
www.allitebooks.com

http://www.allitebooks.org

FuelPHP Application
Development Blueprints

Supercharge your projects by designing and
implementing web applications with FuelPHP

Sébastien Drouyer

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FuelPHP Application Development Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1200215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-540-1

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sébastien Drouyer

Reviewers
Ivan Đurđevac

Márk Sági-Kazár

Kenji Suzuki

Aravind Udayashankara

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Nikhil Chinnari

Content Development Editor
Melita Lobo

Technical Editors
Sebastian Rodrigues

Mohita Vyas

Copy Editors
Pranjali Chury

Sameen Siddiqui

Ashwati Thampi

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Kevin McGowan

Linda Morris

Indexer
Tejal Soni

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sébastien Drouyer is a computer science research engineer from France. He
has a master's degree in computer science from the National Institute of Applied
Sciences of Lyon, one of the most prestigious engineering schools in France. He has
been developing web applications since 2005 and has won various contests and
awards from GitHub, NASA, and Intel. He has also been a member of the Novius
OS core team (an open source content management system based on the FuelPHP
framework) and published many additional open source projects. He has trained
several teams on FuelPHP and is a conference speaker on the subject.

First of all, I would like to thank the FuelPHP core team and its
community for improving this wonderful framework every day.

If there are only a countable number of errors in this book, then it
is due to Aravind Udayashankara, Kenji Suzuki, Sági-Kazár Márk,
Ivan Đurđevac, Craig Hooghiem, and John Alder who all did
excellent reviews.

I would like to salute the amazing Novius OS core team and I wish
them the best in their future endeavors.

I would also like to thank the Packt Publishing team, especially
Melita Lobo, for their patience and professionalism.

Last, but not least, I would like to thank my very supportive family
and friends. A special thanks to my mother and father for making
me the person I am today; I wouldn't be here without you two.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ivan Đurđevac is a PHP developer from Serbia, Pančevo. Long time ago, he found
out the "development" word with Delphi. Prior to 2000, the Web was a huge deal,
and he decided to pick PHP as his main tool. He started with CodeIgniter as his first
framework. After a while, he realized that CodeIgniter did not allow him to write
beautiful code to solve problems with design patterns, and he saw it would stay that
way, trapped in PHP4. So, he switched to Kohana and Zend Framework and it was
a big step forward. FuelPHP was a new kid on the block. It took all the best features
from others and created a modern framework. He used FuelPHP to build large-scale
applications. At the time this book was written, he used Laravel as his codebase. No
matter which framework he uses, clean code is always a priority for him. He will
never stop learning from better developers and modern practices.

He has worked for various companies on many projects, such as e-learning platforms,
CMS-ES, social network sites, and business applications. Currently, he is working for
a USA-based company that builds various internet marketing tools, which collaborate
with AWeber, Infusionsoft, and other tools. He is also interested in DevOps and likes
to play with Linux administration and set up server boxes and maintain them.

Márk Sági-Kazár was previously working with CodeIgniter, and picked up
FuelPHP in 2011. Since 2014, he has been actively developing for FuelPHP, starting
with the E-mail package. From the autumn of 2014, he has been an official member of
the FuelPHP team.

Mark started playing with programming at the age of 6. While in high school, he
worked with several Microsoft languages; Visual Basic is one of them. After finishing
high school, he switched to PHP as his programming language of choice. Starting
with CodeIgniter, he quickly switched to FuelPHP and delivered his first production
application (an e-commerce site) in 2012, followed by IndigoPHP in 2013, which is an
application framework and CMS built on top of FuelPHP. Besides his work on FuelPHP
V2, he's currently working on some good quality packages such as a SupervisorPHP
(http://supervisorphp.com) and shopping cart abstraction, to name some.

www.allitebooks.com

http://www.allitebooks.org

Kenji Suzuki is a programmer and web developer living in Japan. He is a
contributor to FuelPHP, BEAR.Sunday, CodeIgniter, and many other open source
projects. He is a PHP expert, Certified PHP 5 Engineer Expert by the Engineer
Certification Corporation for PHP (http://www.phpexam.jp/about/English/),
and coauthor of the Japanese best-seller and highly-praised PHP recipe book, PHP
gyakubiki reshipi, SHOEISHA.Co.,Ltd. He has published several books about PHP with
famous Japanese IT book publishers. His latest book is Hajimeteno Framework toshiteno
FuelPHP, Rutles, Inc. You can find the repositories of his various projects on GitHub
at https://github.com/kenjis.

Aravind Udayashankara is an autodidactist and software engineer. He has been
working on several open source server-side technologies, such as NodeJS, PHP, and
Ruby, and browser-side technologies such as AJAX, JavaScript, XML, HTML, and
many more since 2008. He loves and enjoys to learn, understand, and express complex
things, as well as blog on his own website, http://aravindhu.com. He is now eagerly
eyeing the world of mobile application development and big data.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Building Your First FuelPHP Application 7

About FuelPHP 8
Development process of a FuelPHP application 9
Installing the environment 10

Windows 10
Mac 10
Ubuntu 11
Recommended modules and extensions 11
Getting the FuelPHP framework 11
Installing FuelPHP 1.7.2 12

Downloading the appropriate ZIP file 12
Using Composer 12

Updating FuelPHP 13
Installation directory and apache configuration 13

The simplest way 13
By setting up a virtual host 14

FuelPHP basics 15
The FuelPHP file system hierarchy 16

The app directory 16
The packages 18
Class name, paths, and coding standard 18

MVC, HMVC, and how it works on FuelPHP 19
What is MVC? 19
How it works on FuelPHP? 21
What is HMVC? 28

The oil utility and the oil console 28
Building your first application 33

Database configuration 34
Scaffolding 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Migrating 36
Using your application 39
Refining the application 42

Refining the monkey listing 43
Refining the monkey detailed view 45
Allowing an empty description 47
Checking whether the height is a float 49
Using a checkbox instead of an input for the still_here attribute 50
Setting custom routes 52
Removing useless routes and files 52

A few notes about deploying your application 52
Summary 53

Chapter 2: Building a To-do List Application 55
Specifications 56
Conception 56
FuelPHP installation and configuration 57
Scaffolding 58
Routes configuration 59
The profiler 59
Models, relations, and the ORM 61

Differences between CRUD and ORM 62
The FuelPHP ORM 62

DB and ORM basics 63
ORM relations 72
Observers and events 81

Implementation of the to-do list 82
Allowing the user to see and change tasks' status 82
Allowing the user to add tasks 86
Allowing the user to change tasks' order 88
Axis of improvements 90

Summary 90
Chapter 3: Building a Blog Application 91

Specifications 92
Conception 92
Preliminary steps 94
Scaffolding the posts 95
Migrating part 1 96
The administration panel 96
The Auth package 98
Creating the Blog module 99

Moving files to the Blog module 99
Improving the navigation bar 101

Table of Contents

[iii]

Scaffolding the rest of our project 104
Scaffolding categories 105

Generating files 105
Moving categories to the blog module 105
Migrating 106

Scaffolding comments 106
Scaffolding posts (front) 107

Refining the administration panel 109
Refining the posts administration panel 109

Improving the post creation and edition forms 109
The posts' list 116

Refining the categories administration panel 118
Removing the View link 118
Adding the number of post's column 118

Refining the comments administration panel 121
Improving the comments listing 121
Improving the comment edition form 123

Protecting your website against CSRF attacks 125
Protecting links 126
Protecting forms 127

Refining the front-end 128
Refining the posts' listing 128

Deleting useless features 128
Changing how the posts' listing is displayed 128
Adding pagination 130
Using posts' slug 132
Listing posts by categories 133
Adding indexes 135

Refining the posts' visualization webpage 136
Changing the post layout 136
Adding the comment form 138
Displaying comments 142
Notifying the author when a new comment is posted 143

Clearing rejected comments 145
Additional improvements 147
Summary 148

Chapter 4: Creating and Using Packages 149
What are CAPTCHAs? 149
Preliminary steps 150
Generating the sample application 150
The reCAPTCHA solution 151

Installing the recaptcha package 151
Configuring the recaptcha package 152
Integrating the recaptcha package 152

Table of Contents

[iv]

Creating your own package 154
Conception 155
Generating the package 155
Generating the Captcha_Answer model 158
Migrating the package 158
Integrating the package into our application 159
Implementing the get_html method 161
Implementing the CAPTCHA verification method 163
Cleaning old captchas 163
Possible improvements 164

Summary 165
Chapter 5: Building Your Own Restful API 167

Specifications 167
Conception 168
FuelPHP installation and configuration 169
The Parser package and template engines 170
A major benefit of language-agnostic template engines 171
Subscription and authentication features 175

Implementing the subscription and authentication forms 176
Handling the signup form 182
Handling the signin form 185
Allowing the user to sign out 186

Allowing the user to create and view posts 188
Generating the Post model 188
Allowing the user to create new posts 189

Implementing the user interface 189
Implementing the post creation action 195

Implementing the profile page 199
Configuring the routes 199
Creating the user model 200
Implementing the show action 201
Implementing views 202

Implementing the API 207
Implementing the base controller 207
Implementing your first hybrid action 209
Implementing mappers to control how the information is shared 209

Improving the listing 212
Giving JavaScript access to our Mustache views 212
Implementing the post/list action 216
Implementing the See more button 218
Redirecting the home page to the logged user's web page 222

Table of Contents

[v]

Unit tests 222
Possible improvements 227
Summary 227

Chapter 6: Building a Website Using Novius OS 229
About Novius OS 229
Getting Novius OS 230
Configuring Novius OS 230
Exploring Novius OS 231

The applications manager 232
The Novius OS desktop 234
Novius OS' front and the default homepage 235
The Webpages application 235
Novius OS templates 237
The App Desk 239
Inserting enhancers in your webpages 241

The Novius OS file system hierarchy 244
Applications folder structure 245
Files extensions 246
Configurations and classes 246

Creating an application 247
Installing the 'Build your app' wizard 247
Generating the application 247
Testing your generated application 250
Application basics 251

The metadata configuration file 252
The migration files 252
The App desk 252
The edition and creation forms 254
The front controller 255

More about Novius OS 257
Summary 257

Index 259

Preface
The main idea behind FuelPHP Application Development Blueprints is to teach you
FuelPHP's basic and advanced features by building various projects of increasing
levels of complexity. It is very result-oriented; at the beginning of the chapters, we
specify the application we want to build, and then we progressively implement it
by learning how to use new FuelPHP features along the way. Our approach will
therefore be very practical; a lot of concepts will be explained using code examples,
or by integrating them directly into our projects. Thus, it is important to highlight
that there will be a lot of code and you should be comfortable with reading and
understanding PHP and HTML. As we will use them from time to time, having some
knowledge about server/system administration and some foundation in JavaScript,
jQuery, and CSS will be an added advantage.

Though this book is for intermediary to advanced web developers, any prior
knowledge of the FuelPHP framework, or any other PHP framework, is not required.
In order to understand this book, you don't have to know common concepts such as
MVC, HMVC, or ORM. We take into account this shortcoming some of you might
have, and important notions will be explained. We won't explain all of those in the
first chapter though, as we want this to be as painless as possible; we will instead
approach them when they become necessary for the project completion.

The ultimate purpose of FuelPHP Application Development Blueprints is to give you
the ability to build any project using FuelPHP. By the end of this book, you certainly
won't know every little detail of the framework, but you will hopefully have the
necessary toolbox required to implement complex and maintainable projects.

Preface

[2]

What this book covers
Chapter 1, Building Your First FuelPHP Application, covers the very basics of the
FuelPHP framework; how to install it, how to configure it, how it is organized, and
its main components. Along the way, we will generate our first FuelPHP application
using the oil utility and tweak some files, in order to illustrate how things work.

Chapter 2, Building a To-do List Application, focuses on FuelPHP's ORM and
debugging features. We will illustrate these features using a lot of examples, and
then implement a small to-do list application. We will also use some JavaScript and
jQuery to send AJAX requests.

Chapter 3, Building a Blog Application, will teach you how to generate and tweak an
administration interface easily, how to create your own modules and tasks, how to
manage paginations easily, and how to use the Auth and Email packages. We will
create a blog application implementing all these features.

Chapter 4, Creating and Using Packages, will approach the FuelPHP package system.
This is a rather short chapter; we will first try to protect our website from spam
bots by installing an existing package, and then create our own original solution by
creating a new package.

Chapter 5, Building Your Own RESTful API, covers more advanced subjects such
as building a JSON API, using language agnostic template engines, allowing user
subscriptions, and implementing unit tests. To illustrate this, we will create a
responsive micro blogging application featuring a public API.

Chapter 6, Building a Website Using Novius OS, will quickly introduce you to Novius
OS, a FuelPHP-based Content Management System. Using such a system can greatly
speed up the implementation of complex projects.

What you need for this book
The applications in this book are based on FuelPHP 1.7.2, which requires:

• A web server: The most common solution is Apache
• A PHP interpreter: The 5.3.3 version or greater
• A database: we will use MySQL

FuelPHP works on Unix-like and Windows operating systems. The mod_rewrite
Apache module and some additional PHP extensions are recommended; the
complete list is available at http://fuelphp.com/docs/requirements.html.

Preface

[3]

Who this book is for
This book is for intermediary to seasoned web developers who want to learn how to
use the FuelPHP framework and to build complex projects using it. You should be
familiar with PHP, HTML, CSS, and JavaScript, but no prior knowledge about MVC
frameworks is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

• Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "Remove APPPATH/classes/controller/welcome.php as
we don't need this controller anymore."

A block of code is set as follows:

<?php
echo Form::checkbox(
 'still_here',
 1,
 Input::post(
 'still_here',
 isset($monkey) ? $monkey->still_here : true
)
);
?>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Click on
the Generate button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/5401OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

Preface

[5]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Building Your First
FuelPHP Application

Throughout the book, we will use the FuelPHP framework to build different types
of projects. The objective of this chapter is to make you familiar with the basics of
the framework and create your first project as quickly as possible. We won't create
anything exceptional in this chapter and there will be very little coding, but we will
go through the whole process from installing FuelPHP to publishing your project on
a production server. You will learn the necessary basics for the other projects as well.

By the end of the chapter, you should know the following:

• A common development process of a FuelPHP application
• How to install FuelPHP (the latest or a specific version)
• The FuelPHP file system hierarchy
• Two different ways to configure Apache to access your application
• How to configure FuelPHP to connect to a database
• The oil command line and how to use it for scaffolding your application
• How does an application respond to a URL requested by a visitor
• What are the FuelPHP templates
• How to publish your project to a host

Since this book is intended for intermediate developers, we will assume that you
have already installed Apache and MySQL on your system. Some prior knowledge
of Git and Composer is an added advantage as you might need it, but you should
be fine in this book if you are not familiar with these tools. However, for advanced
applications that need collaboration between several developers mastering them is
highly recommended.

Building Your First FuelPHP Application

[8]

In this chapter, we will go from installing the FuelPHP framework to having a
functional – though limited – web application. As our objective here is to introduce
the framework and create a sample application as quickly as possible, we won't
address important topics such as the ORM, which will be addressed in
Chapter 2, Building a To-do List Application.

About FuelPHP
Dan Horrigan started the FuelPHP framework in late 2010, and was later joined by
Phil Sturgeon, Jelmer Schreuder, Harro Verton, Frank de Jonge, Steve West and Márk
Sági-Kazár. The first stable version was released on July 31st, 2011 and this book is
based on FuelPHP 1.7.2, the latest stable version available as of writing this book.
With over 300 contributors, its community is large and active.

The core team is currently working on the second version of FuelPHP; several alpha
versions of it have already been released.

If you want to know more about the FuelPHP team and the framework philosophy, I
recommend you to read the About FuelPHP section of the official website at:

http://fuelphp.com/about

You can read the latest news about the framework on its official blog at:

http://fuelphp.com/blogs

The official documentation can be found at: http://fuelphp.com/docs/

If you have any questions about FuelPHP or encounter any issues, you can search
the official forum (http://fuelphp.com/forums/) and start a new discussion if you
don't find any answer. In a general manner, the official website (http://fuelphp.
com) is an excellent resource.

Chapter 1

[9]

Development process of a FuelPHP
application
The development process of a FuelPHP application generally contains the steps
shown in the following image:

Install

FuelPHP
Config Scaffold Dev Tests Prod

Corrections

New features

• Install FuelPHP: Since we are using this framework, this first step is
quite obvious.

• Config (configuration): At the beginning, you will generally need to specify
how to connect to the database and which package you will use. Later
on, you might also need to create and use your own configuration files to
improve the maintainability of your application.

• Scaffold: The oil command line of FuelPHP allows you to easily generate
code files ready to be used. This step is not necessary, but we will often use
this functionality in this book because it really speeds up the implementation
of your application.

• Dev (development): This is where you, as a developer, step in. You
customize the generated code to get exactly what you want. When you
want to add new features (for instance a new model), you go back to the
scaffolding step.

• Tests: Functional and unit testing are important if you want large
applications to stay maintainable. When bugs are discovered, you go back to
the development step in order to fix them. Unlike the other steps, we won't
approach this subject in this chapter for the sake of its conciseness. It will be
addressed in Chapter 5, Building Your Own RESTful API.

• Prod (production): Having a project working locally is nice, but the final
objective is generally to publish it online. We will give you some directions
about this step at the end of this chapter, but we won't get too much into the
details, given the diversity of available hosting services.

Building Your First FuelPHP Application

[10]

Just to be clear, this is a very general guideline, and of course the order of the
steps is not rigid. For instance, developers using the test-driven development
process could merge the fourth and fifth steps, or a preproduction step could be
added. The development process should only depend on each developer and
institution's standards.

Installing the environment
The FuelPHP framework needs the following three components:

• Web server: The most common solution is Apache
• PHP interpreter: The 5.3.3 version or greater
• Database: We will use MySQL

FuelPHP works on Unix-like and Windows operating systems, but the installation
and configuration procedures of these components will depend on the operating
system used. In the following sections we will provide some directions to get you
started in case you are not used to installing your development environment. Please
note that these are very generic guidelines, so you might need to search the web for
complimentary information. There are countless resources on the topic.

Windows
A complete and very popular solution is to install WAMP. This will install Apache,
MySQL, and PHP, in other words everything you need to get started. It can be
accessed at http://www.wampserver.com/en/.

Mac
PHP and Apache are generally installed on the latest version of the OS, so you
just have to install MySQL. To do this, you are recommended to read the official
documentation at http://dev.mysql.com/doc/refman/5.1/en/macosx-
installation.html.

A very convenient solution for those who have the least system administration skills
is to install MAMP, the equivalent of WAMP, but for the Mac operating system. It
can be downloaded from http://www.mamp.info/en/downloads/.

Chapter 1

[11]

Ubuntu
As this is the most popular Linux distribution, we will limit our instructions
to Ubuntu.

You can install a complete environment by executing the following command lines:

Apache, MySQL, PHP

sudo apt-get install lamp-server^

PHPMyAdmin allows you to handle the administration of MySQL DB

sudo apt-get install phpmyadmin

Curl is useful for doing web requests

sudo apt-get install curl libcurl3 libcurl3-dev php5-curl

Enabling the rewrite module as it is needed by FuelPHP

sudo a2enmod rewrite

Restarting Apache to apply the new configuration

sudo service apache2 restart

Recommended modules and extensions
The Apache mod_rewrite module and some additional PHP extensions are also
recommended, but not required:

http://fuelphp.com/docs/requirements.html (can be accessed through the
FuelPHP website by navigating to DOCS | TABLE OF CONTENTS | FuelPHP |
Basic | Requirements)

Getting the FuelPHP framework
As this book is being written, there are four common ways to download FuelPHP:

• Downloading and unzipping the compressed package which can be found
on the FuelPHP website.

• Executing the FuelPHP quick command-line installer.

Building Your First FuelPHP Application

[12]

• Downloading and installing FuelPHP using Composer.
• Cloning the FuelPHP GitHub repository, it is a little bit more complicated

but allows you to select exactly the version (or even the commit) you want to
install.

These approaches are very well-documented on the website installation instructions
page at http://fuelphp.com/docs/installation/instructions.html (It can
be accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | FuelPHP | Installation | Instructions)

Installing FuelPHP 1.7.2
FuelPHP is always evolving and will continue to evolve even after this book is
published. As we used FuelPHP 1.7.2 in this book, you might want to install the
same version in order to prevent any conflict. You can do this by either downloading
the appropriate ZIP file, cloning the 1.7/master branch of the GitHub repository, or
using Composer.

Downloading the appropriate ZIP file
This is the simplest solution. You should be able to download it by requesting the
URL http://fuelphp.com/files/download/28.

Alternatively, you can access all the compressed packages of important FuelPHP
releases at http://fuelphp.com/docs/installation/download.html (It can
be accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | FuelPHP | Installation | Download)

Using Composer
First, if you didn't do it yet, you need to install Composer. You can find out how by
reading the official website at https://getcomposer.org/.

The installation instructions for major operating systems are given in the Getting
Started guide. Please note that you can install Composer either globally or locally.

From now on, we will generally assume that you have installed Composer globally.
If Composer is installed locally into your working directory, our instructions will
work if you replace composer by php composer.phar.

Chapter 1

[13]

In order to specifically install FuelPHP 1.7, you can simply execute the following
command line (replace TARGET by the directory in which you want to
download FuelPHP):

composer create-project fuel/fuel:dev-1.7/master TARGET

Updating FuelPHP
If you have downloaded FuelPHP by cloning the GitHub repository, or if you simply
want to update FuelPHP and its dependencies, you have to enter the following
command line at the location you installed your instance of FuelPHP:

php composer.phar update

As you can see, Composer is locally installed in the FuelPHP root directory.

Installation directory and apache
configuration
Now that you know how to install FuelPHP in a given directory, we will give you
the two main ways you can integrate the framework in your environment.

The simplest way
Assuming you have activated the mod_rewrite Apache module, the simplest way
is to install FuelPHP in the root folder of your web server (generally the /var/www
directory on Linux systems). If you install FuelPHP in the DIR directory of the root
folder (/var/www/DIR), you will be able to access your project at the following URL:

http://localhost/DIR/public/

However, be warned that FuelPHP has not been implemented to support this, and if
you publish your project this way in the production server, it will introduce security
issues you will have to handle. In such cases, you are recommended to use the second
way we will explain in the upcoming section, although, for instance if you plan to use
a shared host to publish your project, you might not have the choice. A complete and
up-to-date documentation about this issue can be found in the FuelPHP installation
instruction page at http://fuelphp.com/docs/installation/instructions.html
(It can be accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | FuelPHP | Installation | Instructions)

Building Your First FuelPHP Application

[14]

By setting up a virtual host
Another way is to create a virtual host to access your application. You will need a
little bit more Apache and system administration skills, but the benefit is that it is
more secure and you will be able to choose your working directory. You will need
to change two files:

• Your Apache virtual host file(s) in order to link a virtual host to
your application

• Your system host file in order to redirect the wanted URL to your virtual host

In both cases, the files' location will be dependent on your operating system and
the server environment you are using; therefore, you will have to figure out their
location yourself (if you are using a common configuration, you won't have any
problem to finding instructions on your preferred search engine).

In the following example, we will set up your system to call your application when
requesting the my.app URL on your local environment (*nix system recommended).

Let's first edit the virtual host file(s). Add the following code at the end:

<VirtualHost *:80>
 ServerName my.app
 DocumentRoot YOUR_APP_PATH/public
 SetEnv FUEL_ENV "development"
 <Directory YOUR_APP_PATH/public>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

Then, open your system host file and add the following line at the end:

127.0.0.1 my.app

Depending on your environment, you might need to restart Apache after this. You
can now access your website at: http://my.app/.

Chapter 1

[15]

Congratulations! You just have successfully installed the FuelPHP framework. The
welcome page shows some recommended directions to continue your project.

FuelPHP basics
Now that we have installed a working version of FuelPHP, let's analyze, on a
very basic level, how the framework works. We won't go into the details here;
the idea is to only understand the necessary information to use the framework. In
this section, you are recommended to follow and check our explanations on your
installed instance; don't hesitate to explore files and folders, this will make you more
comfortable when we will begin our project's implementation. In this section, we will
approach the following:

• The FuelPHP file system hierarchy
• MVC, HMVC, and how it works on FuelPHP
• The oil utility

www.allitebooks.com

http://www.allitebooks.org

Building Your First FuelPHP Application

[16]

The FuelPHP file system hierarchy
Let's dive into the directory where we have installed FuelPHP. You might want to
follow along using a file browser. As this book is being written, the current version
of FuelPHP has the following directory hierarchy:

• /docs: contains an HTML version of the framework documentation
• /fuel, which contains:

 ° /fuel/app: Everything related to your application. This is where
you will work most of the time. We will look into this directory
in the upcoming The app directory section.

 ° /fuel/core: The core classes and configuration. You should not
change anything inside it, unless of course you want to contribute
to the FuelPHP core.

 ° /fuel/packages: Packages are core extensions, they are bundles
containing reusable classes and configuration files. Using the
FuelPHP default configuration, this is the only directory where you
can install packages (your own as well as from external sources).
Notice that there are already five installed packages. We will use each
of them in this book.

 ° /vendor: This directory contains third-party packages and libraries
that are generally not FuelPHP-specific.

• /public: This directory is accessible by external visitors. You want to put
here files publicly available, as CSS or JS files for instance.

The app directory
As written earlier, the app directory is where you will work most of the time. Thus,
you should be familiar with its hierarchy, which is given as follows:

• /cache: This directory is used to store cache files that improve your
application's performance.

• /classes: Classes used by your application:
 ° /classes/controller: Where you have to implement your

controllers (see the MVC, HMVC, and how it works on FuelPHP section)
 ° /classes/model: Where you have to implement your models (see

the MVC, HMVC, and how it works on FuelPHP section)
 ° /classes/presenter: Where you have to implement your presenters

(see the MVC, HMVC, and how it works on FuelPHP section).

Chapter 1

[17]

• /config: Every configuration file. Since some files are important, we will
list them as well:

 ° /config/config.php: Defines important FuelPHP configuration
items such as activated packages or security settings.

 ° /config/db.php: Defines database connection information.
 ° /config/routes.php: Defines the application's routes (we will

approach them later in this chapter).
 ° /config/development, config/production, config/staging,

config/test: All configuration files in the config/ENV directory,
ENV being the current environment, are merged with the ones in
the config folder. For instance, if the FuelPHP environment is set
to development (as it is by default), the config/development/
db.php file will be recursively merged with the config/db.php file.
In concrete terms, this means that configuration items defined in the
config/ENV/db.php file overwrite those in the config/db.php file.
We will illustrate this through an example in The oil utility and the oil
console section.

• /lang: Contains the translation files.
• /logs: Contains the log files. The log file path depends on the day it is

written. For instance, if you log a message on July 1, 2015, it will be saved in
the file located in logs/2015/07/01.php.

• /migrations: Contains the migration files, which allow you to easily alter
your database in a structured manner. For instance, if many people are
working on the same project, or if there are many instances of the same
project (development/production), they make the database change easier.
We will often use them in the book.

• /modules: Contains your application's modules. Each module can be
described as a bundle of code that can respond to requests and be easily
reused on other projects. We will create a module for the blog project in
Chapter 3, Building a Blog Application.

• /tasks: Contains task files, which are classes that can be executed from the
command line (for cron jobs for instance).

• /tests: Contains test files, which can be used to automatically test your
application. We will approach them in Chapter 5, Building Your Own RESTful
API, to test our application.

Building Your First FuelPHP Application

[18]

• /tmp: Contains temporary files.
• /vendor: This directory contains third-party libraries and packages only

used by your application.
• /views: Contains the view files used by your application (see the MVC,

HMVC, and how it works on FuelPHP section).

The packages
The fuel/packages directory contains five default packages that, when activated,
can add interesting features to FuelPHP:

• The auth package provides a standardized interface for user authentication.
We will use this package in Chapter 5, Building Your Own RESTful API.

• The email package provides an interface to send e-mails using different
drivers. We will use this package in Chapter 3, Building a Blog Application.

• The oil package allows you to speed up your application's implementation
by generating code files, launching tests and tasks, or providing a CLI PHP
console. We will use this package in all chapters and we will explore its
features in The oil utility and the oil console section.

• The orm: This package is an improvement of the FuelPHP's core models; it
allows them to fetch complex queries and to define the relations between
them. We will use this package in Chapter 2, Building a To-do List Application.

• The parser: This package allows your application to render view files in
common template systems such as Twig or Smarty. We will use this package
in Chapter 5, Building Your Own RESTful API.

We will also create our own package in Chapter 4, Creating and Using Packages.

Class name, paths, and coding standard
In FuelPHP, there are five constants that define the location of the most important
directories as follows:

• APPPATH: The application directory (fuel/app)
• COREPATH: The core directory (fuel/core)
• PKGPATH: The packages directory (fuel/packages)
• DOCROOT: The public directory (public)
• VENDORPATH: The vendor directory (fuel/vendor)

Chapter 1

[19]

You are recommended to read the official documentation about these constants at
http://fuelphp.com/docs/general/constants.html (It can be accessed through
the FuelPHP website by navigating to DOCS | TABLE OF CONTENTS | FuelPHP
| General | Constants)

Please keep in mind, that we will often use these constants in the book to shorten
file paths.

An interesting point is that FuelPHP allows you to change quite easily the folder
structure: for instance, you can change in the public/index.php file the value of the
constants that we just introduced, or you can change the directory where FuelPHP
will load modules by changing the module_paths key in the APPPATH/config/
config.php configuration file.

You might also have noticed that class names are related to their own path, as given
in the following:

• In the app directory, the classes/controller/welcome.php class is named
Controller_Welcome

• The classes/model/welcome.php class is named Model_Welcome
• You can notice that classes are named the same way in the fuel/core

directory

This result was not achieved by accident; FuelPHP follows by default the PSR-
0 standard. You are recommended to read the official documentation about this
standard at http://www.php-fig.org/psr/psr-0/.

MVC, HMVC, and how it works on FuelPHP
We will now look into one major aspect of the FuelPHP framework – the MVC and
HMVC software architecture patterns.

What is MVC?
Model-view-controller (MVC) is a software architecture pattern that states that the
code should be separated in three categories: models, views, and controllers.

Building Your First FuelPHP Application

[20]

For those who are not familiar with it, let's illustrate this through an example:

Controllershttp://my.app/...

Views

Models

Read, update, delete

Select

Read
<html>

<head>
. . .

</html>

Suppose a user tries to access your website. The following are some URLs he/she
might request:

http://my.app/

http://my.app/welcome/

http://my.app/welcome/hello

Depending on the requested URL, your website is generally expected to return some
HTML code and it also sometimes needs to update the database, for instance when
you want to save the users' comments.

The returned HTML code is generated by the views, because this is what is received
by the browser and indirectly seen by the user.

The database is generally updated through models. In concrete terms, instead of
executing raw SQL code to access and update the database, the best practice is to
use classes and instances to do so. Each class represents a model that is related to a
specific table: for example, the car model would access the cars table. Each class'
instance is a model instance linked to a specific row in a table: for example, your
car's information can be saved as a car instance that will be linked to a specific row
in the cars table. As we use classes instead of raw SQL code, the framework has
already implemented frequently needed features such as reading, creating, saving,
or deleting model's instances. A further advantage is that, as we used packaged and
well-implemented methods to access our database, it can prevent most unintended
security breaches that we can create when requesting the database using raw SQL.

Chapter 1

[21]

The controllers allow the website to handle the user's request by selecting the correct
view to send back (the response) and updating the database (through models) if
necessary. Controllers handle a specific section of the website: for instance, the car
controller will handle everything that is related to cars. Controllers are subdivided
by actions that will handle specific features: for instance, the list action of the car
controller will return a list of cars in HTML code. In practice, controllers are classes
and actions are methods.

When the user requests a URL, the framework will select an action inside a controller
to handle it. Those are generally chosen by convention; for instance, when requesting
http://my.app/welcome/hello, the framework will choose the hello action
inside the welcome controller. Sometimes, they can also be chosen using a routes
configuration file that matches URLs to actions and controllers.

The views sometimes need to access models; for example, we need to access the car
model's instances when we want to display a list of cars. However, views should
never update models or the database; only the controllers and preferably models
should do that.

Please note that additional code components as helpers or presenters can be added
to ease the development process, but if you understood this section, you got the most
important points.

How it works on FuelPHP
Let's illustrate how it works by testing our newly created website. We suppose that
your application is available at the following URL:

http://my.app/

Actions and controllers
If you request a random URL, you will probably get a 404 exception. For instance:

http://my.app/should_display_404

But, if you request the following URL, you will display the same page as the
home page:

http://my.app/welcome/index

If you request the following URL, you will display a different page:

http://my.app/welcome/hello

Building Your First FuelPHP Application

[22]

Let's first explain how the last two requests worked. You can notice that both URLs
contain the welcome word just after the base URL. You can also find this word in the
file name fuel/app/classes/controller/welcome.php; it turns out that welcome is
a controller. Now, open this file using your preferred text editor. You will then read
the following:

//...
class Controller_Welcome extends Controller
{
 //...
 public function action_index()
 {
 //...
 }

 //...
 public function action_hello()
 {
 //...
 }
 //...
}

You can notice the action_index and action_hello methods. These functions
are called actions. Now, as you have probably guessed, when you request http://
my.app/welcome/index, the action_index method will be called. In a more general
manner, if you request http://my.app/CONTROLLER/ACTION, the action_ACTION
method of the CONTROLLER controller will be called. Let's test that. Edit the action_
index function to add a simple echo at the beginning:

public function action_index()
{
 echo 'Test 1 - Please never print anything inside an action';
 //...
}

Now, if you request http://my.app/welcome/index, you will read the printed
content at the beginning of the web page. Though this is an easy way to test how
things work, never print anything in your action or controller. When you print a
message, you are already implementing the view entity; thus, printing something in
the controller breaks the MVC pattern.

Chapter 1

[23]

Views
But then how are the pages rendered? Let's analyze the only line of code in our
index action:

public function action_index()
{
 return Response::forge(View::forge('welcome/index'));
}

View::forge('welcome/index') returns a View object generated from the fuel/
app/views/welcome/index.php view file. We will use this function a lot in this
chapter and this book, and will cover all its parameters, but you can read its official
documentation in the FuelPHP website:

http://fuelphp.com/docs/classes/view.html#/method_forge. (It can be
accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Core | View)

Response::forge(View::forge('welcome/index')); returns a response object
created from the View object. Additional parameters allow us to change headers or
the page status. A response object contains all the necessary information that will be
sent to the browser: the headers and the body (generally the HTML code). You are
recommended to read the official documentation on the FuelPHP website at http://
fuelphp.com/docs/classes/response.html#method_forge (It can be accessed
through the FuelPHP website navigating to DOCS | TABLE OF CONTENTS |
Core | Response)

Since the view is generated from the fuel/app/views/welcome/index.php file,
open it to discover its content. You can notice that this is the same HTML code as
the one displayed when requesting the URL. Just after <h1>Welcome!</h1>, add
<p>This is my first view change.</p>. Now, if you refresh your browser, you
will see this message appear under the Welcome! title.

Parameters
It is possible to indicate parameters, both to the actions and to the views. For
instance, replace your index action by the following code:

public function action_index($name = 'user', $id = 0)
{
 return Response::forge(
 View::forge(
 'welcome/index',
 array(

Building Your First FuelPHP Application

[24]

 'name' => $name,
 'id' => $id,
)
)
);
}

And in the fuel/app/views/welcome/index.php view file, replace

<h1>Welcome!</h1>

by

<h1>Welcome <?php echo ($name.' (id: '.$id.')'); ?>!</h1>

Now, if you request the following URL:

http://my.app/welcome/index

the title will display Welcome user (id: 0)!

If you request the following URL:

http://my.app/welcome/index/Jane

the title will display Welcome Jane (id: 0)!

And if you request the following URL:

http://my.app/welcome/index/Jane/34

the title will display Welcome Jane (id: 34)!

You might have understood that if you request the following URL:

http://my.app/CONTROLLER/ACTION/PARAM_1/PARAM_2/PARAM3

The action_ACTION method of CONTROLLER will be called with the PARAM_1,
PARAM_2, and PARAM_3 parameters. If there are less parameters defined in the URL
than required in the method, either, if defined, the parameters take their default
values (as illustrated previously), or, if no default value is defined, it will trigger a
404 error.

You can notice that we replaced

View::forge('welcome/index')

Chapter 1

[25]

By

View::forge('welcome/index', array(
 'name' => $name,
 'id' => $id,
)
)

View parameters are sent by the second parameter of \View::forge in an
associative array. Here, the associative array has two keys, name and id, and their
values are available inside the view file through the $name and $id variables.

In a more general manner, if you call the following:

View::forge('YOUR_VIEW', array(
 'param_1' => 1,
 'param_2' => 2,
)
)

When the view file will be executed, parameters will be available through the
$param_1 and $param_2 variables.

Routes
Though what we previously observed explains how the standard cases operate

http://my.app/CONTROLLER/ACTION

we haven't explained why the two following URLs return content though no
associated controller and action can be found:

http://my.app/

http://my.app/should_display_404

For understanding why we have to open the fuel/app/config/routes.php
configuration file:

<?php
return array(
 '_root_' => 'welcome/index', // The default route
 '_404_' => 'welcome/404', // The main 404 route

 'hello(/:name)?' => array('welcome/hello', 'name' => 'hello'),
);

Building Your First FuelPHP Application

[26]

You can first notice the following two special keys:

• _root_: This defines which controller and action should be called when
requesting the website root URL. Note that the value is welcome/index, you
can now understand why http://my.app and http://my.app/welcome/
index are returning the same content.

• _404_: This defines which controller and action should be called when
throwing a 404 error.

Beside specials keys, you can define the custom URLs you want to handle. Let's add
a simple example at the end of the array:

'my/welcome/page' => 'welcome/index',

Now, if you request the following URL:

http://my.app/my/welcome/page

it will display the same content as in the following URL:

http://my.app/welcome/index

You have probably noticed that there is also another key already defined:
hello(/:name)?. The routing system is quite advanced, and to fully understand it
you are recommended to take a look at the official documentation:

http://fuelphp.com/docs/general/routing.html (It can be accessed
through the FuelPHP website by navigating to DOCS | TABLE OF CONTENTS |
FuelPHP | Routing)

Presenters
You might have seen that the hello action doesn't use the View class to display its
content, but instead it uses the Presenter class:

public function action_hello()
{
 return Response::forge(Presenter::forge('welcome/hello'));
}

Chapter 1

[27]

Let's analyze what is happening in this case. First, you can notice that, as for the
views, a view file exists at the following path: fuel/app/views/welcome/hello.
php. If you open this file, you will see that the code is the same as the one displayed
when requesting the URL http://my.app/welcome/hello, except for one tiny
difference. You can find the following code:

<h1>Hello, <?php echo $name; ?>!

In a normal view, we would have to define the name parameter, except here we
didn't. Though, when displaying the web page, this parameter seems to have a
defined value (it displays Hello, World!). Where could it be defined then?

Probing a little further, you can find another file located at fuel/app/classes/
presenter/welcome/hello.php. It contains the following:

class Presenter_Welcome_Hello extends Presenter
{
 //...
 public function view()
 {
 $this->name = $this->request()->param('name', 'World');
 }
}

This file contains a Presenter class. The view function is called before rendering the
view and it is here that the name parameter is set. It tries to get the name from the
request parameter, name, but if it is not defined, the default value is World.

If you wonder how to change this parameter, refer to the routes. For instance, request
the URL http://my.app/hello/Jane.

One could then wonder the use of Presenter classes, since we could change the
previous code into a more classic view and controller approach.

Let's show its usefulness by an illustration. Suppose you have created an internal
website managing the clients of your corporation. Each client is associated to a client
category. In your creation, edition, and other forms, you thus display a selectable list
of client categories. Each time you display the exact same selectable list, though you
access it by using different controllers and actions. You can come up with
three solutions:

• You can create a classic view for your selectable list, load the list of client
categories inside each of your actions, and pass this list to each view until
you reach the location where you want to display your list. The problem is
that it would induce a lot of code repetition.

Building Your First FuelPHP Application

[28]

• You can create a classic view and load the list of clients inside this view. This
way, you wouldn't have to pass along the necessary parameter. The problem
is that you would break the MVC pattern by mixing models and views.

• You can create a Presenter class, load the list inside the Presenter class,
use it inside the view file, and display the view file using Presenter::forge.
This solution is the best because it doesn't mix views and models but still
limits the code duplication.

What is HMVC?
FuelPHP is a Hierarchical Model-View-Controller (HMVC) framework, meaning
that it allows you to request internal controllers from your application. In concrete
terms, the following code:

echo Request::forge('welcome/index')->execute();

will print exactly what the following URL would return:

http://my.app/welcome/index

Though we suggest you to use this feature in moderation, it can come handy when
you want to implement and display widgets on several web pages.

You are recommended to read the following resources if you want to learn more
about this pattern:

http://en.wikipedia.org/wiki/Hierarchical_model-view-controller

http://stackoverflow.com/questions/2263416/what-is-the-hmvc-pattern

The oil utility and the oil console
The oil utility is a very handy command-line tool. As the rails utility of Ruby on
Rails, oil allows you to do the following:

• Easily generate code files: models, controllers, migrations, and
entire scaffoldings

• Run tasks and migrations
• Easily install, update, or remove packages
• Test your code using PHPUnit test or a real-time console
• Even run a PHP-built-in web server hosting your FuelPHP application (for

PHP >= 5.4)

Chapter 1

[29]

Though we will use all these features, except the last one in this book, we
recommend that you take a look at the official documentation at:

http://fuelphp.com/docs/packages/oil/intro.html (It can be accessed
through the FuelPHP website by navigating to DOCS | TABLE OF CONTENTS |
Oil | Introduction)

In this section, we are going to use the oil console, which is an important tool if you
want to test your website, or, as in this case, a FuelPHP feature.

First, open your command-line utility and go to the root of your website directory.
Then, enter the following line:

php oil console

If you use a web development platform such as WAMP or MAMP,
you are recommended to use the PHP executable inside the platform
directory for launching the oil utility (it might not work otherwise). As
I wrote this book, this executable is located at WAMP_DIRECTORY\bin\
php\phpVERSION\php.exe for WAMP, and at MAMP_DIRECTORY/
bin/php/phpVERSION/bin/php for MAMP (VERSION depends on
the version of PHP you installed, the best is to check this directory by
yourself using a file explorer).

This will open the command-line interface oil provides. When you press Enter,
something similar to the following should appear:

Fuel 1.7.2 - PHP 5.4.24 (cli) (Jan 19 2014 21:18:21) [Darwin]

>>>

You can now type any PHP code and it will be executed. Let's start with
something simple:

>>> $a = 2

If you press Enter, nothing will be printed, but the $a variable will be set to 2. Now, if
you want to check a variable value, simply enter its name and then press Enter:

>>> $a
2

Building Your First FuelPHP Application

[30]

It also works for more complex variables:

>>> $a = array('a' => 'b', 'c' => 'd')
>>> $a
array (
 'a' => 'b',
 'c' => 'd',
)

But be aware, that you might have trouble displaying complex objects.

Let's now test a FuelPHP feature. Earlier, when discussing the app directory
structure, we explained that the configuration files in the fuel/app/config directory
were merged with the ones with the same filenames in the fuel/app/config/ENV
directory, ENV being FuelPHP's current environment. We will now test this behavior.

First, let's check FuelPHP's current environment:

>>> Fuel::$env
development

The environment should be set to development.

Now, create a PHP file located at fuel/app/config/test.php where you
will write:

<?php
return array(
 'this_is_the_root_config_file' => true,
);

Then create another PHP file located at fuel/app/config/development/test.php
and write the following:

<?php
return array(
 'this_is_the_dev_config_file' => true,
);

and an additional one located at fuel/app/config/production/test.php, where
you will write the following:

<?php
return array(
 'this_is_the_prod_config_file' => true,
);

Chapter 1

[31]

Now, if you return to the command-line interface, you can load the test
configuration file by writing the following:

>>> $conf = Config::load('test', true)

You are recommended to read the Config::load official documentation for
more information at:

http://fuelphp.com/docs/classes/config.html#/method_load. (It can be
accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Core | Config)

As explained before, the value returned will be a mix of the fuel/app/config/
test.php and the fuel/app/config/development/test.php configuration files:

>>> $conf
array (
 'this_is_the_root_config_file' => true,
 'this_is_the_dev_config_file' => true,
)

If we change the FuelPHP environment to production:

Fuel::$env = 'production'; // only do that for testing purposes

And load again the test configuration file:

>>> Config::load('test', true, true)
array (
 'this_is_the_root_config_file' => true,
 'this_is_the_prod_config_file' => true,
)

The merging will be done with the configuration file in the production folder.

You have probably noticed that we added a third parameter
for Config::load. This parameter allows you to clear the
configuration cache. If we didn't set it to true, the method would
have returned the old configuration we loaded when we were in the
development environment.

But what happens when the fuel/app/config/production/test.php and fuel/
app/config/test.php configuration files contain the same key? The console can
find the answer for us.

Building Your First FuelPHP Application

[32]

Change the content of the fuel/app/config/test.php configuration file to
the following:

<?php
return array(
 'complex_value' => array(
 'root' => true,
),
 'this_is_the_root_config_file' => true,
);

and change the content of the fuel/app/config/production/test.php
configuration file to the following:

<?php
return array(
 'complex_value' => array(
 'prod' => true,
),
 'this_is_the_root_config_file' => false,
 'this_is_the_prod_config_file' => true,
);

Let's now reload the test configuration files as follows:

>>> Config::load('test', true, true)
array (
 'complex_value' =>
 array (
 'root' => true,
 'prod' => true,
),
 'this_is_the_root_config_file' => false,
 'this_is_the_prod_config_file' => true,
)

It is interesting to analyze how the preceding two configuration files have
been merged:

• The this_is_the_root_config_file key shared by the two configuration
files is associated in both cases to a simple value. In the resulting
configuration, it is the value from the production file that prevails.

• The complex_value key is associated in both cases to an array. The two
arrays seem to have been merged in the resulting configuration.

Chapter 1

[33]

This is because the configuration files are not merged by the array_merge native
PHP function, but instead by the Arr::merge FuelPHP function, which merges
arrays recursively. You are recommended to take a look at its official documentation
at http://fuelphp.com/docs/classes/arr.html#/method_merge (It can be
accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Core | Arr)

It should be clear now that the console is a great tool that allows you to test your
application. It can also be used as a great complement to the documentation, as
you can try FuelPHP methods and their parameters without changing any files
in your application.

Building your first application
Now that we had a quick overview of the FuelPHP framework, let's build our
first tiny application.

Suppose that you are a zoo manager and you want to keep track of the monkeys you
are looking after. For each monkey, you want to save the following:

• Its name
• If it is still in the zoo
• Its height
• A description input where you can enter custom information

You want a very simple interface with the following five major features:

• You want to create a new monkey
• You want to edit existing ones
• You want to list all monkeys
• You want to view a detailed file for each monkey
• You want to delete monkeys from the system

The preceding five major features, very common in computer applications, are part
of the Create, Read, Update and Delete (CRUD) basic operations. This is a perfect
example to use the oil utility to generate a scaffold. Oil will quickly generate for us
the controllers, models, views, and migrations to handle our monkeys. All we will
have to do, then, is to refine the generated code and adapt it to our needs.

Building Your First FuelPHP Application

[34]

Database configuration
As we will store our monkeys into a MySQL database, it is time to configure
FuelPHP to use our local database. If you open fuel/app/config/db.php, all you
will see is an empty array, but, as we demonstrated it in the FuelPHP basics section,
this configuration file is merged to fuel/app/config/ENV/db.php, ENV being the
current FuelPHP's environment, which in that case is development.

You should, therefore, open fuel/app/config/development/db.php:

<?php
//...
return array(
 'default' => array(
 'connection' => array(
 'dsn' => 'mysql:host=localhost;dbname=fuel_dev',
 'username' => 'root',
 'password' => 'root',
),
),
);

This is the generated default configuration, which you should adapt to your local
configuration, particularly the database name (currently set to fuel_dev), the
username, and password. You must create the database of your project manually.

Scaffolding
Now that the database configuration is set, we will be able to generate a scaffold. We
will use the generate feature of the oil utility.

Open the command-line utility and go to your website root directory. To generate a
scaffold for a new model, you will need to enter the following line:

php oil generate scaffold/crud MODEL ATTR_1:TYPE_1 ATTR_2:TYPE_2 ...

where:

• MODEL is the model name
• ATTR_1, ATTR_2… are the model's attribute names
• TYPE_1, TYPE_2… are attribute types

Chapter 1

[35]

In our case, it should be as follows:

php oil generate scaffold/crud monkey name:string still_here:bool
height:float description:text

Here we are telling oil to generate a scaffold for the monkey model with the
following attributes:

• name: The name of the monkey. Its type is string and the associated MySQL
column type will be VARCHAR(255).

• still_here: Whether or not the monkey is still in the facility. Its type is
boolean and the associated MySQL column type will be TINYINT(1).

• height: Height of the monkey. Its type is float and the associated MySQL
column type will be FLOAT.

• description: Description of the monkey. Its type is text and the associated
MySQL column type will be TEXT.

You can do much more using the oil generate feature, such as generating models,
controllers, migrations, tasks, packages, and so on. We will see some of these later
in the book, but you are recommended to take a look at the official documentation
at http://fuelphp.com/docs/packages/oil/generate.html (It can be accessed
through the FuelPHP website by navigating to DOCS | TABLE OF CONTENTS |
Oil | Generate)

When you press Enter, you will see the following lines appear:

Creating migration: APPPATH/migrations/001_create_monkeys.php

Creating model: APPPATH/classes/model/monkey.php

Creating controller: APPPATH/classes/controller/monkey.php

Creating view: APPPATH/views/monkey/index.php

Creating view: APPPATH/views/monkey/view.php

Creating view: APPPATH/views/monkey/create.php

Creating view: APPPATH/views/monkey/edit.php

Creating view: APPPATH/views/monkey/_form.php

Creating view: APPPATH/views/template.php

Oil has generated for us nine files, which are as follows:

• A migration file, containing all the necessary information to create the
model's associated table

• The model

www.allitebooks.com

http://www.allitebooks.org

Building Your First FuelPHP Application

[36]

• A controller
• Five view files and a template file

We will take a closer look at these files in the next sections.

You might have noticed that we used the scaffold/crud
command, and, if you read the official documentation, we could
have typed only scaffold. This is because two types of scaffold
can be generated: scaffold/crud, which uses simple models,
and scaffold/orm alias scaffold, which uses the orm models.
Since using FuelPHP's native ORM was out of the scope of this
chapter, and we didn't have to use complex model features such as
relations, we chose to use scaffold/crud.

Migrating
One of the generated files was APPPATH/migrations/001_create_monkeys.php. It
is a migration file and contains the required information to create our monkey table.
Notice that the name is structured as VER_NAME, where VER is the version number
and NAME is the name of the migration.

If you execute the following command line:

php oil refine migrate

All migration files that have not yet been executed will be executed from the oldest
version to the latest version (001, 002, 003, and so on). Once all migration files are
executed, oil will display the latest version number.

Once executed, if you take a look at your database, you will observe that not one but
two tables have been created:

• monkeys: As expected, a table has been created to handle your monkeys.
Notice that the table name is the plural version of the word we typed for
generating the scaffold; such a transformation was internally done using
the Inflector::pluralize method. The table will contain the specified
columns (name, still_here), the id column, and also created_at and
updated_at. These columns store the time an object was created and
updated, and are added by default each time you generate your models.
It is possible to not generate them with the --no-timestamp argument.

Chapter 1

[37]

• migration: This table is automatically created the first time you execute
migrations. It keeps track of the migrations that were executed. If you look
into its content, you will see that it already contains one row; this is the
migration you just executed. You can notice that the row does not only
indicate the name of the migration, but also a type and a name. This is
because migration files can be placed at many places such as modules or
packages (see Chapter 3, Building a Blog Application).

It is important to note that the migration table is not the only location
where FuelPHP keeps track of the already executed migrations. This
information is also stored in fuel/app/config/ENV/migrations.
php, ENV being FuelPHP's environment. If you decide to edit the
migration table, you might want to also edit or delete this file, as it
might prevent the execution of your migrations.

The refine migrate feature of oil allows you to have much more control on
migrations than simply executing all the new ones. For instance, you can also
revert to a previous version using the following command line:

php oil refine migrate:down

Or revert to a specified version using the following command line:

php oil refine migrate --version=3

Or even choose which modules or packages you want to update using the
--modules or --package arguments. To have a complete overview, you are
recommended to take a look at the official documentation at http://fuelphp.com/
docs/general/migrations.html (It can be accessed through the FuelPHP website
by navigating to DOCS | TABLE OF CONTENTS | FuelPHP | Migrations)

But how do migration files allow such complex manipulations? Let's open our
migration file located at APPPATH/migrations/001_create_monkeys.php to find
out. You should see the following:

<?php

namespace Fuel\Migrations;

class Create_monkeys
{
 public function up()
 {

Building Your First FuelPHP Application

[38]

 \DBUtil::create_table('monkeys', array(
 'id' => array(
 'constraint' => 11,
 'type' => 'int',
 'auto_increment' => true,
 'unsigned' => true
),
 'name' => array(
 'constraint' => 255,
 'type' => 'varchar'
),
 'still_here' => array(
 'type' => 'bool'
),
 'height' => array(
 'type' => 'float'
),
 'description' => array(
 'type' => 'text'
),
 'created_at' => array(
 'constraint' => 11,
 'type' => 'int',
 'null' => true
),
 'updated_at' => array(
 'constraint' => 11,
 'type' => 'int',
 'null' => true
),
), array('id'));
 }

 public function down()
 {
 \DBUtil::drop_table('monkeys');
 }
}

Chapter 1

[39]

The file contains a class named Create_monkeys that has the following two methods:

• up: This method defines how to update your data structure. Note that this
migration file creates the monkey table using the DBUtil::create_table
method, but you could perfectly execute a handmade SQL request to do that.
Though migrations are generally used to update your database, you can also
use them to update custom data files or old configuration files.

In some cases, if you want to implement your own migrations, you might
find the idea of using your application's methods (in models or helpers)
attractive. Though it can allow you to limit your code duplication, it
is not recommended. This is because, for compatibility reasons, the
migration files are intended to stay in your application indefinitely,
whereas your application's code can evolve a lot. Therefore, by changing
or deleting a method in your application, you might unexpectedly break
some migration files (that use this method) without even noticing it,
making the future installation of your application complicated.

• down: This method defines how to cancel all changes that were made by the
up method. Suppose you realize that the feature was a mistake and you want
to revert to an older version: this is when this method will be executed. In
our case, the method simply deletes the monkey table.

If the information contained in the table is important, it might
be a good idea to instead move the table, for instance, to an
archive database. A human mistake could have disastrous
consequences otherwise.

The migration files are a powerful tool and their usefulness increase tenfold as the
number of instances and the number of developers working on the same project rise.
Using them from scratch is always a good decision.

Using your application
Now that we have generated the code and migrated the database, our application
is ready to be used. You might have noticed during the generation that a controller
was created at APPPATH/classes/controller/monkey.php and that the route
configuration file was not changed, meaning that the controller must be accessible
through the default URL.

Let's request, then, the URL http://my.app/monkey.

Building Your First FuelPHP Application

[40]

As you can notice, this web page is intended to display the list of all monkeys, but
since none have been added, the list is empty:

Then, let's add a new monkey by clicking on the Add new Monkey button. The
following web page should appear:

Chapter 1

[41]

You can enter your monkey's information here. There are, however, several
inconsistencies:

• All fields are required, meaning that you can't leave any field empty,
otherwise errors will be triggered preventing you from adding the monkey.
This is not what we might want for the description field.

• Though you can enter anything you want in the Height field without
triggering any error, if you enter anything other than a float, it will be
replaced by 0. We might want to trigger an error in such a case.

• Still here can only have two values: 0 or 1 (false or true). Though the type of
the associated database column is correct, the generated form uses a standard
input where we might want a checkbox.

The form is certainly not perfect, but it is a great start. All we will have to do is refine
the code a little bit.

Once you have added several monkeys, you can again take a look at the listing
page as follows:

Again, this is a great start, though we might want to refine it a little bit: display Yes
and No instead of 1 and 0, respectively, for the Still here column, and remove the
Description column because there might be too much text to display.

Each item on the list has three associated actions: View, Edit, and Delete.

Building Your First FuelPHP Application

[42]

Let's first click on View:

Again this is a great start, though we will also refine this web page.

You can return back to the listing by clicking on Back or edit the monkey by clicking
on Edit. Accessed from either the listing page or the view page, it will display the
same form as when creating a new monkey, except that the form will be prefilled
of course.

Finally, if you click on Delete, a confirmation box will appear to prevent any
miss clicking:

Install

FuelPHP
Config Scaffold Dev Tests Prod

Corrections

New features

Refining the application
Now that we took a look at our interface, let's refine our application so that it
becomes more user-friendly. In this section, we will explore the files that have been
generated by oil and try to adapt them to our needs.

Chapter 1

[43]

Refining the monkey listing
During the previous section, two small issues bothered us for the monkey's listing:

• We wanted more explicit values than 0 and 1 for the Still here column
• We wanted to remove the Description column

We know that the list appears when requesting the following URL:

http://my.app/monkey

You have probably noticed that in this URL we indicated a controller, but no action.
It is important to know that, by default and without any routing configuration
involved, this URL is equivalent to http://my.app/monkey/index

So, in fact, we are calling the index action of the monkey controller. If we open the
generated controller at APPPATH/classes/controller/monkey.php, we will
read the following:

<?php
class Controller_Monkey extends Controller_Template{
 //...
}

First, you can notice that Controller_Monkey extends Controller_Template
instead of Controller, as we saw before in Controller_Welcome. Controller_
Template is an extension of Controller that adds template support. The idea is that
most of the time your web pages will have the same layout: the headers, footers, and
menus generally stay the same, regardless of the web pages you are in. Templates
allow you to achieve this by limiting the code duplication.

By default, Controller_Template is associated with the APPPATH/views/
template.php template that was generated by oil. If you open this file, you will see
that it generates the HTML code around the page content. You will also probably
notice that it prints the $title and $content variables. We will find out how to set
their values by exploring the index action. If you go back to the Monkey controller,
the action_index method should contain the following:

public function action_index()
{
 $data['monkeys'] = Model_Monkey::find_all();
 $this->template->title = "Monkeys";
 $this->template->content = View::forge('monkey/index', $data);
}

Building Your First FuelPHP Application

[44]

The first line stores all the monkeys' instances into the $data['monkeys'] variable.
In a general manner, MODEL::find_all() returns all a model's instances, but it
is definitely not the only method that retrieve instances. These methods will be
discussed more thoroughly in Chapter 2, Building a To-do List Application.

The second and third lines set the $title and $content variables displayed in
the template file. If you change the second line by $this->template->title =
"My monkeys"; and then refresh the web page, you will see that its title has
changed accordingly.

The third line sets the $content variable to a view instance that, from what we have
observed in the previous sections, executes the view file located at APPPATH/views/
monkey/index.php with the $monkey variable set to all monkeys' instances. Let's
open this view file. You should see the following:

<h2>Listing Monkeys</h2>

<?php if ($monkeys): ?>
<table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Still here</th>
 <th>Height</th>
 <th>Description</th>

 <th></th>
 </tr>
 </thead>
 <tbody>
<?php foreach ($monkeys as $item): ?> <tr>

 <td><?php echo $item->name; ?></td>
 <td><?php echo $item->still_here; ?></td>
 <td><?php echo $item->height; ?></td>
 <td><?php echo $item->description; ?></td>
 <td>
 <?php /* Action buttons */ ?>

 </td>
 </tr>
<?php endforeach; ?> </tbody>
</table>

<?php else: ?>

Chapter 1

[45]

<p>No Monkeys.</p>

<?php endif; ?><p>
 <?php /* Add new Monkey button */ ?>

</p>

We have found where the table is displayed, so it is time to make our changes.

First, remove the Description column by removing the following:

<th>Description</th>

and

<td><?php echo $item->description; ?></td>

Then, let's refine how the Still here attribute is displayed by replacing the following:

<td><?php echo $item->still_here; ?></td>

by

<td><?php echo $item->still_here ? 'Yes' : 'No'; ?></td>

The Still here column should now display Yes and No instead of 1 and 0,
respectively.

Refining the monkey detailed view
On the list, when clicking on an item's View link, a detailed view of the monkey
appears. We would like to change two details here:

• As in the previous section, display more explicit values for the
Still here attribute

• Currently, if you save a monkey with a multiline description, it is displayed
on one line only

First, if you are on a detailed view page, you can notice that the URL is similar to
http://my.app/monkey/view/1

Building Your First FuelPHP Application

[46]

This means we are calling the view action of the monkey controller with the first and
only parameter set to 1. The view action is quite similar to the index action, as you
can see in the following snippet:

public function action_view($id = null)
{
 is_null($id) and Response::redirect('monkey');

 $data['monkey'] = Model_Monkey::find_by_pk($id);

 $this->template->title = "Monkey";
 $this->template->content = View::forge('monkey/view', $data);
}

The first line simply checks if the parameter of the action (associated to the
$id variable) is actually set, and otherwise redirects the user (using the
Response::redirect method) to the listing page.

The second line stores the monkey with ID $id into the $data['monkey'] variable.
The find_by_pk (pk for primary key) method of a model finds one of its instances
by its primary key. As we explained earlier, models' methods will be discussed more
thoroughly in Chapter 2, Building a To-do List Application.

Just to be perfectly clear, requesting the URL http://
my.app/monkey/view/ID will load the monkey
instance with id = ID.

The third and fourth lines, as in the previous section, set the template variables. The
template content is set to the view located at APPPATH/views/monkey/view.php.

<h2>Viewing #<?php echo $monkey->id; ?></h2>

<p>
 Name:
 <?php echo $monkey->name; ?></p>
<p>
 Still here:
 <?php echo $monkey->still_here; ?></p>
<p>
 Height:
 <?php echo $monkey->height; ?></p>
<p>
 Description:

Chapter 1

[47]

 <?php echo $monkey->description; ?></p>

<?php /* Edit button */ ?> |
<?php /* Back button */ ?>

It is time to do some changes.

Replace:

<?php echo $monkey->still_here; ?>

By:

<?php echo $monkey->still_here ? 'Yes' : 'No'; ?>

And replace:

<?php echo $monkey->description; ?>

By:

<div><?php echo nl2br($monkey->description); ?></div>

Allowing an empty description
One of the issues we pointed out previously, is that the description field is required,
though we want to be able to enter an empty value.

First, open your browser and request the following URL:

http://my.app/monkey

Click on the Add a new Monkey button, and you can see you are redirected to
http://my.app/monkey/create

If you take a look at the page source, you will find that the form's action attribute is
actually the same URL:

<form class="form-horizontal" action="http://my.app/monkey/create"
accept-charset="utf-8" method="post">

It means that whether we are opening the monkey's creation form or submitting it,
we will always call the create action of the monkey controller. We should then read
how this action is implemented:

public function action_create()
{
 if (Input::method() == 'POST')
 {

Building Your First FuelPHP Application

[48]

 $val = Model_Monkey::validate('create');

 if ($val->run())
 {
 // Saves the model (out of this chapter scope)
 }
 else
 {
 Session::set_flash('error', $val->error());
 }
 }

 $this->template->title = "Monkeys";
 $this->template->content = View::forge('monkey/create');

}

As you can notice, the action is able to know whether or not it is accessed through
a POST request by using Input::method(). You are recommended to take a
look at the official documentation of the Input class at http://fuelphp.com/
docs/classes/input.html (It can be accessed through the FuelPHP website by
navigating to DOCS | TABLE OF CONTENTS | Core | Input)

Model_Monkey::validate('create') returns an object that seems to define
whether or not the object can be saved (depending on what $val->run() returns).
This is a method from the Monkey model, so we should look into it. Open APPPATH/
classes/model/monkey.php:

<?php
class Model_Monkey extends Model_Crud
{
 protected static $_table_name = 'monkeys';

 public static function validate($factory)
 {
 $val = Validation::forge($factory);
 $val->add_field('name', 'Name', 'required|max_length[255]');
 $val->add_field('still_here', 'Still Here', 'required');
 $val->add_field('height', 'Height', 'required');
 $val->add_field('description', 'Description', 'required');

 return $val;
 }

}

Chapter 1

[49]

The file contains the Model_Monkey class that extends Model_Crud and allows us to
handle the monkey instances.

First, you can notice the $_table_name static attribute that defines the table name
where the objects are saved (here, all our monkeys are saved into the monkeys table).

And then there is the validate static method we are looking for. It returns a
Validation object, that in our case will check that:

• The name attribute is not empty and its length is less than 255 characters
• still_here, height, and description are not empty

For more detail about this class, you are recommended to read the official
documentation at http://fuelphp.com/docs/classes/validation/validation.
html (It can be accessed through the FuelPHP website by navigating to DOCS |
TABLE OF CONTENTS | Core | Validation | Introduction)

In our case, simply comment or remove the following line:

$val->add_field('description', 'Description', 'required');

You might have read Session::set_flash several times in the
Controller_Monkey controller and Session::get_flash
several times in the template. Session flash variables have a
very limited life span and are generally used to store temporary
information, such as notices or errors displayed to the user.

Checking whether the height is a float
It is now easy to check if the height is a float. As we know that monkeys are generally
not taller than 4 feet, we can even add a numerical constraint. In the validate
method of Model_Monkey, replace the following line:

$val->add_field('height', 'Height', 'required');

by

$val->add_field(
 'height',
 'Height',
 'required|numeric_between[0,6]'
);

Building Your First FuelPHP Application

[50]

Using a checkbox instead of an input for the still_
here attribute
This change will be a bit more complex. First, still in the validate method of Model_
Monkey, remove the following line as we won't need this validation:

$val->add_field('still_here', 'Still Here', 'required');

Now, if you go back to our create action in Controller_Monkey (located at
APPPATH/classes/controller/monkey.php), you will see that the template content
is set to the view located at APPPATH/views/monkey/create.php. If you look at the
file content, it is pretty simple:

<h2>New Monkey</h2>

<?php echo render('monkey/_form'); ?>

<p><?php echo Html::anchor('monkey', 'Back'); ?></p>

For your information, the render method is an alias of View::render, and in this
case equivalent to View::forge. This illustrates that it is possible to render views
inside other views. It can be convenient to prevent code repetition; the view located
at APPPATH/views/monkey/edit.php also renders the same view (monkey/_form),
and this makes sense since the forms displayed are exactly the same, whether you
create a new monkey or edit an existing one.

Since we want to edit the form to replace the still_here input by a checkbox,
open the view located at APPPATH/views/monkey/_form.php and replace the
following lines:

<?php
echo Form::input(
 'still_here',
 Input::post(
 'still_here',
 isset($monkey) ? $monkey->still_here : ''
),
 array(
 'class' => 'col-md-4 form-control',
 'placeholder' => 'Still here'
)
);
?>

Chapter 1

[51]

By

<?php
echo Form::checkbox(
 'still_here',
 1,
 Input::post(
 'still_here',
 isset($monkey) ? $monkey->still_here : true
)
);
?>

In the code above, the first parameter is the name attribute of the
checkbox. The second parameter is the value attribute of the checkbox.
The third parameter determines whether the checkbox is checked or
not. You can notice that, when we create a new monkey (and therefore
no monkey is set), the checkbox will be checked by default. You are
recommended to read the official documentation for more information
about the Form class at http://fuelphp.com/docs/classes/
form.html (It can be accessed through the FuelPHP website by
navigating to DOCS | TABLE OF CONTENTS | Core | Form)

Finally, you are probably aware that the still_here POST attribute won't be
defined if the checkbox is unchecked when submitting the form. Thus, we need to
define a default value when retrieving the still_here POST attribute, not only in
the create action but also in the edit action. In both the methods, replace
the following:

Input::post('still_here')

by

Input::post('still_here', 0)

Our solution works, but, in most cases, hard-coding a default value
is not a good idea. When indicating a default value, for a request
parameter or a configuration item, the best is to define this value inside
a centralized configuration file and load it from there. Always avoid
hard-coding constants, even for default values.

Building Your First FuelPHP Application

[52]

Setting custom routes
Last but not least, we don't want to display FuelPHP's welcome screen when
requesting the root URL, but instead the monkeys' listing. For doing that we will have
to change the routes' configuration file located at APPPATH/config/routes.php.

Replace:

'_root_' => 'welcome/index',

By:

'_root_' => 'monkey/index',

When requesting:

http://my.app/

You should now see your monkey listing.

Removing useless routes and files
Now that our project is working as intended, it might be a good idea to clean it:

• Remove APPPATH/classes/controller/welcome.php as we don't need this
controller anymore

• Remove the APPPATH/classes/presenter folder
• Remove the APPPATH/views/welcome folder
• And remove the _404_, hello(/:name)?, my/welcome/page keys from the

routes' configuration file located at APPPATH/config/routes.php.

A few notes about deploying your
application
Now that you have a working application, you might want to publish it on hosts.
Handling this is quite easy, the longer part being sending the project's files (using
FTP, Git, or any other tool depending on your hosting service), but there are a couple
of things you should know.

First, you have to set your apache FUEL_ENV environment to production. An easy
way to do that is to edit public/.htaccess and uncomment the second line:

SetEnv FUEL_ENV production

Chapter 1

[53]

Keep in mind, that in this case you will have two different files between your local
environment and your production environment, so it will be prone to human
error. You are recommended to read the official documentation at http://
fuelphp.com/docs/general/environments.html (It can be accessed through the
FuelPHP website by navigating to DOCS | TABLE OF CONTENTS | FuelPHP |
Environments)

If you are using a shared hosting solution, keep in mind that, as explained in The
simplest way section, you should take additional security precautions

Summary
In this chapter, we have seen the very basics of the FuelPHP framework and we have
built our first project. We have learnt how to install FuelPHP, used the oil command
line to generate code files and migrate our application, understood how routes work,
and seen how models, views, presenters, and controllers interact with each other.

Though you are now able to create an application and implement basic features,
you might not be yet ready for more complex projects. In the next chapter, we will
improve your skills by using FuelPHP's Object Relational Mapper (ORM).

Building a To-do List
Application

We saw in the last chapter a few basics of the FuelPHP framework, but there is
still a lot to learn to be comfortable with it. We will create here our first real-world
application to dive a little bit deeper into the main FuelPHP features. We will create
a to-do list application, a common training example when introducing frameworks.
Again, it won't be a very complicated application, but this project will be used as a
basis to introduce essential FuelPHP components.

By the end of this chapter, you should know the following:

• What is a Entity Relationship (ER) diagram
• What is an profiler and how to use it
• How to use the Debug class
• What is an Object Relational Mapper (ORM) and how to use it in your project
• How to use the basic operations of Model_Crud and Model_Orm
• The ORM relations
• What are observers and how to use them
• How to handle Ajax requests

We will assume here, that you have read Chapter 1, Building Your First FuelPHP
Application, as the very basics of the framework have been explained there. We will
also use JavaScript and jQuery for improving the to-do list user interface. Since this
book is intended for intermediary web developers, we will assume you have some
knowledge about these technologies. If this is not the case, don't worry, we will use
them very lightly and you can find a lot of resources about these tools on the web.

Building a To-do List Application

[56]

Specifications
First of all, let's define what should be expected in our final application as follows:

• A to-do list is created to monitor the progress of a project. A project is
described by a name and has many tasks (the to-do list). We will assume
here that a user could have many simultaneous projects and, therefore, can
create and manage as many projects as he/she wants. Each project can also
be deleted.

• A task is described by a name and has a Boolean status ("done" or "not done").
• Tasks are ordered in the project and the user should be able to easily move

items in the list using drag and drop.

This is still a simple application, and we won't support any privacy feature such as
authentication (this will be addressed in Chapters 3, Building a Blog Application and
Chapter 5, Building Your Own Restful API).

Conception
This step should be pretty straightforward from the specification phase. We will
generate the following two models:

• Project: This model will only have a name property.
• Task: This model will have a name, a status, and a rank property. A project

contains many tasks, and each task is related to a project, so we will add an
additional column here, named project_id. This column will contain the ID
of the project each task is associated with.

We can represent our models by the following ER diagram:

Entity Relationship diagram (Min-Max notation)

Chapter 2

[57]

An ER diagram allows you to describe the data structure of your application. As you
noticed, almost everything we wrote earlier can be found in the diagram:

• The models (called entities in ER diagrams), represented by rectangles
• The model's properties (called attributes), represented by ellipses (primary

keys are underlined) and linked to models using lines
• The relationships between models, represented by a line from a model

to another

We used the Min-Max notation for relations. Here is how to understand it:

On the line joining the Project model to the Task model, you can read (0, N) Has many
next to the Project rectangle and Belongs to (1, 1) next to the Task rectangle. The (0,
N) and (1, 1) you can read on the diagram represent the minimum and maximum
number of elements an instance can be linked to: in our case, a project can be linked
to any number of tasks (between 0 and N) and a task can be linked to only one project
(between 1 and 1). The text next to (0, N) and (1, 1) is the relation's name. Here, we
simply used the FuelPHP relation's type we will use (we will explain those relations
later in the ORM relations section). Even a non-programmer can understand it by
reading it as follows: "Each project has many tasks", "Each task belongs to one project".

It can be convenient to draw an ER diagram if you struggle to understand how you
can organize your data. We will use this diagram in the upcoming chapters, and it
is especially recommended if you want to understand a complex data structure with
many models and relations between them. You are recommended to read more on
the subject at http://en.wikipedia.org/wiki/Entity-relationship_model.

FuelPHP installation and configuration
You first need to:

• Install a new FuelPHP instance
• Configure Apache and your host file to handle it: in this chapter, we will

access our application by requesting the URL http://mytodolists.app
• Update Composer if necessary
• Create a new database for your application
• And configure FuelPHP in order to allow your application to access

this database

Building a To-do List Application

[58]

These steps have been covered in Chapter 1, Building Your First FuelPHP Application,
so you might want to take a look at it.

This project will also need the ORM package, and since it is already installed, we just
need to enable it. For doing this, simply open the APPPATH/config/config.php file
and insert the following at the end of the returned array:

 'always_load' => array(
 'packages' => array(
 'orm',
),
),

Or you can uncomment the appropriate lines. This will load the ORM package every
time the FuelPHP instance is loaded.

You can also load a package in an ad hoc manner, using
the Package::load method. This will be addressed in
Chapter 3, Building a Blog Application.

Scaffolding
We will now generate, as in Chapter 1, Building Your First FuelPHP Application, the
necessary code to handle our objects.

Let's first generate the scaffold of the project model:

php oil generate scaffold/orm project name:string

The command should print the following output:

Creating migration: APPPATH/migrations/001_create_projects.php

Creating model: APPPATH/classes/model/project.php

Creating controller: APPPATH/classes/controller/project.php

Creating view: APPPATH/views/project/index.php

Creating view: APPPATH/views/project/view.php

Creating view: APPPATH/views/project/create.php

Creating view: APPPATH/views/project/edit.php

Creating view: APPPATH/views/project/_form.php

Creating view: APPPATH/views/template.php

Chapter 2

[59]

Note that we used scaffold/orm instead of scaffold/crud in Chapter 1, Building
Your First FuelPHP Application: this way, oil will generate code files that use the ORM
package. For instance, we will see later that the generated model will extend Orm\
Model instead of Model_Crud.

We now need to generate the model for managing our tasks. We won't use scaffold
here because we plan to manage tasks on the project's visualization page, so we only
need the model.

php oil generate model/orm task name:string status:boolean rank:int
project_id:int

This command should print the following output:

Creating model: APPPATH/classes/model/task.php

Creating migration: APPPATH/migrations/002_create_tasks.php

As you can notice, we generated here only the model and the migration file. All you
have to do now is to execute the migration files:

php oil refine migrate

Routes configuration
You can now manage your project by requesting the URL http://mytodolists.
app/project.

Since this is our point of entry, we would like to access this page when requesting
the root URL http://mytodolists.app/.

As we saw in Chapter 1, Building Your First FuelPHP Application, you just need to
edit the APPPATH/config/routes.php configuration file. Replace '_root_' =>
'welcome/index' with '_root_' => 'project/index'.

The profiler
Since we will need the profiler for the next section, we will introduce it here.
FuelPHP supplies a profiler that enables you to get a sense of what is going on when
you request a web page. It can indeed show many performance metrics, executed
SQL requests, current logs, session, and POST / GET variables.

Building a To-do List Application

[60]

You will need to activate it though. It is wise to only use this tool in development
mode, since otherwise you can have serious security issues. For doing that, you first
need to create the APPPATH/config/development/config.php configuration file
and write the following content:

<?php

return array(
 'profiling' => true,
);

You also need to edit the APPPATH/config/development/db.php configuration file
in order to see database queries (the profiler won't show them otherwise): at the end
of the default array, add 'profiling' => true,.

If you now request your root URL http://mytodolists.app/, you will see a black
rectangle labeled Code Profiler at the bottom right of the screen. If you click on it,
you should see the following:

The following describes the several tabs you can access:

• NB Console (NB being the number of logs): This tab displays all logs. For
instance, if you add Log::info('Index Action', 'This is a test'); at
the beginning of the index action of the Project controller and then refresh the
web page, you should see a new item appear in this tab .

Chapter 2

[61]

• TIME Load Time (TIME being the web page total load time): This tab
displays logs associated with time markers. Note that these logs also appear
in the first tab. For instance, if you add Profiler::mark('Index Action');
at the beginning of the index action of the Project controller, you should see a
new item appear in this tab.

• NB Queries Database (NB being the number of queries): This tab displays
database queries that have been executed when loading the web page.
For each query, its analysis and its call trace are displayed. The number
of duplicates is also displayed, and you can spot queries that appear to
duplicate a previous one by seeing the word DUPLICATE next to Speed.

• SIZE Memory Used (SIZE being the amount of used memory): This
tab displays logs associated with memory markers. Note that these logs
also appear in the first tab. For instance, if you add Profiler::mark_
memory($this, 'Controller_Project object'); at the beginning of the
index action of the Project controller, you should see a new item appear in
this tab.

• NB Files Included (NB being the number of files): This tab displays all files
(code or configuration) that have been loaded for displaying the web page.

• NB Config items loaded (NB being the number of items): This tab displays
the configuration items (not the files) that have been loaded. For instance, if
you load a configuration file that contains an associated array with 5 keys, 5
new items will appear in this tab.

• NB Session vars loaded, NB GET vars loaded, NB POST vars loaded: These
tabs display request and session variables. For instance, a new item should
appear in the NB GET vars loaded tab if you request the URL http://
mytodolists.app/?param=test.

Models, relations, and the ORM
We have now done the preliminary steps: we installed FuelPHP, configured it,
generated the scaffold for managing the projects, and created the task model. We
didn't connect the two models though, and we haven't yet displayed tasks anywhere.
More importantly, we haven't explained how to load objects until now. This is the
aim of this section.

Building a To-do List Application

[62]

Differences between CRUD and ORM
As we explained earlier, we used oil to generate code, but instead of using
scaffold/crud as in Chapter 1, Building Your First FuelPHP Application, we used
scaffold/orm and model/orm. If you take a look at the files (controllers, views, and
models), you will only see minor changes, except for the model files:

• The $_table_name attribute is no longer declared. It is still used by Orm\
Model though, but it takes a default value that depends on the model name,
so you can still define it if you want to use a custom table name.

• The $_properties attribute has been added. This attribute contains all the
properties (linked to table columns) the model has to manage. Defining this
attribute is not compulsory, but not doing so might reduce your website
performance, as FuelPHP will need to synchronize the model with the
table structure. Note that Model_Crud also uses this attribute, but the code
generated by oil simply doesn't define it.

• The $_observers attribute has also been added. This attribute defines used
observers and their parameters. We will explain what observers are and how
to use them in the next section.

The FuelPHP ORM
ORM stands for Object Relational Mapper. It allows developers to do the following
two things:

• It maps table rows to objects. For doing that, the ORM provides several
functions to extract specific table rows and transform them to PHP objects.
Other methods also exist that allow developers to save objects to table rows.
The find and the save methods are both examples.

• It allows you to establish relations between models. In this chapter's
project, we have created two models, Project and Task, and there exists a
relationship between them: a project can have many tasks, and each task
is associated to a project. When defining these relations to the ORM, it will
enable methods allowing developers to access a project's tasks more easily
for instance.

In short, the purpose of the ORM is to simplify the job of the developer. Beyond
the preceding two main points, the ORM will also handle some security issues
(as SQL injection) and handle observers that can affect how some properties are
saved for instance. In a general manner, FuelPHP's ORM follows the active record
pattern closely.

Chapter 2

[63]

DB and ORM basics
Note that most methods we are going to use here are working on Orm/Model,
as well as Model_Crud.

First, we need to create a PHP file that will test our code. We could have used the oil
console here, and in most cases you should, but in this instance we won't because
we want to see the executed SQL requests (we plan to use the profiler for doing so).
Please note that this file should not be pushed into production. Create a file located
at public/test.php with the following content:

<?php

// Fuel initialization (inspired from index.php)
define('DOCROOT', __DIR__.DIRECTORY_SEPARATOR);
define('APPPATH', realpath(__DIR__.'/../fuel/app/')
 .DIRECTORY_SEPARATOR);
define('PKGPATH', realpath(__DIR__.'/../fuel/packages/')
 .DIRECTORY_SEPARATOR);
define('COREPATH', realpath(__DIR__.'/../fuel/core/')
 .DIRECTORY_SEPARATOR);
defined('FUEL_START_TIME') or define('FUEL_START_TIME',
 microtime(true));
defined('FUEL_START_MEM') or define('FUEL_START_MEM',
 memory_get_usage());
require COREPATH.'classes'.DIRECTORY_SEPARATOR.'autoloader.php';
class_alias('Fuel\\Core\\Autoloader', 'Autoloader');
require APPPATH.'bootstrap.php';

echo 'FuelPHP is initialized...';

The preceding code initializes FuelPHP (it is necessary when you have a PHP script
in the public folder and you want to use FuelPHP features). This script should be
accessible when requesting the following URL and should display FuelPHP is
initialized...: http://mytodolists.app/test.php.

All the examples that follow must be progressively appended to the file. For those
of you who didn't use any ORM yet, it is recommended you append the code inside
each section, refresh, and take a deep look at the web page output and the executed
queries in the profiler. Please note that this is just an introduction; to learn more
about the ORM, you are recommended to read the official documentation at
http://fuelphp.com/docs/packages/orm/intro.html.

Building a To-do List Application

[64]

Executing queries without the ORM
You should first know that it is possible to execute a query without the ORM. Using
it is supposed to simplify your life but it is not compulsory. In some cases, for
instance changes affecting many rows, you should not even use the ORM. Another
instance is when you want to empty a table:

// --- Executing queries without the ORM
\DB::query('TRUNCATE TABLE `projects`;')->execute();
\DB::query('TRUNCATE TABLE `tasks`;')->execute();
// \DBUtil::truncate_table('projects'); is also possible

Creating new objects
The following example shows how to create new projects:

// --- Creating new objects
$project = Model_Project::forge(); // = new Model_Project()
$project->name = 'First project';
$project->save();

// You can also set properties when calling the forge method
$project = Model_Project::forge(
 array('name' => 'Second project')
);
$project->save();

Finding specific objects
This is how you find the first object in a table:

// --- Finding specific objects
$project = Model_Project::find('first');
\Debug::dump('first', $project);

If you refresh your web page now, you should see the following gray box:

Chapter 2

[65]

If you unfold Model_Project by clicking on ↵, and then _data, you should see that
this is indeed the first project:

If you take a look at the console, you can also confirm this by seeing the executed
SQL request:

SELECT … FROM `projects` AS `t0` ORDER BY `t0`.`id` ASC
LIMIT 1

You can also load the last object:

$project = Model_Project::find('last');
\Debug::dump('last', $project);

The executed request should be as follows:

SELECT … FROM `projects` AS `t0` ORDER BY `t0`.`id` DESC
LIMIT 1

Or you can load a project by specifying an ID:

$project = Model_Project::find(1);
\Debug::dump('with id = 1', $project);

Building a To-do List Application

[66]

You can note here that no request was executed. That is because the ORM caches
loaded objects and the project has already been loaded in a previous request.
Otherwise, the following request should have been executed:

SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` = 1
LIMIT 1

Updating an object
Here is how we update an existing object (here, we change the name of the project
with id = 1):

// --- Updating an object
$project = Model_Project::find(1); // Load project with id = 1
$project->name = 'First one';
$project->save();

Executed request:

UPDATE `projects` SET `name` = 'First one' WHERE `id` = '1'

Deleting an object
We can delete a project by calling:

// --- Deleting an object.
$project = Model_Project::find(1); // Load project with id = 1
$project->delete();

Executed request:

DELETE FROM `projects` WHERE `id` = '1' LIMIT 1

Loading several objects
We can load several objects at once. The following example shows how we can load
all project instances:

// --- Loading several objects
// First creating an additional project for a more interesting
// result
$project = Model_Project::forge();
$project->name = 'Third project';
$project->save();

// Finding all projects
$projects = Model_Project::find('all');
\Debug::dump('all', $projects);

Chapter 2

[67]

In that case, $projects will be an associative array of projects, the key being the
project's ID, and the value being the associated project. The executed request is
as follows:

SELECT … FROM `projects` AS `t0`

Using method chaining
The query method is an equivalent of the find method, but allows you to fetch
objects using method chaining.

Here is how you can find all the project instances using the query method:

$projects = Model_Project::query()->get();
\Debug::dump('all (using query)', $projects);

The executed request is the same as previously executed:

SELECT … FROM `projects` AS `t0`

More complex requests
It is also possible to execute much more complex requests. First, let's add
various tasks:

// Creating sample tasks
Model_Task::forge(array('name' => 'Marketing plan',
 'status' => 0, 'rank' => 0, 'project_id' => 2))->save();

Model_Task::forge(array('name' => 'Update website',
 'status' => 1, 'rank' => 1, 'project_id' => 2))->save();

Model_Task::forge(array('name' => 'Improve website template',
 'status' => 1, 'rank' => 2, 'project_id' => 2))->save();

Model_Task::forge(array('name' => 'Contact director',
 'status' => 0, 'rank' => 0, 'project_id' => 3))->save();

Model_Task::forge(array('name' => 'Buy a new computer',
 'status' => 1, 'rank' => 1, 'project_id' => 3))->save();

Now that we have created various tasks, we will be able to test the second
parameter of the find method.

Building a To-do List Application

[68]

Let's get the first task with project_id = 2:

$task = Model_Task::find('first',
 array(
 'where' => array(
 array('project_id' => 2)
)
)
);
\Debug::dump('first with project_id = 2', $task);

Or using the query method:

$task = Model_Task::query()
 ->where('project_id', 2)
 ->order_by('id', 'asc') // Will be introduced shortly
 ->get_one();
\Debug::dump('first with project_id = 2 (using query)', $task);

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE (`t0`.`project_id` = 2)
ORDER BY `t0`.`id` ASC LIMIT 1

Let's now get all tasks with project_id = 2:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array('project_id' => 2)
)
)
);
\Debug::dump('project_id = 2', $tasks);

Or using the query method:

$tasks = Model_Task::query()
 ->where('project_id', 2)
 ->get();
\Debug::dump('project_id = 2 (using query)', $tasks);

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE (`t0`.`project_id` = 2)

Chapter 2

[69]

It is also possible to get all tasks with project_id = 2 and status = 1:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array('project_id' => 2),
 array('status' => 1)
)
)
);
\Debug::dump('project_id = 2 & status = 1', $tasks);

Or using the query method:

$tasks = Model_Task::query()
 ->where('project_id', 2)
 ->where('status', 1)
 ->get();
\Debug::dump('project_id = 2 & status = 1 (using query)', $tasks);

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE (`t0`.`project_id` = 2)
AND (`t0`.`status` = 1)

This is how we get all tasks with project_id > 2 and status = 1:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array('project_id', '>', 2),
 array('status' => 1)
)
)
);
\Debug::dump('project_id > 2 & status = 1', $tasks);

Or using the query method:

$tasks = Model_Task::query()
 ->where('project_id', '>', 2)
 ->where('status', 1)
 ->get();
\Debug::dump('project_id > 2 & status = 1 (using query)', $tasks);

Building a To-do List Application

[70]

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE `t0`.`project_id` > 2
AND (`t0`.`status` = 1)

This is how we get tasks with project_id > 2 or status = 1:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array('project_id' => 2),
 'or' => array('status' => 1)
)
)
);
\Debug::dump('project_id = 2 or status = 1', $tasks);

Or using the query method:

$tasks = Model_Task::query()
 ->where('project_id', '=', 2)
 ->or_where('status', 1)
 ->get();
\Debug::dump('project_id = 2 or status = 1 (query)', $tasks);

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE (`t0`.`project_id` = 2) OR
 ((`t0`.`status` = 1))

This is how we get tasks that name contains the word website:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array(
 'name',
 'LIKE',
 '%website%'
),
)
)
);
\Debug::dump('name contains "website"', $tasks);

Chapter 2

[71]

Or using the query method:

$tasks = Model_Task::query()
 ->where('name', 'LIKE', '%website%')
 ->get();
\Debug::dump('name contains "website" (using query)', $tasks);

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE `t0`.`name` LIKE
'%website%'

You can also specify an order:

$tasks = Model_Task::find('all',
 array(
 'where' => array(
 array(
 'name',
 'LIKE',
 '%website%'
),
),
 'order_by' => array(
 'rank' => 'ASC'
),
)
);
\Debug::dump(
 'name contains "website" ordered by the rank column',
 $tasks
);

Or using the query method:

$tasks = Model_Task::query()
 ->where('name', 'LIKE', '%website%')
 ->order_by('rank', 'ASC')
 ->get();
\Debug::dump(
 'name contains "website" ordered by the rank column (query)',
 $tasks
);

Building a To-do List Application

[72]

Executed request:

SELECT … FROM `tasks` AS `t0` WHERE `t0`.`name` LIKE
'%website%' ORDER BY `t0`.`rank` ASC

You have probably noticed that using the query method generally allows you to
write a much more concise and readable code. Therefore, you are recommended to
use the query method for complex requests. In most cases though, using find or
query doesn't make much difference, so use your best judgment.

As already stated, this is just a very small introduction to the ORM. There are many
more keys other than where and order_by, and we will see some of those later (as
the related key for instance). You are recommended to take a look at the official
documentation of the ORM package at http://fuelphp.com/docs/packages/orm/
intro.html.

We also used the Debug and DB classes. Knowing them can be useful. Again, feel free
to read their official documentation, which is available at the following links:

• http://fuelphp.com/docs/classes/debug.html

• http://fuelphp.com/docs/classes/database/db.html

ORM relations
It is time for us to define the relationship between tasks and projects. As we
explained earlier, defining them activates useful features that make the job of the
developers easy and improve performance. Relations must be defined inside a
model. For instance, we will define a relation in the Project model in order to access
each project's tasks, and we will also define another relation in the Task model in
order to access each task's associated project. There are 4 relation types:

• Belongs To: When you define a belongs to relationship in model A toward
model B, each model A's instance can only be associated with one model
B's instance. You will generally need to create a column in model A's table
that will be used to connect instances. In this chapter, the Task model has a
belongs to relationship with the Project model. Indeed, each task is associated
with only one project, and the project_id column in the tasks' table is used
to connect each instance. A concrete example is that a task with project_id
= 1 will belong to the project with id = 1.

Chapter 2

[73]

• Has many: When you define a has many relationship in model A toward
model B, each model A's instance can be associated with many model B's
instances. You will generally need to create a column in model B's table that
will be used to connect instances. In this chapter, the Project model has a has
many relationship with the Task model; indeed, each project can have many
tasks, and the project_id column in the tasks' table is used to connect each
instance. A concrete example is that a project with id = 1 can have many
tasks with project_id = 1.

• Has one: A way to understand this relation is to think of it as a special case of
a has many relationship, except that each model A's instance can be associated
with only one model B's instance. If we defined a has one relationship (instead
of has many) in the Project model toward the Task model, we would still
need to define the project_id column inside the tasks' table, but in that
case only a single task could be associated to each project.

• Many to Many: When you define a many to many relationship in model A
toward model B, each model A's instance can be associated with many model
B's instances and each model B's instance can be associated with many model
A's instances. In that case, you will need to create an intermediary table.

You are recommended to read the official documentation about relations at http://
fuelphp.com/docs/packages/orm/relations/intro.html.

Defining relations inside the models
Now that we have introduced the different types of relations, let's define them in
our model.

First, open APPPATH/classes/model/task.php and add the following attribute in
the Model_Task class:

protected static $_belongs_to = array('project');

Note that this is equivalent to the following code:

protected static $_belongs_to = array(
 'project' => array(
 'model_to' => 'Model_Project',
 'key_from' => 'project_id',
 'key_to' => 'id',
 'cascade_save' => true,
 'cascade_delete' => false,
)
);

Building a To-do List Application

[74]

In the first case, the model_to, key_from, and key_to keys are inferred from the
array value ('project'). If not defined, cascade_save default value is true
and cascade_delete default value is false. These keys define the following
relation characteristics:

• The model_to key: The model across the relation (model B)
• The key_from key: The model's (model A's) column used to

connect instances
• The key_to key: The model across the relation's (model B's) column used

to connect instances
• The cascade_save key: If true, each time a model's instance is saved, the

related instances will also be saved
• The cascade_delete key: If true, each time a model's instance is deleted, the

related instances will also be deleted. Beware of this feature, as you could
end up deleting more information than you really want.

Now, open APPPATH/classes/model/project.php and add the following attribute
in the Model_Project class:

protected static $_has_many = array('tasks');

As with the belongs_to relation, it is equivalent to the following code:

protected static $_has_many = array(
 'tasks' => array(
 'model_to' => 'Model_Task',
 'key_from' => 'id',
 'key_to' => 'project_id',
 'cascade_save' => true,
 'cascade_delete' => false,
)
);

Testing the relations
To better illustrate this, let's test how these relations work by appending code in our
public/test.php file.

Chapter 2

[75]

Getting objects' relations
First let's load a task's instance with id = 1, and then its related project. You can
notice that we set the from_cache parameter to false. This has been done to prevent
FuelPHP to load the instance from the cache because we want to display all executed
requests. In most cases, you are not recommended to use this parameter.

$task = Model_Task::find(1, array('from_cache' => false));
$project = $task->project;
\Debug::dump('Project of task with id = 1', $project);

In the second line, we loaded the task's project by accessing the project attribute.
This is the relation name we declared in the Model_Task class. In a general manner,
if you want to access a related instance through the relation RELATION_NAME, you can
get it using $item->RELATION_NAME.

You can see that the following two requests were executed:

1. The first request was executed in the find method in order to load the task
with id = 1.
SELECT … FROM `tasks` AS `t0` WHERE `t0`.`id` = 1
 LIMIT 1

2. The second request was executed when getting $task->project: in this case
the project with id = $task->project_id was retrieved:

SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` =
 '2' LIMIT 1

Let's load a project's instance with id = 2, and then its related tasks:

$project = Model_Project::find(
 2,
 array('from_cache' => false)
);
$tasks = $project->tasks;
\Debug::dump('Tasks of project with id = 2', $tasks);

Two requests have been executed:

1. The first request loads the project's instance:
SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` = 2
 LIMIT 1

2. The second request loads the project's associated tasks:

SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '2'

Building a To-do List Application

[76]

When relations are defined, the find method allows you to improve performance by
reducing the number of SQL requests. For instance, if you do the following:

$projects = Model_Project::find(
 'all',
 array('from_cache' => false)
);
foreach ($projects as $project) {
 \Debug::dump(
 'LOOP 1: Tasks of project with id = '.$project->id,
 $project->tasks
);
}

Three requests will be executed, which are given as follows:

• One for loading all the projects
SELECT … FROM `projects` AS `t0`

• Two for loading $project->tasks for each project in $projects

SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '2'

SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '3'

Three requests don't seem a lot, but if you load 100 projects this means that you will
execute 101 requests and this can lead to serious performance issues.

The find method allows you to address this issue through the related key:

$projects = Model_Project::find(
 'all',
 array(
 'related' => 'tasks'
)
);
foreach ($projects as $project) {
 \Debug::dump(
 'LOOP 2: Tasks of project with id = '.$project->id,
 $project->tasks
);
}

Chapter 2

[77]

Here, only one request has been executed. The FuelPHP's ORM has loaded the
relation when executing the find method by joining the tasks' table in the request.

Executed request:

SELECT … FROM `projects` AS `t0` LEFT JOIN
`tasks` AS `t1` ON (`t0`.`id` = `t1`.`project_id`)

Updating objects' relations
If you want to update a relation, you can simply update the column supporting it.
For instance, the following code loads the task with id = 1 and makes it belong to
the project with id = 3:

$task = Model_Task::find(1, array('from_cache' => false));
$task->project_id = 3;
$task->save();

Two requests will be executed, which are given as follows:

1. The first request loads the task:
SELECT … FROM `tasks` AS `t0` WHERE `t0`.`id` = 1 LIMIT 1

2. The second updates the project_id column of the task:
UPDATE `tasks` SET `project_id` = '3',
 `updated_at` = 1404729671 WHERE `id` = '1'

Though it executes more SQL requests, we could also have written the following:

$task = Model_Task::find(1, array('from_cache' => false));
$task->project = Model_Project::find(
 3,
 array('from_cache' => false)
);
$task->save();

Four requests will be executed, which are given as follows:

1. The first request loads the task (executed by Model_Task::find(...)):
SELECT … FROM `tasks` AS `t0` WHERE `t0`.`id` = 1 LIMIT 1

2. The second request loads the project we want to associate to the task
(executed by Model_Project::find(...)):
SELECT … FROM `projects` AS `t0` WHERE
 `t0`.`id` = 3 LIMIT 1

Building a To-do List Application

[78]

3. The third request loads the existing project associated to the task (executed
by $task->project):
SELECT … FROM `projects` AS `t0` WHERE
 `t0`.`id` = '2' LIMIT 1

4. The fourth request updates the project_id column of the task (executed by
$task->save()):
UPDATE `tasks` SET `project_id` = '3',
 `updated_at` = 1404729671 WHERE `id` = '1'

It is also possible to affect a new project to a task:

$task = Model_Task::find(1, array('from_cache' => false));
$task->project = Model_Project::forge();
$task->project->name = 'Fourth project';
$task->save();

In that case, the ORM will create a new project and then assign the correct ID to the
project_id attribute.

Four requests will be executed, which are given as follows:

1. The first request loads the task (executed by Model_Task::find(...)):
SELECT … FROM `tasks` AS `t0` WHERE `t0`.`id` = 1 LIMIT 1

2. The second request loads the existing project associated to the task (executed
by $task->project):
SELECT … FROM `projects` AS `t0` WHERE
 `t0`.`id` = '3' LIMIT 1

3. The third request creates the new project (executed by $task->save()):
INSERT INTO `projects` (`name`, `created_at`,
 `updated_at`) VALUES ('Fourth project', 1404729796,
 1404729796)

4. The fourth request updates the project_id column of the task (executed by
$task->save()):
UPDATE `tasks` SET `project_id` = '4', `updated_at`
 = 1404729796 WHERE `id` = '1'

Similarly, it is possible to affect a new task to a project:

$project = Model_Project::find(
 2,
 array('from_cache' => false)

Chapter 2

[79]

);
$task = Model_Task::forge();
$task->name = 'Buy a new mouse';
$task->status = 0;
$task->rank = 2;
$project->tasks[] = $task;
$project->save();

Three requests will be executed, which are given as follows:

1. The first request loads the project (executed by Model_
Project::find(...)):
SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` = 2
 LIMIT 1

2. The second request loads the existing tasks associated to the project (executed
by $project->tasks):
SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '2'

3. The third request creates the new task (executed by $project->save()):

INSERT INTO `tasks` (`name`, `status`, `rank`,
 `project_id`, `created_at`, `updated_at`) VALUES
 ('Buy a new mouse', 0, 2, '2', 1404731559, null)

If you take a precise look at $project->tasks, you will notice that it is an associated
array, the keys being the instances ID and the values being the instances. Thus, this is
how you can update a specific task through relations:

$project = Model_Project::find(
 2,
 array('from_cache' => false)
);
$project->tasks[6]->name = 'Buy an optical mouse';
$project->save();

It will change the name of the task with id = 6 to 'Buy an optical mouse' (if this
task exists and its project_id is equal to 2).

Three requests will be executed, which are given as follows:

1. The first request loads the project (executed by Model_
Project::find(...)):
SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` = 2
 LIMIT 1

Building a To-do List Application

[80]

2. The second request loads the existing tasks associated to the project (executed
by $project->tasks):
SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '2'

3. The third request updates the task's name column (executed by $project-
>save()):

UPDATE `tasks` SET `name` = 'Buy an optical mouse',
 `updated_at` = 1404732349 WHERE `id` = '6'

It is also possible to disconnect two related items. This example is not adapted or
useful for our project, but it is important to know that you can do this. Let's try to
disconnect the task with id = 4 from the project with id = 3:

$project = Model_Project::find(
 3,
 array('from_cache' => false)
);
unset($project->tasks[4]);
$project->save();

Executed requests:

1. The first request loads the project (executed by Model_
Project::find(...)):
SELECT … FROM `projects` AS `t0` WHERE `t0`.`id` = 3 LIMIT
 1

2. The second request loads the existing tasks associated to the project (executed
by $project->tasks):
SELECT … FROM `tasks` AS `t0` WHERE
 `t0`.`project_id` = '3'

3. The third request attempts to disconnect the task with id = 4 from the
project (executed by $project->save()):

UPDATE `tasks` SET `project_id` = null,
 `updated_at` = 1404803182 WHERE `id` = '4'

If you take a look at the executed requests, this code is not adapted to our
project because:

• For it to correctly work, we should allow the project_id column to be null,
and that isn't the case right now

• In our application, a task belonging to no project would make no sense

Chapter 2

[81]

In other cases, doing that can be legitimate though. Again, this is only a
short introduction to the ORM's relations, and you are recommended to read
the official documentation at http://fuelphp.com/docs/packages/orm/
relations/intro.html.

Observers and events
You have probably noticed in the previous section that, when saving an object, some
additional values were saved in the created_at and updated_at columns without
us specifying anything. For instance:

INSERT INTO `projects` (`name`, `created_at`, `updated_at`) VALUES
 ('Third project', 1404729796, 1404729796);

This happens because of the observers defined in the models. Observers override some
model behaviors; for example, they can change properties' values before committing
the changes to the database, or prevent the object from being saved if some conditions
are met. Let's take a look at the observers defined in Model_Project:

protected static $_observers = array(
 'Orm\Observer_CreatedAt' => array(
 'events' => array('before_insert'),
 'mysql_timestamp' => false,
),
 'Orm\Observer_UpdatedAt' => array(
 'events' => array('before_save'),
 'mysql_timestamp' => false,
),
);

You can notice that two observers are defined: Orm\Observer_CreatedAt and Orm\
Observer_UpdatedAt. They handle the created_at and updated_at columns,
respectively, setting their value to the current timestamp when the object is created
or updated. Observers can have custom parameters such as mysql_timestamp,
which defines if a MySQL timestamp is saved instead of a UNIX one.

The events parameter is common to all observers and defines which events they
should be connected to. Events are methods called in behaviors when something
happens to an object; for instance, when you save an object, the ORM will try to call
its behaviors' before_save method before changes are committed to the database.
There are several events, such as after_create or after_save. You can read the
full descriptive list in the official documentation at http://fuelphp.com/docs/
packages/orm/observers/creating.html#/event_names

Building a To-do List Application

[82]

In order to learn more, you are also recommended to read the introduction to
observers in the official documentation at http://fuelphp.com/docs/packages/
orm/observers/intro.html

Implementation of the to-do list
Now that we explained the essential ORM features and implemented our relations,
it is finally time to build our to-do list. This section assumes you have executed the
complete public/test.php script at least once.

Allowing the user to see and change tasks'
status
First, we will display the associated tasks when viewing a project's details. For
instance, this web page should display all tasks of project with id = 2 after the
project's name:

http://mytodolists.app/project/view/2

In order to do that, we can, as we did in Chapter 1, Building Your First FuelPHP
Application, dissect the URL and deduce that, in this case, the view action of the
Project controller is executed. The action displays project/view; thus, we have to
edit APPPATH/views/project/view.php. Add the following code under the first
paragraph displaying the project's name:

<?php echo render('task/list', array('project' => $project)); ?>

The render(...) method is an alias for View::forge(...)->render(), and thus
the preceding code displays the task/list view. Create the APPPATH/views/task/
list.php view file (you have to create the task folder) and set its content to:

<ul id="todo_list" data-project_id="<?php echo $project->id; ?>">
 <?php foreach ($project->tasks as $task) {
 $input_id = 'todo_item_'.$task->id;
 ?>

 <input
 type="checkbox"
 autocomplete="off"
 id="<?php echo $input_id; ?>"
 data-task_id="<?php echo $task->id; ?>"
 <?php echo $task->status ? 'checked' : ''; ?>
 >

Chapter 2

[83]

 <label for="<?php echo $input_id; ?>">
 <?php echo $task->name; ?>
 </label>

 <?php } ?>

This code should be pretty straightforward; it displays an HTML list of the project's
tasks. Each item displays the name in a label linked to a checkbox displaying its
status. We can make the two following observations:

• We defined the data-project_id attribute inside the ul element. It will be
later used by our JavaScript code to easily retrieve the project's ID. The same
goes for the data-task_id attribute for each checkbox.

• You can notice we printed $task->name without escaping the string. You
could think that this is a security breach because $task->name could contain
HTML tags such as the <script> tag and therefore would be prone to XSS
injections. However, it isn't because when you use the View::forge method,
all parameters (even model properties) are, by default, processed (escaped)
to prevent such security flaws. You can disable this behavior though (we will
see in Chapter 3, Building a Blog Application, that sometimes we have to), and
in that case FuelPHP provides the e method to manually escape variables.

It is recommended to separate your views into small view files,
each displaying a specific area of your web page. We just did
it by creating an additional view for displaying the task lists.
We could have gone even further by creating a view file that
displays a single task and then rendering it for each item in the
tasks' list.

We can now see our to-do items. But if we click on our checkboxes, it doesn't
synchronize with our server, and if we refresh our web page, we can see that items
are back to their old status. We will use a bit of JavaScript and jQuery in order to
synchronize the checkboxes with the website.

Create a JavaScript file at public/assets/js/website.js.

We first have to include it in the template. Open APPPATH/views/template.php and
add before the end of the head tag the following:

<?php
echo Asset::js(array(
 'http://code.jquery.com/jquery-1.11.2.min.js',

Building a To-do List Application

[84]

 'http://code.jquery.com/ui/1.11.2/jquery-ui.min.js',
 'website.js'
));
?>

The preceding code includes three JavaScript files into the template:

• The first two lines are the jQuery and jQuery UI scripts that we will need.
• The third one is the script containing our JavaScript code. Note that you

didn't have to write the complete path. The Asset::js method automatically
searches for the file in the public/assets/js folder. You should know it is
possible to specify additional directories to search JavaScript and CSS files
using the Asset::add_path method if necessary. You are recommended to
read the official documentation at http://fuelphp.com/docs/classes/
asset/usage.html.

As we will need to know our base URL in our JavaScript code in order to send AJAX
requests, add the following just before the code we previously added:

<script type="text/javascript">
<?php
echo 'var uriBase = '.Format::forge(Uri::base())->to_json().';';
?>
</script>

This code creates a JavaScript variable named uriBase containing the base
URL obtained from Uri::base() and encoded to a JavaScript string by
Format::forge(...)->to_json(). You are recommended to read the official
documentation about these classes at the following URLs:

• http://fuelphp.com/docs/classes/uri.html

• http://fuelphp.com/docs/classes/format.html

This uriBase variable was implemented for those of you that created
your project inside your webserver root directory without using virtual
hosts: in that case, sending AJAX requests using only relative URLs will
cause issues. An alternative is to use the base HTML tag, as we will see in
Chapter 5, Building Your Own RESTful API.

Chapter 2

[85]

Now that our JavaScript file and its dependencies are included in the template, we
have to implement the checkbox synchronization. Open the JavaScript file we created
earlier at public/assets/js/website.js and set its content to:

$(document).ready(function() {

 // Checkbox synchronization
 $('#todo_list input[type=checkbox]').change(function() {
 var $this = $(this);
 $.post(
 uriBase + 'project/change_task_status',
 {
 'task_id': $this.data('task_id'),
 'new_status': $this.is(':checked') ? 1 : 0
 }
);
 });
});

For those unfamiliar with jQuery, the code does the following:

• When the document DOM is ready, the script will look for checkboxes inside
our to-do list and track their changes.

• When a checkbox is changed, it sends a POST request to the project/
change_task_status action with the task's ID and its new status.

• It does not handle errors; if there is a connection problem, the user will think
the web page is synchronized with the server though it isn't. It could be an
axis of improvement.

Now, we have to handle this request on the server side, so we need to create the
change_task_status action inside the Project controller.

Note that, for the sake of simplicity, we decided to create the action in the
Project controller, though it handles tasks and should therefore be created
inside a Task controller. For your real projects, it is highly recommended
not to do this. It is easy to fall into the trap of having a single controller
handling your whole website, and though for small projects it might be
'OK', you will have serious maintainability issues as your features add up.

www.allitebooks.com

http://www.allitebooks.org

Building a To-do List Application

[86]

Open the Project controller and add the following action:

public function action_change_task_status()
{
 if (Input::is_ajax()) {
 $task = Model_Task::find(intval(Input::post('task_id')));
 $task->status = intval(Input::post('new_status'));
 $task->save();
 }
 return false; // we return no content at all
}

You can notice we used Input::post instead of the $_POST global variable; it gets
the same value, except you can define a default value in the second parameter of
Input::post in case the key is not defined. The same applies for Input::get and
$_GET.

We also checked using Input::is_ajax if it is an Ajax request. Note though there
is no safe ways to detect if the request was made via Ajax (never trust data coming
from the client).

The synchronization should now work; any status change should be saved and
preserved if you refresh the web page.

Allowing the user to add tasks
Now that we can see and change the status of projects' tasks, it could be useful to add
new ones. We will add a form for doing that under the to-do list.

First open APPPATH/views/task/list.php and add, at the end, the following:

<?php echo render('task/create', array('project' => $project)); ?>

Then create a view file located at APPPATH/views/task/create.php and set its
content to:

<h3>Create a new task:</h3>
<?php
echo Form::open();
echo Form::input(
 'task_name',
 null,
 array('placeholder'=>'Task name')
);

Chapter 2

[87]

echo Form::submit('task_submit', 'Create');
echo Form::close();
?>

Nothing spectacular here, we just display a form with a text input (for the task title)
and a Create button. We use the Form class for doing that, but we could have written
that in HTML code as well. For more detail about this class, you are recommended to
read the official documentation at http://fuelphp.com/docs/classes/form.html.

Note that no parameter was passed to Form::open; the consequence is that the form
will submit information to the current URL (and that is how we will know which
project the new task must be associated with). Thus, we have to handle the form in
the view action of the Project controller. Inside the action, add the following:

// Checking first if we received a POST request
if (Input::method() == 'POST')
{
 // Getting the task name. If empty, we display an
 // error, otherwise we attempt to create the new
 // task
 $task_name = Input::post('task_name', '');
 if ($task_name == '') {
 // Setting the flash session variable named
 // error. Reminder: this variable is displayed
 // in the template using Session::get_flash
 Session::set_flash(
 'error',
 'The task name is empty!'
);
 } else {
 $task = Model_Task::forge();
 $task->name = $task_name;
 $task->status = 0;
 $task->rank = 0; // temporary
 $data['project']->tasks[] = $task;
 $data['project']->save();
 // When the task has been saved, we redirect
 // the browser to the same webpage. This
 // prevents the form from being submitted
 // again if the user refreshes the webpage
 Response::redirect('project/view/'.$id);
 }
}

Building a To-do List Application

[88]

Before:

$this->template->title = "Project";

If you read the comments, the changes we made should be pretty straightforward.

Allowing the user to change tasks' order
Return back to the JavaScript file located at public/assets/js/website.js, and
add at the end of the $(document).ready callback method:

var $todoList = $('#todo_list');
$todoList.sortable();
$todoList.disableSelection();

Now, if you request a project view page, you should be able to change the tasks'
order by dragging the labels. This is done using the sortable method.
The disableSelection method prevents the user from selecting text inside the
list, because it can sometimes cause user interface issues when dragging an item.

However, the order is not synchronized, so if you refresh the web page, your
custom order will be forgotten. In order to save the changes, replace $todoList.
sortable(); with the following:

$todoList.sortable({
 // The stop event is called when the user drop an item
 // (when the sorting process has stopped).
 'stop': function() {
 // Collecting task ids from checkboxes in the
 // new order.
 var ids = [];
 $todoList.find('input[type=checkbox]').each(function() {
 ids.push($(this).data('task_id'));
 });
 // Sending the ordered task ids to the server.
 $.post(
 uriBase + 'project/change_tasks_order',
 {
 'project_id': $todoList.data('project_id'),
 'task_ids': ids
 }
);
 }
});

Chapter 2

[89]

For more information, you are recommended to read the official documentation of
the sortable method of jQuery UI at http://api.jqueryui.com/sortable/.

We now have to handle requests sent to the change_tasks_order action of the
Project controller. Add the following method to the controller:

public function action_change_tasks_order() {
 if (Input::is_ajax()) {
 $project = Model_Project::find(
 intval(Input::post('project_id'))
);
 // Changing the rank property according to the
 // list of ids received by the controller
 $task_ids = Input::post('task_ids');
 for ($i = 0; $i < count($task_ids); $i++) {
 $task_id = intval($task_ids[$i]);
 $project->tasks[$task_id]->rank = $i;
 }
 $project->save();
 }
 return false; // we return no content at all
}

And, in the view action, replace:

$task->rank = 0; // temporary

with the following:

// Appending the task at the end of the to-do list
$task->rank = count($data['project']->tasks);

If you check the task's table, the tasks' rank column is now updated when dragging
tasks to new positions. But if you refresh the web page, the order is still lost; this is
because we don't sort the project's tasks when we display them. In order to do that,
replace the following inside the view action:

if (! $data['project'] = Model_Project::find($id))

Building a To-do List Application

[90]

with the following:

$data['project'] = Model_Project::find($id, array(
 'related' => array(
 'tasks' => array(
 'order_by' => 'rank',
),
),
));
if (! $data['project'])

As explained in the previous section, the related key allows the developer to load
relations when retrieving objects. More than allowing you to improve your website's
performance, it also allows you to sort or add conditions to your relations. You even
can add again a related key to load your relations' relations.

Axis of improvements
Many features can still be added to the application. You can implement them to
improve your skill:

• Allow the user to delete a task. This could be done by adding a delete icon
next to each task.

• Add a dashboard to give the user a general overview of the project and their
remaining tasks.

• Improve the visual interface.
• A bit trickier: add support for a multiuser environment. What happens if two

users change the tasks order at the same time for instance? How to prevent
loss of information?

Summary
In this chapter, we have built our first real project and learnt to use important
FuelPHP features such as the ORM and debugging tools. You should begin to feel
confident about implementing simple projects. In the next chapter, we are going to
use more advanced FuelPHP features such as modules and presenters.

Building a Blog Application
Now that we have seen FuelPHP's elementary features in the previous chapters,
it is time to use more advanced ones. In this chapter, we will build a typical blog
application managed via a secured administration interface. We will implement it as
a module since this is a convenient way in FuelPHP to improve code reusability.

By the end of the chapter, you should know:

• How to generate an administration interface
• How to create your own module
• What are CSRF attacks and how to protect your website from them
• How to create and use tasks
• How and when to use presenters
• How to easily create pagination
• How to use the slug observer
• What are the Auth and Email packages and how to use them
• How to parse markdown
• How to use WYSIWYGS editors and display their content

The aim of this chapter is also to consolidate your acquired knowledge, and thus the
implementation will be a little longer and more repetitive than usual. Please take
your time to analyze and understand how each part works, and play around by
tweaking or adding features.

Building a Blog Application

[92]

Specifications
First, let's define what should be expected in our final application:

• A blog displays posts. A post is described by a title, a small description
(that acts as a summary), the post's content, a category, a publication date,
and an author.

• The blog's home page displays a paginated list of posts. If the user clicks on
the title, he should be able to see the full version of the post.

• By clicking on the post category, a similar list should appear, but only
displaying the posts belonging to this category.

• Posts and categories should only be created and edited by authenticated
users in the administration interface.

• The length of the post's small description should be limited to 200 characters
and edited in the Markdown syntax.

• The content should be edited with a WYSIWYG plugin.
• The administrators should be able to moderate comments.
• Each time someone writes a comment, an email should be sent to the

post's author.
• We want to be able to easily install a new blog on other websites.

Conception
Let's try to determine our models from the preceding specifications. Post is obviously
a model, as it is the main feature of our blog (we display posts). Each post is created
and updated by an authenticated user, meaning that users have to be saved into
the database; therefore, we also have a User model. There can be posts without
comments, and categories without any posts, meaning they belong to distinct
models; therefore, there is also a Category and a Comment model.

Chapter 3

[93]

That sums up to four models:

(0,N) Has many
Belongs to (1,1)

Status

Name

Id

Email

Comment

Name

Id

ContentPublication
date

Category Post

User

(1,1) Belongs to

(0,N) Has many

(0,N) Has many
Belongs to (1,1)

Small
description

Title

Id

Content

Entity Relationship diagram (Min-Max notation)

• Post: This model has the following properties: title, small description,
content, and publication date. A post is linked to a unique category and each
category has many posts, so we will add an additional column here, named
category_id. Similarly, each post belongs to a user (the author), so we will
add the user_id column.

• Category: This model only has a name property.
• Comment: This model has the following properties: name, email, status

and content. Since a comment belongs to a unique post and each post can
have many comments, we will also add a post_id column. When a comment
is posted by a visitor, its status value will be pending, since it has not been
reviewed. The administrator can publish or hide each comment by changing
their status in the administration panel to published or not_published.

We will not generate a User model. We will use the one from the Auth package, that
will manage users and their authentication for us.

Building a Blog Application

[94]

Preliminary steps
You first need to:

1. Install a new FuelPHP instance
2. Configure Apache and your host file to handle it: in this chapter, we will

access our application by requesting the http://myblog.app URL.
3. Update Composer if necessary
4. Create a new database for your application
5. And configure FuelPHP in order to allow your application to access

this database

These steps have been covered in Chapter 1, Building Your First FuelPHP Application,
so you might want to take a look at it.

This project will also need the ORM and Auth packages. We have already used the
ORM package, and as written earlier, the Auth package will allow us to manage our
users and their authentication. Since both packages are already installed, we just
need to enable them. For doing this, simply open the APPPATH/config/config.php
file and insert at the end of the returned array the following code:

'always_load' => array(
 'packages' => array(
 'orm',
 'auth',
),
),

Or you can uncomment the appropriate lines. This will load the ORM and Auth
package every time a FuelPHP instance is loaded.

You can also load a package in an ad hoc manner, using the
Package::load method. This will be addressed later in this
chapter when we will use the Email package.

We also need to change few configuration items for the Auth package. First, copy the
PKGPATH/auth/config/auth.php configuration file to APPPATH/config/auth.php
(this configuration file will overwrite the one of the Auth package) and replace:

'driver' => 'Simpleauth',

By:

'driver' => 'Ormauth',

Chapter 3

[95]

One reason we chose to use the Ormauth driver is that it has a much
more fine-grained ACL system than the Simpleauth driver. Ormauth is
more flexible and manages users, groups, roles, and permissions, whereas
Simpleauth only manages users, groups, and roles. Another reason is
that Ormauth already contains migrations and models managing all these
components. In a nutshell, we mainly chose this driver because it is easy
to set up and shows the whole scope of what is possible. However, it is
important to point out that we will only use a very small fraction of its
features and we could have limited ourselves to the Simpleauth driver.

Finally, copy the PKGPATH/auth/config/ormauth.php configuration file to
APPPATH/config/ormauth.php, and set the value of login_hash_salt to a
random string (for security precautions).

Scaffolding the posts
We will now, as we did in Chapter 1, Building Your First FuelPHP Application and
Chapter 2, Building a To-do List Application, generate the necessary code to handle our
posts. Since posts should only be created and edited by authenticated administrators in
an administration panel, we will generate the scaffold using admin (alias admin/orm):

php oil generate admin post title:string slug:string small_
description:string[200] content:text category_id:int user_id:int

The command should output the following:

Creating controller: APPPATH/classes/controller/base.php

Creating controller: APPPATH/classes/controller/admin.php

Creating views: APPPATH/views/admin/template.php

Creating views: APPPATH/views/admin/dashboard.php

Creating views: APPPATH/views/admin/login.php

Creating migration: APPPATH/migrations/001_create_posts.php

Creating model: APPPATH/classes/model/post.php

Creating controller: APPPATH/classes/controller/admin/post.php

Creating view: APPPATH/views/admin/post/index.php

Creating view: APPPATH/views/admin/post/view.php

Creating view: APPPATH/views/admin/post/create.php

Creating view: APPPATH/views/admin/post/edit.php

Creating view: APPPATH/views/admin/post/_form.php

Creating view: APPPATH/views/template.php

Building a Blog Application

[96]

You will notice that additional files have been created compared to scaffold/orm.
These files fall into two broad categories:

• The first five generated files have been generated to handle the
administration panel in a general manner (authentication and layout).

• The other ones, except the last one, have been generated to specifically
handle the post administration.

You can notice that we haven't yet generated the categories and comments, we will
come back to that later. Our priority right now is to make the administration panel
work to see what we are dealing with.

Migrating part 1
Now, execute the migration file that has been generated:

php oil refine migrate

If you request the URL http://myblog.app/admin and try to log in, an error will
be thrown because no table handling our users exist. To create this table (and all the
other ones necessary for the Ormauth driver), you have to execute the Auth package
migrations. This is done using the following command:

php oil refine migrate --packages=auth

The oil refine migrate command allows you to specify which modules and
packages you want to migrate. You can even choose to execute all migrations (from
your applications, modules, and packages) with the following command:

php oil refine migrate -all

Though in our case it doesn't make any difference, be aware that it will execute even
migrations for packages that are not defined in the always_load.packages key
of the APPPATH/config/config.php configuration file. Some of you might have
expected this behavior, but we felt that it was an important point to stress.

The administration panel
Once the migrations have been executed, request the following URL:

http://myblog.app/admin

Chapter 3

[97]

During the migration, the Auth package created a default user with the
following credentials:

• Username: admin
• Password: admin

If you log in using these credentials, the administration panel welcome page will be
displayed, as shown in the following screenshot:

It is very similar to the default welcome page; the major difference is the upper
navigation bar. As you can see in the APPPATH/views/admin/template.php
generated file, the navigation bar automatically detects controllers in the APPPATH/
classes/controller/admin folder and create links toward their index action. Since
the Controller_Admin_Post controller has been generated, there is a link toward
the posts list. If you click on it, you should see a CRUD scaffold pretty similar to the
one generated by scaffold/orm:

Building a Blog Application

[98]

The Auth package
If you take a look at your database now, you should see that many tables with names
that are prefixed by the users keyword, have been created:

• users
• users_clients
• users_groups
• users_group_permissions
• users_group_roles
• users_metadata
• users_permissions
• users_providers
• users_roles
• users_role_permissions
• users_scopes
• users_sessions
• users_sessionscopes
• users_user_permissions
• users_user_roles

The Ormauth driver of the Auth package manages these tables, and some of
them are linked to models located at PKGPATH/auth/classes/model/auth. As
explained earlier, the driver provides a much more complete solution than a simple
authentication system, as it manages users, groups, roles, and permissions.

It is important to point out that two other drivers exist:

• Simpleauth, which is a much simpler driver than Ormauth and only
manages users, groups and roles.

• Opauth, which allows users to connect using OAuth or OpenID providers
including Facebook, Twitter, or Google.

As we will use only a very small part of the package, explaining it to its full extent
would be out of scope. For more details, you are recommended to read the official
documentation at http://fuelphp.com/docs/packages/auth/intro.html (It
can be accessed through the FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Auth | Introduction)

Chapter 3

[99]

It would be good practice to change your admin password, as the current setting
(username and password both set to admin) will be a major security flaw when
publishing your project to the production server. You can change it using the
Auth::change_password method, and for doing that you are recommended to read
the method's official documentation at http://fuelphp.com/docs/packages/
auth/ormauth/usage.html#/method_change_password (It can be accessed through
the FuelPHP website by navigating to DOCS | TABLE OF CONTENTS | Auth |
Ormauth | Usage).

We suggest that you execute this method in the console of Oil or inside a migration
file (it is better if you want to propagate the change to other instances).

You could also add new users by using the Auth::create_user method. Note
however that, for the long run, creating or using a user management system could be
a good idea.

Creating the Blog module
By creating the post administration interface, we have now completed the first step
of our project. Before generating and implementing our other features, it is important
to remember that one additional objective is to easily install blogs on other websites
by reusing the same code. For doing that, we will create a blog module, and this is
where we should implement our code.

Moving files to the Blog module
The first step is to specify to FuelPHP where to look for modules. At the end of
the APPPATH/config/config.php configuration file returned array, add
(or uncomment appropriate lines):

'module_paths' => array(
 APPPATH.'modules'.DS
),

We then need to create our blog module folders. Create a folder located at APPPATH/
modules/blog with the following subfolders:

• classes

• classes/controller

• classes/controller/admin

• classes/model

Building a Blog Application

[100]

• config

• migrations

• views

• views/admin

You can also generate all these folders using the following oil command line:

php oil generate module blog –folders=classes/controller/admin,classes/
model,config,migrations,views/admin

The next step is to move the files we generated earlier to the blog module. As it can
be a bit long to complete (some code also need to be changed), we implemented an
open source task for that. The repository can be found here:

https://github.com/sdrdis/move_scaffold_to_module

To install this task, simply save:

https://raw.githubusercontent.com/sdrdis/move_scaffold_to_module/
master/movescaffoldtomodule.php

Into the APPPATH/tasks/ repository.

Before executing the task and moving all the files, it is important to underline that
we will also move the 001_create_posts.php migration file to the blog module.
As a consequence, the oil utility will consider this migration file as a new one and
try to execute it. We could leave it as it is; since the migration checks if the posts
table exists before trying to create it, it will successfully be executed, though it
won't do anything. But the oil utility will have saved that a 001_create_posts.
php migration has been executed in the application folder, so this isn't the cleanest
solution. Since we haven't entered any relevant post right now, let's first undo this
migration by executing:

php oil refine migrate:down

Then execute the following command line:

php oil r moveScaffoldToModule -scaffold=post -module=blog

The command should output (BLOGPATH being the path of the blog module):

Creating controller: BLOGPATH/classes/controller/admin/post.php

Deleting controller: APPPATH/classes/controller/admin/post.php

Creating model: BLOGPATH/classes/model/post.php

Deleting model: APPPATH/classes/model/post.php

Chapter 3

[101]

Creating view: BLOGPATH/views/admin/post/create.php

Creating view: BLOGPATH/views/admin/post/edit.php

Creating view: BLOGPATH/views/admin/post/index.php

Creating view: BLOGPATH/views/admin/post/view.php

Creating view: BLOGPATH/views/admin/post/_form.php

Deleting views: APPPATH/views/admin/post

Creating migration: BLOGPATH/migrations/001_create_posts.php

Deleting migration: APPPATH/migrations/001_create_posts.php

This task was created for making your life easier when implementing
this project. Please note, it supposes that the code was directly generated
from the oil utility and that you didn't make any changes inside it. It
can certainly be improved.
Hopefully, it won't be needed anymore in FuelPHP 1.8 as a --module
option might be implemented in the oil generate scaffold and
oil generate admin commands, allowing developers to directly
generate scaffolds inside a module.

Now, let's execute the migration file inside the blog module:

php oil refine migrate --modules=blog

Improving the navigation bar
You might have noticed that, though our post administration panel can be accessed
by requesting the following URL:

http://myblog.app/blog/admin/post

It doesn't appear in the upper navigation bar anymore. If we take a look at the
administration template located at APPPATH/views/admin/template.php, we can
see that those links are generated by the following code:

<?php
 $files = new GlobIterator(APPPATH.'classes/controller/admin/*.
php');
foreach($files as $file)
 {
 $section_segment = $file->getBasename('.php');
 $section_title = Inflector::humanize($section_segment);
 ?>

Building a Blog Application

[102]

<li class="<?php echo Uri::segment(2) == $section_segment ? 'active' :
'' ?>">
<?php echo Html::anchor('admin/'.$section_segment, $section_title) ?>

<?php
 }
?>

As you can see, the links are currently created according to files located at APPPATH/
classes/controller/admin/. However, we would like to support modules by
looking for files in the classes/controller/admin subdirectory of each module.
For doing this, replace this code by the following:

<?php
// Get the navigation bar's links from an helper. We moved
// the code there because it is a bit long.
$links = Helper::get_navigation_bar_links();

foreach ($links as $link) {
 // A link will be active if the current url starts with
 // its url. For instance, we want the post link to be
 // active when requesting these urls:
 // http://myblog.app/blog/admin/post
 // http://myblog.app/blog/admin/post/create
 // http://myblog.app/blog/admin/post/view/1
 // ...
 $active = Str::starts_with(
 Uri::current(),
 Uri::base().$link['url']
);
 ?>
<li class="<?php echo $active ? 'active' : '' ?>">
<?php echo Html::anchor(
 $link['url'],
 $link['title']
) ?>

<?php
}
?>

Chapter 3

[103]

Create the helper at the location APPPATH/classes/helper.php and add the
following content (read the comments for more information):

<?php
class Helper {
 static function get_navigation_bar_links() {
 // This method will return a list of links. Each
 // link will contain a title and a url.
 $links = array();

 // For all admin controllers of our application
 $files = new GlobIterator(
 APPPATH.'classes/controller/admin/*.php'
);
 foreach($files as $file)
 {
 // Url and title are deducted from the file
 // basename
 $section_segment = $file->getBasename('.php');
 $links[] = array(
 'title' => Inflector::humanize(
 $section_segment
),
 'url' => 'admin/'.$section_segment,
);
 }

 // Currently, only one path is defined:
 // APPPATH/module. But this could to change.
 $module_paths = \Config::get('module_paths');
 foreach ($module_paths as $module_path) {
 // For each admin controller of each module
 $files = new GlobIterator(
 $module_path
 .
 '*/classes/controller/admin/*.php'
);
 foreach($files as $file)
 {
 // We get the module name from the path...
 $exploded_path = explode(
 '/',
 $file->getPath()

Building a Blog Application

[104]

);
 $module = $exploded_path[
 count($exploded_path) - 4
];
 $section_segment = $file->getBasename('.php');
 $links[] = array(
 'title' => Inflector::humanize(
 $section_segment
),
 'url' => $module.'/admin/'.$section_segment,
);
 }
 }

 return $links;
 }
}

Note that the above code supposes that all modules containing at
least an admin controller can be requested.

If you refresh your administration panel, the Post link should appear in the upper
navigation toolbar.

One caveat of this solution is that you have to perform the same changes on each
new project if you want to display the Post link in the navigation toolbar. However,
the solution is universal in the sense that, if you add other modules and admin
controllers, their links will automatically appear. Moreover, if you don't use this
solution, you will still be able to manage posts via the following URL:

http://myblog.app/blog/admin/post

Scaffolding the rest of our project
Now that the post administration panel is working and inside the blog module, it is
time to generate our other models.

Chapter 3

[105]

Scaffolding categories
Let's first take care of the Category model.

Generating files
This step is quite straightforward; as we did previously, we will use the oil
command to generate our scaffold:

php oil generate admin/orm category name:string -s

Note that we added the -s (s for skip) parameter, as some files have already been
generated previously and we don't want to replace them. This command line
should output:

Creating migration: APPPATH/migrations/002_create_categories.php

Creating model: APPPATH/classes/model/category.php

Creating controller: APPPATH/classes/controller/admin/category.php

Creating view: APPPATH/views/admin/category/index.php

Creating view: APPPATH/views/admin/category/view.php

Creating view: APPPATH/views/admin/category/create.php

Creating view: APPPATH/views/admin/category/edit.php

Creating view: APPPATH/views/admin/category/_form.php

Don't launch the generated migration though; we will first move the code to our
blog module.

Moving categories to the blog module
Let's use the moveScaffoldToModule task to move the category scaffold into the
blog module:

php oil r moveScaffoldToModule -scaffold=category -module=blog

The command should output (BLOGPATH being the path of the blog module):

Creating controller: BLOGPATH/classes/controller/admin/category.php

Deleting controller: APPPATH/classes/controller/admin/category.php

Creating model: BLOGPATH/classes/model/category.php

Deleting model: APPPATH/classes/model/category.php

Creating view: BLOGPATH/views/admin/category/create.php

Creating view: BLOGPATH/views/admin/category/edit.php

Creating view: BLOGPATH/views/admin/category/index.php

Building a Blog Application

[106]

Creating view: BLOGPATH/views/admin/category/view.php

Creating view: BLOGPATH/views/admin/category/_form.php

Deleting views: APPPATH/views/admin/category

Creating migration: BLOGPATH/migrations/002_create_categories.php

Deleting migration: APPPATH/migrations/002_create_categories.php

Migrating
Now we just have to execute our migration file. To do that, enter the following
command line:

php oil refine migrate --modules=blog

If you access your administration panel, you should now be able to manage categories.

Scaffolding comments
This section is quite similar to the previous one. First, generate the scaffold:

php oil generate admin/orm comment name:string email:string content:text
status:string post_id:integer -s

This command should output the following:

Creating migration: APPPATH/migrations/002_create_comments.php

Creating model: APPPATH/classes/model/comment.php

Creating controller: APPPATH/classes/controller/admin/comment.php

Creating view: APPPATH/views/admin/comment/index.php

Creating view: APPPATH/views/admin/comment/view.php

Creating view: APPPATH/views/admin/comment/create.php

Creating view: APPPATH/views/admin/comment/edit.php

Creating view: APPPATH/views/admin/comment/_form.php

Then, move the scaffold to the blog module:

php oil r moveScaffoldToModule -scaffold=comment -module=blog

This command should output the following:

Creating controller: BLOGPATH/classes/controller/admin/comment.php

Deleting controller: APPPATH/classes/controller/admin/comment.php

Creating model: BLOGPATH/classes/model/comment.php

Deleting model: APPPATH/classes/model/comment.php

Chapter 3

[107]

Creating view: BLOGPATH/views/admin/comment/create.php

Creating view: BLOGPATH/views/admin/comment/edit.php

Creating view: BLOGPATH/views/admin/comment/index.php

Creating view: BLOGPATH/views/admin/comment/view.php

Creating view: BLOGPATH/views/admin/comment/_form.php

Deleting views: APPPATH/views/admin/comment

Creating migration: BLOGPATH/migrations/003_create_comments.php

Deleting migration: APPPATH/migrations/002_create_comments.php

Before launching the migration file, we will improve it by changing the status
column type to ENUM, since there are only three possible values: not_published,
pending, and published. To do that, edit the BLOGPATH/migrations/003_create_
comments.php file and replace the following line:

'status' => array('constraint' => 11, 'type' => 'int'),

By:

'status' => array(
 'constraint' => "'not_published','pending','published'",
 'type' => 'enum',
 'default' => 'pending'
),

And finally, launch the migration file using oil:

php oil refine migrate --modules=blog

Comments should now be manageable in the administration interface.

Scaffolding posts (front)
In order to have a starting point, we are going to generate the scaffold of posts for the
front. We will, of course, change the controller a lot, because we don't want visitors
to edit and create posts.

Before doing anything, check that no file has been generated at
APPPATH/views/template.php (as I write, oil generate
admin/orm seems to generate an incorrect file at that location). If
that is the case, delete that file: it will be regenerated later by oil.

Building a Blog Application

[108]

Enter the following command:

php oil generate scaffold/orm post title:string slug:string small_
description:string[200] content:text category_id:int user_id:int

It should output:

Creating migration: APPPATH/migrations/002_create_posts.php

Creating model: APPPATH/classes/model/post.php

Creating controller: APPPATH/classes/controller/post.php

Creating view: APPPATH/views/post/index.php

Creating view: APPPATH/views/post/view.php

Creating view: APPPATH/views/post/create.php

Creating view: APPPATH/views/post/edit.php

Creating view: APPPATH/views/post/_form.php

Now move the scaffold to the blog module by entering the following command:

php oil r moveScaffoldToModule -scaffold=post -module=blog

This should print the following output:

Creating controller: BLOGPATH/classes/controller/post.php

Deleting controller: APPPATH/classes/controller/post.php

Deleting model: APPPATH/classes/model/post.php

Creating view: BLOGPATH/views/post/create.php

Creating view: BLOGPATH/views/post/edit.php

Creating view: BLOGPATH/views/post/index.php

Creating view: BLOGPATH/views/post/view.php

Creating view: BLOGPATH/views/post/_form.php

Deleting views: APPPATH/views/post

Deleting migration: APPPATH/migrations/002_create_posts.php

Note that, as a migration file with as similar file name was already in the blog module,
the task simply removed the one in the application directory (without copying it into
the blog module). This is the expected behavior since a migration that creates the posts
table already exists in the module.

You should be able to access the scaffold by requesting the following URL:

http://myblog.app/blog/post

Chapter 3

[109]

Refining the administration panel
Now that all the scaffolds have been created, it is time to refine our
administration panel:

• As categories are very simple models (they only have a name attribute),
the View link doesn't give the user more information than in the listing,
so we will remove it. We will also display the number of posts associated
with each category in the categories list; it will give us an idea of the most
used categories.

• We don't need to create new comments inside the administration panel, so
we need to remove the associated links and actions. We also need to do some
improvements in the edition form and in the listing.

• Same for the posts; we will remove most columns when listing posts, we will
add a WYSIWYG editor, a markdown editor and a category select box inside
the post creation and edition forms.

Note that there could be a lot of other improvements. You are recommended to add
the changes you deem necessary.

Refining the posts administration panel
Let's start with the posts administration panel. You might want to add some
categories for the purpose of testing. Note that you should be able to test your
application again at the end of each section.

Improving the post creation and edition forms
We will begin with the creation/edition form. We generated it and, as we saw in the
previous chapters, the view managing this form can be found at: BLOGPATH/views/
admin/post/_form.php.

Removing and automatically filling the slug
The slug property should only depend on the title, and it will be used in URLs for
improving the SEO. Its value will be automatically filled from the title, so we don't
need its related field in the form. Therefore, remove the second div with the class
form-group along with its content (which contains the slug input).

Building a Blog Application

[110]

To automatically fill its value, we will use an observer (as for the created_at and
updated_at columns); Orm\Observer_Slug. In a model's instance, this observer takes
a property value and saves its slug version into a second property. In the default case,
without any additional configuration, it will take the value of title and save its slug
version into slug. This is exactly our case, so it will be pretty simple, but you are
recommended to read the official documentation for more information:

http://fuelphp.com/docs/packages/orm/observers/included.html#os_slug

(It can be accessed through FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | ORM | Observers+ | Included observers)

Open the Post model located at BLOGPATH/classes/model/post.php and add the
following at the end of the $_observers property:

'Orm\\Observer_Slug',

Finally, we have to remove all elements related to the Slug field processing.

First, in the validate method of the Post model, remove:

$val->add_field('slug', 'Slug', 'required|max_length[255]');

Then, open the Post controller located at BLOGPATH/classes/controller/admin/
post.php and remove:

'slug' => Input::post('slug'),

And:

$post->slug = Input::post('slug');

And:
$post->slug = $val->validated('slug');

Changing the small description input to a textarea
We want to change the small description input into a textarea, because though its
length is limited to 200 characters, the standard input isn't user friendly. Replace:

<?php echo Form::input('small_description', ...); ?>

By:

<?php
echo Form::textarea(
 'small_description',
 Input::post(

Chapter 3

[111]

 'small_description',
isset($post) ? $post->small_description : ''
),
 array(
 'class' => 'col-md-4 form-control',
 'placeholder' => 'Small description',
 'rows' => 4,
 'maxlength' => 200,
)
);
?>

We want to write content using the markdown syntax (take a look at https://
en.wikipedia.org/wiki/Markdown if you are not familiar with it) and display the
formatted small description in our front end, but we won't need to change anything
else for now since this formatting process will happen in our front views. Though,
you could add a JavaScript markdown plugin here to make this textarea even more
user-friendly.

Editing the post content using a WYSIWYG editor
The next form item is the content and we want to edit it with a WYSIWYG editor.
We just have to add a JavaScript plugin. We will use TinyMCE, a well-known open
source WYSIWYG editor.

First, you will need to include the TinyMCE JavaScript file. Open the template file
located at APPPATH/views/admin/template.php and add:

'//tinymce.cachefly.net/4.1/tinymce.min.js'

At the end of the Asset::js first array parameter.

Note that we used the JavaScript file hosted on TinyMCE's
recommended CDN at the time this book was written. Depending on
when you read this book and your requirements, you might want to
use a different URL or host TinyMCE on your servers.

Next, we need to specify to TinyMCE which textarea has to be transformed to
WYSIWGs. Inside the same template, add the following at the end of the first
script tag:

// Transforms textareas with the wysiwyg class to wysiwygs
tinymce.init({selector:'textarea.wysiwyg'});

Building a Blog Application

[112]

Finally, we need to add the wysiwyg class to our content textarea. Return
to the file located at APPPATH/views/admin/post/_form.php, search for
Form::textarea('content' and inside this method call, replace:

'class' => 'col-md-8 form-control'

By:

'class' => 'col-md-8 form-control wysiwyg'

Replacing the category input by a select box
The next item in the form is Category id. Setting the category id manually is not
user friendly for the administrator; the best would be to display a select box, so that
categories can be chosen by their title.

First, create a view file at BLOGPATH/views/admin/category/selector.php, and
add the following content:

<?php
/*
Loading the list of all categories here, since it doesn't
depend on the post being created / edited. (Temporary)
*/
$categories = \Blog\Model_Category::find('all');

$options = array();
foreach ($categories as $category) {
 $options[$category->id] = $category->name;
}
echo Form::select('category_id', $category_id, $options);

Then, back on the BLOGPATH/views/admin/post/_form.php view file, fix the
category field title by replacing:

Form::label('Category id', 'category_id'

With:

Form::label('Category', 'category_id'

And include our select box by replacing:

<?php echo Form::input('category_id', ...) ?>

Chapter 3

[113]

With:

<div>
<?php
$select_box = \View::forge('admin/category/selector');

// Other way to set a view parameter; sets the $category_id
// variable.
$select_box->set(
 'category_id',
 Input::post(
 'category_id',
 isset($post) ? $post->category_id : null
)
);

echo $select_box;
?>
</div>

If you test the form, the select box should be working. But there is a small issue; when
we created the selector view, we loaded a list of categories inside the view. This isn't
respecting the MVC pattern, as we are loading models inside a view. But it would not
make sense to load these objects inside the Post controller, because the view doesn't
actually depend on any post; we always load all categories, no matter the context. As
written earlier in Chapter 1, Building Your First FuelPHP Application, we should use a
presenter in that case. Luckily, we don't need to make many changes.

First, create the presenter file at BLOGPATH/classes/presenter/admin/category/
selector.php and add the following content:

<?php
namespace Blog;

class Presenter_Admin_Category_Selector extends \Presenter
{
 public function view()
 {
 $this->categories = Model_Category::find('all');
 }
}

Building a Blog Application

[114]

Then, edit the BLOGPATH/views/admin/post/_form.php view file to replace the
following line:

$select_box = \View::forge('admin/category/selector');

By:

$select_box = \Presenter::forge('admin/category/selector');

And finally, edit the BLOGPATH/views/admin/category/selector.php view and
remove the following line:

$categories = \Blog\Model_Category::find('all');

Though we won't need them immediately, we will add the relations between the
post and category models. Since each post can only have one category, and each
category can be related to many posts, there is a belongs_to relationship between
posts and categories, and a has_many relationship between categories and posts.

First, open the Post model located at BLOGPATH/classes/model/post.php, and add
the following code inside the class:

protected static $_belongs_to = array('category');

Then, open the Category model located at BLOGPATH/classes/model/category.
php, and add the following code inside the class:

protected static $_has_many = array('posts');

Replacing the user_id field by author
The last field in our form is the user_id field. We will replace this field by an
author field. This field won't be editable; the author of a post will simply be the
authenticated user that creates it.

We first need to add the relation between posts and users; since each post can only be
related to a single user, and users can have as many posts as they want, the relation's
type is belongs_to.

Open the Post model located at BLOGPATH/classes/model/post.php and add the
following at the end of the $_belongs_to array:

'author' => array(
 'model_to' => 'Auth\Model\Auth_User',
 'key_from' => 'user_id',
 'key_to' => 'id',
 'cascade_save' => true,

Chapter 3

[115]

 'cascade_delete' => false,
),

Next, we will change how the field is displayed in the creation/edition form. Open
BLOGPATH/views/admin/post/_form.php, and first replace:

<?php echo Form::label('User id', ...); ?>

By:

<?php echo Form::label('Author'); ?>

And then replace:

<?php echo Form::input('user_id', ...); ?>

By:

<div>
<?php
/*
This field is not editable, so we simply display the author.
current_user is a global variable that defines the current
logged user.
*/
$author = isset($post) ? $post->author : $current_user;
echo $author->username;
?>
</div>

And finally, we need the Post controller to reflect that behavior. For doing that, we
first change how the user_id attribute is saved in the create and edit actions. Open
the Post controller located at BLOGPATH/classes/controller/admin/post.php,
and, inside the create action, replace the following:

'user_id' => Input::post('user_id'),

By:

'user_id' => $this->current_user->id,

And inside the edit action, simply delete the following line:

$post->user_id = Input::post('user_id');

And:

$post->user_id = $val->validated('user_id');

Building a Blog Application

[116]

Though, you still won't be able to create a new post now, as the following message will
appear: The field User Id is required and must contain a value. This is happening
because of the Post model validate method. The remaining thing to do is to remove
the user_id validation. Open the Post model located at BLOGPATH/classes/model/
post.php, and remove the following line inside the validate method:

$val->add_field('user_id', ...);

Removing the View link
Since we are not interested in keeping the detailed view of posts, we can remove
the View link. Open BLOGPATH/views/admin/post/edit.php and remove the
following code:

<?php echo Html::anchor(..., 'View'); ?> |

The posts' list
If you have tested the form we improved to create new posts, you have probably
noticed that the listing is not well adapted.

Removing the Slug, Small description and Content
columns
The first issue is that the Slug, Small description, and Content columns are
displayed, though their value's length can be important. Since this can have a terrible
effect on the table layout, we will have to remove them. Open the listing view located
at BLOGPATH/views/admin/post/index.php and remove the following lines:

<th>Slug</th>
<th>Small description</th>
<th>Content</th>

And:

<td><?php echo $item->slug; ?></td>
<td><?php echo $item->small_description; ?></td>
<td><?php echo $item->content; ?></td>

Displaying the category and author names
The second issue is that we are displaying the categories' and users' ids, though
displaying their associated names would be more convenient.

First, change the table titles accordingly by replacing:

<th>Category id</th>

Chapter 3

[117]

By:

<th>Category</th>

And the following line:

<th>User id</th>

By:

<th>Author</th>

And change each line value by replacing:

<td><?php echo $item->category_id; ?></td>

By:

<td><?php echo $item->category->name; ?></td>

And the following line:

<td><?php echo $item->user_id; ?></td>

By:

<td><?php echo $item->author->username; ?></td>

You could leave the code as it is, since the correct information will appear in the
listing. But if you activate the profiler, you will notice that if you have several posts, a
lot of SQL requests will be executed. As we saw before, this is because we are calling
$item->category and $item->author, and, if not cached, each call executes a SQL
request. In order to optimize the number of requests being made, we will use the
related key. Open the Post controller located at BLOGPATH/classes/controller/
post.php and, inside the index action, replace the following line:

$data['posts'] = Model_Post::find('all');

By:

$data['posts'] = Model_Post::find(
 'all',
 array(
 'related' => array(
 'category',
 'author',
),
)
);

Building a Blog Application

[118]

Removing the view link
Since we are implementing the administration panel, we can reduce the code to what
is strictly necessary. The post edition and visualization is redundant, since we have
access to the post information when we are editing it. Thus, we will remove the View
link. Simply remove the following line:

<?php echo Html::anchor(..., 'View'); ?> |

It is a good idea to remove the View action inside the Post controller as well as the
view located at BLOGPATH/admin/post/view.php, since they are now useless code.

Refining the categories administration panel
Let's now focus on the categories administration panel. The Category model is quite
simple, so there is not much to do. As a matter of fact, we will almost only change
the listing page.

Removing the View link
Since the model only has one attribute that is already displayed on the list, the view
link and page are not of much use. First, delete the View link inside the view located
at BLOGPATH/views/admin/category/index.php by removing:

<?php echo Html::anchor(..., 'View'); ?> |

You can then remove the View action inside the Category controller and the view
located at BLOGPATH/views/admin/category/view.php, since they are now
useless code.

We also have to remove the View link inside the edition form. Open BLOGPATH/
views/admin/category/edit.php and remove the following code:

<?php echo Html::anchor(..., 'View'); ?> |

Adding the number of post's column
One challenge of this section is to display how many posts there are for each
category. This is not simple and there is no ideal solution.

Let's first add our column into our table. Under:

<th>Name</th>

Chapter 3

[119]

Add:

<th>Number of posts</th>

And under:

<td><?php echo $item->name; ?></td>

Add:

<td><?php /* Depends on solution */ ?></td>

Now let's test different options.

Solution 1: using count
The first solution is quite straightforward; we use the count method. Replace:

<td><?php /* Depends on solution */ ?></td>

By:

<td>
<?php
echo \Blog\Model_Post::count(
 array(
 'where' => array(
 array('category_id' => $item->id)
)
)
);
?>
</td>

Though the solution is quite simple, there are major drawbacks. Firstly, it doesn't
respect the MVC pattern. Secondly, it will generate a request for each category
displayed. Don't use this if you have a lot of categories.

Solution 2: using related
Another solution is to use the related key. First, open the Category controller
located at BLOGPATH/classes/controller/admin/category.php and, inside the
index action, replace the following line:

$data['categories'] = Model_Category::find('all');

Building a Blog Application

[120]

By:

$data['categories'] = Model_Category::find(
 'all',
 array(
 'related' => array(
 'posts',
),
)
);

And back to the BLOGPATH/views/admin/category/index.php view, replace:

<td><?php /* Depends on solution */ ?></td>

By:

<td><?php echo count($item->posts); ?></td>

On the one hand, this solution limits the number of requests but, on the other hand,
it might load a lot of useless post instances into the memory, so this is not ideal
either. Don't use this if you have a lot of posts.

Solution 3: using DB::query
Another solution is to load categories using DB::query. First, open the Category
controller located at BLOGPATH/classes/controller/admin/category.php and,
inside the index action, replace the following line:

$data['categories'] = Model_Category::find('all');

By:

$data['categories'] = Model_Category::find_all_with_nb_posts();

Then add the following method inside the Category model:

public static function find_all_with_nb_posts() {
 return \DB::query(
 'SELECT
 `categories`.*,
 count(`posts`.`id`) as nb_posts
 FROM `categories`
 LEFT JOIN `posts` ON (
 `posts`.`category_id` = `categories`.`id`
)
 GROUP BY `categories`.id'

Chapter 3

[121]

)
 ->as_object('\Blog\Model_Category')
 ->execute()
 ->as_array();
}

It is possible to execute a custom query and then transform the
result into model's instances thanks to the as_object method. In
this request, we add a custom column, nb_posts, that counts the
number of posts for each category. This column is accessible in our
categories instances under the nb_posts attribute.

And back to the BLOGPATH/views/admin/category/index.php view, replace:

<td><?php /* Depends on solution */ ?></td>

By:

<td><?php echo $item->nb_posts ?></td>

This solution is interesting for its performance: no additional queries or memory
usage. Its drawback is that it doesn't use the ORM, and this solution might be tricky
to implement for more complex problems.

For this instance though, we are recommending this solution.

Refining the comments administration panel
We also need to make some adjustments here. You are recommended to manually
add some comments now, because you won't be able to after we change the interface
(there would be no point in adding comments through the administration interface,
since any user will be able to do it on the website).

Improving the comments listing
First, we will improve the comments listing.

Building a Blog Application

[122]

Removing the view and adding a new comment link
As we won't need those features, we will remove their links, actions and views.

First, open the BLOGPATH/views/admin/comment/index.php view file and remove:

<?php echo Html::anchor(..., 'View'); ?> |

And:

<?php echo Html::anchor(..., 'Add new Comment', ...); ?>

And you are also recommended to remove the create and view action of the
Comment controller, as well as the BLOGPATH/views/admin/comment/create.php
and BLOGPATH/views/admin/comment/view.php files.

Removing the Email and Content columns
We will remove these two columns because they can take too much space. For doing
that, open BLOGPATH/views/admin/comment/index.php and remove the
following lines:

<th>Email</th>
<th>Content</th>

And:

<td><?php echo $item->email; ?></td>
<td><?php echo $item->content; ?></td>

Replacing the Post id column by Post
It would be more convenient to know the title of the post the comment is related to,
instead of the post's id.

First, replace:

<th>Post id</th>

By:

<th>Post</th>

And then replace:

<td><?php echo $item->post_id; ?></td>

Chapter 3

[123]

By:

<td>
<?php
echo $item->post ? $item->post->title : '<i>Post deleted</i>';
?>
</td>

But if we want this to work, we have to define the relations between posts and
comments. Open the Post model located at BLOGPATH/classes/model/post.php,
and add the following property:

protected static $_has_many = array('comments');

And then open the Comment model located at BLOGPATH/classes/model/comment.
php, and add the following property:

protected static $_belongs_to = array('post');

Now, you are able to display the listing again. But, you might notice that if you have
several comments, a lot of requests are executed. Again, we need to use the related
key to prevent that. Open the Comment controller located at BLOGPATH/classes/
controller/admin/comment.php and, inside the index action, replace:

$data['comments'] = Model_Comment::find('all');

By:

$data['comments'] = Model_Comment::find(
 'all',
 array(
 'related' => array('post'),
 // display last comments first
 'order_by' => array('id' => 'DESC'),
)
);

Improving the comment edition form
We will improve two fields in the comment edition form; Status, and Post id.

Changing the Status input to a select box
Since there are only three possible statuses, we will replace the input by a select
box. Open the form located at BLOGPATH/views/admin/comment/_form.php,
and replace:

<?php echo Form::input('status', ...); ?>

Building a Blog Application

[124]

By:

<div>
<?php
echo Form::select(
 'status',
 $comment->status,
 array(
 'not_published' => 'not_published',
 'pending' => 'pending',
 'published' => 'published',
)
);
?>
</div>

Replacing Post id by Post
Again, displaying a post's id is not relevant for the administrator; the best would
be to display the post's title.

First, replace:

<?php echo Form::label('Post id', ...); ?>

By:

<?php
echo Form::label(
 'Post',
 null, // No associated input
 array('class' => 'control-label')
);
?>

And then replace:

<?php echo Form::input('post_id', ...); ?>

By:

<div><?php echo $comment->post ? $comment->post->title : '<i>Post
deleted</i>'; ?></div>

Chapter 3

[125]

We then need to prevent any change in the post_id property when processing the
form. Open the Comment controller and, inside the action_edit method, remove
the following line:

$comment->post_id = Input::post('post_id');

And:

$comment->post_id = $val->validated('post_id');

Finally, we need to remove the post_id validation. Open the Comment model and
remove the following line:

$val->add_field('post_id', ...);

Removing the View link
Since there is no view action anymore, we have to remove the View link. Open
BLOGPATH/views/admin/comment/edit.php and remove the following code:

<?php echo Html::anchor(..., 'View'); ?> |

Protecting your website against CSRF attacks
You would certainly like to prevent hackers from changing your website
content, as the consequences could be disastrous. Although the risks are limited as
long as you are the only one to access an administration panel you implemented
yourself, you might want to protect your website against Cross-Site Request
Forgery (CSRF) attacks.

CSRF attacks are based on the trust a website has in a user's browser. Let's
illustrate these attacks with an example. Suppose you logged yourself into your
administration interface. If you access, a bit later, a webpage on another website that
contains the following code:

<html>
 <head>
 <title>My attack</title>
 </head>
 <body>

 </body>
</html>

Building a Blog Application

[126]

In your website, the delete action of the Post controller will get called and the post
with id = 1 will be deleted (if it exists), without your approval or any notification.
The hacker that created the webpage has then succeeded in his CSRF attack by
exploiting the fact that you were logged in to your administration panel. It worked
because your action didn't verify that the request was legitimate. More advanced
attacks can even submit forms, and you could then find yourself with unwanted
content on your website.

Luckily, FuelPHP allows you to easily protect your website by including a security
token in links or forms. This security token is later checked when the action is called.
That process ensures that the client requested the action from the website, and not
from somewhere else.

Protecting links
First, let's protect the delete links in the post listing.

Open the BLOGPATH/views/admin/post/index.php view file and replace:

'blog/admin/post/delete/'.$item->id

By:

'blog/admin/post/delete/'.$item->id.
'?'.\Config::get('security.csrf_token_key').
'='.\Security::fetch_token()

If you refresh the webpage, the delete links should now point to a URL looking like:

http://myblog.app/blog/admin/post/delete/ID?fuel_csrf_token=215be7bad
7eb4999148a22341466f66395ce483d12b17cae463b7bf4b6d6d86233ce38ce6b145c
08bf994e56610c1502158b32eca6f6d599a5bb3527d019c324

Now that we call the delete action of the Post controller with the CSRF token as a
get parameter, we just have to check if its value is correct before deleting the post. In
order to do that, open the Post controller and, inside the delete action, replace:

if ($post = Model_Post::find($id))

By:

if (($post = Model_Post::find($id)) and \Security::check_token())

Your delete action is now protected. You should do the same with the delete links
of the Category and Comment administration interfaces. In general, it is even
recommended to add this protection to any link that executes an important or
critical action.

Chapter 3

[127]

Protecting forms
We will now use a very similar technique to protect our post creation and edition
forms. First, open the BLOGPATH/views/admin/post/_form.php view file and add:

<?php echo Form::csrf(); ?>

Just after:

<?php echo Form::open(array("class"=>"form-horizontal")); ?>

The Form::csrf method will automatically add a hidden input to your form
containing the token. If you display the HTML code of the post creation or edition
webpage, you should see that this method returned a string similar to:

<input name="fuel_csrf_token"
 value="2411b0a6b942105fb80aa0cb1aaf89
 ca91e0ea715f5641bbfbb5ded23221fcecbbfe701
 6c8dbd922a19b12274989e67f71d266300ad14ebd9730c3ec604ec4f5"
 type="hidden" id="form_fuel_csrf_token" />

Now, let's check that this token is correct before making any change to the database.

Open the Post controller and, inside the create action, replace:

if ($post and $post->save())

By:

if (\Security::check_token() and $post and $post->save())

And inside the edit action, replace:

if ($post->save())

By:

if (\Security::check_token() && $post->save())

For the sake of this section's conciseness, we do not display a special error message
when the token doesn't have the expected value, but you are recommended to add
this feature.

Anyway, your post creation and edition forms are now protected too. You should
do the same with the creation and edition forms of the Category and Comment
administration interfaces. In general, it is even recommended to add this protection
to all your forms.

Building a Blog Application

[128]

Refining the front-end
We now have to refine the front-end of our website, that is to say what visitors
will see.

Refining the posts' listing
If you request the following URL:

http://myblog.app/blog/post

You will see the scaffold we generated earlier with scaffold/orm.

Deleting useless features
The first important thing to do is to prevent any edition on our posts. As we did
several times for the administration panel, remove the create, edit and delete actions
of the Post controller and their associated views. Note that, here, we are talking about
the Post controller located at BLOGPATH/classes/controller/post.php, since we are
working on the website's front-end. You can also delete the BLOGPATH/views/admin/
post/_form.php view file, as it is only called from the create and edit views.

Changing how the posts' listing is displayed
Currently, the posts' listing is displayed in a table and, for our blog, we want to
display the list more linearly, as most blogs are displayed.

The simplest way is to replace the view located at BLOGPATH/post/index.php by:

<?php if ($posts): ?>
<?php foreach ($posts as $item): ?>
<div class="post" id="post_<?php echo $item->id; ?>">
<h2>
<?php
echo Html::anchor('blog/post/view/'.$item->id, $item->title);
?>
</h2>
<?php
/*
As we will display the same information when visualizing a
post, we will implement different views in order
to easily reuse them later in BLOGPATH/views/post/view.php
*/
echo \View::forge(

Chapter 3

[129]

 'post/small_description',
 array('post' => $item)
);
echo \View::forge(
 'post/additional_informations',
 array('post' => $item)
);
?>
</div>
<?php endforeach; ?>
<?php else: ?>
<p>No Posts.</p>
<?php endif; ?>

As we are displaying additional content in separated views (see comments), we need
to create these views. Create the BLOGPATH/views/post/small_description.php
view file and set its content with the following:

<div class="post_small_description">
<?php
echo \Markdown::parse($post->small_description)
?>
</div>

And create the BLOGPATH/views/post/additional_informations.php view file
and set its content by the following:

<div class="post_date">
<?php
echo \Date::forge($post->created_at)->format('us_full');
?>
</div>
<div class="post_category">
 Category:
<?php echo $post->category->name ?>
</div>
<div class="post_author">
 By
<?php echo $post->author->username ?>
</div>

Building a Blog Application

[130]

Finally, in order to optimize the number of requests being made, open the Post
controller (the one for the front-end), and replace:

$data['posts'] = Model_Post::find('all');

By:

$data['posts'] = Model_Post::find(
 'all',
 array(
 'related' => array(
 'author',
 'category',
),
)
);

Adding pagination
If you add a lot of posts, you will notice that the list becomes very long. To prevent
this behavior, we will now add the Pagination feature.

At the beginning of the index action of the Post controller, add the following code in
order to create a Pagination instance:

// Pagination configuration
$config = array(
 'total_items' => Model_Post::count(),
 'per_page' => 10,
 'uri_segment' => 'page',
);

// Create a pagination instance named 'posts'
$pagination = \Pagination::forge('posts', $config);

Here, we set the main options of the Pagination configuration, but you
are recommended to take a look at the official documentation, as there are
many more options:
http://fuelphp.com/docs/classes/pagination.html

(It can be accessed through FuelPHP website by navigating to DOCS |
Core | Pagination)
If you don't have a lot of posts, you can lower the per_page value in
order to test the pagination.

Chapter 3

[131]

Now when we retrieve the posts, we have to take into account the pagination. Replace:

 $data['posts'] = Model_Post::find(...);

By:

$data['posts'] = Model_Post::find(
 'all',
 array(
 'related' => array(
 'author',
 'category',
),
 'rows_offset' => $pagination->offset,
 'rows_limit' => $pagination->per_page,
)
);

We need to pass the pagination instance we created to our view in order to display it.
At the end of the action, add the following code:

$this->template->content->set('pagination', $pagination);

This will have the same effect as setting a pagination key inside the $data parameter.

Open the BLOGPATH/views/post/index.php view file, and under:

<?php endforeach; ?>

Add:

<?php echo $pagination; ?>

Now, if you refresh your listing page and have enough posts, you will see that your
pagination appears but is escaped, in the sense that it displays the HTML code. This
is because view parameters are escaped by default and we didn't notify FuelPHP not
to escape the pagination parameter. Open the Post controller again and, inside the
index action, replace:

$this->template->content->set('pagination', $pagination);

By:

$this->template->content->set('pagination', $pagination, false);

Building a Blog Application

[132]

Using posts' slug
If you display the listing, everything should look just fine. But if you click on the title
of one post, the view page will be shown but the URL will look like this:

http://myblog.app/blog/post/view/1

This is not great for the SEO, because we don't use the slug we created earlier. To fix
that, first open the BLOGPATH/views/post/index.php view file, and replace:

echo Html::anchor('blog/post/view/'.$item->id, $item->title);

By:

echo Html::anchor(
 'blog/post/view/'.$item->slug,
 $item->title
);

Now that the link is pointing to the right URL, the view action has to handle this new
behavior. Open the Post controller and first replace the following line:

public function action_view($id = null)

By:

public function action_view($slug = null)

And then replace the view action's content by:

is_null($slug) and Response::redirect('blog/post');

$data['post'] = Model_Post::find(
 'first',
 array(
 'where' => array(
 array('slug' => $slug),
),
)
);
if (! $data['post'])
{
 Session::set_flash(
 'error',
 'Could not find post with slug: '.$slug
);

Chapter 3

[133]

 Response::redirect('blog/post');
}

$this->template->title = "Post";
$this->template->content = View::forge('post/view', $data);

Listing posts by categories
One interesting additional feature would be to list posts belonging to each category.
For instance, if we request the following URL:

http://myblog.app/blog/post/category/1

We would like to display posts belonging to the category with id = 1.

The best would have been to use a slug, as we did for posts. We didn't
implement it for the sake of this chapter's conciseness, but you are
recommended to do so.

First, open the BLOGPATH/views/post/additional_informations.php and replace:

<?php echo $post->category->name ?>

By:

<?php
echo Html::anchor(
 'blog/post/category/'.$post->category->id,
 $post->category->name
);
?>

If you think about it, the list of posts displayed for a category is similar to the one
where no category is filtered. The view and even the requests are similar.

We could have written a category action inside the Post controller and, in that case,
the index and category actions could have called a same common method; this
solution would have been acceptable and even recommended in most cases.

But we will take a different approach here. Since the actions have a lot in common,
we will reroute:

http://myblog.app/blog/post/category/category_id

Building a Blog Application

[134]

To:

http://myblog.app/blog/post/index

And add the category processing inside the index action.

First, create and open the BLOGPATH/config/routes.php file, and set its
content to:

<?php
return array(
 'blog/post/category/:category_id' => 'blog/post/index',
);

Now we have to add the category processing inside our index action in the Post
controller. First, in the index action of the Post controler, replace:

$config = array(...);

By:

$config = array(
 'per_page' => 10,
 'uri_segment' => 'page',
);

// Get the category_id route parameter
$category_id = $this->param('category_id');
if (is_null($category_id)) {
 $config['total_items'] = Model_Post::count();
} else {
 $config['total_items'] = Model_Post::count(
 array(
 'where' => array(
 array('category_id' => $category_id),
),
)
);
}

Then, replace:

$data['posts'] = Model_Post::find(...);

Chapter 3

[135]

By:

$data['posts'] = Model_Post::query()
 ->related(array('author', 'category'))
 ->rows_offset($pagination->offset)
 ->rows_limit($pagination->per_page);

if (!is_null($category_id)) {
 $data['posts']->where('category_id', $category_id);
}

$data['posts'] = $data['posts']->get();

You can notice we used the query method here as it was more convenient than the
find method in this case.

Adding indexes
In order to optimize our website, we will add some indexes to our tables. For
doing that, create a migration file located at BLOGPATH/migrations/004_create_
indexes.php and set its content to:

<?php

namespace Fuel\Migrations;

class Create_indexes
{
 public function up()
 {
 // For optimizing relations
 \DBUtil::create_index('comments', 'post_id');
 \DBUtil::create_index('posts', 'category_id');
 \DBUtil::create_index('posts', 'user_id');

 // For optimizing slug retrieval
 \DBUtil::create_index('posts', 'slug');
 }

Building a Blog Application

[136]

 public function down()
 {
 \DBUtil::drop_index('comments', 'post_id');
 \DBUtil::drop_index('posts', 'category_id');
 \DBUtil::drop_index('posts', 'user_id');
 \DBUtil::drop_index('posts', 'slug');
 }
}

Don't forget to execute the migration file.

Refining the posts' visualization webpage
When clicking on a post's title in the listing page, you will see that the visualization
webpage is not perfect. We need to improve how it is displayed, to display the post's
validated comments, and to display and process the comment form.

Changing the post layout
In order to improve how a post is displayed, open the BLOGPATH/views/post/view.
php view file and set the following content:

<div class="post_view">
<h2>
<?php echo $post->title; ?>
</h2>

<?php
// Reusing views we created earlier
echo \View::forge(
 'post/small_description',
 array('post' => $post)
);
?>
<div class="post_content">
<?php echo $post->content; ?>
</div>
<?php
echo \View::forge(
 'post/additional_informations',
 array('post' => $post)
);
?>
</div>
<?php echo Html::anchor('blog/post', 'Back'); ?>

Chapter 3

[137]

Now, if you visualize a post with a content containing HTML elements, you will see
that it will be escaped (you will see the HTML code). This is because any parameter
sent to a view is by default filtered.

The way each parameter is by default filtered can be changed in
the APPPATH/config/config.php configuration file, using the
security.output_filter key. Its default value is array('Secur
ity::htmlentities'), explaining why the HTML code is escaped.
You could change this value to array('Security::xss_clean')
to solve this issue, but you should know that it can potentially cause a
performance hit.

For solving that, inside the view action of the Post controller, add:

$this->template->content->set(
'post_content',
$data['post']->content,
false
);

After:

$this->template->content->set(
 'post_content',
 $data['post']->content,
 false
);

And, in the BLOGPATH/views/post/view.php view file, replace:

<?php echo $post->content; ?>

By:

<?php echo \Security::xss_clean($post_content); ?>

You should be cautious when disabling the filter parameter, as it can add
security issues. Since the posts are edited only by administrators, it is less risky,
but this doesn't prevent us from taking extra measures. That is why we used the
Security::xss_clean method to limit potential issues.

Building a Blog Application

[138]

You are probably wondering why we set the post content in an additional
unfiltered view parameter, instead of just setting the filter parameter
of View::forge to false. The reason is that, in that case, we would
have sent a totally unfiltered post object (since all objects properties
are filtered when filter is set to true). This would have forced us to
manually escape most other properties we display on views, resulting in
many more changes.
If you decide, in another case, to disable the filter parameter directly
in View::forge, beware of an important detail; when the filter
parameter is enabled, it escapes all passed objects' properties and
therefore, changes them in the process. Consequently, the objects will be
irreversibly changed after any View::forge with the filter parameter
set to true. Thus, even if you set the filter parameter to false when
calling View::forge in the controller, your objects' attributes might still
get escaped if you are displaying sub views with filter set to true, so
be sure to disable filter in that case too.

Adding the comment form
We also want the user to be able to post comments. To do that, we will first
implement the comment creation form (derived from the one of the administration
panel). Create the BLOGPATH/views/comment/_form.php view file and set its content
to:

<h3>Add a comment</h3>
<?php echo Form::open(array("class"=>"form-horizontal")); ?>

 <fieldset>
 <div class="form-group">
<?php
echo Form::label(
 'Name',
 'name',
 array('class' => 'control-label')
);

echo Form::input(
 'name',
 Input::post(
 'name',
 isset($comment) ? $comment->name : ''
),
 array(

Chapter 3

[139]

 'class' => 'col-md-4 form-control',
 'placeholder' => 'Name'
)
);
?>

 </div>
 <div class="form-group">
<?php
echo Form::label(
 'Email',
 'email',
 array('class' => 'control-label')
);

echo Form::input(
 'email',
 Input::post(
 'email',
 isset($comment) ? $comment->email : ''
),
 array(
 'class' => 'col-md-4 form-control',
 'placeholder' => 'Email'
)
);
?>

 </div>
 <div class="form-group">
<?php
echo Form::label(
 'Content',
 'content',
 array('class' => 'control-label')
);

echo Form::textarea(
 'content',
 Input::post(
 'content',
 isset($comment) ? $comment->content : ''
),
 array(

Building a Blog Application

[140]

 'class' => 'col-md-8 form-control',
 'rows' => 8,
 'placeholder' => 'Content'
)
);
?>

 </div>
 <div class="form-group">
 <label class='control-label'> </label>
<?php
echo Form::submit(
 'submit',
 'Save',
 array('class' => 'btn btn-primary')
);
?>
</div>
 </fieldset>
<?php echo Form::close(); ?>

As mentioned earlier, it is a derived version of the comment form in the
administration panel, except we removed the Status and Post fields. Now, add the
following line at the end of BLOGPATH/views/post/view.php to display the form
when showing a post:

<?php echo View::forge('comment/_form'); ?>

We now have to process it. Open the Post controller and, inside the view action,
before the following line:

$this->template->title = "Post";

Add:

// Is the user sending a comment? If yes, process it.
if (Input::method() == 'POST')
{
 $val = Model_Comment::validate('create');

 if ($val->run())
 {
 $comment = Model_Comment::forge(array(
 'name' => Input::post('name'),
 'email' => Input::post('email'),

Chapter 3

[141]

 'content' => Input::post('content'),
 'status' => 'pending',
 'post_id' => $data['post']->id,
));

 if ($comment and $comment->save())
 {
 Session::set_flash(
 'success',
 e('Your comment has been saved, it will'.
 ' be reviewed by our administrators')
);
 }

 else
 {
 Session::set_flash(
 'error',
 e('Could not save comment.')
);
 }
 }
 else
 {
 Session::set_flash('error', $val->error());
 }
}

This is derived from the generated scaffold code, so there is nothing that you have
not already seen. If you try to validate the comment form, you will notice that
the status validation prevents the comment object from being saved. Open the
BLOGPATH/model/comment.php model file, and replace:

$val->add_field('status', 'Status',
 'required|max_length[255]');

By:

// We require status only if we are editing the comment (thus
// we are on the administration panel).
if ($factory == 'edit') {
 $val->add_field(
 'status',
 'Status',

Building a Blog Application

[142]

 'required|max_length[255]'
);
}

Displaying comments
Now that the user is able to create comments, it would be nice to display them. A
small correction; it would be nice to display those that have been validated by the
administrator. We don't want to display all comments, but only those with their
status = published. In order to make our work easier, we will first add a relation
to the Post model that only retrieves published comments. Open the Post model, and
add the following at the end of the $_has_many property:

'published_comments' => array(
 'model_to' => '\Blog\Model_Comment',
 'conditions' => array(
 'where' => array(
 array('status' => 'published'),
),
),
),

As you can see, it is also possible to add default conditions (and orders) to relations.
From now on, $post->published_comments will retrieve the post's comments with
status = published.

Let's use this relation to display our published comments. Open BLOGPATH/views/
post/view.php and before:

<?php echo View::forge('comment/_form'); ?>

Add:

<div class="comments">
<?php
foreach ($post->published_comments as $comment):
 echo \View::forge(
 'comment/item',
 array('comment' => $comment)
);
endforeach;
?>
</div>

Chapter 3

[143]

Finally, create the BLOGPATH/views/comment/item.php view file and set its
content to:

<div class="comment">
<div class="comment_content">
<?php echo $comment->content; ?>
</div>
<div class="comment_date">
<?php
echo \Date::forge($comment->created_at)->format('us_full');
?>
</div>
<div class="comment_name">
 By
<?php echo $comment->name; ?>
</div>
</div>

Notifying the author when a new comment is posted
As comments require a validation from the administrator, we will send an email to
the post's author when a new comment is posted.

We will do that with the Email package. This package is located at the PKGPATH/
email directory. You can adapt the package configuration file by copying PKGPATH/
email/config/email.php to APPPATH/config/email.php and changing the
returned array, depending on your local configuration. You must at least set the
defaults.from.email and defaults.from.name values.

You can choose between several email drivers. The default driver is mail and, as
we could expect, simply use the mail PHP method. The sendmail driver is also
commonly chosen and use the open source sendmail utility. The smtp driver
connects to the email server using sockets. Other drivers, such as mailgun or
mandrill, allow you to use external services to send your emails.

You should read the official documentation at

http://fuelphp.com/docs/packages/email/introduction.html

(It can be accessed through FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Email | Introduction)

Building a Blog Application

[144]

If you want to send emails from your local system, you will
probably have to change additional configuration files, such as
php.ini. Feel free to search the web for more information, as
there are countless resources on the topic.

In order to send those emails, open the Post controller and, inside the view action,
just before:

Session::set_flash('success', ...);

Add:

// Manually loading the Email package
\Package::load('email');

$email = \Email::forge();

// Setting the to address
$email->to(
 $data['post']->author->email,
 $data['post']->author->username
);

// Setting a subject
$email->subject('New comment');

// Setting the body and using a view since the message is long
$email->body(
 \View::forge(
 'comment/email',
 array(
 'comment' => $comment,
)
)->render()
);

// Sending the email
$email->send();

Chapter 3

[145]

Finally, create the BLOGPATH/views/comment/email.php view file and set its
content to:

Hi,

A new comment has been posted.

Author: <?php echo $comment->name; ?>

Email: <?php echo $comment->email; ?>

Content:
<?php echo $comment->content; ?>

Go to the administration panel to accept / reject it.
<?php echo Uri::base().'admin' ?>

Thanks,

Clearing rejected comments
If your blog gets spammed and you find yourself with a lot of comments with status
set as not_published, you might want to remove all these comments to clean your
comments database. We could simply implement a link and an action but, for the
sake of the example, let's implement a task for doing that.

Tasks are classes that can be executed through the command line using the oil
utility. They are generally used for background processes or cron jobs. Sometimes,
they can also be used for generating or modifying existing code, like the task we
previously used for moving scaffolds to modules.

Let's generate our task file using the oil utility:

php oil generate task clearComments

Building a Blog Application

[146]

It should output:

No tasks actions have been provided, the TASK will only create default
task.

 Preparing task method [Index]

Creating tasks: APPPATH/tasks/clearcomments.php

If you now open the task file located at APPPATH/tasks/clearcomments.php, you
should see the following class:

<?php
namespace Fuel\Tasks;

class Clearcomments
{
 // ...
 public function run($args = NULL)
 {
 // ...
 }

 // ...
 public function index($args = NULL)
 {
 // ...
 }
}

The oil utility generated a class named Clearcomments, with two methods: run and
index. Each method can be called using the oil utility.

The following command executes the run method:

php oil refine clearComments:run

The following command executes the index method:

php oil refine clearComments:index

If you add a public method named my_method, it will also be called when executing:

php oil refine clearComments:my_method

The run method is the default method and can therefore be called this way:

php oil refine clearComments

Chapter 3

[147]

It is possible to pass additional parameters to the task. For instance:

php oil refine clearComments:run param_1 param_2

In that case, the oil utility will call Clearcomments::run('param_1', 'param_2').

You should read the official documentation at:

http://fuelphp.com/docs/packages/oil/generate.html#/tasks

(It can be accessed through FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | Oil | Generate)

http://fuelphp.com/docs/general/tasks.html

(It can be accessed through FuelPHP website by navigating to DOCS | TABLE OF
CONTENTS | FuelPHP | General | Tasks)

Replace the class content by the following:

public function run()
{
 \DB::query(
 'DELETE FROM comments WHERE status="not_published";'
)->execute();
 return 'Rejected comments deleted.';
}

Now, if you run:

php oil refine clearComments

It should delete all rejected comments.

You can execute this task manually or you can set up a cron job to execute
it regularly.

Additional improvements
Many additional improvements are possible. Some edge cases need to be handled:
for instance, try to successfully display the administration panel when post or
categories are deleted. You can set the route configuration so that your welcome
page shows your posts' listing. When visualizing a post, you can optimize the
SQL requests being sent, by using the related parameter. You could even send an
e-mail to all commenters when a new comment is being posted, and allow them to
unsubscribe if they want to. You should add the improvements you deem necessary,
this can only have a beneficial effect on your FuelPHP skills.

Building a Blog Application

[148]

We have one additional suggestion about modules. In this chapter, for the sake
of simplicity and conciseness, we created a single module, blog, to manage posts,
comments and categories. Yet, depending on the website, developers might want
to disable (for instance, disable comments), change these features or even add
new ones.

We could handle this issue by creating a configuration file defining whether or not
a specific feature should be enabled, or the way some features should operate. It can
do the trick but, if your module accumulates many features, your code could become
unmaintainable.

A better way to solve this issue is to create several smaller modules that handle
each feature. After all, comments can also be used on product pages, for instance.
There can also be multiple ways to display a list of posts, so separating models and
controllers/views into distinct modules can also be a good idea. You should always
aim for simple and small modules that interact with each other, instead of a big
module that does everything.

Summary
In this chapter, we have built a complex project with many features. By trying to
make the code as maintainable as possible (by using modules for instance), we
have provided a snapshot of how projects should be implemented so that adding
new features remains easy. We have also addressed some common ORM issues,
learnt how to easily paginate a listing, and used the Auth and Email packages. You
certainly don't know everything about the FuelPHP framework, but implementing
most projects should not be a problem for you now.

In the next chapter, you will learn how to add reusable features by installing an
external package as well as creating your own.

Creating and Using Packages
In this chapter, you will learn how to install, use, and create FuelPHP packages. For
illustration purposes, we suppose that we want to prevent spammers and bots from
polluting our website, and we will explore two different solutions for solving this
issue. We will first use an existing package (recatpcha), and then we will create our
own package.

By the end of this chapter, you will know:

• What are CAPTCHAs
• How to install an external package manually or with the oil command line
• What is reCAPTCHA and how to use the associated FuelPHP package
• How to create your own package
• What is a bootstrap file and how to use it

What are CAPTCHAs?
CAPTCHAs (Completely Automated Public Turing test to tell Computers and
Humans Apart) are generally used to prevent bots or programs from accessing
some features of a website. For instance, in a blog, you may want to prevent bots
from adding unsolicited and unrelated ads in the comments section. If you want
your users to pay a membership fee to access your content, you might also want to
prevent programs from aspiring this restricted content.

Creating and Using Packages

[150]

You have probably already seen a lot of CAPTCHAs, generally displayed as
distorted text inside images. A well-known service is reCAPTCHA, whose
verification form looks like the following image:

Unfortunately, since there are a lot of incentives to create Spam bots, no CAPTCHA
system is perfect, but at least they make the bots' work more difficult.

Preliminary steps
You first need to follow the given steps:

1. Install a new FuelPHP instance.
2. Configure Apache and your host file to handle it. In this chapter, we will

access our application by requesting http://mytest.app.
3. Update Composer if necessary.
4. Create a new database for your application.
5. Configure FuelPHP in order to allow your application to access this database.

These steps have been covered in Chapter 1, Building Your First FuelPHP Application,
so you might want to take a look at it.

Generating the sample application
In order to test our packages, we will create a simple application that will handle
dummy items. Just to be perfectly clear, we are not interested here by the ultimate
goal of the application; this is just a test application. Most of the work will be done
inside the packages. The user interface and the model will therefore be very simple
and will be fully generated by the scaffold command of the oil utility. The packages
will later be connected to the creation and edition features to determine whether or
not the visitor is human.

First, generate the scaffold using the following command:

php oil generate scaffold/crud item name:string

Chapter 4

[151]

It will print the following output:

Creating migration: APPPATH/migrations/001_create_items.php

Creating model: APPPATH/classes/model/item.php

Creating controller: APPPATH/classes/controller/item.php

Creating view: APPPATH/views/item/index.php

Creating view: APPPATH/views/item/view.php

Creating view: APPPATH/views/item/create.php

Creating view: APPPATH/views/item/edit.php

Creating view: APPPATH/views/item/_form.php

Creating view: APPPATH/views/template.php

Then, execute the generated migration file by executing the following command:

php oil refine migrate

If you now request the following URL, our test application should work perfectly:

http://mytest.app/item

The reCAPTCHA solution
The first method for integrating a CAPTCHA system into your website is to use
FuelPHP's recaptcha package. This is a convenient solution, since there is not much
to be implemented and it allows you to integrate a well-known CAPTCHA system
that your visitors are used to dealing with.

Installing the recaptcha package
First, we will install the recaptcha package, which easily integrates the reCAPTCHA
service into your FuelPHP application.

The reCAPTCHA service is a popular and free service provided by Google that
allows you to check whether or not your visitor is a bot by asking him/her to enter
words seen in distorted text images on screen. An interesting fact is that it helps to
digitize the text of actual images and books.

Installing the package is very simple. Visit the following URL:

https://github.com/fuel-packages/fuel-recaptcha

Now, click on the Download ZIP button and then unzip the file inside the PKGPATH
directory (fuel/packages).

Creating and Using Packages

[152]

There are alternative ways of downloading packages. You can use
the oil utility using the following command:
php oil package install recaptcha

It is recommended that you read the official documentation about
this oil feature available at the following URL:
http://fuelphp.com/docs/packages/oil/package.html

(Can be accessed through the FuelPHP website by navigating to
DOCS | TABLE OF CONTENTS | Oil | Package)
Some packages can also be installed through the Composer utility.

Configuring the recaptcha package
Before proceeding, you need to create an account on the reCAPTCHA website:

http://www.google.com/recaptcha

Once this is done, you have to copy the PKGPATH/fuel-recaptcha/config/
recaptcha.php configuration file to APPPATH/config/recaptcha.php and
set inside the new file the private_key and public_key keys provided in the
reCAPTCHA website.

Integrating the recaptcha package
Now that we have installed and configured the recaptcha package in our FuelPHP
instance, we just have to integrate it into our creation and edition forms. Open the
APPPATH/views/item/_form.php file, and between the two div elements with the
form-group class, add the following code:

<div class="form-group">
<?php
echo Form::label('Please verify that you are human');

// It is how we display the recaptcha form as you can read
// in the package readme file.
echo ReCaptcha::instance()->get_html();
?>
</div>

Chapter 4

[153]

At the beginning of the create and edit action of the Item controller, add the
following line of code:

Package::load('fuel-recaptcha');

If you display the creation or edition form, the reCAPTCHA validation system will
appear as shown in the following screenshot:

All we have to do now is to check whether the value entered by the user is correct.
Open the Item controller, and in the create and edit actions, surround the
following code:

$val = Model_Item::validate(/* 'create' or 'edit' */);

if ($val->run())
// And the following if else statement content

By:

if (static::is_captcha_correct())
{
 // Code to be surrounded
} else {
 Session::set_flash(

Creating and Using Packages

[154]

 'error',
 'You have entered an invalid value for the CAPTCHA'
);
}

In the Item controller, add the CAPTCHA verification method:

public static function is_captcha_correct() {
 // This is how a CAPTCHA is checked according to the
 // package readme file.
 return ReCaptcha::instance()
 ->check_answer(
 Input::real_ip(),
 Input::post('recaptcha_challenge_field'),
 Input::post('recaptcha_response_field')
);
}

Any item addition/edition will now fail if you enter an invalid value for the
CAPTCHA.

Creating your own package
The solution we saw previously can be implemented quickly, but there is a major
flaw; reCAPTCHA is very well known, and there are various online services that
offer to decode thousands of them for a few dollars (they can use Optical Character
Recognition or even actual human solvers). In fact, any well-known system has
the same problem, so sometimes the best solution lies more in the originality of the
system than its absolute robustness. Indeed, even if the new system is much simpler,
it will force spammers to specifically create new bots if they want to pollute your
website, thus creating a kind of resistance (as long as your website is not popular).

We will therefore build a new CAPTCHA package in order to create our own
original solution. Instead of displaying an image containing distorted text, we will
simply ask the visitor to calculate a simple addition.

Please note that the solution is only implemented to demonstrate how
a package can be built. We will therefore, choose a very simple solution
that can potentially be easily decoded. You are welcome to adapt this
modest package to create your own robust verification system.

Chapter 4

[155]

Conception
As we need to check whether the user has entered the correct number on the server,
we will save the expected answer in the database. For doing this, we will generate
the Captcha_Answer model that will only contain the id, expected_value, and
created_at attributes.

Generating the package
We will again use the oil command to generate a scaffold for our package:

php oil generate package captcha

This will print the following output:

Creating file: PKGPATH/captcha/classes/captcha.php

Creating file: PKGPATH/captcha/config/captcha.php

Creating file: PKGPATH/captcha/bootstrap.php

You can see that several files have been generated. If you open the Captcha class
located at PKGPATH/captcha/classes/captcha.php, you will see that the class is in
the Captcha namespace and several methods are already implemented:

<?php
namespace Captcha;

class CaptchaException extends \FuelException {}

class Captcha
{
 // ...
 protected static $_defaults = array();
 // ...
 protected $config = array();
 // ...
 public static function _init()
 {
 \Config::load('captcha', true);
 }
 // ...
 public static function forge($config = array())
 {
 $config = \Arr::merge(
 static::$_defaults,

Creating and Using Packages

[156]

 \Config::get('captcha', array()),
 $config
);
 $class = new static($config);
 return $class;
 }
 // ...
 public function __construct(array $config = array())
 {
 $this->config = $config;
 }
 // ...
 public function get_config($key, $default = null)
 {
 return \Arr::get($this->config, $key, $default);
 }
 // ...
 public function set_config($key, $value)
 {
 \Arr::set($this->config, $key, $value);
 return $this;
 }
}

• There are five methods, as follows: The constructor, where you pass the
package configuration as a parameter.

• The static forge method, which gets the package configuration file located
at PKGPATH/captcha/config/captcha.php and passes it to the constructor.
This means that if you create a Captcha object using the forge method,
its configuration will automatically be loaded from the configuration file,
whereas if you create it using the constructor, you will have to define the
package configuration manually.

• The get_config and set_config methods are self-explanatory.
• The _init method, which is called when the Captcha class is initialized. In

a general manner, in any class, if you define a static _init method, it will be
called when the class is loaded by FuelPHP. In our class, the method loads
the configuration file located at PKGPATH/captcha/config/captcha.php.

The PKGPATH/captcha/config/captcha.php configuration file is currently an
empty array, but you are free to add as many parameters as you wish.

Chapter 4

[157]

The captcha package we generated also has a bootstrap file located at PKGPATH/
captcha/bootstrap.php. This bootstrap file is executed when the package
is loaded. Similarly, the APPPATH/bootstrap.php file is executed when your
application is loaded (almost each time a web page is requested).

If you open the PKGPATH/captcha/bootstrap.php file, you will see the
following code:

<?php

Autoloader::add_core_namespace('Captcha');

Autoloader::add_classes(array(
 'Captcha\\Captcha' => __DIR__ . '/classes/captcha.php',
 'Captcha\\CaptchaException' => __DIR__ . '/classes/captcha.php',

));

The Autoloader::add_classes method specifies to the Autoloader where classes
can be found. For instance, after executing the bootstrap file, FuelPHP will know
that the Captcha\Captcha class is located in the PKGPATH/captcha/classes/
captcha.php file.

The Autoloader::add_core_namespace method specifies to the Autoloader a
namespace that needs to be added to the core namespace. In practical terms, after
executing the bootstrap file, \Captcha\Captcha and \Captcha will both refer to the
same class.

It is recommended that you read the Autoloader official documentation that can be
found at:

http://fuelphp.com/docs/classes/autoloader.html

(This can be accessed by navigating to the FuelPHP website at DOCS | TABLE OF
CONTENTS | Core | Autoloader)

It is also recommended that you read the official documentation about packages:

http://fuelphp.com/docs/general/packages.html

(This can be accessed by navigating to the FuelPHP website at DOCS | TABLE OF
CONTENTS | FuelPHP | General | Packages.)

Creating and Using Packages

[158]

Generating the Captcha_Answer model
For speeding up the process, we will again use the oil command line:

php oil generate model captcha_answer expected_value:int created_at:int
--crud

This will print the following output:

Creating model: APPPATH/classes/model/captcha/answer.php

Creating migration: APPPATH/migrations/002_create_captcha_answers.php

Before doing anything else, you need to move these files into our package:

• Move APPPATH/classes/model/captcha/answer.php to PKGPATH/
captcha/classes/model/captcha/answer.php.

• Also, move APPPATH/migrations/002_create_captcha_answers.php to
PKGPATH/captcha/migrations/001_create_captcha_answers.php (don't
forget to rename the file).

Once it is done, open PKGPATH/captcha/classes/model/captcha/answer.php and
add the following at the beginning of the file (after <?php):

namespace Captcha;

You also need to add the following property inside the model, in order to
automatically fill the created_at property:

protected static $_created_at = 'created_at';

Open the bootstrap file located at PKGPATH/captcha/bootstrap.php, and add the
following code at the end of the array passed to Autoloader::add_classes:

 'Captcha\\Model_Captcha_Answer' => __DIR__ .
 '/classes/model/captcha/answer.php',

Migrating the package
We now need to execute the migration file in the Captcha package. In order to do
this, simply enter the following command:

php oil refine migrate --packages=captcha

Chapter 4

[159]

Integrating the package into our application
In this section, for the sake of clarity, we will assume that you haven't implemented
the reCAPTCHA solution. Although, it is worth noting that this new implementation
will clearly be inspired from it. Thus, if you have implemented the reCAPTCHA
solution, simply replace the old code by the new one as you go.

First, add the following methods in the Captcha class located at PKGPATH/captcha/
classes/captcha.php:

public function check_answer($id, $answer) {
 return true;
}

public function get_html() {
 return '<div>Will be implemented in the next section</div>';

}

You can notice we didn't implement anything inside those methods; these are just
dummy methods. As they are a little bit complex, we will complete them in the next
section, but for now we will connect them to the test application. Open the APPPATH/
views/item/_form.php, and between the two div elements with the form-group
class, add the following lines of code:

<div class="form-group">
<?php
echo Form::label('Please verify that you are human');

// Displaying the captcha form
echo Captcha::forge()->get_html();
?>
</div>

At the beginning of the create and edit action of the Item controller, add the
following code:

Package::load('captcha');

We have now to check whether the value entered by the user is correct. Open the
Item controller, and in the create and edit actions, surround the following code:

$val = Model_Item::validate(/* 'create' or 'edit' */);

if ($val->run())
// And the following if else statement content

Creating and Using Packages

[160]

By:

if (static::is_captcha_correct())
{
 // Code to be surrounded
} else {
 Session::set_flash(
 'error',
 'You have entered an invalid value for the captcha'
);
}

Finally, still in the Item controller, add the CAPTCHA verification method:

public static function is_captcha_correct() {
 // Checking the captcha
 return Captcha::forge()
 ->check_answer(
 Input::post('captcha_id'),
 Input::post('captcha_answer')
);
}

If you now test your application, the message Will be implemented in the next
section will appear under Please verify that you are human, and any item will be
added or updated without any checking, as shown in the following screenshot:

Chapter 4

[161]

Implementing the get_html method
Open the Captcha class and replace the get_html method by the following:

/**
* Returns the CAPTCHA form
*
* @return string the CAPTCHA form html code
*/
public function get_html() {

 // Getting configuration
 $min_number = $this->get_config('min_number');
 $max_number = $this->get_config('max_number');

 // Generating two random numbers
 $number_1 = rand($min_number, $max_number);
 $number_2 = rand($min_number, $max_number);

 // Computing the correct answer
 $answer = $number_1 + $number_2;

 // Saving the expected answer
 $captcha_answer = Model_Captcha_Answer::forge();
 $captcha_answer->expected_value = $answer;
 $captcha_answer->save();

 return \View::forge(
 'captcha',
 array(
 'number_1' => $number_1,
 'number_2' => $number_2,
 'captcha_answer' => $captcha_answer,
)
)->render();
}

Creating and Using Packages

[162]

As you can see, we are calling the captcha view inside the get_html method. Thus,
we need to implement it. Create the PKGPATH/captcha/views/captcha.php view
file and add the following content:

<div class="captcha_area">
 <div class="captcha_instruction">
 <?php echo $number_1; ?> + <?php echo $number_2; ?> ?
 </div>
 <div class="captcha_fields">
 <input type="hidden" name="captcha_id"
 value="<?php echo $captcha_answer->id; ?>" />
 <input type="text" name="captcha_answer"
 value="" class="col-md-4 form-control" />
 </div>
</div>

Finally, as you probably noticed in the new get_html method, we get min_number
and max_number from the configuration file, so we need to define these values
(feel free to change them). Open the PKGPATH/captcha/config/captcha.php
configuration file, and replace its content by the following lines of code:

<?php

return array(
 'min_number' => 1,
 'max_number' => 9,
);

If you reload the creation or edition form, you will now see the CAPTCHA
verification form:

Chapter 4

[163]

Implementing the CAPTCHA verification
method
The check_answer method is pretty simple; as we saved the expected answer into a
Model_Captcha_Answer instance, we just have to retrieve it and check whether the
posted answer is correct. In the Captcha class, replace the check_answer method by
the following code:

/**
* Check if the captcha is valid
*
* @param int $id id of the CAPTCHA answer
* @param string $answer answer given by the visitor
* @return boolean is the answer correct ?
*/
public function check_answer($id, $answer) {
 // Model::find_by_pk finds an instance by its
 // Primary Key (in our case, id).
 $captcha_answer = Model_Captcha_Answer::find_by_pk(
 intval($id)
);
 $correct = $captcha_answer->expected_value == $answer;

 // The answer has been checked, so no need to keep the
 // expected answer
 $captcha_answer->delete();

 return $correct;
}

Cleaning old captchas
As you might have noticed, each time we display a CAPTCHA, we add a new row
into the captcha_answers table, and this row will be cleared when, or rather if, the
user submits their answer. If the user leaves the form without submitting it, the row
will never be deleted. A good practice would be to periodically delete these rows.
We could use the model's delete method for this, but since there can be several rows
to be removed, we will instead simply execute a SQL request.

Creating and Using Packages

[164]

Still in the Captcha class, add the following method:

/**
* Clean the old captchas
*/
public function clean_old_captchas() {
 \DB::query('
 DELETE FROM `captcha_answers`
 WHERE `created_at` < '.
 intval(\Date::forge()->get_timestamp()
 - $this->get_config('captcha_expiration'))
 .';')
 ->execute();
}

You can then add the following at the beginning of the get_html and
check_answer methods:

$this->clean_old_captchas();

Since we are using $this->get_config('captcha_expiration') to determine
when a CAPTCHA expires, we need to define the captcha_expiration key in the
PKGPATH/captcha/config/captcha.php configuration file:

 // Captcha are expired 4 hours after generation
 'captcha_expiration' => 3600 * 4,

Possible improvements
As we explained in the beginning of this section, the package can certainly be
improved. Instead of displaying the addition in plain text, you could display it inside
an image. You could then make it a little difficult to read, for example, by adding
noise and alternating colors. This is out of scope of this chapter, since we want to
focus on packages, but it is recommended that you add such features to improve
your PHP and FuelPHP skills.

Chapter 4

[165]

Summary
The main focus of this chapter was packages: how to install external packages and
how to create your own packages. You have therefore learned how to create and use
reusable code. We have used the fuel-recaptcha package, but if you go to the URL
https://github.com/fuel-packages?tab=repositories, you will see there are a
lot of different packages available. Since FuelPHP also uses Composer, you can look
into https://packagist.org/search/?q=fuel and install additional packages
using Composer.

When you think about adding a new feature in your application, it is always a
good idea to see if there is an existing project fulfilling your needs. If you can't find
one, you can improve a close enough package or create your own, as we did with
our custom Captcha package. Once finished, consider sharing it, for instance, by
publishing it on GitHub; you can then give back to the community who brought you
this amazing framework.

In the next chapter, you will see how you can create an application providing
and using its own API. We will also tackle how you can automatically test your
application to prevent unwanted regressions.

Building Your Own
Restful API

In this chapter, we will create our own microblogging application similar to Twitter.
The social component will be fairly simple: users will post on their walls messages
containing up to 140 characters. The real input of this chapter will reside in setting
up a JSON API that can be accessed by external applications and adding automated
tests that will allow you to track regressions. In order to limit the amount of data
exchanged, we will make our application use this API as often as possible.

By the end of the chapter, you should know:

• How to create a signup form
• How to implement a JSON API without duplicating any code
• What is the Parser package
• What are language-agnostic template systems and why use such systems
• What is the Mustache engine and how to implement views using it
• What is a magic migration
• How to implement unit tests and run them

Specifications
It is possible for visitors to subscribe to our micro blogging application. Once they
do, they are able to write small posts of 140 characters which will be displayed on
their profile page. Anyone, even non-users, can see a user's profile page.

Building Your Own Restful API

[168]

In order to avoid authentication issues and keep this project simple, we will only
provide a read-only JSON API. Also, we won't track applications using our API
and therefore no limitations will be implemented (this could be an important point
if you are thinking of publishing your own API). Therefore, only the users' profile
information (username, creation date, and so on) and published posts will be
available through the API.

Conception
We will need the following two models:

Entity Relationship diagram (Min-Max notation)

• User: Since the model's table will be generated from the Auth package's
migration, the columns will already be generated. The columns we need are
username and password.

• Post: Each post has a content and a created_at property. Since each post
can only be published by a single user and each user can publish many posts,
there is a belongs_to relationship between posts and users and a has_many
relationship between users and posts. Thus, an additional user_id property
must be added for the relationship.

Chapter 5

[169]

FuelPHP installation and configuration
You first need to perform the following steps:

1. Install a new FuelPHP instance.
2. Configure Apache and the host file to handle it. In this chapter, we will

access our application by requesting the http://mymicroblog.app URL.
3. Update Composer if necessary.
4. Create a new database for your application.
5. Finally, configure FuelPHP in order to allow your application to access

this database.

This project will also need the ORM, the Auth, and the Parser packages. We used
the ORM and the Auth packages in previous chapters, but we never used the Parser
package; we will explain its role later in The Parser package and template engines
section. Since they are already installed, we just need to enable them. For doing this,
simply open the APPPATH/config/config.php file and insert the following lines of
code at the end of the returned array:

'always_load' => array(
 'packages' => array(
 'orm',
 'auth',
 'parser',
),
),

Alternatively, you can uncomment the appropriate lines. This will load the ORM, the
Auth, and the Parser package every time a FuelPHP instance is loaded. We also
need to change a few configuration items for the Auth package.

First, copy the file located at PKGPATH/auth/config/auth.php to APPPATH/config/
auth.php and PKGPATH/auth/config/simpleauth.php to APPPATH/config/
simpleauth.php.

Then, open the configuration file APPPATH/config/auth.php and change the salt
value to a random string (this is a security precaution). We will use the Simpleauth
driver here, as we don't need many features in our authentication system.

Then, open the file APPPATH/config/simpleauth.php and set the value of login_
hash_salt to a random string (again, for security precaution). Install the Auth tables
by executing their migration files:

php oil refine migrate --packages=auth

Building Your Own Restful API

[170]

If you take a look at the database, you should see that several tables have
been generated:

• users

• users_clients

• users_providers

• users_scopes

• users_sessions

• users_sessionscopes

However, as expected, there are much fewer tables generated than for the
Ormauth driver.

The Parser package and template
engines
You may notice that we added the parser package into the always_load.package
key. Thanks to this package, instead of writing our view in PHP, we are able to use
template engines. For those of you that are not familiar with template engines, they
allows us to write our view files in a different syntax.

For instance, a list of items might be displayed by writing the following code in PHP:

<h1>Items</h1>
<?php foreach ($items as $item) { ?>
 <?php echo $item->title ?>
<?php } ?>
Create an item

But, using the HAML template engine, it can be written like this:

%h1 Items
- foreach ($items as $item)
 %li
 = $item->title
%a(href="item/create") Create an item

Chapter 5

[171]

Alternatively, by using the Mustache template engine, it can be written like this:

<h1>Items</h1>
{{#items}}
 {{title}}
{{/items}}
Create an item

There are various reasons you might want to use template engines:

• It allows you to write much more concise and elegant code,
for example as in the HAML language.

• It allows you to keep a consistent code format.
• It forces you to separate logic from presentation. Thus, you can easily

hand your code to a designer who can change it without having to
understand any PHP.

For our project, we are going to use the Mustache template engine, but for none of
the preceding reasons.

A major benefit of language-agnostic
template engines
If you open the main web page of the Mustache template engine (http://mustache.
github.io/), you are going to see that the engine is available in many different
languages (Ruby, JavaScript, Python, Node.js, PHP, Java, C++, ASP, C#, and so
on). However, it doesn't matter which language you are going to use the engine:
the syntax of the template will remain the same and the language won't have any
influence on the code you will write. This is because Mustache is a language-agnostic
template engine. This is a great advantage if you work with a team using many
different languages such as PHP, JavaScript, Ruby, or Python; your views can be
written in the same common markup language. We are going to use this feature to
our own advantage.

Building Your Own Restful API

[172]

The following diagram shows the most common way that websites work right now:

But you often need to dynamically load new content once your webpage is displayed
in your browser:

Chapter 5

[173]

In order to further illustrate this, let’s say we are displaying a user’s profile page,
and thus displaying its list of posts. If the user has already published 1000 posts, we
won’t display them all at once. We will first display the last 30 posts, for instance,
using PHP views, so at some point the web page should look like this:

...
<div class="posts_list">
 <div class="post" id="post_232">
 <div class="post_author">first_user</div>
 <div class="post_content">My last post.</div>
 <div class="post_date">5 minutes ago</div>
 </div>
 <div class="post" id="post_214">
 <div class="post_author">first_user</div>
 <div class="post_content">Hello everyone.</div>
 <div class="post_date">21 minutes ago</div>
 </div>
 ...
</div>
...

When the visitor will scroll through the bottom of the web page, it will send an AJAX
request to the server API that will replace the 30 previous posts, but in JSON format.
The returned code should look like this:

{
 ...
 "posts": [
 {
 "id": 142,
 "content": "previous post.",
 "created_at": 1409741475,
 "author": {
 "id": 24,
 "username": "first_user"
 }
 },
 {
 "id": 125,
 "content": "very old post.",
 "created_at": 1209751372,
 "author": {
 "id": 24,
 "username": "first_user"
 }
 },
 ...
]
 ...
}

Building Your Own Restful API

[174]

We have all the necessary data, but we need to transform it to HTML code so that the
user can see it. Whether you use jQuery or direct DOM manipulations, you will need
to use JavaScript code to do this (that code will act as JavaScript views). This will
lead to code duplication, in the sense that, if you change the way posts are displayed
in the PHP views, you will need to change the JavaScript code as well. For large
projects, this will quickly become unmanageable. However, all this can change if we
use the mustache template engine

Nothing exceptional here. However, the process is improved when loading
dynamic content:

Chapter 5

[175]

Since the Mustache template engine is language agnostic, it is possible to interpret
a single template in both PHP and JavaScript. If we want to change, let's say, how
posts are displayed, all we have to do is to change this one template. No duplication
always means a more robust and maintainable application.

Of course, we could always write a full JavaScript application that would load data
from the API without using any PHP views. This way, no template engine would be
necessary, as we would only write JavaScript views. However, being able to return
HTML content directly from the server has two benefits. First, if the client doesn't
support JavaScript—as is the case for most search engines—it will still be able to
access the website (so the indexing of your application will be better). Secondly,
when the client is accessing your website for the first time, you can speed up the
process by returning the cached HTML code of the requested web page.

In order to use the Mustache template engine, we need to install it. In the composer.
json file, add the following line in the require list (don't forget to add a comma in
the previous line):

"mustache/mustache": "2.7.0"

Then update Composer.

We chose the Mustache engine mainly because of its simplicity, but
you have a lot of other choices. If you want to use the API strategy
we are going to implement in a more complex project, I recommend
you take a look at more complete solutions. For instance, though
they are not per se language-agnostic template engines, you could
take a look at Smarty and its JavaScript port jSmart.

Subscription and authentication features
Instead of generating entire scaffolds, we will manually create controllers and views
as we won't need most CRUD features.

Building Your Own Restful API

[176]

Implementing the subscription and
authentication forms
First, let's create the user controller. Create a file at APPPATH/classes/controller/
user.php and set its contents to:

<?php
class Controller_User extends Controller_Template
{

}

The home page, which will be handled by the index action of the User controller,
displays the user's posts if the user is logged in, otherwise it will display the
subscription and authentication forms.

Since we have no user in our system, nobody can log in. Thus, we will begin the
subscription and authentication forms.

First, add the following method in the User controller:

public function action_index()
{
 if (false /* is the user logged ? */) {
 // @todo: handle response if user is logged.
 } else {
 $this->template->content =
 View::forge(
 'user/connect.mustache',
 array(),
 // By default, mustache escapes displayed
 // variables, so no need to escape them here
 false
);
 }
}

We will come back to this action later, but so far it should be pretty straightforward
for you.

As we are using Controller_Template, we need to define a template. Create the
template view file at APPPATH/views/template.php and set its contents to:

<!DOCTYPE html>
<html>
<head>
<?php

Chapter 5

[177]

echo '<base '.array_to_attr(array('href' => Uri::base())).' />';
?>
 <meta charset="utf-8">
 <title>My microblog</title>
 <?php echo Asset::css('bootstrap.css'); ?>
 <?php echo Asset::css('website.css'); ?>
 <style>
 body { margin: 50px; }
 </style>
 <?php echo Asset::js(array(
 'http://code.jquery.com/jquery-1.11.2.min.js',
 'bootstrap.js'
)); ?>
 <script>
 $(function(){ $('.topbar').dropdown(); });
 </script>
</head>
<body>

 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <a class="navbar-brand"
<?php echo array_to_attr(array('href' => Uri::base())) ?>
 >
 My microblog

 </div>
 </div>
 </div>

 <div class="container">
 <div class="row">
 <div class="col-md-12">
<?php if (Session::get_flash('success')): ?>
 <div class="alert
 alert-success
 alert-dismissable">
 <button
 type="button"
 class="close"
 data-dismiss="alert"
 aria-hidden="true">
 ×

Building Your Own Restful API

[178]

 </button>
 <p>
<?php
echo implode(
 '</p><p>',
 (array) Session::get_flash('success')
); ?>
 </p>
 </div>
<?php endif; ?>
<?php if (Session::get_flash('error')): ?>
 <div class="alert
 alert-danger
 alert-dismissable">
 <button
 type="button"
 class="close"
 data-dismiss="alert"
 aria-hidden="true">
 ×
 </button>
 <p>
<?php
echo implode(
 '</p><p>',
 (array) Session::get_flash('error')
); ?>
 </p>
 </div>
<?php endif; ?>
 </div>
<?php echo $content; ?>
 </div>
 </div>
</body>
</html>

It is inspired by the admin template generated in Chapter 3, Building a Blog Application
you can compare it to the file used for the scaffold generation located at PKGPATH/
oil/views/admin/template.php. We use the Bootstrap framework to easily
structure our web pages in a responsive way; we will use its CSS classes from time
to time. You can take a look at the official documentation for Bootstrap at http://
getbootstrap.com/.

Chapter 5

[179]

We will also define some custom CSS classes inside the website.css file. Since we
are already including it in our template, create the style sheet file at public/assets/
css/website.css and set its contents to:

body {
 background-color: #f8f8f8;
}

h1.home {
 font-size: 45px;
 text-align: center;
}

.alert {
 margin-top: 10px;
}

Now, we need to create the APPPATH/views/user/connect.mustache view. We
need to add the sign up and sign in forms there, so no rocket science:

<h1 class="home">
 My microblog
</h1>
<div class="signup_or_signin">
 <div class="signin col-md-1"></div>
 <div class="signup col-md-4">
 <h2>Signup</h2>
 <form action="user/signup" method="post">
 <div class="form-group">
 <input
 type="text"
 name="username"
 placeholder="Username"
 class="form-control" />
 </div>
 <div class="form-group">
 <input
 type="email"
 name="email"
 placeholder="Email"
 class="form-control" />
 </div>
 <div class="form-group">
 <input
 type="password"

Building Your Own Restful API

[180]

 name="password"
 placeholder="Password"
 class="form-control" />
 </div>
 <div class="form-group">
 <input
 type="submit"
 value="Signup"
 class="btn btn-lg
 btn-primary
 btn-block" />
 </div>
 </form>
 </div>
 <div class="signin col-md-2"></div>
 <div class="signin col-md-4">
 <h2>Signin</h1>
 <form action="user/signin" method="post">
 <div class="form-group">
 <input
 type="text"
 name="username"
 placeholder="Email or Username"
 class="form-control" />
 </div>
 <div class="form-group">
 <input
 type="password"
 name="password"
 placeholder="Password"
 class="form-control" />
 </div>
 <div class="form-group">
 <input
 type="submit"
 value="Signin"
 class="btn btn-lg
 btn-primary
 btn-block" />
 </div>
 </form>
 </div>
 <div class="signin col-md-1"></div>
</div>

Chapter 5

[181]

Since there are no dynamic parts in our view yet, you can see it is very similar to a
classic PHP or HTML view.

Finally, as we want the index action of the User controller to be our home page, we
need to define its URI in the _root_ key of our routes configuration file. Open the
APPPATH/config/routes.php configuration file and set its contents to:

<?php
return array(
 '_root_' => 'user/index',
);

If you request the following URL:

http://mymicroblog.app/

You should see a simple yet responsive web page with sign up and sign in forms.

In the following screenshot, you can see what the web page looks like on large screens:

Building Your Own Restful API

[182]

This is what the web page looks like on smaller screens and devices:

Handling the signup form
As no user exists right now, it is time to create the signup action in the User
controller (targeted by the signup form) so that we can create our first user. Create
the following method and read comments (you should already be familiar with all
these methods):

public function action_signup()
{
 /*
 Validating our form (checks if the username, the
 password and the email have a correct value). We
 are using the same Validation class as we saw on
 numerous generated models
 */

Chapter 5

[183]

 $val = Validation::forge('signup_validation');
 $val->add_field(
 'username',
 'Username',
 'required|valid_string[alpha,lowercase,numeric]'
);
 $val->add_field(
 'password',
 'Password',
 'required|min_length[6]'
);
 $val->add('email', 'Email')
 ->add_rule('required')
 ->add_rule('valid_email');

 // Running validation
 if ($val->run())
 {
 try {
 // Since validation passed, we try to create
 // a user
 $user_id = Auth::create_user(
 Input::post('username'),
 Input::post('password'),
 Input::post('email')
);

 /*
 Note: at this point, we could send a
 confirmation email, but for the sake of this
 chapter conciseness, we will leave the
 implementation of this feature to you as a
 training exercise.
 */

 // If no exceptions were triggered, the user
 // was succesfully created.
 Session::set_flash(
 'success',
 e('Welcome '.Input::post('username').'!')
);
 } catch (\SimpleUserUpdateException $e) {
 // Either the username or email already exists
 Session::set_flash('error', e($e->getMessage());

Building Your Own Restful API

[184]

 }

 }
 else
 {
 // At least one field is not correct
 Session::set_flash('error', e($val->error()));
 }

 /*
 Sending the signup form fields information so that they
 are already filled when the user is redirected to the
 the index action (useful if the user could not be created)
 */
 Session::set_flash('signup_form', Input::post());

 // No matter what, we return to the home page.
 Response::redirect('/');
}

If you now request the home page and fill the signup form correctly, a new user
should be created in the users table. If something goes wrong (you enter an
incomplete e-mail address or the username already exists for instance), an error
message will be displayed but the form will be emptied since we go back to the home
page. This is no big deal, but it could lower your transformation ratio. We saved
the form data in the signup_form flash variable; therefore, it is now accessible in the
index action. We will pass it to the view by replacing, in the index action:

View::forge(...);

with:

View::forge(
 'user/connect.mustache',
 array(
 'signup_form' => Session::get_flash('signup_form'),
),
 // By default, mustache escape displayed
 // variables, so no need to escape them here
 false
);

Chapter 5

[185]

To autofill the username field, open the APPPATH/views/user/connect.mustache
view file and replace the username input in the signup form with the following
code snippet:

<input
 type="text"
 name="username"
 placeholder="Username"
 class="form-control"
 value="{{signup_form.username}}"/>

As you can see, we displayed the $signup_form['username'] variable by writing
{{signup_form.username}}. In a Mustache file, a $var variable is displayed by
writing {{var}} and $var['val_1'] is displayed by writing {{var.val_1}}. If
$var is an object, $var->val_1 is also displayed by writing {{var.val_1}}.

You can also autofill the email field by adding value="{{signup_form.email}}"
in the email input of the signup form.

Handling the signin form
Now that we can create new users, we need to handle the signin form. We will
therefore create the signin action in the User controller:

public function action_signin()
{
 // If already logged in, redirecting to home page.
 if (Auth::check()) {
 Session::set_flash(
 'error',
 e('You are already logged in, '.
 Auth::get_screen_name().'.')
);
 Response::redirect('/');
 }

 $val = Validation::forge();
 $val->add('username', 'Email or Username')
 ->add_rule('required');
 $val->add('password', 'Password')
 ->add_rule('required');

 // Running validation
 if ($val->run())
 {

Building Your Own Restful API

[186]

 $auth = Auth::instance();

 // Checking the credentials.
 if (
 Auth::check() or
 $auth->login(
 Input::post('username'),
 Input::post('password')
)
)
 {
 Session::set_flash(
 'success',
 e('Welcome, '.Auth::get_screen_name().'!')
);
 }
 else
 {
 Session::set_flash(
 'error',
 'Incorrect username and / or password.'
);
 }
 } else {
 Session::set_flash(
 'error',
 'Empty username or password.'
);
 }

 // No matter what, we return to the home page.
 Response::redirect('/');
}

This is again very much inspired from the admin controller generated by the
administration panel generator in oil; take a look at the login action of the admin
controller (used for the administration panel generation) located at PKGPATH/oil/
views/admin/orm/controllers/admin.php.

Allowing the user to sign out
You probably noticed while testing the form that, once you successfully log in, you
are unable to log out. Also, unless you have just successfully logged in, you don't
have any idea whether you are logged in or not.

Chapter 5

[187]

To solve this problem, we will display the username in the navigation bar and allow
the user to sign out in a dropdown, as we did in the administration panel.

Open the template file located at APPPATH/views/template.php, and replace <div
class="navbar-header">...</div> with the following lines of code:

<div class="navbar-header">
 <!-- Allows the navbar to collapse when
 the screen width is too small -->
 <button
 type="button"
 class="navbar-toggle"
 data-toggle="collapse"
 data-target=".navbar-collapse">

 </button>
 <a class="navbar-brand"
<?php echo array_to_attr(array('href' => Uri::base())); ?>
 >
 My microblog

</div>
<div class="navbar-collapse collapse">
<?php if (Auth::check()): ?>
 <ul class="nav navbar-nav pull-right">
 <li class="dropdown">
 <a
 data-toggle="dropdown"
 class="dropdown-toggle"
 href="#">
 <?php echo e(Auth::get_screen_name()) ?>
 <b class="caret">

 <ul class="dropdown-menu">

<?php
echo Html::anchor('user/signout', 'Sign out');
?>

<?php endif; ?>
</div>

Building Your Own Restful API

[188]

If you are logged in, your username should now appear in the upper right side of
your screen. If you click on your username, the Sign out link should appear.

We now have to implement this signout action inside the User controller. This step
is pretty simple:

public function action_signout()
{
 Auth::logout();
 Response::redirect('/');
}

Allowing the user to create and view
posts
We will now allow users to create their own posts and display them in their profile
page. Posts will also be the main information displayed by our API.

Generating the Post model
We need first to generate the Post model. As usual, we will use oil. Enter the
following command line:

php oil generate model post content:varchar[140] user_id:int
created_at:int --no-timestamp

The output is as follows:

Creating model: APPPATH/classes/model/post.php

Creating migration: APPPATH/migrations/001_create_posts.php

You can see that we used the --no-timestamp parameter here. It simply prevents
the automatic generation of the created_at and updated_at columns. Since we
can have a lot of posts and the updated_at column then be useless, we generate the
created_at column manually. As a consequence, we need to specify the CreatedAt
observer ourselves. Open the Post model located at APPPATH/classes/model/post.
php and add the following attribute:

protected static $_observers = array(
 'Orm\Observer_CreatedAt' => array(
 'events' => array('before_insert'),
 'mysql_timestamp' => false,
),
);

Chapter 5

[189]

Then, simply execute your application migrations using oil:

php oil refine migrate

Allowing the user to create new posts
We will begin by implementing the user interface, and then we will implement the
post creation action.

Implementing the user interface
First, let's add a New post button in the right side of the navigation bar. Open
the template file located at APPPATH/views/template.php and just after <ul
class="nav navbar-nav pull-right">, add the following lines of code:

 <a href="#"
 data-toggle="modal"
 data-target="#create_post_modal">
 <!-- Displays the pencil icon.
 http://glyphicons.com/ -->

 New post

If you refresh the home page and are signed in, you should see the button appear
with a pencil icon inside it on the right-hand side of the navigation bar. We
extensively used the Bootstrap framework, so it is recommended that you read the
official documentation at http://getbootstrap.com/.

The important things to notice are the two attributes declared inside the link:

data-toggle="modal" data-target="#create_post_modal"

This means that when we click on the link, we want Bootstrap to display a modal
window using the content of the div element with id = create_post_modal. Thus,
we need to define this div element. Before </body>, add the following lines of code:

<!-- Post modal window -->
<div
 class="modal fade"
 id="create_post_modal"
 tabindex="-1"
 role="dialog"
 aria-labelledby="myModalLabel"

Building Your Own Restful API

[190]

 aria-hidden="true">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button
 type="button"
 class="close"
 data-dismiss="modal">
 ×
 Close
 </button>
 <h4 class="modal-title" id="myModalLabel">
 Compose new Post
 </h4>
 </div>
 <div class="modal-body">
 <!-- Will be displayed conditionally -->
 <div id="post_success" class="alert
 alert-success">
 Your post has been successfully
 published!
 </div>
 <!-- Will be displayed conditionally -->
 <div id="post_fail" class="alert
 alert-danger"></div>

 <textarea
 id="post_content"
 rows="4"
 class="form-control"></textarea>
 </div>
 <div class="modal-footer">

 <button
 type="button"
 class="btn btn-primary"
 id="post_submit_button">
 Submit
 </button>
 </div>
 </div>
 </div>
</div>

Chapter 5

[191]

This code was inspired from the live demo in the official documentation at http://
getbootstrap.com/javascript/#modals.

Add the following style in the website.css file:

textarea {
 resize: none;
}

#post_success, #post_fail {
 display: none;
}

#post_remaining_characters.too_much {
 color: red;
}

On clicking on the New post button, you should now see the following modal window:

However, if you try to click on the Submit button, nothing will happen. We need to
add some JavaScript code to do that.

Since this won't be very short, first create a new JavaScript file at public/assets/
js/post_form.js and include it in the template by adding 'post_form.js', after
'bootstrap.js', inside the Asset::js call in the template.

Building Your Own Restful API

[192]

Next, open the newly created JavaScript file and set its contents to:

// When the DOM is ready
$(function(){
 // jQuery elements initialization
 var $postContent = $('#post_content');
 var $postRemainingCharacters =
 $('#post_remaining_characters');
 var $postSuccess = $('#post_success');
 var $postFail = $('#post_fail');
 var $postSubmitButton = $('#post_submit_button');

 // Defining the max number of characters of a post
 var postMaxNbCharacters = 140; // will be improved

 /*
 Refreshes the remaining number of characters indicator,
 and whether or not the submission button is enabled.
 */
 function refreshPostWindow() {
 var postLength = $postContent.val().length;
 var remainingCharacters =
 postMaxNbCharacters - postLength;

 $postRemainingCharacters
 .text(remainingCharacters)
 .attr(
 'class',
 remainingCharacters >= 0 ? '' : 'too_much'
);

 $postSubmitButton.prop(
 'disabled',
 postLength == 0 || remainingCharacters < 0
);
 }

 // Initialization
 refreshPostWindow();

 /*
 When showing the post creation modal window, clearing
 all previous messages. Useful if a user publishes many
 posts in a row.

Chapter 5

[193]

 */
 $('#create_post_modal')
 .on('show.bs.modal', function() {
 $postFail.hide();
 $postSuccess.hide();
 });

 // When the user type in the post textarea
 $postContent.keyup(function() {
 // In case he writes two posts in a row
 $postSuccess.hide();
 // See comments above
 refreshPostWindow();
 });

 // When clicking on the submit button
 $postSubmitButton.click(function() {

 // Sending an AJAX POST request to post/create.json
 // with the post content.
 $.post(
 'post/create.json',
 {post_content: $postContent.val()}
)
 .done(function(data) {
 // In case the connection succeeded

 /*
 The action will define whether or not the
 post passed validation using the data.success
 variable.
 */
 if (data.success) {
 // If succeeded
 $postFail.hide();
 $postContent.val('');
 refreshPostWindow();
 $postSuccess.show();
 } else {
 // If failed, the error message will be
 // defined in data.error.
 $postFail
 .text(data.error)
 .show();

Building Your Own Restful API

[194]

 }
 })
 .fail(function() {
 // In case the connection failed
 $postFail
 .text('Sorry, it seems there was an issue ' +
 'somewhere. Please try again later.')
 .show();
 });
 });
});

Read the comments in the preceding code. If you refresh the home page and try to
submit a new post, the message Sorry, it seems there was an issue somewhere.
Please try again later. will appear because we didn't implement the post/create
action yet.

You might have noticed the following line:

var postMaxNbCharacters = 140; // will be improved

This line is problematic, because we are defining here the maximum number
of characters a post can have, and we will need this information later when
implementing our action (for validation). The best option is to define this information
once so that, if we have to change it in the future, we only need to change one line.
Therefore, we will write this variable in a configuration file.

Create the configuration file at APPPATH/config/mymicroblog.php and set its
contents to:

<?php
return array(
 'post_max_nb_characters' => 140,
);

Its access will be easy later in our action, but the configuration file's content is
currently inaccessible by our JavaScript code. In order to solve this issue, open the
template view file located at APPPATH/views/template.php, and add the following
lines of code after $(function(){ $('.topbar').dropdown(); }); inside the
script tag:

<?php
// Converts the mymicroblog configuration to json.
$json_configuration = Format::forge(

Chapter 5

[195]

 \Config::load('mymicroblog', true)
)->to_json();

echo ' ';
echo 'var MMBConfiguration = '.$json_configuration.";\n";
?>

Then, go back to the post_form.js JavaScript file and replace var
postMaxNbCharacters = 140; // will be improved with the following
lines of code:

var postMaxNbCharacters =
 MMBConfiguration['post_max_nb_characters'];

When you have some common variables and constants between your JavaScript and
your PHP code, it is always a good idea to adopt a similar solution.

Implementing the post creation action
We will now handle the AJAX request, check the sent data, and create the post if
everything is ok.

First, we will need to create the Post controller. Create the APPPATH/classes/
controller/post.php file and, for the moment, set its contents to:

<?php
class Controller_Post extends Controller_Rest
{
}

You can see that we are extending a different controller class here; instead of
Controller_Template, we are extending Controller_Rest. It is a basic controller
with a RESTful support built in. It will allow us to easily implement the JSON
response we will send, and it will also help us later when we will implement the API.

To illustrate this, add the following test action:

public function action_test() {
 return $this->response(array(
 'test_1' => 42,
 'test_2' => 'Answer to the Ultimate Question',
 'test_3' => array(
 'test_4' => array(
 'test_5', 'test_6', 'test_7'
),
 'test_8' => true,

Building Your Own Restful API

[196]

 'test_9' => null,
),
));
}

If you request the following URL now:

http://mymicroblog.app/post/test

The following output should appear:

The requested REST method returned an array or object:

{ "test_1": 42, "test_2": "Answer to the Ultimate Question", "test_3": { "test_4": [
"test_5", "test_6", "test_7"], "test_8": true, "test_9": null } }

If you request the following URL:

http://mymicroblog.app/post/test.json

It will return:

{
 "test_1":42,
 "test_2":"Answer to the Ultimate Question",
 "test_3":{
 "test_4":["test_5","test_6","test_7"],
 "test_8":true,
 "test_9":null
 }
}

If you request the following URL:

http://mymicroblog.app/post/test.xml

It will return:

<?xml version="1.0" encoding="utf-8"?>
<xml>
 <test_1>42</test_1>
 <test_2>Answer to the Ultimate Question</test_2>
 <test_3>
 <test_4>
 <item>test_5</item>
 <item>test_6</item>
 <item>test_7</item>

Chapter 5

[197]

 </test_4>
 <test_8>1</test_8>
 <test_9/>
 </test_3>
</xml>

If you request the following URL:

http://mymicroblog.app/post/test.php

It will return:

array (
 'test_1' => 42,
 'test_2' => 'Answer to the Ultimate Question',
 'test_3' =>
 array (
 'test_4' =>
 array (
 0 => 'test_5',
 1 => 'test_6',
 2 => 'test_7',
),
 'test_8' => true,
 'test_9' => NULL,
),
)

You should have understood by now that, depending on the extension defined in the
requested URL, the action will return a result in the associated format. I recommend
you to read the official documentation at http://fuelphp.com/docs/general/
controllers/rest.html#/formats to see which formats are supported.

The documentation can be accessed by opening the FuelPHP website and navigating
to DOCS | FuelPHP | General | Controllers | Rest.

A specific property of the REST controllers is that they allow
you to implement actions that only answer to specific HTTP
methods. For instance, if we had named our action_test
method as get_test, the test action would have only
responded to GET requests. The same is true for POST, PUT,
DELETE, and PATCH requests; you are again recommended to
read the official FuelPHP documentation about REST controllers.

Building Your Own Restful API

[198]

Delete the test action and add the following create action:

public function action_create()
{
 $post_content = Input::post('post_content');

 $response = array();

 if (!Auth::check()) {
 // In case the user has been signed out before
 // he submits his post.
 $response = array(
 'success' => false,
 'error' => 'You are not authenticated.',
);
 } else {
 // Checking if the post is correct. The JavaScript
 // should have tested that already, but never trust
 // the client.
 $val = Validation::forge('post');
 $val->add_field(
 'post_content',
 'post',
 'required|max_length[140]'
);

 if ($val->run())
 {
 // Creating the post.
 list(, $user_id) = Auth::get_user_id();
 $post = Model_Post::forge();
 $post->content = $post_content;
 $post->user_id = $user_id;
 if ($post and $post->save()) {
 $response = array(
 'success' => true,
);
 } else {
 $response = array(
 'success' => false,
 'error' => 'Internal error: Could'.
 ' not save the post.',
);
 }

Chapter 5

[199]

 } else {
 // The error can only occur on the only field...
 $error = $val->error()['post_content'];
 $response = array(
 'success' => false,
 'error' => $error->get_message(),
);
 }
 }

 return $this->response($response);
}

Now if you try to add a new valid post, a new row should be added in the posts
table and the following message should appear:

Your post has been successfully published!

Though we are sending a JSON response, we don't consider the
create action as a part of the application API. As written earlier,
our API will only allow read-only access and no authentication will
be required; the action doesn't observe any of those requirements.
However, the fact that it returns JSON content (as well as other
formats) is a good start if you want to integrate it into an API.

Implementing the profile page
Since we can create posts now, it would be great to display them. As we wrote in
the specification, the user profile page displays the list of published posts, so we
will implement it.

Configuring the routes
We would like to display this profile page when requesting the following URL:

http://mymicroblog.app/USERNAME

We could add a parameter to the index action of the User controller, but that would
unnecessarily complicate the action. Instead of doing that, we are going to use routes
to transparently reroute those URLs to the show action of the User controller:

http://mymicroblog.app/user/show/USERNAME

Building Your Own Restful API

[200]

To do this, open the APPPATH/config/routes.php configuration file and add the
following line at the end of the returned array:

'(:segment)' => 'user/show/$1',

Creating the user model
Inside the show action, we will have to request a user from the database. We will
create the user model to do this more easily. Create the APPPATH/classes/model/
user.php file and set its contents to:

<?php

class Model_User extends \Orm\Model
{
 protected static $_properties = array(
 'id',
 'username',
 'password',
 'group',
 'email',
 'last_login',
 'login_hash',
 'profile_fields',
 'created_at',
 'updated_at',
);

 protected static $_table_name = 'users';

 protected static $_observers = array(
 'Orm\Observer_CreatedAt' => array(
 'events' => array('before_insert'),
 'mysql_timestamp' => false,
),
 'Orm\Observer_UpdatedAt' => array(
 'events' => array('before_save'),
 'mysql_timestamp' => false,
),
);
}

Chapter 5

[201]

Implementing the show action
We will now implement the show action inside the User controller, as we had
done previously:

public function action_show($username) {
 // Finding a user with a similar username
 $user = Model_User::find('first', array(
 'where' => array(
 array('username' => $username),
),
));

 if (!$user) {
 Session::set_flash(
 'error',
 'The user '.e($username).' does not exists.'
);
 Response::redirect('/');
 }

 // Finding 20 latest posts (will be improved)
 $posts = Model_Post::find('all', array(
 'related' => 'user',
 'where' => array(
 array('user_id' => $user->id),
),
 'order_by' => array('id' => 'DESC'),
 'limit' =>
 \Config::get('mymicroblog.pagination_nb_posts'),
));

 // Displaying the profile page
 $this->template->content =
 View::forge(
 'user/show.mustache',
 array(
 'user' => $user,
 /*
 As Model_Post::find returns an associative
 array, with ids as keys and posts as
 values, we need to transform it to a
 classic array, otherwise mustache will
 process as an object and not the list,
 hence the use of array_values.

Building Your Own Restful API

[202]

 */
 'posts' => array_values($posts),
),
 // By default, mustache escape displayed
 // variables...
 false
);
}

There are a few more things that we need to do. First, you can see we specified
'related' => 'user' when finding posts, but we didn't declare this relation
inside the Post model. Fix that by opening the Post model and adding the
following attribute:

protected static $_belongs_to = array('user');

Then, in the User model, you might have seen that we get the number of posts
to load from the configuration \Config::get('mymicroblog.pagination_nb_
posts'). We need to specify this configuration item inside the APPPATH/config/
mymicroblog.php file. Inside the returned array, add the following line:

'pagination_nb_posts' => 20,

But there is still an issue; we haven't loaded the configuration file yet, so \
Config::get('mymicroblog.pagination_nb_posts') will return null. We
could load the configuration file in the same action, but since we are going to need it
elsewhere, we are going to load it in the before method. This method is called before
any action is executed. Add the following line in the beginning of the User controller:

public function before() {
 parent::before();

 \Config::load('mymicroblog', true);
}

If we want this action to work, we still need to implement the user/show.mustache
view.

Implementing views
First, create the APPPATH/views/user/show.mustache view file and set its
contents to:

<div class="col-md-3"></div>
<div class="col-md-6 profile">
 <div class="row profile_informations">
 <h1>

Chapter 5

[203]

 {{user.username}}
 </h1>
 </div>
 {{> post/list}}
</div>
<div class="col-md-3"></div>

The only new syntax that is {{> post/list}}; it means we want to display the
post/list partial, and its PHP equivalent looks like this:

echo \View::forge(
 'post/list.mustache',
 array(/* all current variables */),
 false
);

We have separated the post listing because we will need to display it on other
actions. Therefore, the next logical step is to implement this partial. Create the
APPPATH/views/post/list.mustache view file and set its contents to:

<div class="row post_list">
 {{> post/inside_list}}
</div>

We just implemented a simple div element and called another partial inside it. This
new partial will only display the content of the list. Create the APPPATH/views/
post/inside_list.mustache view file and set its contents to:

{{#posts}}
 <div class="post">
 <div class="post_content">{{content}}</div>
 <div class="post_additional_infos">
 By
 <a
 class="post_author"
 href="/{{user.username}}">
 {{user.username}}

 ·
 <span
 class="post_date"
 data-timestamp="{{created_at}}">

 </div>
 </div>
{{/posts}}

Building Your Own Restful API

[204]

To understand this, you need to understand a new Mustache tag. The {{#posts}}
and {{/posts}} tags are implemented here to loop over the posts array. The
content within these two tags will be repeated for each post. Variables displayed
inside this loop will either be previously declared variables, or the properties of the
current post in the loop; for instance, {{created_at}} is the created_at attribute
of the current post in the loop, but we could display {{independent_variable}},
which would not be an attribute of the current post but of a previously declared
variable. Take a look at the official documentation to understand how variables are
resolved (the second link is hosted on the repository of the PHP port of Mustache but
is quite complete and clear):

• http://mustache.github.io/mustache.5.html

• https://github.com/bobthecow/mustache.php/wiki/Variable-
Resolution

However, if you now try to access a profile page, only the username will be
displayed even if this user created posts. This is because Mustache doesn't know
where to find partials. To solve this issue, open back the User controller and add the
following lines of code at the end of the before method:

\Parser\View_Mustache::parser()
 ->setPartialsLoader(
 new Mustache_Loader_FilesystemLoader(
 APPPATH.'views'
)
);

If you plan to use Mustache on modules, you will need to set other paths when
calling the setPartialsLoader method.

We will now add some styles. Open the public/assets/css/website.css file and
append the following code:

.profile {
 border-left: 1px solid #e8e8e8;
 border-right: 1px solid #e8e8e8;
 background-color: white;
}

.profile_informations {
 text-align: center;
 padding-top: 10px;
 padding-bottom: 40px;

Chapter 5

[205]

 border-bottom: 1px solid #e8e8e8;
}

.post {
 padding: 5px 10px 5px 10px;
 border-bottom: 1px solid #e8e8e8;
}

.post_content {
 margin-bottom: 10px;
 word-break: break-all;
 white-space: pre-wrap;
}

.post_additional_infos {
 color: #888;
}

If you refresh the profile page, the posts' list should appear now.

There is still an issue though: no date is displayed. However, you have probably
read how we displayed created_at in the APPPATH/views/post/inside_list.
mustache view file, as shown in the following lines:

 class="post_date"
 data-timestamp="{{created_at}}">

Nothing is visible, but the timestamp can be accessed inside a span element with the
post_date class. We want to display those dates in a relative format (for example,
5 minutes ago) and regularly update them. We will do this using JavaScript and
jQuery. As this is a complex operation, we will create a new JavaScript file. Create
the public/assets/js/posts_dates.js file and set its contents to:

/*
Converts a timestamp to relative format.
You could use plugins as jquery.timeago for doing that, and
it would probably be better that way, but we implemented
ourselves the method for being sure we won't have any
compatibility issues in the future. It is far from a perfect
solution: for instance, it supposes the client and the server
share the same time zone.
*/
function relativeFormat(timestamp) {

Building Your Own Restful API

[206]

 var timeLabels = [
 {
 divider: 31536000,
 label: '(:nb) year ago',
 label_plural: '(:nb) years ago'
 },
 {
 divider: 2592000,
 label: '(:nb) month ago',
 label_plural: '(:nb) months ago'
 },
 {
 divider: 86400,
 label: '(:nb) day ago',
 label_plural: '(:nb) days ago'
 },
 {
 divider: 3600,
 label: '(:nb) hour ago',
 label_plural: '(:nb) hours ago'
 },
 {
 divider: 60,
 label: '(:nb) minute ago',
 label_plural: '(:nb) minutes ago'
 }
];

 var seconds = Math.floor(
 (new Date() - timestamp) / 1000);

 for (var i = 0; i < timeLabels.length; i++) {
 var nb = Math.floor(seconds / timeLabels[i].divider);

 if (nb > 0) {
 var label = timeLabels[i][
 (nb == 1 ? 'label' : 'label_plural')];
 return label.replace('(:nb)', nb);
 }
 }
 return 'Few seconds ago';
}

// Refresh all posts dates

Chapter 5

[207]

function refreshPostsDates() {
 $('.post_date').each(function() {
 var $this = $(this);
 $this.text(
 relativeFormat(
 parseInt($this.data('timestamp')) * 1000
)
);
 });
}

// When the DOM is ready
$(function(){
 refreshPostsDates();

 // Regularly refresh posts dates (every 30000ms = 30s)
 setInterval(refreshPostsDates, 30000);
});

Finally, we need to include this script inside the template located at APPPATH/views/
template.php. Add 'posts_dates.js', after 'post_form.js'.

Implementing the API
Now that we have developed the first version of the profile pages, we will begin to
implement the API to access our website data.

Implementing the base controller
As we will need methods on both the User and Post controllers, we will first
implement a base controller that will be extended by both controllers. Create the
APPPATH/classes/controller/base.php file and set its contents to:

<?php
class Controller_Base extends Controller_Hybrid
{

}

You can see that Controller_Base is extending a new native controller named
Controller_Hybrid. As its name suggests, it is a hybrid version implementing
features from both Controller_Template and Controller_Rest. It is exactly what
we need if we want an action to return JSON or HTML, depending on the context.

Building Your Own Restful API

[208]

First, move the before method we implemented in the User controller inside this
new Base controller.

Next, implement the following methods:

/*
Overriding the is_restful method to make the controller go into
rest mode when an extension is specified in the URL. Ex:
http://mymicroblog.com/first_user.json
*/
public function is_restful()
{
 return !is_null(\Input::extension());
}

/*
Handles an hybrid response: when no extension is specified
the action returns HTML code by setting the template's content
attribute with the specified view and data, and when an
extension is specified, the action returns data in the expected
format(if available).
*/
public function hybrid_response($view, $data) {
 if (is_null(\Input::extension())) {
 $this->template->content =
 View::forge(
 $view.'.mustache',
 $data,
 // By default, mustache escape displayed
 // variables...
 false
);
 } else {
 $this->response($data);
 }
}

Each time we want a hybrid response (HTML, JSON, or XML depending on the
extension requested), we will have to call the hybrid_response method.

Finally, make the Post and the User controllers extend this new Base controller.

Chapter 5

[209]

Implementing your first hybrid action
Inside the show action of the User controller, replace $this->template->content =
...; with the following lines of code:

return $this->hybrid_response(
 'user/show',
 array(
 'user' => $user,
 'posts' => array_values($posts),
)
);

Now if you request the following URL:

http://mymicroblog.app/USERNAME.json

(Or http://mymicroblog.app/USERNAME.xml, as browsers generally display this
format better)

You will see that the data is now accessible. The problem is that you can read too
much information:

• The most urgent issue is that we display all the attributes for each object. It is
very problematic for user objects as we display their hashed passwords, their
login hash, their e-mails, and possibly other confidential information. This is
a very serious security issue.

• We don't need to display every time the same attributes of an object. For
instance, we might want to release more information about a user when
displaying its profile page, but only its username when displaying the user
attribute of a post. This is less urgent, but still an important issue.

Implementing mappers to control how the
information is shared
In order to control which information is sent through the API, we will implement
mappers that will transform our objects to appropriate associative arrays containing
only the attributes we want to show. The mappers will map differently objects
depending on the context.

Create the APPPATH/classes/mapper.php file and set its contents to:

<?php
// This class will be extended by all our mappers and
// contains general purpose methods.

Building Your Own Restful API

[210]

class Mapper
{
 /**
 * Transforms an object or objects to their mapped
 * associative arrays. No matter what mapper we
 * will use, the idea is to always call
 * Mapper_CLASS::get('CONTEXT', $objects)
 *
 * @param string $context The context
 * @param mixed $objects Array of objects or single object
 *
 * @return array Array of associative array or associative
 * array
 */
 static function get($context, $objects) {
 if (is_array($objects)) {
 $result = array();
 foreach ($objects as $object) {
 $result[] = static::get($context, $object);
 }
 return $result;
 } else {
 return static::$context($objects);
 }
 }

 /**
 * Extracts specified properties of an object and
 * returns them as an associative array.
 *
 * @param object $object The object to convert
 * @param array $attributes The list of attributes to extract
 *
 * @return array The associative array
 */
 static function extract_properties($object, $properties) {
 $result = array();
 foreach ($properties as $property) {
 $result[$property] = $object->{$property};
 }
 return $result;
 }
}

Chapter 5

[211]

We will now create the mappers for our Post and User models. First, create the
APPPATH/classes/mapper/post.php file and set its contents to:

<?php
// Mapper for posts
class Mapper_Post extends Mapper
{
 static function item($post) {
 $result = static::extract_properties(
 $post,
 array('id', 'content', 'created_at')
);
 $result['user'] = Mapper_User::get(
 'minimal',
$post->user
);
 return $result;
 }
}

Then, create the APPPATH/classes/mapper/user.php file and set its contents to:

<?php
// Mapper for users
class Mapper_User extends Mapper
{
 static function minimal($user) {
 return array('username' => $user->username);
 }

 static function profile($user) {
 $result = static::extract_properties(
 $user,
 array('id', 'username', 'created_at')
);

 /*
 profile_fields is always empty, but this is just here
 to illustrate that you can also send other information
 than object attributes.
 */
 $result['profile_fields'] = unserialize(
 $user->profile_fields
);
 return $result;
 }
}

Building Your Own Restful API

[212]

Now, we just have to use these mappers in our show action of the User controller.
Inside the action, replace:

'user' => $user,
'posts' => array_values($posts),

With the following lines of code:

'user' => Mapper_User::get('profile', $user),
'posts' => Mapper_Post::get('item', $posts),

Now if you request the following URLs:

• http://mymicroblog.app/USERNAME.json

• http://mymicroblog.app/USERNAME.xml

You should see that only the useful information appears. You can always access
http://mymicroblog.app/USERNAME, as the Mustache template engine processes
objects and associative arrays in the same way.

Some open source libraries provide tools that allow you to do a similar
job that we did with our mapper classes, but in a standardized and
more sophisticated way. If you are searching for one, I recommend
that you take a look at the fractal library at http://fractal.
thephpleague.com/.

Improving the listing
The profile web pages are still incomplete as we only show the users' last 20 posts. It
would be great to improve this listing by adding a See more button that allows us to
read older posts.

I recommended you to generate many posts (you could do that programmatically)
on a profile in order to test our interface.

Giving JavaScript access to our Mustache views
In this section, we are going to transform JSON data to HTML content using
JavaScript. Indeed, when you will for instance click on the See more button, an
AJAX request will be sent toward our API that will return JSON data. We need to
transform this JSON code to HTML content so that the viewer can read it but as
we don't want any code duplication, we will give the JavaScript code access to our
Mustache views. This will be done by copying all the Mustache files content into an
object in the public/assets/js/templates.js JavaScript file.

Chapter 5

[213]

Generating the templates.js file
We will discuss two alternatives to generate the template.js file.

The easy and dirty way
The easy and dirty solution is to regenerate this file each time someone accesses your
application in development mode. To do this, open a APPPATH/bootstrap.php file
and add the following lines of code at the end:

// Executed each time the application is requested in
// development mode
if (Fuel::$env == Fuel::DEVELOPMENT && !\Fuel::$is_cli) {
 $view_directory = APPPATH.'views/';
 $extension = '.mustache';

 /*
 The following searches for mustache files in APPPATH/views/
 and saves its content into the $template associative array.
 Each key will be the template relative path; for instance,
 if a template is located at
 APPPATH/views/dir_1/file.mustache the value of the key
 will be dir_1/file.
 Each value will be the template content.
 */
 $templates = array();
 $it = new RecursiveDirectoryIterator($view_directory);
 foreach(new RecursiveIteratorIterator($it) as $file)
 {
 if (substr($file, -strlen($extension)) == $extension) {
 // Deducing the key from the filename
 // APPPATH/views/dir_1/file.mustache -> dir_1/file
 $file_key = substr(
 $file,
 strlen($view_directory)
);
 $file_key = substr(
 $file_key,
 0,
 -strlen($extension)
);

 $templates[$file_key] = file_get_contents($file);
 }
 }

Building Your Own Restful API

[214]

 $template_file_content = 'MyMicroblog.templates = '.
 json_encode($templates).';';

 // Saves the templates in the templates.js file
 file_put_contents(
 DOCROOT.'assets/js/templates.js',
 $template_file_content
);
}

Even though we generate the file only on development mode, it can become
unsustainable if you have a big application containing lots of templates; you will
have latency and memory issues. You also might need to change some permission to
allow the file to be created. In most cases, you should be ok though, and a good point
of this solution is that it doesn't require any dependency.

Using guard-templates
Instead of generating the JavaScript file each time you request your application, you
could use a utility such as guard-templates. The idea is that you launch this utility
when you are coding your application, and that utility will track any file change and
regenerate the JavaScript file when necessary.

Please note that, at the time of writing, this utility doesn't seem to work
on Ubuntu: if that is still the case when you read the book, you are
recommended to use the solution we provided in the last section.

You first need Ruby and gem installed on your computer. Then, you must install the
guard-template gem by executing:

sudo gem install guard-templates

Then execute the following command at the root of your website directory (as you
did for oil):

guard init templates

Open the generated Guardfile file at the root of your website directory; it contains a
sample configuration of the guard-templates utility. Replace its content with:

guard 'templates',
 :output => 'public/assets/js/templates.js',
 :namespace => 'MyMicroblog' do
 watch(/fuel\/app\/views\/(.*)\.mustache$/)
end

Chapter 5

[215]

Understanding this configuration should be fairly easy. If you have any doubt, you
can always check the official documentation at https://github.com/thegreatape/
guard-templates.

You can then launch guard by executing the following command:

guard

It will then generate the JavaScript file and regenerate it each time any Mustache
template is changed.

Integrating template.js and Mustache.js
Now that our Mustache templates are stored into a JavaScript file, we have to
integrate it into our website.

First, we must install mustache.js, which is the JavaScript port of Mustache. In
order to do this, go to the mustache.js repository at https://github.com/janl/
mustache.js.

Clone the repository or download and unzip the archive in the public/assets/js/
mustache folder.

We will also implement the render function, which is inspired from the render
function of FuelPHP (the equivalent of View::forge(...)->render()). To do this,
create the public/assets/js/view.js file and set its contents to:

// We need to initialize the MyMicroblog for our templates
// to work
MyMicroblog = {};

// Inspired from FuelPHP's render method
function render(view, data) {
 return Mustache.render(
 MyMicroblog.templates[view],
 data,
 MyMicroblog.templates
);
}

We now need to include our JavaScript files in the template. Open the APPPATH/
views/template.php file and add the following lines of code after the
'bootstrap.js', line:

'mustache/mustache.js',
'view.js',
'templates.js',

Building Your Own Restful API

[216]

Refresh your web page. If you open the JavaScript console (in your browser's
developer tools) now and execute:

render('user/connect', {})

You should see that it returns the correct HTML code.

Implementing the post/list action
We will also need to retrieve the posts data from the server. For this, we will
implement two actions inside the Post controller: the list and count actions.
Add the following code at the end of the Post controller:

// Get the posts list depending on $_GET parameters
// limited to 20 posts maximum
public function action_list() {
 $query = static::get_posts_query(Input::get(), true);
 $posts = $query->limit(
 \Config::get('mymicroblog.pagination_nb_posts')
)->get();

 return $this->response(
 Mapper_Post::get('item', $posts)
);
}

// Get the number of posts depending on $_GET parameters
public function action_count() {
 $query = static::get_posts_query(Input::get(), false);
 return $this->response($query->count());
}

The get and count actions call the static::get_posts_query method. We need to
implement this method, and we will do that in the Base controller:

// Getting the posts query
public static function get_posts_query($params) {
 $user_id = Arr::get($params, 'user_id', null);
 // id > since_id
 $after_id = intval(
 Arr::get($params, 'after_id', null)
);
 // id < from_id
 $before_id = intval(

Chapter 5

[217]

 Arr::get($params, 'before_id', null)
);

 $query = Model_Post::query();
 $query->related('user');
 $query->where('user_id', '=', $user_id);
 if ($after_id != 0) {
 $query->where('id', '>', $after_id);
 }
 if ($before_id != 0) {
 $query->where('id', '<', $before_id);
 }
 $query->order_by(array('id' => 'DESC'));

 return $query;
}

Now, if you request the following URL:

http://mymicroblog.app/post/list.json?user_id=ID

It will return the 20 latest posts of the user with id = ID.

If you request the following URL:

http://mymicroblog.app/post/list.json?user_id=ID&before_id=30

It will return the 20 latest posts with an id value less than 30 that have been
published by the user with id = ID.

If you request the following URL:

http://mymicroblog.app/post/list.json?user_id=ID&after_id=30

It will return the 20 latest posts with an id value greater than 30 that have been
published by the user with id = ID.

Now, if you request the following URL:

http://mymicroblog.app/post/count.json?user_id=ID

It will return the number of posts published by the user with id = ID.

If you request the following URL:

http://mymicroblog.app/post/count.json?user_id=ID&before_id=30

Building Your Own Restful API

[218]

It will return the number of posts with an id value less than 30 that have been
published by the user with id = ID.

If you request the following URL:

http://mymicroblog.app/post/count.json?user_id=ID&after_id=30

It will return the number of posts with an id value greater than 30 that have been
published by the user with id = ID.

We will use the count action later, when we will need to know if any posts have
been published since we displayed a user profile.

To limit code duplication, in the show action of the User controller, replace $posts =
Model_Post::find('all', ...); with the following lines of code:

$query = static::get_posts_query(
 array('user_id' => $user->id),
 true
);
$posts = $query->limit(
\Config::get('mymicroblog.pagination_nb_posts')
)->get();

Preventing any duplication inside the controllers is ok, but if you need
to implement a lot of code and methods similar to get_posts_query
inside a controller, something is wrong with your implementation. You
should think about moving some pieces of code in models, helpers, or
libraries. I must say I hesitated a bit about where this method should be
implemented, but I decided to implement it in the Base controller since
it would be more convenient. In general, be wary of long pieces of code
inside a controller, as they should not contain too much logic.

Implementing the See more button
We will need to do some changes in the views. First, open APPPATH/views/post/
inside_list.mustache and replace <div class="post"> with the following line:

<div class="post" data-post_id="{{id}}">

It will allow us to identify which posts are already displayed. Then, open the
APPPATH/views/post/list.mustache view and replace <div class="row post_
list"> with the following line:

<div class="row post_list" data-user_id="{{user.id}}">

Chapter 5

[219]

This will allow us to know the user identifier when requesting for more posts. Then,
add the following lines of code after {{> post/inside_list}}:

<div class="load_more see_more">
 <button type="button" class="btn btn-default btn-lg">

 See more...
 </button>
 <div class="loading_message">
 Loading...
 </div>
</div>

Now that the button is added, we need to specify what will happen when we click
on it so we will code it on a new JavaScript file. Create the public/assets/js/
posts_list.js file and set its contents to:

// When the DOM is ready
$(function() {

// Triggered when the user clicks on the see more button
 $('body').on(
'click',
'.post_list .see_more button',
 function() {
 // JQuery elements initialization
 var $this = $(this);
 var $post_list = $this.closest('.post_list');
 var $see_more = $this.closest('.see_more');

 // Getting user_id and before_id (last displayed
 // post id)
 var user_id = $post_list.data('user_id');
 var before_id =
 $post_list.find('.post:last').data('post_id');

 /*
 Adding the loading class to the see more in order
 to tell the user we are loading older posts.
 */
 $see_more.addClass('loading');

 // Getting the older posts
 $.get(

Building Your Own Restful API

[220]

 'post/list.json',
 {
 user_id: user_id,
 before_id: before_id
 }
)
 .done(function(data) {
 if (data != null) {
 // Displaying loaded posts
 $see_more.before(
 render('post/inside_list', {posts: data})
);
 } else {
 // Everything has been loaded, no need
 // to show the See more button anymore
 $see_more.addClass('all_loaded');
 }
 $see_more.removeClass('loading');

 // Refreshing posts dates
 refreshPostsDates();
 })
 .fail(function() {
 $see_more.removeClass('loading');
 alert('Sorry, it seems there was an issue ' +
 'somewhere. Please try again later.');
 });

 }
);

 // @note: we will add more code here later
});

Don't forget to include this JavaScript file in the template. Open the template and
add 'posts_list.js', after 'posts_dates.js'.

Then, add the following CSS code at the end of the public/assets/css/website.
css file:

.load_more {
 padding: 10px 0px 10px 0px;
 text-align: center;

Chapter 5

[221]

 border-bottom: 1px solid #e8e8e8;
}

.loading_message,

.load_more.loading button,

.load_more.all_loaded {
 display: none;
}

.load_more.loading .loading_message {
 display: block;
}

The See more button should now work when you have more than 20 posts in a
profile page. It could be perfected in many ways. For instance, when there are less
than 20 posts in a profile, the button is first visible, but if you click on it, it will simply
disappear as there are no more posts to show. There are many easy ways to solve
this small problem, so we will leave it to you.

One improvement that could come in handy for those readers that are not very
familiar with JavaScript is infinite scrolling. Open the public/assets/js/posts_
list.js file and replace:

// @note: we will add more code here later

With the following code:

// When the See more button appears in the screen, the following
// code triggers a click on it to load older posts, resulting in
// an infinite scroll
$(document).scroll(function() {
 var $this = $(this);
 var $see_more_button = $('.see_more button');
 if ($see_more_button.length > 0 &&
 $see_more_button.is(':visible')) {
 if (
 $this.scrollTop() + $(window).height() >
 $see_more_button.offset().top) {
 $see_more_button.click();
 }
 }
});

Building Your Own Restful API

[222]

Redirecting the home page to the logged user's
web page
When the user is connected, we want to redirect the home page to his web page so
they can take a look at their posts. In order to do this, go to the index action of the
User controller and in place of the following line:

if (false /* is the user logged ? */) {

Write the following lines:

if (Auth::check()) {
Response::redirect('/'.Auth::get_screen_name());

That is optional, but you might also want to change and add some
Response::redirect calls inside the signin action of the User controller to make
things a bit cleaner (without changing anything the user will be redirected twice
when signing in).

Unit tests
Unit tests are particularly suitable for this project, as it is important to regularly
check if the API is returning the correct data. We will in this section quickly
introduce you to how unit tests are implemented in FuelPHP. These tests will be
very superficial as this is just an introduction. If you are not familiar with unit tests,
you can start by reading the FuelPHP documentation about unit testing at http://
fuelphp.com/docs/general/unit_testing.html.

The documentation can be accessed at the FuelPHP website by navigating to DOCS
| FuelPHP | General | Unit Testing.

For more general information, you can look at the Wikipedia web page for more
references (http://en.wikipedia.org/wiki/Unit_testing).

To make things short, unit tests allow you to test individual units in your code,
such as methods or classes, to check if they work as intended. In most cases, they
are executed regularly to check if there is no regression in your project. In the Test
Driven Development process, tests are even written before the code and are used as
some sort type of unit specification. In that development process, developers first
define how a method should work in unit tests, and then they implement the method
and check that it passes all the tests and assertions (assertions are conditions that
must be met) they have previously written.

Chapter 5

[223]

Unit tests should be separated from Integration tests, that test a group of units and
how they function together, Functional tests that check that your projects follow its
functional requirements, and Acceptance tests that check that final features accessed
by users are working as it is expected.

When writing unit tests, you should try at least to stick with the following guidelines:

• Each unit test should only test a single code unit (generally methods, but
sometimes classes) at a time.

• Try to write as few assertions as possible to test features, as unnecessary
assertions lead to less maintainability.

• Tests should be independent from each other. For instance, you should not
write a unit test that supposes another unit test has been run before.

• Each unit test purpose should be clear: Its name should be explicit and the
code should be easy to understand (don't hesitate to use comments).

Now let's see in practice how to run unit tests in FuelPHP.

First, you need to install PHPUnit. To do that, enter the following command line:

php composer.phar require phpunit/phpunit:4.4.*

While PHPUnit is downloaded and installed, create the APPPATH/config/oil.php
configuration file and set its contents to:

<?php
return array(
 'phpunit' => array(
 'autoload_path' =>
 VENDORPATH.'phpunit/phpunit/PHPUnit/Autoload.php',
 'binary_path' => VENDORPATH.'bin/phpunit',
),
);

Once PHPUnit is installed, you can launch tests. First, simply execute the following
command line:

php oil test

The output will be something like this:

Tests Running...This may take a few moments.

...

Time: 512 ms, Memory: 20.25Mb

OK (375 tests, 447 assertions)

Building Your Own Restful API

[224]

As you can see, 375 tests already exist and the php oil test command line
executed all of them. These tests are all in the FuelPHP core and can be found
in the fuel/core/tests directory.

We are going to create our own tests. Create the APPPATH/tests/examples.php file
and set its contents to:

<?php
namespace Fuel\App;

/**
 * Examples tests
 *
 * @group App
 */
class Test_Examples extends \TestCase
{
 // This method is executed before all tests are executed.
 // If your unit test require some initialization, you can
 // do it here.
 public static function setUpBeforeClass() {
 \Config::load('mymicroblog', true);

 // Executing migrations (we are on a test database)
 \Migrate::latest('auth', 'package');
 \Migrate::latest();

 // Truncating the tables since we might already have data
 \DBUtil::truncate_table('users');
 \DBUtil::truncate_table('posts');

 // Generating test data
 \Auth::create_user(
 'first_user',
 'test',
 'email@email.com'
);
 for ($i = 1; $i < 100; $i++) {
 $post = \Model_Post::forge(array(
 'content' => 'post 1',
 'user_id' => 1
));

Chapter 5

[225]

 $post->save();
 }

 // ...
 }

 /**
 * Tests the User mapper.
 *
 * @test
 */
 public function test_extract_properties() {
 $object = new \stdClass();
 $object->a = '1';
 $object->b = 2;
 $object->c = true;

 $res = \Mapper::extract_properties(
 $object,
 array('a', 'c')
);

 $expected_res = array('a' => '1', 'c' => true);

 $this->assertEquals($res, $expected_res);

 // A lot more should be tested...
 }

 /**
 * Tests the User mapper.
 *
 * @test
 */
 public function test_user_mapper() {
 // Getting any user.
 // Note: In order not to depend on the database and on
 // the ORM, you might want to create mock users objects
 // (simulated users objects) and test features on these
 // objects instead...
 $user = \Model_User::find('first');

 // Testing that the profile context returns 4

Building Your Own Restful API

[226]

 // attributes
 $profile = \Mapper_User::get('profile', $user);
 $this->assertCount(4, $profile);

 // Testing that the minimal context returns 1 attribute
 $minimal = \Mapper_User::get('minimal', $user);
 $this->assertCount(1, $minimal);

 // A lot more should be tested...
 }

 // This method is executed after all tests have been
 // executed
 static function tearDownAfterClass() {}
}

All methods beginning with test will be executed when running this test file. Read
the comments in the preceding code and read the official documentation of PHPUnit
for more information (https://phpunit.de).

When you are running test files, FuelPHP is in the test environment. Therefore, you
have to configure the database access in the APPPATH/config/test/db.php file. It is
recommended that you create a separate database for unit tests.

Now, run only your application tests by executing the following command line:

php oil test --group=App

The output will be something like this:

Tests Running...This may take a few moments.

..

Time: 22 ms, Memory: 18.50Mb

OK (2 tests, 3 assertions)

The tests have been correctly executed. However, as explained at the beginning of
this section, we have written very superficial tests. If you want to have good test
coverage of your application, you will need to write many more tests.

Chapter 5

[227]

Possible improvements
First, you should protect all your forms from Cross-Site Request Forgery (CSRF)
attacks as we did in Chapter 3, Building a Blog Application. As you are using Mustache
templates, you will need to do things a little bit differently here (for instance,
you will need to write your CSRF input in plain HTML). I recommend you read
the official documentation at http://fuelphp.com/docs/general/security.
html#csrf.

The documentation can be accessed on the FuelPHP website by navigating to
DOCS | FuelPHP | General | Security.

Secondly, if you want to make your API easily available using JavaScript on an
external website, you have to set the Access-Control-Allow-Origin header to *.
This can be done in the before method inside the Base controller.

Next, we only used the post/inside_list partial in the JavaScript side of our
application, but we could have done much more. For instance, since all the data
is available, instead of loading the profile page HTML version when we click on a
username, we could load the JSON data and use our partials to display the profile page.

Our microblog application is still very basic. However, we could manage
subscriptions, notifications, mentions, and direct messages; allow the users to search
for posts and other users; automatically transform URLs in posts; improve the user
interface...

Summary
In this chapter, we built a basic microblogging application that supports several
features such as user subscription, authentication, post creation, and profile pages.
We have seen that an API can be implemented without any code duplication and
much effort, if it is handled correctly. We have also used Mustache, a language-
agnostic template engine, which allowed us to use the same views in the server
(PHP) and client (JavaScript) sides. Finally, we have used unit tests to check whether
the features of our application are behaving as expected.

In the next chapter, we will introduce you to Novius OS, a Content Management
System based on the FuelPHP framework.

Building a Website
Using Novius OS

In this chapter, we will introduce you to Novius OS, an open source Content
Management System (or CMS) based on FuelPHP. Using Novius OS can greatly
simplify the implementation and management of a website. Its back office
includes important and user-friendly features such as web page, menu, template,
applications, user, and rights management; it is currently available in six languages
(English, French, Japanese, Russian, Spanish, and Interlingua). It is an excellent tool
if you want to build a complex website easily manageable by non-programmer users.

By the end of this chapter, you will know:

• How to install and configure Novius OS
• Basic features of Novius OS and how to use them to create your website
• Novius OS filesystem hierarchy
• What is a Novius OS application, how to generate one, and what are its

main components

About Novius OS
Novius OS is an open source CMS based on FuelPHP and powered by the jQuery UI
and Wijmo libraries. It was officially launched in December 2011 by Novius, a small
web agency based in Lyon, France. The core team that designed and implemented
this project is comprised of one UX designer - Antoine Lefeuvre - and three engineers
- Gilles Félix, Julian Espérat, and me. However, the software has also received
numerous contributions from the open-source community.

In this chapter, we will assume that you use the Version 5.0.1 (Elche) of Novius OS
(the current stable version at the time of writing). The official website of this CMS
can be found at http://www.novius-os.org/.

Building a Website Using Novius OS

[230]

Its official documentation is available at the following URLs:

• http://docs.novius-os.org/en/elche/

• http://docs-api.novius-os.org/en/elche

I included an introduction to Novius OS in this book as it is based
on FuelPHP and I think some of you could find this system useful.
Though, since I took part in the project, I am aware my opinion
could be biased about it, and that is why this chapter is a rather
short introduction about it.

Getting Novius OS
The requirements of Novius OS are similar to those of FuelPHP:

• PHP 5.3 or greater
• MySQL
• Apache with mod_rewrite enabled
• Windows (> Vista), Linux or Mac OS

Installation instructions can be found at the following URL:

http://docs.novius-os.org/en/elche/install/install.html

You are recommended to follow the instructions in the Installation via Zip file
section (simplest and general solution). If you are developing on Linux or Mac
OS, you might want to follow the instructions in the Installation section as it will
download the latest fixes of this version.

You can also configure a virtual host as we did in the previous chapters for FuelPHP
(refer to the Advanced installation section). However, we will assume that you only
downloaded and unzipped Novius OS in the novius-os folder of your web server's
root directory (DOCUMENT_ROOT/novius-os).

Configuring Novius OS
If you enter the URL http://localhost/novius-os, the Novius OS installation
wizard will appear. Follow the directions; it will first check whether your server
configuration is compatible with Novius OS, secondly ask for your database
configuration (you will need to first create a database), then ask for some information
to create the first user account (necessary to connect to the Novius OS' back office),
and finally, ask you which languages you want your website to be available in.

You can now click on Go to the back-office and sign-in.

Chapter 6

[231]

Exploring Novius OS
In this section, you will learn about the main Novius OS features by exploring the
interface. This step is important if you have never used Novius OS earlier, because
implementation details can't be understood if you don't know how to use the CMS.

The following sign-in webpage will be displayed:

Enter the credentials you defined in the installation step.

Building a Website Using Novius OS

[232]

The applications manager
Once connected, the applications manager will show up:

Applications allow you to add new features to Novius OS. For instance, the
Blog application extends the Novius OS core functionalities to add a complete
blog solution to your website. If you have already used another CMS, Novius
OS's applications are synonymous with their modules or extensions. You are
recommended to read the official documentation about applications and the
application manager available at the following URLs:

• http://docs.novius-os.org/en/elche/understand/applications.html

• http://docs.novius-os.org/en/elche/manage/install_app.html

Chapter 6

[233]

When you install Novius OS, several applications are already available. However,
we will see later that it is possible to add other applications or create your own.
Most Novius OS core features are implemented by native applications, which are
applications directly included in the core. You can now understand that applications
are a key feature of Novius OS and that they do most of the work.

Right now, most applications are only available but not installed. If you want to
activate the features of an available application, you have to install it. Click on the
Install button next to Blog in order to activate the blog's features. The following
message will appear in the upper right corner of the screen:

Under the Installed application section, the following three applications will now
be displayed:

You can see that the Blog application was installed, but BlogNews and Comments
were also installed along with it. This is because these applications are dependencies;
the Blog application needs both of them. Novius OS allows applications to depend
on each other and the system tries to manage any potential conflict. For instance, you
can't uninstall the BlogNews application without uninstalling the Blog application
first.

Building a Website Using Novius OS

[234]

The Novius OS desktop
To leave the applications manager, click on the Novius OS icon in the upper left
corner of the screen:

The Novius OS desktop will now be displayed:

The desktop displays icons called launchers that can be clicked on; they generally
allow you to access an application. For instance, if you click on Applications
manager, you will return to the screen we saw earlier.

Chapter 6

[235]

Novius OS' front and the default homepage
If you access your website home page (http://localhost/novius-os), you will
only see the default Novius OS homepage, since we didn't define any content. Go
back to the administration panel by requesting:

The Webpages application
Another important feature of Novius OS is the ability to manage your web pages. In
order to do this, click on the Webpages launcher which will display the web pages
administration panel. An empty table will appear, with a few buttons at the bottom.
Click on the Add a page button to create your first page. The web page creation
form will then appear:

In this instance, the three fields you should change are the title, content, and
publication setting.

The title field will define the metadata title of your web page . Generally, this title
will also be displayed over the web page's content.

The content field will define the core content of your web page. It is a WYSIWYG
field, so you can also format the text or add images, among other functions.

Building a Website Using Novius OS

[236]

The publication setting allows you to define whether or not the content should be
visible to visitors. It can be changed using the three small icons under the Title field:

If the left button is set in an active state, as shown in the preceding screenshot, the
web page won't be published; that is to say the web page will be invisible to visitors.
The right button allows you to immediately publish the content (as soon as you click
on the Save/Add button). The middle button allows you to schedule when your
content should be published. Now click on the right button:

Click on the Add button to save the changes and create the new web page.

You probably noticed that new tabs appeared in the upper part of the screen since
we clicked on the Webpages launcher:

The Novius OS interface is designed around tabs. Just like browsers' tabs, Novius OS
tabs allow you to open multiple administration pages. Though it can be destabilizing
for new users, this tabs navigation system can be handy when you have to manage
multiple elements at the same time.

The first tab contains the Applications manager application. As we won't need it
anymore, click on it, and then click on the cross to close it.

Click on the new first tab (the one without any title), you will now be back at the web
page administration panel. However, your newly created page will now be visible
inside the table:

Chapter 6

[237]

The house icon next to the web page title indicates that it is the home page. We did
not specify it, but Novius OS automatically chooses the first created web page as the
home page.

For each row in the table, you can see there are small buttons in the right corner.
These buttons allow you to apply individual actions. In our instance, the first button
allows you to edit the web page, the second to visualize it, and the third displays a
drop-down that will show even more actions.

If you now request the home page (http://localhost/novius-os), you will see the
following screen:

Our content is visible at the bottom, but there is a lot of sample content too, which
we would naturally like to remove.

Novius OS templates
The content you define in a web page is displayed inside a template, in a similar way
to the views that are displayed inside templates when using the Template controller
in FuelPHP. If you go back to the web page edition form, you will notice that there
is a field named Template variations with its value set to Bootstrap customisable
template. Thus, to remove the sample content, we have to edit the Bootstrap
customisable template.

Building a Website Using Novius OS

[238]

In order to do this, go back to Novius OS desktop (by clicking on the NOS
icon in the upper left corner of the screen), and then click on the Template
Variations launcher.

We will discuss this administration interface in the next section. First, click on the
edit button (represented by a pencil icon) in the Bootstrap customisable template
item. A new tab will open, as shown in the following screenshot:

Chapter 6

[239]

Each gear icon allows you to edit a specific part of the template. Feel free to adapt the
template as you wish.

You can also add other template models by installing the Novius OS default
templates application (this one is less configurable), external applications, or
creating your own application.

You will notice that some template parts display the following menu field:

The menu field allows you to generate a menu on your website. By default, that
is to say if no menu is selected, a default menu will be constructed from the web
pages having the Shows in the menu configuration checked (you can change this
configuration in the web page edition form). You can also create custom menus by
clicking on the Website menus launcher on the administration desktop.

When you are finished changing the template, you will probably
need to refresh the pages' cache. This can be done by clicking on
the link Renew pages' cache inside the Webpages administration
interface. In a general manner, if you see that your webpages don't
change though you updated their content in the back office, it is a
good idea to refresh this cache.

The App Desk
If you go back to the Template variations administration interface (you can do
this using tabs or by clicking on the NOS icon and then clicking on the Template
variations launcher), you will see that the administration panel is separated into
three parts:

• The upper left part lists all original models of templates.

Building a Website Using Novius OS

[240]

•	 The	upper	right	part	lists	all	the	variations,	that	is	to	say	the	templates	we	
adapted	for	our	website.

•	 The	bottom	part	contains	the	action	buttons.

You	can	even	change	how	the	upper	right	part	is	displayed	by	clicking	on	the		
top	buttons:

Here	is	how	the	administration	panel	is	displayed	when	clicking	on	the	list	button:

You	can	notice	that	the	user	interface	is	quite	similar	to	the	Webpages	administration	
interface.	Indeed,	most	applications	of	Novius	OS	will	have	a	common	user	
interface,	as	the	core	provides	generic	components	that	can	be	easily	reused.	The	
main	administration	interface,	the	one	you	are	looking	at	right	now,	extends	the	
App Desk	component.	With	minimal	configuration,	you	can	display	and	manage	
your	application's	data	in	an	organized	and	standardized	way.	For	the	sake	of	
convenience,	such	administration	interfaces	are	also	called	App	Desk.

Here	is	the	current	standard	layout	of	an	App	Desk:

Chapter 6

[241]

You can notice that there are 3 components, as follows:

• The main content is displayed in the main grid. As we saw earlier, it
is generally possible to display the main grid in different ways (list,
thumbnails, hierarchy, and so on).

• At the left, the inspectors display related content (categories for blog posts
for example), and filters the content of the main grid (for example, it can filter
the blog posts belonging to a specific category).

• At the bottom, buttons allow the user to execute general actions such as
creating a new item or refreshing a cache. The language select box might also
be displayed if the content depends on the language (for instance, a blog post
will have different content in English, French, Spanish, and so on).

You are recommended to take a look at the official documentation about UI
guidelines, available at http://docs.novius-os.org/en/elche/understand/
ergonomy.html.

Inserting enhancers in your webpages
You might recall we installed the Blog application earlier. This application allows
you to insert a complete blog solution in your website. Let's see how it is done in
Novius OS.

First, go back to the Webpages administration tab and create a new page with its title
set to Blog. Save and publish it. If you click on the URL (page address) tab inside the
right menu (or accordion), you will see this:

This field specifies the relative URL of the web page. In this instance, the web page
you created can be accessed by entering the following URL:

http://localhost/novius-os/blog.html

Building a Website Using Novius OS

[242]

The Blog application, as with most Novius OS applications that are displayed in the
website frontend, can be inserted inside a web page's content. For doing this, click on
the Content WYSIWYG input. You will see a toolbar appear on the top:

Click on the Applications button, and then on Blog:

A configuration box will then appear; you don't have to change anything:

Chapter 6

[243]

When you click on the Insert button, the following box will appear inside the
WYSIWYG field:

This box indicates that the Blog application has been inserted into your web page. To
use the correct term, you inserted the Blog enhancer. An enhancer is an application
component that can be inserted in most WYSIWYG fields in order to allow the
application to display content in the frontend. There can be several enhancers for a
single application, as you saw earlier when clicking on the Applications button; you
could choose between Links to blog posts (e.g. for side column) or Blog. Both of these
enhancers belong to the Blog application, but they display the blog differently.

If you request the URL http://localhost/novius-os/blog.html again, you will
not see any changes, and this is normal; you have to create blog posts first. In the
Novius OS administration panel, go back to the desktop, click on the Blog launcher,
and add several blog posts (don't forget to publish them).

If you request the blog web page again, you will see these posts:

Building a Website Using Novius OS

[244]

You can view a specific blog post by clicking on its title. If you do, you will see a
more complete view of the post, and the URL will look as follows:

http://localhost/novius-os/blog/POST_TITLE.html

As you can see, the Blog enhancer not only displays content, but also creates
additional URLs. This is because it is an URL enhancer, a special type of enhancer that
can respond to additional URLs. In concrete terms, if an URL enhancer is hosted on a
webpage located at http://localhost/novius-os/PAGE.html, it can also respond to
any URL similar to http://localhost/novius-os/PAGE/ANY_STRING.html.

Of course, the URL enhancer can respond differently to each URL, depending on its
implementation and configuration.

The Novius OS file system hierarchy
Now that we have looked at the basics of Novius OS and its interface, let's dive
into the directory in which we have installed Novius OS. At the time of writing, the
current version of Novius OS (Elche) has the following directory hierarchy:

• /local: This folder contains all code, configuration, and applications that are
specific to the website. It contains the following folders:

 ° /local/applications: This folder contains all available non-core
applications.

 ° /local/cache: All files here allows Novius OS and its applications to
cache data in order to improve the website's performance.

 ° /local/classes: This includes classes used by the website that don't
belong to the core or any application.

 ° /local/config: This includes configuration files, including the
FuelPHP main configuration file and the database configuration file.

 ° /local/data: These are data files created by Novius OS and its
applications.

 ° /local/metadata: These are files created by Novius OS. Unlike
in /local/data, files inside this folder are only changed when
applications are installed, upgraded, or uninstalled.

 ° /local/views: These are the views used by the website. It is possible
to override applications views by creating files inside this folder.

Chapter 6

[245]

• /logs: This contain the log files. It is similar to the logs folder of FuelPHP.
• /novius-os: This is the Novius OS core, you should not change anything

inside it. Among other things, it contains FuelPHP core and packages.
• /public: This directory is accessible by external visitors. You can add

publicly available files here (CSS, JS...).

Applications folder structure
Inside the /local/applications directory, each folder is an application. For your
information, you should know that what Novius OS calls applications are, in fact,
improved FuelPHP modules. If you look inside these folders, you will see the
following structure:

• /classes: These are the classes used by the application.
 ° /classes/controller: Application's controllers.
 ° /classes/menu: Application's information about menus.
 ° /classes/model: Application's models.

• /config: These are the application's configuration files. The following are the
most important ones:

 ° /config/metadata.config.php: This is the metadata configuration
file. It contains all the key information about the application: name,
icon, description, dependencies, launchers, enhancers, and so on.

 ° /config/permissions.config.php: This allows the application to
handle custom permissions.

• /lang: Application's translations files.
• /migrations: Application's migrations files.
• /static: This is the equivalent of the public folder but specific to the

application. For instance, if the Blog application (located at local/
applications/noviusos_blog) is installed, the local/applications/
noviusos_blog/static/img/blog-16.png file can be accessed at http://
localhost/novius-os/static/apps/noviusos_blog/img/blog-16.png.

• /views: Application's view files.

Building a Website Using Novius OS

[246]

Files extensions
You might have noticed that some files have the following suffixes:

• Models' filenames end in .model.php
• Controllers' filenames end in .ctrl.php
• Configurations' filenames end in .config.php
• Views' filenames end in .view.php

This is a Novius OS convention to enhance the developer's experience. It was
implemented because often developers named their files using the same filename
(for instance, a post.php controller, a post.php view, and a post.php configuration
file) and, if they opened them on multiple tabs on their IDE, most of the time they
wouldn't know on which tab the file they were looking for was. This is an optional
convention and it doesn't change the way files are executed.

Configurations and classes
Another important convention involves the configuration and class file's locations.
As developers very often have to write a configuration for controllers and models,
the configuration file paths are related to the class file paths. For instance, in an
application, the classes/controller/front.ctrl.php controller can be configured
using the config/controller/front.config.php configuration file. If the
controller extends one of the default Novius OS controllers, the configuration file will
will be automatically loaded.

In a general manner, the config/FILE_PATH configuration file will be associated
with the classes/FILE_PATH class file. This way, when you want to understand
an application someone else implemented, you can easily know to which class each
configuration file is associated with.

Chapter 6

[247]

Creating an application
The only way to understand how Novius OS works further is to create an
application. First, we will generate one application using the Novius OS 'Build you
app' wizard, which tries to fulfill the same objective as the oil generate utility,
except it generates Novius OS applications instead of FuelPHP scaffolds. Then, we
will take a look at most files that were generated and see what happens when we
tweak them.

Installing the 'Build your app' wizard
The application is available but needs to be installed. To do this, go to the Novius
OS desktop, click on the Applications manager launcher and, under Available
applications, click on the Install button next to 'Build your app' wizard.

Generating the application
Go back to the Novius OS desktop and click on the 'Build your app' wizard
launcher. A form will appear. As in Chapter 1, Building Your First FuelPHP Application,
we will generate an application that will manage monkeys in our zoo.

First, under About the application, set the Application name field's value to My first
application. The Application folder and Application namespace fields should be
automatically completed but you can always change them if you want.

Next, under Model, set the Name field to Monkey, as we want to generate a Monkey
model. The Table name and Column prefix fields should be automatically completed.

As we want to publish the application's content, check the URL enhancer checkbox.
We also want to choose precisely which monkey we want to display on our website,
as some might be in the zoo temporarily, so check the Publishable behavior checkbox.
Finally, we want to know which user entered the monkey into the application, so check
the Author behavior checkbox.

Building a Website Using Novius OS

[248]

The form will now look as follows:

You can now click on Next step.

Here, we will define the layout of the administration form (the one we will use when
creating and editing monkeys). The layout is defined by Fields groups, which can be
split into two types:

• Main column fields groups: These contain the most important information
(or the information that requires the most space) of your model, and thus
they will always be visible and take most of the form area. Generally, these
fields groups will contain WYSIWYG editors or very important fields.

• Side column fields groups: These contain secondary information that doesn't
need a lot of space. They will appear in the menu (or accordion) on the right
part of the screen.

Chapter 6

[249]

The first main column field group named Properties is created by default. Create
a new field group by clicking on Add another fields group next to the Next Step
button. Set its Title field to Additional informations and its type to Side column.
The form should now look as follows:

You can now click on Next step.

We will now define our model fields and properties. For the first field, define its
Label attribute as Name, the column name attribute should be autocompleted, then
check the Is the form title checkbox (as this field will be used as a title).

Click on Add another field. For the new field, define the Label attribute to Still
here, select Checkbox in the Type select box, check the Shows in the App Desk
checkbox, and then select Additional informations (Side column) in the Fields
group select box.

Click on Add another field. For the new field, define the Label attribute as Height,
check Shows in the App Desk checkbox, and then select Additional informations
(Side column) in the Fields group select box.

Click on Add another field. For the new field, define the Label attribute as
Description and then select WYSIWYG text editor in the Type select box.

Building a Website Using Novius OS

[250]

The end of the form should look as follows:

You can now click on Next step. The following dialog box will appear:

Since we want to install this application, don't change anything.

Click on the Generate button. You will see a confirmation message appear with
various links to the documentation to help you improve your generated application.
You are recommended to take a look at this documentation.

Testing your generated application
Go back to the Novius OS desktop and click on the Monkey launcher. You will see
an empty App Desk appear. Click on the Add Monkey button, and the creation
form will appear as you configured it in the 'Build your app' wizard form. Create as
many monkeys as you want and you will see the App Desk progressively fill up.

Chapter 6

[251]

Since we checked the URL enhancer checkbox, our content is displayable on a web
page. Go back to Novius OS desktop, click on the Webpages launcher, and then
on the Add a page button. Set the web page's title to Monkey, set its publication
status to Published. Next, in order to add our application's URL enhancer, click
on the Content WYSIWYG. Next, click on Applications, and then click on My first
application Monkey. Finally, save the web page by clicking on the Add button.

Now, if you check the URL http://localhost/novius-os/monkey.html, you will
see your list of monkeys:

If you click on an item of the list, a more detailed view will appear:

The detailed view's URL in this case will be as follows:

http://localhost/novius-os/monkey/my-first-monkey.html

As you can see, by using the 'Build your app' wizard option and by filling very few
inputs, we created a complete application scaffold. As with the oil generate utility,
you should use the wizard every time you want to implement an application because
it will speed up your development process and you will start on good foundations.

Application basics
We will use this generated application to describe how an application works in
Novius OS. We won't go too much into detail, but it should be enough for you to get
started and know where to look for more information.

Building a Website Using Novius OS

[252]

The application we generated can be found at the local/applications/my_first_
application directory. All the files we will look into are located inside the folder.

The metadata configuration file
Where is defined the application's name, its dependencies, icons, launchers, enhancers?

All this basic information is contained inside config/metadata.config.php. This is
the only file required to create an application. If you open this configuration file, the
application's name is defined by the name key, its namespace by the namespace key,
its launchers by the launchers key. It is pretty straightforward, and you can read
about it in the official documentation available at http://docs-api.novius-os.
org/en/elche/php/configuration/application/metadata.html.

The migration files
The migration files are located inside the migrations folder, and are executed when
the application is installed. They can be implemented as normal FuelPHP migration
files but, if you open migrations/001_install.php, you will see that it is empty:

<?php
namespace MyFirstApplication\Migrations;

class Install extends \Nos\Migration
{
}

This is because the migration file extends \Nos\Migration. By default, the up
method will try to execute a SQL file with a similar filename to the migration file, in
our case migrations/001_install.sql. If you open this SQL file, you will see that
it simply creates the monkeys table.

The App desk
Your application's App Desk is loaded from the following URL (you can check using
your browser's developer tools if you want to):

http://localhost/novius-os/admin/my_first_application/monkey/appdesk

In a general manner, when you enter http://WEBSITE/admin/APPLICATION_
FOLDER/CONTROLLER_PATH(/ACTION), the ACTION action of the controller located
at local/applications/APPLICATION_FOLDER/classes/controller/admin/
CONTROLLER_PATH will be executed.

Chapter 6

[253]

Thus, in our case, the URL executes the index action (because as you may recall,
when no action is defined in the URL, FuelPHP executes the index action) of the
controller/admin/monkey/appdesk.ctrl.php controller inside the my_first_
application application. Let's open this controller:

<?php
namespace MyFirstApplication;

class Controller_Admin_Monkey_Appdesk extends \Nos\Controller_Admin_
Appdesk
{
}

Once again, you can see an empty class. All the actions are defined inside the \Nos\
Controller_Admin_Appdesk class that is extended by our controller. Though, the
returned listing is not automatically generated by some sort of magic process, it is
generated from configuration files.

As you might recall, we wrote earlier that configuration file paths are related to
the class file paths. Thus, we can find our controller's configuration file at config/
controller/admin/monkey/appdesk.config.php. If you open this file, you will see
the following code snippet (comments have been stripped):

<?php
return array(
 'model' => 'MyFirstApplication\Model_Monkey',
 'search_text' => 'monk_name',
);

It defines the model that must be displayed by the App Desk and which column
to scan when writing something in the Search bar. You can define more keys, as
inspectors or queries. You are recommended to read the official documentation
to learn more about this configuration file:

http://docs-api.novius-os.org/en/elche/php/configuration/application/
appdesk.html

The configuration defined here is a start, but certainly not sufficient to display the
whole App Desk. Most of the necessary information is defined inside the config/
common/monkey.config.php configuration file (comments have been stripped):

<?php
return array(
 'controller' => 'monkey/crud',
 'data_mapping' => array(

Building a Website Using Novius OS

[254]

 'monk_name' => array(
 'title' => __('Name'),
),
 'monk_still_here' => array(
 'title' => __('Still here'),
 'value' => function($item) {
 return $item->monk_still_here ? __('Yes') :
 __('No');
 },
),
 'monk_height' => array(
 'title' => __('Height'),
),
 'publication_status' => true,
),
);

As you can see, displayed columns are defined inside the data_mapping key. Each
column's title is defined by the title key, except for publication_status, which
is a particular case. The row values are either determined from the key or from
the value callback. In concrete terms, each row of the App Desk will display the
following properties:

• Under the Name column, the monk_name property
• Under the Still here column, Yes or No depending on the monk_still_here

property
• Under the Height column, the monk_height property

In order to train yourself, try to change a column title or add a value callback.

We are just scratching the surface here, it is recommended that you read the
official documentation at http://docs-api.novius-os.org/en/elche/php/
configuration/application/common.html.

The edition and creation forms
If you create or edit a monkey, you will see that Novius OS will request the
following URL:

http://localhost/novius-os/admin/my_first_application/monkey/crud/
insert_update(/ID)

Chapter 6

[255]

Therefore, we can deduce that the insert_update action of the classes/
controller/admin/monkey/crud.ctrl.php controller is called. If you open the
controller, you will see, you guessed it, an empty class. Again, everything is defined
inside the extended \Nos\Controller_Admin_Crud controller.

If you read the associated config/controller/admin/monkey/crud.config.php
configuration file, you will see that it defines the layout and fields of the edition and
creation forms. All the fields are defined inside the fields key.

In order to train yourself, you can change some field labels by editing their
label key.

Again, we are just scratching the surface. It is recommended that you read the
official documentation at http://docs-api.novius-os.org/en/elche/php/
configuration/application/crud.html.

The front controller
Now that we have seen how things work in the back office, we have to see how our
URL enhancer works.

As you might recall, enhancers are declared inside the config/metadata.config.
php configuration file:

'enhancers' => array(
 'my_first_application_monkey' => array(
 'title' => 'My first application Monkey',
 'desc' => '',
 'urlEnhancer' => 'my_first_application/front/monkey/main',
),
),

Once again, it is recommended that you read the official documentation about
metadata. The interesting key here is urlEnhancer; if you insert an enhancer into
a web page, each time the web page will be displayed, Novius OS will trigger an
internal HMVC request to urlEnhancer and display the returned content. In our
case, when you display the http://localhost/novius-os/monkey.html web page
(and the monkey enhancer inside it), Novius OS will internally request my_first_
application/front/monkey/main and display the returned content.

Building a Website Using Novius OS

[256]

As you might have guessed, it calls the main action of the Front_Monkey controller.
Open classes/controller/front/monkey.ctrl.php, and take a look at its
action_main method. You will see that the method returns either a single monkey
view or a listing, depending on the $enhancer_url variable. This variable is defined
at the beginning of the action:

$enhancer_url = $this->main_controller->getEnhancerUrl();

Let's illustrate what the $this->main_controller->getEnhancerUrl() method
returns in our example:

• If you request http://localhost/novius-os/monkey.html, it will return
an empty string

• If you request http://localhost/novius-os/monkey/first.html, it will
return first

• If you request http://localhost/novius-os/monkey/one/two.html, it
will return one/two

You got it; it allows the controller to know which URL relative to the web page URL
is being requested when displaying the enhancer. It now makes sense; if you request
the monkey.html root web page, the action will return the listing, otherwise it will
try to find a monkey with a similar URL.

If you take a look at the display_list_monkey and display_monkey methods, you
will hopefully not feel lost, as they contain only FuelPHP code (ORM, View::forge,
and so on). You can see that they display the front/monkey_list and front/
monkey_item views, respectively, located at views/front/monkey_list.view.php
and views/front/monkey_item.view.php. In order to train yourself, you can try to
tweak them a little bit.

If you edit your views, refresh the web page and nothing
happens, you might need to refresh the Novius OS web page
cache. To do this, go back to the back office of Novius OS, open
the Webpages App Desk, and click on Renew pages' cache next
to the Add a page button.

The getUrlEnhanced method inside the Front_Monkey controller allows Novius OS
to map monkey instances to URL.

Again, we are just scratching the surface here. It is recommended that you read the
official documentation at http://docs.novius-os.org/en/latest/app_create/
enhancer.html.

Chapter 6

[257]

More about Novius OS
We didn't tackle a lot of very important features such as application extensions,
behaviors, the twinnable behavior, data sharers, and permissions, but it would
require writing another book entirely about Novius OS. It is again recommended
that you read the official documentation to learn more about these features:

• http://www.novius-os.org/

• http://docs.novius-os.org/en/elche/

• http://docs-api.novius-os.org/en/elche/

If you have any question or encounter issues, you can also seek help in the
community forum at:

http://forums.novius-os.org/en/

Summary
You should now have an idea of what you can do using Novius OS. Please note that
this was just a small introduction: you should read the documentation in order to
have a better understanding of this promising CMS.

During this journey, by implementing various projects, we illustrated how
we can use the main FuelPHP features to build robust, complex and yet
efficient applications.

Most of all, I hope you enjoyed reading this book and learned some valuable skills.

Don't hesitate to send me an e-mail or tweet me if you need help on anything from
the book or the FuelPHP framework.

Thank you very much for your interest.

Index
A
administration panel

categories administration panel,
refining 118-121

posts administration panel, refining 109
refining 109
URL 96
using 97
website protection, against

CSRF attacks 125
Apache

configuring 13
installing 13

API
base controller, implementing 207, 208
hybrid action, implementing 209
implementing 207
mappers, implementing 209-212

App Desk, Novius OS
about 239, 240
standard layout 241

app directory, FuelPHP file
system hierarchy 16-18

application
App Desk 253, 254
basic concept 251
creating, 'Build your app' wizard used 247
creation forms 254, 255
deploying 52
edition forms 254, 255
front controller 255, 256
generating, in 'Build your app'

wizard 247-250

metadata configuration file 251
migration files 252
testing, in 'Build your app' wizard 250, 251
using 39-41

application, building
about 33
database configuration 34
migrating 36-39
scaffolding 34-36

application, refining
about 42
checkbox, using instead of input for still_

here attribute 50, 51
custom routes, setting 52
empty description, allowing 47-49
height, checking 49
monkey detailed view, refining 45, 46
monkey listing, refining 43-45
useless files, removing 52
useless routes, removing 52

applications manager, Novius OS
about 232, 233
URL 232

Asset Class
URL, for official documentation 84

authentication features 175
authentication forms

implementing 176-181
Auth package

about 98
URL 98

Autoloader
URL, for official documentation 157

[260]

B
blog application

administration panel 96
administration panel, refining 109
Auth package 98
blog module, creating 99
Category model 92
Comment model 92
front-end, refining 128
improvements 147
migration file, executing 96
Post model 92
posts, scaffolding 96
preliminary steps 94, 95
rejected comments, clearing 145
scaffolding 104
specifications 92
URL 94
User model 92

blog module
creating 99
files, moving to 99-101
navigation bar, improving 101-104

Bootstrap
URL 178

'Build your app' wizard
application, generating 247-250
Fields group 248
generated application, testing 250, 251
installing 247
used, for creating application 247

C
Captcha_Answer model

generating 158
CAPTCHAs

about 149, 150
old captchas, cleaning 163, 164

CAPTCHA verification method
implementing 163

categories administration panel
post's column number, adding 118
refining 118
View link, removing 118

Category id 112

comment edition form, improving
Post id, replacing by Post 124
Status input, changing to select box 123
View link, removing 125

Comment model 93
comments administration panel

comment edition form, improving 123
comments listing, improving 121
refining 121

comments listing
comment link, adding 122
Content column, removing 122
Email column, removing 122
improving 121
Post id column, replacing by post 122
view, removing 122

Completely Automated Public Turing test
to tell Computers and Humans Apart.
See CAPTCHAs

complex requests
executing 67-72

Composer
URL 12
using 12

conception 56
Config::load

reference link 31
constants

reference link 19
Content Management System (CMS) 229
Create, Read, Update and Delete (CRUD) 33
Cross-Site Request Forgery (CSRF)

about 227
URL 227

CRUD
versus ORM 62

D
database

about 10
basics 63

development process, FuelPHP application
about 9
configuration 9
development 9
FuelPHP, installing 9

[261]

production 9
scaffolding 9
tests 9

E
enhancers

Blog enhancer, inserting 243
inserting, to webpages 241-244
URL enhancer, inserting 244

Entity Relationship diagram. See
ER diagram

environment, installing
about 10
on Ubuntu 11
on Windows 10

ER diagram
about 57
URL 57

events
about 81
URL, for official documentation 81

extensions 11

F
Fields group, 'Build your app' wizard

Main column 248
Side column 248

files
moving, to blog module 99-101

file system hierarchy, Novius OS
about 244
applications folder structure 245
classes 246
configurations 246
files extensions 246

Format Class
URL, for official documentation 84

fractal library
URL 212

front-end
posts' listing, refining 128
posts' visualization webpage, refining 136
refining 128

FuelPHP
about 7, 8

basics 15
configuration 169, 170
configuring 58
installation 169, 170
installing 57
updating 13
URL, for accessing compressed

packages 12
URL, for blog 8
URL, for installation instructions 12, 13
URL, for official documentation 8
URL, for official forum 8
URL, for official website 8

FuelPHP 1.7.2
installing 12
URL, for downloading ZIP files 12
URL, for requisites 11

FuelPHP 1.7.2 Documentation
URL 197

FuelPHP application
development process 9

FuelPHP file system hierarchy
about 16
app directory 16-18
class name 18
coding standard 18
packages 18
paths 18

FuelPHP framework
obtaining 11

fuel-recaptcha
URL 151

G
guard-templates

URL 214
using 214

H
Hierarchical Model-View-Controller

(HMVC)
about 28
resources 28

homepage, Novius OS
about 235
URL 235

[262]

I
improvements, blog application

clearing 147, 148
improvements, Restful API 227
installing

'Build your app' wizard 247
FuelPHP 57
FuelPHP 1.7.2 12
Novius OS 230
recaptcha package 151, 152

K
keys, relation characteristics

cascade_delete 74
cascade_save 74
key_from 74
key_to 74
model_to 74

L
language-agnostic template engines

about 171
benefits 171-175

launchers 234
listing

home page, redirecting to logged user's
webpage 222

improving 212
JavaScript access, granting to mustache

views 212
post/list action, implementing 216, 217
See more button,

implementing 218-221

M
MAMP

about 10
URL, for downloading 10

mappers
implementing, for shared

information control 209-212
markdown syntax

URL 111

metadata configuration file
about 252
URL, for documentation 252

method chaining 67
migration file

executing 96
modals

URL 191
models

about 61
relations, defining inside 73, 74

Model-view-controller (MVC)
about 19, 20
actions 21, 22
controllers 21, 22
parameters 23, 24
presenters 26, 27
routes 25, 26
views 23
working, on FuelPHP 21, 22

mod_rewrite module 11, 13
modules 11
move_scaffold_to_module

URL 100
mustache.js repository

URL 215
mustache template engine

URL 171
mustache views

JavaScript access, granting 212
template.js, integrating, with

mustache.js 215
templates.js file, generating 213

MySQL
URL, for official documentation 10

N
navigation bar

improving 101-104
Novius OS

about 229
App Desk 239-241
applications manager 232, 233
configuring 230
enhancers, inserting to webpages 241-244
exploring 231

[263]

file system hierarchy 244
homepage 235
installing 230
requisites 230
templates 237-239
URL 229, 230
URL, for documentation 230, 257
URL, for documentation on enhancer 256
URL, for installation 230
Webpages application 235-237

Novius OS desktop 234

O
Object Relational Mapper. See ORM
objects

creating 64
deleting 66
several objects, loading 66
specific objects, finding 64, 65
updating 66

objects' relations
obtaining 75, 76
updating 77-80

observers
about 81
URL, for official documentation 82

Observer_Slug
URL 110

oil console
references 29

oil utility
about 28, 29
URL, for documentation 152

old captchas
cleaning 163, 164

ORM
about 61, 62
basics 63
URL, for official documentation 63
versus CRUD 62

OrmaAuth Usage
URL 99

ORM package
URL, for official documentation 72

ORM relations
about 72
URL, for official documentation 73

P
package

creating 154
generating 155-157
get_html method, implementing 161, 162
integrating, into application 159, 160
migrating 158
possible improvements 164
URL, for official documentation 157

packages, FuelPHP file system hierarchy 18
pagination

URL 130
Parser package 170
PHP interpreter 10
PHPUnit

URL 226
post administration panel

URL 101
Post controller 113
post creation action

API, implementing 207
implementing 189-199
listing, improving 212
profile page, implementing 199
user interface, implementing 189-194

Post model
about 93, 168
generating 188, 189

posts
scaffolding 95, 96

posts administration panel
edition forms, improving 109
post creation, improving 109
refining 109

post's column number, adding
count, using 119
DB::query, using 120, 121
related, using 120

posts' list
about 116
author names, displaying 116, 117

Proudly sourced and uploaded by [StormRG]

[264]

category, displaying 116, 117
Content, removing 116
Slug, removing 116
view link, removing 118

posts' listing, refining
by categories 133, 134
display way, modifying 128, 129
indexes, adding 135
pagination, adding 130, 131
slug, using 132
URL 128
useless features, deleting 128

profile page
implementing 199
routes, configuring 199
show action, implementing 201, 202
user model, creating 200
views, implementing 202-207

profiler 59-61
Project model 56, 57, 62, 72
PSR-0 standard

URL, for official documentation 19

Q
queries

executing, without ORM 64

R
reCAPTCHA

about 150
URL 152

recaptcha package
about 151
configuring 152-154
installing 151, 152

reCAPTCHA service 151
reCAPTCHA solution 151
rejected comments

clearing 145-147
relations

defining, inside models 73, 74
testing 74

requisites components, FuelPHP framework
database 10
PHP interpreter 10
web server 10

Restful API
authentication features 175
conception 168
FuelPHP configuration 169
FuelPHP installation 169
improvements 227
language-agnostic template engines 171
Parser package 170
Post model 168
posts, creating 188
posts, viewing 188
specifications 167
subscription 175
template engines 170
unit tests 222
User model 168

routes configuration 59

S
sample application

generating 151
preliminary steps, for building 150

scaffolding 58
scaffold of categories

files, generating 105
migration file, executing 106
moving, to blog module 105

scaffold of comments (front)
generating 106, 107

scaffold of posts (front)
generating 107, 108
URL 108

select box
used, for replacing category input 112-114

signin form
handling 185, 186

signup form
handling 182-185

slug property
automatically filling 109
removing 109

sortable method, jQuery UI
URL, for official documentation 89

specifications, blog application 92
specifications, Restful API 168

[265]

subscription
about 175
implementing 176-181

T
task 56
Task model 56, 57, 62, 72
template engines

advantages 171
templates.js file

easy and dirty solution 213, 214
generating 213
guard-templates, using 214

templates, Novius OS 237-239
textarea

description input, changing to 110
TinyMCE 111
to-do list

about 56
implementing 82
improvements, implementing 90
tasks, adding 86, 87
tasks order, modifying 88-90
tasks status, modifying 82-86
tasks status, viewing 82-86

U
Ubuntu

environment, installing on 11
unit tests

about 222
FuelPHP documentation, URL 222
running, in FuelPHP 223-226
URL 222
writing, guidelines 223

Uri Class
URL, for official documentation 84

user
allowing, for post creation 189
signing out 187, 188

User model 93, 168
users keyword 98

V
variables

URL 204
virtual host

setting up 14
visualization webpage, posts

comment, displaying 142
comment form, adding 138-141
layout, changing 136, 137
posted comment notification 144
refining 136-143

W
WAMP

about 10
URL, for accessing 10

Webpages application, Novius OS 235-237
web server 10
website protection, against CSRF attack

about 125, 126
forms, protecting 127
links, protecting 126

Windows
about 10
environment, installing on 10

WYSIWYG editor
used, for editing post content 111

Thank you for buying
FuelPHP Application

Development Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning FuelPHP for Effective
PHP Development
ISBN: 978-1-78216-036-6 Paperback: 104 pages

Use the flexible FuelPHP framework to quickly and
effectively create PHP applications

1. Scaffold with oil - the FuelPHP
command-line tool.

2. Build an administration quickly and effectively.

3. Create your own project using FuelPHP.

Expert PHP 5 Tools
ISBN: 978-1-84719-838-9 Paperback: 468 pages

Proven enterprise development tools and best
practices for designing, coding, testing, and
deploying PHP applications

1. Best practices for designing, coding, testing,
and deploying PHP applications – all the
information in one book.

2. Learn to write unit tests and practice
test-driven development from an expert.

3. Set up a professional development environment
with integrated debugging capabilities.

Please check www.PacktPub.com for information on our titles

Object-Oriented Programming
with PHP5
ISBN: 978-1-84719-256-1 Paperback: 272 pages

Learn to leverage PHP5's OOP features to write
manageable applications with ease

1. General OOP concepts explained.

2. Implement Design Patterns in your applications
and solve common OOP Problems.

3. Take full advantage of native built-in objects

4. Test your code by writing unit tests
with PHPUnit.

PHP Ajax Cookbook
ISBN: 978-1-84951-308-1 Paperback: 340 pages

Over 60 simple but incredibly effective recipes to
Ajaxify PHP websites

1. Learn how to develop and deploy iPhone web
and native apps.

2. Optimize the performance of Ajax applications.

3. Build dynamic websites with faster response
from the server using the asynchronous call
feature of PHP Ajax.

4. Using Ajax allows quick and efficient access of
data from the server, thus precluding a total
web page refresh.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building Your First FuelPHP Application
	About FuelPHP
	Development process of a FuelPHP application
	Installing the environment
	Windows
	Mac
	Ubuntu
	Recommended modules and extensions
	Getting the FuelPHP framework
	Installing FuelPHP 1.7.2
	Downloading the appropriate ZIP file
	Using Composer

	Updating FuelPHP
	Installation directory and apache configuration
	The simplest way
	By setting up a virtual host

	FuelPHP basics
	The FuelPHP file system hierarchy
	The app directory
	The packages
	Class name, paths, and coding standard

	MVC, HMVC, and how it works on FuelPHP
	What is MVC?
	How it works on FuelPHP
	What is HMVC?

	The oil utility and the oil console

	Building your first application
	Database configuration
	Scaffolding
	Migrating
	Using your application
	Refining the application
	Refining the monkey listing
	Refining the monkey detailed view
	Allowing an empty description
	Checking that the height is a float
	Using a checkbox instead of an input for the still_here attribute
	Setting custom routes
	Removing useless routes and files

	A few notes about deploying your application
	Summary

	Chapter 2: Building a To-do List Application
	Specifications
	Conception
	FuelPHP installation and configuration
	Scaffolding
	Routes configuration
	The profiler
	Models, relations, and the ORM
	Differences between CRUD and ORM
	The FuelPHP ORM
	DB and ORM basics
	ORM relations
	Observers and events

	Implementation of the to-do list
	Allowing the user to see and change tasks' status
	Allowing the user to add tasks
	Allowing the user to change tasks' order
	Axis of improvements

	Summary

	Chapter 3: Building a Blog Application
	Specifications
	Conception
	Preliminary steps
	Scaffolding the posts
	Migrating part 1
	The administration panel
	The Auth package
	Creating the Blog module
	Moving files to the Blog module
	Improving the navigation bar

	Scaffolding the rest of our project
	Scaffolding categories
	Generating files
	Moving categories to the blog module
	Migrating

	Scaffolding comments
	Scaffolding posts (front)

	Refining the administration panel
	Refining the posts administration panel
	Improving the post creation and edition forms
	The posts' list

	Refining the categories administration panel
	Removing the View link
	Adding the number of post's column

	Refining the comments administration panel
	Improving the comments listing
	Improving the comment edition form

	Protecting your website against CSRF attacks
	Protecting links
	Protecting forms

	Refining the front-end
	Refining the posts' listing
	Deleting useless features
	Changing how the posts' listing is displayed
	Adding pagination
	Using posts' slug
	Listing posts by categories
	Adding indexes

	Refining the posts' visualization webpage
	Changing the post layout
	Adding the comment form
	Displaying comments
	Notifying the author when a new comment is posted

	Clearing rejected comments
	Additional improvements
	Summary

	Chapter 4: Creating and Using Packages
	What are CAPTCHAs?
	Preliminary steps
	Generating the sample application
	The reCAPTCHA solution
	Installing the recaptcha package
	Configuring the recaptcha package
	Integrating the recaptcha package

	Creating your own package
	Conception
	Generating the package
	Generating the Captcha_Answer model
	Migrating the package
	Integrating the package into our application
	Implementing the get_html method
	Implementing the CAPTCHA verification method
	Cleaning old captchas
	Possible improvements

	Summary

	Chapter 5: Building Your Own Restful API
	Specifications
	Conception
	FuelPHP installation and configuration
	The Parser package and template engines
	A major benefit of language-agnostic template engines
	Subscription and authentication features
	Implementing the subscription and authentication forms
	Handling the signup form
	Handling the signin form
	Allowing the user to sign out

	Allowing the user to create and view posts
	Generating the Post model
	Allowing the user to create new posts
	Implementing the user interface
	Implementing the post creation action

	Implementing the profile page
	Configuring the routes
	Creating the user model
	Implementing the show action
	Implementing views

	Implementing the API
	Implementing the base controller
	Implementing your first hybrid action
	Implementing mappers to control how the information is shared

	Improving the listing
	Giving JavaScript access to our mustache views
	Implementing the post/list action
	Implementing the See more button
	Redirecting the home page to the logged user’s web page

	Unit tests
	Possible improvements
	Summary

	Chapter 6: Building a Website Using Novius OS
	About Novius OS
	Getting Novius OS
	Configuring Novius OS
	Exploring Novius OS
	The applications manager
	The Novius OS desktop
	Novius OS' front and the default homepage
	The Webpages application
	Novius OS templates
	The App Desk
	Inserting enhancers in your webpages

	The Novius OS file system hierarchy
	Applications folder structure
	Files extensions
	Configurations and classes

	Creating an application
	Installing the 'Build your app' wizard
	Generating the application
	Testing your generated application
	Application basics
	The metadata configuration file
	The migration files
	The App desk
	The edition and creation forms
	The front controller

	More about Novius OS
	Summary

	Index

