
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Enabling Programmable Self with
HealthVault

Vaibhav Bhandari

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Enabling Programmable Self with HealthVault
by Vaibhav Bhandari

Copyright © 2012 Vaibhav Bhandari. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-03-09 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449316563 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Enabling Programmable Self with HealthVault and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31656-3

[LSI]

1331583690

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316563
http://www.allitebooks.org

Table of Contents

Foreword . vii

Preface . ix

1. Getting Started with HealthVault . 1
What Is HealthVault? 1
Getting Started with HealthVault 2
Overview of HealthVault Features 4

Health Information 4
Creating an Emergency Profile 5
Discovering Health Tools 6
Sharing 7
History 7

Working with Health Data 9
Using Partner Applications 11

2. Quantifying Yourself . 15
How Fitbit Tracks Sleep 15

Sending Data to HealthVault 16
Understanding the Data Model 18

Exploring the HealthVault Data 20
Analyzing the HealthVault Data 22

3. Interfacing with HealthVault . 25
Accounts and Records 25

Account Information 27
HealthVault Application Programming Interface 27

HealthVault Shell Interface 28
HealthVault Platform APIs 29
Read and Write API: Diving Deep 35
Record Management: Diving Deep 41

iii

www.allitebooks.com

http://www.allitebooks.org

HealthVault SDK and Open Source Libraries 43
HealthVault .NET SDK 43
HealthVault Open Source Java SDK 44
HealthVault Open Source iOS Mobile Library 45
HealthVault Open Source Windows Phone Library 45
HealthVault Open Source Python, PHP, and Ruby Library 45

Interfacing with HealthVault 46
Device Connectivity 47
Application Connectivity 49

4. Using the HealthVault Data Ecosystem for Self-Tracking . 53
A Self-Experimentation Application 53

Setting Up a New HealthVault Application 54
Adding Data Types 55
Accessing the Data Types 57

Understanding HealthVault Data Types 58
Type Properties 58
Type Schemas 62

Extending HealthVault Data Types 66
Creating a Type Extension 66
Consuming a Type Extension 67

Creating Custom Types 68
Trusting Data in HealthVault Data Types 69
Relating HealthVault Data Types 70
Exploring HealthVault Data Types 71

Categorizing HealthVault Data Types 71
Contributing to the Self-Experimentation Application 74

5. Enabling mHealth for Quantified Self . 75
The Mood Tracker Mobile Application 75

So, What Should We Build? 76
Choosing HealthVault Integration 76
Selecting Appropriate HealthVault Data Types 76
Getting Started 77
Authenticating the Application and User with HealthVault 81
Reading Data from HealthVault 83
Writing Data to HealthVault 87
Graphing Mood 88
Data Analysis: Mood Plant 91

What About Android and iOS? 92
Mobile Web Applications 93
Contributing to the Mood Tracker Application 93

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

6. The Last Mile: Releasing Applications to Users . 95
Testing Your Application 95
Releasing Your Application to End Users 97
Monitoring and Maintaining Your Application 97
Adding New Features to Your Application 98
Taking Your Application International! 98
Further Resources 99

Need Reference Information? 99
Have a Question? 99
Development Tools 99
Mapping Your Data to HealthVault 100

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Back in the spring of 2006, I was getting headaches consistently around lunchtime every
Saturday. It was really weird. At first I didn’t recognize the pattern, I just knew that my
head hurt a lot, and I tried to make it go away by popping ibuprofen. The pills kind of
worked, but not really. After way too long, I finally realized what must be going on.

One of the classic things everybody knows about Microsoft is that they give employees
free soda. It’s a pretty cool perk, but for those of us with no moderation switch, it can
get a bit out of hand. When I came back to Microsoft in 2006 to start the HealthVault
team, I quickly ran up a Diet Coke habit in the range of sixteen each day. All week—
until Saturday, because the fridge in my house doesn’t magically regenerate Diet Coke.

Suddenly it was just blindingly obvious: I was suffering from caffeine withdrawal. Now,
a better man than I would have recognized that all that soda probably wasn’t a good
idea anyway. But instead, I just switched to caffeine-free Diet Coke and the headaches
disappeared. I still spend a lot of time running to the restroom, but that’s another issue
altogether!

I love this story because it’s so simple and obvious—and yet it offers up a clear path to
making improvements in all aspects of clinical care:

• We have to measure our bodies over time and space.

• We have to correlate the data we measure to identify patterns.

Doctors measure a lot of stuff to try to understand problems in the human body: labs,
imagery, vital signs, and more. But these are all done as isolated snapshots, and all too
often patterns that occur over time (weeks, months, years) and space (at home, at work,
traveling, etc.) hide away undiscovered.

Historically this was understandable, because measuring the body has been hard and
often inconvenient. In order to be useful, the amount and diversity of data required can
be significant. But the world has changed, and now it’s easy for anybody to create a
holistic picture of their health with data.

vii

www.allitebooks.com

http://www.allitebooks.org

This is one of the big reasons we created HealthVault. We recognized the importance
of a comprehensive “hub” where people could collect all of this diverse information
together, and where smart people could provide analysis tools to look for patterns and
trends. For us, the “quantified self” has been a target from day one.

Vaibhav has been part of the HealthVault team for a long time, working with partners
and our internal team to constantly improve the service. He’s really done a great job in
this book of showing what’s possible when you take a platform like HealthVault, com-
bine it with an ecosystem of innovative measurement devices, and make the data avail-
able for analysis in familiar tools like Microsoft Excel. And that’s not all—he walks us
through building HealthVault apps for the web and mobile phones, somehow cram-
ming a ton of great information into a pretty manageable read. I hope he’ll inspire an
avalanche of new “body hackers” who can help show us what’s possible.

It’s pretty amazing stuff—and frankly we’ve just gotten started. So have fun!

—Sean Nolan, Distinguished Engineer, Microsoft Health Solutions

viii | Foreword

www.allitebooks.com

http://www.allitebooks.org

Preface

Outline of the Work
Microsoft HealthVault is the most prominent example of a personally controlled health
record. With its open API, flexibility, and connections with multiple health care pro-
viders, it gives people interested in monitoring their own health an unprecedented op-
portunity to do their own research on their own data. This concise book will explain
what you can store in HealthVault, how to enable automatic updates from well-known
fitness devices, and how to use programming libraries to create reports and investigate
trends of interest to you. Programmable Self is a combination of Quantified Self and
motivational hacks. Quantifying what you want to change about yourself and using
motivational tools to ensure consistent change has been a proven recipe for successful
behavioral change. It's a lot easier to start walking more if you have to tell your
coworkers how many steps you walked yesterday!

Organization of This Book
Although the chapters cover different topics, they have been arranged so that the con-
cepts and techniques in earlier chapters form a foundation for the others.

Chapter 1, Getting Started with HealthVault
Health is critical to all of us. Health care and the infrastructure around it touch our
lives and the lives of our loved ones. Many of us in pursuit of long-term health
adopt goals ranging from controlling our weight to long-distance running. The
health care industry is in an early stage of realizing the power of the digital world
and the effectiveness of networks in helping drive change.

This chapter introduces HealthVault as a powerful tool for interacting with health
data. It also provides a walkthrough of functionality available to the end user
through HealthVault.

ix

Chapter 2, Quantifying Yourself
Data is a powerful tool for changing behavior. The act of simply tracking something
changes one’s perception of that activity. Summarizing the data over time provides
a yardstick by which to measure, and the act of tracking activity over time uncovers
patterns in behavior. The structured data in HealthVault provides such an oppor-
tunity. Moreover, the HealthVault ecosystem offers a variety of applications and
devices to assist in this endeavor.

In this chapter we will explore how a consumer can use various devices to track
critical health measures. We will also use common tools to explore the data stored
by these devices into Microsoft HealthVault. We’ll capture and view some data,
then use a PowerShell plug-in to extract selected data to a comma-separated values
(CSV) format and manipulate the data in that format.

Chapter 3, Interfacing with HealthVault
As a platform, HealthVault provides an innovative access management and
programming interface for applications and devices to access a user’s health
information.

This chapter takes a closer look at the application programming interface (API)
offered by HealthVault to enable this interaction in a programmatic fashion. We
will discuss various ways in which an application or device can interface with the
HealthVault platform. The code samples will use .NET interfaces because they fit
well with HealthVault, but the same interfaces are available in Java, PHP, and other
languages. This chapter will introduce the elements of programming that give the
programmer access to data in HealthVault. Toward the end of this chapter, we will
discuss various architectural options available for interfacing with HealthVault.

Chapter 4, Using the HealthVault Data Ecosystem for Self-Tracking
The Quantified Self community is engaged in enabling self-knowledge through
self-tracking. Self-tracking, powered by appropriate data analysis, has been proven
to trigger behavioral change. The act of self-tracking creates awareness and feed-
back. The hunger for, and success of, self-knowledge is evident from the growing
number of self-quantifiers (currently 6,000+ in 41 cities and 14 countries).

Self-knowledge is possible only with a substantial amount of self-data. HealthVault
provides more than 80 granular data types that enable tracking data regarding
everything from daily exercise to genome sequences. In this chapter, we will build
upon the understanding of the HealthVault API covered in Chapter 3 and extend
it to develop a data-intensive self-quantifying application. Through the Quantified
Self application, we will gain an understanding of HealthVault data types and ap-
plication development.

Chapter 5, Enabling mHealth for Quantified Self
Having an accessible and programmable health record sets HealthVault apart. It
enables a rich ecosystem of devices and mobile and web applications. Chapter 3
focused on introducing the HealthVault API, and Chapter 4 gave a good overview

x | Preface

of HealthVault data types using a data-intensive “Quantified Self” application. This
chapter takes a closer look at building mobile applications for HealthVault.

We will look at an end-to-end example of building a mood-tracking application
on top of mobile platforms. This chapter will cover elements of mobile client pro-
gramming using code samples for Windows Phone 7 (C#); similar interfaces are
available for Android (Java) and iOS (Objective-C).

Chapter 6, The Last Mile: Releasing Applications to Users
HealthVault provides a secure and rapidly expanding platform with a rich feature
set for application developers. Developer can target a wide set of users with mul-
tiple languages to enable rich functionality for Quantified Self applications.

As part of an application’s life cycle, the standard steps are testing the application,
releasing it to the user, and then monitoring it for anomalies. This chapter will
highlight best practices for releasing, maintaining, and marketing HealthVault ap-
plications to end users.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Preface | xi

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enabling Programmable Self with Health-
Vault by Vaibhav Bhandari (O’Reilly). Copyright 2012 Vaibhav Bhandari,
978-1-449-31656-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://shop.oreilly.com/product/0636920022930.do

Community contributions, up-to-date code samples, and reusable Quantified Self
spreadsheets are available at this book’s companion website:

http://www.enablingprogrammableself.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thanks to the wonderful staff at O’Reilly, especially my editor, Andy Oram, for helping
me nurture the book from concept to execution. Special thanks to Fred Trotter for
providing the weight data used in Chapter 1 of this book. Fred also coined the term
“Programmable Self,” and was gracious enough to let us use it in the book title. Thanks
to Eric Friedman and the Fitbit team for helping with sleep data and the updated
HealthVault integration for Fitbit.

I would like to acknowledge my family and friends for being a constant source of mo-
tivation and support. They have constantly kept up with my myriad self-experiments
and projects and have pushed me to discover and learn more. I greatly acknowledge
the debt they are owed, and this book is dedicated to them.

Thanks to Heidi Klinck for reviewing initial drafts and Chris Tremonte for content
layout ideas. Thanks to Rob May, an exceptional developer on HealthVault team, for
contributing content and code samples for the HealthVault Java library.

I am grateful to the technical reviewers for providing valuable comments on early drafts
of this book, especially Rob May, Umesh Madan, Sean Nolan, Ali Emami of Microsoft,
Bill Reid of Numera, and other members of HealthVault team.

Last but not least, thanks to Sean Nolan and team for conceptualizing and creating
HealthVault, and Gary Wolf and team for driving the Quantified Self movement.

I hope that you will have as much fun reading this work as I did writing it, and will
immerse yourself in health hacking and self-experimentation. Namaste!

Preface | xiii

http://shop.oreilly.com/product/0636920022930.do
http://www.enablingprogrammableself.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Getting Started with HealthVault

“The groundwork of all happiness is health.”

—Leigh Hunt

Health is critical to all of us. Health care and the infrastructure around it touch our
lives and the lives of our loved ones. Many of us in pursuit of long-term health adopt
goals ranging from controlling our weight to long-distance running. The health care
industry is in an early stage of realizing the power of the digital world and the effec-
tiveness of personal health tools in helping drive change.

This chapter introduces HealthVault as a powerful tool for interacting with health data.
It also provides a walkthrough of the functionality available to end users through
HealthVault.

What Is HealthVault?
HealthVault is a personal data platform that allows a user to record, collect, and share
all health information in a central location. A key benefit of using HealthVault is its
application programming interface (API), which applications and devices can use to
provide value for the end user. As depicted in Figure 1-1, HealthVault enables an eco-
system of devices and applications, with use cases ranging from tracking diet and nu-
trition to connecting to hospital or pharmacy systems. HealthVault currently supports
more than 300 applications and 80 devices. Some devices connect to HealthVault via
the HealthVault Connection Center, a complimentary client application that enables
devices to upload information directly to HealthVault from a Windows PC.

1

Figure 1-1. HealthVault ecosystem with devices and applications

Getting Started with HealthVault
On the HealthVault website, http://www.healthvault.com, a user can create an account
using an existing Windows Live ID, Facebook, or OpenID account, or choose to create
a new Windows Live ID. Figure 1-2 shows the sign-up screen for HealthVault.

HealthVault is currently publicly available in the United States and United Kingdom.
You can create an account by entering basic demographic information and proof of
human-computer interaction.

When a new user signs into HealthVault, he is greeted with a new user wizard that
enables him to select tasks and allows him to connect to various services (Figure 1-3).

2 | Chapter 1: Getting Started with HealthVault

http://www.healthvault.com

Figure 1-2. HealthVault sign-in page

Figure 1-3. HealthVault new user wizard

Getting Started with HealthVault | 3

Overview of HealthVault Features
This section covers a few of the most popular features in HealthVault, concentrating
on ones that we’ll use in this book to collect, manipulate, and share information.

Health Information
The Health Information section of the health profile provides a view of all the infor-
mation in the user’s health record. HealthVault supports more than 80 discrete kinds
of data, from Advance Directive to Weight Goals. Through the user interface, you can
edit and add health information. As Figure 1-4 indicates, you can add allergies, condi-
tions, various measurements (blood glucose, blood pressure, peak flow, weight, height,
and lab test results), files (Continuity of Care Document [CCD], Continuity of Care
Record [CCR], etc.), health history (family, immunizations, procedures), and emer-
gency provider contact information.

Figure 1-4. Health information input supported by HealthVault

4 | Chapter 1: Getting Started with HealthVault

You can also drill deeper to understand the data entered into your health profile and
see the audit trail to understand how the data evolved. Figure 1-5 shows an audit history
of weight in HealthVault.

Figure 1-5. Viewing details of health data in HealthVault

Creating an Emergency Profile
Out of the box, HealthVault provides each user account with an emergency profile
consisting of current allergies, conditions, medications, medical devices, and emer-
gency contact information. A user can print, share, and update her emergency profile.

With an emergency profile, the user gets an emergency access code that could provide
timely and up-to-date medical information to an emergency responder through Health-
Vault.com.

Figure 1-6 shows the emergency access profile. Note that in addition to printing and
sharing it, a user can also access a number of HealthVault tools that provide a plethora
of emergency services.

Overview of HealthVault Features | 5

http://healthvault.com
http://healthvault.com

Figure 1-6. Emergency access profile

Discovering Health Tools
Using the Apps and Device section of the health profile, users can discover new appli-
cations and devices available as part of the HealthVault ecosystem. Figure 1-7 shows
integrated HealthVault application and device directory. This directory is categorized
by activities and conditions. A user can also get a recommended set of health tools
based on their preferences set in the new user wizard (Figure 1-3). This searchable
directory functionality was recently added to HealthVault.

Through this section, users can also review and revoke access permissions to all the
HealthVault applications they have used over time.

6 | Chapter 1: Getting Started with HealthVault

Figure 1-7. Discovering HealthVault applications and devices

Sharing
Using the Sharing section of the health profile, users can view with whom and how this
information is being shared. Users can invite people to view granular information in
their health profiles. The data used in this book was collected from gracious contrib-
utors by using this sharing functionality for specific types of health data. As Fig-
ure 1-8 shows, through the Sharing pane, users can review and revoke access to other
people.

History
Having a granularly shareable health profile enables a plethora of care coordination
scenarios. However, we do want to know how and when our sensitive health informa-
tion is being accessed and updated. As Figure 1-9 shows, through the History pane of
the health profile, users can view the ways their health information has been accessed.
I frequently look at the “Changes made in last 30 days” and review who has accessed
and updated my record.

Overview of HealthVault Features | 7

Figure 1-8. Sharing health information

Figure 1-9. Reviewing a history of changes

8 | Chapter 1: Getting Started with HealthVault

Working with Health Data
Data is a powerful tool to understand behaviors and trigger appropriate, measured
change. Users can find out interesting trends by running calculations on their data
stored in HealthVault, as I’ll show throughout this book.

For instance, through the health information section, a user can chart his weight read-
ings (Figure 1-10).

Figure 1-10. Tracking weight in HealthVault

You will see that over the last several readings, weight has been stable around 257
pounds. Nonetheless, I would like to take this a bit further and analyze these readings.
To do this, I click on the Export button in the health information section. This gives
me the readings in a comma-separated values (CSV) format, which I can then open in
Microsoft Excel or any spreadsheet program (Figure 1-11). If you don’t have weight
data, I encourage you to download the sample spreadsheet with weight data included
as part of this book’s examples and follow along with that data.

Working with Health Data | 9

Figure 1-11. Weight readings in Microsoft Excel

Using Excel, I can clean the data so I can chart and analyze it further. I can add a series
date attribute by just using the date from the first column (Figure 1-12).

Figure 1-12. Using Excel to clean up the date

10 | Chapter 1: Getting Started with HealthVault

The formula DATEVALUE(LEFT(A2, FIND(""), A2))) converts the cell to a date value by
picking the left side of the date format before the first space in column A2. The formula
ROUND(SUBSTITUTE(C2, "pounds")),0) removes the pound unit in column C and rounds
the value to the nearest integer.

Using Excel, I can find the average weight over the last set of readings and in fact plot
my weight over a number of months to uncover the monthly trend (Figure 1-13).

Figure 1-13. Monthly average weight as a bar chart

Managing weight is only one scenario where you can use health tools to gain insights.
This book’s associated website, http://enablingprogrammableself.com, has a repository
of spreadsheets that can give you inspiration for additional care scenarios.

Using Partner Applications
So far, we have looked at the mechanisms provided within HealthVault to track, update,
and visualize health information. Outside applications, however, offer even more in-
formation. For instance, the Mayo Clinic Health Manager application (https://health
manager.mayoclinic.com) can track your weight toward an intended goal (Figure 1-14).

Using Partner Applications | 11

http://enablingprogrammableself.com
https://healthmanager.mayoclinic.com
https://healthmanager.mayoclinic.com

Figure 1-14. Tracking weight against a goal

The Mayo Clinic Health Manager is able to access all the weight information from a
user’s HealthVault account using the HealthVault API. If you’re not a programmer,
you can benefit from many such applications that add value to HealthVault by allowing
you to track and measure health data. If, however, you have modest programming skills
in almost any modern language, this book will show how you can create your own.

The HealthVault .NET Web SDK provides an abstraction on HealthVault APIs to sim-
plify working with the platform. Example 1-1 is a .NET program that uses the SDK to
extract all the weights from a user’s HealthVault record into a dictionary.

Example 1-1. Accessing HealthVault through the .NET Web SDK to read weight measurements

using System;
using System.Collections.Generic;

using System.Web;

12 | Chapter 1: Getting Started with HealthVault

using Microsoft.Health;
using Microsoft.Health.Web;
using Microsoft.Health.ItemTypes;
using Microsoft.Health;

public partial class HelloWorldPage : HealthServicePage
{
 protected void Page_Load(object sender, EventArgs e)
 {

 HealthRecordSearcher searcher = PersonInfo.SelectedRecord.CreateSearcher();

 HealthRecordFilter filter = new HealthRecordFilter(Weight.TypeId);
 searcher.Filters.Add(filter);

 HealthRecordItemCollection items = searcher.GetMatchingItems()[0];

 Dictionary<string, string> weights = new Dictionary<string, string>();

 foreach (Weight item in items)
 {
 weights[item.When.ToString()] = item.Value.ToString();
 }

 WeightView.DataSource = weights;
 WeightView.DataBind();
 }
}

The steps in extracting data are: create a searcher, add a filter to restrict the output to
the field or rows you want, and then run a search. searcher.GetMatchingItems() in line

 of Example 1-1 actually issues a HealthVault GetThings API request with a query
configured to fetch all the Weight items from the user’ss HealthVault record. We will
learn more about the API and account management in Chapter 3, and more about the
data types in Chapter 4.

In the next chapter, we will delve deeper into the HealthVault device and application
ecosystem.

Using Partner Applications | 13

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2

Quantifying Yourself

“If you cannot measure it, you cannot improve it.”

—Lord Kelvin

Data is a powerful tool for changing behavior. The act of simply tracking changes one’s
perception of that activity. Summarizing the data over time provides a yardstick by
which to measure, and the act of tracking activity over time uncovers patterns in be-
havior and provides definitive answers to self-experimentation questions. The struc-
tured data in HealthVault provides such an opportunity. Moreover, the HealthVault
ecosystem offers a variety of applications and devices to assist in this endeavor.

In this chapter we will explore how a consumer can use various devices to track critical
health measures. We will also use common tools to explore the data stored by devices
in Microsoft HealthVault. We’ll capture and view some data, then use a PowerShell
plug-in to extract selected data to a CSV format and manipulate the data in that format.

Fitbit is being used in this chapter just to illustrate the ways you can use data from all
kinds of devices, so long as they provide a gateway to HealthVault. If you’re not using
Fitbit, I encourage you to download the sample Fitbit sleep data included as part of
this book’s examples, and follow along.

How Fitbit Tracks Sleep
Fitbit is a pedometer on steroids that enables you to monitor a number of aspects of
daily living. This chapter concentrates on sleep because Fitbit has been very popular
with users trying to understand and change their sleep patterns. Fitbit provides an arm
band (Figure 2-1) that tracks whether you’re awake or asleep based on your activity
level. Alternatively, users can select an on/off mode to indicate whether they’re asleep.

Fitbit also provides a base station that wirelessly uploads information from the device
to the Fitbit web service. Not having to worry about uploading information is a great
value-add provided by this product.

15

Sending Data to HealthVault
Fitbit enables users to sync their data automatically with HealthVault. Once you have
a Fitbit account, you can choose the “Share stats” page (Figure 2-2), which becomes
available after clicking on the account settings.

The “Share stats” page, among other services, enables a link to HealthVault (Fig-
ure 2-3).

Any application connecting to HealthVault has to get consent from the user for the
kinds of data it will be reading from or writing to Microsoft HealthVault. The user
control is a two-step process. In the first step, the user chooses the context of the record
being authorized (Figure 2-4). As Figure 2-4 shows, in my case I have the option of
using the application for my record or my mother’s. In the second step, the user grants
access to the specific health data being shared with the application (Figure 2-5). As
Figure 2-5 shows, the Fitbit application wants to access to my Exercise, Sleep Session,
and other health information. We will learn in more detail about the user authentication
and authorization system in Chapter 3.

Clicking on the “Information that Fitbit needs to be able to access to work as intended,”
you will notice that Fitbit wants to access a user’s Custom Data, Fitness, Measurements,
and Personal Profile, as shown in Figure 2-6. In the line below the heading you will
notice Application-Specific Information, Exercise, Sleep Session, Personal Contact In-
formation, and Personal Demographic Information, which are granular HealthVault
data types. HealthVault has about 80+ granular data types that form the building blocks
for various kinds of health information (Fitness, Measurement, etc.). The data types
are optimized to work with different devices and health systems. We will learn more
about HealthVault data types and vocabularies in Chapter 4.

Figure 2-1. Fitbit being used to track sleep

16 | Chapter 2: Quantifying Yourself

Figure 2-2. Fitbit “Share stats” feature

Figure 2-3. Connecting Fitbit with Microsoft HealthVault

How Fitbit Tracks Sleep | 17

Understanding the Data Model
Fitbit collects pedometer and sleep data. When the device syncs its data to Health-
Vault’s granular types, it stores data as detailed in Table 2-1.

Table 2-1. Fitbit HealthVault data mapping

Fitbit data HealthVault data type HealthVault field name

Calories Burned Exercise Calories burned

Steps Taken Exercise Number of steps

Daily Distance Exercise Distance

Got in to bed Sleep Session Bed Time

Got out of bed Sleep Session Wake Time

Slept for Sleep Session Sleep Minutes

Fell asleep in Sleep Session Settling Minutes

Wake State Sleep Session Wake State

As a user, we are interested in tracking all the information about sleep as collected by
Fitbit. As you will note from Table 2-1, we should look at the HealthVault Sleep Session
data type for tracking sleep and the HealthVault Exercise data type for tracking Fitbit
pedometer data.

Figure 2-4. Choosing the context of a HealthVault record to work with an application

18 | Chapter 2: Quantifying Yourself

Figure 2-5. Authorizing an application to access a user’s health data

Figure 2-6. Granular details of the HealthVault data accessed by Fitbit

How Fitbit Tracks Sleep | 19

Exploring the HealthVault Data
You can look at the data stored from Fitbit in the HealthVault user interface (sometimes
referred to as the HealthVault Shell), as shown in Figure 2-7.

Figure 2-7. Sleep session in HealthVault

Viewing information through the HealthVault user interface is convenient, but a user
cannot retrieve the entire information by exporting the data. As a power user and a
quantifier, I would like the data to be available to me to do some data-noodling. For
that purpose, I would get this data in command-line format using the HealthVault
PowerShell plug-in (HvPosh). You can find the details of installing and extending this
plug-in at https://github.com/vaibhavb/HvPosh. PowerShell can export data to a stan-
dard CSV format that can be consumed by a variety of other tools, simple or advanced,
that let you do calculations and generate charts.

Once you have installed PowerShell, load HealthVault’s plug-in into Windows
PowerShell using:

Powershell> import-module HvPosh

20 | Chapter 2: Quantifying Yourself

https://github.com/vaibhavb/HvPosh

Then, grant access to HealthVault PowerShell interface using the following command
line. Note that this command will walk you through the same record-picking interface
and authentication and authorization interface as we used earlier for the Fitbit
application:

Powershell> Grant-HVPermission

Once you have access to HealthVault within PowerShell, you can start using the utility
from the command line and extract information pertinent to Sleep Session:

Powershell> Get-Things -item Sleep-Session | format-table

The results for my sample data are shown in Figure 2-8.

Figure 2-8. Structured data from Sleep Session as retrieved by PowerShell

If you don’t have a Fitbit and want to follow along, you can import data from the file
Sleep-Data.xml available in the code associated with Chapter 3. Following is the com-
mand to import this data:

Powershell> Import-HvDataXml -File Sleep-Data.xml

You can understand the data further by exploring the individual properties. Fig-
ure 2-9 shows how you can select particular properties of a HealthVault data type using
the PowerShell select-object command:

Powershell> get-things sleep | select-object When, Bedtime, WakeTime | format-table

Figure 2-9. Three columns of structured data from Sleep Session as retrieved by PowerShell

Exploring the HealthVault Data | 21

In fact, I want to be able to explore details of awakenings. This is particularly relevant
for learning about patterns of sleep disturbances. Figure 2-10 shows the output from
the following command:

Powershell> get-things sleep | select-object -expandproperty Awakenings | format-table

Figure 2-10. Understanding the pattern of Awakenings

Now you can enable some data crunching by exporting this data to a CSV file and
switching the data analysis to Microsoft Excel or Google Spreadsheets:

Powershell> get-things sleep | select-object When, SleepMinutes, SettlingMinutes |
export-csv SleepData.csv

This creates the file SleepData.csv with the selected data.

Analyzing the HealthVault Data
Once you have all the data in CSV file, you can open it in Excel (Figure 2-11) and analyze
sleep patterns. You will notice that the spreadsheet has data for each sleep session
specifying when that session occurred, the total sleep time in minutes, and the time it
took to get to bed, termed as SettlingMinutes. I want to understand this data better,
so I create a sleep pattern X-Y scatter plot for this information (Figure 2-14).

Figure 2-11. Sleep session data in an Excel spreadsheet

22 | Chapter 2: Quantifying Yourself

As Figure 2-12 reveals, for the duration of this week the median sleep has been around
400 minutes (i.e., around 6.5 hours), and as the data clearly shows, for the days when
it took the longest to get to sleep, the duration of sleep has been lower. So a good
indicator of not been able to get to sleep in 10 minutes is a lower and poorer quality of
sleep.

Figure 2-12. Sleep Pattern analysis

In fact, for this duration I also want to understand the patterns around awakenings. So
using PowerShell we generate another CSV file that focuses on awakenings:

Powershell> get-things sleep | select-object effectivedate -expandproperty awakenings |
Export-Csv d:\sleep-date-aw.csv

We can open the file in Excel and visualize how the awakenings are triggered. It’s very
obvious that most awakenings are for a duration of 10 minutes around 3 a.m, as shown
in Figure 2-13. I know that this is because the workshop in my neighborhood is doing
an early project and the noise around that time wakes me up.

Figure 2-13. Awakenings pattern analysis

Analyzing the HealthVault Data | 23

We can even take it a step further and correlate the sleep information with other types
of data. Fitbit also contains activity data, and we can try to associate the pedometer
information with the existing sleep data.

Using the PowerShell HealthVault plug-in, we can grab the appropriate fitness data
from HealthVault:

Powershell> Get-Things exercise | where-object {$_.Activity.Name -eq "walk"} |
 select-object
-expandproperty Activity | export-csv pedometer.csv

Adding the pedometer data to what we obtained in Figure 2-12 gives us a way to cor-
relate physical activity to sleep, as shown in Figure 2-14.

Figure 2-14. Correlating sleep with walking exercise

Note that we scaled the steps information from the pedometer by dividing it by 100,
so it would play nice on the graph . Using this information, one can say it’s possible
that the days on which you got less sleep were due to lack of exercise—but on the other
hand, the settling time was high on those days as well. So maybe as a behavioral change,
one can resolve to walk at least 5,000 steps to ensure a good sleep.

This might change in the long run, but that is the joy of learning from data and moti-
vating a behavior shift! This book’s associated website, http://enablingprogrammable
self.com, has a repository of spreadsheets that can inspire additional self-experimenta-
tion scenarios. You are invited to participate in the community and contribute self-
tracking spreadsheets that you have found useful.

In upcoming chapters, we will learn how we can automate some of the work we have
done in this chapter with the HealthVault application programming interface.

24 | Chapter 2: Quantifying Yourself

http://enablingprogrammableself.com
http://enablingprogrammableself.com

CHAPTER 3

Interfacing with HealthVault

“Things would have changed if I had timely access to
electronic medical records.”

—Regina Holliday

As a platform, HealthVault provides an innovative access management and program-
ming interfaces for applications and devices to access a user’s health information.

In the previous chapter we discovered how to fetch and manipulate data stored in
HealthVault. This chapter takes a closer look at the API offered by HealthVault to
enable this interaction in a programmatic fashion. We will discuss various ways in
which an application or device can interface with the HealthVault platform. The code
samples will use .NET interfaces because they fit well with HealthVault, but the same
interfaces are available in Java, PHP, and other languages. The chapter will introduce
the elements of programming that give the programmer access to data in HealthVault.
Toward the end of this chapter, we will discuss various architectural options available
for interfacing an application or device with HealthVault. We’ll start by discussing
accounts because the first task is to get access to your own account.

Accounts and Records
HealthVault provides innovative access management to let a family health manager
access and manage the records of various family members. Mom, serving as the family
health manager, can create records for her husband and children. In Figure 3-1, Jane
has created accounts for her husband, Tom, and two kids, Chris and Sara. She has full
access to all information in her family’s HealthVault records.

Additionally, HealthVault enables the same records to be accessed through multiple
accounts. Full access can be thought of as custodial access to the record. In Fig-
ure 3-2, Jane has full access to her family’s health information. Tom has also signed up
to share the responsibility of managing the health information of their kids, Chris and
Sara, and also has full access to their health information.

25

Figure 3-1. Multiple records under one HealthVault account

Figure 3-2. Multiple accounts pointing to the same HealthVault records

26 | Chapter 3: Interfacing with HealthVault

Account Information
An application gets access to HealthVault account information through an API called
Get-PersonInfo. This API returns a structure called PersonInfo, which in turn consists
of the records associated with a HealthVault account (Example 3-1).

Example 3-1. PersonInfo data structure

PS C:\Windows\system32> Get-Personinfo

PersonId : 0ce0d6e0-cfaf-4464-abea-6d0253078df6
Name : Vaibhav Bhandari
ApplicationSettings :
SelectedRecord : Vaibhav Bhandari
AuthorizedRecords : {[b11511c8-c30d-4ffd-8d98-f433d0b5827b, Vaibhav Bhandari]}
PreferredCulture : en-US
PreferredUICulture : en-US
Connection :
ApplicationConnection : Microsoft.Health.HealthClientAuthorizedConnection

Using the HealthVault PowerShell plug-in, you can try out the Get-PersonInfo API
using the command get-personinfo. The structure returned consists of a unique
PersonId for the account and a set of record identifiers authorized to be used with the
application for this particular account. Any pertinent information for the application
is stored in ApplicationSettings. The user’s preferred language and display settings are
stored in the PreferredCulture and PreferredUICulture fields, respectively.

An application can decide to work with only one record at a time, termed as a single
record application (SRA), or provide an interface to work with multiple records asso-
ciated with the signed-in user, termed as a multiple record application (MRA). “Inter-
facing with HealthVault” on page 46 describes how to enable each of these record
management capabilities in detail.

HealthVault Application Programming Interface
A HealthVault application interacts with two distinct resources:

• The HealthVault Platform (https://platform.healthvault.com/platform/wildcat
.ashx)

• The HealthVault Shell (https://account.healthvault.com).

The HealthVault Platform provides XML over HTTP requests to manipulate data hos-
ted by the service, and the HealthVault Shell provides account management, user au-
thentication, and other services.

HealthVault provides a development environment for partners to develop their appli-
cations. The development environment is hosted at https://platform.healthvault-ppe
.com/latform for the HealthVault Platform and https://account.healthvault-ppe.com for
the HealthVault Shell.

HealthVault Application Programming Interface | 27

https://platform.healthvault.com/platform/wildcat.ashx
https://platform.healthvault.com/platform/wildcat.ashx
https://account.healthvault.com
https://platform.healthvault-ppe.com/latform
https://platform.healthvault-ppe.com/latform
https://account.healthvault-ppe.com

Each HealthVault application gets a unique identifier called an AppID. Developers can
get a free application identifier using the HealthVault Configuration Center (https://
config.healthvault-ppe.com).

For our example application, we are using an application ID that was
already created for a HelloWorld sample application. In Chapter 4, we
will create our own application.

HealthVault Shell Interface
The HealthVault Shell provides its functionality primarily by redirecting the end user’s
browser. The HealthVault Shell presents a secure user interface dialog in the browser.
These dialogs help with user authentication, authorization, record selection, and man-
aging the user’s experience around health data.

An application communicates its intention to the HealthVault Shell using a URI con-
struct like https://account.healthvault.com/redirect.aspx?target=<ShellTarget>&tar-
getqs=<ShellTargetParams>.

The <ShellTarget> parameter specifies the intent of the application, which could range
from prompting the user to authorize the application to letting the user view their health
items. Table 3-1 summarizes some of these targets; a detailed list of the Shell Targets
is available on the HealthVault MSDN at http://msdn.microsoft.com/en-us/library/
ff803620.aspx.

Table 3-1. HealthVault Shell redirect interface (partial list)

HealthVault Shell Target Purpose

AUTH Prompts the user to authorize himself and select record(s) to be used with an application

APPREDIRECT Redirects a user to another HealthVault application

CREATEACCOUNT Allows an application to create a new HealthVault account, and redirects to the application after
account authorization

CREATEAPPLICATION Enables a client or desktop application to create an instance of its application on the device

RECONCILE Enables an application to redirect to the HealthVault Shell for reconciling a CCR/CCD with a user
record

VIEWITEMS Allows an application to redirect a user to view or create health record items using the HealthVault
Shell

In certain circumstances, the HealthVault Shell needs to communicate with the appli-
cation. For example, if a user wants to know the privacy statement of the application
or if the user decides to not authorize permission for the application to access their
health items, the HealthVault shell would then need to communicate with the appli-
cation. HealthVault requires applications to register a “Redirect URL” for the

28 | Chapter 3: Interfacing with HealthVault

https://config.healthvault-ppe.com
https://config.healthvault-ppe.com
http://msdn.microsoft.com/en-us/library/ff803620.aspx
http://msdn.microsoft.com/en-us/library/ff803620.aspx

functionality they provide. The Redirect URL should be a secure (HTTPS) URL that
can respond to a request of this nature:

https://<ApplicationRedirectURL>?target=<ApplicationTarget>&targetqs=<Ap-
plicationTargetParameters>

The <ApplicationTarget> specifies the desired action to get serviced; it could range
from the user asking for a privacy statement to the user rejecting the application’s
authorization request. Table 3-2 summarizes some of these targets; a detailed list of the
Application Targets is available at http://msdn.microsoft.com/en-us/library/ff803620
.aspx.

Table 3-2. HealthVault Application Targets (partial list)

HealthVault Application
Target Purpose

APPAUTHSUCCESS Notifies the application that the user successfully logged in and/or granted authorization to the
application.

SIGNOUT Notifies the application that the user logged out of her HealthVault session. The application can
then do cleanup and show a sign-out page.

SELECTEDRECORD
CHANGED

Notifies the application that the user successfully changed the selected record. “Record Man-
agement: Diving Deep” on page 41 shows example of handling this.

PRIVACY Notifies the application that the user wants to view her privacy statement.

SERVICEAGREEMENT Notifies the application that the user wants to view its terms of use or service agreement.

HealthVault Platform APIs
The HealthVault Platform provides a number of APIs to enable access to application
and user data; these APIs are well documented at http://developer.healthvault.com/pa
ges/methods/methods.aspx. The following discussion will focus on the kinds of func-
tionality provided by these APIs. Table 3-3 summarizes the APIs available from the
HealthVault platform.

Table 3-3. HealthVault API summary

HealthVault
API category API names Purpose

Authentication CreateAuthenticatedSessionToken

RemoveApplicationRecordAuthorization

NewApplicationCreationInfo

NewSignupCode

GetPersonInfo

GetAuthorizedRecords

Authenticate an application and a user.

HealthVault Application Programming Interface | 29

http://msdn.microsoft.com/en-us/library/ff803620.aspx
http://msdn.microsoft.com/en-us/library/ff803620.aspx
http://developer.healthvault.com/pages/methods/methods.aspx
http://developer.healthvault.com/pages/methods/methods.aspx

HealthVault
API category API names Purpose

Reading Health Items GetThings A rich interface to retrieve health items along with an
associated digital signature or streamed BLOBs.

Adding & Updating
Health Items

PutThings

OverwriteThings

BeginPutBlob

Enable an application to add or update health item data.

Delete Health Items RemoveThings Enables an application to delete data.

Patient Connect AssociatePackageId

BeginPutConnectPackageBlob

CreateConnectPackage

CreateConnectRequest

GetAuthorizedConnectRequests

DeletePendingConnectPackage

DeletePendingConnectRequest

Enable clinical applications to create a temporary drop-
off or permanent connection for consumers without
having a web interface.

Asynchronous
Processing

GetAuthorizedPeople

GetUpdatedRecordsForApplication

GetEventSubscriptions

UpdateEventSubscription

SubscribeToEvent

UnsubscribeToEvent

Enable an application to work asynchronously with
HealthVault and create a publish/subscribe model.

Messaging SendInsecureMessage

SendInsecureMessageFromApplication

Enable applications to send messages to consumers
using these APIs.

Terminology GetVocabulary

SearchVocabulary

Enable applications to retrieve or search terminologies
hosted by HealthVault.

Application
Management

SetApplicationSettings

GetApplicationSettings

AddApplication

UpdateApplication

Enable an application to store a record-specific setting
and manage derivative applications.

Service Discovery GetServiceDefinition

GetThingType

Help with service discovery.

OpenQuery SaveOpenQuery

GetOpenQueryInfo

DeleteOpenQuery

These are hardly used, but they give the ability to run
pre-canned queries for a health record.

30 | Chapter 3: Interfacing with HealthVault

Authentication and authorization APIs

Applications authenticate themselves to the HealthVault platform using the CreateAu-
thenticatedSessionToken API. Users are authenticated through HealthVault.com, and
applications can get tokens for authorization using the HealthVault Shell redirect in-
terface at http://msdn.microsoft.com/en-us/library/ff803620.aspx.

CreateAuthenticatedSessionToken, or CAST, is the most commonly
used HealthVault API. This API provides authentication tokens for cli-
ents as well as web applications. Most HealthVault wrappers provide
an API for this purpose.

Individual methods are available for an application to fetch record and person author-
ization details. Most notably, NewApplicationCreationInfo is used by mobile clients
to receive security keys from the HealthVault platform.

Reading health items

The core function that lets an application read items from a user’s HealthVault record
is GetThings. We will discuss this API in detail in “GetThings” on page 35, but to
summarize, this API provides the ability to query HealthVault, fetch a health item with
granular details, and fetch large BLOB items, such as images.

After CreateAuthenticatedSessionToken, GetThings is the most com-
monly used HealthVault API.

Creating and updating health items

The counterpart of GetThings is PutThings. It is used by most applications to update
and create health items. We will discuss this function in detail in the section “Put-
Things” on page 39.

OverwriteThings allows applications to force overwrites on existing health items. This
API generally is not used.

HealthVault, unlike most personal health platforms, provides a mechanism to store
large files such as medical images. Applications can upload large chunks of information
by using the BeginPutBlob API. It is fairly tricky to use, but there is good documentation
on how to use it via raw XML interfaces at http://msdn.microsoft.com/en-us/library/
ff803584.aspx, as well as through the HealthVault .NET SDK at http://msdn.microsoft
.com/en-us/library/ff803576.aspx.

HealthVault Application Programming Interface | 31

http://healthvault.com
http://msdn.microsoft.com/en-us/library/ff803620.aspx
http://msdn.microsoft.com/en-us/library/ff803584.aspx
http://msdn.microsoft.com/en-us/library/ff803584.aspx
http://msdn.microsoft.com/en-us/library/ff803576.aspx
http://msdn.microsoft.com/en-us/library/ff803576.aspx

Deleting health items

DeleteThings is the one of the simplest HealthVault functions, allowing applications
to delete individual health items from a user’s record. HealthVault keeps an audit trail
of all operations, including the delete operation.

Only users can view the audit trail for health items by using HealthVault
Shell’s history functionality. Applications do not have access to the audit
trail of a health item.

Patient Connect

Several clinical applications use HealthVault to send information to consumers either
a single time or continually through backend systems. CreateConnectPackage allows
applications to create a one-time package for the user to receive in his HealthVault
account, and DeleteConnectPackage allows applications to perform cleanup as neces-
sary. On the other hand, CreateConnectRequest allows applications to establish a con-
tinual link with a patient’s HealthVault record. Applications can get the details needed
to make the link by using GetAuthorizedConnectRequests.

HealthVault will delete the validated connect requests after a period
of time. It is advised that applications calls GetAuthorizedConnectRe-
quests daily or weekly to ensure that all validated connect requests are
retrieved.

Asynchronous processing

HealthVault provides several mechanisms for an application to perform asynchronous
processing. GetAuthorizedPeople gets information about the people that are author-
ized to use the application. This function paginates results using a PersonID cursor and
provides a way to query authorizations created after a given point in time. Applications
have found this function useful to send email updates and reminders to their subscrib-
ers. Similarly, GetUpdatedRecordsForApplication retrieves a list of records for an ap-
plication with things that have been updated since a specified date.

HealthVault provides a powerful publish/subscribe mechanism. Applications can sub-
scribe to events around create, read, update, and delete operations on HealthVault
thing types. These events are registered with the platform using the SubscribeToEvent
method. In addition to defining the subscribe event, the application registers a secure
URI to which the HealthVault platform publishes events. The HealthVault eventing
mechanism is documented in detail with appropriate examples at http://msdn.microsoft
.com/en-us/library/gg681193.aspx.

32 | Chapter 3: Interfacing with HealthVault

http://msdn.microsoft.com/en-us/library/gg681193.aspx
http://msdn.microsoft.com/en-us/library/gg681193.aspx

The InstantPHR application from GetReal Consulting (http://www.getrealconsulting
.com/instantphr/) is a good example of an application that uses HealthVault’s asyn-
chronous processing and eventing in particular to notify users of changes in their health
records.

Messaging

Applications using HealthVault can send email messages to HealthVault users. The
SendInsecureMessageFromApplication API allows the application to choose the sender
address and specify its domain.

The HealthVault Messaging APIs are insecure. It would be better for an
institution to set up the Direct email protocol and send secure email to
the HealthVault user. HealthVault users get free Direct email addresses.

Terminology

Terminologies, also known as vocabularies, are a list of codes associated with well-
known terms in a particular domain. HealthVault hosts numerous terminologies. Most
of these are tagged as wc and are created by Microsoft. However, several third-party
terminologies from the National Library of Medicine, USDA, HL7, and other institu-
tions are also hosted.

You can use the PowerShell HealthVault plug-in to verify that Health-
Vault hosts approximately 150 terminologies:

PS C:\> (Get-Vocabulary).Count
150

The terminologies can be accessed using the GetVocabulary API. Accessing the termi-
nologies does not require user authentication; these are application-only APIs. Some
terminologies hosted by HealthVault, such as RxNorm, are huge. RxNorm is a termi-
nology that attempts to normalize all medication names and contains more than
200,000 entries. The SearchVocabulary API provides an XML interface as well as a
JSON interface to search vocabularies. In fact, one can get an auto-completion text box
for entering a medication by using SearchVocabulary on RxNorm. The HealthVault
user interface provides auto-completion for medications, conditions, and other health
item types using the SearchVocabulary API.

Application management

The SetApplicationSettings and GetApplicationSettings APIs provide a way for appli-
cations to store and retrieve their record-specific settings in HealthVault. Information
such as theme selection by a particular user or order of authorized records can be stored

HealthVault Application Programming Interface | 33

http://www.getrealconsulting.com/instantphr/
http://www.getrealconsulting.com/instantphr/

in application settings. The multiple record management (MRA) functionality detailed
later in this chapter can be implemented using these APIs.

HealthVault also allows a certain kind of application called a Master Application to
create and manage other applications. Master Applications use the AddApplication and
UpdateApplication functions to manage the “child” applications they create.

There are very few Master Applications in the HealthVault ecosystem.
The GoLive or publication bar for these applications is high. Once an
application of this type is created, it cannot be deleted.

Service discovery

The GetServiceDefinition function provides access to all the details of HealthVault
applications, including Methods, Schemas, and Configurations for the service. Using
GetServiceDefinition, an application can programmatically discover HealthVault ser-
vice information and keep it up to date.

You can use the PowerShell HealthVault plug-in (Example 3-2) to ex-
plore GetServiceDefinition.

Example 3-2. Using GetServiceDefinition in HvPosh

PS C:\Windows\system32> Get-ServiceDefinition

HealthServiceUrl : https://platform.healthvault-ppe.com/platform/wildcat.ashx
Version : 1.9.2679.7415
HealthServiceShellInfo : Microsoft.Health.HealthServiceShellInfo
Assemblies : {}
Methods : {AddApplication, AllocatePackageId, AssociateAlternateId,
 BeginPutBlob...}
IncludedSchemaUrls : {https://platform.healthvault-ppe.com/platform/XSD/types.xsd,
 https://platform.healthvault-ppe.com/platform/XSD/auth.xsd,
 https://platform.healthvault-ppe.com/platform/XSD/application.xsd,
 https://platform.healthvault-ppe.com/platform/XSD/vocab.xsd...}
ConfigurationValues : {[allowedDocumentExtensions, .avi,.bluebutton,.bmp,.ccd,.ccr,.cda,
 .doc,.docm,.docx,.eml,.gif,.jpg,.mp3,.one,.pdf,.png,.ppsm,.ppsx,
 .ppt,.pptm,.pptx,.pub,.rpmsg,.rtf,.scp,.tif,.tiff,.txt,.vsd,.wav,
 .wma,.wmv,.xls,.xlsb,.xlsm,.xlsx,.xltx,.xml,.xps],
 [autoReconcilableTypes, 1e1ccbfc-a55d-4d91-8940-fa2fbf73c195,
 9c48a2b8-952c-4f5a-935d-f3292326bf54], [blobHashBlockSizeBytes,
 2097152], [blobHashDefaultAlgorithm, SHA256Block]...}

34 | Chapter 3: Interfacing with HealthVault

www.allitebooks.com

http://www.allitebooks.org

Open Query

Open Query is an insecure mechanism for running preconfigured queries invoked with
an identifier on HealthVault data. For example, the following query:

https://platform.healthvault.com/platform/openquery.ashx?id=9C4C77CF-1DF0
-4c41-BD3D-EC9232B5BC8A

invokes a saved request that corresponds to the specified identifier. Only queries as-
sociated with GetThings can be saved with SaveOpenQuery. The invocation of the
open query doesn’t require authentication and authorization, and the HealthVault
team discourages its use and might remove it in future updates.

Read and Write API: Diving Deep
The most important HealthVault functions an application should become familiar with
are GetThings and PutThings. In the following sections we will dive deeper in to each
of these functions, discuss their treatment in the HealthVault .NET SDK, and see some
examples. The code in this chapter can be a starting point for the more complex ap-
plications introduced in the rest of this book.

GetThings

The best way to understand GetThings API is to look at the XML that an application
would send to HealthVault platform to request a set of things (Example 3-3).

Example 3-3. GetThings XML request

<wc-request:request xmlns:wc-request="urn:com.microsoft.wc.request">
 <auth>...</auth>
 <header>...</header>
 <info>
 <group name="GetWeights" max="10">
 <id>d8460ea8-50d4-4c30-ad92-49d1a1020b52</id>
 <filter>
 <type-id>d8460ea8-50d4-4c30-ad92-49d1a1020b52</type-id>
 <thing-state>Active</thing-state>
 <created-app-id>1F82D899-22E0-43F2-A645-59EDB6927645</created-app-id>
 <xpath>/thing/data-xml/weight/value/kg[.>=60]</xpath>
 </filter>
 <format>
 <section>core</section>
 <xml />
 </format>
 <current-version-only>true</current-version-only>
 </group>
 </info>
</wc-request:request>

HealthVault Application Programming Interface | 35

https://platform.healthvault.com/platform/openquery.ashx?id=9C4C77CF-1DF0-4c41-BD3D-EC9232B5BC8A
https://platform.healthvault.com/platform/openquery.ashx?id=9C4C77CF-1DF0-4c41-BD3D-EC9232B5BC8A

Each GetThings request can have multiple queries called a group (Line). Each group
is identified by its name. The response from HealthVault combines the items returned
by the group; group-name is used to index items returned for a particular query group.
The group element can take one or more attributes to control the results. The attribute
used in the previous example is max, which tells the HealthVault platform to return the
top 10 items for this query.

Each query group can contain <filter> subelements to return particular items with a
specific identification. Example 3-3 requests items with a specific type-id (Line). The
d84..52 identifier is associated with a particular instance of the weight type. Multiple
IDs can be specified in each request. Other elements, such as client identifiers and thing
keys, can also be used instead of an ID. The filter also restricts results to those that
have an active thing-state (Line) and were created using the Withings application
(Line). Items also can be filtered using XPath; on Line we are looking for weight
items whose values are greater than 60 kg, maybe because we know that the scale was
misconfigured during this time. To sum up, the query in Example 3-3 returns the core
XML sections of the top 10 weight elements that were created by the Withings appli-
cation and have values greater than 60 kg.

The format and quantity of information returned by the GetThings query can be con-
trolled by format specifiers. Using the section tag, we can specify that we just want the
core elements of the requested thing types (Line). Other section tags could specify
digital signatures, audit information, or effective permissions for the request. Using the
xml tag (Line), one can run an XSL transform on the thing types or choose from
existing transforms available for the type. Our xml tag is empty, so no transform is run
in the sample query. We will discuss MTT, STT, and other transforms in Chapter 4.

An application can request only the current versions of HealthVault thing types (Line
), although the platform does store older versions of the data.

To complete the discussion on the format of the GetThings request, note that I have
collapsed the auth and header tags at the beginning of the code block. These elements
specify the authorization information for the method and various other header ele-
ments, such as the method name, final-xsl, version, user, and application tokens.

Table 3-4 summarizes the querying ability of the GetThings method. To learn more,
please refer to the methods schema documentation at http://developer.healthvault.com/
pages/methods/methods.aspx and associated HealthVault SDK reference at http://msdn
.microsoft.com/en-us/library/hh672196.aspx.

36 | Chapter 3: Interfacing with HealthVault

http://developer.healthvault.com/pages/methods/methods.aspx
http://developer.healthvault.com/pages/methods/methods.aspx
http://msdn.microsoft.com/en-us/library/hh672196.aspx
http://msdn.microsoft.com/en-us/library/hh672196.aspx

Table 3-4. GetThings query parameters

Search Criteria .NET SDK name XML element Name description

Group Attribute Name name Identifies the group

Max max Maximum number of
things to be returned

Max-Full max-full Maximum number of
full things

Identifiers ClientItemIds client-thing-id Client ID of the thing

ItemIds Id Thing instance ID

ItemKeys key Thing key

Filters EffectiveDateMax

EffectiveDateMin

UpdatedDateMax

UpdatedDateMin

eff-date-max

eff-date-min

updated-date-max

updated-date-min

Various thing filters

CreatedDateMax

CreatedDateMin

created-date-max

created-date-min

CreatedPerson

UpdatedPerson

created-person-id

updated-person-id

CreatedApplication

UpdatedApplication

created-app-id

updated-app-id

XPath xpath

States thing-state

Formats View Section Section to be retrieved
(core, audits, effective
permissions, digital
signatures)

Xml Name of the transform
to apply

type-version-format Version ID of the type
format

blob-payload-request Sequence of blob-
filters (BLOB
names) and blob-
format-spec (infor-
mation, inline or
streamed)

Versions CurrentVersionOnly current-version-only

HealthVault Application Programming Interface | 37

Now that we understand the paradigm through which one can access things from
HealthVault using the GetThings methods, let’s look at how we can utilize querying to
display weight values in our application.

Our application currently fetches all the weight readings. However, we want to be able
to explore the readings on a graph one week at a time. Example 3-4 shows how we can
do it. As Line shows, we begin by creating a searcher object for the record we are
working with, and then create a new filter for the weight type (Line). Once we have
the filter, we add properties to filter the value so that we get only those weight items
that are dated for the previous week using EffectiveDateMin (Line).

Once the query is constructed, we issue a GetThings request to HealthVault (Line).
Because we have only one group, we index for the results in the first set of matching
results (GetMatchingItems()[0]).

Example 3-4. Using the EffectiveDateMin filter to get weekly data

 protected void Btn_ShowWeeklyWeightReadings_Click(object sender, EventArgs e)
 {
 HealthRecordSearcher searcher = PersonInfo.SelectedRecord.CreateSearcher();
 HealthRecordFilter filter = new HealthRecordFilter(Weight.TypeId);
 filter.EffectiveDateMin = DateTime.Now.Subtract(new TimeSpan(7, 0, 0, 0));
 searcher.Filters.Add(filter);

 HealthRecordItemCollection items = searcher.GetMatchingItems()[0];

 TimeSeries t = new TimeSeries("Weight Graph");

 foreach (Weight item in items)
 {
 //Assuming all data is in one unit
 t.SeriesValue.Add(new TimeSeries.TimeSeriesValues(
 item.EffectiveDate, item.Value.DisplayValue.Value));
 }
 TimeplotView.Plots.Add(t);
 TimeplotView.DataBind();
 TimeplotView.Visible = true;
 }

After getting the matching items, we create a new TimeSeries (Line) and add each
item individually to the series. The TimeSeries.ascx.cs file contains an implementation
of this class. You can choose to use your own implementation with any other graphing
library. In this example, I’m using the Flot JavaScript graphing library (http://code.goo
gle.com/p/flot/). TimeplotView (Line) is an instance of a user control that has a Flot
graphing object.

In the last three lines we add the constructed TimeSeries to the graphing object and
make it visible on the screen. Figure 3-3 shows the results of running this query on the
selected record.

38 | Chapter 3: Interfacing with HealthVault

http://code.google.com/p/flot/
http://code.google.com/p/flot/

PutThings

As with GetThings, we’ll begin our coverage of the PutThings API by looking at the
XML an application would send to HealthVault to create or update a set of things.
Compared to GetThings, this is a simple request (Example 3-5).

Example 3-5. PutThings XML sample

<wc-request:request xmlns:wc-request="urn:com.microsoft.wc.request">
 <auth>
 <hmac-data algName="HMACSHA1">IB7cdWXFNKE+xhrvE5poT5ulueE=</hmac-data>
 </auth>
 <header>...</header>
 <info>
 <thing>
 <type-id>0a5f9a43-dc88-4e9f-890f-1f9159b76e7b</type-id>
 <thing-state>Active</thing-state>
 <data-xml>...</data-xml>
 </thing>
 </info>
</wc-request:request>

Each PutThings request can add instances of a thing (Line). Each thing has a type-
id (Line) that identifies what kind of data item it is. In Example 3-5, the thing is of
type Weight. Because we are adding a weight thing, the data-xml (Line) part of this
request needs to adhere to the schema for this particular type. In Chapter 4, we will
discuss the thing-type schema. The important aspect of using this schema is to make
sure to use a unique thing-id. In case of an update, the thing-id is the instance of
weight you want to update. Additionally, the thing-version-id element should be the
version ID of the element that is currently in the HealthVault. HealthVault offers op-
timistic concurrency, which means that if an application tries to update an old thing
that has already been updated by some other application, its version ID will have
changed and the new put won’t succeed. The thing-version-id is critical to make sure
one update does not override another.

Figure 3-3. Filtering weight data for the week

HealthVault Application Programming Interface | 39

Let’s modify our application to add a new Weight element to HealthVault. On the
Default.aspx page, we construct a text box to enter weight in pounds and associate a
“save” button with it, with the action as Btn_SubmitWeight_Click.

Example 3-6 illustrates how we will go about saving a new element to HealthVault.
Notice the HealthVault-specific DateTime field (HealthServiceDateTime) on Line and
a way to differentiate the actual WeightValue from DisplayValue on Lines – . Health-
Vault enables health items to have a flexible date and time. It also stores measurements
in a canonical format and allows users to see them in the format in which they entered
the data.

In the case of Weight, it is stored canonically in kilograms, but we assume the user prefers
to enter and display the weight in pounds. So, on Line we multiply the value entered
by the user by 1.6. The DisplayValue of the weight is in pounds (lbs), which the ap-
plications working with this type can use to show the value to the user.

Example 3-6. PutThings example

 protected void Btn_SubmitWeight_Click(object sender, EventArgs e)
 {
 double weight = double.Parse(Txt_Weight.Text);
 Weight w = new Weight(
 new HealthServiceDateTime(DateTime.Now),
 new WeightValue(
 weight * 1.6, new DisplayValue(weight, "lbs", "lbs")));

 PersonInfo.SelectedRecord.NewItem(w);
 }

Having a well-formed weight health item, we can send it to HealthVault by calling the
NewItem method in the HealthVault .NET SDK. Under the hood, the NewItem call issues
a PutThings request to the HealthVault platform. The HealthVault SDK also has an
UpdateItem method, which saves changes to an existing item using the PutThings
method.

To update an existing item, one essentially does the same thing as shown, except you
use the UpdateItem SDK method instead of NewItem.

The code in Java shown in Example 3-7 is equivalent to the .NET in
Example 3-6. The OnlineRequestTemplate is generated using the li-
brary’s SimpleRequestTemplate, and it sets an appropriate User-
AuthToken and PersonId on the request.

40 | Chapter 3: Interfacing with HealthVault

Example 3-7. Reading weight using the Java SDK

public void PutThing() throws Exception
 {
 long weightValueInKg = 80;

 DisplayValue dv = new DisplayValue();
 dv.setUnits("lb");
 dv.setUnitsCode("lb");
 dv.setValue(weightValueInKg/2.2);

 WeightValue wv = new WeightValue();
 wv.setKg(weightValueInKg);
 wv.setDisplay(dv);

 Weight weight = new Weight();
 weight.setValue(wv);
 weight.setWhen(DateTime.fromCalendar(Calendar.getInstance()));

 Thing thing = new Thing();
 thing.setData(weight);

 SimpleRequestTemplate requestTemplate = new SimpleRequestTemplate(
 ConnectionFactory.getConnection());
 requestTemplate.setPersonId("75ac2c6c-c90e-4f7e-b74d-bb7e81787beb");
 requestTemplate.setRecordId("8c390004-3d41-4f5c-8f24-4841651579d6");

 PutThingsRequest request = new PutThingsRequest();
 request.getThing().add(thing);

 PutThingsResponse response =
(PutThingsResponse)requestTemplate.makeRequest(request);
 }

Record Management: Diving Deep

Single-record application (SRA)

For an application working with a single record, HealthVault provides a simple mech-
anism to switch to another record using a switch record hyperlink. In order for an
application to switch to a different record, the application needs to tell the HealthVault
Shell to allow the user to switch the record and have a preconfigured receiving end
point for the HealthVault Shell to send the user back to a notification to change the
selected record, termed a SELECTEDRECORD. The application redirects the user with a
hyperlink URL like the one shown in the following example. The AUTH target implies
an authentication request, the appid implies the identifier associated with the calling
application, and the forceappauth string makes sure that the user is able to change the
record.

https://account.healthvault-ppe.com/redirect.aspx?target=AUTH&targetqs=appid
%3D82d47a5a-d435-4246-895a-746c475090d3%26forceappauth%3Dtrue

HealthVault Application Programming Interface | 41

https://account.healthvault-ppe.com/redirect.aspx?target=AUTH&targetqs=appid%3D82d47a5a-d435-4246-895a-746c475090d3%26forceappauth%3Dtrue
https://account.healthvault-ppe.com/redirect.aspx?target=AUTH&targetqs=appid%3D82d47a5a-d435-4246-895a-746c475090d3%26forceappauth%3Dtrue

Using the HealthVault .NET Web SDK, this can be done with following line of code.
The last variable enables applications to pass any optional parameters that need to pass
through the URL redirection:

this.RedirectToShellUrl("AUTH", "appid=" + this.ApplicationId.ToString() +
"&forceappauth=true", "passthroughParam=optional");

As a simple example, Figure 3-4 shows how one can associate the Switch Account
functionality to an existing HealthVault application. Enabling this functionality in-
volves two steps. First is to create an appropriate URL to send the user to HealthVault;
Example 3-8 shows the associated code. The second step in this process is to create a
receiving URL so that HealthVault can send the user back to your application. Exam-
ple 3-9 shows the associated code required to configure a SelectedRecordChanged end-
point page in the HealthVault SDK’s web.config file. These two steps are relatively
simple and can be accomplished with any programming language. “HealthVault Shell
Interface” on page 28 explains the HealthVault shell interface, and “HealthVault SDK
and Open Source Libraries” on page 43 lists the available libraries.

Figure 3-4. Adding the ability to switch accounts

In Example 3-8, notice that in Line , we are using the RedirectToShellUrl HealthVault
SDK functionality to enable creating the appropriate redirection URL for
HealthVault.

Example 3-8. Adding a redirect URL in Default.aspx.cs

 protected void Lnk_SwitchAccount_Click(object sender, EventArgs e)
 {
 this.RedirectToShellUrl("AUTH", "appid=" + this.ApplicationId.ToString() +
 "&forceappauth=true", "passthroughParam=optional");
 }

In Example 3-9, we are creating a key in the web.config file to associate a receiving end
point for the selected “record changed” action. In the next section, we explain the
HealthVault shell interface in detail.

Example 3-9. Handling a SelectRecordChanged target in web.config

 <!-- Handling selected record changed -->
 <add key="WCPage_ActionSelectedRecordChanged" value="default.aspx"/>

42 | Chapter 3: Interfacing with HealthVault

Multiple-record application (MRA)

The Mayo Clinic Health Manager works with all the records associated with the ac-
count and functions as a multiple-record application (MRA). As illustrated in Fig-
ure 3-5, I can switch from my record to my mom’s record seamlessly within the Mayo
Clinic application. This flexibility can be achieved in an application by including
IsMRA=true while communicating with HealthVault Shell’s Authentication (AUTH)
mechanism, as detailed in “HealthVault Shell Interface” on page 28. Using this capa-
bility, the application can then authenticate multiple records at the same time and make
requests to access health information for each one of them. For the application to re-
member the previous active record before switching to any associated record, it should
store the current record identifier in the application settings associated with the person
before making the switch.

Figure 3-5. An application working with multiple records

HealthVault SDK and Open Source Libraries
The HealthVault team offers a .NET SDK available at http://www.msdn.com/health
vault. Additionally, a number of open source libraries offer higher-level abstractions
for interacting with the HealthVault platform. This section outlines the level of ab-
stractions available in each of these libraries.

HealthVault .NET SDK
The HealthVault .NET SDK is the official software development kit available from
Microsoft for working with the HealthVault platform. The HealthVault team maintains
this SDK and provides interfaces for all HealthVault interfaces.

This SDK does not support the HealthVault Client APIs for mobile phones, but it does
support the HealthVault Client APIs for Windows Applications. The Shell Redirect
Interface is supported, but not all capabilities are supported. Notably, this is the only
SDK that supports signing health items and streaming large files to HealthVault.
HealthVault uses Azure, Microsoft’s cloud storage service, to store these large files.

HealthVault SDK and Open Source Libraries | 43

http://www.msdn.com/healthvault
http://www.msdn.com/healthvault

Throughout this book, we will be looking at code that uses this SDK, and refer to it as
the HealthVault .NET SDK. Officially each major release of this SDK is supported for
two years, and the SDK is currently compatible with .NET framework version 2.0.

The source code of this SDK is available for reference, but the license terms don’t allow
modifications to the SDK.

HealthVault Open Source Java SDK
This is the second most popular SDK for the HealthVault platform. The HealthVault
open source Java SDK is available under a very permissive open source license at http:
//healthvaultjavalib.codeplex.com. This SDK was developed by members of the Health-
Vault team and provides interfaces for most HealthVault interfaces. The source code
of the SDK is available under the Microsoft Public License, and modifications and
redistribution of this code are permitted for commercial and noncommercial
purposes.

Notably, this SDK supports the HealthVault Client APIs for Android mobile phones,
and it provides a complete abstraction layer for Shell redirect interfaces. But it does not
support Patient Connect, asynchronous processes, signing of health items, or streaming
large files to HealthVault. However, there are samples or documentation available for
signing and streaming.

Additionally, the SDK provides an object wrapper for thing types using code generation
tools. If these classes don’t meet your needs, you can use the method schemas and
create suitable wrappers.

This SDK is fully available for JDK 1.6; however, raw authentication is supported for
JDK 1.4. The SDK is community supported, and patches for bug fixes or missing func-
tionality are welcomed.

Certificate Management
For the .NET SDK and Windows platform, the HealthVault SDK offers the Application
Manager tool to make it easy to work with public and private keys for your application.
In the case of Java, the best way to handle certificates for the application is to create
one using the keytool from the Java SDK.

The following keytool command creates a public and private key pair for your appli-
cation in the Java keystore:

keytool -genkeypair -keyalg RSA -keysize 2048 -keystore keystore -alias
java-wildcat -validity 9999

Note that the algorithm used is RSA and the keysize is 2 kilobytes; it’s recommend to
have the keysize as large as your installation supports. The generated key pair is valid
for 9,999 days, and you can choose to configure it. The name of the key pair is java-
wildcat, which needs to be added to the hv-application.properties file in the Java SDK.

44 | Chapter 3: Interfacing with HealthVault

http://healthvaultjavalib.codeplex.com
http://healthvaultjavalib.codeplex.com

The HealthVault platform needs to have the certificate associated with the public key
of your application. The keytool can also be used to export this certificate. The fol-
lowing is a sample command to do this:

keytool -export -alias java-wildcat -keystore keystore > my-pub.cer

Here java-wildcat is the name of the application’s key pair and it’s exported as my-
pub.cer.

HealthVault Open Source iOS Mobile Library
The HealthVault team provides an open source and community-supported library for
the iOS platform available at https://github.com/microsoft-hsg/HealthVault-Mobile-iOS
-Library. This library provides basic functionality to authenticate mobile clients. It
doesn’t provide support for any additional HealthVault features.

Applications such as iTriage (http://www.itriagehealth.com/) have used this library to
create HealthVault iOS applications.

This library is available under the Apache 2.0 open source license, and modifications
and redistribution of this code are permitted for commercial and noncommercials pur-
poses.

HealthVault Open Source Windows Phone Library
Like the iOS library, the Windows Phone library at http://healthvaultwp7.codeplex
.com/ provides an authentication abstraction for Windows Phone mobile clients. Ap-
plications such LiveScape (http://livescape.mobi/) have used this library to create
HealthVault-enabled Windows Phone applications.

This library is available under the Apache 2.0 open source license, and modifications
and redistribution of this code are permitted for commercial and noncommercials pur-
poses.

In Chapter 5, we will walk through a detailed application that shows how to work with
HealthVault mobile interfaces.

HealthVault Open Source Python, PHP, and Ruby Library
The HealthVault team has helped create Python, PHP, and Ruby libraries. These li-
braries are primarily driven by partners and provide the basic authentication layer for
working with the HealthVault service. Applications such as TrailX (Python), Teladoc
(PHP), and podfitness (Ruby) have used these libraries to create successful HealthVault
applications.

HealthVault SDK and Open Source Libraries | 45

https://github.com/microsoft-hsg/HealthVault-Mobile-iOS-Library
https://github.com/microsoft-hsg/HealthVault-Mobile-iOS-Library
http://www.itriagehealth.com/
http://healthvaultwp7.codeplex.com/
http://healthvaultwp7.codeplex.com/
http://livescape.mobi/

These libraries are available under the Apache 2.0 open source license, and modifica-
tions and redistribution of this code are permitted for commercial and noncommercial
purposes.

Table 3-5 summarizes the functionality available in various HealthVault libraries.

Table 3-5. HealthVault SDK and open source libraries

SDK library Distribution
Supported
platform Features available License and support

HealthVault .NET MSDN Windows XP,
Vista, 7 (.NET 2.0)

All HealthVault features Microsoft Reciprocal License
(MS-RL)

Microsoft supported

Java Codeplex JDK 1.6

JDK 1.4 (limited)

Authentication, method
wrappers, thing-type
wrappers

Microsoft Public License (MS-PL)

Community support

Java Codeplex Android (1.6+) Authentication, thing-type
wrappers

MS-PL

Community support

iOS GitHub iOS 4.0+ Mobile authentication Apache 2.0

Community Support

Windows Phone Codeplex Windows Phone
7+

Mobile authentication Apache 2.0

Community support

Python Google Code Python 2.7 Authentication (basic) Apache 2.0

Community support

PHP SourceForge PHP Authentication (basic) Apache 2.0

Community support

Ruby RubyForge Ruby Authentication (basic) Apache 2.0

Community support

Interfacing with HealthVault
We touched on the HealthVault APIs and interface; these interfaces are usually com-
bined in multiple ways to create integration architectures with HealthVault. This sec-
tion discusses high-level options for integrating applications and devices with Health-
Vault. This discussion should be useful for understanding different architectural
patterns available for interfacing devices and applications with HealthVault.

46 | Chapter 3: Interfacing with HealthVault

Device Connectivity
As of this writing, more than 80 types of devices connect with HealthVault. These
devices range from pedometers and weighing scales to blood pressure meters and pulse
oximeters. Figure 3-6 shows the various interfaces available for a device to connect with
HealthVault.

Figure 3-6. Interfaces for device integration with HealthVault

Currently, a large number of devices interface with HealthVault through HealthVault’s
Windows client utility, called HealthVault Connection Center. HealthVault Connec-
tion Center enables device integration using the Windows Portable Devices (WPD)
standard.

If a device already has a Windows device driver, the appropriate data can be commu-
nicated to HealthVault using the WPD standard. The HealthVault team has a device
development kit (DDK) that can be used for this integration, but its use lies outside the
scope of this book.

When there are no WPD-supported elements for a device, it can still integrate with
HealthVault through the HealthVault Connection Center by sending and receiving
HealthVault XML directly. Chapter 4 describes the HealthVault’s XML data types. This
approach is referred to as HealthVault XML in Figure 3-6. The HealthVault DDK has
an example of how to go about configuring such an interface.

In addition to interfacing devices through the HealthVault Connection Center, device
manufacturers can write their own client application to enable data to upload to
HealthVault using the HealthVault Client SDKs. ECG Glove, which is available at http:
//ineedmd.com/, is a good example of a device that sends information to HealthVault
using this interface.

Devices such as Fitbit and Withings actually take integration a step further and interface
with HealthVault directly through the cloud using HealthVault APIs.

Interfacing with HealthVault | 47

http://ineedmd.com/
http://ineedmd.com/

Continua

Continua Health Alliance is a nonprofit, open industry organization of health care and
technology companies joining together to improve the quality of personal connected
health care. With more than 230 member companies around the world, it is the leading
consortium for personal health care devices. HealthVault has announced that support
for Continua drivers will be available in the future. When this happens, devices will be
able to play well in the HealthVault and Continua ecosystem, either by using the
HealthVault Web API or by converting data into IEEE 11073 formats.

Continua is not a standards body, but has identified a set of standards that together
enable a personal connected health care ecosystem. At its heart is the IEEE 11073 Per-
sonal Health Data Standard, which dictates various data standard profiles for devices
ranging from blood pressure cuffs to weighing scales. IEEE 11073 is a data standard
and is independent of transport.

On the transport layer, Continua supports USB personal Health Class devices, Blue-
tooth health care device profiles, and other transports as they become compliant in the
future.

Figure 3-7 shows the interfaces supported by Continua.

Figure 3-7. Continua-complaint devices

48 | Chapter 3: Interfacing with HealthVault

Application Connectivity
As of this writing, there are more than 300 HealthVault applications are live in the
United States. HealthVault applications work with the HealthVault personal health
data store by using various APIs over the HTTP protocol, as we have seen with Put-
Things and GetThings. Figure 3-8 depicts various ways in which applications have
interfaced with HealthVault, depending on their use case.

Figure 3-8. Connectivity types with HealthVault

The following discussion goes into detail about various modes of connecting with
HealthVault, which depend on the applications’ needs as they pertain to the underlying
platform, user consent, authentication, and user interface.

Online HealthVault application

In addition to data storage, native HealthVault applications can use HealthVault for
user authentication and authorization. Any data accessed using this mode requires the
user’s explicit permission each time the application interacts with HealthVault.

Mayo Clinic Health Manager, https://healthmanager.mayoclinic.com/, is a native
HealthVault application.

Interfacing with HealthVault | 49

https://healthmanager.mayoclinic.com/

Offline HealthVault application

Applications can choose to simply store and access data from HealthVault without
using HealthVault as a primary authentication and authorization entity.

FitBit (http://www.fitbit.com/) is a good example of an offline application. It links a
FitBit account with a HealthVault user record and account, and then interacts with the
health items therein.

Drop Off Pick Up (DOPU) is analogous to sending a secured fax to a
HealthVault user. The data flow in this architecture is one-way. The application drops
the data into HealthVault, and the user picks it up.

If a consumer happens to visit a health care institution and does not intend to have an
ongoing relationship with the care entity, DOPU provides an effective mechanism for
the institution to provide documents.

Some entities don’t intend to maintain a public-facing website but would
like to have an ongoing relationship with their users through HealthVault. Patient
Connect provides an ideal mechanism for such institutions. Via this mechanism, the
user authorizes an application to read or write data to her HealthVault record through
a user interface on HealthVault.com.

Clinical systems such as electronic medical records (EMRs) commonly use this model
to connect to HealthVault, which is why this model is called Patient Connect. It should
be noted, however, that this model is not limited to clinical systems and can be used
by any backend system.

Client Connectivity, referred to as Software on Device Authentication
(SODA), enables applications to run on client platforms like desktop or mobile device,
outside of the web browser. Every time a user installs a SODA application, the user
must authorize that installation of the application to access his HealthVault record. For
instance, if the user is running the same application on both his laptop and desktop,
he will need to authorize both installations to access his HealthVault record.

A number of mobile health applications (such as iTriage, LiveScape, and Weight4Me)
use this architecture. In Chapter 5 we will develop a mobile application and do a de-
tailed walkthrough of the APIs available to use this type of interface.

Direct integration

The Direct project, formerly known as NHIN Direct, is collaboration between the
public and private sector to develop a simple, secure, and standards-based method to
send encrypted health information directly to known, trusted recipients over the In-
ternet. This project aims at replacing the fax machine in health care. Providers are able
to send documents to each other securely.

Drop Off Pick Up.

Patient Connect.

Client Connectivity.

50 | Chapter 3: Interfacing with HealthVault

http://www.fitbit.com/
http://healthvault.com

Direct integration is the easiest kind of integration with HealthVault, and trusted ap-
plications can actually send and receive documents to and from HealthVault using a
Direct-enabled email address. HealthVault users get an email address in the format
<handle>@direct.healthvault.com. As part of its Direct implementation, HealthVault
automatically adds any recognized attachments (for example, CCDs or CCRs) to the
user’s record.

Google Health was able to interface with HealthVault using the Direct integration. For
HealthVault to accept emails from a new direct domain, the application needs to
register the public key with HealthVault. If the application sends email to
newuser@direct.healthvault.com with the user’s email address in the subject line,
HealthVault stores the email in a password-encrypted package and sends an email to
the user to associate the dropped-off information to their record. The user can also sign
into her HealthVault record and read the message in the HealthVault Message Center.

Application Provisioning and master applications

Application Provisioning refers to providing an application in HealthVault’s produc-
tion environment, which the HeathVault team does for all of the connectivity models
discussed so far. However, in special cases it provides the ability for applications known
as “master” applications to provision individual HealthVault “child” applications.

Frequently, solution providers develop HealthVault integration for common scenarios
such as uploading lab information or sending clinical care record information from a
facility’s EMR system. These solutions are deployed separately for each institution. The
HealthVault team delegates the responsibility for creating these individual application
instances to the solution provider through the Master Application mechanism.

Thus, for instance, if we wanted to deploy an individual instance of a Weight Tracker
application per institution, we would use the AddApplication API available from the
HealthVault Platform. “Further Resources” on page 99 has links to examples and
resources about how to create a child application.

Interfacing with HealthVault | 51

mailto:newuser@direct.healthvault.com

CHAPTER 4

Using the HealthVault Data Ecosystem
for Self-Tracking

“Data is a precious thing and will last longer than the
systems themselves.”

—Tim Bernes-Lee

The Quantified Self (http://quantifiedself.com/about/) community enables self-knowl-
edge through self-tracking. Self-tracking, when powered by appropriate data analysis,
has been proven to trigger behavioral change. The act of self-tracking creates awareness
and feedback. The hunger for, and success of, self-knowledge is evident from the grow-
ing number of self-quantifiers (currently 6,000+ in 41 cities and 14 countries).

Self-knowledge is possible only with a substantial collection of data about oneself.
HealthVault provides more than 80 granular data types that enable tracking data re-
garding everything from daily exercise to genome sequences. In this chapter, we will
build upon the understanding of the HealthVault API covered in Chapter 3 and extend
it to develop a data-intensive self-quantifying application. Through the Quantified Self
application, we will gain an understanding of HealthVault data types and application
development.

A Self-Experimentation Application
In Chapter 1 we analyzed weight data, and in Chapter 2 we worked with sleep infor-
mation and correlated it with exercise. HealthVault offers a data type for tracking emo-
tional state and daily dietary intake as well. Let’s consider building a simple Quantified
Self utility that helps a user keep track of his emotional state, daily dietary intake,
weight, sleep, and exercise. Tracking these types of data and their relation to each other
would allow our user to form and prove interesting hypotheses such as: “I’m happier
if I sleep well, and I sleep well if I drink less alcohol and exercise sufficiently.”

53

http://quantifiedself.com/about/

Self-tracking fosters awareness and a feedback loop; numerous participants in the
Quantified Self movement have attributed improvement to insights generated by the
data and the act of data collection. Our Quantified Self application will aim to emulate
this pattern. Figure 4-1 summarizes the data pattern we wish to capture.

Figure 4-1. Data dashboard for Quantified Self application

Setting Up a New HealthVault Application
Let’s start by making a Quantified Self application with a unique application identifier.
In this chapter we will use the HealthVault .NET SDK in order to focus on under-
standing the HealthVault data types. However, as “HealthVault SDK and Open Source
Libraries” on page 43 outlines, you can use other languages and HealthVault libraries
as well.

The first step in creating the application is to download and install the HealthVault
SDK from MSDN (http://msdn.microsoft.com/en-us/healthvault). After installing the
SDK, you will notice a utility called Application Manager. From the Windows Start
button, this utility can be accessed through All Programs→Microsoft Health-
Vault→SDK→HealthVault Application Manager.

Once you open the Application Manager, you will notice the Create New Application
button, which you should use now to create a new application. As Figure 4-2 shows,
the new application creation process asks you for an application name and other details,
and creates a Visual Studio solution with the application starting point.

54 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

http://msdn.microsoft.com/en-us/healthvault

The second step in the process is to register your application. Application Manager
automatically opens a new browser window that signs you into the HealthVault Ap-
plication Configuration utility (https://config.healthvault.com) and creates the appro-
priate application in the HealthVault Development environment. The development
environment is frequently referred to as PPE, which stands for preproduction environ-
ment. In the next chapter we will learn how the Application Configuration Center can
be used to create a development application without using the Application Manager.

On the dashboard of the HealthVault Application Configuration Center, you will see
the application you just created, as depicted in Figure 4-3.

Figure 4-3. HealthVault Application Configuration Center showing the application that was created

Adding Data Types
HealthVault offers more than 80 granular items to which a user can authorize access.
They fall into categories such as fitness, condition, medications, health history, meas-
urements, personal profile, files, and custom data. A developer can obtain access for
particular health data items by configuring an application’s authorization rule set. For
our application, we need access to weight, sleep, and exercise data, which come directly
from various devices. We also want the user to be able to track emotional state and
daily dietary intake, which is information that she will enter manually.

Figure 4-2. Using Application Manager to create a new HealthVault application

A Self-Experimentation Application | 55

https://config.healthvault.com

To start the necessary configuration, click on the application ID in the HealthVault
Application Configuration Center. Figure 4-4 illustrates the view of our Quantified Self
application after clicking on the “Online rules” tab. In this menu, select the appropriate
data types for the application (weight measurement, sleep, exercise, etc.), select all
permissions (read, write, update, delete), provide a reason why the application needs
access to these types, and name the rule. A rule can also be configured as optional and
can have display settings. Why String, Is Optional, and Display Flags items are currently
not active for most HealthVault applications.

Figure 4-4. Configuring online rules for an application

We are using HealthVault as the user authentication provider for our application, so
we choose to operate in the online mode and create an authorization rule for such
access. If we wanted our application to work through a backend system provided by
one of the other types of architecture discussed in Chapter 3, we would configure the
offline rules for access to appropriate data types.

We are finished selecting the appropriate data types for our application, and can now
try accessing them through the application.

56 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

Accessing the Data Types
The application manager utility creates a template application. Figure 4-5 shows the
initial solution created by this utility.

Figure 4-5. Solution created by the application manager

The solution makes sure that your application is configured properly with an appro-
priate application ID, points it to the appropriate HealthVault platform and shell de-
velopment environments, and configures the application’s redirect URL; all of these
configurations live in the Web.Config file. The Default.aspx page is derived from the
HealthServicePage and handles authorization with the HealthVault Platform, whereas
the Redirect.aspx page is derived from the HealthServiceActionPage and handles au-
thentication and interaction with HealthVault Shell. The bin folder contains Health-
Vault SDK libraries: Microsoft.Health.dll, which encapsulates the core HealthVault
functionality; Microsoft.Health.Web.dll, which broadly encapsulates browser interac-
tion; and Microsoft.Health.Itemtypes, which encapsulates an object model for all
HealthVault data types.

The main solution doesn’t add a master page. In order to make it easy to extend func-
tionality, we create a MasterPage named QuantifiedSelf.master, create a fresh De-
fault.aspx page after deleting the old one, and ensure this page is derived from Health-
ServicePage.

As discussed in Chapter 3, we can use the HealthVault GetThings API to access health
items in a user’s health record. The code shown in Example 4-1 accesses Emotion,
DietaryDailyIntake, Weight, Sleep, and Exercise from HealthVault. As shown in the
two lines at , we make sure to fetch these elements for the last seven days only.

Example 4-1. GetThings call to access multiple things

 protected void Page_Load(object sender, EventArgs e)
 {
 Lbl_UserName.Text = this.PersonInfo.SelectedRecord.DisplayName;

 HealthRecordSearcher searcher = PersonInfo.SelectedRecord.CreateSearcher();
 HealthRecordFilter filter = new HealthRecordFilter(
 ApplicationSpecific.TypeId,
 Emotion.TypeId,

A Self-Experimentation Application | 57

 DietaryDailyIntake.TypeId,
 Weight.TypeId,
 SleepJournalAM.TypeId,
 Exercise.TypeId);

 filter.EffectiveDateMin = DateTime.Now.Subtract(new TimeSpan(7, 0, 0, 0));
 searcher.Filters.Add(filter);

 HealthRecordItemCollection items = searcher.GetMatchingItems()[0];

Before we display these types, let’s dig deeper to understand a HealthVault data type.

Understanding HealthVault Data Types
A comprehensive list of all HealthVault data types is available from the HealthVault
developer center at http://developer.healthvault.com/types/types.aspx. Each type has
properties that determine to a great extent how items are created and used. To under-
stand a type better, let’s take a deeper look at the example of the Weight Measurement
type.

Type Properties
Figure 4-6 shows the properties of the Weight Measurement data type that are common
to every data type from the HealthVault developer center (http://developer.healthvault
.com/types/type.aspx?id=3d34d87e-7fc1-4153-800f-f56592cb0d17). Each HealthVault
type has a unique identifier; this id is used by the HealthVault APIs to identify the type.
In the case of Weight, it is 3d34d87e-7fc1-4153-800f-f56592cb0d17. A type sets the
uncreateable property to true if no application can create such a type in a user’s
HealthVault record; a good example of this is the Basic type. The immutable property
is true if no application can modify or update an instance of that type in the user’s
HealthVault record; a good example of this is the CCR type. The property singleton
is true if only one instance of that type can exist in a user’s HealthVault record; a good
example of this is the Basic Demographic type.

Type transforms

Additionally, the list of transforms is a property associated with the type. Transforms
are built-in XSLT transformations available for a particular thing type. These trans-
forms let you convert the XML associated with a particular type to various formats,
such as HTML, to a representation compatible with various popular health care stand-
ards, or to an older or newer version of the same type.

Common among all the types are the form, stt, and mtt
transforms. form provides an HTML table representation of an instance of the entire
thing. stt, which stands for “single type transform,” provides a row- based represen-
tation of the type so that it can be viewed as a list of instances of the same type. mtt, or

Form, STT, and MTT transforms.

58 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

http://developer.healthvault.com/types/types.aspx
http://developer.healthvault.com/types/type.aspx?id=3d34d87e-7fc1-4153-800f-f56592cb0d17
http://developer.healthvault.com/types/type.aspx?id=3d34d87e-7fc1-4153-800f-f56592cb0d17

“multiple type transform,” provides a row-based representation of the type so that it
can be combined and viewed with multiple HealthVault types. Each row in mtt has a
summary attribute representing the details of the type. The main difference between
stt and mtt is that stt has an XML attribute for each meaningful data element of the
type, whereas mtt summarizes all the meaningful data elements in one string in the
summary attribute.

One can use the HealthVault PowerShell plug-in to view each source of the transforms.
Example 4-2 shows how to save the form transform for the Weight thing type.

Example 4-2. Saving the form XSLT transformation for Weight thing types to a file

PS \> (Get-ThingType 3d34d87e-7fc1-4153-800f-f56592cb0d17).TransformSource["form"] |
out-file Weight.xsl

The columns on the type definition page in the HealthVault Type Explorer define the
column header, .NET data type, and width for each column. It’s handy to view this
information about the type in a data grid.

Example 4-3 shows the multitype table transformation XML returned by the Health-
Vault platform for the Weight type. We can see the columns ranging from wc-id (type
identification) to summary (summary information of the type).

Example 4-3. Weight mtt XML for the Weight type

<data-xml transform="mtt">
 <row wc-id="34655fb4-a6c8-4d47-85f1-dbc6e09b952a"
 wc-version="0f57073a-0795-4867-9c9f-bcb99d2fa681" wc-note="" wc-tags=""
 wc-date="2011-12-23 11:17:47" wc-type="Weight Measurement"
 wc-typeid="3d34d87e-7fc1-4153-800f-f56592cb0d17" wc-source="" wc-brands=""
 wc-issigned="false" wc-flags="" wc-ispersonal="false" wc-isdownversioned="false"
 wc-isupversioned="false" wc-relatedthings="" wc-state="Active" summary="173 lbs" />
</data-xml>

Figure 4-6. Properties of the Weight Measurement type

Understanding HealthVault Data Types | 59

In our Quantified Self application, we can use the mtt transform to easily display mul-
tiple types in the same table for self-analysis. In Example 4-4, Lines – construct and
fetch our query from HealthVault; note that in Line we ask the HealthVault platform
to apply the mtt transform on the returned items. In Line , we select the row for each
data-xml mtt transform. We then display the wc-date, wc-type, and summary columns
(Lines –). Different applications can choose to show different columns. Individual
type columns, such as weight for Weight, are available in single type transform (stt),
whereas a summary column summarizes this information in mtt. The HealthDataItem
Grid control is also available from the HealthVault .NET SDK to show this information
automatically.

Example 4-4. Viewing multiple HealthVault types in a data grid

 protected void Btn_ShowWeeklyReadingsTextSummary_Click
 (object sender, System.EventArgs e)
 {
 HealthRecordSearcher searcher = PersonInfo.SelectedRecord.CreateSearcher();
 HealthRecordFilter filter = new HealthRecordFilter(
 Emotion.TypeId,
 DietaryDailyIntake.TypeId,
 Weight.TypeId,
 SleepJournalAM.TypeId,
 Exercise.TypeId);

 filter.EffectiveDateMin = DateTime.Now.Subtract(new TimeSpan(7, 0, 0, 0));
 searcher.Filters.Add(filter);
 filter.View.TransformsToApply.Add("mtt");

 HealthRecordItemCollection items = searcher.GetMatchingItems()[0];

 DataTable dataTable = new DataTable();
 dataTable.Columns.Add(new DataColumn("Date", typeof(string)));
 dataTable.Columns.Add(new DataColumn("Type", typeof(string)));
 dataTable.Columns.Add(new DataColumn("Summary", typeof(string)));
 foreach (HealthRecordItem item in items)
 {
 XmlNode mttDocument = item.TransformedXmlData["mtt"]
 .SelectSingleNode("data-xml/row");
 DataRow row = dataTable.NewRow();
 row["Date"] = mttDocument.Attributes["wc-date"].Value;
 row["Type"] = mttDocument.Attributes["wc-type"].Value;
 row["Summary"] = mttDocument.Attributes["summary"].Value;
 dataTable.Rows.Add(row);
 }

 Grid_ReadingsTextSummary.DataSource = dataTable;
 Grid_ReadingsTextSummary.DataBind();
 Grid_ReadingsTextSummary.Visible = true;
 }

60 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

Once we have the data grid configured, we can view the summary of all types in the
same column structure. Figure 4-7 shows how this information is displayed in our
Quantified Self application.

Figure 4-7. Quantified Self application showing multiple types in a data grid

The CCR HealthVault type (1e1ccbfc-a55d-4d91-8940-fa2fbf73c195)
has a tohv transform that converts the data in that type to individual
HealthVault elements.

In addition to the use of transforms to convert types to different repre-
sentations, the HealthVault method schema provides a <final-xsl>
element in each method header. final-xsl converts the data returned
by the method call to built-in transforms, such as converting to CCR
(toccr), CCD (toccd), CSV (tocsv), or RSS (torss). final-xsl also allows
the caller to specify a custom-built XSLT transform that the HealthVault
platform runs on the output before sending it to the requester.

The final-xsl element is specified between the <country> and <msg-
time> elements in the header of a method. In the HealthVault .NET SDK,
one can call this functionality by using the GetTransformedItems method.
In the Java .NET Open Source library, this functionality can be used
through a call to request.setFinalXsl("transform name or transform
source").

HealthVault data types can have multiple versions. As the Health-
Vault ecosystem matures, existing types need to be updated or modified to match new
use cases. Medications, Basic Demographic Information, and Family History are good
examples of types that have multiple versions. You will notice that the older Medication
datatype (which is available at http://developer.healthvault.com/pages/types/type.aspx
?id=5c5f1223-f63c-4464-870c-3e36ba471def) has an up-version transform, and the
newer Medication datatype (http://developer.healthvault.com/pages/types/type.aspx?id
=30cafccc-047d-4288-94ef-643571f7919d) has a down-version transform. Through
these transforms, HealthVault provides an easy way to move data between an older
and newer version of a data type.

Versioning transforms.

Understanding HealthVault Data Types | 61

http://developer.healthvault.com/pages/types/type.aspx?id=5c5f1223-f63c-4464-870c-3e36ba471def
http://developer.healthvault.com/pages/types/type.aspx?id=5c5f1223-f63c-4464-870c-3e36ba471def
http://developer.healthvault.com/pages/types/type.aspx?id=30cafccc-047d-4288-94ef-643571f7919d
http://developer.healthvault.com/pages/types/type.aspx?id=30cafccc-047d-4288-94ef-643571f7919d

Versioning of data types is unique to HealthVault among personal
health data platforms. Personal health records are meant to exist over a
lifetime, and this feature makes moves seamless from older health items
to newer health items.

Transform names containing wpd and hvcc enable the HealthVault Con-
nection Center to convert Windows Portable Device Data to and from HealthVault
XML.

Type Schemas
Now that we understand the high-level properties associated with a type and have used
the MTT display transform to show the summary of all data types in our application,
let’s take a closer look at what is entailed in a type’s schema, with the specific goal of
displaying appropriate values for the Weight type.

Weight is a simple type that scales, and applications can write to or read from it. The
XML schema and associated sample representation for this type are shown in Exam-
ple 4-5.

Example 4-5. XML and schema representation of the HealthVault Weight type

Column1:
<schema xmlns:weight="urn:com.microsoft.wc.thing.weight"
 xmlns:t="urn:com.microsoft.wc.thing.types" xmlns:d="urn:com.microsoft.wc.dates"
 xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:com.microsoft.wc.thing.weight">
 <import namespace="urn:com.microsoft.wc.thing.types" schemaLocation="base.xsd" />
 <import namespace="urn:com.microsoft.wc.dates" schemaLocation="dates.xsd" />
 <element name="weight">
 <complexType>
 <sequence>
 <element name="when" minOccurs="1" maxOccurs="1" type="d:date-time">
 </element>
 <element name="value" minOccurs="1" maxOccurs="1" type="t:weight-value">
 </element>
 </sequence>
 </complexType>
 </element>
</schema>

Column2:
<data-xml>
 <weight>
 <when>
 <date>
 <y>1990</y>
 <m>1</m>
 <d>1</d>
 </date>

Other transforms.

62 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

 <time>
 <h>1</h>
 <m>0</m>
 <s>0</s>
 <f>0</f>
 </time>
 </when>
 <value>
 <kg>60</kg>
 <display units="lb">132</display>
 </value>
 </weight>
 <common/>
</data-xml>

The Weight type consists of a sequence of date/time and weight values. The use of date/
time in HealthVault is defined in the dates.xsd schema file (https://platform.healthvault
-ppe.com/platform/XSD/dates.xsd), and the weight values are defined in the types.xsd
schema file (https://platform.healthvault-ppe.com/platform/XSD/types.xsd).

The HealthVault .NET Web SDK encapsulates a nice object model on top of this XML
and gives a user access to Value and When fields, as shown in Figure 4-8.

Figure 4-8. Properties in the HealthVault .NET SDK for the Weight class

Units and measurements

Note that the Value field of this type contains display and units data. HealthVault stores
the underlying measurement in kilograms, but the application can show it to the user
in the same form in which it was entered. In our example Quantified Self application,
we ask the user to input values in pounds. Example 4-6 shows how we convert this
value to kilograms for storage while displaying it to the user as pounds (lbs).

Example 4-6. Creating a new Weight value

 protected void Btn_SubmitWeight_Click(object sender, EventArgs e)
 {
 double weight = double.Parse(Txt_Weight.Text);
 Weight w = new Weight(
 new HealthServiceDateTime(DateTime.Now),
 new WeightValue(
 weight * 1.6, new DisplayValue(weight, "lbs", "lbs")));
 w.CommonData.Source = _appName;
 PersonInfo.SelectedRecord.NewItem(w);
 }

Understanding HealthVault Data Types | 63

https://platform.healthvault-ppe.com/platform/XSD/dates.xsd
https://platform.healthvault-ppe.com/platform/XSD/dates.xsd
https://platform.healthvault-ppe.com/platform/XSD/types.xsd

Dates

The When field or date is a special type called HealthServiceDateTime. As Line in
Example 4-6 shows, an instance of this date can be created by using the System Date
Time. HealthVault enables a user to enter varying degrees of date precisions, hence it
has a custom date/time.

In fact, the HealthVault approximate datetime construct allows you to create a date as
flexible as “when I was a kid” or “Jan 2011” or “Dec”. All the different kinds of Health-
Vault dates are defined in dates.xsd, available at https://platform.healthvault-ppe.com/
platform/XSD/dates.xsd.

One of the core HealthVault design tenets is to ingest all kinds of data.
Flexible dates enable a user to enter unstructured data. Furthermore,
constructs such as approx-date-time allow HealthVault to receive data
from standards such as CCR or CCD.

Common data

All types share some common data elements. In Line of Example 4-6, we are writing
to the common data element that shows the source of the application.

Other commonly used data elements are notes, tags, and related items.

Terminologies

HealthVault provides an extensible mechanism to specify strings coded for use across
various systems through codable-value. The codable-value consists of text associated
with the code, which is represented in a structured format called coded-value.

Terminologies are used in a HealthVault data element called codable. This element
provides a structured way to represent semantically meaningful text.

Example 4-7 shows a codable-value schema. The family data field of coded-value
specifies whether the code belongs to particular code system; for example, wc refers to
the HealthVault code system, and HL7 refers to a system adopted by Health Language 7.

Example 4-7. codable-value schema

<complexType name="codable-value">
 <sequence>
 <element name="text" type="string">
 </element>
 <element name="code" type="this:coded-value" minOccurs="0" maxOccurs="unbounded">
 </element>
 </sequence>
</complexType>

64 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

https://platform.healthvault-ppe.com/platform/XSD/dates.xsd
https://platform.healthvault-ppe.com/platform/XSD/dates.xsd

<complexType name="coded-value">
 <sequence>
 <element name="value" type="string">
 </element>
 <element name="family" type="string" minOccurs="0">
 </element>
 <element name="type" type="string">
 </element>
 <element name="version" type="string" minOccurs="0">
 </element>
 </sequence>
</complexType>

HealthVault has more than 150 terminologies. The wiki http://partners.mshealthcom
munity.com/hv_eco/w/wiki/preferred-vocabularies.aspx describes how these terminol-
ogies are used by the HealthVault user interface, and the book Meaningful Use and
Beyond (Fred Trotter and David Uhlman, O’Reilly) describes how meaningful use, as
proposed by federal regulations, dictates the use of these terminologies.

Example 4-8 shows how one can read the Exercise data type for showing calories
burned. The Exercise data type stores various kinds of attributes in key value pairs.
These attributes are listed in the ExerciseDetail terminology. As Example 4-8 shows,
one can use the code value of CaloriesBurned from the ExerciseDetail terminology to
look up the appropriate value and display it in the user interface.

Example 4-8. Listing calories burned in the DisplayExercise function

 private void DisplayExercise(List<Exercise> exercises)
 {
 DataTable exercise = new DataTable("exercise");
 exercise.Columns.Add(new DataColumn("Date"));
 exercise.Columns.Add(new DataColumn("ExerciseType"));
 exercise.Columns.Add(new DataColumn("CaloriesBurned"));
 foreach (Exercise e in exercises)
 {
 DataRow row = exercise.NewRow();
 row["Date"] = e.EffectiveDate.ToShortDateString().ToString();
 row["ExerciseType"] = e.Activity.Text;
 if (e.Details.ContainsKey(ExerciseDetail.CaloriesBurned_calories))
 {
 row["CaloriesBurned"] = e.Details[ExerciseDetail.CaloriesBurned_calories];
 }
 exercise.Rows.Add(row);
 }
 ExerciseView.DataSource = exercise;
 ExerciseView.DataBind();
 }

Understanding HealthVault Data Types | 65

http://partners.mshealthcommunity.com/hv_eco/w/wiki/preferred-vocabularies.aspx
http://partners.mshealthcommunity.com/hv_eco/w/wiki/preferred-vocabularies.aspx
http://shop.oreilly.com/product/0636920020110.do
http://shop.oreilly.com/product/0636920020110.do

Extending HealthVault Data Types
Applications frequently have to represent something that is not encapsulated by the
data structure of the HealthVault data types. Out of the box, HealthVault provides a
mechanism by which a data type can be extended.

Every application can choose to write XML information in the extension tag within the
common data section of a data type. It is recommended that applications distinguish
their extension elements by using a unique source attribute on the extension element.

In our example, let’s assume we are extending the daily dietary intake type to add
information on alcohol consumption.

Creating a Type Extension
We would like to track the amount of alcohol consumed in a simple element called
“alcoholic-drinks”. To simplify things further, we assume this element represents the
number of alcoholic drinks including wine, beer, cocktails etc., and is normalized to
mean average alcohol per unit.

The first step is to write an alcoholic-drinks XML element within the extension tag
using a unique source (_appDailyAlcoholExtensionName) in the extension element. Lines

– in Example 4-9 show how one can do it in the .NET SDK.

Example 4-9. Creating a type extension

 protected void Submit_Daily_Diet_Click(object sender, System.EventArgs e)
 {
 //Post Diet
 DietaryDailyIntake diet = new DietaryDailyIntake();
 int totalCarbs;
 int.TryParse(Txt_DailyDietCarbs.Text, out totalCarbs);
 diet.TotalCarbohydrates.Kilograms = totalCarbs * 1000;
 diet.CommonData.Note = Txt_DailyDietNote.Text;

 //Adding extension data
 string drinks = Txt_DailyDietAlcohol.Text;
 HealthRecordItemExtension extension =
 new HealthRecordItemExtension(_appDailyAlcoholExtensionName);
 diet.CommonData.Extensions.Add(extension);
 XPathNavigator navigator = extension.ExtensionData.CreateNavigator();
 navigator.InnerXml = @"<extension source=""" + _appDailyAlcoholExtensionName + @""">
 <alcoholic-drinks>" + drinks + "</alcoholic-drinks>";

 PersonInfo.SelectedRecord.NewItem(diet);
 }

66 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

Consuming a Type Extension
The second step is to read information from the extension. In our application, the user
enters alcoholic drink information through a text box associated with the Daily Dietary
intake section, as shown in Figure 4-9.

Figure 4-9. Input section for Daily Dietary Intake

Lines – in Example 4-10 show how one can read <alcoholic-drinks> XML. To parse
this information we use XPath, and in the data type document, the element of interest
resides at extension/alcoholic-drinks. Using the .NET XPathNavigator class, we select
a single note signifying this value (Lines –). Line fetches the note associated with
this instance of daily dietary intake. The user can potentially input clarifying informa-
tion—for example, “drank 3 tequila shots”—in this element.

Example 4-10. Consuming a type extension

 private void DisplayDailyDiet(List<DietaryDailyIntake> dailydiets)
 {
 DataTable dailydiet = new DataTable("DailyDiets");
 dailydiet.Columns.Add(new DataColumn("Date"));
 dailydiet.Columns.Add(new DataColumn("Carbs (in gm)"));
 dailydiet.Columns.Add(new DataColumn("Alcohol (#drinks)"));
 dailydiet.Columns.Add(new DataColumn("Note"));
 foreach (DietaryDailyIntake e in dailydiets)
 {
 DataRow row = dailydiet.NewRow();
 row["Date"] = e.EffectiveDate.ToShortDateString().ToString();
 row["Carbs (in gm)"] = e.ToString();
 foreach(HealthRecordItemExtension extension in e.CommonData.Extensions)
 {
 if (extension.Source == _appDailyAlcoholExtensionName)
 {
 XPathNavigator navigator = extension.ExtensionData.CreateNavigator();
 XPathNavigator alcoholicDrinksNavigator =
 navigator.SelectSingleNode("extension/alcoholic-drinks");
 if (alcoholicDrinksNavigator != null)
 {

Extending HealthVault Data Types | 67

 row["Alcohol (#drinks)"] = alcoholicDrinksNavigator.Value;
 }
 }
 }
 row["Note"] = e.CommonData.Note;
 dailydiet.Rows.Add(row);
 }
 DailyDietView.DataSource = dailydiet;
 DailyDietView.DataBind();
 }

Applications may choose to combine and formalize the two steps just shown and create
an extension class, which then could be registered with HealthVault SDK so that every
time the extend type is accessed by the application, the appropriate extension properties
are available.

Creating Custom Types
Extending a HealthVault data type might not always solve your data needs. Many times
there are legitimate use cases for which the application needs a unique data repository.
For example, in our Quantified Self application, we need a repository to store all of the
user’s self-experiments.

HealthVault provides a mechanism called an application-specific type for this purpose.
This type is not shareable with other applications. Once application developers find a
broader use for their data, they can work with Microsoft to create a first-class data type
for their needs.

Example 4-11 shows how one can use an application-specific type to store self-experi-
ment hypotheses for the Quantified Self application. In our application we are asking
a user to create a hypothesis using a simple text box. The value of this text box is read
as the hypothesis string in Line . In Lines – , we create an XML document with
the data for this specific type and then add it to the document using Applica
tionSpecificXml in Line . Each application-specific type requires a SubtypeTag and
Description (Lines –). We also specify the application creating this type in Line

. Additionally, we use the common note element to capture the status of the type in
Line , and the When element captures the date.

Example 4-11. Writing an application-specific custom type

 protected void Btn_Submit_Hypothesis_Click(object sender, System.EventArgs e)
 {
 ApplicationSpecific appSpecific = new ApplicationSpecific();
 string hypothesis = Txt_Hypothesis.Text;
 appSpecific.ApplicationId = this.ApplicationConnection.ApplicationId.ToString();
 XmlDocument xml = new XmlDocument();
 xml.LoadXml(
 string.Format("<self-experiment><hypothesis>{0}</hypothesis>
 </self-experiment>",
 hypothesis));

68 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

 appSpecific.ApplicationSpecificXml.Add(xml);
 appSpecific.SubtypeTag = "self-experiment";
 appSpecific.Description = hypothesis;
 // Default the status note to active when the hypothesis is created
 appSpecific.CommonData.Note = "Active";
 appSpecific.When = new HealthServiceDateTime(DateTime.Now);
 PersonInfo.SelectedRecord.NewItem(appSpecific);
 }

On the other hand, we can show the list of self-experiments by reading the Applica
tionSpecificXml using an XPath navigator. In Example 4-12, note that in Lines – ,
we assume that the document for this type contains only one element and that the first
node is the hypothesis.

Example 4-12. Reading an application-specific type

 private void DisplaySelfExperiments(List<ApplicationSpecific> selfExperiments)
 {
 DataTable selfExperiment = new DataTable("SelfExperiments");
 selfExperiment.Columns.Add(new DataColumn("Date"));
 selfExperiment.Columns.Add(new DataColumn("Hypothesis"));
 selfExperiment.Columns.Add(new DataColumn("Status"));
 foreach (ApplicationSpecific s in selfExperiments)
 {

 DataRow row = selfExperiment.NewRow();
 row["Date"] = s.EffectiveDate.ToShortDateString().ToString();
 row["Hypothesis"] = s.ApplicationSpecificXml[0].CreateNavigator().
 SelectSingleNode("hypothesis").Value;
 row["Status"] = s.CommonData.Note;
 selfExperiment.Rows.Add(row);
 }
 SelfExperimentsView.DataSource = selfExperiment;
 SelfExperimentsView.DataBind();
 }

Trusting Data in HealthVault Data Types
Knowing the origin of data is often critical for an application that is using it for sensitive
purposes. Some use cases warrant working with only trusted data, some warrant know-
ing whether the data is from a device or self-entered by the users, and in some cases the
application might just want to work with known data providers.

HealthVault provides several ways to look at data provenance. Applications can look
at the created_by and updated_by fields of a data type and see whether they were updated
by devices or known applications. Additionally, HealthVault provides digital signing
of data, which can create a very secure ecosystem of trust.

In our example, we look at the Source attribute of Weight items to see whether they
were uploaded by a Withings scale or added manually by the user.

Trusting Data in HealthVault Data Types | 69

Digitally Signing Data
HealthVault provides a way to digitally sign all data types. For instance, using the .NET
SDK, an application can sign HealthVault types very easily. Example 4-13 shows a
snippet of code that can be used to sign the Weight data type. The certificate in
cert.Import can be obtained from a trusted provider such as VeriSign, Comodo, etc.

Example 4-13. Signing Weight data

 protected void Btn_SubmitAndSignWeight_Click(object sender, EventArgs e)
 {
 double weight = double.Parse(Txt_Weight.Text);
 Weight w = new Weight(
 new HealthServiceDateTime(DateTime.Now),
 new WeightValue(
 weight * 1.6, new DisplayValue(weight, "lbs", "lbs")));

 X509Certificate2 cert = new X509Certificate2();
 cert.Import("..\\cert\valid_cert.pfx");

 w.Sign(cert);
 PersonInfo.SelectedRecord.NewItem(w);

 }

The verification of a digitally signed certificate is available through the IsSignature
Valid() and ValidateCertificate() methods in the HealthVault .NET SDK.

In the samples associated with this chapter (ThingSignatureSample.java), you can re-
view the code for doing digital signing of HealthVault data types using the HealthVault
Java library.

Relating HealthVault Data Types
HealthVault data types are intended to be self-contained units of health information.
The data types have distinct health items, such as medications, immunizations, and
weight readings. This approach is characteristically different from relational data mod-
eling in which the data is normalized and stored in distinct tables that have explicit
relationships with each other. For example, in a relational model, medications may be
expressed as separate medication name and medication dosage tables.

Often there is a need to represent relationships between individual health items. For
example, a Medication is inherently related to Medication Fill. Medications are asso-
ciated with a person’s profile as prescribed by a physician, and Medication Fill is used
by a pharmacy to prescribe units of medications to a consumer as she consumes the
prescribed medications.

The relationship between Medication and Medication Fill is expressed by related
items. HealthVault offers related items as an inherent mechanism to link and associate
data types. A related item is a special chunk of XML that resides in the common data

70 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

of a health item. Relationships are usually described in the dependent item and link to
the more independent one. For instance, to express the relationship between Medica-
tion Fill and Medication, one places related items in the Medication Fill type and points
to the Medication type.

Another interesting use of related items is to link together a set of readings that are
uploaded from a single device. For example, a device calculating body fat percentage
and cholesterol can associate them through related items while uploading them. Be-
cause this association is done before uploading to HealthVault, a special unique iden-
tifier called a client ID can be used. Client IDs are usually unique identifiers associated
to instances of HealthVault data types and are created by the client uploading the data.

One can take relationships even further and associate a set of medical images, medi-
cations, and conditions as a result of a particular health incident, maybe an accident.
The Mayo Clinic Health Manager application provides a way to create a web of related
HealthVault items.

Related items lie beyond the scope of this book, but the reader is encouraged to explore
them and contribute interesting uses and examples at http://enablingprogrammableself
.com.

Exploring HealthVault Data Types
In our example, we picked some HealthVault types to be used in the application based
on our device, data availability, and purpose. Every application programmer needs to
go through this data exploration based on your needs and goals. This section gives an
overview of all HealthVault types so that the reader can have a good understanding of
what is available in the system.

Categorizing HealthVault Data Types
HealthVault stores personal health information ranging from fitness data to medical
images. Table 4-1 shows the categorization of the data as displayed to the end user.

Table 4-1. End user categorization of HealthVault data

Category HealthVault types

Fitness Aerobic Exercise Session, Aerobic Profile, Aerobic Weekly Goal, Calorie Guideline, Daily Dietary Intake,
Exercise, Exercise Samples, Weight Goal

Conditions Allergy, Concern, Condition, Contraindication, Emotional State, Pregnancy, Problem, Respiratory Profile

Medications Asthma Inhaler, Asthma Inhaler Use, Daily Medication Usage, Insulin Injection, Insulin Injection Use,
Medication, Medication Fill

Health History Allergic Episode, Annotation, Cardiac Profile, Diabetic Profile, Discharge Summary, Encounter, Explanation
of Benefits, Family History, Family History Condition, Family History Person, Health Assessment, Immu-
nization, Procedure, Question Answer

Exploring HealthVault Data Types | 71

http://enablingprogrammableself.com
http://enablingprogrammableself.com

Category HealthVault types

Measurements Blood Glucose, Blood Oxygen Saturation, Blood Pressure, Body Composition, Body Dimension, Cholesterol
Profile, Device, Genetic SNP Results, HbA1C, Heart Rate, Height, Lab Test Results, Microbiology Lab Results,
PAP Session, Peak Flow, Radiology Lab Results, Sleep Journal AM, Sleep Journal PM, Spirometer, Vital
Signs, Weight

Personal Profile Advance Directive, Appointment, Basic, Contact, Healthcare Proxy, Life Goal, Payer, Person (emergency
or provider contact), Personal Demographic Information, Personal Image

Files Clinical Document Architecture (CDA), Continuity of Care Document (CCD), Continuity of Care Record (CCR),
File, Medical Image Study, Password-Protected Package

Custom Data Application Data Reference, Application Specific, Group Membership, Group Membership Activity, Link,
Status

Fitness

HealthVault offers a range of fitness types. The most commonly used fitness data type
is Exercise. Exercise provides a terminology-based categorization of kinds of exercise,
e.g., walking or running. Each activity can also be associated with terminology-driven
units: Count, Mile, etc.

Devices such as FitBit and Withings work with this type. The exercise activities termi-
nology lists a range of exercise values, including running, walking, swimming, etc.
Devices that fetch detailed information on exercise can write individual samples to the
Exercise Sample type. For instance, exercise watches developed by Polar write to ex-
ercise samples in addition to summarizing the workout in the Exercise type.

This category of types is implemented in a fairly generic way so that various industry
formats, such as the one used by Garmin’s Connect website (http://connect.garmin
.com/), can translate easily to these types. ISO units can also be translated easily to
HealthVault units.

Conditions

Health problems, allergies, contra-indications, and mental health (emotional state) are
categorized in the Condition set of types. Conditions are sensitive health problems that
usually have an onset date and a status associated with them.

The HealthVault Shell uses the Condition type to record conditions. Conditions en-
tered through the user interface are mapped to SNOMED-CT terminology.

Medication

Medications are the center of modern medicine. HealthVault offers a number of gran-
ular types to capture the essence of medications.

A number of pharmacies, including CVS and Walgreens, offer applications for import-
ing prescription data into HealthVault, but the user interface and integration for these
applications is a bit challenging.

72 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

http://connect.garmin.com/
http://connect.garmin.com/

The most frequently used data types in this category are Medication and Medication
Fill. Each prescription could be broken into Medication and Medication Fill. Medica-
tion Fill is the recurring part of one’s prescription. As you may recall from “Relating
HealthVault Data Types” on page 70, the Medication Fill type is usually related to
Medication using the related-item semantics when entered through the HealthVault
Shell.

Medications are mapped or coded to the RxNorm Active Medicines terminology.

Health History

Immunizations, procedures, family history, health events, etc. form the basis of the
Health History category.

The most notable application using types in this category is the Surgeon General’s
Family History application (https://familyhistory.hhs.gov/fhh-web). This powerful ap-
plication enables individuals to easily create a family health history tree.

Measurements

Measurements are the most extensive category of HealthVault data types. Measure-
ments range from the output of various fitness devices to lab results. For instance, the
Withings weighing scale writes to the weight measures, and FitBit writes to sleep meas-
ures. The measures are granular records of daily activity and consequently are traceable.

On the other hand, the Lab Test Results type, one of the most complicated HealthVault
types, represents results from labs. It can be used in conjunction with industry-standard
terminologies.

Personal Profile

The Personal Profile category of HealthVault types contains data pertaining to health
care proxies, personal images, and demographics. Almost every HealthVault applica-
tion that shows a user’s picture or looks at ages or other demographic information uses
types in this category.

Files

HealthVault, unlike most personal health records, allows you to upload a number of
types of files, and therefore supports data types for these files. Example 4-14 shows the
file extensions supported, displayed through a GetServiceDefinition call in Power-
Shell. This information can also be viewed online in the HealthVault Developer Cen-
ter’s service definition section (http://developer.healthvault.com/pages/methods/meth
ods.aspx).

Exploring HealthVault Data Types | 73

https://familyhistory.hhs.gov/fhh-web
http://developer.healthvault.com/pages/methods/methods.aspx
http://developer.healthvault.com/pages/methods/methods.aspx

Example 4-14. List of file extensions supported by HealthVault

PS C:\Windows\system32> $a = Get-ServiceDefinition
PS C:\Windows\system32> $a.ConfigurationValues

Key Value
--- -----
allowedDocumentExtensions .avi,.bluebutton,.bmp,.ccd,.ccr,.cda,.doc,.docm,...
autoReconcilableTypes 1e1ccbfc-a55d-4d91-8940-fa2fbf73c195,9c48a2b8-...
blobHashBlockSizeBytes 2097152
blobHashDefaultAlgorithm SHA256Block
blobStreamWriteTokenTtlMs 172800000
defaultCulture en
defaultPersonInfosPerRetrieval 200
emailValidationExp ^([\w-+\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]...
liveIdAuthPolicy HBI
liveIdEnvironment PROD
<... clipped for brevity..>

The Medical Image study type used by the HealthVault Connection Center uploads
DICOM medical images in this type. The CCD/CCR types are industry-standard ways
by which various hospital information systems send care records to HealthVault.
Google Health users, for instance, migrated to HealthVault using the CCR type. The
Message file type is the backbone of HealthVault’s Direct integration. Any email mes-
sage received by the user is stored in the Message type.

Custom Data

The Application Specific type, already covered in the section “Creating Custom
Types” on page 68 with regard to adding a repository in which to store self-experiments,
is the most important custom data type. This type is used by various applications to
store information in HealthVault for which no other type or extension to a type is
appropriate. For instance, the Vivacity’s Spending Scout application (http://www.spen
dingscout.com/) stored explanation of benefit information in this type until the Health-
Vault team created an Explanation of Benefits (EOB) type to support it more directly.

Contributing to the Self-Experimentation Application
In next chapter we will see how we can augment the self-experimentation web appli-
cation by creating mobile applications. The source for the application is available at
http://enablingprogrammableself.com, and we are inviting you, dear reader, to extend
this application and make it your own. Perhaps fork the Git repository and contribute
your code back, or create Java, Ruby, or Python versions of it!

74 | Chapter 4: Using the HealthVault Data Ecosystem for Self-Tracking

http://www.spendingscout.com/
http://www.spendingscout.com/
http://enablingprogrammableself.com

CHAPTER 5

Enabling mHealth for Quantified Self

“Think: mHealth as personal health reform.”

—Jane Sarasohn-Kahn

Having an accessible and programmable health record sets HealthVault apart. It ena-
bles a rich ecosystem of devices and mobile and web applications. Chapter 3 focused
on introducing the HealthVault API, and Chapter 4 gave a good overview of Health-
Vault data types using a data-intensive Quantified Self application. This chapter takes
a closer look at building mobile applications for HealthVault.

We will look at an end-to-end example of building a mood-tracking application on top
of mobile platforms. The chapter will cover elements of mobile client programming
using code samples for Windows Phone 7 (C#). Similar interfaces are available for
Android (Java) and iOS (Objective-C).

The Mood Tracker Mobile Application
In Chapter 3, we built an end-to-end web application that enables a user to track several
kinds of data and use that data to help with self-experimentation. Many elements of
self-tracking data, such as sleep, weight, and exercise, have the capability to be meas-
ured through devices; however, it’s very hard to measure elements of happiness, such
as mood and stress, automatically.

In recent years, we have seen a surge in mobile smartphone devices. Mobile devices
offer a very effective tool for efficient data entry and are an ideal platform to build data
collection tools. So our manual “mood tracking” need could be served by an application
that makes it easy and engaging for a user to track mood using a smartphone. For the
purposes of our example, let’s build the application on the Windows Phone 7 platform.

75

So, What Should We Build?
The application will allow the user to input his mood, well-being, and stress level;
present a way to look at the history of the data; and add a bit of zest using a “mood
plant” avatar. The mood plant summarizes the user’s emotional state over time. When
the user is happy, stress-free, and fit for a long time, the plant thrives, showing a happy
face (☺), and in the case of depression and stress, it shows the effects of bad health (☹).

Figure 5-1 is a sketch of what the app might look like.

Figure 5-1. White board wire-frame of our mood tracking application

Choosing HealthVault Integration
The first question we need to answer is what kind of HealthVault connectivity this
application requires. We discussed several models of connecting with HealthVault in
Chapter 3. As this application is only for a client device, we will use a client application
model and the HealthVault Windows Phone 7 client library. Having a client application
allows you to provide a rich interface and the potential capability to store the readings
locally.

Selecting Appropriate HealthVault Data Types
The next question we should solve is which HealthVault data types to use. We dis-
cussed HealthVault data types in detail in Chapter 4. Various data types could apply
in this context, but browsing the HealthVault data types reveals one relevant data type
in particular: Emotional State.

On further analysis, it turns out that this type is almost perfect for our use. Mood, stress,
and well-being are rated on a scale of 1–5. We do a further reading of associations for
each of these values, and add appropriate textual elements for each of the values (mood,
stress, and well-being).

76 | Chapter 5: Enabling mHealth for Quantified Self

http://developer.healthvault.com/pages/types/types.aspx
http://developer.healthvault.com/pages/types/type.aspx?id=4b7971d6-e427-427d-bf2c-2fbcf76606b3

Getting Started
I assume you have Visual Studio installed with Window Phone 7 (WP7) tools. If not,
you can get them from http://create.msdn.com/en-us/home/getting_started.

Next, go over to CodePlex at http://healthvaultwp7.codeplex.com/ and download the
HealthVault library with sample applications.

I extracted the library to my desktop, and the folder structure looks like Figure 5-2.
HvMobileRegular has the relevant C# code to abstract for working with the Health-
Vault web service, and HvMobilePhone uses the code in HvMobileRegular to build a
library that works with Windows Phone 7 platform. The TestRegular directory has a
unit test for the HealthVault mobile Windows Phone 7 (WP7) library. WeightTrack-
erDemo is a sample application that shows use cases of the library for a Weight Tracking
application.

Figure 5-2. HealthVault WP7 library extracted

If you open the MobileSDK solution in Visual Studio and press F5, the library compiles
and the WeightTracker demo starts. Figure 5-3 shows this application in action; we
will use this application as a template for building ours.

Without further ado, let’s create our new Silverlight for Windows Phone project. We
can create a solution for MoodTracker and reference the HVMobilePhone library in that
project. You can also use the existing project, MobileSDK, and associate a new appli-
cation in it; in the source code associated with this chapter, I created a new project
called MoodTracker (Figure 5-4).

First things first: let’s set up the application to talk to HealthVault. In the
App.xaml.cs class, add a reference to the HealthVault Service and HealthVault Shell.
We also need to make sure we get a unique application ID in the developer environment
of HealthVault. To do that, we head over to the HealthVault Application Configuration
Center and create a new application by clicking on the “Create a new application”
button (Figure 5-5). Note that in Chapter 3 we used the Application Manager utility
to create a web application, but in this chapter we use an alternative method that allows
us to create client applications as well as web applications.

We create an application of type Software on Device Auth (SODA), which is an au-
thentication mechanism for client applications, and pick the name Mood Tracker for
it, as shown in Figure 5-6.

The Mood Tracker Mobile Application | 77

http://create.msdn.com/en-us/home/getting_started
http://healthvaultwp7.codeplex.com/
http://healthvaultwp7.codeplex.com/
http://config.healthvault-ppe.com/
http://config.healthvault-ppe.com/

Once the application is created, we need to assign appropriate authorization rules for
the data types that the application will access. To do that, click on the app’s link and
assign appropriate data types for the application, as shown in Figure 5-7.

Figure 5-3. Compiling and running the HealthVault WP7 sample application

Figure 5-4. Beginnings of Mood Tracker

78 | Chapter 5: Enabling mHealth for Quantified Self

Figure 5-6. Creating Mood Tracker as a SODA application

Figure 5-5. Creating a new application in the Application Configuration Center

The Mood Tracker Mobile Application | 79

Figure 5-7. Adding Emotional State to our Mood Tracker application

Having created the client application and assigned data type authorization rules, we
are all set! Now let’s configure the base page to work with the HealthVault preproduc-
tion environment (PPE). The PPE is the development environment publicly available
for all HealthVault developers. The HealthVault platform in this environment is avail-
able at https://platform.healthvault-ppe.com/platform/wildcat.ashx, and the Health-
Vault shell in this environment is available at https://account.healthvault.com. Chap-
ter 6 will show how to deploy your app to the general public after you have developed
and tested it.

Example 5-1 shows the initial code for configuring the application. In Line , we assign
the platformUrl; in Line , we assign the shellUrl; and Line is the application iden-
tifier that we created using the Application Configuration Center. The HealthVaultSer
vice object initialized the HealthVault Windows Phone 7 library with appropriate con-
figuration variables. Using this object, we can make all the relevant HealthVault web
service requests.

80 | Chapter 5: Enabling mHealth for Quantified Self

https://platform.healthvault-ppe.com/platform/wildcat.ashx
https://account.healthvault.com

Example 5-1. Configuring the client application

namespace MoodTracker
{
 public partial class App : Application
 {
 public static string SettingsFilename = "Settings";
 public static HealthVaultService HealthVaultService { get; set; }
 public static string HealthVaultShellUrl { get; set; }

 static string platformUrl =
 @"https://platform.healthvault-ppe.com/platform/wildcat.ashx";
 static string shellUrl = @"https://account.healthvault-ppe.com";
 static string masterAppId = "83bf507d-9186-407f-a6cd-b2d65f558690";

 // Code to execute when the application is launching (eg, from Start)
 // This code will not execute when the application is reactivated
 private void Application_Launching(object sender, LaunchingEventArgs e)
 {
 HealthVaultService = new HealthVaultService
 (platformUrl, shellUrl, new Guid(masterAppId));
 }
 // Code to execute when the application is activated (brought to foreground)
 // This code will not execute when the application is first launched
 private void Application_Activated(object sender, ActivatedEventArgs e)
 {
 HealthVaultService = new HealthVaultService
 (platformUrl, shellUrl, new Guid(masterAppId));
 }

We can make this project a startup project, press F5, and get to the first page of our
application. We’re in business!

Authenticating the Application and User with HealthVault
In order for the Mood Tracker application to work with HealthVault, we will get ap-
propriate application creation credentials from the HealthVault Service. We must also
set up a method by which the user can authorize the application using the HealthVault
Shell.

1. To get the credentials from the HealthVault Service, the application contacts the
HealthVault service to get an application creation URL. The code for that is out-
lined in MyMood.xaml.cs (Example 5-2).

Example 5-2. Authenticating the application with HealthVaultService

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 App.HealthVaultService.LoadSettings(App.SettingsFilename);
 App.HealthVaultService.BeginAuthenticationCheck(AuthenticationCompleted,
 DoShellAuthentication);
 SetProgressBarVisibility(true);
 }

The Mood Tracker Mobile Application | 81

https://github.com/vaibhavb/moodtracker/blob/master/MoodTracker/MyMood.xaml.cs

 void DoShellAuthentication(object sender, HealthVaultResponseEventArgs e)
 {
 SetProgressBarVisibility(false);

 App.HealthVaultService.SaveSettings(App.SettingsFilename);

 string url;

 if (_addingRecord)
 {
 url = App.HealthVaultService.GetUserAuthorizationUrl();
 }
 else
 {
 url = App.HealthVaultService.GetApplicationCreationUrl();
 }

2. The application creation needs to be validated on behalf of the user.

The best mechanism to achieve this is by having a page with a hosted browser that
redirects appropriately to HealthVault, and then closes the browser and navigates back
to the application page after a successful authorization.

Example 5-3 is the relevant code in HostedBrowserPage.xaml.

Example 5-3. Using a hosted browser to show HealthVault user authentication

 void c_webBrowser_Navigated
 (object sender, System.Windows.Navigation.NavigationEventArgs e)
 {
 if (e.Uri.OriginalString.Contains("target=AppAuthSuccess"))
 {
 Uri pageUri = new Uri("/MyMood.xaml", UriKind.RelativeOrAbsolute);

 Deployment.Current.Dispatcher.BeginInvoke(() =>
 {
 NavigationService.Navigate(pageUri);
 });
 }
 }

 void HealthVaultWebPage_Loaded(object sender, RoutedEventArgs e)
 {
 string url = App.HealthVaultShellUrl;

 c_webBrowser.Navigate(new Uri(url));
 }

Note that on success, the application is redirected to MyMood.xaml, which is our ap-
plication’s landing page.

Figure 5-8 shows the flow of how the authentication described here works.

82 | Chapter 5: Enabling mHealth for Quantified Self

Figure 5-8. Authentication model with HealthVault

Reading Data from HealthVault
The data type we settled on for our application was Emotional State. Our first goal is
to be able to read data for this type and display it in our application. To do this, we
need test data for emotional state. Add test information into the test or developer ac-
count for this application from the list of type samples associated with the Emotional
State type in the HealthVault Developer Center (http://developer.healthvault.com/pages/
types/types.aspx), as shown in Figure 5-9. An important thing to note is that you need
to be signed into http://developer.healthvault.com to add the sample; otherwise, this
application gives an error.

Figure 5-9. Adding an Emotional State sample to HealthVault record

We can verify that this sample is added to our record by viewing the information in the
HealthVault PPE shell interface (https://account.healthvault-ppe.com), as shown in Fig-
ure 5-10.

The Mood Tracker Mobile Application | 83

http://developer.healthvault.com/pages/types/types.aspx
http://developer.healthvault.com/pages/types/types.aspx
http://developer.healthvault.com/pages/types/types.aspx
http://developer.healthvault.com
https://account.healthvault-ppe.com

Figure 5-10. Emotional State samples in the developer account

Chapter 2 explained the HealthVault GetThings method. This method enables an ap-
plication to read data from the user’s health record. A read request for health data can
be performed using various querying mechanisms. For the purposes of this application,
we will retrieve the last active item for the user’s Emotional State data type (Exam-
ple 5-4).

Example 5-4. Using GetThings

HealthVaultMethods.GetThings
 (EmotionalStateModel.TypeId, 1, null, null, GetThingsCompleted);

To make it easier to work with GetThings, I implemented a simple abstraction on the
method in the HealthVaultMethods class. Example 5-5 shows the code for this abstrac-
tion. It allows the construction of a GetThings query for one type ID, with the maximum
items returned and with the appropriate minimum and maximum effective dates for
these health items. Chapter 4 explains the XML query sent by the GetThings method
in detail.

Example 5-5. GetThings abstraction

 public static void GetThings(string typeId,
 int? maxItems,
 DateTime? effDateMin,
 DateTime? effDateMax,
 EventHandler<HealthVaultResponseEventArgs> responseCallback)
 {
 string thingXml = @"
 <info>
 <group {0}>
 <filter>
 <type-id>{1}</type-id>

84 | Chapter 5: Enabling mHealth for Quantified Self

www.allitebooks.com

http://www.allitebooks.org

 <thing-state>Active</thing-state>
 {2}
 {3}
 </filter>
 <format>
 <section>core</section>
 <xml/>
 <type-version-format>{1}</type-version-format>
 </format>
 </group>
 </info>";

 XElement info = XElement.Parse(string.Format
 (thingXml,
 MaxItemsXml(maxItems),
 typeId,
 EffDateMinXml(effDateMin),
 EffDateMaxXml(effDateMax)));
 HealthVaultRequest request = new HealthVaultRequest
 ("GetThings", "3", info, responseCallback);
 App.HealthVaultService.BeginSendRequest(request);
 }

Now, once we can get Emotional State things, we need to perform two action things
on the client side.

First, pick the item we are interested in from the GetThings response. To choose the
appropriate item, LINQ to XML comes in very handy, offering a SQL-like select clause
for XML data, as shown in Example 5-6. LINQ stands for Language Integrated Query-
ing, and it allows for making queries natively from C#.

Example 5-6. Choosing things from a GetThings response

// using LINQ to get the latest reading of emotional state
XElement latestEmotion = (from thingNode in responseNode.Descendants("thing")
 orderby Convert.ToDateTime(thingNode.Element
 ("eff-date").Value) descending
 select thingNode).FirstOrDefault<XElement>();

Second, parse the items returned for mood, stress, and well-being data. We can achieve
this by creating a model for Emotional State. This model is available for review in the
EmotionalStateModel.cs file. The parse method in this model parses the appropriate
elements in thingXml. Chapter 4 details the format of this XML. Notice that in Line

 of Example 5-7, we parse the common element to fetch the note data for the Emotional
State type. In Line , we are setting the When date of the instance to the eff-date element.
We have created enumerations for Mood, Stress, and Wellbeing values, and we can parse
the integers for those values using the Enum.Parse method.

The Mood Tracker Mobile Application | 85

Example 5-7. Parsing a thing for the Emotion State data type

 public void Parse(XElement thingXml)
 {
 this.Mood = Mood.None;
 this.Stress = Stress.None;
 this.Wellbeing = Wellbeing.None;

 XElement emotionalState = thingXml.Descendants
 ("data-xml").Descendants("emotion").First();

 this.When = Convert.ToDateTime(thingXml.Element("eff-date").Value);

 if (thingXml.Descendants("common") != null &&
 (thingXml.Descendants("common").Descendants("note").Count() != 0))
 {
 this.Note = thingXml.Descendants("common").Descendants("note").First().Value;
 }

 if (emotionalState.Element("mood") != null)
 {
 try
 {
 this.Mood = (Mood)System.Enum.Parse(typeof(Mood),
 ((XElement)emotionalState.Element("mood")).Value, true);
 }
 catch (Exception) { }
 }
 if (emotionalState.Element("stress") != null)
 {
 try
 {
 this.Stress = (Stress)System.Enum.Parse(typeof(Stress),
 ((XElement)emotionalState.Element("stress")).Value, true);
 }
 catch (Exception) { }
 }
 if (emotionalState.Element("wellbeing") != null)
 {
 try
 {
 this.Wellbeing = (Wellbeing)System.Enum.Parse(typeof(Wellbeing),
 ((XElement)emotionalState.Element("wellbeing")).Value, true);
 }
 catch (Exception) { }
 }
 }

After retrieving the data in our Emotional State model, we can use XAML to view it in
our application. XAML is the user interface markup technology for Windows Phone
7. For the purposes of this book, we won’t go into the details of XAML. Figure 5-11
shows the display of the latest emotional state reading from HealthVault.

86 | Chapter 5: Enabling mHealth for Quantified Self

Figure 5-11. Latest Emotional State reading in Mood Tracker!

Writing Data to HealthVault
In the previous section we discussed how one can display the data retrieved from the
HealthVault Emotional State data type. Before we get to the topic of this section and
discuss how we can put new items into HealthVault, Figure 5-12 shows a screenshot
of how the application looks once we have enabled the put.

Figure 5-12. MoodTracker with put enabled

The Mood Tracker Mobile Application | 87

For each of the emotional states—mood, stress, and well-being—we have a slider that
lets users capture their emotional state. They can also add a note pertaining to their
moods using a text box. We want this information to be uploaded with the current
time stamp once the user hits the Save Now! button.

Example 5-8 shows how the save button submits information to HealthVault. Note
that in Line we are calling an abstraction for the PutThings method.

Example 5-8. Saving new data to HealthVault

 // Save the reading to HealthVault
 private void Btn_SaveReadingToHealthVault_Click(object sender, RoutedEventArgs e)
 {
 EmotionalStateModel model = new EmotionalStateModel();
 model.Mood = (Mood)c_MoodSlider.Value;
 model.Stress = (Stress)c_StressSlider.Value;
 model.Wellbeing = (Wellbeing)c_WellbeingSlider.Value;
 model.When = DateTime.Now;
 model.Note = GetNote();
 HealthVaultMethods.PutThings(model, PutThingsCompleted);
 SetProgressBarVisibility(true);
 }

In Chapter 3, we looked at the PutThings method in detail. This method enables an
application to add or update health items in a user’s record. As the first line in Exam-
ple 5-9 shows, our abstraction fetches the relevant information from the base health
record item object and submits that to HealthVault using the PutThings version 2 API.
The response for this request is handled by the responseCallback function, which in
turn can check for various return codes from the service.

Example 5-9. PutThings abstraction

 public static void PutThings(HealthRecordItemModel item,
 EventHandler<HealthVaultResponseEventArgs> responseCallback)
 {
 XElement info = XElement.Parse(item.GetXml());
 HealthVaultRequest request = new HealthVaultRequest
 ("PutThings", "2", info, responseCallback);
 App.HealthVaultService.BeginSendRequest(request);
 }

Now that we are able to write data to HealthVault, we have a mobile application that
can read and update information from and to HealthVault!

Graphing Mood
In the last section, we enabled Mood Tracker (http://healthblog.vitraag.com/2011/06/
entering-new-data-with-mood-tracker-5/) to enter new data in HealthVault. We want
to be able to discover patterns in mood, stress, and well-being, and graphing them over
time is a great mechanism by which to achieve this goal. Let’s start with a simplistic
approach, showing the Emotional State readings for mood, stress, and well-being over

88 | Chapter 5: Enabling mHealth for Quantified Self

http://healthblog.vitraag.com/2011/06/entering-new-data-with-mood-tracker-5/
http://healthblog.vitraag.com/2011/06/entering-new-data-with-mood-tracker-5/

a week. As Figure 5-13 shows, a user can browse mood readings based on a weekly
margin and move forward or backward a week at time.

Figure 5-13. Graphing Emotional State over seven days

In order to get data from HealthVault for a specific time period, the GetThings method
(https://github.com/vaibhavb/moodtracker/blob/master/MoodTracker/HealthVaultMe
thods.cs) needs to have the effective date filter enabled to look for appropriate readings.
Line in Example 5-10 shows how the GetThings abstraction is configured to return
elements for the last seven days only.

Example 5-10. Fetching readings for the last seven days

 void RefreshGraph()
 {
 this.EmotionList.Clear();
 this.GraphLabel.Text = string.Format("Readings for last 7 Days from {0}",
 BaseTimeForGraph.ToString("MMM dd, yyyy"));
 // Get the last emotional state info and try to plot a graph
 HealthVaultMethods.GetThings(EmotionalStateModel.TypeId, null,
 BaseTimeForGraph.Subtract(new TimeSpan(7, 0, 0, 0)),
 BaseTimeForGraph,
 GetThingsCompleted);
 }

The Mood Tracker Mobile Application | 89

https://github.com/vaibhavb/moodtracker/blob/master/MoodTracker/HealthVaultMethods.cs
https://github.com/vaibhavb/moodtracker/blob/master/MoodTracker/HealthVaultMethods.cs

Note that the eff-date-min element, as implemented in the GetThings class in Health-
VautlMethods.cs, must be formatted in the ISO 8601 format. Line in Example 5-11
shows how we do the formatting.

Example 5-11. Formatting eff-date-min for the GetThings request

 private static string EffDateMinXml(DateTime? effDateMin)
 {
 if (effDateMin != null)
 return
 string.Format(@"<eff-date-min>{0}</eff-date-min>",
 effDateMin.Value.ToString("yyyy-MM-ddTHH:mm:ss.FFFZ",
 CultureInfo.InvariantCulture)
);
 else return "";
 }

Once we can selectively get information from HealthVault, we can use a graphing li-
brary to show the readings. In our case, I chose the open source graphing library am-
Charts based on its ease of use. In fact, I added it to the project with one click using
the NuGet package manager (http://www.nuget.org/packages/amChartsQuickCharts).
Example 5-12 shows a snippet of the configuration code showing how the graph is set
up for mood, stress, and well-being using a serial chart. Note that the series values are
bound in Line using a DataSource called EmotionList; it is a list of observable emo-
tional states.

Example 5-12. Graphing emotional state

 <amq:SerialChart x:Name="EmotionsChart"
 BorderThickness="1"
 DataSource="{Binding EmotionList}"
 CategoryValueMemberPath="FormattedWhen"
 AxisForeground="White"
 PlotAreaBackground="Black"
 GridStroke="DarkGray" Height="463" Width="450">
 <amq:SerialChart.Graphs>
 <amq:LineGraph ValueMemberPath="Mood"
 Title="Mood" Brush="Blue"
 StrokeThickness="6"
 BorderBrush="Cornsilk"/>
 <amq:LineGraph ValueMemberPath="Stress"
 Title="Stress" Brush="#8000FF00"
 StrokeThickness="8" />
 <amq:LineGraph ValueMemberPath="Wellbeing"
 Title="Wellbeing"
 StrokeThickness="2"
 Brush="#80FF0000"/>
 </amq:SerialChart.Graphs>
 </amq:SerialChart>

90 | Chapter 5: Enabling mHealth for Quantified Self

http://www.nuget.org/packages/amChartsQuickCharts

Data Analysis: Mood Plant
We want a user to engage with the emotional state readings, and a good way to achieve
this goal is by providing a zestful visualization for their emotional state. We use a mood
plant as a mechanism to gauge a user’s emotional state over the recent past.

The flower of the plant represents the average mood, the leaves represent average stress,
and the roots represent the average well-being. Individual flower, leaf, and root ligatures
map the values 0 through 5 to mood, stress, and well-being. The final mood plant is a
result of superimposing these values. Figure 5-14 shows an instance of a mood plant
with mood 3, stress 3, and well-being 3.

Figure 5-14. Mood plant

So how do we find average mood, stress, or well-being? Various correlations and algo-
rithms can be used to express the average emotional state over time. We will start with
a simple function that creates an average mood, stress, or well-being score based on a
weighted average of the values. The function takes the readings for mood, stress, or
well-being for the past month and assigns a 50% weight to the most recent week, 30%
to week 3, and 20% to weeks 1 and 2 of the month’s readings. It is left as an exercise
to the reader to evaluate and try different functions. Example 5-13 shows the code for
the weighting algorithm.

The Mood Tracker Mobile Application | 91

Example 5-13. Algorithm for calculating mood, stress, and well-being over the past month

 /*
 * Algorithm
 * 1. Read last 1 month's readings
 * 2. Weight 50% to 4th week
 * 3. Weight 25% to 1-3 week
 * 4. Weight 25% to how many readings (Good is 4/wk)
 */
 DateTime time50p = baseTime.Subtract(new TimeSpan(7,0,0,0));
 DateTime time30p = baseTime.Subtract(new TimeSpan(14, 0, 0, 0));

 int m = 0; int s = 0; int w = 0;
 int c50 = 0; int c30 = 0; int c20 = 0;
 foreach (EmotionalStateModel emotion in emotionList)
 {
 if (emotion.When >= time50p)
 {
 m += (int)emotion.Mood * 50 ;
 s += (int)emotion.Stress * 50 ;
 w += (int)emotion.Wellbeing * 50;
 c50++;
 }
 else if (emotion.When >= time30p)
 {
 m += (int)emotion.Mood * 30;
 s += (int)emotion.Stress * 30 ;
 w += (int)emotion.Wellbeing * 30;
 c30++;
 }
 else
 {
 m += (int)emotion.Mood * 20;
 s += (int)emotion.Stress * 20;
 w += (int)emotion.Wellbeing * 20;
 c20++;
 }
 }

 // Final numbers
 int c = 50 * c50 + 30 * c30 + 20 * c20;
 m = m / c;
 s = s /c;
 w = w / c;

What About Android and iOS?
In Chapter 3, we discussed various libraries available for HealthVault. In particular,
there are libraries available for Android (Java) and iOS (Objective-C) that allow a de-
veloper to implement a mobile application on these platforms. These libraries are open
source and commercial-friendly.

92 | Chapter 5: Enabling mHealth for Quantified Self

We don’t show the code for a sample application for these platforms, but the func-
tionality available is very similar to the Windows Phone 7 library, and the material
covered in this chapter will be equally useful.

The Android library is available with the HealthVault Java SDK on Codeplex, and the
HealthVault iOS library is available on GitHub. It is left as an exercise to the reader to
create solutions for these platforms.

Mobile Web Applications
Earlier in this chapter, we discussed the architectural choice to develop a client appli-
cation for our Mood Tracker. However, web applications do have the choice to use the
Web for delivery. In fact, we might want to link the Mood tracker application to our
Quantified Self web application so that a user can see other relevant data in a web
browser.

It’s important to remember that a web application is a separate application entity from
a native client application and that the user has to authorize it separately. The Quan-
tified Self application, when launched from the Mood tracker, will ask the user to sign
in and authorize it.

Web applications can use standard browser-detection techniques to present a mobile
view of the content. HealthVault Shell does configure its view for mobile applications,
and the calling application can always force a mobile view by adding mobile=true to
the URL parameters. It would be a good exercise for the reader to implement a mobile
view of the quantified self application.

Contributing to the Mood Tracker Application
The source for the Mood Tracker Windows Phone application is available at http://
enablingprogrammableself.com, and we are inviting you, dear reader, to extend this
application and make it your own. Perhaps fork the Git repository and contribute your
code back, or create iOS and Android versions of it!

Contributing to the Mood Tracker Application | 93

http://enablingprogrammableself.com
http://enablingprogrammableself.com

CHAPTER 6

The Last Mile: Releasing Applications
to Users

“Be careful about reading health books.
You may die of a misprint.”

—Mark Twain

Over the last few chapters we have gained an understanding of the HealthVault API
(Chapter 3), learned about building a HealthVault web application with a focus on the
HealthVault data types (Chapter 4), and built an engaging mobile application (Chap-
ter 5). An application’s life cycle typically involves testing the application, releasing it
to the user, and then monitoring it for anomalies, tasks that entail special requirements
in a HealthVault context. This chapter will highlight best practices for releasing, main-
taining, and marketing HealthVault applications to end users.

Testing Your Application
Well-written software goes through multiple test cycles, including both automated and
manual tests. This section outlines some valuable test scenarios around HealthVault
account management, API interfaces, and data types, which you should consider in
addition to other tests.

HealthVault enables people to share and manage multiple health records. In Chap-
ter 3, we covered account management and ways to configure record switching. You
need to ensure your application works with a HealthVault account that has multiple
records. The best way to achieve this is to create several test accounts with multiple
health records and try your application with them.

95

Another important aspect of account management is sharing. You can test this by
sharing a HealthVault record with another person and then making sure that person
can authenticate your application in association with that record. In case of insufficient
permissions, your application should show an error message.

HealthVault provides an XML-based Web API. This API is accessible through pro-
gramming libraries available through various HealthVault libraries and SDKs, as dis-
cussed in Chapter 3. While developing an application, you should pay special attention
to any failure codes returned from HealthVault. In fact, make sure you log nonsuccess
return codes from API calls to HealthVault so that you can investigate the reasons for
failure. HealthVault provides a comprehensive list of status codes returned by the ser-
vice at http://msdn.microsoft.com/en-us/library/hh567902.aspx. Particularly interesting
is CREDENTIAL_TOKEN_EXPIRED, which your application should handle by requesting a
new credentials token from HealthVault. The HealthVault .NET SDK and Mobile SDKs
handle this status appropriately for you. In case you see the INVALID_XML status code,
you should look closer at your request to make sure the XML is valid for various
HealthVault methods and data type schemas, which are available at http://developer
.healthvault.com.

HealthVault enables a coherent and well-adopted data ecosystem. It is very important
to make sure that your application works well in this data ecosystem and uses the
HealthVault data types appropriately. Chapter 4 explains HealthVault data types in
detail. The best way to make sure you are reading a data type appropriately is to create
a few instances of the type you are consuming with various possible permutations and
combinations and then access them in your application. Get Real Consulting offers a
great tool called HealthVault X-ray (http://xray.getrealconsulting.com/) that enables you
to create myriad instances of the data type you are consuming in an appropriate test
account.

The second aspect of working with the data types is to make sure that the information
you are writing is consumable by other applications. The HealthVault team offers a
tool called HealthVault Data Checkup at http://datacheckup.healthvault-ppe.com/
hvappcheckup. This tool works against data written by your application in a test record
and finds any compatibility issues. Currently, the HealthVault Data Checkup tool sup-
ports only a limited number of types. Another mechanism to ensure that your appli-
cation plays well in the HealthVault ecosystem is to copy your test records through
HealthVault X-Ray in a production test account, authorize other HealthVault applica-
tions to access this account, and then confirm that the information is consumable by
these applications.

Frequently, applications code properties of HealthVault data types improperly or are
not able to parse a flexible date format as used in HealthVault. Review Chapter 4 to
make sure you handle these cases.

96 | Chapter 6: The Last Mile: Releasing Applications to Users

http://msdn.microsoft.com/en-us/library/hh567902.aspx
http://developer.healthvault.com
http://developer.healthvault.com
http://xray.getrealconsulting.com/
http://datacheckup.healthvault-ppe.com/hvappcheckup
http://datacheckup.healthvault-ppe.com/hvappcheckup

Releasing Your Application to End Users
After testing your application thoroughly, including the conditions listed in the previ-
ous section, you are ready to release it to end users. The HealthVault team has docu-
mented the release process, termed the Go-Live Process, on the HealthVault Developer
Center at http://msdn.microsoft.com/en-us/healthvault/bb962148.

The first step in this process it to ensure that you have signed a business agreement
with HealthVault and have an identifier associated with your partner account. This is
a nontechnical step and can be done long before your application is ready to be released.

Having established a partner account with Microsoft, you can submit a request to the
technical team to review your application in the preproduction environment and push
it to the HealthVault production environment. The review typically tests that your
application plays well in the HealthVault ecosystem and uses the brand appropriately.

Once your application is available for the world to use, an important step is to network
with fellow applications! This can be done using the wiki provided by the HealthVault
team at http://partners.mshealthcommunity.com/hv_eco/w/wiki/partner-directory.aspx.
In addition to business networking, this wiki is used by applications to notify the de-
velopment community of any extensions to data types that they have implemented.
Having well-documented extensions available makes it easy for other applications to
work with data created by your application, giving you the benefit of network effects.

The last step in your Go-Live Process is to make sure that your application is discov-
erable to end users. This typically means working with the HealthVault team to become
part of their application directory at http://www.healthvault.com.

Monitoring and Maintaining Your Application
Congratulations on getting that application out there! Whether you have created a
client or a web application, it’s very important to monitor its health.

You should log all the failed calls to the HealthVault web service. For additional de-
bugging, the HealthVault SDK provides a tracing mechanism that you can use to log
all the request responses. The mechanics of this are detailed at http://msdn.microsoft
.com/en-us/library/ff803626.aspx. The HealthVault team monitors their development
forums, available at http://www.msdn.com/healthvault, and you can use them to report
any anomalies or failures in the service.

Each release of the HealthVault .NET SDK is supported for two years, and the team
frequently adds enhancements and bug fixes to the newer releases. SDKs and libraries
available in other language—Java, Python, etc.—are also updated by the community.
As part of maintaining your application, you should make sure you monitor the un-
derlying libraries so that you can upgrade your service to use the most robust offerings.

Monitoring and Maintaining Your Application | 97

http://msdn.microsoft.com/en-us/healthvault/bb962148
http://partners.mshealthcommunity.com/hv_eco/w/wiki/partner-directory.aspx
http://www.healthvault.com
http://msdn.microsoft.com/en-us/library/ff803626.aspx
http://msdn.microsoft.com/en-us/library/ff803626.aspx
http://www.msdn.com/healthvault

Another important aspect of maintaining a HealthVault application is to maintain its
security artifacts, such as the application certificate and user tokens. HealthVault uses
X509 certificates to authenticate web applications; you should make sure that the cer-
tificates you use for your application have the appropriate validity to function for a long
time. HealthVault uses long-lived user tokens for client applications, and you should
make sure that these applications frequently refresh the tokens.

Adding New Features to Your Application
Having a well-tested, well-maintained, and usable application will frequently result in
a number of feature requests from users, which is not a bad problem to have! Many of
these feature requests will necessitate support for additional HealthVault data types.

When you update your application to access new HealthVault data types, you must
request the user to reauthorize your application so that it can access these additional
data types. Another feature available from HealthVault is optional rules, which are data
type authorization rules that ask permission only for additional data types. In addition
to providing a smooth upgrade curve, optional rules also enable you to run an older
version of your application side by side with the new version in case your users prefer
not to upgrade. You can read more about optional rules at http://msdn.microsoft.com/
en-us/library/ff803609.aspx.

Updating the data type rules of an application is not automatic, and an application
typically needs to go through the HealthVault Go-Live process at http://msdn.microsoft
.com/en-us/healthvault/bb962148 to release updates in the HealthVault production
environment.

Taking Your Application International!
Throughout this book, we have worked with HealthVault as it is available in United
States. However, HealthVault has a growing list of implementation partners, and the
platform is available in Canada, the UK, and Germany as of this writing. You can work
with the HealthVault team to explore releasing your application in each of these
countries.

The important aspect to keep in mind is that HealthVault as a service is completely
globalized and internationalized. The request and response string that HealthVault
displays to a user can be changed to appropriate locales. In fact, you can also make a
Spanish version of your application available in the United States. The HealthVault
Application Configuration Center, through its Localize tab, allows developers to con-
figure their applications with Spanish strings so that when a user with Spanish browser
settings accesses HealthVault, the application’s authorization screen is shown with the
appropriate language. The HealthVault Shell redirect interface, which is discussed in

98 | Chapter 6: The Last Mile: Releasing Applications to Users

http://msdn.microsoft.com/en-us/library/ff803609.aspx
http://msdn.microsoft.com/en-us/library/ff803609.aspx
http://msdn.microsoft.com/en-us/healthvault/bb962148
http://msdn.microsoft.com/en-us/healthvault/bb962148

detail in Chapter 3, also respects an lcid=Locale ID parameter in its query string to
show the appropriate display language in the user interface.

Additionally, HealthVault offers an internationalized set of units and time formats to
allow applications to work with appropriate standards in the target country.

With this information, you are all set to stride into the exciting world of enabling
Quantified Self with HealthVault!

Further Resources
This section highlights some important resource available for HealthVault
development.

Need Reference Information?
The HealthVault MSDN site, http://www.msdn.com/healthvault, is a great resource on
all things HealthVault. HealthVault features and SDK information is available in the
reference section at http://msdn.microsoft.com/en-us/library/aa155110.aspx. The
HealthVault team has an active blog at http://blogs.msdn.com/b/healthvault/ and a list
of frequently asked questions at http://blogs.msdn.com/b/healthvaultfaq/.

Have a Question?
The HealthVault Forums at http://social.msdn.microsoft.com/forums/en-US/health
vault/ are a great place to ask technical questions.

Development Tools
Fiddler (http://fiddler2.com/fiddler2/) is a great tool to enable request-response tracing
for web applications. This tool will help you look at and analyze XML information
being exchanged with the HealthVault platform.

Get Real Consulting’s X-Ray for HealthVault (https://xray.getrealconsulting.com/) is an
indispensable tool for HealthVault development. It offers the ability to create data in a
HealthVault preproduction and production environment and to export and import
information.

The HealthVault team hosts Developer Center tools at http://developer.healthvault
.com/. This page is very handy for looking at HealthVault method and data type
schemas.

HealthVault Application Data Checkup (http://datacheckup.healthvault-ppe.com/
hvappcheckup) offers lint functionality for data written by your application. This tool
highlights best practices for writing data to HealthVault for a select set of data types.

Further Resources | 99

http://www.msdn.com/healthvault
http://msdn.microsoft.com/en-us/library/aa155110.aspx
http://blogs.msdn.com/b/healthvault/
http://blogs.msdn.com/b/healthvaultfaq/
http://social.msdn.microsoft.com/forums/en-US/healthvault/
http://social.msdn.microsoft.com/forums/en-US/healthvault/
http://fiddler2.com/fiddler2/
https://xray.getrealconsulting.com/
http://developer.healthvault.com/
http://developer.healthvault.com/
http://datacheckup.healthvault-ppe.com/hvappcheckup
http://datacheckup.healthvault-ppe.com/hvappcheckup

Mapping Your Data to HealthVault
Chapter 4 summarizes the intent and use of various data types in HealthVault. Didier
Thizy has a good post at http://www.macadamian.com/insight/healthcare_detail/map
ping_hl7_phm_to_healthvault/ on mapping the HL7 PHM standard to HealthVault.

The HealthVault team maintains a detailed mapping of the ASTM Continuity of Care
Record standard to HealthVault data types on MSDN at http://msdn.microsoft.com/en
-us/healthvault/ee663895. The reference article at http://msdn.microsoft.com/en-us/li
brary/ff803579.aspx is a great resource for using CCR data in HealthVault.

100 | Chapter 6: The Last Mile: Releasing Applications to Users

http://www.macadamian.com/insight/healthcare_detail/mapping_hl7_phm_to_healthvault/
http://www.macadamian.com/insight/healthcare_detail/mapping_hl7_phm_to_healthvault/
http://msdn.microsoft.com/en-us/healthvault/ee663895
http://msdn.microsoft.com/en-us/healthvault/ee663895
http://msdn.microsoft.com/en-us/library/ff803579.aspx
http://msdn.microsoft.com/en-us/library/ff803579.aspx

About the Author
Vaibhav Bhandari is a seasoned software professional with several years of experience
in technical development and management positions. He has led software development
through multiple product cycles in varied businesses at Microsoft. His experience spans
Windows PowerShell, Windows Mobile Operating System, and Microsoft Health-
Vault. During the past three and a half years as part of the Microsoft HealthVault team,
he has worked with developers and partners to design and implement health solutions
on HealthVault. He has spoken and presented at several prestigious conferences in-
cluding OSCON (2010 and 2011) and Health 2.0. He is active in the Healthcare IT
community and shares an inside view on health technology with a popular blog. When
not involved with healthcare and technology, he can be found mountaineering in the
North Cascades near his home or off exploring faraway lands on his bicycle.

	Table of Contents
	Foreword
	Preface
	Outline of the Work
	Organization of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started with HealthVault
	What Is HealthVault?
	Getting Started with HealthVault
	Overview of HealthVault Features
	Health Information
	Creating an Emergency Profile
	Discovering Health Tools
	Sharing
	History

	Working with Health Data
	Using Partner Applications

	Chapter 2. Quantifying Yourself
	How Fitbit Tracks Sleep
	Sending Data to HealthVault
	Understanding the Data Model

	Exploring the HealthVault Data
	Analyzing the HealthVault Data

	Chapter 3. Interfacing with HealthVault
	Accounts and Records
	Account Information

	HealthVault Application Programming Interface
	HealthVault Shell Interface
	HealthVault Platform APIs
	Authentication and authorization APIs
	Reading health items
	Creating and updating health items
	Deleting health items
	Patient Connect
	Asynchronous processing
	Messaging
	Terminology
	Application management
	Service discovery
	Open Query

	Read and Write API: Diving Deep
	GetThings
	PutThings

	Record Management: Diving Deep
	Single-record application (SRA)
	Multiple-record application (MRA)

	HealthVault SDK and Open Source Libraries
	HealthVault .NET SDK
	HealthVault Open Source Java SDK
	HealthVault Open Source iOS Mobile Library
	HealthVault Open Source Windows Phone Library
	HealthVault Open Source Python, PHP, and Ruby Library

	Interfacing with HealthVault
	Device Connectivity
	Continua

	Application Connectivity
	Online HealthVault application
	Offline HealthVault application
	Direct integration
	Drop Off Pick Up
	Patient Connect
	Client Connectivity

	Application Provisioning and master applications

	Chapter 4. Using the HealthVault Data Ecosystem for Self-Tracking
	A Self-Experimentation Application
	Setting Up a New HealthVault Application
	Adding Data Types
	Accessing the Data Types

	Understanding HealthVault Data Types
	Type Properties
	Type transforms
	Form, STT, and MTT transforms
	Versioning transforms

	Type Schemas
	Units and measurements
	Dates
	Common data
	Terminologies

	Extending HealthVault Data Types
	Creating a Type Extension
	Consuming a Type Extension

	Creating Custom Types
	Trusting Data in HealthVault Data Types
	Relating HealthVault Data Types
	Exploring HealthVault Data Types
	Categorizing HealthVault Data Types
	Fitness
	Conditions
	Medication
	Health History
	Measurements
	Personal Profile
	Files
	Custom Data

	Contributing to the Self-Experimentation Application

	Chapter 5. Enabling mHealth for Quantified Self
	The Mood Tracker Mobile Application
	So, What Should We Build?
	Choosing HealthVault Integration
	Selecting Appropriate HealthVault Data Types
	Getting Started
	Authenticating the Application and User with HealthVault
	Reading Data from HealthVault
	Writing Data to HealthVault
	Graphing Mood
	Data Analysis: Mood Plant

	What About Android and iOS?
	Mobile Web Applications
	Contributing to the Mood Tracker Application

	Chapter 6. The Last Mile: Releasing Applications to Users
	Testing Your Application
	Releasing Your Application to End Users
	Monitoring and Maintaining Your Application
	Adding New Features to Your Application
	Taking Your Application International!
	Further Resources
	Need Reference Information?
	Have a Question?
	Development Tools
	Mapping Your Data to HealthVault

