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Preface

Programming languages sometimes fit neatly into tidy categories like imperative
and functional. Imperative languages might further subdivide into those that are
procedural and those that include features for object-oriented programming. The
Python language, however, contains aspects of all of these three language categories.
Though Python is not a purely functional programming language, we can do a great
deal of functional programming in Python.

Most importantly, we can leverage many design patterns and techniques from
other functional languages and apply them to Python programming. These
borrowed concepts can lead us to create succinct and elegant programs. Python's
generator expressions, in particular, avoid the need to create large in-memory data
structures, leading to programs which may execute more quickly because they use
fewer resources.

We can't easily create purely functional programs in Python. Python lacks a number
of features that would be required for this. For example, we don't have unlimited
recursion, lazy evaluation of all expressions, and an optimizing compiler.

Generally, Python emphasizes strict evaluation rules. This means that statements
are executed in order and expressions are evaluated from left to right. While this
deviates from functional purity, it allows us to perform manual optimizations when
writing in Python. We'll take a hybrid approach to functional programming using
Python's functional features when they can add clarity or simplify the code and use
ordinary imperative features for optimization.

There are several key features of functional programming languages that are
available in Python. One of the most important is the idea that functions are
tirst-class objects. In some languages, functions exist only as a source code
construct: they don't exist as proper data structures at runtime. In Python,
functions can use functions as arguments and return functions as results.
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Python offers a number of higher-order functions. Functions like map (), filter (),
and functools.reduce () are widely used in this role. Less obvious functions like
sorted (), min(), and max () are also higher-order functions; they have a default
function and, consequently, different syntax from the more common examples.

Functional programs often exploit immutable data structures. The emphasis on
stateless objects permits flexible optimization. Python offers tuples and namedtuples
as complex but immutable objects. We can leverage these structures to adapt some
design practices from other functional programming languages.

Many functional languages emphasize recursion but exploit Tail-Call Optimization
(TCO). Python tends to limit recursion to a relatively small number of stack frames.
In many cases, we can think of a recursion as a generator function. We can then simply
rewrite it to use a yield from statement, doing the tail-call optimization ourselves.

We'll look at the core features of functional programming from a Python point of view.
Our objective is to borrow good ideas from functional programming languages, and
use these ideas to create expressive and succinct applications in Python.

What this book covers

Chapter 1, Introducing Functional Programming, introduces some of the techniques
that characterize functional programming. We'll identify some of the ways to map
these features to Python, and finally, we'll also address some ways that the benefits
of functional programming accrue when we use these design patterns to build
Python applications.

Chapter 2, Introducing Some Functional Features, will delve into six central features

of the functional programming paradigm. We'll look at each in some detail to

see how they're implemented in Python. We'll also point out some features of
functional languages that don't apply well to Python. In particular, many functional
languages have complex type-matching rules required to support compilation

and optimization.

Chapter 3, Functions, Iterators, and Generators, will show how to leverage immutable
Python objects and generator expressions, and adapt functional programming
concepts to the Python language. We'll look at some of the built-in Python
collection and how we can leverage them without departing too far from
functional programming concepts.

Chapter 4, Working with Collections, shows how we can use a number of built-in
Python functions to operate on collections of data. This section will focus on a
number of relatively simple functions such as any () and al1 (), which will
reduce a collection of values to a single result.

[2]
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Chapter 5, Higher-order Functions, examines the commonly used higher order
functions such as map () and filter (). The chapter also includes a number of other
functions that are also higher-order functions, as well as how we can create our own
higher-order functions.

Chapter 6, Recursions and Reductions, shows how we can design an algorithm using
recursion and then optimize it into a high performance for loop. We'll also look at
some other reductions that are widely used, including the collections.Counter ()
function.

Chapter 7, Additional Tuple Techniques, shows a number of ways in which we can use
immutable tuples and namedtuples instead of stateful objects. Immutable objects
have a much simpler interface: we never have to worry about abusing an attribute
and setting an object into some inconsistent or invalid state.

Chapter 8, The Itertools Module, examines a number of functions in the standard
library module. This collection of functions simplifies writing programs that deal
with collections or generator functions.

Chapter 9, More Itertools Techniques, covers the combinatoric functions in the itertools
module. These functions are somewhat less useful. This chapter includes some
examples that illustrate ill-considered uses of these functions and the consequences
of combinatoric explosion.

Chapter 10, The Functools Module, will show how to use some of the functions in
this module for functional programming. A few of the functions in this module
are more appropriate for building decorators, and are left for the next chapter.
The other functions, however, provide several more ways to design and
implement function programs.

Chapter 11, Decorator Design Techniques, shows how we can look at a decorator as
a way to build a composite function. While there is considerable flexibility here,
there are also some conceptual limitations: we'll look at ways in which overly
complex decorators can become confusing rather than helpful.

Chapter 12, The Multiprocessing and Threading Modules, points out an important
consequence of good functional design: we can distribute the processing workload.
Using immutable objects means that we can't corrupt an object because of poorly
synchronized write operations.

Chapter 13, Conditional Expressions and the Operator Module, will show some ways in
which we can break out of Python's strict order of evaluation. There are limitations to
what we can achieve here. We'll also look at the operator module and how the operator
module can lead to some slight clarification of some simple kinds of processing.

[31]
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Chapter 14, The PyMonad Library, examines some of the features of the PyMonad
library. This provides some additional functional programming features. This

also provides a way to learn more about monads. In some functional languages,
monads are an important way to force a particular order for operations that might
get optimized into an undesirable order. Since Python already has strict ordering of
expressions and statements, the monad feature is more instructive than practical.

Chapter 15, A Functional Approach to Web Services, shows how we can think of web
services as a nested collection of functions that transform a request into a reply.
We'll see ways in which we can leverage functional programming concepts for
building responsive, dynamic web content.

Chapter 16, Optimizations and Improvements, includes some additional tips on
performance and optimization. We'll emphasize techniques like memoization
because they're easy to implement and can—in the right context— yield dramatic
performance improvements.

What you need for this book

This book presumes some familiarity with Python 3 and general concepts of
application development. We won't look deeply at subtle or complex features
of Python; we'll avoid much consideration of the internals of the language.

We'll presume some familiarity with functional programming. Since Python is not
a functional programming language, we can't dig deeply into functional concepts.
We'll pick and choose the aspects of functional programming that fit well with
Python and leverage just those that seem useful.

Some of the examples use Exploratory Data Analysis (EDA) as a problem domain to
show the value of functional programming. Some familiarity with basic probability
and statistics will help with this. There are only a few examples that move into more
serious data science.

You'll need to have Python 3.3 or 3.4 installed and running. For more information
on Python, visit http://www.python.org/.

In Chapter 14, The PyMonad Library, we'll look at installing this additional library.

If you have Python 3.4 ,which includes pip and Easy Install, this will be very easy.
If you have Python 3.3, you might have already installed pip or Easy Install or both.
Once you have an installer, you can add PyMonad. Visit https://pypi.python.
org/pypi/PyMonad/ for more details.

[4]
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Who this book is for

This book is for programmers who want to create succinct, expressive Python
programs by borrowing techniques and design patterns from functional programming
languages. Some algorithms can be expressed elegantly in a functional style; we can—
and should —adapt this to make Python programs more readable and maintainable.

In some cases, a functional approach to a problem will also lead to extremely high
performance algorithms. Python makes it too easy to create large intermediate data
structures, tying up memory and processor time. With functional programming
design patterns, we can often replace large lists with generator expressions that are
equally expressive, but take up much less memory and run much more quickly.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can create a Pool object of
concurrent worker processes, assign tasks to them, and expect the tasks to
be executed concurrently."

A block of code is set as follows:

GIMP Palette
Name: Crayola
Columns: 16

#

Any command-line input or output is written as follows:

def max(a, b):
f = {a >= b: lambda: a, b >= a: lambda: b} [True]

return £()

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[51]
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Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.
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Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.comif you are having a problem
with any aspect of the book, and we will do our best to address it.
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Introducing Functional
Programming

Functional programming defines a computation using expressions and
evaluation — often encapsulated in function definitions. It de-emphasizes or avoids
the complexity of state change and mutable objects. This tends to create programs
that are more succinct and expressive. In this chapter, we'll introduce some of the
techniques that characterize functional programming. We'll identify some of the
ways to map these features to Python. Finally, we'll also address some ways in
which the benefits of functional programming accrue when we use these design
patterns to build Python applications.

Python has numerous functional programming features. It is not a purely functional
programming language. It offers enough of the right kinds of features that it confers
to the benefits of functional programming. It also retains all optimization power
available from an imperative programming language.

We'll also look at a problem domain that we'll use for many of the examples in

this book. We'll try to stick closely to Exploratory Data Analysis (EDA) because its
algorithms are often good examples of functional programming. Furthermore, the
benefits of functional programming accrue rapidly in this problem domain.

Our goal is to establish some essential principles of functional programming. The
more serious Python code will begin in Chapter 2, Introducing Some Functional Features.

We'll focus on Python 3 features in this book. However, some of the
— examples might also work in Python 2.



Introducing Functional Programming

Identifying a paradigm

It's difficult to be definitive on what fills the universe of programming paradigms.
For our purposes, we will distinguish between just two of the many programming
paradigms: Functional programming and Imperative programming. One important
distinguishing feature between these two is the concept of state.

In an imperative language, like Python, the state of the computation is reflected by
the values of the variables in the various namespaces. The values of the variables
establish the state of a computation; each kind of statement makes a well-defined
change to the state by adding or changing (or even removing) a variable. A language
is imperative because each statement is a command, which changes the state in
some way.

Our general focus is on the assignment statement and how it changes state. Python
has other statements, such as global or nonlocal, which modify the rules for
variables in a particular namespace. Statements like def, class, and import change
the processing context. Other statements like try, except, if, elif, and else act

as guards to modify how a collection of statements will change the computation's
state. Statements like for and while, similarly, wrap a block of statements so that the
statements can make repeated changes to the state of the computation. The focus of
all these various statement types, however, is on changing the state of the variables.

Ideally, each statement advances the state of the computation from an initial
condition toward the desired final outcome. This "advances the computation"
assertion can be challenging to prove. One approach is to define the final state,
identify a statement that will establish this final state, and then deduce the
precondition required for this final statement to work. This design process can be
iterated until an acceptable initial state is derived.

In a functional language, we replace state — the changing values of variables —with
a simpler notion of evaluating functions. Each function evaluation creates a new
object or objects from existing objects. Since a functional program is a composition
of a function, we can design lower-level functions that are easy to understand, and
we will design higher-level compositions that can also be easier to visualize than a
complex sequence of statements.

Function evaluation more closely parallels mathematical formalisms. Because of
this, we can often use simple algebra to design an algorithm, which clearly handles
the edge cases and boundary conditions. This makes us more confident that the
functions work. It also makes it easy to locate test cases for formal unit testing.

[10]



Chapter 1

It's important to note that functional programs tend to be relatively succinct,
expressive, and efficient when compared to imperative (object-oriented or procedural)
programs. The benefit isn't automatic; it requires a careful design. This design effort is
often easier than functionally similar procedural programming,.

Subdividing the procedural paradigm

We can subdivide imperative languages into a number of discrete categories.

In this section, we'll glance quickly at the procedural versus object-oriented
distinction. What's important here is to see how object-oriented programming

is a subset of imperative programming. The distinction between procedural and
object-orientation doesn't reflect the kind of fundamental difference that functional
programming represents.

We'll use code examples to illustrate the concepts. For some, this will feel like
reinventing a wheel. For others, it provides a concrete expression of abstract concepts.

For some kinds of computations, we can ignore Python's object-oriented features and
write simple numeric algorithms. For example, we might write something like the
following to get the range of numbers:

s =0
for n in range(1l, 10):
ifn % 3 ==0o0rmn %5 == 0:
S +=n
print (s)

We've made this program strictly procedural, avoiding any explicit use of Python's
object features. The program's state is defined by the values of the variables s and n.
The variable, n, takes on values such that 1 £n < 10. As the 1oop involves an ordered
exploration of values of n, we can prove that it will terminate whenn == 10. Similar
code would work in C or Java using their primitive (non-object) data types.

We can exploit Python's Object-Oriented Programming (OOP) features and create
a similar program:

m = list()
for n in range(1l, 10):
if n % == 0 orn %5 == 0:
m.append (n)

print (sum(m))

This program produces the same result but it accumulates a stateful collection
object, m, as it proceeds. The state of the computation is defined by the values
of the variables m and n.

[11]
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The syntax of m. append (n) and sum(m) can be confusing. It causes some
programmers to insist (wrongly) that Python is somehow not purely Object-oriented
because it has a mixture of the function () and object .method () syntax. Rest
assured, Python is purely Object-oriented. Some languages, like C++, allow the use
of primitive data type such as int, float, and long, which are not objects. Python
doesn't have these primitive types. The presence of prefix syntax doesn't change the
nature of the language.

To be pedantic, we could fully embrace the object model, the subclass, the 1ist class,
and add a sum method:

class SummableList (list) :
def sum( self ):
s= 0
for v in self. iter ():
S += Vv
return s

If we initialize the variable, m, with the SummableList () class instead of the

list () method, we can use the m. sum () method instead of the sum (m) method.
This kind of change can help to clarify the idea that Python is truly and completely
object-oriented. The use of prefix function notation is purely syntactic sugar.

All three of these examples rely on variables to explicitly show the state of the
program. They rely on the assignment statements to change the values of the
variables and advance the computation toward completion. We can insert the
assert statements throughout these examples to demonstrate that the expected
state changes are implemented properly.

The point is not that imperative programming is broken in some way. The point is
that functional programming leads to a change in viewpoint, which can, in many
cases, be very helpful. We'll show a function view of the same algorithm. Functional
programming doesn't make this example dramatically shorter or faster.

Using the functional paradigm

In a functional sense, the sum of the multiples of 3 and 5 can be defined in two parts:

* The sum of a sequence of numbers

* A sequence of values that pass a simple test condition, for example, being
multiples of three and five

[12]
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The sum of a sequence has a simple, recursive definition:

def sum(seq) :
if len(seq) = 0: return 0

return seq[0] + sum(seq([l:])

We've defined the sum of a sequence in two cases: the base case states that the
sum of a zero length sequence is 0, while the recursive case states that the sum
of a sequence is the first value plus the sum of the rest of the sequence. Since the
recursive definition depends on a shorter sequence, we can be sure that it will
(eventually) devolve to the base case.

The + operator on the last line of the preceding example and the initial value of 0 in
the base case characterize the equation as a sum. If we change the operator to * and
the initial value to 1, it would just as easily compute a product. We'll return to this
simple idea of generalization in the following chapters.

Similarly, a sequence of values can have a simple, recursive definition, as follows:

def until(n, filter func, v):
if v == n: return []
if filter func(v): return [v] + until( n, filter func, v+1 )
else: return until(n, filter func, v+1)

In this function, we've compared a given value, v, against the upper bound, n.
If v reaches the upper bound, the resulting list must be empty. This is the base
case for the given recursion.

There are two more cases defined by the given filter func () function. If the value
of v is passed by the filter func () function, we'll create a very small list, containing
one element, and append the remaining values of the until () function to this list. If
the value of v is rejected by the filter func () function, this value is ighored and the
result is simply defined by the remaining values of the until () function.

We can see that the value of v will increase from an initial value until it reaches n,
assuring us that we'll reach the base case soon.

Here's how we can use the until () function to generate the multiples of 3 or 5.
First, we'll define a handy lambda object to filter values:

mult 3 5= lambda x: x%3==0 or x%5==0

(We will use lambdas to emphasize succinct definitions of simple functions.
Anything more complex than a one-line expression requires the def statement.)

[13]
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We can see how this lambda works from the command prompt in the
following example:

>>> mult 3 5(3)
True
>>> mult 3 5(4)
False
>>> mult 3 5(5)

True

This function can be used with the until () function to generate a sequence
of values, which are multiples of 3 or 5.

The until () function for generating a sequence of values works as follows:

>>> until (10, lambda x: x%3==0 or x%5==0, 0)
[0, 3, 5, 6, 9]

We can use our recursive sum () function to compute the sum of this sequence of
values. The various functions, such as sum (), until (), and mult 3 5() are defined
as simple recursive functions. The values are computed without restoring to use
intermediate variables to store state.

We'll return to the ideas behind this purely functional recursive function definition
in several places. It's important to note here that many functional programming
language compilers can optimize these kinds of simple recursive functions. Python
can't do the same optimizations.

Using a functional hybrid

We'll continue this example with a mostly functional version of the previous example
to compute the sum of the multiples of 3 and 5. Our hybrid functional version might
look like the following:

print( sum(n for n in range(l, 10) if n%3==0 or n%5==0) )

We've used nested generator expressions to iterate through a collection of values
and compute the sum of these values. The range (1, 10) method is an iterable
and, consequently, a kind of generator expression; it generates a sequence of
values {n|1<n<10}. The more complex expression, n for n in range(1, 10)

if n%3==0 or n%5==0, is also an iterable expression. It produces a set of values

{n [1<n<10A(nmod3=0vnmodS= 0)} . A variable, n, is bound to each value, more as

a way of expressing the contents of the set than as an indicator of the state of the
computation. The sum () function consumes the iterable expression, creating a final
object, 23.

[14]
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M The bound variable doesn't change once a value is bound to
Q it. The variable, n, in the loop is essentially a shorthand for the
values available from the range () function.

The if clause of the expression can be extracted into a separate function, allowing us
to easily repurpose this with other rules. We could also use a higher-order function
named filter () instead of the if clause of the generator expression. We'll save this
for Chapter 5, Higher-order Functions.

As we work with generator expressions, we'll see that the bound variable is at the
blurry edge of defining the state of the computation. The variable, n, in this example
isn't directly comparable to the variable, n, in the first two imperative examples.
The for statement creates a proper variable in the local namespace. The generator
expression does not create a variable in the same way as a for statement does:

>>> sum( n for n in range(l, 10) if n%3==0 or n%5==0 )
23
>>> n
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'n' is not defined

Because of the way Python uses namespaces, it might be possible to write a function
that can observe the n variable in a generator expression. However, we won't. Our
objective is to exploit the functional features of Python, not to detect how those
features have an object-oriented implementation under the hood.

Looking at object creation

In some cases, it might help to look at intermediate objects as a history of the
computation. What's important is that the history of a computation is not fixed.
When functions are commutative or associative, then changes to the order

of evaluation might lead to different objects being created. This might have
performance improvements with no changes to the correctness of the results.

Consider this expression:

>>> 1+2+3+4

10

We are looking at a variety of potential computation histories with the same result.
Because the + operator is commutative and associative, there are a large number of
candidate histories that lead to the same result.

[15]
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Of the candidate sequences, there are two important alternatives, which are
as follows:

>>> ((1+2)+3)+4
10
>>> 1+ (2+(3+4))
10

In the first case, we fold in values working from left to right. This is the way Python
works implicitly. Intermediate objects 3 and 6 are created as part of this evaluation.

In the second case, we fold from right-to-left. In this case, intermediate objects 7 and
9 are created. In the case of simple integer arithmetic, the two results have identical
performance; there's no optimization benefit.

When we work with something like the 1ist append, we might see some
optimization improvements when we change the association rules.

Here's a simple example:

>>> import timeit
>>> timeit.timeit (" ((([1+[1]1)+[2]1)+[3]1)+[41")
0.8846941249794327
>>> timeit.timeit (" [1+ ([1]1+([2]1+([31+([4]1)))™)
1.0207440659869462

In this case, there's some benefit in working from left to right.

What's important for functional design is the idea that the + operator (or add ()
function) can be used in any order to produce the same results. The + operator
has no hidden side effects that restrict the way this operator can be used.

The stack of turtles

When we use Python for functional programming, we embark down a path that
will involve a hybrid that's not strictly functional. Python is not Haskell, OCaml,
or Erlang. For that matter, our underlying processor hardware is not functional;
it's not even strictly object-oriented — CPUs are generally procedural.

[16]
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All programming languages rest on abstractions, libraries, frameworks and virtual
machines. These abstractions, in turn, may rely on other abstractions, libraries,
frameworks and virtual machines. The most apt metaphor is this: the world is
carried on the back of a giant turtle. The turtle stands on the back of another giant
turtle. And that turtle, in turn, is standing on the back of yet another turtle.

It's turtles all the way down.
- Anonymous

There's no practical end to the layers of abstractions.

More importantly, the presence of abstractions and virtual machines doesn't
materially change our approach to designing software to exploit the functional
programming features of Python.

Even within the functional programming community, there are more pure and less
pure functional programming languages. Some languages make extensive use of
monads to handle stateful things like filesystem input and output. Other languages
rely on a hybridized environment that's similar to the way we use Python. We write
software that's generally functional with carefully chosen procedural exceptions.

Our functional Python programs will rely on the following three stacks
of abstractions:

*  Our applications will be functions —all the way down —until we hit
the objects

* The underlying Python runtime environment that supports our functional
programming is objects —all the way down —until we hit the turtles

* The libraries that support Python are a turtle on which Python stands

The operating system and hardware form their own stack of turtles. These details
aren't relevant to the problems we're going to solve.

A classic example of functional
programming

As part of our introduction, we'll look at a classic example of functional programming,.
This is based on the classic paper Why Functional Programming Matters by John Hughes.
The article appeared in a paper called Research Topics in Functional Programming, edited
by D. Turner, published by Addison-Wesley in 1990.

[17]
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Here's a link to the paper Research Topics in Functional Programming:
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

This discussion of functional programming in general is profound. There are several
examples given in the paper. We'll look at just one: the Newton-Raphson algorithm
for locating the roots of a function. In this case, the function is the square root.

It's important because many versions of this algorithm rely on the explicit state
managed via loops. Indeed, the Hughes paper provides a snippet of the Fortran
code that emphasizes stateful, imperative processing.

The backbone of this approximation is the calculation of the next approximation
from the current approximation. The next_ () function takes x, an approximation
to the sgrt (n) method and calculates a next value that brackets the proper root.
Take a look at the following example:

def next (n, x):

return (x+n/x)/2

This function computes a series of values a,,, =(a,+1/4a,)/2. The distance between the
values is halved each time, so they'll quickly get to converge on the value such that
a=n/a, which means a = Jn. We don't want to call the method next () because this
name would collide with a built-in function. We call it the next () method so that
we can follow the original presentation as closely as possible.

Here's how the function looks when used in the command prompt:

>>> n= 2

>>> f= lambda x: next (n, x)

>>> al0= 1.0

>>> [ round(x,4) for x in (a0, £(a0), £(£(a0)), £(£(£(a0))),) 1
[1.0, 1.5, 1.4167, 1.4142]

We've defined the £ () method as a 1ambda that will converge on \/5 . We started with
1.0 as the initial value for ¢,. Then we evaluated a sequence of recursive evaluations:
a=f (ao ), a=f (f (ay )) and so on. We evaluated these functions using a generator
expression so that we could round off each value. This makes the output easier to read
and easier to use with doctest. The sequence appears to converge rapidly on /2.

We can write a function, which will (in principle) generate an infinite sequence of 4,
values converging on the proper square root:

def repeat(f, a):
yield a
for v in repeat(f, £(a)):
yield v

[18]
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This function will generate approximations using a function, £ (), and an initial
value, a. If we provide the next_ () function defined earlier, we'll get a sequence of
approximations to the square root of the n argument.

The repeat () function expects the f () function to have a single

argument, however, our next_ () function has two arguments. We can

use a lambda object, Lambda x: next (n, x),to create a partial
~\'Q version of the next () function with one of two variables bound.

The Python generator functions can't be trivially recursive, they must
explicitly iterate over the recursive results, yielding them individually.
Attempting to use a simple return repeat (£, f(a)) willend

the iteration, returning a generator expression instead of yielding the
sequence of values.

We have two ways to return all the values instead of returning a generator
expression, which are as follows:

*  We can write an explicit for loop as follows:

for x in some_iter: yield x.

e  We can use the yield from statement as follows:

yield from some_iter.

Both techniques of yielding the values of a recursive generator function are
equivalent. We'll try to emphasize yield from.In some cases, however, the yield
with a complex expression will be more clear than the equivalent mapping or
generator expression.

Of course, we don't want the entire infinite sequence. We will stop generating values
when two values are so close to each other that we can call either one the square root
we're looking for. The common symbol for the value, which is close enough, is the
Greek letter Epsilon, €, which can be thought of as the largest error we will tolerate.

In Python, we'll have to be a little clever about taking items from an infinite sequence
one at a time. It works out well to use a simple interface function that wraps a
slightly more complex recursion. Take a look at the following code snippet:
def within(e, iterable):
def head tail(e, a, iterable):
b= next(iterable)
if abs(a-b) <= €: return b
return head tail(e, b, iterable)

return head tail (e, next(iterable), iterable)
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We've defined an internal function, head_tail (), which accepts the tolerance, ¢, an
item from the iterable sequence, a, and the rest of the iterable sequence, iterable.
The next item from the iterable bound to a name b. If [a—b|< &, then the two values
that are close enough together that we've found the square root. Otherwise, we use
the b value in a recursive invocation of the head tail () function to examine the
next pair of values.

Our within () function merely seeks to properly initialize the internal head_tail ()
function with the first value from the iterable parameter.

Some functional programming languages offer a technique that will put a value back
into an iterable sequence. In Python, this might be a kind of unget () or previous ()
method that pushes a value back into the iterator. Python iterables don't offer this kind
of rich functionality.

We can use the three functions next_ (), repeat (), and within () to create a square
root function, as follows:

def sqgrt(al0, &, n):

return within(e, repeat(lambda x: next (n,x), a0))

We've used the repeat () function to generate a (potentially) infinite sequence
of values based on the next_ (n, x) function. Our within () function will stop
generating values in the sequence when it locates two values with a difference
less than e.

When we use this version of the sqrt () method, we need to provide an initial seed
value, a0, and an e value. An expression like sqrt (1.0, .0001, 3) will start with
an approximation of 1.0 and compute the value of +/3 to within 0.0001. For most
applications, the initial a0 value can be 1.0. However, the closer it is to the actual
square root, the more rapidly this method converges.

The original example of this approximation algorithm was shown in the Miranda
language. It's easy to see that there are few profound differences between Miranda
and Python. The biggest difference is Miranda's ability to construct cons, a value
back into an iterable, doing a kind of unget. This parallelism between Miranda
and Python gives us confidence that many kinds of functional programming can be
easily done in Python.

Exploratory Data Analysis

Later in this book, we'll use the field of EDA as a source for concrete examples
of functional programming. This field is rich with algorithms and approaches to
working with complex datasets; functional programming is often a very good fit
between the problem domain and automated solutions.
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While details vary from author to author, there are several widely accepted stages of
EDA. These include the following:

Data preparation: This might involve extraction and transformation for
source applications. It might involve parsing a source data format and doing
some kinds of data scrubbing to remove unusable or invalid data. This is an
excellent application of functional design techniques.

Data exploration: This is a description of the available data. This usually
involves the essential statistical functions. This is another excellent place to
explore functional programming. We can describe our focus as univariate
and bivariate statistics but that sounds too daunting and complex. What this
really means is that we'll focus on mean, median, mode, and other related
descriptive statistics. Data exploration may also involve data visualization.
We'll skirt this issue because it doesn't involve very much functional
programming. I'll suggest that you use a toolkit like scipy.

Visit the following link to get more information how SciPY works
and its usage:

https://www.packtpub.com/big-data-and-business-intelligence/
learning-scipy-numerical-and-scientific-computing or https://
www . packtpub.com/big-data-and-business-intelligence/learning-
python-data-visualization

Data modeling and machine learning: This tends to be proscriptive

as it involves extending a model to new data. We're going to skirt

this because some of the models can become mathematically complex.
If we spend too much time on these topics, we won't be able to focus on
functional programming.

Evaluation and comparison: When there are alternative models, each must
be evaluated to determine which is a better fit for the available data. This
can involve ordinary descriptive statistics of model outputs. This can benefit
from functional design techniques.

The goal of EDA is often to create a model that can be deployed as a decision support
application. In many cases, a model might be a simple function. A simple functional
programming approach can apply the model to new data and display results for
human consumption.
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Summary

We've looked at programming paradigms with an eye toward distinguishing the
functional paradigm from two common imperative paradigms. Our objective in
this book is to explore the functional programming features of Python. We've noted
that some parts of Python don't allow purely functional programming; we'll be
using some hybrid techniques that meld the good features of succinct, expressive
functional programming with some high-performance optimizations in Python.

In the next chapter, we'll look at five specific functional programming techniques
in detail. These techniques will form the essential foundation for our hybridized
functional programming in Python.
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Most of the features of functional programming are already first-class parts of Python.
Our goal in writing functional Python is to shift our focus away from imperative
(procedural or object-oriented) techniques to the maximum extent possible.

We'll look at each of the following functional programming topics:
* First-class and higher-order functions, which are also known as
pure functions.

¢ Immutable Data.

* Strict and non-strict evaluation. We can also call this eager vs.
lazy evaluation.
* Recursion instead of an explicit loop state.

* Functional type systems.

This should reiterate some concepts from the first chapter. Firstly, that purely
functional programming avoids the complexities of explicit state maintained via
variable assignment. Secondly, that Python is not a purely functional language.

We don't offer a rigorous definition of functional programming. Instead, we'll
locate some common features that are indisputably important. We'll steer clear
of the blurry edges.
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First-class functions

Functional programming is often succinct and expressive. One way to achieve
this is by providing functions as arguments and return values for other functions.
We'll look at numerous examples of manipulating functions.

For this to work, functions must be first-class objects in the runtime environment.
In programming languages such as C, a function is not a runtime object. In Python,
however, functions are objects that are created (usually) by the def statements

and can be manipulated by other Python functions. We can also create a function
as a callable object or by assigning 1ambda to a variable.

Here's how a function definition creates an object with attributes:

>>> def example(a, b, **kw):

return a*b

>>> type (example)

<class 'function'>

>>> example. code .co varnames
(ra', 'b', 'kw')

>>> example. code .co _argcount
2

We've created an object, example, that is of class function (). This object has
numerous attributes. The _ code__ object associated with the function object has
attributes of its own. The implementation details aren't important. What is important
is that functions are first-class objects, and can be manipulated just like all other
objects. We previously displayed the values of two of the many attributes of a
function object.

Pure functions

To be expressive, a function used in a functional programming design will be free
from the confusion created by side effects. Using pure functions can also allow some
optimizations by changing evaluation order. The big win, however, stems from pure
functions being conceptually simpler and much easier to test.

To write a pure function in Python, we have to write local-only code. This means

we have to avoid the global statements. We need to look closely at any use of
nonlocal; while it is a side effect in another scope, it's confined to a nested function
definition. This is an easy standard to meet. Pure functions are a common feature of
Python programs.
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There isn't a trivial way to guarantee a Python function is free from side effects. It is
easy to carelessly break the pure function rule. If we ever want to worry about our
ability to follow this rule, we could write a function that uses the dis module to scan
a given function's __code__.co_code compiled code for global references. It could
report on use of internal closures, and the __code__ .co_freevars tuple method as
well. This is a rather complex solution to a rare problem; we won't pursue it further.

A Python lambda is a pure function. While this isn't a highly recommended style,
it's certainly possible to create pure functions via lambda values.

Here's a function created by assigning l1ambda to a variable:

>>> mersenne = lambda x: 2**x-1
>>> mersenne (17)

131071

We created a pure function using 1ambda and assigned this to the variable mersenne.
This is a callable object with a single argument value that returns a single value.
Because lambda's can't have assignment statements, they're always pure functions
and suitable for functional programming.

Higher-order functions

We can achieve expressive, succinct programs using higher-order functions.
These are functions that accept a function as an argument or return a function as
a value. We can use higher-order functions as a way to create composite functions
from simpler functions.

Consider the Python max () function. We can provide a function as an argument
and modify how the max () function behaves.

Here's some data we might want to process:

>>> year cheese = [(2000, 29.87), (2001, 30.12), (2002, 30.6), (2003,
30.66), (2004, 31.33), (2005, 32.62), (2006, 32.73), (2007, 33.5),
(2008, 32.84), (2009, 33.02), (2010, 32.92)]

We can apply the max () function as follows:

>>> max (year cheese)

(2010, 32.92)

The default behavior is to simply compare each tuple in the sequence. This will
return the tuple with the largest value on position 0.
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Since the max () function is a higher-order function, we can provide another function
as an argument. In this case, we'll use 1ambda as the function; this is used by the
max () function, as follows:

>>> max (year cheese, key=lambda yc: ycl[1l])

(2007, 33.5)

In this example, the max () function applies the supplied 1ambda and returns the
tuple with the largest value in position 1.

Python provides a rich collection of higher-order functions. We'll see examples

of each of Python's higher-order functions in later chapters, primarily in Chapter 5,
Higher-order Functions. We'll also see how we can easily write our own higher-order
functions.

Immutable data

Since we're not using variables to track the state of a computation, our focus needs to
stay on immutable objects. We can make extensive use of tuples and namedtuples
to provide more complex data structures that are immutable.

The idea of immutable objects is not foreign to Python. There can be a performance
advantage to using immutable tuples instead of more complex mutable objects.
In some cases, the benefits come from rethinking the algorithm to avoid the costs
of object mutation.

We will avoid class definitions (almost) entirely. It can seem like it's anathema to
avoid objects in an Object-Oriented Programming (OOP) language. Functional
programming simply doesn't need stateful objects. We'll see this throughout this book.
There are reasons for defining callable objects; it is a tidy way to provide namespace
for closely-related functions, and it supports a pleasant level of configurability.

We'll look at a common design pattern that works well with immutable objects: the
wrapper () function. A list of tuples is a fairly common data structure. We will often
process this list of tuples in one of the two following ways:

* Using Higher-order Functions: As shown earlier, we provided lambda as
an argument to the max () function: max (year cheese, key=lambda yc:
ycl1l)

* Using the Wrap-Process-Unwrap pattern: In a functional context, we should
call this the unwrap (process (wrap (structure))) pattern

[26]



Chapter 2

For example, look at the following command snippet:

>>> max (map (lambda yc: (ycll],yc), year cheese))
(33.5, (2007, 33.5))

>>>  [1]

(2007, 33.5)

This fits the three-part pattern, although it might not be obvious how well it fits.

First, we wrap, using map (lambda yc: (yc[1],yc), year cheese). This will
transform each item into a two tuple with a key followed by the original item.
In this example, the comparison key is merely yc [1].

Second, do the processing using the max () function. Since each piece of data has
been simplified to a two tuple with position zero used for comparison, we don't
really need the higher-order function feature of the max () function. The default

behavior of the max () function is exactly what we require.

Finally, we unwrap using the subscript [1]. This will pick the second element
of the two tuple selected by the max () function.

This kind of wrap and unwrap is so common that some languages have special
functions with names like £st () and snd () that we can use as a function prefix
instead of a syntactic suffix of [0] or [1]. We can use this idea to modify our
wrap-process-unwrap example, as follows:

snd= lambda x: x[1]
snd ( max (map (lambda yc: (ycl[l],yc), year cheese)))

We defined a snd () function to pick the second item from a tuple. This provides
us with an easier-to-read version of unwrap (process (wrap ())). We used

map (lambda... , year cheese) to wrap our raw data items. We used max ()
function as the processing and, finally, the snd () function to extract the second
item from the tuple.

In Chapter 13, Conditional Expressions and the Operator Module, we'll look at some
alternatives to lambda functions like £st () and snd ().

Strict and non-strict evaluation

Functional programming's efficiency stems, in part, from being able to defer a
computation until it's required. The idea of lazy or non-strict evaluation is very
helpful. It's so helpful that Python already offers this feature.
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In Python, the logical expression operators and, or, and if-then-else are all
non-strict. We sometimes call them short-circuit operators because they don't need
to evaluate all arguments to determine the resulting value.

The following command snippet shows the and operator's non-strict feature:

>>> 0 and print("right")
0
>>> True and print("right")

right

When we execute the preceding command snippet, the left-hand side of the and
operator is equivalent to False; the right-hand side is not evaluated. When the
left-hand side is equivalent to True, the right-hand side is evaluated.

Other parts of Python are strict. Outside the logical operators, an expression is
evaluated eagerly from left-to-right. A sequence of statement lines is also evaluated
strictly in order. Literal lists and tuples require eager evaluation.

When a class is created, the method functions are defined in a strict order. In the case
of a class definition, the method functions are collected into a dictionary (by default)
and order is not maintained after they're created. If we provide two methods with
the same name, the second one is retained because of the strict evaluation order.

Python's generator expressions and generator functions, however, are lazy. These
expressions don't create all possible results immediately. It's difficult to see this
without explicitly logging the details of a calculation. Here is an example of the
version of the range () function that has the side effect of showing the numbers
it creates:

>>> def numbers():
for i in range(1024):
print( "=", i )

yield i

If this function were eager, it would create all 1,024 numbers. Since it's lazy, it only
creates numbers as requested.

. The older Python 2 range () function was eager and created an
% actual list of object with all of the requested numbers. Python 2 has
= an xrange () function that is lazy and matches the semantics of the
Python 3 range () function.
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We can use this noisy numbers () function in a way that will show lazy evaluation.
We'll write a function that evaluates some, but not all, of the values from this iterator:

>>> def sum to(mn):
sum= 0
for i in numbers():
if i == n: break
sum += i

return sum

The sum_to () function will not evaluate the entire result of the numbers () function.
It will break after only consuming a few values from the numbers () function. We can
see this consumption of values in the following log:

>>> sum to(5)

=0
1
2
=3
4
5

10

As we'll see later, Python generator functions have some properties that make them
a little awkward for simple functional programming. Specifically, a generator can
only be used once in Python. We have to be cautious how we use the lazy Python
generator expressions.

Recursion instead of a explicit loop state

Functional programs don't rely on loops and the associated overhead of tracking the
state of loops. Instead, functional programs try to rely on the much simpler approach
of recursive functions. In some languages, the programs are written as recursions, but
Tail-Call Optimization (TCO) by the compiler changes them to 1oops. We'll introduce
some recursion here and examine it closely in Chapter 6, Recursions and Reductions.
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We'll look at a simple iteration to test a number for being prime. A prime number

is a natural number, evenly divisible by only 1 and itself. We can create a naive and
poorly performing algorithm to determine if a number has any factors between two
and the number. This algorithm has the advantage of simplicity; it works acceptably
for solving Project Euler problems. Read up on Miller-Rabin primality tests for a
much better algorithm.

We'll use the term coprime to mean that two numbers have only 1 as their common
factor. The numbers 2 and 3, for example, are coprime. The numbers 6 and 9,
however, are not coprime because they have 3 as a common factor.

If we want to know if a number, 7, is prime, we actually ask this: is the number n

coprime to all prime numbers, p, such that p* <7. We can simplify this using all
integers, p, such that 2< p* <n.

Sometimes, it helps to formalize this as follows:

prime(n) = Vx[(2 <x<l+ x/;)and(n(mod x) # 0)}

The expression could look as follows in Python:

not any(n%p==0 for p in range(2,int (math.sqrt(n))+1))

A more direct conversion from mathematical formalism to Python would use
all(n%p != 0... ) butthatrequires strict evaluation of all values of p. The not
any version can terminate early if a True value is found.

This simple expression has a for loop inside it: it's not a pure example of stateless
functional programming. We can reframe this into a function that works with a
collection of values. We can ask whether the number, 7, is coprime within any
value in the range [2,1++n)?". This uses the symbols, [), to show a half-open interval:
the lower values are included, and the upper value is not included. This is typical
behavior of the Python range () function. We will also restrict ourselves to the
domain of natural numbers. The square root values, for example, are implicitly
truncated to integers.

We can think of the definition of prime as the following;:
prime(n) = —.coprime(n, [2,1 + ﬁ)) ,givenn > 1.
When defining a recursive function over a simple range of values, the base case can

be an empty range. A nonempty range is handled recursively by processing one value
combined with a range that's narrower by one value. We might formalize it as follows:
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True ifa=5b

coprime(n,[a, b)) = {

n (moda)= OAcoprime(n,[a+1,b)) ifa<b

This version is relatively easy to confirm by examining the two cases, which are
given as follows:

* If the range is empty, a = b, we evaluate something like:
coprime(l 31071,[363,363)) . The range contains no values, so the return is
a trivial True.

* If the range is not empty, we ask something like coprime(lS 1071, [2,363)).
This decomposes into 131071(mod2) # 0 A coprime(13 1071, [3,363)). For this
example, we can see that the first clause is True, and we'll evaluate the
second clause recursively.

As an exercise for the reader: this recursion can be redefined to count down instead
of up, using [a, b-1) in the second case.

As a side note, some folks like to think of the empty interval as a > b, not a=b.
This is needless, since a is incremented by 1 and we can easily guarantee that
a<b, initially. There's no way for a to somehow leap past b by some error in the
function; we don't need to over-specify the rules for an empty interval.

Here is a Python code snippet that implements this definition of prime:

def isprimer(n):

def isprime(k, coprime):
""nITs k relatively prime to the value coprime?"""
if k < coprime*coprime: return True
if k % coprime == 0: return False
return isprime(k, coprime+2)

if n < 2: return False

if n == 2: return True

if n & 2 == 0: return False

return isprime(n, 3)

This shows a recursive definition of an isprime () function. The half-open
interval |:2,1+\/; ) is reduced to just the low-end argument, a, which is renamed
coprime in this function to clarify its purpose. The base case is implemented as
n < coprime*coprime; the range of values from coprime to 1+math.sqgrt (n)
would be empty.
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The non-strict and operation is implemented by splitting it out into a separate if
statement, if n % coprime == 0. The return statement is the recursive call with
a different coprime test value.

Because the recursion is the tail end of the function, this is an example of
Tail recursion.

This function is embedded in a function that establishes the boundary condition
that n is an odd number greater than 2. There's no point in testing any even number
for being prime, since 2 is the only even prime.

What's important in this example is that the two cases of this recursive function
are quite simple to design. Making the range of values an explicit argument to
the internal isprime () function allows us to call the function recursively with
argument values that reflect a steadily shrinking interval.

While this is often extremely succinct and very expressive, we have to be a little
cautious about using recursion in Python. There are two problems that arise.
They are stated as follows:

* Python imposes a recursion limit to detect recursive functions with
improperly defined base cases

* Python does have a compiler to do Tail-Call Optimization (TCO)

The default recursion limit is 1,000, which is adequate for many algorithms.
It's possible to change this with the sys.setrecursionlimit () function.
It's not wise to raise this arbitrarily since it might lead to exceeding the OS
memory limitations and crashing the Python interpreter.

If we try a recursive isprimer () function on a number over 1,000,000, we'll run foul
of the recursion limit. If we used a somehow smarter isprimer () function that only
checked prime factors instead of all factors, we'd be stopped at the 1,000th prime
number, 7,919, limiting our prime testing to numbers below 62,710,561.

Some functional programming languages can optimize simple recursive functions
such as our isprimer () function. An optimizing compiler can transform the
recursive evaluation of the isprimer (n, coprime+1) method into a low-overhead
loop. The optimization tends to make a hash of call stacks; debugging optimized
programs becomes difficult. Python doesn't perform this optimization. Performance
and memory are sacrificed for clarity and simplicity.

In Python, when we use a generator expression instead of a recursive function,
we essentially do the tail-call optimization manually. We don't rely on a compiler
for some functional language to do this optimization.
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Here is TCO done as a generator expression:

def isprime(p) :
if p < 2: return False
if p == 2: return True
if p $ 2 == 0: return False
return not any(p==0 for p in range (3, int (math.sqgrt(n))+1,2))

This function includes many of the functional programming principles, but it uses
a generator expression instead of a pure recursion.

1
~J We'll often optimize a purely recursive function to use
an explicit for loop in a generator expression.

This algorithm is slow for large primes. For composite numbers, the function often
returns a value quickly. If used on a value such as M,, =2° -1, it will take a few
minutes to show that this is prime. Clearly, the slowness comes from checking
1,518,500,249 individual candidate factors.

Functional type systems

Some functional programming languages such as Haskell and Scala are statically
compiled, and depend on declared types for functions and their arguments.

In order to provide the kind of flexibility Python already has, these languages
have sophisticated type matching rules so that a generic function can be written,
which works for a variety of related types.

In Object-Oriented Python, we often use the class inheritance hierarchy instead of
sophisticated function type matching. We rely on Python to dispatch an operator
to a proper method based on simple name matching rules.

Since Python already has the desired levels of flexibility, the type matching rules
for a compiled functional language aren't relevant. Indeed, we could argue that
the sophisticated type matching is a workaround imposed by static compilation.
Python doesn't need this workaround because it's a dynamic language.

In some cases, we might have to resort to using isinstance (a, tuple) to detect if
an argument value is tuple or an individual value. This will be as rare in functional
programs as it is in Object-Oriented Programs.

[33]

[vww allitebooks.cond



http://www.allitebooks.org

Introducing Some Functional Features

Familiar territory

One of the ideas that emerge from the previous list of topics is that most functional
programming is already present in Python. Indeed, most functional programming is
already a very typical and common part of Object-Oriented Programming.

As a very specific example, a fluent Application Program Interface (API) is a very
clear example of functional programming. If we take time to create a class with
return self () in each method function, we can use it as follows:

some_object.foo() .bar() .yet more()

We can just as easily write several closely-related functions that work as follows:

yet more (bar (foo (some_object)))

We've switched the syntax from traditional object-oriented suffix notation to a more
functional prefix notation. Python uses both notations freely, often using a prefix
version of a special method name. For example, the 1en () function is generally
implemented by the class.__len_ () special method.

Of course, the implementation of the class shown above might involve a highly
stateful object. Even then, a small change in viewpoint might reveal a functional
approach that can lead to more succinct or more expressive programming,.

The point is not that imperative programming is broken in some way, or that
functional programming offers such a vastly superior technology. The point is
that functional programming leads to a change in viewpoint that can —in many
cases —be very helpful.

Saving some advanced concepts

We will set some more advanced concepts aside for consideration in later chapters.
These concepts are part of the implementation of a purely functional language.
Since Python isn't purely functional, our hybrid approach won't require deep
consideration of these topics.

We will identify these up-front for the benefit of folks who already know a functional
language such as Haskell and are learning Python. The underlying concerns are
present in all programming languages but we'll tackle them differently in Python.

In many cases, we can and will drop into imperative programming rather than use

a strictly functional approach.
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The topics are as follows:

* Referential transparency: When looking at lazy evaluation and the various
kinds of optimization that are possible in a compiled language, the idea
of multiple routes to the same object is important. In Python, this isn't as
important because there aren't any relevant compile-time optimizations.

* Currying: The type systems will employ currying to reduce multiple-argument
functions to single-argument functions. We'll look at currying in some depth in
Chapter 11, Decorator Design Techniques.

* Monads: These are purely functional constructs that allow us to structure a
sequential pipeline of processing in a flexible way. In some cases, we'll resort
to imperative Python to achieve the same end. We'll also leverage the elegant
PyMonad library for this. We'll defer this to Chapter 14, The PyMonad Library.

Summary

In this chapter, we've identified a number of features that characterize the functional
programming paradigm. We started with first-class and higher-order functions.

The idea is that a function can be an argument to a function or the result of a
function. When functions become the object of additional programming,

we can write some extremely flexible and generic algorithms.

The idea of immutable data is sometimes odd in an imperative and object-oriented
programming language such as Python. When we start to focus on functional
programming, however, we see a number of ways that state changes can be
confusing or unhelpful. Using immutable objects can be a helpful simplification.

Python focuses on strict evaluation: all sub-expressions are evaluated from
left-to-right through the statement. Python, however, does perform some

non-strict evaluation. The or, and, and if-else logical operators are non-strict:

all subexpressions are not necessarily evaluated. Similarly, a generator function is
also non-strict. We can also call this eager vs. lazy. Python is generally eager but we
can leverage generator functions to create lazy evaluation.

While functional programming relies on recursion instead of explicit 1oop state,
Python imposes some limitations here. Because of the stack limitation and the lack
of an optimizing compiler, we're forced to manually optimize recursive functions.
We'll return to this topic in Chapter 6, Recursions and Reductions.
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Although many functional languages have sophisticated type systems, we'll rely
on Python's dynamic type resolution. In some cases, it means we'll have to write
manual coercion among types. It might also mean that we'll have to create class
definitions to handle very complex situations. For the most part, however,
Python's built-in rules will work very elegantly.

In the next chapter, we'll look at the core concepts of pure functions and how
these fit with Python's built-in data structures. Given this foundation, we can
look at higher-order functions available in Python and how we can define our
own higher-order functions.
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The core of functional programming is the use of pure functions to map values from
the input domain to the output range. A pure function has no side effects, a relatively
easy threshold for us to achieve in Python.

Avoiding side effects also means reducing our dependence on variable assignment
to maintain the state of our computations. We can't purge the assignment statement
from the Python language, but we can reduce our dependence on stateful objects.
This means we need to choose among the available Python built-in data structures
to select those that don't require stateful operations.

This chapter will present several Python features from a functional viewpoint,
as follows:

¢ Pure Functions, free of side effects

* Functions as objects that can be passed as arguments or returned as results

* The use of Python strings using object-oriented suffix notation and
prefix notation

* Using tuples and namedtuples as a way to create stateless objects

* Using iterable collections as our primary design tool for
functional programming

We'll look at generators and generator expressions, since these are ways to work with
collections of objects. As we noted in Chapter 2, Introducing Some Functional Features,
there are some boundary issues while trying to replace all generator expressions with
recursions. Python imposes a recursion limit, and doesn't automatically handle TCO:
we must optimize recursions manually using a generator expression.
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We'll write generator expressions that will perform the following tasks:

* Conversions
* Restructuring

* Complex calculations

We'll make a quick survey of many of the built-in Python collections, and how we
can work with collections while pursuing a functional paradigm. This might change
our approach to working with 1ists, dicts, and sets. Writing functional Python
encourages us to focus on tuples and immutable collections. In the next chapter,
we'll emphasize more functional ways to work with specific kinds of collections.

Writing pure functions

A pure function has no side effects: there are no global changes to variables. If we
avoid the global statement, we will almost meet this threshold. We also need to
avoid changing the state mutable objects. We'll look at a number of ways of ensuring
these two aspects of pure functions. A reference to a value in the Python global using
a free variable is something we can rework into a proper parameter. In most cases,
it's quite easy.

Here is an example where the usage of the global statement is explained:

def some function(a, b, t):
return a+b*t+global adjustment

We can refactor this function to make the global_adjustment variable into a proper
parameter. We would need to change each reference to this function, which might
have a large ripple effect through a complex application. A global reference will be
visible as a free variable in the body of a function. There will be neither a parameter
nor an assignment for this variable, making it reasonably clear that it's global.

There are many internal Python objects, which are stateful. Instances of the file
class, and all file-like objects, are examples of stateful objects in common use. We
observe that the most commonly used stateful objects in Python generally behave
as context managers. Not all developers make use of the available context managers
but many objects implement the required interface. In a few cases, stateful objects
don't completely implement the context manager interface; in these cases, there's
often a close () method. We can use the contextlib.closing() function to
provide these objects with the proper context manager interface.
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We can't easily eliminate all stateful Python objects, except from small programs.
Therefore, we must manage state while still exploiting the strengths of functional
design. Toward this end, we should always use the with statement to encapsulate
stateful file objects into a well-defined scope.

Al

Q Always use file objects in a with context.

We should always avoid global file objects, global database connections, and the
associated state issues. The global file object is a very common pattern for handling
open files. We might have a function as shown in the following command snippet:

def open(iname, oname):
global ifile, ofile
ifile= open(iname, "r")
ofile= open(oname, "w")

Given this context, numerous other functions can use the ifile and ofile variables,
hoping they properly refer to the global files, which are left open for the application
to use.

This is not a very good design, and we need to avoid it. The files should be proper
parameters to functions, and the open files should be nested in a with statement to
assure that their stateful behavior is handled properly.

This design pattern also applies to databases. A database connection object can
generally be provided as a formal argument to the application's functions. This

is contrary to the way some popular web frameworks work that rely on a global
database connection in an effort to make the database a transparent feature of the
application. Additionally, a multithreaded web server might not benefit from sharing
a single database connection. This suggests that there are some benefits of a hybrid
approach that uses functional design with a few isolated stateful features.

Functions as first-class objects

It shouldn't come as a surprise that Python functions are first-class objects. In Python,
functions are objects with a number of attributes. The reference manual lists a
number of special member names that apply to functions. Since functions are objects
with attributes, we can extract the docstring function or the name of a function,
using special attributes suchas __doc__ or _ name__. We can also extract the body
of the function via the __code___ attribute. In compiled languages, this introspection
is relatively complex because of the source information that needs to be retained. In
Python, it's quite simple.
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We can assign functions to variables, pass functions as arguments, and return functions
as values. We can easily use these techniques to write higher-order functions.

Since functions are objects, Python already has many features required to be a
functional programming language.

Additionally, a callable object also helps us to create functions, which are first-class
objects. We can even consider the callable class definition as a higher-order function.
We do need to be judicious in how we use the __init__ () method of a callable object;
we should avoid setting stateful class variables. One common application is to use an
__init_ () method to create objects that fit the Strategy design pattern.

A class following the Strategy design pattern depends on another object to provide
an algorithm or parts of an algorithm. This allows us to inject algorithmic details at
runtime, rather than compiling the details into the class.

Here is an example of a callable object with an embedded Strategy object:

import collections
class Mersennel(collections.Callable):
def init (self, algorithm):
self.pow2= algorithm
def call (self, arg):
return self.pow2 (arg) -1

This classuses _init__ () to save a reference to another function. We're not
creating any stateful instance variables.

The function given as a Strategy object must raise 2 to the given power. The three
candidate objects that we can plug into this class are as follows:

def shifty(b):
return 1 << b
def multy(b):
if b == 0: return 1
return 2*multy(b-1)
def faster(b):

if b == 0: return 1
if b%2 == 1: return 2*faster(b-1)
t= faster(b//2)

return t*t

The shifty () function raises 2 to the desired power using a left shift of the bits.

The multy () function uses a naive recursive multiplication. The faster () function
uses a divide and conquer strategy that will perform log, (») multiplications instead
of b multiplications.
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We can create instances of our Mersenne1 class with an embedded strategy
algorithm, as follows:

mls= Mersennel (shifty)
mlm= Mersennel (multy)
mlf= Mersennel (faster)

This shows how we can define alternative functions that produce the same result but
use different algorithms.

doesn't even come close to the recursion limits in Python.

QIQ Python allows us to compute My, =2% -1, since this
This is quite a large prime number, with 27 digits.

Using strings

Since Python strings are immutable, they're an excellent example of functional
programming objects. A Python string module has a number of methods, all of
which produce a new string as the result. These methods are pure functions with
no side effects.

The syntax for string method functions is postfix, where most functions are
prefix. This means that complex string operations can be hard to read when
they're commingled with conventional functions.

When scraping data from a web page, we might have a cleaner function that applies
a number of transformations to a string to clean up the punctuation and return a
Decimal object for use by the rest of the application. This will involve a mixture of
prefix and postfix syntax.

It might look like the following command snippet:

from decimal import *
def clean decimal (text):
if text is None: return text
try:
return Decimal (text.replace("$", "").replace(",", ""))
except InvalidOperation:
return text

This function does two replacements on the string to remove $ and , string values.
The resulting string is used as an argument to the Decimal class constructor, which
returns the desired object.
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To make this more consistent, we can consider defining our own prefix functions for
the string method functions, as follows:

def replace(data, a, b):
return data.replace(a,b)

This can allow us to use Decimal (replace (replace (text, "gn", "n), m, mw wny)
with consistent-looking prefix syntax. In this case, we simply rearrange the existing
argument values, allowing us an additional technique. We can do this for trivial
cases, such as the follows:

>>> replace=str.replace
S>> replace("$12 .45"' ||$||' n ll)

12.45

It's not clear if this kind of consistency is a significant improvement over the mixed
prefix and postfix notation. The issue with functions of multiple arguments is that
the arguments wind up in various places in the expression.

A slightly better approach might be to define a more meaningful prefix function to
strip punctuation, such as the following command snippet:

def remove( str, chars ):
if chars: return remove( str.replace(chars[0], ""), chars[l:] )
return str

This function will recursively remove each of the characters from the char variable.
We can use it as Decimal (remove (text, "$,")) to make the intent of our string
cleanup more clear.

Using tuples and namedtuples

Since Python tuples are immutable objects, they're another excellent example
of objects suitable for functional programming. A Python tuple has very few
method functions, so almost everything is done through functions using prefix
syntax. There are a number of use cases for tuples, particularly when working
with list-of-tuple, tuple-of-tuple and generator-of-tuple constructs.

Of course, namedtuples add an essential feature to a tuple: a name that we can use
instead of an index. We can exploit namedtuples to create objects that are accretions
of data. This allows us to write pure functions based on stateless objects, yet keep
data bound into tidy object-like packages.
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We'll almost always use tuples (and namedtuples) in the context of a collection of
values. If we're working with single values, or a tidy group of exactly two values, we'll
usually use named parameters to a function. When working with collections, however,
we might need to have iterable-of-tuples or iterable-of-namedtuple constructs.

The decision to use a tuple or namedtuple object is entirely a matter of convenience.
We might be working with a sequence of values as a three tuple of the form (number,
number, number) assuming that the triple is in red, green, and blue order.

We can use functions to pick a three-tuple apart, as shown in the following
command snippet:

red = lambda color: color|[0]
green = lambda color: color[1]
blue = lambda color: color([2]

Or, we might introduce the following command line:

Color = namedtuple("Color", ("red", "green", "blue", "name"))
This allows us to use item.red instead of red (item).

The functional programming application of tuples centers on the iterable-of-tuple
design pattern. We'll look closely at a few iterable-of-tuple techniques. We'll look
at the namedtuple techniques in Chapter 7, Additional Tuple Techniques.

Using generator expressions

We've shown some examples of generator expressions already. We'll show many
more later in the chapter. We'll introduce some more sophisticated generator
techniques in this section.

We need to mention a small bit of Python syntax here. It's common to see generator
expressions used to create the 1ist or dict literals via a 1ist comprehension or a
dict comprehension. For our purposes, a list display (or comprehension) is just one
use of generator expressions. We can try to make a distinction between generator
expressions outside a display and generator expressions inside a display, but

there's nothing to be gained by this. The syntax is the same except for the enclosing
punctuation and the semantics are indistinguishable.
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A display includes the enclosing literal syntax: [x**2 for x in range(10)]; this
example is a list comprehension, which creates a list object from the enclosed generator
expression. In this section, we're going to focus on the generator expression. We'll
occasionally create a display as part of demonstrating how the generator works.
Displays have the disadvantage of creating (potentially large) collection objects.

A generator expression is lazy and creates objects only as required.

We have to provide two important caveats on generator expressions, as follows:

* Generators appear to be sequence-like except for a function such as the len ()
function that needs to know the size of the collection.

* Generators can be used only once. After that, they appear empty.

Here is a generator function that we'll use for some examples:

def pfactorsl(x):
if x %$ 2 == 0:
yield 2
if x//2 > 1:
yield from pfactorsl(x//2)
return
for i in range(3,int(math.sqrt(x)+.5)+1,2):
if x $ 1 == 0:
yield i
if x//i > 1:
yield from pfactorsl(x//i)
return
yield x

We're locating the prime factors of a number. If the number, x, is even, we'll yield 2
and then recursively yield all factors of x+2.

For odd numbers, we'll step through odd values greater than or equal to 3, to locate
a candidate factor of the number. When we locate a factor, we'll yield that factor, i,
and then recursively yield all factors of x+i.

In the event that we can't locate a factor, the number must be prime, so we can
yield that.

We handle 2 as a special case to cut the number of iterations in half. All prime numbers,
except 2, are odd.
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We've used one important for loop in addition to recursion. This allows us to easily
handle numbers that have as many as 1,000 factors. This number is at least as large

as 210 , a number with 300 digits. Since the for variable, i, is not used outside
the indented body of the loop, the stateful nature of the i variable won't lead to
confusion if we make any changes to the body of the loop.

In effect, we've done tail-call optimization, the recursive calls that count from 3 to Jx.
The for loop saves us from deeply recursive calls that test every single number in
the range.

The other two for loops exist merely to consume the results of a recursive function
that is iterable.

In a recursive generator function, be careful of the return statement.
Do not use the following command line:
W\ return recursive_ iter (args)
-y

It returns only a generator object; it doesn't evaluate the function to
return the generated values. Use either of the following;:

for result in recursive iter(args):
yield result

ORyield from recursive iter (args)

As an alternative, the following command is a more purely recursive version:

def pfactorsr(x):
def factor n(x, n):
if n*n > x:
yield x
return
if x $n == 0:
yield n
if x//n > 1:
yield from factor n(x//n, n)
else:
yield from factor n(x, n+2)
if x %$ 2 == 0:
yield 2
if x//2 > 1:
yield from pfactorsr(x//2)
return
yield from factor n(x, 3)
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We defined an internal recursive function, factor_n (), to test factors, 1, in the range
3 <n<+/x.If the candidate factor, #, is outside the range, then x is prime. Otherwise,

we'll see if n is a factor of x. If so, we'll yield n and all factors of % If n is not a factor,
we'll evaluate the function recursively using n+2. This recursion to test each value
of (n+2,n+2+2,n+2+2+2,...) can be optimized into a for loop, as shown in the
previous example.

The outer function handles some edge cases. As with other prime-related processing,
we handle 2 as a special case. For even numbers, we'll yield 2 and then evaluate
pfactorsr () recursively for x+2. All other prime factors must be odd numbers greater
than or equal to 3. We'll evaluate the factors_n () function starting with 3 to test these
other candidate prime factors.

M The purely recursive function can only locate prime
Q factors of numbers up to about 4,000,000. Above this,
Python's recursion limit will be reached.

Exploring the limitations of generators

We noted that there are some limitations of generator expressions and
generator functions. The limitations can be observed by executing the
following command snippet:

>>> from ch02_ex4 import *
>>> pfactorsl( 1560 )
<generator object pfactorsl at 0x1007b74b0>
>>> list (pfactorsl (1560))
(2, 2, 2, 3, 5, 131
>>> len(pfactorsl (1560))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object of type 'generator' has no len()

In the first example, we saw that generator functions are not strict. They're lazy,

and don't have a proper value until we consume the generator functions. This isn't a
limitation, per se; this is the whole reason that generator expressions fit with functional
programming in Python.

In the second example, we materialized a list object from the generator function.
This is handy for seeing the output and writing unit test cases.

In the third example, we saw one limitation of generator functions: there's no len().
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The other limitation of generator functions is that they can only be used once.
For example, look at the following command snippet:

>>> result= pfactorsl (1560)
>>> sum(result)

27

>>> sum(result)

0

The first evaluation of the sum () method performed evaluation of the generator.
The second evaluation of the sum () method found that the generator was now
empty. We can only consume the values once.

Generators have a stateful life in Python. While they're very nice for some aspects
of functional programming, they're not quite perfect.

We can try to use the itertools.tee () method to overcome the once-only limitation.
We'll look at this in depth in Chapter 8, The Itertools Module. Here is a quick example of
its usage:

import itertools
def limits(iterable):
max tee, min tee = itertools.tee(iterable, 2)

return max(max tee), min(min tee)

We created two clones of the parameter generator expression, max_tee () and
min_tee (). This leaves the original iterator untouched, a pleasant feature that allows
us to do very flexible combinations of functions. We can consume these two clones to
get maxima and minima from the iterable.

While appealing, we'll see that this doesn't work out well in the long run. Once
consumed, an iterable will not provide any more values. When we want to compute
multiple kinds of reductions —for example, sums, counts, minimums, maximums —we
need to design with this one-pass-only limitation in mind.

Combining generator expressions

The essence of functional programming comes from the ways we can easily combine
generator expressions and generator functions to create very sophisticated composite
processing sequences. When working with generator expressions, we can combine
generators in several ways.

One common way to combine generator functions is when we create a composite
function. We might have a generator that computes (f (x) for x in range()).
If we want to compute g (£ (x) ), we have several ways to combine two generators.
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We can tweak the original generator expression as follows:
g f x = (g(f(x)) for x in range())

While technically correct, this defeats any idea of reuse. Rather than reusing an
expression, we rewrite it.

We can also substitute one expression within another expression, as follows:
g f x = (g(y) for y in (£(x) for x in range()))

This has the advantage of allowing us to use simple substitution. We can revise
this slightly to emphasize reuse, using the following commands:

f x= (£(x) for x in range())
g £ x= (g(y) for y in f_x)

This has the advantage of leaving the initial expression, (f (x) for x in range()),
essentially untouched. All we did was assign the expression to a variable.

The resulting composite function is also a generator expression, which is also lazy.
This means that extracting the next value from g_£_x will extract one value from
£ x, which will extract one value from the source range () function.

Cleaning raw data with generator
functions

One of the tasks that arise in exploratory data analysis is cleaning up raw source
data. This is often done as a composite operation applying several scalar functions
to each piece of input data to create a usable data set.

Let's look at a simplified set of data. This data is commonly used to show techniques
in exploratory data analysis. It's called Anscombe's Quartet, and it comes from

the article, Graphs in Statistical Analysis, by F. ]. Anscombe that appeared in
American Statistician in 1973. Following are the first few rows of a downloaded

file with this dataset:

Anscombe's quartet

I II IITI IV

Xy X Yy X YV X VY

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.06.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
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Sadly, we can't trivially process this with the csv module. We have to do a little bit

of parsing to extract the useful information from this file. Since the data is properly

tab-delimited, we can use the csv.reader () function to iterate through the various
rows. We can define a data iterator as follows:

import csv
def row iter(source):
return csv.reader (source, delimiter="\t")

We simply wrapped a file in a csv. reader function to create an iterator over rows.
We can use this iterator in the following context:

with open("Anscombe.txt") as source:
print( list(row iter(source)) )

The problem with this is that the first three items in the resulting iterable aren't data.
The Anacombe's quartet file looks as follows when opened:

[["Anscombe's quartet"], ['T', 'II', 'III', 'IV'],

[lel lyl’ |x|' lyl’ |x|' lyl’ |x|' lyl]'

We need to filter these rows from the iterable. Here is a function that will neatly
excise three expected title rows, and return an iterator over the remaining rows:

def head split fixed(row iter):
title= next(row iter)

assert len(title) == 1 and title[0] == "Anscombe's quartet"
heading= next (row iter)

assert len(heading) == 4 and heading == ['I', 'II', 'III', 'IV']
columns= next(row_iter)

assert len(columns) == 8 and columns == ['x', 'y', 'x', 'y', 'x',

lyl’ |x|' lyl]
return row_iter

This function plucks three rows from the iterable. It asserts that each row has
an expected value. If the file doesn't meet these basic expectations, it's a symptom
that the file was damaged or perhaps our analysis is focused on the wrong file.

Since both the row_iter () and the head _split_ fixed() functions expect an
iterable as an argument value, they can be trivially combined as follows:

with open("Anscombe.txt") as source:
print( list(head split fixed(row iter(source))))

We've simply applied one iterator to the results of another iterator. In effect, this
defines a composite function. We're not done, of course; we still need to convert the
strings values to the £1loat values and we also need to pick apart the four parallel
series of data in each row.
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The final conversions and data extractions are more easily done with higher-order
functions such as map () and filter (). We'll return to those in Chapter 5,
Higher-order Functions.

Using lists, dicts, and sets

A Python sequence object, like a 1ist, is iterable. However, it has some additional
features. We'll think of it as a materialized iterable. We've used the tuple () function
in several examples to collect the output of a generator expression or generator
function into a single tuple object. We can also materialize a sequence to create

a list object.

In Python, a list display offers simple syntax to materialize a generator: we just add the
[1 brackets. This is ubiquitous to the point where the distinction between generator
expression and list comprehension is a subtlety of little practical importance.

The following is an example to enumerate the cases:

>>> range (10)

range (0, 10)

>>> [range (10)]

[range (0, 10)]

>>> [x for x in range(10)]

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(10))

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The first example is a generator function.

1
‘\Q The range (10) function is lazy; it won't produce the 10 values

until evaluated in a context that iterates through the values.

The second example shows a list composed of a single generator function.
To evaluate this, we'll have to use nested loops. Something like this [x for
gen in [range(10)] for x in gen].

The third example shows a 1ist comprehension built from a generator expression
that includes a generator function. The function, range (10), is evaluated by a
generator expression, x for x in range (10). The resulting values are collected
into a 1ist object.

We can also use the 1ist () function to build a list from an iterable or a generator
expression. This also works for set (), tuple (), and dict ().
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1
~‘Q The 1ist (range (10) ) function evaluated the generator expression.

The [range (10) ] list literal does not evaluate the generator function.

While there's shorthand syntax for 1ist, dict, and set using [1 and {},there's

no shorthand syntax for a tuple. To materialize a tuple, we must use the tuple ()
function. For this reason, it often seems most consistent to use the 1ist (), tuple(),
and set () functions as the preferred syntax.

In the data cleansing example, we used a composite function to create a list of four
tuples. The function looked as follows:

with open("Anscombe.txt") as source:
data = head split fixed(row iter (source))
print (list(data))

We assigned the results of the composite function to a name, data. The data looks
as follows:

f(f-10.0', +s8.o04', '10.0', '9.14', '10.0', '7.46', '8.0', '6.58'],
[8.0', '6.95', '8.0', '8.14', '8.0', '6.77', '8.0', '5.76'],
[‘5.0', '5.68', '5.0', '4.74', '5.0', '5.73', '8.0', '6.89']]

We need to do a little bit more processing to make this useful. First, we need to pick
pairs of columns from the eight tuple. We can select pair of columns with a function,
as shown in the following command snippet:

from collections import namedtuple
Pair = namedtuple("Pair", ("x", "y"))
def series(n, row iter):
for row in row iter:
yield Pair(*row[n*2:n*2+2])

This function picks two adjacent columns based on a number between 0 and 3.
It creates a namedtuple object from those two columns. This allows us to pick
the x or y value from each row.

We can now create a tuple-of-tuples collection as follows:

with open("Anscombe.txt") as source:
data = tuple(head split fixed(row iter (source)))
sample I= tuple(series(0,data))
sample II= tuple(series(l,data))
sample III= tuple(series(2,data))
sample IV= tuple(series(3,data))
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We applied the tuple () function to a composite function based on the head_split_
fixed () and row_iter () methods. This will create an object that we can reuse in
several other functions. If we don't materialize a tuple object, only the first sample
will have any data. After that, the source iterator will be exhausted and all other
attempts to access it would yield empty sequestionsnces.

The series () function will pick pairs of items to create the Pair objects. Again, we
applied an overall tuple () function to materialize the resulting tuple-of-namedtuple
sequences so that we can do further processing on each one.

The sample_I sequence looks like the following command snippet:

(Pair(x='10.0', y='8.04"'), Pair(x='8.0', y='6.95"),
Pair(x='13.0', y='7.58'), Pair(x='9.0', y='8.81"),
Etc.

Pair(x='5.0', y='5.68"))

The other three sequences are similar in structure. The values, however,
are quite different.

The final thing we'll need to do is create proper numeric values from the strings
that we've accumulated so that we can compute some statistical summary values.
We can apply the £loat () function conversion as the last step. There are many
alternative places to apply the float () function, and we'll look at some choices
in Chapter 5, Higher-order Functions.

Here is an example describing the usage of £loat () function:
mean = sum(float(pair.y) for pair in sample I)/len(sample I)

This will provide the mean of the y value in each Pair object. We can gather a
number of statistics as follows:

for subset in sample I, sample II, sample III, sample III:
mean = sum(float(pair.y) for pair in subset)/len(subset)
print (mean)

We computed a mean for the y values in each pair built from the source database.
We created a common tuple-of-namedtuple structure so that we can have reasonably
clear references to members of the source dataset. Using pair.y is a bit less obscure
than pair[1].
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To reduce memory use —and increase performance —we prefer to use generator
expressions and functions as much as possible. These iterate through collections in a
lazy (or non-strict) manner, computing values only when required. Since iterators can
only be used once, we're sometimes forced to materialize a collection as a tuple (or
list) object. Materializing a collection costs memory and time, so we do it reluctantly.

Programmers familiar with Clojure can match Python's lazy generators with the
lazy-seqand lazy-cat functions. The idea is that we can specify a potentially
infinite sequence, but only take values from it as needed.

Using stateful mappings

Python offers several stateful collections; the various mappings include the dict class
and a number of related mappings defined in the collections module. We need to
emphasize the stateful nature of these mappings and use them carefully.

For our purposes in learning functional programming techniques in Python, there
are two use cases for mapping: a stateful dictionary that accumulates a mapping

and a frozen dictionary. In the first example of this chapter, we showed a frozen
dictionary that was used by the ElementTree.findall () method. Python doesn't
provide an easy-to-use definition of an immutable mapping. The collections.abc.
Mapping abstract class is immutable but it's not something we can use trivially.
We'll dive into details in Chapter 6, Recursions and Reductions.

Instead of the formality of using the collections.abc.Mapping abstract class, we
can fall back on confirming that the variable ns_map appears exactly once on the left
side of an assignment statement, methods such as ns_map.update () or ns_map.
pop () are never used, and the del statement isn't used with map items.

The stateful dictionary can be further decomposed into two typical use cases; they
are as follows:

* A dictionary built once and never updated. In this case, we will exploit
the hashed keys feature of the dict class to optimize performance. We can
create a dictionary from any iterable sequence of (key, value) two tuples
viadict ( sequence ).

* A dictionary built incrementally. This is an optimization we can use to
avoid materializing and sorting a list object. We'll look at this in Chapter 6,
Recursions and Reductions. We'll look at the collections.Counter class
as a sophisticated reduction. Incremental building is particularly helpful
for memoization. We'll defer memoization until Chapter 16, Optimizations
and Improvements.
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The first example, building a dictionary once, stems from an application with three
operating phases: gather some input, create a dict object, and then process input
based on the mappings in the dictionary. As an example of this kind of application,
we might be doing some image processing and have a specific palette of colors,
represented by names and (R, G, B) tuples. If we use the GNU Image Manipulation
Program (GIMP) GNU General Public License (GPL) file format, the color palette
might look like the following command snippet:

GIMP Palette
Name: Small
Columns: 3

#

0 0 O Black
255 255 255 White
238 32 77 Red
28 172 120 Green
31 117 254 Blue

The details of parsing this file are the subject of Chapter 6, Recursions and Reductions.
What's important is the results of the parsing.

First, we'll assume that we're using the following Color namedtuple:

from collections import namedtuple
Color = namedtuple("Color", ("red", "green", "blue", "name"))

Second, we'll assume that we have a parser that produces an iterable of color
objects. If we materialize it as a tuple, it would look like the following;:

(Color (red=239, green=222, blue=205, name='Almond'),

Color (red=205, green=149, blue=117, name='Antique Brass'),
Color (red=253, green=217, blue=181, name='Apricot'),

Color (red=197, green=227, blue=132, name='Yellow Green'),
Color (red=255, green=174, blue=66, name='Yellow Orange'))

In order to locate a given color name quickly, we will create a frozen dictionary
from this sequence. This is not the only way to get fast lookups of a color by name.
We'll look at another option later.

To create a mapping from a tuple, we will use the process (wrap (iterable))
design pattern. The following command shows how we can create the color
name mapping:

name_map= dict( (c.name, c) for c in sequence )
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Where the sequence variable is the iterable of the color objects shown previously,
the wrap () element of the design pattern simply transforms each color object, c,
into the two tuple (c.name, c).The process () element of the design uses dict ()
initialization to create a mapping from name to Color. The resulting dictionary looks
as follows:

{'Caribbean Green': Color(red=28, green=211, blue=162,
name="'Caribbean Green'),

'Peach': Color (red=255, green=207, blue=171l, name='Peach'),
'Blizzard Blue': Color(red=172, green=229, blue=238, name='Blizzard
Blue'),

The order is not guaranteed, so you may not see Caribbean Green first.

Now that we've materialized the mapping, we can use this dict () object in some
later processing for repeated transformations from color name to (R, G, B) color
numbers. The lookup will be blazingly fast because a dictionary does a rapid
transformation from key to hash value followed by lookup in the dictionary.

Using the bisect module to create a mapping

In the previous example, we created a dict mapping to achieve a fast mapping from
a color name to a Color object. This isn't the only choice; we can use the bisect
module instead. Using the bisect module means that we have to create a sorted
object, which we can then search. To be perfectly compatible with the dict mapping,
we can use collections.abc.Mapping as the base class.

The dict mapping uses a hash to locate items almost immediately. However,

this requires allocating a fairly large block of memory. The bisect mapping does a
search, which doesn't require as much memory, but performance can be described
as immedjiate.

A static mapping class looks like the following command snippet:

import bisect
from collections.abc import Mapping
class StaticMapping (Mapping) :
def init ( self, iterable ):
self. data = tuple(iterable)
self. keys = tuple(sorted(key for key, in self. data))

def getitem (self, key):
ix= bisect.bisect left(self. keys, key)
if ix != len(self. keys) and self. keys[ix] == key:
return self. datalix] [1]
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raise ValueError ("{0!r} not found".format (key))
def iter (self):

return iter(self. keys)
def len (self):

return len(self. keys)

This class extends the abstract superclass collections.abc.Mapping. It provides

an initialization and implementations for three functions missing from the abstract
definition. The getitem () method uses the bisect.bisect left () function to
search the collection of keys. If the key is found, the appropriate value is returned. The
__iter () method returns an iterator, as required by the superclass. The _len ()
method, similarly, provides the required length of the collection.

Another option is to start with the source code for the collections.OrderedDict
class, change the superclass to Mapping instead of MutableMapping, and remove all
of the methods that implement mutability. For more details on which methods to
keep and which to discard, refer to the Python Standard Library, section 8.4.1.

Visit the following link for more details:

https://docs.python.org/3.3/library/collections.abc.html#collections-
abstract-base-classes

This class might not seem to embody too many functional programming principles.
Our goal here is to support a larger application that minimizes the use of stateful
variables. This class saves a static collection of key-value pairs. As an optimization,
it materializes two objects.

An application that creates an instance of this class is using a materialized object to
perform rapid lookups of the keys. The superclass does not support updates to the
object. The collection, as a whole, is stateless. It's not as fast as the built-in dict class,
but it uses less memory and, through the formality of being a subclass of Mapping,
we can be assured that this object is not used to contain a processing state.

Using stateful sets

Python offers several stateful collections, including the set collection. For our
purposes, there are two use cases for a set: a stateful set that accumulates items,
and a frozenset that is used to optimize searches for an item.

We can create a frozenset from an iterable in the same way as we create a tuple
object from an iterable fronzenset (some_iterable) method; this will create a
structure that has the advantage of a very fast in operator. This can be used in
an application that gatheres data, creates a set, and then uses that frozenset to
process some other data items.
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We might have a set of colors that we will use as a kind of chroma-key: we will use
this color to create a mask that will be used to combine two images. Pragmatically,
a single color isn't appropriate but a small set of very similar colors works best.

In this case, we'll examine each pixel of an image file to see if the pixel is in the
chroma-key set or not. For this kind of processing, the chroma-key colors are loaded
into a frozenset before processing the target images. For more information, read
about chroma-key processing from the following link:

http://en.wikipedia.org/wiki/Chroma_key

As with mappings — specifically the Counter class—there are some algorithms that
can benefit from a memoized set of values. Some functions benefit from memoization
because a function is a mapping between domain values and range values, a job

for which a mapping works nicely. A few algorithms benefit from a memoized set,
which is stateful and grows as data is processed.

We'll return to memoization in Chapter 16, Optimizations and Improvements.

Summary

In this chapter, we looked closely at writing pure functions: free of side effects.
The bar is low here, since Python forces us to use the global statement to write
impure functions. We looked at generator functions and how we can use these
as the backbone of functional programming.

We also examined the built-in collection classes to show how they're used in the
functional paradigm. While the general ideal behind functional programming is
to limit the use of stateful variables, the collection objects are generally stateful
and, for many algorithms, also essential. Our goal is to be judicious in our use of
Python's nonfunctional features.

In the next two chapters, we'll look at higher-order functions: functions that
accept functions as arguments as well as returning functions. We'll start with

an exploration of the built-in higher-order functions. In later chapters, we'll look
at techniques for defining our own higher-order functions. We'll also look at

the itertools and functools modules and their higher-order functions in
later chapters.
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Python offers a number of functions that process whole collections. They can
be applied to sequences (lists or tuples), sets, mappings, and iterable results
of generator expressions. We'll look at some of Python's collection-processing
functions from a functional programming viewpoint.

We'll start out by looking at iterables and some simple functions that work with
iterables. We'll look at some additional design patterns to handle iterables and
sequences with recursion as well as explicit for loops. We'll look at how we can
apply a scalar () function to a collection of data with a generator expression.

In this chapter, we'll show examples of how to use the following functions to
work with collections:

* any() and all()

* len() and sum() and some higher-order statistical processing related
to these functions

* zip() and some related techniques to structure and flatten lists of data
®* reversed()

® enumerate ()

The first four functions can all be called reductions; they reduce a collection to

a single value. The other three functions (zip (), reversed (), and enumerate())
are mappings; they produce a new collection from an existing collection(s). In the
next chapter, we'll look at some mapping () and reduction () functions that use
an additional function as an argument to customize their processing.

In this chapter, we'll start out by looking at ways to process data using generator
expressions. Then, we'll apply different kinds of collection-level functions to show
how they can simplify the syntax of iterative processing. We'll also look at some
different ways of restructuring data.
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In the next chapter, we'll focus on using higher-order collection functions to do
similar kinds of processing.

An overview of function varieties

We need to distinguish between two broad species of functions, as follows:

* Scalar functions apply to individual values and compute an individual result.
Functions such as abs (), pow () , and the entire math module are examples of
scalar functions.

* Collection() functions work with iterable collections.
We can further subdivide the collection functions into three subspecies:

* Reduction: This uses a function that is used to fold values in the collection
together, resulting in a single final value. We can call this an aggregate
function, as it produces a single aggregate value for an input collection.

* Mapping: This applies a function to all items of a collection; the result is
a collection of the same size.

* Filter: This applies a function to all items of a collection that rejects some
items and passes others. The result is a subset of the input. A filter might do
nothing, which means that the output matches the input; this is an improper
subset, but it still fits the broader definition of subset.

We'll use this conceptual framework to characterize ways in which we use the
built-in collection functions.

Working with iterables

As we noted in the previous chapters, we'll often use Python's for loop to work
with collections. When working with materialized collections such as tuples, lists,
maps, and sets, the for loop involves an explicit management of state. While this
strays from purely functional programming, it reflects a necessary optimization for
Python. If we assure that state management is localized to an iterator object that's
created as part of the for statement evaluation, we can leverage this feature without
straying too far from pure, functional programming. For example, if we use the for
loop variable outside the indented body of 1oop, we've strayed too far from purely
functional programming.

We'll return to this in Chapter 6, Recursion and Reduction. It's an important topic, and
we'll just scratch the surface here with a quick example of working with generators.
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One common application of for loop iterable processing is the

unwrap (process (wrap (iterable))) design pattern. A wrap () function will first
transform each item of an iterable into a two tuples with a derived sort key or other
value and then the original immutable item. We can then process these two tuples
based on the wrapped value. Finally, we'll use an unwrap () function to discard the
value used to wrap, which recovers the original item.

This happens so often in a functional context that we have two functions that are
used heavily for this; they are as follows:

fst = lambda x: x[0]
snd = lambda x: x[1]

These two functions pick the first and second values from a tuple, and both are
handy for the process () and unwrap () functions.

Another common pattern is wrap (wrap (wrap () ) ) . In this case, we're starting
with simple tuples and then wrapping them with additional results to build
up larger and more complex tuples. A common variation on this theme is
extend (extend (extend () )) where the additional values build new, more
complex namedtuple instances without actually wrapping the original tuples.
We can summarize both of these as the Accretion design pattern.

We'll apply the Accretion design to work with a simple sequence of latitude and
longitude values. The first step will convert the simple points (1at, 1on) on a path
into pairs of legs (begin, end). Each pair in the result will be ((1at, 1on), (1at, lon)).

In the next sections, we'll show how to create a generator function that will iterate over
the content of a file. This iterable will contain the raw input data that we will process.

Once we have the data, later sections will show how to decorate each leg with the
haversine distance along the leg. The final result of the wrap (wrap (iterable())))
processing will be a sequence of three tuples: ((1at, 1on), (1at, lon), distance). We
can then analyze the results for the longest, shortest distance, bounding rectangle,
and other summaries of the data.

Parsing an XML file

We'll start by parsing an XML (short for Extensible Markup Language) file to get
the raw latitude and longitude pairs. This will show how we can encapsulate some
not-quite functional features of Python to create an iterable sequence of values.
We'll make use of the xml.etree module. After parsing, the resulting ElementTree
object has a £indall () method that will iterate through the available values.
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We'll be looking for constructs such as the following code snippet:

<Placemark><Point>
<coordinates>-76.33029518659048,37.54901619777347,0</coordinates>
</Point></Placemark>

The file will have a number of <Placemark> tags, each of which has a point and
coordinate structure within it. This is typical of Keyhole Markup Language (KML)
files that contain geographic information.

Parsing an XML file can be approached at two levels of abstraction. At the lower
level, we need to locate the various tags, attribute values, and content within the
XML file. At a higher level, we want to make useful objects out of the text and
attribute values.

The lower-level processing can be approached in the following way:

import xml.etree.ElementTree as XML
def row iter kml(file obj):
ns_map= {
"ns0": "http://www.opengis.net/kml/2.2",
"nsl": "http://www.google.com/kml/ext/2.2"}
doc= XML.parse(file obj)
return (comma split(coordinates.text)
for coordinates in
doc.findall("./ns0:Document/ns0:Folder/ns0:Placemark/
ns0:Point/ns0:coordinates™, ns map))

This function requires a file that was already opened, usually via a with statement.
However, it can also be any of the file-like objects that the XML parser can handle.

The function includes a simple static dict object, ns_map, that provides the namespace
mapping information for the XML tags we'll be searching. This dictionary will be used
by the XML ElementTree.findall () method.

The essence of the parsing is a generator function that uses the sequence of tags
located by doc. £indall (). This sequence of tags is then processed by a comma_
split () function to tease the text value into its comma-separated components.

The comma_split () function is the functional version of the split () method
of a string, which is as follows:

def comma split(text):
return text.split(",")

We've used the functional wrapper to emphasize a slightly more uniform syntax.
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The result of this function is an iterable sequence of rows of data. Each row will be a
tuple composed of three strings: latitude, longitude, and altitude of a waypoint
along this path. This isn't directly useful yet. We'll need to do some more processing
to get latitude and longitude as well as converting these two numbers into useful
floating-point values.

This idea of an iterable sequence of tuples as results of lower-level parsing allows
us to process some kinds of data files in a simple and uniform way. In Chapter 3,
Functions, Iterators, and Generators, we looked at how Comma Separated Values
(CSV) files are easily handled as rows of tuples. In Chapter 6, Recursions and
Reductions, we'll revisit the parsing idea to compare these various examples.

The output from the preceding function looks like the following code snippet:

[['-76.33029518659048"', '37.54901619777347', '0'],
['-76.27383399999999"', '37.840832', '0'],
['-76.459503', '38.331501', '0'],

and so on

['-76.47350299999999"', '38.976334"', '0']]

Each row is the source text of the <ns0:coordinates> tag split using , that's part
of the text content. The values are the East-West longitude, North-South latitude,
and altitude. We'll apply some additional functions to the output of this function
to create a usable set of data.

Parsing a file at a higher level

Once we've parsed the low-level syntax, we can restructure the raw data into
something usable in our Python program. This kind of structuring applies to XML,
JavaScript Object Notation (JSON), CSV, and any of the wide variety of physical
formats in which data is serialized.

We'll aim to write a small suite of generator functions that transforms the parsed
data into a form our application can use. The generator functions include some
simple transformations on the text that's found by the row_iter_kml () function,
which are as follows:

* Discarding altitude, or perhaps keeping only latitude and longitude

* Changing the order from (longitude, latitude) to (latitude, longitude)

We can make these two transformations have more syntactic uniformity by defining
a utility function as follows:

def pick lat lon(lon, lat, alt):
return lat, lon
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We can use this function as follows:

def lat lon kml (row iter):
return (pick lat lon(*row) for row in row iter)

This function will apply the pick_lat_lon() function to each row. We've used
*row to assign each element of the row three tuple to separate parameters of the
pick_lat lon() function. The function can then extract and reorder the two
relevant values from each three tuple.

It's important to note that a good functional design allows us to freely replace any
function with its equivalent, which makes refactoring quite simple. We've tried

to achieve this goal when we provide alternative implementations of the various
functions. In principle, a clever functional language compiler might do some
replacements as part of an optimization pass.

We'll use the following kind of processing to parse the file and build a structure
we can use, such as the following code snippet:

with urllib.request.urlopen("file:./Winter%202012-2013.kml") as
source:

vl= tuple(lat lon kml(row iter kml (source)))
print (vl)

We've used the urllib command to open a source. In this case, it's a local file.
However, we can also open a KML file on a remote server. Our objective with
using this kind of file opening is to assure that our processing is uniform no
matter what the source of the data is.

We've shown the two functions that do low-level parsing of the KML source.

The row_iter kml (source) expression produces a sequence of text columns.

The 1at_lon kml () function will extract and reorder the latitude and longitude
values. This creates an intermediate result that sets the stage for further processing.
The subsequent processing is independent of the original format.

When we run this, we see results like the following:

(('37.54901619777347', '-76.33029518659048"'),
(*37.840832', '-76.27383399999999"), ('38.331501', '-76.459503"'),
(*38.330166', '-76.458504'), ('38.976334', '-76.47350299999999"'))

We've extracted just the 1atitude and longitude values from a complex XML
file using an almost purely functional approach. As the result is an iterable, we can
continue to use functional programming techniques to process each point that we
retrieve from the file.
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We've explicitly separated low-level XML parsing from higher-level reorganization
of the data. The XML parsing produced a generic tuple of string structure. This

is compatible with the output from the CSV parser. When working with SQL
databases, we'll have a similar iterable of tuple structures. This allows us to write
code for higher-level processing that can work with data from a variety of sources.

We'll show a series of transformations to rearrange this data from a collection of
strings to a collection of waypoints along a route. This will involve a number of
transformations. We'll need to restructure the data as well as convert from strings
to floating-point values. We'll also look at a few ways to simplify and clarify the
subsequent processing steps. We'll use this data set in later chapters because it's
reasonably complex.

Pairing up items from a sequence

A common restructuring requirement is to make start-stop pairs out of points in
a sequence. Given a sequence, S = {SO, 81585500y, }, we want to create a paired

sequence S = {(So,Sl ) ,(Sl ) Sz),--.,(S,H 8, )} When doing time-series analysis, we might
be combining more widely separated values. In this example, it's adjacent values.

A paired sequence will allow us to use each pair to compute distances from point to
point using a trivial application of a haversine function. This technique is also used
to convert a path of points into a series of line segments in a graphics application.

Why pair up items? Why not do something like this?

begin= next(iterable)

for end in iterable:
compute something(begin, end)
begin = end

This, clearly, will process each leg of the data as a begin-end pair. However,

the processing function and the loop that restructures the data are tightly bound,
making reuse more complex than necessary. The algorithm for pairing is hard to
test in isolation because it's bound to the compute something () function.

This combined function also limits our ability to reconfigure the application. There's
no easy way to inject an alternative implementation of the compute_something ()
function. Additionally, we've got a piece of explicit state, the begin variable, which
makes life potentially complex. If we try to add features to the body of 1oop, we can
easily fail to set the begin variable correctly if a point is dropped from consideration.
A filter () function introduces an if statement that can lead to an error in
updating the begin variable.
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We achieve better reuse by separating this simple pairing function. This, in the
long run, is one of our goals. If we build up a library of helpful primitives such
as this pairing function, we can tackle problems more quickly and confidently.

There are many ways to pair up the points along the route to create start and
stop information for each leg. We'll look at a few here and then revisit this in
Chapter 5, Higher-order Functions and again in Chapter 8, The Itertools Module.

Creating pairs can be done in a purely functional way using a recursion.
The following is one version of a function to pair up the points along a route:

def pairs(iterable):

def pair from( head, iterable tail ):

nxt= next(iterable tail)

yield head, nxt

yield from pair from( nxt, iterable tail )
try:

return pair from( next(iterable), iterable )
except StopIteration:

return

The essential function is the internal pair_ from() function. This works with the
item at the head of an iterable plus the iterable itself. It yields the first pair, pops
the next item from the iterable, and then invokes itself recursively to yield any
additional pairs.

We've invoked this function from the pairs () function. The pairs () function
ensures that the initialization is handled properly and the terminating exception
is silenced properly.

Python iterable recursion involves a for loop to properly consume
and yield the results from the recursion. If we try to use a simpler-
looking return pair_from(nxt, iterable_tail) method,
we'll see that it does not properly consume the iterable and yield
all of the values.

%j%‘\ Recursion in a generator function requires yield from a statement
g to consume the resulting iterable. For this, use yield from
recursive_ iter (args).
Something like return recursive iter (args) will return

only a generator object; it doesn't evaluate the function to return
the generated values.
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Our strategy for performing tail-call optimization is to replace the recursion with a
generator expression. We can clearly optimize this recursion into a simple for loop.
The following is another version of a function to pair up the points along a route:

def legs(lat lon iter):
begin= next(lat lon iter)
for end in lat lon iter:
yield begin, end

begin= end

The version is quite fast and free from stack limits. It's independent of any
particular type of sequence, as it will pair up anything emitted by a sequence
generator. As there's no processing function inside loop, we can reuse the
legs () function as needed.

We can think of this function as one that yields the following kind of sequence
of pairs:

list[0:1], list[1l:2], 1list[2:3], ..., list[-2:]
Another view of this function is as follows:
zip(list, list[1l:])

While informative, these other two formulations only work for sequence objects.
The legs () and pairs () functions work for any iterable, including sequence objects.

Using the iter() function explicitly

The purely functional viewpoint is that all of our iterables can be processed with
recursive functions, where the state is merely the recursive call stack. Pragmatically,
Python iterables will often involve evaluation of other for loops. There are two
common situations: collections and iterables. When working with a collection,

an iterator object is created by the for statement. When working with a generator
function, the generator function is the iterator and maintains its own internal state.
Often, these are equivalent from a Python programming perspective. In rare cases,
generally those situations where we have to use an explicit next () function, the two
won't be precisely equivalent.

Our legs () function shown previously has an explicit next () function call to get the
first value from the iterable. This works wonderfully well with generator functions,
expressions, and other iterables. It doesn't work with sequence objects such as tuples
or lists.
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The following are three examples to clarify the use of the next () and iter ()
functions:

>>> list(legs(x for x in range(3)))
[(o, 1), (1, 2)1
>>> list(legs([0,1,2]))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in legs
TypeError: 'list' object is not an iterator
>>> list(legs( iter([0,1,2])))
[(o, 1), (1, 2)1

In the first case, we applied the legs () function to an iterable. In this case, the
iterable was a generator expression. This is the expected behavior based on our
previous examples in this chapter. The items are properly paired up to create two
legs from three waypoints.

In the second case, we tried to apply the legs () function to a sequence. This resulted
in an error. While a 1ist object and an iterable are equivalent when used in a for
statement, they aren't equivalent everywhere. A sequence isn't an iterator; it doesn't
implement the next () function. The for statement handles this gracefully, however,
by creating an iterator from a sequence automatically.

To make the second case work, we need to explicitly create an iterator froma list
object. This permits the legs () function to get the first item from the iterator over
the 1ist items.

Extending a simple loop

We have two kinds of extensions we might factor into a simple loop. We'll look

first at a £ilter extension. In this case, we might be rejecting values from further
consideration. They might be data outliers, or perhaps source data that's improperly
formatted. Then, we'll look at mapping source data by performing a simple
transformation to create new objects from the original objects. In our case, we'll be
transforming strings to floating-point numbers. The idea of extending a simple
loop with a mapping, however, applies to situations. We'll look at refactoring the
above pairs () function. What if we need to adjust the sequence of points to discard
a value? This will introduce a f£ilter extension that rejects some data values.

As the loop we're designing simply returns pairs without performing any additional
application-related processing, the complexity is minimal. Simplicity means we're
somewhat less likely to confuse the processing state.
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Adding a filter extension to this design might look something like the following
code snippet:

def legs filter(lat lon iter):
begin= next(lat lon iter)
for end in lat lon iter:
if #some rule for rejecting:
continue
yield begin, end
begin= end

We have plugged in a processing rule to reject certain values. As the 1oop remains
succinct and expressive, we are confident that the processing will be done properly.
Also, we can easily write a test for this function, as the results work for any iterable,
irrespective of the long-term destination of the pairs.

The next refactoring will introduce additional mapping to a loop. Adding mappings
is common when a design is evolving. In our case, we have a sequence of string
values. We need to convert these to floating-point values for later use. This is a
relatively simple mapping that shows the design pattern.

The following is one way to handle this data mapping, through a generator
expression that wraps a generator function:

print (tuple(legs((float(lat), float(lon))
for lat,lon in lat lon kml())))

We've applied the legs () function to a generator expression that creates £loat
values from the output of the 1at_lon_kml () function. We can read this in the
opposite order as well. The 1at_lon_kml () function's output is transformed
into a pair of float values, which is then transformed into a sequence of legs.

This is starting to get complex. We've got a large number of nested functions here.
We're applying float (), legs (), and tuple () to a data generator. One common
refactoring of complex expressions is to separate the generator expression from
any materialized collection. We can do the following to simplify the expression:

flt= ((float(lat), float(lomn)) for lat,lon in lat lon kml())
print (tuple(legs (flt)))

We've assigned the generator function to a variable named £1t. This variable
isn't a collection object; we're not using a 1ist comprehension to create an object.
We've merely assigned the generator expression to a variable name. We've then
used the f1t variable in another expression.
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The evaluation of the tuple () method actually leads to a proper object being built so
that we can print the output. The £1t variable's objects are created only as needed.

There are other refactoring's we might like to do. In general, the source of the data is
something we often want to change. In our example, the 1at_lon kml () function is
tightly bound in the rest of the expression. This makes reuse difficult when we have
a different data source.

In the case where the float () operation is something we'd like to parameterize

so that we can reuse it, we can define a function around the generator expression.
We'll extract some of the processing into a separate function merely to group the
operations. In our case, the string-pair to float-pair is unique to a particular source
data. We can rewrite a complex float-from-string expression into a simpler function
such as follows:

def float from pair( lat lon iter ):
return ((float(lat), float(lon)) for lat,lon in lat_lon iter)

The float_from_pair () function applies the float () function to the first and
second values of each item in the iterable, yielding a two tuple of floats created from
an input value. We've relied on Python's for statement to decompose the two tuple.

We can use this function in the following context:

legs( float from pair(lat lon kml()))

We're going to create legs that are built from float values that come from a KML
file. It's fairly easy to visualize the processing, as each stage in the process is a simple
prefix function.

When parsing, we often have sequences of string values. For numeric applications,
we'll need to convert strings to float, int, or Decimal values. This often involves
inserting a function such as the float_from pair () function into a sequence of
expressions that clean up the source data.

Our previous output was all strings; it looked like the following code snippet:

(('37.54901619777347', '-76.33029518659048"'),
('37.840832', '-76.27383399999999"),
('38.976334', '-76.47350299999999"'))

We'll want data like the following code snippet, where we have floats:

(((37.54901619777347, -76.33029518659048),
(37.840832, -76.273834)), ((37.840832, -76.273834), ..
((38.330166, -76.458504), (38.976334, -76.473503)))
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We'll need to create a pipeline of simpler transformation functions. Above, we arrived
at flt= ((float(lat), float(lon)) for lat,lon in lat lon kml()).We can
exploit the substitution rule for functions and replace a complex expression such as
(float (lat), float(lon)) for lat,lon in lat lon kml ()) with a function
that has the same value, in this case, float from pair (lat lon_kml ()). This kind
of refactoring allows us to be sure that a simplification has the same effect as a more
complex expression.

There are some simplifications that we'll look at in Chapter 5, Higher-order Functions.
We will revisit this in Chapter 6, Recursions and Reductions to see how to apply these
simplifications to the file-parsing problem.

Applying generator expressions to scalar
functions

We'll look cat a more complex kind of generator expression to map data values from
one kind of data to another. In this case, we'll apply a fairly complex function to
individual data values created by a generator.

We'll call these non-generator functions scalar, as they work with simple scalar
values. To work with collections of data, a scalar function will be embedded in a
generator expression.

To continue the example started earlier, we'll provide a haversine function and then
use a generator expression to apply a scalar haversine () function to a sequence of
pairs from our KML file.

The haversine () function looks like following:

from math import radians, sin, cos, sqgrt, asin

MI= 3959
NM= 3440
KM= 6371

def haversine( pointl, point2, R=NM ):
lat_1, lon_1l1= pointl
lat_2, lon 2= point2

A lat = radians(lat 2 - lat 1)
A lon = radians(lon 2 - lon 1)
lat 1 = radians(lat 1)
lat 2 = radians(lat 2)
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a sin(A lat/2)**2 + cos(lat_1)*cos(lat 2)*sin(A lon/2) **2

c 2*asin(sqrt(a))

return R * c
This is a relatively simple implementation copied from the World Wide Web.

The following is how we might use our collection of functions to examine some KML
data and produce a sequence of distances:

trip= ((start, end, round(haversine(start, end),4))

for start,end in legs(float from pair(lat_lon kml())))
for start, end, dist in trip:

print(start, end, dist)

The essence of the processing is the generator expression assigned to the trip
variable. We've assembled three tuples with a start, end, and the distance from start
to end. The start and end pairs come from the legs () function. The legs () function
works with floating-point data built from the latitude-1longitude pairs
extracted from a KML file.

The output looks like the following command snippet:

(37.54901619777347, -76.33029518659048) (37.840832, -76.273834)
17.7246

(37.840832, -76.273834) (38.331501, -76.459503) 30.7382
(38.331501, -76.459503) (38.845501, -76.537331) 31.0756
(36.843334, -76.298668) (37.549, -76.331169) 42.3962
(37.549, -76.331169) (38.330166, -76.458504) 47.2866
(38.330166, -76.458504) (38.976334, -76.473503) 38.8019

Each individual processing step has been defined succinctly. The overview, similarly,
can be expressed succinctly as a composition of functions and generator expressions.

Clearly, there are several further processing steps we might like to apply to
this data. First, of course, is to use the format () method of a string to produce
better-looking output.

More importantly, there are a number of aggregate values we'd like to extract from
this data. We'll call these values reductions of the available data. We'd like to reduce
the data to get the maximum and minimum latitude —for example, to show the
extreme North and South ends of this route. We'd like to reduce the data to get

the maximum distance in one leg as well as the total distance for all 1egs.

[72]




Chapter 4

The problem we'll have using Python is that the output generator in the trip
variable can only be used once. We can't easily perform several reductions of this
detailed data. We can use itertools.tee () to work with the iterable several times.
It seems wasteful, however, to read and parse the KML file for each reduction.

We can make our processing more efficient by materializing intermediate results.
We'll look at this in the next section. Then, we can see how to compute multiple
reductions of the available data.

Using any() and all() as reductions

The any () and all () functions provide boolean reduction capabilities. Both functions
reduce a collection of values to a single True or False. The all () function assures that
all values are True. The any () function assures that at least one value is True.

These functions are closely related to a universal quantifier and an existential
quantifier used to express mathematical logic. We might, for example, want to assert
that all elements in a given collection have some property. One formalism for this
might look like following;:

(Vx € SomeSet) Prime x)

We'd read this as: for all x in SomeSet, the function Prime(x) is true. We've put a
quantifier in front of the logical expression.

In Python, we switch the order of the items slightly to transcribe the logic expression
as follows:

all (isprime(x) for x in someset)

This will evaluate each argument value (isprime (x) ) and reduce the collection
of values to a single True or False.

The any () function is related to the existential quantifier. If we want to assert that
no value in a collection is prime, we might have something like one of the two
equivalent expressions:

—(Vx € SomeSet ) Prime (x) = (3x € SomeSet )~ Prime ( x)

The first states that it is not the case that all elements in SomeSet are prime. The second
version asserts that there exists one element in SomeSet that is not prime. These two are
equivalent —that is, if not all elements are prime, then one element must be non-prime.
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In Python, we can switch the order of the terms and transcribe these to working code
as follows:

not all(isprime(x) for x in someset)
any (not isprime(x) for x in someset)

As they're equivalent, there are two reasons for preferring one over the other:
performance and clarity. The performance is nearly identical, so it boils down
to clarity. Which of these states the condition the most clearly?

The all () function can be described as an and reduction of a set of values.

The result is similar to folding the and operator between the given sequence

of values. The any () function, similarly, can be described as an or reduction.
We'll return to this kind of general-purpose reduce when we look at the reduce ()
function in Chapter 10, The Functools Module.

We also need to look at the degenerate case of these functions. What if the sequence
has 0 elements? What are the values of al1(()) orall([])?

If we ask, "Are all elements in an empty set prime?", then what's the answer?
As there are no elements, the question is a bit difficult to answer.

If we ask "Are all elements in an empty set prime and all elements in Someset
prime?", we have a hint as to how we have to proceed. We're performing an and
reduction of an empty set and an and reduction of SomeSet.

(Vx e @) Prime(x) A(Vx € SomeSet ) Prime (x)

It turns out that the and operator can be distributed freely. We can rewrite this to a
union of the two sets, which is then evaluated for being prime:

(Vx € @U SomeSet ) Prime ( x)

Clearly, S UQ =S .If we union an empty set, we get the original set. The empty set
can be called the union identify element. This parallels the way 0 is the additive
identity element: a+0=a.

Similarly, any ( () ) must be the or identity element, which is False. If we think of
the multiplicative identify element, 1, where hx1=5, then all (()) must be True.
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We can demonstrate that Python follows these rules:

>>> all(())
True
>>> any(())
False

Python gives us some very nice tools to perform processing that involves logic.
We have the built-in and, or, and not operators. However, we also have these
collection-oriented any () and all () functions.

Using len() and sum()

The len () and sum() functions provide two simple reductions: a count of the
elements and the sum of the elements in a sequence. These two functions are
mathematically similar, but their Python implementation is quite different.

Mathematically, we can observe this cool parallelism. The l1en () function returns

the sum of 1's for each value in a collection, X: Z 1= Z X"
xeX xeX

The sum () function returns the sum of x for each value in a collection, X:

2x ¥ = 2k
xeX xeX .

The sum () function works for any iterable. The 1en () function doesn't apply to
iterables; it only applies to sequences. This little asymmetry in the implementation
of these functions is a little awkward around the edges of statistical algorithms.

For empty sequences, both of these functions return a proper additive identity
element of 0.

>>> sum(())
0

Of course, sum( () ) returns an integer 0. When other numeric types are used,
the integer 0 will be coerced to the proper type for the available data.
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Using sums and counts for statistics

The definitions of the arithmetic mean have an appealingly trivial definition based
on sum () and len (), which is as follows:

def mean( iterable ):
return sum(iterable)/len(iterable)

While elegant, this doesn't actually work for iterables. This definition only works
for sequences.

Indeed, we have a hard time performing a simple computation of mean or standard
deviation based on iterables. In Python, we must either materialize a sequence object,
or resort to somewhat more complex operations.

We have a fairly elegant expression of mean and standard deviation in the
following definitions:

import math

s0= len(data) # sum(l for x in data) # x**0
sl= sum(data) # sum(x for x in data) # x**1
s2= sum(x*x for x in data)

mean= sl1/s0
stdev= math.sqrt(s2/s0 - (s1/s0)**2)

These three sums, s0, s1, and s2, have a tidy, parallel structure. We can easily
compute the mean from two of the sums. The standard deviation is a bit more
complex, but it's still based on the three sums.

This kind of pleasant symmetry also works for more complex statistical functions
such as correlation and even least-squares linear regression.

The moment of correlation between two sets of samples can be computed from their
standardized value. The following is a function to compute the standardized value:

def z( x, px, o x ):
return (x-p_x)/o x

The calculation is simply to subtract the mean, u_x, from each sample, %, and divide
by the standard deviation, o_x. This gives as a value measured in units of sigma, o.
A value 1 o is expected about two-thirds of the time. Larger values should be less
common. A value outside +3 o should happen less than 1 percent of the time.
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We can use this scalar function as follows:

>>>d = [2, 4, 4, 4, 5, 5, 7, 9]
>>> list(z(x, mean(d), stdev(d)) for x in d4d)
[-1.5, -0.5, -0.5, -0.5, 0.0, 0.0, 1.0, 2.0]

We've materialized 1ist that consists of normalized scores based on some raw
data in the variable, d. We used a generator expression to apply the scalar function,
z (), to the sequence object.

The mean () and stdev () functions are simply based on the examples shown above:

def mean (x):
return sl(x)/s0(x)
def stdev(x):
return math.sqrt(s2(x)/s0(x) - (sl(x)/s0(x))**2)

The three sum functions, similarly, are based on the examples above:

def s0(data):

return sum(l for x in data) # or len(data)
def sl (data):

return sum(x for x in data) # or sum(data)
def s2(data):

return sum(x*x for x in data)

While this is very expressive and succinct, it's a little frustrating because we can't
simply use an iterable here. We're computing a mean, which requires a sum of the
iterable, plus a count. We're also computing a standard deviation that requires two
sums and a count from the iterable. For this kind of statistical processing, we must
materialize a sequence object so that we can examine the data multiple times.

The following is how we can compute the correlation between two sets of samples:

def corr( samplel, sample2 ):
B 1l, o 1 = mean(samplel), stdev(samplel)
B 2, o 2 = mean(sample2), stdev(sample2)
1= (z(x, pn.1, o 1) for x in samplel)
2

z
z 2 = (z(x, n 2, o 2) for x in sample2)
r

sum(zxl*zx2 for zxl, zx2 in zip(z 1, z 2) ) /80 (samplel)
return r
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This correlation function gathers basic statistical summaries of the two sets of samples:
the mean and standard deviation. Given these summaries, we defined two generator
functions that will create normalized values for each set of samples. We can then use
the zip () function (see the next example) to pair up items from the two sequences

of normalized values and compute the product of those two normalized values.

The average of the product of the normalized scores is the correlation.

The following is an example of gathering the correlation between two sets of samples:

>>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
1.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,] # Height (m)

>>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,] #
Mass (kg)

>>> round(corr( xi, yi ), 5)

0.99458

We've shown two sequences of data points, xi and yi. The correlation is over .99,
which shows a very strong relationship between the two sequences.

This shows one of the strengths of functional programming. We've created a handy
statistical module using a half-dozen functions with definitions that are single
expressions. The counterexample is the corr () function that can be reduced to a
single very long expression. Each internal variable in this function is used just once;
a local variable can be replaced with a copy-and-paste of the expression that created
it. This shows us that the corr () function has a functional design even though it's
written out in six separate lines of Python.

Using zip() to structure and flatten
sequences

The zip () function interleaves values from several iterators or sequences. It will
create n tuples from the values in each of the n input iterables or sequences. We used
it in the previous section to interleave data points from two sets of samples, creating
two tuples.

The zip () function is a generator. It does not materialize
L a resulting collection.
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The following is an example that shows what the zip () function does:

>>> xi= [1.47, 1.50, 1.52, 1.55, 1.57, 1.60, 1.63, 1.65,
. 1l.68, 1.70, 1.73, 1.75, 1.78, 1.80, 1.83,]

>>> yi= [52.21, 53.12, 54.48, 55.84, 57.20, 58.57, 59.93, 61.29,
63.11, 64.47, 66.28, 68.10, 69.92, 72.19, 74.46,]

>>> zip( xi, yi )

<zip object at 0x101d62ab8>

>>> list(zip( xi, yi ))

[(1.47, 52.21), (1.5, 53.12), (1.52, 54.48), (1.55, 55.84),

(rL.57, 57.2), (1.6, 58.57), (1.63, 59.93), (1.65, 61.29),

(1.68, 63.11), (1.7, 64.47), (1.73, 66.28), (1.75, 68.1),

(1.78, 69.92), (1.8, 72.19), (1.83, 74.46)]

There are a number of edge cases for the zip () function. We must ask the following
questions about its behavior:

* What happens where then are no arguments at all?
*  What happens where there's only one argument?
*  What happens when the sequences are different lengths?

For reductions (any (), all (), len(), sum()), we want an identity element from
reducing an empty sequence.

Clearly, each of these edge cases must produce some kind of iterable output.
Here are some examples to clarify the behaviors. First, the empty argument list:

>>> zip()
<zip object at 0x101d62ab8>
>>> list ()

[1

We can see that the zip () function with no arguments is a generator function,
but there won't be any items. This fits the requirement that the output is iterable.

Next, we'll try a single iterable:

>>> zip( (1,2,3) )

<zip object at 0x101d62ab8>
>>> list ()

[(x,), (2,), (3,)1

In this case, the zip () function emitted one tuple from each input value. This too
makes considerable sense.
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Finally, we'll look at the different-length 1ist approach used by the zip () function:

>>> list(zip((1, 2, 3), ('a', 'b')))
[(1, 'a'), (2, 'b")]

This result is debatable. Why truncate? Why not pad the shorter list with None values?
This alternate definition of zip () function is available in the itertools module as the
zip_longest () function. We'll look at this in Chapter 8, The Itertools Module.

Unzipping a zipped sequence

zip () mapping can be inverted. We'll look at several ways to unzip a collection
of tuples.

_ We can't fully unzip an iterable of tuples, since we might
% want to make multiple passes over the data. Depending
s on our needs, we might need to materialize the iterable
to extract multiple values.

The first way is something we've seen many times; we can use a generator function
to unzip a sequence of tuples. For example, assume that the following pairs are a
sequence object with two tuples:

p0= (x[0] for x in pairs)
pl= (x[1] for x in pairs)

This will create two sequences. The po sequence has the first element of each two
tuple; the p1 sequence has the second element of each two tuple.

Under some circumstances, we can use the multiple ssignment of a for loop to
decompose the tuples. The following is an example that computes the sum of
products:

sum(pO0*pl for for p0, pl in pairs)

We used the for statement to decompose each two tuple into po and p1.

Flattening sequences

Sometimes, we'll have zipped data that needs to be flattened. For example, our input
might be a file that looks like this:

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71

[80]



Chapter 4

We can easily use ((line.split() for line in file) to create a sequence of
ten tuples.

We might heave data in blocks that looks as follows:

blocked = [['2', '3', '5', 171, 111+, 1131, 117+, 1191, 1231,
12911, ['31', '37', '141', 1431, 1471, 1531, 1591, 1611, 1671,
'71'1,

This isn't really what we want, though. We want to get the numbers into a single,
flat sequence. Each item in the input is a ten tuple; we'd rather not wrangle with
decomposing this one item at a time.

We can use a two-level generator expression, as shown in the following code snippet,
for this kind of flattening:

>>> (x for line in blocked for x in line)

<generator object <genexpr> at 0x10lcead70>

>>> list ()

[r2+, 3+, 5+, *7v, 11+, 'i3+, a7+, 'i9+, ‘'23*, '29', '31°',
'37', '41', '43', '47', '53', '59', '61', '67', '71', .. 1

The two-level generator is confusing at first. We can understand this through
a simple rewrite as follows:

for line in data:
for x in line:

yield x

This transformation shows us how the generator expression works. The first for
clause (for line in data) steps through each ten tuple in the data. The second
for clause (for x in line) steps through each item in the first for clause.

This expression flattens a sequence-of-sequence structure into a single sequence.

Structuring flat sequences

Sometimes, we'll have raw data that is a flat list of values that we'd like to bunch
up into subgroups. This is a bit more complex. We can use the itertools module's
groupby () function to implement this. This will have to wait until Chapter 8, The
Iterools Module.

Let's say we have a simple flat 1ist as follows:

flat= ['2', '3', '5', '7v', 11, '13', '17', '19', '23', 1291,
131', '37', '41', '43', '47', '53', 159', 161', '67', '71', ... ]
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We can write nested generator functions to build a sequence-of-sequence structure
from flat data. In order to do this, we'll need a single iterator that we can use multiple
times. The expression looks like the following code snippet:

>>> flat iter=iter(flat)

>>> (tuple(next(flat iter) for i in range(5)) for row in

range (len(£flat)//5))

<generator object <genexpr> at 0x10lcead70>

>>> list ()

[(l2l, |3|' l5l, |7|' llll), (l13|' l17|' l19|' l23|' l29|),
(*31', '37', '41', '43', '47'), ('53', '59', 1g1', '67', '71'),
(+73+, '79', '83', '89', '97'), ('101', '103', '107', '109°',
'113'), ('127', '131', '137', '139', '149'), ('151', '157', '163',
'167', '173'), ('179', ‘'181', '191', '193', '197'), ('199', '211',
1223, '227', '229")]

First, we created an iterator that exists outside either of the two loops that we'll use to
create our sequence-of-sequences. The generator expression uses tuple (next (flat_
iter) for i in range(5)) to create five tuples from the iterable values in the
flat_iter variable. This expression is nested inside another generator that repeats
the inner loop the proper number of times to create the required sequence of values.

This works only when the flat list is divided evenly. If the last row has partial
elements, we'll need to process them separately.

We can use this kind of function to group data into same-sized tuples, with an odd
sized tuple at the end using the following definitions:

def group by seq(n, sequence):
flat_iter=iter(sequence)
full sized items = list( tuple(next(flat iter)
for i in range(n))
for row in range(len(sequence)//n))
trailer = tuple(flat iter)
if trailer:
return full sized items + [trailer]
else:
return full sized items

We've created an initial 1ist where each tuple is of the size n. If there are leftovers,
we'll have a trailer tuple with a non-zero length that we can append to the 1ist of
full-sized items. If the trailer tuple is of the length 0, we'll ignore it.
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This isn't as delightfully simple and functional-looking as other algorithms
we've looked at. We can rework this into a pleasant-enough generator function.
The following code uses a while loop as part of tail-recursion optimization:

def group by iter( n, iterable ):
row= tuple(next(iterable) for i in range(n))
while row:
yield row
row= tuple(next (iterable) for i in range(n))

We've created a row of the required length from the input iterable. When we get
to the end of the input iterable, the value of tuple (next (iterable) for i in
range (n) ) will be a zero-length tuple. This is the base case of a recursion, which
we've written as the terminating condition for a while loop.

Structuring flat sequences—an alternative
approach

Let's say we have a simple, flat 1ist and we want to create pairs from this list.
The following is the required data:

flat= ['2', '3', '5', '7r', 11, '13*', '17', '19', '23', 1291,
131', '37', '41', '43', '47', '53', 159', 161', '67', '71',... ]

We can create pairs using list slices as follows:
zip(flat[0::2], flat[l::2])

The slice f1at [0: :2] is all of the even positions. The slice £1at [1::2] is all of the
odd positions. If we zip these together, we get a two tuple of (0), the value from the
first even position, and (1), the value from the first odd position. If the number of
elements is even, this will produce pairs nicely.

This has the advantage of being quite short. The functions shown in the previous
section are longer ways to solve the same problem.

This approach can be generalized. We can use the * (args) approach to generate
a sequence-of-sequences that must be zipped together. It looks like the following;:

zip(* (flat[i::n] for i in range(n)))

This will generate n slices: f1at [0::n], flat [1::n], flat[2::n], ..., flat [n-1::n].
This collection of slices becomes the arguments to zip (), which then interleaves values
from each slice.

[83]
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Recall that zip () truncates the sequence at the shortest 1ist. This means that, if the
list is not an even multiple of the grouping factor n, (len(flat)%n != 0), which
is the final slice, won't be the same length as the others and the others will all be
truncated. This is rarely what we want.

If we use the itertools.zip_longest () method, then we'll see that the final tuple
will be padded with enough None values to make it have a length of n. In some cases,
this padding is acceptable. In other cases, the extra values are undesirable.

The 1ist slicing approach to grouping data is another way to approach the problem
of structuring a flat sequence of data into blocks. As it is a general solution, it doesn't
seem to offer too many advantages over the functions in the previous section. As a
solution specialized for making two tuples from a flat last, it's elegantly simple.

Using reversed() to change the order

There are times when we need a sequence reversed. Python offers us two approaches
to this: the reversed () function and slices with reversed indices.

For an example, consider performing a base conversion to hexadecimal or binary.
The following is a simple conversion function:

def digits(x, b):
if x == 0: return
yield x % b
for d in to_base(x//b, b):
yield d

This function uses a recursion to yield the digits from the least significant to the most
significant. The value of x$b will be the least significant digits of x in the base b.

We can formalize it as following:

. ifx=0

d1g1ts(x,b) = [x(modb)] + digits (%,b} if x>0

In many cases, we'd prefer the digits to be yielded in the reverse order. We can wrap
this function with the reversed () function to swap the order of the digits:

def to base(x, b):

return reversed(tuple(digits(x, b)))
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The reversed () function produces an iterable, but the

argument value must be a sequence object. The function
/S . . . .
then yields the items from that object in the reverse order.

We can do a similar kind of thing also with a slice such as tuple (digits(x, b))
[::-1]. The slice, however, is not an iterator. A slice is a materialized object built
from another materialized object. In this case, for such small collections of values,
the distinction is minor. As the reversed () function uses less memory, it might be
advantageous for larger collections.

Using enumerate() to include a sequence
number

Python offers the enumerate () function to apply index information to values in a
sequence or iterable. It performs a specialized kind of wrap that can be used as part
of an unwrap (process (wrap (data))) design pattern.

It looks like the following code snippet:

>>> xi

[1.47, 1.5, 1.52, 1.55, 1.57, 1.6, 1.63, 1.65, 1.68, 1.7, 1.73,
1.75, 1.78, 1.8, 1.83]

>>> list (enumerate(xi))

[(o, 1.47), (1, 1.5), (2, 1.52), (3, 1.55), (4, 1.57), (5, 1.6),
(6, 1.63), (7, 1.65), (8, 1.68), (9, 1.7), (10, 1.73), (11, 1.75),
(12, 1.78), (13, 1.8), (14, 1.83)]

The enumerate () function transformed each input item into a pair with a sequence
number and the original item. It's vaguely similar to something as follows:

zip (range(len(source)), source)

An important feature of enumerate () is that the result is an iterable and it works
with any iterable input.

When looking at statistical processing, for example, the enumerate () function comes
in handy to transform a single sequence of values into a more proper time series by
prefixing each sample with a number.
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Summary

In this chapter, we saw detailed ways to use a number of built-in reductions.

We've used any () and all () to do essential logic processing. These are tidy
examples of reductions using a simple operator such as or or and.

We've also looked at numeric reductions such as len () and sum (). We've applied
these functions to create some higher-order statistical processing. We'll return to
these reductions in Chapter 6, Recursions and Reductions.

We've also looked at some of the built-in mappings.

The zip () function merges multiple sequences. This leads us to look at using this
in the context of structuring and flattening more complex data structures. As we'll
see in examples in later chapters, nested data is helpful in some situations and flat
data is helpful in others.

The enumerate () function maps an iterable to a sequence of two tuples. Each two
tuple has (0) as the sequence number and (1) as the original item.

The reversed () function iterates over the items in a sequence object with their
original order reversed. Some algorithms are more efficient at producing results
in one order, but we'd like to present these results in the opposite order.

In the next chapter, we'll look at the mapping and reduction functions that use an
additional function as an argument to customize their processing. Functions that
accept a function as an argument are our first examples of higher-order functions.
We'll also touch on functions that return functions as a result.
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A very important feature of the functional programming paradigm is higher-order
functions. These are functions that accept functions as arguments or return functions
as results. Python offers several of these kinds of functions. We'll look at them and
some logical extensions.

As we can see, there are three varieties of higher-order functions, which are
as follows:

* Functions that accept a function as one of its arguments
* Functions that return a function

* Functions that accept a function and return a function

Python offers several higher-order functions of the first variety. We'll look at these
built-in higher-order functions in this chapter. We'll look at a few of the library
modules that offer higher-order functions in later chapters.

The idea of a function that emits functions can seem a bit odd. However, when we
look at a Callable class object, we see a function that returns a Callable object. This is
one example of a function that creates another function.

Functions that accept functions and create functions include complex Callable classes
as well as function decorators. We'll introduce decorators in this chapter, but defer
deeper consideration of decorators until Chapter 11, Decorator Design Techniques.

Sometimes we wish that Python had higher-order versions of the collection functions
from the previous chapter. In this chapter, we'll show the reduce (extract ())

design pattern to perform a reduction on specific fields extracted from a larger tuple.
We'll also look at defining our own version of these common collection-processing
functions.
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In this chapter, we'll look at the following functions:

* max () and min ()

* Lambda forms that we can use to simplify using higher-order functions

®* map()
e filter()
* iter()

® gsorted()

There are a number of higher-order functions in the itertools module. We'll look at
this module in Chapter 8, The Itertools Module and Chapter 9, More Itertools Techniques.

Additionally, the functools module provides a general-purpose reduce () function.
We'll look at this in Chapter 10, The Functools Module. We'll defer this because it's not
as generally applicable as the other higher-order functions in this chapter.

The max () and min () functions are reductions; they create a single value from
a collection. The other functions are mappings. They don't reduce the input to a
single value.

. Themax (), min(), and sorted () functions have a default
% behavior as well as a higher-order function behavior. The function
=" is provided via the key= argument. The map () and filter ()
functions take the function as the first positional argument.

Using max() and min() to find extrema

The max () and min () functions have a dual life. They are simple functions that apply
to collections. They are also higher-order functions. We can see their default behavior
as follows:

>>> max (1, 2, 3)
3

>>> max((1,2,3,4))
4

Both functions will accept an indefinite number of arguments. The functions are
designed to also accept a sequence or an iterable as the only argument and locate
the max (or min) of that iterable.
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They also do something more sophisticated. Let's say we have our trip data from the
examples in Chapter 4, Working with Collections. We have a function that will generate
a sequence of tuples that looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

Each tuple has three values: a starting location, an ending location, and a distance.
The locations are given in latitude and longitude pairs. The East latitude is positive,
so these are points along the US East Coast, about 76° West. The distances are in
nautical miles.

We have three ways of getting the maximum and minimum distances from this
sequence of values. They are as follows:

* Extract the distance with a generator function. This will give us only the
distances, as we've discarded the other two attributes of each leg. This won't
work out well if we have any additional processing requirements.

* Use the unwrap (process (wrap () ) ) pattern. This will give us the legs
with the longest and shortest distances. From these, we can extract just the
distance, if that's all that's needed. The other two will give us the leg that
contains the maximum and minimum distances.

* Use the max () and min () functions as higher-order functions.

To provide context, we'll show the first two solutions. The following is a script
that builds the trip and then uses the first two approaches to locate the longest
and shortest distances traveled:

from ch02 ex3 import float from pair, lat lon kml, limits,
haversine, legs

path= float from pair(lat lon kml())

trip= tuple((start, end, round(haversine(start, end),4))
for start,end in legs(iter (path)))

This section creates the trip object as a tuple based on haversine distances of each
leg built from a path read from a KML file.

Once we have the trip object, we can extract distances and compute the maximum
and minimum of those distances. The code looks as follows:

long, short = max(dist for start,end,dist in trip),
min(dist for start,end,dist in trip)

print (long, short)
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We've used a generator function to extract the relevant item from each leg of the
trip tuple. We've had to repeat the generator function because each generator
expression can be consumed only once.

The following are the results:

129.7748 0.1731

The following is a version with the unwrap (process (wrap ())) pattern. We've
actually declared functions with the names wrap () and unwrap () to make it clear
how this pattern works:

def wrap(leg iter):
return ((legl[2],leg) for leg in leg iter)

def unwrap(dist leg):
distance, leg = dist leg
return leg
long, short = unwrap (max(wrap(trip))), unwrap (min(wrap(trip)))

print (long, short)

Unlike the previous version, this locates all attributes of the 1egs with the longest
and shortest distances. Rather than simply extracting the distances, we put the
distances first in each wrapped tuple. We can then use the default forms of the min ()
and max () functions to process the two tuples that contain the distance and leg
details. After processing, we can strip the first element, leaving just the leg details.

The results look as follows:

((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)
((35.505665, -76.653664), (35.508335, -76.654999), 0.1731)

The final and most important form uses the higher-order function feature of the
max () and min () functions. We'll define a helper function first and then use it to
reduce the collection of legs to the desired summaries by executing the following
code snippet:

def by dist(leg):

lat, lon, dist= leg

return dist
long, short = max(trip, key=by dist), min(trip, key=by dist)
print (long, short)
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The by_dist () function picks apart the three items in each leg tuple and returns the
distance item. We'll use this with the max () and min () functions.

The max () and min () functions both accept an iterable and a function as arguments.
The keyword parameter key= is used by all of Python's higher-order functions to
provide a function that will be used to extract the necessary key value.

We can use the following to help conceptualize how the max () function uses
the key function:

wrap= ((key(leg),leg) for leg in trip)

return max(wrap) [1]

The max () and min () functions behave as if the given key function is being used
to wrap each item in the sequence into a two tuple, process the two tuple, and then
decompose the two tuple to return the original value.

Using Python lambda forms

In many cases, the definition of a helper function requires too much code. Often,
we can digest the key function to a single expression. It can seem wasteful to have to
write both def and return statements to wrap a single expression.

Python offers the lambda form as a way to simplify using higher-order functions.
A lambda form allows us to define a small, anonymous function. The function's body
is limited to a single expression.

The following is an example of using a simple 1ambda expression as the key:
long, short = max(trip, key=lambda leg: legl2]),

min (trip, key=lambda leg: legl[2])
print (long, short)

The lambda we've used will be given an item from the sequence; in this case, each
leg three tuple will be given to the 1ambda. The 1ambda argument variable, 1eg, is
assigned and the expression, 1eg[2], is evaluated, plucking the distance from the
three tuple.

In the rare case that a 1ambda is never reused, this form is ideal. It's common,
however, to need to reuse the 1ambda objects. Since copy-and-paste is such
a bad idea, what's the alternative?

We can always define a function.
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We can also assign lambdas to variables, by doing something like this:

start= lambda x: x[0]
end = lambda x: x[1]
dist = lambda x: x[2]

A lambda is a callable object and can be used like a function. The following is an
example at the interactive prompt:

>>> leg = ((27.154167, -80.195663), (29.195168, -81.002998),
129.7748)

>>> start= lambda x: x[0]

>>> end = lambda x: x[1]

>>> dist = lambda x: x[2]

>>> dist(leg)

129.7748

Python offers us two ways to assign meaningful names to elements of tuples:
namedtuples and a collection of lambdas. Both are equivalent.

To extend this example, we'll look at how we get the 1atitude or longitude value
of the starting or ending point. This is done by defining some additional lambdas.

The following is a continuation of the interactive session:

>>> start(leg)

(27.154167, -80.195663)

>>>
>>> lat = lambda x: x[0]
>>> lon = lambda x: x[1]

>>> lat(start(leg))
27.154167

There's no clear advantage to lambdas over namedtuples. A set of 1ambdas to extract
fields requires more lines of code to define than a namedtuple. On the other hand,
we can use a prefix function notation, which might be easier to read in a functional
programing context. More importantly, as we'll see in the sorted () example later,
the lambdas can be used more effectively than namedtuple attribute names by
sorted (), min(), and max ().
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Lambdas and the lambda calculus

In a book on a purely functional programming language, it would be necessary to
explain lambda calculus, and the technique invented by Haskell Curry that we call
currying. Python, however, doesn't stick closely to this kind of 1ambda calculus.
Functions are not curried to reduce them to single-argument 1ambda forms.

We can, using the functools.partial function, implement currying. We'll save this
for Chapter 10, The Functools Module.

Using the map() function to apply a
function to a collection

A scalar function maps values from a domain to a range. When we look at the math.
sqgrt () function, as an example, we're looking at a mapping from the float value, x,
to another float value, y = sqrt(x) such that y* = x. The domain is limited to positive
values. The mapping can be done via a calculation or table interpolation.

The map () function expresses a similar concept; it maps one collection to another
collection. It assures that a given function is used to map each individual item from
the domain collection to the range collection — the ideal way to apply a built-in
function to a collection of data.

Our first example involves parsing a block of text to get the sequence of numbers.
Let's say we have the following chunk of text:

>>> text= "nn\

e 2 3 5 7 11 13 17 19 23
29

e 31 37 41 43 47 53 59 61 67
71

e 73 79 83 89 97 101 103 107 109
113

e 127 131 137 139 149 151 157 163 167
173

e 179 181 191 193 197 199 211 223 227
229

We can restructure this text using the following generator function:

>>> data= list(v for line in text.splitlines() for v in line.split())
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This will split the text into lines. For each line, it will split the line into space-delimited
words and iterate through each of the resulting strings. The results look as follows:

[*2r, 3%, '5r, 171, v11v, 1137, '17+, 119', 1231, 129,
131, '37', 141", '43', '47', '531, 1591, 161!, '67', 171",
1731, '79%, 183", '89', '97', *101', '103', '107', '109', '113',
1127+, '131', '137', '139', '149', '151', '157', '163', '167',
11731, '179', '181', '191', '193', '197', '199', '211', 12237,
12271, 1229']

We still need to apply the int () function to each of the string values. This is where
the map () function excels. Take a look at the following code snippet:

>>> list(map(int,data))

[z, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229]

The map () function applied the int () function to each value in the collection.
The result is a sequence of numbers instead of a sequence of strings.

The map () function's results are iterable. The map () function can process any type
of iterable.

The idea here is that any Python function can be applied to the items of a collection
using the map () function. There are a lot of built-in functions that can be used in this
map-processing context.

Working with lambda forms and map()

Let's say we want to convert our trip distances from nautical miles to statute miles.
We want to multiply each leg's distance by 6076.12/5280, which is 1.150780.

We can do this calculation with the map () function as follows:
map (lambda x: (start(x),end(x),dist(x)*6076.12/5280), trip)

We've defined a 1ambda that will be applied to each leg in the trip by the map ()
function. The 1ambda will use other 1ambdas to separate the start, end, and distance
values from each leg. It will compute a revised distance and assemble a new leg
tuple from the start, end, and statute mile distance.

This is precisely like the following generator expression:

((start(x),end(x),dist(x)*6076.12/5280) for x in trip)
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We've done the same processing on each item in the generator expression.

The important difference between the map () function and a generator expression is
that the map () function tends to be faster than the generator expression. The speedup
is in the order of 20 percent less time.

Using map() with multiple sequences

Sometimes, we'll have two collections of data that need to parallel each other. In
Chapter 4, Working with Collections, we saw how the zip () function can interleave
two sequences to create a sequence of pairs. In many cases, we're really trying to do
something like this:

map (function, zip(one iterable, another iterable))

We're creating argument tuples from two (or more) parallel iterables and applying a
function to the argument tuple. We can also look at it like this:

(function(x,y) for x,y in zip(one iterable, another iterable))
Here, we've replaced the map () function with an equivalent generator expression.

We might have the idea of generalizing the whole thing to this:

def star map(function, *iterables)

return (function(*args) for args in zip(*iterables))

There is a better approach that is already available to us. We don't actually need
these techniques. Let's look at a concrete example of the alternate approach.

In Chapter 4, Working with Collections, we looked at trip data that we extracted from
an XML file as a series of waypoints. We needed to create legs from this list of
waypoints that show the start and end of each leg.

The following is a simplified version that uses the zip () function applied to a special
kind of iterable:

>>> waypoints= range (4)

>>> zip(waypoints, waypoints([1l:])

<zip object at 0x10la38c20>

>>> list ()

[(o, 1y, (1, 2), (2, 3)1
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We've created a sequence of pairs drawn from a single flat list. Each pair will have
two adjacent values. The zip () function properly stops when the shorter list is
exhausted. This zip ( x, x[1:]) pattern only works for materialized sequences and
the iterable created by the range () function.

We created pairs so that we can apply the haversine () function to each pair to
compute the distance between the two points on the path. The following is how it
looks in one sequence of steps:

from ch02 ex3 import lat lon kml, float from pair, haversine
path= tuple(float from pair(lat lon kml()))

distancesl= map( lambda s e: (s _el[0], s _e[l], haversine(*s e)),
zip (path, path[1l:]1))

We've loaded the essential sequence of waypoints into the path variable. This is an
ordered sequence of latitude-longitude pairs. As we're going to use the zip (path,
path[1:]) design pattern, we must have a materialized sequence and not a simple
iterable.

The results of the zip () function will be pairs that have a start and end. We want our
output to be a triple with the start, end, and distance. The 1ambda we're using will
decompose the original two tuple and create a new three tuple from the start, end,
and distance.

As noted previously, we can simplify this by using a clever feature of the map ()
function, which is as follows:

distances2= map(lambda s, e: (s, e, haversine(s, e)), path, path[l:])

Note that we've provided a function and two iterables to the map () function. The
map () function will take the next item from each iterable and apply those two values
as the arguments to the given function. In this case, the given function is a 1ambda
that creates the desired three tuple from the start, end, and distance.

The formal definition for the map () function states that it will do star-map processing
with an indefinite number of iterables. It will take items from each iterable to create a
tuple of argument values for the given function.

Using the filter() function to pass
or reject data

The job of the filter () function is to use and apply a decision function called a
predicate to each value in a collection. A decision of True means that the value
is passed; otherwise, the value is rejected. The itertools module includes
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filterfalse () as variations on this theme. Refer to Chapter 8, The Itertools Module to
understand the usage of the itertools module's filterfalse () function.

We might apply this to our trip data to create a subset of legs that are over 50
nautical miles long, as follows:

long= list(filter(lambda leg: dist(leg) >= 50, trip)))

The predicate 1ambda will be True for long legs, which will be passed. Short legs will
be rejected. The output is the 14 legs that pass this distance test.

This kind of processing clearly segregates the filter rule (lambda leg: dist (leg)
>= 50) from any other processing that creates the trip object or analyzes the
long legs.

For another simple example, look at the following code snippet:

>>> filter (lambda x: x%3==0 or x%5==0, range(10))
<filter object at 0x101d5de50>
>>> sum( )

23

We've defined a simple 1ambda to check whether a number is a multiple of three or a
multiple of five. We've applied that function to an iterable, range (10) . The result is
an iterable sequence of numbers that are passed by the decision rule.

The numbers for which the 1ambda is True are [0, 3, 5, 6, 91, so these values are
passed. As the lambda is False for all other numbers, they are rejected.

This can also be done with a generator expression by executing the following code:

>>> list(x for x in range(10) if x%3==0 or x%5==0)

[o, 3, 5, 6, 91

We can formalize this using the following set comprehension notation:

{x]0<x<10A(x(mod3)=0vx(mod5)=0)}

This says that we're building a collection of x values such that x is in range (10) and
x%3==0 or x%5==0. There's a very elegant symmetry between the filter () function
and formal mathematical set comprehensions.
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We often want to use the filter () function with defined functions instead of
lambda forms. The following is an example of reusing a predicate defined earlier:

>>> from ch0l exl import isprimeg
>>> list(filter (isprimeg, range(100)))

[z, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97]

In this example, we imported a function from another module called isprimeg ().
We then applied this function to a collection of values to pass the prime numbers
and reject any non-prime numbers from the collection.

This can be a remarkably inefficient way to generate a table of prime numbers. The
superficial simplicity of this is the kind of thing lawyers call an attractive nuisance.

It looks like it might be fun, but it doesn't scale well at all. A better algorithm is the
Sieve of Eratosthenes; this algorithm retains the previously located prime numbers
and uses them to prevent a lot of inefficient recalculation.

Using filter() to identify outliers

In the previous chapter, we defined some useful statistical functions to compute
mean and standard deviation and normalize a value. We can use these functions to
locate outliers in our trip data. What we can do is apply the mean () and stdev ()
functions to the distance value in each leg of a trip to get the population mean and
standard deviation.

We can then use the z () function to compute a normalized value for each leg. If the

normalized value is more than 3, the data is extremely far from the mean. If we reject
this outliers, we have a more uniform set of data that's less likely to harbor reporting
Or measurement errors.

The following is how we can tackle this:

from stats import mean, stdev, z

dist data = list(map(dist, trip))

p_d = mean(dist data)

o d = stdev(dist data)

outlier = lambda leg: z(dist(leg),mn d,c d) > 3
print ("Outliers", list(filter (outlier, trip)))

We've mapped the distance function to each leg in the trip collection. As we'll do
several things with the result, we must materialize a 1ist object. We can't rely on
the iterator as the first function will consume it. We can then use this extraction to
compute population statistics n_d and o_d with the mean and standard deviation.
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Given the statistics, we used the outlier lambda to filter our data. If the normalized
value is too large, the data is an outlier.

The result of 1ist (filter (outlier, trip)) is a list of two legs that are quite long
compared to the rest of the legs in the population. The average distance is about

34 nm, with a standard deviation of 24 nm. No trip can have a normalized distance
of less than -1.407.

. We're able to decompose a fairly complex problem into a number
of independent functions, each one of which can be easily tested in
= isolation. Our processing is a composition of simpler functions. This
can lead to succinct, expressive functional programming.

The iter() function with a sentinel value

The built-in iter () function creates an iterator over a collection object. We can use
this to wrap an iterator object around a collection. In many cases, we'll allow the
for statement to handle this implicitly. In a few cases, we might want to create an
iterator explicitly so that we can separate the head from the tail of a collection. This
function can also iterate through the values created by a callable or function until a
sentinel value is found. This feature is sometimes used with the read () function

of a file to consume rows until some sentinel value is found. In this case, the given
function might be some file's readline () method. Providing a callable function to
iter () is a bit hard for us because this function must maintain state internally. This
hidden state is a feature of an open file, for example, each read () or readline ()
function advances some internal state to the next character or next line.

Another example of this is the way that a mutable collection object's pop ()
method makes a stateful change in the object. The following is an example
of using the pop () method:

>>> tail= iter([1, 2, 3, None, 4, 5, 6].pop, None)
>>> list(tail)

[6, 5, 4]

The tail variable was set to an iterator over the list [1, 2, 3, None, 4, 5, 6]
that will be traversed by the pop () function. The default behavior of pop () is pop
(-1), that is, the elements are popped in the reverse order. When the sentinel
value is found, the iterator stops returning values.

This kind of internal state is something we'd like to avoid as much as possible.
Consequently, we won't try to contrive a use for this feature.
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Using sorted() to put data in order

When we need to produce results in a defined order, Python gives us two choices.
We can create a 1ist object and use the 1ist.sort () method to put items in an
order. An alternative is to use the sorted () function. This function works with any
iterable, but it creates a final 1ist object as part of the sorting operation.

The sorted () function can be used in two ways. It can be simply applied to
collections. It can also be used as a higher-order function using the key= argument.

Let's say we have our trip data from the examples in Chapter 4, Working with Collections.
We have a function that will generate a sequence of tuples with start, end, and distance
for each 1eg of a trip. The data looks as follows:

(((37.54901619777347, -76.33029518659048), (37.840832, -76.273834),
17.7246), ((37.840832, -76.273834), (38.331501, -76.459503),
30.7382), ((38.331501, -76.459503), (38.845501, -76.537331),
31.0756), ((36.843334, -76.298668), (37.549, -76.331169), 42.3962),
((37.549, -76.331169), (38.330166, -76.458504), 47.2866),
((38.330166, -76.458504), (38.976334, -76.473503), 38.8019))

We can see the default behavior of the sorted () function using the following
interaction:

>>> sorted(dist(x) for x in trip)

[0.1731, 0.1898, 1.4235, 4.3155, ... 86.2095, 115.1751, 129.7748]

We used a generator expression (dist (x) for x in trip) to extract the distances
from our trip data. We then sorted this iterable collection of numbers to get the
distances from 0.17 nm to 129.77 nm.

If we want to keep the legs and distances together in their original three tuples, we
can have the sorted () function apply a key () function to determine how to sort the
tuples, as shown in the following code snippet:

>>> sorted(trip, key=dist)

[((35.505665, -76.653664), (35.508335, -76.654999), 0.1731),
((35.028175, -76.682495), (35.031334, -76.682663), 0.1898),
((27.154167, -80.195663), (29.195168, -81.002998), 129.7748)]1

We've sorted the trip data, using a dist lambda to extract the distance from each
tuple. The dist function is simply as follows:

dist = lambda leg: legl[2]

This shows the power of using simple lambda to decompose a complex tuple into
constituent elements.
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Writing higher-order functions

We can identify three varieties of higher-order functions; they are as follows:

* Functions that accept a function as one of its arguments.

* Functions that return a function. A callable class is a common example of
this. A function that returns a generator expression can be thought of as a
higher-order function.

* Functions that accept and return a function. The functools.partial ()
function is a common example of this. We'll save this for Chapter 10, The
Functools Module. A decorator is different; we'll save this for Chapter 11,
Decorator Design Techinques.

We'll expand on these simple patterns using a higher-order function to also
transform the structure of the data. We can do several common transformations
such as the following:

*  Wrap objects to create more complex objects
* Unwrap complex objects into their components
* Flatten a structure
* Structure a flat sequence
A callable class object is a commonly used example of a function that returns a

callable object. We'll look at this as a way to write flexible functions into which
configuration parameters can be injected.

We'll also introduce simple decorators in this chapter. We'll defer deeper
consideration of decorators until Chapter 11, Decorator Design Techniques.

Writing higher-order mappings and filters

Python's two built-in higher-order functions, map () and filter (), generally handle
almost everything we might want to throw at them. It's difficult to optimize them in
a general way to achieve higher performance. We'll look at functions of Python 3.4,
such as imap (), ifilter (), and ifilterfalse (), in Chapter 8, The Itertools Module.

We have three largely equivalent ways to express a mapping. Assume that we
have some function, £ (x), and some collection of objects, c. We have three entirely
equivalent ways to express a mapping; they are as follows:

*  Themap () function:
map (£, Q)
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* The generator expression:

(f(x) for x in Q)
i The generator function:

def mymap (£, C):
for x in C:
yield £ (x)
mymap (£, C)

Similarly, we have three ways to apply a filter function to a collection,
all of which are equivalent:

e The filter () function:
filter(f, Q)

* The generator expression:

(x for x in C if f(x))

* The generator function:
def myfilter(f, C):
for x in C:
if £(x):
yield x
myfilter (f, C)

There are some performance differences; the map () and filter () functions are
fastest. More importantly, there are different kinds of extensions that fit these
mapping and filtering designs, which are as follows:

*  We can create a more sophisticated function, g (x), that is applied to each
element, or we can apply a function to the collection, ¢, prior to processing.
This is the most general approach and applies to all three designs. This is
where the bulk of our functional design energy is invested.

* We can tweak the for loop. One obvious tweak is to combine mapping and
filtering into a single operation by extending the generator expression with
an if clause. We can also merge the mymap () and myfilter () functions to
combine mapping and filtering.

The profound change we can make is to alter the structure of the data handled by
the loop. We have a number of design patterns, including wrapping, unwrapping
(or extracting), flattening, and structuring. We've looked at a few of these techniques
in previous chapters.
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We need to exercise some caution when designing mappings that combine too
many transformations in a single function. As far as possible, we want to avoid
creating functions that fail to be succinct or expressive of a single idea. As Python
doesn't have an optimizing compiler, we might be forced to manually optimize
slow applications by combining functions. We need to do this kind of optimization
reluctantly, only after profiling a poorly performing program.

Unwrapping data while mapping

When we use a construct such as (£ (x) for x, y in C), we've used multiple
assignment in the for statement to unwrap a multi-valued tuple and then apply a
function. The whole expression is a mapping. This is a common Python optimization
to change the structure and apply a function.

We'll use our trip data from Chapter 4, Working with Collections. The following is a
concrete example of unwrapping while mapping;:
def convert(conversion, trip):

return (conversion(distance) for start, end, distance in trip)

This higher-order function would be supported by conversion functions that we can
apply to our raw data as follows:

to miles = lambda nm: nm*5280/6076.12
to km = lambda nm: nm*1.852

to nm = lambda nm: nm

This function would then be used as follows to extract distance and apply a
conversion function:

convert (to miles, trip)

As we're unwrapping, the result will be a sequence of floating-point values.
The results are as follows:

[20.397120559090908, 35.37291511060606, ..., 44.652462240151515]

This convert () function is highly specific to our start-end-distance trip data
structure, as the for loop decomposes that three tuple.

We can build a more general solution for this kind of unwrapping while
mapping a design pattern. It suffers from being a bit more complex. First, we
need general-purpose decomposition functions like the following code snippet:

fst= lambda x: x[0]
snd= lambda x: x[1]
sel2= lambda x: x[2]
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We'd like to be able to express £ (sel2(s_e_d)) for s_e d in trip. Thisinvolves
functional composition; we're combining a function like to_miles () and a selector
like sel2 (). We can express functional composition in Python using yet another
lambda, as follows:

to miles= lambda s e d: to miles(sel2(s e d))
This gives us a longer but more general version of unwrapping, as follows:
to miles(s e d) for s e d in trip

While this second version is somewhat more general, it doesn't seem wonderfully
helpful. When used with particularly complex tuples, however, it can be handy.

What's important to note about our higher-order convert () function is that we're
accepting a function as an argument and returning a function as a result. The
convert () function is not a generator function; it doesn't yield anything. The
result of the convert () function is a generator expression that must be evaluated to
accumulate the individual values.

The same design principle works to create hybrid filters instead of mappings.
We'd apply the filter in an if clause of the generator expression that was returned.

Of course, we can combine mapping and filtering to create yet more complex
functions. It might seem like a good idea to create more complex functions to limit
the amount of processing. This isn't always true; a complex function might not beat
the performance of a nested use of simple map () and filter () functions. Generally,
we only want to create a more complex function if it encapsulates a concept and
makes the software easier to understand.

Wrapping additional data while mapping

When we use a construct such as ( (£ (x), x) for x in C), we've done a wrapping
to create a multi-valued tuple while also applying a mapping. This is a common
technique to save derived results to create constructs that have the benefits of
avoiding recalculation without the liability of complex state-changing objects.

This is part of the example shown in Chapter 4, Working with Collections, to create the
trip data from the path of points. The code looks like this:

from ch02_ex3 import float_ from pair, lat lon kml, limits, haversine,
legs
path= float from pair(lat lon kml())

trip= tuple((start, end, round(haversine(start, end),4)) for
start,end in legs(iter(path)))
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We can revise this slightly to create a higher-order function that separates the
wrapping from the other functions. We can define a function like this:

def cons distance(distance, legs iter):

return ((start, end, round(distance(start,end),4)) for start,
end in legs_iter)

This function will decompose each leg into two variables, start and end. These will
be used with the given distance () function to compute the distance between the
points. The result will build a more complex three tuple that includes the original
two legs and also the calculated result.

We can then rewrite our trip assignment to apply the haversine () function to
compute distances as follows:

path= float from pair(lat lon kml())

trip2= tuple(cons distance (haversine, legs(iter(path))))

We've replaced a generator expression with a higher-order function, cons_
distance (). The function not only accepts a function as an argument, but it also
returns a generator expression.

A slightly different formulation of this is as follows:

def cons distance3 (distance, legs iter):

return ( leg+(round(distance(*leg),4),) for leg in legs iter)

This version makes the construction of a new object built up from an old object a bit
clearer. We're iterating through legs of a trip. We're computing the distance along a
leg. We're building new structures with the 1eg and the distance concatenated.

As both of these cons_distance () functions accept a function as an argument, we
can use this feature to provide an alternative distance formula. For example, we can
use the math.hypot (lat (start) -lat (end), lon(start)-lon(end)) method to
compute a less-correct plane distance along each leg.

In Chapter 10, The Functools Module, we'll show how to use the partial () function to
set a value for the R parameter of the haversine () function, which changes the units
in which the distance is calculated.
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Flattening data while mapping

In Chapter 4, Working with Collections, we looked at algorithms that flattened a nested
tuple-of-tuples structure into single iterable. Our goal at the time was simply to
restructure some data, without doing any real processing. We can create hybrid
solutions that combine a function with a flattening operation.

Let's assume that we have a block of text that we want to convert to a flat sequence
of numbers. The text looks as follows:

text= "n ll\
2 3 5 7 11 13 17 19 23
29
31 37 41 43 47 53 59 61 67
71
73 79 83 89 97 101 103 107 109
113
127 131 137 139 149 151 157 163 167
173
179 181 191 193 197 199 211 223 227
229

Each line is a block of 10 numbers. We need to unblock the rows to create a flat
sequence of numbers.

This is done with a two part generator function as follows:

data= list(v for line in text.splitlines() for v in line.split())

This will split the text into lines and iterate through each line. It will split each line
into words and iterate through each word. The output from this is a list of strings,
as follows:

[I2I' l3l’ I5I' l7l’ I11l’ I13l’ I17l’ I19l’ I23l’ I29l’ I31l’ I37l’
141', 143", '47', '531, '59', 161!, '67', '71', '73', 179', '83",
189", '97', '101', '103', '107', '109', '113', '127', '131', '137',
1139', '149', '151', '157', '163', '167', '173', '179', '181', '191°',
11931, '197', '199', '211', '223', '227', '229']

To convert the strings to numbers, we must apply a conversion function as well
as unwind the blocked structure from its original format, using the following
code snippet:
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def numbers from rows(conversion, text):

return (conversion(v) for line in text.splitlines() for v in
line.split())

This function has a conversion argument, which is a function that is applied to each
value that will be emitted. The values are created by flattening using the algorithm
shown above.

We can use this numbers_from_rows () function in the following kind of expression:

print (list (numbers from rows(float, text)))

Here we've used the built-in f1oat () to create a list of floating-point values from
the block of text.

We have many alternatives using mixtures of higher-order functions and generator
expressions. For example, we might express this as follows:

map (float, v for line in text.splitlines() for v in line.split())

This might be helpful if it helps us understand the overall structure of the algorithm.
The principle is called chunking; the details of a function with a meaningful name
can be abstracted and we can work with the function in a new context. While we
often use higher-order functions, there are times when a generator expression can be
more clear.

Structuring data while filtering

The previous three examples combined additional processing with mapping.
Combining processing with filtering doesn't seem to be quite as expressive as
combining with mapping. We'll look at an example in detail to show that, although
it is useful, it doesn't seem to have as compelling a use case as combining mapping
and processing.

In Chapter 4, Working with Collections, we looked at structuring algorithms.

We can easily combine a filter with the structuring algorithm into a single, complex
function. The following is a version of our preferred function to group the output from
an iterable:

def group by iter(n, iterable):
row= tuple(next(iterable) for i in range(n))
while row:
yield row

row= tuple(next(iterable) for i in range(n))
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This will try to assemble a tuple of n items taken from an iterable. If there are any
items in the tuple, they are yielded as part of the resulting iterable. In principle, the
function then operates recursively on the remaining items from the original iterable.
As the recursion is relatively inefficient in Python, we've optimized it into an explicit
while loop.

We can use this function as follows:
group by iter (7, filter( lambda x: x%3==0 or x%5==0, range(100)))

This will group the results of applying a filter () function to an iterable created by
the range () function.

We can merge grouping and filtering into a single function that does both operations
in a single function body. The modification to group_by_iter () looks as follows:

def group filter iter(n, predicate, iterable):
data = filter (predicate, iterable)
row= tuple(next(data) for i in range(n))
while row:
yield row

row= tuple(next(data) for i in range(n))

This function applies the filter predicate function to the source iterable. As the filter
output is itself a non-strict iterable, the data variable isn't computed in advance; the
values for data are created as needed. The bulk of this function is identical to the
version shown above.

We can slightly simplify the context in which we use this function as follows:
group filter iter(7, lambda x: x%3==0 or x%5==0, range(1l,100))

Here, we've applied the filter predicate and grouped the results in a single function
invocation. In the case of the filter () function, it's rarely a clear advantage to
apply the filter in conjunction with other processing. It seems as if a separate, visible
filter () function is more helpful than a combined function.

Writing generator functions

Many functions can be expressed neatly as generator expressions. Indeed, we've seen
that almost any kind of mapping or filtering can be done as a generator expression.
They can also be done with a built-in higher-order function such as map () or

filter () or as a generator function. When considering multiple statement generator
functions, we need to be cautious that we don't stray from the guiding principles of
functional programming: stateless function evaluation.
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Using Python for functional programming means walking on a knife edge between
purely functional programming and imperative programming. We need to identify
and isolate the places where we must resort to imperative Python code because there
isn't a purely functional alternative available.

We're obligated to write generator functions when we need statement features
of Python. Features like the following aren't available in generator expressions:

* A with context to work with external resources. We'll look at this in Chapter
6, Recursions and Reductions, where we address file parsing.

* A while statement to iterate somewhat more flexibly than a for statement.
The example of this is shown previously in the Flattening data while mapping
section.

* Abreak or return statement to implement a search that terminates
a loop early.

* The try-except construct to handle exceptions.

* Aninternal function definition. We've looked at this in several examples in
Chapter 1, Introducing Functional Programming and Chapter 2, Introducing Some
Functional Features. We'll also revisit it in Chapter 6, Recursions and Reductions.

* Areally complex if-elif sequence. Trying to express more than
one alternatives via if-else conditional expressions can become
complex-looking.

* At the edge of the envelope, we have less-used features of Python such as
for-else, while-else, try-else, and try-else-finally. These are all
statement-level features that aren't available in generator expressions.

The break statement is most commonly used to end processing of a collection early.
We can end processing after the first item that satisfies some criteria. This is a version
of the any () function we're looking at to find the existence of a value with a given
property. We can also end after processing some larger numbers of items, but not all
of them.

Finding a single value can be expressed succinctly as min (some-big-expression)
or max (something big). In these cases, we're committed to examining all of the
values to assure that we've properly found the minimum or the maximum.

In a few cases, we can stand to have a first (function, collection) function
where the first value that is True is sufficient. We'd like the processing to terminate
as early as possible, saving needless calculation.
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We can define a function as follows:

def first(predicate, collection):
for x in collection:

if predicate(x): return x

We've iterated through the collection, applying the given predicate function. If the
predicate is True, we'll return the associated value. If we exhaust the collection,
the default value of None will be returned.

We can also download a version of this from pyPi. The first module contains a
variation on this idea. For more details visit: https://pypi.python.org/pypi/first.

This can act as a helper when trying to determine whether a number is a prime
number or not. The following is a function that tests a number for being prime:
import math
def isprimeh(x):

if x == 2: return True

if x % 2 == 0: return False

factor= first( lambda n: x%n==0,
range (3, int (math.sqrt(x)+.5)+1,2))

return factor is None

This function handles a few of the edge cases regarding the number 2 being a prime
number and every other even number being composite. Then, it uses the first ()
function defined above to locate the first factor in the given collection.

When the first () function will return the factor, the actual number doesn't matter.
Its existence is all that matters for this particular example. Therefore, the isprimeh ()
function returns True if no factor was found.

We can do something similar to handle data exceptions. The following is a version of
the map () function that also filters bad data:
def map not_ none(function, iterable):
for x in iterable:
try:
yield function (x)
except Exception as e:

pass # print (e)
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This function steps through the items in the iterable. It attempts to apply the function
to the item; if no exception is raised, this new value is yielded. If an exception is
raised, the offending value is silently dropped.

This can be handy when dealing with data that include values that are not applicable
or missing. Rather than working out complex filters to exclude these values, we
attempt to process them and drop the ones that aren't valid.

We might use the map () function for mapping not -None values as follows:

data = map not none(int, some source)

We'll apply the int () function to each value in some_source. When the
some_source parameter is an iterable collection of strings, this can be a handy
way to reject strings that don't represent a number.

Building higher-order functions with
Callables

We can define higher-order functions as instances of the callable class. This builds
on the idea of writing generator functions; we'll write callables because we need
statement features of Python. In addition to using statements, we can also apply a
static configuration when creating the higher-order function.

What's important about a callable class definition is that the class object, created by
the class statement, defines essentially a function that emits a function. Commonly,
we'll use a callable object to create a composite function that combines two other
functions into something relatively complex.

To emphasize this, consider the following class:

from collections.abc import Callable
class NullAware (Callable):
def init (self, some func):
self.some func= some func
def call (self, arg):

return None if arg is None else self.some func(arg)

This class creates a function named Nullaware () thatis a higher-order function
that is used to create a new function. When we evaluate the Nul1lAware (math.log)
expression, we're creating a new function that can be applied to argument values.
The _init_ () method will save the given function in the resulting object.
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The _ call_ () method is how the resulting function is evaluated. In this
case, the function that was created will gracefully tolerate None values without
raising exceptions.

The common approach is to create the new function and save it for future use
by assigning it a name as follows:

null log scale= NullAware (math.log)

This creates a new function and assigns the name null_log_scale (). We can then
use the function in another context. Take a look at the following example:

>>> some data = [10, 100, None, 50, 60]
>>> scaled = map(null log scale, some data)
>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,
4.0943445622221]

A less common approach is to create and use the emitted function in one expression
as follows:

>>> scaled= map(NullAware( math.log ), some data)
>>> list(scaled)

[2.302585092994046, 4.605170185988092, None, 3.912023005428146,
4.0943445622221]

The evaluation of NullAware ( math.log ) created a function. This anonymous
function was then used by the map () function to process an iterable, some_data.

This example's __call__ () method relies entirely on expression evaluation. It's

an elegant and tidy way to define composite functions built up from lower-level
component functions. When working with scalar functions, there are a few complex
design considerations. When we work with iterable collections, we have to be a bit
more careful.

Assuring good functional design

The idea of stateless functional programming requires some care when using Python
objects. Objects are typically stateful. Indeed, one can argue that the entire purpose
of object-oriented programming is to encapsulate state change into class definition.
Because of this, we find ourselves pulled in opposing directions between functional
programming and imperative programming when using Python class definitions to
process collections.
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The benefit of using a callable to create a composite function gives us slightly
simpler syntax when the resulting composite function is used. When we start
working with iterable mappings or reductions, we have to be aware of how
and why we introduce stateful objects.

We'll return to our sum_filter_ £ () composite function shown above. Here is a
version built from a callable class definition:

from collections.abc import Callable
class Sum Filter (Callable):
__slots = ["filter", "function"]
def init (self, filter, function):
self.filter= filter
self.function= function
def call (self, iterable):

return sum(self.function(x) for x in iterable if
self.filter(x))

We've imported the abstract superclass callable and used this as the basis for our
class. We've defined precisely two slots in this object; this puts a few constraints on
our ability to use the function as a stateful object. It doesn't prevent all modifications
to the resulting object, but it limits us to just two attributes. Attempting to add
attributes results in an exception.

The initialization method, init_ (), stows the two function names, filter and
function, in the object's instance variables. The __call_ () method returns a value
based on a generator expression that uses the two internal function definitions.

The self.filter () function is used to pass or reject items. The self.function ()
function is used to transform objects that are passed by the filter () function.

An instance of this class is a function that has two strategy functions built into it.
We create an instance as follows:

count not none = Sum Filter(lambda x: x is not None, lambda x: 1)

We've built a function named count _not_none () that counts the non-None values
in a sequence. It does this by using a 1ambda to pass non-None values and a function
that uses a constant 1 instead of the actual values present.
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Generally, this count_not_none () object will behave like any other Python function.
The use is somewhat simpler than our previous example of sum _filter £().

We can use the count_not_None () function as follows:

N= count not none(data)

Instead of using sum_filter_ f () funtion:
N= sum filter f(wvalid, count , data)

The count_not_none () function, based on a callable, doesn't require quite so
many arguments as a conventional function. This makes it superficially simpler to
use. However, it can also make it somewhat more obscure because the details of
how the function works are in two places in the source code: where the function
was created as an instance of the callable class and where the function was used.

Looking at some of the design patterns

The max (), min (), and sorted () functions have a default behavior without a
key= function. They can be customized by providing a function that defines how
to compute a key from the available data. For many of our examples, the key ()
function has been a simple extraction of available data. This isn't a requirement;
the key () function can do anything.

Imagine the following method: max (trip, key=random.randint ()).Generally,
we try not to have have key () functions that do something obscure.

The use of a key= function is a common design pattern. Our functions can easily
follow this pattern.

We've also looked at 1ambda forms that we can use to simplify using higher-order
functions. One significant advantage of using lambda forms is that it follows the
functional paradigm very closely. When writing more conventional functions,

we can create imperative programs that might clutter an otherwise succinct and
expressive functional design.
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We've looked at several kinds of higher-order functions that work with a collection
of values. Throughout the previous chapters, we've hinted around at several
different design patterns for higher-order collection and scalar functions.

The following is a broad classification:

Return a Generator. A higher-order function can return a generator
expression. We consider the function higher-order because it didn't return
scalar values or collections of values. Some of these higher-order
functions also accept functions as arguments.

Act as a Generator. Some function examples use the yield statement to
make them first-class generator functions. The value of a generator function
is an iterable collection of values that are evaluated lazily. We suggest that

a generator function is essentially indistinguishable from a function that
returns a generator expression. Both are non-strict. Both can yield a sequence
of values. For this reason, we'll also consider generator functions as higher
order. Built-in functions such as map () and filter () fall into this category.

Materialize a Collection. Some functions must return a materialized
collection object: 1ist, tuple, set, or mapping. These kinds of functions
can be of a higher order if they have a function as part of the arguments.
Otherwise, they're ordinary functions that happen to work with
collections.

Reduce a Collection. Some functions work with an iterable (or a collection
object) and create a scalar result. The 1len () and sum() functions are
examples of this. We can create higher-order reductions when we accept

a function as an argument. We'll return to this in the next chapter.

Scalar. Some functions act on individual data items. These can be
higher-order functions if they accept another function as an argument.

As we design our own software, we can pick and choose among these established
design patterns.
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Summary

In this chapter, we have seen two reductions that are higher-order functions: max ()
and min (). We also looked at the two central higher-order functions, map ()
and filter (). We also looked at sorted ().

We also looked at how to use a higher-order function to also transform the structure
of data. We can perform several common transformations, including wrapping,
unwrapping, flattening, and structure sequences of different kinds.

We looked at three ways to define our own higher-order functions, which are
as follows:

* The def statement. Similar to this is a lambda form that we assign
to a variable.

* Defining a callable class as a kind of function that emits
composite functions.

* We can also use decorators to emit composite functions. We'll return
to this in Chapter 11, Decorator Design Techniques.

In the next chapter, we'll look at the idea of purely functional iteration via recursion.
We'll use Pythonic structures to make several common improvements over purely
functional techniques. We'll also look at the associated problem of performing
reductions from collections to individual values.
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In previous chapters, we've looked at several related kinds of processing designs;
some of them are as follows:

* Mapping and filtering that create collections from collections

¢ Reductions that create a scalar value from a collection

The distinction is exemplified by functions such as map () and filter () that
accomplish the first kind of collection processing. There are several specialized
reduction functions, which include min (), max (), len(), and sum(). There's a
general-purpose reduction function, also, functools.reduce ().

We'll also consider a collections.Counter () function as a kind of reduction
operator. It doesn't produce a single scalar value per se, but it does create a new
organization of the data that eliminates some of the original structure. At its heart,
it's a kind of count-group-by operation that has more in common with a counting
reduction than with a mapping.

In this chapter, we'll look at reduction functions in more detail. From a purely
functional perspective, a reduction is defined recursively. For this reason, we'll look
at recursion first before we look at reduction algorithms.

Generally, a functional programming language compiler will optimize a recursive
function to transform a call in the tail of the function to a loop. This will dramatically
improve performance. From a Python perspective, pure recursion is limited, so we
must do the tail-call optimization manually. The tail-call optimization technique
available in Python is to use an explicit for loop.

We'll look at a number of reduction algorithms including sum (), count (), max (),
and min (). We'll also look at the collections.Counter () function and related
groupby () reductions. We'll also look at how parsing (and lexical scanning) are
proper reductions since they transform sequences of tokens (or sequences of
characters) into higher-order collections with more complex properties.
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Simple numerical recursions

We can consider all numeric operations to be defined by recursions. For more
depth, read about the Peano axioms that define the essential features of numbers.
http://en.wikipedia.org/wiki/Peano_axioms is one place to start.

From these axioms, we can see that addition is defined recursively using more
primitive notions of the next number, or successor of a number, 1, (7).

To simplify the presentation, we'll assume that we can define a predecessor function,
P(n), such that n=S(P(n))=P(S(n)), as long as n#0

Addition between two natural numbers could be defined recursively as follows:

ifa=0

add(a.5) = add(P(a),S (b)) ifa#0

If we use more common » +1 and »n —1 instead of S(») and P(n), we can see that
add(a,b)=add(a—1,b+1)

This translates neatly in Python, as shown in the following command snippet:

def add(a,b):
if a == 0: return b

else: return add(a-1, b+l)

We've simply rearranged common mathematical notation into Python. The i £
clauses are placed to the left instead of the right.

Generally, we don't provide our own functions in Python to do simple addition.
We rely on Python's underlying implementation to properly handle arithmetic
of various kinds. Our point here is that fundamental scalar arithmetic can be
defined recursively.

All of these recursive definitions include at least two cases: the nonrecursive cases
where the value of the function is defined directly and recursive cases where the
value of the function is computed from a recursive evaluation of the function with
different values.

In order to be sure the recursion will terminate, it's important to see how the
recursive case computes values that approach the defined nonrecursive case. There
are often constraints on the argument values that we've omitted from the functions
here. The add () function in the preceding command snippet, for example, can
include assert a>= and b>=0 to establish the constraints on the input values.
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Without these constraints. a-1 can't be guaranteed to approach the nonrecursive case
ofa ==

In most cases, this is obvious. In a few rare cases, it might be difficult to prove.
One example is the Syracuse function. This is one of the pathological cases where
termination is unclear.

Implementing tail-call optimization

In the case of some functions, the recursive definition is the one often stated
because it is succinct and expressive. One of the most common examples is the
factorial () function.

We can see how this is rewritten as a simple recursive function in Python from the
following formula:

1 ifn=0
n!=
{nx@r&ﬁ ifn>0

The preceding formula can be executed in Python by using the following commands:

def fact(n):
if n == 0: return 1

else: return n*fact(n-1)

This has the advantage of simplicity. The recursion limits in Python artificially
constrain us; we can't do anything larger than about fact(997). The value of 1000! has
2,568 digits and generally exceeds our floating-point capacity; on some systems this
is about 10** Pragmatically, it's common to switch to a log gamma function, which
works well with large floating-point values.

This function demonstrates a typical tail recursion. The last expression in the function
is a call to the function with a new argument value. An optimizing compiler can
replace the function call stack management with a loop that executes very quickly.

Since Python doesn't have an optimizing compiler, we're obliged to look at scalar
recursions with an eye toward optimizing them. In this case, the function involves
an incremental change from #n to n-1. This means that we're generating a sequence
of numbers and then doing a reduction to compute their product.
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Stepping outside purely functional processing, we can define an imperative facti ()
calculation as follows:

def facti(n):

if n == 0: return 1

f=1

for i in range(2,n):
f= f*i

return f

This version of the factorial function will compute values beyond 1000! (2000!,
for example, has 5733 digits). It isn't purely functional. We've optimized the tail
recursion into a stateful loop depending on the i variable to maintain the state
of the computation.

In general, we're obliged to do this in Python because Python can't automatically
do the tail-call optimization. There are situations, however, where this kind of
optimization isn't actually helpful. We'll look at a few situations.

Leaving recursion in place

In some cases, the recursive definition is actually optimal. Some recursions involve

a divide and conquer strategy that minimizes the work from O(n) to O(log, 1) One
example of this is the exponentiation by the squaring algorithm. We can state it
formally like this:

1 ifn=0
a"=Jaxa™’ if n is odd
1”\2
(amz) if n is even

We've broken the process into three cases, easily written in Python as a recursion.
Look at the following command snippet:

def fastexp(a, n):

if n == 0: return 1
elif n $ 2 == 1: return a*fastexp(a,n-1)
else:

t= fastexp(a,n//2)

return t*t
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This function has three cases. The base case, the fastexp (a, 0) method is defined
as having a value of 1. The other two cases take two different approaches. For odd
numbers, the fastexp () method is defined recursively. The exponent, 7, is reduced
by 1. A simple tail-recursion optimization would work for this case.

For even numbers, however, the fastexp () recursion uses n/2, chopping the
problem into half of its original size. Since the problem size is reduced by a factor
of 2, this case results in a significant speed-up of the processing.

We can't trivially reframe this kind of function into a tail-call optimization loop. Since
it's already optimal, we don't really need to optimize this further. The recursion limit in
Python would impose the constraint of < 2'%°, a generous upper bound.

Handling difficult tail-call optimization

We can look at the definition of Fibonacci numbers recursively. Following is one
widely used definition for the nth Fibonacci number:

0 ifn=0
F +F_, ifn>2

A given Fibonacci number, £, is defined as the sum of the previous two numbers,
F, +F,,. This is an example of multiple recursion: it can't be trivially optimized as a
simple tail-recursion. However, if we don't optimize it to a tail-recursion, we'll find it
to be too slow to be useful.

The following is a naive implementation:

def fib(n):
if n == 0: return 0
if n == 1: return 1

return fib(n-1) + £fib(n-2)

This suffers from the multiple recursion problem. When computing the fib (n)
method, we must compute £ib (n-1) and £ib (n-2) methods. The computation of
fib (n-1) method involves a duplicate calculation of £ib (n-2) method. The two
recursive uses of the Fibonacci function will duplicate the amount of computation
being done.

Because of the left-to-right Python evaluation rules, we can evaluate values up to
about £ib (1000). However, we have to be patient. Very patient.
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Following is an alternative which restates the entire algorithm to use stateful
variables instead of a simple recursion:

def fibi(n):
if n == 0: 