binary tree has the heap property iff
(a) it is empty or
(b) the key in the root is larger than either children and both subtrees have the heap

property

Heaps 559

DSUC c12 V5 January 24, 2013 9:59 AM Page 559

12.2 IMPLEMENTATION OF HEAP

To implement heaps using array is an easy task. We
simply number the nodes in the heap from top to bot-
tom, number the nodes on each level from left to right,
and store the ith node in the ith location of the array.
The root of the tree is stored at index 0, its left child at
index 1, its right child at index 2, and so on.

For example, consider Fig 12.7.
Figure 12.8 shows the corresponding array representation of the heap.

Data

Index

9

0

8

1

4

2

6

3

2

4

3

5 6 7

Fig 12.8  Array representation of heap in Fig. 12.7

In this array,

1. parent of the node at index i is at index (i - 1)/2
2. left child of the node at index i is at index 2 ¥ i + 1
3. right child of the node at index i is at index 2 ¥ i + 2

For example, in Fig. 12.8,

1. the node having value 8 is at the 1st location.
2. Its parent is at 0/2, that is, at the 0th location (value is 9).
3. Its left child is at 2 ¥ 1 + 1, that is, at the 3rd location (value is 6).
4. Its right child is at 2 ¥ 1 + 2, that is, at the 4th location (value is 2).

Let us consider the heap tree in Fig. 12.9 in its logical form.

35 2 13 09

46

68

22

Fig. 12.9 A heap tree

The physical representation of the heap tree of Fig. 12.9 is shown in Fig. 12.10. We rep-
resent the tree using an array as in Fig. 12.10 using the rules stated.

6

8

9

2 3

4

Fig. 12.7 Sample heap

560 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 560

Data

Index

68

0

46

1

22

2

35

3

02

4

13 09

5 6

Fig. 12.10  Representation of heap in Fig. 12.9 as array

12.3 HEAP As ABsTRACT DATA TYPE

A heap is a complete binary tree, which satisfies the heap-order property, that is, the key
value of each node is greater than or equal to the key value of its children (or the key value
of each node is lesser than or equal to the key value of its children). The basic operations
on heap are insert, delete, max-heap, and min-heap.

ADT Heap

1. Create()ÆHeap

2. Insert(Heap, Data)ÆHeap

3. DeleteMaxVal(Heap)ÆHeap

4. ReHeapDown(Heap, Child)ÆHeap

5. ReHeapUp(Heap, Root)ÆHeap

End

The C++ class declaration for this ADT is as follows:

class HeapNode
{
 int A[max];
 int n; //No. of elements heap contains
};

class Heap
{
 private:
 HeapNode *Root;
 void ReHeapUp(int i);
 void ReHeapDown(int i);
 public:
 Heap();
 {
 for(int i = 0; i < max; i++)
 A[i] = 0;
 }
 void Create();
 void Insert(int i);
 void DeleteMaxVal();
};

Heaps 561

DSUC c12 V5 January 24, 2013 9:59 AM Page 561

12.3.1 Operations on Heaps

The basic operations on heaps are listed as follows:

1. Create—creates an empty heap to which the root points
2. Insert—inserts an element into the heap
3. Delete—deletes max (or min) element from the heap
4. ReheapUp—rebuilds the heap when we use the insert() function
5. ReheapDown—rebuilds the heap when we use the delete() function

A heap is generally not traversed, searched, or printed. To implement the insert and
delete operations, we need two other operations: reheapUp and reheapDown. The advanced
operations include merge, which merges two heaps.

ReheapUp

If we have a nearly complete binary tree with n elements, the first n - 1 elements
satisfy the order property of heaps, but the last element does not. That is, the structure
would be a heap if the last element was not there. The reheapUp operation repairs the
structure so that it is a heap by lifting the last element up the tree until that element reaches
a proper position in the tree. This restructuring can be graphically viewed in Fig. 12.11.

ReheapUp

Fig. 12.11 ReheapUp operation

We can note that in Fig. 12.11 the last node in the heap was out of order. After the
reheap, it is in its correct location, and the heap has been extended by one node.

As a heap is a complete or nearly complete tree, the node must be placed in the last leaf
level at the first leftmost empty position as in Fig. 12.11. If
the new node’s key is larger than its parent, it is lifted up the
tree by exchanging the child and parent keys and the data. The
data eventually moves to the correct position in the heap by
repeatedly exchanging child–parent keys and data. In brief,
reheapUp repairs a broken heap by lifting the last element up
the tree until it reaches the correct location in the heap.

Figure 12.12 shows a general heap structure.
Let us consider an example.

Fig. 12.12 General heap
structure

562 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 562

Figure 12.13 shows a tree which is not a heap after adding 36.

53

43

31

32

23

21 3626

27

24

41

Fig. 12.13 A tree, not a heap

Here, 36 is greater than its parent, 23; hence, it is an invalid heap. We therefore
exchange 36 and 23 and call reheapUp to test its current position in the heap. We obtain
the tree as shown in Fig. 12.14.

53

43

31

32

36

21 2326

27

24

41

Fig. 12.14 36 moved up

Once again, 36 is greater than its parent, 32. Therefore, we again exchange the data and
find that when reheapUp is called, the node is placed at the correct position, and hence,
the operation stops. We get the heap as shown in Fig. 12.15.

53

43

31

36

32

21 2326

27

24

41

Fig. 12.15 A heap after 36 is moved up

Let us see this process through a C++ code given in Program Code 12.1.

Heaps 563

DSUC c12 V5 January 24, 2013 9:59 AM Page 563

Program CoDE 12.1

// ReheapUp operation is required when a new value is

// inserted at the ith location

void Heap :: ReHeapUp(int i)

{

 int temp;

 while(i > 0 and a[i] > a[(i − 1) /2])

 {

 // swap a[i] with its parent, i.e., [(i − 1)/2]th element

 temp = a[i]; A[i] = a[(i − 1)/2]; A[(i − 1)/2] = temp;

 i = i/2;

 }

}

// Following is the function code for inserting a number

// into heap.

void Heap :: Insert(int x)

{

 // new element x is inserted at last position of an array

 a[n] = x;

 // reheap operation is called after inserting new value

 ReHeapUp(n);

}

 ReheapDown

When we have a nearly complete binary tree that satisfi es the heap-order property except
in the root position, we need the reheapDown operation. Suc h situations occur when the
root is deleted from the tree, leaving two disjointed heaps. To correct such situations, we
move the data in the last tree node to the root. Obviously, such actions disturb the tree’s
heap properties. To restore the heap, we need an operation that will sink the root down
until the heap ordering property is satisfi ed and thus the operation reheapDown comes
into action. Figure 12.16 shows a reheapDown operation.

Fig. 12.16 ReheapDown

ReheapDown

564 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 564

Let us consider a broken heap as in Fig. 12.17.

21

43

31

32

23

26

27

24

41

Fig. 12.17 Original tree, not a heap

Here, the root 21 is smaller than its subtrees. We examine them and select the larger of the
two to exchange it with the root, which is now 43.

Having made the exchange, as in Fig. 12.18, we check whether 21 is smaller than
its keys.

43

21

31

32

23

26

27

24

41

Fig. 12.18  Root 21 moved down to the right

Once again, we exchange 21 with the larger subtree 41 and get the tree as in Fig. 12.19.

43

41

31

32

23

26

27

24

21

Fig. 12.19  21 moved down again yielding a heap

Heaps 565

DSUC c12 V5 January 24, 2013 9:59 AM Page 565

From Fig. 12.19, we can see that we have reached a leaf and can stop now.
Let us see how this can be implemented using C++ in Program Code 12.2.

Program CoDE 12.2

// ReheapDown operation is required when deleting an

// element from top location

void Heap :: ReHeapDown(int i)

{

 int temp;

 while(2 * i < n)

 {

 j = 2 * i + 1;

 // j index s hows the left child of the node

 if(j + 1 < n && a[j + 1] > a[j])

 // fi nding max from left and right child

 j = j + 1;

 if(a[i] > a[j]) break;

 // if root > children then break

 else

 {

 // swap a[i] with a[j]

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 i = j;

 }

 } // end of while

}

// Following is the code for function for deleting

// maximum value from heap.

void Heap :: Delete_MaxVal()

{

 int temp;

 // swap 0th element with last value of an array

 temp = a[0];

 a[0] = a[n − 1];

 a[n − 1] = temp;
 // reheapdown operation is called to delete max

value from fi rst location

 ReHeapDown(0);

}

566 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 566

Insert

A node can be inserted in a heap which has already been built, if there is an empty location
in the array. To insert a node, we need to search the first empty leaf in the array. We find it
immediately after the last node in the tree. To insert a node, we move the new data to the first
empty leaf and perform reheapUp. Let us consider the heap already built as in Fig. 12.20.

98

52

43

76

2865

87

39

Heap

To be inserted

98 76 52 65 28 43 39 87

Fig. 12.20 Sample heap

The heap in Fig. 12.20 has seven elements in it. Let us consider that the element 87 is
to be inserted. Initially, 87 is stored at the last empty location as the first empty leaf of the
heap. Thus, we heapify it to store the element in the proper position. The resultant heap
is shown in Fig. 12.21.

98

52

43

87

2876

65

39

Heap

98 87 52 76 28 43 39 65

Fig. 12.21  Heap after insertion of 87

Delete

While removing a node from a heap, the most common and meaningful logic is to delete
the root. The heap is thus left without a root. To reconstruct the heap, we move the data
in the last heap node to the root and perform reheapDown. Let us consider the heap tree
as shown in Fig. 12.22. The data at the top of the heap is returned by the delete operation.

Heaps 567

DSUC c12 V5 January 24, 2013 9:59 AM Page 567

80

34

25

69

1058

47

21

80 69 34 58 10 25 21 47 ...

Fig. 12.22 Sample heap

When the delete operation is performed for the
heap in Fig. 12.22, it returns the element 80 at the
root. In the delete operation, 47 (the last node value)
is placed at the root value. Now, reheapDown is per-
formed again to reconstruct a heap. The reconstructed
heap is shown in Fig. 12.23.

Creating a Heap

The unsorted keys are taken sequentially one at a time and added into a heap. The size of
the heap grows with the addition of each key. The ith key (ki) is added into an existing heap
of size i - 1 and a heap of size i is obtained. Initially, the node is placed in the heap of size
i - 1 in such a way that an almost complete constraint is satisfied. The value of ki is then
compared with its parent’s key value. If ki is greater, the contents of the newly added node
and that of the parent’s node are exchanged. This process continues until either ki is at
the root node or the parent’s key value is not less than ki. The final tree is a heap of size i.

Let us assume that the heap is housed in an array where the relationships of the tree
are not physically represented by link fields. Instead, they are implicit in the way we store
them in the array. We store the binary tree in the array level-by-level, left to right. For
example, Fig. 12.24 shows a binary tree.

Figure 12.25 shows its corresponding rep-
resentation as an array.

30

40

35

25

2820 45

Fig. 12.24  Binary tree

69

34

25

58

1047 21

Fig. 12.23 Reconstructed heap
after deletion of 80

[0]

[1]

[2]

[3]

[4]

[5]

[6]

25

20

28

35

45

40

30

Fig. 12.25  Array representation of Fig. 12.24

568 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 568

The root is stored in heap[0] and the last node in heap[maxnodes], where maxnodes is
the number of nodes in the heap. We may note that for any node heap[i], its two children
reside in heap[i × 2 + 1] and heap[i ¥ 2 + 2]. If we want to know the parent of any node[k],
we can get it at the node[(k - 1)/2].

Now, let us write an algorithm as shown in Algorithm 12.1 to create a heap of size i by
adding a key to a heap of size i − 1 where i ≥ 1.

algorithm 12.1
s = i;
/* find the parent node of i in the array */
parent = (s − 1)/2;
key[s] = newkey;
while(s >= 0 && key[parent] <= key[s])
{
 /* interchange parent and child */
 temp = key[parent];
 key[parent] = key [s];
 key[s] = temp;
 /* advance one level up in the tree */
 s = parent;
 parent = (s − 1)/2;
}

This algorithm is called for each addition of a new key to the heap.
For example, consider the following unsorted list of keys.

 8, 20, 9, 4, 15, 10, 7, 22, 3, 12

Figures 12.26(a)–(j) show the building of a heap using this list of keys.

8

(a)

(b)

8

8

20

20

(c)

20

8 9

(d)

20

9

4

8

(e)

20 20

415

15

4

9 98

8

Heaps 569

DSUC c12 V5 January 24, 2013 9:59 AM Page 569

Fig. 12.26  Building a heap  (a) Heap size 1  (b) Heap size 2  (c) Heap size 3  (d) Heap size 4 
(e) Heap size 5  (f) Heap size 6  (g) Heap size 7  (h) Heap size 8  (i) Heap size 9  (j) Heap size 10

(i)

8 9

4 3

20

22

15

10

7

(j)

8 9 9

4

20 20

2222

15

1010

7

3 12

12

4

15

3 8

7

(f) (g)

20 20 20

151515

10

10 10

74 4 4

9

9 98 8 8

20 20

8 89 94

4

22

22

15 1510 10

77

(h)

88 99

4 4

20

20

22

22

15 15

1010

7 7

570 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 570

 Let us see how w e can create a f unction for inserting one element at a time through C++
in Program Code 12.3.

Program CoDE 12.3

void Heap :: Create()

{

 int i, data;

 cout << “\n Enter number of elements: ”;

 cin >> n;

 cout << “\n Enter data:”;

 for(i = 0; i < n; i++)

 {

 cin >> data;

 insert(data);

 }

}

There is one more way of heap creation that has linear time complexity. The steps for
creation are as follows:

1. Organize the entire collection of data elemen ts as a binary tree stored in an array
indexed from 0 to n-1, where for any node at index i, its two children, if they exist,
will be stored at indexes 2 ¥ i + 1 and 2 ¥ i + 2.

2. Divide the binary tree into two parts: the top part in which the data elements are in their
original order and the bottom part in which the data elements are in their heap order,
where each node is in higher order tha n its children, if any.

3. Start the bottom part with the half of the array, which contains only leaf nodes. Of
course, it is in heap order, because the leaf nodes have no children.

4. Move the last node from the top part to the bottom part, compare its order with its
children, and swap its location with its highest order child if its order is lower than any
child. Repeat the comparison and swapping to ensure the bottom part is in heap order
again with this new node added.

5. Repeat step 4 until the top part is empty. At this time, the bottom part bec omes a
complete heap tree.

Array 33

Index

44

0 1 2 3 4

11 55 77

5

90

6

40 60

7

99

8

22

9

88

10

66

11

The steps to build the heap are shown in Fig. 12.27.

Heaps 571

DSUC c12 V5 January 24, 2013 9:59 AM Page 571

44

33

55

60 99 22

77 90 40

11

88 66

44

33

55

60 99 22

88 90 40

11

77 66

(a) (b)

44

33

99

60 55 22

88 90 40

11

77 66

44

99

33

60 55 22

88 11 40

90

77 66

(c) (d)

99

44

60

33 55 22

88 66 40

90

77 11

(e) (f)

44

99

60

33 55 22

88 66 40

90

77 11

99

88

60

33 55 22

77 66 40

90

44 11

(g) (h)

99

88

60

33 55 22

44 66 40

90

77 11

Fig. 12.27  Steps to build a heap for the array (44, 33, 11, 55, 77, 90, 40, 60, 99, 22, 88, 66)

572 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 572

After building the heap, its array will be as follows:

99 88 90 60 77 66 40 33 55 22 44 11

Its implementation using C++ code is as follows:

void Heap :: CreateHeap()
{
 // create heap
 int i;
 for(i = (n − 1)/2; i >= 0; i−−)
 reheapdown(i);
}

12.4 HEAP APPLICATIONs

Heaps are commonly used in the following operations:

1. Selection problem
2. Scheduling and prioritizing (priority queue)
3. Sorting

Let us discuss them in detail.

Selection problem

For the solution to the problem of determining the kth element, we can create the heap
and delete k - 1 elements from it, leaving the desired element at the root. So the selection
of the kth element will be very easy as it is the root of the heap. For this, we can easily
implement the algorithm of the selection problem using heap creation and heap deletion
operations. This problem can also be solved in O(nlogn) time using priority queues.

Scheduling and prioritizing (priority queue)

The heap is usually defined so that only the largest element (that is, the root) is removed at
a time. This makes the heap useful for scheduling and prioritizing. In fact, one of the two
main uses of the heap is as a priority queue, which helps systems decide what to do next.

Implementing and programming this structure is not as difficult as it was with a normal
BST because the denseness and fullness allow us to conveniently represent the heap with
an array. In a 0-indexed array, the first element has the index 0; a node at the index n has
a parent node at (n - 1)/2, rounded down. The major advantage of using heaps here is that
they are fast, efficient, and require minimal storage space.

Applications of priority queues where heaps are implemented include the following:

1. CPU scheduling
2. I/O scheduling
3. Process scheduling

Heaps 573

DSUC c12 V5 January 24, 2013 9:59 AM Page 573

Sorting

Other than as a priority queue, the heap has one other important usage, heap sort. Heap
sort is one of the fastest sorting algorithms, achieving speed as that of the quicksort and
merge sort algorithms. The advantages of heap sort are that it does not use recursion, and
it is efficient for any data order. There is no worst-case scenario in the case of heap sort.
Let us discuss heap sort in detail.

12.5 HEAP sORT

The steps for building heap sort are as follows:

1. Build the heap tree.
2. Start deleteHeap operations, storing each deleted element at the end of the heap array.

After performing step 2, the order of the elements will be opposite to that in the heap tree.
Hence, if we want the elements to be sorted in ascending order, we need to build the heap
tree in descending order—the greatest element will have the highest priority. Note that we
use only one array, treating its parts differently.

1. When building the heap tree, a part of the array will be considered as the heap, and the
remaining part will be the original array.

2. When sorting, a part of the array will be the heap, and the remaining part will be the
sorted array.

Consider the array 13, 17, 11, 6, 15, 8 as an example for heap sort. Using this example,
let us illustrate both the steps for heap sort.

Build heap tree The given array is represented as a tree, complete, but not ordered.

17 15 11 6 13 8

17

15 11

6 813

The following steps illustrate sorting by performing the deleteHeap operation till the
heap is empty.

Delete top element 17 The following steps illustrate the deletion of element 17.

Step 1: Store 17 in a temporary place. A hole is created at the top as shown in the following
figure.

574 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 574

17

15 11 6 13 8

15 11

6 813

Step 2: Swap 17 with the last element of the heap. As 8 will be adjusted in the heap, its
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

8

15 11 6

Heap
Sorted array

13 17

Step 3: Penetrate down the hole (8 is less than 15, so it cannot be inserted in the previous hole).

15

11

6

8

13

Step 4: Penetrate once more (as 8 is less than 13, here also it cannot be inserted in the
previous hole).

8

15 11 613 17

15

11

6

8

13

Heaps 575

DSUC c12 V5 January 24, 2013 9:59 AM Page 575

Now, 8 can be inserted in the hole.

15 13 11 6 8 17

15

13 11

6 8

Delete top element 15 The following steps illustrate the deletion of the top element, 15.

Step 1: Store 15 in a temporary place. A hole is created at the top.

15

1113 6 8 17

13 11

6 8

Step 2: Swap 15 with the last element of the heap. As 8 will be adjusted in the heap, its
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted
array.

8

13 11 6 15 17

13 11

6

8

576 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 576

Step 3: Penetrate down the hole, as 8 is less than 13.

13

11

6

8

Step 4: This is the representation of the heap after the penetration.

13 1511 68 17

13

11

6

8

Delete top element 13 The following steps illustrate the deletion of element 13.

Step 1: Store 13 in a temporary place. A hole is created at the top.

13

1511 68 17

11

6

8

Step 2: Swap 13 with the last element of the heap. As 6 will be adjusted in the heap, its
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

6

1511 138 17

11

6

8

Heaps 577

DSUC c12 V5 January 24, 2013 9:59 AM Page 577

Step 3: Penetrate down the hole, as 6 is less than 11.

11 6

8

Step 4: The heap looks like this after the penetration.

11 6 15138 17

11

68

Delete top element 11 The following steps illustrate the deletion of the top element 11.

Step 1: Store 11 in a temporary place. A hole is created at the top.

11

156 138 17

68

Step 2: Swap 11 with the last element of the heap. As 6 will be adjusted in the heap, its
cell will no longer be a part of the heap. Instead, it becomes a cell from the sorted array.

6

1511 138 17

8

8

Step 3: Penetrate down the hole, as 6 is less than 8.

8 6

578 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 578

Step 4: The heap looks like this after the penetration.

8 11 13 156 17

8

6

Delete top element 8 The following steps illustrate the deletion of the top element 8.

Step 1: Store 8 in a temporary place. A hole is created at the top.

8

1511 136 17

6

Step 2: Swap 8 with the last element of the heap. As 6 will be adjusted in the heap,
its cell will no longer be a part of the heap. Instead, it becomes a cell from the
sorted array.

6

1511 138 17

6

Step 3: The heap looks like this after the penetration.

6 1511 138 17

6

Heaps 579

DSUC c12 V5 January 24, 2013 9:59 AM Page 579

Delete top element 6 The following steps illustrate the deletion of the top element 6.

Step 1: Store 6 in a temporary place. A hole is created at the top.

6 1511 138 17

Empty heap Now, the heap is empty, so we stop and finally get the sorted array.

6 1511 138 17

12.6 BINOMIAL TREEs AND HEAPs

A binomial heap is a collection of binomial trees. We shall discuss binomial trees and
heaps in more detail in Sections 12.6.1 and 12.6.2.

12.6.1 Binomial Trees

A binomial tree is an ordered tree defined recursively. Figure 12.28 shows the binomial trees.

(b)

B1B0 B2 B3

Depth

0

1

2

3

(a)

Bk

B0

Bk−1

Bk−1

Fig. 12.28 Binomial trees (a) Recursive definition of the binomial tree Bk
(b) Binomial tree B0 through B3

580 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 580

Fig. 12.28  Binomial trees  (c) Another way of 
looking at the binomial tree Bk

(c)

Bk−1

Bk−2

Bk

B2

B1

B0

...

As shown in Fig. 12.28(a), the binomial tree B0 consists of a single node.
For the binomial tree Bk,

1. there are 2k nodes
2. the height of the tree is k

3. there are exactly k
i() nodes at depth i for i = 0, 1, …, k

4. the root has degree k, which is greater than that of any other node; moreover, if the
children of the root are numbered from left to right by k - 1, k - 2, …, 0, the child i is
the root of a subtree

Always remember that the maximum degree of any node in n-node binomial tree is
logn.

12.6.2 Binomial Heap

A binomial heap H is a set of binomial trees that satisfies the following binomial heap
properties.

1. Each binomial tree in H follows the min-heap property. We say that each such tree is
min-heap ordered.

2. For any non-negative integer k, there is utmost one binomial tree in H whose root has
degree k.

Figure 12.29 shows an example of a binomial heap H.
From Fig. 12.29, it is clear that the heap consists of three binomial trees B0, B1, B2,

and B3. Since each binomial tree is min-heap-ordered, the key of any node is less than
that of its parent. Also shown is the root list, which is a linked list of roots in the order of
increasing degree.

Heaps 581

DSUC c12 V5 January 24, 2013 9:59 AM Page 581

11 2

2613

19

9

1812

29

7

3116

40

head[H]

Fig. 12.29  A binomial heap with 13 nodes

12.6.3 Representation of Binomial Heap

The node of a binomial heap can be represented by five tuples as shown in Fig. 12.30.

Parent Points to the parent node

Key Key value, that is, data

Degree Degree of each node, that is, the number of
children it has

Child Points to any of its child node (mostly pointing to
its leftmost child)

Siblings Points to a sibling node, that is, used to maintain
the singly-circular lists of siblings

As shown in Fig. 12.31, the roots of the binomial trees are
organized in a linked list, which we refer to as root list.

Null

11

Null

1

Null

2

2

13

1

26

Null

0

19

Null

0

Null

Null

head[H]

Fig. 12.31  Representation of binomial heap of Fig. 12.29 using five-tuple node

Parent

Key

Degree

Child Sibling

Fig. 12.30 Representation of
a node of binomial heap

582 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 582

The binomial heap H is accessed by the field head[H], which is simply a pointer to the
first root in the root list of H.

12.6.4 Operations on Binomial Heaps

There are various operations of binomial heaps. They are as follows:

1. CreateBHeap—Creates an empty binomial heap, that is, simply allocates and returns
an object H, where head[H] = null.

2. FindMinimumKey—Returns a pointer to the node with the minimum key in an n-node
binomial heap H.

3. UnitingTwoBHeap—Takes the union of the two binomial heaps.
4. InsertNode—Inserts a node into binomial heap H.
5. ExtractMinimumKeyNode—Extracts the node with the minimum key from a binomial

heap H and returns the pointer to the extracted node.
6. DecreaseKey—Decreases the key of a node in a binomial heap H to a new value k.
7. DeleteKey—Deletes the specified key from binomial heap H.

12.7 FIBONACCI HEAP

Similar to the binomial heap, Fibonacci heap is a collection of min-heap-ordered
trees. The trees in a Fibonacci are not constrained to be binomial trees. Figure 12.32
shows an example of the Fibonacci heap consisting of 5 min-heap-ordered trees and
15 nodes.

9

23

15 18 36

30

5

33

2124 40

min[H]

12 2 19 25

Fig. 12.32  An example of Fibonacci heap

The solid double line indicates the root list. The min[H] pointing to the minimum node
of the heap contains the minimum key. If the Fibonacci heap is empty, then min[H] will
be null. Unlike binomial heap (which is ordered), the trees within Fibonacci heaps are
rooted but unordered.

12.7.1 Representation of Fibonacci Heap

Fibonacci heap can be represented using the Fibonacci heap nodes. The representation of
such a node is shown in Fig. 12.33.

Heaps 583

DSUC c12 V5 January 24, 2013 9:59 AM Page 583

The node of a Fibonacci heap can be represented by seven tuples.

Parent Points to the parent node

Key Key value, that is, data

Degree Degree of each node, that is, the number of children
it has

Child Points to any of its child node (mostly pointing to its
leftmost child)

Mark The Boolean-valued field indicates whether the node
has lost a child since the last time the node was made the child
of another node. The newly created nodes are unmarked (i.e.,
the default value is false)

Left Points to the left sibling node, that is, used to maintain the doubly circular lists of siblings

Right Points to the right sibling node, that is, used to maintain the doubly circular lists
of siblings

The roots of all the trees in Fibonacci heap are linked together using left and right pointers
into circular doubly-linked list called root list of the Fibonacci heap (Fig. 12.34).

Null

False

9

0

False

15

1

False

False

23

0

False

30

0

18

1

False

36

0

False

5

0

Null

False

12

3

Null

False

2

1

Null

Null

Null Null

Null

Fig. 12.34  Representation of binomial heap of Fig. 12.32 using seven-tuple node

Parent

Key

Mark

Degree

Left Child Right

Fig. 12.33 Representation
of a node of Fibonacci heap

584 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 584

12.7.2 Operations on Fibonacci Heaps

There are various operations of binomial heaps. They are as follows:

1. CreateFHeap—Creates an empty Fibonacci Heap, that is, simply allocates and returns
an object H, where min[H]=null

2. FindMinimumKey—Returns min[H], a pointer to the node with the minimum key in
an n-node Fibonacci heap H

3. UnitingTwoFHeap—Takes the union of the two Fibonacci heaps
4. InsertNode—Inserts a node into Fibonacci heap H
5. ExtractMinimumKeyNode—Extracts the node with minimum key from Fibonacci

heap H and returns the pointer to the extracted node
6. DecreaseKey—Decreases the key of a node in a Fibonacci heap H to a new value k.
7. DeleteKey—Deletes the specifi ed key from Fibonacci heap H.

RECAPITULATION

•  A  complete  or  nearly  complete  binary  tree 
where each node is greater or equal to its chil-
dren with each subtree satisfying this property 
is called as heap.

•  The basic operations on heap are insert, delete, 
reheapUp, and reheapDown.

•  Heap can be implemented using an array as 
it is a complete binary tree. It is easy to main-
tain fi xed relationship between a node and its 
children.

•  Among  many  applications  of  heap,  the  key 
ones are priority queue, sorting, and selection.

•  Priority queue is  implemented using heap by 
maintaining its relationship of element with
other members in a list.

•  One of the popular sorting techniques is heap 
sort that uses heaps.

•  The  heap  is  popularly  used  in  applications 
where at each stage, the largest element is to
be picked up for processing known as selection
problem.

KEY TERMs

Delete from heap A key can be deleted from a heap
if it is the root value. After deletion, the heap with-
out root is repaired by the reheapDown operation.
The last node key is placed at the root and then re-
heapDown operation places it at the proper location.

Heap A heap is a complete binary tree (or nearly
complete binary tree) having the key in a node
greater than the key in its entire subtree. Each
subtree is also a heap.

Insert into heap A new key can be inserted into a
heap. Initially, a new key is inserted by locating

the fi rst empty leaf location in an array, and the
reheapUp operation places it in a proper location
in the heap.

ReheapDown When a key is pushed down the
heap, the reheapDown operation ensures that it is
less than its children (may be one or more), and if
it is, exchanges it with larger key.

ReheapUp A broken heap is repaired using the re-
heapUp operation by fl oating the last element up
the tree until it reaches its correct location in the
heap.

Heaps 585

DSUC c12 V5 January 24, 2013 9:59 AM Page 585

EXERCIsEs

Multiple choice questions

 1. For the given array representation of a heap,
which of these represents a min-heap?

 (i) 0 2 4 7 5 5 6
 (ii) 5 7 8 6 9 9 10
 (a) (i) only
 (b) (ii) only
 (c) Both (i) and (ii)
 (d) None
 2. What will be the array representation of a max-

heap with the following insertions?
 40, 80, 35, 90, 45, 50, 70
 (a) 90 80 70 40 45 35 50
 (b) 90 80 70 45 40 50 35
 (c) 90 70 80 40 45 35 50
 (d) 90 70 80 45 40 50 35
 3. If 100 is added to the heap 40, 80, 35, 90, 45, 50,

70, what will be the new array representation?
 (a) 90 80 70 40 45 35 50 100
 (b) 100 90 70 80 45 35 50 40
 (c) 100 90 80 70 40 45 35 50
 (d) 100 80 90 70 40 45 35 50
 4. What is the minimum and maximum number of

elements in a heap of size h?
 (a) 2(h - 1), (2h + 1) - 1
 (b) 2h, (2h + 1) - 1
 (c) 2(h - 1), (2h) - 1
 (d) (2h) - 1, (2h + 1) - 1
 5. What feature of heaps allows them to be

effi ciently implemented using a partially fi lled
array?

 (a) Heaps are binary search trees.
 (b) Heaps are complete binary trees.
 (c) Heaps are full binary trees.
 (d) Heaps contain only integer data.
 6. What will be the number of elements in the

left subtree and right subtree of the heap if the
following elements are inserted in the order: 45,
26, 84, 63, 27, 94, 47?

 (a) (3, 3)
 (b) (2, 4)

 (c) (4, 3)
 (d) (4, 2)
 7. For the following heap, what will be the

corresponding array representation?

a

b

c d f g

e

 (a) a b e c d f g
 (b) a b e c f d g
 (c) a b e d f c g
 (d) a b e c d f g
(Hint: Perform breadth-fi rst traversal.)
 8. A priority queue is implemented as a max-heap.

Initially, it has fi ve elements. The level order
traversal of the heap is given here.

 10, 8, 5, 3, 2
 The two new elements 1 and 7 are inserted in the

heap in that order. A level order traversal of the
heap after the insertion of the elements is:

 (a) 10, 8, 7, 5, 3, 2, 1
 (b) 10, 8, 7, 2, 3, 1, 5
 (c) 10, 8, 7, 1, 2, 3, 5
 (d) 10, 8, 7, 3, 2, 1, 5
 9. In a heap with n elements with the smallest

element at the root, the 7th smallest element can
be found in time

 (a) _(nlogn)
 (b) _(n)
 (c) _(logn)
 (d) _(1)
10. A data structure is required for storing a set

of integers such that each of the following
operations can be done in (logn) time, where n
is the number of elements in the set.

 (i) Deletion of the smallest element

586 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 586

 (ii) Insertion of an element if it is not
already present in the set

 Which of the following data structures can be
used for this purpose?

 (a) A heap can be used but not a balanced BST.
 (b) A balanced BST can be used but not a heap.
 (c) Both balanced BST and heap can be used.
 (d) Neither balanced BST nor heap can be

used.

Review questions

 1. Which of the following sequences are heaps?
 (a) 42 35 37 20 14 18 7 10
 (b) 42 35 18 20 14 30 10
 (c) 20 20 20 20 20 20
 2. Show which item would be deleted from the

following heaps after calling the delete algorithm
thrice:

 50 30 40 20 10 25 35 10 5
 3. Show the resulting heap after 33, 22, and 8 are

added to the following heap:
 50 30 40 20 10 25 35 10 5
 4. Show the step-by-step creation of a binary heap

for the given keys:
 11, 19, 17, 5, 80, 14, 1, 10, 23, 34, 22
 5. Write a function to insert a node in binary heap.

Give an example.
 (a) Show the array implementation of heap
 (b) Apply the deletion operation to the heap.

Repair the heap after deletion
 (c) Insert 38 into the following heap. Repair the

heap after insertion

40

23

11
13

32

25

8 10

21

 (d) Using the delete operation, delete root 40
and replace with the last value 10 at the root
and reheapDown for the following tree.

10

23

11
13

32

25

8

21

 (e) Insert 38 into the following heap. Repair the
heap after insertion.

32

23

11
13

25

10

8 38

21

 6. Define max-heap. Write a pseudo C++ code for
the following operations on max-heap. Mention
time complexity of each operation.

 (a) Insertion of an element in max-heap
 (b) Deletion of max element from max-heap
 7. Write an algorithm to take n elements and do the

following operations:
 (a) Insert them into the heap one by one.
 (b) Build a heap in linear time.
 8. Write a pseudo C++ code to convert a given

complete binary tree into a min-heap. Analyse
your algorithm for computation time.

 9. Show the result of inserting 10, 12, 1, 14, 6, 5,
8, 15, 3, 9, 7, 4, 11, 13, 2, one element at a time,
into an initially empty binary heap.

Heaps 587

DSUC c12 V5 January 24, 2013 9:59 AM Page 587

10. After creating the heap for question 9, delete the
element 8 from the heap. How do you repair the
heap?

11. Write a C++ code to implement binomial heap
and its operations.

12. Write a C++ code to implement Fibonacci heap
and its operations.

13. Compare binomial heap and Fibonacci heap.
14. Create a priority queue using the following data.

The first number is a priority and the letter is the
data: 3-A 5-B 3-C 2-D 1-E 2-F 3-G 2-H 2-I 2-J

15. Show the contents of the priority queue 11, 19,
17, 5, 80, 14, 1, 10, 23, 34, 22 after deleting the
items from the queue.

16. Show the contents of the priority queue 11, 19,
17, 5, 80, 14, 1, 10, 23, 34, 22 after deleting three
elements from it.

17. Write a pseudo C++ code for reheapUp to build
a minimum heap.

18. Write a pseudo C++ code for reheapDown to
create a minimum heap.

Answers to multiple choice questions

1. (a) 2. (a) 3. (b)

90

100

80 45 35 50

40

70

4. (c) Given: Minimum number of nodes with height n(h) = 1
Number of nodes upto height n(hi – 1) = (2h – 1) - 1
Thus, the min. number of nodes at height = Sum of preceding two equations

= (2h - 1) - 1 + 1 = 2h - 1
The maximum number of nodes at height = 2h - 1.
Thus, the option is 3.
5. (d) By definition. To make a guess, a bridge in real life connects two parts. Hence, its removal should

separate them.
6. (a) The final heap will be

588 data structures using c++

DSUC c12 V5 January 24, 2013 9:59 AM Page 588

27

26

63 45 94 84

47

One need not even construct the tree. The simplest way is that there are seven nodes, that is, six nodes
for left and right subtree. For a heap, it’s quite obvious that the division has to be 3–3, as a heap is a
complete binary tree.
7. (d) 8. (d) 9. (d)
With large n, the number of comparisons required for finding the 7th smallest element becomes
irrelevant of the height (logn) of the heap. It can be found out in constant time. Hence, the answer
is option (d).
 10. (c)

An important area in computer science is information retrieval. An information
retrieval application, a database, which may contain a wide variety of data structures,

is maintained on an online basis using large random access fi les. These fi les are searched
for requested information based on index items generated from a user query. One of the
problems associated with information retrieval systems and especially automated library
systems is creating a good indexing scheme. We shall learn about indexing schemes in
this chapter.

13.1 INTRODUCTION

 A fi le is a collection of records, each record having one or more fi elds. The fi elds used
to distinguish among the records are known as keys. File organization describes the way
in which records are stored in a fi le. File organization is concerned with representing
data records on an external storage media. The choice of such a representation depends
on the environment where the fi le is to operate, for example, real-time, batched, simple
query, one key, or multiple keys. When there is only one key, the records may be stored
on this key and stored sequentially either on a tape or a disk. This results in a sequentially
ordered fi le. This organization is good for fi les operating in batched retrieval and update
modes when the number of transactions batched is large enough to make the processing
cost effective. When the number of keys is more than one or when real time responses are
need ed, a sequential organization is not adequate. I n a general situation, several indices
may have to be maintained. In these cases, the fi le organization breaks down into two
more aspects:

INDEXING AND MULTIWAY
TREES13

OBJECTIVES

After completing this chapter, the reader will be able to u nderstand the following:
 • Indexing techniques
 • B-trees which prove invaluab le for problems of external information re trieval
 • A class of trees called tries, which share some properties of table lookup
 • Important uses of trees in many search techniques

590 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 590

Directory for the collection of indices

File organization for the physical organization of records

Many alternative file organizations exist, each suitable in a particular situation. File orga-
nization is the way records are organized on a physical storage. One such organization
is sequential (ordered and unordered). In this general framework, processing a query or
updating a request would proceed in two steps:

1. The indices would be interrogated to determine the parts of the physical file to be
searched.

2. These parts of the physical file will be searched.

Depending upon the kinds of indices maintained, the second stage may involve only
the accessing of records satisfying the query or may involve retrieving non-relevant
records too.

Let us study about indexing and the different indexing schemes.

13.2 INDEXING

One of the most popular indices is a book index. An index of a book is a table contain-
ing a list of topics (keys) and page numbers where the topic can be found (reference
fields).

An index, whether it is a book or a data file index (in computer memory), is based
on the basic concepts such as keys and reference fields. The index to a book provides
a way to find a topic quickly. Imagine a book that does not have a good index. Then,
we have only one solution, that is, to scan the whole book sequentially for finding a
particular topic. In general, indexing is a way of finding things quickly.

To search some topics in a book is a problem which cannot be solved by methods we
have studied in Chapter 9, searching and sorting. Rearranging all the words in the book
in alphabetical order certainly would make finding any particular term easier, but would
obviously have disastrous effects on the meaning of the book. Even though this book
example, where the words in the book are referred to as pinned records, is absurd, it
clearly underscores the power and importance of the index as a conceptual tool. Indexing
works on indirect addressing. An index lets us impose order on a file without rearranging
the file.

One more example where indexing is used is a library. To locate a book by a specific
author, title, or subject, we can take the card catalog. The card catalog is actually a set
of three indices, each using a different key field and all of them using the same cata-
log number as a reference field. Another use of indexing is to provide multiple access
paths to a file. The advantage of indexing is that it gives keyed access to variable length
records.

indexing and Multiway trees 591

DSUC c13 V6 January 24, 2013 10:01 AM Page 591

13.2.1 Indexing Techniques

A directory is a collection of indices. It may contain one index for every key or only one
index for some of the keys. If an index contains an entry for every record, then it is called
a dense index. If an index contains an entry for only some of the records, then it is non-
dense index. In some cases, all the indices may be integrated into one large index.

The index is a collection of pairs of the form (key value, address). For example, con-
sider the sample data for employee file as in Table 13.1.

Table 13.1 Employee records
Record Emp. no. Name Occupation Disk address

A

B

C

D

E

100

500

300

200

400

Saurabh

Abolee

Anagha

Abhijeet

Devnarayanan

Developer

Project head

Developer

Project head

Developer

P1

P2

P3

P4

P5

Suppose P1, P2, P3, P4, P5 are the disk addresses where these records are stored. Let
‘Emp. no.’ be the key. Then, the index will have the entries (100, P1), (500, P2), (300, P3),
(200, P4), and (400, P5). This is a dense index because the key is distinct for all records
and there is an entry for each record. If we keep ‘Occupation’ as the key, then the index
will be (Developer, q1), (Project Head), q2), where q1 is a disk address that stores the list
of addresses of all developers, that is, P1, P3, and P5, and q2 is a disk address that stores
the list of addresses of all project heads, that is, P2 and P4. This is also a dense index.

Index can also be maintained as the key value—address1, address2, …, addressn.
However, if the number of records associated with each key varies, then it results in vari-
able size nodes and complex storage management.

Different operations on the index are searching a key, modifying some entry in the
index, inserting a new entry, and deleting an entry from the index. An index is too large
and has to be maintained on the external storage. Let us see some indexing techniques.

Cylinder-surface Indexing

This is the simplest type of index organization. It is useful only for the primary key index
of a sequentially ordered file. In a sequentially ordered file, the physical sequence of
records is ordered by the key, called the primary key. The employee file in Table 13.1 is
not sequentially ordered if ‘Emp. no.’ is a primary key because that field is not sorted.
The sequentially ordered file can be stored on a tape or a disk. Disk memory has many
surfaces, each surface having tracks. A cylinder j consists of track j on all the surfaces. So,
the sequential interpretation of disk memory can be done in the following way. First, all
tracks on cylinder 1 are accessed, then cylinder 2, and so on. So the read/write heads are
moved one cylinder at a time. This is shown in Fig. 13.1.

592 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 592

Surface 1
Surface 1

Surface S

2 Surface 2 Surface S...

Cylinder 1 Cylinder 2

Cylinder C

Cylinder C...

Cylinder j
.
.
.

Fig. 13.1 Cylinder-surface indexing

The cylinder-surface index consists of a cylinder index and several surface indices.
If the file requires 1 through C cylinders, then there are C entries in the cylinder index.
There is one entry corresponding to the largest key value in each cylinder. For each cyl-
inder, there is a surface index. If the disk has S usable surfaces, then each surface index
has S entries. The total number of surface index entries is C ¥ S. For example, consider
Table 13.2.

Table 13.2 Employee records cylinder-surface indexing

Emp. no. Emp. name Cylinder Surface
1

2

3

4

5

6

7

8

Abolee

Anand

Amit

Amol

Rohit

Santosh

Saurabh

Shila

1

1

1

1

2

2

2

2

1

1

2

2

1

1

2

2

Let there be two surfaces and two records stored per track. The file is organized
sequentially on the field ‘Emp. name’. The corresponding cylinder index is given in
Table 13.3.

Table 13.3 Cylinder index for Table 13.2

Cylinder Highest key value
1

2

Amol

Shila

The surface index for cylinder 1 is the surface highest key value: Anand, Amol.
The surface index for cylinder 2 is the surface highest key value: Santosh, Shila.

indexing and Multiway trees 593

DSUC c13 V6 January 24, 2013 10:01 AM Page 593

A search for a record with a particular key value K is done in the following way.
First, the key cylinder index is read into memory. In general, it has a few hundred
entries, so it fits in one track. The cylinder index is searched to determine the required
cylinder number, and then, for this cylinder, its surface index is read into memory and
searched for the track. Then, this track is read in and searched for the key. For example,
if we search for a record with the key ‘Rohit’, then the cylinder index tells that the
record is either on cylinder 2 or not in the file. If the surface index of cylinder 2 is
searched, then it shows that the record is either on surface 1 or not in the file. So in the
second track t2, 1 is read and searched for. The desired record is found on this track. So
the total number of disk accesses to get a record is three—one for the cylinder index,
one for the surface index, and one for the track of records. If the track sizes are very
large, then a sector index is maintained. If several disks are used to store a file, then a
disk index is also maintained.

This method of maintaining a file and index is referred to as indexed sequential access
method (ISAM). It is the simplest file organization for single key files but not useful for
multiple key files.

Hashed Indexing

The operations related to hashed indices are the same as those for hash tables. This has
been discussed in detail in Chapter 11.

13.3 TYPES OF SEARCH TREES

We have studied BSTs (binary search trees), AVL trees, optimal binary search trees, and
heaps in Chapter 7. These were binary trees with outgoing degree two. For large data,
these trees grow to a great height. To avoid these problems, we retain the properties of
BSTs and increase the outgoing degree more than two. In a BST, the node maintains two
links for its left and right child, whereas in a multiway search tree, each node can maintain
more than two links for its more than two subtrees. Such search trees have vast applica-
tions such as dictionary, spell checks, and external file indices.

13.3.1 Multiway Search Tree

Binary search trees generalize directly to multiway search trees. A multiway search
tree is a tree of order m, where each node has utmost m children. Here m is an integer.
If k £ m is the number of children, then the node contains exactly k - 1 keys, which
partition all the keys in the subtrees into k subsets. If some of these subsets are empty,
then the corresponding children in the tree are empty. Figure 13.2 shows a 5-way
search tree.

We always want to construct a multiway search tree that will minimize file accesses.
So the height of the tree should be as small as possible, for example, B-tree and
B+ tree.

594 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 594

d

b

a f g i m n o q s t u

h j k l r w x y zc

e p v

Fig. 13.2 5-way search tree

13.3.2 B-tree

When we want to locate and retrieve records stored in a disk file, the time required for a
single access is thousand times greater for external retrieval than for internal information
retrieval.

Our goal in external searching is to minimize the number of disk access since each
access takes so long compared to internal computation. Multiway trees are especially
appropriate for external searching.

A B-tree is a balanced multiway tree. A node of the tree contains many records or keys
of records and pointers to children.

To reduce disk access, the following points are applicable:

1. Height is kept minimum.
2. All leaves are kept at the same level.
3. All nodes other than leaves must have at least minimum number of children.

B-tree Definition

A B-tree of order m is a multiway tree with the following properties:

1. The number of keys in each internal node is one less than the number of its non-empty
children, and these keys partition the keys in the children in the fashion of the search
tree.

2. All leaves are on the same level.
3. All internal nodes except the root have utmost m non-empty children and at least Èm/2˘

non-empty children.
4. The root is either a leaf node, or it has from two to m children.
5. A leaf node contains no more than m - 1 keys.

Its node structure is given in Fig. 13.3.

indexing and Multiway trees 595

DSUC c13 V6 January 24, 2013 10:01 AM Page 595

Ptr1 Key1 Ptr2 Key2 Ptri Keyi … Key(n–1) Ptrn

X

X < Key 1

X

Key(i–1) <X < Keyi

X

X > Key(n–1)

Fig. 13.3 Node structure for B-tree

The B-tree of order 5 for Fig. 13.3 shown in Fig. 13.4.

l

d

a e h i j kf m n p q r t u v x y zb c

g o s w

Fig. 13.4 B-tree of order 5

The maximum number of items in a B-tree of order m and height h is shown in
Table 13.4.

Table 13.4 B-tree of order m and height h

Level Number of keys
Root m - 1

Level 1 m(m - 1)

Level 2 m2(m - 1)

Level h mh(m - 1)

So, the total number of items is

 (1 + m + m2 + m3 + … + mh)(m - 1) = [(mh+1 - 1)/ (m - 1)] (m - 1) = mh+1 - 1 (13.1)

When m = 5 and h = 2, Eq. (13.1) gives 53 - 1 = 124.

596 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 596

We will describe a B-tree of order 5 using a C++ structure. The declaration of B-tree
node is given in Fig. 13.5.

Data 1

Child 0 Child 1 Child 2 Child 3 Child 4

Data 2 Data 3 Data 4

Fig. 13.5 Node structure of 5-way B-tree

Let us see how this can be implemented using the C++ code as in Program Code 13.1.

program CoDe 13.1

#defi ne max 4

#defi ne min 2

// Maximum number of keys in a node is m − 1,

// therefore max_keys = m − 1 = 5 − 1 = 4

// Minimum number of keys in a node is [m/2] − 1,

// therefore min_keys = [m/2] − 1

// = [5/2] − 1 = 2

class btnode

{

 public:

 int count;

 int data[max + 1];

 btnode *child[max + 1];

};

class btree

{

 int push_down(int, btnode*, int*, btnode**);

 void pushin(int, btnode*, btnode*, int);

 void split_node(int, btnode*, btnode*, int, int*,

btnode**);

 void del_node(int, btnode*);

 void remove_key(btnode*, int);

 void successor(btnode*, int);

 void restore(btnode*, int);

 void move_right(btnode*, int);

 void move_left(btnode*, int);

 void combine_nodes(btnode*, int);

 int search_node(int, btnode*, int*);

indexing and Multiway trees 597

DSUC c13 V6 January 24, 2013 10:01 AM Page 597

 btnode*search(int, btnode*, int*);

 public:

 btnode* root;

 void display();

 btnode* del(int, btnode*);

 void pre_rec(btnode*);

 btnode* insert(int, btnode*);

};

Reasons for using B-trees B-trees are widely used for the following reasons:

1. The cost of each disk transfer is high when the searching tables are held on disk and do
not depend much on the amount of data transferred, especially if the consecutive items
are transferred. Consider a condition of the B-tree of order 101. We can transfer each
node in one disk read operation.

2. A B-tree of order 101 and height 3 can hold 1014 - 1 items (approximately 100 million),
and any item can be accessed with three disk reads (assuming we hold the root in memory).

3. When a balanced tree is required and if we take m = 3, we get a ‘2–3 tree’, where the
non-leaf nodes have two or three children (i.e., one or two keys).

4. B-trees are always balanced (since the leaves are all at the same level), so 2-3 trees
make a good type of balanced tree.

Operations on B-tree

The following are the operations performed on a B-tree.

Searching a node The function search_node() determines if the new key is in
the current node and if not, fi nds which of the children should be searched for. This is
described in Program Code 13.2.

program CoDe 13.2

/* Search_node() searches a new key in the current node.

If found returns its position in the current node, else

returns child which should be searched next */

int btree :: search_node(int newkey, btnode *curr, int

*pos)

{

 if(newkey < curr->data[1])

 {

 *pos = 0;

 return 0;

 }

598 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 598

 else

 {

 *pos = curr->count;

 while((newkey < curr->data[*pos]) && (*pos > 1))

 (*pos)--;

 if(newkey == curr->data[*pos])

 return 1;

 else

 return 0;

 }

}

Searching a B-tree In Program Code 13.3, the search() function traverses the B-tree.

program CoDe 13.3

btnode * btree :: search(int newkey, btnode *root, int

*pos)

{

 if(!root)

 {

 return null;

 }

 else if(search_node(newkey, root, pos))

 return root;

 else

 return search(newkey, root->child[*pos], pos);

}

If a new key is present in it, then it returns the pointer to the node and the position of the
new key in it; otherwise, it returns null.

Inserting a key into a B-tree Binary search trees grow at their leaves, but the B-trees
grow at the root. The general method of insertion is as follows:

1. First, the new key is searched in the tree. If the new key is not found, then the search
terminates at a leaf.

2. Attempt to insert the new key into a leaf.
3. If the leaf node is not full, then the new key is added to it and the insertion is fi nished.
4. If the leaf node is full, then it splits into two nodes on the same level, except that the

median key is sent up the tree to be inserted into the parent node.

indexing and Multiway trees 599

DSUC c13 V6 January 24, 2013 10:01 AM Page 599

5. If this would result in the parent becoming too big, split the parent into two, promoting
the middle key.

6. This strategy might have to be repeated all the way to the top.
7. If necessary, the root is split into two and the middle key is promoted to a new root,

making the tree one level higher.

Let us see one example to build a B-tree of order 5 for the following data: 78, 21, 14, 11,
97, 85, 74, 63, 45, 42, 57, 20, 16, 19, 52, 30, 21. This is illustrated in Figs 13.6(a)–(g).
First the numbers 78, 21, 14, and 11 are inserted. The tree looks as in Fig. 13.6(a) post
insertion. Then 97 is inserted, an overflow occurs at 21, and the tree is split as in Fig.
13.6(b). The numbers 85, 74, and 63 are inserted and again the tree is split as shown in
Fig. 13.6(c). Figure 13.6(d) shows the split tree after insertion of 45, 42, and 57; Fig.
13.6(e) shows the split tree after insertion of 20, 16, and 19. Finally 52, 30, and 21 are
inserted as shown in Fig. 13.6(f) and the final tree after split is shown in Fig. 13.6(g). The
overflow in each step is depicted by encircling the number.

(a)

(b)

(c)

(d)

(e)

21

21

11 14 21 78

16 21 57 78

11 14

11 14

21 78 785721

785721

11 1411 14

78 97

11 14 42 45 63 74 85 9785 97

42 45 63 74 85 97 11 14 19 20 42 45 63 74 85 97

63 74 85 97

21 78 97

42 45 57 63 74

11 14 16 19 20

63 74 78 85 97

11 14

21 78

600 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 600

Fig. 13.6 Building a B-tree (a) Step 1 (b) Step 2 (c) Step 3
(d) Step 4 (e) Step 5 (f) Step 6 (g) Final tree

(f)

(g)

42

85 9763 7419 2011 14

11 14

16 21 57 78

19 20 21 30 45 52 63 74 85 97

21 30 42 45 52

16 21 57 78

In step 6, because of the overflow, data 42 moves up the root, and then the root becomes

16 21 42 57 78

So the root also overflows and splits. So 42 becomes the root of the final B-tree.
We should note two important points in the growth of B-trees.

1. When a node splits, it produces two nodes that are now only half full. So, later insertions
may be made without any split again. Hence, one split prepares the way for several
simple insertions.

2. It is always the median key that is sent upward. This improves the balance of the tree,
no matter in what order the keys happen to arrive.

As shown in Fig. 13.7, the current node is split if it is full. After split, ‘current’ will be
a left child and medright will be a right child, and meddata is a median key.

Current

p q r s p q r s

Current medright

meddatanewdata

Fig. 13.7 Splitting the B-tree

The function insert() inserts newdata into the B-tree and then returns the root.
This is shown in Program Code 13.4.

indexing and Multiway trees 601

DSUC c13 V6 January 24, 2013 10:01 AM Page 601

program CoDe 13.4

/* Function to insert newdata in B-tree */

btnode *btree :: insert(int newdata, btnode *root)

{

 int meddata;

 btnode *medright, *newroot;

 if(push_down(newdata, root, &meddata, &medright))

 {

 /* Tree if growing */

 newroot = new btnode;

 newroot->count = 1;

 newroot->data[1] = meddata;

 newroot->child[0] = root;

 newroot->child[1] = medright;

 return newroot;

 }

 return root;

}

In Program Code 13.5, push_down() recursively moves down the B-tree searching for
new data. newdata is inserted into the subtree to which the node ‘current’ points. If true
is returned, then the height of the subtree is increased and meddata should be reinserted
higher in the tree, with subtree medright on its right.

program CoDe 13.5

Int btree :: push_down(int newdata, btnode *curr, int

*meddata, btnode **medright)

{

 int pos;

 if(curr == null)

 {

 /* cannot insert into empty subtree, so terminate */

 *meddata = newdata;

 *medright = null;

 return 1;

 }

 else

 {

 /* Search the current node */

 if(search_node(newdata, curr, &pos))

602 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 602

 cout << "\n\nError Duplicate Keys Cannot Be

Inserted!!";

 if(push_down(newdata, curr->child[pos], meddata,

medright))

 {

 if(curr->count < max)

 {

 /* Reinsert median key */

 pushin(*meddata, *medright, curr, pos);

 return 0;

 }

 else

 {

 /* Split node */

 split_node(*meddata, *medright, curr, pos,

meddata, medright);

 return 1;

 }

 }

 return 0;

 }

}

In Program Code 13.6, pushin() inserts the key meddata and its right-hand pointer
medright into the node *curr at index pos.

program CoDe 13.6

void btree :: pushin(int meddata, btnode *medright,

btnode *curr, int pos)

{

 int p;

 for(p = curr->count; p > pos; p--)

 {

 /* Shift all the keys and child pointers to the

right */

 curr->data[p + 1] = curr->data[p];

 curr->child[p + 1] = curr->child[p];

 }

 curr->data[pos + 1] = meddata;

 curr->child[pos + 1] = medright;

 curr->count++;

}

indexing and Multiway trees 603

DSUC c13 V6 January 24, 2013 10:01 AM Page 603

Splitting a full node The split_node() function splits a full node *curr with data
meddata, and child pointer medright at index pos into nodes *curr and *newright and
leaves the median key in the new median. The C++ code for splitting node is provided in
Program Code 13.7.

program CoDe 13.7

void btree :: split_node(int meddata, btnode *medright,

btnode *curr, int pos, int *newmedian, btnode **newright)

{

 int p, median;

 if(pos <= min)

 median = min;

 else

 median = min + 1;

 /* Create a new node and put it on the right */

 *newright = new btnode;

 for(p = median + 1; p <= max; p++)

 {

 /* Move half the keys */

 (*newright)->data[p - median] = curr->data[p];

 (*newright)->child[p - median] = curr->child[p];

 }

 (*newright)->count = max - median;

 curr->count = median;

 if(pos <= min)

 {

 pushin(meddata, medright, curr, pos);

 }

 else

 {

 pushin(meddata, medright, *newright, pos - median);

 }

 *newmedian = curr->data[curr->count];

 (*newright)->child[0] = curr->child[curr->count];

 curr->count--;

}

Deleting from a B-tree During insertion, the key always goes into a leaf. For deletion,
if we wish to remove from a leaf, there are three possible ways mentioned as follows:

1. If the key is already in a leaf node and removing it does not cause that leaf node to have
too few keys, then simply remove the key to be deleted.

604 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 604

2. If the key is not in a leaf, then it is guaranteed (by the nature of a B-tree) that its
predecessor or successor will be in a leaf—in this case, we can delete the key and
promote the predecessor or successor key to the non-leaf deleted key’s position.

3. If these two conditions lead to a leaf node containing less than the minimum number of
keys, then we have to look at the siblings immediately adjacent to the leaf in questions
listed as follows:
(a) If one of them has more than the minimum number of keys, then we can promote

one of its keys to the parent and take the parent key into our lacking leaf.
(b) If neither of them has more than the minimum number of keys, then the lacking

leaf and one of its neighbours can be combined with their shared parent (the
opposite of promoting a key), and the new leaf will have the correct number of
keys; if this step leaves the parent with very few keys, then we repeat the process
up to the root itself, if required.

If the leaf contains more than the minimum number of entries, then the data can be deleted
with no further action.

Consider the example as in Figs 13.8(a) and (b).

a b

(a)

j

c f m r

d e g h i k l n p s t u x

Now, delete h.

(b)

j

c f m r

a b d e g i k l n p s t u x

Fig. 13.8 Sample tree (a) Before deleting h (b) After deleting h

If the node contains the minimum number of entries, then look at the two leaves that are
immediately adjacent to each other and are children of the same node. If one of these has

indexing and Multiway trees 605

DSUC c13 V6 January 24, 2013 10:01 AM Page 605

more than the minimum number of entries, then one of them can be moved into the parent
node, and the entry from the parent can be moved into the leaf where the deletion occurs.

Figure 13.9 shows the B-tree when the leaf node r is deleted from Fig. 13.8(b).

j

c f m s

a b d e g i k l n p t u x

Fig. 13.9 Tree after r is deleted and s is moved to parent

Figure 13.10 shows the tree after deletion of p.

Fig. 13.10 Tree after p is deleted, s is moved down, and t is moved up to the parent

j

c f m t

a b d e g i k l n s u x

If the adjacent leaf has only the minimum number of entries, then the two leaves and
the median entry from the parent can be combined as one new leaf, which will contain no
more than the maximum number of entries allowed.

The process is repeated if required.
From the B-tree in Fig. 13.10, the leaf node d is deleted. The process of deleting and

combining is shown in Figs 13.11(a)–(c).

(a)

j

c f m t

a d e g i k l n s u xb

Combine

606 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 606

Fig. 13.11 Deleting and combining operations (a) Deletion of node d
(b) Combining (c) Final B-tree

(c)

a e g i n sk l u xb c

f tj m

(b)

j

f m t

a e g i k l n s u xb c

Combine

This is the fi nal B-tree after the deletion of d. The combine process is repeated twice.
Let us see how the deletion operation can be implemented using C++ as shown in

Program Code 13.8.

program CoDe 13.8

// DeleteBtree() deletes targetkey from the B-tree and

// returns the root

btnode *btree :: del(int key, btnode *root)

{

 btnode *oldroot;

 del_node(key, root);

 if(root->count == 0)

 {

 oldroot = root;

 root = root->child[0];

 delete oldroot;

 }

 return root;

}

In Program Code 13.9, del_node() searches the targetkey in the curr node. If
it is found and the node is a leaf, then the immediate successor of the key is found and

indexing and Multiway trees 607

DSUC c13 V6 January 24, 2013 10:01 AM Page 607

is placed in the current node, and the successor is deleted. After deletion, the function
checks to see if enough entries remain in the appropriate node, and if not, move entries
as required.

program CoDe 13.9

void btree :: del_node(int key, btnode *curr)

{

 int pos;

 if(!curr)

 {

 cout << "\n\n Target Not Found";

 return ;

 }

 else

 {

 if(search_node(key, curr, &pos))

 {

 if(curr->child[pos − 1])

 {

 /* targetkey found, replace data [pos] by

it successor */

 successor(curr, pos);

 del_node(curr->data[pos], curr->child[pos]);

 }

 else

 remove_key(curr,pos); /* removes key from

pos of *current */

 }

 else /* Target key not found in the current

node, search a subtree */

 del_node(key, curr->child[pos]);

 if(curr->child[pos])

 {

 if(curr->child[pos]->count < min)

 restore(curr, pos);

 }

 }

}

The remove_key() function removes the target key from pos in the curr node and
shifts the remaining keys one position ahead. The implementation of this operation is as
in Program Code 13.10.

608 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 608

program CoDe 13.10

void btree :: remove_key (btnode *curr, int pos)

{

 int p;

 for(p = pos + 1; p <= curr->count; p++)

 {

 curr->data[p − 1] = curr->data[p];

 curr->child[p − 1] = curr->child[p];

 }

 curr->count−−;

}

void btree :: successor (btnode *curr, int pos)

{

 btnode *leaf;

 leaf = curr->child[pos];

 while(leaf->child[0])

 leaf = leaf->child[0];

 curr->data[pos] = leaf->data[1];

}

The function restore() restores the minimum number of entries. It fi rst searches the sib-
ling on the left to take an entry and uses the right sibling only when there are no entries to spare
in the left one. The working is shown in Program Code 13.11 using the function restore().

program CoDe 13.11

void btree :: restore (btnode *curr, int pos)

{

 if(pos == 0) /* leftmost key */

 {

 if(curr->child[1]->count > min)

 move_left(curr, 1);

 else

 combine_nodes(curr, 1);

 }

 else if(pos == curr->count)

 {

 if(curr->child[pos − 1]->count > min)

 move_right(curr, pos);

 else

 combine_nodes(curr, pos);

indexing and Multiway trees 609

DSUC c13 V6 January 24, 2013 10:01 AM Page 609

 /* Remaining cases */

 }

 else if(curr->child[pos − 1]->count > min)

 move_right(curr, pos);

 else if(curr->child[pos + 1]->count > min)

 move_left(curr, pos + 1);

 else

 combine_nodes(curr, pos);

}

Figure 13.12 shows the working of the move_right() function.

Current

Move right

v

t u w vt

u

w

a b c d a b c d

Fig. 13.12 Move right function

The move_right() function as given in Program Code 13.12, moves data from *curr
node into the child[pos] and then moves the rightmost data from child[pos − 1] into
the current node.

program CoDe 13.12

void btree :: move_right (btnode *curr, int pos)

{

 int p;

 btnode *temp;

 /* Set temp to right node of current */

 Temp = curr->child[pos];

 for(p = temp->count; p > 0; p−−)

 {

 /* Shift all keys in the right node one position

ahead */

 temp->data[p + 1] = temp->data[p];

 temp->child[p + 1] = temp->child[p];

 }

610 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 610

 temp->child[1] = temp->child[0];

 /* Increase count of right node */

 temp->count++;

 /* Move data from current to fi rst place of right

node */

 temp->data[1] = curr->data[pos];

 temp = curr->child[pos − 1];

 /* Move last data from left node into current */

 curr->data[pos] = temp->data[temp->count];

 curr->child[pos]->child[0] = temp->child[temp->count];

 /* Decrease count of left node */

 temp->count−−;

}

Similarly, we can write a move_left() function given in Program Code 13.13, which
moves data from *curr node into the child[pos − 1] and then moves the leftmost entry
from child[pos] into *curr node.

program CoDe 13.13

void btree :: move_left (btnode *curr, int pos)

{

 int p;

 btnode *temp;

 temp = curr->child[pos − 1];

 /* Increase count of right node */

 /* Move data from current into last place of left

node and increase its count */

 temp->count++;

 temp->data[temp->count] = curr->data[pos];

 temp->child[temp->count] = curr->child[pos]->child[0];

 /* Set temp to right node of current */

 temp = currentÆchild[pos];

 /* Move data from fi rst place of right node

into last place of current and decrease count of

right node */

 curr->data[pos] = temp->data[1];

 temp->child[0] = temp->child[1];

 temp->count−−;

 /* Shift all keys in right node one position left */

 for(p = 1; p <= temp->count; p++)

indexing and Multiway trees 611

DSUC c13 V6 January 24, 2013 10:01 AM Page 611

 {

 temp->data[p] = temp->data[p + 1];

 temp->child[p] = temp->child[p + 1];

 }

}

Figure 13.13 illustrates the combining of nodes.

Current

Combine nodes

a

u

v

v

zt zt

w u w

b c d a b c d

Fig. 13.13 Combining nodes

Program Code 13.14 elaborates the working of the function combine_nodes().

program CoDe 13.14

void btree :: combine_nodes(btnode *curr, int pos)

{

 int p;

 btnode*left, *right;

 left = curr->child[pos − 1];

 right = curr->child[pos];

 /* Move data from current into left node and

increase count of left, decrease count of current

*/

 left->count++;

 left->data[left->count] = curr->data[pos];

 left->child[left->count] = right->child[0];

 /* Copy all data and child pointers from right node

into left node */

 for(p = 1; p <= right->count; p++)

 {

 left->count++;

 left->data[left->count] = right->data[p];

 left->child[left->count] = right->child[p];

 }

612 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 612

 /* Delete the data from current which is moved into

left node and shift the remaining data one position

left */

 for(p = pos; p < curr->count; p++)

 {

 curr->data[p] = curr->data[p + 1];

 curr->child[p] = curr->child[p + 1];

 }

 curr->count−−;

 delete right;

}

This function combines the adjacent nodes at child[pos − 1] and child[pos] of
*curr node into one node. In addition, data at pos in *curr node is moved into the com-
bined node.

B-tree as Abstract Data Type

We have studied the implementation of various functions for a B-tree. The B-tree as an
ADT is defi ned in Program Code 13.15.

program CoDe 13.15

/*****Implementation of B-tree*****/

#include<iostream.h>

#include<conio.h>

#include<stdio.h>

#include<process.h>

#defi ne max 4

#defi ne min 2

class btnode;

class qnode

{

 public:

 btnode* data;

 qnode* next;

 qnode(btnode* t){data = t; next = null;}

};

class queue

{

 qnode* front;

 qnode* rear;

indexing and Multiway trees 613

DSUC c13 V6 January 24, 2013 10:01 AM Page 613

 public:

 queue(){front = null; rear = null;}

 void add(btnode* t);

 btnode* remove();

 int isempty(){if(front == null)return 1;else

return 0;}

};

void queue :: add(btnode* t)

{

 if(front == null)

 front = rear = new qnode(t);

 else

 rear = rear->next = new qnode(t);

}

btnode* queue :: remove()

{

 btnode* t;

 if(isempty())

 return 0;

 qnode* x = front;
 t = front->data;
 front = x->next;
 delete x;

 return t;

}

class btnode

{

 public:

 int count;

 int data[max + 1];
 btnode *child[max + 1];
};

class btree

{

 int push_down(int, btnode*, int*, btnode**);

 void pushin(int, btnode*, btnode*, int);

 void split_node(int, btnode*, btnode*, int, int*,

btnode**);

 void del_node(int, btnode*);

614 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 614

 void remove_key(btnode*, int);

 void successor(btnode*, int);

 void restore(btnode*, int);

 void move_right(btnode*, int);

 void move_left(btnode*, int);

 void combine_nodes(btnode*, int);

 int search_node(int, btnode*, int*);

 btnode*search(int, btnode*, int*);

 public:

 btnode* root;

 void display();

 btnode* del(int, btnode*);

 void pre_rec(btnode*);

 btnode* insert(int, btnode*);

};

void btree :: display()

{

 queue q;

 btnode* m;

 m = root;
 while(m)

 {

 for(int i = 0; i < m->count; i++)
 cout << m->data[i] << " ";

 for(i = 0; i < 5; i++)
 {

 if(m->child[i])

 q.add(m->child[i]);

 }

 m = q.remove();
 cout << "\n";

 }

}

void btree :: pre_rec(btnode *n)

{

 int i;

 if(n != null)
 {

 cout << endl << endl;

 for(i = 1; i <= n->count; i++)

indexing and Multiway trees 615

DSUC c13 V6 January 24, 2013 10:01 AM Page 615

 {

 cout << "\t" << n->data[i];

 }

 for(i = 0; i < n->count; i = i + 2)
 {

 pre_rec(n->child[i]);

 pre_rec(n->child[i + 1]);
 }

 if(n->count%2 = = 0)
 {

 pre_rec(n->child[n->count]);

 }

 }

}

btnode * btree :: del(int key, btnode *root)

{

 btnode *oldroot;

 del_node(key, root);

 if(root->count = = 0)
 {

 oldroot = root;
 root = root->child[0];
 delete oldroot;

 }

 return root;

}

void btree :: del_node(int key, btnode *curr)

{

 int pos;

 if(!curr)

 {

 cout << "\n\n Target Not Found";

 return;

 }

 else

 {

 if(search_node(key, curr, &pos))

 if(curr->child[pos - 1])
 {

 successor(curr, pos);

616 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 616

 del_node(curr->data[pos], curr->child[pos]);

 }

 else

 {

 remove_key(curr, pos);

 }

 else

 del_node(key, curr->child[pos]);

 if(curr->child[pos])

 {

 if(curr->child[pos]->count < min)

 restore(curr, pos);

 }

 }

}

void btree :: remove_key (btnode *curr, int pos)

{

 int p;

 for(p = pos + 1; p <= curr->count; p++)
 {

 curr->data[p - 1] = curr->data[p];
 curr->child[p - 1] = curr->child[p];
 }

 curr->count- -;
}

void btree :: successor (btnode *curr, int pos)

{

 btnode *leaf;

 leaf = curr->child[pos];
 while(leaf->child[0])

 leaf = leaf->child[0];
 curr->data[pos] = leaf->data[1];
}

void btree :: restore (btnode *curr, int pos)

{

 if(pos = = 0)
 if(curr->child[1]->count > min)

 move_left(curr, 1);

 else

indexing and Multiway trees 617

DSUC c13 V6 January 24, 2013 10:01 AM Page 617

 combine_nodes(curr, 1);

 else if(pos = = curr->count)
 if(curr->child[pos - 1]->count > min)
 {

 move_right(curr, pos);

 }

 else

 {

 combine_nodes(curr, pos);

 }

 else if(curr->child[pos - 1]->count > min)
 move_right(curr, pos);

 else if(curr->child[pos + 1]->count > min)
 move_left(curr, pos + 1);
 else

 combine_nodes(curr, pos);

}

void btree :: move_right (btnode *curr, int pos)

{

 int p;

 btnode *temp;

 temp = curr->child[pos];
 for(p = temp->count; p > 0; p- -)
 {

 temp->data[p + 1] = temp->data[p];
 temp->child[p + 1] = temp->child[p];
 }

 temp->child[1] = temp->child[0];
 temp->count++;
 temp->data[1] = curr->data[pos];
 temp = curr->child[pos - 1];
 curr->data[pos] = temp->data[temp->count];
 curr->child[pos]->child[0] = temp->child[temp-

>count];

 temp->count- -;
}

void btree :: move_left (btnode *curr, int pos)

{

 int p;

 btnode *temp;

618 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 618

 temp = curr->child[pos - 1];
 temp->count++;
 temp->data[temp->count] = curr->data[pos];
 temp->child[temp->count] = curr->child[pos]-

>child[0];

 temp = curr->child[pos];
 curr->data[pos] = temp->data[1];
 temp->child[0] = temp->child[1];
 temp->count- -;
 for(p = 1; p <= temp->count; p++)
 {

 temp->data[p] = temp->data[p + 1];
 temp->child[p] = temp->child[p + 1];
 }

}

void btree :: combine_nodes (btnode *curr, int pos)

{

 int p;

 btnode*left, *right;

 left = curr->child[pos - 1];
 right = curr->child[pos];
 left->count++;
 left->data[left->count] = curr->data[pos];
 left->child[left->count] = right->child[0];
 for(p = 1; p <= right->count; p++)
 {

 left->count++;
 left->data[left->count] = right->data[p];
 left->child[left->count] = right->child[p];
 }

 for(p = pos; p < curr->count; p++)
 {

 curr->data[p] = curr->data[p + 1];
 curr->child[p] = curr->child[p + 1];
 }

 curr->count- -;
 delete right;

}

int btree :: search_node(int newkey, btnode *curr,

int *pos)

indexing and Multiway trees 619

DSUC c13 V6 January 24, 2013 10:01 AM Page 619

{

 if(newkey < curr->data[1])

 {

 *pos = 0;
 return 0;

 }

 else

 {

 *pos = curr->count;
 while((newkey < curr->data[*pos]) && (*pos > 1))

 (*pos)- -;
 if(newkey = = curr->data[*pos])
 return 1;

 else

 return 0;

 }

}

btnode * btree :: search(int newkey, btnode *root, int

*pos)

{

 if(!root)

 {

 return null;

 }

 else if(search_node(newkey, root, pos))

 return root;

 else

 return search(newkey, root->child[*pos], pos);

}

btnode *btree :: insert(int newdata, btnode *root)

{

 int meddata;

 btnode *medright, *newroot;

 if(push_down(newdata, root, &meddata, &medright))

 {

 newroot = new btnode;
 newroot->count = 1;
 newroot->data[1] = meddata;
 newroot->child[0] = root;
 newroot->child[1] = medright;

620 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 620

 return newroot;

 }

 return root;

}

int btree :: push_down(int newdata, btnode *curr, int

*meddata, btnode **medright)

{

 int pos;

 if(curr = = null)
 {

 *meddata = newdata;
 *medright = null;
 return 1;

 }

 else

 {

 if(search_node(newdata, curr, &pos))

 cout << "\n\nError Duplicate Keys Cannot Be

Inserted!!";

 if(push_down(newdata, curr->child[pos], meddata,

medright))

 if(curr->count < max)

 {

 pushin(*meddata, *medright, curr, pos);

 return 0;

 }

 else

 {

 split_node(*meddata, *medright, curr, pos,

meddata, medright);

 return 1;

 }

 return 0;

 }

}

void btree :: pushin(int meddata, btnode *medright,

btnode *curr, int pos)

{

 int p;

 for(p = curr->count; p > pos; p- -)

indexing and Multiway trees 621

DSUC c13 V6 January 24, 2013 10:01 AM Page 621

 {

 curr->data[p + 1] = curr->data[p];
 curr->child[p + 1] = curr->child[p];
 }

 curr->data[pos + 1] = meddata;
 curr->child[pos + 1] = medright;
 curr->count++;
}

void btree :: split_node(int meddata, btnode *medright,

btnode *curr, int pos, int *newmedian, btnode *newright)

{

 int p, median;

 if(pos <= min)
 {

 median = min;
 }

 else

 {

 median = min + 1;
 }

 *newright = new btnode;
 for(p = median + 1; p <= max; p++)
 {

 (*newright)->data[p - median] = curr->data[p];
 (*newright)->child[p - median] = curr->child[p];
 }

 (*newright)->count = max − median;

 curr->count = median;

 if(pos <= min)

 {

 pushin(meddata, medright, curr, pos);

 }

 else

 {

 pushin(meddata, medright, *newright, pos − median);

 }

 *newmedian = curr->data[curr->count];

 (*newright)->child[0] = curr->child[curr->count];

 curr->count−−;

}

622 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 622

void main()

{

 int ch, c, n;

 char ans;

 btree b;

 b.root = null;

 clrscr();

 do

 {

 cout << "\n\t\t>>>>>>>B-tree operations main

menu<<<<<<<<<<<"

 <<"\n\n 1. Insert a key"

 <<"\n\n 2. Display the B-tree"

 <<"\n\n 3. Delete a key"

 <<"\n\n 4. Exit"

 <<"\n\n Enter choice:";

 ch = getche();
 ch = ch - '0';
 switch(ch)

 {

 case 1:

 do

 {

 cout << "\n\n\n\n Enter data:";

 cin >> n;

 b.root = b.insert(n, b.root);
 cout << "\n\n Do you want to insert more keys?";

 ans = getche();
 if(ans = = 'n' || ans = = 'N')
 break;

 }while(1);

 getch();

 break;

 case 2:

 b.pre_rec(b.root);

 getch();

 break;

 case 3:

 cout << "\n\n Enter key to be deleted: ";

 cin >> n;

 b.root = b.del(n, b.root);
 getch();

indexing and Multiway trees 623

DSUC c13 V6 January 24, 2013 10:01 AM Page 623

 break;

 case 4:

 exit(0);

 default:

 cout << "\n\tYou Have Entered An Invalid

Choice!!!!!!!";

 getch();

 break;

 }

 }while(1);

}

/*********************** OUTPUT ***********************

 >>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 1

Enter data:10

Do you want to insert more keys? y

Enter data: 20

Do you want to insert more keys? y

Enter data: 30

Do you want to insert more keys? n

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

 10 20 30

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 1

Enter data: 40

Do you want to insert more keys? y

Enter data: 50

624 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 624

Do you want to insert more keys? n

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

 30 10 20 40 50

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 3

Enter key to be deleted: 10

>>>>>>>B-tree operations main menu<<<<<<<<<<<

1. Insert a key

2. Display the B-tree

3. Delete a key

4. Exit

Enter choice: 2

 20 30 40 50

13.3.3 B+ Tree

B+ trees are internal data structures. That is, the nodes contain whatever information is
associated with the key as well as the key values. A variant of B-trees is often used as an
index tree. A B+ tree combines the features of ISAM and B-trees as follows:

1. In an index tree, the pointers in the internal nodes point to other index nodes.
2. The pointers in the leaf nodes are not nil, but rather point to where the information

associated with each key is stored on disk.
3. Each key must appear in a leaf node.
4. B-trees whose keys are only in the internal nodes of the tree and whose pointers in

the leaf nodes print to where the related information is stored externally are called
B+ trees.

5. Leaves are connected to form a linked list of keys in sequential order.
6. It has two parts—the index part consists of interior nodes and the sequence set consists

of leaf nodes.
7. B+ trees are used to store index sequential fi le organization; the key values in the

sequence set are the key values of record collections.

indexing and Multiway trees 625

DSUC c13 V6 January 24, 2013 10:01 AM Page 625

B+ Tree Structure

The structure of a B+ tree can be understood from the following points:

1. A B+ tree is in the form of a balanced tree where every path from the root of the tree
to a leaf of the tree is of the same length.

2. Each non-leaf node (internal node) in the tree has between Èn/2˘ and n children, where
n is fixed.

3. The pointer (Ptr) can point to either a file record or a bucket of pointers so as to point
to a file record.

4. Searching time is less in B+ trees but has some problem of wasted space.

Nodes of B+ Tree

A typical node structure of a B+ tree is shown in Fig. 13.14 with the nodes having the
following characteristics:

1. Internal node of a B+ tree with q -1 search values.
2. Leaf node of a B+ tree with q - 1 search values and q - 1 data pointers.

P1 K1 P2 K2 Pi Ki ...

... ...

Kn−1 Pn

(a)

(b)

Tree pointer

Data
pointer

Data
pointer

Data
pointer

Data
pointer

Pointer to next
leaf node
in tree

Tree pointer

X

X < K1

X

Ki−1 < X < Ki

X

X > Kn−1

Tree pointer

K1 Pr K2 Ki PrPr Kq−1 Prq−1 Pnext

Fig. 13.14 Nodes of a B+ tree (a) Internal node of a B+ tree with q -1 search values
(b) Leaf node of a B+ tree with q - 1 search values and q - 1 data pointers

Non-leaf nodes form a multi-level sparse index on the leaf nodes.

1. Each leaf can hold up to n - 1 values and must contain at least È(n - 1)/2˘ values.
2. Non-leaf node pointers point to tree nodes (leaf nodes). Non-leaf nodes can hold up to

n pointers and must hold at least Èn/2˘ pointers.

626 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 626

This seemingly minor change has some major effects on the algorithms. For example,
the leaf nodes and the internal nodes are treated differently when they split. When a leaf
node splits, a copy of the middle key is moved up to be a separator at the next level. When
an internal (index) node splits, the key itself is moved up to act as a separator.

Inserting nodes into a B+ tree The key value determines a record’s placement in a
B+ tree. The leaf nodes are maintained in sequential order and a doubly linked list (not
shown) connects each leaf page with its sibling page(s). This doubly linked list speeds the
data movement as the pages grow and contract.

We must consider three scenarios when we add a record to a B+ tree. Each scenario
causes a different action.

1. If the leaf is not full and index (internal) is not full
(a) Place the record in sorted position in the appropriate leaf node.

2. If the leaf is full and index is not full
(a) Split the leaf node.
(b) Place the middle key in the index node in sorted order.
(c) Left leaf node contains records with keys below the middle key.
(d) Right leaf node contains records with keys equal to or greater than the middle key.

3. If the leaf is full and index is full
(a) Split the leaf node.
(b) The records with keys < middle key go to the left leaf node.
(c) The records with keys ≥ middle key go to the right leaf node.
(d) Split the index node.
(e) The keys < middle key go to the left index node.
(f) The keys > middle key go to the right index node.
(g) The middle key goes to the next (higher level) index.

If the next level index node is full, continue splitting the index node.
For example, inserting a, d, g, f, and k produces the B+ tree as in Fig. 13.15.

f

a d f g k

Fig. 13.15 Representation of insert operation

The arrow from the leaf nodes point to where the information associated with the key can
be found.

indexing and Multiway trees 627

DSUC c13 V6 January 24, 2013 10:01 AM Page 627

Deleting nodes from a B+ tree The delete algorithm for B+ trees is listed as follows:

1. Leaf node not having keys < minimum keys and internal or index nodes not below the
fill factor.

Delete the record from the leaf page. Arrange keys in ascending order to fill void.
If the key of the deleted record appears in the index page, use the next key to replace it.

2. Leaf node having keys < minimum keys and internal or index nodes not below the fill
factor.

Combine the leaf page and its sibling. Change the index page to reflect the change.

3. Leaf node having keys < minimum keys and internal or index nodes below the fill
factor.
(a) Combine the leaf page and its sibling.
(b) Adjust the index page to reflect the change.
(c) Combine the index page with its sibling.

Continue combining index pages until you reach a page with the correct fill factor or you
reach the root page.

Another change is that the keys are deleted only from the leaf nodes. If a key to be
deleted is also a part of the indexing structure (that is, appears in an internal node), it can
remain in the index, for example, deleting f and j from the tree in Fig. 13.16 gives the
 B+ tree as in Fig. 13.17.

f j

a d j m r sf h i

Fig. 13.16 Sample B+ tree

f j

a d h i m r s

Fig. 13.17 Resultant tree after deletion
of f and i from Fig. 13.16

The index says that all keys less than f are in the left subtree and those greater than or
equal to f are in the right subtree. Likewise, all keys less than j are in the right subtree, all
keys less than j are in the left subtree, and those greater than or equal to g are in the right
subtree. This is still true.

Borrowing and coalescing are also slightly different because the old separator key can
be discarded.

For example, deleting g from the B+ tree as in Fig. 13.18 leaves the leftmost node one
key short.

Figure 13.19 is the result of borrowing h.

628 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 628

h k

a g k m r sh i j

Fig. 13.18 Sample tree for
deletion of g

i k

a h i j k m r s

Fig. 13.19 Resultant tree after
borrowing h from Fig. 13.18

Notice the difference in the B-tree. We rotated keys
from one sibling to parent to other sibling. Here, the
borrowed key goes directly into the sibling node and a
copy of the new leftmost node becomes the separator
in the parent. If we borrow from the left, however, a
copy of the borrowed key becomes the separator.

If we coalesce, the keys h, i, and j go into the left-
most node. This is shown in Fig. 13.20.

Since the pointers in the leaf nodes are not nil, we
must have another way to recognize a leaf node. One
way is to have a field in each node to mark the node as either an internal node or a leaf
node. Another way is to continue using the leftmost child pointer as the flag because we
need M - 1 pointers to point to the storage locations for M - 1 keys. By convention, we
could let the pointer to the right of a key point to the data, and we could let the leftmost
pointer be nil in a leaf node. This scheme handles the pointer consistently on insertion
because the new pointer in the recursive call is stored to the right of the separator key
being inserted.

If we do not use to the leftmost pointer to determine if we are at a leaf node, we can
use it to link all the leaf nodes together. Having the leaf nodes linked together allows us
to process the items in the file in order as well as access the items randomly via the index.

Advantages of B+ Trees over Indexed Sequential Access Method

The B+ tree is a dynamic index structure that adjusts gracefully to insertions and deletions
It has the following advantages:

1. It is a balanced tree.
2. The leaf pages are not allocated sequentially. They are linked together through pointers

(a doubly linked list).

13.3.4 Trie Tree

Instead of searching a tree using the entire key, we can consider the key to be a sequence
of characters (letters or digits, for example), and use these characters to determine a
multiway branch at each step. If we consider alphabetic keys, then we make a lexical

k

a h i j k m r s

Fig. 13.20 Resultant tree after
coalescing the keys h, i, and j into

the leftmost node of Fig. 13.19

indexing and Multiway trees 629

DSUC c13 V6 January 24, 2013 10:01 AM Page 629

26-ary tree. At the first level, take a branch according to the first letter; at the second level
of a tree, take a branch according to the second letter, and so on. If we consider the keys
made up of three letters p, q, r, of maximum size 3, then the lexical tree will be 3-ary tree
of level 3; nodes at first level having 3 pointers and 3 nodes at second level having 3 point-
ers each. So we get a total of 3 ¥ 3 pointers at the second level and 3 ¥ 3 ¥ 3 pointers at
the third level. Finally, we store the actual key at a leaf.

The largest word determines the height of the lexical tree. So the drawback of the lexi-
cal tree is that after a few levels, it becomes very large. One solution is to prune from the
tree all the branches that do not lead to any key. The resulting tree is called a trie (short
for reTRIEvaL and pronounced ‘try’).

Consider a trie describing the words made only from the letters p, q, and r. The pruned
branch can be shown as a null pointer marked with a cross in the node. Along with the
branches to the next level of the trie, each node contains a data pointer to a key. Figure
13.21 shows a trie tree.

p q r

p q r p q r p q r

p q r

p q r

p q r

p q r

p

pr qr

qrq

q r

qrp

Fig. 13.21 Example of a trie tree

So the number of steps needed to search a trie is proportional to the number of char-
acters in a key.

Declaration for Trie Tree

In each node of a trie tree, we have pointers to the next level and a pointer to the data.
Program Code 13.16 is implementation of trie tree and the various operations that can be
performed on it.

630 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 630

program CoDe 13.16

#defi ne maxchar 3 /* Key is formed using 3 letters p,

q, r only */

#defi ne max_key_length 5

class trieNode

{

 public:

 TrieNode *branch[maxchar];

 TrieData *dataptr;

};

typedef char key[max_key_length];

// SearchTrie() searches for the data starting from

// the root.

// If found, returns corresponding dataptr, otherwise

// returns null

TrieNode *SearchTrie(TrieNode *root, Key data)

{

 int p;

 for(p = 0; p < max_key_length&&root!=null; p++)

 {

 if(data[p]=='\0')

 break;

 /* data found, and root is pointing to the

node having pointer to data */

 else

 root = rootÆbranch[data[p] – 'p'];

 }

 if(root != null && rootÆdataptr == null)

 return null;

 return root;

}

13.3.5 Splay Tree

Of the many other variations on balanced binary trees, perhaps the most intriguing are the
splay trees, introduced by Sleator and Tarjan, which are self-adjusting.

Splay trees are a form of BSTs. A splay tree maintains a balance without any explicit
balance condition such as colour. Instead, ‘splay operations’, which involve rotations,
are performed within the tree every time an access is made. The amortized cost of
each operation on an n-node tree is O(log2n). One application of splay trees simplifi es
dynamic trees.

indexing and Multiway trees 631

DSUC c13 V6 January 24, 2013 10:01 AM Page 631

In an amortized analysis, the time required to perform a sequence of data structure
operations is averaged over all the operations performed. Amortized analysis can be used
to show that the average cost of an operation is small, if one averages over a sequence of
operations, even though a single operation might be expensive. Amortized analysis differs
from the average case analysis where the probability is not involved; an amortized analy-
sis guarantees the average performance of each operation in the worst case.

Let us consider Example 13.1 to understand how indexing and search trees help in
implementing practical applications efficiently.

 example 13.1 Consider a hospital management system maintaining patient records.
A patient who is currently in the hospital is said to be an active record, being consulted
and updated continuously by attending physicians and nurses. When the patient leaves
the hospital, the records become passive but still needed occasionally by the patient’s
physician or others. If, later, the patient is readmitted to the hospital, then the record
becomes active again. The process of making such records active should be done faster.

Solution If we use a BST or even an AVL tree, then the records of the newly admitted
patient’s records will go to a leaf position, far from the root, and the access will be slower.
Instead, we want to keep the records that are newly inserted or frequently accessed very
near to the root, while the inactive records are kept far off, that is, in the leaf positions.
However, we do not want to rebuild the tree into the desired shape. Instead, we need to
make a tree a self-adjusting data structure that automatically changes its shape to bring
the records closer to the root as they are used frequently, allowing inactive records to drift
slowly down towards the leaves. Such trees are called as splay trees.

Splay trees are BSTs that achieve our goals by being self-adjusting in the following
way: every time we access a node of the tree, whether for insertion or retrieval, we per-
form radical survey on the tree, lifting the newly accessed node all the way up so that it
becomes the root of the modified tree. Other nodes are pushed out of the way as neces-
sary to make space for this new root and not spacing them too far from the top position.
Inactive nodes, on the other hand, will slowly be pushed farther and farther from the root.

13.3.6 Red–black Tree

A BST of height h can implement any of the basic dynamic set of operations in O(h) time.
Here, the operations are fast and the height of the search tree is small, but if its height is
more, the performance may be no better than the linked list. Red-black trees are one of
many search-tree schemes that are balanced. In order to guarantee that basic dynamic set
operations, take O(log2n) time in the worst case.

Definition: A red–black tree is a BST with one extra bit of storage per node: its colour,
which can either be red or black. Red–black trees were invented by R. Bayer under the
same name ‘symmetric binary B-trees’. Guibas and Sedgewick studied their properties at
length and introduced the red/black colour convention.

632 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 632

The tree is balanced by constraining the way nodes can be coloured on any path from the
root to a leaf; red-black tree ensures that no such path is more than twice as long as any other.

Properties of red–black trees Red–black trees have all the characteristics of BSTs. In
addition, red-black trees have the following properties. In other words, a BST is a red-
black tree if it satisfies the following properties.

Each node of a tree contains these fields: colour, key, left, right, parent (and an optional
field rank). If a child or the parent of a node does not exist, the corresponding pointer field
of the node contains the value null.

1. Every node is either red or black.

Red node Black node

2. All the external nodes (leaf nodes) are black.
3. The rank in a tree goes from zero upto the maximum rank which occurs at the root. The

rank of two consecutive nodes differs by utmost 1. Each leaf node has a rank 0.
4. If a node is red, then both its children are black. In other words, consecutive red nodes

are disallowed. This means every red node is followed by a black node; on the other
hand, a black node may be followed by a black or a red node. This implies that utmost
50% of the nodes on any path from external node to root are red.

5. The number of black nodes on any path from but not including the node x to leaf is
called as black height of the node x, denoted as bh(x).

Every simple path from the root to a leaf contains the same number of black nodes.
In addition, every simple path from a node to a descendent leaf contains the same
number of black nodes.

6. If a black node has a rank r, then its parent has the rank r + 1.

Red

Red

Black Black

BlackBlack

r + 1 r + 1 r + 1

rrr

7. If a red node has a rank r, then its parent will have the rank r as well.

Red

RedRed

Blackr r

rr

indexing and Multiway trees 633

DSUC c13 V6 January 24, 2013 10:01 AM Page 633

Example of a red–black tree Figure 13.22 is an example of a red–black tree with five
levels. We have set ranks starting at the bottom.

Rank of the root = 3

2

2 2

2

2

3

1 1

1 1

1 1

1

1

1
1

1 1

00

0 0

00

00

00

00

00

00

00

00

Fig. 13.22 Red–black tree

13.3.7 K-dimensional Tree

A K-dimensional tree (KD-tree) is a data structure used in computer science during
orthogonal range searching, for instance, to find the set of points that fall into a given
rectangle in a plane. Given a KD-tree of the points in question, it is possible to find the
resulting points in O(sqrt(n) + k) time, where n is the number of points and k is the number
of resultant points.

An example of KD-tree is shown in Fig. 13.23.

(a) (b)

Fig. 13.23 KD-trees (a) Input (b) Output

Input description Let there be a set S of n points in k-dimensions.

Problem Construct a tree which partitions the space by half-planes such that each point
is contained in its own region.

634 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 634

Although many different flavours of KD-trees have been devised, their purpose is
always to hierarchically decompose space into a relatively small number of cells such
that no cell contains too many input objects. This provides a fast way to access any input
object by position. We traverse down the hierarchy until we find the cell containing the
object and then scan through the few objects in the cell to identify the right one.

Typical algorithms construct KD-trees by partitioning point sets. Each node in the
tree is defined by a plane through one of the dimensions that partition the set of points
into left/right (or up/down) sets, each with half the points of the parent node. These chil-
dren are again partitioned into equal halves, using places through a different dimension.
Partitioning stops after logn levels, with each point in its own leaf cell. Alternative KD-
tree construction algorithms insert points incrementally and divide the appropriate cell
although such trees can become seriously unbalanced.

A KD-tree can be constructed using Algorithm 13.1.

algorithm 13.1

Input: A set of points P and depth the current depth
Output: The root of a KD-tree storing P
 1. if P contains only one point then
 2. return a leaf storing this point
 3. else if depth is seven then
 4. Split P into two subsets with a vertical line 1 through the median x-coordinate of the

points in P. Let P1 be the set of points to the left and P2 be the set of points to the
right. The points exactly on the line belong to P1

 5. else
 6. Split P into two subsets with a horizontal line 1 through the median y-coordinate of

the points in P. Let P1 be the set of points above 1 and P2 be the points below 1. The
points exactly on the line belong to P1

 7. Vright = Build Kd-tree(P1, depth + 1)
 8. Vleft = Build Kd-tree(P2, depth + 1)
 9. Create a node V with Vright and Vleft as its right and left children, respectively
10. return V

This algorithm can be run in O(nlogn) time and uses O(n) storage.
The time constraint of O(nlogn) assumes that the median can be found in O(n) time.

This is rather complicated in the general case but in our case can be made simply by pre-
sorting all the vertices in both x and y directions. Sorting takes O(nlogn) time and does
therefore not worsen the time complexity of the overall algorithm.

13.3.8 AA Tree

We studied BSTs. A BST of n nodes is said to be balanced if the height is O(logn). A
balanced tree supports efficient operations since most operations only have to traverse or

indexing and Multiway trees 635

DSUC c13 V6 January 24, 2013 10:01 AM Page 635

on two root-to-leaf paths. There are many implementations of balanced BSTs, including
AVL trees, red–black trees, and AA trees. An AA tree is another alternative to AVL trees.
An AA tree is a balanced BST with the following properties:

1. Every node is coloured either red or black.
2. The root is black.
3. If a node is red, both of its children are black.
4. Every path from a node to a null reference has the same number of black nodes.
5. Left children may not be red.

Figure 13.24 is an example of an AA tree.

70

60

80

40

2010

30

50

90

65

55
35

85

15

5

Fig. 13.24 AA tree

Advantages of AA Trees

AA trees are more advantageous as they simplify the algorithms. The following list
explains the advantages:

1. They eliminate half the reconstructing cases.
2. They simplify deletion by removing an annoying case.

(a) If an internal node has only one child, that child must be a red child.
(b) We can always replace a node with the smallest child in the right subtree; it will

either be a leaf node or have a red child.
3. An AA tree, which is a balanced BST, supports efficient operations, since most

operations only have to traverse one or two root-to-leaf paths.

Representing Balance Information in AA Tree

In each node of AA tree, we store a level. The level is defined by the following rules:

1. If a node is a leaf, its level is one.
2. If a node is red, its level is the level of its parent.
3. If a node is black, its level is one less than the level of its parent.

Here, the level is the number of left links to a null reference.

636 data structures using c++

DSUC c13 V6 January 24, 2013 10:01 AM Page 636

Multiple choice questions

1. Which of the following remarks about the trie
tree are false?

 Hint: More than one choice can be correct.

 (a) It is effi cient in dealing with strings of
variable length.

 (b) It is effi cient if there are few number of data
items.

EXERCISES

Links in an AA tree A horizontal link is a connection between a node and a child with
equal levels. The properties of such horizontal links are as follows:

1. Horizontal links are right references.
2. There cannot be two consecutives horizontal links.
3. Nodes at level two or higher must have two children.
4. If a node has no right horizontal link, its two children are at the same level.

KEY TERMS

File organization A fi le is a collection of re-
cords, each record having one or more fi elds.
The fi elds are used to distinguish among the re-
cords using keys. File organization is all about
the way in which the records are stored in a fi le
in an external storage media.

Index The index is a collection of pairs of the
form (key value, address). It is an indirect ad-
dressing that imposes order on a fi le without
rearranging it.

KD-tree A KD-tree is a data structure used in com-
puter science during orthogonal range searching,

for instance to fi nd the set of points that fall into a
given rectangle in a plane.

Multiway search tree In multiway search tree,
there are 0 to m subtrees for each node, the node
having k subtrees (k £ m) with k pointers and
k - 1 value entries. The key values in the fi rst
subtree are all less than the key in the fi rst entry;
the key value in the other subtrees are all greater
than or equal to the key in their parent entry.

Red–black tree A red-black tree is a BST with one
extra bit of storage per node: its colour, which can
either be red or black.

RECAPITULATION

• A node of a BST has only one key value entry
stored in it. A multiway tree has many key val-
ues stored in each node and thus each node
may have multiple subtrees.

• Different indexing techniques are used to
search a record in O(1) time. The index is a
pair of key value and address. It is an indirect
addressing that imposes order on a fi le with-
out rearranging the fi le.

• Indexing techniques are classifi ed as
 Hashed indexing
 Tree indexing

 B-tree
 B+ tree
 Trie tree

• Splay trees are self-adjusting trees.

indexing and Multiway trees 637

DSUC c13 V6 January 24, 2013 10:01 AM Page 637

 (c) The number of disk accesses cannot exceed
the length of the particular string that is
searched.

 (d) It can handle insertions and deletions,
dynamically and efficiently.

2. Which of the following remarks about the trie
tree are true?

 (a) It is an m-ary tree.
 (b) It is a search tree of order m.
 (c) Successful searches should terminate in leaf

nodes.
 (d) Unsuccessful searches may terminate at any

level of tree structure.
3. Indexing consists of
 (a) a list of keys
 (b) pointers to the master file
 (c) both (a) and (b)
 (d) none of the above
4. An indexing operation
 (a) sorts a file using a single key
 (b) sorts a file using two keys
 (c) establishes an index for a file
 (d) both (b) and (c)
5. Which of the following is an implementation of

balanced BSTs?
 (a) AVL tree
 (b) Red-black tree
 (c) AA tree
 (d) All of the above
6. B+ trees are preferred to binary trees in databases

because
 (a) disk capacities are greater than memory

capacities
 (b) disk access is much slower than memory

access

 (c) disk data transfer rates are much less than
memory data transfer rates

 (d) disks are more reliable than memory

Review questions

1. What is a B-tree? Draw the tree B-tree of order 3
created by inserting data arriving in the following
sequence:

82, 14, 7, 8, 12, 9, 23, 5, 6, 16, 19, 20, 78

2. Why do we need index file? Compare the linear
and tree index organization. What are static and
dynamic indices?

3. Explain the steps to build a B-tree of order 5 for
the following data:

78, 21, 14, 11, 97, 85, 74, 63, 45, 42, 57, 20,
16, 19, 52, 30, 21

4. Draw diagrams to show the different stages
during the building of a B+ tree for the keys
arriving in the following sequence: A, Z, B, Y, C,
X, D, W, E, V, F, M, R.

5. In each case of question 4, show the balance
factors of all nodes and name the type of rotation
used for balancing.

6. What are the advantages of the variations of
balanced binary tree—splay tree, KD tree, and
red–black tree?

7. Compare B-tree and B+ tree.
8. Write a C++ code for the following functions:
 (a) Searching in a B-tree
 (b) Traversing a trie and print in lexical order
 (c) Counting the nodes in a B-tree
 (d) Inserting and deleting in a B-tree

Answers to multiple choice questions

1. (a), (c), (d) 2. (a), (c), (d) 3. (c) 4. (c) 5. (a) 6. (b)

14.1 iNTRoDucTioN

The prime role of computers is pro blem solving and data proce ssing. In any computer
application, the basic entity is data. Data can be either simple or it may have multiple
attributes. One needs to select the appropriate data structure based on the nature of the
application and data.

Data can have one or more attributes (fi elds). For example, an entity Number_of_
Students can only be of the integer data type, whereas an entity Student may have multiple
attributes or fi elds such as Roll_No, Name, DOB, City, and Sex to describe it. Each fi eld
of Student can be of a different data type. In such situations, we need a structure that will
accommodate an aggregation of dissimilar data types that represents one occurrence of
such a complex entity. This object is called a record.

Records that hold information about similar items of data are usually grouped together
into a fi le. A fi le is a collection of records where each record consists of one or more
fi elds.

For example, a fi le Student can have one or more records with fi elds such as Roll_No,
Name, DOB, City, and Sex. Table 14.1 indicates the fi elds and their associated data type
for this record.

Table 14.1 Student record

Field Roll_No Name DOB City Sex

Datatype Integer Array of
characters

Array of
characters

Array of
characters

Character

FiLES14

oBJEcTivES

After completing this chapter, the reader will be able to understand the following:
 • The purpose of standard data organization methods
 • Various fi le organizations such as sequential, indexed sequential, and direct access,
and their application-specifi c suitability

 • The advantages and disadvantages of fi le organizations

Files 639

We have studied the representation of and operations on various data structures such
as arrays, stacks, queues, linked lists, trees, and graphs. The storage representations and
data manipulations described are applied only to data entities, which reside in the main
memory. In many situations, all information that is to be processed does not reside in the
main memory. There are two reasons for this. First, there are some large programs and
data, which cannot fit conveniently into the main memory. Secondly, it is often desir-
able or necessary to store information from one run of a program to the next run. Let us
consider a student’s information system. We need the data to be preserved even after the
execution of the program is over. Therefore, large volumes of data and archival data are
commonly stored in external memory as special data holding entities—files.

Each record contains attributes to describe one entity. Generally, all records for one
entity type are usually of the same form. Mostly, each of them has the same fields in the
same quantity, order, and length. Such records are known as fixed length records. Struc-
tures in C/C++ support this type of record.

Records that are not necessarily of the same length are known as variable length
records. C/C++ unions support this type of record. Variable length records are less com-
mon than fixed length records, as they are more difficult to handle. They tend to com-
plicate the storage schemes and are sometimes impractical for some structures. When
variable records are used, we need to maintain more information about each record.

Magnetic tapes, floppy disks, and hard disks are a few examples of secondary storage
devices. When data is organized in a file data structure, the data is non-volatile, which
means that the data will reside on storage after data processing is over.

14.2 EXTERNAL SToRAgE DEvicES

For persistent storage, large volumes of data and archival data are commonly stored in
external memory as special data holding entities, namely files. Before we learn about file
organization and operations on files, let us discuss the storage devices, which hold the files.

The external storage devices are those on which information or data can be stored and
from which it can be retrieved. The data resides on these devices as a non-volatile memory.
The storage and retrieval operations are known as writing and reading, respectively. Capac-
ity of external storage devices is larger than that of the main memory and is also slower and
less expensive per bit of information stored when compared to the main memory.

External storage devices are mainly used for the following:

1. Overlay or backup of programs during execution
2. Storage of programs for future use
3. Storage of information in files

We shall mainly concentrate on the third use, discuss the most common external stor-
age devices in the order of their uses, and study magnetic tapes, drums, and disk drives.

640 data structures using c++

14.2.1 Magnetic Tape

A tape is made up of a plastic material coated with a ferrite substance that is easily
magnetized. The physical appearance of the tape is similar to the tape used for sound re-
cording. Computer tapes are wider with several thousand feet of tape wound on one reel,
where information is encoded on the tape, character by character. A number of channels
or tracks run along the length of the tape, one channel being required for each bit position
in the binary coded representation of a character. Information is read or written on the
tape through the use of a magnetic tape drive.

A limitation of magnetic tape devices is that records must be processed in the order
in which they reside on the tape. Therefore, accessing a record requires the scanning of
all records that precede it. This form of access is called sequential access. The magnetic
tape is probably the cheapest form of external bulk storage. A reel of tape can be easily
placed on and removed from a tape drive, and hence it can be used for off-line storage
and data.

14.2.2 Magnetic Drum

A magnetic drum is a metal cylinder, from 10 to 36 inches in diameter, which has an
outside surface coated with a magnetic recording material. The cylindrical surface of
the drum is divided into a number of parallel bands called tracks. The tracks are further
divided into either sectors or blocks, depending on the nature of the drum. The sector or
block is the smallest addressable unit. A particular sector or block is directly addressable,
that is, to access a sector or block of a drum, it is not necessary to access sectors or blocks
1 to n - 1, as in the case of a sequential tape. Hence, a drum is called as a direct access
storage device.

The addressable units (sectors or blocks) on drums are rapidly accessed for data trans-
fers, and no scanning of extraneous data is required as with a magnetic tape. Also, unlike
a magnetic tape, a drum cannot be removed from its shaft or drive. Hence, the maximum
storage capacity for a drum device is limited to the capacity of a single drum.

14.2.3 Magnetic Disk

The magnetic disk is a direct access storage device, which has become more widely used
than the magnetic drum, mainly because of its lower cost. Disk devices provide relatively
low access times and high-speed data transfer. There are two types of disk devices, name-
ly, fixed disks and exchangeable disks. For both types, the disk unit or pack consists of a
number of metal platters, which are stacked on top of each other on a spindle. The upper
and lower surfaces of each platter are coated with ferromagnetic particles that provide an
information storage media.

The surfaces of each platter are divided into concentric bands called tracks. Each
track is further divided into sectors (or blocks) that are addressable units. There are read/
write heads floating just above or below the surface of the disk while the disk is rotating.
An exchangeable disk device has movable read/write heads. The heads are attached to a

Files 641

movable arm to form a comb-like access assembly. When data on a particular track must
be accessed, the whole assembly moves to position the read/write heads over the derived
track. Although many heads may be in position for a read/write transaction at a given
point in time, data transmission can only take place through one head at a time.

14.3 FiLE oRgANizATioN

Files contain records which are collection of information arranged in a specific manner.
File organization mainly refers to the logical arrangement of data in a file system. In or-
der to be able to retrieve a target record from a file, it is preferred to be arranged in some
defined or proper way. It is necessary to organize data records in a particular pattern. The
proper arrangement of records within a file is known as file organization.

There are various ways in which records in a file can be stored. Files are presented to
the application as a stream of bytes and at the end, it contains an EOF (end of file) mark.
An attribute or combination of attribute values that are used to uniquely identify records
within a file is called as a key. Keys are used to arrange and/or to retrieve records to/from
a file. Primary key is one of the keys that can be used to identify a unique record in a file.
Non-primary keys are called as secondary keys.

14.3.1 Schemes of File organization

Various schemes for file organization are available. All these schemes decide the way in
which records are stored and accessed in a file. Some of the file organizations are as follows:

Sequential file In sequential file, records are stored in the sequential order of their entry.
This is the simplest kind of data organization. In sequential files, the records are stored in
ascending or descending order of keys. When the records are not arranged in an organized
fashion, they are stored as per their sequence of arrival; this organization is known as
serial organization.

Direct or random access file Though we search the records using a key, we still need
to know the address of the record to retrieve it directly. The file organization that supports
such access is called as direct or random file organization. The word ‘random’ refers to
the fact that the records are not usually stored in sequence but randomized to individual
storage positions. So to get the address of the record using a key, there must be some
relationship between the key and the address. With direct access file, the address for record
storage and retrieval is computed by using a ‘hashing’ algorithm. As we retrieve the record
directly with the help of the key and the hash function, without considering the position of
the record in the file, the organization is known as direct access file organization.

Indexed sequential file Records are stored sequentially but the index file is prepared
for accessing the record directly. An index file contains records ordered by a record key.
The record key uniquely identifies the record and determines the sequence in which it is
accessed with respect to other records.

642 data structures using c++

Multi-indexed file In a multi-indexed file, the data file is associated with one or more
logically separated index files. Inverted files and multilist files are examples of multi-
indexed files.

14.3.2 Factors Affecting File organization

File organization describes a way in which the records are stored in a file. The objective
of file organization is to provide predefined and efficient means for the record storage,
retrieval, and update.

The update process includes changes in some of the existing fields of records, addi-
tion of new records, or deletion of some existing records. The retrieval of data is done by
specifying values for some or all the keys. A query is a combination of key values formed
for retrieval of a specific record. Some factors affect file organization and similarly, file
organization affects the design of algorithms as it deals with the records in the file.

The factors that mainly affect file organization are the following:

Storage device The way data is arranged in a file depends on the storage device. The
magnetic tape is suitable for sequential organization. Direct access devices such as hard
disks are suitable for random access file organization.

Type of query Depending on the type of query, file organization will be affected. In a
simple query, values for the single key are specified. In a range query, range for the keys
is specified. Accordingly, the file organization needs to be changed.

Number of keys The file may or may not have a key. Each key may have one or more
fields. Accessing the desired record is made easy with the keys.

Mode of retrieval/update of record The mode of retrieval or update may be real-time
or batched. In real-time retrieval, the response time for any query should be minimum. In
a railway reservation system, the availability of a particular train should be retrieved in
minimum time, whereas in a payroll system all records are processed in a batch.

14.3.3 Factors involved in Selecting File organization

Choosing a specific file organization depends on the nature of data and the algorithm used
in the application. The overall combination should achieve good performance. The fol-
lowing are the criteria used to choose file organization:

Speed Rapid access to a single record or a collection of records

Operations Convenience of update, that is, addition, modification, or deletion of records

Capacity Efficiency of storage

Size Volume of transaction

Integrity Redundancy, being the method of ensuring data integrity

Files 643

Security Special backup and recovery processes must exist to prevent exposure to the
risks of loss of accuracy

A file should be organized in such a way that the records are always available for pro-
cessing with no delay. This should be done in line with the activity and volatility of the
information.

14.4 FiLES uSiNg c++

File handling is an important part of programming. Most of the applications have their
own features to save data to the secondary storage and read from it again. File I/O classes
in C++ simplify such file read/write operations.

14.4.1 File i/o classes

The I/O system of C++ contains a set of classes that define the file handling methods.
They are ifstream, ofstream, and fstream. These classes are included in the ‘fstream.h’
header file.

ifstream This class provides input operations.

ofstream This class provides output operations.

fstream This class provides both input and output operations.

14.4.2 Primitive Functions

There are several ways of reading (or writing) the text from (or to) a file, however, all of
them share a common approach as follows.

1. Open the file
2. Read (or write) the data
3. Close the file

Opening a file Creating a file stream object to manage the stream using the ofstream,
ifstream, or fstream classes is done using the following commands. The file name can be
initialized while creating an object.

1. To create an object ofile and open a file with name student.dat for output only
ofstream ofile(“student.dat”);

2. To create an object ifile and open a file with name sports.dat for input only
ifstream ifile(“sports.dat”);

3. To create an object file1 and open a file with name employee.dat for input and
output

fstream file1(“employee.dat”);

644 data structures using c++

4. To open a file using open()
ofstream.ofile; // create an object ofile

ofile.open(“sports”); // open file “sports” for output

fstream file; // create object file of fstream class

file.open(filename, mode);

The file mode parameters are given
in Table 14.2.
For example,

file.open(“data”, ios::out |
ios::binary);
// Binary file with name data
is opened in output mode,
i.e., for writing only

Reading a character from a
file A single character is read from a stream using the get() function.

file.get(ch); // read one character from the file and store it to ch

Writing a character to a file The put() function writes a character to a stream.

file.put(ch); // write the character of ch to the file

Reading binary data from a file The read()function is used to read binary data from
a file.

file.read((char *) &V, sizeof(V)); // Reads value in variable V
// from file

Consider the following code:

class item_rec
{
 int id;
 char itemname[20];
};
item_rec item; // object item
file.read((char *) &item, sizeof(item)); // Reads item record from

// file

Writing binary data to a file The write() function is used to write binary data to a file.

file.write((char *) &V, sizeof(V)); // Writes value of V in file
file.write((char *) &item, sizeof(item)); // Writes item record

// to file

Manipulating file pointers The seekg() function moves the input(get) pointer to
a specific position.

seekg(offset, reference);

Table 14.2 File mode paratmeters

Mode Meaning

ios::app Append to the end of file

ios::ate Go to the end of file on opening

ios::binary Binary file

ios::in Open file for reading

ios::nocreate Open fails if file does not exist

ios::out Open file for writing

Files 645

Here offset is the number of bytes and reference may be one of the following:

1. ios::beg—from the start of the fi le
2. ios::end—from the end of the fi le
3. ios::cur—from the current position of the fi le
4. seekp()—moves the output(put) pointer to a specifi c position
5. tellg()—gives the current position of the get position
6. tellp()—gives the current position of the put position

Checking end of fi le The eof() function is used to check the EOF.

 if(fi le.eof())
 cout << “\n EOF”;

or we can check eof using the following statement:

 if(!fi le)
 cout << “\n EOF”;

Closing a fi le To close a fi le, we can use the close() function as follows:

 fi le.close();
 ifi le.close();

File handling in C++ is demonstrated using Program Code 14.1.

PROGRAM CODE 14.1

//Sample program in C++ fo r fi le handling

#include<iostream. h>

#include<stdio.h>

#include<stdlib.h>

#include<fstream.h>

#include <string.h>

// class for storing passenger record

class passenger

{

 char f_name[15], l_name[15];

 int age;

 public:

 void get_data();

 void put_data();

};

// Function for getting passenger data

void passenger :: get_data()

{

 cout << endl << "Enter First name: ";

646 data structures using c++

 cin >> f_name;

 cout << endl << "Enter Last name: ";

 cin >> l_name;

 cout << endl << "Age: ";

 cin >> age;

}

// Function for displaying passenger data

void passenger :: put_data()

{

 cout << endl << " \t" << f_name << "\t" << l_name

<< "\t" << age;

}

class PassengerFile

{

 private:

 char fname[12];

 public:

 void getfi lename()

 {

 cout << "\n Enter fi lename : " ;

 cin >> fname;

 }

 void create();

 void displayall();

};

void PassengerFile :: create()

{

 fstream fi le;

 int n, i;

 fi le.open(fname, ios::out | ios::binary);

 cout << "\nHow many records do you want to enter?";

 cin >> n;

 for(i = 0; i < n; i++)

 {

 p.get_data();

 fi le.write((char*) &p, sizeof(p));

 fl ushall();

 }

 fi le.close();

}

Files 647

void PassengerFile :: displayall()

{

 passenger p; // object for passenger

 fstream fi le;

 fi le.open(fname, ios::in);

 if(fi le.bad())

 cout<<"\nOpening error...";

 else

 {

 cout << "\nid Fname Lname Age \n";

 while(!fi le.eof())

 {

 fi le.read((char*) &p, sizeof(p));

 if(!fi le.eof())

 {

 p.put_data();

 }

 }

 fi le.close();

 }

}

void main()

{

 Passengerfi le pfi le;

 pfi le.getfi lename();

 pfi le.create();

 pfi le.displayall();

}

14.4.3 Binary and Text Files

The fi le in C++ is either a binary fi le or a text fi le. The difference between the two is due
to the format in which data is organized within the fi le. The text fi le contains plain ASCII
characters. It contains text data which is marked by ‘end_of_line’ at the end of each
record. This end of record mark helps to perform operations such as read and write easily.
A text fi le cannot store graphical data. On the other hand, a binary fi le consists of binary
data. It can store text, graphics, and sound data in binary format. Binary fi les cannot be
read directly.

C++ uses the fopen(fi le, mode) statement to open a fi le and the mode identi-
fi es whether you are opening the fi le to read, write, or append and also whether the
fi le is to be opened in binary or text mode. C++ opens a fi le by linking it to a stream

648 data structures using c++

so we do not have to specify whether the fi le is to be opened in binary or text mode
on the open statement. Instead the method that we use to read and/or write the fi le
determines which mode we are using. If we use ‘<<’ to read from the fi le and the
‘>>’ operator to write to the fi le, then the fi le will be accessed in binary mode.This is
illustrated in Program Code 14.2.

PROGRAM CODE 14.2

//Imple mentation of a simp le text fi le in C++

#include <stdio.h>

#include<conio.h>

#include<iostream.h>

#include<fstream.h>

#include<string.h>

#include<process.h>

fstream fp, fp1; // declaration of fi le ob jects

//create a fi le by entering characters and at end enter #

class myfi le

{

 char fname[30];

 public:

 myfi le(char tname[30])

 {

 strcpy(fname,tname);

 }

 void create();

 void display();

 void display(char*);

 void count();

 void copy(char*);

};

void myfi le :: create()

{

 char ch;

 fp.open(fname, ios::out); /* Open the fi le in

write mode */

 cout << "\nEnter the text::\n";

 do

 {

 ch = getchar(); /* read character */

 /* write character in fi le */

 if(ch != ’#’)

Files 649

 fp.write((char *)&ch, sizeof(ch));

 }while(ch != ’#’);

 fp.close(); // close a fi le

}

// Display a text fi le

void myfi le :: display()

{

 char ch;

 fp.open(fname, ios::in); /* Open the fi le in

read mode */

 while(!fp.eof())

 {

 /* read character from fi le */

 fp.read((char *)&ch, sizeof(ch));

 cout << ch; /* display character */

 }

 fp.close();

}

// Display a text fi le

void myfi le :: display(char tname[30])

{

 char ch;

 fp.open(tname,ios::in); /* Open the fi le in

read mode */

 while(!fp.eof())

 {

 /* read character from fi le */

 fp.read((char*)&ch, sizeof(ch));

 cout << ch; /* display character */

 }

 fp.close();

}

/* Function to count the number of lines, words, and

characters */

void myfi le :: count()

{

 char ch;

 int c = 0, w = 0, line = 0;

 fp.open(fname, ios::in);

650 data structures using c++

 while(!fp.eof())

 {

 fp.read((char *)&ch, sizeof(ch));

 c++;

 if((ch == ‘ ‘ || ch == ‘\n’ || ch == ‘\t’))

 w++;

 if(ch == ‘\n’)

 line++;

 }

 fp.close();

 printf("\nNo of lines %d \nNo of words %d \nNo of

chars %d", line, w, c);

}

// Copy source fi le to destination fi le

void myfi le :: copy(char dfname[30])

{

 char ch;

 fp.open(fname, ios::in); /* Open source fi le in

read mode */

 fp1.open(dfname, ios::out); /* Open

destination fi le in write mode */

 while(!fp.eof())

 {

 /* read character from source fi le */

 fp.read((char *)&ch, sizeof(ch));

 /* write character to destination fi le */

 fp1.write((char *)&ch, sizeof(ch));

 }

 fp.close();

 fp1.close();

}

void main()

{

 int choice;

 myfi le fobj("c:\\vst\\stud.dat");

 char fname[30];

 clrscr();

 do

 {

 printf("\n\n Menu");

 printf("\n 1. Create");

 printf("\n 2. Display");

Files 651

 printf("\n 3. Count lines, words, characters");

 printf("\n 4. Copy fi le");

 printf("\n 5. Exit");

 printf("\nEnter your choice");

 scanf("%d", &choice);

 switch(choice)

 {

 case 1: fobj.create();

 break;

 case 2: fobj.display();

 break;

 case 3: fobj.count();

 break;

 case 4:

 char dfname[30];

 cout << "\nEnter the destination fi lename : ";

 cin >> dfname;

 fobj.copy(dfname);

 fobj.display(dfname);

 break;

 case 5: exit(0);

 }

 }while(choice < 5);

 getch();

}

14.5 SEquENTiAL FiLE oRgANizATioN

A sequential fi le stores records in the order they are entered. The order of the records
is fi xed. The records are stored and sorted in physical, contiguous blocks. Within each
block, the records are in sequence. New records always appear at the end of the fi le.
Therefore, the record found in the fi rst position is the oldest record and the last record
in the fi le is the one most recently added. Records in these fi les can only be read or
written sequentially. Records may be either fi xed or variable in length for this fi le type.
This is a signifi cant advantage of sequential fi les. However the search time associated
with sequential fi les is more because records are accessed sequentially from the begin-
ning of the fi le. Sequential fi les are compatible to the magnetic tape storage as shown
in the following fi gure.

Record 1 Record 2 Record 3 Record 4 Record 5 … … End

652 data structures using c++

1. Here, if we want to access Record 5, then we have to access records from Record 1 to
Record 5 sequentially.

2. If we want to add a record, it is added at the end.

Important data is usually processed in sequential files, the reason being security is easily
ensured in sequential files.

14.5.1 Primitive operations

The set of primitive operations for a sequential file is small. The file pointer or currency
pointer is a logical pointer to the current record in a file. Programming languages support
explicit command to move file pointer, and a file pointer is also moved implicitly by primi-
tive operations.

Primitive operations are those provided by the basic file system, language, and
operating system. The following are the primitive operations of the sequential file
organization:

Open This operation opens the file and sets the file pointer to the first record.

Read-next This operation returns the next record to the user. If no record is present,
then EOF condition will be set.

Close This operation closes the file and terminates access to the file.

Write-next File pointers are set to next of last record and this record is written to the file.

EOF If EOF condition occurs, this operation returns true, otherwise it returns false.

Search This operation searches for the record with a given key.

Update The current record is written at the same position with updated values.

The number of records in a sequential file is given as (size of file)/(size of a record). The
basic file operations are discussed as follows:

Add

Adding a record to the sequential file is a one-operation algorithm. The new record is sim-
ply appended to the end of the file. One physical write is required for appending a record
in a file. Also many records can be collected in the buffer and a block of records can be
written at a time in the file. The following are the steps involved in addition.

1. Add a record.
2. Open a file in append mode.
3. Read a record from user.
4. Write a record to the file.
5. Close the file.

Files 653

Search

A particular record is searched through the file using a key sequentially by comparing
with each record key. The search starts from the first record and continues till the EOF.
The following steps are involved in searching:

1. Open a file in read mode.
2. Read the value of the record key of the record to be searched.
3. Read the next record from the file.
4. If record key = value, display record and go to 7.
5. If not EOF, then go to 3.
6. Display ‘Record not found’.
7. Close the file.

Delete

There is no reasonable way to delete records from sequential file. Deletion is done in two
ways:

1. Logical deletion
2. Physical deletion

Logical deletion When disk files are used, records may be logically deleted by
just flagging them as having been deleted. This can be done by assigning a specific
value to one of the attributes of the record. This method needs one extra field to be
maintained with each record. The algorithm also needs to modify and check the flag
field during operations.

Another method keeps a record of active and deleted records in a bit map file. A bit
map is a one-dimensional array in which each bit represents a record in a file. The first
bit refers to the first record, and so on. Bit value ‘1’ tells that the record is active and
‘0’ indicates that the record is deleted. So to delete a record, its corresponding bit value
in a bit map file is set to zero. However, the map array may be stored in a separate file
or in the beginning of the same file, as one or more records. The following steps are
involved in logical deletion:

1. Open a file in read + write mode.
2. Read the record key of the record to be deleted.
3. Read the next record from the file.
4. If record key = value

(a) Change status or deleted flag as 1
(b) Write record back to the same position
(c) Go to step 7

5. If not EOF, then go to 3.

654 data structures using c++

6. Display ‘Record not found’.
7. Close the file.

Physical deletion (pack or reorganize) For physical deletion of records, we need to
copy the records to another file, skipping the deleted records, and rename the file. When
the number of the logically deleted records is high, then it is advisable to delete them
physically which is known as reorganization of file. The following steps are involved in
physical deletion (pack):

 1. Open a file in read mode.
 2. Open ‘temporary’ file in write mode.
 3. Read the record key of the record to be deleted.
 4. Read the next record from the file.
 5. If record key ! = value, write the record to temporary file.
 6. If not EOF, then go to 4.
 7. Close both the files.
 8. Delete the original file.
 9. Rename temporary file as original file.
10. Close the file.

Updation (Modification)

A record is updated when one or more fields is changed by modifying the information.
The following steps are involved in updation:

1. Open a file in write mode.
2. Read the record key of the record to be modified.
3. Read the new attributes of the record to be modified.
4. If record key = value, modify record and go to 7.
5. If not EOF, then go to 4.
6. Display ‘Record not found’.
7. Close the file.

14.5.2 Advantages

The following are the main advantages of sequential file organization:

1. Owing to its simplicity, it can be used with a variety of media, including magnetic
tapes and disks.

2. It is compatible with variable length records, while most other file organizations
are not.

3. Security is ensured with ease.
4. For a run in which a high proportion of a block is hit, as compared to other file

organizations, sequential file is efficient specially when processed in batches.

Files 655

14.5.3 Drawbacks

The following are some drawbacks of using sequential file organization:

1. Insertion and deletion of records in in-between positions cause huge data movement.
2. Accessing any record requires a pass through all the preceding records, which is time

consuming. Therefore, searching a record also takes more time.
3. Needs reorganization of the file from time to time. If too many records are deleted logically,

then the file must be reorganized to free the space occupied by unwanted records.

14.6 DiREcT AccESS FiLE oRgANizATioN

Files that have been designed to make direct record retrieval as easy and efficient as pos-
sible are known as directly organized files. This is achieved by retrieving a record with a
key by getting the address of a record using the key. To achieve this, a suitable algorithm,
called as hashing, is used to convert the keys to addresses.

Direct access files are of great use for immediate access to large amounts of informa-
tion. They are often used in accessing large databases. When a query concerning a par-
ticular subject arrives, we compute which block contains the answer and then read that
block directly to provide the desired information. A random access file is one in which
the records are accessed directly by referring to the address where it is placed in a file.

One way to achieve this is to use the record number or the primary key (unique iden-
tification) as an address of record. In this approach, Record_No gives the location of the
record in a file. In this respect, the file looks like a one-dimensional array where each
element in an array is a record and the subscript is a record number.

If the range of the record number or the primary key is larger than that of the the file
size, it is difficult or rather impossible to adopt the aforementioned strategy. This hap-
pens in some applications where only some of the records are selected (randomly) out
of the many records. For example, out of 1000 students from a university, the data of the
100 computer science students is to be managed. However when they are admitted at a
university, they are given a unique ID called an enrollment number, which ranges from
1 to 1000. Hence, we cannot adopt this strategy of inserting the element in position as the
enrollment number for direct access.

To achieve direct access by having a file size as total number of records, another tech-
nique is used. In this technique, mapping of a larger range is done to a smaller range. To do
this, a function is used, which generates a natural address (whose range lies between 1 and
file size) from primary key of larger range. This function is known as the hash function, for
example, MOD (primary key MOD N). A synonym is defined as a key, which generates the
same address as that generated by a different key. A good hashing function must minimize
the creation of synonyms. We have discussed hashing in Chapter 11.

A well-designed direct access file gives a very fast response to random queries than a
sequential file. Many applications need both sequential and random access files. Though

656 data structures using c++

direct fi les can be processed sequentially, it would be much higher when sequential fi le is
organized in a proper manner.

14.6.1 Primitive operations

The pr imitive operations for the dir ect access fi le are as follows:

Open It opens the fi le and sets the fi le pointer to the fi rst record.

Read-next It returns the next record to user. If no records are present, then EOF (end of
fi le) condition will be set.

Read-direct It sets the fi le pointer to a specifi c position and gets the record for the user.
If the slot is empty or out of range, then it gives error.

Write-direct It sets the fi le pointer to a specifi c position and writes the record to fi le at
that position. If the slot is out of range, then it gives error.

Update Current record is written at the same position with updated values.

Close This will terminate the access to the fi le.

EOF If EOF condition occurs, it returns true otherwise it returns false.

We can use the fseek() function for direct access. The prototype of fseek() is :

int fseek(File *fp , long num-bytes, int origin);

The fs eek() function sets the fi le position indicator. Here fp is a fi le pointer. The
num-bytes parameter specifi es the number of bytes from the origin that will become
the new current position and origin can be one of the following as shown in Table 14.3.

Table 14.3 File position indicators

Origin Value Macro name
Beginning of fi le 0 seek _set

Current position 1 seek_cur

End of fi le 2 seek _ end

The fseek() function returns 0 when successful, and a non-zero value in case of an
error. The implementation of direct access fi le organization is demonstrated in Program
Code 14.3.

PROGRAM CODE 14.3

/* Dire ct access fi le. Collision ha ndling to be done

b y chaining without r eplacement for employee data as

empcode, empname */

Files 657

#include<iostream.h>

#include<string.h>

#include<conio.h>

#include<fstream.h>

#include<process.h>

#include<math.h>

#defi ne max 15

class employee

{

 public:

 cha r name[max];

 int empid;

 int chain;

 int delfl ag;

};

class hashfi le

{

 fstream hfi le;

 public:

 hashfi le();

 int hash(int x){return x % 10;}

 void insert();

 void search();

 void display();

};

// function to initialize empty fi le

hashfi le :: hashfi le()

{

 int i;

 employee rec2;

 fstream iofi le;

 iofi le.open("hfi le.dat", ios::out | ios::binary);

 strcpy(rec2.name, "\0");

 rec2.chain = -1;

 rec2.delfl ag = 0;

 for(i = 0; i < 10; i++)

 {

 rec2.empid = 0;

 iofi le.write((char*)&rec2, sizeof(rec2));

 }

658 data structures using c++

 iofi le.close();

}

// function to insert a record in hash fi le

void hashfi le :: insert()

{

 int i, fl ag = 0, pos, cnt = 0;

 long temp, start, size;

 fstream iofi le;

 employee insertrec, rec3, trec;

 cout << "Enter name";

 cin >> insertrec.name;

 cout << "Enter no. of empid";

 cin >> insertrec.empid;

 insertrec.chain = -1;

 insertrec.delfl ag = 0;

 size = sizeof(insertrec);

 pos = hash(insertrec.empid);

 iofi le.open("hfi le.dat", ios :: in | ios :: out | ios

:: binary);

 iofi le.seekg(0);

 temp = pos * sizeof(insertrec);

 iofi le.seekg(temp);

 // move to position given by hash function

 fl ag = 0;

 iofi le.read((char*) &re c3, sizeof(rec3));

 if(rec3.empid == 0) // slot is empty

 {

 fl ag = 1;

 temp = pos * sizeof(rec3);

 iofi le.seekp(temp); /* move to position

given by hash function */

 iofi le.write ((char*) &insertrec, sizeof(insertrec));

 return;

 }

 else // slot is not empty

 {

 if(hash(rec3.empid) == hash(insertrec.empid))

 {

 while(rec3.chain != -1)

 {

 iofi le.seekg(rec3.chain * sizeof (rec3));

Files 659

 pos = rec3.chain;

 iofi le.read((char*) &rec3, sizeof(rec3));

 }

 fl ag = 2;

 }

 int nextpos = pos;

 trec = rec3;

 while(iofi le.read((char*) &rec3, sizeof(rec3)))

 // fi nd next empty position

 {

 if(rec3.empid == 0) // empty slot

 {

 iofi le.seekp((nextpos+1) * sizeof(rec3));

 // move to position given by hash function

 iofi le.write((char*) &insertrec,

sizeof(insertrec));

 if(fl ag == 2)

 {

 iofi le.seekp(pos * sizeof (rec3));

 trec.chain = nextpos + 1;

 iofi le.write ((char*) &trec, sizeof(trec));

 }

 fl ag = 1;

 break;

 }

 nextpos++;

 }

 }

 if(fl ag != 1)

 {

 cout << "Error this rec was not inserted";

 cout << "The fi le is full after this index";

 getch(); return;

 }

 getch();

 iofi le.close();

} // end of insert

// function to search a record of hash fi le

void hashfi le :: search()

{

 int pos = 0, t_empid;

660 data structures using c++

 fstream iofi le;

 employee rec1;

 cout << "Enter the empid of the book to be searched";

 cin >> t_empid;

 pos = hash(t_empid);

 // get the position of search record

 iofi le.open("hfi le.dat", ios::in | ios::binary);

 iofi le.seekg(0);

 iofi le.seekg(pos*sizeof(rec1));

 while(iofi le.read((char *)&rec1, sizeof(rec1)))

 // read record at position

 {

 if(rec1.empid == t_empid) // found

 {

 cout << "name" << rec1.name << "empid" << rec1.

empid;

 getch();

 iofi le.close();

 return;

 }

 else if(hash(rec1.empid) == pos)

 // if record is stored at position

 {

 iofi le.seekg(0);

 if(rec1.chain != -1)

 iofi le.seekg(rec1.chain*sizeof(rec1));

 // jump at position of chain

 }

 }

 cout << "error no. such rec exist";

 getch();

 iofi le.close();

}

void hashfi le :: display()

{

 int i = 0;

 employee rec2;

 fstream iofi le;

 cout << "\n\nserial\tempid\tname\tchain";

 iofi le.open("hfi le.dat", ios :: in | ios :: binary);

 while(iofi le.read((char *)&rec2, sizeof(rec2)))

Files 661

 cout << "\n\n" << i++;

 cout << "\t" << rec2.empid;

 {

 cout << "\t" << rec2.name;

 cout << "\t" << rec2.chain;

 }

 getch();

 iofi le.close();

}

void main()

{

 int ch, pos;

 fl oat fl ag = 1.1;

 hashfi le fi le1;

 // rec.init();

 // clrscr();

 do

 {

 cout << "\n 1.Insert a rec";

 cout << "\n 2.Disp all rec";

 cout << "\n 3.Search a rec";

 cout << "\n 4.Exit";

 cout << "\n Enter choice";

 cin >> ch;

 switch(ch)

 {

 case 1:

 fi le1.insert();

 break;

 case 2:

 fi le1.display();

 break;

 case 3:

 fi le1.search();

 break;

 case 4:

 exit(0);

 }

 }while(ch != 4);

}

662 data structures using c++

14.7 iNDEXED SEquENTiAL FiLE oRgANizATioN

Sequential processing of data files makes up a larger proportion of data. However, there
is often a need to refer to sequential files just to satisfy the queries. Such a need can be
met by processing the whole file sequentially and looking for the records that are to be
retrieved. This is very efficient when the file is huge, the query may take long time, which
is not affordable for the application. One solution is to improve the speed of retrieving
target by using indexed sequential file.

A file that is loaded in key sequence but can be accessed directly by use of one or more
indices is known as an indexed sequential file. A sequential data file that is indexed is
called as indexed sequential file.

An indexed file contains records ordered by a record key. Each record contains a field
that contains the record key. The record key uniquely identifies the record and determines
the sequence in which it is accessed with respect to the other records. An indexed file can
also use alternate indices, that is, record keys that let you access the file using a different
logical arrangement of the records. For example, you could access the file through the
employee department rather than through the employee number.

When indexed files are read or written sequentially, the sequence followed is that of the
key values. Index is a data structure that allows particular records in a file to be located
more quickly. An index can be sparse (record for only some of the search key values) or
dense (index is maintained for each record), e.g., index in a book.

14.7.1 Types of indices

Indices may be of the following three types:

Primary index It is an index ordered in the same way as the data file, which is
sequentially ordered according to a key. The indexing field is equal to this key.

Secondary index This is an index that is defined on a non-ordering field of the data file.
In this case, the indexing field need not contain unique values.

Clustering index A data file can associate with utmost one primary index and several
secondary indices. In this organization, key searches are improved. The single-level
indexing structure is the simplest one where a file, whose records are pairs, contains a key
and a pointer. This pointer is the position in the data file of the record with the given key.

A key search is performed as follows: the search key is compared with the index keys
to find the highest index key coming in front of the search key, while a linear search is
performed from the record that the index key points to, until the search key is matched or
until the record pointed to by the next index entry is reached.

Hardware for indexed sequential organization is usually disk-based, rather than tape.
Records are physically ordered by primary key and the index gives the physical location
of each record. Records can be accessed sequentially or directly, via the index. The index

Files 663

is stored in a file and read into memory at the point when the file is opened. The indices
must also be maintained.

14.7.2 Structure of indexed Sequential File

The file structure is selected according to the physical storage device. The external stor-
age device should have the capability to access directly a record as per the key. Devices
like magnetic tape can access all records sequentially. The magnetic drum or disk sup-
ports direct access.

In primary area, actual data records are stored. Data records are stored as sequential
file. The second area is an index area in which the index is stored and is automatically
generated. An index file consists of three areas:

Primary storage area This includes some unused space to allow for additions made
in data.

Separate index or indices Each query will reference this index first; it will redirect
query to part of data file in which the target record is saved.

Overflow area This is optional separate overflow area.

A number of index levels may be involved in an index sequential file. The lowest level of
an index is track index, which is written at track 0, i.e., first track of the cylinder. The track
index contains two entries for each prime track of the cylinders for the index sequential
file. The normal entry is composed of the address of prime track to which the entry is
associated and the highest value of the keys for the records is stored on that track. The
track index describes how records are stored on the track of cylinder and the cylinder
index indicates how records are distributed over number of cylinders. In index sequential
file, records are organized in sequence of key field known as primary key. For fast search-
ing, it is supported by index. Index is a pair of key and address where that record is stored
in the main file. Number of records are same as number of blocks of the main file.

14.7.3 characteristics of indexed Sequential File

The following are the characterictics of an indexed sequential file:

1. Records are stored sequentially and a separate index file is maintained for accessing
the record directly.

2. Records can be accessed randomly in constant time.
3. Magnetic tape is not suitable for indexed sequential storage.
4. Index is the address of physical storage of a record.
5. When very few records are to be accessed, then indexed sequential file is better.
6. This is a faster access method.
7. Additional overhead is that the index is to be maintained
8. Indexed sequential files are popularly used in many applications such as a digital library.

664 data structures using c++

Consider that an employee file is stored as an indexed sequential file. The entries are as
shown in Fig. 14.1.

Key Address pointer

1001 Address of Block1

2005 Address of Block2

2350 Address of Block2

Empid Block
ptr

1001

2005

2350

9050

Data file

1001

1003

1050

2005

2350

9050

Fig. 14.1 Index sequential file organization

This organization is slower than a sequential file. For a sequential file, retrieval and ac-
cess time for direct retrieval are greater than the well-designed direct access file. The
advantage of such file organization is that it can handle requirements of mixed access
application much better than other organizations.

Advantages

1. Accessing any record is more efficient than sequential file organization.
2. Large amount of data can be stored using this type of file organization.

Disadvantage

1. Often more than one index is needed which occupies a large storage area.

Program Code 14.4 demonstrates the implementation of index sequential file.

Files 665

PROGRAM CODE 14.4

//I ndex sequential fi le (one to one map index)

#include <stdio.h>

#include <con io.h>

#include<iostr eam.h>

#include<fstream.h>

/* Item record */

struct itemrec

{

 int itemcode;

 char itemname[20];

 fl oat cost;

};

/* Index record */

struct indexrec

{

 int itemcode;

 int position;

 int fl ag;

};

/* Display the contents of index fi le */

void displayindexfi le()

{

 fstream indexfi le;

 struct indexrec index;

 indexfi le.open("index.dat", ios::in);

 cout << "\n Index fi le is n";

 cout << "\n Itemcode \t Position \t Del Flag";

 while(!indexfi le.eof())

 {

 indexfi le.read((char*)&index, sizeof(indexrec));

 if(indexfi le.eof())

 break;

 if(index.fl ag == 1)

 cout << endl << index.itemcode <<

index.position<<index.fl ag;

 else

 cout << "deleted=";

 cout << endl << index.itemcode <<

index.position << index.fl ag;

666 data structures using c++

 }

}

/* Insert a record */

void insertrecord()

{

 struct itemrec item;

 struct indexrec index;

 stream indexfi le, itemfi le;

 long position;

 cout << "\n Enter itemcode";

 cin >> item.itemcode;

 cout << "\n Enter itemname";

 cin >> item.itemname;

 cout << "\n Enter cost";

 cin >> item.cost;

 /* Get the position of the new record in item fi le */

 itemfi le.open("item.dat", ios::in);

 itemfi le.seekg(seek_end);

 position = itemfi le.tellg()/sizeof(item);

 itemfi le.close();

 /* Add a record in item fi le */

 itemfi le.open("item.dat", ios::in | ios::out |

ios::app);

 itemfi le.write((char*)&item, sizeof(itemrec));

 itemfi le.close();

 /*Add a record in index fi le */

 indexfi le.open("index.dat", ios::in | ios::out |

ios::app);

 index.itemcode = item.itemcode;

 index.position = position;

 index.fl ag = 1;

 indexfi le.write((char*)&index, sizeof(indexrec));

 indexfi le.close();

}

/* Search a record */

void search()

{

 int searchitcode;

 struct itemrec item;

 struct indexrec index;

 fstream indexfi le, itemfi le;

 long position, found = 0;

Files 667

 cout << "\n Enter itemcode to be searched";

 cin >> searchitcode;

 indexfi le.open("index.dat", ios::in);

 while(!indexfi le.eof())

 {

 indexfi le.read((char*)&index, sizeof(indexrec));

 if(index.itemcode == searchitcode && index.fl ag

== 1)

 {

 found = 1;

 break;

 }

 }

 if(found == 1)

 {

 itemfi le.open("item.dat", ios::in);

 /*Take the position from index fi le and go to

that record in item fi le */

 itemfi le.seekg((index.position) * sizeof(item));

 itemfi le.read((char*)&item, sizeof(item));

 cout << "\n Item Record is";

 cout << "\nItemcode \t Item name \t Cost";

 cout << item.itemcode << item.itemname <<

item.cost;

 itemfi le.close();

 }

 else

 cout << "\n Record not found";

 indexfi le.close();

}

/* Delete a record */

void deleterecord()

{

 int searchitcode;

 struct indexrec index;

 fstream indexfi le;

 long position,found = 0, c;

 cout << "\n Enter itemcode to be deleted";

 cin >> searchitcode;

 indexfi le.open("index.dat", ios::in | ios::out |

ios::app);

 c = 0;

 while(!indexfi le.eof())

668 data structures using c++

 {

 indexfi le.read((char*)&index, sizeof(indexrec));

 if(index.itemcode == searchitcode && index.fl ag

== 1)

 {

 found = 1;

 break;

 }

 c++;

 }

 if(found == 1)

 {

 indexfi le.seekg(c * sizeof(index));

 index.fl ag = 0; // Make a delete fl ag 0

 indexfi le.write((char*)&index, sizeof(index));

 }

 else

 cout << "\n Record not found";

 indexfi le.close();

}

void main()

{

 int choice;

 clrscr();

 do

 {

 cout << "\n 1. Insert \n 2. Search \n 3. Delete a

record";

 cout << "\n 4. Display Index fi le \n 5. Exit";

 cout << "\n Enter choice : ";

 cin >> choice;

 switch(choice)

 {

 case 1 : insertrecord();

 break;

 case 2 : search();

 break;

 case 3 : deleterecord();

 break;

 case 4 : displayindexfi le();

 break;

 }

Files 669

 }

 while(choice < 5);

}

14.8 LiNKED oRgANizATioN

In linked organization, the physical sequence of records is different from the logical se-
quence of records. The next logical record is obtained by following a link value from
the present record. Records are linked according to increasing primary key, so insertion
and deletion is easy. If index is not maintained, then direct searching is diffi cul t and only
sequential search is possible.

14.8.1 Multilist Files

To make searching easy, several indexes are maintained as per primary key and secondary
keys, one index per key. The record may be present in different lists as per key. Consider
the following fi le of offi ce staff in Table 14.4.

Table 14.4 Staff data

Staff ID Occupation Salary Record
106

150

360

400

700

Clerk

Accountant

Clerk

Accountant

Clerk

5000

4000

3000

3500

2000

A

B

C

D

E

We can maintain indices on the staff ID. We can group staff ID with ranges
101–300, 301–600, 601–900, and so on. Now all the records with staff ID in the same
range will be linked together as shown in Fig. 14.2.

Fig. 14.2 Sample multilist fi le

Staff ID range Link

101–300 rec A rec B

301–600 rec C rec D

601–900 rec E

Now each record will have values of all the fi elds as well as link to the next record in
the group.

We can have multilist structure for fi le representation by maintaining different indices on
different keys and allow records to be i n more than one list. Suppose indices are maintained
on occupation and salary fi elds, then the multilist structure will look as shown in Fig. 14.3.

670 data structures using c++

Id link

Occup link

Salary link

Staff ID index

Value 101–300 301–600 601–900

Length 2 2 1

Pointer A C E

A

C

Null

B

Null

D

C

C

E

D

D

Null

Null

Null

E

Null

Null

Null

Fig. 14.3 Linked organization

Table 14.5 lists the staff details and links for the following values of occupation
and salary:

Salary index

Value <= 2000 <= 4000 <= 6000
Length 1 3 1

Pointer E B A

Occupation index

Value Clerk Accountant

Length 3 2

Pointer A B

Table 14.5 Staff data and links

Record Staff ID Occupation Salary Occupation link Salary link
A
B
C
D
E

106
150
360
400
700

Clerk
Accountant
Clerk
Accountant
Clerk

5000
4000
3000
3500
2000

C
D
E
–
–

–
C
D
–
–

When multilists are maintained, then length of the link is also maintained in the index.
When two lists are searched simultaneously, then the search time can be reduced by
searching the smaller list.

The logical order of records in the list may or may not be important according to the
application. If salary index is not maintained in increasing order, then insertion can be
done at the beginning or at the end of the list, otherwise we have to find a proper posi-
tion in the link to insert new record. Also because only single link is maintained, dele-
tion is difficult. This problem can be overcome by maintaining double link. But these

Files 671

links require storage. So, if space is of importance, then the alternative is the coral ring
structure.

14.8.2 coral Rings

In this, doubly linked multilist structure is used as shown in Fig.14.4. Each list is circular
list with headnode.

Clerk

B link

A C

S

E

A link

B link

Fig. 14.4 Sample doubly linked list

‘A link’ field is used to link all records with same key value. ‘B link’ is used for some
records back pointer and for others it is pointer to head node. ‘S’ is headnode of the list
of ‘Clerk’. Owing to these back pointers, deletion is easy without going to start. Indexes
are maintained as per multilists.

14.8.3 inverted Files

The concept of the inverted files and multilists is similar. The difference is that, in multil-
ists records with the same key value are linked together and links are kept in each record.
But in the inverted files, the link information is kept in the index itself.

For example, consider the same file of office staff used in the link organization. The
indices for fully inverted file are shown in Fig. 14.5.

106 A Accountant B, D

150 B Clerk A, C, E

360 C

400 D Salary index

Staff ID index
(increasing order) Occupation index

700 E 2000 E

4000 B, C, D

6000 A

Fig. 14.5 Inverted files

All these are dense indices and contain an entry for each record in the file. But now
because links are kept in the indices, index entries become variable length and therefore
index maintenance becomes more complex than for multilists.

672 data structures using c++

The inversion process is associated with the information of inverted list. Normally,
a record is searched via a primary key. For example, if staff ID is a primary key, then
records can be searched using staff ID. But the inverted list provides staff ID and further
a particular staff’s name and other details can be accessed through index.

In inverted files, the record is accessed in two steps. First, the indices are searched to
obtain a list of required records and then second, records are retrieved using these lists.
The number of disk accesses required is equal to the number of records being retrieved
plus the number to process the indices.

In inverted files, only the index structures are important. The records can be orga-
nized sequentially, random, or linked according to primary key. If a list of records is
not very large, then it can be kept in main memory while processing. Inverted files may
also result in space saving when record retrieval does not require retrieval of key fields.
Then key fields may be deleted from the records. One of the major disadvantages of the
inverted files is that the item values being inverted generally have to be included in both
the inverted list and the master file.

14.8.4 cellular Partitions

To decrease file search time, the storage media may be divided into cells. A cell may be
an entire disk or a cylinder. Lists are localized to lie within a cell. If a cylinder is used as a
cell, then all records on the same cylinder may be accessed without moving the read/write
heads. We divide multilists organized on several different cylinders into several small lists
which are stored on the same cylinder.

For example, consider Table 14.6, an example of a multilist structure with cellular
partitioning for student–teacher data.

Table 14.6 Multilist structure with cellular partitioning

Primary key Secondary key
Position Student ID Course teacher ID Link

1

2

3

4

100

200

300

400

A

B

C

A

o

Null

Null

Null

1

2

3

4

500

600

700

800

D

B

A

D

O

Null

Null

Null

1

2

3

4

900

1000

1100

1200

E

C

D

A

Null

Null

Null

Null

Cell 1

Cell 2

Cell 3

Files 673

An entry is created in the secondary index whenever the item value occurs one or more
times in a cellular partition. The relative secondary index records for the data in Table
14.6 are shown in Table 14.7.

Table 14.7 Teacher’s data and secondary index

Course teacher ID Position Cell no. Length of link
A 1

3

4

1

2

3

2

1

1

B 2

2

1

2

1

1

C 3

2

1

3

1

1

D 1

3

2

3

2

1

E 1 3 1

The course teacher ID ‘A’ has entries in each cell,
at two positions in cell 1, at one position in cell 2,
and at one position in cell 3. Therefore, the entry
of ‘A’ has three rows in the secondary index. The
course teacher ID ‘E’ has entry only in cell 3 at posi-
tion 1, so in the secondary index, ‘E’ has only one
row.

A multilist structure with cellular partitioning is
primarily useful when there are a large number of
records residing in a cell. If there are few records in
each cell, then the link field can be omitted.

The length field and the relative record position
can also be omitted. One such structure is cellular
serial structure shown in Table 14.8.

One more type of structure is the cellular inverted
list which is represented as a binary matrix. Each
matrix element is either 0 meaning that the item is
absent, or 1 meaning that the item is present in the cel-
lular partition. The structure is shown as in Table 14.9.

For cellular multilist structures, index entries
may have to be updated with the addition or deletion
of records or individual secondary index items. Such
changes are minimal when cellular serial or cellular

Table 14.8 Cellular serial structure

Course teacher ID Cell no.
A 1

2

3

B 1

2

C 1

3

D 2

3

E 3

Table 14.9 Cellular inverted list

Secondary
index item Cell no.

A

B

C

D

E

1

1

1

0

0

1

1

0

1

0

1

0

1

1

1

674 data structures using c++

inverted lists are used. A major advantage of cellular partitioning is that several read
operations can be initiated simultaneously and these operations can be overlapped with
the query processing. But the disadvantage is that if there are many records per cell, then
access time may be large.

REcAPiTuLATioN

• Data processing is one of the core tasks of
computers. Large volumes of data and archival
data need to be preserved even after execu-
tion of program is over. Such data is commonly
stored in the external memory as special data
holding entities, fi les.

• Magnetic tapes, fl oppy disks, and hard disks
are a few examples of secondary storage
devices. When we organize data in a fi le
data structure, the data is non-volatile, which
means data will reside on storage after data
processing is over.

• Files contain records. In order to be able to
retrieve a target record from a fi le, it is pre-
ferred to arrange in some defi ned or proper
way. Necessity is to organize data records in a
particular pattern. The proper arrangement of
records within a fi le is called as fi le organization.

• Various schemes for fi le organization are
available such as sequential, direct access,
and index sequential organization. All these

schemes decide the way in which records are
stored and accessed in a fi le.

• In sequential fi les, records are stored in
ascending or descending order of key and
stored as per their sequence of arrival. This
type of organization is known as serial organi-
zation. When data arises in sorted order, the
serial organization becomes sequential orga-
nization.

• To get faster access, the records are organized
randomly in a fi le by computing the address
using key and hash function. File organization
that supports direct access to record by comput-
ing its address using key is called as direct or
random fi le organization.

• In index sequential fi le, the records are stored
sequentially. For each record, its correspond-
ing address is saved as index in index fi le for
accessing the record directly.

• C++ supports fi le operations through library
functions.

Direct access fi le organization The fi le organiza-
tion that supports direct access to record by com-
puting its address using key is called as direct or
random fi le organization.

File Records that hold information about simi-
lar items of data are usually grouped togeth-
er into a fi le. A fi le is a collection of records
where each record consists of one or more
fi elds.

File organization File organization refers to the
logical arrangement of data in a fi le system. Vari-
ous schemes for fi le organization are available

such as sequential, direct access, and index se-
quential organization.

Index sequential fi le organization An index fi le
contains records ordered by a record key. The re-
cord key uniquely identifi es the record and deter-
mines the sequence in which it is accessed with
respect to other records.

Sequential fi le organization The simplest kind of
data organization, sequential fi le organization is
the one in which records are stored in the sequen-
tial order of their entry arising in ascending or de-
scending order of key.

KEY TERMS

Files 675

EXERciSES

Multiple choice questions

 1. Assume a fi le of 10,000 records distributed over
100 blocks, i.e., every block has 100 records,
also assume that every record is equally likely
to be accessed. In trying to locate a particular
record, we fi rst examine the index, which is
assumed to be within a single block. To locate
the block containing the required record, we
have to examine each index entry. The number
of comparisons required are

 (a) 1000
 (b) 110
 (c) 100
 (d) 101
 2. There are fi ve records in a database as follows:

Name Age Occupation Category
Rama 27 CON A

Abdul 22 ENG A

Jeniffer 28 DOC B

Maya 32 SER D

Dev 24 MUS C

 There is an index fi le associated with this and it
contains the values 1, 3, 2, 5, and 4. Which one
of the fi elds is the index built from?

 (a) Age
 (b) Name
 (c) Occupation
 (d) Category
 3. In the index allocation scheme of a block to

a fi le, the maximum possible size of the fi le
depends on

 (a) the size of the blocks and the size of the
address of the blocks.

 (b) the number of blocks used for the index and
the size of the blocks.

 (c) the size of the blocks, the number of blocks
used for the index, and the size of the
address of the blocks.

 (d) None of the above

 4. Consider a fi le of 16,384 records. Each record is
32 bytes long and its key fi eld is of size 6 bytes.
The fi le is ordered on a non-key fi eld, and the
fi le organization is unspanned. The fi le is stored
in a fi le system with block size of 1024 bytes,
and the size of the block pointer is 10 bytes. If
the secondary index is built on the key fi eld of
the fi le, and multi-level index scheme is used to
store the secondary index, the number of fi rst-
level and second-level blocks in the multi-level
index are respectively.

 (a) 8 and 0
 (b) 128 and 6
 (c) 256 and 4
 (d) 512 and 5
 5. What will happen if you execute the following

program?

 #include "stdio.h"

 void main()

 {

 unsigned char c;

 fi le *fp;

 fp = fopen("test.txt", "r");

 while((c = fgetc(fp))!=EOF)

 printf("%c", c);

 fclose(fp);

 getch();

 }

 Given: //test.txt
 I am reading fi le handling in cmagical.blogspot.

com
 (a) It will print the content of the fi le text.txt.
 (b) It will enter into an infi nite loop.
 (c) It will display nothing.
 (d) Error
 6. Which of the following fi le organization

methods is most effi cient for a fi le with a high
degree of fi le activity?

 (a) Sequential
 (b) ISAM
 (c) VSAM
 (d) B-tree index

676 data structures using c++

 7. The two basic types of record access methods
are

 (a) sequential and random
 (b) sequential and indexed
 (c) direct and immediate
 (d) on-line and real time
 8. Which file organization is allowed by a direct

access storage device?
 (a) Direct only
 (b) Sequential and direct only
 (c) Indexed and direct only
 (d) Sequential, indexed, and direct
 (e) None of the above
 9. Sequential file organization is most appropriate

for which of the following applications?
 (a) Grocery store checkout
 (b) Bank checking account
 (c) Payroll
 (d) Airline reservations
 (e) None of the above
10. Which of the following file organization

methods is most efficient for a file with a high
degree of file activity?

 (a) Sequential
 (b) ISAM
 (c) VSAM
 (d) B-tree
 (e) All of the above
11. One disadvantage of a direct access file is
 (a) the delay in computing the storage address
 (b) duplication of address locations
 (c) unused, but available, storage locations
 (d) all of the above
12. Electronic spreadsheets are most useful in a

situation where relatively ____________ data
must be input but ____________ calculations
are required.

 (a) little; simple
 (b) large; simple
 (c) large; complex
 (d) little; complex

Review questions

1. A file of employees records, has ‘employee no’ as
a primary key and the ‘department code’ and the
‘designation code’ as the secondary keys. Write
a procedure to answer the following query—
‘Which employees from systems department are
above designation level 4?’.

2. Compare sequential file organization with
direct access file organization. Write a C
implementation of primitives for either of the
two organizations.

3. Write short notes on:
 (a) Factors affecting the file organization
 (b) Indexed sequential files
 (c) Indexing techniques
4. Compare sequential, indexed sequential, and

direct access files.
5. Describe the basic types of file organization each

with one example.
6. State the advantages, disadvantages, and

primitive operation of sequential files.
7. What are indexed files? Explain with a suitable

example. Compare sequential and direct access
files.

8. Write notes on:
 (a) Inverted files
 (b) Cellular partition
9. What is a multi-index file? Give suitable

examples.

Answers to multiple choice questions

1. (d) 2. (c) 3. (b) 4. (c) 5. (b) 6. (a) 7. (a) 8. (d) 9. (c)
10. (a) 11. (a) 12. (d)

15

C++ classes provide information for creating a library of data structures. The STL is
a part of the standard C++ class library and can be used as the standard approach

for storing and processing data. In this chapter, we shall study the STL and learn how
to use it. The C++ class allows for implementation of ADTs with appropriate hiding of
implementation details. Let us discuss how to achieve this.

15.1 AbSTrACT DATA TyPe

One of the factors that contribute to the success of a software project is the choices made
in the representation of data and algorithms designed to process the data. The proper
choice of a data structure can be a key point in the design of many algorithms. Clearly, we
need good ways to describe, organize, and process data.

A data type consists of a collection of values together with a set of basic operations
defi ned on these values. A data type is called an ADT if a programmer can use it without
having access to and also without knowing the details of how the values and operations
are implemented.

Specifying a data structure by the details of its implementation means that if one wants
to change the representation later, one has to fi nd every piece of code that manipulates the
data and make sure that it corresponds to the new defi nition. The best way to avoid this
problem is to make sure that all the data types we defi ne are ADTs. In addition, every soft-
ware professional wants a way to specify data which satisfi es the following properties:

 Abstract Every user should be able to use it without knowing the details of its representation
and implementation, thus making the code easier to understand and maintain.

STAnDArD TemPlATe
librAry

obJeCTiveS

After completing this chapter, the reader will be able to understand the following:
 • Abstract data type (ADT) implementation in C++ and the rationale for using them
 • How ADTs aid code reuse
 • Five components of standard template library (STL)
 • How to simplify the task of writing application codes with the use of STL

678 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 678

Safe A user should be able to use the data without having access to it. This provides
control over the manipulation of data and keeps it safe.

Modifiable Representation of data should be in a way that enables easy modification.

Reusable Data and operations encapsulated together with abstraction make the code
reusable. This is the motivation behind using ADTs.

15.1.1 Abstract Data Type and Data Structures

The term ADT describes a comprehensive collection of data values and operations. The
term data structure refers to the study of data and how to represent data objects within
a program, that is, the implementation of a structured relationship. The way in which
software professionals view data structures has undergone an evolution in the last few
years. They implement with the view of abstract properties of classes of data objects in
addition to how these data objects might be represented in a program. Depending on the
point of view, a data object is characterized by its type (for the user) or by its structure
(for the implementer).

The topic of data structures has now been subsumed under the broader topic of
ADTs: the study of classes of objects whose logical behaviour is defined by a set of
operations.

The traditional model of studying data structures is based on the characteristic of the
implementation of the structures. For example, stacks and queues are linear lists with
restricted access. These data structures can be represented as last in first out (LIFO) and
first in first out (FIFO), respectively. However, a user of these two ADTs does not care
about the intricacies of the data structure and restricted access. In fact, the user does not
(rather should not) care about what happens when an item is stored either in a stack or a
queue; he/she is only interested in what is inserted into or deleted from the stack or the
queue. Therefore, it is essential to revise the concept of data structures as an ADT and also
learn how to implement them using C++.

15.1.2 Creating Abstract Data Types

To create an ADT, we specify the data by its operation rather than by its implementa-
tion, that is, we talk about what the data can do and how it is used, but not the details of
the code that implemented it. An ADT’s specification describes what data can be stored,
that is, its characteristics, and how it can be used, that is, the operations, but not how it is
implemented in the program.

An ADT specification may be quite formal, written in a specific language, or may
be an informal description in English. Likewise, an implementation could be a program
in a particular programming language such as C++ or Pascal or could be a pseudocode
description.

standard template liBrarY 679

DSUC c15 V6 January 24, 2013 10:04 AM Page 679

15.1.3 Stack Abstract Data Type

Any set of elements of the same data type can be used as a data object for stacks. The
meaning of ‘same data type’ is that all the elements in the stack should be of the same
nature having common representational logical properties. A stack of integers, a stack of
names of students, a stack of employee records, or a stack of records of processes of the
operating system are some examples of data objects for the stack.

The following five functions comprise a functional definition of a stack:

1. create(S)—creates an empty stack.
2. push(i, S)—inserts the element i on the stack S and returns the modified stack.
3. pop(S)—removes the topmost element from the stack S and returns the modified

stack.
4. getTop(S)—returns the topmost element of the stack S.
5. is_empty(S)—returns true if S is empty otherwise returns false.

When we choose to represent a stack, it must be possible to build these operations.
However, before we do this let us formally describe the structure of the stack, as in
Algorithm 15.1.

algorithm 15.1

ADT stack(element)
 1. Declare create() Æstack
 2. push(element, stack)Æstack
 3. pop(stack)Æstack
 4. getTop(stack)Æelement
 5. is_empty(stack)ÆBoolean;
 6. for all S Œ stack, e Œ element, Let
 7. is_empty(create) = true
 8. is_empty(push(e, S)) = false
 9. pop(create()) = error
10. pop(push(e,S)) = S
11. getTop(create) = error
12. getTop(push(e, S)) = e
13. end
14. end stack

The five functions with their domains and ranges are declared in lines 1 through 5.
Lines 6 through 13 are the set of axioms that describe how the functions are related. Lines
10 and 12 are important because they define the LIFO behaviour of the stack. This defi-
nition describes an infinite stack for no upper bound or roof on the number of elements
specified. To implement the ADT stack in C++, these operations are often implemented as
functions to provide the data abstraction. A program, which uses stacks, would access the
stacks only through these functions and would not be concerned about the implementation.

680 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 680

15.2 Survey of ProgrAmming TeChniqueS

Let us have a short survey of programming techniques, also known as programming para-
digms. They are as follows:

1. Unstructured programming
2. Procedural programming
3. Modular programming
4. Object-oriented programming

Unstructured Programming

Usually, people start learning programming by writ-
ing small and simple programs consisting of one
main program. Here the main program stands for a
sequence of commands or statements that modify
data which is global throughout the whole program.
We can illustrate this as shown in Fig. 15.1.

As we all know, this programming technique
provides tremendous disadvantages once the pro-
gram becomes sufficiently large. For example, if the same statement sequence is needed
at different locations within the program, the sequence must be copied. This has led to
the idea of extracting these sequences, naming them, and offering a technique to call and
return from these procedures.

Procedural Programming

With procedural programming, we are able to com-
bine returning sequences of statements into one
single place. A procedure call is used to invoke the
procedure. After the sequence is processed, the flow
of control proceeds right after the position where
the call was made (Fig. 15.2).

With the introduction of parameters as well as
procedures of procedures (sub-procedures), the
programs can now be written in a more structured
and error-free way. For example, if a procedure is
correct, every time it is used, it produces correct
results. Consequently, in case of errors, we can narrow our search to those places that are
not proven to be correct.

Now, a program can be viewed as a sequence of procedure calls. The main pro-
gram is responsible to pass data to the individual calls; the data is processed by
the procedures, and once the program is finished, the resulting data is pre-
sented. Thus, the flow of data can be illustrated as a hierarchical graph, a tree,

Main program
data

Program

Fig. 15.1 Unstructured programming

Main program Procedure

Fig. 15.2 Execution of procedures

standard template liBrarY 681

DSUC c15 V6 January 24, 2013 10:04 AM Page 681

as shown in Fig. 15.3 for a program
with no sub-procedures.

To sum up, we now have a single
program that is divided into small
pieces called procedures. To enable
the usage of general procedures or
groups of procedures in other pro-
grams too, they must be separately
available. For that reason, modular
programming allows grouping of pro-
cedures into modules.

Modular Programming

With modular programming, procedures of a common functionality are grouped together
into separate modules. A program therefore no longer consists of only one single part. It
is now divided into several smaller parts that interact through procedure calls and form
the whole program (Fig. 15.4).

The main program coordinates the calls to procedures in separate modules and hands
over appropriate data as parameters.

Each module can have its own data. This allows each module to manage an internal
state which is modified by calls to procedures of this module. However, there is only one
state per module, and each module exists utmost once in the whole program.

There are some problems in modular programming such as explicit creation and
destruction, decoupled data and operations, and missing type safety.

Object-oriented Programming

Object-oriented programming (OOP)
solves some of the aforementioned
problems. In contrast to the other
techniques, we now have a web of
interacting objects, each housekeep-
ing its own state (Fig. 15.5).

Consider the multiple lists exam-
ple. The problem with modular pro-
gramming is that we must explicitly
create and destroy the list handles.
Then, we use the procedures of the
module to modify each of the handles.

In contrast to this, in object-
oriented programming, we would
have as many list objects as needed.

Main program
data

Procedure 1 Procedure 2 Procedure 3

Program

Fig. 15.3 Procedural programming

Main program
data

Procedure 1 Procedure 2 Procedure 3

Program

Module 1
Data + Data 1

Module 2
Data + Data 2

Fig. 15.4 Modular programming

682 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 682

Instead of calling a procedure, which
we must provide with the correct list
handle, we would directly send a
message to the list object in question.
Roughly speaking, each object imple-
ments its own module allowing many
lists to coexist.

Each object is responsible to ini-
tialize and destroy itself correctly.
Consequently, there is no longer the
need to explicitly call a creation or ter-
mination procedure. We shall discuss
object-oriented design and program-
ming in detail in this section.

Object-oriented Design

Object-oriented design represents
a fundamental change from the structured programming design method. Traditional
structured programming has used algorithmic decomposition. Algorithmic or functional
decomposition views software as a process. It decomposes the software/program into
modules that represent steps of the process. These modules are implemented by language
constructs such as procedures in Pascal, subroutines in FORTRAN, or functions in C.

Object-oriented decomposition views software as a set of well-defined objects that
model entities in the application domain. These objects interact with each other to form
a software system. Functional decomposition is addressed after the system has been
decomposed into objects.

An object is a basic concept in OOP, which is used to model the real world through
objects. In our real world, everything is an object, which can be identified from one
another by the physical as well as behavioural point of view. Objects in the real world can
be anything, be it an apple, a monkey, or a program.

Object-oriented programming Object-oriented programming is a method of imple-
mentation in which

1. objects are the fundamental building blocks;
2. each object is an instance of some type (specification or class);
3. objects can interact with each other;
4. classes are related to each other by inheritance relationship.

Object-oriented language An object-oriented language is the one that

1. supports objects and programs divided into objects,
2. contains objects belonging to a class, and
3. supports inheritance.

Program

Object 1
data

Object 4
data

Object 3
data

Object 2
data

Fig. 15.5 Object-oriented programming

standard template liBrarY 683

DSUC c15 V6 January 24, 2013 10:04 AM Page 683

Basic Concepts of Object-oriented Programming

We shall discuss some of the basic concepts of OOP.

Objects Objects are the basic runtime entities in an object-oriented system. A
programming problem is analysed in terms of objects and the nature of communication
between them. Each object contains data and code to manipulate the data.

Classes Object-oriented programming encapsulates data (attributes) and functions
(behaviour) into packages called as classes. A class is a user-defined data type.

Data abstraction and encapsulation Combining a number of variables and functions
into a single package, such as an object of some class, is called as encapsulation.
Abstraction refers to the act of representing essential features without including the
details of implementation. Generally, data members are made private and are accessible
to only class member functions. This insulation of data from direct access by the program
is called data hiding or information hiding.

Inheritance Inheritance is a process by which the objects of one class inherit the
properties of another class. Classes in C++ support the concept of hierarchical classification.

Reusability The concept of inheritance provides the feature of reusability by additional
features to the existing class without modifying the existing one leads to a new class.

Polymorphism Polymorphism means the ability to take more than one form.
Polymorphism is a means by which we can request an object to do something without
knowing exactly what kind of object it is, and the object will figure out how to process
the request appropriately.

Dynamic binding Binding refers to the linking of a procedure call to the code to be
executed in response to the call. Dynamic binding means that the code associated with a
given procedure call is not known until the time of call at runtime. This is associated with
polymorphism and inheritance.

Message passing An OOP consists of a set of objects that communicate with each
other. Message for an object is a request for execution of a procedure and therefore will
invoke a function in the receiving object that generates the desired result. Message passing
involves specifying the name of the object, the name of the function (message), and the
information to be sent.

List Abstract Data Type

We have studied about ADTs. An ADT consists of a data type and operations that manipu-
late the data. From the application program’s perspective, it is also independent of the
data structure used to implement it. The user while using the list ADT is not aware of the
implementation of how the data is manipulated and what data structure is used. Hence,
we could implement the list using either an array or a linked list. Further, linked list can
be realized using array or using pointers and dynamic memory management. Thus, if we
implement a list using linked list, we could change the implementation from a linked

684 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 684

list to an array, and the application program would not need to be changed. To achieve
this, in C++, we implement the list ADT using class template, which allows the applica-
tion programmer to declare the data while allowing the class to control it. The class also
encapsulates all the list functions that use it. Let us see linked list implementation of list
ADT. Figure 15.6 is the representation of ADT list structure.

The linked list is implemented as the LinkList class with its data encapsulated within
the class. The data will be declared as private. We do not know what type of application
data will be stored in the list. If our linked list class is to be able to store any type of data,
we must have some way of letting the user defi ne them while writing the program through
the use of templates.

A class template is a generic class declaration that allows the user to provide the data
structure through parameters that the compiler resolved.

The structure template can be with two items: data and link. The link fi eld is declared
with the node structure to be a self-referential pointer to the next node. The data will be
mapped to a programmer-declared type when the program is compiled. Let us see the
declaration using C++ in Program Code 15.1.

LinkList

May have other members
such as rear, count, etc.

Head

Key

Data Link

Other attributes

...

Fig. 15.6 Linked list ADT structure

Program CoDE 15.1

//Node template declaration

template <class type>

class Node

standard template liBrarY 685

DSUC c15 V6 January 24, 2013 10:04 AM Page 685

{

 type data;

 Node *link;

};

//Class template

template <class type>

class LinkList

{

 private:

 Node <type>*Head;

 public:

 LinkList(void);

 void Insert(type x);

 void Display();

};

We have studied the linked list data structure as a way to store the data in the form of col-
lection of nodes storing data and links to other nodes. Nodes can be located anywhere in
the memory, not necessarily in sequential locations. The links are established by storing
the addresses of other node(s) (next or previous) in the link fi eld of each node.

Although the linked list can be implemented in a variety of ways, the most fl exible
implementation is by using pointers. To implement the same in C++, we can view the
entire linked list as an object of class LinkList. The individual data items or links are
represented by the structure of type Node.

class Node
{
 int data;
 :
 :

¸
˝
˛
 There could be more data members of the class

 :

 Node *link;
};

Abstract representation of a
linked list is shown in Fig. 15.7
with respect to the Node defi ni-
tion, with two fi elds in it—data
and link.

Each linked list has to have a
special external link (or pointer),
Head. We call it an external link
because it is not stored in the list.

5 7 2 Null

Fig. 15.7 Abstract representation of linked list

5

Head

7 2 Null

Fig. 15.8 Linked list with header pointer

686 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 686

We shall now extend the abstract notation to show the external link. Figure 15.8 illustrates
the list with the external link, Head.

To represent this linked list as shown in Fig. 15.8, we represent the linked list as
an object of the LinkList class. The definition of the class is shown in Program
Code 15.2.

Program CoDE 15.2

class SLL // Singly linked li st

{

 private:

 Node *Head;

 public:

 SLL(); // Constructor

 ~SLL(); // Destructor

 void Insert(int x);

 void Display();

 :

 :
¸
˝
˛
 More member functions here

 :

};

The LinkList class has only one member data item, the Head pointer to the fi rst
node of the list. The Head is used to access the list. The member functions including
constructor and destructor are used to process the list. Note that the Head is private
and all other member functions are public. This is because particular nodes of the list are
accessible to outside objects through pointers. Nodes are made inaccessible to outside
objects by declaring Head private so that the information hiding principle is not really
compromised. In Program Code 15.3,

1. array stk[] and top are private members, which are hidden and cannot be accessed
by outside functions;

2. methods push, pop, isFull, isEmpty are public, which can be accessed by outside
functions;

3. the two main features data abstraction and encapsulation are satisfi ed in this declaration.

Program CoDE 15.3

/*Class of stack using array*/

#defi ne size 20

class stack

{

 int stk[size];

standard template liBrarY 687

DSUC c15 V6 January 24, 2013 10:04 AM Page 687

 int top;

 public:

 stack(){top= −1;}

 // constructor to initialize top

 int isEmpty()

 {

 if(top == −1) return 1;

 return 0;

 }

 int isFull()

 {

 if(top == size − 1) return 1;

 return 0;

 }

 void push(int element)

 {

 if(isFull())

 cout << "\n Stack Full";

 else

 {

 top++;

 stk[top] = element;

 }

 }

 int pop()

 {

 if(isEmpty())

 cout << "\n Stack is empty";

 else

 return(stk[top−−]);

 }

}; // end of class stack

We can defi ne the objects of the stack as in Program Code 15.4.

Program CoDE 15.4

void main()

{

 stack s, s1, s2; // defi ning 3 objects s, s1,

s2 of the stack

 // calling functions as

688 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 688

 s.push(5); // calling function push and 5 is

pushed into stack s

 s.push(8); // 8 is pushed into stack s

 s1.push(10); // 10 is pushed into stack s1

}

Implementation of Stacks Using Linked List

In Section 15.1.3, we implemented the stack using arrays. However, an array implemen-
tation has certain limitations. One of the limitations is that stacks cannot grow or shrink
during the execution of a program. This drawback can be overcome by using linked list
organization for stacks. A stack implemented using linked list is also called as linked
stack. This is illustrated in Program Code 15.5.

Program CoDE 15.5

/*Class of stack using linked list*/

class node

{

 public:

 int Data;

 node *link;

};

class stack

{

 node * top; // top is pointer

 public:

 stack(){top = null;}

 // constructor to initialize top

 int isEmpty()

 {

 if(top == null) return 1;

 return 0;

 }

 void push(int element)

 {

 node *curr;

 if(isFull())

 cout << "\n Stack Full";

 else

 {

 curr = new node();

standard template liBrarY 689

DSUC c15 V6 January 24, 2013 10:04 AM Page 689

 curr->Data = element;

 curr->link = null;

 if(top == null)

 top = curr;

 else

 {

 curr->next = top;

 top=curr;

 // change top as new node

 }

 }

 } //end of push

 int pop()

 {

 node *curr; int element;

 if(isEmpty())

 cout << "\n Stack is empty";

 else

 {

 curr = top;

 element = top->Data;

 top = top->next;

 delete(curr);

 return(element);

 }

 } // end of pop

}; // end of class stack

We can defi ne objects of the stack class in the same way as the previous stack class in
Program Code 15.6.

Program CoDE 15.6

void main()

{

 stack s, s1, s2; // defi ning 3 objects of stack

s, s1, s2

 // calling functions same as previous class

 s.push(5); // 5 is pushed in stack s

 s.push(8);); // 8 is pushed in stack s

 s1.push(10);); // 10 is pushed in stack s1

}

690 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 690

In both implementations (using array and linked list), we can see that the implementation
may be different and can be hidden. We also see that independent of the implementation,
Program Codes 15.4 and 15.6 are the same.

Classes to Produce Abstract Data Types

A class is a type that we define, unlike types such as int and char that are already
defined for us. A value for a class type is a set of values of the member variables. Consider
the following class:

class student_account
{
 private:
 int BackAccountNo;
 :
 :
 public:
 void update();
 double getbalance();
 :
 :
};

The programmer who uses this class need not be concerned about how the member func-
tions are implemented.

Creating an Abstract Data Type

In order to define a class so that it is an ADT, we need to separate the specification of
how the type is used by a programmer from the details of how the type is implemented.
The separation should be so complete that if we change the implementation of the class,
any program that uses the class ADT should not need any additional changes. Hence, the
following steps must be adhered to:

1. Make all the member variables as private members of the class.
2. Make each of the basic operations for ADT either a public member, or a friend function,

or an ordinary function, or an overloaded operator. Group the class definition and the
function and operator prototypes together. This group along with comments is called the
interface for ADT.

3. Fully specify how to use each of these functions or operators in comments given with
the class or with the function or operator prototypes.

4. Make the implementation of basic operations unavailable to programmers who use
ADT. The implementation consists of the function definitions and overloaded operator
definitions; put them in different files.

5. Put all these definitions mentioned in a separate file called as the implementation file. This
file must contain an include directive that names the interface file, say #include ‘student.h’.

 The interface file and implementation file traditionally have the same name but end
with different suffixes. The interface file ends with .h and implementation file ends in
the same suffix that we use for files that contain C++ code.

standard template liBrarY 691

DSUC c15 V6 January 24, 2013 10:04 AM Page 691

6. Compile implementation file separately.
7. If we want to use the ADT in a program, we place the main part of the program, any additional

function definitions, and constant declarations in another file called an application file. This
file, also contains an include directive naming the interface file, as in,

#include ‘student.h’.
8. We must first link the object code produced by compiling the application file and the

object code produced by compiling the implementation file. In some systems, linking
may be done automatically or semi-automatically.

15.3 STAnDArD TemPlATe librAry

C++ classes provide information for creating a library of data structures. The C++ STL is
a collection of containers, adaptors, iterators, functions, and algorithms. The STL is a part
of the standard C++ class library and can be used as a standard approach for storing and
processing data. The task of writing complex application codes can be made easy with
the use of STL. The C++ class allows for the implementation of ADTs with appropriate
hiding of implementation details.

Standard template library was developed by Alexander Stepanov and Meng Lee of
Hewlett Packard. In past, compiler vendors and many third party developers have offered
libraries of container classes to handle the storage and processing of data. However, now,
standard C++ includes its own built-in container class library, STL. C++ classes provide
an excellent mechanism for creating a library of data structures. STL contains many kinds
of entities. The three most important kinds are the following:

1. Containers
2. Algorithms
3. Iterators

The STL allows a programmer to use these classes and functions directly in programs to
increase productivity.

15.3.1 Containers

Container is a way to store data whether the data consists of built-in types such as int
and float, or of class objects, that is, container classes whose purpose is to contain other
objects.

Many times, a programmer uses many objects of a particular class. For example, arrays.
Array can be considered as one of the most basic and elementary containers. Arrays are
one of the most powerful data structures. Many other data structures use array as a build-
ing block. If STL makes such a data structure available, a programmer will be able to use
it as a ready-to-use data structure.

The STL makes seven basic kinds of containers available and three more that are
desired from the basic kinds. In addition, we can create our own containers based on
these basic kinds of containers.

692 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 692

Use of containers is for achieving efficiency. We have learnt and used array as a data
structure and its pros and cons. An array could be slow in many situations; and it might
be time consuming to switch to other data structure, implement the same, and then use
it. Use of STL is less time consuming. STL provides many kinds of containers. The
programmer can choose one or a few of them as per the need of the application without
knowing the implementation details. Table 15.1 lists some examples of container classes.

Table 15.1 List of container classes

Container class Description
Vector Array

List Doubly linked list

Slist Singly linked list

Queue Queue structure, that is, FIFO structure

Stack Stack structure, that is, LIFO structure

Deque Combination of stack and queue, having facility for insertion and removal
from both ends

Set Set of unique elements

Map Store key and data pair

Containers are categorized into two types:

1. Sequence containers
2. Associative containers

Sequence Containers

A sequence container stores a set of elements which can be visualized as a line, similar to
houses on a street. Each element is related to the other by its position along the line. Each
element, except at ends, is preceded by one specific element and followed by a specific
element. These containers refer to sequential organization of elements, such as in arrays.

The sequence containers are as follows:

1. Vectors
2. Lists
3. Deques

The containers that are derived from sequence containers are stacks, queues, and prior-
ity queues.To instantiate an STL container object, we must include an appropriate header
file. We then use the template format with the kind of objects to be stored as the parameters.

For example,

 deque <int> intDeque; and
 list<student> SEcomp;

standard template liBrarY 693

DSUC c15 V6 January 24, 2013 10:04 AM Page 693

Here, student is a defined data type. The containers take care of all memory alloca-
tions that a user need not specify.

Vectors The array data structure has certain limitations. Owing to its static
implementation, it results into poor utilization and runtime difficulties of not exceeding
the size. In addition, array size is to be specified at the compile time; that is, in the source
code. All these difficulties can be overcome through the vector container provided by
STL. The template class describes an object that controls a varying-length sequence of
elements of type T.

A vector is a sequence container that supports random access iterators. It is optimized
for insertions and deletions at the ends of the collection. Insertions and deletions any-
where else in the collection, such as the beginning or middle, take linear time. Storage
management is handled automatically. It supports for any data type and for automatic
resizing when adding elements.

Vector reallocation occurs when a member function must grow the controlled sequence
beyond its current storage capacity.

Table 15.2 lists the common vector constructors, functions, and operators.

Table 15.2 List of vector constructors, functions, and operators

Function/constructor/operator Description
vector<T> v; Creates an empty vector of data type T

vector<T> v(n); Creates a vector of n default values

vector<T> v(n, e); Creates a vector of n copies of e

v.~vector<T>(); Destroys all elements and frees memory

i = v.size(); Gets the number of elements

I = v.capacity(); Maximum number of elements before reallocation

I = v.max_size(); Implementation of maximum number of elements

B = v.empty(); True, if empty. Same as v.size() = = 0

v.reserve(n); Sets the capacity to n before reallocation

v = v1; Assigns v1 to v

v[i] = e; Assigns the ith element as e

v.at(i) = e; At the ith position set element e

v.front() = e; Same as v[0] = e

v.back() =e; Same as v[v.size() - 1] = e

v.push_back(e); Adds e to the end of v. Expands v if necessary

v.pop_back(); Removes the last element of v

v.clear(); Removes all elements

iter = v.assign(n, e); Replaces the existing elements with n copies of e

(Continued)

694 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 694

Table 15.2 (Continued)

Function/constructor/operator Description
iter = v.assign(beg, end); Replaces the existing elements with copies from the

range beg–end

the iter2 = v.insert(iter, e); Inserts a copy of e at the iter position and returns its
position

v.insert(iter, n, e); Inserts n copies of e starting at the iter position

v.insert(iter, beg, end); Inserts all the elements in the range beg–end,
starting at iter position

iter2 = v.erase(iter); Removes an element at the iter position and returns
position of next element

Iter = v.erase(beg, end); Removes range beg–end and returns position of
next element

E = v[i]; Gets the ith element

E = v.at(i); Gets the element at the ith position

E = v.front(); Gets the fi rst element

E = v.back(); Gets the last element

Iter = v.begin(); Returns the iterator to the fi rst element

Iter = v.end(); Returns the iterator to after last element

Riter = v.rbegin(); Returns the iterator to the fi rst (in reverse order)
element

Riter = v.rend(); Returns the iterator to after the last (in reverse
order) element

Program Code 15.7 shows how an integer vector uses STL and iterators and pro-
cesses them.

Program CoDE 15.7

// Integer vector using STL

#include <vector>

void main()

{

 const int size = 20;

 vector <int> A(size);

 //Defi ne an iterator for template class vector of int

 vector<int> :: iterator start, end, it;

 // Read int values

 int i, n;

 cout << "\n Enter how many numbers";

 cin >> n;

 for(i = 0; i < n; i++)

standard template liBrarY 695

DSUC c15 V6 January 24, 2013 10:04 AM Page 695

 {

 cin >> A[i]);

 }

 start = A.begin(); // location of fi rst element

 end = start + n; // one past the location last

element of A

 cout << "All Numbers \n";

 for(it = start; it != end; it++)

 // Accessing vector elements using iterator

 cout << (*it) << "\t";

 // To remove element at position 2

 A.remove(2);

}

 Doubly e nded queue Deque is the container, which can be thought of as a combination
of a stack and a queue. A stack is a LIFO structure, and a queue is a FIFO structure. A
deque combines these approaches so we can insert and delete from either end and hence
is called as doubly e nded queue.

Table 15.3 lists some functions related to deque as follows:

Table 15.3 List of functions for doubly ended queue
Function Description
at() Returns a reference to the element at a specifi ed location in the deque

back() Returns a reference to the last element of the deque

begin() Returns an iterator addressing the fi rst element in the deque

clear() Erases all the elements of a deque

Deque() Constructs a deque of a specifi c size

Empty() Tests if a deque is empty

end() Returns an iterator that addresses the location succeeding the last
element in a deque

erase() Removes an element or a range of elements in a deque from specifi ed
positions

front() Returns a reference to the fi rst element in a deque

insert() Inserts an element or a number of elements or a range of elements
into the deque at a specifi ed position

pop_back() Deletes the element at the end of the deque

pop_front() Deletes the element at the beginning of the deque

push_back() Adds an element to the end of the deque

push_front() Adds an element to the beginning of the deque

size() Returns the number of elements in the deque

696 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 696

The implementation of deque of integers using STL is given in Program Code 15.8.

Program CoDE 15.8

// Deque of integer data using STL

#include <deque>

#include <iostream>

using namespace std;

void print_contents(deque);

void main()

{

 int choice;

 char ele;

 //create

 deque <char> DQueue;

 do

 {

 cout << "1. Insert at Begin" << endl;

 cout << "2. Insert at End" << endl;

 cout << "3. Delete from Begin" << endl;

 cout << "4. Delete from End" << endl;

 cout << "5. Display" << endl;

 cout << "6. Exit" << endl;

 cout << "Enter your Choice:";

 cin >> choice;

 switch(choice)

 {

 case 1: cout << "You are inserting at the

beginning of queue" << endl;

 cout << "Enter Element:";

 cin >> ele;

 DQueue.insert(DQueue.begin(), ele);

 //print out the contents

 print_contents(DQueue);

 break;

 case 2 :cout << "You are inserting at end of

queue" << endl;

 cout << "Enter Element:";

 cin >> ele;

 DQueue.insert(DQueue.end(), ele);

 //print out the contents

 print_contents(DQueue);

 break;

standard template liBrarY 697

DSUC c15 V6 January 24, 2013 10:04 AM Page 697

 case 3: // erase the begin element

 cout << "Deleting front element:";

 if(!DQueue.empty())

 {

 cout << DQueue.front() << endl;

 DQueue.erase(DQueue.begin());

 }

 //print out the contents

 print_contents(DQueue);

 break;

 case 4: // erase the End element

 cout << "Deleting rear element:";

 if(!DQueue.empty())

 {

 cout << DQueue.back() << endl;

 DQueue.erase(DQueue.end());

 }

 //print out the contents

 print_contents(DQueue);

 break;

 case 5: // print out the contents

 print_contents(DQueue);

 } // end of switch

 }while(choice < 6);

}

//function to print the contents of deque

void print_contents(dqueue DQueue)

{

 dqueue<char> :: iterator pdeque;

 cout << "The output is:";

 if(!dqueue.empty())

 {

 for(pdeque = dqueue.begin(); pdeque != dqueue.

end(); pdeque++)

 {

 cout << *pdeque << " ";

 }

 cout << endl;

 }

 else

 cout << "DQ is empty";

}

698 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 698

 List One more problem associated with arrays is that the insertion and deletion
operations at the middle need a lot of data movement. To solve this problem, the STL
provides the list container, which is based on the idea of a linked list. A list sequence
container provides support for the bidirectional iterators with constant time insert and
delete operations anywhere in the list; however, it does not support random access to the
elements. Thus, the list is specially designed for sequential access. Storage management
is handled automatically.

The list sequence container is an implementation of various operations on the nodes of a
linked list. The STL implements a list as a generic doubly link ed list (DLL) with pointers to
the head and to the tail. An instance of such list that stores integers could be used in a pro-
gram. The class list can be used in a program only if it is included as #<include> <list>.

A new list is generated with the instruction

 list <data_type> L1;

where data_type can be any data type. If it is user-defi ned, the type must also include
a default constructor which is required for initialization of new nodes. Various mem-
ber functions such as insert(), empty(), clear(), remove(), reverse(), and many more are
included in the list container.

Table 15.4 lists some functions available in STL.

Table 15.4 List of a few functions for list in STL

Method Description
list() Creates an empty list

list(size_type n) Creates a list of n elements initialized to their default value

T &back(void) Returns a reference to the last element in the list

T &front(void) Returns a reference to the fi rst element in the list

void push_back(const T &value) Inserts a value to the end of the list

void push_front(const T &value) Inserts a value to the beginning to the list

void pop_back(void) Deletes the last element of the list

void pop_front(void) Deletes the fi rst element of the list

void remove(const T &value) Deletes all elements that match the value. Comparison is
performed using the = = operator

void reverse(void) Reverses the order of elements in the list

void sort(void) Sorts the entries contained in the list using the < operator

Table 15.4 lists the set of commonly used functions for list operations. Program Code
15.9 demonstrates the use for them for creating a list of students using STL.

Program CoDE 15.9

// List operations using STL

#include

#include <iostream>

standard template liBrarY 699

DSUC c15 V6 January 24, 2013 10:04 AM Page 699

using namespace std;

class student

{

 private:

 int roll;

 char name[20];

 fl oat marks;

 public:

 void getdata()

 {

 cout << "\n Enter roll, name, marks of student:";

 cin >> roll >> name >> marks;

 }

 void displaydata()

 {

 cout << "\n" << roll << "\t\t" << name <<

"\t\t" << marks;

 }

 int getroll()

 {

 return roll;

 }

};

void main()

{

 student s; // object of student

 list <student> student_list; // list of students

 list <student> :: iterator sptr;

 int choice;

 int ele;

 do

 {

 cout << "\n Menu \n";

 cout << "1. Add" << endl;

 cout << "2. Display" << endl;

 cout << "3. Delete" << endl;

 cout << "4. Insert" << endl;

 cout << "5. Exit";

 cout << "\nEnter your choice:";

 cin >> choice;

 switch(choice)

 {

 case 1:

700 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 700

 cout << "\n Enter student record:\n";

 s.getdata();

 student_list.push_back(s);

 break;

 case 2:

 cout << "Roll Name Marks" << endl;

 if(!student_list.empty())

 {

 for(sptr = student_list.begin(); sptr

!= student_list.end(); sptr++)

 sptr->displaydata();

 }

 else

 cout << "\n List is empty";

 break;

 case 3 :

 int r;

 cout << "\n Enter roll no to be deleted :: ";

 cin >> r;

 if(!student_list.empty())

 {

 for(sptr = student_list.begin();

sptr != student_list.end(); sptr++)

 {

 if(sptr->getroll() == r)

 {

 cout << "\n Deleting \n";

 sptr->displaydata();

 student_list.erase(sptr);

 break;

 }

 }

 }

 else

 cout << "\n List is empty";

 break;

 case 4 :

 int br;

 cout << "\n Enter record to be inserted : ";

 s.getdata();

 cout << "\n Enter roll no before which to

be inserted :: ";

standard template liBrarY 701

DSUC c15 V6 January 24, 2013 10:04 AM Page 701

 cin >> br;

 if(!student_list.empty())

 {

 for(sptr=student_list.begin(); sptr

!= student_list.end(); sptr++)

 {

 if(sptr->getroll() == br)

 {

 cout << "\n Inserting \n";

 sptr->displaydata();

 student_list.insert(sptr, s);

 break;

 }

 }

 }

 else

 cout << "\n List is empty";

 }

 }while(choice < 5);

}

 Stack T he template class describes an object that controls a varying-length sequence
of elements, having the functions empty(), size(), top(), push(), and pop(). This is
illustrated in Program Code 15.10.

Program CoDE 15.10

// Stack using STL

#include <stack>

#include <iostream>

using namespace std;

void main()

{

 stack <int> stack1;//

 int choice;

 int ele;

 do

 {

 cout << "1. Push " << endl;

 cout << "2. Pop" << endl;

 cout << "3. Exit" << endl;

702 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 702

 cout << "Enter your choice : ";

 cin >> choice;

 switch(choice)

 {

 case 1: cout << "Pushg an Element in Stack"

<< endl;

 cout << "Enter Element:";

 cin >> else;

 stack1.push(ele);

 break;

 case 2: cout << "Pop element from stack" <<

endl;

 if(!stack1.empty())

 {

 cout << "top returned" << stack1.top()

<< endl;

 stack1.pop();

 }

 else

 cout << "\n Stack is empty";

 break;

 }

 }while(choice < 3);

}

Table 15.5 summarizes the characteristics of STL sequence container including the
ordinary C++ array.

Table 15.5 List of containers and their characteristics

Container Characteristics Advantages/disadvantages

C++ array (not container) Fixed size • Quick random access
• Slow insert and delete
• Size cannot be changed at runtime

Vector Relocating, expandable
array

• Quick random access
• Slow insert/delete in middle
• Quick insert/delete at ends

List Doubly linked list • Quick insert/delete
• Quick access at ends
• Slow random access

Deque Like vector but can be
accessed at either ends

• Quick random access
• Slow inset or delete in middle
• Quick insert or delete at the ends

standard template liBrarY 703

DSUC c15 V6 January 24, 2013 10:04 AM Page 703

Associative Containers

An associative container is a collection of stored objects that allow fast retrieval using a
key. In each container, the key must be unique. There are four standard associative con-
tainers classified into two classes:

1. Sets
(a) Set
(b) Multiset

2. Maps
(a) Map
(b) Multimap list

An associative container is not sequential; instead, it uses keys to access data. The
keys, typically numbers or strings, are used automatically by the container to arrange
the stored elements in a specific order. It is like an ordinary English dictionary where
we access data by searching in alphabetical order. Both the containers, sets and maps,
store data in tree structure, which offer fast searching, insertion, and deletion. Map con-
tainer supports unique key and bidirectional iterators. It provides fast retrieval of values
of another type based on the keys. A multimap is an associative container that supports
duplicate keys and bidirectional iterators.

A set is an associative container that supports unique key and bidirectional iterators.
Sets are simpler and more commonly used than maps. A set stores a number of items
that contain keys. The keys are attributes used to order the items. For example, a set of
books might be ordered as per the unique ID number or can be ordered alphabetically on
author’s name. The desired author’s book can be quickly located by searching for a book
specified by the author name.

A map stores pairs of objects: a key object and a value object. A map is often used as
a container that is somewhat like an array, except that the index used for accessing the
element is the key object.

15.3.2 Algorithms

An algorithm is a function that processes the items in a container. Algorithms in STL are
not member functions or even friends of container classes. They can be used with built-in
C++ arrays or with container classes created by us.The header <algorithm> defines a
collection of functions especially designed to be used on ranges of elements. These algo-
rithms can be divided into six groups:

1. Minimum and maximum algorithms
2. Numeric algorithms
3. Non-mutating sequence algorithms
4. Sorting algorithms
5. Set operations on sorted sequence
6. Heap operation

704 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 704

For example, suppose we create an array of type int storing the marks of a student. Then,

 int marks[6] = {73, 44, 42, 51, 59, 50}

We can use STL sort() as

 sort(marks, marks + 6)

Here, marks and marks + 6 are the start and end addresses, respectively.
Other example of sorting a vector is as follows:

vector<int> m;
// having values 73, 44, 42, 51, 59, 50
sort(m.begin(), m.end());
// Output is 42, 44, 50, 51, 59, 73
sort(v.begin(), v.end(), greater<int>());
// Output is 73, 59, 51, 50, 44, 42

For reversing, we can use the reverse algorithm as the following:

vector<int> m;
// vector m having values 73, 44, 42, 51, 59, 50
reverse(m.begin(), m.end());
// vector m changed as 50 59, 51, 42, 44, 73

Table 15.6 lists some of the functions in <algorithm>.

Table 15.6 List of functions with their brief descriptions available in STL

Functions Description
find() Find value in range

find_if() Find element in range

count() Count appearances of value in range

equal() Test whether the elements in two ranges are equal

copy() Copy the range of elements

swap() Exchange values of two objects

replace() Replace value in range

fill() Fill range with value

remove() Remove value from range

reverse() Reverse range

sort() Sort elements in range

partial_sort() Partially sort elements in range

nth_element() Sort element in range

binary_search() Test if value exists in sorted array

merge() Merge sorted ranges

min() Return the lesser of two arguments

max() Return the greater of two arguments

Min_element() Return the smallest element in range

max_element() Return the largest element in range

standard template liBrarY 705

DSUC c15 V6 January 24, 2013 10:04 AM Page 705

We know that an algorithm processes the items in a container. Algorithms in STL can
be used with built-in C++ arrays or with container classes created by us. Program Code
15.11 demonstrates its use for sorting the list of persons.

Program CoDE 15.11

// Sort elements in a sequence

#include <iostream>

#include <algorithm>

#include <vector>

#include <string>

using namespace std;

class person

{

 public:

 int id;

 char fi rst_name[20];

 char last_name[20];

 long phone;

};

bool operator < (person &a, person &b)

{

 // function used to select fi eld for sort

 if(strcmp(a.last_name, b.last_name) < 0)

 return(1);

 return(0);

}

void main()

{

 const int vector_size = 20;

 vector<person> Per(vector_size);

 //Defi ne an iterator for template class vector of

strings

 vector<person> :: iterator start, end, it ;

 // Read person records

 int i, size;

 char ans;

 i = 0;

 cout <<

 do

 {

 cout << "\n Enter person id : ";

706 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 706

 cin >> Per[i].id;

 cout << "\n Enter person fi rst name : ";

 cin >> Per[i].fi rst_name;

 cout << "\n Enter person last name : ";

 cin >> Per[i].last_name;

 cout << "\n Enter pnone : ";

 cin >> Per[i].phone;

 i++;

 cout << "More? (y/n)";

 cin >> ans;

 }

 while(ans == 'y' || ans == 'Y');

 size = i;

 start = Per.begin();

 // location of fi rst element of Person

 end = Per.end();

 // one past the location last element of Person

 cout << "Before calling partial_sort\n" << endl ;

 // print content of Person

 cout << "\n All records of person \n" ;

 for(it = start; it != start + i; it++)

 cout << (*it).id << " " << (*it).fi rst_name <<

"\t" << (*it).last_name << "\t" << it->phone

<< endl;

 // sort elements of person on last name

 sort(Per.begin(), Per.begin() + size);

 cout << "After calling sort elements of

person on last name \n" << endl;

 cout << "\n All records of person \n";

 for(it = start; it != start + i; it++)

 cout << (*it).id << " " << (*it).fi rst_name

<< "\t" << (*it).last_name << "\t" << it-

>phone << endl;

 cout << endl;

}

15.3.3 iterators

Iterators are pointer-like entities that are used to access individual data items in a con-
tainer. They work like regular pointers in C++. They can be used to store and retrieve
objects in C++. They are often used to move sequentially from element to element, a
process called iterating, through the container. We can increment iterators with the ++
operator so they point to the next element, and dereference them with the * operator to

standard template liBrarY 707

DSUC c15 V6 January 24, 2013 10:04 AM Page 707

obtain the value of the element they point to. In the STL, an iterator is represented by the
object of an iterator class.

STL defines five different iterators:

1. Input
2. Output
3. Forward
4. Bidirectional
5. Random access

Input Iterator

An input iterator can be used only to retrieve a value from the input stream; it cannot be
used to store a value. It can only move in the forward direction, retrieving the objects one
by one. It cannot go backward and it cannot jump to any arbitrary position. Figure 15.9
elaborates the concept better.

Object 1 Object 2 Object 3

Iterator

Direction of iterator movement

Input steam

Object N

...

...

Fig. 15.9 STL input iterator

Output Iterator

An output iterator is used only to store a value in an output stream; it cannot be used to
retrieve a value. It only moves in the forward direction, storing objects one by one. It can-
not go backward and it cannot jump. Figure 15.10 elaborates the concept.

Object 1 Object 2 Object 3

Iterator

Direction of iterator movement

Output steam

Object N

...

...

Fig. 15.10 STL output iterator

708 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 708

Forward Iterator

A forward iterator can be used to both retrieve and store a value. It can only move in the
forward direction, visiting the objects one by one. It cannot go backward and it cannot
jump, that is, it cannot be set to an arbitrary location in the middle of the container.

Figure 15.11 describes the forward iterator.

Object 1 Object 2 Object 3

Iterator

Iterator movement

Container

Object N

...

...

Fig. 15.11 STL forward iterator

Forward iterator accomplishes the movement throughout its ++ operator.

Bidirectional Iterator

A bidirectional iterator can be used to both retrieve and store values. A bidirectional
iterator can move backward as well as forward, so both its + + and - - operators are
defined.

A bidirectional iterator too cannot be set to an arbitrary location like forward, input,
and output iterators. It can move forward or backward, one object at a time. Figure 15.12
describes a bidirectional iterator.

Object 1 Object 2 Object 3

Iterator

Iterator movement

Container

Object N

...

...

Fig. 15.12 Bidirectional iterator

standard template liBrarY 709

DSUC c15 V6 January 24, 2013 10:04 AM Page 709

Random Access Iterator

A random access iterator, in addition to moving backward and forward, can jump to an
arbitrary location. We can set the iterator to access any location i. Like a bidirectional
iterator, it can move (rather jump) in both directions.

An input iterator points to an input device (cin or a file) to read sequential data items
into a container, and an output iterator points to an output device (count or file) and
write elements from a container to the device. While the values of forward, bidirec-
tional, and random access iterators can be stored, the values of input and output itera-
tors cannot be. This makes sense as the first three iterators point to memory locations,
while the input and output iterators point to I/O devices for which the stored ‘pointer’
values have no meaning. Table 15.7 defines the characteristics of these different kinds
of iterators.

Table 15.7 Iterator characteristics

Iterator type Read/write Iterator can
 be saved

Direction Access

Random access Read and write Yes Forward and backward Random

Bidirectional Read and write Yes Forward and backward Linear

Forward Read and write Yes Forward only Linear

Input Read only No Forward only Linear

Output Write only No Forward only Linear

We can note that there is a hierarchical relation between the iterators. Every forward
iterator is also an input and output iterator. Every bidirectional iterator is also a forward
iterator. A random access iterator is also a bidirectional iterator. Figure 15.13 shows this
hierarchical relationship among these five iterators.

Input Output

Forward

Bidirectional

Random access

Fig. 15.13 Hierarchical relationship among iterators

710 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 710

Operators Supported by Iterators

Each iterator supports different operators as per its type. Table 15.8 shows the operators
supported by each iterator.

Table 15.8 Iterator operators
Iterator Operator
Input

Output

Forward

Bidirectional

Random access

¥, =, ++, = =, !=, ã

¥, =, ++

¥, =, ++, = =, !=, ã

¥, =, ++, = =, !=, ã

+, =, ++, = =, !=, ->, - -, +, -

<, >, <=, >=, []

Pros and Cons of Standard Template Library

The STL is a robust and versatile system. Errors tend to be caught at compile time rather
than at runtime. The different algorithms and containers present a very consistent inter-
face; what works with one container or algorithm will usually work with another when
used appropriately.

The sophistication of the STL’s template classes places a strain on compilers, and not
all of them respond well. It is hard to find errors reported by the compiler. Errors could
be reported as being deep in header file when they are actually in the class as user’s code.
The STL may sometimes generate spurious compiler warnings, which appear to be harm-
less and can be ignored.

15.3.4 function objects

Some algorithms can take an object called a function object as an argument. A function
object encapsulates a function. STL uses this strategy to pass a function to an algorithm or
to a method in a container without using the traditional function pointer. A function object
for the user is much like a template function. However, it is actually an object of a template
class that has a single member function, the overload operator. In C++, the function call
operator() can be treated as any other operator; in particular, it can be overloaded. It
can return any type and take any number of arguments, but like the assignment operator,
it can be overloaded only as a member function. Any object that includes a definition of
the function call operator is called a function object. A function object is an object, but it
behaves as if it were a function. When the function object is called, its arguments become
the arguments of the function call operator.

Suppose we want to sort an array of Roll_Nos into descending order instead of
ascending order. Program Code 15.12 shows how to do it using the greater<>(1) func-
tion object.

standard template liBrarY 711

DSUC c15 V6 January 24, 2013 10:04 AM Page 711

Program CoDE 15.12

#include<iostream.h>

#include<functional>

#include<algorithm>

int Roll_No[] = {6, 7, 3, 1, 2, 5, 4};

int main()

{

 sort(Roll_No, Roll_No + 7, greater<int>());

 for(int j = 0; j < 7; j++)

 cout << Roll_No[j];

 cout << endl;

 return 0;

}

The sort() algorithm usually sorts in ascending order, but the use of greater<>()
function object, the third argument of sort(), reverses the sorting order.

We get the output as 7, 6, 5, 4, 3, 2, 1

Besides comparisons, there are function objects for arithmetical and logical operators.
User can substitute a user-written function for a function object.

reCAPiTulATion

• A data type is said to be an ADT if one can
use it without having access to and without
knowing the details of its implementation. The
ADT concept can be best implemented in an
object-oriented fashion.

• STL is a part of standard C++ library, which
includes container class that provides an excel-
lent mechanism for storage and processing of

data. STL consists of three main components:
containers, algorithms, and iterators.

• Containers are of two categories: sequential,
associative. Algorithms carry out operations
on containers, such as sorting, copying, and
searching. Iterators act like pointer to container
element and provide connection between algo-
rithm and containers.

Algorithm An a lgorithm is a function for process-
ing the items in a container. Algorithms in STL
can be used with built-in C++ arrays or with con-
tainer classes created by us.

Container Container class contains other objects.
Container is a way to store data, whether the data
consists of built-in types such as int and fl oat,
or of class objects.

Key TermS

712 data structures using c++

DSUC c15 V6 January 24, 2013 10:04 AM Page 712

eXerCiSeS

Multiple choice questions

1. The acronym STL stands for
 (a) Standard tools library
 (b) Standard template library
 (c) Simple tools library
 (d) Simple template library
2. The C++ language is a collection of
 (a) Containers, functions, and classes
 (b) Containers, functions, iterators, and classes
 (c) Containers, functions, iterators, algorithms,

and adaptors
 (d) Containers, functions, iterators, algorithms,

and classes
3. The C++ STL containers are categorized into
 (a) associative containers and simple containers
 (b) assembled containers and sequence containers
 (c) associative containers and standard containers
 (d) associative containers and sequence containers
4. For an algorithm in STL, which of the following

is true?
 (a) An algorithm is a function that processes

the items in a container.
 (b) Algorithms in STL are not member functions

or even friends of container classes.
 (c) Algorithms can be used with built-in C++

arrays or with container classes created
by us.

 (d) All of the above

Review questions

 1. Use the STL algorithm to sort an element list
into ascending order and search an element
using binary search.

 2. Use the STL algorithm ‘count’ and compute the
occurrence of zero in the array of integers.

 3. What is a container? What are the types of STL
containers?

 4. What is an iterator? Defi ne the fi ve different
types of iterators.

 5. Write the code for using STL containers and
STL algorithms for the following:

 (a) To reverse a list
 (b) To convert a decimal to binary form using

stack
 (c) Queue operations
 6. Using STL, implement polynomial operations

using linked list in C++.
 7. Write a program to create array of specifi ed size

and use the algorithm fi ll to
 (a) initialize it to value -1
 (b) set values of lower half to 99
 8. A test for 60 students has been conducted for 50

marks for subject ‘Data Structures’. The passing
is scoring 40% of total marks that is 20. Write a

Iterator Iterator is pointer like entity, which is
used to access individual data items in a container,
and it is used to store and retrieve objects in C++.

Object An object is an entity that performs com-
putations and has a local state. It is also viewed
as a combination of data and procedural (behav-
ioural) elements.

Object-oriented programming Object-oriented
programming (OOP) is a programming paradigm

that encapsulates data (attributes) and functions
(behaviour) into package called as classes. Class
is a user-defi ned data type.

Standard template library The C++ STL is
a collection of containers, adaptors, iterators,
functions, and algorithms. The STL is a part of
the standard C++ class library and can be used
as a standard approach for storing and process-
ing data.

standard template liBrarY 713

DSUC c15 V6 January 24, 2013 10:04 AM Page 713

program to create an array of specified size for
storing marks of 60 students in the class. Use
STL algorithm ‘count’ and compute the total
number of failures in the subject.

 9. The students’ club members (MemberID, name,
phone, email) list is to be maintained. The
common operations performed include these:
add member, search member, delete member,

and update the information. Write a program that
uses list from STL to implement the same.
Use iterator.

10. Implement doubly ended queue using STL. Use it
for processing members queue of jobs submitted
to printer. Make use of deque for stacking the
members and process them as LIFO.

Answers to multiple choice questions

1. (b) 2. (c) 3. (d) 4. (d)

16

The study of algorithms is fundamental to computer science. An algorithm can be
defi ned as a set of steps to solve a particular problem effectively and effi ciently. The

study of algorithms includes learning tools for algorithm development, various design
strategies, and analysis of algorithms.

The intention of this chapter is to present the foundation for these aspects associated
with algorithm study.

16.1 INTRODUCTION

We have discussed data structures, programming languages, algorithms, and their analy-
sis in Chapter 1. Software development desires to utilize each of these effi ciently. The
basic programming style is infl uenced by typical design approaches called algorithmic
strategies. An algorithmic strategy (also known as design technique or paradigm) is a
general approach to solving problems algorithmically. This methodology is appropriate
for various problems suitable for different areas of computing.

It is true that devising an algorithm is an art that may never be fully automated. We shall
study various design techniques that have proven to be useful to devise new algorithms.
Dynamic programming is one such technique along with others such as divide-and-
conquer, greedy, and backtracking.

More than one technique may be applicable to a specifi c problem, but it is often the case
that an algorithm constructed using a particular approach is clearly superior to equivalent
solutions built using alternative techniques. Hence, the choice of the design paradigm is
an important feature of algorithm synthesis.

ALGORITHM ANALYSIS
AND DESIGN

OBJECTIVES

After completing this chapter, the reader will be able to understand the following:
 • Basic tools needed to develop and analyse algorithms
 • Methods to compute the effi ciency of algorithms
 • Ways to make a wise choice among many solutions for a given problem

ALGORITHM ANALYSIS AND DESIGN 715

DSUC c16 V6 October 18, 2012 5:28 PM Page 715

16.1.1 Algorithm Analysis

In computer science, an algorithm is a way to formulate a stepwise solution to a prob-
lem. It outlines the initial conditions, processing steps/sequence, and final outcome of
the problem. For any specific problem definition, more than one solution approach may
exist. In other words, a problem can have multiple algorithms for its solution. If multiple
algorithms provide solutions to the same problem, their performance will surely vary over
a wide range of performance measuring parameters.

In practice, each algorithm’s performance is unique. Each algorithm’s way of solv-
ing a problem, its prerequisites, and presentation of the final solution is independent.
Thus, suitability of each algorithm for problem solving varies from application to
application.To measure the performance of each algorithm, we need analysis, and
based on the appropriate analysis design, selection of efficient or better algorithms is
possible. Hence, the study of algorithms and their analysis plays a vital role in software
development.

The performance measuring parameters have been highlighted in Chapter 1. We can
evaluate an algorithm’s efficiency in terms of its time and space consumption. These
parameters are measured in terms of asymptotic complexity bounds of the algorithms. Let
us discuss a few fundamental algorithmic strategies in relation with asymptotic complexi-
ties in the following sections.

16.1.2 Asymptotic Notations (W, p, O)

More than one solution may exist for a single problem. To identify the best among them,
we need to quantify their performances with factors such as time and space complexi-
ties. Asymptotic complexity helps us to quantify the performance of the algorithms.
Big O, omega (W), and theta (q) are the asymptotic notations used in this algorithmic
analysis.

Big O or Oh

Definition The function f(n) = O(g(n)) is called ‘f(n) is the big O of g(n)’ if and only if
there exist positive constants c and N, such that f(n) £ c ¥ g(n) for all n ≥ N.

Big O formally represents the upper bound of the algorithm’s time complexity as it
suggests the maximum value or upper limit of the time taken by an algorithm to execute.

If an algorithm’s time complexity is represented as O(g(n)), then it indicates that in all
possible data considerations of size n, at any instance, the algorithm would consume f(n)
time, which is always less than constant c times g(n).

Let us consider an example of linear search. Linear search will consume maximum
time if the element we want to search for, say x, lies either at the last location or is absent.
In such situations, linear search will take n comparisons, where n is the data size. So, in
the case of linear search, the upper limit for time complexity will be n in the worst pos-
sible situation. This is represented as O(n).

716 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 716

Big Omega (W)

Definition The function f(n) = W(g(n)) is called ‘f(n) is omega of g(n)’ if and only if
there exist positive constants c and N such that f(n) ≥ c ¥ g(n) for all n ≥ N.

Big Theta (Q)

Definition The function f(n) = Q(g(n)) is called ‘f(n) is theta of g(n)’, if and only if there
exist positive constants c and N such that f(n) £ c × g(n) for n ≥ N.

Algorithms can be iterative or recursive; can make decisions randomly or approximate-
ly; can propagate the decision-making policies in the forward or backward manner. The al-
gorithmic strategies work on all such characteristics and are broadly classified as follows:

1. Divide-and-conquer
2. Greedy method
3. Dynamic programming

The study of algorithm and design strategies

1. makes available templates suitable for solving a set of diverse problems;
2. can be translated into common control and data structures provided by most high-level

languages;
3. analyses the temporal and spatial requirements of the algorithms in a precise manner.

16.2 DIVIDE-AND-CONQUER

Divide-and-conquer is one of the most popular algorithmic strategies. It works in two phases.
In the first phase, the problem is divided into subproblems of smaller size till each prob-
lem can be easily solved. In the latter phase, the solutions to all such subproblems are
gathered together to get the final solution. This approach, especially when used recur-
sively, often yields efficient solutions to problems in which the subproblems are smaller
versions of the original problem and can be independently solved.

Often, even the subproblems are relatively large, and the divide-and-conquer strategy
is reapplied. In addition, the subproblems resulting from a divide-and-conquer design
are of the same type as the original problem. For those cases, applying this design again
is naturally expressed by a recursive procedure. The process of splitting the input into
distinct subsets continues till these smaller subproblems, which are of the same kind, are
small enough to be solved without further splitting.

16.2.1 Unique Characteristics and Use
Popularly, the divide-and-conquer strategy is designed keeping in mind a single processor
computer. However, it is ideally suited for parallel computations as each subproblem can
be solved simultaneously by its own processor. The following are some unique character-
istics of the divide-and-conquer method:

1. The divide-and-conquer technique is well suited when a data set can be divided into
smaller subsets of data elements and each data set can be independently processed.

ALGORITHM ANALYSIS AND DESIGN 717

DSUC c16 V6 October 18, 2012 5:28 PM Page 717

2. It is useful in cases where algorithms are inherently recursive.
3. It is not suitable for data elements that are not suitably subdivided and if the subtasks

cannot be independently processed.

16.2.2 General Method

With n inputs in hand, the divide-and-conquer strategy recommends splitting the inputs
into k distinct subsets, 1 < k £ n, yielding k subproblems. Each of the k subproblems is
to be solved independently, and then by a suitable method these subsolutions should be
combined to yield a solution to the whole. To each subproblem, divide-and-conquer is
reapplied till the subproblem is small enough to be solved without further subdivision.

For a general method, let the n inputs to be processed be stored in a global array A[1, n].
Let D_and_C be a function that is initially invoked as D_and_C(1, n). D_and_C(i, j)
solves a problem instance denied by the input A[i, j]. The following steps elaborate the
general structure of the divide-and-conquer strategy.

1. If the data size n of problem P is fundamental, calculate the result of P(n) and go to
step 4.

2. If the data size n of problem P is not fundamental, divide the problem P(n) into
equivalent subproblems P(n1), P(n2), … P(ni) such that i ≥ 1.

3. Apply divide-and-conquer recursively to each individual subproblem P(n1), P(n2), …,
P(ni).

4. Combine the results of all subproblems P(n1), P(n2),…, P(ni) to get the final solution
of P(n).

Algorithm 16.1 illustrates the divide-and-conquer algorithm.

algorithm 16.1
Algorithm Divide_and_Conquer(A, lower, upper)
1. start
2. if small(lower, upper) then
 return Soln(lower, upper)
3. else Divide A into smaller instances say A1, A2, … Ak
4. for i = 1 to k do
 Apply Divide_and_Conquer to Ai
5. return conquer(Divide_and_Conquer(A1)),
 Divide_and_Conquer(A2),
 …
 Divide_and_Conquer(Ak))
6. stop

The computing time of D_and_C is described by the following recurrance relation:

g n(), if n is small

otherwise() + () + + () + 1 2 kT n T n T n f n),… (

T(n) =

718 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 718

The complexity of many divide-and-conquer algorithms is given by a recurrence of the form

T n

aT n b

(1) = 1

(/) ++ () > 1 f n n

T(n) =

where a and b are known constants. We assume that T(1) is known and n is a power of b
(i.e., n = bk).

One of the methods for solving any such recurrence relation is the substitution method.
This method repeatedly makes substitutions for each occurrence and the function T in the
right hand side (RHS) until all such occurrences disappear.

16.2.3 Binary Search

The binary search algorithm, discussed in Chapter 9, is the best example of the divide-
and-conquer strategy. Often, sequential search is not suitable. For larger lists, it requires
n comparisons in the worst case. Consider that one wants to search the name of a friend
Zeenath sequentially in a list of students. If the list is not sorted alphabetically, the task
becomes lengthy. Obviously, linear search through a directory is not an efficient method.
Hence, a better method is to use binary search, when the data is sorted.

This method is called binary search as we divide the list to be searched into two lists
and search in only one of the lists. Consider that the list is sorted in ascending order. In a
binary search algorithm, to search a particular element, it is first compared with the ele-
ment at the middle position; if found, the search is successful. Else, if the middle position
value is greater than the target, the search will continue in the first half of the list; other-
wise, it will resume in the second half of the list. The same process is repeated for one of
the halves of the list till the list reduces to size one.

The effectiveness of the binary search algorithm lies in its continual halving of the list
to be searched. For an ordered list of 50,000 keys, the worst case efficiency is a mere 16
accesses. The same file that would have necessitated an average wait of few minutes using
a sequential search will permit a virtually instantaneous response when the binary search
strategy is used. In more precise algebraic terms, the halving method yields a worst case
search efficiency of log2n.

Let us discuss binary search as an example of the divide-and-conquer strategy with the
help of an example. Let A be an array of size n, where n = 8. For the binary search to be
effective, the array A must be presorted.

Element to be searched = 24

A

low mid high

1 2 3 4 5 6 7 8

2 4 6 8 10 22 24 60

mid = (low + high)/2 = 9/2 @ 4

ALGORITHM ANALYSIS AND DESIGN 719

DSUC c16 V6 October 18, 2012 5:28 PM Page 719

Check if A[mid] <= 24
Since A[4] = 8 which is less than 24, the right half needs to be searched.
Hence now, low = mid = 4; high= 8.

A

low mid high

1 2 3 4 5 6 7 8
2 4 6 8 10 22 24 60

mid = (low + high)/2 = 12/2 @ 6
Check if A[mid] <= 24
Since A[6] = 22 which is less than 24, the right half needs to be searched.
Hence now, low = mid = 6; high = 8.

A

low mid high

1 2 3 4 5 6 7 8
2 4 6 8 10 22 24 60

mid = (low + high)/2 = 14/2 @ 7
Check if A[mid] <= 24
A[7] = 24 which is equal to 24.
Since the required element is found, stop
Binary search is illustrated by Algorithm 16.2.

algorithm 16.2
int Binary_Search(int list[], int first, int last, int x)
{
 int mid;
 if(first <= last)
 {
 mid = (first + last)/2;
 if(list[mid] = = x)
 return mid;
 else if(x < list[mid])
 return Binary_Search(list, first, mid − 1, x);
 else
 return Binary_Search(list, mid + 1, last, x);
 }
 return −1;
}

Although this is a more direct implementation of the earlier description, it uses needless
stack space and is much slower in most systems. In addition, this is known as tail recur-
sion, which is the most wasteful form of recursion. Recursion is a powerful tool, which
must be used with care.

720 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 720

Binary search requires O(log(n)) as it halves the list size in each step. It is a large im-
provement over linear search; for a list with 10 million entries, linear search will need 10
million key comparisons, whereas binary search will need just about 24.

Time complexity of binary search can be written as a recurrence relation as follows:

T n
T n

T n n
() =

(1) if =1

(/2) + c if > 1

The most popular and easiest way to solve recurrence relation is to repeatedly make
substitutions for each occurrence of the function T in the RHS until all such occurrences
disappear.
Therefore, T(n) = T(n/2) + c
 = T(n/4) + 2c
 = T(n/8) + 3c

…

 = T(n/2k) + kc

…

 = T(n/n) + kc = T(1) + kc
where 2k = n; hence, k = log2n
\ T(n) = T(1) + clog2n
 T(n) = O(log2n)

16.2.4 Merge Sort

Merge sort is another example of the divide-and-conquer strategy. It is the most common
technique used in external sorting. Initially, merge sort considers the individual elements.
In the next step, it considers a group of two elements and sorts them. At the end of the sec-
ond step, subarrays of size two are available. In the next step, it considers two subarrays
of size two and merges them. It repeats this procedure till all the elements are covered or
until one of the two sublists is empty. The same concept of merge sort can be applied to
file merging.

Let us discuss the implementation of the merge sort technique for two arrays. Algo-
rithm 16.3 describes the steps to sort two arrays A and B.

algorithm 16.3
Algorithm MergeSort(List L, int n)
begin
if(n = 1)then
 return(L);
else
 begin
 split L into two halves A and B

ALGORITHM ANALYSIS AND DESIGN 721

DSUC c16 V6 October 18, 2012 5:28 PM Page 721

 return(Merge(MergeSort(A, n/2), MergeSort(B, n/2)));
 end
end

Algorithm 16.4 accepts two sorted arrays A and B containing elements n1 and n2, re-
spectively, and merges them into a third array C containing n3 elements.

algorithm 16.4
Algorithm Merge(A, B, C, n1, n2, n3)
begin
i = j = k = 1;
while(i < n1 and j < n2)
 begin
 if(A[i] < B[j])
 begin
 C[k] = A[i]
 i = i + 1
 end
 else
 begin
 C[k] = B[j]
 j = j + 1
 end
 k = k + 1
 end
 while(i <= n1)
 begin
 C[k] = A[i]
 i = i + 1
 k = k + 1
 end
 while(j <= n2)
 begin
 C[k] = B[j]
 k = k + 1; j = j + 1;
 end
end

The merge sort algorithm illustrates all the facets of the divide-and-conquer strategy.
When the number of elements to be sorted is greater than one, merge sort separates the list
into two subinstances, solves each of these recursively, and then combines the two sorted
halves to obtain the solution by calling Algorithm Merge.

Let T = {13, 11,14, 11, 15, 19, 12, 16, 13, 15, 18, 19}

T is split into two halves as follows:

A = {13, 11,14, 11, 15, 19}, B = {12, 16, 13, 15, 18, 19}

722 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 722

A and B are recursively sorted again by calling merge sort for each as follows:

A = {11, 11, 13, 14, 15, 19}, B = {12, 13, 15, 16, 18, 19}

Now, a call to merge results in the following T:

T = {11, 11, 12, 13, 13, 14, 15, 15, 16, 18, 19, 19}

Time complexity of merge sort is O(nlogn).
When merge sort is used for files as described here, each merge operation requires

reading and writing of two files, both of which are about n/2 records long. Thus, the
total number of blocks read or written in a merge operation is approximately 2n/c,
where c is the number of records in a segment. The number of segments accessed for
the whole operation is O((n(log2n))/c), which amounts to O(log2n) passing through the
entire original file.

 example 16.1 Suppose we have an external file containing the following data:

f: (2, 6, 3, 1, 4, 31, 23, 8, 11, 19, 21, 37, 14, 57, 28, 45, 30, 9, 35, 12, 13, 18, 5, 89, 77)
Apply merge sort.

Solution We divide the given data into two original files as follows:

f1: (2, 6, 3, 1, 4, 31, 23, 8, 11, 19, 21, 37)
f2: (14, 57, 28, 45, 30, 9, 35, 12, 13, 18, 5, 89, 77)

After the first pass of segments of length 1, we have

M1: ((2, 14), (3, 28), (4, 30), (23, 35), (11, 13), (5, 21))
M2: ((6, 57), (1, 45), (9, 31), (8, 12), (18, 19), (37, 89), 77)

After the second pass of segments of length 2 we have

f1: ((2, 6, 14, 57), (4, 9, 30, 31), (11, 13, 18, 19))
f2: ((1, 3, 28, 25), (8, 12, 23, 35), (5, 21, 37, 89), 77))

After the third pass of segments of length 4 we have

M1: ((1, 2, 3, 6, 14, 28, 45, 57), (5, 11, 13, 18, 19, 21, 37, 89)
M2: ((4, 8, 9, 12, 23, 30, 31, 35), 77))

After the fourth pass of segments of length 8 we have

f1: (1, 2, 3, 4, 6, 8, 9, 12, 14, 23, 28, 30, 31, 35, 45, 57)
f2: (5, 11, 13, 18, 19, 21, 37, 77, 89)

After the fifth pass of blocks of length 16 we get

M1: (1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 18, 19, 21, 23, 28, 30, 31, 35, 37, 45, 57,
77, 89)
M2 is empty.

The algorithm was described beginning with segments of length 1. Substantially larger
length segments can be stored in the main memory, so taking conveniently larger segments

ALGORITHM ANALYSIS AND DESIGN 723

DSUC c16 V6 October 18, 2012 5:28 PM Page 723

can enhance the efficiency of the algorithm. For example, if an external file has 100,000
records, and a segment of 1000 such records can be stored in the main memory, then the
entire file can be sorted in seven passes. The segments in each pass can be ordered by a suit-
able sorting method such as the quick sort. The procedure for merge sort usually deals with
an external file medium and is therefore system-dependent.

Analysis of Merge Sort

The merge sort algorithm has a property that its time complexity is O(nlogn) even in the
worst case. If the time for the merging operation is proportional to n, then the computing
time for merge sort is described by the following recurrence relation:

T(n)
a,

T n cn, n > 1
=

if n = 1

2 (/2) + if

Here, a and c are constants. When n is a power of 2, n = 2i. We can solve this recurrence
by the substitution method as shown here:

T(n) = 2T(n/2) + cn = 2[2T(n/4) + cn/2] + cn
= 4T(n/4) + 2cn = 4[2T(n/8) + cn/4] + 2cn
= 8T(n/8) + 3cn = 8[2T(n/16) + cn/8] + 3cn
= 16T(n/16) + 4cn

…
= 2i T(n/2i) + icn = 2log2

n·T(n/2log2n) + cnlog2n
= nT(1) + cnlog2n = an + cnlog2n

If 2i < n £ 2i+1, then T(n) £ T(2i+1).
Therefore, T(n) = O(nlogn).

Thus, the time complexity for merge sort is O(nlogn) even in the worst case. In merge
sort, we perform a maximum of n comparisons in each pass. The number of passes is
equivalent to the height of a binary tree. So, we can say that the worst case time complex-
ity of a merge sort is O(nlog2n).

16.2.5 Quick Sort

As the name suggests, the quick sort method is the fastest. It is an in-place, divide-and-
conquer, massively recursive sort. The algorithm is simple in theory but not so easy
to code. The purpose of quick sort is to move a data item in the correct direction just
enough for it to reach its final place in the array. The method, therefore, reduces un-
necessary swaps and moves an item a great distance in one move. A pivot item near the
middle of the array is chosen, and then, items on either side are moved so that the data
items on one side of the pivot are smaller than the pivot, whereas those on the other side
are larger. The middle (pivot) item is now in its correct position. The procedure is then
applied recursively to the two parts of the array, on either side of the pivot, until all the
numbers are sorted.

724 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 724

The recursive algorithm consists of four steps:

1. If there is one element in the array to be sorted, return immediately.
2. Pick an element in the array to serve as a ‘pivot’ point. Usually the leftmost element in

the array is used.
3. Split the array into two parts—one with elements smaller than the pivot and the other

with elements larger than the pivot.
4. Recursively repeat the algorithm for both halves of the original array.

In quick sort, the given array is divided into two subarrays so that the sorted subarrays
need not be merged later. This is accomplished by rearranging the elements in A[1:n]
such that A[i] < A[j] for all i between 1 and m and all j between m + 1 and n for
some m, 1 £ m £ n. Thus, the elements in A[1:m] and A[m + 1:n] can be independently
sorted. No merge is needed.

The rearrangement of elements is accomplished by picking some element of array
A[], say t = A[5] and then reordering the other elements so that all elements appearing
before t in A[1:n] are less than or equal to t, and those appearing after t are greater than
or equal to t. This rearrangement is called partitioning.

Let us assume that m represents the first position in a partition in Algorithm 16.5 which
describes partitioning.

algorithm 16.5
Algorithm Partition(A, m, p)
begin
 v = A[m], i = m, j = p
 do
 begin
 // find first element lesser than pivot
 do i = i + 1 while(A(i) £ v);
 // find first element greater than pivot
 do j = j − 1 while(A(j) ≥ v);
 if i < j exchange(A(i), A(j))
 end
 while(i £ j);
 A(m) = A(j), A(j) = v // place pivot at its correct

position
 return(j);
end

Algorithm 16.6 is the quick sort algorithm.

algorithm 16.6
Algorithm qsort (p, q)
/* p and q are start and end positions of a partition */
begin
 if(p < q) then
 begin
 j = q + 1

ALGORITHM ANALYSIS AND DESIGN 725

DSUC c16 V6 October 18, 2012 5:28 PM Page 725

 m = partition (A, p, j) // pivot has taken its correct
position

 qsort(p, m − 1) // sort left partition of pivot
 qsort(m + 1, q) // sort right partition of pivot
 end
end

v

v

When pivot takes its
correct position

Left partition
contains elements

less than pivot

Left partition
sorted separately

Right partition
sorted separately

Process continues until each
partition reduces to size one

Right partition
contains elements
greater than pivot

p

v

p

m

q

q

v

p

m

q

Fig. 16.1 Quick sort

The partition algorithm takes care of partitioning. It takes three arguments. The first
argument is an array A, which contains all the elements. The second argument m and the
third argument p denote the start and end positions of a partition to be rearranged, respec-
tively. Here, the first element of the partition A[m] is being used as the pivot element v.
Any element can be used as a pivot element, however, in practice, the first element is
generally used. The algorithm will rearrange the elements A[m], A[m + 1], …, A[p]

726 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 726

such that the pivot element is at position j. All the elements from positions m to j − 1
are smaller than the pivot element, that is, A[u] < A[j] for all m £ u < j. All the ele-
ments between j + 1 and p are greater than or equal to the pivot element, that is, A[u]
≥ A[j] for all j < u £ p.

The algorithm qsort sorts the elements A[p], …, A[q], which belong to an array
A[n] in an ascending order. The array A is defined as global. The algorithm stops when
each partition reduces to size 1. This is checked by the condition p < q. If the condition
is true, the process of partitioning continues. The whole process of quick sort can be rep-
resented graphically as in Fig. 16.1, assuming that the leftmost element is used as a pivot.

 example 16.2 Apply quick sort to an array A[9] that contains the elements 65, 70,
75, 80, 85, 60, 55, 50, 45.

Solution The first call will be qsort(1, 9), which generates the call partition (A,
1, 10). When partition (A, 1, 10) starts execution, the pivot element v = A[1] = 65,
m = 1, p = 10. Initial values of i and j will be 1 and 10, respectively.

The scenario while partition (A, 1, 10) executes resembles the following:

v = 65, m = 1, p = 10

Array A
i j 1 2 3 4 5 6 7 8 9

1 10 65 70 75 80 85 60 55 50 45

2 9 65 45 75 80 85 60 55 50 70

3 8 65 45 50 80 85 60 55 75 70

4 7 65 45 50 55 85 60 80 75 70

5 6 65 45 50 55 60 85 80 75 70

6 5 60 45 50 55 65 85 80 75 70

Partition(A, 1, 10) returns position 5. So, the next call will be qsort(1, 4) fol-
lowed by qsort(6, 10). qsort(1, 4) generates a call to Partition(A, 1, 5). The
scenario while this executes resembles the following:

v = 60, m = 1, p = 5

Array A
i j 1 2 3 4 5 6 7 8 9

1 5 60 45 50 55 65 85 80 75 70

2 5

3 5

4 5

5 4 55 45 50 60

ALGORITHM ANALYSIS AND DESIGN 727

DSUC c16 V6 October 18, 2012 5:28 PM Page 727

Partition(A, 1, 5) returns position 4. So, the next call will be qsort(1, 3).
Similarly, the process continues until all the partitions reduce to size one.

Analysis of Quicksort

Now, let us discuss the efficiency of quick sort. On the first pass, every element in the
array is compared to the pivot, so there are n comparisons. The array is then divided into
two parts. (We assume that the array is divided into approximately one half each time).
For each of these subarrays, (n/2) comparisons are made and four subarrays of size (n/4)
are formed. So at each level, the number of subarrays doubles. It will take log2n divisions
if we are dividing the array approximately one half each time. Therefore, order of quick
sort is O(nlogn) on the average.

If the original array is sorted and array[left] is chosen as a pivot, the order of quick sort
turns out to be O(n2). Therefore, when we choose array[left] as pivot, quick sort works
best for files that are completely unsorted and worst for files that are completely sorted. In
the case of nearly sorted arrays, a random element is chosen as the pivot value.

Let us analyse this again using another method.
When analysing qsort(), we count only the number of element comparisons C(n) and

make the following assumption:
The n elements to be sorted are distinct and the i/p distribution is such that partition

element v = A[m] in the call to Partition (A, m, p) has an equal probability of being
ith smallest element, 1 £ i £ (p – m) in A(m, p - 1).

Worst case At level one, only one call to a partition is made with n elements; at level
two, utmost two calls are made with elements (n - 1), and so on.

C(n) = O(n2)

Average case CA(n) A partition requires (n + 1) element comparisons on its first call.
The partition element has an equal probability of being the ith smallest element in the
array.

∴ = + + +
≤ ≤
∑C C CA A A(n

n
k n((k)

k n

1)
1

1)
1

− −

Multiplying by n we get

n n n n k n k
k n

CA A
< <

A() = (+ 1) C C+ +∑ () ()− −1
1

= n(n + 1) + CA(0) + CA(1) + … + CA(n - 1) + CA(n - 1) + CA(n - 2)
 + … + CA(0)

= n(n + 1) + 2 [CA(0) + CA(1) + … + CA(n - 1)] (16.1)

Replacing n by n - 1 we get

(n - 1) CA(n - 1) = (n - 1) n + 2 [CA(0) + CA(1) + … + CA (n - 2)] (16.2)

728 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 728

Subtracting Eq. (16.2) from Eq. (16.1) we get

nCA(n) - (n - 1) CA(n - 1) = n(n + 1) - n(n - 1) + 2CA(n - 1)
nCA(n) = n2 + n - n2 + n + 2CA(n - 1) + (n - 1) CA(n - 1)

= 2n + CA(n - 1) (2 + n - 1)
nCA(n) = 2n + (n + 1) CA(n - 1) (16.3)

C ()

 + 1
=

(+ 1)
+ (1)A

A

n

n n n
n

2 1
C −

C

+ 1
A() CA() ()

()

n

n

n n n

n n
=

+ +
+

2 1 1

1

−

Use Eq. (16.3) for CA(n - 1), CA(n - 2), …

C CA A() ()n

n

n

n n+
=

+
+1

1 2

1

−

=

+

 +

+
n n n

n n n

CA()

()

− −
−

2 2 2

1

2

1

= + +

+
CA()n

n n n

−
−

2

1

2 2

1

C CA A() ()n

n

n

n n n n+
= + + +

+1

3

2

2

1

2 2

1

−
− − (16.4)

CA()1

2
2

1

3 1

+
≤ ≤ +
∑ kk n

However, CA(0) = CA(1) = 0.

1= 2
3 1 kk n≤ ≤ +
∑

= 2 1 1

3 1 1

1

k xk n

n

≤ ≤ +

+

∑ ∫

∂x

= 2(loge(n + 1) - loge2)

e e

C
= 2∴ (log (n +1) log 2)A n

n

()

+ 1
−

= 2(n + 1) ¥ [log(n + 1) - loge2]
= (2n + 2) log(n + 1) - 2n loge2 - 2loge2
= 2nlog(n + 1) + 2log(n + 1) - 2n loge 2 - 2 loge 2
= O(nlogn)

ALGORITHM ANALYSIS AND DESIGN 729

DSUC c16 V6 October 18, 2012 5:28 PM Page 729

16.2.6 Strassen’s Algorithm for Matrix Multiplication

The multiplication of two matrices is one of the most basic operations of linear algebra
and scientific computing, and it has provided an important focus in the search for methods
to speed up scientific computation.

Let A, B be two square matrices used to calculate the matrix product C = A × B.
Conventional matrix multiplication involves the following steps:

for(int i = 0; i < m; i++)
 for(int j = 0; j < n; j++)
 {
 C[i][j] = 0.0;
 for(int k = 0; k < p; k++)
 C[i][j] += A[i][k] * B[k][j];
 }

The time complexity of the conventional approach is O(n3). Thus, any speed up in matrix
multiplication can improve the performance of a wide variety of numerical algorithms. To
calculate the matrix product C = A × B, Strassen’s algorithm partitions the data to reduce
the number of multiplications performed. This algorithm requires M, N, and P to be pow-
ers of 2 and is described by the following steps:

1. Let us partition A, B, and C into four equal parts.
If the matrices A and B are not of type 2n ¥ 2n, we fill the missing rows and columns

with zeros. We partition A, B, and C into equally sized block matrices as

A = B = C =

A A

A A

B B

B B

C1 1 1 2

2 1 2 2

1 1 1 2

2 1 2 2

1, ,

, ,

, ,

, ,

,
; ;

11 1 2

2 1 2 2

C

C C

,

, ,

2. Generate the intermediate matrices:
1. M1 = (A11 + A22) (B11 + B22) 5. M5 = (A11 + A12) B22

2. M2 = (A21 + A22) B11 6. M6 = (A21 - A11) (B11 + B12)
3. M3 = A11(B12 - B22) 7. M7 = (A12 - A22) (B21 + B22)
4. M4 = A22(B21 - B11)

These are then used to express Ci,j in terms of Mk. This eliminates one matrix multiplica-
tion and reduces the number of multiplications to seven (one multiplication for each Mk)
and expresses Ci,j as in Step 3.

3. Now, construct the resultant matrix C using the intermediate matrices as follows:
 C11 = M1 + M4 - M5 + M7

 C12 = M3 + M5

 C21 = M2 + M4

 C22 = M1 - M2 + M3 + M6

730 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 730

In brief, we follow the following three steps:
1. Partition A and B into quarter matrices.
2. Compute the intermediate matrices:
 (a) If the sizes of the matrices are greater than a threshold value, multiply them

recursively using Strassen’s algorithm.
 (b) Else, use the traditional matrix multiplication algorithm.
3. Construct C using the intermediate matrices.

With this construction, we have not yet reduced the number of multiplications. We still
need eight multiplications to calculate the Ci,j matrices; the same number of multiplica-
tions needed while using the standard matrix multiplication. We iterate this division pro-
cess n times until the submatrices degenerate into numbers.

Practical implementations of Strassen’s algorithm result in standard methods of matrix
multiplication for smaller submatrices, for which those algorithms are more efficient.

Let us compute the time complexity of this algorithm. The standard matrix multiplica-
tion takes approximately 2N3 (where N = 2n) arithmetic operations (additions and multi-
plications); the asymptotic complexity is O(N3). The number of additions and multiplica-
tions required in the Strassen’s algorithm can be calculated as follows:

Let f(n) be the number of operations for a 2n ¥ 2n matrix. Then, by recursive applica-
tion of the Strassen’s algorithm, we see that T(n) = 7T(n - 1) + l4n for some constant that
depends on the number of additions performed at each application of the algorithm.
Hence, T(n) = (7 + O(1))n, that is, the asymptotic complexity for multiplying matrices of
size N = 2n using the Strassen’s algorithm is

O 7 + O 1 O OO 1() () = () ≈ ()+ ()n
N Nlog .2 7 2 807

Note the reduction in the number of arithmetic operations achieved at the additional cost
of reduced numerical stability.

16.3 GREEDY METHOD

A greedy method is any algorithm that follows the problem-solving heuristic of mak-
ing the locally optimal choice at each stage with the hope of finding the optimum solu-
tion. For example, applying the greedy strategy to the travelling salesman problem yields
the following algorithm: ‘At each stage, visit the unvisited city nearest to the current
city’. In general, greedy algorithms are used for optimization problems. Often, we look at
optimization problems whose performance is exponential. A feasible solution to which
the optimization function has the best possible value is called an optimal solution.

In greedy method, we attempt to construct an optimal solution in the sequence of
choice. At each choice, we make a decision that appears to be the best at that time.
A decision made at one choice is not changed at a later choice, so each decision should

ALGORITHM ANALYSIS AND DESIGN 731

DSUC c16 V6 October 18, 2012 5:28 PM Page 731

assure feasibility. A greedy method could, at each choice, increase the total amount of
change reflected to a great extent.

A greedy method is optimal for some change systems. To find a solution under normal
circumstances, all the combinations are required and such combinations are many; in this
case, the greedy algorithm reduces combinatonic explosions.

16.3.1 General Greedy Method

The greedy algorithm suggests that one can devise an algorithm that works in stages,
considering one input at a time. At each stage, a decision is made based on whether or not
a particular input is an optimal solution.

Any subset of input that satisfies the given constraints is called a feasible solution. A
feasible solution that maximizes or minimizes a given objective is called an optimal solu-
tion. There is usually an obvious way to determine a feasible solution but not necessarily
an optimal solution.

As mentioned earlier, this method considers one input at a time and based on whether
a particular input is an optimal solution, a decision is arrived at each stage. This is done
by considering the inputs in an order determined by some selection procedure. If the
inclusion of the next input into the partially constructed optimal solution results in an
infeasible solution, then this input is not added to the partial solution. Otherwise, it is
added. The selection procedure itself is based on optimization measures. We need to find
a feasible solution that either maximizes or minimizes a given objective function. The
measure may be an objective function.

In Algorithm 16.7, the function selects an input from an array a[] and removes it. The
selected input value is assigned to x. feasible() is a Boolean-valued function that deter-
mines whether x can be included in the solution vector. The function union() combines
x with the solution and updates the objective function. The function Greedy() describes
the essential way that a greedy algorithm will look like once a particular problem is cho-
sen, and the functions select(), feasible(), and union() are properly implemented.

algorithm 16.7
Algorithm Greedy(a, n)
{ a[1:n] contains n inputs }
begin
solution = nil
for i = 1 to n do
 begin
 x = select(a)
 if feasible(solution, x) then
 solution = union(solution, x)
 end
return solution
end

732 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 732

Elements of Greedy Strategy

To decide whether a problem can be solved using a greedy strategy, the following ele-
ments should be considered:

1. Greedy-choice property
2. Optimal substructure

Greedy-choice property A problem exhibits greedy-choice property if a globally optimal
solution can be arrived at by making a locally optimal greedy choice. That is, we make the
choice that seems best at that time without considering the results from the subproblems.

When the dynamic programming makes a choice at each step, it considers the solutions
to the subproblems. So, it proceeds from smaller subproblems to larger ones in a bottom-up
approach. However, when the greedy algorithm makes a choice at each step, it uses the choice
that looks best at that time and then solves the problem. So, it never depends on future solu-
tions. Thus, it proceeds in a top-down manner and reduces each problem instance to a smaller
one. It is often possible to design an efficient algorithm by making greedy choices quickly.
This can be achieved by using the appropriate data structure or by preprocessing the input.

The concept of optimal substructure is explained in Section 16.4.2.

16.3.2 Knapsack Problem

We are given n objects and a knapsack or a bag. Each object has a positive weight wi and a
positive profit pi for i = 1 to n. The maximum capacity of the knapsack is M. Our aim is to
fill up the knapsack such that the profit is maximized while satisfying the constraint that
the knapsack will not carry a total weight more than M. We assume that the objects can be
taken in parts, that is, some fraction of total weight xj. In this case, the object i contributes
xiwi to the total weight and xipi to the profit.

Hence, our aim is to fill up the knapsack such that

S x p
i

n

i i=1
 is Smaximum subject to S x w M

i

n

i i=
≤

1

where 0 £ x £ 1
We shall use a greedy algorithm to solve this problem. In terms of control abstraction,

a feasible solution is one that satisfies these constraints.

In an optimal solution, S
i

n

=1
xiwi = M and S

i

n

=1
xipi

 is maximum.

Since we are working on a greedy algorithm, our strategy will be to select each object
in some suitable order, to put as large a fraction as possible of the selected objects, and to
stop when the knapsack is full. This is illustrated in Algorithm 16.8.

algorithm 16.8
Knapsack–Greedy(w[], p[], M)
begin
weight = 0, profit = 0
while(weight £ M) do

ALGORITHM ANALYSIS AND DESIGN 733

DSUC c16 V6 October 18, 2012 5:28 PM Page 733

 begin
 i = object with highest profit
 if(weight + w[i] £ M) then
 begin
 x[i] = 1
 weight = weight + w[i]
 end
 else
 begin
 x[i] = (w − weight)/w[i]
 weight = M
 end
 end
end

 example 16.3 Find an optimal solution for a knapsack problem with objects n = 5,
maximum capacity of knapsack M = 100, profit P = {20, 30, 66, 40, 60}, and weight
W = {10, 20, 30, 40, 50}.

Solution
Case 1: Let us choose the objects in decreasing order of profits. We first choose object 3
with weight 30 and then object 5 with weight 50. Now, the total weight = 30 + 50 = 80.

So, we have to fill the knapsack with the partial weight of object 4, which is given by

Maximum allowed weight Current weight

Weight of object 4

− −= 100 80

40
== =20

40

1

2

So, the total weight of knapsack = 30 + 50 + (40/2) = 100.
Here, we have used whole objects 3 and 5, and half fraction of object 4. So, the total

profit = profit of object 5 + profit of object 3 + half the profit of object 4 = 60 + 66 + (40/2)
= 146. Hence, the total profit earned is 146 if we select the objects according to profit.
Case 2: Let us choose the objects in the increasing order of weights. So first, we choose ob-
ject 1 with weight 10, then object 2 with weight 20, followed by object 3 with weight 30, and
finally object 4 with weight 40. So, the total weight = 10 + 20 + 30 + 40 = 100. All the objects
are used as a whole. Thus, the total profit is equal to the sum of profits of all the objects.

\ Total profit = 20 + 30 + 66 + 40 = 156.

Hence, the total profit is 156 if we choose the objects according to weight.
Case 3: Let us choose objects in an order such that the object with maximum profit per
unit weight is used. The profit/weight ratios of the given objects are calculated as follows:

Profit/weight ratios =
20

10
,

30

20
,

66

30
,

40

40
,

60

50
2,

3

2

=

, , ,
22

10
1

6

5

= {2, 1.5, 2.2, 1, 1.2}

734 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 734

Since object 3 gives the maximum profit per unit, it is selected first, and its weight is 30.
Then, object 1 with weight 10 is selected. Then, object 2 with weight 20 is selected.Total
weight = 30 + 10 + 20 = 60. Now, object 5 with weight 50 is selected partially. So, the
fraction of object 5 selected is equal to

Maximum allowed weight Current weight

Weight of object 5

− −= 100 60

50
== =40

50

4

5

So, the total weight = 30 + 10 + 20 + 50 ¥ (4/5) = 100. Here, objects 3, 1, 2 are used as a
whole and 4/5th of object 5 is used. So, the total profit = 66 + 20 + 30 + 60 ¥ (4/5) = 164.

Hence, the total profit is 164 if we choose objects in the order of profit per unit.

Conclusion If we observe the profits of three cases, Case 3 gives the maximum profit.
This case actually uses the knapsack–greedy algorithm. So, the solution obtained is
surely optimal.

 example 16.4 Find an optimal solution to the knapsack instance with objects n = 7,
maximum capacity of knapsack M = 15, profits (p1, p2, …, p7) = (10, 5, 15, 7, 6, 18, 3),
and weights (w1, w2, …, w7) = (2, 3, 5, 7, 1, 4, 1).

Solution Using the knapsack–greedy algorithm, we can directly select the objects
such that the object with maximum profit per unit of weight is used.

Profit/unit =

10

2

5

3

15

5

7

7

6

1

18

4

3

1
, , , , , ,

 = (5, 1.67, 3, 1, 6, 4.5, 3)

Hence objects 5 and 1 with profits/unit of 6 and 5, respectively, are chosen as a whole. The
next object with highest profit/unit ratio is object 6 which is chosen as a fraction.

16.4 DYNAMIC PROGRAMMING

Dynamic programming has evolved into a major paradigm of algorithm design in com-
puter science. However, its name is a mystery to many people. The name was coined
in 1957 by Richard Bellman to describe a type of optimum control problem. The name
originally described the problem rather than the technique of the solution. This type of
programming denotes ‘a series of choices’, similar to the programming of a radio station.
The word dynamic conveys the idea that these choices may depend on the current state
rather than being decided ahead of time. A radio show where the listeners phone in their
requests might be said to be dynamically programmed in contrast with the usual format
where the selections of songs are decided before the show begins. Bellman described a
method to solve dynamic programming problems, which has become an inspiration for
many computer algorithms. The main feature of this method is that it has replaced an

ALGORITHM ANALYSIS AND DESIGN 735

DSUC c16 V6 October 18, 2012 5:28 PM Page 735

exponential time computation by a polynomial time computation. This continues to be a
common feature of dynamic programming algorithms.

In all the algorithms we have studied so far, achieving accuracy was easier than effi-
ciency. In optimization problems, we are interested in finding the solution that maximizes
or minimizes the same function. In designing algorithms for an optimization problem, we
must design one that gives the best possible solution.

Greedy algorithms, which take the best local decision of each step, occasionally pro-
duce a global optimum solution, but we need to prove the same. Dynamic programming
is a technique for computing recurrence relations efficiently by sorting partial results.
A dynamic programming algorithm stores results, or solutions, to small subproblems.
Later it uses these stored solutions instead of recomputing them to solve larger subprob-
lems. Thus, dynamic programming is especially well suited to problems where a recur-
sive algorithm would solve many of the subproblems repeatedly.

We will introduce a characterization of dynamic programming algorithms that pro-
vides a unified framework for a wide variety of published algorithms that might seem
quite different on the surface. This framework permits a recursive solution to be converted
into a dynamic programming algorithm and provides a way to analyse its complexity.

16.4.1 General Method of Dynamic Programming

Dynamic programming is an algorithm design method that can be used when the solution
to a problem may be viewed as the result of a sequence of decisions. Similar to the greedy
method, for many problems, it is not possible to make stepwise decisions (based only
on local information) in such a manner that the sequence of decisions made is optimal.
One way to solve such problems is to try out all possible decision sequences. We could
enumerate all decision sequences and then choose the best. Dynamic programming often
drastically reduces the amount of enumeration by avoiding the enumeration of some de-
cision sequences that cannot possibly be optimal. In dynamic programming, an optimal
sequence of decisions is arrived at by making an explicit appeal to the principle of optimality.

The following are the four steps to develop a dynamic programming algorithm:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up manner. This can also be

done using the recursive method.
4. Construct an optimal solution from the computed information by making use of the

computed results.

The generic problem structure is as follows:

t
if trivial (p)

otherwise
n =

constant value,

combine f (p1), f (p2), . . . , f (pn),

736 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 736

16.4.2 Elements of Dynamic Programming

A dynamic programming solution has the following three components:

1. Formulate the answer as a recurrence relation or a recursive algorithm.
2. Show that the number of different instances of your recurrence is bounded by a

polynomial.
3. Specify an order of evaluation for the recurrence.

To decide whether a problem can be solved using the dynamic programming method, the
following three elements of dynamic programming should be considered:

1. Optimal substructure
2. Overlapping subproblems
3. Memorization

Optimal Substructure

A problem exhibits optimal substructure if an optimal solution to the problem contains
within it optimal solutions to subproblems. It also means that dynamic programming (and
greedy method) might apply. As the optimal solution to the problem is built from the
optimal solution to the subproblems, this requirement becomes necessary.

The execution time of a dynamic programming algorithm depends on the product of
two factors: the overall number of subproblems and the number of choices we look at for
each subproblem.

Dynamic programming uses optimal substructure in a bottom-up manner. It first finds
optimal solutions to the subproblems. When the subproblems are solved, then it finds an
optimal solution to the problem.

Overlapping Subproblems

When a recursive algorithm revisits the same problem repeatedly, it is said that the opti-
mization problem has overlapping subproblems. This is beneficial for dynamic program-
ming. It solves each subproblem once and stores the answer in a table. This answer can be
searched in constant time when required. This is contradictory to the divide-and-conquer
strategy where a new problem is generated at each step of recursion.

Memorization

In general, dynamic programming maintains a table for the solutions to all subproblems.
However, it uses the control structure similar to the recursive algorithm. In a memorized
recursive algorithm, an entry is maintained in a table for the solution to each subproblem.
Initially, all entries contain a special value, which indicates that the entry is not yet used.
For each subproblem, which is encountered for the first time, its solution is computed and
stored in the table. Next time, for that subproblem, its entry is searched and the value is
used. This can be implemented using hashing.

ALGORITHM ANALYSIS AND DESIGN 737

DSUC c16 V6 October 18, 2012 5:28 PM Page 737

16.4.3 Principle of Optimality

The principle of optimality states that an optimal sequence of decisions has the property
that whatever the initial state and decision are, the remaining decisions must constitute an
optimal decision sequence with regard to the state resulting from the first decision.

Difference between Greedy Method and Dynamic Programming

The essential difference between the greedy method and dynamic programming is that
in greedy method only one decision sequence is generated. In dynamic programming,
many decision sequences may be generated. However, sequences containing suboptimal
subsequences will not be generated if the principle of optimality holds. One may feel that
in this method, one has to look at all possible decision sequences to obtain an optimal
decision sequence using dynamic programming. This is not the case as, due to the use
of the principle of optimality, decision sequences containing subsequences that are sub-
optimal are not considered. Although the total number of different decision sequences is
exponential, dynamic programming algorithms often have a polynomial complexity. An
exponential number of decisions can be generated because if there are d choices for each
of the n decisions to be made, then there are dn possible decision sequences.

Another important feature of the dynamic programming approach is that optimal so-
lutions to subproblems are retained to avoid recomputing their values. The use of these
tabulated values makes it natural to recast the recursive equations into an iterative algo-
rithm. Most dynamic programming algorithms are often expressed in this way.

The following are the unique characteristics of dynamic programming:

1. The solution to a problem is viewed as a result of a sequence of decisions.
2. It avoids enumeration of some decision sequences that cannot be possibly optimal.
3. An optimal sequence of decisions is arrived at by making an explicit appeal to the

principle of optimality.
4. In contrast to greedy method where only one decision sequence is ever generated, in

dynamic programming, many decision sequences may be generated. However, sequences
containing suboptimal sequences cannot be optimal and so will not be generated.

5. There are two approaches to dynamic programming. Let (x1, x2, …, xn) be variables.
(a) Forward approach: Decision xi is made in terms of optimal decision sequences

for x1, …, xn.
(b) Backward approach: Decision xi is made in terms of optimal decision sequences

for x1, x2, …, xi-1.

6. Dynamic programming is a technique for solving problems with overlapping
subproblems. Typically, these subproblems arise from a recurrence relating a solution
to a given problem with solutions to its smaller subproblems of the same type.

7. Rather than repeatedly solving overlapping subproblems, dynamic programming
suggests solving each of the smaller subproblems only once and recording the results
in a table, from which we can obtain a solution to the original problem.

738 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 738

8. Applicability of dynamic programming to an optimization problem requires the
problem to satisfy the principle of optimality—an optimal solution to any of its
instances must be made of optimal solutions to its subinstances.

16.4.4 Limitations of Dynamic Programming

Dynamic programming can be applied to any problem that observes the principle of
optimality. This means that partial solutions can be optimally extended with regard to the
state after the partial solution instead of the partial solution itself. For example, to decide
whether to extend an approximate string matching by a substitution, insertion, or dele-
tion, we need not know the exact sequence of operations performed. In fact, there may be
several different edit sequences that achieve a cost of C on the first p characters of pattern
P and t characters of string T. Future decisions will be made on the basis of the conse-
quences of previous decisions, and not the actual decisions themselves.

Problems in which the actual operations matter, as opposed to just the cost of the
operations, do not satisfy the principle of optimality. Consider a form of edit distance
where we are not allowed to use combinations of operations in a particular order.

The biggest limitation in using dynamic programming is the number of partial solutions
we must keep track of. For all of the examples discussed here, the partial solutions can be
completely described by specifying the stopping places in the input. This is because all
the combinatorial objects being worked on (strings, numerical sequences, and polygons)
have an implicit order defined upon their elements. This order cannot be scrambled with-
out completely changing the problem. Once the order is fixed, there are relatively a few
possible stopping places or states, so we get efficient algorithms. However, if the objects
are not firmly ordered, we would have an exponential number of possible partial solutions
which require an infeasible amount of memory.

16.4.5 Knapsack Problem

We are given n objects and a knapsack. Object i has a weight wi and the knapsack has a
capacity M. If xi = 1, the object i is placed into the knapsack and a profit pixi is earned. If
xi = 0, the object is not added into the knapsack, and hence no profit is earned. The objec-
tive is to obtain a filling of the knapsack that minimizes the total profit earned. Since the
capacity is M, we require the total weight of all the chosen objects to be almost M. This
can be stated formally as follows:

Maximize S
i n1≤ ≤ pixi subject to S

i n1≤ ≤ wixi £ M and xi = 0 or 1, where 1 £ i £ n

A feasible solution is any set (x1, x2, …, xn) satisfying these equations, and an optimal
solution is a feasible solution for which Âpixi is maximum.

Let y1, y2, …, yn be an optimal sequence of 0/1 values for x1, x2, …, xn, respectively. If
y1 = 0, then y2, y3, …, yn must constitute an optimal sequence for the problem knapsack(2,
n, M). If it does not, then y1, y2, …, yn is not an optimal sequence for knapsack(1, n, M).

ALGORITHM ANALYSIS AND DESIGN 739

DSUC c16 V6 October 18, 2012 5:28 PM Page 739

If y1 = 1, then y2, y3, …, yn must be an optimal sequence for the problem knapsack(2, n,
M - w1). If it is not, then there is another 0/1 sequence z2, z3, …, zn such that

S w z M w
i n

i i
2

1≤
−

≤
≤

and
S P z S P y
i n

i i
i n

i i
2 2≤ ≤

>
≤ ≤

Hence, y1, z2, z3, …, zn is a sequence for Âwixi with a greater value.
In dynamic programming, formulating the optimal sequence for a knapsack problem

can be achieved either in forward or backward approach. Let x1, x2, …, xn be the variables
for which a sequence of decisions has to be made. In the forward approach, the formula-
tion of decision xi is made in terms of optimal decision sequences for xi+1, …, xn. In the
backward approach, the formulation for decision xi is made in terms of optimal deci-
sion sequences for x1, …, xi-1. In the forward approach, we look ahead on the decision
sequence x1, x2, …, xn, and in the backward formulation, we look backwards on the deci-
sion sequence x1, x2, …, xn.

For an integer y such that 0 £ y £ M, fi(y) is an ascending function.

y1 < y2 < … < yk such that
fi(y1) < fi(y2) < … < fi(yk)

fi(y) = -• for y < y1

fi(y) = f(yk) for y ≥ yk

We use the ordered set

fi(y) = Si = {(p, w) | 1 £ j £ k}

where p = fi(yj) and w = yj.
The following steps are used to solve all knapsack problems using dynamic program-

ming forward approach:

1. Initially S0 = {(0, 0)}
2. S i1 = {(p, w) | (p - pi), (w - wi) Œ Si}

That is, to obtain Si+1, we either include xi+1 or do not include xi+1.
(a) If xi+1 = 1 is not included, then S i1 = Si.
(b) If xi+1 = 1 is included, then the resulting states in S i1 are obtained by adding (pi+1,

wi+1) to each state in Si.
3. Si+1 can be computed by merging and purging the states in Si and S i1 together, using

the dominance rule—if Si+1 contains two pairs (pa, wa) and (pb, wb), where pa £ pb and
wa ≥ wb, then (pa, wa) is dominated by (pb, wb) pair. Hence, the pair (pa, wa) is discarded.
In this way, dominated tuples get purged. We can also purge all pairs (p, w) with w > M
because the knapsack capacity is M.

4. Repeat steps 2 and 3 until Sn is obtained.

740 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 740

5. fn(M) = Sn. Using this, we can find the solution to knapsack(1, n, m).
6. If the last pair in Sn is (p, w), then

(a) set xn = 0 if (p, w) Œ Sn-1

(b) set xn = 1 if (p, w) œ Sn-1, and compute p = p - xn and w = w - wn.
7. Repeat step 6 for x = n, …, 1.

Let us solve a few examples based on this concept.

 example 16.5 Generate the sets Si, 0 £ i £ 3, for the following knapsack instance:
n = 3, (w1, w2, w3) = (2, 3, 4), (p1, p2, p3) = (1, 2, 5), and M = 6. In addition, find an optimal
solution.

Solution

S0 = {(0, 0)}

S 01 is obtained by adding (p1, w1) = (1, 2) to each pair of S0.

S 01 = {(1, 2)}

S1 is obtained by merging and purging S0 and S 01.

S1 = {(0, 0), (1, 2)}

S1
1 is obtained by adding (p2, w2) = (2, 3) to each pair of S1.

S1
1 = {(2, 3), (3, 5)}

S2 is obtained by merging and purging S1 and S1
1.

S2 = {(0, 0), (1, 2), (2, 3), (3, 5)}

S 21 is obtained by adding (p3, w3) = (5, 4) to each pair of S2.

S 21 = {(5, 4), (6, 6), {(7, 7), (8, 9)}

S3 is obtained by merging and purging S2 and S 21.

S3 = {(0, 0), (1, 2), {(2, 3), (5, 4), (6, 6)}

The pair (3, 5) gets purged here by dominance rule. In addition, the pairs (7, 7) and (8, 9)
get purged because w > M.

The last pair in S3 is (p, w) = (6, 6) œ S2; hence, x3 = 1. However, (p3, w3) = (5, 4).
Hence, (p, w) = (6 - 5, 6 - 4) = (1, 2).
Since (1, 2) Œ S2 and (1, 2) Œ S1, set x2 = 0.
Since (1, 2) œ S0; set x1 = 1. Hence, an optimal solution for the given knapsack problem

is (x1, x2, x3) = (1, 0, 1).

 example 16.6 Generate the sets Si, 0 £ i £ 4, for the following knapsack instance: n = 4;
(w1, w2, w3, w4) = (10, 15, 6, 9); (p1, p2, p3, p4) = (2, 5, 8, 1); and M = 30.

ALGORITHM ANALYSIS AND DESIGN 741

DSUC c16 V6 October 18, 2012 5:28 PM Page 741

Solution

S0 = {(0, 0)}

By adding (p1, w1) = (2, 10) to each pair of S0 we get

S 01 = {(2, 10)}

By merging and purging S0 and S 01 we get

S1 = {(0, 0), (2, 10)}

By adding (p2, w2) = (5, 15) to each pair of S1 we get

S1
1 = {(5, 15), (7, 25)}

By merging and purging S1 and S1
1 we get

S2 = {(0, 0), (2, 10), {(5, 15), (7, 25)}

By adding (p3, w3) = (8, 6) to each pair of S2 we get

S 21 = {(8, 6), (10, 16), {(13, 21), (15, 31)}

By merging and purging S2 and S 21 we get

S3 = {(0, 0), (8, 6), {(10, 16), (13, 21), (15, 31)}

The pairs (2, 10), (5, 15), (7, 25) get purged here by the dominance rule.

By adding (p4, w4) = (1, 9) to each pair of S3 we get

S 31 = {(1, 9), (9, 15), (11, 25), (14, 30), (16, 40)}

By merging and purging S3 and S 31 we get

S4 = {(0, 0), (8, 6), (9, 15), (10, 16), (13, 21), (14, 30), (15, 31), (16, 40)}

Here, we have to eliminate the pairs (10, 16), (13, 21), and (15, 31). With M = 30, search-
ing a Tuple with the value 30, we get (14, 30) in S4; so, x4 = 1. Similarly, we get x3 = 1,
x2 = 1, and since ((5 - 5), (15 - 15)) = (0, 0), we get x1 = 0. Thus the optimal solution is
(x1, x2, x3, x4)(0, 1, 1, 1).

 example 16.7 Generate the sets Si and find an optimal solution for the following
knapsack instance: n = 6, (p1, p2, p3, p4, p5, p6) = (w1, w2, w3, w4, w5, w6) = (100, 50, 20,
10, 7, 3), and M = 165.

Solution Here, pi = wi for all i; hence, each pair (p, w) = p.

S0 = {0} S2 = {0, 50, 100, 150}

S 01 = {100} S 21 = {20, 70, 120, 170}

S1 = {0, 100} S3 = {0, 20, 50, 70, 100, 120, 150}

S1
1 = {50, 150}

Here, 170 is purged because 170 > M.

S 31 = {10, 30, 60, 80, 110, 130, 160}

S4 = {0, 10, 20, 30, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160}

742 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 742

S 41 = {7, 17, 27, 37, 57, 67, 77, 87, 107, 117, 127, 137, 157, 167}

S5 = {0, 7, 10, 17, 20, 27, 30, 37, 50, 57, 60, 67, 70, 77, 80, 87, 100, 107, 110, 117, 120,
127, 130, 137, 150, 157, 160}

S 51 = {3, 10, 13, 20, 23, 30, 33, 40, 53, 60, 63, 70, 73, 80, 83, 90, 103, 110, 113, 120,
123, 130, 133, 140, 153, 160, 163}

S6 = {0, 3, 7, 10, 13, 17, 20, 23, 27, 33, 37, 40, 50, 53, 57, 60, 63, 67, 70, 73, 77, 80,
83, 87, 90, 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 133, 137, 140, 150, 153,
157, 160, 163}

The value of F6(165) can be determined from S6. The last tuple in S6 is p = w = 163 œ S5.
Hence, x6 = 1. However, p6 = w6 = 3. Hence, p - p6 = 163 - 3 = 160 Œ S5 and also, 160 Œ
S4. Hence, x5 = 0. Now, 160 œ S3; hence, x4 = 1. However, p4 = 10; hence, p - p4 = 160 -
10 = 150 Œ S3 and also, 150 Œ S2; hence, x3 = 0.

However, 150 œ S1; hence, x2 = 1.
Here, p2 = 50. Hence, p - p2 = 150 - 50 = 100 Œ S1 and 100 œ S0; hence, x1 = 1.
Hence, the optimal solution is

(x1, x2, x3, x4, x5, x6) = (1, 1, 0, 1, 0, 1)

Let us write a function DKnapsack that takes four input parameters—an array p[1:n]
for profits, an array w[1:n] for weights, number of objects n, and maximum capacity of
knapsack M. This is shown in Algorithm 16.9.

algorithm 16.9
Algorithm DKnapsack (p, w, n, M)
begin
S0 = {(0, 0)}
for i = 0 to n − 1
begin
 S1

i = {(p, w) | for all (x, y) Œ Si, compute (p, w) = (x + pi + 1,
y + wi + 1)}

 Si + 1 = MergeAndPurge(Si, S1
i)

end
Let (px, wx) be the last pair in S

n.
(py, wy) = (p¢ + pn¢ w¢ + wn),
where w¢ is the largest w in any pair in Sn such that w + wn £ M
Trace back for xn, xn−1, …, x1
if(px > py) then
 xn = 0
else
 xn = 1
Trace back for (xn-1, …, x1)
end

The complexity of the algorithm depends on how Si and S i1 are represented.

ALGORITHM ANALYSIS AND DESIGN 743

DSUC c16 V6 October 18, 2012 5:28 PM Page 743

16.5 PATTERN MATCHING

Pattern matching is the process of finding the presence of a particular string (pattern)
in the given string (text). Let us consider an example of string S as ‘prospect’ and the
pattern string P as ‘spe’. Here, the pattern P exists in the string S, whereas pattern
‘spet’ does not exist in string S. There are plenty of applications where this concept is
needed such as searching a name in the phone directory of a mobile or searching for
document on the web that includes text of a particular pattern. A few such applications
are as follows:

1. Database search 4. Intrusion detection
2. Search engine 5. Natural language processing
3. Text editors 6. Feature detection in digitized images

Starting from a simple approach, there exists a wide number of popular techniques for
string pattern search. The most popular are the following:

1. Brute-force approach 4. Robin–Karp algorithm
2. Boyer–Moore algorithm 5. Text partitioning algorithm
3. Knuth–Morris–Pratt algorithm 6. Semi-numerical algorithm

Let us revise a few preliminary concepts related to string pattern search before learning a
few of these popular techniques.

String A string is a finite
sequence of symbols that are
chosen from a set or alphabet
(Fig. 16.2). Alphabet is a set
of characters or symbols.

Substring A substring or subsequence of a string is a subset of the symbols in a string
where the order of elements is preserved.

Suffix A suffix of S is a substring S[i, …, m − 1], where i ranges between 0 and m − 1.
For example, let us consider string S = algorithm.
Possible suffixes of S are the following:

Algorithm, lgorithm, gorithm, orithm, rithm, ithm, thm, hm, m

Prefix Prefix is a letter or group of letters attached to the beginning of a word that partly
indicates its meaning.

For example, sort S as in
Fig. 16.3.
A prefix of S is a substring
S[0, …, i] where i ranges between 0 and m − 1.

All possible prefixes of S are listed as follows:
Algorithm, algorithm, algorit, algori, algor, algo, alg, al, a

a l g o r i t h m

80

S =

Fig. 16.2 An example string

a l g o r i t h m

80

S =

Fig. 16.3 An example string

744 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 744

16.5.1 Brute-force Approach

This is a simple straightforward approach based on the comparison of a pattern character
by character with a string. Let the pattern P be a string with length m that is to be searched
in text T, which is a complete string (or paragraph) with length n. In the brute-force
approach, the first character of the pattern is compared with the first character of the text,
and if we succeed, the process is repeated with the second character, and so on. If we
come across a mismatch, then we slide the pattern ahead by one character and try again.
When we find a match, we return the position of its starting location.

The steps involved in this approach are as follows:

1. Adjust the pattern P at the beginning of the text.
2. Start moving from left to right and compare the character of pattern to the corresponding

character in text.
3. Continue with step 2 until successful (all characters of the pattern are matched) or

unsuccessful (a mismatch is detected).

Let us consider string T as follows:
T[0…n − 1] =

s a n j i v a n i

80

T =

where pattern P[0…m − 1] is given by

i v a

0 2

P

Let us search now.

Attempt 1 Here, the characters do not match. Try again by comparing P[0] with T[1]
onwards. T[0] is compared with P[0].

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 2 Let us compare T[1] with P[0], where the characters do not match; let us
try again by comparing P[0] with T[1] onwards.

ALGORITHM ANALYSIS AND DESIGN 745

DSUC c16 V6 October 18, 2012 5:28 PM Page 745

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 3 Let us compare T[2] with P[0]. Here too, the characters do not match.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Attempt 4 Now, T[3] is compared with P[0].

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Again, the match is not found.

Attempt 5 Now, let us compare T[4] with P[0], and the characters match.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

746 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 746

As the first character match is found, T[5] is compared with P[1], and here, the match
is found.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Next, T[6] is compared with P[2]. Continue till position 8 of the text string.

T = s a n j i v a n i

80 1 2 3 4 5 6 7

i v a

0 2

P

Algorithm 16.10 illustrates this approach.

algorithm 16.10
1. Let T be text and P be pattern with size n and m, respectively
2. For i = 0 to n − m
 begin
 j = 0;
 while(j < m and T[i + j] = P[j])
 begin
 j = j + 1
 end
 if(j = m) Print “Match found at position i”, goto 4
 end
3. print “No match found”
4. end

This is a simple and straightforward approach with time complexity O(mn).

16.5.2 Boyer–Moore Algorithm

The brute-force approach is inefficient, especially when the alphabet is large (the
number of symbols used for forming a string is more as in natural language) and
when the pattern length is more. This approach is based on the logic that it is neces-
sary to examine every character in text to locate a pattern as a substring. To reduce
the time complexity of brute-force approach, the researchers Boyer and Moore have

ALGORITHM ANALYSIS AND DESIGN 747

DSUC c16 V6 October 18, 2012 5:28 PM Page 747

developed an efficient pattern matching algorithm. Instead of sliding by one character
to the right at a time, in Boyer–Moore approach, the sliding to the right is done in
longer steps.

The algorithm scans the character of pattern from right to left beginning with the right-
most character. If the text symbol compared with the rightmost pattern symbol does not
occur in the pattern at all, then the pattern can be shifted by m positions (where m is length
of pattern).

In this approach, the key is to use the information learned in failed match attempts to
decide what to do next. This is done with the use of pre-computed tables. For text T of
length n and pattern P of length m, the algorithm checks to see if we have a successful
match of P at a particular location in T and work backwards. So, if we are checking to
see if we have a match starting at T[i], we start by checking to see if P[m − 1] matches
T[i + m − 1], and so on.

The reason for this backwards approach is to make more progress in case the attempted
match fails. For example, suppose we are trying to match the pattern P = ‘Sanj’ at posi-
tion i of the input T = ‘MrsKaleSanjivani’. However, at T[i + 4], we find the character
‘r’. The character ‘r’ does not appear anywhere in ‘Sanj’, so we can skip ahead and start
looking for a match at T[i + 5] since we know that ‘k’ prevents a match from occurring
any earlier.

Let us consider an example.

T = BEHIND EVERY SUCCESSFUL MAN THERE IS A WOMAN
P = WOMAN

Now, the comparison between the D and W found a mismatch, so shift the pattern by five
positions because D does not occur in the pattern.

The best case of Boyer–Moore algorithm is attained if at each attempt the first com-
pared text symbol does not occur in the pattern. The algorithm requires O(n/m).

16.5.3 Knuth–Morris–Pratt Algorithm

We have studied two approaches for searching a pattern in a string. The researchers
Knuth, Morris, and Pratt proposed a linear time algorithm for the string matching prob-
lem. In this approach, a matching time of O(n) is achieved by avoiding comparisons with
characters of T that have previously been
involved in comparison with some ele-
ment of the pattern P to be matched so
that backtracking is avoided.

Before we learn the algorithm, let us discuss its components.

Prefix Function p

The prefix function p for a pattern embeds knowledge about how the pattern matches
against its shifts. This information is to be used to avoid unnecessary shifts of the pattern
P to avoid backtracking on the text T.

BEHINDEVERYSUCCESSFULMANTHEREISAWOMAN

WOMAN

WOMAN

748 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 748

KMP Matcher

The KMP matcher finds the occurrence of the pattern P in text T and returns the number
of shifts of P, after which the occurrence is found taking T, P, and prefix function p as
inputs.

A pseudocode to compute the prefix function p is shown in Algorithm 16.11.

algorithm 16.11
1. start
2. Compute length of pattern m = length[P]
3. Initially, let p[1] =0 and k = 0
4. for i = 2 to m
 while(k > 0 and p[k + 1]!= p[q]) do
 begin
 k = p[k]
 if p[k + 1] = p[i]
 then k = k + 1
 p[i] = k
 end
5. return p

Let us consider an example for computing p (Fig. 16.4) for the following pattern P:

P = a b a b a c a

The KMP matcher, with pattern P, text T, and prefix function p as the input finds a match
of P in T. The pseudocode in Algorithm 16.12 computes the matching component of KMP
algorithm.

algorithm 16.12
Algorithm KMP matcher
1. start
2. let n denote length of text T
 Compute n = length[T] and m ¨ length[P]
3. p = compute prefix function(P)
4. j = 0
5. for i= 1 to n do
 while j > 0 and P[j + 1] != T[i] do
 begin
 j = p[j]
 if P[j + 1] = T[i]
 then j = j + 1
 if j = m
 then print “Pattern occurs with shift i − m”
 j = p[j]
 end
6. stop

ALGORITHM ANALYSIS AND DESIGN 749

DSUC c16 V6 October 18, 2012 5:28 PM Page 749

Initially: m = length[p] = 7

Step 1:

π[1] = 0
k = 0

q = 2, k = 0
π[2] = 0

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

1

1 2

1 2 3

1 2 3 1

1 2 3 1 1

1 2 3 1 1

Step 2: q = 3, k = 0
π[3] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 3: q = 4, k = 1
π[4] = 2

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 4: q = 5, k = 2
π[5] = 3

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 5: q = 6, k =3
π[6] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Step 6:

After iterating 6 times, the prefix
function computation is
complete:

q = 7, k = 1
π[7] = 1

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

q 1 2 3 4 5 6 7

p a b a b a c a

π 0 0

Fig. 16.4 An example for computing p

Note that KMP finds every occurrence of a P in text T, and hence, KMP does not termi-
nate; rather, it searches the remaining part of T for any more occurrences of P.

Let us consider T and pattern P as follows:
Text T =

b a c b a b a b a ac aca b

Pattern P =
a b a b a c a

750 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 750

Let us execute the KMP algorithm to find whether P occurs in the string S or not, and if
yes, we find the number of its occurrences.

For P, the prefix function p was computed previously and is as follows:

Q 1 2 3 4 5 6 7

P a b a b a c a

π 0 0 1 2 3 1 1

Initially, n = size of S = 15
 m = size of P = 7
Step 1: i = 1, q = 0

 Now, compare P[1] with S[1].
 We notice that P[1] does not match with S[1].
 So, let us shift P by one position to the right.

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 2: Now, i = 2, q = 0
 Comparing P[1] with S[2], we see that there is a match; P is not shifted.

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 3: Currently, i = 3, q = 1. Comparing P[2] with S[3], we notice that P[2] does
not match with S[3].

S

P

b a c b a b a b a ac baa b

a b a b a c a

ALGORITHM ANALYSIS AND DESIGN 751

DSUC c16 V6 October 18, 2012 5:28 PM Page 751

Now, backtrack on P and compare P[1] and S[3].

Step 4: Here, i = 4, q = 0; comparing P[1] with S[4], we notice that P[1] does not
match with S[4].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 5: Currently, i = 5, q = 0; comparing P[1] with S[5], we notice that P[1]
matches with S[5].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 6: For i = 6, q = 1, we compare P[2] with S[6]. We see that P[2] matches with
S[6].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 7: For i = 7, q = 2, we compare P[3] with S[7], and we see that P[3] matches
with S[7].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 8: With i = 8, q = 3, and when P[4] and S[8] are compared, it results in P[4]
matching with S[8].

752 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 752

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 9: For i = 9, q = 4, we compare P[5] with S[9], and it is seen that P[5] matches
with S[9].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 10: With i = 10, q = 5, we compare P[6] with S[10], and it is seen that they do
not match.

S

P

b a c b a b a b a ac baa b

a b a b a c a

Now, let us backtrack on P and compare P[4] with S[10], as after mismatch, q = p[5] = 3.

Step 11: With i = 11, q = 4 we see that P[5] matches with S[11].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Step 12: For i = 12 and q = 5, P[6] matches with S[12].

S

P

b a c b a b a b a ac baa b

a b a b a c a

ALGORITHM ANALYSIS AND DESIGN 753

DSUC c16 V6 October 18, 2012 5:28 PM Page 753

Step 13: With i = 13 and q = 6, P[7] matches with S[13].

S

P

b a c b a b a b a ac baa b

a b a b a c a

Here, we notice that the pattern P has been found in S. The total number of shifts that took
place for the matches to be found are i - m = 13 - 7 = 6 shifts.

Let us compute the time complexity of this algorithm. We can see that compute_pre-
fix_function(), uses for loop from step 4 to step 10 and runs m times. Steps 1–3 take
constant time. Hence, the running time of compute_prefix_function() is Q(m). In KMP
matcher, the for loop beginning in step 5 runs n times, that is, as long as the length of
the string S. Since steps 1–4 take constant time, the running time is dominated by this for
loop. Thus, the running time of the matching function is Q(n).

16.6 TRIES

We have discussed algorithms that efficiently search for pat-
terns in a text. Let us now learn about a compact data structure
that represents a set of strings (such as all the words in a text)
known as tries. A trie is a tree-based data structure for storing
strings to make pattern matching faster. A trie helps in pattern
matching in time that is proportional to the length of the pat-
tern. Tries can be used to perform prefix query for information
retrieval. Prefix query searches for the longest prefix of a given string that matches a pre-
fix of some string in the tries. Figure 16.5 shows an example text used in a query search.

A trie for this text is drawn as in Fig. 16.6.

b

o

o o

e t

s

i s l

c

i u

d y e

k

l h l pk

Fig. 16.6 An example trie

see a book? sell stock!

see a bush! stop!

bid stock! buy book!

stock sell? buy book!

Fig. 16.5 Example
text for query search

754 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 754

It is true that preprocessing the pattern speeds up pattern matching queries. Once pre-
processed, the pattern in time is proportional to the pattern length. The Boyer–Moore
algorithm then searches an arbitrary English text in a time proportional to the text length.
When the text is large enough, unchallengeable, and searched very often, it is suggested
to preprocess the text instead of the pattern to perform pattern matching queries in time
proportional to the pattern length.

There are variants of tries, which are listed as follows:

1. Standard tries
2. Compressed tries
3. Suffix tries

16.6.1 Standard Tries

We have already seen that a trie is a tree-based data structure for storing strings to make
pattern matching faster. For pattern matching to be done in time that is proportional to the
length of the pattern, trie has proved to be one of the best solutions. Among variants of
tries, the standard trie is the most popular and simplest approach.

The standard trie for a set of strings S is an ordered tree such that

1. each node but the root is labelled with a character;
2. the children of a node are alphabetically ordered;
3. the paths from the external nodes to the root yield the strings of S.

For example, consider the standard trie in Fig. 16.7 for the set of strings S = {bush, boil,
bid, book, buy, sell, stock, stop}

b

o

o o

e t

s

i s l

c

i u

d y e

l h l pk

k

Fig. 16.7 An example of standard trie

A standard trie uses O(n) space. Operations (find, insert, remove) each take time O(dm),
where

n = total size of the strings in S

ALGORITHM ANALYSIS AND DESIGN 755

DSUC c16 V6 October 18, 2012 5:28 PM Page 755

m = size of the string parameter of the operation
d = alphabet size

Another example is shown in Fig. 16.8.

b

e

a o

e t

s

l l l

c

i u

d y

l l l pr

k

Fig. 16.8 Another example of standard trie

16.6.2 Compressed Tries

Similar to the standard trie, a compressed trie (Fig. 16.9) is a tree-based data structure
for storing strings in order to make pattern matching much faster. This is an optimized
approach for pattern matching specially suitable for applications where time is a more
crucial factor. Following are the unique characteristics of compressed trie:

1. A compressed trie (or Patricia trie) has internal nodes of degree at least 2.
2. It is obtained from standard trie by compressing chains of redundant nodes.

b

o

ok

ell to

s

il sh

id u

y ck p

Fig. 16.9 Compressed trie

16.6.3 Suffix Tries

A suffix trie is a compressed trie for all the suffixes of a text. This is a compressed trie,
and hence, possesses all features a compressed trie and makes it more powerful for mak-
ing a search faster as it includes all suffixes of a text. Let us consider an example as in
Fig. 16.10.

756 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 756

e me ghavindd nd

ghavindvind nd ghavind nd

m e g h a v i n

1 2 3 4 5 6 7

d

80

Fig. 16.10 Suffi x trie

RECAPITULATION

• Algorithms are used as design tools for solv-
ing real world problems.

• Asymptotic notation helps us to defi ne lower
and upper bounds of time complexity.

• Commonly used algorithm strategies are divide-
and-conquer, greedy method, and dynamic pro-
gramming; each strategy has a set of unique
characteristics.

• Control abstraction is a procedure that mirrors
the way an actual problem based on the said
strategy will look like.

• Dynamic programming is an algorithm design
method that can be used when the solution to
a problem may be viewed as the result of a
sequence of decisions.

• Pattern matching can be defi ned as the pro-
cess of fi nding the presence of a particular
string (pattern) from the given string (text).

• A trie is a tree-based data structure for storing
strings to make the pattern matching faster.
A trie helps in pattern matching in time that is
proportional to the length of the pattern.

KEY TERMS

Asymptotic analysis In computer science, the
analysis of algorithms considers the performance
of algorithms when applied to very large datasets.
Asymptotic complexity helps us quantify the per-
formance measures of an algorithm.

Divide-and-conquer method This method is an
algorithm design paradigm in which a problem is

broken down into two or more subproblems of the
same type, which are then solved independently.
These solutions are then combined to provide a
solution to the parent problem.

Dynamic programming Dynamic programming
is well suited to problems where a recursive al-
gorithm would solve many of the subproblems

ALGORITHM ANALYSIS AND DESIGN 757

DSUC c16 V6 October 18, 2012 5:28 PM Page 757

repeatedly. The dynamic programming algorithm
stores results, or solutions, for small subproblems.
Later on, it uses these stored solutions instead of
recomputing them to solve larger subproblems.

Greedy method Greedy method is defi ned as an
algorithm paradigm that follows the problem-
solving heuristic of making the locally optimal
choice at each stage with the hope of fi nding the
optimum solution.

Pattern matching It is the process of fi nding the
presence of a particular string (pattern) from a
given string (text).

Trie A trie is a tree-based data structure for storing
strings to make pattern matching faster. It helps in
pattern matching in time that is proportional to the
length of pattern. It is useful in performing prefi x
query for information retrieval.

EXERCISES

Multiple choice questions

1. Which of the following algorithm design
techniques is used in quicksort algorithm?

 (a) Dynamic programming
 (b) Backtracking
 (c) Divide-and-conquer
 (d) Greedy
2. Merge sort uses
 (a) triangulization
 (b) quicksort
 (c) n-queens
 (d) heuristics
3. Dynamic programming is based on the principle

of
 (a) optimality
 (b) heuristics
 (c) regularity
 (d) none of the above
4. The complexity function of which of the

following strategies is generally in the form of a
recurrence relation?

 (a) Dynamic
 (b) Divide-and-conquer
 (c) Both (a) and (b)
 (d) None of the above
5. Time complexity of ternary search is
 (a) log3n
 (b) log23
 (c) log2n

 (d) n3

6. Time complexity is
 (a) the space required by a program
 (b) an amount of machine time necessary for

running a program
 (c) the time required for a programmer to code
 (d) all of the above
7. The worst case complexity is (for instance, of

size n)
 (a) a function defi ned by maximum number of

steps taken
 (b) a function defi ned by average number of

steps taken
 (c) a function defi ned by minimum number of

steps taken
 (d) all of the above
8. The best case complexity (for instance, of size

n) is
 (a) a function defi ned by maximum number of

steps taken
 (b) a function defi ned by average number of

steps taken
 (c) a function defi ned by minimum number of

steps taken
 (d) all of the above

Review questions

1. What is an algorithm? Write the essential
properties and the performance measures of an
algorithm.

758 DATA STRucTuRES uSING c++

DSUC c16 V6 October 18, 2012 5:28 PM Page 758

2. Explain the characteristics and uses of greedy and
dynamic programming algorithmic strategies.

3. What is big O notation? Arrange the following
functions by growth value:

N, N , N2, Nlog2N, N Nlog2
2 , N2, N3, 2N

4. Write a C program for binary search and compute
its time complexity.

5. Write a C program for ternary search and
compute its time complexity.

6. What do you mean by best case, average case,
and worst case time complexity? Give suitable
examples.

7. Find the frequency count of the following
programs:

 (a) for(i = 1; i <= n; i++)
 for(j = 1; j <= i; j++)
 x = x + 1;

 (b) i = 1;
 while(i <= n)
 {
 x = x + 1;
 i = i + 1;
 }

8. Find the frequency count of the following
programs:

 (a) for(i = 1; i <= n; i++)
 for(j = 1; j <= n; j++)
 a = a + 2;

 (b) i = 1;
 do {

 x = x + 2;
 i++;
 } while(i <= n);

 (c) for i = 1 to n do
 for j = i + 1 to n do
 for k = j + 1 to n do
 x = x + 1;

 (d) i = 1
 do
 {
 x++;
 if(i == 10)
 break;
 i++;
 } while(i <= n);

9. Write the control abstraction for the following
algorithm strategies:

 (a) Divide-and-conquer
 (b) Greedy method
 (c) Dynamic programming
10. Compare greedy and dynamic strategies.
11. Give typical applications in which the divide–

conquer is the best suitable algorithmic strategy.
12. Describe each of the following with respect to

their unique characteristics, control abstraction,
and an example:

 (a) Divide-and-conquer
 (b) Dynamic
 (c) Greedy
13. Write a quicksort algorithm. Analyse the same

with respect to time complexity.

Answers to multiple choice questions

1. (c) 2. (c) 3. (a) 4. (c) 5. (a) 6. (b) 7. (a) 8. (c)

Objectives
Each chapter begins with a list
of topics that the readers can
expect to learn from that
chapter.

RECURSION4

OBJECTIVES

After completi ng this chapter, the reader will be able to understand the following:
 • The power of recursion and its working
 • Identi cation of the base case and the general case of a recursively de ned problem
 • Comparison of iterative and recursive solutions
 • The steps to write, implement, test, and debug recursive functions
 • The method of implementing recursion using stacks

Functions are the most basic and useful feature of any programming language. A set
of instructions that performs logical operations, which could be very complex and

numerous in number, can be grouped together as functions (also called procedures).
Functions may call themselves or other functions, and the called functions in turn may
call the calling function. This process is called recursion and such functions are called
 recursive functions. A recursive function makes the program compact and readable. This
chapter covers the important aspects of recursion.

4.1 INTRODUCTION

Good programming practices emphasize the writing of programs that are readable, easy
to understand, and error free. Functions are the most useful feature that accomplish
this. A function is called using a function name and its parameters through instructions.
Given the input–output specifi cation of a function, the caller simply makes a call to
it . This v iew of the f unct ion implies that it is invoked, executed, and returned (with
or without results) to the place where it was called in the calling function. When a
function calls itself, either directly or indirectly, it is said to be making a recursive
call. Recursive functions help make the program compact and readable. Recursion is
extremely powerful as it enables the programmer to express complex processes easily.
Recursive programs are used in a variety of applications ranging from calculating the
factorial of a number to playing complex games against human intelligence.

Flowcharts
Flowcharts are provided
wherever required. They
provide readers with
a step-wise and clear
representation of
algorithms and concepts.

RECURSION 165

DSUC c04 V3 October 27, 2011 2:20 PM Page 165

In Algorithm 4.4, at the caller function, a call is made to HTower with disk = 5, source = A,
dest = B, and spare = C.

ALGORITHM 4.4

HTower(disk, source, dest, spare)

if disk == 0, then

 move disk from source to dest

else

 HTower(disk - 1, source, spare, dest) // Step 1

 move disk from source to dest // Step 2

 HTower(disk - 1, spare, dest, source) // Step 3

end if

Note that the pseudocode adds a base case when disk = 0, that is, the smallest disk.
In this case, we do not need to worry about smaller disks, so we can just move the disk
directly. In the other cases, we follow the three-step recursive function already described
for disk 5.

The tree representation of recursive calls is shown in Fig. 4.6.

Fig. 4.6 Tower of Hanoi—Call tree for three disks

HTower(3, A, B, C)

HTower(2, A, C, B) HTower(2, C, B, A)

HTower(1, A, B, C) HTower(1, B, C, A) HTower(1, C, A, B) HTower(1, A, B, C)

(0, A, C, B) (0, C, B, A) (0, B, A, C) (0, B, A, C)(0, A, C, B) (0, A, C, B)(0, C, B, A) (0, C, B, A)

The root represents the fi rst call to the function. The function cal l is represented as a node
in the tree. The child nodes of the node n represent the function calls made by n. For
example, HTower(2, A, C, B) and HTower(2, C, B, A) are the child nodes of HTower(3,
A, B, C) since these are the two function calls that HTower(3, A, B, C) makes. The leaf
nodes represent the base cases.

4.6.3 Checking for Correctness

One of the most diffi cult aspects of programming recursively is the process of
accepting that the recursive call will do the right thing. The following checklist pro-
vides the fi ve conditions that must hold true for recursion to work. If each of these

Algorithms
All chapters contain plenty
of algorithms to support
the theoretical concepts.
Each algorithm is depicted
in a step-wise manner
along with a description
of its function and
signifi cance.

152 DATA STRUCTURES USING C++

DSUC c04 V3 October 27, 2011 2:20 PM Page 152

Let us consider an example of computing the factorial of a number. Factorial is a
mathematical term. The factorial of a number, say n, is equal to the product of all the
integers from 1 to n. The factorial of n is denoted as

 n! = 1 ¥ 2 ¥ 3 ¥ º ¥ n or n! = n ¥ n - 1 ¥ º ¥ 1 (4.1)

For example, 10! = 1 ¥ 2 ¥ 3 ¥ 4 ¥ 5 ¥ 6 ¥ 7 ¥ 8 ¥ 9 ¥ 10. The sim plest program to
calcula te the f actorial of a number is by using a loop with a product variable.

Algorithm 4.1 states the iterative process of computing the factorial of n.

ALGORITHM 4.1

An iterative version of an algorithm to compute the factorial of a

number

1. start

2. Let n be the number w hose factorial is to be computed and let

Factorial = 1

3. while(n > 1) do

 begin

 Factorial = Factorial * n

 n = n – 1

 end

4. stop

The iterative process of computing the factorial of n in Algorithm 4.1 can also be written
as in Algorithm 4.2.

ALGORITHM 4.2

An iterative version of the algorithm to compute the factorial of a

number

1. start

2. Let n be the number whose factorial is to be computed and let

Factorial = 1

3. for I = 1 to n do

 begin

 Factorial = Factorial * I

 end

4. stop

Algorithms 4.1 and 4.2 are iterative algorithms for computing the factorial of n. It is pos-
sible to give a recursive defi nition for factorial too. The mathematical function defi ned in
Eq. (4.1) for factorial of n can also be defi ned recursively as

 n! = n ¥ (n - 1)!, wh ere 1! = 1 (4.2)Program Codes
Numerous program codes in
C++ provide implementation
of the concepts. Comments are
provided wherever necessary
thus making the code
self-explanatory and easy to
understand.

RECURSION 153

DSUC c04 V3 October 27, 2011 2:20 PM Page 153

This recursive defi nition of factorial has two steps, as follows:

1. If n = 1, then factorial of n = 1
2. Otherwise, factorial of n = n ¥ factorial of (n - 1)

Program Code 4.1 demonstrates the recursive code for Algorithm 4.1.

PROGRAM CODE 4.1

int Factorial(int n)

{

 if(n == 1) // end condition

 return 1;

 else

 return Factorial(n - 1) * n;

}

The Factorial() function is an example of a recursive function. In the second
return statement, the function calls itse lf. The important thing to remember when creat-
ing a recursive function is to give an end condition. In Program Code 4 .1, the recursion
stops when n becomes 1. In each call of the function, the value of n keeps decreasing.
However, when the value reaches 1, the function ends. On the other hand, this function
will run infi nitely if the initial value of n is less than 1, which means that the function is
not perfect. Therefore, the condition n = 1 should be changed to n ≤ 1. L et us rewrite
the Factorial() function as in Program Code 4.2.

PROGRAM CODE 4.2

int Factorial(int n)

{

 if(n <= 1) // end condition

 return 1;

 els e

 return Factorial(n - 1) * n;

}

Program Code 4.2 takes advantage of the fact that the factorial of any integer n
can be defi ned recursively as the product of n and the factorial of n − 1. For example,
5! = 5 ¥ 4!

FEATURES OF THE BOOK

Illustrations
More than 400 well-labelled illustrations
are provided to aid in clearer
understanding of the concepts.

160 DATA STRUCTURES USING C++

DSUC c04 V6 December 15, 2011 11:53 AM Page 160

We can break this into three basic steps.

1. Move the disk 4 and the ones smaller than that from the peg A (source) to peg C (spare),
using peg B (dest) as a spare. We achieve it by recursively using the same function. After
fi nishing this, we will have all the disks smaller than disk 4 on peg C (Fig. 4.3).

Fig. 4.3 Tower of Hanoi—step 1

A B C

2. Now, with all the smaller disks on the spare peg C, we can move disk 5 from peg A to
peg B (Fig. 4.4).

Fig. 4.4 Tower of Hanoi—step 2

A B C

3. Finally, we want disk 4 and the smaller disks to be moved from peg C to peg B.
We do this recursively using the same function again. At the end, we have disk 5 and
the smaller ones on peg B (Fig. 4.5).

Fig. 4.5 Tower of Hanoi— nal step

A B C

Recapitulation
A summary of key topics at
the end of each chapter helps
the readers revise all the
important concepts explained in
that chapter. It is provided in
point-wise form for a quick grasp
of the concepts learnt.

168 DATA STRUCTURES USING C++

DSUC c04 V3 October 27, 2011 2:20 PM Page 168

(e) If this is a function, insert instructions to evaluate the expression immediately
following return() and store the result on the top of the stack.

(f) Use the index of the label of the return address to execute a branch to that label.

If all these rules are followed carefully, one can convert recursion to an iterative code.
C++ supports recursion and it is handled using a run-time stack. For each function

call, all the actual parameters are pushed onto the stack. This is also called as activation
record. This activation record contains memory for the return value—a pointer to the base
of the previous stack frame in the stack. It includes the return address, that is, the address
of the instruction to be executed after the function call is completed. It also includes
memory for all the parameters and for all the local variables of the function. The working
of recursion is as described earlier.

4.9 APPLICATIONS OF RECURSION

The following are the major areas where the process of recursion can be applied:
1. Artifi cial intelligence
2. Search techniques
3. Game playing
4. Computational linguistics and natural language processing
5. Expert systems
6. Pattern recognition and computer vision
7. Robotics

RECAPITULATION

• A function may call itself or other functions, and the called functions in turn may
again call the calling function. Such functions are called recursive functions.

• Any correct iterative code can be converted into its equivalent recursive code and
vice versa.

• The basic concepts and ideas involved with recursion are simple—a function that
has to be solved is treated as a big problem and it solves itself by using itself
to solve a slightly smaller problem. The recurrence relation is easily converted to
recursive code.

• The working of recursion is fairly straightforward. However, to understand the
working of recursion better and to be able to use it well, one requires practice. The
best way to obtain this is to write a lot of recursive functions.

• Recursion can be used for divide and conquer-based search and sort algorithms to
increase the ef ciency of these operations.

• For most problems such as the Tower of Hanoi, recursion presents an incredibly
elegant solution that is easy to code and simple to understand.

Key Terms
All chapters provide the reader
with requisite revision of key terms
along with their
defi nitions.

RECURSION 169

DSUC c04 V3 October 27, 2011 2:20 PM Page 169

Binary recursion A simple unary recursive function calls itself once, whereas the binary
recursive function calls itself twice. A factorial is a unary function, whereas Fibonacci is a
binary recursion.

Depth of recursion The number of times a function calls itself is known as the recursive
depth of that function.

Direct and indirect recursion When a recursive function calls itself directly, it is called
direct recursion and when the function calls another function, which in turn calls the fi rst
function, it is called an indirect recursion.

End condition Recursive functions usually have and in fact should have a condition that
would terminate the recursive calls. This terminating condition is called end condition. In
the function factorial, when n = 1 the function returns 1. If this condition were not present,
the function would keep calling itself with the values 3, 2, 1, 0, -1, -2, and so on till infi n-
ity. Such recursion is known as endless recursion.

Linear and tree recursion Depending on the way the recursion grows, it is classifi ed as
linear or tree. A recursive function is said to be linearly recursive when no pending opera-
tion involves another recursive call. If there is another recursive call in the set of operations
to be completed after the recursion is over, then it is called a tree recursion. Factorial is an
example of linear recursion and Fibonacci is an example of tree recursion.

Recurrence relation A recurrence is a well-defi ned mathematical function written in terms
of itself; it is a mathematical function defi ned recursively such as n! = n × (n - 1)!

Recursive functions A function may call itself or call other functions and the called func-
tions in turn again may call the calling function. Such functions are called recursive
functions.

Stack overfl ow in recursion Each time a function calls itself, it stores one or more variables
on the stack. Since the stack holds a limited amount of memory, functions with a high
recursive depth may crash because of the non-availability of memory. Such a situation is
known as stack overfl ow.

Tail recursion A recursive function is said to be tail recursive if there are no pending op-
erations to be performed on return from a recursive call; otherwise it is called a non-tail
recursion. The factorial function is an example of non-tail recursion, whereas binary search
is an example of tail recursion.

Winding and unwinding of recursion All recursive functions go through two distinct
phases. The fi rst phase, winding, occurs when the function is calling itself and push-
ing values onto the stack. The second phase, unwinding, occurs when the function is
popping values from the stack, usually after the end condition.

KEY TERMS

Multiple Choice Questions
Multiple choice questions put to test
the readers' theoretical knowledge
that is gained after reading
the chapter. Answers to these
questions are provided at the end
of every chapter.

170 DATA STRUCTURES USING C++

DSUC c04 V3 October 27, 2011 2:20 PM Page 170

Multiple choice questions

 1. Infi nite recursion occurs when
 (a) a base case is omitted
 (b) a base case is never reached
 (c) both (a) and (b)
 (d) none of the above
 2. Fibonacci function Fib(n) = Fib(n - 1) + Fib(n - 2) is an example of
 (a) direct recursion
 (b) tree recursion
 (c) linear recursion
 (d) both (a) and (b)
 3. Any recursive function can be converted into an all equivalent non-recursive function
 (a) always
 (b) never
 (c) sometimes
 (d) if the function is tail recursive
 4. Which of the following algorithm strategies results in an inherently recursive code?
 (a) Greedy paradigm
 (b) Divide and conquer paradigm
 (c) Dynamic paradigm
 (d) Both (a) and (c)
 5. The advantage of recursion is that the
 (a) code size is less
 (b) time complexity is less
 (c) space complexity is less
 (d) none of the above
 6. The data structure used for recursion is
 (a) stack
 (b) queue
 (c) tree
 (d) none of the above
 7. Consider the following code:

void foo(int n, int sum 0)

{

 int k = 0, j = 0;

 if(n == 0) return;

 k = n % 10; j = n/10;

 sum = sum + k;
 foo(j, sum);

EXERCISES

Review Questions
Numerous review questions at
the end of every chapter test the
readers' conceptual knowledge
as well as help them think
outside the box.

172 DATA STRUCTURES USING C++

DSUC c04 V3 October 27, 2011 2:20 PM Page 172

10. The following code is an example of ______ recursion.
funA()

{

 .
 .
 .

 funA();

 .
 .
 .

 fun A();

}

 (a) linear
 (b) tree
 (c) both (a) and (b)
 (d) none of these

Review questions

 1. Write a recursive algorithm to check whether a specifi ed character is in a string.
 2. Write a recursive algorithm to count all occurrences of a specifi ed character in a string.
 3. Write a recursive algorithm that removes all occurrences of a specifi ed character in a

string.
 4. Write a recursive algorithm that fi nds all occurrences of a substring in a string.
 5. Write a recursive algorithm that changes an integer to a binary number.
 6. In binary search, the given key is compared with the middle element of an array. If a

match occurs, the search is successful; else the comparison decides whether the search
would be restricted to either the upper half or the lower half of the array. Write a recursive
function Binary(key, A, n), where n is the size of the array A.

 7. Write a recursive function in C++ to count the number of occurrences of a given integer in
an array. The function should have three parameters—an array, the number of elements in
the array, and the count.

 8. Write a recursive function in C++ that counts the number of occurrences of a particular
digit in the decimal representation of a given integer. For example, if the parameters to the
function are 8 and 382885, the function should return 3 as there are three occurrences of
the digit 8 in 382885.

 [Hint: Remember that n % 10 will give th e remainder of n divided by 10, whereas n/10
will give the inte ger part of n divided by 10.]

 9. Write a recursive function in C++ to replace every occur rence of a specifi ed character in
a string with another character. The function should be a void function and should have
three parameters—a string, a character to be replaced, and the character with which it is
to be replaced.

10. Write a recursive function in C++ to compute the square root of a number.
11. Write a recursive function in C++ to convert decimal integers to their radix r representation

by successive divisions.

FEATURES OF THE BOOK ix

APPendIX

The most suitable language for the implementation of abstract data types (ADTs) is
the object-oriented C++, as it implements them as a class. We have already discussed
ADTs in Chapter 1; let us now revise the concept of ADTs.

A.1 AbsTrACT dATA TYPe

A data type consists of a collection of values together with a set of basic operations
defi ned on these values. A data type is called an abstract data type if a programmer can
use it without having access to it and without knowing the details of how the values and
operations are implemented.

Specifying a data structure by the details of its implementation means that if the
programmer wants to change the representation of the data type, he/she will have to
fi nd every piece of code that manipulates the data and make sure it corresponds to the
new defi nition. The best way to avoid this problem is to make sure that all data types
defi ned are ADTs.

An ADT expresses an all-inclusive collection of data values and operations. The term
data structure means the study of data and refers to the representation of data objects
within a program, that is, the implementation of a structured relationship.

A software professional’s idea of a data structure has undergone an evolution in the last
few years. Data structures are implemented based on the abstract properties of the classes
of data objects in addition to how these data objects might be represented in a program.
Depending on this point of view, a data object is characterized by its type (for the user) or
by its structure (for the implementer).

Hence, the study of data structures has now been popularly referred to as the study of
ADTs, which covers the study of classes of objects whose logical behaviour is defi ned by
a set of operations.

The traditional model of studying data structures is based on the characteristics of the
implementation of structures. For example, consider the example of stacks and queues
which are linear lists with restricted access. The properties of stacks and queues can be
represented as last in fi rst out (LIFO) and fi rst in fi rst out (FIFO), respectively. However,
the user of these two ADTs is not interested about the location where the data is being
processed in the data structure or about the restricted access. In fact, the user does not
(rather should not) care about what happens when an item is stored in a stack or a queue
and is only interested in what is inserted or what is deleted. Thus, it is essential to learn
data structures as ADTs.

Let us now discuss how to implement ADTs using C++.

OVerVIeW OF
C++ PrOGrAMMInG

760 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 760

A.2 InTrOduCTIOn TO C++

To overcome some of the shortcomings of the C language, Bjarne Stroustrup of AT&T
Bell Laboratories developed C++ in the early 1980s. Stroustrup designed C++ to be a
better version of C. Most of C is a subset of C++, and so most C programs are also C++
programs. Thus, C++ is also known as C with classes. However, unlike C, C++ supports
the object-oriented programming (OOP) paradigm.

A.2.1 sample C++ Program

A typical C++ code uses two kinds of fi les—header fi les and source fi les. Header fi les
have a ‘.h’ extension. They allow programmers to separate certain parts of the source code
into reusable fi les. These fi les commonly contain forward declarations of classes, subrou-
tines, variables, and other identifi ers. Declarations of standardized identifi ers from more
than one source fi le can be placed in a single header fi le, and programs can then include
these fi les whenever the header contents are required. One such header fi le is <iostream.h>,
which stands for input/output stream, as used in Progr am Cod e A.1. The header fi le
iostream provides basic input and output services for C++ programs. It uses the objects
cin, cout, cerr, and clog for sending data to and from the standard streams input, output,
error, and log, respectively.

PROGRAM CODE A.1

//A sample C++ progr am

#include<iostream.h>

int main()

{

 fl oat Base, Height, Area;

 cout << "Enter Base:";

 cin >> B ase;

 cout << "Enter Height:";

 cin >> Height;

 Area = (Base * Height)/2;

 cout << "Area of Triangle = ";

 cout << Area;

 return;

}

Output:

 Enter Base: 7

 Enter Height: 6

 Area of Triangle = 21

OVerView Of c++ PrOgramming 761

DSUC App01 V6 July 30, 2012 11:41 AM Page 761

In the beginning of this program, a header fi le <iostream.h> is included, which is system-
defi ned. These header fi les can also be user-defi ned. Source fi les are used to store C++
source code. The suffi x used is generally ‘.cpp’, which depends on the compiler in use.

A.2.2 C++ statements and Operators

Syntax and semantics of statements in C++ are similar to that used in C. In addition,
C++ operators are identical to operators in C except new and delete operators. Another
difference is that C++ uses the shift left << and the shift right >> operators. However,
an important difference is that C++ allows operator overloading, that is, an operator is
allowed to have different functionalities depending on the type of operands.

A.2.3 Comments in C++

A programmer is often very clear about the objective and outcome of the code during the
coding phase. However, when someone else tries to understand or modify the code, or
even when the programmer returns to the program after a long period of time, it could be
quite confusing and unclear. A comment is a text, used to annotate a code for future refer-
ence, that the compiler ignores but is useful for programmers. In C++, a programmer can
use the following two types of comments:

1. Block comment—used to include multiple lines as a comment
 /* block of statements
 …
 */
2. Line comment—used for single line comments
 // Comment line here

A.2.4 Input/Output i n C++

To perform I/O in C++, we have to include the system-defi ned header fi le iostream.h.
The keyword cout is used to output data to the standard output device is separated from
each entity being printed by the << operator. The entries being output are printed from left
to right on the standard output device. The shift left operator << is overloaded in C++. It is
also called output operator or insertion operator. It can be used to display data of any
type. Program Code A.2 illustrates the use of iostream in C++.

PROGRAM CODE A.2

// A C++ program explaining—I/O stream

#include<iostream.h>

main()

{

 int a = 110;

 fl oat b = 0.11;

762 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 762

 char MyName[];

 cout << "a:" << a << endl ;

 cout << "b:" << b << endl ;

 cout << "Your name please:";

 cin << MyName;

 cout << "Welcome dear" << MyName << "to the world

of C++!";

}

Output:

 a: 110

 b: 0.11

 Your name please: Saurabh

 Welcome dear Saurabh to the world of C++!

The keyword cin is used for input in C++. The operator >> is used to separate the
variables being input or output. A whitespace is used to separate items corresponding
to different variables on the standard input device. The shift right operator >> is over-
loaded by C++ for this purpose. It is also called input operator or extraction operator.
Program Code A.3 uses cin and cout for accepting two integers from the user and
then displaying the sum of the two input numbers.

PROGRAM CODE A.3

//A sample C++ program for illustrating cin and cout

#include<iostream.h>

main()

{

 int a, b;

 cout << "Enter values of a & b:";

 cin >> a >> b;

 cout << a << " +" << b << "=" << a + b;

}

Output:

 Enter values of a & b: 5 6

 5 + 6 = 11

An advantage of I/O in C++ is that it is format-free, that is, the programmer is not
required to use formatting symbols to specify the type and order of items being input or
output. Similar to other C++ operators, I/O operators can also be overloaded.

OVerView Of c++ PrOgramming 763

DSUC App01 V6 July 30, 2012 11:41 AM Page 763

A.3 FunCTIOns In C++

There are two kinds of functions in C++, namely regular functions and member functions.
Member functions those that are associated with a specif ic C++ class. Both types of func-
tions are similar in all features excluding their scope.

A function consists of a function name, a list of arguments (input), a return type (out-
put), and a body (code that implements a function). In Program Code A.4 , Max is the func-
tion name, fl oat a a nd fl oat b are the list of arguments, where fl oat is the return type, and
the statements between { and } form the body of the function. Similarly, Square() is a
function with int a as argument and int as the return type. Here, SayHello() is another
function that has no argument, and it does not return any value, so its return type is void.

PROGRAM CODE A.4

// A sample C++ program—function

void SayHello()

{

 cout << "Hello, welcome to the world of C with

classes";

}

int Square(int a)

{

 return a * a;

}

fl oat max(fl oat a, fl oat b)

{

 if(a > b)

 return a;

 else

 return b;

}

void main()

{

 int x, y, z;

 SayHello();

 cout << endl;

 cout << "Enter number";

 cin >> x;

 cout << "Square of" << x << "is =" << Square(x);

 cout << "\nEnter two integers";

 cin >> y >> z;

 cout << "Maximum between" << y << "and" << z <<

"is" << max(y, z);

}

764 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 764

Output:

Hello, welcome to the world of C with classes

Enter number 5

Square of 5 is 25

Enter two integers 9 4

Maximum between 9 and 4 is 9

All functions in C++ return a value. If a function is not meant to return anything,
we use void to denote its return type. A value is returned from a function by using the
return statement. The return statement must return a value that is of the same type
as the function’s return type or should be converted to the desired type. The function
terminates when a return statement is encountered. A function is invoked by supply-
ing the actual arguments. Some examples are as follows:

A call to function max(55.23,76.89) returns 76.89.
A call to function Square(5) returns 25.
A call to function SayHello displays the message "Hello, welcome to the

world of C with classes".

A.3.1 Inline Function

An inline function is declared by adding the keyword inline to the function defi nition as
in Program Code A.5. Fun ction PrintLine() is an inli ne function, whereas function
PrintLine1() is not.

PROGRAM CODE A.5

// A sample C++ program—inline function

inline void PrintLine()

{

 cout << "----------";

 cout << endl;

}

void PrintLine1(int n, char ch)

{

 for(i = 1; i <= n; i++)

 cout << ch;

 cout << endl;

}

// calling function

void main()

{

OVerView Of c++ PrOgramming 765

DSUC App01 V6 July 30, 2012 11:41 AM Page 765

 PrintLine();

 PrintLine1(10, ‘$’);

}

Output:

$$$$$$$$$$

The inline keyword instructs the compiler that any calls to the inline function Print-
line() must be replaced by the body of the called function. This eliminates the overhead
from performing a function call and copying arguments when the program is executing.
When a member function is defi ned within a class defi nition as in Program Code A.6, it
is automatically made inline.

The objective of the inline and const keywords is to avoid the use of preproces-
sor directives such as #defi ne. T his preprocessor directive has been traditionally used to
perform macro substitution. A macro is similar to a function except for the difference
that functions are called whereas macros are substituted. Excessive use of preprocessor
directives makes it hard to use programming tools such as debuggers and profi lers (used
for debugging) effi ciently.

The use of an inline function is benefi cial for shorter code. However, as inline function calls
are replaced by function defi nitions, this expansion results in larger code in case of lengthy
functions. The compiler may ignore the demand to make a function inline in some cases when
a function is recursive or it contains static variables or loop, switch, or goto statements.

PROGRAM CODE A.6

// A sample C++ program—inline function

#include<iostream.h>

class ABC

{

 int a, b, c;

 public:

 void GetData()

 {

 cin << a << b << c;

 }

};

void ABC :: ShowData()

{

 cout << a << "\t" << b << "\t" << c;

}

766 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 766

Here, ShowData() is a member function whose code is written outside the class defi ni-
tion. The function GetData() is defi ned inside the class defi nition, and hence is consid-
ered as an inline function. If the user wishes to defi ne a function outside the class and still
wants to make it an inline function, it can be done by explicitly instructing the compiler
to do so, as shown in Program Code A.7.

PROGRAM CODE A.7

// A sample C++ program with inline function outside

class

#include<iostream.h>

class ABC

{

 int a, b, c;

 public:

 void GetData()

 {

 cin << a < < b << c;

 }

};

inline void ABC :: ShowData()

{

 cout << a << "\t" << b << "\t" << c;

}

We have discussed that an inline function call is replaced by its code, similar to
macro expansion. However, there is one major difference between an inline function
and a macro. Let us consider the code in Program Code A.8.

PROGRAM CODE A.8

// A sample C++ program with—macro and inline function

#include<iostream.h>

#defi ne Square1(x) x * x

inline int Square2(int x)

{

 return x * x;

}

int main()

{

 cout << "\n Using macro" << Square1(5 + 5);

OVerView Of c++ PrOgramming 767

DSUC App01 V6 July 30, 2012 11:41 AM Page 767

 cout << "\n Using inline function" << Square2(5 + 5);

}

Output:

 Using macro 30

 Using inline function 100

If we observe the output of the code, we see that the expected output is correctly provided
by the inline function and not by the macro. This difference makes inline functions far
superior to macros.

A.4 C++ ClAss And AbsTrACT dATA TYPe

Classes in C++ are a natural evolution of the C notation struct. C++ also has the con-
cept of structures. The only difference between a structure and a class in C++ is that, by
default, the members of a class are private, whereas the members of a structure are public.
Object-oriented programming encapsulates data (attributes) and functions (behaviour)
into packages called classes.

A.4.1 Class

A class is a user-defi ned data type whose variables are objects. It is created using the key-
word class. A class is similar to a blue print. Based on a blue print, a builder can build
one or more houses. Similarly, based on a class, a programmer can create one or more
objects. One class can be reused many times to make many objects of the same class.
Classes enable the programmer to model objects that have certain attributes (data mem-
bers) and behaviour (operations). A sample class defi nition is given in Program Code A.9.

PROGRAM CODE A.9

// A sample C++ class defi nition

class Time

{

 private:

 int Hour;

 int Minute;

 int Second;

 public:

 Time();

 void SetTime(int, int, int);

 void DisplayTime();

};

768 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 768

A class specification has two parts—class declaration and definition of class member
functions. The class declaration describes the type and scope of its members. The general
form of class declaration is as follows:

class class_name
{
 private data members & member functions access_specifier:
 data members & member functions access_specifier:
 data members & member functions
 .
 .
 .
}object_list;

Here, object list is optional. The access specifier can be public, private, or protect-
ed. By default, the access specifier is private. Private data and functions can be accessed
only by other member functions of the same class, whereas public data and functions are
accessible by other parts of the program. The protected access specifier is needed only
when a class is inherited. A class declaration combines data and code together in a single
package. This binding of code and data, called encapsulation, keeps both safe from out-
side interference and misuse.

Variables that are elements of a class are called data members or member variables
while functions that are declared within a class are called member functions. Member
functions can access all elements of the class of which they are a part. Data hiding is
achieved by making the data members private.

Note that the member functions listed in class Time in Program Code A.9 are function
prototypes. A class definition generally contains only the prototypes of its member func-
tions. The definitions for the member functions can be defined elsewhere.

When a member function is defined outside the class declaration, then the definition
must include the class name because there may be two or more classes that have member
functions with the same name. The definition of a member function is similar to the con-
ventional function definition with a few differences.

Scope Resolution Operator (::)

The (::) operator is called the scope resolution operator, and it serves a purpose similar to
that of the dot operator. Both the dot operator and the scope resolution operator are used to
indicate which function is a member of which class. However, the scope resolution opera-
tor is used with a class name, whereas the dot operator is used with an object, that is, with
a class variable. The scope resolution operator is denoted by two colons with no space
between them. The class name preceding the scope resolution operator is often called type
qualifier because it specifies (qualifies) the function name to one particular type.

Return type class_name :: functionname (parameter list)
{
 function body statemen
}

OVerView Of c++ PrOgramming 769

DSUC App01 V6 July 30, 2012 11:41 AM Page 769

PROGRAM CODE A.10

/* A sample C++ program with member function defi nition

outside the class */

class Time

{

 int Hour;

 int Minute;

 int Second;

 Time();

 void SetTime(int, int, int);

 void DisplayTime();

};

void Time :: SetTime()

{

 cin >> Hour;

 cin >> Minute;

 cin >> Second;

}

void Time :: DisplayTime()

{

 cout << Hour << ":" << Minute << ":" << Second;

}

In Program Code A.10, the member function Set Time() is defi ned. Note that here
the data members Hour, Minute, and Second are used without providing the object and
the dot operator. The defi nition of SetTime() will apply to all objects of type Time, but
at this point, since the names of the objects are not known, they are not given.

Let us consider following piece of code:
The member function is called as

Time Now;
Now.SetTime()

With the input as 10 10 10, the time would be set as 10:10:10.
All the member names in a function defi nition are specialized to the name of the call-

ing class. So, this function call is equivalent to the following (provided all three member
variables are public):

void main()
{
 Time Now;
 cin >> Now·Hour >> Now·Minute >> Now·Second;
 Now.DisplayTime();
}

770 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 770

A.4.2 Class Members: Public and Private

Consider Prog ram Code A.11. Here, the class defi nition Time has one new feature that is
designed to ensure that no programmer who uses this class can ever directly refer to any
of its member variables. Note that the class contains the keyword private. All the mem-
ber variable names that are listed after this line are private members, that is, they cannot
be accessed directly in the program except within the defi nition of a member function. If
you try to access any of these members in the main() function of the program, the com-
piler will generate an error message.

PROGRAM CODE A.11

// A sample C++ program with Time as a class

class Time

{

 private:

 int Hour;

 int Minute;

 int Second;

 public:

 Time();

 void SetTime(int, int, int);

 void DisplayTime();

};

Time Birth_time;

Birth_Time·Hour = 6; // illegal

Birth_Time·Second = 45; // illegal

BirthTime.SetTime(10, 10, 10); // legal

Any reference to these private variables (or member functions) is illegal except in
the defi nition of member functions. Let us consider another class defi nition as shown in
Program Code A.12.

PROGRAM CODE A.12

// A sample C++ program with Time as a class

class Time

{

 private:

 int Hour, Minute, Second;

 void SetTime(int, int, int);

 public:

 Time();

OVerView Of c++ PrOgramming 771

DSUC App01 V6 July 30, 2012 11:41 AM Page 771

 void UpdateTime();

};

Time Birth_time;

BirthTime.SetTime(10, 10, 10); // illegal as SetTime

is private

Note that in this class defi nition, the function SetTime() is declared a private func-
tion of the class Time. It is also possible to make a member function private. Similar to a
private member variable, a private member function can be used in the defi nition of any
other member function, but not elsewhere, such as the main() function.

void Time :: UpdateTime()
{
 SetTime(2, 30, 45); // valid
}
void main()
{
 Time BirthTime;
 BirthTime·SetTime(2, 30, 45); // illegal
 BirthTime·UpdateTime(); // valid
}

Th e keyword public is used to indicate public members the same way that pri-
vate is used to indicate private members. For example, consider the following class
defi nition:

class SampleClass
{
 public:
 void AAA();
 int aa;
 private:
 void BBB()
 char bb;
 public:
 double CCC();
 double cc;
};

A public member can be used in the main body of a program or in the defi nition of
any function, even non-member functions. We can have any number of occurrences of the
labels public and private in a class defi nition.

Every time a label public: is encountered, the list of members changes from private
to public.

Every time a label private: is encountered, the list of members following the label
becomes private members.

772 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 772

Let us consider the following class Date.

class Date
{
 int Day, Month, Year;
 void DisplayDate();
 void SetDate();
};

All the members in this class are by default private. Hence, the statements in the fol-
lowing function main() are illegal.

Date Today;
Today·DisplayDate(); // illegal
Today·Month = 3; // illegal

By default the members of a class are private, and hence it is a good practice to always
explicitly label each group of members as either public or private. The concept of public
and private members can be better understood by the pictorial representation in Fig. A.1

Fig. A.1  Access specifier

Class

Private area

Data members

Function members

Public area

Data members

Function members

Way to access
from outside

A.4.3 Objects

Once a class is defined, an object, which is just a variable of the class type, can be declared
in the same manner as variables of any other type. Object is an instance of a class. It has
physical existence.

Time BirthTime;
Date Today, BirthDay;

These declarations create a variable BirthTime of type Time and two variables Today
and BirthDay of type Date. These class variables are called objects in C++. No storage
space is allocated when a class is declared. The storage space is allocated only when an
object of the class is declared.

OVerView Of c++ PrOgramming 773

DSUC App01 V6 July 30, 2012 11:41 AM Page 773

A.5 sTATIC ClAss MeMbers

Both functions and data members of a class ca n be made static. Let us discuss each in detail.

A.5.1 static data Members

When a member variable’s declaration is preceded with a keyword static, the compiler
understands that only one copy of that variable exists and all objects of the class share that
variable. The characteristics of a static variable are listed as follows:

1. In the case of static variables, only one copy of that variable exists and all objects of
the class share that variable. Unlike regular data members, individual copies of a static
member variable are not made for each object.

2. All static variables are initialized to zero when the fi rst object is created.
3. When a static data member is declared within a class, storage is not allocated for it. It

needs to be defi ned globally outside the class, and only then is memory allocated to it
for storage.

4. Although a static variable is visible only within the class, its lifetime spans the entire
program.

Consider Program Code A.13 with a class for a website with a static member variable that
keeps track of the number of visitors for the site along with other member

PROGRAM CODE A.13

// Demonstrating static variables

cla ss Website

{

 private:

 ...

 public:

 Website() // constructor

 {

 No_of_Visitors++;

 }

 static int No_of_Visitors;

};

// defi ne static variables

int Website :: No_of_Visitors;

void main()

{

 Website V1, V2;

 ...

}

774 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 774

A static variable can be accessed either by using an object or by using the class name
and the scope resolution operator. By using static member variables, the need for global
variables can be eliminated. Since static variables are associated with the class itself rather
than the class object, they are also called class variables.

A.5.2 static Member Functions

Similar to a member variable, member functions can also be declared as static. There are
some restrictions on member functions to be static, which are listed as follows:

1. They can access static members of the same class.
2. They do not have ‘this’ pointer.
3. There cannot be a static and a non-static version of the same function.
4. They can be called using a class name as class_name :: function_name.

Program Code A.14 demonstrates the use of a static membe r function. For a particular compa-
ny, the record of all its salesmen is maintained as name, city, total sale amount, etc. The com-
pany has branches in Delhi, Cochin, Akola, and Nashik. The program reads information about
its N salesmen and computes the sales amount in each city and also the total sales amount.

PROGRAM CODE A.14

// Sample program with static member fun ction

#include<iostream.h>

#include<conio.h>

#include<string.h>

class sale

{

 static int Delhi_Sale, Cochin_Sale, Akola_Sale,

Nashik_Sale;

 static Total_Sale_Amount;

 char name[10], city[10];

 public:

 void get_data()

 {

 cout << "\nEnter name, city, & sale amount

for a salesman:";

 cin >> name;

 cin >> city;

 cin >> sale_amt;

 }

 void display_data()

 {

 cout << "\n" << name << city << sale_amt;

 }

OVerView Of c++ PrOgramming 775

DSUC App01 V6 July 30, 2012 11:41 AM Page 775

 void add_saleamt()

 {

 int x;

 x = strcmp(city, "Delhi");

 if(x == 0)

 Delhi_Sale = Delhi_Sale + sale_amt;

 x = strcmp(city, "Nashik");

 if(x == 0)

 Nashik_Sale = Nashik_Sale + sale_amt;

 x = strcmp(city, "Cochin");

 if(x == 0)

 Cochin _Sale = Cochin_Sale + sale_ amt;

 x = strcmp(city, "Akola");

 if(x == 0)

 Akola_Sale = Akola_Sale + sale_amt;

 Total_Sale_Amount = Akola_Sale + Cochin_Sale

+ Delhi_Sale + Nashik_Sale;

 }

 // static member function

 static void display_saleamt()

 {

 cout << "\n Total sale amount in Akola = " <<

Akola_Sale;

 cout << "\n Total sale amount in Delhi = " <<

Delhi_Sale;

 cout << "\n Total sale amount in Cochin = "

<< Cochin_Sale;

 cout << "\n Total sale amount in Nashik = "

<< Nashik_Sale;

 cout << "\n Total sale amount of a company in

all cities =";

 cout << Total_Sale_Amount;

 }

}; // end of class

//defi ne static variables

int sale :: Delhi_Sale, Cochin_Sale, Akola_Sale,

Nashik_Sale;

int SALE :: Total_Sale_Amount;

void main()

{

 ...

 sale :: display_saleamt();

} // end of main

776 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 776

Note that as static variables are created before any object of its class, the fundamental
use of static member functions is to initialize private static data before any object is actu-
ally created.

A.6 ObJeCT As FunCTIOn PArAMeTer

Similar to other parameters, objects may be passed to functions. They may be passed by
value or by reference. The following sections explain this concept in more detail.

A.6.1 Passing Objects to Functions

If functions are invoked according to call-by-value then the function arguments are copied
to the stack through copy constructors. For larger objects, this affects the performance.
Hence objects are normally passed by reference. This avoids costly duplication and al-
lows other functions to use the same object as the calling function.

A.6.2 returning Objects from Functions

A function may return an object to the caller. Program Code A.15 adds two complex
numbers.

PROGRAM CODE A.15

// Adding two complex numbers

#include<iostre am.h>

#include<conio.h>

class complex

{

 int Real, Imag;

 public:

 void GetNo(int a, int b)

 {

 Real = a;

 Imag = b;

 }

 void GetNo()

 {

 cout << "\n Please Input Real = " << Real;

 cout << "\n Please Input Imaginary = " <<

Imag;

 }

 complex AddNo(complex.C2)

 {

 complex C3;

OVerView Of c++ PrOgramming 777

DSUC App01 V6 July 30, 2012 11:41 AM Page 777

 C3.Real = Real + C2.Real;

 C3.Imag = Imag + C2.Imag;

 return(C3);

 }

 void DisplayNo()

 {

 cout << Real << "+i" << Imag;

 cout << endl;

 }

}; // end of class

void main()

{

 complex C1, C2, C3;

 C1.GetNo(10, 20);

 C2.GetNo(30, 40);

 C3 = Cl.AddNo(C2);

 C1.DisplayNo();

 C2.DisplayNo();

 cout << "\n Sum of these two numbers is ";

 C3.DisplayNo();

}

Output:

10 + i20

30 + i40

Sum of these two numbers is 40 + i60

A.6.3 Arrays of Objects

Similar to any other variable, an array of objects can be created. Program Code A.16
demonstrates the use of array of objects.

PROGRAM CODE A.16

// Array of objects

#include<iostream.h>

class sa mple

{

 int a;

 public:

 void GetA()

778 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 778

 {

 cout << "\n Enter a = ";

 cin >> a;

 }

 void PutA()

 {

 cout << "\t" << a;

 }

}; end of class

void main()

{

 sample S[5];

 int i;

 for(i = 0; i < 5; i++)

 {

 S[i].GetA();

 }

 cout << "\n You entered the following values: ";

 for(i = 0; i < 5; i++)

 S[i].PutA();

}

Output:

Enter a = 1

Enter a = 2

Enter a = 3

Enter a = 4

Enter a = 5

You entered the fol lowing value s: 1 2 3 4 5

A.6.4 Pointers to Objects

Public members of a class can be accessed through the dot (.) operator. Members of a
class can be accessed through a pointer to the class. When accessing members of a class
using a pointer to the object, we use the arrow (Æ) operator instead of the dot (.) operator
as in Program Code A.17.

PROGRAM CODE A.17

// Pointer to class

#include<iostream.h>

class student

OVerView Of c++ PrOgramming 779

DSUC App01 V6 July 30, 2012 11:41 AM Page 779

{

 int RollNo;

 char Name[];

 public:

 void Getdata()

 {

 Cout << "\n Enter RollNo = ";

 cin >> RollNo;

 cout << "\n Enter Name = ";

 cin >> Name;

 }

 void Putdata()

 {

 cout << "\nRollNo = ";

 cout << RollNo;

 cout << "\n Name = ";

 cout << Name;

 }

};

void main()

{

 student S1, *p;

 P = &S1;

 p->Getdata(); // This is the same as s1.Getdata()

 p->Putdata(); // This is the same as s1.Putdata()

}

A.7 ‘THIs’ POInTer

When a member function is called, it is automatically passed an implicit argument that is
a pointer to the object which called the function. Such a pointer is called the ‘this’ pointer.
Program Code A.18 uses this pointer.

PROGRAM CODE A.18

// Use of ‘this’ pointer

#include<iostream.h>

class sample

{

 int a;

 fl oat b;

 char c;

780 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 780

 public:

 void Getdata()

 {

 cout << "\n Enter integer value = ";

 cin >> a;

 cout << "\n Enter fl oat value = ";

 cin >> b;

 cout << "\n Enter a character = ";

 cin >> c;

 }

 void Putdata()

 {

 cout << "\n Integer = " << a;

 cout << "\n Float = " << b;

 cout << "\n Character = " << c;

 }

 void main()

 {

 sample S1;

 S1.Getdata();

 cout << "You have entered the following

data:" << endl;

 S 1.Displaydata();

 }

}

/* Here, 'this' pointer points to the object 'S1';

'thisÆa' refers to object S1's copy of 'a'. So the

functions get_data() and display_data() can be written

as follows */

void Getdata1()

{

 cout << "Enter int, fl oat, char values = ";

 cin >> this->a;

 cin >> this->b;

 cin >> this->c;

}

void Displaydata2()

{

 cout << "Integer =" << this->a;

 cout << "Float = " << this->b;

OVerView Of c++ PrOgramming 781

DSUC App01 V6 July 30, 2012 11:41 AM Page 781

 cout << "Char = " << this->c;

}

Output:

Enter integer value = 5

Enter fl oat value = 7.8

Enter a character = g

You have entered the following data:

Integer = 5

Float = 7.8;

Character = g

A.8 FunCTIOn OVerlOAdInG

Function overloading is the process of using the same name for two or more functions.
However, each function should have either different types or different numbers of param-
eters. Through this difference, the compiler knows which function to call in any given
situation. Program Code A.19 illustrates the use of overloaded functions.

PROGRAM CODE A.19

// To add two integers or two fl oat numbers

void main()

{

 int iN um1 = 5, iNum2 = 6;

 fl oat fNum1 = 5.5, fNum2 = 6.7;

 void AddNo(int, int);

 void AddNo(fl oat, fl oat);

 AddNo(iNum1, iNum2); // calls version 1

 AddNo(fNum1, fNum2); // calls version 2

}

void AddNo(int i1, int i2) // version 1

{

 cout << "Addition of integers = " << (i1 + i2);

}

void AddNo(fl oat f1, fl oat f2) // version2

{

 cout << "Addition of fl oat nos = " << (f1 + f2);

}

782 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 782

A.8.1 Types of Polymorphism

Polymorphism is one of the important features of OOP. There are two types of
polymorphism—compile-time and run-time. Compile-time polymorphism is achieved
using function overloading and operator overloading, whereas run-time polymorphism is
achieved using virtual functions.

A.9 COnsTruCTOrs And desTruCTOrs

Let us discuss about constructor, destructor, and overloading.

A.9.1 Constructors

Constructors are methods used to initialize an object during definition. Consider the
following class definition:

class Car
{
 int mirror;
 int colour;
 public:
 Car() // constructor
 {
 mirror = 0; // no mirrors
 colour = 0; // colour 0 means a white colour car
 cout << "A car is created\n";
 }
};

Here, the function Car() is a constructor.
Constructors have the same name as that of the class. They have no return value. How-

ever, similar to other functions, they can take arguments. For example, we may want to
initialize a car to coordinates other than the default (0, 0). We, therefore, define a second
constructor taking two integer arguments within the class as follows:

class Car
{
 int mirror, colour;
 public:
 Car()
 {
 mirror = colour = 0;
 }
 Car(const int M, const int C) // Parameterized constructor
 {
 mirror = M;
 colour = C;
 }
 void setMirror(const int M);
 void setColour(const int C);
 int getMirror(){return mirror;}

OVerView Of c++ PrOgramming 783

DSUC App01 V6 July 30, 2012 11:41 AM Page 783

 int getColour(){return colour;}
};

Thus, constructors can be overloaded in this manner. Constructors are implicitly called
when we define objects of their classes:

Point WhiteCar; calls Car :: Car()
Point RedCar(2, 3); calls Car :: Car(const int, const int)

To create a Point from another Point by copying the properties of one object to a newly
created one, the copy process needs to be taken care of. Let us consider the class Point
in the following code. In the class Point, we add a third constructor that takes care of
copying values from one object to the newly created one.

class Point
{
 int _x, _y;
 public:
 Point()
 {
 _x = _y = 0;
 }
 Point(const int x, const int y)
 {
 _x = x;
 _y = y;
 }
 Point(const Point & from) // Copy constructor
 {
 _x = from._x;
 _y = from._y;
 }
 void setX(const int val);
 void setY(const int val);
 int getX(){return _x;}
 int getY(){return _y;}
};

The third constructor takes a constant reference to an object of class Point as an argu-
ment and assigns _x and _y, the corresponding values of the provided object.

This type of constructor is important and is known as the copy constructor. It is highly
recommended that each class includes such a constructor, even if it is as simple as the one
in the example. The copy constructor is called in the following cases:

Point Apoint; calls Point :: Point()
Point Bpoint(apoint); calls Point :: Point(const Point &)
Point Cpoint = apoint; calls Point :: Point(const Point &)

The syntax for writing a copy constructor is as follows:

classname(const classname & 0)
{
 ...
}

784 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 784

Here, 0 is a reference to the object, which is used to initialize another object. A construc-
tor is called once for global objects and for static objects. For local objects, the constructor
is called each time the object declaration is encountered. With the help of constructors, one
of the requirements of ADT implementation, namely initialization at definition time, is ful-
filled. We still need a mechanism that automatically destroys an object when it gets invalid
(for example, because of leaving its scope). Therefore, destructors are defined.

A.9.2 destructors

Consider a class List for a linked list. The elements of the list are dynamically appended
and removed. The constructor helps in creating an initial empty list. However, when we
leave the scope of the definition of a list object, we must ensure that the allocated memory
is released. We, therefore, define a special method called destructor, which is called once
for each object at its destruction time.

Destruction of an object takes place when the object leaves its scope of definition or
is explicitly destroyed. The latter happens when we dynamically allocate an object and
release it when it is no longer needed. Destructors are declared similar to constructors.
Thus, they also use the class name, but are prefixed by a tilde (~).

class Point
{
 int _x, _y;
 public:
 Point()
 {
 _x = _y = 0;
 }
 Point(const int x, const int y)
 {
 _x = xval;
 _y = yval;
 }
 Point(const Point & from)
 {
 _x = from_x;
 _y = from_y;
 }
 // destructor definition
 ~Point(){/* Nothing to do!*/}
 void setX(const int val);
 void setY(const int val);
 int getX(){return _x;}
 int getY(){return _y;}
}; // end of class declaration

void main(void)
{
 point appoint; // constructor point :: point()

OVerView Of c++ PrOgramming 785

DSUC App01 V6 July 30, 2012 11:41 AM Page 785

 : // called automatically.
 :
}; // here destructor for appoint is called automatically

Destructors have no arguments, and it is even improper to defi ne one. As they are implic-
itly called at destruction time, a user has no need to specify actual arguments. Destructors
are the complements of constructors. Local objects are created when the respective block
is entered, and destroyed when the block is exited from. Hence, the object’s respective
constructor is called on block entry and the destructor is called on the block exit. Global
objects are destroyed when the program terminates. So, their destructor is called auto-
matically on program termination.

A.9.3 Constructor with default Arguments

C++ allows a function to assign a parameter a default value when no argument corre-
sponding to that parameter is specifi ed in a call to that function. Program Code A.20
shows a constructor with parameters.

PROGRAM CODE A.20

// Constructor with parameters

class Initialize

{

 int A;

 public:

 void Initialize(int A = 10) // constructor

 {

 cout << A;

 }

 main()

 {

 Initialize(); // displays default 10

 Initialize(5); // displays specifi ed 5

}

Output:

10

5

All parameters that take default values must appear to the right of those that do not, as
follows:

Initialize(int A = 10, int B); // incorrect
Initialize(int B, int A = 10); // correct

Program Code A.21 is an example to fi nd the volume of a cube.

786 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 786

PROGRAM CODE A.21

// To fi nd volume of a cube

#include<iostream.h>

class cube

{

 int x, y , z;

 public:

 cube(int i = 0, int j = 0, int k = 0)

 {

 x = i;

 y = j;

 z = k;

 }

 int volume()

 {

 int volume;

 volume = x * y * z;

 return volume;

 }

}

int main()

{

 cube A(2, 3, 4); B;

 cout << A.Volume() << endl;

 cout << B.Volume() << endl;

 return 0;

}

Output:

24

0

Writing a constructor with default parameters is advantageous. For the class Cube if,
by default, the constructor is not written, then two constructors are to be defi ned: one with
parameters for object A and other without parameters for object B.

A.10 InHerITAnCe

Inheritance is one of the key features of object-oriented languages. Reusability is achieved
through inheritance wherein instead of creating a new class that is similar to the already
existing one, we can reuse the existing one. The mechanism of deriving a new class from
an existing one is called inheritance.

OVerView Of c++ PrOgramming 787

DSUC App01 V6 July 30, 2012 11:41 AM Page 787

We can define a general class that has common features related to a set of items. This
class is called superclass or base class. A derived class inherits some or all the features of
the base class. The superclass can be inherited by other classes, which can add their own
unique features to it. These classes are called subclass or derived class. The syntax for a
derived class is given as follows:

class derived class name: access right Base class name
{
 ...
}

The phrase ‘inherits from’ is replaced by a colon in class definition. As an example, let us
design a class for 3D points using the already existing class Point. Access right is also
referred as visibility mode. The visibility mode is optional and if present may be either
public or private. Visibility mode specifies whether the characteristics of the base class
are privately or publicly derived.

class Point3D:public Point
{
 int _z;
 public:
 Point3D()
 {
 setX(0);
 setY(0);
 _z = 0;
 }
 Point3D(const int x, const int y, const int z)
 {
 setX(x);
 setY(y);
 _z = z;
 }
 ~Point3D(){/* Nothing to do */}
 int getZ(){return _z;}
 void setZ(const int val){_z = val;}
};

A.10.1 Types of Inheritance

In the definition, the keyword public is used in the first line of the class definition as its
signature. This is necessary because C++ distinguishes two types of inheritance, public
and private. By default, classes are privately derived from each other. We need to explic-
itly instruct the compiler to use public inheritance.

The type of inheritance influences the access rights to the elements of the base
class. Using public inheritance, everything that is declared private in a base class
remains private in the subclass. Similarly, everything that is public remains pub-
lic. When using private inheritance, the features are quite different as shown in
Table A.1.

788 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 788

Table A.1 Access rights and inheritance

Access rights of
base class
elements

Type of inheritance for sub/derived class

Private Public Protected
Private Cannot be accessed Cannot be accessed Cannot be accessed

Protected Private Protected Protected

Public Private Public Protected

In Table A.1, the leftmost column lists the possible access rights for the elements of a
class. It also includes a third type, protected. Protected access right is used for elements
that are directly usable in subclasses but are not accessible from outside. In other words, we
can say that the access rights of protected elements lie between private and public elements
such that they can be used within the class hierarchy rooted by the corresponding class.

The first, second, and third columns show the resulting access rights of the elements
of a base class when the subclass is inherited using private, public, and protected access,
respectively.

A.10.2 Multiple Inheritance

C++ allows a class to be derived from more than one base class, as already mentioned
briefly. One can easily derive from more than one class by specifying the base classes in
a comma-separated list, as follows.

class Son:public Mother, public Father
{
 ...
 public:
 Father(...):
 Mother(...),
 Father(...)
 {
 ...
 }
 ~Son(){...}
 ...
};

A.11 AbsTrACT ClAsses

An abstract class is one from which no objects are created. It is designed and used
merely as a base class. Abstract classes are defined similar to ordinary classes. Howev-
er, a few of its member functions are designated to be necessarily defined by subclasses.
We just mention their signature including their return type, name, and parameters, but
indicating nothing in function body. This is expressed by appending ‘= 0’ after the
method signatures.

OVerView Of c++ PrOgramming 789

DSUC App01 V6 July 30, 2012 11:41 AM Page 789

class Baseclass
{
 ...
 public:
 ...
 virtual void MemberFunction() = 0; // Pure virtual function
};

This class defi nition would force every derived class from which objects should be cre-
ated to defi ne a method MemberFunction(). These method declarations are also called
pure methods.

A.11.1 Pure Virtual Functions

A pure virtual function is a virtual function that has no defi nition within the base class.
This is illustrated in Program Code A.22.

PROGRAM CODE A.22

// Demonstrating inheritance

class BaseClass

{

 public:

 virtual void VirFunc()

 {

 cout << "From Base class virtual f unction

named VirFunc()\n";

 }

};

class DerivedClass1 : public BaseClass

{

 public:

 void VirFunc()

 {

 cout << "From Derived class1’s virtual

function named VirFunc()\n";

 }

};

class DerivedClass2 : public DerivedC lass1

{

}

790 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 790

void main()

{

 BaseClass *p, b;

 DerivedClass1 d1;

 DerivedClass2 d2;

 p = &b;

 bÆVirFunc();

 // access B ase class’s virtual function

 p = &d1;

 pÆVirFunc();

 // access derived class1’s virtual function

 p = &d2;

 pÆVirFunc();

 // As derived class2 does not have VirFunc()

} // It will therefore access the derived class1’s

 //VirFunc()

Output:

From Base class virtual function named VirFunc()

From Derived class1’s virtual function named VirFunc()

From Derived class1’s virtual function named V irFunc()

As observed in Program Code A.22, when a virtual function is not redefi ned by a derived
class, the version defi ned in the base class will be used. In many situations, there can be
no meaningful defi nition of a virtual function in a base class or all derived classes would
override a virtual function.

To handle these two cases, C++ supports pure virtual functions. A pure virtual function
is one that has no defi nition with in the base class.

virtual type func_name(parameter_list) = 0;

When a virtual function is made pure, any derived class must provide its own defi nition;
otherwise it results in a compile-time error. Program Code A.23 illustrates pure virtual
functions.

PROGRAM CODE A.23

// To draw different shapes

class shape

{

 public:

 virtual void Draw() = 0;

} ;

class line:public shape

OVerView Of c++ PrOgramming 791

DSUC App01 V6 July 30, 2012 11:41 AM Page 791

{

 int x1, y1, x2, y2;

 public:

 void Draw()

 {

 x1 = 10;

 y1 = 10;

 x2 = 100;

 y2 = 100;

 line (x1, y1, x2, y2);

 }

};

class circle:public shape

{

 int x1, y1, r;

 public:

 void Draw();

 {

 x1 = 100;

 y1 = 100;

 r = 50;

 circle(x1, y1, r);

 }

};

class rectangle:public shape

{

 int x1, y1, x2, y2;

 public:

 void Draw();

 {

 x1 = 100;

 y1 = 100;

 x2 = 200;

 y2 = 200;

 rectangle(x1, y1, x2, y2);

 }

};

void main()

{

 shape *p;

792 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 792

 line L;

 circle C;

 rectangle R;

 int gd = detect, gm;

 initgraph(&gd, &gm, " ");

 p = &L;

 pÆDraw(); // draws a line

 p = &C;

 pÆDraw(); // draws a circle

 p = &R;

 pÆDraw(); // draws a rectangle

}

In Program Code A.23, since each derived class should implement its own Draw(), it
should be pur e. Pure methods must also be declared virtual because we only want to use
objects from derived classes. Classes that defi ne pure methods are called abstract classes.

A.12 OPerATOr OVerlOAdInG

The mechanism of giving special meaning to an operator for the data type is calle d operator
overloading. It helps to assign additional tasks to an operator and specify its meaning to
a class to which the operator is applied. The general syntax for operator overloading is
as follows:

return type class name::operator op(arguments list)

{
…
};

Here, op is the operator being overloaded, which is preceded by the keyword operator,
and operator op is the function name.

Let us consider the ADT for complex numbers, Complex, as follows:

class Complex
{
 double Real, Imag;
 public:
 Complex()
 {
 Real = 0.0;
 Imag = 0.0
 }
 Complex(const double real, const double imag)
 {
 Real = real;

OVerView Of c++ PrOgramming 793

DSUC App01 V6 July 30, 2012 11:41 AM Page 793

 Imag = imag
 }
 Complex Add(const Complex op);
 Complex Mul(const Complex op);
 ...
};

We can now add two complex numbers by making a call to the function Add() as

 Complex A(1.0, 2.0), B(3.5, 1.2), C;
 C= A.Add(B);

Here, we add two complex numbers A and B and assign the sum to C. This expres-
sion can also be written similar to integer or real number addition, that is, C = A + B.
C++ allows this expression also. In C++, we can overload almost all operators for
the newly created types. For example, we could define a ‘+’ operator for the class
Complex as

class Complex
{
 ...
 public:
 ...
 Complex operator + (const Complex &op) // member of a class
 {
 double real = Real + op.Real;
 imag = Imag + op.Imag;
 return(Complex(real, imag));
 }
 ...
};

In this case, we have made the operator ‘+’ as member of the class Complex. An ex-
pression of the form C = A + B is now allowed. Here, this statement is translated into

C = A.operator + (B);

Thus, the binary operator ‘+’ needs only one argument. The first argument is implicitly
provided by the invoking object (in this case A). However, an operator call can also be
interpreted as a usual function call, as in

 C = operator + (A, B);

In this case, the overloaded operator is not a member of a class. Rather, it is defined out-
side as a normal overloaded function. For example, we could define ‘+’ operator as follows:

class Complex
{
 ...
 public:
 ...
 double real(){return Real;}

794 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 794

 double imag(){return Imag;}
};

Complex operator + (Complex &op1, Complex &op2)
{
 double real = op1.Real() + op2.Real();
 imag = op1.Imag() + op2.Imag();
 return(Complex(real, imag));
}

In this case, we must define access methods for the real and imaginary parts because
the operator is defined outside the scope of the class. However, the operator is so closely
related to the class that it would make sense to allow the operator to access the private
members. This can be done by declaring it to be a friend of the class Complex.

A.12.1 Comparing Function Overriding and Overloading

Let us compare function overriding with overloading. In function overriding, the proto-
type for a redefined virtual function must exactly match the prototype specified in the
base class, whereas in function overloading, the prototypes must differ either in the num-
ber or type of parameters.

In function overriding, if we change the prototype while redefining a virtual function,
then the function will be considered overloaded by the C++ compiler, and its virtual
nature will be lost.

Virtual functions must be non-static members of the classes that they are a part of.
Virtual functions cannot be friends. Constructor functions cannot be virtual, but de-

structors can be virtual.

A.13 FrIend FunCTIOn

Friend functions can be used instead of member functions for overloading binary opera-
tors. We can define functions or classes to be friends of a class to allow them direct access
to its private data members. For example, in Section A.12, we would like to have the non-
member function for the ‘+’ operator to have access to the private data members Real and
Imag of the class Complex. Therefore, we declare the operator ‘+’ to be a friend of class
Complex.

class Complex
{
 ...
 public:
 ...
 friend Complex operator +
 {
 const Complex &,

OVerView Of c++ PrOgramming 795

DSUC App01 V6 July 30, 2012 11:41 AM Page 795

 const Complex &
 };
};

Complex operator + (const Complex &op1, const Complex &op2)
 {
 double Real = op1.Real + op2.Real;
 Imag = op1.Imag + op2.Imag;
 return(Complex(real, imag));
}

The only change in using friend functions for operator overloading is that they do not
have ‘this’ pointer. They cannot access the class members directly. They access class
members using objects that are passed as arguments to them. They can be declared in the
public or private sections of a class without any consequence.

A.14 GenerIC PrOGrAMMInG: TeMPlATes

A stack of integers is often defined as follows:

class Intstack
{
 int Top;
 int Data[20];
 public:
 Intstack()
 {
 Top = −1;
 }
 void Push(int);
 int TopElement();
 Pop();
} S1, S2;

This class can be used as a blue print for creating objects, which are stacks of integers
such as S1 and S2. The class has private data members, such as Top and Data, and mem-
ber functions to operate on. When we need to create a stack of real numbers, we need to
define a separate class as follows:

class Floatstack
{
 int Top;
 float Data[20];
 public:
 Floatstack()
 {
 Top = −1;
 }

796 data structures using c++

DSUC App01 V6 July 30, 2012 11:41 AM Page 796

 void Push(float);
 float TopElement();
 Pop();
} S3, S4;

Here, S3 and S4 are stacks for storing real numbers. To avoid defining two similar stacks,
which vary only in the type of data being processed, templates are used. When we need
to perform the same operations on different data types, we can use function templates.
Template is the most powerful feature of C++ that enables software reuse. Templates help
in defining generic functions and classes. They allow the user to specify the type of data
as a parameter.

Using templates, the two classes Intstack and Floatstack can be defined as a single
class as follows:

template <class T>
class stack
{
 int Top;
 T Data[20];
 public:
 stack()
 {
 Top = −1;
 }
 void Push(T);
 T TopElement();
 Pop();
};

stack <int> S1, S2; // integer stacks
stack <float> S3, S4; // float stacks

ACKNOWLEDGEMENTS

I would like to thank many people who encouraged and helped me in various ways throughout this
project, namely, my family, my didi Megha and Arvindji jaji, my colleagues, friends, and students.
First and foremost I would like to acknowledge Dr Gajanan Kharate, Dr Shirish Sane, Vaishali Pawar,

Vaishali Tidke, Seema Gondhalekar, Swati Bhavsar, Alpana Borse, Snehal Umare, and all my col-
leagues. Special thanks to Mr Mahesh Sanghvi for his untiring efforts in making this project successful.
This book would not have been what it is, without him.

I received constant support and motivation from honourable Balasahebwagh, Narendrabhau, Kishorbhau,
Laxmanbhau, and Kunal Darabe. I thank them for all the inspiration.

My husband, Hemant, encouraged me even before I started writing this book. His contagious en-
thusiasm and generous spirit and also the ever-smiling faces of my children Abolee and Saurabh made
working on this project a pleasant experience. Finally, I would like to thank my parents, sisters, brother,
and all other family members for making the experience of writing this book memorable.

Last but not the least, my acknowledgements would remain incomplete if I do not thank the editorial
team of Oxford University Press, India, who supported me throughout the development of this manu-
script.

Dr Varsha H. Patil

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

AA tree 634 635 636

Abstract 6 7 8 21

 188 207 296 678

 686

Abstract data type (ADT) 1 3 7 21

 30 36 89 95

 99 169 297 373

 552 560 612 677–679

 683 690

Adjacency list 375 378 379–381 383

 384–388 391 392 415

Adjacency matrix 375 376–378 380 384

 385 387 391 412

 415

Adjacency multilist 375 383 384 415

ADT 1 3 7 21

 30 36 89 95

 99 169 297 373

 552 560 612 677

 679 683 690

ADT array 37

Algorithm 2 3 4 11–32

 64 70 93 256

 289 296 306 312

 322 361 371 398

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Algorithm (Cont.)

 408 421 573 626

 634 642 655 677

 704

Algorithmics 13

Algorithmic strategies 714 715 716

Analysis of algorithms 13 20 22 30

 756

Array 5 9 10 33–37

 46 203 243–245 249

 298 299 399 421

 448 467 481 551

 639 688 698 704

 base 35 38 39 49

 53 142 161 297

 data type of an array 35

 direct access 9 11 30 34–36

 38 89 91 95

 197 199 251 304

 325 385 421 638

 640 641 655 663

 683

 index 34–36 59 63 89

 102 163 164 170

 180 300 422 436

 528 589

 range of index 36

 size of array 35 41

 value 34 35 37 38

 69 84 89

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Asymptotic notations 715 756

 big O 25 26 715 758

 omega 715 716

 theta 715

Atomic data 4

AVL tree 280 500 509 510

 514 515 517–520 522

 523 593 631 635

B

Biconnected components 407 416

 merge–find set 408

 union–find data structure 408

Binary search 16 20 154 159

 165 280 325 326

 361 376 424–428 475

 718

Binary search tree (BST) 280 325 326 333

 340 367 479 481

 552 556 593 598

Binary tree 280 290 292–308 539

 556 567 593 723

Binary tree traversal 304

 inorder 280 307 312 315

 318 332 344 481

 postorder 308 313 315 318

 352 367

 preorder 306 307 315 318

 391

Binomial heap 579–583

Binomial tree 579–582

Boyer–Moore algorithm 743 747 748

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Breadth-first search (BFS) 385 386 416

Breadth-first traversal 309 317 319 385

 585

Brute-force approach 743 746 747

B+ tree 593 624–628 637

B-tree 589 594 597 598

 600 624 631

Bubble sort 433 437–443 447 472

 475

Bucket sort 438 440 461 463

 464

C

Cellular partition 672

Circular linked list 216 226 227 237–241

 276

 non-circular or grounded list 227

 two-way list 228

Circular queue 168 176 177 180

 186 192 256

Class 5 292 361 483

 643 677 682 691

 704 706 711

Collision resolution strategies 527 535

 chaining 535 545 546 548

 550 657

 double hashing 535 541 542 544

 linear probing 535–540 542–545 548–550

 linear probing without replacement 538

 linear probing with replacement 537

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Collision resolution strategies (Cont.)

 open addressing 535 536 542 544

 548 549

 open addressing using double hash function 545

 open addressing using linear probing 543 544

 open addressing using quadratic

 probing 543 544

 quadratic probing 535 539–545

 rehashing 531 536 544–549 550

Column-major representation 48 50–52 91

Compiler 3 24 30 36

 93 110 112 113

 162 199 206 308

 436 479 480 523

 527 684 691 710

Complexity of algorithms 13 22 23

Composite data 4 5 21 34

Computer 1–9 11 13 23

 26 38 58 91

 96 110 141 183

 224 262 367 372

 466 481 633

Computer languages 2

 assembly 2 31

 high-level 2 3 716

 machine 2 3 31 110

Connected component 284 397 398 403

 407 419

Containers 691–693 702 703 710

 711

 associative 692 703 711

 sequence 692 712

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Contiguous stack 100 107 144 254

Coral ring 671

Cylinder-surface indexing 591 592

D

Data 1–4 124 132 300

 391 396 408 414

 420 546 548 552–553

 556 564 568 580

 590 754

 atomic 4

 composite 4 5 21 34

Data structure 1–21 77 166 174

 192 309 311 319

 323 399 408 428

 527 551 624 678

 691 753

Data type 1 3 4 21

 30 35 89 169

 207 224 253 296

 373 552 560 612

 638 677 690 698

 711

 built-in 4 5 9 11

 user-defined 46

Decision tree 280 355 359 367

 370

Delete 41 44 90 92

 93 98 103 206

 277 458 469 514

 551 560 566 572

 576 584 696 699

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Dependent 24 36 66 91

 247 437 684 723

Depth-first search (DFS) 382 385

Depth-first traversal 142 307 317 318

 367 385 416

Deque 181 182 192 194

 693 696 697 702

 713

 input-restricted 182

 output-restricted 182

Dictionary 20 527 551–553 555

 704

Dijkstra’s algorithm 408 412 415

Direct access data structure 11

Direct access file organization 655

Directory 20 420 421 437

 439 551 590 718

 743

Disjoint set operation 419

Divide-and-conquer 451 466 716 717

Doubly linked list (DLL) 225–228 231 234 277

 583 626 628 671

 703

Dynamic binding 684

Dynamic BST 479

Dynamic data structure 10 23

Dynamic memory management 10 195 200 203–205

 304 684

Dynamic programming 485 486 488 492

 496 714 732 734–739

 756

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

E

Empty graph 373 375

Ephemeral data structure 10 11

Expression tree 292 305–308 355 356

 359 367

Extendible hashing 550

F

Fibonacci heap 582–584

Fibonacci search 429 430 432 527

Fibonacci sequence 150 470

File 470 476 589 638

 639 641 645 651

 663 669 674

File organization 589 590 636 641

 651 655 662 674

File sort 438 465

First in first out (FIFO) 137 168 192

First in last out (FILO) 99 137

Flowchart 13 31

G

Game tree 364

Garbage collection 275 276

Generalized linked list 260 263 265 270

 271 289

 head 261

 tail 261

Generic data type 36

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Graph 9 10 28 186

 280–282 368 380 383–397

 468 561 639

 acyclic graph 284 290 293

 adjacent node 281 375 392 612

 branch node (internal node) 285 290 304 344

 355 359 362–364 368

 connectivity 284 375

 degree of vertex 283 381

 directed and undirected graphs 281 380 415

 directed tree 285 290

 finite graph 281

 forest 285

 isolated vertex 283 295

 level of node 285

 null graph 282

 paths and circuits 283

 root 161 281 285–288 290–293

 295–298 300 301 304–308

 457 481 639 755

 terminal node (leaf node) 282–286 288 292

 tree 9 10 158 280

 281 285 286 290

 292 294 299 396

 478 481 483 494

 599 624 639

Greedy method 731 735–738 756

H

Hardware 2 12 420 663

Hashed indexing 593 636

Hashed search 421 436 475

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Hash function 436 475 527–532 534

 535 537 541 549

 550 553 656 674

Hashing 436 527–530 532 534

 536 542 551 554

 656

 bucket 462 463 529 530

 532 537 548 551

 553 559

 closed or internal hashing 530

 collision 436 527 529 530

 532 535 536 538

 549 551 553 555

 division method 532 554

 extraction method 533

 folding technique 534

 full table 531

 hash function 436 475 527–529 531

 532 535 539 551

 656 674

 hash table 89 90 436 480

 527 529 533 535

 537 544 548 549

 552

 hash table overflow 548

 load density 531

 load factor 531 555

 mid-square hashing 533

 multiplication method 532

 open addressing for overflow handling 548

 open or external hashing 530

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Hashing (Cont.)

 overflow 43 96 97 103

 152 165 275 530

 535 548 549 551

 553 599 663

 overflow handling by chaining 549

 perfect hash function 530

 probe 530 535 538–540 545–547

 rehashing 531 536 544–546 549

 rotation 500–502 504 506 507

 509 511 512 514

 517 525 534

 synonym 529–531 534–536 540 545

 549 553 656

 universal hashing 534

Hash table 89 90 436 480

 523 527 529 531–533

 535 539 544 552

 553

Heap 89 90 204 276

 417 438 457 459

 max-heap 557 558 560

 min-heap 557 560 580 582

 reheapDown 457–459 560 563 572

 584

 reheapUp 457 560 561 524

 584

Heap sort 438 456 457 459

 474 475 478 573

 584

Height-balanced tree 500

Huffman’s coding 366

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

I

Index 422 429 432 433

 436 446 467 527

 529 531 552 553

 589–591 593 662 704

 dense 591

 non-dense 591

 clustering 662

 primary 662 663

 secondary 662 673 675

Indexed sequential search 432

Indexing 49 90 432 433

 529 589–591 593 631

 636 662

Index sequential file organization 662

Infix to postfix conversion 120 121

Infix to prefix conversion 121

Inheritance 682 683

Insertion sort 439 440 444 445

 447 448 451 460

 475 479

Interface 7 690 691 710

Inverse adjacency list 381 384 416

Inverted file 671

J

Josephus problem 186

K

K-dimensional (KD) tree 633 634 636

Knapsack problem 732 733 738–740

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Knuth–Morris–Pratt algorithm 743 747

Kruskal’s algorithm 397 402 404 415

 419

L

Last in first out (LIFO) 94 99 100 137

 138 142 151 678

 679 692 695 713

Last in last out (LILO) 168 192 193

Linear data structure 9 10 31 31

 34 94 95 170

 192 280 366

Linear linked list 226 227 237 238

 278

Linear queue 35 176 178

Linked list 7 9 10 34

 89 94 100 102

 144 158 170 185

 192 194 200 331

 545 581 628 686

 689 703

 data node 200 201 264 267

 268 685 688

 empty linked list 204

 header node 200 201

 head pointer 200 201 204 208

 221 224 225 236

 240 272 284 687

 link 9 199 201 202

 221 225 227 234–236

 264 280 298 323

 341 355 368 388

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Linked list

 link (Cont.)

 464 565 552 593

 635 636 671 672

 686

 node 161 189 197 200

 201 204 213 214

 221 482 484 487

 499 502 510 636

 755

 null 84 87 196–198 204

 206 208 210 216

 219 227 238 245

 249 252 261 278

 324 532 689

 null list 204 261

 tail pointer 200 201 272

Linked queue 256–258 278

Linked stack 251–253 277 688

M

Merge sort 152 155 159 440

 456 457 466 467

 469 471 476 573

 720 722 757

Message passing 683

Multidimensional array 47 91

Multilist file 669

Multiple stack 107 108 146

Multiway merge 469 471 475 476

Multiway search tree 593

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

N

New operator 119 205 206 278

 dangling pointer 206 348

Non-linear data structure 10 31 31 91

 280 366 368 372

 415 479

Non-volatile 639

O

Object 3 5 9 21

 31 84 181 188

 200 205 278 372

 420 584 634 638

 643 678 682 732

Object-oriented programming (OOP) 680 681 682 712

Optimal binary search tree (OBST) 480 481 524 593

P

Palindrome 83 87

Pattern matching 743 747 753–757

Persistent data structure 10 11

Polish notation and expression

 conversion 112

Polymorphism 683

Polynomial 25 26 33 57

 58 60 66 91

 241 243 247 736

 737

 addition 62 64 244–246

 evaluation 58 61 243 272

 multiplication 58 66 247 248

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Polyphase merge 469 471 475 476

Postfix to infix conversion 128 129 131

Postfix to prefix conversion 129 130 134

Prefix 743 749

Prefix to infix conversion 130 131 135

Prefix to postfix conversion 131 135

Prim’s algorithm 397–399 402 419

Principle of optimality 736–738

Priority queue 180 182–185 188 193

 292 556 572 584

 584

Pseudocode 13 14 22 28

 29 31 161 369

 678 748

 condition and return statements 15

 header 14 200 221 224

 226 228 238 260

 276

 purpose 14 15

 statement construct 17

 statement number 14 16

 subalgorithm 14 18 19

 variable 1 4 8 14

 16 23 74 151

 156 163 165 170

 204 206 207 265

 268 306 355 523

 527 683 690 737

Q

Queue 7 35 90 94

 166 176 177 323

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Queue (Cont.)

 349 387 393 548

 556 639 678 692

 697

 front 168 169 176 184

 192 224 394 612

 662

 rear 168 169 176 184

 192 224 394 612

Quick sort 152 155 159 437

 438 440 451 454

 457 475 723 726

R

Radix sort 438 463 474

Record 4 99 164 224

 264 370 420 421

 432 527 531 638

 662 663 738

Recurrence 150 165 429 432

 718 720 723 735

Recursion 94 110 140 141

 146 146 152 159

 161 164 428 456

 573 719 737

 base case 150 161

 end condition 140 149 150 152

 157 159 162 165

 469

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Recursion (Cont.)

 endless recursion 152 165

 recursive depth 152 165 318

 stack overflow 152

 terminating (or end) condition 152 282

 unwinding 152 165

 winding 152 165

Recursive call 140 154 156 165

 428

Recursive function 24 140 144 151

 155 157 158 162

 165

Red–black tree 280 631 632

Reusability 683

Row-major representation 48 51 52 54

 56 91

S

Searching 16 20 40 80

 90 186 201 213

 218 327 332 338

 420 441 590 704

 743

 external 421 594

 internal 421

 search and insert algorithm 421

Selection sort 438 439 448 450

 472 475

Self-referential object 209

Sequential access data structure 11

Sequential file organization 651 662

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Sequential organization 9 10 33 34

 91 100 199 256

 265 280 289 433

 589 642 662 674

 692

Sequential search 325 421 422 424

 432 475 476 481

 546 669 718

 ordered list search 424 426

 probability search 424 426

 sentinel search 424 425 475

Shell sort 438 440 460 461

 473 475

Shortest path algorithm 408

Simulation 72 168 180 183

 188 192 513 556

Singly linked list (SLL) 196 226

Skip list 552–553 555

Software 2 6 12 26

 28 94 169 224

 465 677 678 714

Software development life cycle (SDLC) 1 27

Software engineering 6 26 27 30

 31

 analysis phase 27 28

 design phase 28 32

 implementation phase 28 32

 testing phase 29 31 32

 verification 29

Sorting 20 40 78 90

 201 218 418 420

 425 437 438 440

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Sorting (Cont.)

 443 450 456 460

 465 471 590 704

 external 438 466 475 720

 internal 437 438 475

 passes 440 442 443 459

 463 468 476 723

 sort efficiency 458 476

 sort order 439 476

 sort stability 439 476

Space complexity 22 23 30 82

 385 420

Spanning tree 383 396–398 401 406

 415 419

Sparse matrix 70 72 83 90

 91 250

 addition 73 75

 representation 72 90 250

Splay tree 630 631 636

Square matrix 71

Stack 34 89 90 94

 95 100 107 109

 144 176 195 251

 252 311 639 678

 create 37 102 170 298

 373 560

 empty 96–99 102 116 133

 139 169 679

 getTop 96 98 100 102

 127 253 679

 pop 97 103

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Stack (Cont.)

 push 96 99 102 103

 105 386 679

 stack_empty 96 109

 stack_full 96 109

 stack_initialization 96

 stack overflow 96

 stack underflow 96

 top of a stack 95

Standard template library (STL) 677 691 710 712

 algorithm 2 11 13 20

 22 251 397 548

 552 626 634 635

 704

 doubly ended queue 695 713

 function object 710 711

 iterator 691 693 697 703

 706–709 711

 list 7–16 33 224 225

 415 452 467 637

 698

 stack 11 24 94 95

 98 356 362 389

 678 679 689 702

 vectors 411 693

Static BST 479 482

Static data structure 35 195

Strassen’s algorithm 729–731

String 4 21 84 87

 91 139 167 367

 704 743

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

String (Cont.)

 empty 84

 null 84

Structured programming 3 18 682

Suffix 293 743 754 756

Symbol table 436 479 480 524

 527

T

Threaded binary tree (TBT) 346 348 355 356

 360 368

Time complexity 22–24 70 77 78

 80 424 432 461

 467 478 479 525

 715

 average case 24 424 451 459

 460 535 631

 best case 24 424 444 451

 460 472 747

 worst case 24 82 90 380

 424 426 427 429

 444 447 451 456

 457 459 460 631

 718

Transpose of sparse matrix 77

 fast transpose 70 73 78 80

 82

 simple transpose 73 78–80

Tree 9 10 152 155

 161 165 280 286

 483 500 501 639

 680 723

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Tree (Cont.)

 binary tree 280 290–292 295 297

 370 500 525 556

 558 560 567 584

 593 723

 children 286–288 291–293 319 324

 325 560 565 570

 581 584 594 636

 complete binary tree 291 298 299 524

 563 584

 complete tree 290 291 298 558

 561

 degree 58 59 283 287

 286 295 322 381

 580 593

 depth or level of a node 287

 directed path 286 289

 empty tree 285–287 293 295 367

 500

 extended binary tree 293

 family relationships 287 288

 free tree 290

 full binary tree 291 300

 height 286–288 291 320 370

 500 504 510 523

 557 595 723

 height and depth 288

 leaves 286 288 293 355

 363 368 370 429

 594 597 603 624

 631

 left skewed binary tree 292

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Tree (Cont.)

 length of a path 287 408

 levels 28 30 182 288

 291 629 635 636

 ordered tree 290 391 579 582

 755

 orderings 287 288

 parent 286 288 298 304

 317 319 325 335

 367 559 562 567

 583 604 632

 path and path length 288

 regular tree 290

 root 161 281 285 287

 288 290 293 297

 300 305 307 322

 516 551 559 563

 580 583 599

 rooted tree 290

 sibling 286 288 318 329

 581 583

 strictly binary tree 293 368

 subtree 285–288 297 313 315

 337 338 367 500

 524 593

Triangular matrix 71 378

Tridiagonal matrix 71 93

Tries 551 628 629 754

 755

 compressed 755 756

 standard 755 756

 suffix 293 755–756

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Trie tree 280 628 629 636

Two-dimensional arrays 47 48 56 70

 91

Types of data structures 9 30 554

 linear and non-linear 9 30 91 280

 persistent and ephemeral 9 10 11 30

 primitive and non-primitive 9 30

 sequential and direct access 9 30 638

 static and dynamic 9 10 30 479

V

Variants of recursion 152

 binary recursion 152 153 165

 direct recursion 153 165

 indirect recursion 153 165

 linear recursion 155 165

 tail recursion 152 154 165 430

 719

 tree recursion 155 165

W

Weighted graph 282 375 376 380

 384 396–398 408 416

	Front Matter
	Dedication
	Preface
	Table of Contents
	1. Fundamental Concepts
	1.1 Introduction to Programming
	1.2 Object-Oriented Programming
	1.3 Introduction to Data Structures
	1.3.1 Data
	1.3.1.1 Atomic and Composite Data

	1.3.2 Data Type
	1.3.2.1 Built-in Data Types
	1.3.2.2 User-Defined Data Types

	1.3.3 Data Object
	1.3.4 Data Structure
	1.3.5 Abstract Data Type

	1.4 Types of Data Structures
	1.4.1 Primitive and Non-Primitive Data Structures
	1.4.2 Linear and Non-Linear Data Structures
	1.4.3 Static and Dynamic Data Structures
	1.4.4 Persistent and Ephemeral Data Structures
	1.4.5 Sequential Access and Direct Access Data Structures

	1.5 Introduction to Algorithms
	1.5.1 Characteristics of Algorithms
	1.5.2 Algorithmics
	1.5.3 Algorithm Design Tools: Pseudocode and Flowchart

	1.6 Pseudocode
	1.6.1 Pseudocode Notations
	1.6.2 Algorithm Header
	1.6.3 Purpose
	1.6.4 Condition and Return Statements
	1.6.5 Statement Numbers
	1.6.6 Variables
	1.6.7 Statement Constructs
	1.6.7.1 Sequence
	1.6.7.2 Decision
	1.6.7.3 Repetition

	1.6.8 Subalgorithms

	1.7 Relationship among Data, Data Structures, and Algorithms
	1.8 Implementation of Data Structures
	1.9 Flowcharts
	1.10 Analysis of Algorithms
	1.10.1 Complexity of Algorithms
	1.10.2 Space Complexity
	1.10.2.1 Compile Time Space Complexity
	1.10.2.2 Run-Time Space Complexity

	1.10.3 Time Complexity
	1.10.3.1 Best, Worst, and Average Cases

	1.10.4 Computing Time Complexity of an Algorithm
	1.10.5 Big-O Notation

	1.11 From Problem to Program
	1.12 Software Engineering
	1.12.1 Analysis Phase
	1.12.2 Design Phase
	1.12.3 Implementation Phase
	1.12.4 Testing Phase
	1.12.5 Verification Phase

	Recapitulation
	Key Terms
	Exercises

	2. Linear Data Structure Using Arrays
	2.1 Sequential Organization
	2.2 Linear Data Structure Using Sequential Organization: Arrays
	2.3 Array as an Abstract Data Type
	2.4 Memory Representation and Address Calculation
	2.5 Class Array
	2.5.1 Inserting an Element into an Array
	2.5.2 Deleting an Element

	2.6 Arrays Using Template
	2.7 Multidimensional Arrays
	2.7.1 Two-Dimensional Arrays
	2.7.1.1 Memory Representation of Two-Dimensional Arrays
	2.7.1.2 Row-Major Representation
	2.7.1.3 Column-Major Representation

	2.7.2 n-Dimensional Arrays
	2.7.2.1 Address Calculation for Multidimensional Array
	2.7.2.2 Address Calculation for One-Dimensional Array
	2.7.2.3 Address Calculation for Two-Dimensional Array
	2.7.2.4 Address Calculation for Three-Dimensional Array

	2.8 Concept of Ordered List
	2.9 Single Variable Polynomial
	2.9.1 Representation Using Arrays
	2.9.2 Polynomial as Array of Structure
	2.9.3 Polynomial Evaluation
	2.9.4 Polynomial Addition
	2.9.5 Polynomial Multiplication

	2.10 Array for Frequency Count
	2.11 Sparse Matrix
	2.11.1 Sparse Matrix Representation
	2.11.2 Sparse Matrix Addition
	2.11.3 Transpose of Sparse Matrix
	2.11.3.1 Simple Transpose
	2.11.3.2 Fast Transpose
	2.11.3.3 Time and Space Complexity Analysis of Fast Transpose

	2.12 String Manipulation Using Array
	2.13 Pros and Cons of Arrays
	2.13.1 Characteristics
	2.13.2 Advantages
	2.13.3 Disadvantages
	2.13.4 Applications of Arrays

	Recapitulation
	Key Terms
	Exercises

	3. Stacks
	3.1 Concept of Stacks and Queues
	3.2 Stacks
	3.2.1 Primitive Operations
	3.2.1.1 Push
	3.2.1.2 Pop
	3.2.1.3 GetTop

	3.3 Stack Abstract Data Type
	3.4 Representation of Stacks Using Sequential Organization Arrays
	3.4.1 Create
	3.4.2 Empty
	3.4.3 GetTop
	3.4.4 Push
	3.4.5 Pop

	3.5 Stacks Using Template
	3.6 Multiple Stacks
	3.7 Applications of Stack
	3.8 Expression Evaluation and Conversion
	3.8.1 Polish Notation and Expression Conversion
	3.8.2 Need for Prefix and Postfix Expressions
	3.8.3 Postfix Expression Evaluation
	3.8.3.1 Infix to Postfix Conversion
	3.8.3.2 Infix to Prefix Conversion
	3.8.3.3 Postfix to Infix Conversion
	3.8.3.4 Postfix to Prefix Conversion
	3.8.3.5 Prefix to Infix Conversion
	3.8.3.6 Prefix to Postfix Conversion

	3.9 Processing of Function Calls
	3.10 Reversing a String with a Stack
	3.11 Checking Correctness of Well-Formed Parentheses
	3.12 Recursion
	3.13 Parsing Computer Programs
	3.14 Backtracking Algorithms
	3.15 Converting Decimal Numbers to Binary
	Recapitulation
	Key Terms
	Exercises

	4. Recursion
	4.1 Introduction
	4.2 Recurrence
	4.3 Use of Stack in Recursion
	4.4 Variants of Recursion
	4.4.1 Direct Recursion
	4.4.2 Indirect Recursion
	4.4.3 Tail Recursion
	4.4.4 Linear Recursion
	4.4.5 Tree Recursion

	4.5 Execution of Recursive Calls
	4.6 Recursive Functions
	4.6.1 Writing Recursive Code
	4.6.2 Tower of Hanoi: An Example of Recursion
	4.6.3 Checking for Correctness
	4.6.4 Things to Remember

	4.7 Iteration versus Recursion
	4.7.1 Demerits of Recursive Algorithms
	4.7.2 Demerits of Iterative Methods

	4.8 Simulating Recursion Using Stack Eliminating Recursion
	4.9 Applications of Recursion
	Recapitulation
	Key Terms
	Exercises

	5. Queues
	5.1 Concept of Queues
	5.2 Queue as Abstract Data Type
	5.3 Realization of Queues Using Arrays
	5.4 Circular Queue
	5.4.1 Advantages of Using Circular Queues

	5.5 Multi-Queues
	5.6 Deque
	5.7 Priority Queue
	5.7.1 Array Implementation of Priority Queue

	5.8 Applications of Queues
	5.8.1 Josephus Problem
	5.8.2 Job Scheduling
	5.8.3 Simulation

	5.9 Queues Using Template
	Recapitulation
	Key Terms
	Exercises

	6. Linked Lists
	6.1 Introduction
	6.2 Linked List
	6.2.1 Comparison of Sequential and Linked Organizations
	6.2.2 Linked List Terminology
	6.2.3 Primitive Operations

	6.3 Realization of Linked Lists
	6.3.1 Realization of Linked List Using Arrays
	6.3.2 Linked List Using Dynamic Memory Management
	6.3.2.1 Empty Linked List

	6.4 Dynamic Memory Management
	6.4.1 Dynamic Memory Management in C++ with new and delete Operators
	6.4.1.1 The new Operator
	6.4.1.2 Syntax
	6.4.1.3 The Null Pointer
	6.4.1.4 The delete Operator

	6.5 Linked List Abstract Data Type
	6.5.1 Data Structure of Node
	6.5.2 Insertion of a Node
	6.5.2.1 Insertion of a Node at a Middle Position
	6.5.2.2 Insertion of a Node at the First Position
	6.5.2.3 Insertion of a Node at the End
	6.5.2.4 Generalized Insert Routine

	6.5.3 Linked List Traversal
	6.5.3.1 Non-Recursive Method
	6.5.3.2 Recursive Traversal Method

	6.5.4 Deletion of a Node
	6.5.4.1 Deleting the First Node
	6.5.4.2 Deleting a Middle Node

	6.6 Linked List Variants
	6.6.1 Head Pointer and Header Node
	6.6.2 Types of Linked List
	6.6.2.1 Singly Linked List
	6.6.2.2 Doubly Linked List

	6.6.3 Linear and Circular Linked Lists
	6.6.3.1 Linear Linked List
	6.6.3.2 Circular Linked List

	6.7 Doubly Linked List
	6.7.1 Creation of Doubly Linked List
	6.7.2 Deletion of a Node from a Doubly Linked List
	6.7.3 Insertion of a Node in a Doubly Linked List
	6.7.4 Traversal of DLL

	6.8 Circular Linked List
	6.8.1 Singly Circular Linked List
	6.8.2 Circular Linked List with Header Node
	6.8.3 Doubly Circular Linked List

	6.9 Polynomial Manipulations
	6.9.1 Polynomial Evaluation
	6.9.2 Polynomial Addition
	6.9.2.1 Paper-Pencil Method
	6.9.2.2 Polynomial Addition Algorithm

	6.9.3 Polynomial Multiplication

	6.10 Representation of Sparse Matrix Using Linked List
	6.11 Linked Stack
	6.11.1 Class for Linked Stack
	6.11.2 Operations on Linked Stack

	6.12 Linked Queue
	6.12.1 Erasing a Linked Queue

	6.13 Generalized Linked List
	6.13.1 Definition
	6.13.2 Applications
	6.13.3 Representation of Polynomials Using Generalized Linked List
	6.13.4 Representation of Sets Using Generalized Linked List
	6.13.4.1 Printing Generalized Linked Lists

	6.14 More on Linked Lists
	6.14.1 Copying a Linked List
	6.14.2 Computing the Length of a Linked List
	6.14.2.1 Calling Length

	6.14.3 Reversing Singly Linked List without Temporary Storage
	6.14.4 Concatenating Two Linked Lists
	6.14.5 Erasing the Linked List

	6.15 Application of Linked List - Garbage Collection
	Recapitulation
	Key Terms
	Exercises

	7. Trees
	7.1 Introduction
	7.1.1 Basic Terminology
	7.1.1.1 Adjacent Nodes
	7.1.1.2 Directed and Undirected Graphs
	7.1.1.3 Parallel Edges and Multigraph
	7.1.1.4 Weighted Graph
	7.1.1.5 Null Graph and Isolated Vertex
	7.1.1.6 Degree of Vertex
	7.1.1.7 Paths and Circuits
	7.1.1.8 Connectivity
	7.1.1.9 Acyclic Graph
	7.1.1.10 Trees
	7.1.1.11 Forest and Trees

	7.1.2 General Tree
	7.1.3 Representation of a General Tree

	7.2 Types of Trees
	7.3 Binary Tree
	7.3.1 Properties of a Binary Tree
	7.3.1.1 Property 1
	7.3.1.2 Property 2
	7.3.1.3 Property 3
	7.3.1.4 Other Properties
	7.3.1.5 Relation between Number of Leaf Nodes and Degree-2 Nodes
	7.3.1.6 Binary Tree with n Nodes Having n + 1 External Nodes

	7.4 Binary Tree Abstract Data Type
	7.5 Realization of a Binary Tree
	7.5.1 Array Implementation of Binary Trees
	7.5.2 Linked Implementation of Binary Trees

	7.6 Insertion of a Node in Binary Tree
	7.7 Binary Tree Traversal
	7.7.1 Preorder Traversal
	7.7.1.1 Preorder DLR Algorithm

	7.7.2 Inorder Traversal
	7.7.2.1 Inorder LDR Algorithm

	7.7.3 Postorder Traversal
	7.7.3.1 Postorder LRD Algorithm

	7.7.4 Non-Recursive Implementation of Traversals
	7.7.4.1 Non-Recursive Preorder Algorithm
	7.7.4.2 Non-Recursive Inorder Algorithm
	7.7.4.3 Non-Recursive Postorder Algorithm

	7.7.5 Formation of Binary Tree from its Traversals
	7.7.6 Breadth- and Depth-First Traversals
	7.7.6.1 Depth-First Traversal
	7.7.6.2 Breadth-First Traversal

	7.8 Other Tree Operations
	7.8.1 Counting Nodes
	7.8.2 Counting Leaf Nodes
	7.8.3 Computing Height of Binary Tree
	7.8.4 Getting Mirror, Replica, or Tree Interchange of Binary Tree
	7.8.5 Copying Binary Tree
	7.8.6 Equality Test

	7.9 Conversion of General Tree to Binary Tree
	7.10 Binary Search Tree
	7.10.1 Inserting a Node
	7.10.2 Searching for a Key
	7.10.3 Deleting a Node
	7.10.4 Binary Tree and Binary Search Tree

	7.11 Threaded Binary Tree
	7.11.1 Threading a Binary Tree
	7.11.1.1 Sample Run

	7.11.2 Right-Threaded Binary Tree
	7.11.3 Inorder Traversal
	7.11.4 Preorder Traversal
	7.11.5 Insert to Right of a Node
	7.11.6 Deleting a Node
	7.11.7 Pros and Cons

	7.12 Applications of Binary Trees
	7.12.1 Expression Tree
	7.12.1.1 Construction of Expression Tree

	7.12.2 Decision Tree
	7.12.3 Huffman's Coding
	7.12.4 Game Trees

	Recapitulation
	Key Terms
	Exercises

	8. Graphs
	8.1 Introduction
	8.2 Graph Abstract Data Type
	8.3 Representation of Graphs
	8.3.1 Adjacency Matrix
	8.3.2 Adjacency List
	8.3.3 Adjacency Multilist
	8.3.4 Inverse Adjacency List
	8.3.5 Comparison of Sequential and Linked Representations

	8.4 Graph Traversal
	8.4.1 Depth-First Search
	8.4.2 Breadth-First Search

	8.5 Spanning Tree
	8.5.1 Connected Components
	8.5.2 Prim's Algorithm
	8.5.3 Kruskal's Algorithm
	8.5.4 Biconnected Components
	8.5.5 Disjoint Set Operations

	8.6 Shortest Path Algorithm
	Recapitulation
	Key Terms
	Exercises

	9. Searching and Sorting
	9.1 Searching
	9.2 Search Techniques
	9.2.1 Sequential Search
	9.2.1.1 Pros and Cons of Sequential Search
	9.2.1.2 Variations of Sequential Search

	9.2.2 Binary Search
	9.2.2.1 Time Complexity Analysis
	9.2.2.2 Pros and Cons of Binary Search

	9.2.3 Fibonacci Search
	9.2.3.1 Time Complexity of Fibonacci Search

	9.2.4 Indexed Sequential Search
	9.2.5 Hashed Search

	9.3 Sorting
	9.3.1 Types of Sorting
	9.3.1.1 Internal Sorting
	9.3.1.2 External Sorting

	9.3.2 General Sort Concepts
	9.3.2.1 Sort Order
	9.3.2.2 Sort Stability
	9.3.2.3 Sort Efficiency
	9.3.2.4 Passes

	9.3.3 Bubble Sort
	9.3.3.1 Analysis of Bubble Sort

	9.3.4 Insertion Sort
	9.3.4.1 Analysis of Insertion Sort

	9.3.5 Selection Sort
	9.3.5.1 Analysis of Selection Sort

	9.3.6 Quick Sort
	9.3.6.1 Analysis of Quick Sort

	9.3.7 Heap Sort
	9.3.8 Shell Sort
	9.3.9 Bucket Sort
	9.3.10 Radix Sort
	9.3.11 File Sort
	9.3.12 Merge Sort
	9.3.12.1 Time Complexity

	9.4 Multiway Merge and Polyphase Merge
	9.4.1 Comparison of Ordinary Merge Sort and Polyphase Sort
	9.4.1.1 Perfect Three-File Polyphase Merge Sort
	9.4.1.2 Two-Phase, Multiway Merge Sort

	9.5 Comparison of All Sorting Methods
	Recapitulation
	Key Terms
	Exercises

	10. Search Trees
	10.1 Symbol Table
	10.1.1 Representation of Symbol Table
	10.1.1.1 Static Tree Tables
	10.1.1.2 Dynamic Tree Tables

	10.2 Optimal Binary Search Tree
	10.3 AVL Tree Height-Balanced Tree
	10.3.1 Implementation of AVL Technique
	10.3.2 Insertions and Deletions in AVL Tree

	Recapitulation
	Key Terms
	Exercises

	11. Hashing
	11.1 Introduction
	11.2 Key Terms and Issues
	11.3 Hash Functions
	11.3.1 Good Hash Function
	11.3.1.1 Features of a Good Hashing Function

	11.3.2 Division Method
	11.3.3 Multiplication Method
	11.3.4 Extraction Method
	11.3.5 Mid-Square Hashing
	11.3.6 Folding Technique
	11.3.7 Rotation
	11.3.8 Universal Hashing

	11.4 Collision Resolution Strategies
	11.4.1 Open Addressing
	11.4.1.1 Linear Probing
	11.4.1.2 Quadratic Probing
	11.4.1.3 Double Hashing
	11.4.1.4 Rehashing

	11.4.2 Chaining

	11.5 Hash Table Overflow
	11.5.1 Open Addressing for Overflow Handling
	11.5.2 Overflow Handling by Chaining

	11.6 Extendible Hashing
	11.7 Dictionary
	11.8 Skip List
	11.9 Comparison of Hashing and Skip Lists
	Recapitulation
	Key Terms
	Exercises

	12. Heaps
	12.1 Basic Concepts
	12.1.1 Min-Heap and Max-Heap
	12.1.1.1 Min-Heap
	12.1.1.2 Max-Heap

	12.2 Implementation of Heap
	12.3 Heap as Abstract Data Type
	12.3.1 Operations on Heaps
	12.3.1.1 ReheapUp
	12.3.1.2 ReheapDown
	12.3.1.3 Insert
	12.3.1.4 Delete
	12.3.1.5 Creating a Heap

	12.4 Heap Applications
	12.5 Heap Sort
	12.6 Binomial Trees and Heaps
	12.6.1 Binomial Trees
	12.6.2 Binomial Heap
	12.6.3 Representation of Binomial Heap
	12.6.4 Operations on Binomial Heaps

	12.7 Fibonacci Heap
	12.7.1 Representation of Fibonacci Heap
	12.7.2 Operations on Fibonacci Heaps

	Recapitulation
	Key Terms
	Exercises

	13. Indexing and Multiway Trees
	13.1 Introduction
	13.2 Indexing
	13.2.1 Indexing Techniques
	13.2.1.1 Cylinder-Surface Indexing
	13.2.1.2 Hashed Indexing

	13.3 Types of Search Trees
	13.3.1 Multiway Search Tree
	13.3.2 B-Tree
	13.3.2.1 B-Tree Definition
	13.3.2.2 Operations on B-Tree
	13.3.2.3 B-Tree as Abstract Data Type

	13.3.3 B+ Tree
	13.3.3.1 B+ Tree Structure
	13.3.3.2 Nodes of B+ Tree
	13.3.3.3 Advantages of B+ Trees over Indexed Sequential Access Method

	13.3.4 Trie Tree
	13.3.4.1 Declaration for Trie Tree

	13.3.5 Splay Tree
	13.3.6 Red-Black Tree
	13.3.7 K-Dimensional Tree
	13.3.8 AA Tree
	13.3.8.1 Advantages of AA Trees
	13.3.8.2 Representing Balance Information in AA Tree

	Recapitulation
	Key Terms
	Exercises

	14. Files
	14.1 Introduction
	14.2 External Storage Devices
	14.2.1 Magnetic Tape
	14.2.2 Magnetic Drum
	14.2.3 Magnetic Disk

	14.3 File Organization
	14.3.1 Schemes of File Organization
	14.3.2 Factors Affecting File Organization
	14.3.3 Factors Involved in Selecting File Organization

	14.4 Files Using C++
	14.4.1 File I/O Classes
	14.4.2 Primitive Functions
	14.4.3 Binary and Text Files

	14.5 Sequential File Organization
	14.5.1 Primitive Operations
	14.5.1.1 Add
	14.5.1.2 Search
	14.5.1.3 Delete
	14.5.1.4 Updation Modification

	14.5.2 Advantages
	14.5.3 Drawbacks

	14.6 Direct Access File Organization
	14.6.1 Primitive Operations

	14.7 Indexed Sequential File Organization
	14.7.1 Types of Indices
	14.7.2 Structure of Indexed Sequential File
	14.7.3 Characteristics of Indexed Sequential File

	14.8 Linked Organization
	14.8.1 Multilist Files
	14.8.2 Coral Rings
	14.8.3 Inverted Files
	14.8.4 Cellular Partitions

	Recapitulation
	Key Terms
	Exercises

	15. Standard Template Library
	15.1 Abstract Data Type
	15.1.1 Abstract Data Type and Data Structures
	15.1.2 Creating Abstract Data Types
	15.1.3 Stack Abstract Data Type

	15.2 Survey of Programming Techniques
	15.3 Standard Template Library
	15.3.1 Containers
	15.3.1.1 Sequence Containers
	15.3.1.2 Associative Containers

	15.3.2 Algorithms
	15.3.3 Iterators
	15.3.3.1 Input Iterator
	15.3.3.2 Output Iterator
	15.3.3.3 Forward Iterator
	15.3.3.4 Bidirectional Iterator
	15.3.3.5 Random Access Iterator
	15.3.3.6 Operators Supported by Iterators
	15.3.3.7 Pros and Cons of Standard Template Library

	15.3.4 Function Objects

	Recapitulation
	Key Terms
	Exercises

	16. Algorithm Analysis and Design
	16.1 Introduction
	16.1.1 Algorithm Analysis
	16.1.2 Asymptotic Notations Omega, theta, O
	16.1.2.1 Big O or Oh
	16.1.2.2 Big Omega Omega
	16.1.2.3 Big Theta Theta

	16.2 Divide-and-Conquer
	16.2.1 Unique Characteristics and Use
	16.2.2 General Method
	16.2.3 Binary Search
	16.2.4 Merge Sort
	16.2.4.1 Analysis of Merge Sort

	16.2.5 Quick Sort
	16.2.5.1 Analysis of Quicksort

	16.2.6 Strassen's Algorithm for Matrix Multiplication

	16.3 Greedy Method
	16.3.1 General Greedy Method
	16.3.1.1 Elements of Greedy Strategy

	16.3.2 Knapsack Problem

	16.4 Dynamic Programming
	16.4.1 General Method of Dynamic Programming
	16.4.2 Elements of Dynamic Programming
	16.4.2.1 Optimal Substructure
	16.4.2.2 Overlapping Subproblems
	16.4.2.3 Memorization

	16.4.3 Principle of Optimality
	16.4.3.1 Difference between Greedy Method and Dynamic Programming

	16.4.4 Limitations of Dynamic Programming
	16.4.5 Knapsack Problem

	16.5 Pattern Matching
	16.5.1 Brute-Force Approach
	16.5.2 Boyer-Moore Algorithm
	16.5.3 Knuth-Morris-Pratt Algorithm
	16.5.3.1 Prefix Function pi
	16.5.3.2 KMP Matcher

	16.6 Tries
	16.6.1 Standard Tries
	16.6.2 Compressed Tries
	16.6.3 Suffix Tries

	Recapitulation
	Key Terms
	Exercises

	Features of the Book
	Appendix: Overview of C++ Programming
	A.1 Abstract Data Type
	A.2 Introduction to C++
	A.2.1 Sample C++ Program
	A.2.2 C++ Statements and Operators
	A.2.3 Comments in C++
	A.2.4 Input/Output in C++

	A.3 Functions in C++
	A.3.1 Inline Function

	A.4 C++ Class and Abstract Data Type
	A.4.1 Class
	A.4.1.1 Scope Resolution Operator ::

	A.4.2 Class Members: Public and Private
	A.4.3 Objects

	A.5 Static Class Members
	A.5.1 Static Data Members
	A.5.2 Static Member Functions

	A.6 Object as Function Parameter
	A.6.1 Passing Objects to Functions
	A.6.2 Returning Objects from Functions
	A.6.3 Arrays of Objects
	A.6.4 Pointers to Objects

	A.7 'this' Pointer
	A.8 Function Overloading
	A.8.1 Types of Polymorphism

	A.9 Constructors and Destructors
	A.9.1 Constructors
	A.9.2 Destructors
	A.9.3 Constructor with Default Arguments

	A.10 Inheritance
	A.10.1 Types of Inheritance
	A.10.2 Multiple Inheritance

	A.11 Abstract Classes
	A.11.1 Pure Virtual Functions

	A.12 Operator Overloading
	A.12.1 Comparing Function Overriding and Overloading

	A.13 Friend Function
	A.14 Generic Programming: Templates

	Acknowledgements
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

