
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Even Faster Web Sites

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Even Faster Web Sites

Steve Souders

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Even Faster Web Sites
by Steve Souders

Copyright © 2009 Steve Souders. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sarah Schneider
Copyeditor: Audrey Doyle
Proofreader: Sarah Schneider

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Even Faster Web Sites,
the image of a blackbuck antelope, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52230-8

[M]

1243719104

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Credits . xi

Preface . xiii

1. Understanding Ajax Performance . 1
Trade-offs 1
Principles of Optimization 1
Ajax 4
Browser 4
Wow! 5
JavaScript 6
Summary 6

2. Creating Responsive Web Applications . 7
What Is Fast Enough? 9
Measuring Latency 10

When Latency Goes Bad 12
Threading 12
Ensuring Responsiveness 13

Web Workers 14
Gears 14
Timers 16
Effects of Memory Use on Response Time 17
Virtual Memory 18
Troubleshooting Memory Issues 18

Summary 19

3. Splitting the Initial Payload . 21
Kitchen Sink 21
Savings from Splitting 22
Finding the Split 23
Undefined Symbols and Race Conditions 24

v

www.allitebooks.com

http://www.allitebooks.org

Case Study: Google Calendar 25

4. Loading Scripts Without Blocking . 27
Scripts Block 27
Making Scripts Play Nice 29

XHR Eval 29
XHR Injection 31
Script in Iframe 31
Script DOM Element 32
Script Defer 32
document.write Script Tag 33

Browser Busy Indicators 33
Ensuring (or Avoiding) Ordered Execution 35
Summarizing the Results 36
And the Winner Is 38

5. Coupling Asynchronous Scripts . 41
Code Example: menu.js 42
Race Conditions 44
Preserving Order Asynchronously 45

Technique 1: Hardcoded Callback 46
Technique 2: Window Onload 47
Technique 3: Timer 48
Technique 4: Script Onload 49
Technique 5: Degrading Script Tags 50

Multiple External Scripts 52
Managed XHR 52
DOM Element and Doc Write 56

General Solution 59
Single Script 59
Multiple Scripts 60

Asynchronicity in the Real World 63
Google Analytics and Dojo 63
YUI Loader Utility 65

6. Positioning Inline Scripts . 69
Inline Scripts Block 69

Move Inline Scripts to the Bottom 70
Initiate Execution Asynchronously 71
Use Script Defer 73

Preserving CSS and JavaScript Order 73
Danger: Stylesheet Followed by Inline Script 74

Inline Scripts Aren’t Blocked by Most Downloads 74

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Inline Scripts Are Blocked by Stylesheets 75
This Does Happen 77

7. Writing Efficient JavaScript . 79
Managing Scope 79

Use Local Variables 81
Scope Chain Augmentation 83

Efficient Data Access 85
Flow Control 88

Fast Conditionals 89
Fast Loops 93

String Optimization 99
String Concatenation 99
Trimming Strings 100

Avoid Long-Running Scripts 102
Yielding Using Timers 103
Timer Patterns for Yielding 105

Summary 107

8. Scaling with Comet . 109
How Comet Works 109
Transport Techniques 111

Polling 111
Long Polling 112
Forever Frame 113
XHR Streaming 115
Future Transports 116

Cross-Domain 116
Effects of Implementation on Applications 118

Managing Connections 118
Measuring Performance 119
Protocols 119

Summary 120

9. Going Beyond Gzipping . 121
Why Does This Matter? 121
What Causes This? 123

Quick Review 123
The Culprit 123
Examples of Popular Turtle Tappers 124

How to Help These Users? 124
Design to Minimize Uncompressed Size 125
Educate Users 129

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Direct Detection of Gzip Support 130

10. Optimizing Images . 133
Two Steps to Simplify Image Optimization 134
Image Formats 135

Background 135
Characteristics of the Different Formats 137
More About PNG 139

Automated Lossless Image Optimization 141
Crushing PNGs 141
Stripping JPEG Metadata 143
Converting GIF to PNG 144
Optimizing GIF Animations 144
Smush.it 144
Progressive JPEGs for Large Images 145

Alpha Transparency: Avoid AlphaImageLoader 146
Effects of Alpha Transparency 146
AlphaImageLoader 148
Problems with AlphaImageLoader 149
Progressively Enhanced PNG8 Alpha Transparency 151

Optimizing Sprites 152
Über-Sprite Versus Modular Sprite 153
Highly Optimized CSS Sprites 154

Other Image Optimizations 155
Avoid Scaling Images 155
Crush Generated Images 155
Favicons 157
Apple Touch Icon 158

Summary 158

11. Sharding Dominant Domains . 161
Critical Path 161
Who’s Sharding? 163
Downgrading to HTTP/1.0 165
Rolling Out Sharding 168

IP Address or Hostname 168
How Many Domains 168
How to Split Resources 168
Newer Browsers 169

12. Flushing the Document Early . 171
Flush the Head 171
Output Buffering 173

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Chunked Encoding 175
Flushing and Gzip 176
Other Intermediaries 177
Domain Blocking During Flushing 178
Browsers: The Last Hurdle 178
Flushing Beyond PHP 179
The Flush Checklist 180

13. Using Iframes Sparingly . 181
The Most Expensive DOM Element 181
Iframes Block Onload 182
Parallel Downloads with Iframes 184

Script Before Iframe 184
Stylesheet Before Iframe 185
Stylesheet After Iframe 186

Connections per Hostname 187
Connection Sharing in Iframes 187
Connection Sharing Across Tabs and Windows 188

Summarizing the Cost of Iframes 190

14. Simplifying CSS Selectors . 191
Types of Selectors 191

ID Selectors 192
Class Selectors 193
Type Selectors 193
Adjacent Sibling Selectors 193
Child Selectors 193
Descendant Selectors 193
Universal Selectors 194
Attribute Selectors 194
Pseudo-Classes and Pseudo-Elements 194

The Key to Efficient CSS Selectors 194
Rightmost First 195
Writing Efficient CSS Selectors 195

CSS Selector Performance 197
Complex Selectors Impact Performance (Sometimes) 197
CSS Selectors to Avoid 200
Reflow Time 201

Measuring CSS Selectors in the Real World 202

Appendix: Performance Tools . 205

Index . 221

Table of Contents | ix

Credits

Even Faster Web Sites contains six chapters contributed by the following authors.

Dion Almaer is the cofounder of Ajaxian.com, the leading source of the Ajax com-
munity. For his day job, Dion coleads a new group at Mozilla focusing on developer
tools for the Web, something he has been passionate about doing for years. He is excited
for the opportunity, and he gets to work with Ben Galbraith, his partner in crime on
Ajaxian and now at Mozilla. Dion has been writing web applications since Gopher, has
been fortunate enough to speak around the world, has published many articles and
a book, and, of course, covers life, the universe, and everything else on his blog at http:
//almaer.com/blog.

Douglas Crockford was born in the wilds of Minnesota, but left when he was only
six months old because it was just too damn cold. He turned his back on a promising
career in television when he discovered computers. He has worked in learning systems,
small business systems, office automation, games, interactive music, multimedia,
location-based entertainment, social systems, and programming languages. He is the
inventor of Tilton, the ugliest programming language that was not specifically designed
to be an ugly programming language. He is best known for having discovered that there
are good parts in JavaScript. This was an important and unexpected discovery. He
discovered the JSON (JavaScript Object Notation) data interchange format. He is cur-
rently working on making the Web a secure and reliable software-delivery platform.
He has his work cut out for him.

Ben Galbraith is the codirector of developer tools at Mozilla and the cofounder of
Ajaxian.com. Ben has long juggled interests in both business and tech, having written
his first computer program at 6 years old, started his first business at 10, and entered
the IT workforce at 12. He has delivered hundreds of technical presentations world-
wide, produced several technical conferences, and coauthored more than a half-dozen
books. He has enjoyed a variety of business and technical roles throughout his career,
including CEO, CIO, CTO, and Chief Software Architect roles in medical, publishing,
media, manufacturing, advertising, and software industries. He lives in Palo Alto,
California with his wife and five children.

xi

http://ajaxian.com/
http://almaer.com/blog
http://almaer.com/blog
http://www.json.org/
http://ajaxian.com/

Tony Gentilcore is a software engineer at Google. There, he has helped make the
Google home and search results pages lightning fast. He finds that the days seem to fly
by while writing web performance tools and techniques. Tony is also the creator of the
popular Firefox extension, Fasterfox.

Dylan Schiemann is CEO of SitePen and cofounder of the Dojo Toolkit, an open
source JavaScript toolkit for rapidly building web sites and applications, and is an
expert in the technologies and opportunities of the Open Web. Under his guidance,
SitePen has grown from a small development firm to a leading provider of inventive
tools, skilled software engineers, knowledgeable consulting services, and top-notch
training and advice. Dylan’s commitment to R&D has enabled SitePen to be a major
contributor to and creator of pioneering open source web development toolkits and
frameworks such as Dojo, cometD, Direct Web Remoting (DWR), and Persevere. Prior
to SitePen, Dylan developed web applications for companies such as Renkoo, Infor-
matica, Security FrameWorks, and Vizional Technologies. He is a cofounder of Comet
Daily, LLC, a board member at Dojo Foundation, and a member of the advisory board
at Aptana. Dylan earned his master’s in physical chemistry from UCLA and his B.A. in
mathematics from Whittier College.

Stoyan Stefanov is a Yahoo! frontend developer, focusing on web application
performance. He is also the architect of the performance extension YSlow 2.0 and
cocreator of the Smush.it image optimization tool. Stoyan is a speaker, book author
(Object-Oriented JavaScript from Packt Publishing), and blogger at http://phpied.com,
http://jspatterns.com, and YUIblog.

Nicole Sullivan is an evangelist, frontend performance consultant, and CSS Ninja. She
started the Object-Oriented CSS open source project, which answers the question, How
do you scale CSS for millions of visitors or thousands of pages? She also consulted with
the W3C for their beta redesign, and she is the cocreator of Smush.it, an image opti-
mization service in the cloud. She is passionate about CSS, web standards, and scalable
frontend architecture for large commercial websites. Nicole speaks about performance
at conferences around the world, most recently at The Ajax Experience, ParisWeb, and
Web Directions North. She blogs at http://stubbornella.org.

Nicholas C. Zakas is the author of Professional JavaScript for Web Developers, Second
Edition (Wrox) and coauthor of Professional Ajax, Second Edition (Wrox). Nicholas
is principal frontend engineer for the Yahoo! home page and is also a contributor to
the Yahoo! User Interface (YUI) library. He blogs regularly at his site, http://www
.nczonline.net.

xii | Credits

http://sitepen.com/
http://phpied.com
http://jspatterns.com
http://yuiblog.com/
http://stubbornella.org
http://www.nczonline.net
http://www.nczonline.net

Preface

Vigilant: alertly watchful, especially to avoid danger

Anyone browsing this book—or its predecessor, High Performance Web Sites—under-
stands the dangers of a slow web site: frustrated users, negative brand perception,
increased operating expenses, and loss of revenue. We have to constantly work to make
our web sites faster. As we make progress, we also lose ground. We have to be alert for
the impact of each bug fix, new feature, and system upgrade on our web site’s speed.
We have to be watchful, or the performance improvements made today can easily be
lost tomorrow. We have to be vigilant.

Vigil: watch kept on a festival eve

According to the Latin root of vigil, our watch ends with celebration. Web sites can
indeed be faster—dramatically so—and we can celebrate the outcome of our care and
attention. It’s true! Making web sites faster is attainable. Some of the world’s most
popular web sites have reduced their load times by 60% using the techniques described
in this book. Smaller web properties benefit as well. Ultimately, users benefit.

Vigilante: a self-appointed doer of justice

It’s up to us as developers to guard our users’ interests. At your site, evangelize per-
formance. Implement these techniques. Share this book with a coworker. Fight for a
faster user experience. If your company doesn’t have someone focused on performance,
appoint yourself to that role. Performance vigilante—I like the sound of that.

How This Book Is Organized
This book is a follow-up to my first book, High Performance Web Sites (O’Reilly). In
that book, I lay out 14 rules for better web performance:

• Rule 1: Make Fewer HTTP Requests

• Rule 2: Use a Content Delivery Network

• Rule 3: Add an Expires Header

• Rule 4: Gzip Components

xiii

http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/

• Rule 5: Put Stylesheets at the Top

• Rule 6: Put Scripts at the Bottom

• Rule 7: Avoid CSS Expressions

• Rule 8: Make JavaScript and CSS External

• Rule 9: Reduce DNS Lookups

• Rule 10: Minify JavaScript

• Rule 11: Avoid Redirects

• Rule 12: Remove Duplicate Scripts

• Rule 13: Configure ETags

• Rule 14: Make Ajax Cacheable

I call them “rules” because there is little ambiguity about their adoption. Consider these
statistics for the top 10 U.S. web sites* for March 2007:

• Two sites used CSS sprites.

• 26% of resources had a future Expires header.

• Five sites compressed their HTML, JavaScript, and CSS.

• Four sites minified their JavaScript.

The same statistics for April 2009 show that these rules are gaining traction:

• Nine sites use CSS sprites.

• 93% of resources have a future Expires header.

• Ten sites compress their HTML, JavaScript, and CSS.

• Nine sites minify their JavaScript.

The rules from High Performance Web Sites still apply and are where most web com-
panies should start. Progress is being made, but there’s still more work to be done on
this initial set of rules.

But the Web isn’t standing still, waiting for us to catch up. Although the 14 rules from
High Performance Web Sites still apply, the growth in web page content and Web 2.0
applications introduces a new set of performance challenges. Even Faster Web Sites
provides the best practices needed by developers to make these next-generation web
sites faster.

The chapters in this book are organized into three areas: JavaScript performance
(Chapters 1–7), network performance (Chapters 8–12), and browser performance
(Chapters 13 and 14). A roundup of the best tools for analyzing performance comes in
the Appendix.

* AOL, eBay, Facebook, Google Search, Live Search, MSN.com, MySpace, Wikipedia, Yahoo!, and YouTube,
according to Alexa.

xiv | Preface

http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/
http://www.alexa.com/

Six of the chapters were written by contributing authors:

• Chapter 1, Understanding Ajax Performance, by Douglas Crockford

• Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion
Almaer

• Chapter 7, Writing Efficient JavaScript, by Nicholas C. Zakas

• Chapter 8, Scaling with Comet, by Dylan Schiemann

• Chapter 9, Going Beyond Gzipping, by Tony Gentilcore

• Chapter 10, Optimizing Images, by Stoyan Stefanov and Nicole Sullivan

These authors are experts in each of these areas. I wanted you to hear from them
directly, in their own voices. To help identify these chapters, the name(s) of the con-
tributing author(s) are on the chapter’s opening page.

JavaScript Performance
In my work analyzing today’s web sites, I consistently see that JavaScript is the key to
better-performing web applications, so I’ve started the book with these chapters.

Douglas Crockford wrote Chapter 1, Understanding Ajax Performance. Doug describes
how Ajax changes the way browsers and servers interact, and how web developers need
to understand this new relationship to properly identify opportunities for improving
performance.

Chapter 2, Creating Responsive Web Applications, by Ben Galbraith and Dion Almaer,
ties JavaScript performance back to what really matters: the user experience. Today’s
web applications invoke complex functions at the click of a button and must be eval-
uated on the basis of what they’re forcing the browser to do. The web applications that
succeed will be written by developers who understand the effects of their code on
response time.

I wrote the next four chapters. They focus on the mechanics of JavaScript—the best
way to package it and load it, and where to insert it in your pages. Chapter 3, Splitting
the Initial Payload, describes the situation facing many web applications today: a huge
JavaScript download at the beginning of the page that blocks rendering as well as further
downloads. The key is to break apart this monolithic JavaScript for more efficient
loading.

Chapters 4 and 5 go together. In today’s most popular browsers, external scripts block
everything else in the page. Chapter 4, Loading Scripts Without Blocking, explains how
to avoid these pitfalls when loading external scripts. Loading scripts asynchronously
presents a challenge when inlined code depends on them. Luckily, there are several
techniques for coupling inlined code with the asynchronous scripts on which they de-
pend. These techniques are presented in Chapter 5, Coupling Asynchronous Scripts.

Preface | xv

Chapter 6, Positioning Inline Scripts, presents performance best practices that apply to
inline scripts, especially the impact they have on blocking parallel downloads.

I think of Chapter 7, Writing Efficient JavaScript, written by Nicholas C. Zakas, as the
complement to Doug’s chapter (Chapter 1). Whereas Doug describes the Ajax land-
scape, Nicholas zooms in on several specific techniques for speeding up JavaScript.

Network Performance
Web applications aren’t desktop applications—they have to be downloaded over the
Internet each time they are used. The adoption of Ajax has resulted in a new style of
data communication between servers and clients. Some of the biggest opportunities for
growth in the web industry are in emerging markets where Internet connectivity is a
challenge, to put it mildly. All of these factors highlight the need for improved network
performance.

In Chapter 8, Scaling with Comet, Dylan Schiemann describes an architecture that goes
beyond Ajax to provide high-volume, low-latency communication for real-time appli-
cations such as chat and document collaboration.

Chapter 9, Going Beyond Gzipping, describes how turning on compression isn’t enough
to guarantee optimal delivery of your web site’s content. Tony Gentilcore reveals a
little-known phenomenon that severely hinders the network performance of 15% of
the world’s Internet users.

Stoyan Stefanov and Nicole Sullivan team up to contribute Chapter 10, Optimizing
Images. This is a thorough treatment of the topic. This chapter reviews all popular
image formats, presents numerous image optimization techniques, and describes the
image compression tools of choice.

The remaining chapters were written by me. Chapter 11, Sharding Dominant Do-
mains, reminds us of the connection limits in the popular browsers of today, as well as
the next generation of browsers. It includes techniques for successfully splitting
resources across multiple domains.

Chapter 12, Flushing the Document Early, walks through the benefits and many gotchas
of using chunked encoding to start rendering the page even before the full HTML
document has arrived.

Browser Performance
Iframes are an easy and frequently used technique for embedding third-party content
in a web page. But they come with a cost. Chapter 13, Using Iframes Sparingly, explains
the downsides of iframes and offers a few alternatives.

Chapter 14, Simplifying CSS Selectors, presents the theories about how complex selec-
tors can impact performance, and then does an objective analysis to pinpoint the
situations that are of most concern.

xvi | Preface

The Appendix, Performance Tools, describes the tools that I recommend for analyzing
web sites and discovering the most important performance improvements to work on.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
and directories

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
and the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596522308

Preface | xvii

http://www.oreilly.com/catalog/9780596522308

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Using Code Examples
You may use the code in this book in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from this
book does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Even Faster Web Sites, by Steve Souders.
Copyright 2009 Steve Souders, 978-0-596-52230-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

Acknowledgments
I first want to thank the contributing authors: Dion Almaer, Doug Crockford, Ben
Galbraith, Tony Gentilcore, Dylan Schiemann, Stoyan Stefanov, Nicole Sullivan, and
Nicholas Zakas. They’ve made this a special book. Each of them is an expert in his or
her own right. Most of them have written their own books. By sharing their expertise,
they’ve helped create something unique.

xviii | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

I want to thank all the reviewers: Julien Lecomte, Matthew Russell, Bill Scott, and Tenni
Theurer. I extend an especially strong thank you to Eric Lawrence and Andy Oram.
Eric reviewed both this book as well as High Performance Web Sites. In both cases, he
provided incredibly thorough and knowledgeable feedback. Andy was my editor on
High Performance Web Sites. More than anyone else, he is responsible for improving
how this book reads, making it flow smoothly from line to line, section to section, and
chapter to chapter.

A special thank you goes to my editor, Mary Treseler. Coordinating a book with mul-
tiple authors is an opportunity that many editors will pass over. I’m glad that she took
on this project and helped guide it from a bunch of ideas to what you’re holding in your
hands now.

I work with many people at Google who have a penchant for web performance. Tony
Gentilcore is the creator of Fasterfox and the author of Chapter 9. He’s also my offi-
cemate. Several times a day we’ll stop to discuss web performance. Steve Lamm, Lind-
sey Simon, and Annie Sullivan are strong advocates for performance who I work with
frequently. Other Googlers who have contributed to what I know about web perform-
ance include Jacob Hoffman-Andrews, Kyle Scholz, Steve Krulewitz, Matt Gundersen,
Gavin Doughtie, and Bryan McQuade.

Many of the insights in this book come from my friends outside Google. They know
that if they tell me about a good performance tip, it’s likely to end up in a book or blog
post. These performance cohorts include Dion Almaer, Artur Bergman, Doug Crock-
ford, Ben Galbraith, Eric Goldsmith, Jon Jenkins, Eric Lawrence, Mark Nottingham,
Simon Perkins, John Resig, Alex Russell, Eric Schurman, Dylan Schiemann, Bill Scott,
Jonas Sicking, Joseph Smarr, and Tenni Theurer.

I’ve inevitably forgotten to mention someone in these lists. I apologize, and want to
thank all of you for taking the time to send me email and talk to me at conferences.
Hearing your lessons learned and success stories keeps me going. It’s important to know
there are so many of us who are working to make the Web a faster place.

Thank you to my parents for being proud to have a son who’s an author. Most impor-
tantly, thank you to my wife and three daughters. I promise to take a break now.

Preface | xix

http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/
http://fasterfox.mozdev.org/

CHAPTER 1

Understanding Ajax Performance

Douglas Crockford

Premature optimization is the root of all evil.

—Donald Knuth

Trade-offs
The design and construction of a computer program can involve thousands of deci-
sions, each representing a trade-off. In difficult decisions, each alternative has signifi-
cant positive and negative consequences. In trading off, we hope to obtain a near
optimal good while minimizing the bad. Perhaps the ultimate trade-off is:

I want to go to heaven, but I don’t want to die.

More practically, the Project Triangle:

Fast. Good. Cheap. Pick Two.

predicts that even under ideal circumstances, it is not possible to obtain fast, good, and
cheap. There must be a trade-off.

In computer programs, we see time versus memory trade-offs in the selection of algo-
rithms. We also see expediency or time to market traded against code quality. Such
trades can have a large impact on the effectiveness of incremental development.

Every time we touch the code, we are trading off the potential of improving the code
against the possibility of injecting a bug. When we look at the performance of programs,
we must consider all of these trade-offs.

Principles of Optimization
When looking at optimization, we want to reduce the overall cost of the program.
Typically, this cost is the perceived execution time of the program, although we could

1

optimize on other factors. We then should focus on the parts of the program that
contribute most significantly to its cost.

For example, suppose that by profiling we discover the cost of a program’s four
modules.

Module A B C D

Cost 54% 4% 30% 12%

If we could somehow cut the cost of Module B in half, we would reduce the total cost
by only 2%. We would get a better result by cutting the cost of Module A by 10%.
There is little benefit from optimizing components that do not contribute significantly
to the cost.

The analysis of applications is closely related to the analysis of algorithms. When look-
ing at execution time, the place where programs spend most of their time is in loops.
The return on optimization of code that is executed only once is negligible. The benefits
of optimizing inner loops can be significant.

For example, if the cost of a loop is linear with respect to the number of iterations, then
we can say it is O(n), and we can graph its performance as shown in Figure 1-1.

Figure 1-1. Performance of a loop

The execution time of each iteration is reflected in the slope of the line: the greater the
cost, the steeper the slope. The fixed overhead of the loop determines the elevation of
its starting point. There is usually little benefit in reducing the fixed overhead. Some-
times there is a benefit in increasing the fixed overhead if the cost of each increment
can be reduced. That can be a good trade-off.

In addition to the plot of execution time, there are three lines—the Axes of Error—that
our line must not intersect (see Figure 1-2). The first is the Inefficiency line. Crossing
this line reduces the user’s ability to concentrate. This can also make people irritable.
The second is the Frustration line. When this line is crossed, the user is aware that he

2 | Chapter 1: Understanding Ajax Performance

is being forced to wait. This invites him to think about other things, such as the desir-
ability of competing web applications. The third is the Failure line. This is when the
user refreshes or closes the browser because the application appears to have crashed,
or the browser itself produces a dialog suggesting that the application has failed and
that the user should take action.

Figure 1-2. The Axes of Error

There are three ways to avoid intersecting the Axes of Error: reduce the cost of each
iteration, reduce the number of iterations, or redesign the application.

When loops become nested, your options are reduced. If the cost of the loop is O(n log
n), O(n2), or worse, reducing the time per iteration is not effective (see Figure 1-3). The
only effective options are to reduce n or to replace the algorithm. Fiddling with the cost
per iteration will be effective only when n is very small.

Figure 1-3. Performance of a nested loop

Programs must be designed to be correct. If the program isn’t right, it doesn’t matter
if it is fast. However, it is important to determine whether it has performance problems
as early as possible in the development cycle. In testing web applications, test with slow

Principles of Optimization | 3

machines and slow networks that more closely mimic those of real users. Testing in
developer configurations is likely to mask performance problems.

Ajax
Refactoring the code can reduce its apparent complexity, making optimization and
other transformations more likely to yield benefits. For example, adopting the YSlow
rules can have a huge impact on the delivery time of web pages (see http://developer
.yahoo.com/yslow/).

Even so, it is difficult for web applications to get under the Inefficiency line because of
the size and complexity of web pages. Web pages are big, heavy, multipart things. Page
replacement comes with a significant cost. For applications where the difference
between successive pages is relatively small, use of Ajax techniques can produce a sig-
nificant improvement.

Instead of requesting a replacement page as a result of a user action, a packet of data
is sent to the server (usually encoded as JSON text) and the server responds with another
packet (also typically JSON-encoded) containing data. A JavaScript program uses that
data to update the browser’s display. The amount of data transferred is significantly
reduced, and the time between the user action and the visible feedback is
also significantly reduced. The amount of work that the server must do is reduced.
The amount of work that the browser must do is reduced. The amount of work that
the Ajax programmer must do, unfortunately, is likely to increase. That is one of the
trade-offs.

The architecture of an Ajax application is significantly different from most other sorts
of applications because it is divided between two systems. Getting the division of labor
right is essential if the Ajax approach is to have a positive impact on performance. The
packets should be as small as possible. The application should be constructed as a
conversation between the browser and the server, in which the two halves communicate
in a concise, expressive, shared language. Just-in-time data delivery allows the browser
side of the application to keep n small, which tends to keep the loops fast.

A common mistake in Ajax applications is to send all of the application’s data to the
browser. This reintroduces the latency problems that Ajax is supposed to avoid. It also
enlarges the volume of data that must be handled in the browser, increasing n and again
compromising performance.

Browser
Ajax applications are challenging to write because the browser was not designed to be
an application platform. The scripting language and the Document Object Model
(DOM) were intended to support applications composed of simple forms. Surprisingly,
the browser gets enough right that it is possible to use it to deliver sophisticated

4 | Chapter 1: Understanding Ajax Performance

http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/

applications. Unfortunately, it didn’t get everything right, so the level of difficulty can
be high. This can be mitigated with the use of Ajax libraries (e.g., http://developer.yahoo
.com/yui/). An Ajax library uses the expressive power of JavaScript to raise the DOM
to a practical level, as well as repairing many of the hazards that can prevent applications
from running acceptably on the many brands of browsers.

Unfortunately, the DOM API is very inefficient and mysterious. The greatest cost in
running programs tends to be the DOM, not JavaScript. At the Velocity 2008 confer-
ence, the Microsoft Internet Explorer 8 team shared this performance data on how time
is spent in the Alexa 100 pages.*

Activity Layout Rendering HTML Marshaling DOM Format JScript Other

Cost 43.16% 27.25% 2.81% 7.34% 5.05% 8.66% 3.23% 2.5%

The cost of running JavaScript is insignificant compared to the other things that the
browser spends time on. The Microsoft team also gave an example of a more aggressive
Ajax application, the opening of an email thread.

Activity Layout Rendering HTML Marshaling DOM Format JScript Other

Cost 9.41% 9.21% 1.57% 7.85% 12.47% 38.97% 14.43% 3.72%

The cost of the script is still less than 15%. Now CSS processing is the greatest cost.
Understanding the mysteries of the DOM and working to suppress its impact is clearly
a better strategy than attempting to speed up the script. If you could heroically make
the script run twice as fast, it would barely be noticed.

Wow!
There is a tendency among application designers to add wow features to Ajax applica-
tions. These are intended to invoke a reaction such as, “Wow, I didn’t know browsers
could do that.” When used badly, wow features can interfere with the productivity of
users by distracting them or forcing them to wait for animated sequences to play out.
Misused wow features can also cause unnecessary DOM manipulations, which can
come with a surprisingly high cost.

Wow features should be used only when they genuinely improve the experience of the
user. They should not be used to show off or to compensate for deficiencies in func-
tionality or usability.

Design for things that the browser can do well. For example, viewing a database as an
infinitely scrolling list requires that the browser hold on to and display a much larger
set than it can manage efficiently. A better alternative is to have a very effective

* http://en.oreilly.com/velocity2008/public/schedule/detail/3290

Wow! | 5

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://en.oreilly.com/velocity2008/public/schedule/detail/3290

paginating display with no scrolling at all. This provides better performance and can
be easier to use.

JavaScript
Most JavaScript engines were optimized for quick time to market, not performance, so
it is natural to assume that JavaScript is always the bottleneck. Typically, however, the
bottleneck is not JavaScript, but the DOM, so fiddling with scripts will have little
effectiveness.

Fiddling should be avoided. Programs should be coded for correctness and clarity.
Fiddling tends to work against clarity, which can increase the susceptibility of the
program to attract bugs.

Fortunately, competitive pressure is forcing the browser makers to improve the effi-
ciency of their JavaScript engines. These improvements will enable new classes of
applications in the browser.

Avoid obscure idioms that might be faster unless you can prove that they will have a
noticeable impact on your application. In most cases, they will have no noticeable
impact except to degrade the quality of your code. Do not tune to the quirks of par-
ticular browsers. The browsers are still in development and may ultimately favor better
coding practices.

If you feel you must fiddle, measure first. Our intuitions of the true costs of a program
are usually wrong. Only by measuring can you have confidence that you are having a
positive effect on performance.

Summary
Everything is a trade-off. When optimizing for performance, do not waste time trying
to speed up code that does not consume a significant amount of the time. Measure first.
Back out of any optimization that does not provide an enjoyable benefit.

Browsers tend to spend little time running JavaScript. Most of their time is spent in the
DOM. Ask your browser maker to provide better performance measurement tools.

Code for quality. Clean, legible, well-organized code is easier to get right, easier to
maintain, and easier to optimize. Avoid tricks except when they can be proven to
substantially improve performance.

Ajax techniques, when used well, can make applications faster. The key is in estab-
lishing a balance between the browser and the server. Ajax provides an effective alter-
native to page replacement, turning the browser into a powerful application platform,
but your success is not guaranteed. The browser is a challenging platform and your
intuitions about performance are not reliable. The chapters that follow will help you
understand how to make even faster web sites.

6 | Chapter 1: Understanding Ajax Performance

CHAPTER 2

Creating Responsive Web Applications

Ben Galbraith and Dion Almaer

With the rise of Ajax, web site performance is no longer just about the quick realization
of a web site. An ever-increasing number of web sites, once loaded, will use JavaScript
to dynamically change the page and load new content on the fly. Such sites have much
in common with traditional desktop client programs, and optimizing the performance
of these applications requires a different set of techniques from traditional web sites.

From a high level, user interfaces for web applications and traditional desktop appli-
cations share a common goal: respond to the user’s input as fast as possible. When it
comes to responding to a user’s request to load a web site, the browser itself handles
much of the responsiveness burden. It opens network connections to the requested
site, parses the HTML, requests the associated resources, and so forth. Based on a
careful analysis of this process, we can optimize our pages to render as fast as possible,
but the browser is ultimately in control of loading and realizing the page.

When it comes to responding to user input to the web site itself (when that input doesn’t
result in the browser loading a new page), we web developers are in control. We must
ensure that the JavaScript that executes as a result of such input is responsive. To better
understand just how much control we have over responsiveness, we’re going to take a
minute to explain how browser user interfaces work.

As shown in Figure 2-1, when a user interacts with a browser, the operating system
receives input from various devices attached to the computer, such as the keyboard or
mouse. It works out which application should receive these inputs, and it packages
them up as individual events and places them in a queue for that application, known
as an event queue.

It’s up to the web browser, like any GUI application, to process the individual events
placed in its queue. It does so by pulling them from the queue in first-in, first-out order
and deciding what to do about the event. Generally, the browser will do one of two
things based on these events: handle the event itself (such as display a menu, browse

7

the Web, show a preference screen, etc.) or execute JavaScript code in the web page
itself (e.g., JavaScript code in an onclick handler in the page), as shown in Figure 2-2.

Figure 2-1. All user input is routed via the operating system into an event queue

Figure 2-2. The browser uses a single thread to process events in the queue and execute user code

The important takeaway here is that this process is essentially single-threaded. That is,
the browser uses a single thread to pull an event from the queue and either do something

8 | Chapter 2: Creating Responsive Web Applications

www.allitebooks.com

http://www.allitebooks.org

itself (“Web browsing” in Figure 2-2) or execute JavaScript. As such, it can do only one
of these tasks at a time, and each of these tasks can prevent the other tasks from
occurring.

Any time spent by the browser executing a page’s JavaScript is time that it cannot spend
responding to other user events. It is therefore vital that any JavaScript in a page execute
as fast as possible. Otherwise, the web page and the browser itself may become sluggish
or freeze up entirely.

Note that this discussion of browser and operating system behavior with respect to
input handling and events is a broadly applicable generalization; details vary. Regard-
less of variances, all browsers execute all JavaScript code in a page on a single thread
(excepting the use of Web Workers, discussed later in this chapter), making the de-
veloper practices advocated in this chapter completely applicable.

What Is Fast Enough?
It’s fine to say that code needs to execute “as fast as possible,” but sometimes code
needs to do things that simply take time. For instance, encryption algorithms, complex
graphics rendering, and image manipulation are examples of computations that are
time-consuming to perform, regardless of how much effort a developer puts forth to
make them “as fast as possible.”

However, as Doug mentioned in Chapter 1, developers seeking to create responsive,
high-performance web sites can’t—and shouldn’t—go about achieving that goal by
optimizing every single piece of code as they write it. The opposite is true: a developer
should optimize only what isn’t fast enough.

It is therefore vital to define exactly what is “fast enough” in this context. Fortunately,
that’s already been done for us.

Jakob Nielsen is a well-known and well-regarded expert in the field of web usability;
the following quote* addresses the issue of “fast enough”:

The response time guidelines for web-based applications are the same as for all other
applications. These guidelines have been the same for 37 years now, so they are also not
likely to change with whatever implementation technology comes next.

0.1 second: Limit for users feeling that they are directly manipulating objects in the UI.
For example, this is the limit from the time the user selects a column in a table until that
column should highlight or otherwise give feedback that it’s selected. Ideally, this would
also be the response time for sorting the column—if so, users would feel that they are
sorting the table.

1 second: Limit for users feeling that they are freely navigating the command space
without having to unduly wait for the computer. A delay of 0.2–1.0 seconds does mean
that users notice the delay and thus feel the computer is “working” on the command, as

* http://www.useit.com/papers/responsetime.html

What Is Fast Enough? | 9

http://www.useit.com/papers/responsetime.html

opposed to having the command be a direct effect of the users’ actions. Example: If
sorting a table according to the selected column can’t be done in 0.1 seconds, it certainly
has to be done in 1 second, or users will feel that the UI is sluggish and will lose the sense
of “flow” in performing their task. For delays of more than 1 second, indicate to the user
that the computer is working on the problem, for example by changing the shape of the
cursor.

10 seconds: Limit for users keeping their attention on the task. Anything slower than
10 seconds needs a percent-done indicator as well as a clearly signposted way for the user
to interrupt the operation. Assume that users will need to reorient themselves when they
return to the UI after a delay of more than 10 seconds. Delays of longer than 10 seconds
are only acceptable during natural breaks in the user’s work, for example when switching
tasks.

In other words, if your JavaScript code takes longer than 0.1 seconds to execute, your
page won’t have that slick, snappy feel; if it takes longer than 1 second, the application
feels sluggish; longer than 10 seconds, and the user will be extremely frustrated. These
are the definitive guidelines to use for defining “fast enough.”

Measuring Latency
Now that you know the threshold for fast enough, the next step is to explore how you
can measure the speed of JavaScript execution to determine whether it falls outside the
ranges mentioned earlier (we’ll leave it to you to determine just how fast you wish your
page to be; we aim to keep all interface latency smaller than 0.1 seconds).

The easiest, most straightforward, and probably least precise way to measure latency
is via human observation; simply use the application on your target platforms and
ensure that performance is adequate. Since ensuring adequate human interface per-
formance is only about pleasing humans, this is actually a fine way to perform such
measurements (obviously, few humans will be able to quantify delays reliably in terms
of precise whole or fractional second measurements; falling back to coarser categori-
zations such as “snappy,” “sluggish,” “adequate,” and so on does the job).

However, if you desire more precise measurements, there are two options you can
choose: manual code instrumentation (logging) or automated code instrumentation
(profiling).

Manual code instrumentation is really straightforward. Let’s say you have an event
handler registered on your page, as in:

<div onclick="myJavaScriptFunction()"> ... </div>

A simple way to add manual instrumentation would be to locate the definition of
myJavaScriptFunction() and add timing to the function:

function myJavaScriptFunction() {
 var start = new Date().getMilliseconds();

 // some expensive code is here

10 | Chapter 2: Creating Responsive Web Applications

 var stop = new Date().getMilliseconds();
 var executionTime = stop - start;
 alert("myJavaScriptFunction() executed in " + executionTime +
 " milliseconds");
}

The preceding code will produce a pop-up dialog that displays the execution time; one
millisecond represents 1/1,000 of a second, so 100 milliseconds represent the 0.1-
second “snappiness” threshold mentioned earlier.

Many browsers offer a built-in instance named console that provides a
log() function (Firefox makes this available with the popular Firebug
plug-in); we greatly prefer console.log() to alert().

There are tools to perform an automated measurement of code execution time, but
such tools are typically used for a different purpose. Instead of being used to determine
the precise execution duration of a function, such tools—called profilers—are usually
used to determine the relative amount of time spent executing a set of functions; that
is, they are used to find the bottleneck or slowest-running chunks of code.

The popular Firebug extension for Firefox includes a JavaScript code profiler; it gen-
erates output such as that shown in Figure 2-3.

Figure 2-3. Firebug’s profiler

The “Time” column represents the total amount of time the JavaScript interpreter spent
inside a given function during the period of profiling. Often, a function invokes other

Measuring Latency | 11

http://getfirebug.com/

functions; the “Own Time” column represents the amount of time spent inside a spe-
cific function and not any other functions that it may have invoked.

While you might think these and the other temporal-related columns represent a precise
measurement of function execution time, it turns out that profilers are subject to some-
thing like the observer effect in physics: the act of observing the performance of code
modifies the performance of the code.

Profilers can take two basic strategies representing a basic trade-off: either they can
intrude on the code being measured by adding special code to collect performance
statistics (basically automating the creation of code as in the previous listing), or they
can passively monitor the runtime by checking what piece of code is being executed at
a particular moment in time. Of these two approaches, the latter does less to distort
the performance of the code being profiled, but at the cost of lower-quality data.

Firebug subjects results to a further distortion because its profiler executes inside Fire-
fox’s own process, which creates the potential for it to rob the code it is measuring of
performance.

Nevertheless, the “Percent” column of Firebug’s output demonstrates the power of
measuring relative execution time: you can perform a high-level task in your page’s
interface (e.g., click the Send button) and then check Firebug’s profiler to see which
functions spent the most time executing, and focus your optimization efforts on those.

When Latency Goes Bad
It turns out that if your JavaScript code ties up the browser thread for a particularly
long time, most browsers will intervene and give the user the opportunity to interrupt
your code. There is no standard behavior governing how browsers make the
determination to give the user this opportunity. (For details on individual browser
behavior, see http://www.nczonline.net/blog/2009/01/05/what-determines-that-a-script
-is-long-running/.)

The lesson is simple: don’t introduce potentially long-running, poorly performing code
into your web page.

Threading
Once you’ve identified code that performs inadequately, of course the next step is to
go about optimizing it. However, sometimes the task to perform is simply expensive
and cannot be magically optimized to take less time. Are such scenarios fated to bring
sluggish horror to a user interface? Will no solution emerge to keep our users happy?

The traditional solution in such cases is to use threads to push such expensive code off
the thread used to interact with the user. In our scenario, this would let the browser
continue to process events from the event queue and keep the interface responsive while
the long-running code merrily executes on a different thread (and the operating system

12 | Chapter 2: Creating Responsive Web Applications

http://www.nczonline.net/blog/2009/01/05/what-determines-that-a-script-is-long-running/
http://www.nczonline.net/blog/2009/01/05/what-determines-that-a-script-is-long-running/

takes responsibility for making sure that both the browser user interface thread and the
background thread equitably share the computer’s resources).

However, JavaScript doesn’t support threads, so there’s no way for JavaScript code to
create a background thread to execute expensive code. Further, this isn’t likely to
change anytime soon.

Brendan Eich, the creator of JavaScript and Mozilla’s chief technical officer, has made
his position on this issue clear:†

You must be [as tall as an NBA player] to hack on threaded systems, and that means
most programmers should run away crying. But they don’t. Instead, as with most other
sharp tools, the temptation is to show how big one is by picking up the nearest single-
threaded code and jamming it into a multi-threaded embedding, or tempting race-
condition fate otherwise. Occasionally the results are infamous, but too often, with only
virtual fingers and limbs lost, no one learns.

Threads violate abstractions six ways to Sunday. Mainly by creating race conditions,
deadlock hazards, and pessimistic locking overhead. And still they don’t scale up to
handle the megacore teraflop future.

So my default answer to questions such as, “When will you add threads to JavaScript?”
is: “over your dead body!”

Given Brendan’s influence in the industry and on the future of JavaScript (which is
considerable), and the broad degree to which this position is shared, it is safe to say
that threads will not be coming to JavaScript anytime soon.

However, there are alternatives. The basic problem with threads is that different threads
can have access to and modify the same variables. This causes all sorts of problems
when Thread A modifies variables that Thread B is actively modifying, and so on. You
might think these sorts of issues could be kept straight by decent programmers, but it
turns out that, as Brendan said, even the best of us make pretty horrible mistakes in
this department.

Ensuring Responsiveness
What’s needed is a way to have the benefit of threads—tasks executing in parallel—
without the hazards of the threads getting into each other’s business. Google imple-
mented just such an API in its popular Gears browser plug-in: the WorkerPool API. It
essentially allows the main browser JavaScript thread to create background “workers”
that receive some simple “message” (i.e., standalone state, not references to shared
variables) from the browser thread when they are kicked off and return a message upon
completion.

† http://weblogs.mozillazine.org/roadmap/archives/2007/02/threads_suck.html

Ensuring Responsiveness | 13

http://weblogs.mozillazine.org/roadmap/archives/2007/02/threads_suck.html

Experience with this API in Gears has led many browsers (e.g., Safari 4, Firefox 3.1) to
implement support for “workers” natively based on a common API defined in the
HTML 5 specification. This feature is known as “Web Workers.”

Web Workers
Let’s consider how to use the Web Worker API to decrypt a value. The following listing
shows how to create and kick off a worker:

// create and begin execution of the worker
var worker = new Worker("js/decrypt.js");

// register an event handler to be executed when the worker
// sends the main thread a message
worker.onmessage = function(e) {
 alert("The decrypted value is " + e.data);
}

// send a message to the worker, in this case the value to decrypt
worker.postMessage(getValueToDecrypt());

Now let’s take a look at the hypothetical contents of js/decrypt.js:

// register a handler to receive messages from the main thread
onmessage = function(e) {
 // get the data passed to us
 var valueToDecrypt = e.data;

 // TODO: implement decryption here

 // return the value to the main thread
 postMessage(decryptedValue);
}

Any potentially expensive (i.e., long-running) JavaScript operations that your page
performs should be delegated to workers, as that will keep your application running
lickety-split.

Gears
If you find yourself supporting a browser that doesn’t support the Web Worker API,
there are a few alternatives. We mentioned Google’s Gears plug-in in the preceding
section; you can use the Gears plug-in to bring something very much like Web Workers
to Internet Explorer, to older versions of Firefox, and to older versions of Safari.

The Gears worker API is similar but not identical to the Web Worker API. Here are the
previous two code listings converted to the Gears API, starting with the code executed
on the main thread to spawn a worker:

14 | Chapter 2: Creating Responsive Web Applications

// create a worker pool, which spawns workers
var workerPool = google.gears.factory.create('beta.workerpool');

// register the event handler that receives the message from the worker
workerPool.onmessage = function(ignore1, ignore2, e) {
 alert("The decrypted value is + " e.body);
}

// create a worker
var workerId = workerPool.createWorkerFromUrl("js/decrypt.js");

// send a message to the worker
workerPool.sendMessage(getValueToDecrypt(), workerId);

And here is the Gears version of js/decrypt.js:

var workerPool = google.gears.workerPool;
workerPool.onmessage = function(ignore1, ignore2, e) {
 // get the data passed to us
 var valueToDecrypt = e.body;

 // TODO: implement decryption here

 // return the value to the main thread
 workerPool.sendMessage(decryptedValue, e.sender);
}

More on Gears
It is interesting to note some of the history of the Gears Worker Pool because it came
from a very practical place. The Gears plug-in was built by a team at Google that was
trying to push the browser to do more than it currently was able (this was before Google
Chrome—but even with Chrome, Google wants as many users as possible to do great
things with its web applications).

Imagine if you wanted to build Gmail Offline; what would you need? First, you’d need
a way to cache documents locally and to have an intercept so that when the browser
tries to access http://mail.google.com/, it gets the page back instead of a message stating
that you are offline. Second, it needs a way to store your email, both new and old. This
could be done in many forms, but since SQLite is well known and already in most new
browsers and bundled in many operating systems, why not use that? Here’s where the
problem lies.

We have been talking about the issues with a single-threaded browser. Now imagine
operations such as writing new messages to the database or performing long queries.
We can’t freeze the UI while the database does its work—the latency could be enor-
mous! The Gears team needed a way to get around this. Since the Gears plug-in can do
whatever it wants, it can easily work around the lack of threads in JavaScript. But since
the need for concurrency is a general problem, why not give this ability to the outside
world? Hence the “Worker Pool” API, which led to the HTML 5 standard “Web
Workers.”

Ensuring Responsiveness | 15

http://mail.google.com/

The two APIs look subtly different, but this is because Web Workers is sort of like
version 2.0 of the pioneering Gears API; Gears should support the standard API soon.
There are already “shim” libraries that bridge the existing Gears API and the standard
Web Worker API, and these shims can be used to work even without Gears or Web
Workers (by using setTimeout(), described in this chapter).

Timers
Another approach, common before Gears and Web Workers, was simply to split up
long-running operations into separate chunks and use JavaScript timers to control the
execution. For example:

var functionState = {};

function expensiveOperation() {
 var startTime = new Date().getMilliseconds();
 while ((new Date().getMilliseconds() - startTime) < 100) {
 // TODO: implement expensive operation in such a way
 // that it performs work in iterative chunks that complete
 // in less than 100 ms and shove state in "functionState"
 // outside this function; good luck with that ;-)
 }

 if (!functionState.isFinished) {
 // re-enter expensiveOperation 10 ms after exiting; experiment
 // with larger values to strike the right balance between UI
 // responsiveness and performance
 setTimeout(expensiveOperation(), 10);
 }
}

Splitting up the operation in the manner just illustrated will result in a responsive in-
terface, but as the comment in the listing indicates, it may not be straightforward (or
even feasible) to structure the operation in that way. See “Yielding Using
Timers” on page 103 for more details on using setTimeout() in this manner.

There’s another fundamental issue with this approach. Most modern computers have
multiple “cores,” which means that they have the ability to execute multiple threads in
a truly concurrent fashion (whereas previous computers have only emulated concur-
rency through fast task switching). Implementing task switching manually via Java-
Script as we’ve done in the listing can’t take advantage of such architectures; you are
therefore leaving processing power on the table by forcing one of the cores to do all of
the processing.

Thus, it is possible to perform long-running operations on the browser’s main thread
and maintain a responsive interface, but it’s easier and more efficient to use workers.

16 | Chapter 2: Creating Responsive Web Applications

XMLHttpRequest
A discussion of threading wouldn’t be complete without touching briefly on the famed
enabler of the Ajax revolution: XMLHttpRequest, or “XHR” for short. Using XHR, a web
page may send a message and receive a response entirely from the JavaScript environ-
ment, a feat that enables rich interactivity without loading new pages.

XHR has two basic execution modes: synchronous and asynchronous. In the asyn-
chronous mode, XHR is essentially a Web Worker but with a specialized API; indeed,
coupled with other features of the in-progress HTML 5 specification, you can re-create
the functionality of XHR with a worker. In the synchronous mode, XHR acts as though
it performs all of its work on the browser’s main thread and will therefore introduce
user interface latency that lasts as long as XHR takes to send its request and parse the
response from the server. Therefore, never use XHR in synchronous mode, as it can
lead to unpredictable user interface latency well outside of tolerable ranges.

Effects of Memory Use on Response Time
There’s another key aspect to creating responsive web pages: memory management.
Like many modern high-level languages that abstract away low-level memory manage-
ment, most JavaScript runtimes implement garbage collection (or “GC” for short).
Garbage collection can be a magical thing, relieving developers from tedious details
that feel more like accounting than programming.

However, automatic memory management comes with a cost. All but the most
sophisticated of GC implementations “stop the world” when they perform their col-
lections; that is, they freeze the entire runtime (including what we’ve been calling the
main browser JavaScript thread) while they walk the entire “heap” of created objects,
searching for those that are no longer being used and are therefore eligible for recycling
into unused memory.

For most applications, GC is truly transparent; the runtime is frozen for short enough
periods of time that it escapes the user’s attention entirely. However, as an application’s
memory footprint increases in size, the time required to walk through the entire heap
searching for objects that are no longer in use grows and can eventually reach levels
that a user does notice.

When this occurs, the application begins to be intermittently sluggish on somewhat
regular intervals; as the problem gets worse, the entire browser may freeze on these
intervals. Both cases lead to a frustrating user experience.

Most modern platforms provide sophisticated tools that enable you to monitor the
performance of the runtime’s GC process and to view the current set of objects on the
heap in order to diagnose GC-related problems. Unfortunately, JavaScript runtimes
don’t fall into that category. To make matters worse, no tools exist that can inform
developers when collections occur or how much time they are spending performing

Ensuring Responsiveness | 17

their work; such tools would be very helpful to verify that observed latency is related
to GC.

This tool gap is a serious detriment toward the development of large-scale browser-
hosted JavaScript applications. Meanwhile, developers must guess whether GC is
responsible for UI delays.

Virtual Memory
There is another danger associated with memory: paging. Operating systems have two
classes of memory they make available to applications: physical and virtual. Physical
memory is mapped to extremely fast RAM chips in the underlying computer; virtual
memory is mapped to a much slower mass storage device (e.g., hard drive) that makes
up for its relative pokiness with much larger available storage space.

If your web page’s memory requirements grow sufficiently large, you may force the
operating system to start paging, an extremely slow process whereby other processes
are forced to relinquish their real memory to make room for the browser’s increased
appetite. The term paging is used because all modern operating systems organize mem-
ory into individual pages, the term used to describe the smallest unit of memory that
is mapped to either real or virtual memory. When paging occurs, pages are transferred
from real to virtual memory (i.e., from RAM to a hard drive) or vice versa.

The performance degradation caused by paging is a bit different from GC pauses; pag-
ing results in a general, pervasive sluggishness whereas GC pauses tend to manifest
themselves as discrete, individual pauses that occur in intervals—though the lengths
of the pauses grow over time. Regardless of their differences, either one of these prob-
lems represents significant threats to your goal of creating a responsive user interface.

Troubleshooting Memory Issues
As we mentioned earlier, we know of no good memory troubleshooting tools for
browser-hosted JavaScript applications. The state of the art is to observe the memory
footprint of the browser process (see the section “Measuring Memory Use” at http://
blog.pavlov.net/2008/03/11/firefox-3-memory-usage/ for details on how to measure
process memory usage in Windows and OS X), and if it grows larger than is tolerable
during the course of your application, check whether your code has any opportunities
for memory usage optimizations.

Once you’ve determined that you have a memory problem, you should look for op-
portunities to clean up after yourself where you haven’t yet done so. You can do this
in two ways:

• Use the delete keyword to remove JavaScript objects that are no longer needed
from memory.

• Remove nodes that are no longer necessary from the web page DOM.

18 | Chapter 2: Creating Responsive Web Applications

http://blog.pavlov.net/2008/03/11/firefox-3-memory-usage/
http://blog.pavlov.net/2008/03/11/firefox-3-memory-usage/

The following code listing demonstrates how to perform both of these tasks:

var page = { address: "http://some/url" };

page.contents = getContents(page.address);

...

// later, the contents are no longer necessary
delete page.contents;

...

var nodeToDelete = document.getElementById("redundant");

// remove the node from the DOM (which can only be done via
// call to removeChild() from parent node) and
// simultaneously delete the node from memory
delete nodeToDelete.parent.removeChild(nodeToDelete);

Obviously, there is significant room for improvement in the area of memory usage
optimization for web pages. At Mozilla, we are currently developing tools to address
this problem. In fact, by the time you read this, you should be able to find one or more
such tools by visiting http://labs.mozilla.com.

Summary
Ajax ushered in a new era of long-running, JavaScript-centric web pages. Such web
pages are really browser-hosted applications and are subject to the same user interface
guidelines of any other application. It is vital that such applications keep the user
interface responsive by minimizing operations performed on the main application
thread.

Web Workers are a powerful new tool that can be used to offload complex operations
that threaten UI responsiveness. The Gears plug-in and JavaScript timers can be used
when Web Workers are unavailable.

Poorly managed memory can lead to UI performance problems. While there’s a short-
age of good tools to troubleshoot memory problems, developers can generally observe
browser memory usage and take steps to minimize their application’s memory footprint
when problems arise. The good news is that memory troubleshooting tools are in
development.

Summary | 19

http://labs.mozilla.com

CHAPTER 3

Splitting the Initial Payload

The growing adoption of Ajax and DHTML (Dynamic HTML) means today’s web
pages have more JavaScript and CSS than ever before. Web applications are becoming
more like desktop applications, and just like desktop applications, a large percentage
of the application code isn’t used at startup. Advanced desktop applications have a
plug-in architecture that allows for modules to be loaded dynamically, a practice that
many Web 2.0 applications could benefit from. In this chapter I show some popular
Web 2.0 applications that load too much code upfront, and I discuss approaches for
making pages load more dynamically.

Kitchen Sink
Facebook has 14 external scripts totaling 786 KB uncompressed.* Figuring out how
much of that JavaScript is necessary for the initial page to render is difficult to do, even
for a core Facebook frontend engineer. Some of those 14 external scripts are critical to
rendering the initial page, but others were included because they support Ajax and
DHTML functionality, such as the drop-down menus and the Comment and Like fea-
tures shown in Figure 3-1.

It’s critical to render a web page as quickly as possible. Doing so engages the user and
creates a responsive experience for her. Imagine if the Facebook JavaScript could be
split into two parts: what’s needed to render the initial page, and everything else. Rather
than bog down the user’s first impression with “everything else,” the initial JavaScript
download should include only what’s necessary for the initial rendering. The remaining
JavaScript payload can be loaded later.

* Fourteen scripts are downloaded when logged-in users visit this page. If the user is not logged in, fewer scripts
are used.

21

http://www.facebook.com/

Figure 3-1. Facebook Ajax and DHTML features

This raises several questions:

• How much does this save?

• How do you find where to split the code?

• What about race conditions?

• How do you download “everything else” later?

The first three questions are tackled in this chapter. How to load “everything else” is
the topic of Chapter 4.

Savings from Splitting
It turns out that Facebook executes only 9% of the downloaded JavaScript functions
by the time the onload event is called. This is computed by using Firebug’s JavaScript
profiler to count all the functions executed up to the onload event.† The counting stops
at the onload event because functionality needed after this point can, and should, be
downloaded after the initial page has rendered. I call this a post-onload download. (See
Chapter 4 for various lazy-loading techniques.)

Table 3-1 shows the percentage of functions downloaded that are not executed before
the onload event for 10 top U.S. web sites. On average, 75% of the functions

† Firebug is the preeminent web development tool, available at http://getfirebug.com/.

22 | Chapter 3: Splitting the Initial Payload

http://getfirebug.com/

downloaded are not executed during the initial rendering of the page. Thus, if down-
loading of these unexecuted functions was deferred, the size of the initial JavaScript
download would be dramatically reduced.

Admittedly, the 75% estimate might be exaggerated; some of the unexecuted functions
might be required for error handling or other special conditions. The estimate is still
useful to illustrate the point that much of the JavaScript downloaded initially could be
deferred. The average total amount of JavaScript is 252 KB uncompressed. This per-
centage is in terms of function count, not size. If we assume a constant function size,
75% represents an average 189 KB that doesn’t have to be downloaded until after the
onload event, making the initial page render more quickly.

Table 3-1. Percentage of JavaScript functions executed before onload

Web site % of functions not executed JavaScript size uncompressed

http://www.aol.com/ 71% 115 KB

http://www.ebay.com/ 56% 183 KB

http://www.facebook.com/ 91% 786 KB

http://www.google.com/search?q=flowers 56% 15 KB

http://search.live.com/results.aspx?q=flowers 75% 17 KB

http://www.msn.com/ 69% 131 KB

http://www.myspace.com/ 87% 297 KB

http://en.wikipedia.org/wiki/Flowers 79% 114 KB

http://www.yahoo.com/ 88% 321 KB

http://www.youtube.com/ 84% 240 KB

Finding the Split
Firebug’s JavaScript profiler shows the names of all the functions that were executed
by the time of the onload event. This list can be used to manually split the JavaScript
code into one file loaded as part of the initial page rendering and another file to be
downloaded later. However, because some of the unused functions may still be nec-
essary for error-handling and other conditional code paths, splitting the code into an
initial download that is complete without undefined symbols is a challenge. JavaScript’s
higher-order features, including function scoping and eval, make the challenge even
more complicated.

Doloto is a system developed by Microsoft Research for automatically splitting Java-
Script into clusters. The first cluster contains the functions needed for initializing the
web page. The remaining clusters are loaded on demand the first time the missing code
needs to execute, or they are lazy-loaded after the initial flurry of JavaScript activity is
over. When applied to Gmail, Live Maps, Redfin, MySpace, and Netflix, Doloto re-

Finding the Split | 23

http://www.aol.com/
http://www.ebay.com/
http://www.facebook.com/
http://www.google.com/search?q=flowers
http://search.live.com/results.aspx?q=flowers
http://www.msn.com/
http://www.myspace.com/
http://en.wikipedia.org/wiki/Flowers
http://www.yahoo.com/
http://www.youtube.com/
http://research.microsoft.com/apps/pubs/default.aspx?id=70518

duced the initial JavaScript download size by up to 50% and reduced the application
load time by 20% to 40%.

Doloto’s decisions about where to split the code are based on a training phase and can
result in the JavaScript being split into multiple downloads. For many web applications,
it is preferable to define a single split at the onload event, after which the remaining
JavaScript is immediately downloaded using the nonblocking techniques described in
Chapter 4. Waiting to start the additional downloads on demand after the user has
pulled down a menu or clicked on a page element forces the user to wait for the addi-
tional JavaScript to arrive. This wait can be avoided if all the additional JavaScript is
downloaded after the initial page rendering. Until Doloto or other systems are publicly
available, developers need to split their code manually. The following section discusses
some of the issues to keep in mind when doing this.

Undefined Symbols and Race Conditions
The challenge in splitting your JavaScript code is to avoid undefined symbols. This
problem arises if the JavaScript being executed references a symbol that has, mistak-
enly, been relegated to a later download. In the Facebook example, for instance, I
suggest that the JavaScript for drop-down menus should be loaded later. But if the
drop-down menu is displayed before the required JavaScript is downloaded, there’s a
window in which the user can click on the drop-down menu and the required JavaScript
won’t be available. My suggestion would then have created a race condition where the
JavaScript is racing to download while the user is racing to click the menu. In most
cases, the JavaScript will win the race, but there is a definite possibility that the user
may click first and experience an undefined symbol error when the (yet to be down-
loaded) drop-down menu function is called.

In a situation where the delayed code is associated with a UI element, the problem can
be avoided by changing the element’s appearance. In this case, the menu could contain
a “Loading…” spinner, alerting the user that the functionality is not yet available.

Another option is to attach handlers to UI elements in the lazy-loaded code. In this
example, the menu would be rendered initially as static text. Clicking on it would not
execute any JavaScript. The lazy-loaded code would both contain the menu function-
ality and would attach that behavior to the menu using attachEvent in Internet Explorer
and addEventListener in all other browsers.‡

In situations where the delayed code is not associated with a UI element, the solution
to this problem is to use stub functions. A stub function is a function with the same
name as the original function but with an empty function body or temporary code in
place of the original. The previous section described Doloto’s ability to download
additional JavaScript modules on demand. Doloto implements this on-demand feature

‡ See http://www.quirksmode.org/js/events_advanced.html for more information.

24 | Chapter 3: Splitting the Initial Payload

http://www.quirksmode.org/js/events_advanced.html

by inserting stub functions in the initial download that, when invoked, dynamically
download additional JavaScript code. When the additional JavaScript code is down-
loaded, the original function definitions overwrite the stub functions.

A simpler approach is to include an empty stub function for each function that is ref-
erenced but relegated to the later download. If necessary, the stub function should
return a stub value, such as an empty string. If the user tries to invoke a DHTML feature
before the full function implementation is downloaded, nothing happens. A slightly
more advanced solution has each stub function record the user’s requests and invokes
those actions when the lazy-loaded JavaScript arrives.

Case Study: Google Calendar
A good example of splitting the initial payload is Google Calendar. Figure 3-2 shows
the HTTP requests that are made when Google Calendar is requested. I call these
charts HTTP waterfall charts. Each horizontal bar represents one request. The resource
type is shown on the left. The horizontal axis represents time, so the placement of the
bars shows at what point during page load each resource was requested and received.

Figure 3-2. Google Calendar HTTP waterfall chart

Google Calendar requests five scripts totaling 330 KB uncompressed. The payload is
split into an initial script of 152 KB that is requested early (the third bar from the top).
The blocking behavior of this script is mitigated by the fact that it contains less than
half of the total JavaScript. The rest of the JavaScript payload is requested last, after
the page has been allowed to render.

By splitting their JavaScript, the Google Calendar team creates a page that renders more
quickly than it would have if all of the JavaScript were loaded in one file. Splitting a
web application’s JavaScript is not a simple task. It requires determining the functions
needed for initial rendering, finding all required code dependencies, stubbing out other
functions, and lazy-loading the remaining JavaScript. Further automation for these
tasks is needed. Microsoft’s Doloto project describes such a system, but as of this writ-
ing, it’s not available publicly. Until tools such as this are made available, developers
will have to roll up their sleeves and do the heavy lifting themselves.

Case Study: Google Calendar | 25

This chapter has focused on splitting JavaScript, but splitting CSS stylesheets is also
beneficial. The savings are less than those gained by splitting JavaScript because the
total size of stylesheets is typically less than JavaScript, and downloading CSS does not
have the blocking characteristics that downloading JavaScript has.§ This is another
opportunity for further research and tool development.

§ Firefox 2 is the one exception.

26 | Chapter 3: Splitting the Initial Payload

CHAPTER 4

Loading Scripts Without Blocking

SCRIPT tags have a negative impact on page performance because of their blocking
behavior. While scripts are being downloaded and executed, most browsers won’t
download anything else. There are times when it’s necessary to have this blocking, but
it’s important to identify situations when JavaScript can be loaded independent of the
rest of the page.

When these opportunities arise, we want to load the JavaScript in such a way that it
does not block other downloads. Luckily, there are several techniques for doing this
that make pages load faster. This chapter explains these techniques, compares how
they affect the browser and performance, and describes the circumstances that make
one approach preferred over another.

Scripts Block
JavaScript is included in a web page as an inline script or an external script. An inline
script includes all the JavaScript in the HTML document itself using the SCRIPT tag:

<script>
function displayMessage(msg) {
 alert(msg);
}
</script>

External scripts pull in the JavaScript from a separate file using the SCRIPT SRC attribute:

<script src='A.js'></script>

The SRC attribute specifies the URL of the external file that needs to be loaded. The
browser reads the script file from the cache, if available, or makes an HTTP request to
fetch the script.

Normally, most browsers download components in parallel, but that’s not the case for
external scripts. When the browser starts downloading an external script, it won’t start
any additional downloads until the script has been completely downloaded, parsed,
and executed. (Any downloads that were already in progress are not blocked.)

27

Figure 4-1 shows the HTTP requests for the Scripts Block Downloads example.*

Scripts Block Downloads
http://stevesouders.com/cuzillion/?ex=10008&title=Scripts+Block+Downloads

This page has two scripts at the top, A.js and B.js, followed by an image, a stylesheet,
and an iframe. The scripts are each programmed to take one second to download and
one second to execute. The white gaps in the HTTP profile indicate where the scripts
are executed. This shows that while scripts are being downloaded and executed, all
other downloads are blocked. Only after the scripts have finished are the image, style-
sheet, and iframe merrily downloaded in parallel.

Figure 4-1. Scripts block parallel downloads

The reason browsers block while downloading and executing a script is that the script
may make changes to the page or JavaScript namespace that affect whatever follows.
The typical example cited is when A.js uses document.write to alter the page. Another
example is when A.js is a prerequisite for B.js. The developer is guaranteed that scripts
are executed in the order in which they appear in the HTML document so that A.js is
downloaded and executed before B.js. Without this guarantee, race conditions could
result in JavaScript errors if B.js is downloaded and executed before A.js.

Although it’s clear that scripts must be executed sequentially, there’s no reason they
have to be downloaded sequentially. That’s where Internet Explorer 8 comes in. The
behavior shown in Figure 4-1 is true for most browsers, including Firefox 3.0 and earlier
and Internet Explorer 7 and earlier. However, Internet Explorer 8’s download profile,
shown in Figure 4-2, is different. Internet Explorer 8 is the first browser that supports
downloading scripts in parallel.

Figure 4-2. Internet Explorer 8 downloads scripts without blocking

* This and other examples are generated from Cuzillion, a tool I built specifically for this chapter. See the
Appendix for more information about Cuzillion.

28 | Chapter 4: Loading Scripts Without Blocking

www.allitebooks.com

http://stevesouders.com/cuzillion/?ex=10008&title=Scripts+Block+Downloads
http://www.allitebooks.org

The ability of Internet Explorer 8 to download scripts in parallel makes pages load
faster, but as shown in Figure 4-2, it doesn’t entirely solve the blocking problem. It is
true that A.js and B.js are downloaded in parallel, but the image and iframe are still
blocked until the scripts are downloaded and executed. Safari 4 and Chrome 2 are
similar—they download scripts in parallel, but block other resources that follow.†

What we really want is to have scripts downloaded in parallel with all the other com-
ponents in the page. And we want this in all browsers. The techniques discussed in the
next section explain how to do just that.

Making Scripts Play Nice
There are several techniques for downloading external scripts without having your page
suffer from their blocking behavior. One technique I don’t suggest doing is inlining all
of your JavaScript. In a few situations (home pages, small amounts of JavaScript),
inlining your JavaScript is acceptable, but generally it’s better to serve your JavaScript
in external files because of the page size and caching benefits derived. (For more
information about these trade-offs, see High Performance Web Sites, “Rule 8: Make
JavaScript and CSS External.”)

The techniques listed here provide the benefits of external scripts without the slow-
downs imposed from blocking:

• XHR Eval

• XHR Injection

• Script in Iframe

• Script DOM Element

• Script Defer

• document.write Script Tag

The following sections describe each of these techniques in more detail, followed by a
comparison of how they affect the browser and which technique is best under different
circumstances.

XHR Eval
In this technique, an XMLHttpRequest (XHR) retrieves the JavaScript from the server.
When the response is complete, the content is executed using the eval command as
shown in this example page.

† As of this writing, Firefox does not yet support parallel script downloads, but that is expected soon.

Making Scripts Play Nice | 29

http://oreilly.com/catalog/9780596529307/

XHR Eval
http://stevesouders.com/cuzillion/?ex=10009&title=Load+Scripts+using+XHR
+Eval

As you can see in the HTTP profile in Figure 4-3, the XMLHttpRequest doesn’t block the
other components in the page—all five resources are downloaded in parallel. The
scripts are executed after they finish downloading. (This execution time doesn’t show
up on the HTTP waterfall chart because no network activity is involved.)

Figure 4-3. Loading scripts using XHR Eval

The main drawback of this approach is that the XMLHttpRequest must be served from
the same domain as the main page. The relevant source code from the XHR Eval
example follows:‡

var xhrObj = getXHRObject();
xhrObj.onreadystatechange =
 function() {
 if (xhrObj.readyState == 4 && 200 == xhrObj.status) {
 eval(xhrObj.responseText);
 }
 };
xhrObj.open('GET', 'A.js', true); // must be same domain as main page
xhrObj.send('');

function getXHRObject() {
 var xhrObj = false;
 try {
 xhrObj = new XMLHttpRequest();
 }
 catch(e){
 var progid = ['MSXML2.XMLHTTP.5.0', 'MSXML2.XMLHTTP.4.0',
'MSXML2.XMLHTTP.3.0', 'MSXML2.XMLHTTP', 'Microsoft.XMLHTTP'];
 for (var i=0; i < progid.length; ++i) {
 try {
 xhrObj = new ActiveXObject(progid[i]);
 }
 catch(e) {
 continue;
 }

‡ If you’re using a JavaScript library, it probably has a wrapper for XMLHttpRequest, such as jQuery.ajax or
dojo.xhrGet. Use that instead of writing your own wrapper.

30 | Chapter 4: Loading Scripts Without Blocking

http://stevesouders.com/cuzillion/?ex=10009&title=Load+Scripts+using+XHR+Eval
http://stevesouders.com/cuzillion/?ex=10009&title=Load+Scripts+using+XHR+Eval

 break;
 }
 }
 finally {
 return xhrObj;
 }
}

XHR Injection
Like XHR Eval, the XHR Injection technique uses an XMLHttpRequest to retrieve the
JavaScript. But instead of using eval, the JavaScript is executed by creating a script
DOM element and injecting the XMLHttpRequest response into the script. Using eval is
potentially slower than using this mechanism.

XHR Injection
http://stevesouders.com/cuzillion/?ex=10015&title=XHR+Injection

The XMLHttpRequest must be served from the same domain as the main page. The rel-
evant source code from the XHR Injection example follows:

var xhrObj = getXHRObject(); // defined in the previous example
xhrObj.onreadystatechange =
 function() {
 if (xhrObj.readyState == 4) {
 var scriptElem = document.createElement('script');
 document.getElementsByTagName('head')[0].appendChild(scriptElem);
 scriptElem.text = xhrObj.responseText;
 }
 };
xhrObj.open('GET', 'A.js', true); // must be same domain as main page
xhrObj.send('');

Script in Iframe
Iframes are loaded in parallel with other components in the main page. Whereas iframes
are typically used to include one HTML page within another, the Script in Iframe tech-
nique leverages them to load JavaScript without blocking, as shown by the Script in
Iframe example.

Script in Iframe
http://stevesouders.com/cuzillion/?ex=10012&title=Script+in+Iframe

The implementation is done entirely in HTML:

<iframe src='A.html' width=0 height=0 frameborder=0 id=frame1></iframe>

Note that this technique uses A.html instead of A.js. This is necessary because the iframe
expects an HTML document to be returned. All that is needed is to convert the external
script to an inline script within an HTML document.

Making Scripts Play Nice | 31

http://stevesouders.com/cuzillion/?ex=10015&title=XHR+Injection
http://stevesouders.com/cuzillion/?ex=10012&title=Script+in+Iframe

Similar to the XHR Eval and XHR Injection approaches, this technique requires that
the iframe URL be served from the same domain as the main page. (Browser cross-site
security restrictions prevent JavaScript access from an iframe to a cross-domain parent
and vice versa.) Even when the main page and iframe are served from the same domain,
it’s still necessary to modify your JavaScript to create a connection between them. One
approach is to have the parent reference JavaScript symbols in the iframe via the
frames array or document.getElementById:

// access the iframe from the main page using "frames"
window.frames[0].createNewDiv();

// access the iframe from the main page using "getElementById"
document.getElementById('frame1').contentWindow.createNewDiv();

The iframe references its parent using the parent variable:

// access the main page from within the iframe using "parent"
function createNewDiv() {
 var newDiv = parent.document.createElement('div');
 parent.document.body.appendChild(newDiv);
}

Iframes also have an innate cost. In fact, they’re the most expensive DOM element by
at least an order of magnitude, as discussed in Chapter 13.

Script DOM Element
Rather than using the SCRIPT tag in HTML to download a script file, this technique uses
JavaScript to create a script DOM element and set the SRC property dynamically. This
can be done with just a few lines of JavaScript:

var scriptElem = document.createElement('script');
scriptElem.src = 'http://anydomain.com/A.js';
document.getElementsByTagName('head')[0].appendChild(scriptElem);

Creating a script this way does not block other components during download. As
opposed to the previous techniques, Script DOM Element allows you to fetch the Java-
Script from a server other than the one used to fetch the main page. The code to
implement this technique is short and simple. Your external script file can be used as
is and doesn’t need to be refactored as in the XHR Eval and Script in Iframe approaches.

Script DOM Element
http://stevesouders.com/cuzillion/?ex=10010&title=Script+Dom+Element

Script Defer
Internet Explorer supports the SCRIPT DEFER attribute as a way for developers to tell the
browser that the script does not need to be loaded immediately. This is a safe attribute
to use when a script does not contain calls to document.write and no other scripts in

32 | Chapter 4: Loading Scripts Without Blocking

http://stevesouders.com/cuzillion/?ex=10010&title=Script+Dom+Element

the page depend on it. When Internet Explorer downloads the deferred script, it allows
other downloads to be done in parallel.

Script Defer
http://stevesouders.com/cuzillion/?ex=10013&title=Script+Defer

The DEFER attribute is an easy way to avoid the bad blocking behavior of scripts with
the addition of a single word:

<script defer src='A.js'></script>

Although DEFER is part of the HTML 4 specification, it is implemented only in Internet
Explorer and in some newer browsers.

document.write Script Tag
This last technique uses document.write to put the SCRIPT HTML tag into the page.

document.write Script Tag
http://stevesouders.com/cuzillion/?ex=10014&title=document.write+Script+Tag

This technique, similar to Script Defer, results in parallel script loading in Internet
Explorer only. Although it allows multiple scripts to be downloaded in parallel
(provided all the document.write lines occur in the same script block), other types of
resources remain blocked while scripts are downloading:

document.write("<script type='text/javascript' src='A.js'><\/script>");

Browser Busy Indicators
All of the techniques described in the preceding section improve how JavaScript is
downloaded by allowing multiple resources to be downloaded in parallel. But these
techniques differ in certain other aspects. One area of differentiation is how they affect
the user’s perception of whether the page is loaded. Browsers offer multiple browser
busy indicators that give the user clues that the page is still loading.

Figure 4-4 shows four browser busy indicators: the status bar, the progress bar, the tab
icon, and the cursor. The status bar shows the URL of the current download. The
progress bar moves across the bottom of the window as downloads complete. The logo
spins while downloads are happening. The cursor changes to an hourglass or similar
cursor to indicate that the page is busy.

The other two browser busy indicators are blocked rendering and blocked onload event.
Blocked rendering is very obtrusive to the user experience. When scripts are being
downloaded in the typical manner using SCRIPT SRC, nothing below the script is
rendered. Freezing the page before it’s fully rendered is a severe way of showing the
browser is busy.

Browser Busy Indicators | 33

http://stevesouders.com/cuzillion/?ex=10013&title=Script+Defer
http://www.w3.org/TR/REC-html40/interact/scripts.html#adef-defer
http://stevesouders.com/cuzillion/?ex=10014&title=document.write+Script+Tag

Figure 4-4. Busy indicators in the browser

Typically, the page’s onload event doesn’t fire until all resources have been downloaded.
This may affect the user experience if the status bar takes longer to say “Done” and
setting focus on the default input field is delayed.

Whereas most of these browser busy indicators are triggered when downloading Java-
Script in the usual SCRIPT SRC way, none of them are triggered by the XHR Eval and
XHR Injection techniques when using Internet Explorer, Firefox, and Opera. The busy
indicators that are triggered vary depending on the technique used and the browser
being tested.

Table 4-1 shows which busy indicators occur for each of the JavaScript download
techniques. XHR Eval and XHR Injection trigger the fewest busy indicators. The other
techniques have mixed behavior. Although busy indicators vary across browsers,
they’re generally consistent across different browser versions.

34 | Chapter 4: Loading Scripts Without Blocking

Table 4-1. Browser busy indicators triggered by JavaScript downloads

Technique Status bar Progress bar Logo Cursor Block render Block onload

Normal Script
Src

FF, Saf, Chr IE, FF, Saf IE, FF, Saf, Chr FF, Chr IE, FF, Saf, Chr,
Op

IE, FF, Saf, Chr,
Op

XHR Eval Saf, Chr Saf Saf, Chr Saf, Chr -- --

XHR Injection Saf, Chr Saf Saf, Chr Saf, Chr -- --

Script in
Iframe

IE, FF, Saf, Chr FF, Saf IE, FF, Saf, Chr FF, Chr -- IE, FF, Saf, Chr,
Op

Script DOM
Element

FF, Saf, Chr FF, Saf FF, Saf, Chr FF, Chr -- FF, Saf, Chr

Script Defera FF, Saf, Chr FF, Saf FF, Saf, Chr FF, Chr, Op FF, Saf, Chr, Op IE, FF, Saf, Chr,
Op

document.
write
Script Tagb

FF, Saf, Chr IE, FF, Saf IE, FF, Saf, Chr FF, Chr, Op IE, FF, Saf, Chr,
Op

IE, FF, Saf, Chr,
Op

a Script Defer achieves parallel downloads in Firefox 3.1 and later.
b Note that document.write Script Tag achieves parallel downloads only in Internet Explorer, Safari 4, and

Chrome 2.

Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156; (FF)
Firefox 2.0, 3.0, and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera
9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer preview).

It’s important to understand how each technique behaves with regard to the browser
busy indicators. In some cases, the busy indicators are desirable for a better user ex-
perience: they let the user know the page is working. In other situations, it would be
better not to show any busy activity, thus encouraging users to start interacting with
the page.

Ensuring (or Avoiding) Ordered Execution
In many cases, a web page contains multiple scripts that have a particular dependency
order. Using the normal SCRIPT SRC approach guarantees that the scripts are
downloaded and executed in the order in which they are listed in the page. However,
using certain of the advanced downloading techniques described previously does not
carry such a guarantee. Because the scripts are downloaded in parallel, they may get
executed in the order in which they arrive—the fastest response to arrive being executed
first—rather than the order in which they were listed. This can lead to race conditions
resulting in undefined symbol errors.

Some of the techniques do ensure ordered execution, but they vary depending on the
browser. For Internet Explorer, the Script Defer and document.write Script Tag

Ensuring (or Avoiding) Ordered Execution | 35

approaches that guarantee scripts are executed in the order listed, regardless of which
is downloaded first. For instance, the IE Ensure Ordered Execution example contains
three scripts that are loaded using Script Defer. Even though the first script (with
sleep=3 in the URL) finishes downloading last, it is still the first to be executed.

IE Ensure Ordered Execution
http://stevesouders.com/cuzillion/?ex=10017&title=IE+Ensure+Ordered+Execu
tion

Because the Script Defer and document.write Script Tag techniques don’t achieve par-
allel script downloads in Firefox, you need to use a different technique whenever one
script depends on another. The Script DOM Element approach guarantees that scripts
are executed in the order listed in Firefox. The FF Ensure Ordered Execution example
contains three scripts that are loaded using the Script DOM Element approach. Even
though the first script (with sleep=3 in the URL) finishes downloading last, it is still the
first to be executed.

FF Ensure Ordered Execution
http://stevesouders.com/cuzillion/?ex=10018&title=FF+Ensure+Ordered+Execu
tion

It’s not always important to ensure that scripts are executed in the order specified.
Sometimes you actually want the browser to execute whatever script happens to come
first, because that produces a page that loads faster. One example is a web page con-
taining multiple widgets (A, B, and C) with associated scripts (A.js, B.js, and C.js) that
do not have any interdependencies. Even though the page might list the widget scripts
in that order, a better user experience would result from executing whichever widget
script is received first. The XHR Eval and XHR Injection techniques achieve this. The
Avoid Ordered Execution example executes the first script downloaded, even though
it’s not the first script listed in the page.

Avoid Ordered Execution
http://stevesouders.com/cuzillion/?ex=10019&title=Avoid+Ordered+Execution

Summarizing the Results
I’ve presented several advanced techniques for downloading external scripts and vari-
ous trade-offs between them. Table 4-2 summarizes the results.

Table 4-2. Summary of advanced script downloading techniques

Technique Parallel
downloads

Domains can
differ

Existing
scripts

Busy
indicators

Ensures
order

Size (bytes)

Normal Script
Src

(IE8, Saf4)a Yes Yes IE, Saf4, (FF,
Chr)b

IE, Saf4, (FF,
Chr, Op)c

~50

36 | Chapter 4: Loading Scripts Without Blocking

http://stevesouders.com/cuzillion/?ex=10017&title=IE+Ensure+Ordered+Execution
http://stevesouders.com/cuzillion/?ex=10017&title=IE+Ensure+Ordered+Execution
http://stevesouders.com/cuzillion/?ex=10018&title=FF+Ensure+Ordered+Execution
http://stevesouders.com/cuzillion/?ex=10018&title=FF+Ensure+Ordered+Execution
http://stevesouders.com/cuzillion/?ex=10019&title=Avoid+Ordered+Execution

Technique Parallel
downloads

Domains can
differ

Existing
scripts

Busy
indicators

Ensures
order

Size (bytes)

XHR Eval IE, FF, Saf, Chr,
Op

No No Saf, Chr -- ~500

XHR Injection IE, FF, Saf, Chr,
Op

No Yes Saf, Chr -- ~500

Script in
Iframe

IE, FF, Saf, Chr,
Opd

No No IE, FF, Saf, Chr -- ~50

Script DOM El-
ement

IE, FF, Saf, Chr,
Op

Yes Yes FF, Saf, Chr FF, Op ~200

Script Defer IE, Saf4, Chr2,
FF3.1

Yes Yes IE, FF, Saf, Chr,
Op

IE, FF, Saf, Chr,
Op

~50

document.
write
Script Tag

(IE, Saf4, Chr2,
Op)e

Yes Yes IE, FF, Saf, Chr,
Op

IE, FF, Saf, Chr,
Op

~100

a Scripts are downloaded in parallel with other scripts, but other types of resources are blocked from
downloading.

b These browsers do not, however, support parallel downloads with this technique.
c See note a above.
d An interesting performance boost in Opera is that in addition to the script iframes being downloaded in

parallel, the code is executed in parallel, too.
e See note b above.

Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156; (FF)
Firefox 2.0 and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera 9.63
and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer preview).

These techniques allow scripts to be downloaded in parallel with all the other resources
in the page, something that browsers don’t do by default, even newer browsers. This
can significantly speed up your web page. This is especially important for Web 2.0
applications, where the number and size of external scripts are greater than in other
web pages.

The document.write Script Tag technique is less preferred because it parallelizes down-
loads only in a subset of browsers and blocks parallel downloads for anything other
than script resources. Script Defer also parallelizes downloads in only some browsers.

XHR Eval, XHR Injection, and Script in Iframe carry the requirement that your scripts
reside on the same hostname as the main page. To use the XHR Eval and Script in
Iframe techniques, you must refactor your scripts slightly, whereas the XHR Injection
and Script DOM Element approaches can download your existing script files without
any changes. An estimate of the number of characters added to the page to implement
each technique is shown in the “Size” column in Table 4-2.

Summarizing the Results | 37

The different effects that each technique has on the browser’s busy indicators bring in
another set of considerations. If you’re downloading scripts that are incidental to the
initial rendering of the page (i.e., “lazy-loading”), techniques that make the page appear
complete are preferred, such as XHR Eval and XHR Injection. If you want to indicate
to the user that the page is still loading while the browser downloads scripts, Script in
Iframe is better because it triggers more browser busy indicators.

The final issue of ordered execution favors some techniques over others depending on
whether load order matters. If you want scripts to be downloaded in parallel with other
resources but executed in a specific order, it’s necessary to mix techniques by browser.
If load order doesn’t matter, XHR Eval and XHR Injection can be used.

And the Winner Is
My conclusion is that there is no single best solution. The preferred approach depends
on your requirements. Figure 4-5 shows the decision tree for selecting the best
technique for downloading scripts.

Figure 4-5. Decision tree for selecting script loading technique

38 | Chapter 4: Loading Scripts Without Blocking

There are six possible outcomes in this decision tree:

Different Domains, No Order
XHR Eval, XHR Injection, and Script in Iframe can’t be used under these conditions
because the domain of the main page is different from the domain of the script.
Script Defer shouldn’t be used because it forces scripts to be loaded in order,
whereas the page loads faster if scripts are executed as soon as they arrive. For this
situation, Script DOM Element is the best alternative. In Firefox, load order is
preserved even though that’s not desired. Note that both of these techniques trigger
the busy indicators, so there’s no way to avoid that. Examples of web pages that
match this situation are pages that contain JavaScript-enabled ads and widgets.
The scripts for these ads and widgets are likely on domains that differ from the
main page, but they don’t have any interdependencies, so load order doesn’t
matter.

Different Domains, Preserve Order
As before, because the domains of the main page and scripts are different, XHR
Eval, XHR Injection, and Script in Iframe are not viable alternatives. To ensure
load order, Script Defer should be used for Internet Explorer and Script DOM
Element for Firefox. Note that both of these techniques trigger the busy indicators.
An example of a page that matches these requirements is a page pulling in multiple
JavaScript files from different servers that have interdependencies.

Same Domain, No Order, No Busy Indicators
XHR Eval and XHR Injection are the only techniques that do not trigger the busy
indicators. Of the two XHR techniques, I prefer XHR Injection because it can be
used without refactoring the existing scripts. This technique would apply to a web
page that wanted to download its own JavaScript file in the background, as
described in Chapter 3.

Same Domain, No Order, Show Busy Indicators
XHR Eval, XHR Injection, and Script in Iframe are the only techniques that do not
preserve load order across both Internet Explorer and Firefox. Script in Iframe
seems to be the best choice because it triggers the busy indicators and increases
the size of the page only slightly, but I prefer XHR Injection because it can be used
without any refactoring of the existing scripts and it’s already a choice for other
decision tree outcomes. Additional client-side JavaScript is required to activate the
busy indicators: the status bar and cursor can be activated when the XHR is sent
and then deactivated when the XHR returns. I call this “Managed XHR Injection.”

Same Domain, Preserve Order, No Busy Indicators
XHR Eval and XHR Injection are the only techniques that do not trigger the busy
indicators. Of the two XHR techniques, I prefer XHR Injection because it can be
used without refactoring the existing scripts. To preserve load order, another type
of “Managed XHR Injection” is needed. In this case, the XHR responses are queued
if necessary to handle the situation where a script that needs to be loaded later
in the order is not executed until all the preceding scripts have been downloaded

And the Winner Is | 39

and executed. An example of a page in this situation is one where multiple
interdependent scripts need to be downloaded in the background.

Same Domain, Preserve Order, Show Busy Indicators
Script Defer for Internet Explorer and Script DOM Element for Firefox are the
preferred solutions here. Managed XHR Injection and Managed XHR Eval are
other valid alternatives, but they add more code to the main page and are more
complicated to implement.

The next step is to implement this logic in code by providing a simple function that
developers can use to make sure they load scripts in the optimal way. A prototype for
such a function would look like this:

function loadScript(url, bPreserveOrder, bShowBusy);

To avoid downloading more JavaScript than necessary, a backend implementation in
a language invoked by the server, such as Perl, PHP, or Python, would be the most
useful. In their backend templates, web developers would call this function and the
appropriate technique would be inserted into the HTML document response. Provid-
ing support for these advanced best practices in development frameworks is the
appropriate next step for getting wider adoption.

40 | Chapter 4: Loading Scripts Without Blocking

CHAPTER 5

Coupling Asynchronous Scripts

Chapter 4 explains how to load external scripts asynchronously. When scripts are loa-
ded the normal way (<script src="url"></script>), they block all other downloads in
the page, and any elements below the script are blocked from rendering. Loading scripts
asynchronously avoids this blocking behavior, resulting in a page that loads and feels
faster.

The performance benefit of loading scripts without blocking comes at a cost. Whenever
code is executed asynchronously, race conditions are possible. In the case of external
scripts, the concern is inline scripts that use symbols defined in the external script. If
the external script is loaded asynchronously without thought to the inlined code, race
conditions may result in undefined symbol errors.

When there is a code dependency between an asynchronously loaded external script
and an inline script, the two scripts have to be coupled in such a way as to guarantee
execution order. Not surprisingly, there’s no easy way to do this across all browsers.
The problem and several solutions are presented in this chapter, broken down into the
following sections:

“Code Example: menu.js” on page 42
The example used throughout this chapter is described in this section. It creates
the scenario of an inline script that depends on an external script.

“Race Conditions” on page 44
The asynchronous loading techniques from Chapter 4 are tested to show that all
of them produce undefined symbol errors when there’s an inline script with code
dependencies. This shows that techniques to couple external and inline scripts are
needed.

“Preserving Order Asynchronously” on page 45
Five techniques are described that solve the problem of coupling an inline script
with the asynchronously loaded external script on which it depends.

41

“Multiple External Scripts” on page 52
The problem gets harder when there are multiple external scripts that depend on
each other, followed by an inline script with code dependencies. Two solutions are
presented.

“General Solution” on page 59
With a thorough understanding of the trade-offs involved, the best alternatives are
combined to solve the coupling problem for a single script and multiple scripts
across all major browsers.

“Asynchronicity in the Real World” on page 63
Two real-world opportunities for asynchronous scripts coupled with inlined code
are explored: Google Analytics wrapped by Dojo and YUI Loader.

Code Example: menu.js
Ensuring execution order was one of the traits discussed in Chapter 4. That discussion
focused on the execution order of external scripts, but most web pages that load
external scripts also include inline scripts that use the external script’s symbols, such
as pages that use Google Analytics and popular JavaScript frameworks such as
jQuery and the Yahoo! UI Library.

To illustrate this situation, I created the Normal Script Src example that has an external
script followed by an inline script with code dependencies. The external script,
menu.js, provides functionality to draw a drop-down menu, as shown in Figure 5-1.

Normal Script Src
http://stevesouders.com/efws/couple-normal.php

The Normal Script Src implementation, shown in the following code sample, starts by
loading menu.js in the normal way. The inline script that follows creates the menu. The
inline script defines aExamples, an array of menu items. The init function calls
EFWS.Menu.createMenu, passing in an element ID ('examplesbtn') and the array of menu
items. The 'examplesbtn' element is what the menu is attached to—in this case, the
button in the page labeled “Examples”:

<script src="menu.js" type="text/javascript"></script>

<script type="text/javascript">
var aExamples =
 [
 ['couple-normal.php', 'Normal Script Src'],
 ['couple-xhr-eval.php', 'XHR Eval'],
 ...
];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

42 | Chapter 5: Coupling Asynchronous Scripts

http://www.google.com/analytics/
http://jquery.com/
http://developer.yahoo.com/yui/
http://stevesouders.com/efws/couple-normal.php

init();
</script>

Figure 5-1. menu.js example

The menu.js example is the scenario that motivates this chapter and that is encountered
in many web sites today. The page contains an external script and an inline script. The
inline script depends on the external script, so it’s critical that the execution order be
preserved—the external script must be downloaded, parsed, and executed before the
inline script.

In addition, this is a perfect opportunity for asynchronous script loading so that the
downloading of other resources in the page isn’t blocked. The “other resources” in this
example page is an image. The image is configured to take one second to download,
while menu.js takes two seconds. If the script is loaded the normal way, the image is
blocked from downloading, as shown in Figure 5-2.

Figure 5-2. Normal Script Src HTTP waterfall chart

If menu.js was loaded asynchronously, the image wouldn’t be blocked and the page
would load faster. Furthermore, menu.js is a good candidate for asynchronous loading
because it doesn’t render any part of the visible page. It provides functionality that is

Code Example: menu.js | 43

accessible only after the page has rendered. The question is: can we load menu.js asyn-
chronously without triggering any undefined symbol errors in the inline script?

Race Conditions
The Normal Script Src example doesn’t produce any undefined symbol errors, but
menu.js blocks the image download, making the page load more slowly. To improve
performance, it would be better to load menu.js asynchronously, but we need to de-
termine whether execution order is preserved, or whether a race condition produces
undefined symbol errors.

I converted the Normal Script Src example to use the nonblocking techniques from
Chapter 4. In each example, I programmatically answer two questions: Was the script
loaded without blocking? Was the execution order preserved?

XHR Eval
http://stevesouders.com/efws/couple-xhr-eval.php

XHR Injection
http://stevesouders.com/efws/couple-xhr-injection.php

Script in Iframe
http://stevesouders.com/efws/couple-script-iframe.php

Script DOM Element
http://stevesouders.com/efws/couple-script-dom.php

Script Defer
http://stevesouders.com/efws/couple-script-defer.php

document.write Script Tag
http://stevesouders.com/efws/couple-doc-write.php

Table 5-1 shows the results of running these examples across major browsers. None of
the techniques perform downloads in parallel while preserving execution order for a
specific browser. The one exception is the Script DOM Element approach in Firefox.

Table 5-1. Ensuring execution order for external and inline scripts

Technique Download script and image in parallel Ensure execution order

Normal Script Src IE8, Saf4, Chr2 IE, FF, Saf, Chr, Op

XHR Eval IE, FF, Saf, Chr, Op --

XHR Injection IE, FF, Saf, Chr, Op --

Script in Iframe IE, FF, Saf, Chr, Opa --

Script DOM Element IE, FF, Saf, Chr FF, Op

Script Defer IE, (Saf4, Chr2)b FF, Saf, Chr, Op

44 | Chapter 5: Coupling Asynchronous Scripts

http://stevesouders.com/efws/couple-xhr-eval.php
http://stevesouders.com/efws/couple-xhr-injection.php
http://stevesouders.com/efws/couple-script-iframe.php
http://stevesouders.com/efws/couple-script-dom.php
http://stevesouders.com/efws/couple-script-defer.php
http://stevesouders.com/efws/couple-doc-write.php

Technique Download script and image in parallel Ensure execution order

document.write Script Tag Saf4, Chr2 IE, FF, Saf, Chr, Op
a An interesting performance boost in Opera is that in addition to the script iframes being downloaded in

parallel, the code is executed in parallel, too.
b In these newer browsers, scripts download in parallel by default. The DEFER attribute has no effect.

Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156; (FF)
Firefox 2.0 and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera 9.63
and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer preview).

Newer browsers show a brighter future. Internet Explorer 8, Safari 4, and Chrome 2
achieve parallelization and execution order using the normal SCRIPT tags (<script
src="url"></script>). However, scripts loaded in Internet Explorer 8 and Chrome 2
still block certain other resources from loading, such as the image in these test pages.
It’s also important, perhaps more important, to speed up pages in the mainstream
browsers that are still popular, including Internet Explorer 6 and 7. What’s needed is
a way to load scripts asynchronously and preserve execution order across browsers.
The coupling techniques described in the following section do just that.

Preserving Order Asynchronously
When external scripts are loaded the normal way, inlined code is blocked from exe-
cuting and race conditions aren’t a concern. Once we start loading scripts asynchro-
nously, one of the techniques presented in this section is needed to couple the inlined
code with the external script on which it depends. The coupling techniques are:

• Hardcoded Callback

• Window Onload

• Timer

• Script Onload

• Degrading Script Tags

Script Onload is likely to be your best choice, but I walk through some of the other
techniques first in order to highlight the issues.

The coupling examples in this section use the Script DOM Element approach as the
asynchronous loading technique, as described in Chapter 4. This approach uses Java-
Script to create a script element and set its SRC attribute to menu.js. The code shown
here is taken from the Script DOM Element example:

<script type="text/javascript">
var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);

Preserving Order Asynchronously | 45

http://stevesouders.com/efws/couple-script-dom.php

</script>

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

init();
</script>

This is my preferred nonblocking technique because it is lightweight and scripts can
be loaded from domains that differ from the main page. As shown in Figure 5-3, this
technique successfully downloads the external script (two seconds long) in parallel with
the image (one second). However, this approach produces undefined symbol errors in
Internet Explorer, Safari, and Chrome because the inlined code is executed before the
asynchronously loaded script has arrived. The Script DOM Element approach does not
preserve order in these three browsers, as confirmed by their absence in the “Ensure
execution order” column in Table 5-1. The coupling techniques discussed in the fol-
lowing sections solve these race condition problems.

Figure 5-3. Script DOM Element HTTP waterfall chart

Technique 1: Hardcoded Callback
A simple coupling technique is to have the external script call a function in the inlined
code. In our example, this is done by adding a call to init at the bottom of the external
script (now called menu-with-init.js). This approach is demonstrated in the Hardcoded
Callback example.

Hardcoded Callback
http://stevesouders.com/efws/hardcoded-callback.php

The inlined code has a few modifications. The call to init is removed—that’s now
being called from the external script. The definitions of aExamples and init are moved
above the insertion of menu-with-init.js, so they will be available when menu-with-
init.js finishes loading:

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

46 | Chapter 5: Coupling Asynchronous Scripts

http://stevesouders.com/efws/hardcoded-callback.php

var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>

If the web developer controls both the main page and the external script, this is a viable
technique. However, it’s not always possible to embed a callback in third-party Java-
Script modules. Also, this approach isn’t very flexible—changing the callback interface
requires coordinating a change in the external script.

Technique 2: Window Onload
This approach kicks off the execution of the inlined code by way of the window’s
onload handler. This preserves execution order as long as the external script is guar-
anteed to have been downloaded and executed before window.onload. Some, but not
all, of the asynchronous loading techniques make this guarantee:

• Script in Iframe ensures execution order in Internet Explorer, Firefox, Safari,
Chrome, and Opera.

• Script DOM Element ensures execution order in Firefox, Safari, and Chrome.

• Script Defer ensures execution order in Internet Explorer.

Using one of these script loading techniques and coupling the inline script via
window.onload achieves parallel downloading while preserving execution order, as
demonstrated in the Window Onload example.

Window Onload
http://stevesouders.com/efws/window-onload.php

This example uses the Script in Iframe approach to load the external script, since that
blocks the onload event across most browsers. Instead of loading menu.js, the code is
embedded in menu.php and loaded as an iframe. The inlined code is modified to
tie init to the window’s onload event. This is done using either addEventListener
or attachEvent, depending on the browser. This is better than simply doing
window.onload=init because it ensures that any existing onload handlers are not
affected:

<iframe src="menu.php" width=0 height=0 frameborder=0></iframe>

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

if (window.addEventListener) {
 window.addEventListener("load", init, false);
}

Preserving Order Asynchronously | 47

http://stevesouders.com/efws/window-onload.php

else if (window.attachEvent) {
 window.attachEvent("onload", init);
}
</script>

There are two downsides to the Window Onload coupling technique. First, you have
to make sure the script is asynchronously loaded in a way that blocks the onload event.
(That’s why I switched from my preferred Script DOM Element technique to Script in
Iframe.) Second, the inlined code might be executed later than necessary. If the page
contained more resources (images, Flash, etc.), the external script might finish well
before the onload event fired. Typically, it’s preferred to call the inlined code as soon
as the external script is finished downloading and executing. In this example, calling
the inlined code earlier would make the menu available sooner.

Technique 3: Timer
The Timer technique uses a polling approach to ensure that dependencies are loaded
before the inlined code is executed. This is done using setTimeout as shown in the Timer
example.

Timer
http://stevesouders.com/efws/timer.php

This example’s inlined code is modified to include a new function, initTimer, which
checks whether the required namespace (EFWS) exists. If so, init is called. If not,
initTimer is called again after a specified amount of time (300 milliseconds):

<script type="text/javascript">
var domscript = document.createElement('script');
domscript.src = "menu.js";
document.getElementsByTagName('head')[0].appendChild(domscript);

var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

function initTimer() {
 if ("undefined" === typeof(EFWS)) {
 setTimeout(initTimer, 300);
 }
 else {
 init();
 }
}

initTimer();
</script>

If the timer value used in setTimeout is too small, this polling technique could add
overhead to the page. Conversely, setting it too large will cause an undesirable delay

48 | Chapter 5: Coupling Asynchronous Scripts

http://stevesouders.com/efws/timer.php

between when the external script is loaded and when the inlined code is called. One
edge case that this simplified code sample doesn’t address is when menu.js fails to load,
in which case the polling will continue indefinitely. Finally, this approach increases
maintenance slightly in that a specific symbol from the external script is used to deter-
mine when it’s done loading. If that symbol changes in the external script, the inlined
code would need to be updated.

Technique 4: Script Onload
The previous coupling techniques add brittleness, delays, and overhead to the page.
The Script Onload approach addresses all of these issues by attaching to the script’s
onload event.

Script Onload
http://stevesouders.com/efws/script-onload.php

The changes in this example involve the script element’s onload and
onreadystatechange handlers. Both are set to call init. We prevent init from being
called twice in Opera by adding the onloadDone flag:

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

var domscript = document.createElement('script');
domscript.src = "menu.js";
domscript.onloadDone = false;
domscript.onload = function() {
 domscript.onloadDone = true;
 init();
};
domscript.onreadystatechange = function() {
 if ("loaded" === domscript.readyState && ! domscript.onloadDone) {
 domscript.onloadDone = true;
 init();
 }
}
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>

Script Onload is the preferred technique for coupling asynchronously loaded external
scripts with inline scripts. It doesn’t reference any of the symbols in the external script,
so maintenance is simpler. The inlined code is executed as early as possible, immedi-
ately after the external script is done loading. Using events requires minimal processing.

Preserving Order Asynchronously | 49

http://stevesouders.com/efws/script-onload.php

Technique 5: Degrading Script Tags
This technique is based on John Resig’s blog post, “Degrading Script Tags”. John is a
JavaScript evangelist from Mozilla and the creator of jQuery, the popular JavaScript
framework. He describes this technique as a way to couple the jQuery external script
with inlined code that accesses the jQuery symbols. This pattern uses one SCRIPT tag
to include an external script and the inlined code that uses it, like this:

<script src="jquery.js" type="text/javascript">
jQuery("p").addClass("pretty");
</script>

The idea is that the inlined code is executed after the external script successfully loads.
This pattern has several benefits:

Cleaner
There is one SCRIPT tag instead of two.

Clearer
The inlined code’s dependency on the external script is more obvious.

Safer
If the external script fails to load, the inlined code is not executed, avoiding unde-
fined symbol errors.

There’s one downside: today’s browsers don’t support such syntax! John confirms that
browsers load the external script but ignore the inlined code. However, he provides a
code sample that shows this can be made to work with a slight addition to the external
script. I’ve applied this technique in the Degrading Script Tags Normal example.

Degrading Script Tags Normal
http://stevesouders.com/efws/degrading-script-tag-normal.php

The inline script follows John’s pattern. It uses one SCRIPT tag to both specify the
external script and inline the dependent code:

<script src="menu-degrading.js" type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

init();
</script>

The addition of a few lines of JavaScript at the bottom of menu-degrading.js is needed
to make this work. This new code iterates over all the script elements in the page,
searching for the one with a src that contains “menu-degrading.js”. Basically, the ex-
ternal script is searching for itself in the DOM. When it finds the appropriate script
element, it evaluates the script’s innerHTML:

50 | Chapter 5: Coupling Asynchronous Scripts

http://ejohn.org/blog/degrading-script-tags/
http://stevesouders.com/efws/degrading-script-tag-normal.php

var scripts = document.getElementsByTagName("script");
var cntr = scripts.length;
while (cntr) {
 var curScript = scripts[cntr-1];
 if (-1 != curScript.src.indexOf("menu-degrading.js")) {
 eval(curScript.innerHTML);
 break;
 }
 cntr--;
}

The Degrading Script Tags Normal example works in all the browsers tested: Internet
Explorer 6 through 8, Firefox 2 and 3, Safari 3 and 4, Chrome 1 and 2, and Opera 9
and 10. However, the external script is not loaded asynchronously. (Notice that the
image isn’t loaded until three seconds into the page, instead of the usual one second.)
To avoid the blocking behavior of scripts, it’s necessary to combine this pattern with
one of the asynchronous script loading techniques. I’ve done this in the Degrading
Script Tags Async example.

Degrading Script Tags Async
http://stevesouders.com/efws/degrading-script-tag.php

This example uses the same external script, menu-degrading.js, which has the extra
code to find the script and evaluate its innerHTML. But instead of using the SCRIPT tag
to pull in the external script, the Script DOM Element nonblocking technique is used.
The inlined code is added to the script element dynamically by setting the script ele-
ment’s text property (or innerHTML in the case of Opera) to "init();":

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);
}

var domscript = document.createElement('script');
domscript.src = "menu-degrading.js";
if (-1 != navigator.userAgent.indexOf("Opera")) {
 domscript.innerHTML = "init();";
}
else {
 domscript.text = "init();";
}
document.getElementsByTagName('head')[0].appendChild(domscript);
</script>

I like this technique for its elegance and simplicity. But this pattern is less well known
than Script Onload; it is likely to catch most developers by surprise. It has less overhead
(no event handlers are used). It provides a coupling mechanism that is both practical
and elegant even when the external script is not loaded asynchronously. The primary
drawback is that this technique requires modifying the external script, something that

Preserving Order Asynchronously | 51

http://stevesouders.com/efws/degrading-script-tag-normal.php
http://stevesouders.com/efws/degrading-script-tag.php

is not always possible, especially when using third-party JavaScript libraries. At least
for now, the Script Onload coupling technique is the best choice.

Multiple External Scripts
The examples so far focus on coupling a single external script with inlined code. This
is useful in many situations where the JavaScript framework being used is contained in
a single file, such as Google Analytics and jQuery. Often, however, we have multiple
external scripts and an inline script, all of which must be executed in the order specified.
None of the techniques described so far, both here and in Chapter 4, provide a means
to preserve order while loading multiple scripts asynchronously. There is no complete
solution to this problem, primarily due to browser inconsistencies.

This section describes the two best techniques for loading multiple scripts asynchro-
nously while preserving execution order across the external scripts and inline script.
The Managed XHR technique works, but it is restricted to scripts with the same domain
as the main page. The DOM Element and Doc Write technique works for scripts on a
different domain, but the code varies depending on the User Agent and this technique
doesn’t load all resource types asynchronously across all browsers.

In order to have an example that uses multiple scripts, I created menutier.js. This new
script extends the menu functionality to give a tiered or grouped menu, as shown in
Figure 5-4 (notice the shaded group headings). In addition, menutier.js depends on
menu.js, so their execution order must be preserved. A tiered menu is created in the
inlined code by calling EFWS.Menu.createTieredMenu. This sets up the situation we’re
trying to analyze: multiple external scripts and an inline script that must be executed
in order. Furthermore, menutier.js is configured to return before menu.js on which it
depends. Are we headed for trouble? Let’s look at how the Managed XHR and DOM
Element and Doc Write techniques load the external scripts in parallel while preserving
execution order.

Managed XHR
“Managed XHR” is the name used in Chapter 4 for the asynchronous loading technique
that manages XMLHttpRequest (XHR) requests and responses. The management code is
necessary to control the busy indicators and preserve execution order. I didn’t include
any code in Chapter 4, but this section presents the execution order part of the
implementation.

The XHR Injection technique does not preserve execution order in any browser, as
shown in Table 5-1. The EFWS.Script module wraps this technique with code that
queues up the XHR responses and makes sure they are executed in order. The imple-
mentation requires fewer than 100 lines of code:

52 | Chapter 5: Coupling Asynchronous Scripts

http://www.google-analytics.com/ga.js
http://ajax.googleapis.com/ajax/libs/jquery/1.3.0/jquery.min.js

Figure 5-4. menutier.js example

<script type="text/javascript">
EFWS.Script = {
 queuedScripts: new Array(),

 loadScriptXhrInjection: function(url, onload, bOrder) {
 var iQ = EFWS.Script.queuedScripts.length;
 if (bOrder) {
 var qScript = {response: null, onload: onload, done: false};
 EFWS.Script.queuedScripts[iQ] = qScript;
 }

 var xhrObj = EFWS.Script.getXHRObject();
 xhrObj.onreadystatechange = function() {
 if (xhrObj.readyState == 4) {
 if (bOrder) {
 EFWS.Script.queuedScripts[iQ].response =
 xhrObj.responseText;
 EFWS.Script.injectScripts();
 }
 else {
 eval(xhrObj.responseText);
 if (onload) {
 onload();
 }
 }
 }

Multiple External Scripts | 53

 };
 xhrObj.open('GET', url, true);
 xhrObj.send('');
 },

 injectScripts: function() {
 var len = EFWS.Script.queuedScripts.length;
 for (var i = 0; i < len; i++) {
 var qScript = EFWS.Script.queuedScripts[i];
 if (! qScript.done) {
 if (! qScript.response) {
 // STOP! need to wait for this response
 break;
 }
 else {
 eval(qScript.response);
 if (qScript.onload) {
 qScript.onload();
 }
 qScript.done = true;
 }
 }
 }
 },

 getXHRObject: function() {
 var xhrObj = false;
 try {
 xhrObj = new XMLHttpRequest();
 }
 catch(e){
 var aTypes = ["Msxml2.XMLHTTP.6.0",
 "Msxml2.XMLHTTP.3.0",
 "Msxml2.XMLHTTP",
 "Microsoft.XMLHTTP"];
 var len = aTypes.length;
 for (var i=0; i < len; i++) {
 try {
 xhrObj = new ActiveXObject(aTypes[i]);
 }
 catch(e) {
 continue;
 }
 break;
 }
 }
 finally {
 return xhrObj;
 }
 }
};
</script>

54 | Chapter 5: Coupling Asynchronous Scripts

The queuedScripts array holds scripts that are queued for execution. Each queued script
is an object with three properties:

Response
The XHR response (a JavaScript string)

Onload
A function to invoke once the script is loaded (optional)

bOrder
True if this script must be executed in order with regard to other scripts (default is
false)

Developers call EFWS.Script.loadScriptXhrInjection, passing in the URL of the exter-
nal script to load, an onload function, and a Boolean indicating whether execution order
should be preserved. If order doesn’t matter, the XHR response is injected into the page
as soon as it returns. When order does matter, the XHR response is added to the
queuedScripts array and EFWS.Script.injectScripts is called. This function iterates
over the queued scripts and injects any unexecuted responses, provided that all its
dependencies have already been loaded. The Managed XHR example demonstrates this
code.

Managed XHR
http://stevesouders.com/efws/managed-xhr.php

The modified inline script follows. The first few lines are similar to the earlier examples;
arrays of menu items and URLs are created. The init function makes the call to
EFWS.Menu.createTieredMenu. The last two lines are where Managed XHR is used:

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus =
 [
 ["Race Conditions", aRaceConditions],
 ["Workarounds", aWorkarounds],
 ["Multiple Scripts", aMultipleScripts],
 ["General Solution", aLoadScripts]
];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScriptXhrInjection("menu.js", null, true);
EFWS.Script.loadScriptXhrInjection("menutier.js", init, true);
</script>

Multiple External Scripts | 55

http://stevesouders.com/efws/managed-xhr.php

The first call to EFWS.Script.loadScriptXhrInjection loads menu.js with execution
order preserved. The second call causes menutier.js to be downloaded. It also is speci-
fied to be loaded in order, and init is passed in as this script’s onload function.

The HTTP waterfall chart for this example, Figure 5-5, shows a short request for the
HTML document, followed by requests for the three resources in the page: menu.js
(two-second response), menutier.js (one-second response), and the image (one-second
response). All of the resources in the page load in parallel and execution order is pre-
served (no undefined symbol errors occur).

Figure 5-5. Managed XHR HTTP waterfall chart

Managed XHR solves the problem across all the major browsers. However, this tech-
nique won’t work if the external scripts are hosted on a different domain than the main
page, due to the same-origin policy for XMLHttpRequest.* The DOM Element and Doc
Write technique is the solution to use when your scripts are on a different domain than
the main page.

DOM Element and Doc Write
Managed XHR works well for loading external and inline scripts in the order specified,
while also loading scripts without blocking other resources in the page. Unfortunately,
it can be used only for scripts on the same domain as the main page. It’s not unusual
for external scripts to reside on a domain that differs from the main page, especially
when hosting your scripts on a Content Delivery Network (CDN) or using a third-party
JavaScript library. The DOM Element and Doc Write example creates this situation by
requesting menu.js and menutier.js from http://souders.org, while the main page still
resides on http://stevesouders.com.

DOM Element and Doc Write
http://stevesouders.com/efws/dom-and-docwrite.php

Three asynchronous loading techniques can be used for scripts on a different domain:
Script DOM Element, Script Defer, and document.write Script Tag. (See Chapter 4 for
a description of each technique.) These techniques behave differently depending on
the browser. Table 5-2 shows the results of measuring three traits, listed in priority
order:

* http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_for_XMLHttpRequest

56 | Chapter 5: Coupling Asynchronous Scripts

http://souders.org
http://stevesouders.com
http://stevesouders.com/efws/dom-and-docwrite.php
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy_for_XMLHttpRequest

• Is the execution order of scripts preserved?

• Do scripts load in parallel with other scripts?

• Do scripts load in parallel with other resources (images, stylesheets, etc.)?

Table 5-2. Loading scripts asynchronously while preserving order

Technique Preserve order Scripts load in parallel Other resources load in parallel

Script DOM Element FF, Op FF, Op, IE, Saf, Chr IE, FF, Saf, Chr

Script Defer IE, Saf, Chr, FF, Op IE IE

document.write Script Tag IE, Saf, Chr, FF, Op IE, Op

Abbreviations are as follows: (Chr) Chrome 1.0.154 and 2.0.156; (FF)
Firefox 2.0, 3.0, and 3.1; (IE) Internet Explorer 6, 7, and 8; (Op) Opera
9.63 and 10.00 alpha; (Saf) Safari 3.2.1 and 4.0 (developer preview).

Script DOM Element is the preferred technique for Firefox and Opera. In all other
cases, document.write Script Tag is used. Script Defer is not used, even for Internet
Explorer, because it can produce unexpected behavior when combined with DHTML
techniques. I extended the EFWS.Script module to include these techniques:

EFWS.Script = {
 loadScriptDomElement: function(url, onload) {
 var domscript = document.createElement('script');
 domscript.src = url;
 if (onload) {
 domscript.onloadDone = false;
 domscript.onload = onload;
 domscript.onreadystatechange = function() {
 if ("loaded" === domscript.readyState &&
 domscript.onloadDone) {
 domscript.onloadDone = true;
 domscript.onload();
 }
 }
 }
 document.getElementsByTagName('head')[0].appendChild(domscript);
 },

 loadScriptDocWrite: function(url, onload) {
 document.write('<scr' + 'ipt src="' + url +
 '" type="text/javascript"></scr' + 'ipt>');
 if (onload) {
 EFWS.addHandler(window, "load", onload);
 }
 },

 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },

Multiple External Scripts | 57

 getXHRObject: function() { ... }
};

EFWS.addHandler = function(elem, type, func) {
 if (elem.addEventListener) {
 elem.addEventListener(type, func, false);
 }
 else if (elem.attachEvent) {
 elem.attachEvent("on" + type, func);
 }
};

In addition to loading scripts without blocking and preserving execution order, we also
want to couple the external script with inlined code. After all, that’s the point of this
chapter. In EFWS.Script.loadScriptDomElement, this is done by adding onload and
onreadystatechange callbacks to the external script, as described in “Technique 4:
Script Onload” on page 49. Although it’s less preferred, we use Window Onload as the
coupling technique in EFWS.Script.loadScriptDocWrite because the other techniques
aren’t possible when using document.write to insert the external script.

The inlined code in this section’s example uses these new techniques, with special
casing based on the browser:

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

if (-1 != navigator.userAgent.indexOf('Firefox') ||
 -1 != navigator.userAgent.indexOf('Opera')) {
 EFWS.Script.loadScriptDomElement("http://souders.org/efws/menu.js");
 EFWS.Script.loadScriptDomElement("http://souders.org/efws/menutier.js", init);
}
else {
 EFWS.Script.loadScriptDocWrite("http://souders.org/efws/menu.js");
 EFWS.Script.loadScriptDocWrite("http://souders.org/efws/menutier.js", init);
}
</script>

Combining Script DOM Element and document.write Script Tag accomplishes our pri-
mary goals. Execution order of external scripts is preserved across all browsers. The
inlined code is successfully coupled with the external script on which it depends. Asyn-
chronous loading is achieved to different degrees across browsers:

• Firefox loads all resources in parallel.

• Internet Explorer and Opera load scripts in parallel with other scripts, but other
resources (images, stylesheets, etc.) are blocked.

58 | Chapter 5: Coupling Asynchronous Scripts

• The results are mixed in Safari and Chrome. Safari 3.2 and Chrome 1.0 don’t load
any resources in parallel. However, using these same techniques in Safari 4 and
Chrome 2.0 results in all resources loading in parallel.

As shown in this section, there’s no easy cross-browser solution to loading multiple
scripts asynchronously while preserving execution order. One option to consider is
combining all your scripts into a single script. This is one of the best practices from
High Performance Web Sites (“Rule 1: Make Fewer HTTP Requests”) because it reduces
download time. The additional benefit is that there’s a more robust solution for loading
single scripts asynchronously while coupling with inline code.

General Solution
This chapter presents many techniques, along with web page examples and code sam-
ples. It’s valuable to understand the trade-offs, but what’s needed is a general solution
for loading scripts asynchronously while preserving execution order and coupling with
inlined code. Building on top of the EFWS.Script functionality built so far, I add two
new functions that hide all the details: EFWS.Script.loadScript for loading a single
script, and EFWS.Script.loadScripts for loading multiple scripts.

Single Script
The best technique for loading a single script asynchronously is Script DOM Element.
It works across all browsers and is lightweight. The Script Onload pattern is the best
choice for coupling inlined code with an external script. EFWS.Script.loadScriptDomEle
ment implements both of these techniques, so the general solution for single scripts is
just a wrapper for this function:

EFWS.Script = {
 loadScript: function(url, onload) {
 EFWS.Script.loadScriptDomElement(url, onload);
 },

 loadScriptDomElement: function(url, onload) { ... },
 loadScriptDocWrite: function(url, onload) { ... },
 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },
 getXHRObject: function() { ... }
};

This greatly simplifies the menu.js example. The inlined code becomes just a few lines—
the array of menu items, the init function, and a call to EFWS.Script.loadScript:

<script type="text/javascript">
var aExamples = [['couple-normal.php', 'Normal Script Src'],...];

function init() {
 EFWS.Menu.createMenu('examplesbtn', aExamples);

General Solution | 59

http://oreilly.com/catalog/9780596529307/

}

EFWS.Script.loadScript("menu.js", init);
</script>

The loadScript example demonstrates this code.

loadScript
http://stevesouders.com/efws/loadscript.php

Multiple Scripts
The name of the general solution function for multiple scripts is EFWS.Script.load
Scripts. “Multiple External Scripts” on page 52 discusses the techniques used in this
situation. Managed XHR is the preferred solution when scripts are from the same
domain as the main page. Asynchronously loading scripts from a different domain
while preserving execution order is trickier because of fewer options and inconsisten-
cies across browsers. The approach that’s described in “DOM Element and Doc
Write” on page 56 uses the Script DOM Element and document.write Script Tag tech-
niques, depending on the browser. To show both cases, there are two examples that
use this new EFWS.Script.loadScripts function.

loadScripts Same Domain
http://stevesouders.com/efws/loadscripts-same.php

loadScripts Different Domain
http://stevesouders.com/efws/loadscripts-diff.php

The code for EFWS.Script.loadScripts follows. EFWS.Script.loadScripts accepts an
array of script URLs and a function to call after the last external script is done executing.
EFWS.Script.loadScripts starts off by iterating over the script URLs to determine
whether they’re all from the same domain as the main page. This is done because
a single technique must be used if all the external scripts are to be loaded in order.
If they are from the same domain, EFWS.Script.loadScriptXhrInjection is chosen as
the script loading function. If the scripts are served from a different domain,
then EFWS.Script.loadScriptDomElement is used for Firefox and Opera, and
EFWS.Script.loadScriptDocWrite is used for all others. (See “Multiple External
Scripts” on page 52 for an explanation of why these alternatives are chosen.)

EFWS.Script = {
 loadScripts: function(aUrls, onload) {
 // first pass: see if any of the scripts are on a different domain
 var nUrls = aUrls.length;
 var bDifferent = false;
 for (var i = 0; i < nUrls; i++) {
 if (EFWS.Script.differentDomain(aUrls[i])) {
 bDifferent = true;
 break;
 }
 }

60 | Chapter 5: Coupling Asynchronous Scripts

http://stevesouders.com/efws/loadscript.php
http://stevesouders.com/efws/loadscripts-same.php
http://stevesouders.com/efws/loadscripts-diff.php

 // pick the best loading function
 var loadFunc = EFWS.Script.loadScriptXhrInjection;
 if (bDifferent) {
 if (-1 != navigator.userAgent.indexOf('Firefox') ||
 -1 != navigator.userAgent.indexOf('Opera')) {
 loadFunc = EFWS.Script.loadScriptDomElement;
 }
 else {
 loadFunc = EFWS.Script.loadScriptDocWrite;
 }
 }

 // second pass: load the scripts
 for (var i = 0; i < nUrls; i++) {
 loadFunc(aUrls[i], (i+1 == nUrls ? onload : null), true);
 }
 },

 differentDomain: function(url) {
 if (0 === url.indexOf('http://') || 0 === url.indexOf('https://')) {
 var mainDomain = document.location.protocol + "://" +
 document.location.host + "/";
 return (0 !== url.indexOf(mainDomain));
 }

 return false;
 },

 loadScript: function(url, onload) { ... },
 loadScriptDomElement: function(url, onload) { ... },
 loadScriptDocWrite: function(url, onload) { ... },
 queuedScripts: new Array(),
 loadScriptXhrInjection: function(url, onload, bOrder) { ... },
 injectScripts: function() { ... },
 getXHRObject: function() { ... }
};

Once the appropriate loading function is determined, a second pass through the array
of script URLs is performed to load each script. It’s important to note that true is passed
as the third argument to the script loading function. This is critical when
EFWS.Script.loadScriptXhrInjection is the loading function so that responses are exe-
cuted in the specified order. This parameter is ignored by EFWS.Script.load
ScriptDomElement and EFWS.Script.loadScriptDocWrite, because those techniques
preserve script execution order by default—that’s why they were chosen.

The loadScripts Same Domain example uses menu.js and menutier.js, but now the script
loading code is one line:

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];

General Solution | 61

var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScripts(["menu.js", "menutier.js"], init);
</script>

The loadScripts Different Domain example uses menu.js and menutier.js served from
http://souders.org. The script loading code is still just one (wrapped) line of code:

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

EFWS.Script.loadScripts(["http://souders.org/efws/menu.js",
 "http://souders.org/efws/menutier.js"], init);
</script>

In these examples, EFWS.Script.loadScripts successfully loads scripts asynchronously
while preserving execution order. The asynchronous loading of other resources (the
image in this case) varies by browser, as documented earlier in Table 5-2. Firefox 2 and
3, Safari 4, and Chrome 2 load the image in parallel with the scripts, resulting in a
waterfall chart such as that shown in Figure 5-6. The image is blocked from down-
loading in Internet Explorer 6 through 8, Opera, Safari 3, and Chrome 1, resulting in
a longer load time as shown in Figure 5-7. Although the asynchronous loading of the
image has mixed results, the scripts are loaded in parallel in all browsers except Safari
3 and Chrome 1.

Figure 5-6. loadScripts Different Domain HTTP waterfall chart, Firefox 3

62 | Chapter 5: Coupling Asynchronous Scripts

http://souders.org

Figure 5-7. loadScripts Different Domain HTTP waterfall chart, Internet Explorer 7

Asynchronicity in the Real World
In this section, I review how some popular JavaScript frameworks do script loading.

Google Analytics and Dojo
I’ve mentioned Google Analytics in this chapter. It is a service from Google that web
developers can use to gather web site metrics. The functionality is wrapped inside http:
//www.google-analytics.com/ga.js. The Google Analytics Help Center recommends
adding this external script to a web site using document.write:†

<script type="text/javascript">
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." :
"http://www.");
document.write(unescape("%3Cscript src='" + gaJsHost + "google-
analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
</script>
<script type="text/javascript">
var pageTracker = _gat._getTracker("UA-xxxxxx-x");
pageTracker._trackPageview();
</script>

This is a great example to analyze in the context of this chapter. The external script is
a good candidate for asynchronous loading since it isn’t used for rendering the visible
page. The inline script depends on the external script, so execution order must be
preserved and they must be coupled together.

The document.write Script Tag approach in the Google Analytics recommendation has
some benefits. The URL is dynamically modified to load over HTTPS if appropriate.
The execution order of the external script and inlined code is preserved across all
browsers.

A drawback of the document.write Script Tag technique is that it blocks other resources
from being downloaded. The dojox.analytics.Urchin module addresses this issue, as
described in the first line from The Dojo Foundation’s documentation page:‡

† http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55488

‡ http://docs.dojocampus.org/dojox/analytics/Urchin

Asynchronicity in the Real World | 63

http://www.google.com/analytics/
http://www.google-analytics.com/ga.js
http://www.google-analytics.com/ga.js
http://www.google.com/support/analytics/bin/answer.py?hl=en&answer=55488
http://docs.dojocampus.org/dojox/analytics/Urchin

This class is used to delay loading of the popular Google Analytics Tracker, formerly
known as Urchin. The synchronous nature of <script> tags causes page rendering to stall
until loading of remote files has completed, and this module alleviates that.

dojox.analytics.Urchin is part of the Dojo JavaScript toolkit. As the documentation
points out, Urchin is the former name for the Google Analytics module. This explains
why the Dojo module is named Urchin.js. The key functions in this module are _loadGA,
_checkGA, and _gotGA:§

_loadGA: function(){
 // summary: load the ga.js file and begin initialization process
 var gaHost = ("https:" == document.location.protocol) ? "https://ssl." :
"http://www.";
 dojo.create('script', {
 src: gaHost + "google-analytics.com/ga.js"
 }, dojo.doc.getElementsByTagName("head")[0]);
 setTimeout(dojo.hitch(this, "_checkGA"), this.loadInterval);
},

_checkGA: function(){
 // summary: sniff the global _gat variable Google defines and either check
again
 // or fire onLoad if ready.
 setTimeout(dojo.hitch(this, !window["_gat"] ? "_checkGA" : "_gotGA"),
this.loadInterval);
},

_gotGA: function(){
 // summary: initialize the tracker
 this.tracker = _gat._getTracker(this.acct);
 this.tracker._initData();
 this.GAonLoad.apply(this, arguments);
},

The _loadGA function uses the Script DOM Element asynchronous loading technique.
It calls dojo.create to create a script element, setting its src to http://www.google-ana
lytics.com/ga.js or https://ssl.google-analytics.com/ga.js, depending on the protocol of
the main page. The script element is appended to the document’s head.

Coupling ga.js with the inlined code is done with a timer. Every loadInterval (420
milliseconds), _checkGA is called to see whether window["_gat"] (the Google Analytics
object) is defined. If so, _gotGA is called to instantiate the Google Analytics tracker. This
coupling approach is similar to the Timer technique described in “Technique 3:
Timer” on page 48.

Comparing this implementation to EFWS.Script.loadScript, we see that both use the
Script DOM Element approach. Using this technique allows the script to be
downloaded without blocking other resources and works in all major browsers. The
coupling technique is different, though. Instead of the Timer technique,

§ http://bugs.dojotoolkit.org/browser/dojox/trunk/analytics/Urchin.js. Copyright (c) 2004–2008, The Dojo
Foundation. All rights reserved. See http://dojotoolkit.org/license for details.

64 | Chapter 5: Coupling Asynchronous Scripts

http://dojotoolkit.org/
http://www.google-analytics.com/ga.js
http://www.google-analytics.com/ga.js
https://ssl.google-analytics.com/ga.js
http://bugs.dojotoolkit.org/browser/dojox/trunk/analytics/Urchin.js
http://dojotoolkit.org/license

EFWS.Script.loadScript uses the Script Onload technique. The Timer technique has
disadvantages:

• If the script fails to load, the timer will continue indefinitely.

• This approach requires more maintenance. If ga.js changes and no longer defines
_gat, then _checkGA would have to be updated. The Script Onload approach doesn’t
rely on any of the symbols in ga.js.

• There can be a delay of up to 420 milliseconds between when ga.js is done loading
and when _gotGA is called. That’s enough time for the user to leave the page before
the tracker can do its work. The Script Onload approach calls the inlined code as
soon as the external script is loaded.

For these reasons, Script Onload is the coupling technique chosen in EFWS.Script.load
Script.

YUI Loader Utility
Google Analytics is a good example for analyzing how to load a single script asynchro-
nously while coupling it with inlined code. The YUI Loader Utility is the example I’ve
chosen to examine how multiple scripts are loaded. This utility is part of the Yahoo!
UI Library and is described as follows:‖

The YUI Loader Utility is a client-side JavaScript component that allows you to load
specific YUI components and their dependencies into your page via script. YUI Loader
can operate as a holistic solution by loading all of your necessary YUI components, or it
can be used to add one or more components to a page on which some YUI content already
exists.

YUI Loader’s objective is to provide anytime loading and dependency calculation. It
improves page performance by pulling in only the modules that are necessary and
combining those into a single HTTP request, thanks to combo-handling.# I converted
the example that uses menu.js and menutier.js to use YUI Loader in order to see whether
scripts get loaded in parallel.

YUI Loader
http://stevesouders.com/efws/yuiloader.php

This example starts by loading the YUI Loader itself from http://yui.yahooapis.com/2.6
.0/build/yuiloader/yuiloader-min.js. An instance of YUILoader is created and addModule
is used to load menu.js and menutier.js. The init function is specified to be called after
these scripts are successfully loaded. Everything is kicked off by calling insert:

<script type="text/javascript"
src="http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader-min.js">
</script>

‖ http://developer.yahoo.com/yui/yuiloader/

http://yuiblog.com/blog/2008/10/17/loading-yui/

Asynchronicity in the Real World | 65

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://stevesouders.com/efws/yuiloader.php
http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader-min.js
http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader-min.js
http://developer.yahoo.com/yui/yuiloader/
http://yuiblog.com/blog/2008/10/17/loading-yui/

<script type="text/javascript">
var aRaceConditions = [['couple-normal.php', 'Normal Script Src'], ...];
var aWorkarounds = [['hardcoded-callback.php', 'Hardcoded Callback'], ...];
var aMultipleScripts = [['managed-xhr.php', 'Managed XHR'], ...];
var aLoadScripts = [['loadscript.php', 'loadScript'], ...];
var aSubmenus = [["Race Conditions", aRaceConditions], ...];

function init() {
 EFWS.Menu.createTieredMenu('examplesbtn', aSubmenus);
}

var loader = new YAHOO.util.YUILoader();
loader.addModule({ name: "menu", type: "js", fullpath: "menu.js"});
loader.addModule({ name: "menutier", type: "js", fullpath: "menutier.js"});
loader.require("menu");
loader.require("menutier");
loader.onSuccess = init;
loader.insert();
</script>

We can look at how YUI Loader is implemented in http://yui.yahooapis.com/2.6.0/build/
yuiloader/yuiloader.js (the commented, unminified version of the code). The scripts are
inserted by the _node function in a way similar to the Script DOM Element approach.
The _track function uses the Script Onload coupling technique. YUI’s implementation
is extremely thorough, with special handling for browser edge cases.

The most important observation is that YUI Loader does not load the scripts in parallel,
even though Script DOM Element is used. YUI Loader explicitly loads scripts sequen-
tially, waiting for the first script to return before requesting the next one. This can be
seen in the example’s HTTP waterfall chart, shown in Figure 5-8. The scripts are the
last two requests. Comparing this to Figures 5-6 and 5-7, we see that EFWS.Script.load
Scripts loads the scripts in parallel, resulting in a faster page.

Figure 5-8. YUI Loader HTTP waterfall chart

The sequential loading behavior of YUI Loader causes the scripts to take longer to load
than EFWS.Script.loadScripts in all browsers except Safari 3 and Chrome 1. To be fair,
YUI Loader is capable of loading scripts anytime, even after the document has loaded.
EFWS.Script.loadScripts, with its use of document.write in some browsers, can be used
only while the document is loading.

66 | Chapter 5: Coupling Asynchronous Scripts

http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader.js
http://yui.yahooapis.com/2.6.0/build/yuiloader/yuiloader.js

For pages with external scripts in the main page, loading them asynchronously with
EFWS.Script.loadScripts improves performance, and this benefit is more pronounced
as the number of scripts increases. A simpler alternative is to concatenate the scripts
together, as recommended in Rule 1 from High Performance Web Sites. But that’s not
always possible. Across the top 10 U.S. web sites, the average number of external scripts
is 6.5 (see Table 11-1). Loading these scripts in parallel, while preserving execution
order and coupling inlined code, is critical to making today’s popular web sites faster
for users.

Asynchronicity in the Real World | 67

http://oreilly.com/catalog/9780596529307/

CHAPTER 6

Positioning Inline Scripts

The previous three chapters focused on the impact of external scripts. This chapter
focuses on inline scripts (JavaScript included in the HTML document directly). Even
though inline scripts don’t introduce additional HTTP requests, they can block
resources in the page from being downloaded in parallel. They can also thwart pro-
gressive rendering. This chapter explains why the decisions of when and where to inline
JavaScript have an impact on page performance.

Inline Scripts Block
Chapter 5 describes how external scripts block parallel downloads and rendering. It’s
not surprising that inline scripts have the same behavior for the same reasons (preserv-
ing execution order and document.write dependencies). The Inline Scripts Block
example demonstrates this behavior.

Inline Scripts Block
http://stevesouders.com/cuzillion/?ex=10100&title=Inline+Scripts+Block

Figure 6-1 shows the HTTP requests issued for this page. In addition to the HTML
document, there are two image requests, each configured to take one second. An inline
script is inserted between these two images. The inline script is represented by a line
in Figure 6-1. It does not generate an HTTP request, but the impact it has is
observable.

Figure 6-1. Inline scripts block parallel downloads (six seconds)

69

http://stevesouders.com/cuzillion/?ex=10100&title=Inline+Scripts+Block

The inline script is configured to take five seconds to execute. This is what causes the
four seconds of whitespace between the two image requests in Figure 6-1. The inline
script starts executing in parallel with the first image request. After one second, the
image response is received, but the inline script continues to execute for another four
seconds. While the inline script is executing, all other downloads are blocked. It’s not
until the inline script finishes (five seconds into the page) that the second image finally
starts to download, resulting in an overall load time of six seconds.

In addition to blocking parallel downloads, inline scripts block rendering. When the
Inline Scripts Block page is loaded, nothing in the page is painted for at least five sec-
onds. The best way to observe this is to first set the browser location to another page
or about:blank, and then visit the Inline Scripts Block URL. Five seconds pass before
anything is rendered. This is surprising because some plain text is in the HTML docu-
ment (the “Cuzillion” header, the “Examples” and “Help” links, etc.) before the inline
script, but the browser doesn’t render this until the inline script has finished executing.

If your site uses inline scripts, it’s important to understand how they block downloads
and rendering, and to avoid this behavior if possible. Several workarounds are available:

• Move inline scripts to the bottom.

• Initiate the JavaScript execution using an asynchronous callback.

• Use the SCRIPT DEFER attribute.

Each technique is explained in the following sections.

Move Inline Scripts to the Bottom
Parallel downloading and progressive rendering are achieved by moving inline scripts
below all the resources in the page.* The benefit of moving inline scripts to the bottom
is demonstrated in the following example.

Move Inline Scripts to the Bottom
http://stevesouders.com/efws/inline-scripts-bottom.php

Figure 6-2 shows the two image requests downloading in parallel. The five-second
inline script executes in parallel as well, resulting in an overall page load time of five
seconds, one second faster than the baseline page. Although this technique avoids
blocking downloads, rendering is still blocked. If your inline scripts don’t take very
long (fewer than 300 milliseconds) to execute, this technique is an easy way to speed
up your pages. Inline scripts that take longer to execute should use one of the remaining
two techniques.

* This is similar to the advice from High Performance Web Sites, “Rule 6: Put Scripts at the Bottom.”

70 | Chapter 6: Positioning Inline Scripts

http://stevesouders.com/efws/inline-scripts-bottom.php
http://oreilly.com/catalog/9780596529307/

Figure 6-2. Inline scripts block parallel downloads (five seconds)

Initiate Execution Asynchronously
You can instruct a browser to execute an inline script asynchronously so that the
browser has an opportunity to perform parallel downloads and progressive rendering.
A simple asynchronous callback technique is to use setTimeout, as shown in the fol-
lowing example:

function longCode() {
 var tStart = Number(new Date());
 while((tStart + 5000) > Number(new Date())) {};
}

setTimeout(longCode, 0);

The function longCode kicks off JavaScript that takes five seconds to execute. In our
first attempt at using setTimeout, we might use a value of zero milliseconds for the
delay, as in the following example.

Inline Scripts via setTimeout (0 milliseconds)
http://stevesouders.com/efws/inline-scripts-settimeout.php?d=0

The results are similar to the Move Inline Scripts to the Bottom technique: the images
are downloaded in parallel and the page takes five seconds to load. But unlike the
previous technique, using setTimeout has the added benefit of progressive rendering in
Internet Explorer. Before the inline script starts executing, there is enough time for
Internet Explorer to render the text at the top of the page (“Cuzillion,” the “Examples”
and “Help” links, etc.).

Although setTimeout with a delay of zero milliseconds allows progressive rendering in
Internet Explorer, Firefox rendering is still blocked. We need to increase the number
of milliseconds to 250 to achieve progressive rendering in Firefox, which we do in the
next example.

Inline Scripts via setTimeout (250 milliseconds)
http://stevesouders.com/efws/inline-scripts-settimeout.php?d=250

The magic number 250 comes from the default value for nglayout.initial
paint.delay. This is the “number of milliseconds to wait before first displaying the
page.”† If longCode kicks off before 250 milliseconds, all rendering is blocked until it

† http://kb.mozillazine.org/Nglayout.initialpaint.delay

Inline Scripts Block | 71

http://stevesouders.com/efws/inline-scripts-settimeout.php?d=0
http://stevesouders.com/efws/inline-scripts-settimeout.php?d=250
http://kb.mozillazine.org/Nglayout.initialpaint.delay

finishes executing. If, however, we wait 250 milliseconds before calling longCode, Fire-
fox is able to render the text at the top of the page.

In both cases (zero milliseconds for Internet Explorer and 250 milliseconds for Firefox),
only the text is rendered quickly. The images, even though they return after one second,
are not painted until longCode finishes five seconds into the page. The paint events are
queued up at the one-second mark, but the browser isn’t able to act on those events
while longCode executes. The browser is single-threaded, while JavaScript executes all
paint events are blocked.‡ We get around this in the next example by increasing the
number of setTimeout milliseconds to a value slightly longer than the one-second
download time of the images—for example, 1,500 milliseconds.

Inline Scripts via setTimeout (1,500 milliseconds)
http://stevesouders.com/efws/inline-scripts-settimeout.php?d=1500

Now the images are painted as soon as they download. Because it takes only one second
to render everything in the page, the onload event fires after one second, as opposed to
five seconds. One downside of using a 1,500-millisecond delay is that longCode doesn’t
finish executing until 6,500 milliseconds into the page (1,500-millisecond delay plus
5,000-millisecond execute time). If we want to asynchronously kick off longCode with-
out blocking the browser from rendering the page, a better practice is to launch the
code using the onload event:

function longCode() {
 var tStart = Number(new Date());
 while((tStart + 5000) > Number(new Date())) {};
}

window.onload = longCode;

As shown in the following example, using the onload event lets the text and images on
the page render as soon as they are available, and executes the inline script as early in
the page as possible without blocking downloads and rendering.

Inline Scripts via onload
http://stevesouders.com/efws/inline-scripts-onload.php

If your inline scripts are short, using setTimeout with a delay of zero milliseconds is a
good compromise between fast rendering and fast JavaScript execution. If your scripts
are long, using onload is a better choice. The best solution is to yield every 300 milli-
seconds or so using setTimeout, but this can necessitate a significant redesign of your
code to make it reentrant. See “Yielding Using Timers” on page 103 for an in-depth
discussion of this technique.

‡ See Chapter 2 for more discussion of the impact of JavaScript on browser responsiveness.

72 | Chapter 6: Positioning Inline Scripts

http://stevesouders.com/efws/inline-scripts-settimeout.php?d=1500
http://stevesouders.com/efws/inline-scripts-onload.php

Use Script Defer
The SCRIPT DEFER attribute for inline scripts is supported only in Internet Explorer and
Firefox 3.1. Typically, people use it in conjunction with downloading external scripts,
as described in Chapter 4. But the DEFER attribute is also applicable to inline scripts,
where it allows the browser to continue parsing and rendering the page and postpone
execution of the inline script. We can use Cuzillion to create an example of inline scripts
that use the DEFER attribute.

Inline Scripts and Defer
http://stevesouders.com/cuzillion/?ex=10101&title=Inline+Scripts+and+Defer

Using DEFER in browsers that support it allows both images to be downloaded in parallel,
resulting in an overall page load time of five seconds (faster than the six-second base-
line). However, nothing is rendered in the page until the five-second script completes.
DEFER is an easy workaround to enable parallel downloads, but it works only on inline
scripts in Internet Explorer and Firefox 3.1, and still blocks progressive rendering.
Using setTimeout is a better alternative.

Preserving CSS and JavaScript Order
The typical way to load external scripts is with the SCRIPT SRC attribute:

<script src="A.js" type="text/javascript"></script>
<script src="B.js" type="text/javascript"></script>

When scripts are loaded this way, they block parallel downloads, as described in
Chapter 4. The main reason browsers download only one script at a time is to ensure
proper execution order. Executing B.js before A.js might result in unexpected behavior
or undefined symbols due to code dependencies.

Preserving the order of JavaScript is critical, and this is true for CSS as well. Given the
cascading nature of styles, loading them in different orders may yield undesired results.
To provide consistent behavior, browsers ensure that CSS is applied in the order speci-
fied. The Stylesheets in Order example confirms that stylesheets are applied in the order
specified, regardless of the order in which the HTTP responses are received.

Stylesheets in Order
http://stevesouders.com/efws/stylesheets-order.php

This example has two stylesheets that define a rule with the same name. The first style-
sheet is programmed to take longer to download, as shown in Figure 6-3. The first
stylesheet specifies a gray background whereas the second stylesheet specifies an orange
background. The color that wins out is orange, which means the second stylesheet was
applied last even though it finished downloading first. This shows that browsers apply
stylesheets in the order in which they are listed in the page, regardless of the order in
which they are downloaded.

Preserving CSS and JavaScript Order | 73

http://stevesouders.com/cuzillion/?ex=10101&title=Inline+Scripts+and+Defer
http://stevesouders.com/efws/stylesheets-order.php

Figure 6-3. Stylesheets applied in order in Internet Explorer

The application of CSS is preserved across stylesheets and inline styles as well. In the
CSS in Order example, the same long stylesheet from Figure 6-3 (with a gray back-
ground) is followed by an inline style (with an orange background). Again, the browser
waits for the long stylesheet to download and applies it before the inline style to ensure
that CSS is applied in the order specified in the page.

CSS in Order
http://stevesouders.com/efws/css-order.php

It’s useful to know that browsers make sure to apply CSS in the order specified in the
page. But what does this have to do with inline scripts? The next section pulls it all
together.

Danger: Stylesheet Followed by Inline Script
In the previous section, we confirmed that browsers apply CSS (stylesheets as well as
inline styles) in the order in which they appear in the HTML document. Earlier in this
chapter, we verified that inline scripts block other browser activity (downloads and
rendering). These insights are fairly well known in the web development community.
What is less well known is that browsers also apply CSS and JavaScript sequentially,
and that this behavior can significantly delay downloaded resources when a stylesheet
is followed by an inline script. This sequence causes subsequent resources to be blocked
until the stylesheet is downloaded and the inline script is executed. The following sec-
tions explain why this problem occurs.

Inline Scripts Aren’t Blocked by Most Downloads
Inline scripts can execute while images and iframes are being downloaded, as shown
in this example.

Inline Scripts After Image and Iframe
http://stevesouders.com/cuzillion/?ex=10102&title=Inline+Scripts+After

Figure 6-4 contains the HTTP profile for the Inline Scripts After Image and Iframe
example. This shows three resources that each take two seconds to download: an
image, an iframe, and another image. Between each of these is an inline script that takes
one second to execute. The key events in the page load timeline are explained in the
list that follows.

74 | Chapter 6: Positioning Inline Scripts

http://stevesouders.com/efws/css-order.php
http://stevesouders.com/cuzillion/?ex=10102&title=Inline+Scripts+After

Figure 6-4. Inline scripts after an image and an iframe (four seconds)

0 seconds
The first image starts downloading. The first inline script starts executing in parallel
with the image download.

1 second
The first inline script finishes. This opens the door for the iframe to start down-
loading and for the second inline script to start executing. The second inline script
executes while the iframe is being downloaded.

2 seconds
The second inline script finishes executing, allowing the final image to start down-
loading.

4 seconds
The final image finishes downloading.

Because inline scripts execute while images and iframes are being downloaded, the
overall page loads in just four seconds. Their interaction with stylesheets, however,
blocks parallel downloads, as explained in the next section.

Inline Scripts Are Blocked by Stylesheets
The interaction between stylesheets and inline scripts is very different than with other
resources. This is because browsers preserve the order in which CSS and JavaScript are
parsed, as shown in this example.

Inline Scripts After Stylesheet
http://stevesouders.com/cuzillion/?ex=10103&title=Inline+Scripts+after

The Inline Scripts After Stylesheet example is like the previous example, but the first
image and iframe are replaced with stylesheets. As before, all of the resources take two
seconds to download, and the inline scripts each take one second to execute. Fig-
ure 6-5 shows the HTTP profile. The overall load time is eight seconds, as compared
to four seconds for the previous example! The page load timeline reveals why this page
takes twice as long to load.

Danger: Stylesheet Followed by Inline Script | 75

http://stevesouders.com/cuzillion/?ex=10103&title=Inline+Scripts+after

Figure 6-5. Inline scripts after stylesheets (eight seconds)

0 seconds
The first stylesheet starts downloading. The first inline script is blocked from
executing until the stylesheet is downloaded and parsed.

2 seconds
The first stylesheet finishes downloading. The first inline script starts executing.

3 seconds
The first inline script finishes executing. The second stylesheet starts downloading.

5 seconds
The second stylesheet finishes downloading. The second inline script starts
executing.

6 seconds
The second inline script finishes executing. The image starts downloading.

8 seconds
The image finishes downloading.

The way in which browsers process CSS and JavaScript sequentially causes this example
to take twice as long as the previous one. This example shows that when confronted
with a stylesheet followed by an inline script, browsers wait until the stylesheet is fully
downloaded before starting to execute the inline script. Why is this? It’s possible that
the inline script contains code that depends on the styles applied from the stylesheet.
I have seen and written JavaScript that does this. Further evidence that such JavaScript
exists in the real world is the addition of getElementsByClassName in HTML 5.§ Browsers
download the stylesheet and execute the inline script sequentially in order to guarantee
reproducible results.

This example also confirms that inline scripts block the download of any resources that
follow them. Although resources typically download in parallel with stylesheets, the
combination of these two constraints produces the key insight of this chapter: style-
sheets followed by an inline script block any subsequent resources from downloading.

§ http://dev.w3.org/html5/spec/Overview.html#dom-getelementsbyclassname

76 | Chapter 6: Positioning Inline Scripts

http://dev.w3.org/html5/spec/Overview.html#dom-getelementsbyclassname

This Does Happen
The previous examples illustrate the blocking that occurs when a stylesheet is followed
by an inline script, but they seem, at least to me, a bit contrived. Fortunately (or un-
fortunately), because this behavior has not been widely examined or publicized, it’s
easy to find examples of this problem in the real world. Among the 10 top U.S. sites,
four (eBay, MSN, MySpace, and Wikipedia) have a stylesheet followed by an inline
script. This causes resources after the stylesheet to be downloaded later than necessary,
resulting in a slower page.

Figure 6-6 shows part of eBay’s HTTP profile, where the sequence of a stylesheet fol-
lowed by an inline script causes two scripts to be blocked from downloading until the
stylesheet is finished downloading. The arrow shows where the downloading could
have started if not for this problem.

Figure 6-6. eBay stylesheet followed by inline script

Similarly, as shown in Figure 6-7, MSN has fewer parallel downloads than desired
because an image is blocked by a stylesheet. In Figure 6-8, we see a MySpace script
downloaded later because it’s blocked by an inline script that occurs after the five
stylesheets.

Figure 6-7. MSN stylesheet followed by inline script

Danger: Stylesheet Followed by Inline Script | 77

Figure 6-8. MySpace stylesheet followed by inline script

Wikipedia is shown in Figure 6-9. The script at the end of the HTTP profile is blocked
from downloading because of a preceding stylesheet followed by an inline script. As a
side note, this HTTP waterfall chart was produced using Internet Explorer 7, which
supports two connections per hostname. And yet, this chart shows four connections
working in parallel. That’s because Wikipedia downgrades its traffic to HTTP/1.0,
which increases the number of connections to four per hostname. (See “Downgrading
to HTTP/1.0” on page 165.) However, the benefit of increased parallel downloads is
forfeited when the script is downloaded due to the preceding stylesheet being followed
by an inline script.

Figure 6-9. Wikipedia stylesheet followed by inline script

All of these problems are easily fixed. The solution is to place inline scripts so that they
do not appear between a stylesheet and any other resource. The inline script should be
placed either above the stylesheet or below the other resource. If the other resource is
a script, there might be a code dependency between the inline script and the external
script. For that reason, my general recommendation is to move the inline script above
the stylesheet. This will avoid any code dependency issues. If you’re certain there are
no code dependencies, moving the inline script below the visible resources allows these
resources to load sooner, resulting in better progressive rendering.

78 | Chapter 6: Positioning Inline Scripts

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 7

Writing Efficient JavaScript

Nicholas C. Zakas

Today’s web applications are powered by a large amount of JavaScript code. Whereas
early web sites used JavaScript to perform simple tasks, the language is now used to
run the entire user interface in many places. The result can be thousands of lines of
JavaScript code to execute every time a user interaction takes place. Performance,
therefore, is not just about how long it takes for the page to load, but also about how
it responds as it’s being used. The best way to ensure a fast, enjoyable user interface is
to write JavaScript as efficiently as possible for all browsers.*

This chapter covers some of the hidden performance issues in JavaScript and how to
address them. Some changes concern small code structure issues while others may
require revisiting your algorithm. The important thing to remember is that there is no
silver bullet when trying to improve performance; no one thing will work in 100% of
the cases. Only when various techniques are combined can you realize the largest
performance improvement.

Managing Scope
When JavaScript code is being executed, an execution context is created. The execution
context (also sometimes called the scope) defines the environment in which code is to
be executed. A global execution context is created upon page load, and additional
execution contexts are created as functions are executed, ultimately creating an exe-
cution context stack where the topmost context is the active one.

Each execution context has a scope chain associated with it, which is used for identifier
resolution. The scope chain contains one or more variable objects that define in-scope
identifiers for the execution context. The global execution context has only one variable

* All of the research in this chapter is based on experiments run on Firefox versions 3.0 and 3.1 beta 2, Google
Chrome 1.0, Internet Explorer versions 7 and 8 beta 2, Safari versions 3.0–3.2, and Opera version 9.62. When
the version numbers aren’t mentioned, all tested versions of the browser are relevant.

79

object in its scope chain, and this object defines all of the global variables and functions
available in JavaScript. When a function is created (but not executed), its internal
[[Scope]] property is assigned to contain the scope chain of the execution context in
which it was created (internal properties cannot be accessed through JavaScript, so you
cannot access this property directly). Later, when execution flows into a function, an
activation object is created and initialized with values for this, arguments, named
arguments, and any variables local to the function. The activation object appears first
in the execution context’s scope chain and is followed by the objects contained in the
function’s [[Scope]] property.

During code execution, identifiers such as variable and function names are resolved by
searching the scope chain of the execution context. Identifier resolution begins at the
front of the scope chain and proceeds toward the back. Consider the following code:

function add(num1, num2){
 return num1 + num2;
}

var result = add(5, 10);

When this code is executed, the add function has a [[Scope]] property that contains
only the global variable object. As execution flows into the add function, a new execu-
tion context is created, and an activation object containing this, arguments, num1, and
num2 is placed into the scope chain. Figure 7-1 illustrates the behind-the-scenes object
relationships that occur while the add function is being executed.

Figure 7-1. Relationship of execution context and scope chain

80 | Chapter 7: Writing Efficient JavaScript

Inside the add function, the identifiers num1 and num2 need to be resolved when the
function is executing. This resolution is performed by inspecting each object in the
scope chain until the specific identifier is found. The search begins at the first object in
the scope chain, which is the activation object containing the local variables for the
function. If the identifier isn’t found there, the next object in the scope chain is inspected
for the identifier. When the identifier is found, the search stops. In the case of this
example, the identifiers num1 and num2 exist in the local activation object and so the
search never goes on to the global object.

Understanding scopes and scope chain management in JavaScript is important because
identifier resolution performance is directly related to the number of objects to search
in the scope chain. The farther up the scope chain an identifier exists, the longer the
search goes on and the longer it takes to access that variable; if scopes aren’t managed
properly, they can negatively affect the execution time of your script.

Use Local Variables
Local variables are, by far, the fastest identifiers both to read from and write to in
JavaScript. Because they exist in the activation object of the executing function, iden-
tifier resolution involves inspecting a single object in the scope chain. The amount of
time necessary to read the value of a variable increases with each step along the scope
chain, so the greater the identifier depth, the slower the access is going to be. This effect
can be seen in every browser except Google Chrome using v8 and Safari 4+ using the
Nitro JavaScript engine, both of which are so fast that the identifier depth has little
effect on access speed.

To determine the exact performance impact of identifier depth, I ran an experiment
involving 200,000 variable operations. I alternated between reads and writes, accessing
the variables from different identifier depths. The page I used for this experiment
is located at http://www.nczonline.net/experiments/javascript/performance/identifier
-depth/.

Figure 7-2 illustrates the amount of time it takes to write to a variable based on scope
chain depth, and Figure 7-3 illustrates the amount of time it takes to read from an
identifier based on its scope chain depth (a depth of 1 signifies a local identifier).

Managing Scope | 81

http://www.nczonline.net/experiments/javascript/performance/identifier-depth/
http://www.nczonline.net/experiments/javascript/performance/identifier-depth/

Figure 7-2. Variable read time compared to identifier depth

Figure 7-3. Variable write time compared to identifier depth

82 | Chapter 7: Writing Efficient JavaScript

As these figures clearly indicate, identifiers are accessed significantly faster when they
are higher in the scope chain. You can take advantage of this knowledge by using local
variables whenever possible. A good rule of thumb is to store any out-of-scope variables
in a local variable whenever it’s used more than once within the function. For example:

function createChildFor(elementId){
 var element = document.getElementById(elementId),
 newElement = document.createElement("div");

 element.appendChild(newElement);
}

This function has two references to the global variable document. Since document is being
used more than once, it should be stored in a local variable for faster reference, such
as here:

function createChildFor(elementId){
 var doc = document, //store in a local variable
 element = doc.getElementById(elementId),
 newElement = doc.createElement("div");

 element.appendChild(newElement);
}

The rewritten version of the function stores document in a local variable called doc. Since
doc exists in the first part of the scope chain, it can be resolved faster than document.
Keep in mind that the global variable object is always the last object in the scope chain,
and so global identifier resolution is always the most expensive.

A very common mistake that leads to performance issues is to omit the
var keyword when assigning a variable’s value for the first time. As-
signment to an undeclared variable automatically results in a global
variable being created.

Scope Chain Augmentation
The scope chain for a given execution context typically remains unchanged during code
execution. There are, however, two statements that temporarily augment the scope
chain of an execution context. The first is the with statement, which is designed to allow
easy access to object properties by making them appear as local variables. For example:

var person = {
 name: "Nicholas",
 age: 30
};

function displayInfo(){
 var count = 5;
 with(person){
 alert(name + " is " + age);
 alert("Count is " + count);

Managing Scope | 83

 }
}

displayInfo();

In this code, the person object is passed into a with block. This allows you to access the
name and age properties as though they were locally defined. What actually happens,
though, is that a new variable object is pushed to the front of the execution context’s
scope chain. This variable object contains all of the properties of the specified object
(in this case, person) so that they can be accessed without using dot notation. Fig-
ure 7-4 shows how the scope chain for displayInfo is augmented while the with state-
ment is being executed.

Figure 7-4. Scope chain augmentation using the with statement

Though it seems very convenient when an object’s properties are being used repeatedly,
this extra object in the scope chain hurts local identifier resolution. While code within
a with statement is being executed, the local function variables now exist in the
second object in the scope chain instead of the first, automatically slowing down iden-
tifier access. In the previous example, the count variable now takes longer to access
because it’s not in the first object of the scope chain. Once the with statement finishes
executing, the scope chain is restored to its previous state. Due to this major downside,
it’s recommended to avoid using the with statement.

84 | Chapter 7: Writing Efficient JavaScript

The second statement that augments the scope chain is the catch clause of a try-
catch block. The catch clause behaves in a manner similar to the with statement where
it adds a variable object to the front of the scope chain while it executes the code in the
block. That variable object contains an entry for the named exception object specified
by catch. However, the catch clause is executed only when an error occurs during
execution of the try clause, making it somewhat less problematic than the with state-
ment, though you should take care not to execute too much code within the catch
clause to minimize the performance impact.

Minding scope chain depth is an easy way to get performance improvements with a
small amount of work. Avoid unnecessarily augmenting the scope chain and inadver-
tently slowing down execution.

Efficient Data Access
Where data is stored in a script contributes directly to the amount of time it takes to
execute. In general, there are four places from which data can be accessed in a script:

• Literal value

• Variable

• Array item

• Object property

Reading data always incurs a performance cost, and that cost depends on which of
these four locations the data is stored in.

In most browsers, the cost of reading a value from a literal versus a local variable is so
small as to be negligible; you should feel free to mix and match literals and local vari-
ables without worrying about a performance penalty. The real difference comes when
you move to reading data from an array or object. Accessing values from one of these
data structures requires a lookup of the location in which the data is stored, either by
index (for array) or by property name (for objects).

To test the data access times based on data location, I created an experiment that reads
values from each of these locations 200,000 times. You can find the experiment online
at http://www.nczonline.net/experiments/javascript/performance/data-access/. The re-
sult of running this experiment on multiple browsers is that there is almost an even
split across browsers as to which is faster: Internet Explorer, Opera, and Firefox 3 all
access array items faster than object properties; Chrome, Safari, Firefox 2, and Firefox
3.1+ access object properties faster than array items (see Figure 7-5).

Efficient Data Access | 85

http://www.nczonline.net/experiments/javascript/performance/data-access/

Figure 7-5. Data access time across browsers

The important lesson to take from this information is to always store frequently
accessed values in a local variable. Consider the following code:

function process(data){
 if (data.count > 0){
 for (var i=0; i < data.count; i++){
 processData(data.item[i]);
 }
 }
}

This snippet accesses the value of data.count multiple times. At first glance, it looks
like this value is used twice: once in the if statement and once in the for loop. In reality,
though, data.count is accessed data.count plus 1 times in this function, since the con-
trol statement (i < data.count) is executed each time through the loop. The function
will run faster if this value is stored in a local variable and then accessed from there:

function process(data){
 var count = data.count;
 if (count > 0){
 for (var i=0; i < count; i++){
 processData(data.item[i]);
 }
 }
}

86 | Chapter 7: Writing Efficient JavaScript

The rewritten version of this function accesses data.count only once, at the beginning
in order to store it in a local variable. The local variable count is used in its place
elsewhere in the function, limiting the number of times an object property must be
accessed to retrieve this value. This function will run faster than the previous function
because the number of object property lookups has been reduced.

The effect of data access is exaggerated as the value’s data structure depth increases.
For example, data.count is faster to access than data.item.count, which is faster to
access than data.item.subitem.count. When dealing with properties, the number of
times a dot is used (for property lookup) directly relates to the amount of time it takes
to access that value. Figure 7-6 shows the relative data access times by property depth
across browsers. The tests for this research are part of the data access experiment
located at http://www.nczonline.net/experiments/javascript/performance/data-access/.

Figure 7-6. Access times for object properties by depth

A good approach to take when dealing with data access is to store in a local variable
any object property or array item that is used more than once in a function.

For most browsers, there is virtually no difference between using dot
notation for object property access (data.count) and bracket notation
(data["count"]). The one exception is Safari, where bracket notation is
significantly slower than dot notation. This holds true even for Safari 4
and later using the Nitro JavaScript engine.

Efficient Data Access | 87

http://www.nczonline.net/experiments/javascript/performance/data-access/

Using local variables is especially important when dealing with HTMLCollection objects
(those returned from DOM methods such as getElementsByTagName and properties such
as element.childNodes). Each HTMLCollection object is actually a live query being run
against the DOM document every time a property is accessed. For example:

var divs = document.getElementsByTagName("div");
for (var i=0; i < divs.length; i++){ //Avoid!
 var div = divs[i];
 process(div);
}

The first line of this code creates a query that returns every <div> element on the page
and stores that query in divs. Each time divs has a property accessed either by name
or by index, the DOM actually reexecutes that query against the entire page; in this
code, it occurs each time divs.length or divs[i] is accessed. These property lookups
take longer than the average non-DOM object property or array item lookup. It’s
therefore important to store such values in local variables whenever possible to avoid
the requerying penalty associated with HTMLCollection objects. For example:

var divs = document.getElementsByTagName("div");
for (var i=0, len=divs.length; i < len; i++){ //Better
 var div = divs[i];
 process(div);
}

This example stores the length of the divs HTMLCollection in a local variable, limiting
the number of times the object is accessed directly. In the previous version of this code,
divs was accessed twice per iteration: once to retrieve the object in the given position,
and once to check the length. This new version eliminates direct length-checking with
each iteration.

Generally speaking, interacting with DOM objects is always more ex-
pensive than interacting with non-DOM objects. Due to DOM behav-
ior, property lookups typically take longer than non-DOM property
lookups. The HTMLCollection object is the worst-performing object in
the DOM. If you need to repeatedly access members of an
HTMLCollection, it is more efficient to copy them into an array first.

Flow Control
Next to data access, flow control is perhaps the most important aspect of JavaScript
relating to performance. JavaScript, as with most programming languages, has a num-
ber of flow control statements that determine which part of the code should be executed
next. There’s a series of conditional and loop statements that enable developers to
precisely control how execution flows from one part of the code to another. Choosing
the right option at each point can dramatically affect how fast your script runs.

88 | Chapter 7: Writing Efficient JavaScript

Fast Conditionals
The classic question of whether to use a switch statement or a series of if and else
statements is not unique to JavaScript and has spurred discussions in nearly every pro-
gramming language that has these constructs. The real issue is not between individual
statements, of course, but rather relates to the speed with which each is able to handle
a range of conditional statements. The details of this section are based on tests that you
can run at http://www.nczonline.net/experiments/javascript/performance/conditional
-branching/.

The if statement

Discussions usually begin surrounding complex if statements such as this:

if (value == 0){
 return result0;
} else if (value == 1){
 return result1;
} else if (value == 2){
 return result2;
} else if (value == 3){
 return result3;
} else if (value == 4){
 return result4;
} else if (value == 5){
 return result5;
} else if (value == 6){
 return result6;
} else if (value == 7){
 return result7;
} else if (value == 8){
 return result8;
} else if (value == 9){
 return result9;
} else {
 return result10;
}

Typically, this type of construct is frowned upon. The major problem is that the deeper
into the statement the execution flows, the more conditions have to be evaluated. It
will take longer to complete the execution when value is 9 than if value is 0 because
every other condition must be evaluated beforehand. As the overall number of condi-
tions increases, so does the performance hit for going deep into the conditions. While
having a large number of if conditions isn’t advisable, there are steps you can take to
increase the overall performance.

The first step is to arrange the conditions in decreasing order of frequency. Since exiting
after the first condition is the fastest operation, you want to make sure that happens as
often as possible. Suppose the most common case in the previous example is that
value will equal 5 and the second most common is that value will equal 9. In that case,
you know five conditions will be evaluated before getting to the most common case

Flow Control | 89

http://www.nczonline.net/experiments/javascript/performance/conditional-branching/
http://www.nczonline.net/experiments/javascript/performance/conditional-branching/

and nine before getting to the second most common case; this is incredibly inefficient.
Even though the increasing numeric order of the conditions makes it easier to read, it
should actually be rewritten as follows:

if (value == 5){
 return result5;
} else if (value == 9){
 return result9;
} else if (value == 0){
 return result0;
} else if (value == 1){
 return result1;
} else if (value == 2){
 return result2;
} else if (value == 3){
 return result3;
} else if (value == 4){
 return result4;
} else if (value == 6){
 return result6;
} else if (value == 7){
 return result7;
} else if (value == 8){
 return result8;
} else {
 return result10;
}

Now the two most common conditions appear at the top of the if statement, ensuring
optimal performance for these cases.

Another way to optimize if statements is to organize the conditions into a series of
branches, following a binary search algorithm to find the valid condition. This is ad-
visable in the case where a large number of conditions are possible and no one or two
will occur with a high enough rate to simply order according to frequency. The goal is
to minimize the number of conditions to be evaluated for as many of the conditions as
possible. If all of the conditions for value in the example will occur with the same relative
frequency, the if statements can be rewritten as follows:

if (value < 6){

 if (value < 3){
 if (value == 0){
 return result0;
 } else if (value == 1){
 return result1;
 } else {
 return result2;
 }
 } else {
 if (value == 3){
 return result3;
 } else if (value == 4){
 return result4;

90 | Chapter 7: Writing Efficient JavaScript

 } else {
 return result5;
 }
 }

} else {

 if (value < 8){
 if (value == 6){
 return result6;
 } else {
 return result7;
 }
 } else {
 if (value == 8){
 return result8;
 } else if (value == 9){
 return result9;
 } else {
 return result10;
 }

 }
}

This code ensures that there will never be any more than four conditions evaluated.
Instead of evaluating each condition to find the right value, the conditions are separated
first into a series of ranges before identifying the actual value. The overall performance
of this example is improved because the cases where eight and nine conditions need to
be evaluated have been removed. The maximum number of condition evaluations is
now four, creating an average savings of about 30% off the execution time of the pre-
vious version. Keep in mind, also, that an else statement has no condition to evaluate.
However, the problem remains that each additional condition ends up taking more
time to execute, affecting not only the performance but also the maintainability of this
code. This is where the switch statement comes in.

The switch statement

The switch statement simplifies both the appearance and the performance of multiple
conditions. You can rewrite the previous example using a switch statement as follows:

switch(value){
 case 0:
 return result0;
 case 1:
 return result1;
 case 2:
 return result2;
 case 3:
 return result3;
 case 4:
 return result4;
 case 5:

Flow Control | 91

 return result5;
 case 6:
 return result6;
 case 7:
 return result7;
 case 8:
 return result8;
 case 9:
 return result9;
 default:
 return result10;
}

This code clearly indicates the conditions as well as the return values in an arguably
more readable form. The switch statement has the added benefit of allowing fall-
through conditions, which allow you to specify the same result for a number of different
values without creating complex nested conditions. The switch statement is often cited
in other programming languages as the hands-down better option for evaluating mul-
tiple conditions. This isn’t because of the nature of the switch statement, but rather
because of how compilers are able to optimize switch statements for faster evaluation.
Since most JavaScript engines don’t have such optimizations, performance of the
switch statement is mixed.

Firefox handles switch statements very well, with each condition’s evaluation executing
in roughly the same amount of time regardless of the order in which they are defined.
That means the case of value equal to 0 will take roughly the same amount of time to
execute as when value is 9. Other browsers, however, aren’t nearly as good. Internet
Explorer, Opera, Safari, and Chrome all show noticeable increases in the execution
time as you get deeper into the switch statement. Those increases, however, are smaller
than the increases experienced with each additional condition of an if statement. You
can therefore improve the performance of switch statements by ordering the conditions
in decreasing rate of frequency (the same as if statement optimization).

In JavaScript, if statements are generally faster than switch statements when there are
just one or two conditions to be evaluated. When there are more than two conditions,
and the conditions are simple (not ranges), the switch statement tends to be faster. This
is because the amount of time it takes to execute a single condition in a switch statement
is often less than it takes to execute a single condition in an if statement, making the
switch statement optimal only when there are a larger number of conditions.

Another option: Array lookup

There are more than two solutions for dealing with conditionals in JavaScript. Along-
side the if statement and the switch statement is a third approach: looking up values
in arrays. The example for this section maps a given number to a specific result, which
is exactly what arrays are for. Instead of writing a large if statement or switch statement,
you can use the following code:

92 | Chapter 7: Writing Efficient JavaScript

//define the array of results
var results = [result0, result1, result2, result3, result4, result5, result6,
result7,
 result8, result9, result10]

//return the correct result
return results[value];

Instead of using conditional statements, all of the results are stored in an array whose
index maps to the value variable. Retrieving the appropriate result is simply a matter
of array value lookup. Although array lookup times also increase the deeper into the
array you go, the incremental increase is so small that it is irrelevant relative to the
increases in each condition evaluation for if and switch statements. This makes array
lookup ideal whenever there are a large number of conditions to be met, and the con-
ditions can be represented by discrete values such as numbers or strings (for strings,
you can use an Object to store the results rather than an Array).

It’s not practical to use array lookup for small numbers of results because array lookup
is often slower than evaluating a small number of conditions. Array lookups can be
very helpful when there are a large number of ranges because they eliminate the need
to test both upper and lower bounds; you can simply fill in that range of indexes in the
array with the appropriate value and do a straight array lookup.

The fastest conditionals

The three techniques presented here—the if statement, the switch statement, and array
lookup—each have their uses in optimizing code execution:

• Use the if statement when:

— There are no more than two discrete values for which to test.

— There are a large number of values that can be easily separated into ranges.

• Use the switch statement when:

— There are more than two but fewer than 10 discrete values for which to test.

— There are no ranges for conditions because the values are nonlinear.

• Use array lookup when:

— There are more than 10 values for which to test.

— The results of the conditions are single values rather than a number of actions
to be taken.

Fast Loops
As mentioned in Chapter 1, loops are a frequent source of performance issues in Java-
Script, and the way you write loops drastically changes its execution time. Once again,
JavaScript developers don’t get to rely on compiler optimizations that make loops faster

Flow Control | 93

regardless of the initial code, so it’s important to understand the various ways to write
loops and how they affect performance.

Simple loop performance boosts

There are four different types of loops in JavaScript. In this section, we will discuss
three of them: the for loop, the do-while loop, and the while loop. (The fourth type is
a for-in loop that is used to iterate over object properties, but I won’t cover it here
because its purpose is very unique.) The various loop types are coded as follows:

//unoptimized code
var values = [1,2,3,4,5];

//for loop
for (var i=0; i < values.length; i++){
 process(values[i]);
}

//do-while loop
var j=0;
do {
 process(values[j++]);
} while (j < values.length);

//while loop
var k=0;
while (k < values.length){
 process(values[k++]);
}

Each of the loops in this example achieves the same result: all items in the values array
are passed into the process function. These are the most common constructs used for
iterating over a number of values in an array. Each of these loops runs in about the
same amount of time because they’re doing roughly the same amount of work. There
are, however, ways to improve the performance.

Perhaps the most glaring issue in each loop is the constant comparison of the iterator
variable against the array length. As mentioned earlier in this chapter, property lookup
is a much more expensive operation than local variable access. This code is retrieving
the value of values.length every time the loop executes to see whether the terminal
condition has been reached. This is incredibly inefficient given that the length of the
array won’t change while the loop is being executed. Using a local variable instead of
a property lookup can speed up the loops:

var values = [1,2,3,4,5];
var length = values.length;

//for loop
for (var i=0; i < length; i++){
 process(values[i]);
}

94 | Chapter 7: Writing Efficient JavaScript

//do-while loop
var j=0;
do {
 process(values[j++]);
} while (j < length);

//while loop
var k=0;
while (k < length){
 process(values[k++]);
}

Each loop now uses the local variable length as its comparison point instead of
values.length, eliminating a property lookup each time through the loop. This tech-
nique is especially important when dealing with HTMLCollection objects because, as
mentioned previously, every property access on such an object is actually a query
against the DOM for all nodes matching some criteria. That makes a property lookup
on an HTMLCollection very expensive and, when included in the terminal condition of
a loop, adds significant execution time to the overall loop.

Another simple way to improve the performance of a loop is to decrement the iterator
toward 0 rather than incrementing toward the total length. Making this simple change
can result in savings of up to 50% off the original execution time, depending on the
complexity of each iteration. For example:

var values = [1,2,3,4,5];
var length = values.length;

//for loop
for (var i=length; i--;){
 process(values[i]);
}

//do-while loop
var j=length;
do {
 process(values[--j]);
} while (j);

//while loop
var k=length;
while (k--){
 process(values[k]);
}

Each of these loops is now even faster by virtue of changing the terminal condition to
a comparison against 0 (note that the terminal condition evaluates to true once the
iterator variable equals 0). The performance of each type of loop is comparable, so you
needn’t worry about choosing among the three variations for speed purposes.

Flow Control | 95

Be careful when using the native indexOf method for arrays. This
method can take significantly longer to iterate over each array item than
using a regular loop. If speed is your primary concern, use one of the
three loop types mentioned in this section.

Avoid the for-in loop

Another variation of the for loop is the for-in loop, whose purpose is to iterate over
the enumerable properties of a JavaScript object. Typical usage is as follows:

for (var prop in object){
 if (object.hasOwnProperty(prop)){ //to filter out prototype properties
 process(object[prop]);
 }
}

This code iterates over the properties in a given object, using the hasOwnProperty
method to ensure that only instance properties are processed.

Because the for-in loop has a specific purpose, there is little you can do to change its
performance. The terminal condition cannot be altered, and the order of the properties
to iterate over cannot be changed. Further, a for-in loop is typically much slower than
any of the other loops because it requires resolving every enumerable property on a
particular object. That, in turn, means the object’s prototype and entire prototype chain
must be examined to extract these properties. Traversing the prototype chain, just like
traversing the scope chain, takes time and slows down the performance of the entire
loop.

If you know the specific properties you’re interested in, it’s much faster to create a
standard loop (for, do-while, or while) and iterate over an array of names, such as:

//known properties to iterate over
var props = ["name", "age", "title"];

//while loop
var i=props.length;
while (i--){
 process(object[props[i]]);
}

This loop runs much faster than the for-in loop, and not simply because of the small
number of properties in the props array. Even increasing the number of properties over
which to iterate would yield significantly better performance than the for-in loop. The
loop in this example takes advantage of all the normal loop performance enhancements
and still allows iteration over a known set of object properties.

Naturally, this approach works only when you know the object properties to iterate
over; when dealing with unknown properties, as with JSON objects, a for-in loop may
still be necessary.

96 | Chapter 7: Writing Efficient JavaScript

Unrolling loops

It is a common practice in several programming languages to unroll small loops to
improve performance. The basis of this practice is that limiting the number of iterations
can mitigate the performance overhead of a loop. The implementation of such a
solution is typically called unrolling the loop, which means making each iteration do
the work of multiple iterations. Consider the following loop:

var i=values.length;
while (i--){
 process(values[i]);
}

If there are only five items in the values array, it is actually faster to remove the loop
and do the work on each value individually:

//unrolled loop
process(values[0]);
process(values[1]);
process(values[2]);
process(values[3]);
process(values[4]);

Of course, this approach is arguably less maintainable, as it takes more code to write
and any change to the number of items in the values array requires changes to the code.
Further, the performance gains for such a small number of statements aren’t worth the
maintenance overhead. This technique can be quite useful, however, when you’re
dealing with a large number of values and a potentially large number of iterations.

Tom Duff, a computer programmer working for Lucasfilm at the time, first proposed
a construct for unrolling loops in the C programming language. This pattern became
known as Duff’s Device and was later converted to JavaScript by Jeff Greenberg, who
also published one of the first comprehensive studies on JavaScript performance
optimization (which is still available at http://home.earthlink.net/~kendrasg/info/js
_opt/). Greenberg’s Duff’s Device implementation is as follows:

var iterations = Math.ceil(values.length / 8);
var startAt = values.length % 8;
var i = 0;

do {
 switch(startAt){
 case 0: process(values[i++]);
 case 7: process(values[i++]);
 case 6: process(values[i++]);
 case 5: process(values[i++]);
 case 4: process(values[i++]);
 case 3: process(values[i++]);
 case 2: process(values[i++]);
 case 1: process(values[i++]);
 }
 startAt = 0;
} while (--iterations > 0);

Flow Control | 97

http://home.earthlink.net/~kendrasg/info/js_opt/
http://home.earthlink.net/~kendrasg/info/js_opt/

The idea behind Duff’s Device is that each trip through the loop does the work of
between one and eight iterations of a normal loop. This is done by first determining
the number of iterations by dividing the total number of array values by eight. Duff
found that eight was an optimal number to use for this processing (it’s not arbitrary).
Since not all array lengths will be equally divisible by eight, you must also calculate
how many items won’t be processed by using the modulus operator. The startAt var-
iable, therefore, contains the number of additional items to be processed. This variable
is used only the first time through the loop, to do the extra work, and then is set back
to zero so that each subsequent trip through the loop results in a full eight items being
processed. Duff’s Device runs faster than a normal loop over a large number of itera-
tions, but it can be made even faster.

The book Speed Up Your Site (New Riders) introduced a version of Duff’s Device in
JavaScript that moves the processing of the extra array items outside the main loop,
allowing the switch statement to be removed and resulting in an even faster way of
processing a large number of items:

var iterations = Math.floor(values.length / 8);
var leftover = values.length % 8;
var i = 0;

if (leftover > 0){
 do {
 process(values[i++]);
 } while (--leftover > 0);
}

do {
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
 process(values[i++]);
} while (--iterations > 0);

This code executes faster over a large number of array items primarily due to the
removal of the switch statement from the main loop. As discussed earlier in this chapter,
conditionals do have performance overhead; removing that overhead from the algo-
rithm speeds up the processing. The separation of processing into two discrete loops
allows this augmentation.

Duff’s Device, and the modified version presented here, is useful primarily with large
arrays. For small arrays, the performance gain is minimal compared to standard loops.
Therefore, you should attempt to use Duff’s Device only if you notice a performance
bottleneck relating to a loop that must process a large number of items.

98 | Chapter 7: Writing Efficient JavaScript

String Optimization
String manipulation is a very common occurrence in JavaScript. There are multiple
ways to deal with string processing, depending on the particular task, and each task
brings with it specific performance considerations. There are a number of different ways
to manipulate strings, whether it be using built-in string methods and operators or
intermixing the use of regular expressions and arrays. The exact technique to use for
optimal performance is tied directly to the type of manipulation being performed.

String Concatenation
Traditionally, string concatenation has been one of the poorest-performing aspects of
JavaScript. Typically, string concatenation is done using the plus operator (+), such as
in the following:

var text = "Hello";
text += " "
text += "World!";

Early browsers had no optimization for such operations. Since strings are immutable,
that meant creating intermediate strings to contain the concatenation result. This
constant creation and destruction of strings behind the scenes led to very poor string
concatenation performance.

Having discovered this, developers turned to the JavaScript Array object for help. One
of the Array object’s methods is join, which concatenates all items in the array and
inserts a given string between the items. Instead of using the plus operator, each string
is added to an array and the join method is called when all items have been added. For
example:

var buffer = [],
 i = 0;
buffer[i++] = "Hello";
buffer[i++] = " ";
buffer[i++] = "World!";

var text = buffer.join("");

In this code, each string is added into the buffer array. The join method is called after
all strings are in the array, returning the concatenated string and storing it in the variable
text. Adding the items directly into the appropriate index is slightly faster than calling
push for each value. This technique proved to be much faster in early browsers than
using the plus operator because no intermediate strings are being created and de-
stroyed. However, browser string optimizations have changed the string concatenation
picture.

Firefox was the first browser to optimize string concatenation. Beginning with version
1.0, the array technique is actually slower than using the plus operator in all cases.
Other browsers have also optimized string concatenation, so Safari, Opera, Chrome,

String Optimization | 99

and Internet Explorer 8 also show better performance using the plus operator. Internet
Explorer prior to version 8 didn’t have such an optimization, and so the array technique
is always faster than the plus operator.

This doesn’t necessarily mean browser detection should be used whenever string con-
catenation is necessary. There are two factors to consider when determining the most
appropriate way to concatenate strings: the size of the strings being concatenated and
the number of concatenations.

All browsers can comfortably complete the task in less than one millisecond using the
plus operator when the size of the strings is relatively small (20 characters or less) and
the number of concatenations is also relatively small (1,000 concatenations or less).
There is no reason to consider anything other than using the plus operator if this is your
situation.

As you increase the number of concatenations for small strings, or the size of the strings
with a small number of concatenations, the performance gets significantly worse in
Internet Explorer through version 7. Also, as the size of the strings increases, the per-
formance difference between using the plus operator and the array technique decreases
in Firefox. As the number of concatenations increases, the difference between the two
techniques decreases in Safari as well. The only browsers where the plus operator re-
mains consistently and significantly faster with varying string size and concatenation
numbers are Chrome and Opera.

With all of the performance variance across browsers, the technique to use is heavily
dependent on the use case as well as on the browsers you’re targeting. If your users
largely use Internet Explorer 6 or 7, it may be worth using the array technique all the
time because that will affect the largest number of people. The performance decrease
of the array technique in other browsers is typically much less than the performance
increase gained in Internet Explorer, so try to balance your users’ experience based on
their browsers rather than trying to target specific situations and browser versions. In
most common cases, however, using the plus operator is preferred.

Trimming Strings
One of the most glaring omissions of JavaScript strings is the lack of a native trim
method used to remove leading and trailing whitespace. The most common imple-
mentation of a trim function is as follows:

function trim(text){
 return text.replace(/^\s+|\s+$/g, "");
}

This implementation uses a regular expression that matches one or more whitespace
characters at the beginning or end of the string. The string’s replace method is used to
replace any matches with an empty string. This implementation, however, has a per-
formance issue based in the regular expression.

100 | Chapter 7: Writing Efficient JavaScript

The performance impact comes from two aspects of the regular expression: the pipe
operator, indicating that there are two patterns to match, and the g flag, indicating that
the pattern should be applied globally. Taking this into mind, you can rewrite the
function to be a bit faster by breaking up the regular expression into two and getting
rid of the g flag:

function trim(text){
 return text.replace(/^\s+/, "").replace(/\s+$/, "");
}

Breaking the single replace method into two calls allows each regular expression to
become much simpler and, therefore, faster. This method is faster than the original,
but you can optimize it even further.

Steven Levithan, after performing research on the fastest way to execute string trimming
in JavaScript, arrived at the following function:

function trim(text){
 text = text.replace(/^\s+/, "");
 for (var i = text.length - 1; i >= 0; i--) {
 if (/\S/.test(text.charAt(i))) {
 text = text.substring(0, i + 1);
 break;
 }
 }
 return text;
}

This trim function consistently performs better than other variations. The source of
the speed is keeping the regular expressions as simple as possible. The first line removes
leading whitespace and then the for loop is used to strip trailing whitespace. The loop
uses a very simple, single-character regular expression that matches nonwhitespace
characters. This information is used to either remove a character from the string or
break the loop. The resulting function performs faster than the previous versions across
all browsers. For Levithan’s complete analysis, see his post at http://blog.stevenlevithan
.com/archives/faster-trim-javascript.

As with string concatenation, the speed of string trimming matters only if it is performed
with enough frequency during execution. The second trim function in this section per-
forms fine for smaller strings over the course of a few calls; the third trim function is
significantly faster when used on longer strings.

The next version of the ECMAScript specification, code-named
ECMAScript 3.1, defines a native trim method for strings; it is likely that
this native version will be faster than any of the functions in this section.
When available, the native function should be used.

String Optimization | 101

http://www.stevenlevithan.com
http://blog.stevenlevithan.com/archives/faster-trim-javascript
http://blog.stevenlevithan.com/archives/faster-trim-javascript

Avoid Long-Running Scripts
One of the critical performance issues with JavaScript is that code execution freezes a
web page. Because JavaScript is a single-threaded language, only one script can be run
at a time per window or tab. This means that all user interaction is necessarily halted
while JavaScript code is being executed. This is an important feature of browsers since
JavaScript may change the underlying page structure during its execution, with the
possibility of nullifying or altering the response to user interaction.

If JavaScript code isn’t carefully crafted, it’s possible to freeze the web page for an
extended period of time and ultimately cause the browser to stop responding. Most
browsers will detect long-running scripts and notify the user of a problem with a dialog
box asking whether the script should be allowed to proceed.

Exactly what causes the browser to display the long-running script dialog varies
depending on the vendor:

• Internet Explorer monitors the number of statements that have been executed by
a script. When a maximum number of statements have been executed, 5 million
by default, the long-running script dialog is displayed (as shown in Figure 7-7).

• Firefox monitors the amount of time a script is taking to execute. When a script
takes longer than a preset amount of time, 10 seconds by default, the long-running
script dialog is displayed.

• Safari also uses the execution time to determine whether a script is long-running.
The default timeout is set to five seconds, after which the long-running script dialog
is displayed.

• Chrome as of version 1.0 has no set limit on how long JavaScript is allowed to run.
The process will crash when it has run out of memory.

• Opera is the only browser that doesn’t protect against long-running scripts. Scripts
are allowed to continue until execution is complete.

Figure 7-7. Internet Explorer 7 long-running script dialog

102 | Chapter 7: Writing Efficient JavaScript

If you ever see the long-running script dialog, it’s an indication that the JavaScript code
needs to be refactored. Generally speaking, no single continuous script execution
should take longer than 100 milliseconds; anything longer than that and the web page
will almost certainly appear to be running slowly to the user. Brendan Eich, the creator
of JavaScript, is also quoted as saying, “[JavaScript] that executes in whole seconds is
probably doing something wrong....”

The most common reasons why a script takes too long to execute include:

Too much DOM interaction
DOM manipulation is more expensive than any other JavaScript process. Mini-
mizing DOM interactions significantly cuts the JavaScript runtime. Most browsers
update the DOM only after the entire script has finished executing, which slows
the perceived responsiveness of the web page to the user.

Loops that do too much
Any loop that either runs too many times or performs too many operations with
each iteration can cause long-running script issues. It helps separate out function-
ality whenever possible. The effect is worsened when loops are used to perform
DOM manipulations, sometimes causing the browser to completely freeze without
ever showing the long-running script dialog.

Too much recursion
JavaScript engines put a limit on the amount of recursion that scripts can use.
Rewriting the code to avoid recursion helps ameliorate the issue.

Sometimes simple code refactoring, keeping these issues in mind, can prevent runaway
scripts. There may, however, be times when complex processes must necessarily be
executed for the web application to function correctly. In that case, the code must be
restructured to yield periodically, as explained in the next section.

Yielding Using Timers
The single-threaded nature of JavaScript means that only one script can be executed in
a window or tab at any given point in time. No user interactions can be processed during
this time and so it’s necessary to introduce breaks in long-executing JavaScript code.
On simple web pages, the breaks occur naturally as the user interacts with the page. In
complex web applications, it’s often necessary to insert the breaks yourself. The easiest
way to do this is to use a timer.

Timers are created using the setTimeout function, passing in the function to execute as
well as a delay (in milliseconds) before the function should be executed. When the
delay has passed, the code to execute is placed into a queue. The JavaScript engine uses
this queue to determine what to do next. When a script finishes executing, the Java-
Script engine yields to allow other browser tasks to catch up. The web page display is
typically updated during this time in relation to changes made via the script. Once the
display has been updated, the JavaScript engine checks for more scripts to run on the

Avoid Long-Running Scripts | 103

queue. If another script is waiting, it is executed and the process repeats; if there are
no more scripts to execute, the JavaScript engine remains idle until another script
appears in the queue.

When you create a timer, you’re actually scheduling some code to be inserted into the
JavaScript engine’s queue to be executed later. That insertion happens after the amount
of time specified when calling setTimeout. In essence, timers push code execution off
into the future, where all long-running script limits are reset. Consider the following
code:

window.onload = function(){

 //Page Load

 //create first timer
 setTimeout(function(){

 //Delayed Script 1

 setTimeout(function(){

 //Delayed Script 2

 }, 100);

 //Delayed Script 1, continued

 }, 100);

};

In this example, a script is run when the page loads. That script calls setTimeout to
create the first timer. When that timer executes, it calls setTimeout again to create a
second timer. The second delayed script cannot start running, however, until the first
has finished executing and the browser has updated the display. Figure 7-8 shows the
timeline for this code execution, indicating that no two scripts are run at the same time.

Timers are the de facto standard for splitting up JavaScript code execution in browsers.
Whenever a script is taking too long to complete, look to delay parts of the execution
until later.

Note that very small timer delays can also cause the browser to become unresponsive.
It’s recommended to never use a delay of zero milliseconds, as this isn’t enough time
for all browsers to properly update their display. In general, delays between 50 and 100
milliseconds are appropriate and allow browsers enough idle time to perform necessary
display updates.

104 | Chapter 7: Writing Efficient JavaScript

Figure 7-8. JavaScript code execution with timers

Timer Patterns for Yielding
Array processing is one of the most frequent causes of long-running scripts. Typically,
this is because processing must be done on each member of the array, and so the exe-
cution time increases directly in proportion to the number of items in the array. If the
array processing doesn’t have to be executed synchronously, it is a good candidate for
splitting up using timers.

In my book, Professional JavaScript for Web Developers, Second Edition (Wrox), I de-
scribe a simple function that can be used to split up the processing of arrays using
timers:

function chunk(array, process, context){
 setTimeout(function(){
 var item = array.shift();
 process.call(context, item);

 if (array.length > 0){
 setTimeout(arguments.callee, 100);
 }
 }, 100);
}

Avoid Long-Running Scripts | 105

The chunk function accepts three arguments: an array of data to process, a function
with which to process each item, and an optional context argument in which the pro-
cessing function should be executed (by default, all functions passed into setTimeout
are run in the global context, so this is equal to window). Processing of the items is done
using timers, and so the code execution yields after each item has been processed. The
next item to process is always at the front of the array and is removed before being
processed. Afterward, a check is made to determine whether there are any further values
left to process. If so, a new timer is created and the function is called again via
arguments.callee. Note that the chunk function uses the passed-in array as a “to do”
list of items to process and so is altered once execution is complete. You can use the
function as follows:

var names = ["Nicholas", "Steve", "Doug", "Bill", "Ben", "Dion"],
 todo = names.concat(); //clone the array

chunk(todo, function(item){
 console.log(item);
});

The code in this simple example outputs each name in the names array to the console
(available in Firefox with Firebug installed, Internet Explorer 8+, Safari 2+, and all
versions of Chrome). The processing function is very short but could easily be replaced
with something more complex. The chunk function is best used with long arrays where
each item requires significant processing.

Another popular pattern is to perform small, sequential parts of a larger operation using
timers. Julien Lecomte presented this pattern in his blog post, “Running CPU Intensive
JavaScript Computations in a Web Browser”, in which he showed how sorting of a
large data set could be achieved using an inefficient algorithm (bubble sort) without
incurring a long-running script issue. The following is an adaptation of Lecomte’s code:

function sort(array, onComplete){

 var pos = 0;

 (function(){

 var j, value;

 for (j=array.length; j > pos; j--){
 if (array[j] < array[j-1]){
 value = data[j];
 data[j] = data[j-1];
 data[j-1] = value;
 }
 }

 pos++;

 if (pos < array.length){
 setTimeout(arguments.callee,10);

106 | Chapter 7: Writing Efficient JavaScript

http://www.julienlecomte.net/blog/2007/10/28/
http://www.julienlecomte.net/blog/2007/10/28/

 } else {
 onComplete();
 }

 })();

}

The sort function splits up each traversal through the array for sorting, allowing the
browser to continue functioning while this processing occurs. The inner anonymous
function is called immediately to do the first traversal and then is called subsequently
via a timer by passing arguments.callee into setTimeout. When the array is finally
sorted, the onComplete function is called to notify the developer that the data is ready
to be used. The function can be used as follows:

sort(values, function(){
 alert("Done!");
});

When sorting an array with a large number of items, the difference in browser respon-
siveness is immediately apparent.

Summary
The speed with which JavaScript executes is very dependent on how it is written. In
this chapter, you learned several ways to speed up JavaScript code execution:

• Managing your scope is important, since out-of-scope variables take longer to ac-
cess than local variables. Try to avoid constructs that artificially augment the scope
chain, such as the with statement and the catch clause of a try-catch statement. If
an out-of-scope value is being used more than once, store it in a local variable to
minimize the performance penalty.

• The way you store and access data can greatly impact the performance of your
script. Literal values and local variables are always the fastest; you incur a per-
formance penalty for accessing array items and object properties. If an array item
or object property is used more than once, store it in a local variable to speed up
access to the value.

• Flow control is also an important determinant of script execution speed. There are
three ways to handle conditionals: the if statement, the switch statement, and
array lookup. The if statement is best used with a small number of discrete values
or a range of values; the switch statement is best used when there are between 3
and 10 discrete values to test for; array lookup is most efficient for a larger number
of discrete values.

• Loops are frequently found to be bottlenecks in JavaScript. To make a loop the
most efficient, reverse the order in which you process the items so that the control
condition compares the iterator to zero. This is far faster than comparing a value

Summary | 107

to a nonzero number and significantly speeds up array processing. If there are a
large number of required iterations, you may also want to consider using Duff’s
Device to speed up execution.

• Be careful when using HTMLCollection objects. Each time a property is accessed on
one of these objects, it requires a query of the DOM for matching nodes. This is
an expensive operation that can be avoided by accessing HTMLCollection properties
only when necessary and storing frequently used values (such as the length prop-
erty) in local variables.

• Common string operations may have unintended performance implications. String
concatenation is much slower in Internet Explorer than in other browsers, but it’s
not worth worrying about unless you’re dealing with more than 1,000 concatena-
tions. You can optimize string concatenation in Internet Explorer by using an array
to store the individual strings and then calling join() to merge them together.
Trimming strings may also be expensive, depending on the size of the string. Make
sure to use the most optimal algorithm if trimming is a large part of your script.

• Browsers have limits on how long JavaScript can run, capping either the number
of statements or the amount of time the JavaScript engine is allowed to run. You
can circumvent these limits, and prevent the browser from displaying a warning
about the long-running script, by using timers to split up the amount of work.

108 | Chapter 7: Writing Efficient JavaScript

CHAPTER 8

Scaling with Comet

Dylan Schiemann

Sometimes Ajax just isn’t fast enough.

When data needs to be asynchronously sent from the server to the client, Ajax alone is
often inadequate. Comet is a catchall term describing the collection of techniques,
protocols, and implementations that address making low-latency data transit to the
browser both viable and scalable. Comet is not an acronym, but a humorous play on
the term Ajax coined by Alex Russell.*

Goals of Comet include delivering data from the server to the client at any time, im-
proving speed and scalability over traditional Ajax, and developing event-driven web
applications.

Ajax and the introduction of background HTTP requests are clearly the defining tech-
nology that enables the performance possible in today’s web applications. However,
browsers and the traditional request/response pattern used in HTTP are ill-equipped
to scale to the needs of more demanding real-time applications such as chat, financial
information, and document collaboration. All of these applications require low-latency
data transit to deliver on user experience expectations.

In this chapter, I’ll briefly cover how Comet works, and I’ll discuss the techniques that
are common today and the performance pros and cons of each. I’ll conclude with sol-
utions to cross-domain Comet and to other web application implementation issues
when using Comet techniques.

How Comet Works
Comet works by taking advantage of less commonly used features of the HTTP spec-
ification. Through the more intelligent management of longer-lived connections, and
by reducing the server-side resources per connection, Comet can easily provide more

* Both Ajax and Comet live under the kitchen sink.

109

simultaneous connections than a traditional web server, and faster data transit between
the client and the server.

Large-scale applications must use asynchronous connection handling because tradi-
tional server architectures require the use of one thread per connection. For high-
concurrency applications, Comet servers generally leverage event libraries such as
libevent,† epoll,‡ and kqueue,§ depending on the operating system. Operating systems
handle asynchronous I/O in various ways, the traditional method being select or
poll. Your application can use these constructs to ask the operating system which
sockets are ready to be written to or read from, to avoid ever incurring a blocking read
or write.

What if the scale of your application is not large, but you want the benefits of Comet?
Even a site of 50,000 visits per day with a typical connection time of three minutes
averages only 92 open connections. Although you may need to raise the max thread
count on your server, 92 threads is not a terrible approach for smaller but high-
performance web sites.

The use of one thread per connection for high-performance Comet-based sites is prob-
lematic, so most Comet servers either significantly reduce the resource overhead per
thread, or make use of microthreads or processes. For example, ErlyComet‖ is written
in Erlang, which is a virtual machine and microthreads-based functional language.
Because a connection is represented by a process, and Erlang’s event-driven approach
makes it easy for processes to communicate with each other via message passing, Erlang
makes it very easy to scale the number of connections, even on different servers.

By contrast, PHP makes for a very poor choice as a Comet server language because of
its threading model, so most PHP web applications that wish to use Comet make use
of an off-board approach.# To make this work, a Comet client is written in PHP that
communicates with the Comet server written in another language. While programming
languages for Comet servers in general do not matter (there is no shortage of attempts
at PHP Comet servers), languages such as C, Erlang, and Python are better suited for
creating a Comet server, and there are a number of great Comet servers written in Java
as well. The term on-board is used when your web server is the same as your Comet
server.

While on-board Comet provides the benefits of simplicity and often lives on the same
domain, off-board Comet is much more common for larger-scale web sites, or for sites
where the primary development language is not well suited to Comet performance. For

† http://monkey.org/~provos/libevent/

‡ http://linux.die.net/man/4/epoll

§ http://people.freebsd.org/~jlemon/papers/kqueue.pdf

‖ http://code.google.com/p/erlycomet/

http://cometdaily.com/2008/05/22/on-board-vs-off-board-comet/

110 | Chapter 8: Scaling with Comet

http://monkey.org/~provos/libevent/
http://linux.die.net/man/4/epoll
http://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://code.google.com/p/erlycomet/
http://cometdaily.com/2008/05/22/on-board-vs-off-board-comet/

example, a site such as Facebook would probably use an off-board solution for its chat
application, whereas a site such as Meebo uses an on-board solution since virtually all
of its site traffic uses Comet techniques.

On the client side, the common techniques include polling, long polling, forever frame
(iframe), XHR streaming, and soon, WebSocket. In conjunction with these techniques
for establishing a Comet connection, a number of protocols exist for sending messages
between the client and the server. A toolkit such as the Dojo Toolkit, or a library such
as js.io, can handle many of these complexities for you automatically, but understand-
ing how these techniques work without a toolkit is essential to understanding how to
evaluate and optimize Comet performance.

Transport Techniques
I’m now going to walk you through four different approaches to implementing the low-
latency data communications that are the foundation of Comet: polling, long polling,
forever frame, and XHR streaming.

Polling
Communication can easily become blocked or deadlocked in many browsers because
of the limit on the maximum number of simultaneous connections allowed per server
(see Chapter 11). The naïve approach that developers first take to solve the limit of
connections is simple polling, where a web site or application makes a request every
x milliseconds to check whether there are new updates to display in the user interface.
A very simple polling example might look something like this:*

setTimeout(function(){xhrRequest({"foo":"bar"})}, 2000);

function xhrRequest(data){
 var xhr = new XMLHttpRequest();
 // handle the data to send it as parameters on the request
 xhr.open("get", "http://localhost/foo.php", true);
 xhr.onreadystatechange = function(){
 if(xhr.readyState == 4){
 // handle update from server
 }
 };
 xhr.send(null);
}

Simple polling is the least optimized but simplest Comet technique.

* For simplicity, we are ignoring extra handling for legacy browsers and error handling, but most JavaScript
libraries provide an Ajax/XHR request function, so your working code may be different.

Transport Techniques | 111

http://dojotoolkit.org/
http://js.io/

Long Polling
Polling is workable when messages are generated server side at known intervals. For
instance, in a stock tracking application when new price updates are available on the
server every five seconds, the polling interval on the browser can be matched to ensure
that there is always one request per data element. Otherwise, HTTP requests are wasted
and consume valuable CPU time and bandwidth. But polling can cause serious issues,
even in cases when the data interval is known but the server is overloaded. Consider
the case when the server hasn’t yet responded to the previous request for data; now, a
second or even third request is sent, bombarding the server with useless additional
requests. Of course, you can change the polling interval to poll five seconds after each
successful request, but there are much better Comet techniques than polling.

A far more adaptive method is long polling, where the browser makes a request to the
server, and the server responds only when it has new data available. To support long
polling, the server ends up holding on to a large collection of unanswered requests and
their corresponding connections. The server “holds on” to the request’s connection by
returning a Transfer-Encoding: chunked or Connection: close response. When data is
ready for a particular client or set of clients, those connections are identified and a
response containing the payload is sent back to the browser. The browser immediately
makes a request back to the server. If the connection drops, the client will attempt to
reestablish a connection with the server. Although the request/response cycle is client-
initiated, as with polling, all data flow occurs on the server’s schedule rather than on
the client’s, allowing a more perfect approximation of the server→client data flow. Ad-
ditionally, server oversaturation isn’t as large a concern because the client won’t make
additional requests until after the server actually responds. Long polling became a
mainstream technique with the introduction of the web-based chat client Meebo.

A typical implementation of the long-polling Comet technique involves the use of a
Comet client, typically but not always written in JavaScript, and a Comet server, with
versions available in almost every language. So, how do you create a Comet client? Let’s
examine a plain-vanilla long-polling example:

function longPoll(url, callback) {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 // send another request to reconnect to the server
 callback(xhr.responseText);
 xhr.open('GET', url, true);
 xhr.send(null);
 }
 }
 // connect to the server to open a request
 xhr.open('POST', url, true);
 xhr.send(null);
}

112 | Chapter 8: Scaling with Comet

http://www.meebo.com/

In the longPoll method, after creating an XMLHttpRequest with the given URL, we define
what to do when the readyState of the XHR is 4 and data is returned. In this case, we
open a new connection and send the response to a callback function listening for new
data to be returned.

This approach solves the most common use case from the browser perspective: con-
serving available requests. It also gets rid of a large number of useless requests, and
feels more instantaneous to the user.†

However, both polling and long polling introduce a new problem for traditional web
servers that are not optimized to handle large numbers of long-held or long-lived con-
nections, but rather are optimized to open and close connections as quickly as possible.
Apache, for example, is designed to handle approximately 10,000 simultaneous con-
nections per server, whereas a good Comet server should be able to handle more than
50,000 long-held connections to be cost-effective in delivering real-time applications.
Fortunately, a number of viable commercial and open source servers exist today to
address this problem. The Comet Maturity Guide compares the quality of a number of
options on the market today.

There are other approaches to optimizing polling and long polling. For example, Meebo
implements a hybrid of long polling and polling, with a contracted maximum
duration of a connection that both the client and the server adhere to, making it easier
to reestablish failed connections. Others have implemented a technique called smart
polling, which is polling that has a decrease in the frequency of a request when data is
not received. For example, you might poll every second when data is being returned,
but for each request that receives an empty response, you may delay each subsequent
request by a factor of 1.5 (e.g., 1s, 1.5s, 2.25s, etc.). Finally, if you have a long-polling
connection open and you need to make an XHR, you can always abort the long-polling
XHR to free a connection, and then restart the long-polling connection once the
non-Comet XHR is complete.

It’s important to choose the right alternative if you run into limitations in the number
of connections available in the browser, or if you experience excessive load on your
Comet server.

Forever Frame
While long polling is the most common technique in use today, Comet originally
spawned from the forever-frame technique, where a hidden iframe is opened and the
request is made for a document that relies on HTTP 1.1’s chunked encoding. Chunked
encoding was designed for the incremental loading of very large documents, so you can
think of the forever-frame technique as a very large document that is incrementally
written to. A very simple example of forever frame is as follows:

† http://cometdaily.com/2007/11/06/comet-is-always-better-than-polling/

Transport Techniques | 113

http://cometdaily.com/maturity.html
http://cometdaily.com/2007/11/06/comet-is-always-better-than-polling/

function foreverFrame(url, callback) {
 var iframe = body.appendChild(document.createElement("iframe"));
 iframe.style.display = "none";
 iframe.src = url + "?callback=parent.foreverFrame.callback";
 this.callback = callback;
}

And a series of messages from the server might look like this:

<script>
parent.foreverFrame.callback("the first message");
</script>
<script>
parent.foreverFrame.callback("the second message");
</script>

Various browser hacks are necessary to invoke incremental rendering, such as adding
a
 element or a few kilobytes of whitespace after each script block is sent with
data wrapped in a function call to the parent Comet client. (See Chapter 12 for more
information about chunked encoding and browser exceptions.) To keep the iframe
document from becoming very large in terms of file size, one optimization is to remove
nodes from the iframe document after they are parsed.

The forever-frame technique was initially doomed within Internet Explorer because of
a rather annoying user experience: the constant clicking sound of a page load com-
pleting. Internet Explorer treats each chunked encoding event as a page load. Gmail
Talk popularized the essential workaround for this problem through the use of the
htmlfile ActiveX object (http://msdn2.microsoft.com/en-us/library/Aa752574.aspx),
making the forever-frame technique a viable solution. Here’s a fragment on a solution
for Internet Explorer:

function foreverFrame(url, callback){
 // http://cometdaily.com/2007/11/18/ie-activexhtmlfile-transport-part-ii/
 // note, do not use 'var tunnel...'
 htmlfile = new ActiveXObject("htmlfile");
 htmlfile.open();
 htmlfile.write(
 "<html><script>" +
 "document.domain='" + document.domain + "';" +
 "</script></html>");
 htmlfile.close();
 var ifrDiv = tunnel.createElement("div");
 htmlfile.body.appendChild(ifrDiv);
 ifrDiv.innerHTML = "<iframe src='" + url + "'></iframe>";
 foreverFrame.callback = callback;
}

foreverFrame creates, opens, and writes an HTML document into an htmlfile object,
and sets the document.domain variable, which is essential for cross-subdomain Comet,
or the more common case of the Comet server running on a different port than your
normal web server. An iframe is then created inside the htmlfile’s body, and this iframe
document is then used for your Comet connection. Using this technique, Internet

114 | Chapter 8: Scaling with Comet

http://msdn2.microsoft.com/en-us/library/Aa752574.aspx

Explorer no longer plays a click event and its accompanying sound. Garbage collection
may prevent the cleanup and removal of the connection, so an onunload function is
necessary to remove the reference to htmlfile and explicitly call the garbage collector:

function foreverFrameClose() {
 htmlfile = null;
 CollectGarbage();
}

XHR Streaming
The cleanest API for communication with the server is through an XMLHttpRequest, since
it provides direct access to the response text and headers, and this is normally the
transport mechanism used for polling and long polling. Several browsers provide
support for streaming through XHR, including Firefox, Safari, Chrome, and Internet
Explorer 8. Like the forever-frame technique, XHR streaming allows successive mes-
sages to be sent from the server without requiring a new HTTP request after each
response.

While the lack of support for streaming in Internet Explorer versions 7 and earlier
precludes complete reliance on a streaming-based protocol, we can certainly leverage
streaming when it is available to improve performance. When available, XHR streaming
is currently the best-performing Comet transport in the browser since it does not require
the overhead of an iframe or script tags (as the forever-frame technique does), and can
continuously utilize a single HTTP response (which long polling doesn’t do). While it
is unfortunate that Internet Explorer does not support it, XHR streaming is still a val-
uable progressive enhancement. Users can upgrade browsers and instantly enjoy the
benefit of improved performance.

XHR streaming is achieved with a standard XMLHttpRequest, but you can listen for
onreadystatechange events with a readyState of 3 to access data that has been sent from
the server (prior to the response being finished; that is, a readyState of 4), which allows
you to handle data as it is received, without waiting for the connection to close:

function xhrStreaming(url, callback){
 xhr = new XMLHttpRequest();
 xhr.open('POST', url, true);
 var lastSize;
 xhr.onreadystatechange = function(){
 var newTextReceived;
 if(xhr.readyState > 2){
 // get the newest text
 newTextReceived =
 xhr.responseText.substring(lastSize);
 lastSize = xhr.responseText.length;
 callback(newTextReceived);
 }
 if(xhr.readyState == 4){
 // create a new request if the response is finished
 xhrStreaming(url, callback);

Transport Techniques | 115

 }
 }
 xhr.send(null);
}

While XHR streaming certainly opens the door to more efficient network utilization
and reduced resource consumption for both client and server, you should be aware that
in certain situations, streaming can actually negatively impact server efficiency. Some
servers, when used in long-polling situations, defer the allocation of socket buffers until
a response is ready and can almost immediately dispose of the buffer since the response
will be finished as soon as it is sent. With streaming, these buffers are created and must
be maintained for the life of the connection. Of course, this is a matter of how the server
is optimized, and different servers perform differently.

On the client side, XHR streaming can potentially cause performance issues. If a
streaming response is continued for too long, the browser suffers from excess memory
usage. Several thousand successive messages on a single response can bring Firefox to
its knees. You can easily correct this issue by simply finishing the response after each
100 messages (or after a byte limit, such as 50 KB), and creating a fresh new request
(as long polling does for each message) for subsequent messages.

One of the added responsibilities when using XHR streaming is message partitioning.
The browser receives a stream of text from the server, but must pull out the individual
messages. Firefox supports a special content type, multipart/x-mixed-replace, which
you can use to separate messages within the stream.‡ However, this is not widely sup-
ported, and as it turns out, you can write a JavaScript parser that pulls out individual
messages and is actually faster than Firefox’s multipart handler.

Future Transports
Work is currently being done in the HTML 5 working group on WebSocket,§ which
would provide a web-safe TCP socket to greatly simplify the approach to tunneling from
the client to the server. WebSocket would likely replace all forms of Comet connection
techniques if it becomes widely adopted by browser vendors in a performant manner.

If WebSocket is adopted across the major browsers and has the expected performance
metrics, it would quickly replace the other transport techniques described in this
section.

Cross-Domain
It is worth noting that long polling does not support cross-domain requests if the
browser does not support cross-domain XHR, but the forever-frame technique does at

‡ http://cometdaily.com/2008/01/17/proposal-for-native-comet-support-for-browsers/

§ http://cometdaily.com/2008/07/04/html5-websocket/

116 | Chapter 8: Scaling with Comet

http://cometdaily.com/2008/01/17/proposal-for-native-comet-support-for-browsers/
http://cometdaily.com/2008/07/04/html5-websocket/

least support cross-subdomain. We can also get cross-subdomain XHR with various
workarounds such as the one by Abe Fettig,‖ or in modern browsers that support cross-
domain XHR, or with HTML 5’s postMessage.#

XHR traditionally has a more restrictive security model than iframes or script tags that
are included or inserted into a document. Thus, another option exists under the mon-
iker callback polling or JSONP polling, which allows cross-domain polling through the
insertion of script tags for each new request rather than relying on the XHR. This tech-
nique relies on the JSONP* technique for establishing implicit trust across domains.
JSONP simply wraps the response from the server into a user-provided function, which
then gets called with the return data. JSONP is not the be-all and end-all of security,
but it establishes the same level of trust you would get from adding a script reference
to a third-party domain.

JSONP works by returning data in a script that is evaluated, and the name of the func-
tion is specified in the request made to the server using <script> blocks instead of XHR.
Support for cross-domain Comet is important for several reasons: requests to different
domains don’t count against the two-connection limit,† connections can be made to
retrieve data from third-party services, and your Comet server can run on a separate
server from your HTTP server, allowing for separate Comet-optimized servers and tra-
ditional HTTP-optimized servers (traditional servers are often suboptimal for Comet
and vice versa).

The following example shows usage of this technique, which allows you to return data
from another domain back to your current domain, by using the implicit trust of this
technique:

function callbackPolling(url, callback){
 // create a script element that will load the response from the server
 var script = document.createElement("script");
 script.type = "text/javascript";
 script.src = url + "callback=callbackPolling.callback";
 callbackPolling.callback = function(data){
 // send a new request to wait for the next server-sent message
 callbackPolling(url, callback);
 // call the callback
 callback(data);
 };
 // add the element to initiate loading
 document.getElementsByTagName("head")[0].appendChild(script);
}

‖ http://www.fettig.net/weblog/2005/11/30/xmlhttprequest-subdomain-update/

http://www.whatwg.org/specs/web-apps/current-work/#crossDocumentMessages

* http://ajaxian.com/archives/jsonp-json-with-padding

† This is primarily an issue for Internet Explorer 6 and 7. Browser connection limits are explained in Chapter 11.

Cross-Domain | 117

http://www.fettig.net/weblog/2005/11/30/xmlhttprequest-subdomain-update/
http://www.whatwg.org/specs/web-apps/current-work/#crossDocumentMessages
http://ajaxian.com/archives/jsonp-json-with-padding

It is important to note that in Firefox, successive script additions are always evaluated
in order for any given page. Consequently, if you are using this technique to wait for a
response from the server and in the meantime you wish to make another JSONP request
in the same frame/page, you won’t receive a response until the first script is evaluated,
which could take an indefinite amount of time since it is waiting for a message from
the server. To overcome this issue, you can create separate iframes to encompass each
JSONP request. With each request in a separate frame, the responses can be evaluated
in parallel as soon as they are received.

Effects of Implementation on Applications
Our goals with client-side Comet performance are to reduce latency of data transit,
conserve and manage HTTP connections, route messages, and handle cross-domain
issues. On the server side, performance optimizations are made by conserving and
sharing the number of HTTP connections, and by minimizing the memory, CPU, I/O,
and bandwidth requirements for each connection.

Managing Connections
Servers will keep an HTTP connection open indefinitely for each user, resulting in many
open connections even if data is minimal. There are two constraints with connections:
memory and CPU. No matter what, each connection is going to incur some memory
overhead from the OS and our language. If we use one thread (or process) per connec-
tion, we incur an entire execution stack memory overhead, typically 2 MB, though this
can be lowered until it is almost reasonable. Additionally, as our thread count increases
past our processor count, we will end up with thrashing, where our operating system
spends more cycles switching threads on to processors than it spends executing our
actual code. For this reason, we need to opt for an asynchronous network architecture.

The problem with select or poll is that these methods cause the operating system to
examine each and every socket you have open to determine which ones are ready. This
means that a call to select, even one that reveals that no sockets are ready to be read
from, is cheap when there are few sockets, but takes an increasing amount of CPU time
as the number of sockets increases. We can avoid this problem by using alternative
techniques that avoid this O(n) examination of sockets, such as kqueue on FreeBSD/
OS X, epoll on Linux, and completion ports on Windows. There are network libraries
in most major languages that wrap these details into coherent, cross-platform APIs,
such as libevent in C, java.nio, and Twisted Python.

Performance optimization techniques vary widely based on usage scenarios. For ex-
ample, consider chat, which typically has many users connected but only a few of them
receiving data at any given time. In this case, being able to manage a large number of
idle connections through server-side sharing of connections is useful. The web sites
Orbited and Willow Chat are highly optimized for this usage scenario.

118 | Chapter 8: Scaling with Comet

http://java.sun.com/j2se/1.4.2/docs/guide/nio/
http://twistedmatrix.com/
http://orbited.org/
http://willowchat.org

In other examples, such as a real-time stock quote monitoring application, many con-
nections are updated constantly and few idle connections exist. Jetty, Lightstreamer,
and Liberator are optimized for this case.

Measuring Performance
Measuring Comet performance has been discussed in numerous places and alluded to
throughout this chapter. Tests have been done, for example, to figure out how many
resources are needed to create a one-million-user Comet server.‡ The key requirements
to achieving this scale are straightforward in principle: utilize as few system resources
as possible per connection, and write solid tests§ to measure performance.

Servers must minimize the use of resources, while also optimizing the number of long-
held connections based on the frequency and payload size of the amount of data to
send to each client. Larger payloads and more frequent sending of data increase the
latency and reduce the number of maximum possible connections of a Comet server.

Because Comet is really just a performance optimization of HTTP and connection
management, performance measurement techniques are actually quite similar to those
for measuring any large-scale web application.

Protocols
A Comet connection differs from the communication semantics applied over the con-
nection. Comet connections allow either server→client communication only, or
bidirectional communication. Various protocols are then layered on top of the con-
nection to provide more functionality and better semantics than simply “read” and
“write,” such as Bayeux’s Publish-Subscribe (PubSub) model.

Bayeux,‖ is a protocol for transporting asynchronous messages (primarily over HTTP),
with low latency between a web server, created as part of the cometD# project at the
Dojo Foundation. Having a simple, extensible protocol is extremely beneficial for in-
teroperability between various Comet servers and clients.

The PubSub paradigm is one approach commonly used with protocols such as Bayeux,
with other protocols such as XMPP more common for chat applications.

The Dojo Toolkit provides all of the transport level handling of long polling and call-
back polling (including multiple frames for parallel JSONP requests) in its cometD
module, and it also handles Bayeux service negotiation and communication. Conse-

‡ http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3/

§ http://aleccolocco.blogspot.com/2008/10/gazillion-user-comet-server-with.html

‖ Bayeux is also the name of the tapestry showing the events leading up to the 1066 Norman invasion of England
that includes Halley’s Comet, which was believed to be a sign of impending doom.

The D stands for daemon, much like the d in httpd.

Effects of Implementation on Applications | 119

http://svn.cometd.com/trunk/bayeux/bayeux.html
http://cometd.com
http://www.metabrew.com/article/a-million-user-comet-application-with-mochiweb-part-3/
http://aleccolocco.blogspot.com/2008/10/gazillion-user-comet-server-with.html

quently, you can use Dojo with a Bayeux-compatible server simply by instantiating the
cometD module and letting it handle the transport details:

dojox.cometd.init("/cometd");
dojox.cometd.subscribe("/some/topic", function(message){
 // callback function
});

Summary
Unlike Ajax, Comet is a complex set of performance optimization techniques that im-
pact the client side, the server side, and communication between the two. It’s still very
early in the process of finding the right set of solutions for solving the Comet problem,
but with the emergence of WebSocket, and solutions for handling millions of users,
the complexity will decrease over time.

120 | Chapter 8: Scaling with Comet

CHAPTER 9

Going Beyond Gzipping

Tony Gentilcore

Besides proper configuration of HTTP caching headers, enabling gzip compression is
typically the most important technique for speeding up your web page. A chapter was
devoted to compression in Steve Souders’ first book, High Performance Web Sites. Now
that all browsers support gzip and all responsible web developers have enabled
gzipping, that chapter is closed, right? Not quite.

Even if you have enabled gzipping, there is a good chance that a small but significant
portion of visitors to your site are not receiving compressed responses. The exact per-
centage varies greatly across different demographics and geographies, but a large web
site in the United States should expect that roughly 15% of visitors don’t indicate gzip
compression support. This chapter explains why the percentage is higher than expec-
ted, how that affects performance, and what developers can do about it.

Why Does This Matter?
With such a small percentage, you might ask, “What’s the big deal?” Let’s take a look
at what happens to 10 popular web sites when gzipping is disabled.

In this experiment, the page load time* for 10 popular web sites was measured by load-
ing each web site 100 times in Internet Explorer 7.0 on Windows XP Pro. The cache
remained primed between iterations to better represent the typical experience. All re-
quests traveled through a proxy (Eric Lawrence’s Fiddler†) on the same machine. In
the control group the proxy did nothing, but in the experimental group it stripped the
request’s Accept-Encoding HTTP header so that compression was suppressed. Ta-
ble 9-1 shows the absolute and percent increase when compression was disabled.

* Page load time was taken to be the time between the OnBeforeNavigate2 and OnDocumentComplete events.

† http://www.fiddlertool.com/

121

http://oreilly.com/catalog/9780596529307/
http://www.fiddlertool.com/

Table 9-1. Page load time increase with compression disabled

Web site Total download size increase
(on first load)

Page load time increase
(1000/384 Kbps DSL)

Page load time increase
(56 Kbps modem)

http://www.google.com 10.3 KB (44%) 0.12s (12%) 1.3s (25%)

http://www.yahoo.com 331 KB (126%) 1.2s (64%) 9.4s (137%)

http://www.myspace.com 441 KB (143%) 8.7s (243%) 42s (326%)

http://www.youtube.com 236 KB (151%) 3.3s (56%) 21s (87%)

http://www.facebook.com 348 KB (175%) 9.4s (414%) 63s (524%)

http://www.live.com 41.9 KB (41%) 0.83s (53%) 9.2s (99%)

http://www.msn.com 195 KB (77%) 1.6s (32%) 13s (85%)

http://www.ebay.com 245 KB (92%) 1.7s (59%) 3.5s (67%)

http://en.wikipedia.org 125 KB (51%) 5.0s (146%) 21s (214%)

http://www.aol.com 715 KB (111%) 7.4s (47%) 32s (60%)

Average 269 KB (109%) 3.9s (91%) 22s (140%)

With compression disabled, in an empty cache state on the first load, the total size of
all resources that had to be downloaded more than doubled. Note that this number
does not indicate the gzip compression ratio because the total download size is taken
to be the sum of all resources downloaded, including images and Flash. Gzip com-
pression is generally applied only to textual resources such as HTML, CSS, and Java-
Script files.

For DSL users, the average page load time increased from 4.3 to 8.3 seconds, a 91%
increase. Dial-up users have it much worse, with an average page load time increase of
from 15 to 37 seconds, a 140% increase.

With this data in hand, we can get back to the original question: “Should I care about
the users who miss out on compression?” A naïve attempt at answering this question
would be to calculate the average benefit across all requests: 15% of users times a 91%
slowdown equals a 14% slowdown averaged over all requests. If your mean page load
time is four seconds, that means on average it is slowing your users by only 560ms. You
may not think anyone is going to leave your web site in that half of a second, so why care?

This is a case where looking at the averaged benefit does not tell the real story. In
actuality, 85% of users are unaffected, but the 15% of users who are affected are affected
in a big way. An additional four seconds is enough to cause users to abandon your web
site. It is important to understand why content may not be compressed and whether
there is anything developers can do.

122 | Chapter 9: Going Beyond Gzipping

http://www.google.com
http://www.yahoo.com
http://www.myspace.com
http://www.youtube.com
http://www.facebook.com
http://www.live.com
http://www.msn.com
http://www.ebay.com
http://en.wikipedia.org
http://www.aol.com

What Causes This?
Now that you realize this is a real problem affecting real users, the next logical step is
to figure out what is going on so that you might stand a chance of fixing it.

Quick Review
Let’s start with a review of how compression works. All modern browsers (since the
4.x generation, circa 1998) support gzip compression and indicate that to web servers
by supplying the Accept-Encoding HTTP header:

Accept-Encoding: gzip, deflate

When this header is present in the request and gzip compression is enabled on your
web server, in compliance with RFC 2616 section 14.3‡ it responds with a compressed
response marked by the Content-Encoding header:

Content-Encoding: gzip

The Culprit
If all modern browsers send the Accept-Encoding header, why are 15% of responses
being served uncompressed? Surely, 15% of people aren’t using browsers that are more
than 10 years old. An analysis of a large sample of web server logs gave a clue to the
culprit. Some requests arrived with mangled Accept-Encoding headers:

Accept-EncodXng: gzip, deflate
X-cept-Encoding: gzip, deflate
XXXXXXXXXXXXXXX: XXXXXXXXXXXXX
---------------: -------------
~~~~~~~~~~~~~~~: ~~~~~~~~~~~~~

But these mangled headers did not account for the full number of requests that are
served without compression. Many more requests identified as real users in modern
browsers (not bots) were simply missing the Accept-Encoding header altogether. Why
would anyone or anything intentionally slow down users’ web browsing experience by
disabling compression? The culprits fall into two main categories: web proxies and PC
security software.

What do these have in common? They both need to observe (or, if you prefer, spy on)
the responses sent by the web server. Observing a response is cheaper in terms of CPU
usage if the response does not have to be decompressed first. This, unfortunately,
ignores the fact that, from the end user’s perspective, the increased network time usually
far outweighs the CPU time that would be necessary for the observing program to unzip
the response.§ For this reason, I like to refer to the technique of stripping the

‡ http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3

§ Especially considering that unzipping is typically three to four times faster than zipping.

What Causes This? | 123

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3


Accept-Encoding header for the purpose of observing the responses as turtle tapping.
Turtle tapping is the way a turtle might perform wire tapping: very slowly.

Examples of Popular Turtle Tappers
Table 9-2 shows several popular client software programs and web proxies along with
how they modify the client’s Accept-Encoding request header.‖ This list is by no means
comprehensive. For instance, there are many add-ons for the popular Squid web proxy
that strip or mangle the header to filter or observe web content.

Table 9-2. Software modifications to the Accept-Encoding header

Software Accept-Encoding modification

Ad Muncher Stripped

CA Internet Security Suite Accept-EncodXng: gzip, deflate

CEQURUX Stripped

Citrix Application Firewall Stripped

ISA 2006 Stripped

McAfee Internet Security 6.0 XXXXXXXXXXXXXXX: +++++++++++++

Norton Internet Security 2005 ---------------: -------------

Novell iChain 2.3 Stripped

Novell Client Firewall Stripped

WebWasher Stripped

ZoneAlarm Pro 5.5 XXXXXXXXXXXXXXX: XXXXXXXXXXXXX

It is also interesting to examine how the percentage of turtle tapping victims varies with
geography. The majority of requests coming from some Middle Eastern countries don’t
have a valid Accept-Encoding header. It is possible this could be due to a national fire-
wall. Upward of 20% of users in the United States and Russia suffer from this problem.
The European Union and Asian nations seem to have the best handle on this problem
with fewer than 10% of users affected.

How to Help These Users?
Now that you have a good understanding of the problem’s cause and effect, let’s move
on to the real work: helping these users get the fast experience they deserve (not to
mention helping you get the benefit that happy users provide to your web site). Of
course, the correct solution to this problem is to appeal to the vendors of software that
strips or mangles the Accept-Encoding header. In fact, the problem is fixed in some

‖ Older or newer versions may not behave the same way, and it may be possible to change the program’s
behavior depending on the configuration.

124 | Chapter 9: Going Beyond Gzipping



newer versions. For instance, Norton Internet Security 2009 no longer causes this
problem.

However, it will be some time before all existing users of these programs have switched
or upgraded. Until then, this chapter discusses three approaches to mitigating this
problem, each increasing in aggressiveness.

Design to Minimize Uncompressed Size
This may seem too obvious to bear repeating, but it cannot be stressed enough: sending
smaller responses makes pages faster. This is why compressing responses is such an
effective technique despite its CPU cost on both the client and the server. Good web
developers know to do everything in their power to make HTML, CSS, and JavaScript
as compact as possible. However, we have all been taught to think of long repeated
strings as practically free because gzip compression makes them essentially disappear.
As a result, we don’t do much to optimize them. This assumption is completely invalid
when considering users that cannot receive compressed responses.

Finding repetitive content that can be factored out is a bit of an art that varies highly
across unique web sites. These are a few generally applicable techniques that can reduce
your page’s uncompressed size without increasing the compressed size.

Use event delegation

Often, several elements on a page require a similar event handler. Common examples
that appear in most of the top 10 web sites are drop-down boxes, click-tracking links,
and hover animations. The cost of specifying each handler in terms of page size adds
up very quickly.#

For example, at the time of this writing, http://facebook.com includes a drop-down box
with roughly 50 language options. Each language anchor in the drop-down requires an
extra 133 uncompressed bytes to attach the onclick handler:

<a href="http://es-la.facebook.com/" onclick="return wait_for_load(this, event,
function() { intl_set_cookie_locale("", "es_LA"); return false;
});">Español</a>

Multiplying that waste times 50 links means about 6.7 KB of waste is being transferred
to users that don’t support compression. The distinct information repeated for each
anchor is the URL, locale code, and language name.

Event delegation is the name commonly given to the technique of attaching a single
event handler to a parent element that contains all of the elements that need to respond
to the event. When the event is triggered on the child element, it bubbles up to the
parent where it is handled. That single handler can distinguish which child element is

# For interactive pages, reducing the number of event handlers can have an even more significant performance
benefit in terms of JavaScript execution time.

How to Help These Users? | 125

http://facebook.com


the target of the event and receive additional parameters via some attribute on that
element.

For example, to improve our facebook.com example, the links could be coded as
follows:

<div class="menu_content" onclick="return intl_set_cookie_locale(event)">
  ...
  <a href="http://es-la.facebook.com/" class="es_LA">Español</a>
  ...
</div>

The new event delegation handler gets the locale, which was previously passed as a
parameter, from the target element’s class:

<script>
  function intl_set_cookie_locale(e) {
    e = e || window.event;  // Get event object.
    var targetElement = e.target || e.srcElement;  // Get target element.
    var newLocale = targetElement.class;  // Get the new locale.
    ...
    // Use newLocale to set the cookie.
    ...
    return false;  // Cancel the anchor's href action.
  }
</script>

The small amount of additional code to make the delegation work is insignificant be-
cause it can be placed in an external, cacheable JavaScript file instead of in the root
document, which has to be downloaded every time the user visits the page.

Use relative URLs

We are all familiar with path-relative URLs (e.g., /index.html instead of http://www.ex-
ample.com/index.html). But as described by RFC 1808,* there are several lesser-known
ways to make URLs relative that are supported by nearly all browsers going back to
circa 1995. For example, with the notable exception of slashdot.org, almost no major
web site employs protocol relative links (e.g., //www.example.com instead of http://
www.example.com). Given the number of URLs on typical pages, the bloat of all those
nonrelative URLs can quickly add up to a significant portion of the page size. Given a
base URL of http://www.example.com/path/page.html, the relative URLs shown in Ta-
ble 9-3 may be used.

Table 9-3. Relative equivalents of http://www.example.com/path/page.html

Fully specified destination URL Relative equivalent

http://subdomain.example.com/ //subdomain.example.com

http://www.example.com/path/page2.html page2.html

* http://www.w3.org/Addressing/rfc1808.txt

126 | Chapter 9: Going Beyond Gzipping

http://facebook.com
http://slashdot.org
http://www.w3.org/Addressing/rfc1808.txt


Fully specified destination URL Relative equivalent

http://www.example.com/index.html /index.html

http://www.example.com/path2/page.html ../path2/page.html

http://www.example.com/path/page.html#f=bar #f=bar

http://www.example.com/path/page.html?q=foo ?q=foo

For dynamically generated URLs, it is trivial to write a function that will make each
URL as relative as possible given the base URL of the page it includes.

Strip whitespace

Your users don’t care how readable your code is, but they do care how fast your site
is. Line breaks and proper indentation are invaluable to developers, but they should
always be stripped by an automated process before being served to users. As discussed
in High Performance Web Sites, many tools are available to do this for JavaScript. Some
of the most popular are YUI Compressor, ShrinkSafe, and JSMin. For CSS, YUI Com-
pressor does the best job. In HTML, the problem is a bit trickier because whitespace
can be significant in many contexts. However, if you are willing to indicate the places
where significant whitespace is needed, most major template languages have an option
to strip leading and trailing whitespace as well as line breaks.

Strip attribute quotes

Before discussing stripping quotes around HTML attributes, two disclaimers need to
be mentioned. First, if your web page is written in XHTML, attributes must be quoted.
Second, HTML attributes should always be written with double quotes in place to avoid
accidentally introducing bugs when attribute values change from a value that doesn’t
require quotes to one that does. However, according to the HTML 4.01 specification
section 3.2.2,† it is valid to omit quotes around attributes that contain only letters,
numbers, hyphens, periods, underscores, and colons (matching the regular expression
[a-zA-Z0-9\-._:]).

To improve download time, it is beneficial to strip unnecessary quotes via an automated
process before serving to the user.

Avoid inline styling

Another way in which the uncompressed page size is often unnecessarily inflated is by
repeatedly styling content inline instead of relying on CSS. For example, at the time of
this writing, wikipedia.org contains 4 KB of repeated inline style attributes throughout
the main HTML document. This will gzip away quite efficiently, but it adds up to a
significant amount of extra data to download when compression has been suppressed.

† http://www.w3.org/TR/html4/intro/sgmltut.html#h-3.2.2

How to Help These Users? | 127

http://oreilly.com/catalog/9780596529307/
http://developer.yahoo.com/yui/compressor/
http://shrinksafe.dojotoolkit.org/
http://www.crockford.com/javascript/jsmin.html
http://wikipedia.org
http://www.w3.org/TR/html4/intro/sgmltut.html#h-3.2.2


Alias JavaScript names

Several commonly used DOM methods were given unfortunately long names in Java-
Script. Compression usually makes repeating these names practically free. However,
in the uncompressed case they can be quite expensive. Fortunately, JavaScript also
allows us to overcome this problem by creating references (or aliases) to these long
names.

The first place to look for aliasing opportunities is functions that are used frequently
throughout your script. For instance, some popular JavaScript libraries alias
document.getElementById as the variable $:

var $ = document.getElementById;

Throughout your script, you can then simply write $("foo") instead of writing
document.getElementById("foo"). This saves 22 uncompressed bytes per use. It is usu-
ally wise to alias any method used more than three times.

The second place where aliases are beneficial is when accessing chained properties of
an object.‡ This is best illustrated with an example:

// Wasteful
var foo = $("foo");
foo.style.left = "0";
foo.style.right = "0";
foo.style.height = "10px";
foo.style.width = "10px";

// Better
var foo = $("foo").style;
foo.left = "0";
foo.right = "0";
foo.height = "10px";
foo.width = "10px";

Real-world savings

How well do these techniques work? Table 9-4 shows the size reduction of the un-
compressed root document achieved by applying each technique on the same set of
popular web pages.§

Table 9-4. Size reduction achieved on popular web pages

Web site Event delegation Relative URLs Strip space Strip quotes Use CSS Total

http://www.google.com 1.8% 3.4% -- -- 0.4% 5.6%

http://www.yahoo.com -- 0.8% 3.3% 0.6% 0.5% 5.2%

http://www.myspace.com 4.0% 2.2% 9.0% 1.5% 1.8% 18.5%

‡ Aliasing in tight loops can also significantly improve JavaScript execution performance.

§ JavaScript aliasing was not feasible to test.

128 | Chapter 9: Going Beyond Gzipping

http://www.google.com
http://www.yahoo.com
http://www.myspace.com


Web site Event delegation Relative URLs Strip space Strip quotes Use CSS Total

http://www.youtube.com 8.3% 0.6% 7.1% 2.3% 1.2% 19.5%

http://www.facebook.com 12.9% 1.7% 1.1% 2.6% 0.3% 18.6%

http://www.live.com 8.5% 0.9% 0.2% 0.9% 0.3% 10.8%

http://www.msn.com -- 3.0% 0.1% 1.7% -- 4.8%

http://www.ebay.com 0.2% 1.7% 1.2% 1.6% 1.2% 5.9%

http://en.wikipedia.org -- 1.6% 2.1% 1.8% 5.2% 10.7%

http://www.aol.com 10.4% 2.4% 1.4% 1.8% 0.5% 16.5%

Average 4.6% 2.8% 2.6% 1.5% 1.1% 11.6%

Applying all of these techniques trimmed the uncompressed size by anywhere from 5%
to 20% (with an average of 11.6%). These optimizations are certainly worthwhile given
that relative URLs, stripping whitespace, and stripping attribute quotes can be per-
formed via an automated process. Furthermore, event delegation, JavaScript aliasing,
and avoiding inline styles lead to more maintainable code that is also faster in the
browser.

However, an 11.6% reduction simply pales in comparison to applying gzip, which
reduces the same root documents by an average of 72.1%. Going back to the original
timing tests, if applying gzip reduces page size by 72.1% and 3.9 seconds, we might
expect that a reduction of 11.6% would lead to a speed gain of about 630ms.

To beat this problem, we are going to have to look beyond such workarounds and
toward a method of reducing the number of responses that are served without
compression.

Educate Users
Once your page’s uncompressed size is as small as possible, another potential solution
to help the victims of turtle tapping is to inform them of the problem. There is ample
precedence for this type of helpful message on the Web. For users of the Firebug Firefox
extension, Gmail displays a bright red dialog at the top of the page that reads, “Firebug
is known to make Gmail slow unless it is configured correctly.” Surf the Web for a
while with Internet Explorer 6.0 and you’ll notice messages prompting you to upgrade
your browser.

This technique can be applied if the request does not contain a valid Accept-Encoding
header. Displaying a brief, informative message such as the following could help your
user correct the problem:

Your Internet connection is slowed because it does not allow compression.
                       Fix this                 Hide

How to Help These Users? | 129

http://www.youtube.com
http://www.facebook.com
http://www.live.com
http://www.msn.com
http://www.ebay.com
http://en.wikipedia.org
http://www.aol.com


The “Fix this” link points to a page that explains the types of software that cause this
and how to disable or upgrade them. The “Hide” link sets a cookie so that the message
is never displayed again.

Unfortunately, this too is not an adequate solution. Users behind a proxy that is pre-
venting compression are powerless to change anything beyond perhaps complaining
to an administrator. There is one more strategy, described next, that can be used to
help these users.

Direct Detection of Gzip Support
After all else has failed, if uncompressed responses are still causing pain for your site,
there is one guerrilla tactic that may be considered: to directly test for compression
support rather than relying on the Accept-Encoding header. This may sound dangerous
initially, but if properly tested, it can be safe. It is important to get this right because
you don’t want to risk a single false positive. Expect that direct detection will allow you
to compress roughly half of the requests that are missing compression.

Performing the test

If the Accept-Encoding header is missing from the request, conditionally output a hidden
iframe as the last element of the page <body>:

<iframe src="/test_gzip.html" style="display:none"></iframe>

This will load a test_gzip.html document, which you set up as follows:

1. Disable caching so that the current connection is always tested.

2. Compress the contents, regardless of the request headers.

3. Use JavaScript to set a session-only cookie indicating that the browser supports
gzip.

If the client supports compression, a cookie indicating that fact will be sent with sub-
sequent requests. If the client truly does not support compression, the hidden iframe
will just load garbled text that won’t be seen and won’t set the supports_gzip cookie.

There are many ways to accomplish this. Here is an example written in PHP:

<?php
  function flush_gzip() {
    $contents = ob_get_contents();
    ob_end_clean();
    header('Content-Type: text/html');
    header('Content-Encoding: gzip');
    header('Cache-Control: no-cache');
    header('Expires: -1');
    print("\x1f\x8b\x08\x00\x00\x00\x00\x00");
    $size = strlen($contents);
    $contents = gzcompress($contents, 9);
    $contents = substr($contents, 0, $size);

130 | Chapter 9: Going Beyond Gzipping



    print($contents);
  }

  ob_start();
  ob_implicit_flush(0);
?>

<html>
  <body>
    <script>
      document.cookie="supports_gzip=1";
    </script>
  </body>
</html>

<?php
  flush_gzip();
?>

Using the result

Now your subsequent web pages of the same Content-Type can be compressed if the
supports_gzip cookie exists. When forcing compression based on the presence of the
cookie, make sure that the response is not publicly cacheable, and don’t bother to
output the test_gzip iframe again.

Again, the implementation will vary based on your environment. Here is a PHP example
that uses the same flush_gzip method defined previously:

<?php
  // flush_gzip() definition omitted for brevity.

  ob_start();
  ob_implicit_flush(0);
?>

<html>
  <!-- Your page goes here. -->
</html>

<?php
  if (isset($_COOKIE["supports_gzip"])) {
    flush_gzip();
  } else {
    flush();
  }
?>

Measuring the effectiveness

Always keep track of two important statistics when considering or using direct detec-
tion of gzip support. The first is the percentage of requests that don’t indicate com-
pression support via the Accept-Encoding header. If that percentage is too low, the

How to Help These Users? | 131



technique of directly detecting compression support is not worth the hassle. The second
is the percentage of requests that are missing the Accept-Encoding header but are found
to support compression. This can be measured only after direct detection. Direct
detection should continue to be employed only if this percentage remains high.

132 | Chapter 9: Going Beyond Gzipping



CHAPTER 10

Optimizing Images

Stoyan Stefanov and Nicole Sullivan

The single most important thing you can do to improve performance is put your site
on a diet—take off (and keep off) all the bytes you put on under the stress of chasing
the next killer feature. Optimizing images is one way to do just that. Historically, the
question of which features to include was considered a business rather than an engi-
neering decision, so page weight has rarely been discussed in performance circles, and
yet it is extremely important to overall response time.

Response time for web pages is almost exactly correlated to page weight, and images
tend to account for half of the size of typical web pages (see Figure 10-1). Most impor-
tantly, images are an easy place to improve performance without removing features.
Often, we can make substantial improvements in the size of an image with little to no
reduction in quality.

Figure 10-1. Images as a percentage of page weight for the Alexa top 10 global web sites

133



In this chapter, we focus on nonlossy optimizations, which result in a smaller overall
file size with no loss in quality. Pixel for pixel, the visual quality of the original and final
images is the same. The reduction in size often results from removing metadata, better
compression of color or pixel information, or (in the case of PNG) removing chunks
that are not necessary for the Web.

If you don’t optimize images, you send extra data over the wire that adds nothing to
the user experience. It seems like a no-brainer to follow the practices we’ll recommend
in this chapter, but image optimization falls in the blurry space between engineering
and design, and has historically been a neglected part of the performance puzzle.

In this chapter, we’ll cover:

• Characteristics of different image formats for the Web (GIF, JPEG, and PNG)

• Automating lossless optimization

• The AlphaImageLoader filter

• Optimizing sprites

• Other image optimizations

Two Steps to Simplify Image Optimization
Image optimization is simpler when it is broken down into two steps, each of which is
owned by a different stakeholder in the creation of a web site:

1. Optimizing images begins with a qualitative decision about the number of colors,
resolution, or accuracy required for a given image. These changes are lossy
optimizations that result in an overall loss of quality. The image might have fewer
colors, or in the case of the JPEG format, less detailed encoding. Although 60% to
70% quality is the accepted standard for JPEG, some images or contexts may re-
quire more or less quality. For instance, glossy images of celebrities may require a
larger file size than autogenerated charts or tiny thumbnails. These decisions are
creative decisions and should be made by the designer, using tools such as the Save
for the Web feature in Photoshop. The designer may also choose to do “spatial”
or “zonal” compression—for example, choosing 80% quality for Brangelina’s face
and only 30% quality for the night background.

2. Once the quality choice has been made, use nonlossy compression to squeak the
last bytes out of the image. Unlike the preceding step, this one begs for an
engineering solution. Doing the same work by hand would be much more
time-consuming. In fact, fantastic open source tools exist for optimizing images.
You can write a script that goes over all of your image files, determines the type of
each, and runs a utility to optimize the file.

134 | Chapter 10: Optimizing Images



Image Formats
The first step in producing optimal images is to understand the features of each of the
three formats used on the Web today—JPEG, PNG, and GIF—and choosing the right
one for each specific case. Let’s start the discussion of the different formats with just a
few bits of background information.

Background
This section discusses the traits of images that affect how you use them on the Web
and that factor into your choice of a format.

Graphics versus photos

Both the image format you use and the ways to optimize it depend on which of the
following categories the image falls into:

Graphics
Examples of graphics are logos, diagrams, graphs, most cartoons, and icons. These
images usually contain continuous lines or other sharp transitions in color. The
number of distinct colors in a graphic is relatively small.

Photos
Photos usually have millions of colors and contain smooth color transitions and
gradients. Imagine, for example, a picture of a sunset you take with your camera.
An image of a painting (such as the Mona Lisa) is also closer to a photo than a
graphic.

In terms of formats, GIFs are often used for graphics, whereas JPEG is the preferred
format for photos. PNG comes in two kinds, of which palette PNG is even better suited
for graphics than GIF.

Pixels and RGB

Images consist of pixels, where a pixel is the smallest piece of image information. Dif-
ferent color models can be used to describe a pixel, but the RGB color model is the one
usually used for computer graphics.

In the RGB color model, a pixel is described based on the amount of red (R), green (G),
and blue (B) it contains. R, G, and B are called components (a.k.a. channels), and the
intensity of each component has a value from 0 to 255. The hexadecimal representation
of the channel values, often used in HTML and CSS, ranges from 00 to FF. Mixing
different intensities of the three channels gives you different colors. For example:

• Red is rgb(255, 0, 0) or hex #FF0000.

• Blue is rgb(0, 0, 255) or hex #0000FF.

Image Formats | 135



• A shade of gray will likely have equal parts of each color; for example, rgb(238,
238, 238) or hex #EEEEEE.

Truecolor versus palette image formats

Using the RGB color model, how many distinct colors can you represent in a graphic?
The answer is more than 16 million: 255 * 255 * 255 (or 224) gives you 16,777,216
combinations. Image formats that can represent this many colors are called truecolor
image formats; examples are JPEG and the truecolor type of PNG.

To save space when storing the image information in a file, one technique is to create
a list of all the unique colors found in the image. The list of colors is called a palette
(also called an index). Having the list of colors, you can represent the image by keeping
track of which palette entry corresponds to each pixel.

The palette can contain any RGB value, but the most common palette image formats—
GIF and PNG8—limit the number of palette entries to 256. This doesn’t mean you can
pick from only 256 predefined colors. On the contrary, any of the 16+ million colors
are up for grabs, but you can only have up to 256 of them in a single image.

Transparency and alpha channel (RGBA)

RGBA is not a distinct color model, but more of an extension to RGB. The extra com-
ponent A represents alpha transparency and also has values from 0 to 255, although
different programs and libraries define it as a percentage from 0% to 100% or values
from 0 to 127. The alpha channel describes how much you can see through the image
pixel.

Let’s say you have a web page that has a background pattern and a blue image on top
of it. If a pixel in the image has zero alpha transparency, the background behind the
image will not be visible. If the alpha transparency value is the maximum 100%, the
pixel will not be visible at all and the background will “shine through.” A medium value
of, say, 50% will let you see both the background and the pixel. Figure 10-2 shows
some examples.

Interlacing

When a large image downloads over a slow Internet connection, it is drawn as it arrives,
one row at a time from top to bottom, so it grows down slowly. To improve the user
experience, some image formats support interlacing, in which successive samples of the
image are shown. Interlacing lets the user see a rough version of the image while waiting
for the details, giving the psychological effect of eliminating the feeling that the page is
delayed.

136 | Chapter 10: Optimizing Images



Figure 10-2. Examples of images with variable transparency produced using PHP with the GD
library, which declares alpha values from 0 to 127

Characteristics of the Different Formats
With this background under our belts, let’s see how GIF, JPEG, and PNG differ.

GIF

GIF, an abbreviation for Graphics Interchange Format, is a palette image format. Here
are some of its features:

Transparency
GIF allows for a binary (yes/no) type of transparency—a pixel is either fully trans-
parent (not containing a color) or fully opaque (containing a solid color). This
means that alpha (variable) transparency is not supported; instead, one of the col-
ors in the palette is marked to represent transparency, and transparent pixels are
assigned that color. So, if your GIF has transparent pixels, this will “cost” you one
palette entry.

Animation
The GIF format supports animation. An animated image consists of a number of
frames; it’s like having several images contained in the same file. GIF animations
are generally perceived as annoying because of their abuse in the early years of the
Web, when they were used for blinking text, rotating @ signs, and so on. They still
have some application today; for example, for ad banners (although this is mainly
a Flash domain now) or little “Loading…” indicators in Rich Internet
Applications (RIAs).

Nonlossy
The GIF format is nonlossy, which means you can open a GIF, do some editing,
and save it without losing quality.

Horizontal scanning
When writing a GIF file, a compression algorithm (called LZW) is used to reduce
the file size. When compressing the GIF, the pixels are scanned horizontally, top
to bottom. This results in a better compression when you have areas of horizontally
repeating colors. For example, a 500 × 10-pixel image (width: 500px; height: 10px)
containing stripes—meaning horizontal lines of the same color—will have a

Image Formats | 137

http://php.net/gd
http://php.net/gd


smaller file size than the same image rotated to 90 degrees (width: 10px; height:
500px) when the stripes become vertical.

Interlacing
GIF supports optional interlacing.

The 256-color limit for GIFs makes them unsuitable for photos, which usually require
a much greater number of colors. GIFs are better suited for graphics (icons, logos,
diagrams), but as you’ll see later in this chapter, PNG8 is a superior format for graphics.
Therefore, you should usually use GIFs only for animation.

There used to be a patent issue with LZW, the lossless data compression algorithm
used by the GIF format, but the patents expired in 2004, so GIF can be used freely now.

JPEG

JPEG stands for Joint Photographic Experts Group, the organization that developed
the standard. JPEG is the de facto standard for storing photos. This format reduces the
information required to show a picture through techniques that take into account the
human eye’s perception of color and light intensities, so it can store high-resolution
images in greatly compressed files. Here are some of its features:

Lossy
JPEG is a lossy format that accepts a user-specified quality setting, which deter-
mines how much image information is lost. The quality values range from 0 to 100,
but even a value of 100 will result in some quality loss.

When you do multiple edits of the same image, it’s best to use a nonlossy format
to store the intermediate results and then save as JPEG once you’re done with the
changes. Otherwise, you’ll lose some quality every time you save.

A few operations can be performed losslessly, such as:

• Rotation (only to 90, 180, or 270 degrees)

• Cropping

• Flipping (horizontal or vertical)

• Switching from baseline to progressive and vice versa

• Editing image metadata

The last of these operations is particularly valuable for our purposes. We’ll exploit
it later to automate the optimization of JPEGs.

Transparency and animation
JPEG doesn’t support transparency or animation.

Interlacing
In addition to the default baseline JPEG, there’s also a progressive JPEG, which
supports interlacing. Internet Explorer doesn’t render the progressive JPEG in
stages, but it successfully displays the whole image once it arrives.

138 | Chapter 10: Optimizing Images



JPEG is the best format for photographic images on the Web and is also widely used
in digital cameras. It is not suitable for graphics, however, because of the artifacts of
the lossy compression around lines or other sharp transitions of color.

PNG

PNG (Portable Network Graphics) was created to address shortcomings of the GIF
format and its patent complications. In fact, the joke goes that PNG is a recursive
acronym that stands for “PNG is Not GIF.” Here are some of its features:

Truecolor and palette PNGs
The PNG format has several subtypes, but they can roughly be divided into two: 
palette PNGs and truecolor PNGs. You can use palette PNGs as replacements for
GIFs, and you can use truecolor PNGs instead of JPEGs.

Transparency
PNG supports full alpha transparency, although there are two quirks in Internet
Explorer version 6 that we’ll describe later.

Animation
Although experiments and actual implementations exist, currently there’s no
cross-browser support for animated PNGs.

Nonlossy
Unlike JPEG, PNG is a nonlossy format: multiple edits do not degrade quality.
This makes the truecolor PNG a suitable format for storing intermediate stages of
editing a JPEG.

Horizontal scanning
Like GIFs, PNGs that have areas of horizontally repeating colors will compress
better than those with vertically repeating colors.

Interlacing
PNG supports interlacing and uses an algorithm that is superior to GIF; it allows
for a better “preview” of the actual image, but interlaced PNGs have bigger file
sizes.

More About PNG
Let’s take a look at a few more details that will give you a better understanding of the
PNG format.

PNG8, PNG24, and PNG32

You might come across the names PNG8, PNG24, or PNG32. Let’s clarify their
meaning:

PNG8
Another name for palette PNG

Image Formats | 139



PNG24
Another name for truecolor PNG that has no alpha channel

PNG32
Another name for truecolor PNG with alpha channel

There are other variations, such as grayscale PNGs with and without alpha, but they
are used much more rarely.

Comparing PNG to the other formats

It’s clear that GIFs are designed for graphics, JPEGs for photographs, and various types
of PNGs for both. This section compares PNG to the other formats and offers some
extra details about PNG.

Comparison to GIF

Except for animation support, palette PNGs have all the features of GIFs. In addition,
they support alpha transparency and generally compress better, resulting in smaller file
sizes. So, whenever possible, you should use PNG8 rather than GIF.

One exception is that very small images with very few colors might compress better as
GIFs. But such small imagery should be part of a CSS sprite, because the “price” of an
HTTP request will greatly outweigh the saving of a few bits. Chances are the sprite
image will compress better as a PNG.

Comparison to JPEG

When you have an image with more than 256 colors, you need a truecolor image
format—a truecolor PNG or a JPEG. JPEGs compress better and, in general, JPEG is
the format for photos. But since JPEGs are lossy and there are artifacts around sharp
transitions of color, there are cases when a PNG is better:

• When the image has slightly more than 256 colors, you might be able to convert
the image to PNG8 without any visible quality loss. It’s quite surprising how
sometimes you can strip out more than 1,000 colors and still not notice the
difference.

• When artifacts are unacceptable—for example, a color-rich graphic or a screenshot
of a software menu—a PNG is the preferred choice.

PNG transparency quirks

Two quirks in Internet Explorer 6 are related to PNG and transparency:

• Any semitransparent pixels in a palette PNG appear as fully transparent in Internet
Explorer 6.

• Alpha transparent pixels in a truecolor PNG appear as a background color (most
often gray).

140 | Chapter 10: Optimizing Images



The first issue means PNG8 behaves like GIF in Internet Explorer 6. This is not so bad
and still allows you to select PNG instead of GIF for all your graphical images. PNG8,
therefore, offers “progressively enhanced” semitransparent images that look great in
all modern browsers and degrade to GIF-like transparency in Internet Explorer 6.

The second issue is a little more serious and there are various workarounds that boil
down to the use of the proprietary CSS property AlphaImageLoader or the use of VML.
As you’ll see later in this chapter, AlphaImageLoader comes at a cost in performance and
user experience and you should avoid it when possible. The VML workaround has the
drawback of adding extra markup and code. In conclusion, always try to achieve the
design using PNG8.

PNG8 and image editing software

Unfortunately, most image-editing programs, including Photoshop, can only save
PNG8 with binary transparency. One notable exception is Adobe Fireworks, which has
excellent alpha transparency support. There are also command-line tools such as
pngquant and pngnq that allow you to convert truecolor PNGs to palette PNGs.

Here’s an example of a pngquant command, where the number 256 specifies the max-
imum number of colors in the palette:

pngquant 256 source.png

Automated Lossless Image Optimization
Now that you know about the different image formats, let’s see how you can optimize
your images. The beauty of the process you’re about to see is that:

• It’s automated and doesn’t require human interaction.

• All operations are lossless, so you don’t have to worry that the image quality will
degrade.

• It uses freely available command-line tools.

Each image type requires different handling, but it’s usually predictable and easy to
automate in a script. This section discusses the following tasks:

• Crushing PNGs

• Stripping JPEG metadata

• Converting single-image (nonanimated) GIFs to PNGs

• Optimizing GIF animations

Crushing PNGs
PNGs store image information in “chunks.” This makes the format extensible because
you can add more functionality to it using custom chunks, and programs that do not

Automated Lossless Image Optimization | 141

http://www.adobe.com/products/fireworks/
http://www.libpng.org/pub/png/apps/pngquant.html
http://pngnq.sourceforge.net/


understand your new extensions can safely ignore them. But most of the chunks are
not needed for web display, and you can safely remove them. An additional benefit is
that stripping the so-called gamma chunk actually improves the cross-browser visual
results, because each browser treats gamma corrections slightly differently.

Pngcrush

Our favorite tool for PNG optimization is pngcrush. You can run it like this:

pngcrush -rem alla -brute -reduce src.png dest.png

Let’s take a look at the options:

-rem alla
Removes all chunks except the one controlling transparency (alpha).

-brute
Tries more than 100 different methods for optimization in addition to the default
10. It’s slower and most of the time doesn’t improve much. But if you’re doing this
process offline, you can afford the one or two more seconds this option takes, in
case it finds a way to cut the image size further. Remove this option in performance-
sensitive scenarios.

-reduce
Tries to reduce the number of colors in the palette, if possible.

src.png
The source image.

dest.png
The destination (result) image.

Other PNG optimization tools

Pngcrush hits a pretty good middle ground that balances execution speed against
optimization results. But if you want to achieve the best possible results and you’re
prepared to spend a little more time on optimization, you can try some of the other
tools. Results vary, depending on the image. You can even run all the tools in
succession.

Notable tools include:

PNGOUT
Binary-only, Windows, closed source

OptiPNG
Cross-platform, open source, command-line interface

PngOptimizer
Windows, open source, GUI and command-line interfaces

142 | Chapter 10: Optimizing Images

http://pmt.sourceforge.net/pngcrush/
http://advsys.net/ken/utils.htm
http://optipng.sourceforge.net/
http://psydk.org/PngOptimizer.php


One “heavy-duty” tool is also available: PNGslim. It’s a batch file for Windows that
runs a number of other tools. Its main activity is to run PNGOUT hundreds of times
with different options. PNGOUT is the slowest of all the tools we’ve tried, so you should
be prepared to allow PNGslim plenty of time to run—sometimes hours to optimize a
single file.

Stripping JPEG Metadata
JPEG files contain metadata such as the following:

• Comments

• Application-specific (e.g., Photoshop) internal information

• EXIF information such as camera make and model, the date the photo was taken,
the geolocation of the photo, thumbnails, or even audio

This metadata is not used for image display and can safely be removed. Metadata han-
dling, luckily, is one of the lossless JPEG operations mentioned earlier in this chapter,
so you can remove the unneeded parts of the file without losing visual quality.

A tool called jpegtran does the transformation on the command line:

jpegtran -copy none -optimize src.jpg > dest.jpg

The options in this example are:

-copy none
Instructs that no meta information should be carried over

-optimize
Causes jpegtran to optimize the Huffman tables used for compression

src.jpg
Your image before optimization

dest.jpg
The optimized file

The command writes to standard output, so to create the final file, this example just
redirects output to a file named dest.jpg.

Strip meta information only from images you own. By stripping meta-
data from someone else’s JPEG, you might also strip any copyright or
authorship data, which is illegal.

Jpegtran takes an all-or-nothing approach to handling metadata. For more fine-grained
metadata editing, use ExifTool.

Automated Lossless Image Optimization | 143

http://people.bath.ac.uk/ea2aced/tech/png/pngslim.zip
http://jpegclub.org/
http://www.sno.phy.queensu.ca/~phil/exiftool/


Converting GIF to PNG
As we discussed, the PNG8 format supports everything that GIF does, so converting a
GIF to PNG8 should result in no visible changes. You can use ImageMagick to do the
conversion from the command line as simply as:

convert source.gif destination.png

You can also force the PNG8 format by using:

convert source.gif PNG8:destination.png

This is probably not necessary, since GIFs are likely to be converted to PNG8 anyway.
ImageMagick picks the appropriate format based on the number of colors.

Once you’ve converted the GIF to PNG, don’t forget to crush the PNG result (as shown
earlier in this chapter).

You can also use ImageMagick’s identify utility to programmatically determine whether
the GIF file contains an animation. For example:

identify -format %m my.gif

This command will simply return “GIF” for nonanimated GIFs. For GIF animations it
will return a string such as “GIFGIFGIF…” repeating “GIF” once for every frame. If
you’re running a script to convert files, checking for the presence of “GIFGIF” in the
first six-character substring of the output will let you know you’re dealing with an
animated file. In that case, you can skip to the next step.

Optimizing GIF Animations
Now that all your single-image GIFs are PNGs, your PNGs are crushed, and your JPEGs
are optimized, the last things left to optimize are the GIF animations. One tool that can
help you is Gifsicle. Since the animations consist of frames and some parts of the image
don’t change from one frame to another, Gifsicle optimizes animations by removing
the duplicate pixel information from successive frames. The way to run it is:

gifsicle -O2 src.gif > dest.gif

Smush.it
Smush.it is an online tool for image optimization, created by the authors of this chapter.
It does what we just described in the previous four sections, applying lossless image
compression to a variety of file types. Smush.it has a convenient Firefox extension
companion that allows you to visit any page and optimize all the images on that page
in one shot. You can always check how much you can save by following these steps.

Do note that Smush.it underperforms with JPEGs because it doesn’t strip the JPEG
metadata, since we don’t want to involuntarily strip copyright information and
“orphan” a JPEG. If you roll out your own “smushing” tool using the techniques and

144 | Chapter 10: Optimizing Images

http://www.imagemagick.org/
http://www.lcdf.org/gifsicle/
http://smush.it


tools described earlier and you’re sure it’s appropriate to remove the metadata, do so
using jpegtran’s –copy none option.

Progressive JPEGs for Large Images
When reviewing the different file formats, we mentioned that there are progressive
JPEGs that render progressively in the browser, allowing the user to see a low-resolution
version of the image while the file is still being transferred. The question is whether
progressive JPEGs are smaller or bigger than nonprogressive equivalents.

After experimenting with more than 10,000 images chosen at random from the Web
using the Yahoo! image search API, we’ve reached the conclusion that you cannot tell
for sure. In fact, results can be all over the map. But a trend did emerge: images bigger
than 10 KB usually compress better as progressive JPEGs. Smaller images are better as
nonprogressive, baseline JPEGs. Figure 10-3 summarizes our findings, charting the
original file size against the difference caused by optimization. The graphic ends at 30
KB, but the trend remains flat, meaning that the benefit of progressive encoding in-
creases with file size.

Figure 10-3. Relationship between file size (X) and the benefit of progressive JPEGs. The y-axis shows
the difference between the file size of the baseline image and the progressive image; the greater the Y
value, the better it is to use progressive encoding

Automated Lossless Image Optimization | 145

http://yuiblog.com/blog/2008/12/05/imageopt-4/


Alpha Transparency: Avoid AlphaImageLoader
Much sought after in the world of web design, cross-browser alpha transparency is
harder to achieve than you might expect. The PNG specification was written more than
a decade ago, but lousy browser implementation means we’re still looking for the one
perfect solution. Support for truecolor PNG has evolved very slowly. Internet Explorer
6 still has significant market share, but it suffers from serious technical limitations in
handling PNG alpha transparency.

In this section, we’ll take a closer look at alpha filters, which force support for alpha
transparency in older versions of Internet Explorer. In particular, Internet Explorer
offers a filter called AlphaImageLoader that has become quite popular. Drawing on ex-
perimentation and practice at Yahoo!, and backed up by hard data, we’ve concluded
that you should not use AlphaImageLoader to fix Internet Explorer 6 transparency
problems. We’ll explain why this is so and show practical examples of progressively
enhanced PNG8 to work around these limitations.

Effects of Alpha Transparency
As you saw earlier, transparency comes in two flavors. The first is a kind of binary
transparency: each pixel is either fully transparent or fully opaque. The second is alpha
transparency, which allows you to have variable levels of opacity.

The lack of support for true alpha transparency in Internet Explorer 6 has been a chal-
lenge for web developers who wanted to have smooth transitions and drop shadows.
For instance, the lefthand side of Figure 10-4 shows an effect we’d like to achieve (partial
transparency that allows some of the background to show through); the righthand side
shows the inclusion of the background color (in this case, white), which we have to live
with when only binary transparency is supported. Solid-color backgrounds work
equally well for both image formats, as they allow the binary transparent image to
perfectly mimic the effect of full alpha transparency. However, the same icon could not
be reused if the background color was not identical.

Figure 10-4. Alpha and binary transparency in My Yahoo! weather icons; the squares are a typical
pattern used in image editing programs to denote transparency

Typically, alpha transparency is used in cases where the background is variable, as in
a photograph, graphic, or gradient. In these cases, it is harder to fall back on simulating

146 | Chapter 10: Optimizing Images



transparency because it is impossible to be certain which colors will be behind a given
portion of the image.

Perfect alpha transparency allows the image of the cloud to be put over any background
and it will display beautifully. Binary transparency (on the right side of Figure 10-4)
requires a slightly more creative approach: the designer is forced to approximate trans-
parency by including a small portion of the background color around the graphic.

Gradient backgrounds (see Figure 10-5) require more careful attention to the edges of
the cloud overlay. If too much of the fluffy edge or drop shadow is left around the image,
it will look too dark in some areas and too light in others. It helps to leave as little
background color as possible. In Figure 10-6, it’s obvious that too much color was kept
around the graphic. The mid-tone is too light at the top of the image and too dark at
the bottom.

Figure 10-5. Gradients and transparency

Figure 10-6. A real-world example that shows the weather icon above a variable background on the
My Yahoo! page; the design has all of the challenges discussed: gradients, solid colors, and patterns

Mountaintop corners

Another example is the ubiquitous rounded corner module. It is important to avoid
including the background color of the module and the contour in one image because
combining them will drastically increase HTTP requests. Rather than having one image

Alpha Transparency: Avoid AlphaImageLoader | 147



for the contour that can be combined with multiple backgrounds, you will have many
images representing all the possible combinations.

Separating contour and page background colors from the block background color or
image allows for scalable CSS. However, it is interesting to note that separating the two
requires a very careful selection of pixels and reliance on the eye’s tendency to smooth
transitions. Dan Cederholm first wrote about this in his article “Mountaintop Cor
ners” for A List Apart.

The difference between the two dark blocks in the module in Figure 10-7 may seem
subtle, but when there is a high contrast between module, background, and foreground
colors, the edge can seem “chewed off” rather than completely smooth. To achieve a
uniform look and feel across browsers, developers began to use the AlphaImageLoader
filter for Internet Explorer.

Figure 10-7. Binary and alpha transparency in rounded corner modules

AlphaImageLoader
Internet Explorer does not natively support alpha transparency. Proprietary filters are
used to fill the gap; however, the performance costs of this choice are significant. To
understand the drawbacks of the method, let’s look at what not to do (see Exam-
ple 10-1).

148 | Chapter 10: Optimizing Images

http://www.alistapart.com/articles/mountaintop
http://www.alistapart.com/articles/mountaintop


Example 10-1. Using AlphaImageLoader to add rounded corners to PNGs

.myModule .corner{
  background-image: url(corner.png);
  _background-image: none;
  _filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(
     src='corner.png',
     sizingMethod='scale'
  );
}

In Example 10-1, the initial underscores are a hack that causes the attributes to be
applied only to versions of Internet Explorer older than version 7:

• The _background-image attribute removes the original background, corner.png.

• The _filter attribute reloads the same image using Microsoft’s
AlphaImageLoader filter.

Only Internet Explorer 6 (or earlier) requires this hack. Internet Explorer 7 and later
support alpha transparency natively, as do Firefox, Safari, and Opera. All these brows-
ers ignore the rules with initial underscores, because the properties simply aren’t
recognized.

If you forget to use the underscore hack, Internet Explorer 7 will use the
filter despite having native support for alpha transparency.

Problems with AlphaImageLoader
There are both maintenance costs and direct performance costs associated with using
alpha filters:

Code forking
Even the minimal amount of code forking in the prior example is dangerous from
a maintenance point of view. When we write exceptions to CSS rules, the files tend
to grow over time. Also, assuming we were using a CSS sprite to reduce HTTP
requests, as recommended in High Performance Web Sites, background-position
would not be supported when the alpha filter is used. In this case, the clip property
is often used to simulate background image positioning in Internet Explorer.

Freezing the browser
When an alpha filter is applied, the page does not render progressively. The user
will see a blank page until all the necessary components are downloaded. Page
elements can still be downloaded in parallel, but the display will be blocked because
Internet Explorer will not render anything until every last bit of CSS comes down
the wire, and the CSS has a dependency on a filtered image. (For more information
about rendering, see http://www.phpied.com/rendering-styles.) If you have several
AlphaImageLoader filters on the page, they are processed serially, multiplying the

Alpha Transparency: Avoid AlphaImageLoader | 149

http://oreilly.com/catalog/9780596529307/
http://www.phpied.com/rendering-styles


problem. If you have five images, each delayed 2 seconds on the server, the browser
freezes for a total of 10 seconds.

Increased memory consumption
Another negative effect of using AlphaImageLoader is the increase in memory that
is required to process and apply the filters. These days we might be tempted to
think our visitors’ computers have a virtually inexhaustible supply of memory, but
that might not be the case for older computers, which are the ones more likely to
run Internet Explorer 6 and earlier.

All this overhead applies to the image every time it appears on the page because the
filter doesn’t change the image, but rather the HTML element to which the style is
applied. If a sprite is used on 20 HTML elements on the page, there isn’t one
performance penalty, but 20! Furthermore, each element is processed synchronously
in a single UI thread. Often, this filter is used for “play” buttons that overlay video (see
Figure 10-8). In this case, any performance penalty will be assessed for each video on
the page.

Figure 10-8. Video player at Yahoo! Search that had the alpha transparency from the “play” button
removed, to improve performance

In the wild: A Yahoo! Search case study

Lab tests are an excellent way to estimate the performance impact of code changes, but
there’s nothing like testing an idea in the wild, with millions of requests coming from
real users and their myriad browser configurations, geographic locations, connection
speeds, hardware, and operating systems.

Based on lab tests, we estimated the performance “price” of the AlphaImageLoader filter
to be approximately eight milliseconds per HTML element on which the filter is ap-
plied. Previously, the search team used a truecolor PNG and filter for their main sprite,
which appeared 12 times in the page. Therefore, we expected approximately a 96-
millisecond improvement, but we were eager to see whether a real user test would
replicate our results.

The experiment compared two identical search results pages, one with the
AlphaImageLoader filter and the other without. The results set comprised two distinct
populations, which showed a 50- to 100-millisecond improvement. The response time
for users of Internet Explorer 6 showed a 100-millisecond improvement, whereas the
response time for users of Internet Explorer 5 showed a 50-millisecond improvement.

150 | Chapter 10: Optimizing Images



A 100-millisecond improvement (one-tenth of a second) seems small, but Amazon ex-
perimental data showed that a 100-millisecond increase in response time correlated to
a 1% drop in sales. Understanding the direct link between revenue and performance
can help justify the minimal investment required to switch from truecolor PNG to
PNG8.

Based on this experiment, we recommend that you avoid AlphaImageLoader whenever
possible. How can you avoid it? In the next section, we’ll show some techniques to
avoid using a filter altogether.

Progressively Enhanced PNG8 Alpha Transparency
If you’ve decided you just have to have alpha transparency, but you don’t want the
performance penalty associated with Microsoft’s proprietary alpha filters, you can
apply progressive enhancement to PNG8. This creates an image that uses alpha
transparency where it’s available, but doesn’t rely on it. Follow these steps to achieve
the best result:

1. Create a binary transparency image that uses only fully opaque or fully transparent
pixels.

2. Write the CSS necessary to use the image.

3. Verify that the image works well without alpha transparency.

4. Add in the partially transparent pixels that will be displayed by better browsers.
You can do this by layering the two image formats in Photoshop or your tool of
choice, and saving the output as a separate file. To save the final image as PNG8
with alpha transparency you will need to use Fireworks or a command-line tool
such as pngnq. We don’t suggest allowing the software to autoconvert from true-
color PNG to PNG8, as the binary-transparent version is unlikely to be of accept-
able quality.

To learn more about progressively enhanced PNG8, read Alex Walker’s SitePoint
article, “PNG8—The Clear Winner”.

You can use PNG8 to progressively enhance images for which there is
a clear binary transparent fallback. An image that has no fully opaque
pixels would be rendered completely transparent by Internet Explorer 6.

For example, PNG8 progressive enhancement could be used on modules that overlay
a variable background, such as the drop shadow popover above the Yahoo! Travel map
shown in Figures 10-9 and 10-10.

Alpha Transparency: Avoid AlphaImageLoader | 151

http://home.blarg.net/~glinden/StanfordDataMining.2006-11-29.ppt
http://home.blarg.net/~glinden/StanfordDataMining.2006-11-29.ppt
http://www.sitepoint.com/blogs/2007/09/18/png8-the-clear-winner


Figure 10-9. Internet Explorer getting a simplified version with a clean 3-pixel border

Figure 10-10. Better browsers such as Internet Explorer 7 and 8, Firefox, Safari, and Opera also get
a drop shadow

The human eye is very sensitive to variations in silhouette because
humans identify objects, especially people, based on shape. Pay close
attention to the edges of graphics. Mistakes are more noticeable when
they affect the outline of an icon or image.

Optimizing Sprites
Dave Shea coined the term CSS sprites to refer to a process of combining multiple
background images into one larger image and using background position to show or
hide only a portion of that image in an HTML element (http://www.alistapart.com/
articles/sprites/). The technique was later used by Yahoo! to improve performance by
reducing the number of HTTP requests for the tiny icons on Yahoo!’s home page. There

152 | Chapter 10: Optimizing Images

http://www.alistapart.com/articles/sprites/
http://www.alistapart.com/articles/sprites/


are two approaches to optimizing sprites: the “everything and the kitchen sink” ap-
proach and the modular object-oriented approach. To figure out which is best for your
site, ask the following questions:

• How many pages does your site have?

• Is your site modular? (Hint: it should be!)

• How much time can your team spend on site maintenance?

The answers can help you make the traditional trade-offs between the number of
sprite(s), the maintenance cost, and the total number of unique pages. You can have
any two, but not all three (see Figure 10-11).

Figure 10-11. The sprite dilemma: choose any two

Über-Sprite Versus Modular Sprite
If a site has very few pages, it is best to sprite everything in the site into one über-sprite
that includes all the images used on the site. Google uses an über-sprite for its search
results page, as shown in Figure 10-12.

Optimizing Sprites | 153



Figure 10-12. Google Search has only two pages; thus, it can have an über-sprite without significant
maintenance costs

On the other hand, if your site has more pages, you need a different sprite strategy or
the maintenance costs will be very expensive. The goal is to make it easy to remove
stale modules from your site; otherwise, a once-performant site will become clunky.
You can achieve this by spriting together images that belong to the same object. For
example:

• All four corners from one rounded corner box

• The left and right sliding doors of your module headers

• The two to four images that make up a button

• Tab states such as current, hover, and normal

In a modular approach, these sprites would not be combined with other sprites.

Highly Optimized CSS Sprites
Sometimes optimizing sprites is more complex than optimizing images. Diverse re-
sources combined in one sprite may be harder to compress well. Following these best
practices will make your sprite as small as possible:

• Combine like colors; for example, sprite icons with a similar color palette.

• Avoid unnecessary whitespace, making images easier to process on mobile devices.

• Arrange elements horizontally instead of vertically. The sprite will be slightly
smaller.

• Limit colors to stay within the 256-color limit of PNG8.

• Optimize individual images, and then the sprite. Color reduction will be easier with
a limited palette.

• Reduce anti-aliased pixels via size and alignment. If an icon is slightly off-square,
you can often reduce the anti-aliased pixels by aligning the image horizontally or
vertically.

• Avoid diagonal gradients, which cannot be tiled.

• Avoid alpha transparency in Internet Explorer 6 or quarantine images that require
true alpha transparency in a separate sprite.

154 | Chapter 10: Optimizing Images



• Change the gradient color every two to three pixels, rather than every pixel.

• Be careful with logos. They are very recognizable, so even small changes are likely
to be noticed.

Other Image Optimizations
The remainder of this chapter discusses some additional image-related optimizations
that can help your pages load faster. These concern how you use the image files rather
than the images themselves.

Avoid Scaling Images
Unnecessary download overhead occurs when a 500 × 500-pixel image is scaled down
in the HTML, like so:

<img src="image.jpg" width="100" height="100" alt="my image" />

This way, you cause the browser to scale down the image and show a smaller 100 ×
100-pixel version of it. But the browser still needs to download the big image. You can
achieve significant savings if you resize the image on the server side and serve the smaller
version. As an additional selling point, be aware that some browsers don’t do as good
a job at scaling down as, for example, ImageMagick does, so the result of forcing the
browser to do the scaling is degraded image quality and bigger downloads.

Crush Generated Images
If you’re building a reporting application or module, chances are you’ll need to generate
different graphs or charts on the fly. When you generate those types of images, keep in
mind the following two points:

• It is advisable to choose PNG over GIF, PNG8 being most preferred.

• Don’t forget to crush the result before serving it.

An image found in the Google Chart API documentation makes a good example (see
Figure 10-13). If you’re not familiar with it, Chart is an excellent API that allows you
to generate graphs by passing arguments in the URL. Let’s take a look at how this service
can be improved to generate images that are smaller.

Other Image Optimizations | 155

http://code.google.com/apis/chart/types.html


Figure 10-13. An example generated graph image

Figure 10-13 contains 1,704 colors, and the file size is 17,027 bytes. Two simple opti-
mizations reduce the file size by more than half:

• Running this image through pngcrush results in an image that is 12,882 bytes, a
savings of 24% with no loss in quality.

• Going one step further to convert the image to PNG8 using pngquant removes
about 1,500 colors that the viewer doesn’t notice. The new file size is 7,710 bytes,
a savings of 55% from the original.

An additional benefit from writing the generated images to disk and crushing them is
that when a second request for the same image arrives, you don’t need to regenerate
the image; you can serve the one that has already been cached and optimized.

Here is a simple piece of code that implements this advice using PHP with the GD image
library:

<?php
header ('Content-type: image/png');

// name of the image file
$cachedir = 'myimagecache/';
$file = $cachedir . 'myimage.png';

// if in the cache, serve
if (file_exists($file)) {
    echo file_get_contents($file);
    die();
}

// new GD image
$im = @imagecreatetruecolor(200, 200);
// ... the rest of the image generation ...
imagepng($im, $file); // save
imagedestroy($im);    // cleanup

// crush the image
$cmd = array();

156 | Chapter 10: Optimizing Images

http://php.net/gd
http://php.net/gd


$cmd[] = "pngcrush -rem alla $file.png $file";
$cmd[] = "rm -f $file.png";
exec(implode(';', $cmd));

// spit out the new image
echo file_get_contents($file);
?>

Another option, instead of reading the file with file_get_contents, is to use a redirect
to point the browser to the new location. Add an Expires: header for browsers that
support redirect caching, because they’ll reuse the image instead of downloading it on
subsequent visits.

Favicons
Favicons are those small images named /favicon.ico that sit in the web root and are
displayed next to the URL in the browser’s address bar (see Figure 10-14).

Figure 10-14. Wikipedia favicon

This page component is often ignored because it’s small and supposedly cached. But
caching is not as universal as we often think. This is true for any type of component,
and favicons are no exception. Yahoo! Search noticed that it serves its favicon to 9%
of all page views.

There are several points regarding favicons that significantly improve performance:

• Make sure to create a favicon. Since the browser will request this file anyway,
there’s no reason to return a 404 Page Not Found error, especially if your 404
handler consumes a database connection or other expensive resources.

• Consider adding an Expires: header when serving favicons. You cannot afford to
cache “forever” if you serve the file from /favicon.ico because you cannot rename
the file if you decide to change it. But you can still cache for several months or even
a year. Check the last modification date of your favicon file for an idea of how often
you usually change it. And, if an emergency should arise, you can change the file
name using a <link> tag, as explained next.

• You have an option to include the favicon using a <link> tag in the head. This way,
you control the URL requested by the browser, as opposed to the
predefined /favicon.ico:

<link rel="shortcut icon" href="http://CDN/myicon.ico" />

Other Image Optimizations | 157



This is great, because you can serve the favicon from a CDN and cache it “forever,”
sharing the same file among all your sites.

Be aware of one trade-off, though: if you do it this way, Firefox will request the
favicon early in the waterfall, as opposed to at the very end after all other compo-
nents are downloaded. On the other hand, if you serve the file from /favicon.ico,
there’s no reason to add the <link> tag.

• Make the icon small. The ICO format can contain several images of different di-
mensions; for example, 16 × 16, 32 × 32, and so on. This will increase the file size
of your icon, so it’s best to use only one 16 × 16 image. This generally results in a
file size of about 1 KB. As a rule of thumb, if your icon is bigger than 1 KB, you
have room for improvement.

• Optimize the file with the free Windows utility called Pixelformer, experimenting
with different palette sizes.

Apple Touch Icon
Similar to favicons are so-called Apple touch icon files used by iPhone/iPod devices.
An Apple touch icon is just a PNG file in the root of your web server, 57 × 57 pixels in
size, called apple-touch-icon.png. Again, if you want to serve this icon from a CDN and
add a far-future Expires: header to it, you can use a <link> tag, like so:

<link rel="apple-touch-icon" href="http://CDN/any-name.png" />

Desktop browsers request this file much less often than they request favicons; the
iPhone client will ask for it only when the user adds your page to his home screen.

Summary
In this chapter, you familiarized yourself with quite a few topics related to images, and
you’re now better prepared to ace your next image optimization project. Let’s rehash
some of the highlights:

• Start by choosing the appropriate format: JPEG for photos, GIF for animations,
and PNG for everything else. Strive for PNG8 whenever possible.

• Crush PNGs, optimize GIF animations, and strip JPEG metadata from the images
you own. Use progressive JPEG encoding for JPEGs more than 10 KB in file size.

• Avoid AlphaImageLoader.

• Use and optimize CSS sprites.

• Create modular sprites if your site has more than two to three pages.

• Don’t scale images in HTML.

• Generated images should be crushed, too. Once generated, they should be cached
for as long as possible. Convert images to PNG8 and determine whether 256 colors
is acceptable.

158 | Chapter 10: Optimizing Images

http://www.qualibyte.com/pixelformer/


• Don’t forget favicons and Apple touch icons. Even if you don’t refer to them in
your HTML markup, they are still page components and should be small and 
cacheable.

Summary | 159





CHAPTER 11

Sharding Dominant Domains

Some web pages have all their HTTP requests served from one domain. Other sites
spread their resources across multiple domains. Rule 9 from High Performance Web
Sites says to reduce DNS lookups, but sometimes increasing the number of domains is
better for performance, even at the cost of adding more DNS lookups. The key is to
find the web page’s critical path. If the critical path results from too many resources
being served from one domain, splitting them across multiple domains—what I call
domain sharding—may make the page load more quickly.

Critical Path
Figure 11-1 shows the HTTP profile for eBay. The horizontal axis represents response
time. A steep slope, as shown on the righthand side of the chart, reflects a lot of down-
loads in a short period of time. This is a sign of a fast page. In contrast, a flat slope such
as the one shown in the first five HTTP requests means the browser is bogged down
with a slow response or long-executing JavaScript. In this case, eBay’s critical path is
blocked by the HTML document in the first request, by JavaScript downloads in the
fourth and fifth requests, and by JavaScript execution as indicated by the whitespace
following the fourth and fifth requests.

Yahoo!’s HTTP profile, shown in Figure 11-2, has a different critical path. The majority
of the time loading this page is spent downloading images two at a time.* All of the
resources in the page are downloaded from a single domain: l.yimg.com. Some brows-
ers, including Internet Explorer 6 and 7, limit the number of parallel downloads to two
per server. (Internet Explorer 8 and Firefox 3 increase this to six per server, as discussed
in “Newer Browsers” on page 169.) The impact of this two-per-server limit is evident
in Figure 11-2—no more than two resources are downloaded in parallel at any given
time. As a result, the HTTP profile forms a stair-step pattern that increases the time to
load the page.

* This profile was produced using Internet Explorer 7.

161

http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/


Figure 11-1. Critical path for http://www.ebay.com/

Figure 11-2. Critical path for http://www.yahoo.com/

162 | Chapter 11: Sharding Dominant Domains

http://www.ebay.com/
http://www.yahoo.com/


When downloading resources from a single domain is the bottleneck, splitting resour-
ces across multiple domains speeds up the page by increasing the number of parallel
downloads. This is demonstrated by the following examples.

One Domain
http://stevesouders.com/efws/domains1.php

Two Domains
http://stevesouders.com/efws/domains2.php

Each of these examples contains the 22 images from Yahoo!’s page. The One Domain
example downloads all of the images from l.yimg.com, whereas the Two Domains ex-
ample splits the images across two domains: l.yimg.com and d.yimg.com.† The Two
Domains example loads 27% faster than the One Domain example (654 milliseconds
versus 892 milliseconds over a 7,000 Kbps connection).

Figure 11-3 shows the HTTP profile for the One Domain and Two Domains examples.
The waterfall at the top, in which only one domain is used, shows that only two re-
sources are downloaded at any given time. In the waterfall at the bottom, on the other
hand, we see four resources being downloaded simultaneously, which results in a faster-
loading page.

Who’s Sharding?
Table 11-1 shows which of the top web sites split resources across multiple domains.
The total number of images, scripts, and stylesheets for each site is also shown.

Table 11-1. Use of multiple domains among top web sites

Web site Images Scripts Stylesheets Number of domains

http://www.aol.com/ 59 6 2 3

http://www.ebay.com/ 33 5 2 3

http://www.facebook.com/ 96 14 14 10

http://www.google.com/search?q=flowers 3 1 0 N/A

http://search.live.com/results.aspx?q=flowers 6 1 4 5

http://www.msn.com/ 45 7 3 3

http://www.myspace.com/ 16 14 2 3

http://en.wikipedia.org/wiki/Flowers 33 6 9 2

http://www.yahoo.com/ 28 4 1 1

http://www.youtube.com/ 23 7 1 5

† I discovered that d.yimg.com was used by http://news.yahoo.com for downloading images.

Who’s Sharding? | 163

http://stevesouders.com/efws/domains1.php
http://stevesouders.com/efws/domains2.php
http://www.aol.com/
http://www.ebay.com/
http://www.facebook.com/
http://www.google.com/search?q=flowers
http://search.live.com/results.aspx?q=flowers
http://www.msn.com/
http://www.myspace.com/
http://en.wikipedia.org/wiki/Flowers
http://www.yahoo.com/
http://www.youtube.com/
http://news.yahoo.com


Figure 11-3. One domain versus two domains

Most of these sites shard their resources across multiple domains. It’s especially clear
that this is intentional for sites such as YouTube, where the domain names form a

164 | Chapter 11: Sharding Dominant Domains



sequence: i1.ytimg.com, i2.ytimg.com, i3.ytimg.com, and i4.ytimg.com. Many of these
top sites have similar sequences in their sharded domains:

AOL
o.aolcdn.com, portal.aolcdn.com, www.aolcdn.com

eBay
include.ebaystatic.com, pics.ebaystatic.com, rtm.ebaystatic.com

Facebook
b.static.ak.fbcdn.net, external.ak.fbcdn.net, photos-[b,d,f,g,h].ak.fbcdn.net, plat-
form.ak.fbcdn.net, profile.ak.facebook.com, static.ak.fbcdn.net

Live Search
search.live.com, ts[1,2,3,4].images.live.com

MSN.com
tk2.st[b,c,j].s-msn.com

MySpace
cms.myspacecdn.com, rma.myspacecdn.com, x.myspacecdn.com, creative.my-
space.com, largeassets.myspacecdn.com, x.myspace.com

Wikipedia
en.wikipedia.org, upload.wikimedia.org

YouTube
i[1,2,3,4].ytimg.com, s.ytimg.com

Google’s main page contains only two resources. They can be downloaded in parallel
on one domain, so splitting across domains is not applicable. Yahoo! downloads most
of its resources on one domain. It would benefit from splitting these across multiple
domains. AOL and Wikipedia are an interesting story. They use just a few domains for
a relatively large number of resources. One reason for this might be because they
downgrade some of their responses from HTTP/1.1 to HTTP/1.0. The pros and cons
of this are discussed in the following section.

Downgrading to HTTP/1.0
AOL and Wikipedia shard their resources across a relatively small number of domains.
Even so, they achieve a high level of parallel downloads. Figure 11-4 shows the initial
HTTP profile for Wikipedia when loaded in Internet Explorer 7. All of these resources
are served from one domain: en.wikipedia.org. Internet Explorer 7 normally uses only
two connections to a single server, but in this case we see that four connections are
being used. This happens because Wikipedia downgrades its responses to HTTP/1.0.

HTTP/1.1 is used by most web clients and servers today, but HTTP/1.0 is still sup-
ported. When HTTP/1.1 is used, many browsers follow the limit of two connections
per server as recommended in the HTTP/1.1 RFC. However, Internet Explorer 6 and
7 open more connections when HTTP/1.0 is used. The normal limit of two connections

Downgrading to HTTP/1.0 | 165

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4


per server is increased to four when HTTP/1.0 is used. Similarly, Firefox 2 uses two
connections for HTTP/1.1, but increases that to eight connections in the presence of
HTTP/1.0.

Figure 11-4. Wikipedia parallel downloads

A lower number of connections per server are recommended for HTTP/1.1 because
of persistent connections. By default, HTTP/1.0 closes the TCP connection after each
response. Establishing a new TCP connection for every request takes time. To reduce
this overhead, HTTP/1.1 uses persistent connections and performs multiple requests
and responses using a single connection. Persistent connections are typically held open
longer and thus impose a greater burden on servers that have a finite number of con-
nections available. Hence, the recommended number of connections per server is
reduced to two for HTTP/1.1.

By downgrading to HTTP/1.0, AOL and Wikipedia achieve a higher level of parallel
downloads, but this benefit is gained at the cost of losing persistent connections. Or is
it? As an alternative to persistent connections, HTTP/1.0 supports the Keep-Alive op-
tion to reuse existing connections. There are differences between HTTP/1.0 Keep-Alive
and HTTP/1.1 persistent connections, but they are subtle:

• Persistent connections are the default in HTTP/1.1. Once the HTTP version is
specified as “HTTP/1.1,” no additional header is necessary to declare support for
persistent connections. But Keep-Alive is not the default for HTTP/1.0. Clients and
servers must send the Connection: Keep-Alive header.

• There are risks involved in using HTTP/1.0 Keep-Alive connections through a
proxy. A proxy that doesn’t understand the Connection: Keep-Alive header and
just blindly forwards it to the origin server might establish a hung connection while
it waits for the origin server to close the connection. The origin server won’t close
the connection because it’s establishing a Keep-Alive connection. Therefore, clients
must be sure not to send Connection: Keep-Alive when talking to a proxy, which
in fact all major browsers do.

166 | Chapter 11: Sharding Dominant Domains



• HTTP/1.0 Keep-Alive responses must use the Content-Length header to indicate
the ending boundary between separate responses on a single connection. This
means that dynamic content, where the total size is not known when the response
is started, cannot take advantage of HTTP/1.0 Keep-Alive.

• Chunked transfer-encoding, introduced in HTTP/1.1, cannot be used with HTTP/
1.0. Chunked encoding allows the server to send back data in chunks. This is most
applicable for large responses generated dynamically, where the total size is not
known but the server wants to start transferring the response as the content be-
comes available. (See Chapter 12 for more discussion about chunked encoding.)

These differences don’t present any significant drawbacks to downgrading to HTTP/
1.0 for static content. Popular browsers already send the Connection: Keep-Alive
header and remove it when using a proxy. The size of static content is known when the
request begins, so a Content-Length header can always be sent and there isn’t a need
for chunked encoding. It’s possible that using chunked encoding for large resources,
such as a 500 KB script, could result in faster downloading and parsing, but in practice
none of the top sites use chunked encoding with their static content.

Users who access AOL and Wikipedia using Internet Explorer 6 and 7 benefit from the
decision to downgrade to HTTP/1.0. They get resources downloaded four at a time
and still benefit from reusing TCP connections thanks to Keep-Alive. Most other
browsers, however, don’t increase the connections per server based on HTTP version,
as shown in Table 11-2.

Table 11-2. Connections per server

Browser HTTP/1.1 HTTP/1.0

IE 6, 7 2 4

IE 8 6 6

Firefox 2 2 8

Firefox 3 6 6

Safari 3, 4 4 4

Chrome 1, 2 6 6

Opera 9, 10 4 4

If you have a large number of Internet Explorer 6 and 7 users, you might want to
consider downgrading to HTTP/1.0. Doing so increases parallel downloads (for Inter-
net Explorer 6 and 7) without the cost of an extra DNS lookup. But if you want all of
your users to benefit from increased parallelization, domain sharding is the preferred 
solution.

Downgrading to HTTP/1.0 | 167

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1


Rolling Out Sharding
Several operational questions typically arise when considering splitting resources across
multiple domains.

IP Address or Hostname
Browsers enforce the “maximum connections per server” constraint based on the host-
name in the URL, not the IP address to which it resolves, as shown in the Different
Hostnames, Same IP example.

Different Hostnames, Same IP
http://stevesouders.com/efws/hostnames.php

This example has four images: two from stevesouders.com and two from
www.stevesouders.com. These hostnames have the same IP address. When loaded in
Internet Explorer 6 and 7, all four images are downloaded in parallel. The browser has
treated each hostname as a separate server, and consequently opened two connections
for each one, even though these two hostnames resolve to the same IP address.

This is good news for people who want to split their content across multiple domains.
It’s not necessary to deploy additional servers. Instead, a CNAME record for the new
domain can be used. A CNAME is just an alias from one domain name to another. Even
though the domain names point to the same servers, the browser still opens the max-
imum number of connections for each unique hostname.

How Many Domains
In “Critical Path” on page 161, you saw that splitting content across two domains is
better than splitting across one. Would three domains be better than two? How about
10? Research published by Yahoo! shows that increasing the number of domains from
one to two improves performance, but increasing it above two has a negative effect on
load times. The final answer depends on the number and size of resources, but sharding
across two domains is a good rule of thumb.

How to Split Resources
Given a specific resource, what’s the best algorithm for assigning it to one of multiple
possible domains? A key feature of any splitting algorithm is that a specific resource
always be assigned to the same domain. This ensures that, if the resource has already
been cached, the URL for subsequent requests matches the URL in the cache.

168 | Chapter 11: Sharding Dominant Domains

http://stevesouders.com/efws/hostnames.php
http://yuiblog.com/blog/2007/04/11/performance-research-part-4/


One way to do this is to use a hashing function that converts the resource’s filename
into an integer that determines the chosen domain. Another alternative is to assign
resources to domains based on the resource type. For example, stylesheets and images
might be assigned to domain 1, while every other type of resource is assigned to domain
2. This might result in a lopsided distribution of resources across domains, but might
actually be beneficial in that images could start downloading from domain 2 in parallel
with stylesheets and scripts on domain 1.

Newer Browsers
Internet Explorer 8 and Firefox 3 both increase the number of connections per server
from two to six. Striving to increase the number of parallel downloads for older brows-
ers could result in too many parallel downloads for these next-generation browsers. If
the browser opens too many connections, it could overload the server as well as degrade
download efficiency on the client.

Sites that use several domains, such as Facebook and YouTube, may need to alter their
splitting algorithm based on browser type. If you choose to split your static resources
across multiple domains, follow the guideline of splitting across just two domains. This
strikes a balance of improving performance for today’s browsers as well as tomorrow’s.

Rolling Out Sharding | 169





CHAPTER 12

Flushing the Document Early

The Performance Golden Rule reminds us to focus our performance improvements on
the frontend—that’s where most of the time is spent loading web pages.* Occasionally,
there are exceptions to this rule where the backend takes a long time to generate the
HTML document. Such a page might require intensive database queries or responses
from other web services before the HTML content is returned.

Unfortunately, while the backend chugs away, everything on the user’s end is on hold.
Rather than letting the browser sit idle and leaving the user waiting for feedback, this
chapter explains how to start the page loading even before the HTML document is
completed.

Flush the Head
In most cases, the browser waits for the HTML document to arrive before it starts
rendering the page and downloading the page’s resources. This is shown by the Simple
Page example.

Simple Page
http://stevesouders.com/efws/simple.php

This example page contains two images and a script. The HTML document and its
three resources are all programmed to take two seconds to return. The HTTP waterfall
chart for Simple Page is shown in Figure 12-1. As expected, the HTML document is
downloaded first. Once it arrives, the browser parses the HTML, renders the first few
lines of text, and starts downloading the page’s resources.

* See Rule 1 from High Performance Web Sites.

171

http://stevesouders.com/efws/simple.php
http://oreilly.com/catalog/9780596529307/


Figure 12-1. Simple Page HTTP waterfall chart

The two images, served from 1.cuzillion.com, are downloaded in parallel. The script is
also downloaded in parallel, because it comes after the images and is hosted on a dif-
ferent hostname, 2.cuzillion.com. The overall page load time is four seconds.

Figure 12-2 shows the same page, but in this case the images and script start down-
loading before the HTML document has fully arrived. The result is a page that takes
only two seconds to load—half the time of the original example.

Figure 12-2. Flush HTTP waterfall chart

This speedup was achieved by adding a call to PHP’s flush function. Running the Flush
example makes it clear that this is a much faster page.

Flush
http://stevesouders.com/efws/flush-nogzip.php

To understand how flush works, and the complications that ensue, we need to un-
derstand how HTML documents are generated.† As the server parses the PHP page, all
output is written to STDOUT. Rather than being sent immediately, one character,
word, or line at a time, the output is queued up and sent to the browser in larger chunks.
This is more efficient because it results in fewer packets being sent from the server to
the browser. Each packet sent incurs some network latency, so it’s usually better to
send a small number of large packets, rather than a large number of small packets.

Calling flush() causes anything queued up in STDOUT to be sent immediately. How-
ever, simply flushing STDOUT isn’t enough to achieve the type of speedup experienced
in the preceding example. The call to flush has to be made in the right place. Let’s look
at the PHP source code for the Flush example:

† Although this discussion focuses on PHP, these concepts are applicable to other templating frameworks as
well.

172 | Chapter 12: Flushing the Document Early

http://stevesouders.com/efws/flush-nogzip.php


<html>
<body>

<p>
This is the Flush example.
</p>

<img src="http://1.cuzillion.com/...">
<img src="http://1.cuzillion.com/...">
<script src="http://2.cuzillion.com/..." type="text/javascript"></script>

<?php
flush();
long_slow_function();
?>

<p>
This sentence is after the long, slow function.
</p>

</body>
</html>

Remember, the motivation for this chapter is those occasions when you have an HTML
document that takes a long time to generate. That is represented in our PHP code by
the call to long_slow_function (in this case a two-second sleep). The call to flush() is
made right before this long backend delay.

Whether this speeds up the page depends on what you include in the HTML before
the call to flush(). In this example, there is a line of text (“This is the Flush example”)
and three resources (two images and one script). This is exactly what’s needed to com-
bat the two shortcomings of a slow HTML document: blocked rendering and blocked
downloads. By including the line of text in the flushed HTML, the user is given visual
feedback that the page is loading. By including the three resources in the flushed output,
the browser starts downloading resources even while it waits for the rest of the HTML
document. This is the key performance insight from this chapter; getting resources
downloading early is the primary benefit that flushing provides.

This seems pretty simple, yet reading the comments on the flush documentation
page reveals that it’s not as simple as it looks.

Output Buffering
Perhaps the biggest confusion around getting flushing to work in PHP involves output
buffering. As explained earlier, PHP output is written to STDOUT. Output buffering
adds another layer where output is queued before it goes to STDOUT.

Output Buffering | 173

http://www.php.net/flush
http://www.php.net/flush


The first step is to determine whether output buffering is turned on in your PHP con-
figuration, and how big the buffer is. This is controlled by the output_buffering direc-
tive in php.ini.‡ Part of the confusion stems from the fact that the default value changed
in PHP 4.3.5. Before that, output buffering was enabled by default with a buffer size of
4,096 bytes, equivalent to this line in your php.ini:

output_buffering = 4096

With PHP 4.3.5, the default changed to output buffering being disabled:

output_buffering = 0

You can use this PHP code to find out the value of output_buffering and what version
of PHP is running on your server:

<?php
echo "<br>output_buffering = " . ini_get('output_buffering');
echo "<br>PHP version = " . phpversion();
?>

If output buffering is on for your server, in addition to using flush, you’ll also have to
use ob_flush and its related functions, as shown by the Flush Output Buffering example.

Flush Output Buffering
http://stevesouders.com/efws/ob/flush-nogzip-ob.php

The PHP code, with the added lines in bold, is shown in the sample that follows. The
most intuitive new function calls are ob_start and ob_flush; ob_start opens a new
output buffer while ob_flush flushes the contents of this output buffer to STDOUT.
Once the output buffer is flushed, we still need the call to flush() in order to flush
STDOUT:

<?php
while (ob_get_level() > 0) {
    ob_end_flush();
}
ob_start();
?>
<html>
<body>

<p>
This is the Flush Output Buffering example.
</p>

<img src="http://1.cuzillion.com/...">
<img src="http://1.cuzillion.com/...">
<script src="http://2.cuzillion.com/..." type="text/javascript"></script>

<?php
ob_flush();
flush();

‡ http://www.php.net/manual/en/outcontrol.configuration.php#ini.output-buffering

174 | Chapter 12: Flushing the Document Early

http://stevesouders.com/efws/ob/flush-nogzip-ob.php
http://www.php.net/manual/en/outcontrol.configuration.php#ini.output-buffering


long_slow_function();
?>

<p>
This sentence is after the long, slow function.
</p>

</body>
</html>

The while loop calls ob_end_flush as long as ob_get_level() is greater than zero. For-
getting this step is where many developers go wrong. This loop ensures that any output
buffers that are already open are flushed and removed. Without doing this, the call to
ob_start might not be the only output buffer opened. Output buffers in PHP are
stacked. If our call to ob_start opened a second output buffer, the subsequent call to
ob_flush would flush this second output buffer into the first output buffer, but not to
STDOUT. Consequently, the call to flush would have no effect, since STDOUT would
be empty. Confirming whether output buffering is enabled and, if so, using the ob_
functions solves these issues.

Chunked Encoding
The flush examples won’t be faster when using web servers or clients that support only
HTTP/1.0. That’s because they don’t support chunked encoding.

HTTP/1.0 responses are returned as one block of data, the size of which is communi-
cated in the Content-Length header. The browser needs to know the size of the data in
order to know when the response ends. Because the HTML document is sent as one
block, the browser can’t start rendering the page and downloading resources until the
whole response arrives.§

HTTP/1.1 introduced the Transfer-Encoding: chunked response header.‖ With
chunked encoding, the HTML document can be returned in multiple blocks of data.
Each chunk of the response starts with its own size indicator. This allows the browser
to parse each chunk as soon as it arrives, resulting in a page that loads faster.

Chunked encoding fosters faster pages in two other ways, both related to dynamic
pages. Without chunked encoding, responses must contain a Content-Length header.
This means the server can’t start sending the response until it finishes stitching the
entire response together and measuring its size. With chunked encoding, the server can
start transmitting the response sooner, because it only needs to know the size of each
chunk being sent.

§ A possible alternative if Content-Length is not known is for the server to close the connection, but this defeats
the benefits of persistent connections.

‖ http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.41

Chunked Encoding | 175

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.41


The second performance opportunity made possible by chunked encoding comes by
use of the Trailer header.# In some situations, it’s not possible to know whether a
header is needed or what its value should be until the HTML document has been
created. For example, during generation of the HTML content, results from a database
query or web service request might determine the value for a Cookie or ETag response
header.

Normally, these headers must be sent in the beginning of the response, which means
the server can’t start sending the response until these time-consuming database queries
or web service calls have completed. Alternatively, when chunked encoding is used,
these headers can be sent later. The first chunk is sent immediately and uses the
Trailer header to list the headers that will come later:

Trailer: Cookie
Trailer: ETag

The Cookie and ETag headers can then be included at the end of the HTML response.*

Chunked encoding makes it possible to start sending parts of the HTML document
immediately, even before the total size and other headers are known. To gain the ben-
efits of flushing the document early, you’ll need to make sure chunked encoding is
working. Fortunately, Apache and other web servers take care of this for you. If you’re
trying to get flushing to work, make sure to confirm the presence of Transfer-Encoding:
chunked in the HTML document’s response headers.

Flushing and Gzip
In the previous example, the HTML document was not gzipped. Gzipping the HTML
document is critical for all web sites, but it adds another level of complexity in getting
flushing to work. If the earlier flush examples are gzipped, the flushing doesn’t work,
as the Flush Gzip No Padding example shows.

Flush Gzip No Padding
http://stevesouders.com/efws/flush-gzip-no-padding.php

In this case, flushing is thwarted because of how Apache buffers output when com-
pression is enabled. Apache 2.x uses mod_deflate for compression.† This module has
a buffer that is 8,096 bytes by default. You can reduce the size of this buffer using the
DeflateBufferSize directive. If that’s not an option, you can make flushing work if you
add more than 8 KB of padding (after compression) to the HTML document, as shown
by the Flush Gzip Padding example.

# http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40

* As of this writing, browser support for trailers is mixed. More research and evangelism are needed to ensure
cross-browser support.

† http://httpd.apache.org/docs/2.0/mod/mod_deflate.html

176 | Chapter 12: Flushing the Document Early

http://stevesouders.com/efws/flush-gzip-no-padding.php
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40
http://httpd.apache.org/docs/2.0/mod/mod_deflate.html


Flush Gzip Padding
http://stevesouders.com/efws/flush-gzip-padding.php

Adding the padding causes the deflate buffer to fill up and get flushed to the browser.
The padding is tricky. Normally, you could use PHP’s str_pad function:

echo str_pad('', 20000);

That won’t work in this situation; compression is enabled, so the padding is compressed
to less than the necessary 8 KB. The Flush Gzip Padding example has a 20 KB comment
of nonrepeating strings, so even when compressed it exceeds the 8,096-byte size of the
deflate buffer, allowing the flush to proceed.

Adding 20 KB to your pages is a high price to pay. Luckily, Apache 2.2.8 and later fix
this issue and don’t require this padding trick. At the time of this writing, the company
hosting my web site is still running Apache 2.0. I tested this on servers using Apache
2.2.8 and confirmed that the page is compressed and flushing works, even without the
padding.

Other Intermediaries
Proxies and antivirus software are two intermediaries that have the potential to obstruct
the performance benefits of flushing. If these intermediaries are used to filter content,
rather than forwarding the flushed blocks of data, they may wait until the entire re-
sponse is received and scanned before forwarding on to the web client.

Another issue involves proxies that downgrade all responses to HTTP/1.0; since HTTP/
1.0 doesn’t support chunked encoding, flushing doesn’t work with these proxies. One
example is the Squid proxy. Its Wiki states that HTTP/1.1 is not yet supported, and
one of the major reasons is “Chunked encoding [is] missing”.‡

I’ve seen developers spend hours debugging why flushing wasn’t working, only to
realize they were connected to the Internet through a company proxy that breaks flush-
ing. To determine whether you’re behind a proxy, you can check your browser’s net-
work connection settings. Sometimes it’s hard to tell whether you’re set up to use a
proxy, especially with configuration options such as “Automatically detect settings”
(Internet Explorer) and “Auto-detect proxy settings for this network” (Firefox 3.0).
In addition to checking my browser settings, I look for headers such as
Proxy-Connection, X-Forwarded-For, and Via or a status containing “HTTP/1.0” in the
HTML document response. If any of these are present, you’re probably going through
a proxy that may prevent flushing from working.

‡ http://wiki.squid-cache.org/Features/HTTP11

Other Intermediaries | 177

http://stevesouders.com/efws/flush-gzip-padding.php
http://wiki.squid-cache.org/Features/HTTP11


Domain Blocking During Flushing
Mainstream browsers, such as Internet Explorer 6 and 7 and Firefox 2, support only
two connections per server. This limits the number of parallel downloads that can be
performed on any single domain. There are ways to work around this limitation, as
described in Chapter 11. Most of the issues with domain blocking arise in the context
of resources in the page. With flushing, however, we also need to keep in mind that
the HTML document request can affect parallel downloads.

In the examples so far, I’ve been careful to put the two images on a different domain
(1.cuzillion.com) than the main page (stevesouders.com). Why is this important? There
are only two images, so even in Internet Explorer 7 (with only two connections per
server) there shouldn’t be any blocking behavior.

This sounds right, but as soon as we see the results we understand that because we’re
using chunked encoding, the HTML document response is still using one connection—
this leaves only one other connection for other resources that are on the same domain.
The Flush Domain Blocking example creates this situation—in it the two images are
served from stevesouders.com.

Flush Domain Blocking
http://stevesouders.com/efws/flush-domain-blocking-nogzip.php

Loading this in Internet Explorer 7 results in the HTTP waterfall chart shown in Fig-
ure 12-3. Comparing this to Figure 12-2, we see that this page is almost twice as slow,
even though flushing is working. The reason it’s slow is that the second image is blocked
until the HTML document returns. The HTML document and the first image have used
up the two connections to stevesouders.com, so the second image has to wait.

Figure 12-3. Flush Domain Blocking HTTP waterfall chart

If you leverage flushing’s greatest benefit of downloading resources early, it’s easy to
exceed the two connections allowed to a single server. Keep this in mind as you might
need to fetch the initial resources from a domain that’s not blocked by the HTML
document.

Browsers: The Last Hurdle
As if getting flushing to work wasn’t hard enough, you’ll get thrown off track if you’re
using Safari or Chrome with these examples. Even though both support chunked

178 | Chapter 12: Flushing the Document Early

http://stevesouders.com/efws/flush-domain-blocking-nogzip.php


encoding, they won’t start rendering the page until they’ve received a minimum thresh-
old of data: Safari is around 1 KB, Chrome is around 2 KB.§

The Flush example has only ~600 bytes in the first chunk, and as a result, the benefits
of flushing aren’t seen in Safari and Chrome. To get flushing to work in Safari, the Flush
1K example includes an additional 1 KB of HTML in the initial chunk. Similarly, the
Flush 2K example includes an extra 2 KB of HTML and works in Chrome.

Flush 1K
http://stevesouders.com/efws/flush-nogzip-1k.php

Flush 2K
http://stevesouders.com/efws/flush-nogzip-2k.php

This is an issue in my examples because the HTML is minimal. In real-world pages,
with inline style and script blocks and more page markup, it’s likely that the flushed
HTML exceeds 2 KB. If you want flushing to work across all browsers, make sure you
flush after the 2 KB mark.

Flushing Beyond PHP
This chapter, as well as most wikis and forums related to flushing, focuses on PHP. If
you use a different HTML templating framework, don’t fear; there’s probably a way to
get the performance gains from chunked encoding, and it’s probably done with a func-
tion named “flush.”

Experienced Perl programmers at some point have written scripts where the printed
output needed to be flushed from STDOUT immediately. These aficionados know that
setting $| to a nonzero value is the way to accomplish this. Lesser known is the tech-
nique for doing this with the FileHandle autoflush method.‖ The Flush Perl example
uses this technique.

Flush Perl
http://stevesouders.com/efws/flush-nogzip.cgi

The call to autoflush is at the top of the script:

use FileHandle;
STDOUT->autoflush(1);

Python file objects# and Ruby’s IO class* have a flush function. It’s likely that no matter
what language you’re using on the backend, there’s a way to flush STDOUT.

§ Internet Explorer has a similar minimum threshold, but it’s only 255 bytes, so it’s unlikely to trip you up.

‖ http://perldoc.perl.org/FileHandle.html

# http://www.python.org/doc/2.5.2/lib/bltin-file-objects.html

* http://www.ruby-doc.org/core/classes/IO.html#M002303

Flushing Beyond PHP | 179

http://stevesouders.com/efws/flush-nogzip.php
http://stevesouders.com/efws/flush-nogzip-1k.php
http://stevesouders.com/efws/flush-nogzip-2k.php
http://stevesouders.com/efws/flush-nogzip.cgi
http://perldoc.perl.org/FileHandle.html
http://www.python.org/doc/2.5.2/lib/bltin-file-objects.html
http://www.ruby-doc.org/core/classes/IO.html#M002303


The Flush Checklist
Getting flushing to work isn’t always easy. If you’re trying to flush your PHP page, but
are having trouble getting it to work, here’s the checklist to walk through:

• Is output buffering on? If so, you have to use the ob_ functions.

• Do you see the Transfer-Encoding: chunked response header? Chunked encoding
is typically required for flushing to work.

• Is the response gzipped? If so, and you’re running a version of Apache earlier than
2.2.8, you have to add padding to your page.

• Are you behind a proxy or using antivirus software? These might buffer the chunks
before sending them through to the browser.

• Are any of the resources referenced in the flushed chunk being blocked because
they’re fetched from the same domain as the HTML document?

• Are you testing only in Safari or Chrome? The flushed HTML must be more than
2 KB to see the benefits in these browsers.

There are many variables to sort out—it’s almost like trying to get the stars to align—
but the results are worth it. In our set of top 10 web sites, 5 use chunked encoding:
AOL, Facebook, Google Search, MySpace, and Yahoo!. Keep in mind that even though
these sites support chunked encoding, it’s not necessarily the case that they are flushing
the document early. The HTTP profile for Google Search, in Figure 12-4, most clearly
shows the benefits of flushing.

Figure 12-4. Google Search HTTP waterfall chart

By flushing the document early, Google pages start downloading resources and ren-
dering content more quickly. This is a benefit that all users will appreciate, especially
those with slow Internet connections and high latency.

180 | Chapter 12: Flushing the Document Early



CHAPTER 13

Using Iframes Sparingly

Iframes, also called inline frames, allow for one HTML document to be embedded
inside another.* Iframes are best used for integrating HTML content, such as an ad,
that’s from a web site different from that serving the main page.

A benefit of using iframes for this purpose is that their document is entirely independent
from the parent document. Relative URLs inside the iframe are resolved relative to the
iframe’s base URI, not the parent’s. User agents can give the iframe focus for printing,
bookmarking, saving, and so forth. Perhaps most important, JavaScript included in the
iframe has limited access to the parent. For example, an iframe from a different domain
can’t access the parent’s cookies. This is an important consideration when web devel-
opers must allow third-party content, such as ads, in their pages but they don’t have
control over this content.

What’s the downside? You guessed it—slower performance. Chapter 4 describes how
iframes are used to improve performance in terms of loading scripts asynchronously.
It is true that iframes can make pages load faster, if used properly. Unfortunately,
iframes are often used in a way that hurts performance. It’s important to know the
performance penalties inflicted by iframes and how to avoid them.

The Most Expensive DOM Element
The Cost of Elements test page measures how long it takes to create different types of 
DOM elements.

Cost of Elements
http://stevesouders.com/efws/costofelements.php

Using this page, I tested how long it takes to load 100 elements of the following
types: A, DIV, SCRIPT, STYLE, and IFRAME. I ran each test 10 times in Chrome (1.0, 2.0), 
Firefox (2.0, 3.0, 3.1beta2), Internet Explorer (6, 7, 8beta2), Opera (9.63, 10.00alpha),

* http://www.w3.org/TR/html4/present/frames.html#edef-IFRAME

181

http://stevesouders.com/efws/costofelements.php
http://www.w3.org/TR/html4/present/frames.html#edef-IFRAME


and Safari (3.2, 4.0 developer preview). Figure 13-1 shows the median time to create
100 elements of each type.

Figure 13-1. Time to load 100 elements of various types

Figure 13-1 shows that iframes are one to two orders of magnitude more expensive to
create than other types of DOM elements. In these tests, the DOM elements are empty.
It’s possible that a large script or style block could take longer to load than certain types
of iframes, but this test compares the baseline cost. Given the much larger cost of
iframes, they should be used in small numbers with caution.

Iframes Block Onload
We want the onload event to fire as quickly as possible. There are several reasons for this:

• When onload fires, the browser’s busy indicators stop and the user is given feedback
that the page is ready. For example, “Done” is displayed in the status bar. Thus, if
onload fires quickly, there’s a greater chance that the user perceives the page to be
fast.

• Developers frequently initiate UI actions with the onload event; for example, setting
focus to a login field. As users become trained to wait for this action, it’s important
for onload to fire as soon as possible so that the user’s wait is short.

182 | Chapter 13: Using Iframes Sparingly



• Developers sometimes associate important actions with the window’s unload
event; for example, JavaScript code to reduce memory leaks.† Unfortunately, in
some browsers, onunload will not fire unless the onload event has fired.‡ If onload
takes too long and the user quickly leaves the page, then the onunload code never
executes.§

It makes sense that the onload event shouldn’t fire until all critical content on the page
has loaded, but often an iframe contains content that is not critical to the user’s en-
gagement with the page. A good example of this is iframes that contain ads. Ads may
be critical to the web site’s business, but the user experience should not be degraded
waiting for ads to load. When used in the typical fashion, iframes block the onload
event. It’s important, therefore, to investigate whether there’s a way to load iframes
without delaying the main page’s onload event.

The Iframe Blocking Onload example shows that iframes block the parent window’s
onload event.

Iframe Blocking Onload
http://stevesouders.com/efws/iframe-onload-blocking.php

In this example, the iframe is used in the typical way, setting the iframe’s URL with the
HTML SRC attribute, like so:

<iframe src="url"></iframe>

There are four variations of this example, accessible through the links in the page:

Empty iframe
The iframe takes four seconds to return but doesn’t contain any resources.

Iframe with image
The iframe returns immediately but contains an image that takes four seconds to
return.

Iframe with script
The iframe returns immediately but contains an external script that takes four
seconds to return.

Iframe with stylesheet
The iframe returns immediately but contains a stylesheet that takes four seconds
to return.

The parent window’s onload time is shown at the top of the page. Since the parent
window contains only one resource (the iframe), we know the iframe has blocked the

† “Understanding and Solving Internet Explorer Leak Patterns,” http://msdn.microsoft.com/en-us/library/
bb250448.aspx.

‡ This is true in Internet Explorer 6 through 8, Safari 3 and 4, and Chrome 1 and 2.

§ There are workarounds to this problem—for example, http://blog.moxiecode.com/2008/04/08/unload-event
-never-fires-in-ie/—but there will continue to be developers, unaware of the issue, who use the unload event.

Iframes Block Onload | 183

http://stevesouders.com/efws/iframe-onload-blocking.php
http://msdn.microsoft.com/en-us/library/bb250448.aspx
http://msdn.microsoft.com/en-us/library/bb250448.aspx
http://blog.moxiecode.com/2008/04/08/unload-event-never-fires-in-ie/
http://blog.moxiecode.com/2008/04/08/unload-event-never-fires-in-ie/


onload event if the onload time is greater than four seconds. The result is the same
across all major browsers: iframes block the parent window’s onload event when used in
the typical way.

There’s an easy workaround to this blocking behavior, but it works only in Safari and
Chrome. Instead of setting the iframe’s URL with the HTML SRC attribute, we set it
dynamically with JavaScript:

<iframe id=iframe1 src=""></iframe>
<script type="text/javascript">
document.getElementById('iframe1').src = "url";
</script>

This technique is used in the Iframe Not Blocking Onload example.

Iframe Not Blocking Onload
http://stevesouders.com/efws/iframe-onload-nonblocking.php

In Safari and Chrome, the onload time is a few hundred milliseconds. Since this is much
less than four seconds, we know that the iframe and its components are not blocking
the parent window’s onload event. Unfortunately, this technique doesn’t work in
Internet Explorer, Firefox, and Opera. For a majority of users, the blocking behavior
of iframes prolongs the time before the page is “Done.”

Parallel Downloads with Iframes
This section explores the download behavior of iframes and the main page. In general,
resources in an iframe are downloaded in parallel with resources in the main page. In
some cases, however, the main page can cause resources in the iframe to be blocked
from downloading.

Script Before Iframe
External scripts in the main page that are loaded in the typical way (<script
src="url"></script>) block all resources that follow. Therefore, an iframe and its re-
sources are blocked from downloading if they are preceded by an external script. This
is demonstrated in the Script Before Iframe example.

Script Before Iframe
http://stevesouders.com/efws/script-before-iframe.php

In this example, the script takes four seconds to return. The iframe has no delay, but
it contains an image, a stylesheet, and a script that are each configured to take four
seconds to return. Figure 13-2 shows the HTTP waterfall charts for this example in
Internet Explorer, Firefox, Safari, Chrome, and Opera. (Safari, Chrome, and Opera
perform similarly and so are grouped together.) As expected, we see that the script in
the main page blocks the iframe request; this causes the iframe’s resources to be de-
layed. The way scripts block iframes is similar across all browsers, but in the next two

184 | Chapter 13: Using Iframes Sparingly

http://stevesouders.com/efws/iframe-onload-nonblocking.php
http://stevesouders.com/efws/script-before-iframe.php


sections we’ll see that Internet Explorer and Firefox diverge from the behavior shown
here, while Safari, Chrome, and Opera all perform the same.

Figure 13-2. Script before iframe

Stylesheet Before Iframe
Chapter 7 discusses the blocking behavior inflicted on pages that contain a stylesheet
followed by an inline script. Stylesheets also have an unexpected blocking interaction
with iframes in Internet Explorer and Firefox. The Stylesheet Before Iframe example
shows what happens.

Stylesheet Before Iframe
http://stevesouders.com/efws/stylesheet-before-iframe.php

Normally, stylesheets don’t block other resources, and in Figure 13-3 we see that this
is true for Safari, Chrome, and Opera. However, in Internet Explorer and Firefox, the
stylesheet blocks requests associated with the iframe. In Internet Explorer, the iframe
request is blocked. In Firefox, the stylesheet and iframe download in parallel, but the
iframe’s resources are blocked by the stylesheet.‖

‖ Performance in Firefox 2 is worse because stylesheets block all downloads. This was fixed in Firefox 3.0.

Parallel Downloads with Iframes | 185

http://stevesouders.com/efws/stylesheet-before-iframe.php


Figure 13-3. Stylesheet before iframe

Stylesheet After Iframe
Moving the stylesheet below the iframe would presumably avoid this blocking behav-
ior. This is true in Internet Explorer, but not in Firefox, as shown by the Stylesheet
After Iframe example.

Stylesheet After Iframe
http://stevesouders.com/efws/stylesheet-after-iframe.php

Firefox’s waterfall chart, as shown in Figure 13-4, takes eight seconds to load. The other
major browsers are all down to four seconds. Although it’s not worthwhile to move
stylesheets lower in the page—any gains from not blocking iframes are lost because
rendering is delayed—it is worth noting that if the iframe’s resources were in the main
page itself, the blocking wouldn’t happen. When deciding whether iframes are an ap-
propriate solution, this blocking behavior is an important consideration.

186 | Chapter 13: Using Iframes Sparingly

http://stevesouders.com/efws/stylesheet-after-iframe.php


Figure 13-4. Stylesheet after iframe

Connections per Hostname
Browsers have a limit on the number of connections they open to a single hostname.
The number of connections determines how many resources can be downloaded in
parallel. Internet Explorer 6 and 7 and Firefox 2 open only two connections per server.
Newer browsers open a higher number—between four and eight connections per
server. (See Table 11-2 for a full breakout by browser.) The following sections explore
how these browsers enforce these limits across iframes, tabs, and windows.

Connection Sharing in Iframes
One might hope that because an iframe is “entirely independent of the document in
which it is embedded,”# resources downloaded as part of the iframe would use a con-
nection pool that is separate from the main page. The Iframe Connections example
tests whether this is true.

# http://www.w3.org/TR/html4/struct/objects.html#h-13.5

Connections per Hostname | 187

http://www.w3.org/TR/html4/struct/objects.html#h-13.5


Iframe Connections
http://stevesouders.com/efws/parent-connections.php

The Iframe Connections example downloads five images in the parent document and
another five images as part of the iframe. All 10 images are from the same server
(1.cuzillion.com) and are configured to take two seconds to respond. Figure 13-5 shows
the HTTP waterfall chart for this example loaded in Internet Explorer 7.

Figure 13-5. Iframe Connections HTTP waterfall chart for Internet Explorer 7

The first two requests are for the parent HTML document and iframe, respectively.
The remaining requests are for the 10 images served from 1.cuzillion.com. Internet
Explorer 7 opens two connections per hostname. We see in Figure 13-5 that this limited
pool of only two connections is shared by all the requests in the parent document as
well as the iframe. This is the case for all major browsers.

Using an iframe does not increase the number of parallel downloads for a given
hostname.

Connection Sharing Across Tabs and Windows
It’s both surprising and disappointing that the connection limits apply across an iframe
and its parent. This raises the question: is the connection pool similarly limited across
multiple browser tabs and windows?

To answer this question, I created two URLs:

http://stevesouders.com/efws/connections1.php

http://stevesouders.com/efws/connections2.php

Similar to the previous example, each of these pages contains 5 images served from
1.cuzillion.com, for a total of 10 images. The test involves opening two tabs in a browser
and loading the URLs simultaneously. If the connection pool is shared, the 10 images

188 | Chapter 13: Using Iframes Sparingly

http://stevesouders.com/efws/parent-connections.php
http://stevesouders.com/efws/connections1.php
http://stevesouders.com/efws/connections2.php


will take longer to download. If each browser tab has its own connection pool, the
images will download in parallel and the overall load time will be faster. The same test
is done using two instances of the same browser loading the URLs in separate windows.

I ran these tests on Internet Explorer 8.0 beta 2, Firefox 3.1b2, Safari 4 developer pre-
view, Chrome 2.0, and Opera 10.0 alpha. The results are that the connection pool is
shared across tabs and windows for all these browsers. Figure 13-6 shows the HTTP
waterfall chart for Internet Explorer 8.0 beta 2.

Figure 13-6. Connections shared across windows in Internet Explorer 8

The two test URLs are the first two short requests. The longer requests are the images.
Internet Explorer 8 opens a maximum of six connections per server. This pool of six
connections is used to download the five images in connections1.php and the first image
in connections2.php. At that point, the remaining images in connections2.php are
blocked, even though they’re being fetched in a separate window.

This section is a digression from the main topic of iframes, but it’s worth noting this
behavior of connection limits being applied across tabs and windows. For companies
that host multiple properties on a single domain, this could have a negative impact on
performance if users open multiple web applications simultaneously. For example,
several Google applications are hosted from http://www.google.com:

• Google Calendar

• Google Finance

• Google Reader

• Google Search

• iGoogle

Most of the resources used by these web sites also come from http://www.google.com.
If a user opened two or more simultaneously, he would compete for the open connec-
tions, resulting in slower load times. Although this doesn’t happen frequently, it does
happen. For example, I have a script that opens Google Calendar, Google Reader, and

Connections per Hostname | 189

http://www.google.com
http://www.google.com/calendar/
http://www.google.com/finance
http://www.google.com/reader/
http://www.google.com/
http://www.google.com/ig
http://www.google.com


iGoogle every morning when I start my browser. These web sites are impacted because
they must share connections even though they are loaded in separate tabs.

Summarizing the Cost of Iframes
Even blank iframes are expensive. They are one to two orders of magnitude more
expensive than other DOM elements.

When used in the typical way (<iframe src="url"></iframe>), iframes block the
onload event. This prolongs the browser’s busy indicators, resulting in a page that is
perceived to be slower. Setting the iframe’s SRC dynamically avoids this problem in
Safari and Chrome. For other browsers, setting the SRC after the onload event avoids
the problem.

Although iframes don’t directly block resource downloads in the main page, there are
ways that the main page can block the iframe’s downloads. In addition to the expected
behavior of scripts, stylesheet downloads in the main page block the iframe’s down-
loads in both Internet Explorer and Firefox.

The browser’s limited connections per server are shared across the main page and
iframes, even though an iframe is an entirely independent document. Web sites that
host most of their resources on a single domain should keep this in mind.

With all of these costs, it’s often best to avoid the use of iframes, and yet a quick survey
shows that they are still used frequently. Five of the top 10 U.S. web sites use iframes:
AOL, Facebook, MSN.com, MySpace, and YouTube. These sites use iframes primarily
for serving ads. This is to be expected, given that iframes are an easy way to include
content from a third-party site, especially dynamic content such as a rotating ad.

An alternative way to insert ads with better performance would be for the main page
to create a DIV to hold the contents of the ad. When the main page requests the ad’s
external script (using an asynchronous technique as described in Chapter 4), the ID of
this DIV could be included in the script’s URL. The ad’s JavaScript would then insert
the ad in the page by setting the innerHTML of the DIV. This approach is also more
compatible with “expando” ads—those ads that take over a large part of the window
and thus cannot be constrained by an iframe. The use of iframes is declining as these
other techniques for inserting ads become more prevalent, much to the benefit of web
page performance.

190 | Chapter 13: Using Iframes Sparingly



CHAPTER 14

Simplifying CSS Selectors

Much of this book focuses on JavaScript performance. What about CSS? Most pub-
lished information about CSS understandably focuses on layout, design, and the rela-
tionship between content, markup, and code.* There are a few best practices focused
on CSS performance:

• Place stylesheets in the HEAD of the document to promote progressive rendering.
(See High Performance Web Sites, Chapter 5.)

• Don’t use CSS expressions in Internet Explorer, as they may be executed thousands
of times, resulting in a sluggish page. (See High Performance Web Sites, Chapter 7.)

• Avoid too much inline styling as it increases download size. (See Chapter 9 of this
book.)

Another topic that has garnered attention is the cost of inefficient CSS selectors. A
selector is the initial list of arguments that indicates the elements of the page to which
a CSS rule applies. This chapter explains the issues with regard to CSS selectors. There
are some surprises. Although following the guidelines for optimal CSS selectors can
make a difference in web site speed, it’s more important that web developers avoid a
few common, yet costly, CSS selector patterns. All of this is revealed in the sections
that follow.

Types of Selectors
This section defines the terminology around CSS selectors. Consider this example:

#toc > LI { font-weight: bold; }

This is a style rule or simply rule. The CSS selector is #toc > LI. This selector contains
two simple selectors (#toc and LI) that are joined with the > combinator. The CSS selector
determines which elements in the page, also called subjects, receive the specified styling.

* See Nicole Sullivan’s “Object Oriented CSS” and Nate Koechley’s “Semantic Markup—Create, Support and
Extract”.

191

http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/
http://wiki.github.com/stubbornella/oocss
http://nate.koechley.com/blog/index.php?s=presentational
http://nate.koechley.com/blog/index.php?s=presentational


The browser tries to match the CSS selectors with elements in the document. It’s this
matching that is the cause for concern. The amount of matching the browser must
perform depends on how the CSS selectors are written. Some types of CSS selectors
cause more matching attempts and are thus more expensive than simpler selectors.

The various types of CSS selectors are presented in the following sections. They’re listed
in approximate order from simplest (least costly) to most complex (most expensive).
For more information, consult the section in the CSS2 specification on selectors.

The example rules from this section are used in the CSS Selectors example. The use
case for this example is styling for a table of contents. The page is shown in Fig-
ure 14-1 with some of the applicable rules indicating where they have an effect.

CSS Selectors
http://stevesouders.com/efws/selectors.php

Figure 14-1. CSS Selectors example with rules

ID Selectors
Example: #toc { margin-left: 20px; }

Simple and efficient, this type of selector matches the unique element in the page with
the specified ID. The example just shown matches the element whose ID attribute is
toc. In the Table of Contents example, this rule matches an ordered list element:
<ol id=toc>. This rule indents the list by 20 pixels on the left.

192 | Chapter 14: Simplifying CSS Selectors

http://www.w3.org/TR/CSS2/selector.html
http://stevesouders.com/efws/selectors.php


Class Selectors
Example: .chapter { font-weight: bold; }

Rules based on a class are specified with a dot (.) followed by the class name. Class
selectors match all elements with a class attribute containing that name. This rule
matches the list item elements in our Table of Contents example, making the font bold:
<li class=chapter>.

Type Selectors
Example: A { text-decoration: none; }

Type selectors apply to all elements of the specified element type. This rule removes
the underline from all anchors in the page, such as: <a href="#introduction">
Introduction</a>. This is a lightweight way to add styling to all elements of a specified
type, without having to add any extra characters (such as ID, class, or style) to each
element.

Adjacent Sibling Selectors
Example: H1 + #toc { margin-top: 40px; }

Adjacent sibling selectors are created by chaining two simple selectors (in this case,
H1 and #toc) with the + combinator. In our CSS Selectors page, this rule matches the
toc element because its previous sibling is an H1 element. As a result, the Table of
Contents example is given an extra 40 pixels of margin at the top.

Child Selectors
Example: #toc > LI { font-weight: bold; }

Child selectors are formed by combining two or more simple selectors with the > com-
binator. This rule matches all list items whose parent is the toc element. This rule
achieves the same results as the class selector example, but the LI elements don’t need
to specify a class, thus reducing the size of the resultant page.

Descendant Selectors
Example: #toc A { color: #444; }

The previous two selector types use the + and > combinators. Descendant selectors
simply use a space (“ ”) as a combinator. Descendant rules are matched whenever the
second selector subject is found to be a descendant (child, grandchild, etc.) of the first
selector subject. In our page, all anchor (A) elements within the Table of Contents
(toc) element are given a font color of “#444.” Notice that I’ve used shorthand to

Types of Selectors | 193



specify the color. Normally this color would be specified as “#444444,” but “#444”
means the same thing and saves three bytes.

Universal Selectors
Example: * { font-family: Arial; }

Universal selectors, written using *, match every element in the document. This rule
assigns the Arial font to all elements in the CSS Selectors example page.

Attribute Selectors
Example: [href="#index"] { font-style: italic; }

Attribute selectors match based on the existence or value of an element’s attributes.
This rule causes the anchor element with href equal to "#index" to be drawn in italics.
Attributes can be matched in four ways:

• Equality, using = as this rule does.

• Existence of the attribute, regardless of value: [href].

• Equality with one value in a space-separated list of values: [title~="Index"]
matches <a title="the Index">.

• Equality with the first value in a hyphen-separated list of values: [LANG|=en]
matches <p lang="en"> as well as <p lang="en-US">.

Class selectors are a specialized case of attribute selectors, where the attribute is
class. The dot notation for class selectors (e.g., .chapter) is shorthand to avoid the
lengthier attribute syntax ([class="chapter"]).

Pseudo-Classes and Pseudo-Elements
Example: A:hover { text-decoration: underline; }

The types of selectors presented so far have been based on information from the DOM.
Some desired styling is not represented in the DOM. Pseudo-classes and pseudo-
elements were created to address these situations. This rule draws an underline when-
ever the user hovers over an anchor; :hover is a pseudo-class. Other pseudo-classes
include :first-child, :link, :visited, :active, :focus, and :lang. The pseudo-
elements include :first-line, :first-letter, :before, and :after.

The Key to Efficient CSS Selectors
The impact of CSS selectors on performance derives from the amount of time it takes
the browser to match the selectors against the elements in the document. Developers
have some control over how long this matching takes by writing their selectors to be

194 | Chapter 14: Simplifying CSS Selectors



more efficient. The path to efficient selectors starts by understanding how selector
matching works.

Rightmost First
Consider the following rule:

#toc > LI { font-weight: bold; }

Most of us, especially those who read left to right, might assume that the browser
matches this rule by moving from left to right, and thus, this rule doesn’t seem too
expensive. In our minds, we imagine the browser working like this: find the unique
toc element and apply this styling to its immediate children who are LI elements. We
know that there is only one toc element, and it has only a few LI children, so this CSS
selector should be pretty efficient.

In reality, CSS selectors are matched by moving from right to left! With this knowledge,
our rule that at first seemed efficient is revealed to be fairly expensive. The browser
must iterate over every LI element in the page and determine whether its parent is toc.

Our descendant selector example is even worse:

#toc A { color: #444; }

Instead of just checking for anchor elements inside toc, as would happen if it was read
left to right, the browser has to check every anchor in the entire document. And instead
of just checking each anchor’s parent, the browser has to climb the document tree
looking for an ancestor with the ID toc. If the anchor being evaluated isn’t a descendant
of toc, the browser has to walk the tree of ancestors until it reaches the document root.

David Hyatt, Safari and WebKit architect, reveals this information in one of the most-
referenced articles on CSS selector performance, “Writing Efficient CSS for use in the
Mozilla UI”:

The style system matches a rule by starting with the rightmost selector and moving to
the left through the rule’s selectors. As long as your little subtree continues to check out,
the style system will continue moving to the left until it either matches the rule or bails
out because of a mismatch.

Writing Efficient CSS Selectors
Armed with the insight that selectors are matched right to left, we can take another
look at our CSS selectors and tune them to be more efficient. Before we start, it would
be nice to have some additional information, such as which CSS selectors are the most
expensive, and some patterns for making it easier to fix them. Fortunately, David
Hyatt’s article provides guidelines for writing efficient selectors:

The Key to Efficient CSS Selectors | 195

https://developer.mozilla.org/en/Writing_Efficient_CSS
https://developer.mozilla.org/en/Writing_Efficient_CSS


Avoid universal rules
In addition to the traditional definition of universal selectors, Hyatt lumps adjacent
sibling selectors, child selectors, descendant selectors, and attribute selectors into
this category of “universal rules.” He recommends using ID, class, and tag selectors
exclusively.

Don’t qualify ID selectors
Because there is only one element in the page with a given ID, there’s no need to
add additional qualifiers. For example, DIV #toc is unnecessary and should be
simplified to #toc.

Don’t qualify class selectors
Instead of qualifying class selectors for specific tags, extend the class name to be
specific to the use case. For example, change LI .chapter to .li-chapter, or better
yet, .list-chapter.

Make rules as specific as possible
Don’t be tempted to build long selectors, such as OL LI A. It’s better to create a
class, such as .list-anchor, and add it to the appropriate elements.

Avoid descendant selectors
Descendant selectors are typically the most expensive to process. Child selectors
are often what’s intended and can be more efficient. It’s even better to follow the
next guideline to avoid child selectors as well.

Avoid tag-child selectors
If you have a child selector that is based on a tag, such as #toc > LI > A, use a class
associated with each of those tag elements, such as .toc-anchor.

Question all usages of the child selector
This is another reminder to review all places where child selectors are used, and
replace them with specific classes when possible.

Rely on inheritance
Learn which properties are inherited, and avoid rules that specify these inherited
styles. For example, specify list-style-image on the list element instead of on each
list item element. Consult the list of inherited properties to know which properties
are inherited for which elements.

It’s interesting to note that David Hyatt’s article was first published in April 2000. I
wonder—why is there renewed interest in this topic nine years later? David’s article,
as the title states, was addressed to developers working on the Mozilla UI. Perhaps it’s
taken this long for web pages to reach a similar level of performance loss with regard
to CSS selectors.

Another factor is that today’s Web 2.0 applications have a longer session length—it’s
not the load-clear-load Web 1.0 scenario. In this sense, Web 2.0 applications are more
similar to the Mozilla UI, and the impact of inefficient CSS selectors may be more
pronounced as huge portions of the DOM tree are created and removed, and DHTML
code changes class names and style attributes. The findings in the next section support

196 | Chapter 14: Simplifying CSS Selectors

http://www.w3.org/TR/CSS21/propidx.html


this view that the complexity and dynamic nature of web pages are what have brought
focus to this area of performance analysis.

CSS Selector Performance
The veil has been lifted. We now see the inefficiencies in our CSS selectors. The reve-
lation of selectors being read from right to left motivates many of us to rewrite our rules.
With Doug Crockford’s guidance (see Chapter 1), we know that before we start fixing
this possible performance issue, it’s important to first measure the impact of the issue
so that we are sure to focus on the right problem.

Complex Selectors Impact Performance (Sometimes)
The results of an experiment to measure the performance of CSS selectors were pub-
lished in three blog posts from Jon Sykes. Each post is a refinement on the previous
one, so part 3 is the most informative.† His test comprises five pages. All the pages
contain 20,000 anchor elements, each with an ancestor tree of P, DIV, DIV, DIV, and
BODY. Each page has different types of CSS:

• “No Style” has no CSS.

• “Tag” has one rule:

A { background-color: red; }

• “Class” has 20,000 class selectors, one for each anchor; for example:

class11 { background-color: red; }

• “Descender” has 20,000 descendant selectors, one for each anchor; for example:

div div div p a.class11 { background-color: red; }

• “Child” has 20,000 child selectors, one for each anchor; for example:

div > div > div > p > a.class11 { background-color: red; }

The results indeed show that “No Style” is faster than “Descender” and “Child.” In
Internet Explorer and Safari, the load times of the slower pages are a multiple of the
simple page. It’s clear that inefficient CSS selectors in numbers this large adversely affect
performance.

What if the number of selectors is reduced to levels comparable to today’s web sites—
do they still have an impact? Table 14-1 shows the number of CSS rules and DOM
elements, as well as average DOM depth, for the top 10 U.S. web sites. The total number
of rules ranges from 92 to 2,882, with an average of 1,033.

† The original blog post, http://blog.archive.jpsykes.com/153/more-css-performance-testing-pt-3/, is no longer
available.

CSS Selector Performance | 197

http://blog.archive.jpsykes.com/153/more-css-performance-testing-pt-3/


Table 14-1. CSS rules and DOM elements in the top 10 U.S. web sites

Web site Number of rules Number of DOM elements Average depth

AOL 2,289 1,628 13

eBay 305 588 14

Facebook 2,882 1,966 17

Google 92 552 8

Live Search 376 449 12

MSN.com 1,038 886 11

MySpace 932 444 9

Wikipedia 795 1,333 10

Yahoo! 800 564 13

YouTube 821 817 9

Average 1,033 923 12

Based on this information, I created a set of tests similar to Sykes’ experiments, but
instead of 20,000 rules they contain only 1,000 rules. Also, to make the page size more
consistent, I gave the baseline page and tag selector page 1,000 rules just like all the
other pages; these are simple class rules that aren’t used by any elements. The pages
themselves are part of the CSS Selectors Test example.

CSS Selectors Test
http://stevesouders.com/efws/css-selectors/tests.php

The focus of this experiment is to gauge the cost of complex selectors versus simple
selectors. Figure 14-2 shows the difference in load times of the slowest test page (child
or descendant selectors) and the simple baseline page. The average slowdown is just
30 milliseconds.‡

These tests show a much smaller savings from optimizing CSS selectors than what was
found in Sykes’ tests. This is primarily due to the reduced number of rules coupled with
the fact that the impact of CSS selectors increases at a nonlinear rate as the number of
rules and DOM elements grows. Figure 14-3 shows the page load time in Internet
Explorer 7 as the number of rules increases from 1,000 to 20,000 for the more expensive
child and descendant selector tests. This data reveals that Internet Explorer 7 hits a cliff
at around 18,000 rules. The tests with 20,000 rules are on the extreme end of this hockey
stick.

‡ The results for Opera 9.63 were inconsistent and so are omitted.

198 | Chapter 14: Simplifying CSS Selectors

http://stevesouders.com/efws/css-selectors/tests.php


Figure 14-2. Load time difference for simple versus complex selector tests

Figure 14-3. CSS selector hockey stick in Internet Explorer 7

CSS Selector Performance | 199



These results indicate that more complex CSS selectors, such as child and descendant
selectors, don’t always affect page performance. This doesn’t mean we shouldn’t
optimize our CSS selectors. Even at real-world levels, certain types of selectors have a
noticeable impact on performance.

CSS Selectors to Avoid
The tests from the previous section show that in some situations, even complex CSS
selectors have little impact on performance, but that’s not always the case. Let’s look
at a sample descendant selector from the earlier tests:

DIV DIV DIV P A.class0007 { ... }

At first glance, this seems likely to be an expensive selector to match. It’s a descendant
selector, with five levels of ancestors to match. However, recalling that selectors are
matched right to left, we realize why this descendant selector performs at about the
same speed as a much simpler class selector. The amount of work performed by the
browser is heavily affected by the rightmost argument, also called the key selector. In
this case, the key selector is A.class0007. Only one element in the page matches this
key selector, so the amount of time needed to match this selector is minimal.

In contrast, consider this rule:

A.class0007 * { ... }

In this rule, the key selector is *. Since this matches all elements, the browser has to
check every element to see whether it is a descendant of an anchor with the class name
class0007. The Universal Selector example has 1,000 rules of this type.

Universal Selector
http://stevesouders.com/efws/css-selectors/universal.php

Figure 14-4 shows the difference in load times of the Universal Selector page and the
Descendant Selector page. This is a significant change from Figure 14-2, where the
average delta was just 30 milliseconds. The average slowdown here is more than two
seconds!

When deciding where to optimize, remember to focus on CSS selectors where the key
selector is likely to match a large number of elements in the page. It’s not just the
universal selector that is troublesome. Here are some other examples that take signif-
icant time to load:

200 | Chapter 14: Simplifying CSS Selectors

http://stevesouders.com/efws/css-selectors/universal.php
http://stevesouders.com/efws/css-selectors/descendant.php


Figure 14-4. Load time difference for universal selector

A.class0007 DIV { ... }
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=A.class+DIV

#id0007 > A { ... }
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=%23id+>+A

.class0007 [href] { ... }
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=.class+[href]

DIV:first-child { ... }
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=DIV%3Afirst-child

These examples are all created by the CSS Test Creator page. “0007” is used to indicate
a counter that is incremented from 1 to the maximum number of rules (1,000 in this
case). The CSS Test Creator makes it easy to try different types of selectors and measure
the impact on load times, as well as reflow time, as discussed in the next section.

Reflow Time
All the examples so far have measured the impact of CSS selectors on load time. For
Web 2.0 applications, a more important consideration is the time it takes the browser
to apply styles and lay out elements while the user interacts with the page. This is called
the reflow time. A reflow is triggered when certain properties of a DOM element’s style

CSS Selector Performance | 201

http://stevesouders.com/efws/css-selectors/csscreate.php?sel=A.class+DIV
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=%23id+>+A
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=.class+[href]
http://stevesouders.com/efws/css-selectors/csscreate.php?sel=DIV%3Afirst-child


are modified using JavaScript. Given a DOM element called elem, each of the following
lines of code triggers a reflow in most browsers:

elem.className = "newclass";
elem.style.cssText = "color: red";
elem.style.padding = "8px";
elem.style.display = "";

This is just a subset; the list of reflow triggers is much longer. Given their dynamic
nature, Web 2.0 applications can easily trigger a reflow. A reflow doesn’t necessarily
involve every element in the page. Browsers are optimized to re-layout only the elements
that are affected (“dirty”). In the preceding examples, however, if elem is the document
body or some other element with many descendants, the reflow can be costly.

A reflow requires that CSS rules be reapplied, which means the browser must once
again match all the CSS selectors. If the CSS selectors are inefficient, the reflow may
take a long time—long enough that users notice. All of the CSS selector test exam
ples have a Measure Reflow button. When clicked, the body’s display property is tog-
gled, as shown in the last line of the preceding code. The time it takes for the reflow to
finish is displayed next to the button. The examples of expensive CSS selectors from
the previous section have reflow times ranging from hundreds of milliseconds to sec-
onds.

It’s important, therefore, to be wary of the impact of inefficient CSS selectors not only
on page load time, but also on how your Web 2.0 application behaves while the user
interacts with it. If your JavaScript manipulates style properties and your page starts to
feel sluggish, inefficient CSS selectors might be the cause.

Measuring CSS Selectors in the Real World
This chapter presents the results from multiple experiments, but all of these test pages
are contrived examples. It’s difficult to translate the time savings shown by these tests
into savings for real-world web sites. An ideal experiment would be to optimize the
CSS selectors in the top 10 web sites and measure the effect on load time, but that’s
not feasible.

To estimate the performance improvement that might be gained by optimizing CSS
selectors, we can measure the reflow time. This is easy to do on existing web pages
using Lindsey Simon’s Reflow Timer. This is a bookmarklet that runs in all major
browsers. When launched, it toggles the body’s display property and displays the aver-
age reflow time. (I got the idea to add reflow time measurements to my test pages based
on this tool.) Figure 14-5 shows the results of measuring reflow time. Reflow time
ranges from 16 milliseconds (Google Search) to 391 milliseconds (Facebook).§

§ Measured using Internet Explorer 7.

202 | Chapter 14: Simplifying CSS Selectors

http://stevesouders.com/efws/css-selectors/tests.php
http://stevesouders.com/efws/css-selectors/tests.php
http://code.google.com/p/reflow-timer/


Figure 14-5. Top 10 sites reflow time, total rules, and extreme selectors

In addition to reflow time, Figure 14-5 also shows the number of rules and the number
of extremely inefficient rules (rules with key selectors that match a large number of
elements). The correlation coefficient between reflow time and the number of rules is
0.86. The correlation coefficient between reflow time and the number of extremely
inefficient rules is 0.9. Both of these are high correlations, suggesting that the time it
takes for a browser to apply styles is affected by both the number as well as the efficiency
of CSS selectors.

If, like AOL and Facebook, your site use a large number of rules, many of which are
extremely inefficient, optimizing your CSS selectors may make your page faster. You’d
likely also benefit from reducing the number of rules. Having said that, keep in mind
that there’s a cost associated with following David Hyatt’s guidelines for writing effi-
cient CSS selectors: replacing expensive descendant selectors with class assignments
for each affected element adds weight to your page and reduces the flexibility of your
styles. The most important selectors to fix are those with a key selector (rightmost
selector) that matches a large number of elements. Although the benefit of this per-
formance improvement varies, web developers should be aware that certain types of
CSS selectors can torpedo their page’s performance.

Measuring CSS Selectors in the Real World | 203





APPENDIX

Performance Tools

Like all good engineers, web developers need to build up a set of tools to do a high-
quality job. This appendix describes the tools I recommend for analyzing and improv-
ing web site performance. The tools are grouped into the following sections:

“Packet Sniffers” on page 205
When I sit down to analyze a web site, I start by looking at the HTTP requests for
the web page in question. This makes it possible to identify the slow parts of the
page. A packet sniffer that is handy and easy to use is the first tool to add to your
kit. The tools included in this category are HttpWatch, Firebug Net Panel, AOL
Pagetest, VRTA, IBM Page Detailer, Web Inspector Resources Panel, Fiddler,
Charles, and Wireshark.

“Web Development Tools” on page 209
Page performance isn’t just about load time—JavaScript, CSS, and DOM structure
play a significant role, especially for Web 2.0 applications. Web development tools
provide inspectors, profilers, and debuggers for analyzing web page behavior. This
section includes Firebug, Web Inspector, and IE Developer Toolbar.

“Performance Analyzers” on page 211
Performance analyzers evaluate a given web page against a set of performance best
practices. As I will explain, they vary a great deal in what they measure. This section
describes YSlow, AOL Pagetest, VRTA, and neXpert.

“Miscellaneous” on page 216
This section includes a grab bag of tools I use regularly: Hammerhead, Smush.it,
Cuzillion, and UA Profiler.

Packet Sniffers
Every web developer working on performance needs to look at how his web pages load,
including all the resources within the page. This is done using a packet sniffer. The
packet sniffers listed in this section range from tools that give a higher-level view of
network traffic, such as HttpWatch, to lower-level tools that expose each packet sent

205



over the network, such as Wireshark. In most of my web performance analysis, I use
the higher-level network monitors; they are typically easier to configure and have a user
interface that is more visual. In some situations, such as debugging chunked encoding,
I drop down into one of the lower-level packet sniffers in order to see the contents and
timing of each packet sent over the wire.

HttpWatch
HttpWatch is my preferred packet sniffer. HttpWatch depicts network traffic in a
graphical way, as shown in Figure A-1. Most of the HTTP waterfall charts in this book
were captured using HttpWatch. This graphical display makes it easy to spot perform-
ance delays.

HttpWatch is built by Simtec. You can try out the free download, but it’s limited to
work on only a few major sites, such as Google and Yahoo!. You have to pay for the
full-featured version, but it’s money well spent. HttpWatch runs on Microsoft Win-
dows with Internet Explorer and Firefox.

Figure A-1. HttpWatch

206 | Appendix: Performance Tools

http://www.httpwatch.com/
http://google.com
http://yahoo.com


Firebug Net Panel
Firebug has many features critical to any web developer and is described more thor-
oughly in “Web Development Tools” on page 209. The Firebug Net Panel, however,
deserves mention here. Net Panel displays HTTP waterfall charts, making it an easy
alternative for developers who already have Firebug installed. I especially like Net
Panel’s use of vertical lines to mark the DOMContentLoaded and onload events in the page
load timeline, as shown in Figure A-2. This is a feature that other packet sniffers should
adopt.

Figure A-2. Firebug Net Panel

One drawback of Net Panel is that the timing information can be affected by the web
page itself. This is due to the fact that Firebug is implemented in JavaScript and there-
fore executes in the same Firefox process as the current web page. Because of this, if
network events happen while JavaScript is executing in the main page, Net Panel is
blocked from recording the correct timing information for those requests. Net Panel’s
accuracy is sufficient in most situations, and its ease of use makes it a good choice. If
you require more precise time measurements or have a page with long-running blocks
of JavaScript, you should consider using one of the other packet sniffers mentioned in
this section.

An additional constraint is that Firebug is a Firefox add-on, so it isn’t available in other
browsers.

AOL Pagetest
AOL Pagetest is an Internet Explorer plug-in that produces HTTP waterfall charts. It
also identifies areas for improving performance, as discussed in “Performance Ana-
lyzers” on page 211.

Packet Sniffers | 207

http://pagetest.wiki.sourceforge.net/


VRTA
VRTA from Microsoft focuses on improving network performance. Its HTTP waterfall
chart is more detailed than other network monitors, putting an emphasis on reusing
existing TCP connections. See “Performance Analyzers” on page 211 for more infor-
mation about VRTA.

IBM Page Detailer
IBM Page Detailer used to be my preferred packet sniffer, but IBM stopped selling the
professional version. The basic version is still available, but it lacks many features that
I consider mandatory, such as support for analyzing HTTPS requests and the ability to
export data. IBM Page Detailer runs on Microsoft Windows.

I use IBM Page Detailer when analyzing browsers other than Internet Explorer and
Firefox, such as Opera and Safari (since these browsers aren’t supported by
HttpWatch). IBM Page Detailer can monitor network traffic for any process that uses
HTTP. This is enabled by editing the wd_WS2s.ini file and adding the process’s name
to the Executable line, like so:

Executable=(FIREFOX.EXE),(OPERA.EXE),(SAFARI.EXE)

There’s an interesting twist that prevents IBM Page Detailer from analyzing Chrome:
Chrome has a separate process for the browser UI plus one for each tab. IBM Page
Detailer attaches to the browser UI process, and so it doesn’t see any of the HTTP traffic
for the actual web pages being loaded. Nevertheless, if support for HTTPS and export-
ing data isn’t required, IBM Page Detailer is a useful alternative.

Web Inspector Resources Panel
Safari’s Web Inspector, similar to Firebug, is a web development tool that includes a
network monitor. See “Web Development Tools” on page 209 for more information.

Fiddler
The main distinguishing feature of Fiddler, built by Eric Lawrence from the Microsoft
Internet Explorer team, is that it supports a scripting capability that allows for setting
breakpoints and manipulating HTTP traffic. One downside is that it acts as a proxy,
and so it may alter the behavior of the browser (e.g., the number of open connections
per server). If you need a scripting capability and are mindful of any side effects of using
a proxy, I highly recommend Fiddler. It runs on Microsoft Windows.

208 | Appendix: Performance Tools

http://www.microsoft.com/downloads/details.aspx?FamilyID=119F3477-DCED-41E3-A0E7-D8B5CAE893A3
http://www.alphaworks.ibm.com/tech/pagedetailer
http://www.fiddlertool.com/


Charles
Charles is an HTTP proxy, similar to Fiddler. It has many of the same features as Fid-
dler, including the ability to analyze both HTTP and HTTPS traffic, and bandwidth
throttling. Charles supports Microsoft Windows, Mac OS X, and Linux.

Wireshark
Wireshark evolved from Ethereal. It analyzes HTTP requests at the packet level. Its UI
is not as graphical as other network monitors. It also doesn’t have the concept of a “web
page,” so it’s up to you to discern where the web page’s packets start and end. If you
have to look at traffic at the packet level, such as to analyze chunked encoding, Wire-
shark is the best choice. It’s available on many platforms, including Microsoft Win-
dows, Mac OS X, and Linux.

Web Development Tools
Packet sniffers show the network activity while a page is loading, but there’s more to
a web page’s performance than just HTTP requests. Chapters 1 and 2 discuss how
JavaScript and modifications to the DOM can slow a page down. The web development
tools presented in this section—Firebug, Web Inspector, and IE Developer Toolbar—
include features such as DOM inspectors, JavaScript debuggers and profilers, CSS ed-
itors, and network monitors.

These tools are the tip of the iceberg. More extensive tools are needed to give developers
visibility into memory consumption, CPU load, JavaScript execution, CSS application,
and HTML parsing and rendering over the entire page load timeline. And this analysis
is needed without altering normal browser behavior.

Firebug
Firebug is the most popular web development tool, with more than 14 million (yes,
million!) downloads. It was created by Joe Hewitt in January 2006. It includes inspec-
tors for HTML, CSS, DOM, and layout. Firebug’s Net Panel, discussed in “Packet
Sniffers” on page 205, provides an HTTP waterfall chart of network activity. Firebug
also has a JavaScript command line and console, as well as a JavaScript debugger and
profiler. The debugger and profiler are Firebug’s strongest features.

Firebug is an add-on to Firefox. Although porting the JavaScript debugging and profil-
ing functionality to other browsers would be a tremendous undertaking, many of Fire-
bug’s other features are available across browsers by virtue of Firebug Lite. Firebug Lite
is a bookmarklet, and therefore it works in all the major browsers. It had a major
upgrade by Azer Koçulu and now includes inspectors for HTML, DOM, and CSS, as
well as a JavaScript command line and console. Providing a common UI across all

Web Development Tools | 209

http://www.charlesproxy.com/
http://www.wireshark.org/
http://getfirebug.com/
http://getfirebug.com/lite.html


browsers and a fairly complete set of features, Firebug Lite is the perfect recipe for
solving nasty browser incompatibility bugs.

Developers love Firebug because of their ability to extend it. This open extension model
makes it possible to add on to Firebug’s features in a way that also allows for that new
functionality to be shared with other developers. You can find useful Firebug extensions
at http://getfirebug.com/extensions/index.html.

Web Inspector
Safari’s Web Inspector had a significant upgrade at the end of 2008. The Resources
Panel, mentioned previously, is shown in Figure A-3. Web Inspector’s functionality is
similar to Firebug. It has a console with autocompletion, a DOM and CSS inspector,
and a JavaScript debugger and profiler.

Figure A-3. Safari Web Inspector

210 | Appendix: Performance Tools

http://getfirebug.com/extensions/index.html


IE Developer Toolbar
The Internet Explorer Developer Toolbar has a feature set similar to Firebug Lite. It
doesn’t have JavaScript debugging or profiling, but it does support validating HTML
and CSS, DOM inspection, and pixel layout tools. The IE Developer Toolbar is targeted
at Internet Explorer 6 and 7. The functionality has been built into Internet Explorer 8
under the Developer Tools menu item.

Performance Analyzers
YSlow was the first widely used performance “lint” tool. AOL Pagetest, VRTA, and
neXpert were released subsequently. Each of these tools has its own set of performance
best practices. I’ve aggregated all of these best practices in Table A-1, with an indication
of which rules are evaluated by each particular tool. I’ve grouped the best practices into
three categories:

• The rules included in High Performance Web Sites

• The best practices described in this book

• Other rules that I haven’t addressed but that are incorporated in at least one of
these tools

Looking at Table A-1, it’s clear that there is little overlap in the best practices espoused
by each tool. In one sense, this is good—bringing in different perspectives on the per-
formance problem leads to the discovery of new best practices. But this diversity has a
more important and unfavorable impact: confusion and fragmentation in the web de-
velopment community. It’s unclear which set of best practices is best. The choice of
tool might be dictated by development environment rather than by the content of the
performance analysis.

Across the developers of these tools, there is more agreement on performance best
practices than is reflected in Table A-1. The inconsistencies arise for several reasons.
There’s a desire to introduce new best practices and to focus less on covering what has
already been covered somewhere else. Development time is always an issue; developers
may decide to skip the implementation of well-known best practices. Don’t
underestimate the impact of personal interests; for instance, it’s clear that the devel-
opers of VRTA have more interest and familiarity with networking issues than I do.

Performance Analyzers | 211

http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
http://oreilly.com/catalog/9780596529307/


Table A-1. Performance best practices

Best practice YSlow Pagetest VRTA neXpert

High Performance Web Sites  

Combine JavaScript and CSS X X   

Use CSS sprites X  X  

Use a CDN X X   

Set Expires in the future X X X X

Gzip text responses X X X X

Put CSS at the top X    

Put JavaScript at the bottom X    

Avoid CSS expressions X    

Make JavaScript and CSS external X    

Reduce DNS lookups X    

Minify JavaScript X X   

Avoid redirects X  X X

Remove dupe scripts X    

Remove ETags X X  X

Even Faster Web Sites

Don’t block the UI thread     

Split JavaScript payload     

Load scripts asynchronously   X  

Inline scripts before stylesheet     

Write efficient JavaScript     

Minimize uncompressed size     

Optimize images  X   

Shard domains   X  

Flush the document early     

Avoid iframes     

Simplify CSS selectors   X  

Other

Use persistent connections  X X X

Reduce cookies  X  X

Avoid network congestion   X  

Increase MTU, TCP window   X  

Avoid server congestion   X  

212 | Appendix: Performance Tools



Moving forward, web developers would be well served if it became possible for these
and other tools to share a common set of performance best practices. I fully expect this
will happen. These tools were created in the spirit of evangelizing a faster web experi-
ence for all users and to help developers easily identify where they can make the greatest
improvement to their site’s speed. In that spirit, it makes sense to give developers tools
that are more consistent regardless of their platform and tool of choice.

That’s the future. For now, the following sections provide descriptions of YSlow, AOL
Pagetest, VRTA, and neXpert, as they exist today.

YSlow
I created YSlow while working at Yahoo!. It existed first as a bookmarklet, and then as
a Greasemonkey script. Joe Hewitt was kind enough to explain how to port YSlow to
be a Firebug extension. Swapnil Shinde did a lot of the coding to get it to work with
Firebug. The motivation I gave Swapnil was that I was certain YSlow would be used
by as many as 10,000 people. YSlow was released in July 2007 and crossed the 1 million
download mark a year and a half later. The name is a play on the question “whY is this
page Slow?”

YSlow contains the following rules which are echoed as chapters in High Performance
Web Sites. When YSlow was released, I also posted summaries of each rule at http://
developer.yahoo.com/performance/rules.html. That page has subsequently been upda-
ted by the folks at Yahoo! to include 34 rules! Here are the original 13 rules that are
still the basis for YSlow’s performance analysis:

• Rule 1: Make Fewer HTTP Requests

• Rule 2: Use a Content Delivery Network

• Rule 3: Add an Expires Header

• Rule 4: Gzip Components

• Rule 5: Put Stylesheets at the Top

• Rule 6: Put Scripts at the Bottom

• Rule 7: Avoid CSS Expressions

• Rule 8: Make JavaScript and CSS External

• Rule 9: Reduce DNS Lookups

• Rule 10: Minify JavaScript

• Rule 11: Avoid Redirects

• Rule 12: Remove Duplicate Scripts

• Rule 13: Configure ETags

YSlow, as an extension to Firebug, is available only within Firefox. It generates a score
for each rule and an overall score based on a weighted average of the individual rule
scores. It also displays a list of all the resources used in the page as well as overall

Performance Analyzers | 213

http://developer.yahoo.com/yslow/
http://oreilly.com/catalog/9780596529307/
http://oreilly.com/catalog/9780596529307/
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html


statistics (number of requests, total page weight, etc.). It has other useful tools, includ-
ing integration with JSLint and output of all the CSS and JavaScript into a single browser
window for easy searching.

AOL Pagetest
AOL Pagetest and its web-based counterpart, WebPagetest, analyze web pages using
these best practices:

• Enable browser caching of static assets

• Use one CDN for all static assets

• Combine static CSS and JavaScript files

• Gzip-encode all appropriate text assets

• Compress images

• Use persistent connections

• Proper cookie usage

• Minify JavaScript

• No ETag headers

AOL Pagetest is a plug-in for Internet Explorer. WebPagetest is accessible through any
browser; it runs Internet Explorer on the backend server. In addition to performance
analysis, both provide an HTTP waterfall chart, screenshots, page load times, and
summary statistics.

The deployment of this functionality via the WebPagetest web site is intriguing. Web-
Pagetest is fairly popular, but it hasn’t gotten the wide adoption it deserves. It lets you
analyze any web site from any browser, without the hassle of downloading, installing,
and configuring an application or plug-in. It does this by running AOL Pagetest in
Internet Explorer on the WebPagetest site’s backend servers. WebPagetest users, from
any browser, simply enter the URL of the site they want to analyze into the web-based
form, and the results are presented a minute or so later. Figure A-4 shows the results
for http://www.aol.com/.

Making WebPagetest available through a web page form makes it easy to use for
everyone, including nondevelopers, but it does have some limitations. It’s important
to remember that the results are always generated using Internet Explorer running in
WebPagetest’s remote location. This can be confusing. Notice in Figure A-4 that I’m
using Firefox; remembering that these results were produced using Internet Explorer
is a challenge. Similarly, the results do not necessarily reflect your local conditions. If
you’re trying to debug a problem with your current Internet connection, or you’re
loading a page that depends on your current cookies, that can’t be captured by Web-
Pagetest. AOL Pagetest (the downloaded, locally installed Internet Explorer plug-in)
or the other packet sniffers mentioned in the previous section are the choice for ana-
lyzing your current browsing experience.

214 | Appendix: Performance Tools

http://jslint.com/
http://pagetest.wiki.sourceforge.net/
http://www.webpagetest.org/
http://www.aol.com/


Figure A-4. WebPagetest

VRTA
VRTA from Microsoft is short for Visual Round Trip Analyzer. It displays HTTP wa-
terfall charts, but these are more detailed than those found in other tools. VRTA focuses
on network optimization. One key aspect of this is reusing existing TCP connections.
In most HTTP waterfall charts, each HTTP request is a separate horizontal bar. Instead,
VRTA represents each TCP connection as a horizontal bar. This makes it easy to see
how well TCP connections are being utilized. VRTA also shows a bit rate histogram,
to show how well the available bandwidth is utilized.

In addition to its sophisticated network charts, VRTA evaluates the page download
information against the following set of performance best practices:

Performance Analyzers | 215

http://www.microsoft.com/downloads/details.aspx?FamilyID=119F3477-DCED-41E3-A0E7-D8B5CAE893A3


• Open enough ports

• Limit the number of small files to be downloaded

• Load JavaScript files outside of the JavaScript engine

• Turn on keepalives

• Identify network congestion

• Increase network maximum transmission unit (MTU) or TCP window size

• Identify server congestion

• Check for unnecessary round trips

• Set expiration dates

• Think before you redirect

• Use compression

• Edit your CSS

neXpert
neXpert is also from Microsoft. It’s an add-on to Fiddler (see “Packet Sniff-
ers” on page 205 for more information about Fiddler). It uses Fiddler to gather infor-
mation about the resources downloaded for a web page. neXpert analyzes this infor-
mation against a set of performance best practices and produces a report of suggested
improvements. neXpert goes further than other performance analyzers in that it pre-
dicts the impact these improvements might have on the web page’s load time. The list
of performance best practices analyzed by neXpert includes the following:

• HTTP response codes

• Compression

• ETags

• Cache headers

• Connection header

• Cookies

Miscellaneous
The tools in this section address specific web performance areas not covered in the
previous sections. I use all of these tools on a regular, if not daily, basis.

Hammerhead
Improving web performance requires measuring page load times. Although this sounds
simple, in reality it’s extremely difficult to gather load time measurements in an accurate
and statistically sound way that is representative of real-world users. There’s no single

216 | Appendix: Performance Tools

http://www.microsoft.com/downloads/details.aspx?familyid=5975da52-8ce6-48bd-9b3c-756a625024bb


solution. Instead, multiple techniques are required, including measuring real-world
traffic, bucket testing, and scripted or synthetic testing. The problem is that all of these
techniques are costly, in terms of both dollars and calendar time.

I created Hammerhead to make it easier for developers to measure load times early in
the development process. Hammerhead is an extension to Firebug. To test, or “ham-
mer,” a set of web pages, enter the URLs into Hammerhead, along with the number of
measurements desired. Figure A-5 shows an example.

Figure A-5. Hammerhead

Hammerhead loads each URL the specified number of times and records each meas-
urement, as well as the average and median load times. The pages are loaded with both
an empty and a primed cache (Hammerhead manages the cache for you). Although
Hammerhead measurements are gathered under just one set of test conditions (your
development environment), they provide a quick and easy way to compare two or more
web page alternatives.

Smush.it
Smush.it is a service for analyzing and optimizing images in your web page. It was
created by Stoyan Stefanov and Nicole Sullivan, the authors of Chapter 10. Smush.it
tells you how many bytes you can save by optimizing your images, as shown in Fig-
ure A-6. It even produces the optimized images for you as a single ZIP file for easy
download. There is also a Smush.it bookmarklet and Firefox extension, so you can get
similar functionality inside the browser.

Miscellaneous | 217

http://stevesouders.com/hammerhead/
http://smush.it/


Figure A-6. Smush.it

Cuzillion
Almost every day I wonder about or am asked about a performance edge case. Do
external scripts load in parallel if there’s an inline script in between them? What if
there’s an inline script and a stylesheet in between them? Is the behavior the same on
Firefox 3.1 and Chrome 2.0?

Instead of writing a new HTML page for each edge case that comes up, I use Cuzil
lion, shown in Figure A-7. It has a graphical web page “avatar” onto which you can
drag-and-drop different types of resources (external scripts, inline scripts, stylesheets,
inline style blocks, images, and iframes). Clicking on a resource exposes a variety of
configuration settings such as the domain used for loading the resource and how long
it takes to respond.

218 | Appendix: Performance Tools

http://cuzillion.com/
http://cuzillion.com/


Figure A-7. Cuzillion

I created Cuzillion while I was working on Chapter 4. I needed to test hundreds of test
cases. Creating a test framework made this possible in a fraction of the time. The name
comes from the tag line: “‘cuz there are a zillion pages to check.”

UA Profiler
When Google released Chrome, Dion Almaer (coauthor of Chapter 2) asked whether
I was going to review it from a performance perspective. Rather than put Chrome
through the paces manually, I created a set of HTML pages, each of which contains a
specific test: are scripts loaded in parallel, do prefetch links work, and so forth. I then
chained those pages together so that the tests would all run automatically.

UA Profiler, shown in Figure A-8, is this set of browser performance tests. In addition
to providing a performance test suite for browsers, UA Profiler is also a repository for
gathering test results to share with the larger web community. Anyone can point any
web client (as long as it supports JavaScript) at UA Profiler and contribute another data
point to the results database. By allowing the community to execute the tests, I avoid
the cost of running a regression test lab, and also get results under a wider variety of
test conditions.

Miscellaneous | 219

http://stevesouders.com/ua/


Figure A-8. UA Profiler

For web developers, UA Profiler is useful for confirming how a given browser will
perform during a specific optimization. For example, if you’re adding future caching
headers to a redirect but it still doesn’t seem to be cached, you can check UA Profiler
to make sure you’re using a browser that supports redirect caching.

220 | Appendix: Performance Tools



Index

Symbols
+ (plus) operator, 99, 100
:active pseudo-class, 194
:after pseudo-element, 194
:before pseudo-element, 194
:first-child pseudo-class, 194
:first-letter pseudo-element, 194
:first-line pseudo-element, 194
:focus pseudo-class, 194
:hover pseudo-class, 194
:lang pseudo-class, 194
:link pseudo-class, 194
:visited pseudo-class, 194
_ (underscore hack), 149

A
A element, 181
Accept-Encoding HTTP header, 121, 123–124
Adobe Fireworks, 141, 151
Ajax applications

architectural considerations, 4
browser challenges, 4
Facebook example, 21
latency problems, 4
performance considerations, 4
wow features, 5
XHR request function, 111
YSlow analyzer and, 4

Ajax library, 5
Alexa web site, 5
aliases

domain names, 168
JavaScript, 128

Almaer, Dion, xi, 7–19, 219

alpha transparency
Adobe Fireworks, 141
AlphaImageLoader filter and, 146, 148–

151
effects of, 146–148
PNG format, 139
RGBA extension and, 136

AlphaImageLoader filter, 146, 148–151
animation

GIF format, 137, 144
JPEG format, 138
PNG format, 139

antivirus software, 177
AOL

domain sharding, 165–167
Pagetest plug-in, 207, 214

Apple touch icon, 158
Array object (JavaScript), 99
arrays

Duff’s Device and, 98
indexOf method, 95
join method, 99
long-running scripts and, 105
looking up values, 92, 93

asynchronous script loading
document.write Script Tag technique, 33
menu.js code example, 42–44
multiple external scripts, 52–59, 60–62
preserving order, 45–52
race conditions and, 41, 44
Script Defer technique, 32
Script DOM Element technique, 32
Script in Iframe technique, 31
single scripts, 59
undefined symbols and, 41

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

221



XHR Eval technique, 29
XHR Injection technique, 31

attribute selectors, 194
automated code instrumentation, 10–12
Axes of Error

avoiding intersecting, 3
defined, 2
Failure line, 3
Frustration line, 2
Inefficiency line, 2, 4

B
Bayeux PubSub model, 119
browsers

Ajax challenges, 4
alpha transparency, 149
applying stylesheets, 74
busy indicators, 33–35
chunked encoding, 171–180
conditional logic, 92
costs of reading data, 85
design recommendations, 5
identifier resolution, 81
latency problems, 4
loading elements, 181
loading external scripts, 27–29
long-running scripts and, 102
measuring latency, 10–12
observing memory footprint, 18
ordered script execution, 35, 45
parallel script downloads, 29
response time considerations, 9
responsiveness burden, 7
script coupling limitations, 50
SCRIPT DEFER attribute, 33, 73
server connections, 165, 169, 187–190
string concatenation, 99
threading considerations, 8, 12
XHR streaming, 115

C
C language, 110, 118
callback polling, 117
Cederholm, Dan, 148
Charles proxy, 209
child selectors, 193, 196
Chrome browser

chunked encoding and, 179

conditional logic, 92
efficient data access, 85
identifier resolution, 81
loading elements, 181
long-running scripts and, 102
ordered script execution, 45
parallel script downloads, 29
string concatenation, 99
XHR streaming, 115

chunked encoding
defined, 113, 167
performance considerations, 171–180

class selectors, 193, 196
client-server architecture

Comet connections, 119
HTTP support, 165

CNAME record, 168
Comet

background, 109
cross-domain considerations, 116
forever frame, 113
functionality, 109–111
implementation effects, 118–120
incremental rendering, 114
long polling, 112
measuring performance, 119
polling, 111
transport techniques, 111–116
XHR streaming, 115

Comet Maturity Guide, 113
cometD, 119
concatenation, string, 99
conditional logic

array lookup, 92, 93
if statement, 89–91, 92, 93
switch statement, 91, 93, 98

Connection: Keep-Alive header, 166
Content-Encoding header, 123
Content-Length header, 167, 175
Cookie header, 176
coupling scripts

loading multiple scripts, 60–62
loading single scripts, 59
menu.js code example, 42–44
multiple external scripts, 52–59
preserving order asynchronously, 45–52
race conditions, 44

critical path, domain sharding, 161–163
Crockford, Douglas, xi, 1–6, 9, 197

222 | Index



CSS selectors
adjacent sibling selectors, 193
attribute selectors, 194
child selectors, 193, 196
class selectors, 193, 196
defined, 191
descendant selectors, 193, 196
ID selectors, 192, 196
key selectors, 200
measuring, 202
performance considerations, 194–202
pseudo-classes, 194
pseudo-elements, 194
reflow time, 201
selectors to avoid, 200–201
type selectors, 193
types supported, 191–194
universal selectors, 194

CSS sprites, 152–155
CSS stylesheets

AlphaImageLoader property, 141
gzip compression, 122
iframes and, 185, 186
inline script cautions, 74–78
preserving inline script order, 73
processing costs, 5
splitting, 26
stripping whitespace, 127

CSS2 specification, 192
Cuzillion tool, 28, 218

D
data storage, 85–88
DeflateBufferSize directive, 176
Degrading Script Tags technique, 50
descendant selectors, 193, 196
DIV element, 88, 181
do-while loop, 94–95
Document Object Model (see DOM)
document.getElementById method, 32, 128
document.getElementsByClassName method,

76
document.getElementsByTagName method,

88
document.write Script Tag technique, 33, 37,

63
Dojo Foundation, 119
Dojo Toolkit, 111, 119
dojox.analytics.Urchin module, 63

Doloto system, 23, 24
DOM (Document Object Model)

API, 5
browser challenges, 4
cost of elements, 181
efficient data access, 88
long-running scripts and, 103
performance bottlenecks, 6

DOM Element and Doc Write technique, 56–
59

domain sharding
critical path considerations, 161–163
defined, 161
flushing and, 178
HTTP support, 165–167
rolling out, 168
web site examples, 163–165

domains
download bottlenecks, 163
iframes and, 181
splitting resources, 168

downloading scripts (see loading scripts)
Duff, Tom, 97
Duff’s Device, 97

E
eBay, 77
ECMAScript specification, 101
Eich, Brendan, 13, 103
encoding, chunked (see chunked encoding)
epoll technique, 118
Erlang language, 110
ErlyComet, 110
ETag header, 176
eval command, 29–30
event delegation, 125
event queues, 7
execution context

defined, 79
managing, 79–85
scope chain and, 79

ExifTool, 143
Expires: header, 157, 158
external scripts

browser download process, 27–29
defined, 27
SCRIPT SRC attribute and, 73
splitting initial payload, 21–26

Index | 223



F
Facebook web site

domain sharding, 169
off-board approach, 111
splitting initial payload, 21–23

favicons, 157
Fettig, Abe, 117
Fiddler proxy, 208
Firebug tool, 207, 209
Firefox browser

alpha transparency, 149
browser busy indicators, 34
conditional logic, 92
efficient data access, 85
favicon support, 158
Firebug add-on, 209
Gears plug-in, 14
JavaScript code profiler, 11, 22, 23
loading elements, 181
long-running scripts and, 102
ordered script execution, 36
parallel script downloads, 29
script coupling techniques, 57
SCRIPT DEFER attribute, 73
server connections, 166, 169
Smush.it tool support, 144
string concatenation, 99
XHR streaming, 115, 118

flow control, 88
flush function, 172–173, 179
flushing

alternative support, 179
antivirus software and, 177
checklist for, 180
chunked encoding and, 175
domain blocking during, 178
gzip compression and, 176
output buffering and, 173–175
proxies and, 177
Simple Page example, 171–173

for loop, 94–95
for-in loop, 94, 96
forever-frame technique, 113–115
functions

scope chains and, 80
Scope property, 80
stub, 24

G
Galbraith, Ben, xi, 7–19
garbage collection, 17
GD image library, 156
Gears browser plug-in, 13, 14
Gentilcore, Tony, xii, 121–132
GIF format

characteristics, 137
converting to PNG, 144
optimizing animations, 144
PNG comparison, 140
typical uses, 135

Gifsicle tool, 144
global variables, 80, 83
Gmail Talk, 114
Google, 29

(see also Chrome browser)
CSS sprites, 153

Google Analytics, 42, 52, 63–65
Google Calendar, 25
Google Gears, 13, 14
gradients, alpha transparency, 146
graphics

alpha transparency, 146
defined, 135
GIF format, 135
PNG format, 138
RGB color model, 136

Greenberg, Jeff, 97
gzip compression

direct detection, 130–132
educating users, 129
effects of disabling, 121–124
flushing and, 176
minimizing uncompressed size, 125–129
real-world savings, 128

H
Hammerhead tool, 216
Hardcoded Callback technique, 46
horizontal scanning

GIF format, 137
PNG format, 139

hostname
browser connections, 187–190
domain sharding, 168

HTML
avoiding inline styling, 127

224 | Index



chunked encoding, 175
gzip compression, 122
iframe support, 181
postMessage method, 117
stripping attribute quotes, 127
stripping whitespace, 127

HTMLCollection object, 88, 95
HTTP specification

chunked encoding, 113, 167, 171–180
Comet support, 109, 119
cross-domain considerations, 117
domain sharding, 165–167
managing connections, 118

HTTP waterfall charts, 25, 172, 184
HttpWatch packet sniffer, 206
Hyatt, David, 195, 196, 203

I
IBM Page Detailer, 208
ID selectors, 192, 196
if statement, 89–91, 92, 93
IFRAME element, 181
iframes

benefits, 181
blocking onload event, 182–184
connection sharing, 187
cost considerations, 32, 190
forever-frame technique, 113
functionality, 181
loading elements, 181
parallel downloads, 184–186
stylesheets and, 185, 186

image formats
background, 135
characteristics, 137–141
graphics versus photos, 135
interlacing, 136
pixels and, 135
RGB color model, 135
RGBA extension, 136
transparency, 136
truecolor versus palette, 136

image optimization
alpha transparency, 146–151
Apple touch icon, 158
automated, 141–145
avoid scaling images, 155
favicons, 157
generated images, 155–157

image formats, 135–141
optimizing sprites, 152–155
process steps, 134

ImageMagick, 144, 155
identify utility, 144

index (palette), 136
inline frames (see iframes)
inline scripts

blocking parallel downloads, 69–73
coupling, 41
defined, 27
loading multiple scripts, 60–62
loading single scripts, 59
menu.js code example, 42–44
multiple external scripts and, 52–59
ordered execution, 44
preserving CSS/JavaScript order, 73
preserving order asynchronously, 45–52
race conditions, 44
stylesheet cautions, 74–78

interlacing
functionality, 136
GIF format, 138
JPEG format, 138
PNG format, 139

Internet Explorer browser
Alexa performance data, 5
AlphaImageLoader filter, 146, 148
browser busy indicators, 34
conditional logic, 92
Developer Toolbar, 211
efficient data access, 85
forever-frame technique, 114
Gears plug-in, 14
loading elements, 181
long-running scripts and, 102
ordered script execution, 35, 45
parallel script downloads, 29, 33
progressive JPEG, 138
SCRIPT DEFER attribute, 32, 73
server connections, 165, 169
string concatenation, 99
transparency quirks, 140, 146
XHR streaming, 115

IP address, domain sharding, 168

J
java.nio package, 118
JavaScript

Index | 225



Ajax library support, 5
Alexa performance data, 5
alias names, 128
bottleneck assumptions, 6
browser challenges, 4
code profiler support, 11, 22, 23
creating responsive applications, 7–9
Doloto support, 23, 24
efficient data access, 85–88
Facebook example, 21–23
flow control, 88–98
garbage collection considerations, 17
gzip compression, 122
long-running scripts, 102–107
managing scope, 79–85
measuring latency, 10–12
performance considerations, 79, 107
preserving inline script order, 73
response time considerations, 10
script download techniques, 29–40
SCRIPT tag support, 27
splitting initial payload, 21–26
string manipulation, 99–101
threading limitations, 13, 102
timer support, 16
Web Worker API, 14
WorkerPool API, 13

Jetty, 119
JPEG format

characteristics, 138
lossy optimizations, 134
PNG comparison, 140
progressive JPEG, 138, 145
stripping metadata, 143
typical uses, 135

jpegtran tool, 143
jQuery framework, 42, 50, 52
js.io library, 111
JSMin, 127
JSON

Ajax performance, 4
for-in loop support, 96

JSONP polling, 117

K
key selectors, 200
Knuth, Donald, 1
Koçulu, Azer, 209
Koechley, Nate, 191

kqueue technique, 118

L
latency

Ajax problems, 4
Comet considerations, 118
measuring, 10–12

Lawrence, Eric, 208
Lecomte, Julien, 106
Levithan, Steven, 101
Liberator, 119
Lightstreamer, 119
link element (favicon), 157
Linux operating system, 118
literals, performance costs, 85
loading scripts, 41

(see also asynchronous script loading)
asynchronously, 41
blocking behavior, 27–33
browser busy indicators, 33–35
loading multiple scripts, 52–59, 60–62
loading single scripts, 59
menu.js code example, 42–44
ordered execution, 28, 35, 44
parallel downloads with iframes, 184
preserving order asynchronously, 45–52
race conditions, 44
SCRIPT SRC attribute, 73
techniques for, 29, 36–40

local variables, 81, 85
logging (manual code instrumentation), 10
long polling, 112
loops

aliasing in, 128
do-while loop, 94–95
for loop, 94–95
for-in loop, 94, 96
long-running scripts and, 103
nested, 3
performance boosts, 94–98
unrolling, 97–98
while loop, 94–95, 175

loops (optimizing), 2
lossy optimization

JPEG format, 138
quality loss, 134

LZW compression algorithm, 137

226 | Index



M
Managed XHR technique, 52–56
manual code instrumentation, 10
Meebo web site

on-board approach, 111
optimizing polling, 113

memory
AlphaImageLoader filter and, 150
effects on response time, 17
observing footprint in browsers, 18
physical, 18
troubleshooting issues, 18
virtual, 18

metadata, stripping from JPEG files, 143
Microsoft

neXpert add-on, 216
VRTA tool, 208, 215

Microsoft Internet Explorer (see Internet
Explorer)

Microsoft Research, 23
mountaintop corners, 147
MSN, 77
MySpace, 77

N
nested loops, 3
neXpert add-on, 216
Nielsen, Jakob, 9
Nitro JavaScript engine, 81
nonlossy compression

GIF format, 137
PNG format, 139
simplifying optimization, 134

Norton Internet Security, 125

O
object.hasOwnProperty method, 96
off-board approach, 110
on-board approach, 110
onComplete function, 107
onload event

browser busy indicators, 33
executing inline scripts, 72
iframes blocking, 182–184
script coupling support, 47, 49
splitting initial payload, 22, 24

onreadystatechange event, 49, 115
onunload function, 115, 183

Opera browser
alpha transparency, 149
browser busy indicators, 34
conditional logic, 92
efficient data access, 85
loading elements, 181
long-running scripts and, 102
script coupling techniques, 57
string concatenation, 99

optimization, 133
(see also image optimization)
CSS sprites, 152–155
determining “fast enough”, 9–10
principles of, 1–4
string, 99–101
threading considerations, 12

OptiPNG tool, 142
Orbited web site, 118
output buffering, 173–175
output_buffering directive, 174

P
packet sniffers, 205
palette image formats, 136
palette PNG

alpha transparency, 151
alternate names, 139
converting from truecolor PNG, 141
GIF format and, 139
graphics support, 135
transparency quirks, 140
truecolor PNG versus, 136

performance, 133
(see also image optimization)
Ajax applications, 4
Alexa performance data, 5
AlphaImageLoader filter and, 149
chunked encoding and, 171–180
costs of reading data, 85
creating responsive applications, 7–19
CSS selectors, 194–202
DOM bottlenecks, 6
Duff’s Device and, 98
efficient data access and, 85–88
ensuring responsiveness, 13–19
flow control and, 88
gzip compression and, 121–132
iframes and, 181
JavaScript considerations, 79, 107

Index | 227



loading scripts without blocking, 41
long-running scripts and, 102–107
loops and, 94–98
managing execution context, 79–85
measuring for Comet, 119
measuring latency, 10–12
principles of optimization, 1–4
response time considerations, 9
scaling with Comet, 109–120
string optimization and, 99–101
threading considerations, 12
virtual memory, 18

performance analyzers, 211–216
performance tools

miscellaneous, 216–220
packet sniffers, 205
web development, 209

Perl language, 179
persistent connections, 166
photos

alpha transparency, 146
defined, 135
JPEG format, 139, 140

PHP language
Comet restraints, 110
flush function, 172–173
GD image library, 156
output buffering, 173–175
str_pad function, 177

physical memory, 18
Pixelformer utility, 158
pixels

defined, 135
transparency, 137

plus (+) operator, 99, 100
PNG format

characteristics, 139
converting from GIF, 144
crushing PNGs, 141
GIF comparison, 140
JPEG comparison, 140
palette PNG, 135, 136, 139, 140, 151
transparency quirks, 140
truecolor PNG, 136, 139, 140
typical uses, 135

pngcrush tool, 142, 156
pngng tool, 141, 151
PngOptimizer tool, 142
PNGOUT tool, 142

pngquant tool, 141, 156
PNGslim tool, 143
polling, 111
profiling (automated code instrumentation),

10–12
progressive JPEG, 138, 145
Project Triangle, 1
proxies, 177
Proxy-Connection header, 177
pseudo-classes, 194
pseudo-elements, 194
Publish-Subscribe (PubSub) model, 119
Python language, 110, 179

R
race conditions

asynchronous script loading and, 41, 44
ordered script execution and, 35
splitting initial payload and, 24

reading data, 85
recursion, long-running scripts and, 103
reflow time, 201
Reflow Timer, 202
relative URLs, 126
Resig, John, 50
response time

determining “fast enough”, 9–10
effects of memory, 17
web page considerations, 133

RFC 1808, 126
RFC 2616, 123, 165
RGB color model, 135
RGBA extension, 136
RIAs (Rich Internet Applications), 137
Rich Internet Applications (RIAs), 137
rounded corners, 147
Ruby language, 179
Russell, Alex, 109

S
Safari browser

alpha transparency, 149
chunked encoding and, 179
conditional logic, 92
efficient data access, 85
Gears plug-in, 14
identifier resolution, 81
loading elements, 182

228 | Index



long-running scripts and, 102
ordered script execution, 45
parallel script downloads, 29
string concatenation, 99
Web Inspector Resources Panel, 208, 210
XHR streaming, 115

Schiemann, Dylan, xii, 109–120
scope (see execution context)
scope chain

augmenting, 83–85
functionality, 79
functions and, 80
global variables and, 80
local variables and, 81

SCRIPT DEFER attribute
functionality, 32
inline script blocking, 70, 73

Script Defer technique, 32, 37, 40
script DOM element

innerHTML property, 51
setting SRC property, 32
XHR Injection technique, 31

Script DOM Element technique, 32, 37, 40
Script in Iframe technique, 31, 37, 39
Script Onload technique, 45, 49
SCRIPT SRC attribute

browser busy indicators, 33
functionality, 27
loading external scripts, 73

SCRIPT tag
blocking behavior, 27, 41
Degrading Script Tags technique, 50
document.write support, 33
functionality, 27
JSONP support, 117
loading, 181

scripts (see coupling scripts; external scripts;
inline scripts; loading scripts)

setTimeout function (JavaScript)
inline script execution, 71
long-running scripts and, 103
shim libraries, 16
Timer technique, 16, 48

sharding, domain (see domain sharding)
Shea, Dave, 152
Shinde, Swapnil, 213
ShrinkSafe, 127
sibling selectors, 193
Simon, Lindsey, 202

slashdot.org, 126
smart polling, 113
Smush.it tool, 144, 217
sort function, 107
splitting initial payload

Facebook example, 21–23
finding the split, 23
Google Calendar case study, 25
race conditions, 24
undefined symbols, 24

Squid proxy, 177
Stefanov, Stoyan, xii, 133–159, 217
storing data, 85–88
strings

concatenating, 99
optimizing, 99–101
replace method, 100
trimming, 100

str_pad function, 177
stub functions, 24
STYLE element, 181
stylesheets (see CSS stylesheets)
Sullivan, Nicole, xii, 133–159, 191
switch statement, 91, 93, 98
Sykes, Jon, 197, 198
symbols, undefined

asynchronous script loading and, 41
ordered script execution and, 35
splitting initial payload and, 24

T
threading

browser limitations, 8, 12
Comet considerations, 110
JavaScript limitations, 13, 102
performance considerations, 12
task switching and, 16

Timer technique, 48
timers

controlling execution, 16
long-running scripts and, 103–107

Trailer header, 176
Transfer-Encoding: chunked header, 175
transparency

alpha, 136, 139, 141, 146–151
defined, 136
GIF format, 137
JPEG format, 138
PNG format, 139, 140

Index | 229



transport techniques
forever-frame, 113–115
long polling, 112
polling, 111
WebSocket support, 116
XHR streaming, 115

trim function, 100
troubleshooting memory issues, 18
truecolor image formats, 136
truecolor PNG

alternate names, 140
converting to palette PNG, 141
JPEG format and, 139
palette PNG versus, 136
transparency quirks, 140

try-catch block, 85
Twisted Python, 118
type selectors, 193

U
UA Profiler tool, 219
UI element, 24
underscore hack ( _ ), 149
universal selectors, 194
unrolling the loop, 97–98

V
variables

global, 80
local, 81, 85

Velocity 2008 conference, 5
Via header, 177
virtual memory, 18
Visual Round Trip Analyzer (VRTA), 208, 215
VML, 141
VRTA (Visual Round Trip Analyzer), 208, 215

W
Walker, Alex, 151
waterfall charts, HTTP, 25, 172, 184
web applications

ensuring responsiveness, 13–19
Google Calendar case study, 25
implementation effects, 118–120
measuring latency, 10–12
polling, 111
response time considerations, 9, 17
responsiveness issues, 7–9

splitting initial payload, 21–26
threading considerations, 12
timer support, 16
troubleshooting memory issues, 18
virtual memory, 18
Web Worker API, 14

web development tools, 209
Web Inspector Resources Panel, 208, 210
web pages

Ajax performance, 4
challenges in splitting code, 24
chunked encoding, 171–180
finding the split, 23
frozen, 102, 149
ordered execution of scripts, 35
paging considerations, 18
performance issues, 18
rendering recommendations, 21
response time considerations, 133
splitting initial payload, 21–23

web performance (see performance)
web sites

domain sharding examples, 163–165
performance rules, xiii
polling, 111

Web Worker API, 14
WebSocket, 116
while loop, 94–95, 175
whitespace, 127
Wikipedia

domain sharding, 165–167
stylesheets and inline scripts, 78

Willow Chat, 118
Window Onload technique, 47
Windows operating system, 118
Wireshark, 209
with statement, 83
WorkerPool API, 13

X
X-Forwarded-For header, 177
XHR (XMLHttpRequest)

cross-domain considerations, 116
functionality, 17
loading techniques, 29–30, 31
long polling, 113
XHR streaming, 115

XHR Eval technique, 29, 37, 39
XHR Injection technique, 31, 37, 39

230 | Index



XMLHttpRequest (see XHR)
XMPP protocol, 119

Y
Yahoo!

CSS sprites, 152
domain sharding, 168
YUI Library, 42

Yahoo! Search, 150, 157
YouTube web site, 164, 169
YSlow analyzer, 4, 213
YUI Compressor, 127
YUI Loader Utility, 65–67

Z
Zakas, Nicholas C., xii, 79–108

Index | 231





About the Author
Steve Souders works at Google on web performance and open source initiatives. His
books, High Performance Web Sites and Even Faster Web Sites, explain his best practices
for performance along with the research and real-world results behind them. Steve is
the creator of YSlow, the performance analysis extension to Firebug with more than 1
million downloads. He serves as cochair of Velocity, the web performance and opera-
tions conference sponsored by O’Reilly, and is cofounder of the Firebug Working
Group. Steve taught CS193H: High Performance Web Sites at Stanford, and he fre-
quently speaks at such conferences as OSCON, SXSW, Web 2.0 Expo, and The Ajax
Experience.

Steve previously worked at Yahoo! as the Chief Performance Yahoo!, where he blogged
about web performance on Yahoo! Developer Network. He was named a Yahoo!
Superstar. Steve worked on many of the platforms and products within the company,
including running the development team for My Yahoo!. Prior to Yahoo!, Steve worked
at several small- to mid-sized startups, including two companies he cofounded, Helix
Systems and CoolSync. He also worked at General Magic, WhoWhere?, and Lycos.

In the early 80s, Steve caught the Artificial Intelligence bug and worked at a few com-
panies doing research on Machine Learning, including several publications and con-
ference appearances. He received a BS in systems engineering from the University of
Virginia and an MS in management science and engineering from Stanford University.

Steve’s interests are varied. He’s played basketball with several NBA and WNBA play-
ers. He was a member of the Universal Studios Internet Task Force. He participated in
setting a Guinness world record. He rebuilt a 90-year-old carriage house. He has a
wonderful wife and three daughters.

Colophon
The animal on the cover of Even Faster Web Sites is a blackbuck antelope (Antilope
cervicapra), an endangered species found mainly in India, also known as the Indian
antelope. The V-shaped horns of the male blackbuck are ringed with several spiral
twists and can be as long as 28 inches. The male’s upper body is black or dark brown,
and its belly and the rings around its eyes are white. The female is light brown and does
not normally have a horn. Blackbucks roam the plains in herds of 15 to 20, feeding on
grasses, flowers, and fruits. On the open plain, the blackbuck is one of the fastest ani-
mals on earth, able to reach speeds of 45 mph and outrun most predators over long
distances.

From the 18th through the early 20th centuries, the blackbuck antelope was the most
hunted wild animal in India. In 1932, several species of Indian deer and antelope, in-
cluding the blackbuck, were introduced to Texas for hunting and breeding. Today,
these species live on private hunting ranches and roam the surrounding hill country.

http://oreilly.com/catalog/9780596529307/


They are so plentiful—having multiplied to 19,000 throughout the state—that many
have been shipped to India to repopulate the native habitat.

Now protected in India by the Wildlife Protection Act of 1972, the blackbuck popu-
lation is steady at 50,000 native animals, plus 43,000 descended from Texas and other
populations. Although poaching is still a problem and humans have encroached on its
land, its protected status gained attention in 2006 when Indian film star Salman Khan
was sentenced to five years in jail for killing two blackbucks. According to Hindu
mythology, the blackbuck is considered to be the vehicle of the moon god, Chandrama,
and is believed to bestow prosperity wherever it lives.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.


	Table of Contents
	Credits
	Preface
	How This Book Is Organized
	JavaScript Performance
	Network Performance
	Browser Performance

	Conventions Used in This Book
	Comments and Questions
	Using Code Examples
	Safari® Books Online
	Acknowledgments

	Chapter 1. Understanding Ajax Performance
	Trade-offs
	Principles of Optimization
	Ajax
	Browser
	Wow!
	JavaScript
	Summary

	Chapter 2. Creating Responsive Web Applications
	What Is Fast Enough?
	Measuring Latency
	When Latency Goes Bad

	Threading
	Ensuring Responsiveness
	Web Workers
	Gears
	Timers
	Effects of Memory Use on Response Time
	Virtual Memory
	Troubleshooting Memory Issues

	Summary

	Chapter 3. Splitting the Initial Payload
	Kitchen Sink
	Savings from Splitting
	Finding the Split
	Undefined Symbols and Race Conditions
	Case Study: Google Calendar

	Chapter 4. Loading Scripts Without Blocking
	Scripts Block
	Making Scripts Play Nice
	XHR Eval
	XHR Injection
	Script in Iframe
	Script DOM Element
	Script Defer
	document.write Script Tag

	Browser Busy Indicators
	Ensuring (or Avoiding) Ordered Execution
	Summarizing the Results
	And the Winner Is

	Chapter 5. Coupling Asynchronous Scripts
	Code Example: menu.js
	Race Conditions
	Preserving Order Asynchronously
	Technique 1: Hardcoded Callback
	Technique 2: Window Onload
	Technique 3: Timer
	Technique 4: Script Onload
	Technique 5: Degrading Script Tags

	Multiple External Scripts
	Managed XHR
	DOM Element and Doc Write

	General Solution
	Single Script
	Multiple Scripts

	Asynchronicity in the Real World
	Google Analytics and Dojo
	YUI Loader Utility


	Chapter 6. Positioning Inline Scripts
	Inline Scripts Block
	Move Inline Scripts to the Bottom
	Initiate Execution Asynchronously
	Use Script Defer

	Preserving CSS and JavaScript Order
	Danger: Stylesheet Followed by Inline Script
	Inline Scripts Aren’t Blocked by Most Downloads
	Inline Scripts Are Blocked by Stylesheets
	This Does Happen


	Chapter 7. Writing Efficient JavaScript
	Managing Scope
	Use Local Variables
	Scope Chain Augmentation

	Efficient Data Access
	Flow Control
	Fast Conditionals
	The if statement
	The switch statement
	Another option: Array lookup
	The fastest conditionals

	Fast Loops
	Simple loop performance boosts
	Avoid the for-in loop
	Unrolling loops


	String Optimization
	String Concatenation
	Trimming Strings

	Avoid Long-Running Scripts
	Yielding Using Timers
	Timer Patterns for Yielding

	Summary

	Chapter 8. Scaling with Comet
	How Comet Works
	Transport Techniques
	Polling
	Long Polling
	Forever Frame
	XHR Streaming
	Future Transports

	Cross-Domain
	Effects of Implementation on Applications
	Managing Connections
	Measuring Performance
	Protocols

	Summary

	Chapter 9. Going Beyond Gzipping
	Why Does This Matter?
	What Causes This?
	Quick Review
	The Culprit
	Examples of Popular Turtle Tappers

	How to Help These Users?
	Design to Minimize Uncompressed Size
	Use event delegation
	Use relative URLs
	Strip whitespace
	Strip attribute quotes
	Avoid inline styling
	Alias JavaScript names
	Real-world savings

	Educate Users
	Direct Detection of Gzip Support
	Performing the test
	Using the result
	Measuring the effectiveness



	Chapter 10. Optimizing Images
	Two Steps to Simplify Image Optimization
	Image Formats
	Background
	Graphics versus photos
	Pixels and RGB
	Truecolor versus palette image formats
	Transparency and alpha channel (RGBA)
	Interlacing

	Characteristics of the Different Formats
	GIF
	JPEG
	PNG

	More About PNG
	PNG8, PNG24, and PNG32
	Comparing PNG to the other formats
	Comparison to GIF
	Comparison to JPEG
	PNG transparency quirks
	PNG8 and image editing software


	Automated Lossless Image Optimization
	Crushing PNGs
	Pngcrush
	Other PNG optimization tools

	Stripping JPEG Metadata
	Converting GIF to PNG
	Optimizing GIF Animations
	Smush.it
	Progressive JPEGs for Large Images

	Alpha Transparency: Avoid AlphaImageLoader
	Effects of Alpha Transparency
	Mountaintop corners

	AlphaImageLoader
	Problems with AlphaImageLoader
	In the wild: A Yahoo! Search case study

	Progressively Enhanced PNG8 Alpha Transparency

	Optimizing Sprites
	Über-Sprite Versus Modular Sprite
	Highly Optimized CSS Sprites

	Other Image Optimizations
	Avoid Scaling Images
	Crush Generated Images
	Favicons
	Apple Touch Icon

	Summary

	Chapter 11. Sharding Dominant Domains
	Critical Path
	Who’s Sharding?
	Downgrading to HTTP/1.0
	Rolling Out Sharding
	IP Address or Hostname
	How Many Domains
	How to Split Resources
	Newer Browsers


	Chapter 12. Flushing the Document Early
	Flush the Head
	Output Buffering
	Chunked Encoding
	Flushing and Gzip
	Other Intermediaries
	Domain Blocking During Flushing
	Browsers: The Last Hurdle
	Flushing Beyond PHP
	The Flush Checklist

	Chapter 13. Using Iframes Sparingly
	The Most Expensive DOM Element
	Iframes Block Onload
	Parallel Downloads with Iframes
	Script Before Iframe
	Stylesheet Before Iframe
	Stylesheet After Iframe

	Connections per Hostname
	Connection Sharing in Iframes
	Connection Sharing Across Tabs and Windows

	Summarizing the Cost of Iframes

	Chapter 14. Simplifying CSS Selectors
	Types of Selectors
	ID Selectors
	Class Selectors
	Type Selectors
	Adjacent Sibling Selectors
	Child Selectors
	Descendant Selectors
	Universal Selectors
	Attribute Selectors
	Pseudo-Classes and Pseudo-Elements

	The Key to Efficient CSS Selectors
	Rightmost First
	Writing Efficient CSS Selectors

	CSS Selector Performance
	Complex Selectors Impact Performance (Sometimes)
	CSS Selectors to Avoid
	Reflow Time

	Measuring CSS Selectors in the Real World

	Appendix. Performance Tools
	Packet Sniffers
	HttpWatch
	Firebug Net Panel
	AOL Pagetest
	VRTA
	IBM Page Detailer
	Web Inspector Resources Panel
	Fiddler
	Charles
	Wireshark

	Web Development Tools
	Firebug
	Web Inspector
	IE Developer Toolbar

	Performance Analyzers
	YSlow
	AOL Pagetest
	VRTA
	neXpert

	Miscellaneous
	Hammerhead
	Smush.it
	Cuzillion
	UA Profiler


	Index

