
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with Metro Style
Apps

Ben Dewey

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with Metro Style Apps
by Ben Dewey

Copyright © 2012 Ben Dewey. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Melanie Yarbrough
Proofreader: Melanie Yarbrough

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-07-23 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320553 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Getting Started with Metro Style Apps, the cover image of an American Crocodile,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32055-3

[LSI]

1342718033

www.allitebooks.comwww.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320553
http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

Preface . vii

1. Windows 8: A Quick Tour . 1
A User Interface for Touch 1

Start Screen 2
Start Bar 3

Windows Programming Reimagined 4
A New Native APIJ: The Windows Runtime 5
Language Support 6
Hosted Application Model 7
Single File Deployment 8
Windows Store 8

Inside Metro Style Apps 8
Application Bar 8
Semantic Zoom 9
Animation 10

Outside Your App 11
Tiles 11
Pickers 12
Charms 12
Sensors and Devices 12

Summary 13

2. Getting Started . 15
Where Is the Hello World app? 15
Bing Search API 15
Getting Started: The BingSimpleSearch App 18

Bing Search API Service class 21
Calling the Bing Search API 22
Wrapping Up the UI 22

Running the BingSimpleSearch App 23

iii

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Unlocking WinRT (the FileSavePicker) 23
Summary 26

3. Application Architecture . 27
The Bing Image Search App 27
Goals 27

Usability 28
Non-functional 29
Development Process Goals 30

Design of the User Interface 30
Application Diagram 32
Model-View-ViewModel (MVVM) 32

Who Comes First: the View or the ViewModel (the ViewModelLocator)? 33
Commands 35

Inversion of Control (IoC) Container 35
Navigation 37

NavigationService 39
MessageHub 40

Sending a Message 41
Alternatives to the MessageHub 42

Application Storage and Tombstoning 42
Settings 44
Summary 45

4. Interacting with the Operating System . 47
Search 48

Declaring Your Search Intentions 48
Handling SearchPane.QuerySubmitted 48
Launching Your App Directly into Search Mode 53

Tiles 54
Updating the Tile with a Collection of Images 55
Updating Multiple Tiles with a Single Command 57

Pickers 59
FileOpenPicker 60
FileSavePicker 65

Sharing 68
ShareDataRequestedMessagePump 69
ShareUriHandler 71
ShareImageResultsHandler 71

Sensors 74
LockScreen 75
Summary 76

iv | Table of Contents

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

5. Windows Store . 77
Marketing 77

Windows Store App 78
Opening Your Developer Account 79
Selling Your App 81
Ratings and Reviews 82

Distribution 82
Packaging Your App 83
Inside your Appx 86
Running Windows App Cert Kit 87
Publishing Your App 88

Global Reach 89
Exposure to Global Markets 90
Localization 91

Summary 92

Table of Contents | v

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Preface

The personal computer (PC), which first hit the market over 30 years ago, has under-
gone tectonic changes that, in turn, launched the PC era. PCs were primarily used in
the workplace where software was simple and optimized for use with the keyboard;
touching a screen was unheard of until recently. Slowly computers began creeping into
the home and many users didn’t know what to do with them; they were glorified type-
writers.

When PCs started connecting to the Internet, possibilities reached a new level, which
had a snowball effect. It allowed academia to share research; it spawned new means of
communication from email and online chat to social networking, captivating the minds
of people young and old. Soon consumers started using laptops and unplugging from
the conventional desktop setting.

This shift had little impact on applications, but helped define a new wave of form factors
in phones, tablets, and slates. Eventually, users started demanding more and we ush-
ered in a new era, the modern consumer era. We are all modern consumers, not only
consumers of goods, but consumers of information. We are constantly connected
through the use of mobile devices as well as more traditional computers. Whatever type
of device, be it static or mobile, content is synchronized and up-to-date. These new
devices are used as gaming machines and personal entertainment centers, and they are
replacing books and magazines for many avid readers.

Today, consumers expect developers to create apps where touch, mobility, and good
battery life are a must. Tablets and slates leverage touch as a primary form of interaction
while playing a critical role in the adoption of sensors and cameras in everyday com-
puting. They are small and lightweight, making them extremely portable. Devices boot
almost instantly so users can get to their content and put them right back in their bag
without missing a step. Despite their youth, these devices are being embraced by work
forces and consumers worldwide and they appear to be on a relentless progression.

With all this excitement, it’s hard to believe we’ve only begun to scratch the surface.
We need a platform built from the ground up with these objectives in mind. This next
version of Windows, code-named Windows 8, ships with a new application model for
building user experiences tailored to the next generation of devices.

vii

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

The Windows Runtime
The underpinning for that new user experience is the Windows Runtime. For years
Windows desktop applications interacted with the Win32APIs in some fashion,
whether they were opening file dialogs, rendering graphics, or communicating over the
network. Instead of replacing this, Windows 8 continues its support for the Win32APIs
allowing existing Windows 7 apps to run seamlessly. What they built instead is a brand
new API from the ground up called the Windows Runtime (WinRT). WinRT consists
of an application execution environment and a collection of new APIs, which enables
a new line of immersive full screen apps called Metro style apps.

Windows desktop applications are still available and continue to be relevant for many
situations. In fact, desktop applications can leverage the power of the Windows Run-
time API—for example communicating with sensors.

Metro style apps are designed to communicate with WinRT via a language-independent
projection layer, which enables apps to be written in statically-typed languages like C
++, C#, and Visual Basic, while also feeling natural to dynamic languages like Java-
Script. WinRT introduces a new trust model for users, called base trust. Unlike full
trust, this model isolates each application while funneling high-level action through
the runtime broker to ensure users are aware when apps attempt to access protected
resources. Even though Metro style apps promote a model where the user is in charge,
you will find their ability to connect with other apps is far superior than its predecessor.
Metro style apps can communicate with other apps using generic contracts and send
or receive content in various formats—like text and photos. Contracts can also be
defined to access core operating system components, like Search, to highlight your app
even though it may seem irrelevant. (We’ll discuss contracts and search later in Chap-
ter 4.)

Once a revolutionary technology, like mobile computing, has been un-
leashed it’s hard not to push its potential. You can already see signs that
manufacturers and researchers are innovating well beyond what is on
the streets today. Microsoft is committed to contributing to the future
of technology in a big way and Windows 8 is just the start. For more
insight and the impending possibilities into what’s next for Microsoft,
a video of their vision for the future can be found online at http://www
.youtube.com/playlist?list=PL2B8C6AB94E8259C6.

Disclaimer
Windows 8 is currently in Release Preview; as such, some of the content in this book
may change.

viii | Preface

www.allitebooks.comwww.allitebooks.com

http://www.youtube.com/playlist?list=PL2B8C6AB94E8259C6
http://www.youtube.com/playlist?list=PL2B8C6AB94E8259C6
http://www.allitebooks.org
http://www.allitebooks.org

Who This Book Is For
This book is written for existing .NET developers who are interested in the changes
introduced with the release of Windows 8.

This book is intended to be a guide to developing complete Metro style apps. If you
have an idea or you are just curious about the platform, this is the place to start. For a
reference on all things related to Windows 8 development I recommend the Windows
Dev Center at http://dev.windows.com and the Windows Dev Forum at http://forums
.dev.windows.com.

The samples in this book are in C# and XAML. All of the samples in this book are
available for download on this book’s website at http://bendewey.com/getting-started
-with-metro-apps and at https://github.com/bendewey/GettingStartedWithMetroApps.

How This Book Is Organized
This book focuses on helping you become familiar with the new Windows 8 landscape,
WinRT, and writing your first Metro style apps, from creating a simple search app to
writing a touch enabled app that responds to native sensors. This book will go through
the steps taken to create a full application using the Bing Search API and publishing it
to the Windows Store. It has been broken up into five chapters:

Chapter 1
This chapter focuses on a high-level overview of the Windows 8 features that power
Metro style apps. From the new OS features, like the new Start Screen, to the in
app features such as the Application Bar. Many of these features will be covered in
depth in later chapters.

Chapter 2
Before building the full Bing Image Search application I will walk you through
creating a simple version of the application that communicates with the Bing Search
API and binds the results to a simple UI. If you choose to follow along you will
need to obtain an account key for the Bing Search API service on the Azure Mar-
ketplace.

Chapter 3
Once you’ve seen how to create a simple application using the Bing Search API,
I’ll show you what it takes to complete an application that leverages the full power
of the Windows 8 platform. Chapter 3 will also focus on the goals, techniques, and
designs used throughout the app.

Chapter 4
Developers can create impressive apps of all shapes and sizes. At some point you
will need to access some external resource. Whether you’re communicating with
web services or responding to events from one of the many native sensors, this

Preface | ix

http://dev.windows.com
http://forums.dev.windows.com
http://forums.dev.windows.com
http://bendewey.com/getting-started-with-metro-apps
http://bendewey.com/getting-started-with-metro-apps
https://github.com/bendewey/GettingStartedWithMetroApps

chapter shows you how the Bing Image Search application takes advantage of these
various features and how to implement them in a maintainable fashion.

Chapter 5
Windows 8 ships with a Windows Store that developers can leverage for marketing
and distribution of their apps without having to focus on the nuances of building
installers and accepting payments. As you would experience with other app stores,
the Windows Store has a certification process. This chapter focuses on navigating
that process and the details around app distribution in this new environment.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be touched, clicked, or typed literally
by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

What You Need to Use This Book
To run the samples from this book, you will need to have a version of Windows 8
Release Preview. I recommend installing to a virtual hard drive (VHD) using the steps
laid out by Scott Hanselman at http://www.hanselman.com/blog/GuideToInstallingAnd
BootingWindows8DeveloperPreviewOffAVHDVirtualHardDisk.aspx.

x | Preface

http://www.hanselman.com/blog/GuideToInstallingAndBootingWindows8DeveloperPreviewOffAVHDVirtualHardDisk.aspx
http://www.hanselman.com/blog/GuideToInstallingAndBootingWindows8DeveloperPreviewOffAVHDVirtualHardDisk.aspx

In addition, you will need a version of Visual Studio 2012 available at http://www.mi
crosoft.com/visualstudio/11.

Subscribing to the Bing Search API Service on Windows Azure
Marketplace
This book uses the free Bing Search API service available from the Windows Azure
Marketplace. This Service is a available for anyone to use as long as you register an
account and subscribe. In order to use the examples in this book on your own you will
need to create an account on the Windows Azure Marketplace and subscribe to the
Bing service. This can be setup online by going to https://datamarket.azure.com/dataset/
5ba839f1-12ce-4cce-bf57-a49d98d29a44, signing in with you LiveID by clicking the
button in the top right, and then scrolling down and clicking the Sign Up button under
the free 5,000 transaction subscription. After you’ve subscribed, you can click the EX-
PLORE THIS DATASET heading to play with the data feed.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Getting Started with Metro Style Apps by
Ben Dewey (O’Reilly). Copyright 2012 Ben Dewey, 978-1-449-32055-3.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Preface | xi

http://www.microsoft.com/visualstudio/11
http://www.microsoft.com/visualstudio/11
https://datamarket.azure.com/dataset/5ba839f1-12ce-4cce-bf57-a49d98d29a44
https://datamarket.azure.com/dataset/5ba839f1-12ce-4cce-bf57-a49d98d29a44
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/gs_metro_apps.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

How to Contact the Author
Feel free to visit the books website at http://bendewey.com/getting-started-with-metro
-apps. You can also find me on Twitter @bendewey or via email at
ben@nuology.com.

Acknowledgements
I’d like to thank my employer, Tallan, for its support and for allowing me to attend
conferences regularly. I’d also like to thank my editor, Rachel Roumeliotis, and my

xii | Preface

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/gs_metro_apps
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://bendewey.com/getting-started-with-metro-apps
http://bendewey.com/getting-started-with-metro-apps
mailto:ben@nuology.com

primary technical reviewer, Mark Freedmean, for putting up with me and the product
throughout multiple changes as Windows 8 was a challenging, moving target. Finally,
I’d like to thank my family for their undivided support and encouragement throughout
the process.

Preface | xiii

CHAPTER 1

Windows 8: A Quick Tour

When the Metro design language was first announced at MIX 2010, I knew Microsoft
was on to something. I really enjoyed the simple use of typography and a focus on
content. At the Build conference in September 2011, Microsoft announced its plans to
expand the Metro design language to other products, including its flagship product,
Microsoft Windows. This release marks a convergence of the latest versions of Win-
dows, Windows Phone, and Xbox where all three use Metro and promote the concept
with a trifecta of opportunities that will hopefully complement one another and grow
consumer awareness about the collective suite of offerings.

Metro style apps are designed primarily for touch interaction, and Windows 8 has been
written with this in mind. Microsoft is calling this the reimagining of Windows. Every-
thing from the desktop to the start menu has been redesigned and optimized for touch.
The Windows Runtime (WinRT), a new application model for running Metro style
apps, provides access to the new features of the Operating System (OS) and the native
hardware capabilities that are available on modern computers, tablets, and slates. This
chapter focuses on what it means to reimagine Windows and what’s available to help
developers reimagine their apps as well.

A User Interface for Touch
In line with other Metro-focused technologies like the Windows Phone and Xbox, the
main interface for Windows is a vibrant start screen where tiles are used to launch apps.
They are big and easily activated on touch devices while providing content that is up-
to-date and visible even when flicked across the screen. Unlike desktop apps, Metro
style apps don’t have borders or windows, which are difficult to interact with using
touch. Instead they are all full screen, enabling an immersive experience where your
apps contain only relevant content. When an app launches in Windows 8, you use
specific gestures—swiping in from the bezel on the right or bottom—to activate new
touch-based menus. The system menu, or start bar, in conjunction with the Windows
Runtime, provides a new model for connecting apps. Once an app is running, you can

1

change settings, search, and share content with other apps without having to leave the
full screen experience.

Start Screen

Figure 1-1. The new Start Screen that powers Metro style apps in Windows

The new Windows 8 start screen, shown in Figure 1-1, provides a fast and fluid way
to interact with all your important content. From checking email or the latest news,
glancing at the weather or your stocks, checking in with your friends on various social
networks, or just listening to music, the start screen keeps you updated on your life.
This means no bouncing between apps and the home screen just to check statuses.

Tiles make up the start screen with their bright colors and clean text. They can be
organized into groups and personalized for each user. Simply tapping a tile launches
the app in a full screen view. Apps can have either small or wide tiles in a number of
different styles, providing clean and exciting animation. In addition to the primary
application tile, apps can define additional tiles. For example, the weather app might
show its tile with information from your hometown in New York. Before going on
vacation, you can add a secondary tile for your destination of London. The secondary
tile can provide live information about the weather in London, and when you tap the
tile, the weather app will launch directly into a detailed view of London’s weather.

By default, start screen settings are stored in the cloud, which allows the layout of your
tiles to be consistent across all devices. Using the pinch gesture for zooming out, you
can get a broad glance at your start screen and see a list of all the application groups.

2 | Chapter 1: Windows 8: A Quick Tour

With this new user interface come many new features and ways to interact with Win-
dows. In conjunction with the new start screen comes a brand new start bar, which
allows users to get back to the start screen or communicate with other components of
Windows or the other apps installed on the system.

Start Bar
The start button has been a keystone of Windows for many releases. It has undergone
numerous changes, but this one is by far the most drastic: Microsoft has replaced the
start button with a Start Bar, which is the hub of inter-app connectivity. In addition to
the typical Windows logo that will return you to the start screen, the Start Bar contains
charms. Regardless of which app is running, you can use charms to access common
features such as searching and modifying settings. You can also use the Share and
Devices charms to quickly send content to other apps or hardware such as your printer.
To display the Start Bar, simply swipe your finger in from the right side of the screen
and it will slide into place.

With the Start Bar visible, you will see an overlay with system status information on
the lower-left side. It displays notifications, network and battery monitors, and the
current date and time (see Figure 1-2). The Start Bar, on the right side, contains the
Windows logo and four charms.

When using a mouse, take advantage of the screen’s corner features.
Move your mouse to the top right corner and it the Start Bar will appear.
If you prefer keyboard shortcuts: Windows key + C will show the Start
Bar.

Each of these charms are as follows:

Search

Windows has merged the All Programs list and the File System search into a common
UI for searching everything on your computer (see Figure 1-3). The same interface for
displaying apps is used to provide search throughout the Windows experience. You
can search for apps, files, settings, and any information provided by your installed apps.

When using a keyboard, you can just start typing on the start screen to
search for an app. If you are in an app, you can click the Windows key
and then start typing.

A User Interface for Touch | 3

Share

Share provides a way to send data to other applications without having to leave the
app. Early samples treat this as an alternative to traditional copy-and-paste methods;
examples include posting to Facebook, Twitter, or sending email, but the possibilities
are endless.

Devices

Devices allows apps to communicate with the computer’s hardware. The initial exam-
ples include printing, projecting, and sending content to your Xbox, other device, and/
or USB hard drives. Device manufacturers can communicate with apps in ways that are
relevant to a particular device. Screens for this section will typically be developed by
device manufacturers. For example, your printer will have specific screens for its use.

Settings

Settings is split into two sections: system settings and app settings. System settings
contain quick access to networking, volume, screen, notifications, power, and key-
board. App settings depend on the app and developers should determine what settings
are relevant to their apps.

Windows Programming Reimagined
The Win32 APIs have been a core component to native Windows programming for
over 15 years. In addition to all the changes to Windows, Microsoft is reimagining the

Figure 1-2. New Windows Start Bar slides in from the right side

4 | Chapter 1: Windows 8: A Quick Tour

way in which programs, or apps, are written. Metro style apps can be written using the
following languages:

• JavaScript and HTML5/CSS3

• C# and XAML

• VB.NET and XAML

• C++ and XAML

• C++ with DirectX

• Hybrid

All of the languages above are designed to be first class citizens. This means that no
matter what language you choose, you will have equivalent capabilities. At this point,
the decision of which language to use is strongly guided by the preferences of the team.
Regardless of the choice you make, all Metro style apps communicate with the new
Native Application Programming Interface (API) called the Windows Runtime, or just
WinRT for short.

A New Native APIJ: The Windows Runtime
Metro style apps are based on a new application model that has been completely re-
written from the ground up. While the Win32 APIs were written for C, WinRT APIs
written in C++ and designed to be object oriented. This gives the APIs the flexibility
to be used by multiple languages. Everything that is needed to host an application and

Figure 1-3. New Windows Search offers a replacement view for All Programs

Windows Programming Reimagined | 5

communicate with the operating system has been updated or rewritten in native C++
and is exposed out via an API Metadata format (.winmd file).

This consistent framework allows the API to be optimized for performance. File access
can be centralized and made consistent across all languages. User interface components
can be hardware accelerated and common animations can become easily accessible.
Resource management is handled at a higher level and currently running applications
can be confident that they will be given additional resources if the system experiences
pressure. In total, this gives users a better experience.

Language Support
Between the different languages and the new WinRT APIs is a layer called the projection
layer. This layer maintains the proxies and handles the activation of WinRT objects.
For C# developers, this means no more P/Invoke. Write the C# code just like regular
code. While WinRT is designed for use with JavaScript, C#, Visual Basic, and C++,
this book will focus on C#. The techniques are often the same and the syntax is sur-
prisingly similar considering they are different languages.

JavaScript

Metro style apps leverage the Internet Explorer WebHost, to render HTML5/CSS3,
and the Chakra JavaScript engine to execute native web apps. These apps are as flexible
as existing web apps, but they can perform tasks previously available only to desktop
applications—tasks like using the camera to take a picture, accessing the accelerometer
to determine the tilt of a device during game play, or reading and writing to a file on
the local filesystem. In addition, JavaScript apps can communicate with other apps on
the OS, as a source or a target of information, and provide interactive tiles and secon-
dary tiles.

C# and Visual Basic

Existing WPF or Silverlight developers might wonder why the name changed to C# or
Visual Basic and XAML and the answer comes from the addition of C++ and XAML.
If you wanted to expose all of XAML to C++ as a UI technology, it wouldn’t make
much sense to spin up the CLR just to parse and render some XAML only to revert
back to C++ for the remainder of your code execution. The only logical answer is to
push XAML down further in the stack and expose it out through the same projection
layer that is used for other Windows Runtime objects. This means that the XAML
consumed from these Metro style apps is now written in C++. Although many of the
XAML controls and binding techniques remain, there are slight differences, and it is a
complete rewrite in a completely new language after all.

For developers who are familiar with .NET, you’ll find many of the APIs and libraries
will still be available. Microsoft has created a new profile called the .NET Profile for
Windows Metro style apps. Like the .NET Client profile, this is a subset of the full .NET

6 | Chapter 1: Windows 8: A Quick Tour

Framework that is specific to Metro style apps. In the process, they’ve removed dupli-
cate and legacy code; optimized APIs for multiple core machines and asynchronous
development; and hardware accelerated the UI layer. There may be new APIs to learn
on the WinRT side, but .NET developers should find the developer experience ex-
tremely familiar.

You can think of this change as if Microsoft took Silverlight or WPF and cut it in half.
The XAML UI and application hosting controls were moved into the Windows Runtime
with many brand new native Windows features. The remainder of the .NET compo-
nents have been moved to this new .NET Profile for Windows Metro style apps.

C++

Microsoft has made changes to C++ in the past to make it compatible with managed
languages, and they continue to do so with WinRT. There were similar challenges in
order to cooperate with WinRT, but unlike the managed C++, developers need a way
to transition between native and managed C++. Windows 8 comes with a new C++
compiler switch (/cx) that enables the C++ Compiler Extensions. This exposes typical
managed concepts, such as reference objects, partial classes, and generics, but allows
easy portability between their native counterparts.

The WinRT libraries themselves are written through the same C++ ex-
tensions made available to C++ developers. Objects that are projected
out to other languages use a managed wrapper object, which points to
the same memory as the native objects.

Hosted Application Model
Each Metro style app is loaded into a new application host. The most important re-
sponsibility is resource management. The way Windows ensures that the current app
has the necessary resources available is by closing down other apps when needed.

The two main resources that apps typically consume are CPU cycles and memory.
These shutdowns are handled separately. First to be taken care of are the CPU cycles;
shortly after an app has left the foreground, it receives an event signaling itself to de-
activate. This is the last chance to save state or consume the CPU, and this must be
handled in a timely fashion. This is called tombstoning and from here the app is in a
suspended state. The second step occurs when your system is low on memory. In this
case, Windows will terminate the app without notification to free up memory. Devel-
opers can gain some startup performance if they realize that their app is not always
terminated and they retain items in a cache. More information on tombstoning can be
found in Chapter 3.

Windows Programming Reimagined | 7

Single File Deployment
In the process of reimagining Windows, the application model, and the application
programming interfaces (APIs), Microsoft overhauled the deployment process. This is
the first time that Microsoft has allowed native apps to be installed from a single file.
This file, or deployment package, is an .appx (pronounced App-X) file.

This new deployment process includes incremental updates. They support side-by-side
installs of different versions for multiple users. Each application package is digitally
signed with a certificate and hashes are created and verified for each app before exe-
cution. More information about .appx packages can be found in Chapter 5.

Windows Store
Getting your app to market and in front of Windows’ large install base is simple with
the integrated Windows Store. In order to have apps published in the Windows Store,
developers will have to submit apps for certification. Certification will verify code for
a number of different conditions, such as invalid access to protected APIs, the use of
proper capabilities, and proper handling of exceptions. More information about the
Windows Store can be found in Chapter 5.

Inside Metro Style Apps
The Windows Runtime provides a simple model for building apps of any type or design.
However, in order to make a cohesive experience for all users, Microsoft is promoting
a few design concepts that you should follow when building apps. These concepts
include designing with typography, placing the back button in a consistent location,
using the Application Bar, and providing elegant animation. Metro style apps come
with built-in support libraries and controls for these, so implementation is simplified.

Application Bar
With full screen apps and the lack of chrome on the windows, interfaces lose menu
bars. These are the links you typically see at the top that say File, Tools, Help, etc.
Metro style apps have included a new Application Bar that is meant to provide appli-
cation-specific buttons. When the user swipes a finger up from the bottom bezel, it
slides into place just like the Start Bar, but from the bottom instead (see Figure 1-4).

To activate the application bar with a mouse, just right-click or click
Windows key + Z on the keyboard.

8 | Chapter 1: Windows 8: A Quick Tour

Application Bars are optional and completely customizable. Many apps are built so the
Application Bar varies based on the context of the current page. The checklist for de-
signing Application Bars is available at http://msdn.microsoft.com/en-us/library/win
dows/apps/hh465302(v=VS.85).aspx; it recommends right-aligning commands that
vary in the app bar and left-aligning all the buttons that are consistent throughout the
application.

Application settings do not belong on the Application Bar and should
leverage the Settings charm on the Start Bar. More information about
the Settings charm will be described later in Chapter 3.

Semantic Zoom
Anyone who has used a touch device is familiar with the pinch and stretch gestures
used for zooming. This gesture has typically been used for zooming images, maps, or
applications that have a functional requirement for zooming. Microsoft is trying to
prove that almost every app can benefit from this semantic zoom. For example, if you
have a list with hundreds of items, you can pinch your fingers on the screen, change
the icon size, and get a view that provides more items than a standard list. Semantic
zoom must be something that you decide to incorporate into your app, since it does
not work by default. The sample app from the Build conference provides a great ex-
ample: by simply pinching on the schedule of sessions you can change the list from a
full view to a high level glance of all days (see Figure 1-5 and Figure 1-6).

The Windows Runtime provides built-in controls for SemanticZoom. This control has
two zoom levels a ZoomedInView and a ZoomedOutView. To implement the control you
provide a custom GridView or ListView for each view.

Figure 1-4. Weather app sample in Windows 8 showing the Application Bar

Inside Metro Style Apps | 9

http://msdn.microsoft.com/en-us/library/windows/apps/hh465302(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302(v=VS.85).aspx

Animation
In order to build rich user experiences in your Metro style apps, consider the proper
use of animation. Regardless of the language used, traditional forms of animation are
still available, such as DOM manipulation in JavaScript, or storyboards in XAML. In
addition, Metro style apps come with support for some common animations and
transition.

In XAML-based applications, you can use ThemeTransitions. These are provided by
the Windows Runtime and as with any XAML control, you can create your own tran-
sitions or use one of the built in ones listed in Table 1-1.

Figure 1-5. Sample app from the Build conference in full view

Figure 1-6. Sample app from the Build conference after pinching to zoom out

10 | Chapter 1: Windows 8: A Quick Tour

Table 1-1. A list of WinRT XAML animations from Windows.UI.Xaml.Media.Animation

Methods Descriptions

EntranceThemeTransition Provides a subtle animation to slide content into place as it
enters the UI

RepositionThemeTransition Animates any change to an item’s position

AddDeleteThemeTransition Provides animation for when items get added/removed to a
parent panel

ContentThemeTransition Animates changes to the Content property of an element

ReorderThemeTransition Animates the changes to a panel in response to filtering and
sorting children

For a full list of XAML animations see http://msdn.microsoft.com/en-us/library/win
dows/apps/br243232.aspx.

Animations will not be covered in depth in this book. For more information about
animation using XAML you can find separate documentation at http://msdn.microsoft
.com/en-us/library/windows/apps/hh452703.aspx.

Outside Your App
Almost every application needs to communicate with the Internet or devices in some
fashion. Windows also contains numerous features that any compelling app will likely
leverage. While the previous sections focused on the new features of Windows and the
application development platform, this section focuses on the new features specific to
Metro style apps and how they communicate with functionality outside the app.

The tiles on the new start screen can be updated periodically to provide important
details regarding your app. Apps can send and receive information from various open
contracts allowing them to get content from a web of other apps on the users’ system
that are unknown to developers at design time. Implementing these features appropri-
ately adds to the users’ experience when they use your app, and creates a better web of
collective apps for users.

Tiles
Every Metro style app comes with a primary tile. Developers must provide an image
for every application to be used as the default tile. This tile is displayed until the ap-
plication is launched and an update is sent. The default tile has to be a static image
(150x150 for square tiles, and 310x150 for wide tiles). Once an update is sent, the tile
becomes a Live Tile. Depending on the app, it may highlight an upcoming appointment,
the weather in the neighborhood, or the latest sports scores for a favorite team. These
apps are providing information even when they are not active.

Outside Your App | 11

http://msdn.microsoft.com/en-us/library/windows/apps/br243232.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br243232.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452703.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452703.aspx

In addition to a primary tile, you can create multiple secondary tiles for your app. The
difference is that secondary tiles can link to a specific page or section in your app, a
process called “deep linking.”

Pickers
Due to the multitude of viruses, malicious software, and the like in the wild, Microsoft
has tried to thwart these attempts by disabling raw access to the filesystem. WinRT
provides a feature called pickers. Pickers come in a variety of forms, such as FilePickers,
FolderPickers, and ContactPickers. They provide the functionality of a typical file di-
alog box, except that they also can expose content from third party apps. If your app
has data relevant to these pickers, you can provide a contract that allows your app to
provide data to any other app that uses the same file picker. Figure 1-7 shows a file
picker of images. Notice the Socialite app (Socialite is a Facebook demo) listed in the
menu. This allows you to pick images from your photos that were previously uploaded
to Facebook.

Charms
A big challenge in current Windows development is sharing content between applica-
tions. Pickers do a lot to help this, but let’s say you wanted to share a link from a news
article with all of your Twitter followers. This was possible in Windows 7, but it caused
an abrupt context switch. You copied the link into your clipboard, started the Twitter
client, switched applications, pasted the link, shared the content, and then you could
switch back to your previous task. In Windows 8, you can simply activate the start bar,
choose the Share charm, select a Twitter client, and click share without ever having to
leave the application.

Apps can define capabilities that allow them to be both sources and targets for charms.
More information on charms can be found in Chapter 4.

Sensors and Devices
Windows 8 is packaged with support for more sensors and devices because of new
devices like tablets and mobile computing. The sample tablet from the Build conference
has a forward and rear facing camera, an accelerometer, a GPS, and even a near field
communication card. As a developer, you have access to use them for any application.

The Windows Runtime includes APIs for communicating with all kinds of hardware.
Some of these devices may be relevant only to tablets. Regardless, these APIs make
communication with these devices easier than ever before. They provide consistency
and access to raw, native features so complex algorithms and streaming servers are not
required.

More information about sensors and devices can be found in Chapter 4.

12 | Chapter 1: Windows 8: A Quick Tour

Summary
You have been given a glimpse of what is in store for you as you begin to develop for
Windows 8. This is one of the biggest releases for Microsoft in some time, with en-
hancements to ensure a safe and optimal experience for the user. I hope this book will
show you how writing Metro style apps can be a pleasurable experience for developers
as well. Maybe your app will be the next featured app on the Windows Store, with
downloads beyond your expectations.

Figure 1-7. File Picker showing a drop-down menu with custom apps (Socialite)

Summary | 13

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 2

Getting Started

Where Is the Hello World app?
Rather than show you a simple Hello World app, which is good at teaching syntax but
not much else, I’ll be building a practical app that can be used throughout the book.
This allows me to progressively build on the examples and use the native features of
Windows 8 in a complete system.

All kidding aside, if you want a Hello World app, see the Getting Started
Guide on the Windows Developer Center at http://msdn.microsoft.com/
library/windows/apps/br211386.

Microsoft’s Bing, like many popular search engines, provides a service for retrieving its
results. This service has recently been migrated to the Windows Azure Marketplace
and is perfect for showing the power of Windows 8 apps. It allows me to communicate
with a free online service and demonstrate how to search, share, update tiles, and much
more with a vast collection of images.

I’ll create a simple version first that is a single page application with a textbox and a
button to execute the search. When the user clicks the search button, the app loads the
results from the web service, attaches them to a listbox, and displays the results (see
Figure 2-1).

Before you start building the app, let me take a moment to describe the Bing Search
API so you can become familiar with the results format.

Bing Search API
In the Preface, I outlined the steps to subscribe to the Bing Search API service on the
Windows Azure Marketplace. Once you’ve subscribed for the service, you can explore
the data in the API using the DataMarket service explorer. This tool is available from

15

http://msdn.microsoft.com/library/windows/apps/br211386
http://msdn.microsoft.com/library/windows/apps/br211386

the Bing Search API service home page by clicking the Explore This Dataset link.
Figure 2-2 shows a screenshot of the tool after searching for Trains.

Figure 2-2. Results from Bing image search for train using the DataMarket service explorer

Figure 2-1. Bing Search App

16 | Chapter 2: Getting Started

This page provides you with five important pieces of information:

• The available options for the Query

• The resulting data format and fields

• The Service root URL

• The URL for current expressed query

• The Primary Account Key associated to the logged in user

These items should be noted or recorded somewhere so you can refer to them through-
out the remainder of the book.

In addition to providing a UI for exploring the service, the Windows Azure Marketplace
provides code that can be used within your .NET application to access the data. If you
navigate back to the Bing Search API landing page by clicking on the logo in the top
left, you will see a link to download a .NET C# Class Library, which is a single .cs file
that you can include in your application (see Figure 2-3).

Figure 2-3. Download .NET C# Class Library

The Bing Search API supports two formats at the moment. The first is an XML-based
ATOM format, which will be used by the C# class that was just downloaded. In ad-
dition, the API supports a JSON format, which can easily be used by any HTML and
JavaScript app. The documentation on the Windows Azure Marketplace contains more
information about these formats, or you can put the URL for the current query into
any web browser, providing your Primary Account Key as your username and pass-
word. This will return the results in their raw form.

Bing Search API | 17

Getting Started: The BingSimpleSearch App
If you’ve ever created a new project in Visual Studio, you already know how to get
started creating Metro style apps. To begin, open Visual Studio 2012 on a Windows 8
machine, and select File→New→Project. Figure 2-4 shows the full list of templates
available for Windows Metro style apps. Each language contains a similar list of tem-
plates for creating Metro style apps. Select Blank App (XAML) under the Visual
C#→Windows Metro style folder, enter the name BingSimpleSearch, and click OK.

Figure 2-4. New Project Dialog

Now that you have created a new project, open Solution Explorer (View→Solution
Explorer). You should see the files from Figure 2-5.

The empty application template for Metro style apps contains two XAML files. Both
of these files contain an associated code-behind file (i.e., a file with the same name with
the addition of .cs).

App.xaml
App.xaml is the application entry point for your project. This simple application
just loads the MainPage. As an application evolves, this file can be used for
initializing your application dependencies (e.g., an inversion of control container),
handling tombstoning and saving of settings, and providing activation triggers.

18 | Chapter 2: Getting Started

MainPage.xaml
MainPage.xaml is the primary view for the application, and it contains no content
by default. As an application evolves, this file would likely contain a Frame control
(http://msdn.microsoft.com/en-US/library/windows/apps/windows.ui.xaml.controls
.frame), which allows your app to provide navigation between multiple pages. It
would also be used as the primary shell of the UI for your apps global items like
settings.

Open up the MainPage.xaml file and you will see the initial XAML content provided
by the template. This is where you will be adding the TextBox and the Button to perform
your searching. Scroll down to the root grid (it should have a Background set to the
ApplicationPageBackgroundBrush resource). Before you add the textbox and the button,
you are going to layout the grid’s columns and rows as in Figure 2-6.

To do this, you need two rows and two columns. The two columns will be evenly spaced
at 50% and 50%. The two rows, on the other hand, will be set up to provide only the
minimum amount of space required for the textbox, and the remaining space will be
allocated to the ListBox (as seen in Figure 2-6). The XAML for the grid layout definition
would look like Example 2-1.

Example 2-1. Definition of Grid Layout

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />

Figure 2-5. Solution Explorer for New Project

Getting Started: The BingSimpleSearch App | 19

http://msdn.microsoft.com/en-US/library/windows/apps/windows.ui.xaml.controls.frame
http://msdn.microsoft.com/en-US/library/windows/apps/windows.ui.xaml.controls.frame

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

Figure 2-6. Sketch of Grid Layout

Immediately following the row and column definitions, add a TextBox and a Button like
in Example 2-2.

Example 2-2. TextBox and Button for use with search app

<TextBox x:Name="SearchQuery" />
<Button Content="Search" Grid.Column="1" Click="Search_Click" />

Notice that you are providing a name to the textbox so that it can be accessed from the
code-behind later. In addition, you need to supply the row and column assignments
only if they are not equal to 0. The textbox is defaulted to Grid.Row="0" and Grid.Col
umn="0". On the button there is a Click event assignment to Search_Click, which maps
to a method called Search_Click on the code-behind where the Bing search code will
be written (see Example 2-3). To access the code-behind, click the arrow next to Main-
Page.xaml in the Solution Explorer and open the file MainPage.xaml.cs.

Example 2-3. Search event on the code-behind for handling the Bing web service call

private async void Search_Click(object sender, RoutedEventArgs e)
{
 // Put webservice code here
}

20 | Chapter 2: Getting Started

Communicating with a web service may take longer than 50ms. Because
of that, WinRT requires that this be an asynchronous operation.
In .NET, you can use the new async/await keywords. These new key-
words allow you to write your asynchronous code as if it were synchro-
nous and the compiler handles the transferring of data between different
threads. You will notice later in Example 2-5, the await keyword is used
to unwrap the Task<T> object from an async method. For example, if
you have an asynchronous method that returns a Task<string>, calling
that method with an await keyword will result in just a string. Despite
the fact that the code in the example reads as a synchronous call, and
debugs like one, under the covers it’s actually triggering a continuation
in which case the method gets split into two: the code before the await
and the code after the await. For more information about the new async
and await keywords, see http://msdn.microsoft.com/en-us/library/win
dows/apps/hh452713.aspx.

Bing Search API Service class
In the previous section, I showed you the download link for the service classes provided
by the Windows Azure Marketplace. Now that you’ve created your project you can
add this file to your project.

In addition, you will need to add references to Microsoft.Data.OData.Metro and Micro
soft.Data.Service.Client.Metro. To do so, you can right-click the References in the
Solution Explorer and click Add Reference. From here, you can click the Browse button
on the bottom, navigate to C:\Program Files (x86)\Microsoft WCF Data Services\5.0\bin
\Metro, and select both Microsoft.Data.OData.Metro.dll and Microsoft.Data.Serv-
ices.Client.Metro.dll. Finally, click OK.

This file, and the references, contain everything you need to connect from a .NET
application. The only thing it’s missing is support for the latest asynchronous features
in .NET 4.5. To add this, create a new class called BingSearchContainerExtensions.cs.
Place the code from Example 2-4 into this new file.

Example 2-4. Async extensions for BingSearchContainer

using System.Collections.Generic;
using System.Data.Services.Client;
using System.Threading.Tasks;

namespace Bing
{
 public static class BingSearchContainerExtensions
 {
 public static Task<IEnumerable<T>> ExecuteAsync<T>(
 this DataServiceQuery<T> query)
 {
 return Task.Factory.FromAsync<IEnumerable<T>>(
 query.BeginExecute, query.EndExecute, null);

Getting Started: The BingSimpleSearch App | 21

http://msdn.microsoft.com/en-us/library/windows/apps/hh452713.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452713.aspx

 }
 }
}

Calling the Bing Search API
Now that the code is included and WCF Data Services are ready to communicate with
our Windows Azure Marketplace endpoint the code is very straightforward. Exam-
ple 2-5 shows the updated Search_Click method. In this method, I created a new
BingSearchContainer with the Service root URL from the previous section, and provide
my Primary Account key as the Credentials. From here, you can use one of the many
methods provided by the download service file. In this case, you want images so you
use the Image method and supply the necessary parameters. Finally, call the new async
extension method, which executes the call to the web service and when it completes,
you can update the UI with the resulting objects.

Example 2-5. WCF Data Services call to get search results

// add 'using Bing;'
// add 'using System.Net;'

private async void Search_Click(object sender, RoutedEventArgs e)
{
 string accountKey = "<AccountKey>";

 var context = new BingSearchContainer(
 new Uri("https://api.datamarket.azure.com/Data.ashx/Bing/Search"));
 context.Credentials = new NetworkCredential(accountKey, accountKey);

 var result = await context.Image(this.SearchQuery.Text,
 "en-US", null, null, null, null).ExecuteAsync();
 ImagesList.ItemsSource = result.ToList();
}

Wrapping Up the UI
The final piece is to bind the visual elements. In Example 2-5, you set the results to an
ImagesList ListBox that had not been created yet. On the ListBox, you will need to
specify a DataTemplate for how to visually represent the model, which in this case is just
a single image. Example 2-6 shows the ListBox definition and should be placed in the
MainPage.xaml file directly under the search button.

Example 2-6. ListBox with a DataTemplate for an image result

<ListBox x:Name="ImagesList" Margin="40" Grid.Row="1">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <Image Source="{Binding Thumbnail.MediaUrl}" Width="100" />
 <TextBlock Text="{Binding Title}" />
 </StackPanel>

22 | Chapter 2: Getting Started

 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

We are also going to add two images mapped to the thumbnail and the full-size image
on the right-hand column. This will give you the typical effect of an image appearing
pixelated while loading and becoming sharper once the download of the full-size image
completes. For this effect, stack the images on top of each other; since they are the same
aspect ratio, it will show the thumbnail and then cover it up with the full-size image
(see Example 2-7). Although the only requirement is that this code is at the same level
as the other items in the Grid, I recommend placing this code below the ListBox.

Example 2-7. Large screen image bound to selected item of the ListBox

<Grid Grid.Row="1" Grid.Column="1">
 <Image Source="{Binding SelectedItem.Thumbnail.MediaUrl, ElementName=ImagesList}" />
 <Image Source="{Binding SelectedItem.MediaUrl, ElementName=ImagesList}" />
</Grid>

You may also notice the usage of the ElementName binding in Example 2-7. This is telling
the app to access our model through the ListBox’s SelectedItem property.

Running the BingSimpleSearch App
Your patience is about to be rewarded. You can click Run (the play button) in Visual
Studio and your app will build, deploy (install on your Metro Start Screen), and launch.
Now you can enter whatever search term you desire, and the ListBox will populate with
the thumbnails. If you select one of the images, the full-size image will populate on the
right-hand side of the screen, as shown in Figure 2-7.

This is a simple example that just creates a few controls, uses C# to access a web service,
parses the results, and then displays that data to the user using a ListBox control. With
the exception of the XAML controls, all of the code is written with the .NET Profile for
Windows Metro Style Apps. What I’d really like to do is leverage the new features of
WinRT, which are found under the Windows.* namespace.

Unlocking WinRT (the FileSavePicker)
This app allows access to full screen images that the user may want to download. With
Metro style apps and WinRT there is no need to download the file in a web browser
sense, because you can write directly to the filesystem by requesting a file using the new
FileOpenPicker. Just like the search event handler, we need to add a button to allow
the user to save the image. Replace the XAML for the Search Button from the earlier,
with the code from Example 2-8.

Unlocking WinRT (the FileSavePicker) | 23

Example 2-8. Save Button used to trigger the FileSavePicker

<StackPanel Grid.Column="1" Orientation="Horizontal">
 <Button Content="Search" Click="Search_Click" />
 <Button Content="Save" Click="Save_Click" />
 <TextBlock x:Name="Status" Style="{StaticResource BasicTextStyle}" />
</StackPanel>

Basically, I’ve taken the Search Button and wrapped it into a StackPanel so all the ele-
ments line up in a row. Then I added the new Save Button, which points to a new event
handler in the code-behind. Finally, I added a new TextBlock to display a status when
saving the image.

To wire up the code for the Save Button, I have to add the code in the code-behind.
Example 2-9 shows the code needed to download the file when the Save Button is
clicked.

Example 2-9. Event Handler for the Save Button

// add 'using System;'
// add 'using Windows.Networking.BackgroundTransfer;'
// add 'using Windows.Storage.Pickers;'

private async void Save_Click(object sender, RoutedEventArgs e)
{
 var image = ImagesList.SelectedItem as ImageResult;
 if (image == null) return;

 var uri = new Uri(image.MediaUrl);
 var filename = uri.Segments[uri.Segments.Length - 1];

Figure 2-7. Bing SimpleSearch in action

24 | Chapter 2: Getting Started

 var extension = System.IO.Path.GetExtension(filename);

 var picker = new FileSavePicker();
 picker.SuggestedFileName = filename;
 picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 picker.FileTypeChoices.Add(extension.Trim('.').ToUpper(),
 new string[] { extension });

 var saveFile = await picker.PickSaveFileAsync();
 if (saveFile != null)
 {
 Status.Text = "Download Started";
 var download = new BackgroundDownloader().CreateDownload(uri, saveFile);
 await download.StartAsync();
 Status.Text = "Download Complete";
 }
}

The event handler does two basic things that use the new WinRT APIs. First, it defines
and displays the FileSavePicker for the user to select a file. Then it saves the file using
the BackgroundDownloader API.

I could simply call the FileSavePicker with no arguments, but that would require the
user to create the proper file extension without providing any hints to the user: not a
very good user experience. On the other hand, I can take the filename from the URL
and provide both the name and the extension as hints to the user. Before I created the
FileSavePicker, I took a simple approach to parsing the filename and extensions from
the URL. Now the FileSavePicker can be created and I can specify the suggested in-
formation. Call picker.PickSaveFileAsync(), which launches the FileSavePicker UI;
the user is blocked until he selects a file or clicks cancel. In the event that the user cancels
that UI, then the saveFile will be null; otherwise, I can take the file and write to it.

The second part of the event handler creates a new BackgroundDownloader and tells it
to create a new DownloadOperation based on the URL and the file selected from the
FileSavePicker. You can do a number of things with this DownloadOperation, like sup-
port larger files, support metered connections, and provide progress and cancellation
support. In this case the images are fairly small, so just start the download and update
the Status.Text property with a before and after status. For more information about
the BackgroundDownload API, you can download a sample at http://code.msdn.microsoft
.com/windowsapps/Background-Transfer-Sample-d7833f61.

If you run the app again, you will see a new button to save the image. If you perform a
search, select an image, and click Save, you will see the FileSavePicker. The picker and
the BackgroundDownloader are full WinRT APIs and are specific to this new platform.
This is just a taste of some of the new APIs that are available.

Unlocking WinRT (the FileSavePicker) | 25

http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61

Summary
If you’ve been following along, you’ve already created a nice simple app. So far we’ve
created a new UI in XAML, used C# for communication over the network with a web
service, and communicated with WinRT to provide direct file access based on the user’s
selection. The next few chapters will expand on this information and show more ex-
amples of how to use WinRT in a number of different places.

26 | Chapter 2: Getting Started

CHAPTER 3

Application Architecture

The Bing Image Search App
In order to have a fully functioning app and eventually publish it to the Windows Store,
you will need to properly handle application state while also considering the user’s
bandwidth, disk space, and other system resources. I’ve simplified this to what I would
call being a developer good citizen of the platform. This means providing users with
an optimal experience regardless of the device or the presence of network connectivity.
Whether you value user experience or not, Microsoft has a set of guidelines that must
be followed to pass certification for the Windows Store. These guidelines value user
experience, and if you plan to release your app through the Windows Store, you should
consider these guidelines from the beginning. For more information on what’s required
by the Windows Store, see Chapter 5.

This chapter describes core components of a more complex application than the Bing
Simple Search app we explored in the previous chapter. These concepts will be used
throughout the book, and I will reference various aspects of the application through
the use of these techniques. If you are familiar with previous XAML-based technologies,
you will likely be familiar with these concepts. As a reminder, all the code for the book’s
full application is available online at https://github.com/bendewey/GettingStartedWith
MetroApps. I encourage you to download the code ahead of time so you can follow
along.

Goals
Before I get too deep into the code, let’s step back and review the goals of the Bing
Image Search app (Figure 3-1).

27

https://github.com/bendewey/GettingStartedWithMetroApps
https://github.com/bendewey/GettingStartedWithMetroApps

Usability
Usability goals determine the way users interact with the app, from how quickly they
can use it to how satisfied they are with the experience. In my case, usability, func-
tionality, and interface design goals are all synonymous.

Allow users to search, browse, save, and share images
The Bing Image Search app will use the Bing Search API to retrieve a list of search
results and display them in a number of different user-friendly views.

Make use of the charms where applicable (search, share, settings)
The Windows 8 charms provide a nice way to perform many tasks that are common
to all applications. A goal of this app is to use charms where ever applicable. This
does not mean that you should rely on the charms for all user interaction; in con-
trast, I encourage you to provide app bar buttons that trigger the charm panes and
provide users with an alternative to opening the charms to discover critical pieces
of your app like search.

Expose the content to other apps via the file pickers
Windows 8 provides new and improved file pickers that can load images from
numerous locations, not only the local filesystem. The Bing Image Search app
should allow users from other apps to select images for use within their app.

Should support multiple layouts
In addition to multiple screen resolutions, you will need to consider how your
application will respond to changes in orientation (portrait and landscape) and
how it will look in the new Snapped mode. Many of the Visual Studio application

Figure 3-1. Bing Image Search App

28 | Chapter 3: Application Architecture

templates, use a LayoutAwarePage base class to provide pages with updates to their
state. The Bing Image Search application will use the same technique to notify its
pages of any changes.

Use gestures and sensors to provide users with unique ways to interact with the app
While a button to load more results is sufficient, it’s becoming common for tablets
and slates to support a shake gesture for reloading content. In order to be on the
cutting edge, the Bing Image Search app should support these gestures.

Non-functional
Non-functional goals describe what the app should be; this is in contrast to what the
app should do, as discussed in the previous section. This also includes features that
may not be encountered during typical application use, but would ultimately affect the
user experience.

Be a good citizen on the platform
To be a good citizen means to do all you can to ensure a good user experience. This
means your app should be responsive and clean. A good experience in the app is
not the only concern. Being a good citizen also includes sparing use of network
bandwidth and isolated storage so that your app does not hog system resources.

Should gracefully respond to the user when network access is disabled
Since it’s not practical to store all the possible image results from the Bing Search
API, the app can’t offer the users a compelling offline experience. If your app has
the ability to provide valid data to the user when offline, then I encourage you to
consider this goal for yourself. Simply informing the users that the app is not avail-
able when the user is offline will suffice.

Should support a loading progress bar and downloading indicators
Because all the data for the Bing Image Search app comes from online sources, the
network traffic can be quite heavy. For this reason, it’s imperative to provide pro-
gress bars and status information to the user so they know when the app is busy.
The main Shell of the application exposes status update functionality through an
IStatusService interface.

Should gracefully handle exception messages
The Bing Image Search app should never return sensitive information regarding
exceptions to users. To handle this, the DialogService class can be used throughout
the app or as unhandled exceptions are encountered, it can provide users with
friendly error messages.

Should perform all actions asynchronously
WinRT does not provide any way to perform actions that take longer than 50ms
without using an asynchronous pattern. The Bing Image Search app maintains this
requirement and performs all long-running tasks asynchronously so the user ex-
perience is never jeopardized.

Goals | 29

Development Process Goals
While the previous two goals relate to the overall user experience, development process
goals impact developers and the overall code maintainability throughout the lifetime
of the application.

Bing Image Search should have highly testable code.
The Bing Image Search uses the Model-View-ViewModel (MVVM) pattern to pro-
vide testable application logic. ViewModels are provided to their respective Views
via the ViewModelLocator. All of the ViewModels and services are instantiated via
a central Inversion of Control (IoC) container and dependencies are provided to
their objects via Dependency Injection (DI). This allows the unit tests to provide
mock implementations when testing functionality.

Bing Image Search should adapt to the application for compatibility with new capabilities
of future versions.

The Bing Image Search app has an ApplicationSettings class that is a strongly
typed wrapper over application storage. The underlying implementation remains
flexible to change. In the event that you need to change whether settings are roam-
ing, local, or serialized to a file, the object exposed to the consuming classes remains
unchanged.

Bing Image Search wants to handle all events in a centralized location, be it Windows
events or local app events.

The Bing Image Search app uses a MessageHub to handle messages. Messages are
used to signal the occurrence of an event in a loosely coupled fashion. Messages
are made up of two parts: an IMessage, which is the payload, and an IHandler,
which is responsible for handling the message when it is sent. There is also an
IMessagePump, which is responsible for listening to events like a search action or a
share data request for Windows, at which point its only job is to Send a message.

The WinRT platform is new, so expect it to change and design your
application so that you can easily modify it to use new features.

These goals allow me to set a standard for quality and functionality that can be used
when testing the app. The remainder of the chapter will focus on the actual application:
designing the interface, structuring the pages, and core functionality.

Design of the User Interface
In order to accomplish the goals laid out in this chapter, the Bing Image Search app
needs to be small and easy to navigate. With that in mind, the app is broken up into
three pages:

• SearchHistoryPage

30 | Chapter 3: Application Architecture

• SearchResultsPage

• DetailsPage

The primary page that the user sees is the SearchHistoryPage; this outlines the user’s
searching history and is the home screen for the application. Once a user has performed
a search, she is navigated to a SearchResultsPage. The SearchResultsPage provides
multiple views of the images. There are buttons on the bottom of the app bar that allow
users to switch between views. Once an image is selected, the user has the ability to
load a DetailsPage where she can perform a number of Windows 8 tasks. Figure 3-2
shows a detailed diagram of the navigation events in the Bing Image Search app.

Figure 3-2. Navigation Diagram of Bing Image Search App

Table 3-1. Application Entry Points

Entry Point Override in App.xaml Description Bing Image Search app behavior

OnLaunching Occurs when the user clicks on the tile
from the Start Screen or Apps list

Loads the main Shell and navigates to
the SearchHistoryPage

OnSearchActivated Occurs when the user clicks the app icon
from within the Windows SearchPane
when the app is not currently in the
foreground. (i.e., from within another
app or from the Start Screen)

Loads the main shell and immediately
sends a SearchQueryRequested
Message to the MessageHub, which
in turn navigates to the SearchRe
sultsPage

OnFileOpenPickerActivated Occurs when the user launches the Fil
eOpenPicker from another applica-
tion, clicks the Files button, and selects
the Bing Image Search app

Loads the custom FileOpenPicker
Page and disables navigation

In addition to the overall design of the application, Figure 3-2 also shows the different
entry points into the app. All of these entry points, described in Table 3-1, occur in the
App.xaml.cs file. This App.xaml file contains the resource, or style, definitions for use

Design of the User Interface | 31

throughout the application. The associated App.xaml.cs file contains the App class,
which, like WPF and Silverlight, hosts the application startup and shutdown event or
overrides. This App class, or application class, creates a new Shell control, assigns it to
the current window, and activates that window, as seen in Example 3-1. This main
application Shell is responsible for the navigation, title, back button, and the Prefer
encesPage. In the case of the OnFileOpenPickerActivated entry point, the full application
UI won’t suffice for a number of reasons, primarily because the resolution is different
and the app bar will not work. This is why it loads a custom page, specifically the
FileOpenPickerPage, to run the application. The file picker will be described in more
detail in Chapter 4.

Example 3-1. A snippet of code used to activate the application Shell (App.xaml.cs)

Window.Current.Content = new Shell();
Window.Current.Activate();

Application Diagram
The Bing Image Search app is made of Models, Views, ViewModels, application serv-
ices, and Windows services. Figure 3-3 describes the structure of the Bing Image Search
application. This diagram is simplified in a number of ways, but the core components
in the application services layer remain. You will also notice that the ViewModels don’t
talk to the Windows services directly. The application services act as a proxy to the
Windows services, which maintains code testability.

The application services are broken up into five categories and I’ll review them in the
order in which they occur when the application activates:

• MVVM & the ViewModelLocator

• IoC

• NavigationService

• MessagingHub

• ApplicationSettings

Model-View-ViewModel (MVVM)
Model-View-ViewModel (MVVM) is a common practice in XAML and C# that was
made popular by WPF and Silverlight. MVVM makes extensive use of the data binding
capabilities in XAML. The ViewModel exposes properties on the Model objects to the
View, which uses data binding to display that information to the user. In addition to
binding data from the ViewModel to the View, events from the View are routed to the
ViewModel via commands.

32 | Chapter 3: Application Architecture

MVVM as a design pattern is a broad topic that I will not be able to
cover in this short guide. This section will focus on what’s relevant for
this app. If you are new to MVVM, you may want to take a look at WPF
Apps With The Model-View-ViewModel Design Pattern, an article by
Josh Smith in MSDN Magazine (http://msdn.microsoft.com/en-us/maga
zine/dd419663.aspx).

Who Comes First: the View or the ViewModel (the ViewModelLocator)?
There are many schools of thought regarding which object should be created first, the
View or the ViewModel. While there are merits in both, I find that using a ViewModel
Locator for small task-oriented projects, like those typically found in apps for phones
and tablets, is easy to manage. This approach may not be appropriate for larger appli-
cations because the statically typed nature of the properties may become difficult to
manage.

Figure 3-3. Application Diagram

Model-View-ViewModel (MVVM) | 33

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

The ViewModelLocator is created as an application resource (see Example 3-2) and is
used, in this case, with an Inversion of Control (IoC) container to provide object acti-
vation for almost everything in the system. Within the ViewModelLocator, you will find
properties for each of the views. Example 3-3 shows the property for the SearchHistor
yPageViewModel. This property retrieves an instance of the ViewModel from the con-
tainer, which in the case of the Bing Image Search app, returns a new instance of the
ViewModel every time. This allows the ViewModel to load any information required
for the page at the time the page is created. Example 3-4 shows the final piece of the
puzzle. When a new page—the new View—loads, it sets its DataContext in XAML to
the property on the ViewModelLocator, which in turn creates the ViewModel for that
page.

The View-first style of MVVM works well with the page navigation model in XAML
because it decreases the concerns prior to navigating to a page. All you need to do is
store the current user state and tell the application to navigate to a new page. Con-
versely, you would have to create the ViewModel and populate it with information
before navigating to a new page, which can negatively affect maintainability as calling
pages need to know specific details about any related pages. In addition, by storing all
of the navigation state change information in application storage, you get the added
benefit of saving your user’s place in the application as he navigates around, which
makes tombstoning easier.

Example 3-2. ViewModelLocator creation (App.xaml)

<Application.Resources>
 <common:ViewModelLocator x:Key="ViewModelLocator" />

 <!-- Other styles and resources --->
</Application.Resources>

Example 3-3. SearchHistoryPageViewModel Property in the ViewModelLocator
(ViewModelLocator.cs)

public SearchHistoryPageViewModel SearchHistoryPageViewModel
{
 get { return Container.Resolve<SearchHistoryPageViewModel>(); }
}

Example 3-4. SearchHistoryPage DataContext Binding to ViewModel (SearchHistoryPage.xaml)

<Page x:Class="BingImageSearch.SearchHistoryPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 DataContext="{Binding SearchHistoryPageViewModel,
 Source={StaticResource ViewModelLocator}}">
 <!-- code removed for clarity -->
</Page>

34 | Chapter 3: Application Architecture

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Commands
Instead of handling events in the code-behind, which is difficult to test, the MVVM
pattern leverages commands to respond to user interactivity. A command is nothing
more than a generic interface in WinRT. The way I’ve chosen to implement them uses
a DelegateCommand, which can be found in numerous places including the Prism Frame-
work for WPF and Silverlight. Once you’ve included the DelegateCommand, wiring them
up to execute methods is as simple as supplying a delegate to the constructor as seen
in Example 3-5. In general, I try to ensure that the ViewModels have minimal respon-
sibilities, except for coordinating with the view. For this reason, many command han-
dlers have a simple action that sends the required message to the MessageHub for
processing.

Prism (http://compositewpf.codeplex.com/) is a set of guidelines pro-
duced by Microsoft’s Patterns and Practices team on building applica-
tions in WPF. While it’s a great example of building full-scale applica-
tions, I find the techniques described in the Windows Phone 7 Guide
to be far more relevant to Metro style apps (http://wp7guide.codeplex
.com/).

Example 3-5. Defining a Command (SearchHistoryPageViewModel.cs)

public SearchHistoryPageViewModel(/* insert dependencies here */)
{
 // ViewModel setup code
 SearchCommand = new DelegateCommand(Search);
}

public void Search()
{
 // Send a message to the MessageHub.
}

Inversion of Control (IoC) Container
Numerous Inversion of Control (IoC) containers have been created by the .NET com-
munity and make the process of configuring types for your application quite easy. When
leveraging the Dependency Inversion principle (or Dependency Injection) your services
will likely have nested dependencies, which lead to quite a bit of setup. The IoC con-
tainer solves this by handling the setup of your application type mappings in a cen-
tralized location. In addition, the IoC container is responsible for maintaining the life-
time of each object in your application. If you want more info about IoC containers,
there is plenty of information online. My favorite resource is still the DNR TV video
James Kovacs’ roll-your-own IoC container at http://www.dnrtv.com/default.aspx?show
Num=126.

Inversion of Control (IoC) Container | 35

http://compositewpf.codeplex.com/
http://wp7guide.codeplex.com/
http://wp7guide.codeplex.com/
http://www.dnrtv.com/default.aspx?showNum=126
http://www.dnrtv.com/default.aspx?showNum=126

You should consider carefully which objects you should reuse and
which objects you should instantiate on demand, also known as Single
tonLifetime and TransientLifetime respectively. Reusing objects can
improve the application’s performance at the expense of memory uti-
lization.

Since the .NET Windows Metro Style App Profile is new, the options for containers
are limited. I’d imagine that many more containers will become available with time.
For now, I am using a nice container that is available from codeplex called MetroIoC
(http://metroioc.codeplex.com/).

The ViewModelLocator maintains a reference to the application’s only IoC container and
uses it to create all the ViewModels. Example 3-6 shows how the container is created
in the ViewModelLocator. It uses a Lazy<T> object that builds the container the first time
it’s requested. The constructor for the lazy object takes a delegate to create an object
of the requested type. In the case of Example 3-6, the lazy construction is offloaded to
the IoC.BuildContainer method, which can be seen in Example 3-7.

Example 3-6. Container declaration (ViewModelLocator.cs)

private Lazy<IContainer> _container;
public IContainer Container
{
 get { return _container.Value; }
}

public ViewModelLocator()
{
 _container = new Lazy<IContainer>(IoC.BuildContainer);
}

Example 3-7. BuildContainer method (IoC.cs)

public class IoC
{
 public static IContainer BuildContainer()
 {
 var container = new MetroContainer();
 container.RegisterInstance(container);
 container.RegisterInstance<IContainer>(container);

 container.Register<IHub, MessageHub>(lifetime: new SingletonLifetime());
 /* more type registrations */
 }
}

Once the container is set up, the app is free to use the Dependency Inversion principle
throughout. When you look at the SearchHistoryPageViewModel class (Example 3-8),
you see that the only way to create the object is by supplying two required dependencies
in the constructor. The container will automatically determine the requirements and

36 | Chapter 3: Application Architecture

http://metroioc.codeplex.com/

perform the necessary steps to resolve them first and ensure that these requirements
are satisfied so that a newly created SearchHistoryPageViewModel can be provided.

Example 3-8. SearchHistoryPageViewModel with dependencies (SearchHistoryPageViewModel.cs)

public class SearchHistoryPageViewModel : BindableBase
{
 private readonly INavigationService _navigationService;
 private readonly IHub _hub;

 public SearchHistoryPageViewModel(INavigationService navigationService, IHub hub)
 {
 _navigationService = navigationService;
 _hub = hub;
 }
}

When you couple this design with a unit test, you’ll quickly see how
much easier this makes your test logic. In the case of the view models,
the NavigationService and MessageHub can be mocked and assertions
can easily be made on these objects to ensure the proper message is sent
when the SearchCommand is executed.

There are numerous benefits to unit testing your code. I will not be
covering testing in the book, but the Bing Image Search application has
been built with unit tests. If you are interested in my approach to testing,
you can find it online at https://github.com/bendewey/GettingStarted
WithMetroApps.

Navigation
The Bing Image Search app is small, but regardless of your app size, you’ll probably
need to handle local navigation. There are two main ways to do this: first is to change
the Window.Current property to a new UserControl and allow changes in navigation to
update that property. The second uses a Frame, which can be set to a Type reference,
typically using the typeof keyword, for the XAML page you’d like to display. Both of
these approaches have a place, but for the Bing Image Search app, I am going to use
the Frame control (Example 3-9). The Frame control works best because it has built-in
support for navigation, both forward and backward, and because it allows me to treat
the container page (the Shell) as a form of master page or master layout where I can
place common UI elements across all pages.

Example 3-9. Frame declaration (Shell.xaml)

<Frame x:Name="MainFrame" />

This Frame is located in the Shell.xaml file. The purpose of the Shell, and the reason I
am using a Frame, can be seen in Figure 3-4. The Bing Image Search app will use a

Navigation | 37

https://github.com/bendewey/GettingStartedWithMetroApps
https://github.com/bendewey/GettingStartedWithMetroApps

consistent title and back button across all pages. The Shell will also be used for the
preferences page, which will be available from any page.

In order to tell your app to use the Shell.xaml file as its default page, you’ll need to
specify this in the OnLaunching event of the App.xaml.cs file. Example 3-10 shows what’s
required to initialize your Shell page. In addition to creating the new control and as-
signing it to the Window, the OnLaunching event registers the frame with the ViewModel
Locator’s NavigationService. If you remember, the ViewModelLocator holds the only
container, and the properties on it simply return whatever the container provides, in
this case, a SingletonLifetime instance of the NavigationService.

Example 3-10. Shell initialization (App.xaml.cs)

shell = new Shell();
ViewModelLocator.NavigationService.InitializeFrame(shell.Frame);
Window.Current.Content = shell;
Window.Current.Activate();

While this code works well for the OnLaunched event, the same logic will be needed on
the OnSearchActivated method. In order to reuse the code between the different acti-
vation models, extract this code into a new method and call this from either activation
method as in Example 3-11.

Example 3-11. App activation (App.xaml.cs)

public override void OnLaunched(/* ... */)
{
 await EnsureShell(args.PreviousExecutionState);
 ViewModelLocator.NavigationService.Navigate(typeof(SearchHistoryPage));
}

public override void OnSearchActivated(/* ... */)
{
 await EnsureShell(args.PreviousExecutionState);
 await ViewModelLocator.Hub.Send(new SearchQuerySubmittedMessage(args.QueryText));
}

public void EnsureShell()
{

Figure 3-4. Shell sketch with frame marker

38 | Chapter 3: Application Architecture

 // setup shell and activate window
}

NavigationService
In Example 3-10, I registered the frame with the NavigationService. This service is used
throughout the application to handle navigation requests. Example 3-12 shows the
NavigationService class, which is essentially a proxy to the Frame methods.

Example 3-12. Using the NavigationService requires a Frame to be initialized (NavigationService.cs)

public class NavigationService : INavigationService
{
 private Frame _frame;

 public void InitializeFrame(Frame frame)
 {
 if (_frame != null)
 {
 _frame.Navigating -= Frame_Navigating;
 }

 _frame = frame;
 _frame.Navigating += Frame_Navigating;
 }

 public void Navigate(Type source, object parameter = null)
 {
 if (_frame == null)
 {
 throw new InvalidOperationException("Frame has not been initialized.");
 }
 _frame.Navigate(source, parameter);
 }

 /* more proxy methods, CanGoBack, GoBack */
}

Once the NavigationService has been initialized, any service can inject it to navigate
the application to a new page by calling its navigate method. Example 3-13 shows an
example of how the SearchQuerySubmittedHandler handles navigation.

Example 3-13. Using the NavigationService (SearchQuerySubmittedHandler.cs)

public class SearchQuerySubmittedHandler : IHandler<SearchQuerySubmittedMessage>
{
 private readonly INavigationService _navigationService;

 public SearchQuerySubmittedHandler(INavigationService navigationService)
 {
 _navigationService = navigationService;
 }

 public void Handle(SearchQuerySubmittedMessage message)

Navigation | 39

 {
 // execute the search against the Bing Search API
 _navigationService.Navigate(typeof(SearchResultsPage));
 }
}

MessageHub
One of the goals for the Bing Image Search app is to handle application and operate
system-level events in a centralized location. To accomplish this, I’ve implemented a
MessageHub, which routes all messages to dedicated handlers that are created by the
container, and thus can have their dependencies injected. The MessageHub is made up
of four components described in Table 3-2.

Table 3-2. MessageHub Components

Name Description

MessageHub (IHub) The MessageHub is the brains behind the operation. It is
responsible for receiving the messages and routing them to
the appropriate handler.

Message (IMessage) A Message represents an action in the system. It can signify
a user interaction or a message propagated from an operating
system event. Messages can have properties in order to notify
the handler of information relevant to that event. In the ex-
ample of a SearchQuerySubmittedMessage, the mes-
sage would contain the search text entered by the user.

Handler (IHandler and IAsyncHandler) A handler requires a single method called Handle or Han
dleAsync, which takes an IMessage as its only parameter.
The difference between IHandler and IAsyncHandler is
the return type. The async version returns a new Task so it
can be awaited. Handlers are constructed using the same IoC
container that builds the ViewModels as seen previously in this
chapter. If you’re interested in how to handle specific Windows
8 tasks, the handlers section is a great place to start.

MessagePump (IMessagePump) Certain messages are not triggered by user interaction, but by
Windows 8. Rather than take dependencies on events through-
out the code, message pumps provide a mechanism to listen
to system events and pump them out to the MessageHub when
they occur. IMessagePump has Start() and Stop()
methods, which are used to subscribe and unsubscribe to event
handlers, respectively.

40 | Chapter 3: Application Architecture

Sending a Message
The MessageHub will be used throughout Chapter 4, so in order to get familiar with how
it works, I’ll show you an end-to-end example. In the previous section I used a Search
QuerySubmittedMessage to demonstrate navigation and dependency injection. When
the application launches with a search command from Windows (OnSearchActivated),
the application class sends a new SearchQuerySubmittedMessage with the search text to
the MessageHub. The MessageHub (Example 3-15) locates a handler for the new message
and calls the Handle method. The final step is for the handler to receive the message
and process it Example 3-16.

Example 3-14. OnSearchActivated (App.xaml.cs)

protected override async void OnSearchActivated(SearchActivatedEventArgs args)
{
 await EnsureShell(args.PreviousExecutionState);
 await ViewModelLocator.Hub.Send(new SearchQuerySubmittedMessage(args.QueryText));
}

Example 3-15. MessageHub class for routing all messages in the app (MessageHub.cs)

public class MessageHub : IHub
{
 private readonly IContainer _container;

 public MessageHub(IContainer container)
 {
 _container = container;
 }

 public async Task Send<TMessage>(TMessage message) where TMessage : IMessage
 {
 var handler = _container.TryResolve<IHandler<TMessage>>(null);
 if (handler != null)
 {
 handler.Handle(message);
 return;
 }

 var asyncHandler = _container.TryResolve<IAsyncHandler<TMessage>>(null);
 if (asyncHandler != null)
 {
 await asyncHandler.HandleAsync(message);
 return;
 }
 }
}

Example 3-16. The message handler for the SearchQuerySubmittedMessage
(SearchQuerySubmittedHandler.cs)

public class SearchQuerySubmittedHandler : IAsyncHandler<SearchQuerySubmittedMessage>
{
 public SearchQuerySubmittedHandler(/* dependencies */)

MessageHub | 41

 {
 }

 public async Task HandleAsync(SearchQuerySubmittedMessage message)
 {
 // execute search using message.Query
 }
}

Alternatives to the MessageHub
Prism uses a similar pattern called the EventAggregator. This approach allows for mul-
tiple handlers, known as subscribers, to listen for notification when an event is sent or
published. This approach allows for more flexibility in the handling of events, at the
expense of extra setup on the side of the subscribing classes.

Application Storage and Tombstoning
The new application model for Metro style apps will suspend your app shortly after
your app leaves the user’s foreground. It’s up to the app to handle reloading to the
correct location and retaining the state of the application when the user was last active.
This process is known as tombstoning your application and is common practice on
phones and tablet devices. One approach to handling this is to save your application
state when the OnSuspending event occurs in the App.xaml.cs file. An alternative ap-
proach—and the approach that is used by the Bing Image Search app—is to constantly
save state while the user navigates through the application. The latter allows us to use
the same tracking mechanism to pass state between different objects in the system.

To accomplish this, the Bing Image Search app uses an ApplicationSettings class. This
class is a strongly typed wrapper over the internal ISuspensionManager that maintains
the settings in a Dictionary of key-value pairs and contains two methods: SaveAsync
and RestoreAsync.

Example 3-17 shows how the SearchResultsPageViewModel updates the Application
Settings with the currently selected image and then navigates to the DetailsPage, which
loads the selected image from the same application settings location.

Example 3-17. Snippet for setting current image in application settings
(SearchResultsPageViewModel.cs)

public class SearchResultsPageViewModel : BindableBase
{
 private readonly ApplicationSettings _settings;
 private readonly INavigationService _navigationService;

 public SearchResultsPageViewModel(ApplicationSettings settings,
 INavigationService navigationService)
 {
 _settings = settings;

42 | Chapter 3: Application Architecture

 _navigationService = navigationService;

 // Additional ViewModel setup code
 ViewDetailsCommand = new DelegateCommand(ViewDetails);
 }

 public ImageResult SelectedImage
 {
 get { return _settings.SelectedImage; }
 set
 {
 _settings.SelectedImage = value;
 OnPropertyChanged();
 }
 }

 public void ViewDetails()
 {
 _navigationService.Navigate(typeof(DetailsPage));
 }
}

Now that all the settings and other relevant information about the state within the
application have been saved, the only remaining concern is reloading the data for the
user’s return to the app. Example 3-18 shows how, with a simple modification to the
EnsureShell method, you can restore the application state.

Metro style apps are not required to save and restore state every time
the application relaunches. Depending on your application require-
ments, you should reserve saving and restoring large objects and files
for when the app launches after being terminated. To determine this,
you can check the ApplicationExecutionState on the OnLaunching
method for Terminated or ClosedByUser. More information about the
application lifecycle can be found online at http://msdn.microsoft.com/
en-us/library/windows/apps/hh464925.aspx.

Example 3-18. Restoring application settings (App.xaml.cs)

public async void EnsureShell()
{
 if (previousState == ApplicationExecutionState.Terminated
 || previousState == ApplicationExecutionState.ClosedByUser)
 {
 var settings = ViewModelLocator.Container.Resolve<ApplicationSettings>();
 await settings.RestoreAsync();
 }

 // Remaining EnsureShell logic from earlier
}

Application Storage and Tombstoning | 43

http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx

Settings
One of the charms on the new Windows 8 Start Bar is the Settings charm. This mech-
anism is consistent across all apps for providing settings to the user. In the case of the
Bing Image Search app, there is only one settings page called Preferences. The
preferences UI exists in a UserControl that is located in the main Shell (see Exam-
ple 3-19). By default, the PreferencesPage is hidden. In order to display the Preferen
cesPage, you need to register a setting as a SettingsCommand and provide a callback to
show the page. Example 3-20 shows the registration command and the callback.

Example 3-19. Preference page in Shell (Shell.xaml)

<UserControl x:Class="BingImageSearch.Shell"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:BingImageSearch"
 Loaded="UserControl_Loaded">

 <Grid x:Name="LayoutRoot">
 <!-- Some code removed for clarity -->

 <local:PreferencesPage x:Name="PreferencesPage" Grid.RowSpan="2" />
 </Grid>
</UserControl>

Example 3-20. Settings command registration (Shell.xaml.cs)

private void RegisterSettings()
{
 SettingsPane.GetForCurrentView().CommandsRequested += (s, e) =>
 {
 var settingsCommand = new SettingsCommand("Preferences", "Preferences", (h) =>
 {
 this.PreferencesPage.Show();
 });

 e.Request.ApplicationCommands.Add(settingsCommand);
 };
}

While the ApplicationSettings class stores settings for application state, it is also used
to store the user settings for the application. The PreferencesViewModel, Exam-
ple 3-21 uses the same ApplicationSettings class to instantly store any changes made
by the user. You can see this by the call to _settings.Rating = value after calling the
base class SetProperty method. When the user closes the settings view, these changes
are immediately available for use within the app.

Example 3-21. Preferences are saved to settings after updating the property
(PreferencesViewModel.cs)

public class PreferencesViewModel : BindableBase
{

44 | Chapter 3: Application Architecture

 private readonly ApplicationSettings _settings;

 public PreferencesViewModel(ApplicationSettings settings)
 {
 _settings = settings;
 ImageResultSize = _settings.ImageResultSize;
 Rating = _settings.Rating;
 }

 private ResultSize _imageResultSize;
 public ResultSize ImageResultSize
 {
 get { return _imageResultSize; }
 set
 {
 if (value != ResultSize.Empty)
 {
 base.SetProperty(ref _imageResultSize, value);
 _settings.ImageResultSize = value;
 }
 }
 }

 private Rating _rating;
 public Rating Rating
 {
 get { return _rating; }
 set
 {
 if (value != Rating.Empty)
 {
 base.SetProperty(ref _rating, value);
 _settings.Rating = value;
 }
 }
 }
}

Summary
Now that a rough idea of the application architecture, it’s time to start hooking into
the operating system features. The next chapter focuses on all the powerful features
within Windows 8 and how they fit into the application design.

Summary | 45

CHAPTER 4

Interacting with the Operating System

One of the many reasons to choose a native app over a web app is to have access to the
features available exclusively to native apps. This chapter focuses on these features and
what it takes for you to implement them into your app.

Just like the previous chapter, I will be using the Bing Image Search application for
context when describing these features. As the name states, search is a critical compo-
nent to the application and it is where I will start. Once the user has performed a search,
the app will have images that can be used throughout the operating system in places
like tiles, file pickers, and sharing requests. Table 4-1 shows a list of the features that
are leveraged by the Bing Image Search app. All of these features will be described in
detail in this chapter.

Table 4-1. Windows 8 Features used by the Bing Image Search app

Features Description

Search Search is a charm on the Start Bar that enables searching within
any application. Search is activated in different ways depend-
ing on whether your app is already running or not.

Tiles Tiles become Live Tiles when you dynamically send updates to
them with relevant content for your application. Tiles can be
updated with a variety of templates, in the case of the Bing
Image Search application, Tiles can be updated with a single
image or a collage of images.

Pickers Pickers are used throughout Windows to provide information
to and from applications and the operating system. The Bing
Image Search app uses the FileSavePicker to save images
and the FileOpenPicker to provide the searched images
to other applications.

Share Apps can act as either sharing sources or targets. The Bing
Image Search application will be used as a share source, mean-
ing that it can share images to other applications. This app will
not be used as a share target since it has no use for input data
from other apps.

47

Features Description

Devices Windows 8 supports a number of devices such as cameras, light
sensors, and accelerometers. The Bing Image Search applica-
tion uses the Accelerometer to determine when the device
is shaken so that it can load more results.

Search
In Chapter 2, I used a TextBox and a Button to load results from the Bing Search API.
Although this worked, it didn’t fit into the Windows 8 experience. Windows 8 has
completely redesigned search on the operating system and has exposed a consistent
experience for all applications and files alike. Windows 8 Search can communicate with
your app in two ways:

Your app is in the foreground and currently running
Windows 8 fires an event via the SearchPane.QuerySubmitted handler

Your app is not running
Windows 8 launches your app with the expressed intent of searching and launches
via the overridden OnSearchActivated method within your application (App) class.

Declaring Your Search Intentions
In order to display the app’s tile in the SearchPane, you need to specify your intentions
via the application manifest file (Package.appxmanifest). This manifest file is located in
the root folder of your app and Visual Studio will open a custom screen for defining
your app when you open it. Navigate to the Declarations tab, Figure 4-1, select Search
from the drop-down menu, and click Add. In the case of the Bing Image Search app, I
did not need to specify any parameters because the search logic is handled by the default
App entry point. In the event that your app needs an alternative entry point for searching,
you could specify it here.

Handling SearchPane.QuerySubmitted
SearchPane.QuerySubmitted is an event on a statically accessible object triggered by the
operating system. This type of object is not testable because you don’t know when or
how the operating system will fire the event. More importantly, you are unable to trigger
the event from an automated test. In order to make these events more testable, they
need to be converted into messages and routed through the messaging system. When
the app runs, the message is sent directly to the handler that performs the actual search.
To test the handler, you can easily create a fake message and execute the handler with
that message. The mechanism for converting the operating system events into messages
that can be handled is the SearchPaneMessagePump (Example 4-1). In addition, this pump

48 | Chapter 4: Interacting with the Operating System

can be started when the application launches and can respond to search requests from
the operating system regardless of the current page.

Example 4-1. MessagePump adapter to route Windows 8 Searches to the app
(SearchPaneMessagePump.cs)

public class SearchPaneMessagePump : IMessagePump
{
 private readonly IHub _messageHub;
 private SearchPane _searchPane;

 public SearchPaneMessagePump(IHub messageHub)
 {
 _messageHub = messageHub;
 }

 public void Start()
 {
 _searchPane = SearchPane.GetForCurrentView();
 _searchPane.QuerySubmitted += OnQuerySubmitted;
 }

 public void Stop()
 {
 if (_searchPane != null)
 {
 _searchPane.QuerySubmitted -= OnQuerySubmitted;
 }
 }

 private async void OnQuerySubmitted(SearchPane sender,
 SearchPaneQuerySubmittedEventArgs args)
 {
 await _messageHub.Send(new SearchQuerySubmittedMessage(args.QueryText));
 }
}

Figure 4-1. Declaring search

Search | 49

When started, the SearchPaneMessagePump listens for any QuerySubmitted events on the
current SearchPane. When the event occurs a new message is created and sent to the
message hub for routing. The logic here is purposefully simple. When creating testable
code, it’s imperative that you isolate the operating system from the application; this
layer, similar to the adapter pattern mentioned previously, allows the remainder of the
code to adapt independently from the operating system. Once a message is sent to the
MessageHub, it’s routed to its respective handler. Handlers are where all the work hap-
pens.

Example 4-2. Handler code for responding to a Search query from Windows 8
(SearchQuerySubmittedHandler.cs)

 public class SearchQuerySubmittedHandler : IAsyncHandler<SearchQuerySubmittedMessage>
 {
 private readonly ApplicationSettings _settings;
 private readonly IImageSearchService _imageSearchService;
 private readonly INavigationService _navigationService;
 private readonly IStatusService _statusService;

 public SearchQuerySubmittedHandler(ApplicationSettings settings, IImageSearchService
 imageSearchService, INavigationService navigationService,
 IStatusService statusService)
 {
 _settings = settings;
 _imageSearchService = imageSearchService;
 _navigationService = navigationService;
 _statusService = statusService;
 }

 public async Task HandleAsync(SearchQuerySubmittedMessage message)
 {
 if (!NetworkInterface.GetIsNetworkAvailable())
 {
 _statusService.SetNetworkUnavailable();
 return;
 }

 _statusService.Message = "Loading Images for " + message.Query;
 _statusService.IsLoading = true;

 try
 {
 // Remove any existing searches for this query
 var searches = _settings.Searches;
 var existing = searches.FirstOrDefault(s =>
 s.Query.Equals(message.Query, StringComparison.CurrentCultureIgnoreCase));
 if (existing != null)
 {
 searches.Remove(existing);
 }

 // Search Bing
 var images = await _imageSearchService.Search(message.Query,

50 | Chapter 4: Interacting with the Operating System

 _settings.Rating, _settings.ImageResultSize);
 if (!images.Any())
 {
 _statusService.SetBingUnavailable();
 return;
 }

 // Store results in app settings
 var instance = new SearchInstance()
 {
 Images = images,
 SearchedOn = DateTime.Today,
 Query = message.Query
 };
 searches.Insert(0, instance);
 _settings.Searches = searches;
 _settings.SelectedInstance = instance;
 await _settings.SaveAsync();

 // Navigate
 _navigationService.Navigate(typeof(SearchResultsPage));
 }
 catch (InvalidOperationException ex)
 {
 var baseEx = ex.GetBaseException();
 if (baseEx is WebException)
 {
 _statusService.SetBingUnavailable();
 return;
 }
 throw;
 }
 finally
 {
 _statusService.IsLoading = false;
 }
 }
 }

The SearchQuerySubmittedHandler (Example 4-2) performs the following steps:

1. Checks for a valid Internet connection

2. Notifies the application of its status

3. Executes the search against the Bing Search API

4. Stores the results in the settings for retrieval by the ViewModel

5. Navigates to the SearchResultsPage

In the event that a user has already searched for an item, it will be removed from the
history before proceeding to avoid duplicates. All the logic in the handler is specific to
the application and isolated here from any outside influence. In addition, you’ll notice
that none of the code in this handler is specific to Windows 8. The primary input is a
Message, which just contains a string containing the search query.

Search | 51

Using the message hub for searching helps provide more testable code.
Unfortunately the topic is far too broad and subjective to discuss here
in detail. If you’re interested in my approach to testing the code, you
can see the tests for the SearchQuerySubmittedHandler by viewing them
online at http://github.com/bendewey/GettingStartedWithMetroApps/
blob/master/BingImageSearch/BingImageSearch.Tests/Message/Han
dlers/SearchQuerySubmittedHandlerTests.cs.

One of the goals from Chapter 3 was to ensure an optimal experience when the users
are offline. In order to interact with the app, users would first need to perform a search.
This means the SearchQuerySubmittedHandler is an ideal place to verify Internet con-
nectivity before executing the web service call. In addition, I am trapping WebExcep
tion here and allowing the _statusService to provide a friendly message to the user
stating that the application is offline. Figure 4-2 and Figure 4-3 show the messages that
are displayed to the user when the app encounters an error performing a search.

Figure 4-2. Network Unavailable message displayed to the user

Figure 4-3. Bing Search API Unavailable message displayed to the user

In the original version of this class, I tried to optimize the code by using an async
void method to save the settings in parallel with navigation. This turned out to have
numerous issues with regards to my unit tests, but more importantly it caused issues
with the handling of exceptions (see the note below for the reasons to avoid the async
void method).

52 | Chapter 4: Interacting with the Operating System

http://github.com/bendewey/GettingStartedWithMetroApps/blob/master/BingImageSearch/BingImageSearch.Tests/Message/Handlers/SearchQuerySubmittedHandlerTests.cs
http://github.com/bendewey/GettingStartedWithMetroApps/blob/master/BingImageSearch/BingImageSearch.Tests/Message/Handlers/SearchQuerySubmittedHandlerTests.cs
http://github.com/bendewey/GettingStartedWithMetroApps/blob/master/BingImageSearch/BingImageSearch.Tests/Message/Handlers/SearchQuerySubmittedHandlerTests.cs

An async method has no return type and simply calls an await on some
other code that can use async void RunSomethingAsync() and async Task
RunSomethingAsync() interchangeably. Returning a Task allows other
code to await on your method, making it appear synchronous, where
returning void signifies a fire-and-forget asynchronous block. It’s also
important to note that using async void is an anti-pattern because ex-
ceptions thrown from within an async void don’t currently bubble up
to the application unhandled exception handler and the thread is abor-
ted with no notice. I have a post on the Windows Developer forum that
references this issue, and hopefully it will be resolved in a future version
(http://social.msdn.microsoft.com/Forums/en-US/winappswithcsharp/
thread/bea154b0-08b0-4fdc-be31-058d9f5d1c4e).

Launching Your App Directly into Search Mode
The second way to interact with the Windows 8 SearchPane is through the OnSearchAc
tivated override method on your application class. This method provides the same
information as the SearchPane.QuerySubmitted, but it has a different argument called
SearchActivatedEventArgs. The testability concerns and logic are almost identical to
the static event, and luckily the approach from the previous section can be completely
reused by simply sending a message to the exact same message hub. Example 4-3 shows
the App.xaml.cs code needed to send the message.

Example 4-3. OnSearchActivated override (App.xaml.cs)

partial class App
{
 public static ViewModelLocator ViewModelLocator
 {
 get { return (ViewModelLocator)Current.Resources["ViewModelLocator"]; }
 }

 protected override async void OnSearchActivated(SearchActivatedEventArgs args)
 {
 await EnsureShell(args.PreviousExecutionState);
 await ViewModelLocator.Hub.Send(new
SearchQuerySubmittedMessage(args.QueryText));
 }

 private async Task EnsureShell(ApplicationExecutionState previousState)
 {
 // setup Container, Shell, and set Window.Current.Content
 }
}

There isn’t much to expand upon here except for the fact that when the application
launches, it loads the UI and sends the same message as the SearchPaneMessagePump.
Similarly, this message gets routed to the SearchQuerySubmittedHandler, which

Search | 53

http://social.msdn.microsoft.com/Forums/en-US/winappswithcsharp/thread/bea154b0-08b0-4fdc-be31-058d9f5d1c4e
http://social.msdn.microsoft.com/Forums/en-US/winappswithcsharp/thread/bea154b0-08b0-4fdc-be31-058d9f5d1c4e

navigates to the SearchResultsPage, except this time it happens immediately upon
launching the app.

In addition to these two entry points, applications can provide autocomplete informa-
tion to the Windows 8 SearchPane. This can help users find information relevant to
your content. I can envision an email application that will provide terms present in
recent emails as autocomplete hints. This information is also available via events on
the SearchPane and would fit nicely into the existing messaging implementation.

Tiles
Tiles are the first view your user will get of your app. From the moment she sees it in
the Windows Store to the first time she launches the app, the Tile is your place to make
a first impression. Furthermore, once you’ve engaged your user, it’s important to bring
her back; Live Tiles offer a way to update users with current information without having
to launch the app again.

Tiles come in two sizes: square and wide. Each size has its own set of templates that
can be updated independently or as a single update. Templates come in a number of
different formats, from simple text updates to multiple images with text. A full list of
templates is available online at http://msdn.microsoft.com/en-us/library/windows/apps/
windows.ui.notifications.tiletemplatetype.aspx. The Bing Image Search application will
utilize three templates listed in Table 4-2.

Table 4-2. TileTemplatesTypes used by the Bing Image Search app

Template Sample

TileSquarePeekImageAndText04

54 | Chapter 4: Interacting with the Operating System

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx

Template Sample

TileWidePeekImage03

TileWidePeekImageCollection06

Updating the Tile with a Collection of Images
After performing a search, the user will be navigated to the SearchResults page. This
page shows a list of images based on the search. From this list, you can provide your
first tile update. The template you choose is entirely up to you; I chose to take a random
sampling of six images and update the tile with the TileWidePeekImageCollection06
template. You’ll also need to determine whether you want to update the tile automat-
ically or via some user interaction, for example, when the user clicks on an AppBar
button. I chose to update the user’s tile automatically when he performs a search. When
the SearchResultsPage loads, the IoC container creates a new instance of the SearchRe
sultsPageViewModel. In the constructor of this view model, and Example 4-4, a message
is sent to the message hub to update the tile.

Example 4-4. SearchResultsPageViewModel constructor (SearchResultsPageViewModel.cs)

public SearchResultsPageViewModel(ApplicationSettings settings, IHub hub
 /* other dependencies */)
{

Tiles | 55

 _settings = settings;
 _hub = hub;

 // setup other depedencies and commands

 _hub.Send(new UpdateTileImageCollectionMessage(_settings.SelectedInstance));
}

Sending this message activates the handler, shown in Example 4-5, which is made up
of three steps. The first step retrieves the template for the tile. The second updates the
content’s template with the URLs for the data you would like to update. Finally, the
item is sent to the TileUpdateManagerAdapter to update the primary live tile. The TileUp
dateManagerAdapter is an adapter over the static TileUpdateManager that is available in
the Windows. Example 4-6 shows the TileUpdateManagerAdapter.

The code in Example 4-5 uses NotificationExtensions, a project that
was provided by Microsoft as part of their App tile and badges sample,
which can be found at http://code.msdn.microsoft.com/windowsapps/
App-tiles-and-badges-sample-5fc49148. The default API for updating
tiles uses a TileUpdateManager.GetTemplate(type) to return an XmlDocu
ment for the template, which can be updated manually.

Example 4-5. Handler code for setting a collection of images to your app tile
(UpdateTileImageCollectionHandler.cs)

public class UpdateTileImageCollectionHandler : IHandler<UpdateTileImageCollectionMessage>
{
 private readonly ITileUpdateManager _tileUpdateManager;

 public UpdateTileImageCollectionHandler(ITileUpdateManager tileUpdateManager)
 {
 _tileUpdateManager = tileUpdateManager;
 }

 public void Handle(UpdateTileImageCollectionMessage message)
 {
 var content = TileContentFactory.CreateTileWidePeekImageCollection06();

 content.RequireSquareContent = false;
 content.TextHeadingWrap.Text = "Search for " + message.Instance.Query;

 var images = message.Instance.GetRandomImages(6).ToList();
 UpdateImage(content.ImageMain, images[0]);
 UpdateImage(content.ImageSecondary, images[1]);
 UpdateImage(content.ImageSmallColumn1Row1, images[2]);
 UpdateImage(content.ImageSmallColumn1Row2, images[3]);
 UpdateImage(content.ImageSmallColumn2Row1, images[4]);
 UpdateImage(content.ImageSmallColumn2Row2, images[5]);

 _tileUpdateManager.UpdatePrimaryTile(tile);
 }

56 | Chapter 4: Interacting with the Operating System

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148

 private void UpdateImage(INotificationContentImage imageContent, ImageDetail image)
 {
 imageContent.Src = image.Thumbnail.Url;
 imageContent.Alt = image.Title;
 }
}

Example 4-6. Adapter code to send an update to the Windows8 TileUpdateManager
(TileUpdateManagerAdapter.cs)

public class TileUpdateManagerAdapter : ITileUpdateManager
{
 public void UpdatePrimaryTile(ITileNotificationContent content)
 {
 var notification = content.CreateNotification();
 TileUpdateManager.CreateTileUpdaterForApplication().Update(notification);
 }
}

The Bing Image Search application provides updates to the tile via pub-
licly accessible (HTTP) URIs. Tiles can also be updated with local con-
tent using the ms-appx://<local-path> syntax.

Updating Multiple Tiles with a Single Command
In the previous example of the image collection, I chose not to provide square tile
content by assigning the RequireSquareContent to false. The main reason for this is
there aren’t any square tiles that allow for a collection of images. This means the default
square tile will continue to be used. What I’d like to do is allow the user to update the
square tile on her own via an AppBar button. When the user selects an image, she is
navigated to the DetailsPage. This page allows users to do a task specific to the image,
such as save, share, update tile, etc. (See Figure 4-4). On the AppBar of the Details
Page (Example 4-7), there is a button to set the tile. This button links to a command,
which can be found on the view model, as seen in Example 4-8.

Figure 4-4. Image Search Options

Example 4-7. Set Tile AppBar Button (DetailsPage.xaml)

<Button Command="{Binding SetTileCommand}"
 Style="{StaticResource SetTileAppBarButtonStyle}" />

Tiles | 57

Example 4-8. SetTile Command (DetailsPageViewModel.cs)

public class DetailsPageViewModel
{
 // constructor and dependencies omitted
 public ICommand SetTileCommand { get; set; }

 public void SetTile()
 {
 _messageHub.Send(new UpdateTileMessage(_settings.SelectedImage));
 }
}

As you’ve seen in previous examples, the update tile command is handled by a dedicated
message handler in response to the message from the ViewModel. This keeps the
ViewModel’s responsibilities constrained to just communicating between the View.
Once the message is sent to the message hub, the hub executes the handler with the
message. Example 4-9 shows the UpdateTileHandler, which is responsible for perform-
ing the actual tile update against the operating system.

Example 4-9. Message handler for updating the title to a single image (Update TileHandler.cs)

public class UpdateTileHandler : IHandler<UpdateTileMessage>
{
 private readonly ITileUpdateManager _tileUpdateManager;

 public UpdateTileHandler(ITileUpdateManager tileUpdateManager)
 {
 _tileUpdateManager = tileUpdateManager;
 }

 public void Handle(UpdateTileMessage message)
 {
 var url = message.Image.MediaUrl;
 if (message.Image.Width > 800 || message.Image.Height > 800)
 {
 // Images > 800px cannot be used as tiles
 url = message.Image.Thumbnail.Url;
 }

 var content = TileContentFactory.CreateTileWidePeekImageAndText01();
 content.TextBodyWrap.Text = message.Image.Title;
 content.Image.Src = url;
 content.Image.Alt = message.Image.Title;

 // Square image substitute
 var squareContent = TileContentFactory.CreateTileSquareImage();
 squareContent.Image.Src = url;
 squareContent.Image.Alt = message.Image.Title;
 content.SquareContent = squareContent;

 _tileUpdateManager.UpdatePrimaryTile(content);
 }
}

58 | Chapter 4: Interacting with the Operating System

With the exception of a change in the template, the logic in the single update Tile
handler is very similar to the handler for updating a collection of images. I’m retrieving
the template, setting its values, and updating the Tile through the TileUpdateManagerA
dapter. Depending on the size of your images you may have to perform some resizing.
Live tiles do not work with images larger than 800 pixels tall or wide. In the case of the
Bing Image Search app, this was easy to resolve by verifying the metadata of the image
and downgrading it to the thumbnail view in those scenarios.

It’s also important to note that in Example 4-9 I am specifying an alternative Square
Content tile. The content is identical to the wide content and allows the user to change
the tile size on the start screen and still receive the tile updates.

Tiles are a great way to make your app stand out. In addition to updating your Live
Tile when the app is running, you can also specify a timer or push notification-based
background task to update your tiles as well. Background Tasks are declared in the
application manifest similar to how search was declared in the previous section. This
is a handy way to provide updates to your app’s Tile in the event that your app hasn’t
been launched recently. In addition to providing these images to the Tile, these images
can also be provided to other apps directly via pickers.

Pickers
Pickers are used to provide information to and from your app. For example, your app
can provide information to the FileOpenPicker, in which case other apps can use your
content. Conversely, your app can be the one consuming the content from a FileOpen
Picker, which in turn allows your app to receive content from any installed app on the
user’s system that is providing information. Typically speaking handling a picker is far
more difficult than consuming one. The Bing Image Search app will leverage two of the
pickers.

FileOpenPicker
The Bing Image Search app will support the FileOpenPicker for any app that re-
quests image files. This will utilize a custom page that will provide a TextBox and
a Button for searching.

FileSavePicker
The Bing Image Search app will utilize the FileSavePicker from the DetailsPage to
save an image. This can be used to save a picture to the local filesystem or to save
it to another app, like the SkyDrive app, which allows users to save files to the
cloud directly through this mechanism.

Pickers | 59

FileOpenPicker

Declaring the FileOpenPicker in the manifest

Before you can support the FileOpenPicker, you must specify your intentions via the
application manifest. This will make your application icon appear in the list of available
apps when a user launches a FileOpenPicker. To specify your declaration, open the
Package.appxmanifest on the root of your project, and select the Declarations tab. Select
File Open Picker from the drop-down list and click Add. In the case of the Bing Image
Search app, the FileOpenPicker is limited to supplying only image files (see Fig-
ure 4-5), but depending on your needs you can specify other types or choose to support
any file type by checking the Supports Any File Type checkbox.

Figure 4-5. Declaring File Open Picker

Launching the FileOpenPicker

Once you’ve declared your app, you are ready to hook up the entry point. The Bing
Image Search application doesn’t supply any explicit entry point for the FileOpen
Picker. In that case, the app will launch the App class as its entry point. In the App class,
there is an override void OnFileOpenPickerActivated (Example 4-10), which will ex-
ecute. The Bing Image Search app will create a custom FilePickerPage, rather than the
typical Shell page, and set the current window’s content to that page. In order to handle
adding and remove items to/from the picker, you need to use the supplied FileOpen
PickerActivatedEventArgs, which provides access to the FileOpenPickerUI. This is the
only time you can access this object, so you’ll need to hang on to it. I’ve created a custom

60 | Chapter 4: Interacting with the Operating System

wrapper that is registered in the container and is initialized with the current FileOpen
PickerUI. This wrapper will also serve as an adapter to allow testability of the FilePick
erPageViewModel. Example 4-11 and Example 4-12 show the interface and wrapper used
for adding and removing items to/from the picker.

Example 4-10. OnFileOpenPickerActivated override (App.xaml.cs)

protected override void OnFileOpenPickerActivated(FileOpenPickerActivatedEventArgs args)
{
 ViewModelLocator.FileOpenPickerUiManager.Initialize(args.FileOpenPickerUI);
 Window.Current.Content = new FilePickerPage();
 Window.Current.Activate();
}

Example 4-11. IFileOpenPickerUiManager interface (IFileOpenPickerUiManager.cs)

public interface IFileOpenPickerUiManager
{
 void Initialize(FileOpenPickerUI fileOpenPicker);

 FileSelectionMode SelectionMode { get; }
 IReadOnlyList<string> AllowedFileTypes { get; }
 AddFileResult AddFile(string id, IStorageFile storageFile);
 void RemoveFile(string id);
}

Example 4-12. FileOpenPickerUiManager implementation (FileOpenPickerUiManager.cs)

public class FileOpenPickerUiManager : IFileOpenPickerUiManager
{
 private FileOpenPickerUI _fileOpenPicker;

 public void Initialize(FileOpenPickerUI fileOpenPicker)
 {
 _fileOpenPicker = fileOpenPicker;
 }

 public FileSelectionMode SelectionMode
 {
 get { return _fileOpenPicker.SelectionMode; }
 }

 public IReadOnlyList<string> AllowedFileTypes
 {
 get { return _fileOpenPicker.AllowedFileTypes; }
 }

 public AddFileResult AddFile(string id, IStorageFile file)
 {
 return _fileOpenPicker.AddFile(id, file);
 }

 public void RemoveFile(string id)
 {
 _fileOpenPicker.RemoveFile(id);

Pickers | 61

 }
}

The FilePickerPage is similar to the Bing Simple Search app from Chapter 2. This page
contains a TextBox, a Button, and a GridView (Example 4-13). Unlike the first example,
this page needs to handle adding and removing files from the picker upon user selection.
In addition, the page also needs to support multiple selections. Because this is difficult
to accomplish with data binding, I resorted to using the code behind and routing cus-
tom events to the ViewModel based on the user selection. Example 4-14 shows the
code-behind necessary to facilitate the ItemGridView_SelectionChanged event handler.

Example 4-13. FilePickerPage XAML (FilePickerPage.xaml)

<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="87" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid VerticalAlignment="Center" Margin="120,0,0,0">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <TextBox Text="{Binding SearchQuery, Mode=TwoWay}" />
 <Button Content="Search" Command="{Binding SearchCommand}"
 Margin="12,0,60,0" Grid.Column="1" />
 </Grid>
 <Grid x:Name="ItemPickerContentPanel" Grid.Row="1" Margin="120,0,0,34">
 <GridView x:Name="ItemGridView"
 ItemsSource="{Binding Source={StaticResource CollectionViewSource}}"
 ItemTemplate="{StaticResource ThumbnailItemTemplate}"
 ItemContainerStyle="{StaticResource GridTileStyle}"
 BorderThickness="0" VerticalAlignment="Stretch"
 Grid.Row="1"
 SelectionMode="Multiple"
 SelectionChanged="ItemGridView_SelectionChanged" />
 </Grid>
</Grid>

Example 4-14. FileOpenPickerPage code behind showing the custom routing needed in lieu of data
binding commands (FileOpenPickerPage.xaml.cs)

public sealed partial class FileOpenPickerPage
{
 protected FileOpenPickerPageViewModel ViewModel
 {
 get { return DataContext as FileOpenPickerPageViewModel; }
 }

 private void ItemGridView_SelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 var vm = ViewModel;
 if (vm == null) return;

62 | Chapter 4: Interacting with the Operating System

 foreach(var image in e.AddedItems)
 {
 vm.AddImage(image);
 }
 foreach(var image in e.RemovedItems)
 {
 vm.RemoveImage(image);
 }
 }
}

Handling the FileOpenPickerUI

Now that the XAML and page are set up to communicate with the ViewModel, the
actual files can be sent to the picker. In addition to searching, the FileOpenPickerPage
ViewModel (Example 4-15) handles adding and removing items to and from the FileO
penPickerUiManager shown earlier. This object is injected by the container into the
constructor of the ViewModel, and when an item is added by the page, the ViewModel
downloads the item and adds it to the manager.

Example 4-15. ViewModel for the FileOpenPicker page (FileOpenPickerPageViewModel.cs)

public class FileOpenPickerPageViewModel : BindableBase
{
 private readonly ApplicationSettings _settings;
 private readonly IFileOpenPickerUiManager _fileOpenPicker;

 public FileOpenPickerPageViewModel(ApplicationSettings settings,
 IFileOpenPickerUiManager fileOpenPicker /* other dependenceies */)
 {
 _settings = settings;
 _fileOpenPicker = fileOpenPicker;
 // ViewModel setup code omitted
 }

 // Search code omitted for clarity

 public async void AddImage(object item)
 {
 var image = item as ImageResult;
 if (image == null) return;

 if (_fileOpenPicker.AllowedFileTypes.Any(ext =>
 ext == "*" || image.MediaUrl.EndsWith(ext)))
 {
 var file = await _settings.GetTempFileAsync(image.MediaUrl);
 var result = _fileOpenPicker.AddFile(image.MediaUrl, file);
 }
 }

 public void RemoveImage(object item)
 {
 var image = item as ImageResult;
 if (image == null) return;

Pickers | 63

 _fileOpenPicker.RemoveFile(image.MediaUrl);
 }
}

It’s important to note that not all requests can handle the supported file types. Your
app is responsible for handling these cases and providing only files that are contained
within the AllowedFileTypes list. In the event that you supply an invalid file, you can
check the AddFileResult object that is returned from the call to AddFile.

The downloading of the file is an asynchronous method handled by the Application
Settings class and shown in Example 4-16. This method uses an extremely useful API,
the BackgroundDownloader, this object is used as the primary method for downloading
static content. The BackgroundDownloader is extremely easy to use, and with only a few
lines of code I am able to download a file and provide it to anything that needs a
StorageFile. The actual code for the BackgroundDownloader is accessed via the Back
groundDownloadAdapter, which can be found in Example 4-17.

Example 4-16. ApplicationSettings GetTempFileAsync method to download files for the file picker
(ApplicationSettings.cs)

public async Task<StorageFile> GetTempFileAsync(string uri)
{
 return await CreateAndDownloadFile(uri);
}

private async Task<StorageFile> CreateAndDownloadFile(string uri, string filename = null)
{
 filename = filename ?? Regex.Replace(uri, "https?://|[/?&#]", "");
 StorageFile file = await ApplicationData.Current.LocalFolder.CreateFileAsync(filename,
 CreationCollisionOption.ReplaceExisting);
 await _backgroundDownloader.StartDownloadAsync(new Uri(uri), file);
 return file;
}

Example 4-17. BackgroundDownloader Adapter (BackgroundDownloaderAdapter.cs)

public class BackgroundDownloaderAdapter : IBackgroundDownloader
{
 public IAsyncOperationWithProgress<DownloadOperation, DownloadOperation>
 StartDownloadAsync(Uri uri, IStorageFile storageFile)
 {
 return new BackgroundDownloader().CreateDownload(uri, storageFile)
 .StartAsync();
 }
}

Now that the page is successfully adding and removing content to the picker its job is
done. Testing the FileOpenPicker can be tricky, though. In Visual Studio, if you run
you app, you will launch the app using the standard OnLaunching entry point. To trigger
the OnFileOpenPickerActivated entry point, you need to access your app from the
FileOpenPicker. Microsoft provides a sample app, which can aid in testing, but I’ve

64 | Chapter 4: Interacting with the Operating System

found that the mail application is a great tool for testing the FileOpenPicker (http://code
.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155). Just launch
the mail app, create a new message, and click Add Attachment. This will launch the
FileOpenPicker.

FileSavePicker
The Bing Image Search application uses the FileSavePicker to save an image. Con-
suming the pickers is far easier than supporting them. All that you need to do is open
the dialog with your necessary parameters and handle the response. The beauty is that
your app doesn’t really care where the StorageFile is coming from, just that you can
write some data to it. In addition, you don’t have to create any declarations, to use a
picker you just create one, tell it to pick files, and leverage the results in any app.
Example 4-18 shows XAML and Example 4-19 shows the code in the DetailsPageView
Model that sends the SaveImageMessage.

Example 4-18. Save Image AppBar (DetailsPage.xaml)

<Button x:Name="SaveCommand"Command="{Binding SaveCommand}"
 Style="{StaticResource SaveAppBarButtonStyle}" />

Example 4-19. Save Command (DetailsPageViewModel.cs)

public class DetailsPageViewModel
{
 // constructor and dependencies omitted
 public ICommand SaveCommand { get; set; }

 public async Task Save()
 {
 await_messageHub.Send(new SaveImageMessage(_settings.SelectedImage));
 }
}

In line with other messages in the system, the SaveImageMessage is handled by the cor-
responding SaveImageHandler (Example 4-20). The SaveImageHandler is responsible for
opening the FileSavePicker. However, before it can do this, it needs to create a new
FileSavePicker object, define the file type filters, and provide a suggested name. In the
case of the Bing Image Search app, I am using the actual filename from the URL as the
suggested filename. Once the picker is defined, you can call PickSaveFileAsync, which
will actually prompt the user with a new Windows 8 file save dialog (Figure 4-6). The
result of this call will be a StorageFile for the selected file, or null if the user clicks
Cancel. With that selected file, I can kick off a download from a remote location, which
will automatically save directly to the selected file. When the process is complete, I
update the _statusService for the application.

Pickers | 65

http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155

Figure 4-6. File Save Picker

Example 4-20. SaveImageHandler

public class SaveImageHandler : IAsyncHandler<SaveImageMessage>
{
 private readonly IPickerFactory _pickerFactory;
 private readonly IBackgroundDownloader _backgroundDownloader;
 private readonly IStatusService _statusService;

 public SaveImageHandler(IPickerFactory pickerFactory,
 IBackgroundDownloader backgroundDownloader,
 IStatusService statusService)
 {
 _pickerFactory = pickerFactory;
 _backgroundDownloader = backgroundDownloader;
 _statusService = statusService;
 }

 public async Task HandleAsync(SaveImageMessage message)
 {
 // Set up and launch the Open Picker
 var filename = GetFilenameFromUrl(message.Image.MediaUrl);
 var extension = System.IO.Path.GetExtension(filename);

66 | Chapter 4: Interacting with the Operating System

 var picker = _pickerFactory.CreateFileSavePicker();
 picker.SuggestedFileName = filename;
 picker.FileTypeChoices.Add(extension.Trim('.').ToUpper(),
 new string[] { extension });

 var saveFile = await picker.PickSaveFileAsync();
 if (saveFile != null)
 {
 await _backgroundDownloader.StartDownloadAsync(
 new Uri(message.Image.MediaUrl), saveFile);

 _statusService.TemporaryMessage =
 string.Format("Image {0} saved.", saveFile.Name);
 }
 }

 private string GetFilenameFromUrl(string url)
 {
 var uri = new System.Uri(url);
 return uri.Segments[uri.Segments.Length - 1];
 }
}

In the SaveImageHandler, you may have noticed that I didn’t create a new FileSave
Picker in the handler directly. This is not testable for a number of reasons. First off,
the FileSavePicker launches a new dialog and requires user interaction. This workflow
cannot be automated. In addition, just creating a new FileSavePickerAdapter in the
Handle method wouldn’t allow for providing alternative implementations. In order to
solve these concerns, I create a PickerFactory object, which returns a new FileSave
PickerAdapter for every request in production. This factory can then be customized by
a test to return whatever is needed. The PickerFactory and FileSavePickerAdapter can
be seen in Example 4-21 and Example 4-22, respectively. The FileSavePickerAdapter
is a bit more in depth than other adapters because it contains properties that need to
be mapped as well. It purposefully has no external business logic because this class
cannot be tested.

Example 4-21. PickerFactory

public class PickerFactory : IPickerFactory
{
 public IFileSavePickerAdapter CreateFileSavePicker()
 {
 return new FileSavePickerAdapter();
 }
}

Example 4-22. FileSavePickerAdapter

public class FileSavePickerAdapter : IFileSavePickerAdapter
{
 public FileSavePickerAdapter()
 {
 CommitButtonText = String.Empty;

Pickers | 67

 FileTypeChoices = new Dictionary<string, IList<string>>();
 SuggestedFileName = String.Empty;
 // The system default is DocumentsLibrary, but this app is all about images
 SuggestedStartLocation = PickerLocationId.PicturesLibrary;
 }

 public string CommitButtonText { get; set; }
 public string DefaultFileExtension { get; set; }
 public IDictionary<string, IList<string>> FileTypeChoices { get; set; }
 public string SuggestedFileName { get; set; }
 public PickerLocationId SuggestedStartLocation { get; set; }

 public async Task<IStorageFile> PickSaveFileAsync()
 {
 var picker = new FileSavePicker();
 picker.CommitButtonText = CommitButtonText;
 picker.SuggestedFileName = SuggestedFileName;
 picker.SuggestedStartLocation = SuggestedStartLocation;
 if (DefaultFileExtension != null)
 {
 picker.DefaultFileExtension = DefaultFileExtension;
 }

 foreach(var choice in FileTypeChoices.Keys)
 {
 picker.FileTypeChoices.Add(choice, FileTypeChoices[choice]);
 }

 return await picker.PickSaveFileAsync();
 }
}

Pickers are a compelling reason to develop a native app over a web app. Communicating
with a user’s filesystem is not likely to be included in modern web browsers. Pickers
also allow apps to communicate with other applications on the user’s machine regard-
less of the intent and without any knowledge of each other. This is not something that
is typically done in Windows, or something that is easily accomplished in any other
operating system for that matter.

Sharing
If you have ever written code that communicated with the Windows Clipboard, then
sharing should be very familiar. When the user activates the Share charm, an event fires
where you can assign text, URIs, data, images, or raw data. On the other end, apps can
set up a declaration in their app manifest, which will show the Tile on the share page
when the specified type is shared by another application. That target app can then use
the content however it sees fit, for example, to send an email.

The Bing Image Search app will act as a sharing source and will provide links and
images, also known as bitmap data to other applications. Figure 4-7 shows a screenshot

68 | Chapter 4: Interacting with the Operating System

of the sharing pane in action. If the user activates sharing when he is on the search
results page, then the app will provide a link to Bing’s image search site for that query.
If he selects an image and navigates to the details page, then the app will provide the
bitmap data for the selected image.

Figure 4-7. Bing Image Search with Sharing

ShareDataRequestedMessagePump
When the user opens the Sharing pane, the DataTransferManager.DataRequested event
fires. This is very similar to Search from earlier in this chapter, so I followed the same
pattern. The event is handled by an application-level message pump. The message
pump’s job is to convert system events into application messages and route them
through the message hub. Unlike the message pump from Search, which acted on in-
formation from the event, sharing requires some information be provided to the event.
Example 4-23 shows a simplified comparison. Notice how only the DataRequested—
Sharing—event requires some content, in this case a string called "MyAppContent".

Example 4-23. Windows 8 Event Differences

// event registration code omitted

private void OnQuerySubmitted(SearchPane sender,
 SearchPaneQuerySubmittedEventArgs args)
{
 // use args.QueryText to search
}

private void OnDataRequested(DataRequestManager sender,

Sharing | 69

 DataRequestManagerArgs args)
{
 // use args.Request.SetText("MyAppContent") or equivalent.
}

Since the app will be sending different types of content, the event handler will send out
one of two messages:

ShareUriMessage
Sharing from the search results page will provide a Uri. The handler will just supply
the Uri directly.

ShareImageDetailsMessage
Sharing from the details page will provide an object of type ImageResult. The han-
dler will download the image and provide the data from there.

These messages are sent based on the ShareDataRequestedMessagePump.DataToShare
property, which any page can supply. The current data to share will always be set to
the last item specified. Example 4-24 shows how the ShareDataRequestedMessagePump
creates a message based on the DataToShare. Another thing to note, is that unlike the
search message pump, the share message pump registers its event on an adapter. The
reason for this extra level of abstraction is because this message pump isn’t as simple
as the one for search, so there are areas that I want to test. In addition to test the
handlers, we need to have access to create mocks of the DataRequestedEventArgs so that
we can ensure that the handlers are working. To do this, the DataTransferManagerAdap
ter implements the IDataTransferManager interface and wraps the event args in a new
SettableDataRequestedEventArgs, which is supplied to the message. Now the handler
test can create a test message with a fake event args.

Example 4-24. ShareDataRequestedPump(ShareDataRequestedPump.cs)

public class ShareDataRequestedPump : IShareDataRequestedPump
{
 private readonly IDataTransferManager _dataTransferManager;
 private readonly IHub _hub;

 public ShareDataRequestedPump(IDataTransferManager dataTransferManager, IHub hub)
 {
 _dataTransferManager = dataTransferManager;
 _hub = hub;
 }

 public void Start()
 {
 _dataTransferManager.DataRequested += OnDataRequested;
 }

 public void Stop()
 {
 _dataTransferManager.DataRequested -= OnDataRequested;
 }

70 | Chapter 4: Interacting with the Operating System

 public object DataToShare { get; set; }

 void OnDataRequested(DataTransferManager sender, SettableDataRequestedEventArgs args)
 {
 if (DataToShare == null) return;

 if (DataToShare is Uri)
 {
 var message = new ShareUriMessage((Uri)DataToShare, sender, args);
 _hub.Send(message);
 return;
 }

 if (DataToShare is ImageResult)
 {
 var message = new ShareImageResultsMessage((ImageResult)DataToShare,
 sender, args);
 _hub.Send(message);
 return;
 }
 }
}

ShareUriHandler
Each of these messages has a dedicated handler. The ShareUriHandler is the easiest, so
I will start with that. The ShareUriHandler handles the ShareUriMessage. This message
contains the data to share—in this case, the URI to share—and the event args, which
I will use to set the URI on. Example 4-25 shows the ShareUriHandler and the code
needed to respond to the message. This code is fairly straightforward. When the mes-
sage is received, the handler sets the Title and the URI for the specified data and its job
is done.

Example 4-25. ShareUriHandler

public class ShareUriHandler : IHandler<ShareUriMessage>
{
 public void Handle(ShareUriMessage message)
 {
 var request = message.DataRequestedEventArgs.Request;

 request.Data.Properties.Title = "Bing Image Search Link";
 request.Data.SetUri(message.Link);
 }
}

ShareImageResultsHandler
When the Bing Image Search app shares images, more specifically images from the
Web, these images need to be downloaded before they can be shared. This becomes

Sharing | 71

slightly complicated because downloading the image data to provide a stream is an
asynchronous process.

The new async and await keywords make the code very simple from a readability
standpoint, but the code still executes the way it always has. The reason this is impor-
tant is because DataRequestManager is expecting the user to set some shareable content
before the completion of the event. Example 4-26 shows a very rough translation of
what I’m trying to say. The OnDataRequestedWithoutAsync handler sets the data on the
event in the second phase of the operation, which is inside a lambda expression. The
event handler has already returned control to the caller without anything being set. The
way to get around this is to use a new feature in the Windows Runtime called a Defer
ral. OnDataRequestedWithDeferral. Example 4-26 shows an example of a Deferral.

Example 4-26. Example of why deferrals are needed with async code

// BAD: This code will not work because of the await
private async void OnDataRequested(DataRequestManager sender,
 DataRequestManagerArgs args)
{
 // code before await
 var file = await DownloadFile();
 // code after await
 args.Request.SetBitmap(file);
 // event handler returned to caller
}

// BAD: This code will not work because event handler returns prematurely
private void OnDataRequestedWithoutAsync(DataRequestManager sender,
 DataRequestManagerArgs args)
{
 // code before await
 DownloadFile().ContinueWith(file =>
 {
 // code after await
 args.Request.SetBitmap(file);
 });
 // event handler returned to caller
}

private void OnDataRequestedWithDeferral(DataRequestManager sender,
 DataRequestManagerArgs args)
{
 var deferral = args.Request.GetDeferral();
 try
 {
 // code before await
 var file = await DownloadFile();
 // code after await
 args.Request.SetBitmap(file);
 }
 finally
 {
 deferral.Complete();

72 | Chapter 4: Interacting with the Operating System

 }
 // event handler returned to caller
}

private async Task<IStorageFile> DownloadFile() {}

Example 4-27 shows the full ShareImageDetailsHandler. This handler sets the title and
the description of the data being shared. It also defines a callback to lazily load the share
image when the caller needs it. This will potentially save the user from downloading
the image if he prematurely exits out of the Sharing pane. Inside the callback, the han-
dler downloads the image and applies it using the deferral pattern.

Example 4-27. Handler code for sharing and image (ShareImageResultsHandler.cs)

public class ShareImageResultsHandler : IHandler<ShareImageResultsMessage>
{
 private readonly ApplicationSettings _settings;

 public ShareImageResultsHandler(ApplicationSettings settings)
 {
 _settings = settings;
 }

 public void Handle(ShareImageResultsMessage message)
 {
 var image = message.Image;
 if (image.MediaUrl != null)
 {
 var request = message.DataRequestedEventArgs.Request;
 request.Data.Properties.Title = "Bing Search Image";
 request.Data.Properties.Description =
 string.Format("Sharing {0} originally from {1}", image.Title, image.MediaUrl);
 request.Data.SetDataProvider(StandardDataFormats.Bitmap, async dpr =>
 {
 var deferral = dpr.GetDeferral();

 var shareFile = await _settings.GetShareFileAsync(image.MediaUrl);
 var stream = await shareFile.OpenAsync(FileAccessMode.Read);
 dpr.SetData(RandomAccessStreamReference.CreateFromStream(stream));

 deferral.Complete();
 });
 }
 }
}

The beauty of sharing is that the Bing Image Search app can provide links and images
without any knowledge of how consuming applications may use the information.
While the Bing Image Search app is providing standard links and images, you could
also envision providing more proprietary file type information and opening up the
entire ecosystem of Windows apps that communicate with your apps, content, or files
in ways you hadn’t imagined.

Sharing | 73

The Bing Image Search app doesn’t support being a share target. You
will need to setup a declaration in your app manifest to display your Tile
on the list, then your app will be activated with the entry point specified
or into your App.OnSharingTargetActivated override as the default. For
more information on handling Sharing as a target, see the samples online
at http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Tar
get-App-e2689782.

Sensors
WinRT is meant to support modern hardware and sensors in a way Windows has never
done in the past. One of those sensors that is of interest to the Bing Image Search app
is the Accelerometer. The API for this sensor allows you to see when the user is physi-
cally shaking the device.

The events from the Accelerometer is different from other events like Search and Sharing
because it happens so rapidly and subscribing to these events can, in some cases, ac-
tually turn on the physical hardware and ultimately drain the user’s battery. Because
of this, you want to be sparing in the use of the Accelerometer. In the case of the Bing
Image Search app, I will be using this event only on the SearchResultsPage to load more
images. Example 4-28 shows the registration and handling of the Accelerometer event.

Example 4-28. Accelerometer registration (SearchResultsPageViewModel.cs)

public class SearchResultsPageViewModel : BindableBase
{
 private readonly INavigationService _navigationService;
 private readonly IAccelerometer _accelerometer;

 public SearchResultsPageViewModel(INavigationService navigationService,
 IAccelerometer accelerometer /* other depedencies */)
 {
 _navigationService = navigationService;
 _accelerometer = accelerometer;

 _accelerometer.Shaken += accelerometer_Shaken;
 _navigationService.Navigating += NavigatingFrom;
 }

 private void NavigatingFrom(object sender, NavigatingCancelEventArgs e)
 {
 _accelerometer.Shaken -= accelerometer_Shaken;
 _navigationService.Navigating -= NavigatingFrom;
 }

 private void accelerometer_Shaken(object sender, object e)
 {
 LoadMore();
 }
}

74 | Chapter 4: Interacting with the Operating System

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

The SearchResultsPageViewModel registers the Accelerometer.Shaken event when the
ViewModel loads. Luckily, the ViewModel has an AppBar already set up for loading
more images, so when the Shaken event occurs, I just call the same method for the
LoadMoreCommand. The final piece of the Accelerometer is remembering to unsubscribe
from the event when you no longer need it. To handle this, you’ll notice an event called
NavigatingFrom, which is fired whenever the NavigationService changes pages. I use
this event to shut down the Accelerometer.

LockScreen
In addition to the high level native features that I’ve already discussed, Windows 8 has
quite a few little features that apps may want to leverage. One of these features is the
LockScreen. This screen displays a custom image for the user before they log in. On the
DetailsPageViewModel, there is an AppBar button (Example 4-29 and Example 4-30).
Similar to Set Tile and Save Image buttons, this button sends a SetLockScreenMessage
to the message hub.

Example 4-29. Set Lock Screen AppBar Button (DetailsPage.xaml)

<Button x:Name="SetLockScreenCommand"Command="{Binding SetLockScreenCommand}"
 Style="{StaticResource SetLockScreenAppBarButtonStyle}" />

Example 4-30. SetLockScreen command (DetailsPageViewModel.cs)

public class DetailsPageViewModel
{
 // constructor and dependencies omitted
 public ICommand SetLockScreenCommand { get; set; }

 public async Task SetLockScreen()
 {
 await_messageHub.Send(new SetLockScreenMessage(_settings.SelectedImage));
 }
}

The message is handled by the SetLockScreenHandler (Example 4-31), which saves the
image, updates the lock screen, and sets the status to display to the user. I’m using the
ApplicationSettings to save the selected image as a new image in application storage
called LockScreen.jpg. The reason I am storing it in application storage as a single name
rather than using the actual name of the image, has to do with file storage. If I saved a
unique image every time the user set the LockScreen, then I would have to clean up any
other images and ensure I wasn’t retaining unnecessary copies of files. By using the
same name, when a user updates the lock screen to a new image, any old image is
automatically overwritten. To make this handler testable I’ve also created a LockScree
nAdapter, and as you can see in Example 4-32, it is very simple.

LockScreen | 75

Example 4-31. Message Handler for setting the Lock Screen to the specified image
(SetLockScreenHandler.cs)

public class SetLockScreenHandler : IAsyncHandler<SetLockScreenMessage>
{
 private readonly ApplicationSettings _settings;
 private readonly ILockScreen _lockScreen;
 private readonly IToastNotificationManager _toastNotification;

 public SetLockScreenHandler(ApplicationSettings settings, ILockScreen lockScreen,
 IStatusService statusService)
 {
 _settings = settings;
 _lockScreen = lockScreen;
 _statusService = statusService;
 }

 public async Task HandleAsync(SetLockScreenMessage message)
 {
 var file = await _settings.GetLockScreenFileAsync(message.Image.MediaUrl);
 await _lockScreen.SetImageFileAsync(file);

 _statusService.TemporaryMessage = string.Format("Image {0} set as lock screen.",
 message.Image.Title);
 }
}

Example 4-32. LockScreenAdapter (LockScreenAdapter.cs)

public class LockScreenAdapter : ILockScreen
{
 public async Task SetImageFileAsync(IStorageFile file)
 {
 await LockScreen.SetImageFileAsync(file);
 }

 public async Task SetImageStreamAsync(IRandomAccessStream stream)
 {
 await LockScreen.SetImageStreamAsync(stream);
 }
}

Summary
Now that your app can take advantage of native features and participate in the new
Windows 8 experience, you should get ready to start deploying your app. In the past,
this meant creating installers, preparing deployment servers, and possibly creating CD-
ROMs. Luckily this is not the case for Windows 8, and the Windows Store can help
resolve the deployment issues from the past.

76 | Chapter 4: Interacting with the Operating System

CHAPTER 5

Windows Store

The Windows Store is many things: it is an app that consumers use to install other apps
onto their Windows 8 devices; it is an entity that maintains the quality of Windows
applications for all users; and it can be a source of income for developers of all kinds.
This chapter focuses on the information available to prepare your app so it can be
deployed to the Windows Store.

At the time of this writing, the Windows Store was not open to public
submissions. If you visit some of the links that follow, you will receive
a message stating, “We’re sorry, but the Windows Store is currently
closed to general registration. You need a registration code to register.”
At this time of this writing, registration codes are available only via a
private invite system.

Microsoft has a number of events where trained staff can review your
app and potentially provide an invite. The event that I attended was
available at https://win8.msregistration.com, but an Internet search for
win8 events should get you started.

Marketing
As with personal relationships, first impressions are extremely important and if you are
like me, you’ve been working on your app for many months and are excited to ship.
However, your journey is not over, so set your expectations accordingly and plan for
a few changes to your app. Also, once you read what is entailed in working through
the Windows Store publication process, you may want to take a break from coding and
focus on marketing without rushing to market.

77

https://win8.msregistration.com

Windows Store App

Figure 5-1. Windows Store App

The Windows Store App is the first place where a user will see your app. Figure 5-1
shows a screenshot of the Windows Store for the SkyDrive app. In order to publish
your app to the Windows Store, you will need to prepare the content for this page. The
following list contains the information that is needed for your app page:

Title or Name of your app
The actual name of your application.

Tiles
You will need to supply all the different-sized tiles used by your app. This should
be easy because you’ve already created them for your app and specified them in
your package manifest.

Screenshots
Here you can provide anywhere between one and eight images of your application.
A list of supported image sizes can be found at http://msdn.microsoft.com/en-us/
library/windows/apps/hh846296.aspx. One of the easiest ways to create screenshots
of your app is to use the simulator in Visual Studio. First, click the drop-down
arrow beside the play button, and you will see a list of alternative debugging mech-
anisms. After selecting the simulator from this list, you will see a button for cap-
turing a screenshot.

Category and subcategory
Your app needs to specify a category and a subcategory from a list provided by the
Windows Store.

78 | Chapter 5: Windows Store

http://msdn.microsoft.com/en-us/library/windows/apps/hh846296.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh846296.aspx

Keywords
A list of keywords to help locate your app when consumers search for this type of
app.

Description
A description of your app that is used to promote your app. Tips for writing a good
description for you app can be found at http://msdn.microsoft.com/en-us/library/
windows/apps/hh694077.

Countries
A list of the countries where your app will be available.

Release notes
A set of notes related to the latest release of your app or a running list of release
notes for you app.

Release date
The date to release your app to the public, if not immediate.

Package
The actual code for the application, this contains the package manifest, which
highlights the required capabilities of your app. The package is covered in more
details later in this chapter.

More detailed information from Microsoft about the different required materials can
be found online at http://msdn.microsoft.com/en-us/library/windows/apps/hh694057.
Once you’ve prepared all the information that you need to deploy your app, you are
ready to proceed.

Opening Your Developer Account
In order to publish your app to the Windows Store, you will need a developer account.
To open your developer account, you can go to http://go.microsoft.com/fwlink/?LinkId
=220679 or in Visual Studio, select Project→Store→Open Developer Account. From
here, you will be asked to sign in with a valid Windows Live ID.

Opening your developer account requires a Windows Live ID. If you
don’t have one already, you are missing out on many features of Win-
dows 8 that come from integrating your desktop with your Live ID. If
you go to your user settings in the Windows 8 Control Panel, you can
create one. You can also visit http://www.live.com and click the link on
the left side under “Don’t have a Windows Live ID?”

This is the account that will be associated with your app. If you would like your app
to be published under a specific company account, you may choose to create a special
account for this purpose, otherwise you can just use your personal Live ID. You will
still be able to customize the name that will be displayed in the bottom-left corner of

Marketing | 79

http://msdn.microsoft.com/en-us/library/windows/apps/hh694077
http://msdn.microsoft.com/en-us/library/windows/apps/hh694077
http://msdn.microsoft.com/en-us/library/windows/apps/hh694057
http://go.microsoft.com/fwlink/?LinkId=220679
http://go.microsoft.com/fwlink/?LinkId=220679
http://www.live.com

the app under Developer. After you’ve logged in, you will have to create your developer
account, which will require a credit card and will give you access to create your app or
just reserve your app name. Developer accounts are automatically renewed annually,
depending on your time to market and your desire to proactively reserve your appli-
cation name you may or may not want to purchase your account until you are ready to
ship. Once you place your order, you start the clock on the billing process. If you are
not ready to ship your app for more than six months, you’d be paying for unused time.

Pricing plans are different for companies and personal accounts. A full
list of pricing for the developer account can be found online at http://
msdn.microsoft.com/en-US/library/windows/apps/hh694064.

Upon logging in and creating your account, you will be taken to your app dashboard
(Figure 5-2). From this screen, you can create a new app by clicking the link to submit
an app on the left-side menu. You do not need to have your app packaged and ready
to begin with this step, and you can save your progress at any point along the way.

Figure 5-2. Windows Store App Dashboard

When you click Submit an App, you will be taken to the app submission page. This
page is used as a workflow to guide you through the submission process. Microsoft has
provided an estimated timeline as a guide so you know how long each step will take
along the way (Figure 5-3). Even if you have not packaged and tested your app, you
can begin to fill out the submission up to “Step 6: Packages.”

80 | Chapter 5: Windows Store

http://msdn.microsoft.com/en-US/library/windows/apps/hh694064
http://msdn.microsoft.com/en-US/library/windows/apps/hh694064

Figure 5-3. Windows Store App Submission Workflow

Selling Your App
There are many ways to monetize your app:

Collect the full price before download
The traditional and most simple way to make money in an app store is to charge
a price for your application before it can be downloaded. The Windows Store
handles all aspects of the transactions on your behalf; there is no need for you to
get involved in the individual transactions. There is a range of pricing tiers available
starting at $1.49 and the Windows Store pays the industry standard 70% for every
customer dollar. The Windows Store will provide batch payouts for all app pur-
chases.

Time-limited or Feature-limited trial
Any app can support a Try button on the Windows Store, which allows your app
to be downloaded and used in a trial capacity. Options include limiting the time a
consumer can use the app or limiting the features it supports. Some people may
also choose a trial version of the app, which are full-featured version with ads; the
user can then pay a flat rate to disable those ads at a later time if he so chooses.

Marketing | 81

More information about trial features in Metro style apps can be found at http://
msdn.microsoft.com/en-US/library/windows/apps/hh694065.

In-app purchases
The Windows Store also supports in-app purchases. Apps can offer products and
features for purchase while the app is running. The Microsoft Developer Center
provides details and best practices for in-app purchases at http://msdn.microsoft
.com/en-us/library/windows/apps/hh694067.aspx.

Advertising
Apps can use ads to generate recurring revenue. If your app will retain the user’s
attention for long periods of time or if users visit your app on a daily basis, ads
might offer more revenue than a single up-front purchase. Conversely, if your app
is rarely used, you may not obtain enough ad impressions to make any money. For
more info about adding ads to your apps, visit http://advertising.microsoft.com/
windowsadvertising/developer.

Third-party transactions
In addition to the mechanisms that the Windows Store provides, apps are free to
handle transactions on their own as long as they comply with the App Developer
Agreement at http://msdn.microsoft.com/en-US/library/windows/apps/hh694058.

If you choose to participate in one of the mechanisms that the Windows Store provides,
you will need to specify this in the app submission page. More information about selling
your apps can be found online at http://msdn.microsoft.com/en-US/library/windows/
apps/br230836.

Ratings and Reviews
The Windows Store automatically creates a rating system within every application. As
with other platforms, the rating system in Windows 8 can and will be used for com-
ments and bug reports if you don’t provide a mechanism within your app to do so in
a meaningful way. When focusing on the continued marketing of your app, it’s imper-
ative that you stay on top of the ratings and reviews and respond to them with updates
if necessary. The guidance for Windows Phone and other mobile platforms serves as a
great guide to managing the ratings system in the Windows Store. Alan Mendelevich
at AdDuplex has a great series on Marketing and Monetizing your Windows Phone
app and can be found online at http://blog.adduplex.com, which is a great resource for
Windows 8 as well.

Distribution
At some point you’ll be ready to ship your code. Visual Studio has made this process
very simple by including everything you need to do in a Store menu that is available
when you open a Metro style app project (Figure 5-4). There are a couple of features
within the menu, but it serves three main purposes:

82 | Chapter 5: Windows Store

http://msdn.microsoft.com/en-US/library/windows/apps/hh694065
http://msdn.microsoft.com/en-US/library/windows/apps/hh694065
http://msdn.microsoft.com/en-us/library/windows/apps/hh694067.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694067.aspx
http://advertising.microsoft.com/windowsadvertising/developer
http://advertising.microsoft.com/windowsadvertising/developer
http://msdn.microsoft.com/en-US/library/windows/apps/hh694058
http://msdn.microsoft.com/en-US/library/windows/apps/br230836
http://msdn.microsoft.com/en-US/library/windows/apps/br230836
http://blog.adduplex.com

Figure 5-4. Visual Studio Store Options

Access to the Web Dashboard
From the dashboard you can see your existing apps, create new apps, edit your
account info, and publish your app.

Preparing your app for deployment
You can upload screenshots or edit your application manifest to update capabili-
ties, both of which are available through other mechanisms. There is also a custom
application that will allow you to associate your app with the store so you can
upload directly from Visual Studio.

Packaging your app for testing and deployment
The final piece creates your actual appx package. There is also a mechanism to
upload your app directly to the Windows Store.

In addition to the items within the Visual Studio menu, you will also need to use the
Windows App Cert Kit to verify your application. This app comes as part of the Win-
dows SDK and can be found under C:\Program Files\Windows Kits or by typing cert
on the start screen, but more on that later.

The first two steps in this distribution menu are ones that I covered earlier in the chap-
ter; this next section focuses on the last step: packaging your app and testing for de-
ployment.

Packaging Your App
Visual Studio can be used to deploy and test your app locally, on a remote machine, or
on the local simulator. This process is great for testing, but cannot be used to distribute

Distribution | 83

your app. When you are ready, you’ll want to create an official appx package. This
package can then be used to test locally, have your friends and other developers test,
and eventually upload to the Windows Store. There are two ways to create your appx
package, using Visual Studio or using the Appx Packager (MakeAppx.exe) directly from
the command line.

Packaging your app from Visual Studio

In Visual Studio, with your project open choose Project→Store→Create App Package.
This will launch a Create App Package wizard (Figure 5-5). If you are deploying locally
for testing, choose “No” when asked, “Do you want to build a package to upload to the
Windows Store?” The next screen (Figure 5-6) allows you to specify a version number
and the list of supported processors. You will need to ensure that everything is set to
Release, and then click Create. The final appx package will be deployed to the folder
specified.

Figure 5-5. Visual Studio Create Appx Package Wizard

84 | Chapter 5: Windows Store

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Figure 5-6. Visual Studio Create Appx Package Wizard (Page 2)

A full description of using Visual Studio for publishing your app can be found online
at http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx.

Packaging your app from the Appx Packager

Under the covers, the Visual Studio Wizard uses a command-line tool called the Appx
Packager. This tool can be used directly via the command line or scripted as part of a
continuous integration environment. Example 5-1 shows a rough example of what it
would be like to create a similar appx package to what was created by the wizard in the
previous section.

Example 5-1. Appx Packager command-line tool

MakeAppx.exe pack
 /d "C:\Projects\BingImageSearch\BingImageSearch\bin\Release\AppX"
 /p "C:\Projects\BingImageSearch\AppPackages\BingImageSearch_1.0.0.0_AnyCPU.appx"

Full details about the Appx Packager can be found online at http://msdn.microsoft.com/
en-us/library/windows/apps/hh446767.aspx.

Distribution | 85

http://msdn.microsoft.com/en-us/library/windows/apps/br230835.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh446767.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh446767.aspx

Inside your Appx
Once you’ve created your appx package you are ready to deploy. If you navigate to the
deployment folder, you will see four files:

Add-AppxDevPackage.bat
This is a script that is used to install your app. To install it you can right-click and
choose Run as Administrator. This will launch a command line and execute Pow-
erShell commands to install the code-signing certificate and the appx package.

BingImageSearch_1.0.0.0_AnyCPU.appx
This appx package contains all the code for your application.

BingImageSearch_1.0.0.0_AnyCPU.appxsym
This file is a package containing public symbols of the app package.

BingImageSearch_1.0.0.0_AnyCPU.cer
The code signing certificate used to for protecting your appx from modification.

The appx package is nothing more than a ZIP file. To inspect its contents, you can
rename the file extension to .zip. Figure 5-7 shows the folder with the extracted contents
of the appx package. The package contains your assets, styles, images, xaml files, and
code (in form of dlls). In addition, the appx package contains three generated files.

Figure 5-7. Appx Package Contents

[Content_Types].xml
A standard openxml file for describing the contents of the package, specifically the
block map and signature.

86 | Chapter 5: Windows Store

AppxBlockMap.xml
Contains a map of all files in the package and their respective hash values. These
hash values can be validated just prior to launching to ensure that no files have
been changed since the original appx package was created.

AppxSignature.p7x
The signature used to verify the AppxBlockMap.

Now that you’ve created your appx package, understood the contents, and installed it,
you should be ready for the final stages of testing your app before deploying.

Running Windows App Cert Kit
The Windows App Cert Kit is a tool that is provided by Microsoft to help catch potential
issues locally that could cause your app to fail certification. The tool mimics some of
the tests that are performed by the certification team and tools within Microsoft. To
launch the Windows App Cert Kit, type cert from the Start Screen.

When the Windows App Cert Kit loads (Figure 5-8), select Validate Metro style App.
This will load a list of all the installed apps on your system. If you’ve installed your app,
you should see it on the list. Be sure that no other applications are running, select your
app, and click Next. This will launch your app multiple times and verify different per-
formance metrics. As the message states, you should refrain from using your machine
or interacting with the app during these tests. When the tests are complete, you will
receive a list of test results.

Figure 5-8. Windows App Cert Kit

Distribution | 87

The Windows App Cert Kit checks the following things:

Eliminate Application Failures
This is a simple test that fails if your app ever ceases to start throughout the testing
process.

Metro style App Test Failure
This verifies the schema and format of the app manifest. It also uses proprietary
algorithms to ensure that your app does not try to access unprotected areas of the
operating system or .NET.

Launch time performance
Metro style apps are required to start within five seconds. If your app takes longer
than that to start, it will not pass. You should look to delay loading of unnecessary
resources or to implement some form of loading screen that will display a progress
bar while your app is loading.

Suspend performance
App suspension occurs frequently. In order to ensure good launch/suspend per-
formance, apps should suspend within two seconds. In addition to time, apps will
also need to keep CPU utilization below 50% and I/O usage less than 20MB to
pass this test.

Test Appx Manifest Resources
This test verifies that the files and settings configured in the app manifest are avail-
able and properly defined or sized.

Debug App Check
This test checks whether your assemblies were built using the debug mode. This
mode is not optimized for production and therefore, the Windows Store does not
allow debug builds to be published publicly.

In addition to the items that are checked by the Windows App Cert Kit, you will also
want to run through the Certification Requirements available at http://msdn.microsoft
.com/en-us/library/windows/apps/hh694083.aspx. This list includes requirements with
regard to design and layout of your application and also proper guidelines on rating
your app for appropriate age groups. The next step will be publishing your app, so
you’ll want to be sure you’ve thoroughly tested your app and are confident that it is
ready for submission to the Windows Store.

Publishing Your App
Publishing your app is actually very easy considering what you’ve already done to test
your app locally. In order to create your app you will need to run the App Packager
tool one more time, then navigate to the Windows Store Portal and upload
your .appx or .appxupload file.

First you’ll want to create your final deployment package now by following the steps
from the “Packaging your app from Visual Studio” on page 84 section earlier. Inside

88 | Chapter 5: Windows Store

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx

Visual Studio with your project open, navigate to Project→Store→Create App Package.
This time you’ll want to ensure you choose “Yes” when asked, “Do you want to build
a package to upload to the Windows Store?"

With your final app package created, open the Windows Store Portal at http://go.mi
crosoft.com/fwlink/?LinkId=220679. Assuming you’ve already started the process and
entered your marketing and pricing information, you should be ready for Step 6: Pack-
ages. On the Packages screen (Figure 5-9), you will have the option to upload your app
package. You can drag and drop it in or just click the link to locate your .appx
or .appxupload file. Once you’ve completed this step, click Upload. Your package
should now upload. The next two sections of this form are in regard to the description
and notes to the testers. Once everything has completed you can submit your app.

Figure 5-9. Upload Packages screen

The submission process may take a couple days. At this point, it’s a waiting game, and
I wish you luck. You should receive email notifications during the process, so be sure
to check your junk mail folder just in case. You can also check back on the website for
any updates.

Global Reach
As a developer, you’ve probably written apps numerous times for specific user com-
munities. One of the powerful features of the Windows Store, and Windows in general,
is that it’s used throughout the world. This means that if you plan properly, you could
reach an audience far beyond your initial expectations. If you choose to leverage this,
you should take consideration of the nuances of different communities and languages.

Global Reach | 89

http://go.microsoft.com/fwlink/?LinkId=220679
http://go.microsoft.com/fwlink/?LinkId=220679

This section focuses on two main areas of entering a global economy—exposure and
localization.

Exposure to Global Markets
Regarding exposure to global markets, the Windows Store handles the majority of this
burden for you. As a developer, you do not have to concern yourself with different
currencies or different tax laws. The Windows Store will handle it. In order to take
advantage of these features, there are two main decisions you will have to make:

1. Where do I want my app available?

2. What languages will my app will support?

Once you’ve determined where you want your app to be available, you will just need
to check the appropriate boxes on the Selling Details section of the app submission
page in the Windows Store portal, see Figure 5-10. There is also an option to make
your app available in all countries. What is not on this list is how much to charge for
the app in different countries. Luckily this, too, is handled by the Windows Store au-
tomatically. All you have to do is specify the pricing tier in your native currency and
the Windows Store will automatically handle conversions and pay you directly in your
own native currency without any concern.

Figure 5-10. Selling Details Screen

90 | Chapter 5: Windows Store

The second question is considered Localization and impacts your code. In addition to
changing your app, you will need to specify the appropriate countries in the Selling
Details section so your localized app will be available in those specific markets.

Localization
Localization is a broad topic and the nuances of each different culture are far too vast
to cover in this short guide. I will focus on setting up your app to support multiple
languages and substituting text with translations. Your should try to set up all text
output, from XAML or code, to be retrieved from a resource file early in the creation
of your app. This is a good practice overall and allows for easy localization when the
time comes.

Setting up resources

The first thing you’ll need to do is provide localized resources. To do this, I created a
new folder in the Assets folder called en-us. The name of this folder will be used to
determine the proper language and culture that are supported by your application.
Right-click on this folder and select New Item. When the dialog appears, choose Re-
source File (.resw). The name of this file doesn’t matter and you can create as many
Resource Files as you’d like to help organize your resources.

Localizing text in XAML

Now that you have your resource file set up, you can bind your XAML controls to the
resource file directly. On one of your controls, you’ll need to specify a unique id. The
x:Uid property in Example 5-2 shows the button is set up with a unique id of “Home-
Button”. From here you will be able to specify any property you need for each specific
language. In a simple case, you can create a new resource called “HomeButton.Con-
tent” where the “.Content” portion will tell the parser to set the resource text to the
Content property on the button. Depending on your needs, you could also use this to
specify a width for an element by providing a value in a resource with the key “Home-
Button.Width”. In the case of this example code, the Content would get overridden by
the resource.

Example 5-2. Using Resources from XAML

<Button x:Uid="HomeButton" Content="Home" />

Localizing text in code

It’s always been a best practice in .NET to use a resource file when specifying text to
the user. Metro style apps are no exception. Using resources in Metro style apps is
slightly different, but still simple. To access the resource you will need a new Resource
Loader object. With this object, you can call GetString to return the localized version
of any text (see Example 5-3).

Global Reach | 91

Example 5-3. Using Resources in Code

var resources = new Windows.ApplicationModel.Resources.ResourceLoader();
var dialog = new MessageDialog(resources.GetString("Exception_NetworkUnavailable"));
await dialog.ShowAsync();

If you are interested in more information regarding localization, Tim Heuer has an
excellent blog post on the topic available at http://timheuer.com/blog/archive/2012/04/
26/localize-windows-8-application.aspx. You can also find information in the Globali-
zation preferences sample on the Windows Dev Center.

An important note from the comments of Tim Heuer’s blog post is re-
garding a mysterious tag within the package.appxmanifest. This tag
states <Resource language="x-generate" />. Tim points out that the
Appx Packager will automatically generate the appropriate tags corre-
sponding to the appropriate folder names within your solution. If you
override this value, you will be responsible for manually configuring this
tag with every deployment.

Summary
Application development is always a journey. Hopefully this book has helped you get
started on the process of building your application. The story regarding Windows 8
and information on developing applications will only get better as time progresses.
Whether you are part of a team or a solo developer, I hope the development experience
and the benefits of the Windows ecosystem are as helpful and advantageous to you as
they are to me.

92 | Chapter 5: Windows Store

http://timheuer.com/blog/archive/2012/04/26/localize-windows-8-application.aspx
http://timheuer.com/blog/archive/2012/04/26/localize-windows-8-application.aspx

About the Author
Ben Dewey is employed at Tallan as a Senior Software Developer where he consults
on many projects around New York City, focusing on Architecture, Silverlight,
ASP.NET, and jQuery. He also works to develop Server Oriented Applications using
WCF. Ben strives to create SOLID applications of the highest craftsmanship while
paying special attention to clean User Experiences (UX). Ben is currently a committer
on the Apache Stonehenge project, and is actively involved in numerous community
events, from speaking at local user groups and helping to organize the ALT.NET
Meetup in NYC.

	Table of Contents
	Preface
	The Windows Runtime
	Disclaimer
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	What You Need to Use This Book
	Subscribing to the Bing Search API Service on Windows Azure Marketplace
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	How to Contact the Author
	Acknowledgements

	Chapter 1. Windows 8: A Quick Tour
	A User Interface for Touch
	Start Screen
	Start Bar
	Search
	Share
	Devices
	Settings

	Windows Programming Reimagined
	A New Native APIJ: The Windows Runtime
	Language Support
	JavaScript
	C# and Visual Basic
	C++

	Hosted Application Model
	Single File Deployment
	Windows Store

	Inside Metro Style Apps
	Application Bar
	Semantic Zoom
	Animation

	Outside Your App
	Tiles
	Pickers
	Charms
	Sensors and Devices

	Summary

	Chapter 2. Getting Started
	Where Is the Hello World app?
	Bing Search API
	Getting Started: The BingSimpleSearch App
	Bing Search API Service class
	Calling the Bing Search API
	Wrapping Up the UI

	Running the BingSimpleSearch App
	Unlocking WinRT (the FileSavePicker)
	Summary

	Chapter 3. Application Architecture
	The Bing Image Search App
	Goals
	Usability
	Non-functional
	Development Process Goals

	Design of the User Interface
	Application Diagram
	Model-View-ViewModel (MVVM)
	Who Comes First: the View or the ViewModel (the ViewModelLocator)?
	Commands

	Inversion of Control (IoC) Container
	Navigation
	NavigationService

	MessageHub
	Sending a Message
	Alternatives to the MessageHub

	Application Storage and Tombstoning
	Settings
	Summary

	Chapter 4. Interacting with the Operating System
	Search
	Declaring Your Search Intentions
	Handling SearchPane.QuerySubmitted
	Launching Your App Directly into Search Mode

	Tiles
	Updating the Tile with a Collection of Images
	Updating Multiple Tiles with a Single Command

	Pickers
	FileOpenPicker
	Declaring the FileOpenPicker in the manifest
	Launching the FileOpenPicker
	Handling the FileOpenPickerUI

	FileSavePicker

	Sharing
	ShareDataRequestedMessagePump
	ShareUriHandler
	ShareImageResultsHandler

	Sensors
	LockScreen
	Summary

	Chapter 5. Windows Store
	Marketing
	Windows Store App
	Opening Your Developer Account
	Selling Your App
	Ratings and Reviews

	Distribution
	Packaging Your App
	Packaging your app from Visual Studio
	Packaging your app from the Appx Packager

	Inside your Appx
	Running Windows App Cert Kit
	Publishing Your App

	Global Reach
	Exposure to Global Markets
	Localization
	Setting up resources
	Localizing text in XAML
	Localizing text in code

	Summary

