
Graphics Programming with Perl

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Graphics
Programming
with Perl

MARTIEN VERBRUGGEN

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Sharon Mullins

209 Bruce Park Avenue Typesetter: Syd Brown

Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-02-2

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

www.allitebooks.com

http://www.allitebooks.org

To Margaret, because she thought that “Advanced RenderMan”
should be the name of a Super Hero

To Maxine, for being excited about appearing in this book

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents

preface xiii
About this book xiii
Who should read this book? xiv
Coding practices xv
Source code downloads xvi

author online xvii
acknowledgments xix
about the cover illustration xxi

Part 1 Foundations 1
1 Overview of graphics 3

1.1 Perl and graphics 4
1.2 The bits and pieces in graphics programming 5
1.3 Color spaces and palettes 7

RGB 7 ✦ CMY and CMYK 8 ✦ HSV and HLS 9
YUV, YIQ and YCbCr 12 ✦ Grayscale 12
Color distance 13 ✦ Reducing the number of
colors in an image 13

1.4 Summary 14

2 Overview of graphics file formats 15
2.1 Some graphics formats 16

GIF 17 ✦ JPEG, JFIF 18 ✦ PNG 18
MNG 19 ✦ SVG 19 ✦ TIFF 19

2.2 Finding the size and type of an image 20
Image::Size 20 ✦ Image::Magick 21
Do it yourself 22 ✦ More on file size and information 24

2.3 Conversion of graphics formats 24
2.4 Summary 26

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS

3 Overview of tools and modules 27
3.1 CPAN 28
3.2 The tools 29

The Chart::* modules 29 ✦ Gnuplot 29
GD 29 ✦ GD::Graph, GIFgraph and Chart::PNGgraph 30
GD::Text 30 ✦ The Gimp 30 ✦ Image::Magick 30
Image::Size 31 ✦ Inline 31 ✦ OpenGL 32
PGPLOT 32 ✦ RenderMan 33 ✦ Term::Gnuplot 33

3.3 A note on module versions 34
3.4 Summary 34

Part 2 Creating graphics 35
4 Drawing 37

4.1 Drawing with GD 39
An example drawing 40 ✦ Filling objects 42
Drawing text with GD 43 ✦ GD’s built-in fonts 44
TrueType fonts and GD 45

4.2 Drawing with Image::Magick 46
An example drawing 46 ✦ Anti-alias and fuzz 47
Drawing by combining images 48 ✦ Drawing with paths 50
Drawing text with Image::Magick 51

4.3 Combining GD and Image::Magick 53
4.4 Drawing with Term::Gnuplot 55
4.5 PostScript and SVG 59
4.6 Summary 59

5 Creating charts 60
5.1 GD::Graph and friends 62

Preparing your data sets for GD::Graph 63
Controlling the look of your chart 65
GD::Graph and fonts 65 ✦ Saving your chart to a file 66
Bar and area charts 68 ✦ Lines, Points and
LinesPoints charts 70 ✦ Mixed charts 72

5.2 The Chart distribution 74
Pareto charts 75

5.3 PGPLOT 76
PGPLOT devices 76 ✦ Example: A simple X-Y plot 77
Example: A contour plot 81 ✦ Example: Plotting a galaxy 84

5.4 Interfacing with gnuplot 85
5.5 Summary 89

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

6 Graphics and the Web 90

6.1 The Common Gateway Interface 91
HTTP and CGI 91

6.2 Suitable image formats 92
Web safe color palettes 92

6.3 CGI and dynamically generated graphics 94

6.4 Forms and encapsulated graphics 96

6.5 Image collections and thumbnailing 100
Thumbnails with Image::Magick 101
Thumbnails with GD 102 ✦ Contact sheets with
Image::Magick’s ✦ visual directory 103
Contact sheets with Image::Magick::Montage 104
An example application: A web photo album 105
Designing the data 107

6.6 Summary 121

7 Animations for the Web 122

7.1 Animation file formats 123
GIF 123 ✦ MNG 124
Macromedia Flash 124 ✦ SVG 125

7.2 GIF animations 125

7.3 Perl and animations 126

7.4 Repeatedly applying a filter 127
Example: making objects appear 127
Example: Zooming in on an object 129

7.5 Animated text 131

7.6 Animated charts 132

7.7 Animations with the Gimp 134

7.8 Summary 137

8 Resizing and combining images 138

8.1 Scaling and cropping an image 139
Image::Magick geometry specification 139
Cropping an image 140

8.2 Combining Images 140
Combining GD images 140
Combining Image::Magick images 142
Adding a watermark to an image 145

8.3 Summary 151

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

9 Three-dimensional graphics 153

9.1 OpenGL 154
OpenGL library functions in Perl 155
Capturing your OpenGL output 157
Example: a planetary system 160
OpenGL summary 164

9.2 RenderMan 164
How to use the module and the BMRT 165
The RenderMan language binding for Perl 166
Example: A rotating cube of cubes 167

9.3 Summary 172

Part 3 Special topics 173

10 Writing your own graphics modules 175

10.1 Interface design 176
Coordinate transformation 180
Choosing your drawing primitives 181
Implementing the interface 182

10.2 An OO implementation of a clock 186

10.3 Summary 188

11 Controlling text placement 190

11.1 Determining text size 191
Text sizes in GD 191
Text sizes in Image::Magick 192

11.2 Aligning text in graphics 194
Aligning text with GD 194
Aligning text with Image::Magick 196

11.3 Wrapping text 197
The GD::Text modules 207

11.4 Summary 209

12 Manipulating pixels and transparency 210

12.1 GD and pixels 211
Example: rotating RGB values 211
Removing duplicate color palette entries 212

12.2 Image::Magick and pixels 213
Rotating RGB values 214

www.allitebooks.com

http://www.allitebooks.org

CONTENTS xi

12.3 Convolution 215
Convolution with Image::Magick 217
Using Image::Magick's Convolve() method 224
Convolution with PDL 226

12.4 Alpha channels and transparency 229
Transparency and the GD module 229
Transparency and Image::Magick 230
How to view partially transparent images 233

12.5 Fast manipulation of image pixels 233
Using Inline::C 234

12.6 Summary 238

Part 4 Appendices 239

A Image::Magick introduction & reference 241

B Color space conversion algorithms 284

C Module code 288

references 293

index 295

xiii

preface

Welcome to Graphics Programming with Perl. When Manning Publications contacted
me to assess my interest in writing a book about graphics programming for the Perl
language, I was a bit skeptical at first. I didn’t think there would be enough coherent
material to write such a book, and I wasn’t entirely certain there would be much room
for one.

However, after doing some research I noticed that, in fact, there was a gap in the
published material. The only book I could find that combined graphics programming
and Perl was too general, and was largely a collection of recipes on how to use tools,
many of which had no relation to Perl [1]. There were not enough references that
described and explained how to achieve concrete graphics tasks in Perl.

So I accepted the challenge and started working, with the goal of providing a book
that would sum up the ways to work with graphics from within Perl, and to offer suf-
ficient background information to improve the understanding of graphics program-
ming and graphics in general. This work seeks to provide a programmer with enough
fundamental knowledge and pointers to achieve the most common graphics program-
ming tasks. I hope those goals have been realized.

ABOUT THIS BOOK
The objective of the book is to show how graphical programming projects may be
accomplished.

When commencing work on a program, you have probably formulated an idea of
your goal, but you might not necessarily know how to reach it. In most cases all that
is needed is a pointer to the right modules, tools, commands or techniques. This book
aims at providing this sort of reference for graphics manipulation using the Perl pro-
gramming language.

The content includes a wide range of topics related to manipulation and produc-
tion of graphics with Perl, including the creation, editing and combining of images,
the development of libraries, interfaces and modules for graphics creation, massaging
of text for graphics, the building of charts, as well as working with single pixels in
images. This book is not meant as a reference work for the modules available for

xiv PREFACE

graphics programming.1 For that you are encouraged to read the documentation that
comes with the modules, which in most cases is satisfactory. This book is also not
intended to be an exhaustive introduction to graphics in general, or a detailed expla-
nation of graphics algorithms, although where appropriate, some graphics theory and
algorithm description will be touched on.

The reader is expected to have a basic knowledge of Perl. The programs and code
fragments will be explained in terms of what they do and how they operate, and only
occasionally in terms of what the Perl statements mean. The documentation that
comes with Perl and the Camel [2] does a much better job of accurately describing
Perl, and other books [3],[4] provide a useful introduction to programming with Perl.
Where necessary, general programming techniques and their implementation in Perl
will be explained when this is pertinent to graphics programming (as in chapter 10,
“Writing your own graphics modules”).

There are many tasks you can accomplish with graphics, and there is a plethora of
questions you might ask when confronted with a graphics programming job. When
thinking about how this book should be arranged, several highly structured possibil-
ities for organizing the content sprang to mind. However, trying to fit various bits and
pieces into this organization turned out to be not that simple. Many tasks in graphics
programming defy neat categorization.

For that reason you might find that, even though the book is divided into chapters,
some of the sections in those chapters might also apply to other chapters. The book is
structured such that it may be read from beginning to end, but it is also arranged to facil-
itate access to specific information relevant to the actual tasks in which you are engaged.

WHO SHOULD READ THIS BOOK?
If you’re a programmer who has done some work with Perl, but has almost never
worked with graphics, this is the book for you. If you have worked with graphics, but
want to have a look around to see what else is available in this area, this is the place to
look. If you’re just curious about what is available in graphics manipulation for Perl,
you should be able to find it here.

If you’re a programmer who has been only marginally exposed to Perl, and you
need to dive into graphics programming and Perl at the same time, this book could
be a fit for you, but I’d advise first learning the Perl language (see reference list [3],[4]).
If you plan to learn Perl from this book, you will be disappointed.

This book concentrates mainly on how to accomplish tasks with the tools avail-
able, and within the boundaries of the Perl programming language. Since those
boundaries are fairly flexible, this includes the use of a large number of modules, some
of which work with external programs, some implement algorithms, others involve

1 There is one exception to this: the Image::Magick module is used extensively in the book, but lacks well
developed documentation of its own, so a reference is included in appendix A.

CODING PRACTICES xv

web work, and many other bits and pieces. If you want to know how to use the graph-
ics modules available for Perl to write your programs, read this book. If you want to
know for which graphics programming tasks Perl is suited, and for which ones it is
less so, read this book. If you want some minimal introduction to graphics theory—
just enough to get you to work—read this book. If you are looking for a reference
for Image::Magick you will find this book useful. If you need to know how to gen-
erally combine graphics and HTML in your CGI applications, read this book. If you
find yourself repeatedly doing the same graphics tasks in an interactive program, read
this book.

On the other hand, if you are seeking a book that teaches you to build graphical
user interfaces, this isn’t it: there is no PerlTk discussion in this book. The programs
presented all use a command-line interface, if they accept input at all.

If you want to learn about graphics theory and computer graphics algorithms, you
will find some rudimentary introductions in this book, but a more elaborate discussion
of these issues is available elsewhere.

CODING PRACTICES
The code in this book has been written to be as portable as possible between the dif-
ferent operating systems on which Perl runs. You might find a slight bias toward
Unix2 operating systems, since that is what I work on most of the time. Pathnames
are always separated by a slash (/), which works on Unix and Microsoft-based operat-
ing systems, but not, for example, on older operating systems for the Macintosh. If
you are on a system that doesn’t support the slash as a directory separator, you might
need to do some work before the example code will run for you. Really portable code
of course uses File::Spec, but, for the sake of clarity I decided not to do that.

When writing code to create graphical output, which is often binary data, it is
imperative to remember the use of binmode() on the file handles that are used to
read and write image files. Failing to do this commonly leads to the creation of bugs
that are difficult to track on platforms in which there is a distinction between text and
binary files. On platforms where there is no such distinction, using binmode() has
no effect; however, that is no excuse to leave it out. Portable code always calls bin-
mode() on a file handle that is to be used for binary data. Apart from portability
issues, using binmode(), even when you know it has no effect, is a good way to doc-
ument that the data stream is of a binary nature.

Coding standards are always up for debate, and mine are not always consistent with
the guidelines from the perlstyle documentation, although they come very close.
I’ll highlight some points that regularly crop up as a subject of disagreement, and some
that I find important.

2 ... and BSD and Linux and others. When I refer to Unix, I mean all Unix-like operating systems, not
just the ones licensed by X/Open.

xvi PREFACE

• In accordance with perlstyle, code should run under -w. The strict pragma
is also a very good idea in programs and modules. Both help prevent a large
number of otherwise hard-to-find bugs.

• Code blocks are indented in the BSD style: the start and end of a block have the
curly brackets on a line of their own, both lined up with the keyword that starts
the block. Many people, including Larry Wall, prefer to have the opening curly
bracket on the same line as the keyword, but I find that style too cluttered and
difficult to read. This is purely a matter of preference.

• Indenting code by one or two spaces is not clear enough. Three is not a power
of two so it cannot be used. Using a full tab stop of eight spaces to indent code
is just wasteful. The logical conclusion is that four spaces should be used to
indent code.

• Operators have whitespace on both sides.

• Variable names are in all lowercase, with underscores to separate words. File
handles are in all capitals.

• Whenever appropriate, I break these rules.

These points are valid for the complete listings, but might not be applicable to the
short code fragments in the text. Sometimes clarity is more important than correct-
ness, and fragments are just that: little parts of a larger whole.

The code in this book has been written for, and tested on, Perl 5.6.1 on a Linux
system. Most of the code will probably work fine under Perl 5.005, and some might
even work under 5.004, but there are no guarantees. Constructions that would stop
code from working on Perl 5.005 have been avoided as much as possible, but might
still have crept in here or there.

SOURCE CODE DOWNLOADS

The source code and the color versions of the figures presented in this book, as
well as the inevitable list of errata, are available from the book’s web page at
www.manning.com/verbruggen.

xvii

author online

Purchase of Graphics Programming with Perl includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
verbruggen. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s web site as long as the book is in print.

xix

acknowledgments

Thanks to Maxine, my daughter, for modeling for photographs that could be used for
this book, and to my wife for being patient with me.

Thanks to Larry Wall for creating Perl, and to all the developers (you know who
you are) who spent so much of their time working on the Perl language and distribu-
tion. Thanks to all the hackers and developers who have created the software used in
this book, and made it available to the larger community of programmers.

The image map in the PGPLOT example (figure 5.9 on page 84) is based on data
from an image of the M51 system, obtained by Dr. Patrick Seitner from the University
of Michigan, who has graciously allowed me to use it.

The original of the image of the watch in figure 8.3 on page 150 was obtained from
an excellent resource of free images at http://www.freeimages.co.uk/.

The images in section 9.2, “RenderMan,” on page 164 were rendered with the Blue
Moon Rendering Tools (BMRT), provided by Larry Gritz and Exluna Incorporated.

The Google search engine at http://www.google.com has been a tremendously use-
ful and amazingly accurate tool in the research for this book.

Many thanks to Ron Savage for a thorough technical review of the final manu-
script, and to John Cristy for taking time to look specifically at the ImageMagick parts,
and to revert some of the changes that were made to the API to fit better with the code
in this book. Special thanks to the many reviewers who took time out of their busy
schedules to read the manuscript in its various stages of development and offer their
suggestions for improvement. They are Bob Friesenhahn, Craig Berry, Dave Zempel,
Greg London, Jonathan Stowe, Kai Jendrian, Matthias Neeracher, Phillip Whettlock,
Rudi Farkas, and Theo Petersen.

And finally, many thanks to the people at Manning Publications for giving me a
chance to write this book, and for being incredibly patient while I tried to balance my
life and job with getting this text in an acceptable state. The people that have helped
me most by prodding me regularly and providing invaluable advice are Marjan Bace,
Syd Brown, Ted Kennedy, Mary Piergies, and Lianna Wlasiuk.

xxi

about the cover illustration

The figure on the cover of Graphics Programming with Perl is from a Spanish com-
pendium of regional dress customs first published in Madrid in 1799. In the book,
the figure is identified with two words: “Cartara Klamuka.” Translating these words
took us farther afield than usual. No Spanish dictionary and none of our usual
sources were able to recognize, let alone define, either of them. We were even unsure
which word represented the noun and which was the descriptor.

Searching on Google for the word Cartara led to dead ends, with links to real estate
offerings in Porta Cartara in Italy or to the mythical city of Cartara in a role-playing
game—definitely not what we needed.

After a few unsatisfactory tries with Klamuka and Klamuk, Google finally asked
us, “Could you mean Kalmuk?” In languages whose orthography has not yet been
formalized, such permutations are common. We immediately knew we were on the
right track. Following the links, we learned that Kalmuk was a region in today’s Rus-
sia near Mongolia. Kalmuk is also the name of its people. It comes from the Turkish
word Kalmak, which in turn means “the people who stayed behind.” Now our con-
fidence rose: other figures clustered in the same part of the compendium were from
the same general geographical region, with one pair identified as Cartara Mongolesa
(female) and Cartaro Mongoles (male). So we at least knew with some assurance the
origin and the gender of the figure.

But the word Cartara remained a mystery and still does as the book goes to press.
That there are a number of other figures in the Spanish compendium with similar
identifiers, for example, Cartara Eunguta or Cartaro Bukariano, indicates to us that
this was a common Spanish word at the time—another reminder of how much the
world has changed. Words that were understandable only 200 years ago have disap-
peared both from the spoken language and from contemporary dictionaries. (The clos-
est word we could find is “cartero” which means postman, but this is clearly off the
track.) We would welcome any suggestions from our readers. Please post them on the
Author Online forum for this book.

xxii ABOUT THE COVER ILLUSTRATION

The Spanish compendium’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the
known world, designed and printed with great exactitude by
R.M.V.A.R This work is very useful especially for those who hold
themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this draw-
ing. The “Cartara Klamuka” is just one of many figures in this colorful collection.
Their diversity speaks vividly of the uniqueness and individuality of the world’s
towns and regions just 200 years ago. This was a time when the dress codes of two
regions separated by a few dozen miles identified people uniquely as belonging to
one or the other.

We at Manning celebrate the inventiveness, the initiative and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago brought back to life by the pictures from this collection.

P A R T

Foundations
Part 1 contains a basic discussion of the foundations on which rest the other chap-
ters in this book. It is not an exhaustive discussion of everything there is to know
about Perl and graphics programming in general, because there is not enough room
for that, but it provides the necessary background information and references you
need to follow the discussions and examples in the book.

Chapter 1 discusses concepts in graphics programming in general terms and places
them in a Perl context.

Chapter 2 contains information on the various storage formats for graphics, how
to deal with them, and which ones are appropriate for which tasks.

In chapter 3 we’ll look at which tools and modules are used in the book, and where
they are used.

1

3

C H A P T E R 1

Overview of graphics
1.1 Perl and graphics 4
1.2 The bits and pieces in graphics programming 5
1.3 Color spaces and palettes 7
1.4 Summary 14

With the introduction of the Web, the sheer volume of graphics being manipulated
has increased enormously. Even without the Web the amount of image processing
would have grown, simply due to the fact that computers are faster than they used to
be and have more memory, which makes dealing with graphics more feasible. The
advent of digital cameras and affordable frame capture hardware have also contrib-
uted to the increase in graphics manipulation. There are more and more photos and
stills from videos to manipulate, scale, and index every single day.

Because computers have become more powerful, there are also more applications
that create graphical output. This in turn has increased the expectancy that your appli-
cation creates graphical output—either interactively, possibly through a graphical user
interface, or noninteractively, as files or database records. Charts and graphs are cre-
ated to visualize everything ranging from business throughput, stock prices, temper-
ature fluctuations, population densities, and web site visits, to the average life
expectancy of female fruit flies during the wet season on Bali, all in their subspecies
incarnations.

Apart from increasing the amount of graphics needed as buttons and embellish-
ments for web sites, the Web has had a major influence in areas of images created on
the fly and mass manipulation of large sets of graphics files. Just think of all the
images out there that are resized, optimized, dithered, thumbnailed and cropped for

4 CHAPTER 1 OVERVIEW OF GRAPHICS

display as part of a web site—for example as a list of available stock items. Then there
are the images that are created on the fly as the result of user input; for example, charts
or parts of maps or street directories. No one of course knows the exact numbers, but
they are vast.

Together with the outpouring of images processed, there has been an increase in
the number of software packages and modules that make their creation and manipu-
lation possible, as well as a boom in the development rate of packages that already
existed before the web came along. This proliferation of tools can make it difficult to
pick the right one for the job at hand, especially since some of the tools overlap in
application areas. Sometimes there is no tool available that will satisfy all the require-
ments of the task, and you have to write your own. Even when you do write your own
tools, you need to choose, or rather, can choose, between several libraries and modules
available. Which library you decide to use depends, of course, on your needs and on
your familiarity with the products.

Not all graphics tasks lend themselves to automation. There are, and always will
be, many that can only be achieved by sitting down at the screen of a computer, firing
up your favorite drawing or graphics manipulation program, and interactively using
your eyes and mouse skills to achieve the desired effect. Writing code for graphics
manipulation can be quite time-consuming, and you need to take that into account
when making a decision about whether you want to automate a certain task or process.

Programs that manipulate or create graphics are in many ways similar to programs
for other tasks. There are, however, aspects which apply to, or which are particularly
relevant to, graphics programming specifically. In this chapter we will have a look at
the various elements of graphics programming that are important to programmers.

1.1 PERL AND GRAPHICS
One caveat that should be understood about Perl is that it is not a language particu-
larly suited to large amounts of number crunching, and image manipulation requires
large amounts of number crunching. So why does this book exist?

 Perl is a glue language, which is one of the reasons why it is often described as the
duct tape of the Internet.1 Perl is good at snipping and gluing pieces of data, partic-
ularly text, and sticking tools and libraries together. What’s more, it allows you to do
all this with ease and a minimum of development time. And this is why Perl can be
very useful for graphics programming.

Because of Perl’s gluing ability, there are several interfaces to graphics manipulation
libraries and programs available in the form of modules. Other packages have been
written that make use of these modules to create graphics at a higher level, for example
to create charts. Together, the number of these tools has grown sufficiently to allow
the tackling of many graphics programming tasks in Perl.

1 This is generally attributed to Hassan Schroeder, Sun’s first webmaster.

THE BITS AND PIECES IN GRAPHICS PROGRAMMING 5

Apart from the reasons just mentioned, Perl is also an attractive language with
which to program, because of its flexible grammar, the large number of built-in tools
and the variety of syntactical constructions. Perl can be used as a tool to quickly hack
together a program that parses sets of log files, and gives some nice summaries and
graphs with which to create a report. It can also be used to write large software projects,
maintained by several programmers and developed over the course of a year or more.
Perl is duct tape, but it is very flexible duct tape.

As a side note to the number crunching: Moore’s law states that every two years
the average speed of electronic computers doubles. Even if you generalize that to all
computing, as Ray Kurzweil does in The Age of the Spiritual Machine [5], this law holds
remarkably well from all the way back in the nineteenth century to today. This means
that while Perl might be too slow for many tasks in computer graphics manipulation
on today’s computers, this will probably not hold true on computers in the not too
distant future. The demands on programs that manipulate computer graphics will
probably flatten out at some point, once the resolution of what is created is higher than
the resolution of the human eye. At the same time, the increase in computing power
will continue. Even if you don’t believe this, the other reasons already stated are more
than enough to see Perl as a valid programming language in the computer graphics
world, if not generally, then at least for some tasks.

 Many modules for Perl that concern themselves with the manipulation of graphics
are written in C or C++, and provide an interface to this functionality in the Perl lan-
guage. Most of these modules were, in fact, born as C libraries or programs, and their
original authors probably didn’t have Perl in mind at all when they wrote them. All
the number crunching, array manipulation and bit-shifting happens in compiled low
level code, and therefore is much faster than could be achieved in pure Perl. This does
not mean that you cannot, under any circumstance, use Perl to directly manipulate
pixels in an image. Chapter 12 gives a few examples of how to do this in pure Perl,
but be forewarned that it will not be blindingly fast. The same chapter also explains
how to write parts of your program in C, by including the C code directly in your pro-
gram. This allows you to escape Perl’s slowness when you need to, without losing any
of its advantages.

Summarizing: while Perl isn’t particularly suitable for low-level computer graphics
manipulation, there are many modules available that make the most common graphics
manipulation and creation task available to a Perl programmer. In cases where the
need is to jump down to a low level and do some computationally intensive program-
ming, Perl provides access to lower-level languages without too much fuss. Of course,
if the majority of a program consists of these tasks, a language other than Perl should
probably be considered.

1.2 THE BITS AND PIECES IN GRAPHICS PROGRAMMING
Generally speaking, programming for computer graphics consists of working with a
limited set of concepts: the drawing primitives.

6 CHAPTER 1 OVERVIEW OF GRAPHICS

First of all there is the canvas, which is the medium that is being drawn on, or read
from. In PostScript, for example, this is a page or part of a page, and for image manip-
ulation packages such as GD this is a two-dimensional array of pixels. It is important
to note that a canvas can be part of another canvas, and that certain images can be
built up of multiple canvases, such as the layers and channels in a GIMP image.

A second element common to all graphics operations is a frame of reference
expressed in coordinates. This indicates where on the canvas an object is located or an
operation takes place. Most commonly these coordinates are Cartesian, with a hori-
zontal and a vertical component, but sometimes it is easier to use polar coordinates
(see, for example, section 10.1.1 “Coordinate transformation,” on page 180).

Thirdly, there are the objects which are being drawn or manipulated, e.g., a rect-
angle, a circle, a polygon, a photo, a group of the previous, or a pixel array. Most of
the time these objects will have one or more handles, which express their center or top
left corner, and some dimensions.

The fourth element consists of the tools used for drawing. These can be a brush, a
stamp, an eraser, a paint bucket or even a filter. These are normally found on icon bars
in interactive drawing programs, but they also exist in noninteractive programming
packages.

While the primitives of most graphics programming fall into one of the groups
mentioned above, there is certainly not always a clear distinction. Something that is
the canvas for one operation might be the brush or object to be drawn for another.
And in fact, a lot of drawing software allows for use of part of one canvas as a brush
for another. The whole graphic for one operation could be just a layer or a drawing
object for another; think, for example of the object libraries of many drawing packages
that predefine pictures of all kinds of common objects for use in a drawing.

Sometimes people consider the manipulation of single pixels in an image to be a
separate class of actions. However, a pixel can be seen as a primitive object, and any
action on a pixel is no different from any action on, for example, a circle. A pixel is
simpler and has fewer parameters, but it is still an object.

Many graphics packages or graphics operations function at a higher level than
described earlier, and you often won’t need to deal with the lower level details directly.
When you want to resize a set of images, you’re not really concerned with what exactly

Figure 1.1

Some drawing primitives that can

be created and manipulated with

computer graphics programs and

packages.

COLOR SPACES AND PALETTES 7

happens in terms of canvas, coordinates, and objects. When you use one of the mod-
ules that creates a chart you are hardly interested in which low-level graphics opera-
tions it must execute to produce the picture.

In addition to the creation and handling of these drawing primitives, there are sets
of operations that can be applied to the objects in a computer graphic. Some of these
operations are stretching, rotating, skewing, or resizing of objects. Some others are filters
that work directly on the contents of an object, the way that various convolution filters
described in section 12.3 “Convolution,” on page 215, work on the pixels in an image.
There are also operations that let you combine graphical objects in various manners.

SEE ALSO We will see more about drawing primitives with the various modules that
are available for Perl in chapter 4. More on the manipulation of images as
a whole, and using images as objects to incorporate in other images, can be
found in chapter 8. Chapter 10 contains more discussion on coordinate
systems and frames of reference, and the manipulation of individual pixels
is discussed in chapter 12.

1.3 COLOR SPACES AND PALETTES
One of the most important concepts in computer graphics is the storing and manip-
ulation of color. The human eye is capable of distinguishing large numbers of colors,
which ideally can all be represented in computer graphics terms. However, the more
information needs to be represented, the more memory and CPU power is needed to
work with that information. Apart from these considerations, the hardware used to
present the colors also plays a major role in the conceptualization of a color model.
This section provides a short overview of the color models most frequently used, and
their relationship to each other.

All colors we see can be expressed as a composition of at least three other colors.
This is because we use three different types of sensors on our retina to perceive color,
each most sensitive to a different part of the visual spectrum. What exactly these three
colors are isn’t that important, since it turns out that it doesn’t matter which three col-
ors we pick to decompose colors into, as long as they are far enough away from each
other. These colors are called primary colors, and every possible combination of three
specific primary colors, taken together, makes up a color space. The coordinates into
that space are the relative amounts of each primary color. As children we were taught
that red, yellow and blue paint can be mixed in various combinations to make up vir-
tually any other color of the rainbow. It turns out that it is possible to come up with
several other useful color spaces. Let’s look at some of them.

1.3.1 RGB

In computational graphics manipulation the most commonly used primary colors are
red, green and blue, forming a color space referred to as RGB. The main reason that
this color space is used is due to the fact that computer monitors perform their func-
tion with phosphorizing agents that emit those three colors. RGB is called an additive

8 CHAPTER 1 OVERVIEW OF GRAPHICS

system, because each color can be expressed as a different sum of the three compo-
nents, and adding more of one component adds intensity to the resulting color.

 In color space coordinates, normally the
three primary colors each can have a value
between 0 and 1, which, for efficiency reasons,
in most software applications is expressed as an
integer value between 0 and 255. This means
that visually, these colors can be mapped in a
three-dimensional space; more precisely, to a
cube. For the RGB color space this cube can be
seen in figure 1.2
 Each color can be represented by a vector
with coordinates (r,g,b) in that cube. Looking
at this cube we see that yellow is represented by
the coordinates (1,1,0), black by (0,0,0), white
by (1,1,1) and a particularly irritating shade of

blue-green by (0.5,0.7,0.7). The line that runs between the white and black corner
represents all gray colors, and the coordinates for these points is (gr,gr,gr) where gr has
a value between 0 (black) and 1 (white).

1.3.2 CMY and CMYK

Another color space made up of three primary colors is CMY, for cyan, magenta and
yellow. CMY is often used for dyes and filters. These three primaries are the opposites,
or more correctly, the complementaries of the RGB colors and form a so-called sub-
tractive system, in which an increase in any color component causes a decrease in the
intensity of the resulting color. In other words, the color seen when looking at a
printed page is whatever is left over after the ink has absorbed part of the spectrum. If
you have another look at the RGB cube in figure 1.2, you’ll note that exactly opposite
of the red, green and blue corners, are cyan, magenta and yellow. The relationship
between RGB and CMY can be expressed as:

C = 1 – R
M = 1 – G
Y = 1 – B

Black in CMY color space is (1,1,1), white is (0,0,0), green is (1,0,1), and our irritating
blue-green is (0.5,0.3,0,3). The gray colors are in exactly the same position, but their
coordinates are reversed, i.e., white is given by (0,0,0) and black by (1,1,1).

In practice it is almost impossible to mix inks correctly and consistently, which is
why printers normally work in a color space that has an added component—black.
This color space is called CMYK. The largest possible value for the black K component
is determined by taking the lowest of the CMY components, and subtracting that
value from all three components. In effect, the maximum amount of black (gray) is

Figure 1.2 The RGB color cube illus-

trates the color space made up of the

three colors red, green and blue. Each

point inside the cube is a different valid

color in RGB space.

www.allitebooks.com

http://www.allitebooks.org

COLOR SPACES AND PALETTES 9

subtracted from the color, and given its own coordinate. The relationship between
RGB and CMYK is given by the following equations:

K <= min(1 – R, 1 – G, 1 – B)
C = (1 – R – K)
M = (1 – G – K)
Y = (1 – B – K)

R = 1 – (C + K)
G = 1 – (M + K)
B = 1 – (Y + K)

This, again, is an idealized representation of the way CMYK is used in the real
world. Printers do not necessarily always subtract the largest amount of black from
the individual colors, but they decide to use a value for K which better suits the inks
they use. And even when the black component of a color is treated separately, the
other inks are seldom clean or pure enough to be mixed in this ideal way. Instead,
picking the correct mixing ratios is an art that printers practice for many years, and
their experience will provide a much more solid foundation than the simplistic for-
mula above.

1.3.3 HSV and HLS

Instead of using primary colors in certain combinations to identify a color, other
attributes can be used. Some color spaces identify a color by its hue, which is basically
the position on the rainbow, its saturation or pureness of the color, and its brightness
(or value, or lightness). The two most common ones are HSV (for Hue, Saturation
and Value) and HLS (Hue, Lightness and Saturation). Many people feel that a color is
most naturally identified with these color spaces, because they closely reflect the way
we perceive colors. When we see a color, typically we first observe its hue, i.e.,
whether it is green or purple or red. The next thing we notice is its saturation—
whether it’s a pastel tint or a pure color. And finally we take note of the brightness of
the color.

Conversion from HSV or HLS to RGB is, unfortunately, not a linear process.
Appendix B contains the algorithms for conversion to and from these color spaces.
Before looking at those, it is probably important to understand how the HSV coor-
dinates can be seen in terms of the RGB color cube.

Hue is normally expressed as a value from 0 to 360, which indicates a position on
the color circle. The colors on the circle are arranged in the same order as they are on
the rainbow, but in a circle, with pure red at an angle of 0 (and, of course, 360), green
at 120 and blue at 240 degrees. All the colors with the same hue form a plane in the
RGB color cube, as can be seen in figure 1.3.

10 CHAPTER 1 OVERVIEW OF GRAPHICS

The saturation of a color expresses how pure the hue is, relative to white. A color with
a saturation of 1 is pure, and a color with a saturation of 0 is gray. Pastel colors are
colors with a low saturation, and the company colors picked by food chains and car
dealerships normally have a high saturation. All the colors with the same saturation
(but varying hue and value) fall on a cone in the RGB color cube, with the line
between the white and black corners as its axis. See figure 1.4 for an illustration of
this cone.

The value for HSV and the lightness for HLS are both meant to express the amount
of luminosity of the color. This is, however, not the same thing as the brightness of a
color, which is often defined as the sum of the brightness of the individual colors. The
lightness and value are slightly different quantities, and less directly mappable in the
RGB space. The planes of constant lightness and value are difficult to draw, which is
why I gave up trying and plotted them with gnuplot, using the subroutines in appen-
dix B. An example of constant lightness can be seen in figure 1.5, and one of constant
value in figure 1.6.

Figure 1.3 A set of colors with a constant hue forms a plane in the RGB color space.

These planes form triangles inside the RGB color cube, where one of the sides is the

diagonal from (0,0,0) to (1,1,1).

Figure 1.4 The cone of constant saturation in

the RGB color cube. Note that the cube has been

rotated 90 degrees around the blue axis,

compared to figures 1.2 and 1.3.

COLOR SPACES AND PALETTES 11

Figure 1.5 Constant HSL lightness (0.6) in the RGB color cube, seen from

two angles. The three-dimensional figure becomes narrower when the light-

ness value decreases, and wider when it increases. The tips of the figure re-

main stationary.

Figure 1.6 Constant HSV value (0.6) in the RGB color cube, seen from

two angles. The figure grows smaller and closer to the origin when the

value decreases, and larger and closer to the point (1,1,1) when the value

increases.

Figure 1.7 The HSV coordinates

in the RGB color cube. Represented

is a point that has a Hue of 240 de-

grees (and therefore points in the

direction of the blue corner), a satu-

ration of approximately 20 percent,

and a value of 50 percent.

12 CHAPTER 1 OVERVIEW OF GRAPHICS

And finally, and then I’ll stop talking about HSV, the coordinates of the HSV color sys-
tem are depicted in figure 1.7.2 The black dot in that figure represents a point in the
HSV color space with a hue of approximately 240 degrees, a saturation of approxi-
mately 20 percent, and a value or lightness of 50 percent. This corresponds to a dark,
dull blue or almost gray-blue, with RGB coordinates in the proximity of (0.4,0.4,0.5).

1.3.4 YUV, YIQ and YCbCr

One group of color spaces that is often used in video specifications expresses color as
one component of luminance, and two of chrominance. This means that one of the
three components expresses how bright the color is, and the other two determine its
color. The most common of these are YUV, YIQ and YCbCr. YUV and YIQ are the
color spaces used in the PAL (in use in Europe, among other places), and NTSC (used
in the USA) video standards. Both of these are highly unportable, and it is unreliable
to convert YUV or YIQ from or to RGB coordinates. The scale factors used in these
color systems are just not appropriate outside their application domain. YCbCr is
more appropriate. In fact, often when someone gives a formula to transform between
RGB and YUV, what they have really given is the transformation from and to YCbCr.

The component that everything revolves around in these color spaces is the Lumi-
nance, Y. It can be calculated from the RGB coordinates with

Y = 0.299R + 0.587G + 0.114B

The meaning of the two chrominance components—with different scaling factors for
the different color spaces—can be understood by loosely defining them as:

U, I, Cb = S1 (B – Y)
V, Q, Cr = S2 (R – Y)

wherein S1 and S2 are scaling factors that are defined by the respective standards.3

These color spaces will not serve the purpose of this book, so I won’t discuss them any
further. Suffice it to say that they normally would be encountered only when working
with video.

1.3.5 Grayscale

Finally, grayscale is an often used color space which really is only one dimensional,
and therefore isn’t much of a color space. It is capable only of expressing the relative
brightness of pixels. Conversion from a real color space to grayscale is a one-way pro-
cess, because the color information is lost along the way. There are several ways to

2 It should be understood that this just is a schematic indication of the coordinates. The length of the
various arrows is not directly related to the HSV coordinates. However, the drawing is useful for un-
derstanding the relationship between RGB and HSV.

3 The exact magnitude of these scaling factors is not important for this discussion. See for example the
reference entries [6],[7].

COLOR SPACES AND PALETTES 13

achieve this, some of which produce more natural results than others, depending on
the nature of the original image. The most frequently used conversions are:

Luminance = 0.299 R + 0.587G + 0.114B

Brightness = (R + G + B)/3

Lightness = [max(R, G, B) + min(R, G, B)]/2

Value = max(R, G, B)

Luminance is, of course, the Y component of the YUV or related color spaces (also see
the color FAQ [7]). This generally renders the most natural result. Brightness is sim-
ply the average of the three color components, which tends to overemphasize any
blue tints in an image. The eye is much less sensitive to blue than it is to red, and
much less sensitive to red than it is to green. The scaling factors in the equation for
luminance attempt to reflect this difference in sensitivity. The last two are the L com-
ponent of the HSL color space and the V component of the HSV color space. Both are
often easily implemented in software, because they require only a desaturation (set-
ting the S component to 0) in the appropriate color space. However, the results of
these conversions does not always meet expectations.

1.3.6 Color distance

One difference between the various color models is the way the distances in color
space are calculated. The distance in a color space is defined in the same way that a
distance in geometrical space is defined:

for a color space with three coordinates x, y and z. A different color space will yield a
different distance between the same colors. This distance is used to calculate how sim-
ilar two colors are, and picking a different color space can yield very different results.
Some color spaces (such as YUV) provide distances that are more closely related to the
way our perception of color works than the more standard RGB color space.

The color distance is most important when reducing the numbers of colors in an
image. At some point this color reduction will require changing a pixel’s color to one
that is as close as possible to the original and part of the set of colors that are available
after the reduction. Doing these operations in different color spaces can result in vis-
ibly different images.

1.3.7 Reducing the number of colors in an image

The main reason for wanting to reduce the number of colors in an image is to save it
in an indexed image format. Indexed image formats store all available colors in a pal-
ette or color map. Each pixel in the image needs only to contain an index into that

c1 c2– c
1 x, c

2 x,–()2
c
1 y, c

2 y,–()2
c
1 z, c

2 z,–()2
+ +=

14 CHAPTER 1 OVERVIEW OF GRAPHICS

palette, instead of the three coordinates into the color space. This can result in remark-
able savings in disk space, but it comes at the cost of losing some color resolution.

Currently, one of the best known color palettes is the web-safe palette, or the Net-
scape color palette (also see 6.2.1 “Web safe color palettes,” on page 92). Image::Magick
provides a built-in image type to convert images to that particular palette:

$map = Image::Magick->new();
$map->Read('netscape:');
$image = Image::Magick->new();
$image->Read('some_image.jpg');
$image->Map(image => $map, dither => 1);
$image->Write('some_image.gif');

You create an image, $map, that only contains the built-in netscape image type,
which can then be used as a palette mapping image for Image::Magick’s Map()
method. This method will remap the colors of the current image into the ones of the
image argument.

1.4 SUMMARY

In this chapter we’ve discussed the basics of graphics programming in a general sense,
with an emphasis on colors and color spaces. Chapter 4 has more practical informa-
tion on how to work with graphics primitives. We haven’t covered everything there is
to know and have breezed over some of the details of the discussed matter; however,
the introduction presented in this chapter should be sufficient to understand the rest
of this book.

SEE ALSO If you are interested in a more elaborate discussion of colors in computer
graphics, I suggest you look at the color space FAQ and color FAQ listed in
the references as [6] and [7], and pick up one of the books recommended
there, if you wish.

Appendix B contains Perl code to convert from RGB to HSV or HLS
and back.

15

C H A P T E R 2

Overview of graphics
file formats
2.1 Some graphics formats 16
2.2 Finding the size and type of an image 20
2.3 Conversion of graphics formats 24
2.4 Summary 26

One of the most common tasks in graphics programming is managing currently
existing files. This can vary from obtaining information about a single image, to
manipulation of large sets of images, to the storage and retrieval of graphics files.

As an example: your company is a publisher of content—all kinds of content. Apart
from print publications, it provides a large amount of information on a web site. Part
of the content is, of course, the images. These images come from a variety of sources.
You have professional photographers who go out and take photographs of interesting
subjects with expensive cameras, as well as sales representatives who visit your customers
and make quick snapshots of their shops with digital cameras. You receive digital images
by email from correspondents and clients. There is advertising artwork to be displayed.

All in all, thousands of pictures and images are generated for you every year. Most
are not in a suitable format for display on your web site, so they’ll need resizing, con-
version, and possibly a little correction. The images will need to be stored somewhere
for easy retrieval and indexing. Up until now, your company has employed several
people who do this work manually, and they act as librarians as well as graphics editors.

16 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

The management, seeking to improve the bottom line, tells the technical staff to
come up with an image manipulation and handling system that can do most of this
work automatically. Given a set of business rules for a certain category of images, it
should be able to accept a source image, store it somewhere, and manipulate it into a
shape that is suitable for any of its assigned publication outlets. It should also provide
an interface that makes it possible to find an image with relative ease.

Central to all of the above is the handling of graphics files and the information con-
tained in them. This chapter will deal with some file formats in which graphics can
be stored, and the ways in which you can retrieve information from them.

2.1 SOME GRAPHICS FORMATS
There exist a large number of formats for storing or transporting graphics informa-
tion. These formats can be roughly divided into two groups: formats that store graph-
ics as vectors, and formats that store graphics as pixel maps.1

Vector formats store their objects as mathematical descriptions and sets of coordi-
nates. A circle is stored as the coordinates of the center and the radius; a rectangle as
the coordinates of a corner and the height and width (and possibly rotation) of the
rectangle. This allows for a good scalability of the image, but it requires the rendering
engine to interpret and draw each object every time it needs to be displayed or used
in any other way. Also, the calculations to switch display pixels on and off need to be
performed each time.

Unfortunately, at present, there are very few Perl modules that work with formats
such as these, at least in a native sense. Many modules can create vector graphics for
output, and some can import them and translate them into an image format, but that
is where it stops. Of course, when a vector graphic is stored in plain text, Perl can be
easily used to create files of that type. Reading them back in is another matter, and
requires a module or program with intimate knowledge of the format.

Image formats store graphics as a two-dimensional array of pixels, wherein each
pixel represents one point of the image. These formats contain no information about
whether sections are parts of a circle, rectangle, chair or clown face. Each pixel stands
on its own, and is (largely) independent of the other pixels. Most commonly, each
pixel contains a set of values that express the color, and sometimes transparency, of
that particular pixel.

Some image formats allow you to store more than one image in a single file or data
stream. Some will allow you to express a certain relationship between all of these
images. One example of this is GIF animation, in which each image is a frame in a
sequence, and there are extra data associated with each image that expresses how long
it should be displayed and how it should be cleaned up after that time. Other examples

1 Of course there are graphics formats and languages that allow both, but for the sake of simplicity we
will just ignore that.

SOME GRAPHICS FORMATS 17

are the layers in a GIMP or Photoshop file. The ways in which these layers can relate
to each other are too numerous to list. The main relationship between the layers is how
they are combined with other layers below them in the stack.

Some file formats are not well suited for storing images for further processing
because they are lossy, meaning that the image data is stored in a way that causes some
information to get lost. A format such as JPEG uses some clever algorithmic techniques
that can dramatically diminish the amount of data to be stored for photographic
images. However, what gets stored is not a full representation of the original data; some
information is lost. If you read this image later, manipulate it, and then save it again,
you lose even more. A few of these repetitions can result in a considerable loss in quality.

Another way to lose information is by color reduction. Some image formats store
colors not per pixel, but instead store a palette of colors, and each pixel points to one
of the colors in the palette. For an RGB image in which each color component can have
an integer value between 0 and 255, you need at least three bytes per pixel to store the
image. However, if you allow a total of only 256 colors, you only need one byte per
pixel, which is the index into the palette of 256 colors.

It is, therefore, important to always store the originals of your images in a lossless
format, such as PNG or TIFF, and to convert to lossy formats, such as JPEG and GIF,
only as the last step in the process.

There is a wealth of information available on the net covering the various graphics
formats and their use and abuse [8,9,10,11,12,13]. I will only discuss a very small sub-
set here, mainly the formats that are most usable for the Web. The main reason for
this limitation is that the use of graphics on the Web is a mess. This is due to a lack
of understanding regarding which format to use for which picture, as well as the lim-
itation in usable formats (see also section 6.2, “Suitable image formats,” on page 92).

2.1.1 GIF

The Graphics Interchange Format, GIF, was first designed by CompuServe in 1987 as
version 87A, and later expanded upon with version 89A. The idea behind GIF was to
facilitate the reduction of the size of bitmap files so that transport over modems
would be faster.

The fact that the GIF format is so old shows in the limitation of 256 colors per data
stream (or per image). However, the GIF format at the moment is the only widespread
image format that supports animation of some sort.

The GIF format traditionally uses LZW (Lempel-Ziv & Welch) compression,2

which is patented by Unisys. Unisys, after an extended period of allowing free use of
the algorithm for nonprofit applications, decided recently to require a license for the
use of LZW compression. There is much confusion about whether a license is also
required for LZW decompression, although Unisys insists that a license is needed for

2 LZW compression is not only used in the GIF format, but also, among others, in the TIFF format.

18 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

any use of the LZW algorithm. Unisys has changed its position a few times on who
needs a license and who doesn’t, and could change it again at any time.

In practice, if you use software that incorporates the LZW algorithm in any way,
you or the vendor of the software are responsible for obtaining a license from Unisys.
Even if your application is made available for free, you are currently required to obtain
a license. An interesting detail is that a lot of commercial software, including many
Microsoft products, have been licensed, but in such a way that the user of the software
still has to obtain a license from Unisys.

SEE ALSO More information on the LZW license can be found at:
http://www.unisys.com/unisys/lzw/ and http://burnallgifs.org/.

This license, and the fact that the folks at Unisys keep changing their minds about who
should pay for one, has made it virtually impossible for many of the free products out
in the Open Source community to continue supporting GIF. There is still a way to use
GIF, since the GIF format does not require LZW compression. The libungif C library
relies on that feature for creation of GIF images that are not subject to the patent. Of
course, GIF images that don’t use a compression algorithm are very large and virtually
useless for the web, which is where GIF has its largest application domain.

This, taken together with the limitations of the GIF format itself, suggests that you
should try to avoid using it, if at all possible. Use PNG images instead of GIF images.
I can think of only two reasons to use the GIF format in favor of the PNG format: you
need to create small and simple animations, or you need to support a user base that
has obsolete software that doesn’t read the PNG format. The first reason will disappear
when the MNG and SVG formats become widely supported, since they can both be
used for various kinds of animations. The second reason disappears when you no
longer have to cater to obsolete software.

2.1.2 JPEG, JFIF

The image format which is normally called JPEG should really be called JFIF, which is
short for JPEG File Interchange Format. JPEG stands for Joint Photographic Experts
Group, the group that gave us the JFIF format and the compression techniques used
in it. The compression technique itself is known as JPEG compression.

JPEG compression is at its best when the image is a photo (color or B&W), or any
other image that resembles a real-world scene. It is not as good at images where most
of the neighboring pixels have the same color. JPEG is a lossy format, meaning you
cannot restore the original information from the compressed image. JFIF images work
with a 24-bit color space (16 million colors).

2.1.3 PNG

The Portable Network Graphics format (see [14]) was designed with the web in mind,
specifically to replace GIF and, to a lesser degree, TIFF. The advantages of PNG over
GIF are that PNG has alpha channels, gamma correction, a better interlacing method,

SOME GRAPHICS FORMATS 19

and generally slightly better compression. One feature of GIF that PNG sadly lacks is
the popular animation or multiple-image format (see MNG).

PNG is a lossless image format, unlike GIF, which normally only stores up to 256
colors, and JFIF, which loses information due to its compression technique. Together
with the 48-bit color (and 16-bit grayscale) support, this makes it a very suitable for-
mat for interchange between packages.

2.1.4 MNG

The Multi-Image Network Graphics format (see [15]) is strongly based on PNG, and
was in fact designed by some of the same people. MNG is the answer to the desire of
web designers to include animated images on their sites, and it promises a lot more,
in better ways, than GIF animation is providing.

Unfortunately, the support for MNG is still limited, and the standard for the for-
mat has not yet been officially set down. For all practical purposes, at this time, ani-
mations will have to be provided with GIF streams.

2.1.5 SVG

The Scalable Vector Graphics format is a language used to describe graphics in XML.
As the name suggests, it will allow vector graphics, but can also contain text and
images. The language is a W3C recommendation, and therefore a web standard, and
its specification can be found at http://www.w3.org/Graphics/SVG. SVG is clearly
aimed at bringing more sane graphics to the Web by providing a standardized vector
graphics format that is easy to parse and is transportable.

Support for the SVG format is still limited, but is growing fast. One Perl module
that can import SVG graphics is Image::Magick, and other modules to work with SVG
area appearing on CPAN. Support for this format in the major web browsers is also
growing, and its acceptance promises that this well-designed and flexible format will be
successful in solving many of the problems currently experienced with web graphics.

More information about SVG is available at the above-mentioned URL, and in the
upcoming book Definitive SVG by Kelvin Lawrence, et al. [16].

2.1.6 TIFF

The Tag Image File Format (TIFF) is one of the most venerable of image formats. It
has been around for a long time, and is supported by many pieces of software. The
format allows for many image format features and compression schemes (including
LZW compression). Originally, TIFF was defined by Adobe Systems Incorporated,
but the format now is also defined by the Internet Engineering Task Force (IETF),
and is described in RFC 2302.

The TIFF format is mainly intended for images originating from scanners and
other imaging devices; hence the format is quite extensive in order to support all the
various capabilities of these devices. The TIFF format specifies a baseline set of features
that every compliant application should support. Apart from this baseline it also
defines many extensions that applications can optionally implement.

20 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

The TIFF format allows multiple images per file, full color, grayscale and palette-
based color data, as well as an alpha channel. This makes it a suitable format for storing
images to use as a source, because it allows the storing of the complex information that
image formats can contain, without loss, reasonably compressed, and portable
between applications.

2.2 FINDING THE SIZE AND TYPE OF AN IMAGE
The first thing you do when you receive an image for further manipulation is to find
out as much information about it as necessary. In the case of image files, that is, at the
very least, the size and type of the image. Once you have such data, you can make
decisions about which steps to take to get the image into the required format.

2.2.1 Image::Size

For most Perl applications, the fastest and easiest way to find the size of an image is to
use the Image::Size module. It will handle the most commonly used image formats
and it is easy to use. The imgsize() subroutine takes either a file name or an open
file handle as its argument, and returns the width, height, and type of image.

use Image::Size qw(:all);
my $img_file = 'file.gif';
my ($width, $height, $id) = imgsize($img_file);

open(IN, $img_file) or die "Cannot open $img_file: $!";
($width, $height, $id) = imgsize(*IN);

The last argument on the use Image::Size line is a directive to the standard Perl
exporting mechanism. Many modules make some of their internal names optionally
available for export.3 Image::Size always exports imgsize() into the caller’s name space,
and optionally allows the import of the html_imgsize() and attr_imgsize()
functions. The tag :all imports all three of them. In other words, if you only plan to
use the imgsize() function, a simple use Image::Size; will suffice.

Alternatively, you can read the file yourself and pass a reference to the file contents
to the imgsize() subroutine. This can also be handy if you get your image data from
a source other than a file, such as a database or a pipe.

binmode(IN);
my $img_buf;
{
 local($/) = undef;
 $img_buf = <IN>;
}
close(IN);
($width, $height, $id) = imgsize(\$img_buf);

3 For a full explanation, see the documentation of the standard Perl module Exporter.

FINDING THE SIZE AND TYPE OF AN IMAGE 21

Image::Size also offers two convenient methods, which can be used to generate
HTML tags in a print statement:

use Image::Size qw(html_imgsize);
my $html_width_height = html_imgsize($img_file);
print qq();

or to cooperate with the methods of the CGI module.

use CGI qw(:standard);
use Image::Size qw(attr_imgsize);
my @width_height_attributes = attr_imgsize($img_file);
print img {src => $img_file, @width_height_attributes};

or directly:

print img {src => $img_file, attr_imgsize($img_file)};

2.2.2 Image::Magick

If you have images in a format that Image::Size doesn’t support, then you still have a
few options. The simplest is to use a more powerful module, such as Image::Magick.
Image::Magick’s Ping() method gives you the width and height of the images in a
file of any of the formats it can read. As a bonus you also get the size (in bytes) and
format of the image.4

use Image::Magick;
my $img_file = 'file.gif';
my ($width, $height, $size, $format) = Image::Magick->Ping($img_file)
 or die "Cannot get info for $img_file";

This works well if you are interested only in the dimensions of the image and don’t
plan to do anything else with it. If, however, you also need to read the image for
manipulation with Image::Magick, it is probably better to do something such as:

my $img_file = 'file.gif';
my $im = Image::Magick->new();
my $rc = $im->Read($img_file);
die "Cannot read $img_file: $rc" if $rc;
my ($width, $height, $format) = $im->Get('width', 'height', 'magick');

Note that most Image::Magick methods return undef on success.5 This means that you
have to check whether the return value is true to detect an error, while most of the time,
in Perl, you check whether a return value is false. This can be a bit counterintuitive.

 Image::Magick is a fairly large and heavy module, which takes quite some CPU
power to load. The reason for this is that Image::Magick is a very general purpose
graphics manipulation module, and anything that is general purpose is bound to be

4 In older versions of Image::Magick, the Ping() method returned a single string with comma-separated
fields in the same order as in the example. A further explanation of this method appears on page 268.

5 There are some exceptions to this rule; see appendix A, on page 241.

22 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

slower than something that has been written with only one specific task in mind.
Newer versions have improved this situation by delaying the load phase of many com-
ponents until they’re needed. If you need to know some information on only one or
two images, loading Image::Magick just for this might be too expensive.6 If you plan
to procure information on many images, the cost of loading is negligible.

2.2.3 Do it yourself

If you need something fast and lightweight that will work almost everywhere, espe-
cially when you know that you will only have to deal with one file format, writing
your own subroutines can be the best option. As an illustration, we will do this for
PNG and for XCF, the native format for the Gimp. The subroutines will return the
same values as the imgsize() subroutine from Image::Size.

PNG

The PNG format[14] specifies a fixed header of 8 bytes, followed by a chunk of type
IHDR. This chunk first contains a 4-byte integer, then a 4-byte identifier, and two
4-byte integers for the width and height. In PNG, all integers are stored in network byte
order. If we translate this knowledge into Perl code, we get something like the following:

sub png_size
{
 my $file = shift or return;
 my $buf;
 local(*IMG);

 open(IMG, $file) or return;
 binmode(IMG);
 read(IMG, $buf, 24);
 my ($hdr, $l, $ihdr, $w, $h) =
 unpack("a8 N a4 N N", $buf);
 return unless
 $hdr eq "\x89PNG\x0d\x0a\x1a\x0a" &&
 $ihdr eq 'IHDR';
 return ($w, $h, 'PNG');
}

You will notice the local(*IMG) and the absence of an explicit close(IMG). By
localizing the file handle, we first make certain that we don’t trample on any file han-
dles in the rest of the program, and we assure that the file gets closed on exiting the
block, i.e., when the subroutine returns. In more modern versions of Perl (post 5.6.0)
you can also use a lexically scoped variable as a file handle, which has the same effect.

In this subroutine, unpack() is used to split up the binary information in the 24
header bytes into the parts in which we are interested. The translation of the unpack

6 Generally, the newer your version of Image::Magick, the less this is a problem. For example,
version 5.4.4 is about 20 percent faster than the previous version.

O Read the first 8 + 4 + 4 + 4 + 4 bytes

FINDING THE SIZE AND TYPE OF AN IMAGE 23

template can almost literally be found in the paragraph preceding the code. The sec-
ond return value of the unpack() operation, which is the total length of the IHDR
chunk, is captured, but not used, because it is not important to us. Next $hdr and
$ihdr are checked to see if they are what they should be, and if they are not, a false
value is returned. To round things off, the width, height and image type are returned.

The Gimp’s XCF format

The documentation on XCF, the native format for the Gimp, is distributed with its
source code, and is, in fact, the source code. So, to learn how to read this format, we
have to get our hands on a source distribution of the GIMP.7 In the file apps/xcf.c we
find that there are currently (as of version 1.1.10) two versions of the file format, in
comments called versions 0 and 1. The only difference for our purposes is the version
number in the header of the file.

The first thing to be noted about the XCF format is that, like in the PNG format,
integers are stored in network byte order. We read from the source code that the first
9 bytes contain a fixed header, and that the version number can be found, as a null
terminated string, in the next 5 bytes. The width and height of the image are the next
two 4-byte integers:

sub xcf_size
{
 my $file = shift or return;
 my $buf;
 local(*IMG);

 open(IMG, $file) or return;
 binmode(IMG);
 read(IMG, $buf, 22);
 my ($hdr, $v, $w, $h) =
 unpack("a9 Z5 N N", $buf);
 return unless ($hdr eq "gimp xcf ");
 SWITCH: {
 $v eq 'file' and $v = 'XCF0', last SWITCH;
 $v eq 'v001' and $v = 'XCF1', last SWITCH;
 # Unknown version. $w and $h may be unreliable
 return;
 }
 return ($w, $h, $v);
}

This code is very similar to png_size(), except that the type of the image is deter-
mined from the version number found in the file. The XCF version 0 format formerly
had the first 13 bytes set to gimp xcf file, while the version 1 header contains
gimp xcf v001. We capture the version as the last 4 bytes of this string, and rewrite
it into something slightly more meaningful.

7 Full sources for the GIMP are available from http://www.gimp.org/.

O Read the first 9 + 5 + 4 + 4 bytes

24 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

2.2.4 More on file size and information

This section should have given you enough of a beginning to read the basic informa-
tion of any image format. If none of the modules can handle it, you can still find out
by reading this yourself, if you know the image format specification. Of course, if you
don’t know that, you’re on your own, but before despairing, have a look at the Wotsit
site [13], to see if it has the specification of the format you’re seeking.

2.3 CONVERSION OF GRAPHICS FORMATS
To convert graphics between formats it is best to use the Image::Magick module. This
module can read and write a wide variety of image formats, sometimes with the help
of external tools and libraries. Some of the formats that can be read by Image::Magick
are listed in table 2.1.

Table 2.1 A partial list of image formats recognized by Image::Magick. Some

of these formats are parsed with the help of external modules or programs

which require you to install these before compiling Image::Magick. See the

documentation for a full list.

Format Description

BMP, BMP24 MS Windows bitmap image file

CGM Computer Graphics Metafile

CMYK Raw cyan, magenta, yellow, and black bytes

EPI, EPS, EPSF Encapsulated PostScript Formats

GIF CompuServe graphics interchange format

HTML HTML with a client-side image map

JPEG Joint Photographic Experts Group JFIF

MIFF Magick image file format

MNG Multiple-image Network Graphics

PBM, PGM, PNM, PPM Portable Xmap format

PCD, PCDS Photo CD

PICT Apple Macintosh QuickDraw/PICT file

PNG Portable Network Graphics

PSD Adobe Photoshop bitmap file

TGA Truevision Targa image file

TIFF Tagged Image File Format

WMF Windows Meta File

XBM, XPM X Windows system bitmap/pixmap

CONVERSION OF GRAPHICS FORMATS 25

For a complete list, see for example the ImageMagick web site [17] or the documen-
tation for the command line tool convert. In addition to standard external image for-
mats, Image::Magick has some built-in format specifiers, which are listed in table 2.2.

When reading a file, Image::Magick will usually be able to guess the file type by its sig-
nature.8 In the rare cases in which that doesn’t work, you may specify the file format in
the file name you give to the Read() method. The Write() method can be used to
save images to disk. It uses the extension of the file name specified to determine the
format to save. If the file extension cannot be used, or you want to override it, you may
specify a format explicitly (see the code examples below). If neither a file extension or
explicit format are specified, the image attribute magick will be used to determine the
format of the file to save. We will discuss some concrete examples after showing the
code that you will find at the start of almost any Perl program using Image::Magick:

use Image::Magick;

my $rc;
my $img = Image::Magick->new();

We read in a GIF format file, and save it as a PNG format file.

$rc = $img->Read('file.gif');
warn $rc if $rc;
$rc = $img->Write('file.png');
warn $rc if $rc;

Table 2.2 Some of the internal special image formats of

Image::Magick. These formats are not really image formats, but

are special instructions to the ImageMagick engine to create an

image with certain characteristics.

Specifiers Description

GRADIENT Gradual change from one shade to another

GRANITE Granite texture

GRAY Raw gray bytes

HISTOGRAM Histogram of the image

LABEL Create a text image

NETSCAPE Netscape 6x6x6 color cube

PLASMA plasma fractal image

VID Visual Image Directory

XC Filled with a single color

8 Most, if not all, graphics file formats can be identified by looking at the first few bytes of the file. Each
format has its own characteristic sequence of bytes, called the signature. See the definition of
png_size() and xcf_size() in the previous section for examples of this.

26 CHAPTER 2 OVERVIEW OF GRAPHICS FILE FORMATS

Then we create a white tile of 70 by 70 pixels, and save it as a TIFF format file.

@$img = ();
$img->Set(size => '70x70');
$rc = $img->Read('xc:white');
warn $rc if $rc;
$rc = $img->Write('whiteTile.tiff');
warn $rc if $rc;

In the preceding code you might have noticed the @$img = (). That is the best way
to remove all the images from the $img object, without actually destroying the object
itself. If this were not done, subsequent reads would create a multi-image object (see
also chapter 7).

To create an image with a gradient going from light to dark gray the following code
can be used:

@$img = ();
$img->Set(size => '100x600');
$rc = $img->Read('gradient:#efefef-#3f3f3f');
warn $rc if $rc;

$img->Rotate(degrees => -90);
$rc = $img->Write('grayGradient.jpg');
warn $rc if $rc;

Image::Magick gradients always run from top to bottom, so to attain a gradient that
changes horizontally, we rotate the created image by 90 degrees. The result can be
seen in figure 2.1.

2.4 SUMMARY

In this chapter some image formats and methods to obtain information about the
image size and format were discussed, and the conversion of one image format to
another with the help of Image::Magick was demonstrated. This is hopefully sufficient
to provide a solid base from which to work with image files and the various formats
that are available.

SEE ALSO The Image::Magick documentation and the reference in appendix A should
be consulted for more information on the various Image::Magick methods
discussed. The Image::Size module comes equipped with useful documenta-
tion which is recommended reading for anyone wishing to use the module.

Figure 2.1 An illustration of Image::Magick’s built-in type gradient, rotated

and converted to a JPEG image.

27

C H A P T E R 3

Overview of

tools and modules
3.1 CPAN 28
3.2 The tools 29
3.3 A note on module versions 34

If you had to write all graphics code yourself each time you needed some work done,
and if you had to study all the relevant theory yourself every time, you wouldn’t actu-
ally finish many programs. One of the strengths of Perl is that it provides a good
interface for developers to create modules that can be reused by others. This is an
excellent way to package knowledge about a certain protocol, technique or algorithm
in some code, and to share it with the wider Perl community.

Many programmers have done this. They have spent time creating software librar-
ies and modules, and have made them available for others to use. Apart from Perl mod-
ules, there are some programs that can be used to work with graphics from within Perl.
This chapter provides a list of software tools and modules used in this book, with a
short description for each. When necessary it has been noted where to find the tools
and their documentation, and where in the book they are used (but also check the
index to find other references).

Since most modules for Perl are available from CPAN, we’ll first spend some time
explaining what it is, and how to use it.

28 CHAPTER 3 OVERVIEW OF TOOLS AND MODULES

3.1 CPAN
The Comprehensive Perl Archive Network1 (CPAN) is the best place to start looking
for any modules for Perl, and all the modules used in this book are available there.
The modules are distributed as gzipped tar archives. The distribution mechanism is,
at this moment, quite Unix-oriented, and requires at least a working make tool. The
modules that are interfaces to C libraries or contain C code, require a working C
compiler as well.

For platforms where these tools are not as standard, there are other solutions. If you
use MacPerl, you should probably start at http://www.macperl.com/, and follow the
pointers from there. Alternatively, you can visit the MacPerl Module Porters page
directly at http://pudge.net/cgi-bin/mmp.plx.

ActiveState distributes the de facto standard Perl for the 32-bit Microsoft Windows
platforms, ActivePerl. The company also maintains an archive of prepackaged and
precompiled modules in the (ActivePerl-specific) ppm format. ActivePerl comes bun-
dled with a tool, also called ppm, that will automatically fetch and install modules
from the archive. To get ActivePerl, and read more about it and its use, start at http:/
/www.activestate.com/.

While these platform-specific archives are convenient, it also means that the only
modules available there are the ones that have been prepackaged, ported, or otherwise
prepared. Sometimes modules in these archives can grow severely out of date with
respect to the latest versions on CPAN, and many CPAN modules never make it there.
If the module you’re interested in only uses Perl code, I suggest you use the CPAN dis-
tribution. If the module needs any form of byte code compilation, e.g., contains C
code, you will have to either wait for it to become available, or you can opt to purchase
for yourself a compiler that works with the ActiveState distribution, install it, and
compile the module yourself.

Most of the modules can be found on CPAN (http://www.cpan.org) and can be
installed with the well-known mantra:

$ perl Makefile.PL
$ make
$ make test
$ make install

or, alternatively, with the CPAN module, shipped with any standard Perl distribution.
The documentation for the modules from CPAN is normally contained in the mod-

ule source code itself, and is installed together with the module. On Unix systems this
documentation will also be extracted and made available as standard manual pages. On
Unix and most other platforms, the documentation can be extracted and read with the
help of the perldoc tool that is installed with Perl. To find out more about it, type
perldoc perldoc at the prompt. The ActiveState ppm installation program will extract

1 http://www.cpan.org/,http://www.perl.com/CPAN/ or http://www.perl.org/CPAN/

www.allitebooks.com

http://www.allitebooks.org

THE TOOLS 29

the documentation from a module and install it as HTML on the local machine. For
MacPerl, a program called Shuck is available to read Perl documentation.

3.2 THE TOOLS
This section provides a list of modules and tools used throughout this book. Included
is a short description of what each module does and where to find occurrences of its
use in the book. Specific notes about where to obtain the module, how to install it,
and what to be aware of are also provided here when necessary.

3.2.1 The Chart::* modules

These modules provide an object-oriented interface to create many different types of
charts. The interface originally borrowed a lot of the ideas from GIFgraph but it has
since gone its own way, and provides different sets of functionality. The modules were
originally created by David Bonner, and are maintained by Peter Clark.

A full set of documentation comes with the modules, as a single manual page.
Examples of the use of these modules can be found in section 5.2, “The Chart distri-
bution,” on page 74.

3.2.2 Gnuplot

Gnuplot is a program to create charts and graphs. It supports a wide variety of chart
and data types, including three-dimensional surface plots. The program can be used
interactively, and comes with a reasonable on-line help system. The documentation
may be installed separately, or downloaded from the gnuplot web page (see [18]). Note
that the gnu in gnuplot has nothing to do with the GNU Free Software Foundation.
Chart::GnuPlot provides an interface to gnuplot, but is still in a very early stage, and
not ready for production use. Section 5.4, “Interfacing with gnuplot,” on page 85
shows some examples of the use of gnuplot from Perl. These examples have been tested
with gnuplot version 3.7.

3.2.3 GD

GD is written and maintained by Lincoln Stein and provides an object-oriented
interface to Thomas Boutell’s C library libgd. It offers a simple, but reasonably pow-
erful and fast, drawing interface for bitmaps. Recent versions of GD can work with
PNG, JPEG, XBM, WBMP (Windows bitmap), and a native file format. Older ver-
sions (before 1.20) used to work with the GIF format, which explains why the inter-
nal GD image format has much in common with GIF.

You will find several references in this book to the shortcomings of GD where color
is concerned; as such, GD only supports palettes of up to 256 colors. However, since
it is an interface to libgd, and a new version of libgd that supports true color images
currently is in beta, I suspect that the next major release of GD will do this as well.
This new version most likely will be released with a version number of 2.0.

30 CHAPTER 3 OVERVIEW OF TOOLS AND MODULES

GD comes with an excellent manual page, and examples of its use can be found in
many places in this book. The code there has been tested with GD version 1.33.

3.2.4 GD::Graph, GIFgraph and Chart::PNGgraph

These modules all use GD to create charts of various kinds and require the GDText-
Utils to work. GIFgraph and GD::Graph were written and are maintained by the
author. Chart::PNGgraph was created by Steve Bonds, based on the code base of GIF-
graph, when GIF support was dropped from GD. Both GIFgraph and Chart::PNG-
graph exist nowadays only to provide backward compatible name space wrappers
around GD::Graph directly.

GD::Graph comes with a set of reasonably complete documentation, and examples
of its use can be found in section 5.1, “GD::Graph and friends,” on page 62, section 6.3,
“CGI and dynamically generated graphics,” on page 94 and 7.6, “Animated charts,” on
page 132. The code in this book has been tested with GD::Graph version 1.33.

3.2.5 GD::Text

The GD::Text module and its cousins GD::Text::Align and GD::Text::Wrap provide a
generic interface to string handling and font management for the GD module. They
were created during the writing of chapter 11 of this book by the author, and made
available from CPAN under the name GDTextUtils. A full set of documentation is
included in the modules.

Code that uses the GD::Text modules can be found in section 11.2.1, “Aligning
text with GD,” on page 194, and has been tested with GD::Text version 0.80.

3.2.6 The Gimp

The GNU Image Manipulation Program [19] has almost the same application
domain as Adobe Photoshop,2 almost the same capabilities, but a much more attrac-
tive price; it’s free. The Gimp itself is an interactive program, but has a readily accessi-
ble extension interface, and tasks can be automated in the Gimp by using the Gimp
and Gimp::Fu Perl modules. These modules can be used to write command line pro-
grams, as well as plug-in filters and programs for the Gimp. The Gimp Perl modules
can be complex, and require a working knowledge of the program and the way it
stores and manipulates images, layers and selections.

The Gimp is available from http://www.gimp.org/ and the distribution includes
the Perl modules. The module is only sparsely used in this book, but the program is
definitely a must for anyone serious about working with image files on Unix platforms.

3.2.7 Image::Magick

Image::Magick is an object-oriented interface to ImageMagick, which is an extremely
versatile and powerful image manipulation tool that works with a wide range of

2 Photoshop is generally better suited for images that are destined for print.

THE TOOLS 31

image formats and offers an extensive set of operations. ImageMagick and its com-
panion Perl module are written and maintained by John Cristy with the assistance of
other developers.

The module is available as part of the ImageMagick distribution under the name
PerlMagick, as well as separately from CPAN. If you download the module from
CPAN, be sure its version number matches the installation of the ImageMagick library.
Binary distributions for several platforms (including Microsoft Windows) are available
from the ImageMagick web pages (see [17]); however, if you can, compile it yourself.
ImageMagick uses a multitude of external libraries and programs, and the more it is
tuned to your system, the better.

Appendix A contains an introduction to and a reference for Image::Magick. Exam-
ples using the modules are presented throughout the book.

The code in this book should run with Image::Magick version 5.4.4. Older versions
might lack some of the presented functionality, and some support for old methods or
arguments might have been dropped or changed (see also section A.3 on page 245).
Wherever possible, notes have been provided to warn the reader if this is the case. John
Cristy is aware of this book, and has promised to keep new versions of Image::Magick
as compatible with the presented code as possible.

3.2.8 Image::Size

This lightweight Perl module is intended mainly to be used in determining the size of
image files. It will read various file formats, such as GIF, JPEG, XBM, XPM, PPM/
PGM, PBM, PNG, TIFF, SWF, PSD and BMP. Its main subroutine, imgsize()
returns the width, height, and image type as a list. You can pass it either a string con-
taining a file name, a reference to a file handle, or a reference to a scalar containing
the image data. The other two subroutines are merely convenience wrappers around
imgsize(). The module is maintained by Randy Ray, and is based on code by Alex
Knowles and Andrew Tong.

The module comes with a helpful documentation page, available through the
perldoc command, and examples of its use can be found in section 2.2, “Finding the
size and type of an image,” on page 20. Image::Size version 2.93 was used to test this code.

3.2.9 Inline

The Inline modules allow a programmer to enclose non-Perl source code in a Perl
program. The modules make sure that code gets compiled and loaded when needed.
When the code is compiled, a cached copy of the object file is written to a (config-
urable) place, which means that it is compiled only once (unless you change the
code). This helps to dramatically speed up subsequent executions. The most obvi-
ous place to use the Inline modules is wherever Perl’s execution model is too slow to
be useful.

The standard Inline distribution, written and maintained by Brian Ingerson,
comes with the Inline::C, which lets you include C code in your Perl programs. CPAN

32 CHAPTER 3 OVERVIEW OF TOOLS AND MODULES

also has Inline modules for C++, Python and CPR. According to the documentation,
modules for Java, Fortran, Ruby and Bash are in the making.

An example of the use of Inline::C is available in section 12.4, “Alpha channels and
transparency,” on page 229. The code in this book was run with Inline version 0.43.

3.2.10 OpenGL

The OpenGL module is a Perl interface to the OpenGL programming interface,
which in turn is a software interface to graphics hardware. OpenGL was developed by
Silicon Graphics Inc. for their hardware and OS, but is now available for a wide range
of platforms and is implemented on a large number of hardware graphics cards.

To use this module you must first have OpenGL installed on your system. Some
operating systems come with the required libraries installed and available; with others
you need to install them yourself. You can either buy a commercial implementation
of the library, or download and install Mesa 3D (http://www.mesa3d.org/). This
freely available, open source implementation of the OpenGL library is fully func-
tional, and some unofficial support is even available from Silicon Graphics.

The OpenGL modules are available from CPAN. The latest version on CPAN is 0.5,
which was placed there by Kenneth Albanowski, the original developer for the mod-
ule. Ilya Zakharevich has added some portability code, fixed some problems and
removed some bugs from this version; but these changes haven’t made it to CPAN yet.
At the time of this writing, the latest version of OpenGL is available from ftp://
ftp.math.ohio-state.edu/pub/users/ilya/perl/modules. At some point in the not too
distant future these updated versions will probably be made accessible by CPAN. (See
the note on page 156.)

Examples of the use of OpenGL modules can be found in section 9.1, “OpenGL,”
on page 154. Version 0.54 of the OpenGL module was used to test this code, running
on the Mesa 3D libraries, version 3.4.

3.2.11 PGPLOT

This module provides an interface to the PGPLOT graphics library, which is very
popular with astronomers and many other scientists. It creates charts and plots for all
kinds of data, but with a certain emphasis on data sets that would very likely be
found on an astronomer’s hard disk. The original PGPLOT library was written in
FORTRAN by Tim Pearson but also comes with a C interface. The Perl module, writ-
ten by Karl Glazebrook, is an almost direct mapping to this C interface, which in
turn is an almost direct mapping to the FORTRAN library calls.

The documentation for the PGPLOT module from Perl explains only the calling
conventions for all these functions, and refers the user to the original FORTRAN-based
documentation available from the PGPLOT web pages (see [20]). In addition to the
documentation, which is quite good, it is also advisable to browse through the exam-
ples that come with the PGPLOT library distribution and the PGPLOT module.

THE TOOLS 33

More information on and examples of the use of PGPLOT can be found in
section 5.3, “PGPLOT,” on page 76. The version used for these examples was 2.18,
running on version 5.2 of the PGPLOT library.

3.2.12 RenderMan

The RenderMan module is an interface to Blue Moon Rendering Tools (http://
www.bmrt.org), and can be used to directly interact with BMRT programs, or create
RenderMan-compliant output files. The BMRT were originally written and devel-
oped by Larry Gritz, and development is now in the hands of Exluna.

The RenderMan API was developed by Pixar Animation Studios to provide a stan-
dard, portable communication layer between 3D modeling programs and rendering
programs. The API doesn’t concern itself with how the rendering is achieved, but only
describes what gets rendered, and what its properties are. The rendering engine can
choose any method it pleases to create computer graphics from the described scene.

To work with the output of this module, you will need a RenderMan-compliant
renderer. The standard commercial one is Photorealistic RenderMan, Pixar’s own
engine. If you don’t have a Hollywood-sized budget, the already mentioned BMRT is
available for free for personal use, and for a small fee for commercial use.

The RenderMan module is further described in section 9.2 on page 164. The code
in this section was tested against RenderMan 0.04 compiled with BMRT 2.5. The
RenderMan module cannot be compiled against version 2.6 of BMRT without con-
siderable work.

3.2.13 Term::Gnuplot

Term::Gnuplot provides a Perl interface to the output drivers that are part of the gnu-
plot program. It offers a set of drawing primitives useful for any drawing task, as long
as this drawing task is simple. Changing the output format of a program simply
becomes a matter of changing the output driver. The only downside is that the set of
drawing commands is fairly limited, as it is geared toward providing the minimal
functionality needed by the gnuplot program, hence it could require some work to
get it do what you need it to. Some examples of how to use Term::Gnuplot are found
in section 4.4, “Drawing with Term::Gnuplot,” on page 55.

Term::Gnuplot was created and is maintained by Ilya Zakharevich, and is available
from CPAN. Rudimentary documentation is available for both Term::Gnuplot and
Term::GnuplotTerminals. The code in this book has been tested and run with
Term::Gnuplot 0.5601 and 0.5703.

NOTE When compiling version 0.5601 of Term::Gnuplot, I noticed that it expects
your version of libgd to provide GIF output. Modern versions of libgd
don’t do that anymore, so if your make test fails with a message containing
undefined symbol: gdImageGif, you might need to edit the Makefile.PL
and gnuterm/Makefile.PL and comment out the references to libgd, or find
an older version that still supports GIF.

34 CHAPTER 3 OVERVIEW OF TOOLS AND MODULES

3.3 A NOTE ON MODULE VERSIONS
In this section we’ve enumerated the versions of the various modules used to test the
code in this book. When you start using newer versions than those mentioned here—
and that time will come—there are no guarantees that the code will still perform
identically, or even run. We are not seers, and cannot predict what the developers will
do with their modules.

In general, most developers are careful not to change the interface to their modules
drastically, so you shouldn’t require too many changes to your code relevant to these
modules. Normally, the version numbering schemes provide a hint on this. When
minor numbers change, it usually means that the interface has not become incompat-
ible with the older version.3 However, it is likely that a module interface has changed
when the major version number changes. So, if the version you have installed differs
significantly from the one used in this book, make sure you read up on the changes
to that module.

3.4 SUMMARY

In this chapter the modules and tools used in this book were described. Refer to this
chapter whenever you need to install modules or programs used in the example code
in this book, or when you want to know which particular versions of the software
were used.

3 This is not a rule set in stone, and specifically Image::Magick has been released with only minor version
number changes, but with incompatibilities in the API.

P A R T

Creating graphics
This part of the book covers the creation of graphics from within Perl, using vari-
ous modules, tools and techniques. The subject matter ranges from the use of low-
level drawing of squares, circles and lines, to a more high-level use of modules that
create, for example, charts and graphs.

In chapter 4 we will look at how to create your own drawings, using the graphics
primitives from the modules that are available.

Chapter 5 provides an introduction to the various ways you can create graphs and
charts in your Perl program.

Chapter 6 offers methods to dynamically create and serve graphics on your web site,
and chapter 7 discusses some techniques that can be used to create animations in Perl.

Chapter 8 shows various ways in which whole images can be manipulated and
combined.

And finally, the creation of graphics from three-dimensional model data with the
help of the OpenGL and RenderMan modules is discussed in chapter 9.

2

37

C H A P T E R 4

Drawing
4.1 Drawing with GD 39
4.2 Drawing with Image::Magick 46
4.3 Combining GD and

Image::Magick 53

4.4 Drawing with Term::Gnuplot 55
4.5 PostScript and SVG 59
4.6 Summary 59

Unless you already have all the graphics you will ever need, you have to create them;
and if you already had everything you needed, you wouldn’t be reading this book, so
I assume that you do need to create some graphics yourself. This part of the book
covers how to do this. Throughout the book you will find many ways in which to
create graphics, such as charts, images for your web pages, or animations. In this
particular chapter we’ll have a look at the groundwork for most computer graphics
generation: drawing.

In the most basic sense, drawing computer graphics consists of the manipulation
of certain drawing primitives, such as circles, rectangles, lines and text. No matter
which drawing package you use, you will find the same, or very similar, primitives,
methods, and functions. All drawing packages also have in common a coordinate space
in which to work, and the objects and primitives you work with are all expressed in
terms of this coordinate space. For example, you draw a line from coordinates (12,12)
to (30,0) or a circle with the center at (50,0) and a radius of 20. What these coordi-
nates express depends on the drawing package: some use pixels, others points, centi-
meters, or inches. It is always possible to translate between these different coordinate
systems, so it doesn’t really matter what is used natively in a drawing package. When
the result needs to be imported in another package, the relevant coordinate space
transformations can be taken into account.

38 CHAPTER 4 DRAWING

The drawing primitives for almost all graphics packages, Perl modules or otherwise,
are limited to a fairly small set: lines, rectangles, circles, arcs, and polygons. One
could argue that all that is really needed are a line and an arc, because all other primi-
tives can be created from those. Nonetheless, the other primitives, such as the circle
and rectangle, are sufficiently common to see them as primitives in their own right,
especially when they need to be filled as well. Even though most drawing packages
provide these primitives, each does it in a slightly different way.

One other previously mentioned primitive, which almost all packages define, is text.
The handling of text is generally more complex than the other primitives, because it
involves selections of fonts, calculations of bounding boxes and alignment concerns.
These issues will be discussed in section 4.1.3 on page 43, section 4.2.4 on page 50, and
in more detail in chapter 11.

The differences between drawing packages starts with the definition of a coordinate
system. For some graphics applications, the coordinate origin is the bottom left of the
canvas, and for others it’s the top left. Some drawing packages work in real-life coor-
dinates, such as inches or millimeters, and others work in pixels. I haven’t seen any
applications that have a coordinate system that is not Cartesian, but there is nothing
that says it has to be, and in section 10.1.1, “Coordinate transformation,” on page 180,
we present a case in which a polar coordinate system is more convenient. Fortunately,
the two main drawing packages for Perl, GD and Image::Magick, both use the same
coordinate system: with the origin in the top left and the coordinates in pixels (see
figure 4.1).

Many primitives can be specified in several ways. For example, the simple rectangle
can be uniquely identified by providing the coordinates of one of its corners and the
width and height of the rectangle. Alternatively, one can specify one of its corners and
the corner on the other side of the diagonal. A circle can be specified as the coordinate
of its center and a radius. It can also be specified as three points that are not on a
straight line.1 Another alternative is the coordinates of the center and the coordinates

1 Euclidean geometry teaches us that a circle can always be drawn through any three points that are not
on a straight line.

Figure 4.1

Some drawing primitives that

can be created and manipulated

with computer graphics pro-

grams and packages.

DRAWING WITH GD 39

of one point on the circle itself. The only way to find out which of these specifications
a drawing package uses, is to read its documentation.

In order to deal with all these ways of representing objects on a canvas, it helps if
you are comfortable with geometric algebra, and can easily translate any of the spec-
ifications into something with which you are more comfortable.

In this chapter we’ll look at how the various modules available for Perl deal with
drawing primitives, what some of these primitives are, and how they can be used.

4.1 DRAWING WITH GD
GD provides a range of drawing primitives and some auxiliary methods, such as color
allocation, color flood fill, and methods to set a brush. These methods are listed in
table 4.1, and the text drawing methods are listed later in this chapter, in table 4.3 on
page 45.

Most drawing methods accept a color argument, which is either the index of a color
previously allocated with one of the color allocation methods, or one of gdBrushed,
gdStyled or gdStyledBrush. These three will cause the object to be drawn with
the image’s current brush, line style, or both.

Table 4.1 The drawing primitives for the GD module which are available to the user of the

module to create images. All of these methods should be called on a GD::Image object.

setPixel(x,y,color) set the color of the pixel at the specified coordinates

line(x1,y1,x2,y2,color) draw a solid line between the specified points

dashedLine(x1,y1,x2,y2,color) draw a dashed line between the specified points

rectangle(x1,y1,x2,y2,color) draw a rectangle with the specified corners

filledRectangle(x1,y1,x2,y2,color) draw a filled rectangle with the specified corners

polygon(poly,color) draw the polygon specified by poly, which is a polygon object
created with GD::Polygon::new()

filledPolygon(poly,color) draw the filled polygon specified by poly

arc(cx,cy,w,h,st,end,color) draw an arc with the specified center, width and height, and
start and end angle

fill(x,y,color) flood-fill all pixels with the same color around the specified
point

fillToBorder(x,y,bcolor,color) flood-fill all pixels around the specified point, until a pixel
with the specified bcolor is encountered

setBrush(brush) Set the brush to be used to the specified brush, which is
another GD::Image object

 setStyle(color-list) Set the line style to the specified color list. Each element of
the list represents a single pixel on the line to be drawn.

40 CHAPTER 4 DRAWING

NOTE Unfortunately, there is no filled form of the arc() drawing primitive,
which can cause some hardship when trying to create filled partial circles or
ellipses. There also is no variant of the arc primitive which allows you to
specify a start and end point of the arc. Thus, it is almost impossible to re-
liably create a pie slice (or a pizza slice) that can be flood-filled. Because of
little rounding errors it is possible that there are gaps between the arc that
forms the outside bit of the slice, and the lines that form the wedge. When
subsequently one of the fill methods is called, these little gaps will cause the
flood-fill to leak out into the rest of your drawing. If there were an arc com-
mand that allowed one to specify start and end points, it would be possible
to reliably close these gaps.

GD has its coordinate origin defined in the top left-hand corner of the canvas, at
coordinate point (0,0). This means that all pixel coordinates are offset at 0, and the
coordinates of the center point of a 100 by 100 pixel image are at (49,49).

In order to use colors in GD you first need to allocate them for your object. The
total number of colors in a GD::Image object is limited to 256, which for most drawing
purposes is fine (see also section 12.1, “GD and pixels,” on page 211). You will find
that you normally don’t use more than about 10 colors anyway.

NOTE At the moment of writing, Thomas Boutell has a beta version of version 2
of libgd available for download. This new version supports true color im-
ages and a real alpha channel, and should become even more useful for all
kinds of applications. Once this version of libgd stabilizes, I suspect that
Lincoln Stein will release a new version of GD.

4.1.1 An example drawing

The best way to present how this works is to show some code:

use GD;

my $gd = GD::Image->new(400,300);

my $white = $gd->colorAllocate(255, 255, 255);
my $black = $gd->colorAllocate(0, 0, 0);
my $red = $gd->colorAllocate(255, 0, 0);
my $green = $gd->colorAllocate(0, 255, 0);
my $blue = $gd->colorAllocate(0, 0, 255);
my $yellow = $gd->colorAllocate(255, 255, 0);

$gd->filledRectangle(0, 129, 199, 169, $blue);

my $poly = GD::Polygon->new();
$poly->addPt(199, 149);
$poly->addPt(399, 74);
$poly->addPt(324, 149);
$poly->addPt(399, 224);
$gd->filledPolygon($poly, $yellow);
$gd->polygon ($poly, $black);

 O Create a new image

 O Allocate colors

 b Create a polygon, and
draw two copies

DRAWING WITH GD 41

$gd->arc(199, 149, 250, 250, 0, 360, $red);
$gd->arc(199, 149, 100, 200, 0, 360, $red);
$gd->fillToBorder(99, 149, $red, $green);

$gd->rectangle(0, 0, 399, 299, $red);
$gd->line(199, 0, 199, 299, $red);
$gd->line(0, 149, 399, 149, $red);

The output of this program can be seen in figure 4.2.

A new image is created and a blue-filled rectangle is drawn around its horizontal cen-
ter in the left half of the image.

b To draw a polygon, one first needs to create one with GD::Polygon’s new() method,
and all the vertices need to be added to this polygon in order. In this case the polygon
takes the shape of an arrowhead, pointing left, so we add the necessary points to the
object. In general, it is not a bad idea to wrap this in a subroutine, one that possibly
also takes a scaling parameter that can be used in the map() method which is pro-
vided for GD::Polygon objects. When all points have been added, the object can be
used with the polygon() and filledPolygon() methods to actually draw it.

c The first call to the arc() method draws a red circle with a diameter of 250 pixels
around the center of the image. Once that is done, an ellipse with a width of 100 pixels
and a height of 200 pixels is drawn inside this circle. The circle and the ellipse now
form the outlines of the big letter O that can be seen in figure 4.2. To fill the space
between these two, a suitable point is picked in that area, and the fillToBorder()
method is called, with the instruction to flood-fill until it encounters pixels that are red.

This example shows how to use most of the primitives provided by the GD module.
The documentation that comes with GD is quite clear and extensive, and if you
spend the minimum amount of time reading through it, you’ll see how simple it is to
use this module to create your drawings.

Real-life programs that need drawing capabilities will be only superficially more
complex than the one presented here. The hardest job in graphics programming is
defining what needs to be done, and subsequently mapping these requirements to the
various primitives. In other words, the real complexity in graphics programming isn’t

 c Create a circle, cut out an
ellipse, and fill

 O Frame with a red border, and
draw a red cross

Figure 4.2

A simple drawing created with GD, demonstrating

how to allocate color and use the arc(), line(),

rectangle(), filledRectangle(), filled-
Polygon(), and fillToBorder() drawing primi-

tives and instructions.

42 CHAPTER 4 DRAWING

writing the programs, but coming up with a clear way in which, with a limited set of
tools, an objective can be reached.

4.1.2 Filling objects

It could prove useful to discuss filling of odd shapes, or even overlapping shapes, cor-
rectly with GD. The fill() method will color all the pixels that have the same color
and that are adjacent to the target pixel. In other words, it will fill an area of uniform
color that contains the target pixel. This works fine provided your drawing is not
complex, and is relatively free of overlapping shapes. If however, the area that you
want to fill isn’t entirely uniform, but contains lines or edges in another color, this
method cannot be used. Instead, you can use the fillToBorder() method.

The fillToBorder() method can be used to change the color of all adjacent pix-
els until another specified color is encountered. This last method can be used to create
some interesting shapes, and fill them correctly, regardless of the other colors already
present. But what if the image already has lines or blobs in the area that you need to
fill, and these lines are of the identical color you wish to use for your border? You solve
that problem by keeping one special color around, which you use only to create fill
borders. Since colors in GD are always specified as an index, it doesn’t even matter
what RGB values you use for this.

Let’s demonstrate this: suppose you need to add some more elements to the image
from figure 4.2, with the same colors already present in the image. You decide to use
the colorResolve() method to get at those colors, so that you don’t accidentally
run out of room in the palette. The element you want to add is a partial ellipse, and
you want it to have a black border and a green inside.

You draw the partial ellipse and the boundary lines with the black color that you
obtained from the colorResolve() method. Then you use fillToBorder() to
fill the resulting figure with green, only to find out that the fill stops at the edges of
the yellow polygon. You can solve this by creating a temporary color that you use as
a boundary.

use GD;

my $gd = GD::Image->newFromPng('GDExample.png');

my $black = $gd->colorResolve(0, 0, 0);
my $green = $gd->colorResolve(0, 196, 0);

my $border = $gd->colorAllocate(0, 0, 0);

$gd->arc (199, 149, 300, 100, 0, 270, $border);
$gd->line(199, 149, 199, 99, $border);
$gd->line(199, 149, 349, 149, $border);
$gd->fillToBorder(149, 149, $border, $green);

$gd->arc (199, 149, 300, 100, 0, 270, $black);
$gd->line(199, 149, 199, 99, $black);
$gd->line(199, 149, 349, 149, $black);

$gd->colorDeallocate($border);

 O Allocate colors, and
reuse ones that exist

 O Allocate a color
for the border

 O Draw the arc’s
border, and fill

 b Redraw in the
wanted color

 c Remove the border color

DRAWING WITH GD 43

The result of this code can be seen in figure 4.3. Note that the $border color is
exactly the same color, by RGB value, as $black. However, since each color in GD is
uniquely identified by a palette index, they are in effect different colors, their appear-
ance notwithstanding. It matters little which RGB values you choose for the tempo-
rary border color.

b After the flood fill has stopped, the color you used as a border color is still visible as a
line around the object just filled. To resolve this, you can redraw the original shape,
but this time in the desired color. For fully solid shapes, this would be the same color
as the one used to fill the object.

c When the border color is no longer needed, it should be deallocated. This serves
mainly to prevent repeated reads and writes of the same image, together with the
operations discussed here, resulting in a palette which is filled with useless duplicate
border colors. If this were not done, you would have to clean up the palette every
time you detected that you were running out of index entries. (See section 12.1.2,
“Removing duplicate color palette entries,” on page 212, for a way to do this.)

Using this technique you can create shapes as complex as you wish. As long as these
shapes can be limited on all sides by a unique color (and this should be a temporary
color), you can fill the shape with any other color you want, after which you can
redraw the boundaries in the colors you intended initially. In fact, it is not a bad idea
to always use this method when you use fillToBorder(). It requires a few more
lines of code, but is also much more portable and safe. If you ever move your code
fragment that draws this complex shape into a subroutine, and start using that sub-
routine in all kinds of programs, you will benefit mightily from making certain that
the border color you use will be unique in the whole image.

4.1.3 Drawing text with GD

The GD module has various ways to draw text. First, you can use one of the set of com-
piled-in fonts. These fonts are all of a fixed width and height, and are GD::Font objects.
There are several methods available for these objects that allow the programmer to

Figure 4.3

Adding a filled shape to an image with GD, us-

ing fillToBorder() with a temporary color for

the border to make sure that the resulting

filled shape is correct.

44 CHAPTER 4 DRAWING

extract some information about them. The built-in fonts can only be drawn horizon-
tally or vertically.

In later versions of GD, you can also use TrueType fonts. These can be scaled to
virtually any size and drawn at any angle. The TrueType fonts in GD are not wrapped
in an object, but enough information about the text to be drawn can be obtained
through the use of the stringTTF() method.

4.1.4 GD’s built-in fonts

The built-in font types in GD can be used by specifying their symbolic short name, or
by invoking the GD::Font package method associated with them. The fonts and their
character sizes in pixels are:

These fonts are not pretty, but they do a reasonably good job for most low-resolution
graphics, such as the ones you would display on a web page. Additionally, because
they are compiled in and of a fixed size, they are really fast to use.

For the built-in fonts, you can use the string(), stringUp(), char() and
charUp() object methods. The last two methods are an inheritance from the C inter-
face of libgd; in Perl, of course, there is no formal distinction between characters and
strings.

$im->string (gdMediumBoldFont, 0, 0, 'Black Medium Bold', $black);
$im->stringUp(gdGiantFont, 0, 100, 'Red Giant', $red);
$im->char (gdSmallFont, 50, 50, 'A', $black);
$im->charUp (GD::Font->Tiny , 60, 50, 'B', $black);

Table 4.2 The names of the built-in fonts in GD as aliases, and as fully

specified GD::Font objects. Either of these names can be used anywhere a

GD::Image method requires a font name.

short name font object size

 gdTinyFont GD::Font->Tiny 5 x 8

 gdSmallFont GD::Font->Small 6 x 13

 gdMediumBoldFont GD::Font->MediumBold 7 x 13

 gdLargeFont GD::Font->Large 8 x 16

 gdGiantFont GD::Font->Giant 9 x 15

Figure 4.4

The built-in fonts for GD.

DRAWING WITH GD 45

This example uses both the short name and the full GD::Font object name as argu-
ments to the methods; they are interchangeable. The coordinates that these functions
expect denote the upper left corner for string() and char(), and the lower left
corner for stringUp() and charUp(). Of course, from the string’s perspective,
these are both the upper left corner, and maybe that’s a better way to look at it.

There are some methods available for the GD::Font objects that can be used to
retrieve information.

$nchars = gdGiantFont->nchars;
$offset = GD::Font->Tiny->offset;
$width = gdSmallFont->width;
$height = gdSmallFont->height;

The nchars() method tells us how many characters this font provides, and the offset()
method gives us the ASCII value of the first character in the font. The width() and
height() methods return the dimensions of a single character in the font, which is
useful, since that means we don’t have to hard-code font sizes in our programs.

4.1.5 TrueType fonts and GD

Versions of GD since 1.20 also support TrueType fonts, which can be drawn with the
stringTTF() method. This method can be called as an object method
($gd_object->stringTTF()), in which case it draws the string on the calling
object, or as a class method (GD::Image->stringTTF()), in which case it returns
the bounding box of the text to be drawn, without actually drawing it. The list
returned from this method consists of eight elements, denoting four coordinate pairs:
the x and y coordinates of the lower left, lower right, upper right and upper left cor-
ner, in that order. The stringTTF() method draws the string aligned to the left side
of the baseline of the font.

The following code first requests the bounding box for a string, and then adapts the
coordinates by subtracting the horizontal and vertical offset from the baseline. This
ensures that the string is aligned to the requested coordinates with its upper left corner.

Table 4.3 The text drawing primitives for GD. The top part of the table shows all methods that

work on the built-in fonts, and the bottom part of the table shows the method that can be used

for TrueType fonts. Note that the possibilities of drawing TrueType strings are more flexible and

advanced than for built-in fonts.

string(font,x,y,string,color) draw a horizontal string starting at the specified point

stringUp(font,x,y,string,color) draw a vertical string starting at the specified point

char(font,x,y,char,color) draw a single character starting at the specified point

charUp(font,x,y,char,color) draw a vertical character starting at the specified point

stringTTF(color,font,size,
angle,x,y,string)

draw a string with a TrueType font of the specified size start-
ing at the specified point

46 CHAPTER 4 DRAWING

$text = 'String';
$font = '/usr/share/fonts/ttfonts/arialbd.ttf';
$fontsize = 12;
$angle = 0;
($x, $y) = (20, 25);

@bb = GD::Image->stringTTF(0, $font, $fontsize, $angle, $x, $y, $text);
$x += $x - $bb[6];
$y += $y - $bb[7];
$im->stringTTF($black, $font, $fontsize, $angle, $x, $y, $text);

You might wonder why we bother recalculating the x coordinate as well as the y coor-
dinate. That is because sometimes the bounding box returned by stringTTF() is
slightly offset to the right; in other words, the baseline used to draw the string is not
always exactly vertically aligned with the requested coordinates. If you don’t need
such precision, you can dispense with this check.

SEE ALSO More manipulations of strings with the GD module can be found in chap-
ter 11, as well as examples on how to align and position strings precisely.

4.2 DRAWING WITH IMAGE::MAGICK
Image::Magick possesses a wealth of methods, but few are actually designed to help
create drawings. In fact, only one method is really useful, and that is the appropriately
named Draw() method. There are quite a large number of options that can be passed
to the method, and there are quite a number of primitives.

4.2.1 An example drawing

Let’s see how the code would look in creating the same drawing as we did with GD in
the previous section.

use Image::Magick;

my $im = Image::Magick->new(size => '400x300');

$im->Read('xc:white');
$im->Set(stroke => 'red');

$im->Draw(primitive => 'rectangle',
 points => '0,129 199,169',
 fill => 'blue',
 stroke => 'blue');

$im->Draw(primitive => 'polygon',
 points =>
 '199,149 399,74 324,149 399,224',
 fill => 'yellow',
 stroke => 'black');

$im->Set(antialias => 0, fuzz => 15);

 O Create a new empty
image object

 O Add a white image, and set
the default color

 O Draw a rectangle

 O Draw a polygon

 c Tweak some parameters

DRAWING WITH IMAGE::MAGICK 47

$im->Draw(primitive => 'circle',
 strokewidth => 3,
 points => '199,149 74,149');
$im->Draw(primitive => 'ellipse',
 strokewidth => 3,
 points => '199,149 50,100 0,360');

$im->Draw(primitive => 'color',
 method => 'filltoborder',
 points => '99,149',
 bordercolor => 'red',
 fill => 'green1');

$im->Draw(primitive => 'rectangle',
 points => '0,0 399,299');
$im->Draw(primitive => 'line',
 points => '199,0 199,299');
$im->Draw(primitive => 'line',
 points => '0,149 399,149');

As you can see, the code for Image::Magick is much more verbose than that for GD,
even if we make use of a default drawing color. It is, however, not difficult to follow.
To understand what the various parameters to the Draw() method mean, and how
the points attribute changes its meaning for the various primitives, read the descrip-
tion of Draw() on page 257 in appendix A.

b The output of this example can be seen in figure 4.5. You immediately notice that the
lines in this image are much wider than the lines in figure 4.2. You might have also
noticed that these wide lines have been explicitly requested in the code. We will look
at why, in this particular example, such wide lines were necessary.

4.2.2 Anti-alias and fuzz

c The use of the anti-alias and fuzz attributes warrants more explanation. By default,
Image::Magick will anti-alias all objects it draws. However, since we want to use the
red ellipses as boundaries to fill to, we need them to be of a reasonably uniform

 b Draw a circle and
cut out an ellipse

 O Flood-fill the gap

 O Frame with a red
border and cross

Figure 4.5

An example drawing created with Image::Magick,

demonstrating the use of the rectangle,

polygon, circle, ellipse, filltoborder, and

line drawing instructions. The border lines need

to be wide to avoid the fill color bleeding out of the

circles, due to antialiasing.

48 CHAPTER 4 DRAWING

color, and anti-aliasing removes that uniformity. Even with anti-aliasing turned off,
we still need fuzzy color matching, because of the way these algorithms work in
Image::Magick. The fuzz attribute allows the color matching algorithms to match a
color near the one we have specified, instead of matching only the exact color. The
higher the value specified for fuzz, the more lenient the color matching will be.

Another solution could have been to draw the circle with an anti-aliased line width
of 5, and to use a higher fuzziness. As it is, we already need to use a line width of 3
to prevent the fill color to bleed through. Either of the two methods can be used, and
both are equally hard to get right. If at all possible, it is much better to stroke and fill
in one go with Image::Magick.

NOTE While playing with the anti-alias and fuzz attributes allows us to create
shapes that we can successfully fill, it does require wide lines, and that is just
not always desirable. Apart from that, it is not really possible to come up
with a good set of rules that can be used to pick a decent value for the fuzz
attribute. Instead, we have to rely on manually tweaking this value until the
drawing looks as close to what we want as possible. We’ll explore a few al-
ternative ways of achieving our goal in the next sections.

4.2.3 Drawing by combining images

Another way to achieve the drawing we want is to create two images and combine
them. In the code in the previous section, everything between the drawing of the
polygon and the drawing of the red box can be replaced by the creation of a new
image, on which the green O is drawn:

my $im2 = Image::Magick->new(size => '400x300');
$im2->Read('xc:white');

$im2->Draw(primitive => 'circle',
 stroke => 'red',
 fill => 'green1',
 points => '199,149 74,149');
$im2->Draw(primitive => 'ellipse',
 stroke => 'red',
 fill => 'white',
 points => '199,149 50,100 0,360');

$im2->Transparent(color => 'white');

$im->Composite(image => $im2,
 compose => 'Over');

The output of this code can be seen in figure 4.6. It is very similar to figure 4.5,
except that the outlines of the O are thinner, and more smooth. However, the combi-
nation of the two images has introduced some slight artifacts where the O overlaps
the polygon and the rectangle. This is due to the fact that Image::Magick has anti-
aliased the edge of the circle it drew against the background of the secondary image,
which was white. The call to the Transparent() method makes all white pixels in

 O Create a new
white image

O

Make the background
transparent

 O Combine with other image

DRAWING WITH IMAGE::MAGICK 49

the image transparent, but the determination of which pixels are white is, once again,
subject to the fuzzy matching that Image::Magick employs. The artifacts that show up
are the pixels that weren’t considered to be white.

The artifacts on the outside can be removed by starting with a transparent image,
instead of a white one:

$im2->Read('xc:none');

This leaves the pixels on the inside of the O. Of course, we could simply increase
the fuzziness of the matching algorithm before calling Transparent(). In this
particular case that would probably work well, but it is not a universally workable
solution. If we could fill the inner ellipse with a fully transparent color, there would
be no artifacts; but unfortunately, setting the fill color to none or another color
with full transparency (such as #000000ff) doesn’t help, and the transparency will
be silently ignored.2

There is one other solution that combines images, and that is to create a transpar-
ency mask for the secondary image:

my $im2 = Image::Magick->new(size => '400x300');
$im2->Read('xc:white');
$im2->Draw(primitive => 'circle',
 stroke => 'red',
 fill => 'green1',
 points => '199,149 74,149');
$im2->Draw(primitive => 'ellipse',
 stroke => 'red',
 fill => 'white',
 points => '199,149 50,100 0,360');

my $mask = Image::Magick->new(size => '400x300');
$mask->Read('xc:white');
$mask->Draw(primitive => 'circle',
 stroke => 'black',
 fill => 'black',

2 It is anticipated that this will be fixed in a future release of Image::Magick

Figure 4.6

Creating a drawing with Image::Magick by

overlaying several separate images which

each represent part of the complete drawing.

50 CHAPTER 4 DRAWING

 points => '199,149 74,149');
$mask->Draw(primitive => 'ellipse',
 stroke => 'black',
 fill => 'white',
 points => '199,149 50,100 0,360');

$im2->Composite(image => $mask,
 compose => 'ReplaceMatte');
$im ->Composite(image => $im2,
 compose => 'Over');

Calls to Transparent() are eliminated because the transparency is created by the
mask. The mask is created by repeating the drawing instructions on the new image,
but with the colors set to either black or white, depending on what you want to be
transparent and what opaque. A fully black pixel in the mask will result in an opaque
pixel after the composition with the ReplaceMatte method, and a fully white pixel
will result in a transparent pixel.

SEE ALSO More discussion on how image composition works in Image::Magick can be
found in section 8.2.2, “Combining Image::Magick images,” on page 142,
more on transparency and alpha masks in section 12.4, “Alpha channels
and transparency,” on page 229, and a description of the Draw() method
and all its arguments in appendix A on page 257.

While the result of this method is reasonably acceptable, it is a lot to deal with, and the
code to create images like these often becomes quite verbose. Overlaying images can be
a very useful tool (see for example sections 8.2, “Combining Images,” on page 140 and
12.4, “Alpha channels and transparency,” on page 229), but it does not entirely pro-
vide us with the desired outcome for this particular task. Let’s have a look at another
method to achieve the drawing we want.

4.2.4 Drawing with paths

The two previous examples required several commands, and either some artful
manipulation of fuzzy color matching or extra images to draw the filled O shape.
There is a third way to draw this figure: recent versions of Image::Magick have intro-
duced the path drawing primitive, based on the drawing paths in the Scalable Graph-
ics Vector format.3 These paths are formed by positioning a virtual pen and drawing
strokes with this pen, based on a string of commands. The letters in the string define
a drawing instruction, and the numbers following those letters are the arguments and
coordinates for the command. Lowercase letters take relative coordinates to the cur-
rent point, and uppercase letters take absolute coordinates; for example, a capital M
means move to the coordinates that follow, and a lowercase a indicates an arc drawn
relative to the current coordinates.

3 For more information on the SVG format, see page 281. The path primitive is explained in more detail
in appendix A.

DRAWING WITH IMAGE::MAGICK 51

With paths, all the work needed in the previous examples can be done with one
single operation. The code to draw just the O shape is:

$im->Draw(
 primitive => 'path',
 stroke => 'black',
 fill => 'green1',
 points => 'M 74,149
 a 125,125 0 0,1 250,0
 a 125,125 0 0,1 -250,0
 M 149,149
 a 50,100 0 0,1 100,0
 a 50,100 0 0,1 -100,0 z');

and the result of that code can be seen in figure 4.7. The remainder of the code stays
exactly the same. As you can see, this avoids both the fat lines from the first example,
as well as the introduced artifacts of the second example.

The first line of the path specified in the example positions the pen at the coordinates
(74,149). The arguments to the arc command a are the horizontal and vertical radius,
the rotation of the arc, two flags that indicate the direction in which the arc will be
drawn (see figure A.9 on page 283), and the second point through which to draw the
arc. The coordinates of this second point are specified relative to the current position
of the pen which is, of course, also the first point through which the arc runs. The
path is closed by ending the command string with a z.

Which technique to use depends on your needs and the complexity of what you
want to achieve. Most drawing tasks won’t require the combining of images, but
knowing that it can be done allows you to produce a drawing that most closely approx-
imates what you intended to create.

4.2.5 Drawing text with Image::Magick

With Image::Magick you have a choice of several font specifications and sources (see
also “Fonts,” on page 278). You can use a qualified X11 font name such as -*-times-
medium-r-*-*-12-*-*-*-p-*-*-*, a PostScript name like Helvetica, or a TrueType font
from a file with @arialbd.

Figure 4.7

Drawing with Image::Magick’s path primitive,

which allows complex filled shapes without

artifacts.

52 CHAPTER 4 DRAWING

The following are possible ways in which we can draw text with Image::Magick:

$im->Read('xc:white')

$rc = $im->Annotate(
 x => 10,
 y => 20,
 text => 'Some String');

$rc = $im->Annotate(
 text => 'Green Text',
 font => '@timesbd.ttf',
 fill => 'green',
 geometry => '+20+30',
 pointsize => 8);

$rc = $im->Draw(
 primitive => 'Text',
 points => '0,40 "Other String"');

$rc = $im->Read('label:New Image');

b Annotate() is used in two ways in this code. The first call uses the default font and
colors to draw a string, and the coordinates are specified separately. The second call
customizes almost everything that can be customized, and uses the geometry attribute
to specify the coordinates. Annotate() is described in more detail on page 252.

c As you can see, drawing text with Draw() is quite awkward. The coordinates and the
contents of the string have to be passed as a single parameter as the value of the points
attribute. This can easily cause your code to look ugly when the coordinates and the
text are all variables, and the quotes and escaping of quotes become messy. Splitting up
your string and concatenating it, or using the qq() operator instead of quotes can help
to keep it all readable. The Draw() method is described in further detail on page 257.

d The last line demonstrates the use of Read() with the built-in LABEL image type, to
create an image with text only. This can be used to approximately predict the size of
the string to be drawn, before we actually draw it on an image. We will see more on
this in section 11.1, “Determining text size,” on page 191.

SEE ALSO Image::Magick is described in quite some detail in appendix A, and it would
probably be a good idea to browse through it to familiarize yourself with its
functionality. The Draw() method is discussed in the section, “Draw(),”
on page 257, and the path primitive in section A.7, “The path drawing
primitive,” on page 281. The global image options are discussed in section
A.4, “Image attributes,” on page 246, and acceptable color and font names
are described in “Common method arguments,” on page 276. More infor-
mation on combining images with Image::Magick can be found in
section 8.2.2, “Combining Image::Magick images,” on page 142.

 b Using Annotate()
to draw text

 c Using Draw() with
the Text primitive

 d Using the built in
LABEL image type

COMBINING GD AND IMAGE::MAGICK 53

4.3 COMBINING GD AND IMAGE::MAGICK

There might be a time when you would like to use GD to draw some objects, then
transport your image to Image::Magick, manipulate it a bit, maybe draw some more,
and then transport it back. One good reason to do this is to make use of the many
image filters and special effects that Image::Magick provides, while benefitting from
the higher speed of drawing in GD. Also, it might be that you have all this legacy
code lying around that uses GD, and now you need to do something that this module
doesn’t allow, but Image::Magick does. Instead of rewriting all your code, you can use
the techniques presented in this section to allow you to keep using all your legacy
code, at least until you find the time to fully rewrite it all.4 Of course, there is a com-
putational cost associated with transporting the image back and forth between the
two modules, so you will have to take that into consideration before you decide to go
this way.

One way of transporting the image data between the modules is to save the image
to a file with one module, and read it with the other. However, this is terribly inefficient
and unnecessary. Since version 1.30, the GD::Image’s new() method accepts more
arguments, and it is now possible to pass in the raw data of the image file as a scalar.
Together with the ImageToBlob() and BlobToImage() methods that Image::Mag-
ick provides, we have a perfect mechanism to transport images back and forth between
the two modules. The following example code illustrates how to transport an image in
both directions:

use GD;
use Image::Magick;

my $gd = GD::Image->new(400,100);
my $white = $gd->colorAllocate(255, 255, 255);
my $red = $gd->colorAllocate(255, 0, 0);
my $blue = $gd->colorAllocate(0, 0, 255);
my $yellow = $gd->colorAllocate(255, 255, 0);

$gd->filledRectangle(49, 2, 349, 97, $yellow);
$gd->rectangle (49, 2, 349, 97, $blue);
$gd->stringTTF($red,
 '/usr/share/fonts/ttfonts/arialbd.ttf',
 30, 0, 74, 64, 'This is a flag');

my $rc;
my $im = Image::Magick->new();
$rc = $im->BlobToImage($gd->png);
die $rc if $rc;

$rc = $im->Wave(amplitude => 12);
warn $rc if $rc;

4 As if that is ever going to happen...

 b Transport the image
from GD to
Image::Magick

 O Make the rectangle look
like a wavy flag

54 CHAPTER 4 DRAWING

$rc = $im->Quantize(colors => 256);
warn $rc if $rc;
$gd = GD::Image->new($im->ImageToBlob());

$red = $gd->colorClosest(255, 0, 0);
my ($w, $h) = $gd->getBounds();
$gd->rectangle(0, 0, $w - 1, $h - 1, $red);

In this case, the whole figure could have been created with the Image::Magick object
directly. But the point is that there might be situations, as discussed earlier, in which
you have good reason to do it this way.

b To export the image from GD and import it into Image::Magick, the output from the
png() method is directly fed into the BlobToImage() method. In real production
code it might not be a bad idea to make this into two separate steps, and to verify in
between that everything went as planned.

NOTE While Image::Magick is designed to preserve as much as possible from any
image that gets imported, this is certainly not true for GD. The latter is lim-
ited to working with a 256 color palette (but also see the note on page 40),
of which only one can be marked as transparent. Image::Magick supports
full RGB color as well as an 8-bit alpha channel for transparency; hence, if
you export an image from Image::Magick to GD, you run the risk of losing
some information. Whether that is acceptable depends on the image, and
on what you are prepared to sacrifice.

c GD’s limited palette is the reason the Quantize() method is called before exporting
the image data back to GD from Image::Magick. We make certain that the number of
colors introduced in the Wave() operation due to anti-aliasing doesn’t exceed the
256 with which GD can comfortably deal. If you don’t do this, the output of
BlobToImage might be a truecolor PNG format, and GD doesn’t deal with that very
well. We hand the output of ImageToBlob() directly to GD’s new() method. This
is doable, as the image type of the $im object will default to PNG, since that is also
what it read in. Thus we know that GD will be able to read it.

d Once the image is back in GD we get the closest color to a pure red, and draw a rect-
angular frame around the edges of the image. This is done mainly to show that it is
actually possible. There is, of course, no guarantee that the color we will be using is
actually pure red, since we use the colorClosest() call, but that is the price we
pay for working with a small palette.

 c Transport the image
back to GD

 d Draw a rectangle
around the edge of the
image

Figure 4.8

An image created with a combination

of GD and Image::Magick. The flag

was drawn with GD, the wave effect

applied with Image::Magick, and the

border drawn again with GD.

DRAWING WITH TERM::GNUPLOT 55

Once we’re finished working with $gd, we can save the image, print it, or even pass it
back to Image::Magick again. The point is that it is easy to do this, although it is also
computationally slightly expensive. Use this only if you have an absolutely genuine
need to do so.

4.4 DRAWING WITH TERM::GNUPLOT

The Perl module Term::Gnuplot provides an interface to the drawing routines and ter-
minal drivers that are used internally by gnuplot (see section 5.4, “Interfacing with
gnuplot,” on page 85). Because these routines have been specifically designed and
written for gnuplot, they are also strictly limited to the functionality required by this
charting program, which means they are very limited. But even with the few primi-
tives that Term::Gnuplot provides, one can do surprisingly nice things.

One feature that makes Term::Gnuplot worth looking at is the large number of out-
put devices that it supports, many of which are vector based, making it feasible to cre-
ate graphics with this module that scales a lot better than do images. As said, the main
reason for these terminal drivers is to supply gnuplot internally with a drawing inter-
face that is consistent for all output. However, paraphrasing an old saying: all output
terminals are equal, but some are more equal than others; i.e., that, while all terminal
drivers provide the identical interface, not all terminals have the same capabilities. The
actual results cannot always be as finely controlled as one would like to see in a generic
drawing package, as the interface is written to a lowest common denominator, and
sometimes at a fairly abstract high level.

For example, not all terminals support color, so there is no direct way to manipu-
late the color of the line you’re drawing. Instead there are generic line types (set with
line_type()). How exactly a particular line type gets drawn is up to the driver, and
the driver alone. Font support is another feature that differs markedly between the var-
ious terminals. Some, such as the PostScript one, support several built-in fonts, others
support only a very small list.

In practice, unless you can make your drawing very generic, you shouldn’t be using
this module.

In part, to steer past some of the problems that a totally generic drawing interface
introduces, each terminal device in Term::Gnuplot has its own characteristics and
options that can be set with the set_options() function. What exactly those
options do, and how they affect the outcome of the drawing, is up to the driver. All
terminal drivers, and their options, are documented in the Term::GnuplotTerminals
documentation, as well as in the internal help of the gnuplot program.

Let’s write something that makes Term::Gnuplot do what it does best: a program
that plots a function.5 The skeleton of the program looks like this:

5 This example borrows heavily from Ilya Zakharevich’s example in the Term::Gnuplot documentation.

56 CHAPTER 4 DRAWING

use Term::Gnuplot ':ALL';

plot_outfile_set('TermGnuplot.eps');
change_term('postscript');
set_options('eps', 'enhanced', '"Helvetica"', 24);
term_init();
term_start_plot();

draw_axes(-6, 6, -1, 1, 0.1);
plot_function(sub {sin $_[0]/2});
plot_function(sub {cos $_[0] * sin $_[0]});
plot_function(sub {-0.2 * $_[0]}, 2);

term_end_plot();
Term::Gnuplot::reset;

 b There are a few things that need to be set up before we can start writing the code that
actually creates the drawing. First, we need to initiate and open an output device with
plot_outfile_set(), change_term() and set_options(). These three lines
are the only output-specific code in the program. For this particular example we’ll
create an EPS output file, and initiate the font to a 24-point Helvetica. Once that is
done, the terminal can be initialized and the plot started.

c After all the drawing is completed, we need to call term_end_plot() to end our
plot, and Term::Gnuplot::reset()6 to free all resources that were allocated with
term_init(). Calling reset() is optional if you are going to exit from the pro-
gram anyway, but it’s a good idea to get into the habit of making it part of your code.

We’ll now have a look at the function that draws the axes of the plot, and sets up
some variables needed for the plotting functions.

my ($h_offset, $v_offset);
my ($delta_x, $delta_y);
my ($xmin, $xmax, $ymin, $ymax);

 b Set up and
initialize the
terminal

 O Plot some functions

 c And end the output

Figure 4.9

The drawing capabilities of

Term::Gnuplot lend themselves

well for plotting functions, which is

not surprising, given that the mod-

ule is an interface to the drawing li-

brary of gnuplot.

6 We use the fully qualified name of the subroutine here, because the name reset() is already taken
by a Perl built-in function.

 b Some variables used by
draw_axes() and
plot_function()

DRAWING WITH TERM::GNUPLOT 57

sub draw_axes
{
 my ($margin);
 ($xmin, $xmax, $ymin, $ymax, $margin) = @_;
 my ($h_points, $v_points);

 $h_offset = $v_offset = 0;
 $h_points = scaled_xmax() - 1;
 $v_points = scaled_ymax() - 1;

 if ($margin)
 {
 $h_offset = $margin * $h_points;
 $v_offset = $margin * $v_points;
 $h_points -= 2 * $h_offset;
 $v_points -= 2 * $v_offset;
 }

 linetype -2;
 linewidth 2;
 move ($h_offset, $v_offset);
 vector($h_offset + $h_points, $v_offset);
 vector($h_offset + $h_points, $v_offset + $v_points);
 vector($h_offset , $v_offset + $v_points);
 vector($h_offset , $v_offset);

 justify_text(RIGHT);
 put_text($h_offset - h_char(), $v_offset, $ymin);
 put_text($h_offset - h_char(), $v_offset + $v_points, $ymax);
 justify_text(CENTRE);
 put_text($h_offset, $v_offset - v_char(), $xmin);
 put_text($h_offset + $h_points, $v_offset - v_char(), $xmax);

 $delta_x = ($xmax - $xmin)/$h_points;
 $delta_y = ($ymax - $ymin)/$v_points;

 if ($xmin < 0 && $xmax > 0)
 {
 my $h_zero = $h_offset - $xmin/$delta_x;
 move ($h_zero, $v_offset);
 vector($h_zero, $v_offset + $v_points);
 justify_text(CENTRE);
 put_text($h_zero, $v_offset - v_char(), "0");
 }
 if ($ymin < 0 && $ymax > 0)
 {
 my $v_zero = $v_offset - $ymin/$delta_y;
 move ($h_offset, $v_zero);
 vector($h_offset + $h_points, $v_zero);
 justify_text(RIGHT);
 put_text($h_offset - h_char(), $v_zero, "0");
 }
}

 c Set up the
boundaries of
the plot

 d Draw the box

 e Draw the axes

58 CHAPTER 4 DRAWING

b The draw_axes() subroutine initializes the coordinates for the plot relative to the
actual coordinates of the medium we’re working with, and draws the axes. It accepts 5
arguments: The minimum and maximum x value to plot, the minimum and maxi-
mum y values to plot and the amount of space to leave open for margins. This last
parameter is relative to the total size, i.e., a value of 0.1 will leave a 10 percent margin
all around the plot.

c The subroutine starts off by asking the terminal it is going to write to how many hor-
izontal and vertical points it has. The plotting code will use those numbers for the
resolution with which the functions are going to be plotted.

d Once we have calculated the resolution of the plot, it is time to draw a box. We set
the line type and width, and move the pen to the lower left corner of the box in
which the plot will appear. We then draw the box with the four vector() calls.
These calls are equivalent to a lineto statement in PostScript or SVG paths; they
draw a straight line. To complete the box, we put the requested minimum and maxi-
mum values along the axes. If the x or y values to be plotted include 0, we also plot
the zero point axes, and label them as such.

e The axes inside the plot are only drawn when necessary; if the zero point doesn’t fall
between the minimum and maximum axis on the value, we don’t need to draw anything.

The subroutine that plots the functions is:

sub plot_function
{
 my $function = shift;
 my $line_type = shift || 0;
 my $line_width = shift || 4;

 linetype $line_type;
 my $moved = 0;

 for (my $x = $xmin; $x <= $xmax; $x += $delta_x)
 {
 my $y = $function->($x);
 next unless $y >= $ymin && $y <= $ymax;
 my $hor = $h_offset + ($x - $xmin)/$delta_x;
 my $ver = $v_offset + ($y - $ymin)/$delta_y;
 ($moved) &&
 vector($hor, $ver) ||
 move ($hor, $ver), $moved = 1;
 }
}

The plot_function() subroutine is fairly simple. It accepts as its first argument a
reference to a subroutine that can be used to calculate the y value, given an x value,
and a line type and width as the optional second and third arguments. To determine
the resolution and boundaries of the plot, it uses the values that were previously cal-
culated and set by draw_axes().

SUMMARY 59

The output of this code can be seen in figure 4.9. As you can see, the result is sur-
prisingly good-looking for a relatively simple program.

Using Term::Gnuplot can seem daunting at first, but once you have built yourself
a few subroutines such as the ones just described, it becomes easier to deal with. All
you need to do is write some wrapper functions that allow you to draw some circles,
squares, and other shapes, and maybe some fill patterns. Term::Gnuplot will never take
the place of GD or Image::Magick, but it does provide a low-level drawing library that
is capable of creating various vector format graphics.

SEE ALSO The documentation for Term::Gnuplot is fairly minimal at this time; however,
it provides enough information to work with the modules with sufficient
study. The terminals and output devices that are supported by this module are
documented in a separate manual page: Term::GnuplotTerminals.

4.5 POSTSCRIPT AND SVG
Most of this chapter has focused on creating image graphics with GD and
Image::Magick. Term::Gnuplot offers drivers that allow you to create some vector for-
mats, but its set of drawing primitives is rather limited. There are, however, other
possibilities to create vector graphics.

Perl is a text processing language. Postscript and SVG, for example, are both text-
based formats. Even better, SVG is based on XML. Thus you can easily create output
files in these formats. Both PostScript and SVG are vector formats, or at least, both
support vector graphics as part of their native format.

To describe the PostScript language or Scalable Vector Graphics format in this
book is not really possible, since they both are quite large and extensive. However, if
you want to bone up on PostScript, you could read the PostScript language
reference [21], and for SVG I’d recommend the specifications on the Web Consor-
tium website [22]. Additionally, take a look at the PostScript and SVG implementa-
tions of a module discussed in chapter 10, and which are listed in appendix C.

4.6 SUMMARY

In this chapter we’ve looked at the various modules that are available for Perl to create
two-dimensional computer graphics. We’ve seen that GD is simple to use and reason-
ably featureful, but is limited in the number of colors it supports, and lacks some
higher-level functionality. Image::Magick offers many more features, but is more diffi-
cult to use, and the code needed to create drawings can become quite verbose. How-
ever, it supports a wide variety of output formats and a good set of drawing
commands. We’ve also seen that GD and Image::Magick can be combined to attain
the best of both worlds.

If you need to produce graphics that are not bitmaps, Term::Gnuplot is a possi-
bility, although its interface is limited. Alternatively, you can directly create PostScript
or SVG files.

60

C H A P T E R 5

Creating charts
5.1 GD::Graph and friends 62
5.2 The Chart distribution 74
5.3 PGPLOT 76
5.4 Interfacing with gnuplot 85
5.5 Summary 88

Wherever a business is running, there is a need to report on the results of the com-
pany, the size of the customer base, the number of business transactions, and their
monetary value. Whenever scientific research is performed, the results of that research
have to be communicated to the public and to peers. Services, particularly computer
services, need to be monitored, and their use reported. Traffic flows, animal popula-
tions, rainfall, stock numbers, land values, disease patterns, temperatures, stock mar-
ket indexes, conductivities, electricity usage, web site visits, and crime rates all are
measured and monitored.

When sets of data need to be reported, the best way to do so is to represent them
visually, and this is precisely what charts and graphs do.1 They give a visual represen-
tation of the relationships between data in a single set, and between sets of data. In
this way, they make the data much more accessible than it otherwise would have been.
If you follow financial markets, you know that much of the information in that world
is expressed in the form of charts. Stock values and oil and gold prices are invariably
represented as a squiggly line, plotted as a function of the time. While these lines are

1 The terms graph, chart and plot are all used to refer to the same thing, although chart is more often
used for business graphics, and graph for scientific charts. In this chapter, all three terms are used
interchangeably.

61

much less precise than a table with the values of these data, they do at a glance convey
the important information contained in the data set, show the trends, and allow you
to quickly relate all values to each other. If you were looking at numbers in a table,
you would have to jump backward and forward, do a lot of mental arithmetic, and
probably still not get the picture. Computers are good at working with tables of num-
bers, but humans are visual animals. This is why using the computer to translate tables
into graphs is useful. We view the data in the way that makes the most sense to us,
and the computer gets to do what it does best.

Often the relationship that needs to be shown is the change of a parameter over
time: examples of this are charts showing the gold price, population figures of a city,
or the quarterly results of a company, plotted over a period of time. Sometimes the
relationship that needs to be expressed is of a different nature: the variation of the con-
ductivity or viscosity of liquid helium as a function of the temperature, or the price
of a product related to the number of items bought.

Other times the differences, similarities, or correlations between different data sets
need to be visualized. An example of this could be a plot of the incidences of malaria
in parts of the USA and the population sizes of the malaria mosquitoes Anopheles free-
borni and Anopheles quadrimaculatus, plotted over a certain time interval. If the plots
of these numbers show similar trends, there could be a correlation. Another example
of this is a plot of the rainfall in parts of Australia and the Southern Oscillation Index
against time (see section 5.1.7, “Mixed charts,” on page 72).

Because all types of data have their own peculiarities and needs, there are different
ways of plotting them. Business data and other time-related series are often shown
with the help of bar and line charts. Results of physics research frequently include
lines, points and error bars. When the relative amounts or contributions of the mem-
bers of a data set need to be shown, pie charts are often used. Each of the mentioned
types of charts has numerous variants, each with its own application domain. Profes-
sional groups have adopted their own standard set of graphs that they frequently use,
and members of these groups can immediately read and interpret these charts.

There are several modules available for the creation of charts and graphs with Perl,
and it isn’t always easy to pick the right one. Some modules are strongly geared toward
creating business graphics, while others are more oriented toward scientific users.
Apart from these modules, which are directly available from within a Perl program,
you can also choose to use an external plotting program. What you choose, and what
works best, depend on your needs and preferences.

A general rule of thumb that you can use to select the tool you are going to work
with is that if you want to create business graphics, such as bar and pie charts, you should
either use GD::Graph or one of the Chart modules. If, however, you need to plot func-
tions or scientific graphs, the PGPLOT module or the gnuplot program are likely to be
better alternatives. Of course, you always have the option to create your own solution
using GD, Image::Magick, Term::Gnuplot (see section 4.4, “Drawing with Term::Gnu-
plot,” on page 55 for an example), or by directly writing Encapsulated PostScript files.

62 CHAPTER 5 CREATING CHARTS

Another factor in the decision process should be the destination for your chart. Are
you looking to create an image for inclusion on a web page, or are you preparing a
graph for print? Do you require the same chart to be available in multiple formats? At
this moment in time, the GD::Graph and Chart:: modules all are based on GD, and
therefore can only create images as output. In practical terms, if you are looking for
a solution that can create pie or bar charts for print, you are mostly out of luck. Both
PGPLOT and the gnuplot program come with a wide variety of drivers, some of which
produce image files, and some of which produce vector graphics such as PostScript.
If you need to create charts for a print publication, either of these can create output
of the required quality. Unfortunately, neither of them can be used decently for the
creation of business charts.

One of the areas in chart creation that has seen a tremendous growth over the last
years is the creation of charts on the fly. This is, of course, largely due to the explosion
of the World Wide Web, and the exposure of large amounts of data directly to the
public. Much information is accessible nowadays via the Web, and a reasonable
amount of that data is presented as charts, which often are dynamically generated
based on input of the user. Any module or program that can generate GIF, JPEG or
PNG output can be used for this task, since those are the three graphics formats that
most browsers can display. Chapter 6 explains the issues related to creating graphics
dynamically for display in a web browser, and contains an example of chart creation
for the Web.

Let’s have a look at the various methods we have at our disposal to actually create
some graphs, instead of just talking abstractly about them.

5.1 GD::GRAPH AND FRIENDS

I started writing GIFgraph in early 1995 as a helper module for a redesigned version
of getgraph,2 and released it to CPAN in 1997. The rewritten version of getgraph was
never released—it was never finished—but GIFgraph took on a life of its own when
people started using it for all sorts of things for which it wasn’t originally intended.
While getgraph used gnuplot to create charts, GIFgraph implemented the drawing of
charts itself, with the help of the GD module.

In 1999 Thomas Boutell removed support for the GIF format from libgd and
instead supported the PNG format. Lincoln Stein followed (of course) by doing the
same for the GD module, which is mostly an object-oriented Perl interface to the C
library libgd. Since GIFgraph uses GD to draw its charts, it stopped working as soon
as people installed these newer versions of GD. Because it is silly to have a module that
is called GIFgraph but produces PNG files, I decided to instead take the code and cre-
ate a new module GD::Graph which worked with GD, without worrying about what

2 One of the first programs that displayed web server log statistics graphically. It used getstats for its input
and gnuplot and HTML for output.

GD::GRAPH AND FRIENDS 63

particular file format it supports. GIFgraph became a wrapper around that, either
directly producing GIF from an old version of GD or using Image::Magick to convert
the PNG output of the newer versions.

Because of time restraints, it took me a little longer than expected, and many peo-
ple kept knocking on my email box, asking me when I was going to finally release a
new version. Luckily, one of those people, Steve Bonds, didn’t just ask, but told me
that he had adapted the code, and put it on CPAN as Chart::PNGgraph.3

 GD::Graph supports different types of charts through subclasses, and is itself only
a base class for all of the others. The classes that can actually be used are:

The fact that GIFgraph was originally intended only to display log statistics explains
why it is mainly suitable for business type charts, in which the horizontal axis is a
label instead of a numerical value, or X data is equidistantly spaced. If you are looking
for a module that allows you to draw scientific charts, this isn’t it (yet).

5.1.1 Preparing your data sets for GD::Graph

Older versions of GD::Graph used to have a rather primitive interface for accepting
data.4 The plot method expected a reference to an array that contained references
to other arrays for the X value list and Y value lists. Because of the troubles associ-
ated with manipulating this structure, the GD::Graph::Data class was created to
hide the chaos. The documentation for this module at first seems overwhelming
because there is so much text describing so many methods. But rest assured, you
will probably only need about ten percent of it. The most important method, and
the one that you will probably use most, is the add_point() method. Suppose
you have a data file containing the quarterly income and expenditure numbers in
cents for your squash club:
"Qtr 1" 723194 534934
"Qtr 2" 534530 619562
"Qtr 3" 296105 745690
"Qtr 4" 528170 264585

3 Chart::PNGgraph is now, as of version 1.21, a wrapper class around GD::Graph, which has reconciled
the code branches that existed for a while.

GD::Graph::bars bar charts

GD::Graph::area area charts

GD::Graph::lines line charts

GD::Graph::points points charts or scatter graphs

GD::Graph::linespoints A combination of lines and points

GD::Graph::mixed Mixed type chart (any of the above)

GD::Graph::pie pie charts

4 ... and this interface is in fact still supported.

64 CHAPTER 5 CREATING CHARTS

Once you recover from the fact that your club lost money, you decide to make a nice
looking graph to soften the blow when you present these figures to the board. You
decide to use GD::Graph and write the following code to read in the data:
use Text::ParseWords;
use GD::Graph::Data;

my $data = GD::Graph::Data->new();
while (<DATA>)
{
 chomp;
 my @d = quotewords('\s+', 0, $_);
 $data->add_point($d[0], $d[1]/100, $d[2]/100);
}

If you were more organized and already had your data in a database (which you would
naturally access using the DBI interface), you would do something like the following:
use DBI;
use GD::Graph::Data;
open database connection here

my $data = GD::Graph::Data->new();

$sth = $dbh->prepare("select quarter, in, out from wallet")
 or warn $dbh->errstr;
$sth->execute;
while (my @d = $sth->fetchrow_array)
{
 $data->add_point($d[0], $d[1]/100, $d[2]/100);
}
$sth->finish;

You can now feed this data object to any of the plot methods of the GD::Graph classes.
The old data structure is still supported and recognized, so if you’re more com-

fortable manipulating nested arrays than calling methods on an object, you can still
do so. In some situations, for example where the complete data set is known at the time
you write your program, it might be easier to use the old data structures.5

GD::Graph::Data provides a method to generate an object from such a structure at any
time you want to make the switch.
@data = (
['X1', 'X2', 'X3', 'X4'],
[1, 13, 12, 15],
[10, 9, 8, 5]
);

... time passes ...

$data = GD::Graph::Data->new();
$data->copy_from(\@data);

5 ... and in some examples in this section you will actually see this.

GD::GRAPH AND FRIENDS 65

This method can be used to gently change your older GD::Graph programs over to
GD::Graph::Data objects, instead of the arrays of array references.

SEE ALSO The GD::Graph::Data module can do much more with your data set, and
I suggest you have a look at its documentation. See the DBI documentation
for a unified interface to all kinds of databases.

5.1.2 Controlling the look of your chart

Almost all the options and settings for GD::Graph objects are passed in through the
set() method, and can be queried with the get() method. There are many options
for the various GD::Graph modules, and I suggest you read through the documenta-
tion to find out about them. I’ll illustrate a few key choices in the following sections,
but I won’t duplicate the complete explanation of each single option here. The text
would probably grow stale faster than a piece of brie.

5.1.3 GD::Graph and fonts

There are several textual elements in a GD::Graph object. Each of these objects has a
font associated with it, which can be accessed through the appropriate method.
GD::Graph supports fonts through the use of GD::Text::Align objects (see
section 11.3.1, “The GD::Text modules,” on page 207) from the GDTextUtils pack-
age, which means that it will support whatever your current version of GD supports.
The objects that can be set, and the corresponding methods, are shown in table 5.1.

Each of these methods accepts either a built-in GD font, or the name of a TrueType
font file, and a size. If you want to use GD built-in fonts, you will have to import the
GD module as well.

Table 5.1 The font handling methods for GD::Graph.

All of these methods accept either a built-in GD font,

or the name of a TrueType font file.

Charts with axes

title set_title_font()

X axis label set_x_label_font()

Y axis labels set_y_label_font()

X axis values set_x_axis_font()

Y axis values set_y_axis_font()

legend text set_legend_font()

Pie charts

title set_title_font()

label under the pie set_label_font()

values on the pie set_value_font()

66 CHAPTER 5 CREATING CHARTS

use GD;
$chart->set_title_font('/fonts/arial.ttf', 18);
$chart->set_legend_font(gdTinyFont);
$chart->set_y_label_font(GD::Font->Giant);

Since the GD::Graph font handling gets delegated to a GD::Text::Align object, you
can use all the fancy features that come with that module. So, supposing you have set
your FONT_PATH environment variable correctly to point to your TrueType font files,
you can do something such as this:

$chart->set_title_font(['verdana', 'arial', gdMediumBoldFont], 14);

This will first look in your font path for the file verdana.ttf, and if it is not found,
it will look for arial.ttf, and as a last resort it will fall back on a built-in GD
font.6 This allows you to write code that creates charts which come out looking as
pleasing as possible, given the system on which the program runs.

For more information see section 11.3.1, “The GD::Text modules,” on page 207,
and the GD::Text documentation.

5.1.4 Saving your chart to a file

GD::Graph does not provide any method to save an image, or to get image data to
save. The plot() method instead returns a reference to a GD::Image object and leaves
it up to the user to save the image data to a file. Alternatively, the gd() method can be
used to get that same reference, any time after plot() has been called. Once that is
accomplished, the GD::Image png()7 method can be called to save the image.
$chart->plot(\@data);
my $gd_object = $chart->gd;
or directly:
my $gd_object = $chart->plot(\@data);
open(IMAGE, '>image.png') or die "open >image.png: $!";
binmode IMAGE;
print IMAGE $gd_object->png;
close IMAGE;

In version 1.20, GD dropped support for GIF output, and started writing PNG
instead. Thus, if you write code that needs to save output from these modules, you
run the risk of ending up on a platform where the version of GD provides unantici-
pated output methods. Since this can result in unwelcome runtime error messages, it
is better to try to prevent it from happening. One possible approach is to check
which version is available, and exit if it’s the wrong one. A more forgiving strategy is
to always output something, using the correct calls. This strategy can be especially

6 Of course the size parameter will not influence the size of the built-in font.
7 ... or any one of the other methods that return image data: jpeg(), wbmp(), gd(), gd2(), or in

the case of older versions, the gif() method. Which ones are available depends on your particular
version of GD.

GD::GRAPH AND FRIENDS 67

successful in CGI programs and other web applications, in which the client on the
other end can likely display PNG, GIF and JPEG images.

if ($gd_object->can('gif'))
{
 # save image as GIF
 open(IMAGE, '>image.gif') or die "open >image.gif: $!";
 binmode IMAGE;
 print IMAGE $chart->gd->gif;
 close IMAGE;
}
else
{
 # save image as PNG
 open(IMAGE, '>image.png') or die "open >image.png: $!";
 binmode IMAGE;
 print IMAGE $chart->gd->png;
 close IMAGE;
}

This can be awkward. Fortunately, GD::Graph provides the export_format()
method. This method will return the string png if the underlying GD library exports
PNG data, and the string gif if it exports GIF format images. This string can be used
both to dynamically determine what the extension of the saved file should be, as well
as the name of the method to use to get at that data. Perl’s dynamic nature allows you
to do the following:

my $format = $chart->export_format;
open(IMAGE, ">image.$format")
 or die "open >image.$format: $!";
binmode IMAGE;
print IMAGE $chart->gd->$format();
close IMAGE;

which is as short as it gets.
The GIFgraph and Chart::PNGgraph modules are different: in the first place the

plot method of both these modules does not return a GD object, but does return the
image data directly. Secondly, both modules provide a convenient method to directly
plot your image to a file. For GIFgraph:

my $img_data = $chart->plot(\@data);
open(IMAGE, '>file.gif') or die $!;
binmode IMAGE;
print IMAGE $img_data;
close IMAGE;

or

$chart->plot_to_gif('file2.gif', \@data);

Chart::PNGgraph provides the same functionality, but of course for PNG, and the
method is called plot_to_png().

68 CHAPTER 5 CREATING CHARTS

5.1.5 Bar and area charts

Bar charts are often used in financial reports and statistical comparisons. Most com-
monly the X axis displays the labels for each of the bars, such as month names or spe-
cies names, and the distance between the bars has little significance. But only rarely
do you see bar charts used in a situation in which the X axis has a numerical value
that is not equidistantly spaced.

GD::Graph can create bar charts for multiple data sets in one figure. If you have
more than one set, you might choose to display the bars next to each other, in front of
each other, or on top of each other. Displaying bars in front of each other is useful
mainly to clearly offset a difference between one data set and another, when one is con-
sistently smaller than the other. The visible part of the rear dataset shows the difference.
Placing bars on top of each other can be used, for example in financial charts, where
one wants to show the cumulative effect of multiple sources of income or expenditure.

An example of a simple bar chart can be seen in figure 5.1. This chart was produced
with the code:8

use GD::Graph::bars;
my @data = (
 ['frogs','fish','toads','rodents'],
 [8, 3, 1, 2],
);

my $chart = GD::Graph::bars->new(700,500);
$chart->set(title => 'Ostrich diet');
$chart->set_title_font('arialbd', 24);
$chart->set_x_axis_font('arial', 16);
$chart->set_y_axis_font('arial', 16);
my $gd_object = $chart->plot(\@data);

8 Note that the setting of the fonts is optional. It is done here purely for aesthetic considerations.

Figure 5.1 A simple bar chart,

created with GD::Graph, illus-

trating the basic capabilities of

the module.

GD::GRAPH AND FRIENDS 69

Cumulative effects

Sometimes you’ll want to show the cumulative effect of sets of data. For example, you
have a log file from a web server and you filter out all the unimportant requests, such
as images and the like. You are left with only requests which are important to you,
and want to create a chart that expresses the total number of requests in each hour of
the day. You are also interested in how these requests are divided between GET and
POST requests, and how these are further split between the secure and nonsecure
parts of your site.

Of course you can create a few bar charts and some pie charts that show you all of the
above. However, it is possible to do all of this in one figure, if you treat the data
cumulatively as shown in figure 5.2. Suppose you have already created summary data
for the number of requests per hour of the day, divided them into the relevant groups,
and note that this data lives in a file with tab-separated fields of the following format:

hour GET POST SSL_GET SSL_POST
0 1495 1057 955 278
1 1106 680 819 278
2 1120 757 455 94
and more lines...

Figure 5.2

Two representations of one

day of HTTP server log statis-

tics, split up by the different

types of requests. The data

sets are cumulative, each

band showing the respective

contribution to the total of

each type of request.

(a)

(b)

70 CHAPTER 5 CREATING CHARTS

To prepare the data for use with GD::Graph you can use the following:

use strict;
use GD::Graph::area;
use GD::Graph::Data;

my $data = GD::Graph::Data->new();

open(IN, 'WWW.data') or die "Can't read WWW.data: $!";
while(<IN>)
{
 next if /^#/;
 chomp;
 my @d = map {$_ eq '' ? undef : $_} split /\t/;
 $data->add_point(@d);
}
close(IN);

This code creates a new GD::Graph::Data object, opens the data file, and processes it
line by line. Lines that start with a hash are ignored, and all others are split on tab
characters. The map() makes certain that empty fields are set to undef, meaning
that GD::Graph will view this point as unavailable when creating the chart.

Now that you have your data in a GD:Graph::Data object, you can write the code
to plot the chart:

my $chart = GD::Graph::area->new(800,500);
$chart->set_legend('GET', 'POST', 'SSL GET', 'SSL POST');
$chart->set(
 title => 'Distribution of HTTP requests',
 y_label => 'Number of requests',
 x_label => 'Hour',
 cumulate => 1,
);

The key option here is cumulate: when this is set to a true value, the data sets will
be drawn on top of each other, i.e., cumulatively. Each data set point will use the sum
of its predecessors as the baseline; in the created figures the tops of the areas signify
the total of all data sets, and each colored region shows the contribution of a single
data set.

The result of this code can be seen in figure 5.2a. The equivalent bar chart can be
seen in figure 5.2b. Which one of these you use depends mainly on the sort of data
you want to represent, as well as your personal preference. I tend to favor the area rep-
resentation for cumulative charts with more than about 5 data points.

5.1.6 Lines, Points and LinesPoints charts

It is possible with GD::Graph to draw line charts, point charts—also referred to as
scatter graphs—or a chart with both lines and points. One is hard pressed to proffer a
general rule for when these types of charts are used, because they can be used for
almost anything, even when a bar or area chart could have been more appropriate.

GD::GRAPH AND FRIENDS 71

GD::Graph defines 8 different types of markers
for the points, and each data set is tied to one of these
types. The types are:

The numbered order is also the default order for
the markers, i.e., the first (ninth, seventeenth, and so
forth) dataset will have a filled square, the second an
open square, the third a horizontal cross, and so on.
You can set the choice and order of these markers
with the markers attribute, and their size with the
markersize attribute.

There are four line types to choose from:
You can set the order of these with the
line_types attribute, and the width of
the line with line_width. There is one
further attribute that controls the visual
appearance of lines, line_type_scale,
which controls the length of the dashes in

the lines. The higher the number, the longer the dashes. If you don’t specify a
line_types attribute, all data sets will use type 1, and will appear as a solid line.

Figure 5.3 can be produced with the following code:

use GD::Graph::linespoints;

my @data = (
 [qw(Jan Feb Mar Apr May Jun Jul Aug Sep)],
 [undef, 52, 53, 54, 55, 56, undef, 58, 59],
 [60, 61, 61, undef, 68, 66, 65, 61, undef],
);

my $chart = new GD::Graph::linespoints(700,500);

1 filled square

2 open square

3 horizontal cross

4 diagonal cross

5 filled diamond

6 open diamond

7 filled circle

8 open circle

1 solid

2 dashed

3 dotted

4 alternating dots and dashes

Figure 5.3

An example of a GD::Graph lines and

points chart, showing the number of

sold items per outlet for the first

three quarters of the current year.

For points where no data is avail-

able, no marker is drawn. This is in-

dicated by an undefined value in the

data set.

72 CHAPTER 5 CREATING CHARTS

$chart->set(
 x_label => 'Month',
 y_label => '# sold',
 title => 'First three quarters, 2000',
 y_long_ticks => 1,
 markers => [1, 5],
 marker_size => 8,
 line_types => [4, 1],
 line_width => 3,
);
$chart->set_legend('outlet 1', 'outlet 2');

5.1.7 Mixed charts

Sometimes, hopefully not often, you need to produce a chart that contains datasets in
different formats. You might want to represent one data set with bars, and another
one as a line or area; GD::Graph provides the mixed chart type for this.

Example

The Southern Oscillation Index (SOI) is a measure that expresses the difference in air
pressure between Tahiti and Darwin and is commonly associated with El Niño.
When the SOI is strongly positive, there is a higher probability of rain in Eastern and
Northern Australia, and when it is strongly negative there is less chance of rain.9 You
will often see the SOI depicted as a line, and rainfall as bars. To present a graph that
shows any relation between the two, it would be permissible to choose a mixed type,
as shown in figure 5.4.

9 Of course, the real story is more complicated, and depends on not just the value of the SOI, but also
on how persistently positive or negative it is, and on some other variables.

Figure 5.4

The Southern Oscillation Index and

the rainfall per month for Sydney,

Australia from January 1997 to July

1999. The rainfall is shown as bars,

and the SOI as a line. From this pic-

ture, one could tentatively draw a

cautious conclusion that a negative

SOI could be related to a decrease in

rainfall.

GD::GRAPH AND FRIENDS 73

Suppose we have a database with the daily SOI values and rainfall in Sydney from
January 1987 to December 1999. From this data we create a summary file that con-
tains the monthly average SOI and total amount of rain. This file could have the fol-
lowing format:

Month/Year Rain SOI
Jan/1987 49.8 -6.3
Feb/1987 35.2 -12.6
Mar/1987 154.0 -16.6
Apr/1987 36.6 -24.4

more lines like this...

Oct/1999 149.4 9.1
Nov/1999 13.1
Dec/1999 13

with tab characters separating the values. We fill a GD::Graph::Data object with part
of the data from this file (everything between a start and end date):

use strict;
use GD::Graph::mixed;
use DBI;

my ($start, $end) = qw(Jan/1997 Jul/1999);
my $data = GD::Graph::Data->new();

open(IN, 'SOI.data') or die "Can't read SOI.data:$!";
while(<IN>)
{
 next if /^#/;
 if (/^\Q$start/ .. /^\Q$end/)
 {
 chomp;
 my @d = map {$_ eq '' ? undef : $_} split /\t/;
 $data->add_point(@d);
 }
}
close(IN);

Note that in this example the start and end dates have been hard coded, but in a real
world program they would most likely come from user input.

Once we have the data, a GD::Graph::mixed object is created and given a legend, so
we can easily recognize which element in the resulting chart belongs to which data set.

my $chart = GD::Graph::mixed->new(700,500);
$chart->set_legend('Rain (left)', 'SOI (right)');
$chart->set(
 y1_label => 'Monthly rain fall (mm)',
 y2_label => 'SOI',
 types => [qw(bars lines)],
 dclrs => [qw(blue green)],
 line_width => 5,

74 CHAPTER 5 CREATING CHARTS

 two_axes => 1,
 y_long_ticks => 1,
 x_label_skip => 3,
 x_labels_vertical => 1,
 zero_axis => 1,
 transparent => 0,
);

The options for the chart are mostly self-explanatory, but I’ll highlight a few: the
option two_axes tells the chart object that the two data sets should be treated sepa-
rately. The first one will have its values drawn on the left vertical axis, and the second
on the right. This option is only valid when you have exactly two data sets. Because we
have two Y axes, we can also label them separately, y1_label and y2_label. We set
the y_long_ticks option to a true value for aesthetic reasons, and leave the
x_ticks option at a false value to avoid vertical grid lines. It should also be noted that
the line_width option only affects the width of the data lines, not of any of the axes.

GD::Graph summary

In this section we have seen how GD::Graph can be used to create a variety of charts,
how it may be presented with the data you want plotted, and some specific examples.
The module can do much more than has been shown here. The original distribution
archive, available from CPAN, contains a set of examples, and the documentation is
quite elaborate. More examples that use GD::Graph can be found in sections 6.3,
“CGI and dynamically generated graphics,” on page 94 and 7.7, “Animations with
the Gimp,” on page 134.

5.2 THE CHART DISTRIBUTION
The Chart distribution, originally by David Bonner, and now maintained by Peter
Clark, is a collection of charting classes very much like GD::Graph. In fact, the
documentation states that it originally borrowed most of its API from GIFgraph.
The chart types that are supported are:

Chart::Points points chart, or scatter graph

Chart::Lines line chart

Chart::Bars bar chart

Chart::LinesPoints line and points chart

Chart::Composite a composite of the above

Chart::Pareto a sorted bar chart

Chart::StackedBars bar chart with cumulative effect

Chart::Pie pie chart

THE CHART DISTRIBUTION 75

Most of these are comparable to the equivalents in the GD::Graph module, and their
use is fairly similar as well. Since the Pareto chart is unique to this module, we’ll have
a look at an example that creates one.

5.2.1 Pareto charts

Charts of this type are named after the Italian economist Vilfredo Pareto (1848–1923),
who noticed that 80 percent of wealth is owned by 20 percent of the people. The
Pareto chart or diagram presents its data in a hierarchical order, which shows the most
significant data first. This is a very useful tool in quality assurance and fault detection
processes, because it allows one to quickly discern which of the data is the most signif-
icant, and would therefore be best to look at first. It is also often used in a more general
sense to find out which factors are the largest contributors to a certain effect.

Pareto charts normally take the shape of a bar chart, with the bars representing the
measured points. They will often contain a line, which denotes the cumulative con-
tribution of all bars as a percentage. In most implementations, the least significant data
points are grouped together in a category “other.”

Suppose that you are a marine biologist, and your current task is to find out what
exactly is causing the depletion of a certain nematode worm in Cat’s Head Bay. To do
so, you dive into the water, and start identifying species of underwater life that eat these
worms. You count the number of individuals of all represented species, and multiply
that by the mass of worms each individual needs on a daily basis, to get a biomass count.

You discover that there is a chemical factory in the vicinity, and you analyze the
effluent coming from it. You notice that there is a component in this factory’s effluent
that causes nematode worms to die, and rather quickly. Luckily, you find data that
relates the concentration of this chemical to death rates in nematode worms, so that
you can calculate the number of worms dying per day in Cat’s Head Bay as a result
of this effluent.

Once you have identified all sources of nematode death, you write a report. Of
course, you need to have a chart in your report showing a graphical representation of
your findings, so you write the following program:10

use strict;
use Chart::Pareto;

my $chart = Chart::Pareto->new();
while (my @data = get_data())
{
 $chart->add_pt(@data);
}

$chart->gif("Pareto.gif");

10 The get_data() method has been deliberately left out of this listing. It simply gets an X and Y value
from some data store.

76 CHAPTER 5 CREATING CHARTS

It can be clearly seen from figure 5.5 that Furbies are the main cause of nematodic
death in Cat’s Head Bay.

5.3 PGPLOT

The PGPLOT module is the Perl interface to the PGPLOT graphics library. It used to
be known as pgperl before Perl 5, but changed its name when modules became a pos-
sibility. PGPLOT is a high-level graphics package for plotting two-dimensional data
sets, functions, histograms, contour maps and images. It is the de facto plotting pack-
age for astronomers around the world, and has many applications in other scientific
areas. Unfortunately, it seems to be rarely used outside of academic institutes.

The PGPLOT library[20] was written by Tim Pearson of the Astronomy depart-
ment of the California Institute of Technology. It has been in existence for a while and
is very stable.11 It is written in Fortran—which explains the short function names—
but also comes with a C-callable interface, which is what the PGPLOT module uses.
The Perl interface to the PGPLOT library is provided by Karl Glazebrook, who is also
one of the driving forces behind the Perl Data Language (PDL).

The source distribution of the PGPLOT library comes with a wealth of examples,
spread out over a number of Fortran demo programs. The PGPLOT module distribu-
tion also includes example code in the test files. The best way to become acquainted
with the API is to read those example programs, while keeping an eye on the user’s
manual, which is available from the PGPLOT home page (see [20]).

5.3.1 PGPLOT devices

The pgopen() call takes one argument: the device to write to. A device specification
is made up of two parts: optionally, the name of the device or file and the device type,

Figure 5.5 Pareto chart of

nematode worm mortality in

Cat’s Head Bay. This chart

shows us that Furbies are the

largest killers of nematode

worms, and that the top 5 kill-

ers are responsible for 93% of

the nematode deaths.

11 Version 5.0.0 was released in December 1994, and the current version, 5.2.0, was released in June 1997.

PGPLOT 77

preceded by a slash (/). If the device or file name contains slashes, it should be
enclosed in double quotes:

my $device_id = pgopen('"/tmp/file.ps"/PS');

If the device or filename is left off, PGPLOT will use a default name. Which devices
are available to you depends on how your local copy of the library has been compiled.
The distribution ships with code for a large number of devices, some of which are
shown in table 5.2.

The device names that start with a V plot their output in portrait (vertical) mode, the
other ones plot in landscape mode. For example: to plot a GIF file in landscape mode,
use /GIF. To plot in portrait mode, use /VGIF. The PostScript drivers with a C in the
name will output color PostScript.

Each device can be controlled by setting environment variables which are described
in the user manual. If you want to specify a different width, height or resolution than
is the default for the driver, you would set the appropriate environment variables. For
example, to set the width and height of a GIF output file, you would do something like:

$ENV{PGPLOT_GIF_WIDTH} = 640;
$ENV{PGPLOT_GIF_HEIGHT} = 480;
pgopen('"/tmp/resized.gif"/GIF');

The user manual contains an appendix with a full description of each driver, includ-
ing all the environment variables that affect the output for that driver. There are a
number of device drivers available for specific printers, plotters, terminals and special
applications, such as tcl/tk widgets.

5.3.2 Example: A simple X-Y plot

PGPLOT produces simple X-Y plots with a minimum of fuss, but there is a certain
methodology that needs to be followed.

Table 5.2 The devices that can be used in PGPLOT programs, by specifying them as an

argument to pgopen(). The device names starting with a V cause the output to be vertically

oriented, the others have a horizontal orientation. For the devices that output to a file, a

nondefault file name can be specified between double quotes before the slash.

Type Type specifications Default device

GIF file /GIF, /VGIF pgplot.gif

HPGL plotters /HPGL, /VHPGL pgplot.hpgl

Portable pixel map /PPM, /VPPM pgplot.ppm

PostScript /PS, /CPS, /VPS, /VCPS pgplot.ps

X Windows /XWINDOW, /XSERVE default X display

Null device (no output) /NULL

LaTeX picture environment /LATEX pgplot.tex

78 CHAPTER 5 CREATING CHARTS

Let’s walk through the code that produced figure 5.6:
use PGPLOT;

my @x = (-0.5, 0, 1, 2, 3, 5);
my @y = (0.35, 0.1, 1.2, 3.3, 9.5, 23);
my @y_err = (0.6, 0.3, 0.8, 1.6, 2.0, 3);
my $num = @x;

First, the PGPLOT module is included, which exports all the functionality we need
into the current name space, hence we can use the functions just as described in the
PGPLOT user’s manual. We then set up some data to plot. Most of the PGPLOT calls
require an array of X values and an array of Y values of the same length. Since we want
to draw error bars as well, we define an array containing the error in the measure-
ments in both the upward and downward directions, i.e., the total error is twice as
large as the elements of the array. These arrays will be used later in the program in
calls to pgpt() and pgerry().

It’s now time to open a device to write to, and set up the environment:

$ENV{PGPLOT_PS_WIDTH} = 4000;
$ENV{PGPLOT_PS_HEIGHT} = 3000;
my $dev_id = pgopen('pgplot1.eps/VPS');
die "Couldn't open plot" if $dev_id <= 0;
pgslw(2);
pgsch(1.5);
pgenv(-1, 5.5, -5, 30, 0, 0);

The pgopen() function is called to open a PostScript file for output. If this fails,
pgopen() will return a false value, allowing us to check for success in the same way
that we would with a regular open(). You will occasionally see a call to pgbeg()
instead of pgopen(). This is a sign that you’re looking at an older program, since
pgbeg() is deprecated nowadays, and only available for compatibility with exist-
ing programs.

Figure 5.6

This graph illustrates how to

use PGPLOT to plot data

points with their respective

error bars, a function to fit

the data, and a visual label

for this function’s line.

www.allitebooks.com

http://www.allitebooks.org

PGPLOT 79

Next, we establish a line width, with pgslw(), and a character height with
pgsch(). The line width is specified in units of 1/200 of an inch, and must be an inte-
ger between 1 and 201, inclusive. The character height defaults to 1.0, which normally
corresponds to approximately 1/40 of the view size. Setting the character height also
influences the length of tick marks.

The call to pgenv() sets up the graph and axes, and establishes the scaling for sub-
sequent calls to the plotting functions. It is basically a wrapper around pgswin() and
pgbox() (see user’s manual). The first four arguments define how, in PGPLOT ter-
minology, world coordinates will be translated into viewport coordinates. In other words,
it defines the minimum and maximum values for your X and Y axis. In this example
we set the X axis range from –1 to 5.5, and the Y axis range from –5 to 30. If the fifth
argument is equal to 1, the X and Y axis scales will be equal; you almost never want this.
The last argument is an integer that specifies how the axes will be formatted, and valid
values for this argument can be found in the following table:

Now that we have set up our environment, it is time to draw the data we defined earlier:

pgpt($num, \@x, \@y, 2);

my (@y_lo, @y_hi);
for my $i (0 .. $#y)
{
 $y_lo[$i] = $y[$i] - $y_err[$i];
 $y_hi[$i] = $y[$i] + $y_err[$i];
}
pgerry($num, \@x, \@y_lo, \@y_hi, 1.0);

b The first thing we do is draw the points that are defined by the arrays @x and @y with
pgpt() or its alias pgpoint(). The first argument is the number of points that we
want to draw,12 and the second and third argument are references to arrays with the X
and Y coordinates, respectively. The last argument is an integer that indicates which
symbol should be used as a marker (see figure 5.7).

–2 no axes or labels

 –1 axes as a box

0 box with coordinate labels

1 same as 0, with coordinate axes at X=0 and Y=0

 2 same as 1, with grid lines at major increments

10 box with logarithmic X-axis

 20 box with logarithmic Y-axis

 30 box with both axes logarithmic

b Draw the data points

c Calculate and draw
the error bars

12 Note that this is very unperlish, and shows that this module is an interface to a library written in a lan-
guage where the size of arrays is not as easily obtainable as in Perl.

80 CHAPTER 5 CREATING CHARTS

c Next we draw the vertical error bars that go with the points, with the pgerry()
function. It is also possible to draw horizontal error bars, with the appropriately
named pgerrx() function. The first argument to pgerry() is, again, the number
of points to draw, and the second argument is a reference to an array with X coordi-
nates. The third and fourth arguments are references to arrays with the top and bot-
tom Y coordinates of the error bar to draw. Since we have only an array with nominal
errors per point, we calculate the top and bottom from the @y and @y_err arrays.
The last argument is a number that expresses how long the terminals (crossbars) at
each end of the error bar should be.

We want to compare the points we just plotted to a quadratic function, so we draw one:

sub square { $_[0]**2 }
pgfunx(\&square, 50, -0.5, 5, 1);

The pgfunx() can be used to draw an arbitrary function, y = f (x). The first argument
is a reference to a subroutine that defines the function, and the second argument is the
number of sample points to take over the interval specified by the third and fourth
argument. The last argument controls whether the function should be drawn on the
current plot (1), or whether a new plot should be opened for it (0). There are also
functions pgfuny() for functions of the form x = f (y), and the parametric
pgfunt() for functions of the form x = fx(t), y = fy(t). Thus, in this particular exam-
ple we are plotting the function y = x 2 in the range x = [–0.5, 5] with 50 samples, in
the current plot. We then put a label in the plot, with an arrow pointing to the func-
tion that was just plotted:

Figure 5.7 The markers and line types for PGPLOT. The markers were

drawn at a scaling of 1.75 (set with pgsch()), and the lines with a width

of 4 (set with pgslw()).

PGPLOT 81

pgarro(2, 10, 2.5, square(2.5));
pgptxt(2, 10, 0, 1, '\fiy = \fix\u2');

pgclos;

The pgarro() function draws an arrow from the point defined by the first two
arguments to the point defined by the last two. Notice how we use the subroutine
that we just defined to ensure that the arrow ends up touching the line. At the start of
the arrow, we put some text expressing the function that has been plotted (see the
user’s manual for more on text formatting in PGPLOT).

To end the program, we close the output stream with pgclos(). Alternatively,
this can be done by calling pgend(), which closes all open devices, and not just the
current one.

5.3.3 Example: A contour plot

It is surprisingly easy to draw contour plots with PGPLOT, and only slightly harder
to put labels in them.

Figure 5.8 was produced using the following code:

use PGPLOT;

my (@f, $fmin, $fmax);
for my $i (0 .. 39)
{
 for my $j (0 .. 39)
 {
 $f[$i][$j] =

 2 * cos(0.3 * sqrt($i * 2) - 0.4 * $j/3) *
 cos(0.4 * $i/3) + 3 * ($i - $j)/40;
 $fmin = min($f[$i][$j], $fmin);
 $fmax = max($f[$i][$j], $fmax);
 }
}
my @level =
 map { $fmin + $_ * ($fmax - $fmin)/15 } (0 .. 15);

Figure 5.8

A contour plot of a trigono-

metric function, created with

PGPLOT. The solid lines show

positive values, the dashed

lines negative values.

O Set up the data

O

Calculate which
levels we want to
contour

82 CHAPTER 5 CREATING CHARTS

We start again by including the PGPLOT module, after which we declare and fill a
two dimensional array @f with the values of a function that will give us a good pic-
ture. While filling the array, we keep track of the minimum and maximum values
(the subroutines min() and max() are defined at the end of the program). We
decide to draw 16 contour levels, and put the values of each contour into the array
@level, in such a way that the first element in @level is equal to the minimum
value in @f, the last element is equal to the maximum value in @f, and the intermedi-
ate elements are equidistantly spaced between these values.

We then open an output device and establish the environment.

$ENV{PGPLOT_PS_WIDTH} = 4000;
$ENV{PGPLOT_PS_HEIGHT} = 3000;
my $dev_id = pgopen('pgplot3.eps/VPS');
die "Couldn't open plot" if $dev_id <= 0;
pgslw(2);
pgsch(1.5);
pgenv(0, 39, 0, 39, 0, 0);

After setting the line width to 2 and the character height to 1.5, we call pgenv() to
define the minimum and maximum X and Y axis values for the plot and the axis for-
matting. Next we draw the contours with a line width of 3:

my @tr = (0, 1, 0, 0, 0, 1);
pgslw(3);
pgcont(\@f, 40, 40, 1, 40, 1, 40, \@level, 16, \@tr);

The first item needing explanation is the @tr array. It contains six elements which are
the coefficients in the equations defining the transformation between the indices into
the two-dimensional array (i and j) and the x and y coordinates of the plot:

 x = tr1 + tr2i + tr3 j

y = tr4 + tr5i + tr6 j

Normally you will see values in elements 1, 2, 4, and 6, and elements 3 and 5 will be
zero, unless the coordinates really need to be rotated or sheared. In our example, there
is a simple one-to-one mapping between the array coordinates and the graph coordi-
nates, so we set the 2nd and 6th elements to 1, and the rest to 0.

Now that we have defined our mapping, we can plot the contours. We set the line
width to 3 and call pgcont(), one of the five contour mapping functions of PGPLOT
(see user’s manual for the others). The first argument to pgcont() is a reference to the
two-dimensional array @f. The next six arguments are the two dimensions of the array,
and the first and last index of each of those two dimensions to be plotted.13 The sixth

13 Note that all indexes into arrays in PGPLOT are 1-based, not 0-based. This is most likely due to the
fact that the underlying library was originally written in Fortran, where arrays are always 1-based.

PGPLOT 83

argument is a reference to an array that contains the values at which a contour should
be drawn, and the seventh argument is the number of elements in that array that you
want to use. By default, pgcont() will draw contour levels with a positive value as solid
lines, and those with negative values with dashed lines. You can override this behavior,
and make pgcont() use the current line style, by specifying this seventh argument as
a negative number. The last argument is a reference to the transformation array, @tr.

We’d like to have each contour labelled with the value it represents:

pgslw(2);
foreach my $level (@level)
{
 my $label = sprintf "%.2f", $level;
 pgconl(\@f, 40, 40, 1, 40, 1, 40, $level, \@tr,
 $label, 30, 20);
}

The pgconl() function places labels on a single contour. The first six arguments to
this function are the same as the arguments to the pgcont() function. The seventh
argument is the level of the contour that you want to label (this should be one of the
values that you passed to pgcont() in the @level array). The eighth argument is
the transformation array and the ninth argument is the label you want to put on the
contour. The last two arguments control the spacing of the contours (see the user’s
manual for more information). To label each of the contours drawn in the previous
step, we call pgconl() in a loop for each element of @level, setting the label to a
rounded value of the current contour level.

All that is left to do is to close the output device and define a few subroutines that
we used earlier in the program:

pgclos;

sub min
{
 return $_[0] unless defined $_[1];
 $_[0] < $_[1] ? $_[0] : $_[1];
}
sub max
{
 return $_[0] unless defined $_[1];
 $_[0] > $_[1] ? $_[0] : $_[1];
}

5.3.4 Example: Plotting a galaxy

It is also possible to display bitmaps with PGPLOT and accentuate certain features in
them, a facility often used by astronomers to display parts of the night sky for publication.

84 CHAPTER 5 CREATING CHARTS

The program that produced figure 5.9 is short, so I’ll present it as a whole:

use PGPLOT;

my $img;
open(IMG,"test.img") || die "Data file test.img not found";
read(IMG, $img, 128*128*2); b Read the image file
close(IMG);
my @image = unpack("n*", $img);

$ENV{PGPLOT_PS_WIDTH} = 4000;
$ENV{PGPLOT_PS_HEIGHT} = 3000;
pgopen('pgplot2.eps/VPS') or die "Couldn't open plot";

my @tr=(12000, 8, 0, 12000, 0, 8);
pgwnad(12000, 13024, 13024, 12000);

pgslw(2);
pggray(\@image, 128, 128, 1, 128, 1, 128, 10000, 0, \@tr);
pglabel('\ga', '\gd', '');
pgtbox('ZYHBCNST', 0, 0, 'ZYDBCNST', 0, 0);

pgwedg('R', 2, 5, 10000, 0, 'Counts'); e Create a scaling wedge

my @levels = (1000, 2000, 3000, 5000, 7500);
pgcons(\@image, 128, 128, 1, 128, 1, 128, \@levels, 5, \@tr);

pgclos;

 b The data for the image is located in a file with the name test.img, and is stored as a
simple series of 128 rows of 128 2-byte network order integers. We read all those
bytes into memory, and use the unpack() built in to transform them into an array
of Perl numbers. This is followed by the customary setting up and opening of an out-
put device.

Figure 5.9

A PGPLOT graph, using a bit-

map as background and data

for a contour plot and a wedge

to show the magnitude of the

grayscale values. The data rep-

resents the M51 system, and

was obtained by Dr. Patrick

Seitner from the University of

Michigan.

c Set up a coordinate
transformation

d Display the
image data

INTERFACING WITH GNUPLOT 85

c Next, a coordinate transformation matrix is created, as discussed on page 82, and a
window is set up in which to plot the image.

d The pggray() function is used to display the image data from the array @image in
this window. The second and third arguments to pggray() specify the number of
rows and columns in the data set, and the fourth to seventh arguments specify which
subset of those rows and columns to use. In this particular case, the image is 128 pix-
els wide and 128 high, and all pixels (1 to 128 inclusive) in both directions are used.
If we wanted just part of the image, we could have specified something like:

The left half
pggray(\@image, 128, 128, 1, 64, 1, 128, 10000, 0, \@tr);
The top left quarter
pggray(\@image, 128, 128, 1, 64, 1, 64, 10000, 0, \@tr);
The bottom half
pggray(\@image, 128, 128, 1, 128, 65, 128, 10000, 0, \@tr);

The eighth and ninth arguments to pggray() express how the values in the input
array are to be translated to grayscale in the image. The eighth argument expresses the
“white point” of the image, i.e., every pixel in the array with a value of 10000 and
above will be displayed as white. The ninth argument expresses the “black point,” and
every pixel in the array equal to or lower than this value will be displayed as black. All
other pixels will receive a grayscale value between 0 and 1. Thus, these numbers
express the maximum and minimum values anyone is interested in distinguishing.

The axes are labelled with the Greek letters α and δ to indicate the inclination and
declination of the pixels, and the box format is set up with pgtbox() (refer to the
manual of PGPLOT for a full description), so that the coordinates are expressed in
angular notation.

e Lastly, a wedge is created next to the window that shows a brightness scale for the
image. To complete the picture, some contours are drawn on the picture with
pgcons(), outlining areas of similar value on the image.

5.4 INTERFACING WITH GNUPLOT
Gnuplot[18] is not a Perl module and, in fact, has nothing to do with Perl at all.14 It
is, however, a very powerful charting program. It does many of the things that the
previously mentioned Perl modules don’t do (yet), and it is very easy to work with
from within a Perl program. That alone should be enough reason to allow a few pages
of discussion on it. Additionally, there are probably many people out there who are
already using gnuplot, and are satisfied with its performance. Some of those might be
happy to see that they don’t have to abandon it.

14 ... or with the GNU project. The similarity in the name is purely a coincidence.

86 CHAPTER 5 CREATING CHARTS

Gnuplot is freely available for many platforms, and supports a great multitude of out-
put formats. It has been in existence long enough to offer a very mature set of func-
tionality. As input, it takes a set of commands that determine what sort of chart will
be drawn and what it will look like. This set of commands is almost a language in its
own right, albeit a very specialized language.

Among the Gnuplot possibilities are the plotting of 2D curves, lines, points, error
bars, rudimentary bar charts, and 3D surfaces (or 2D projections of surfaces). You can
create polar or parametric plots, scale your axes logarithmically, place arbitrary labels
and arrows on your chart, and fit your data against mathematical functions in a variety
of ways. I won’t attempt to describe all the features of gnuplot, since they constitute
enough for a whole book on their own. What I will do is show how to interface with
gnuplot from Perl.

The easiest way to get your data and commands to gnuplot is simply by creating
a string that contains the whole set of commands that you would normally feed to gnu-
plot, and piping it straight into gnuplot’s standard input. The following code was used
to create figure 5.10:

my $outputfile = 'gnuplot1.eps';

open(GNUPLOT, '| gnuplot') or die "open: $!";

print GNUPLOT <<EOF;
set terminal postscript eps 22
set output "$outputfile"
set key bottom
set samples 200
plot [-10:10] sin(x), atan(x), cos(atan(x)), "datafile"
EOF

close(GNUPLOT) or die "close: $!";

Figure 5.10

An example gnuplot chart

showing several built-in func-

tions and the data from a file

in one plot. The line types and

point markers were automati-

cally chosen by the gnuplot

program. The legend de-

scribes the lines and their cor-

responding functions.

INTERFACING WITH GNUPLOT 87

If you have data points in a database, and wish to use gnuplot to display this, there are
two options: you can save the data into a temporary file in a format readable by gnu-
plot (see the gnuplot documentation), or you can15 inline the data in the commands
that you feed to gnuplot. Suppose that you have written a function, get_data(),
that returns a single data point from somewhere as an array with three elements: the X
value, the Y value, and the possible size of the error in this measurement.

The following code can be used to plot these points and to compare them to the
function x2 (see figure 5.11).

my $outputfile = 'gnuplot2.eps';

open(GNUPLOT, '| gnuplot') or die "open: $!";

print GNUPLOT <<EOF;
set terminal postscript eps 22
set output "$outputfile"
set key top left
set samples 200
plot [0:] [0:] \\
 '-' title "data" with errorbars, \\
 x**2 title "x^2" with lines
EOF

while (my @data = get_data())
{
 print GNUPLOT "@data\n";
}

print GNUPLOT "end\n";
close(GNUPLOT) or die "close: $!";

15 ... as of version 3.7. If you still use an older one, I urge you to upgrade. There are many really useful
improvements and additions made in 3.7.

Figure 5.11

A gnuplot chart created with

data generated by a Perl pro-

gram and incorporated direct-

ly into the gnuplot program

instead of through a data file.

The data points also show an

error bar.

88 CHAPTER 5 CREATING CHARTS

In this piece of code the special filename '-' is used to indicate that the following
lines of input contain data points to be plotted. Gnuplot will read these lines until the
character 'e' is encountered on the first column of a line. We call our subroutine
which returns the data points, and we print out each one to gnuplot. To indicate that
we’ve finished specifying data points, we provide a character e in the first column by
printing end, just to make it more readable.

The get_data() function and the data used to produce the figure are:

sub get_data
{
 my $line = <DATA>;
 return unless $line;
 chomp $line;
 return split ' ', $line;
}

__DATA__
0.2 0.04 0.1
0.8 0.65 0.1
1.1 0.9 0.2

1.51 2.20 0.2
1.99 4.02 0.2
2.5 6.29 0.3
3.05 9.1 0.5

Using inline data such as this means that we don’t have to create temporary files.
Thus we don’t have to remember to clean them up, find a spot where we can actually
create them, or worry about performance problems on saturated file systems.

If you are satisfied with limited functionality and the production of GIF output
alone, you could have a look at the Chart::GnuPlot module, which is available from
CPAN. The module is, at this time, still in a very early and immature stage, has been
so for quite a while now (since November 1998), and doesn’t look like it is actively
being developed any longer.

SEE ALSO Gnuplot doesn’t really provide another API beside the interactive interface.
If you need to get feedback from the gnuplot program in order to deal with
errors and such, you will have to work out a way to get some bidirectional
communication going. This would require using the (standard)
IPC::Open2 or IPC::Open3 module, or maybe the Expect module from
CPAN. That sort of interaction is well described in the perlipc documen-
tation, which would be a good place to start.

5.5 SUMMARY

I hope this chapter has provided some glimpse into the many ways in which Perl can
be used to create charts, graphs and plots. Each of these ways is different, has its
unique strengths and weaknesses, and operates in a different application domain. If
you need to create business types of graphics for inclusion in web pages, GD::Graph

SUMMARY 89

and the various Chart::* modules are most appropriate. If you wish to plot scientific
data, or have to create output that is of a higher quality than a bitmap, you will want
to look at PGPLOT or gnuplot. If you want to create three-dimensional relief charts,
gnuplot is most appropriate, and if your output is akin to figure 5.9, you need
PGPLOT. Neither gnuplot nor PGPLOT can be used to create bar or pie charts, how-
ever. Unfortunately, there is no single module that as yet does everything, so your
needs will dictate which of the solutions you use.

90

C H A P T E R 6

Graphics and the Web

6.1 The Common Gateway Interface 91
6.2 Suitable image formats 92
6.3 CGI and dynamically generated

graphics 94

6.4 Forms and encapsulated graphics 96
6.5 Image collections and

thumbnailing 100
6.6 Summary 121

Perl has become increasingly popular for the dynamic delivery of World Wide Web
content, and in doing so has put to good use the Common Gateway Interface (CGI),
the standard interface to allow external programs to work with a web server. There are
several reasons for Perl’s success, the main one being that it gets the job done quickly
and efficiently, which is due to its suitability for text processing and its large library of
modules. The most important module for programming for the CGI is the appropri-
ately named CGI module, written by Lincoln Stein. This module is part of the stan-
dard distribution of Perl.

Delivering dynamic content on the Web is becoming increasingly important in the
world today where every business is expected to have an interface for its customers via
the Web. Interfaces to product and other databases, shopping carts, customer infor-
mation and documents are becoming more and more commonplace. Some of these
interactive interfaces can benefit from having a graphical component that is also
dynamic in nature.

In this chapter we’ll see how to create and deliver dynamic graphics content for a
World Wide Web interface, as well as ways to prepare static Web content with Perl.

THE COMMON GATEWAY INTERFACE 91

6.1 THE COMMON GATEWAY INTERFACE
There is very little reason to write a CGI program in Perl that does not use the CGI
module. The most frequently quoted reason is that it takes a considerable amount of
CPU time to compile this module, or that a script is so trivial that using all the power
of CGI is overkill. That might be true, but I have rarely seen a program that remains
trivial for long. Sooner or later, more and more parts of the CGI interface need to be
implemented, each step running the risk of introducing bugs—bugs that wouldn’t
exist if the CGI module had been used. If it’s still felt that compiling the module for
each invocation of a Perl program is too much load on the machine, use the Apache
server and the mod_perl plug-in, or any server with FastCGI and the CGI::Fast
module instead of CGI.

You could take a look at one of the smaller modules like CGI::Lite; however, one
good reason to prefer the CGI module is that it’s part of the standard Perl distribution.
Anywhere a reasonably recent Perl is installed, this module will be available. Code that
uses CGI is easily portable, unless other parts of the program make it hard to port.

Of course, writing your own code to work in the CGI environment will be as por-
table as you make it. If you still think that you do not want to use any of these mod-
ules, you can point your web browser to the documentation section at http://www.cgi-
resources.com and read about the CGI interface.

6.1.1 HTTP and CGI

Something important to understand about HTTP is that each object that is fetched
from the server is a separate request. Often HTTP and HTML are confused, and peo-
ple only familiar with HTML believe, erroneously, that the HTTP protocol somehow
magically knows what the contents of an HTML document are. This is not the case.

When an HTML document is being served to a browser, and this document con-
tains 4 graphics files, then the browser will make 5 separate requests to the server.1 To
our human eye it might look like one single page, but as far as the HTTP server is con-
cerned, there is no link between the 5 pieces of information it just served.

Consequently, your CGI programs need to deal with each of these requests separately.
You can’t write a program that at once delivers both the HTML document and the
images referenced in that document. It will need to do so in multiple runs, the difference
in output triggered by parameters, or you need to provide multiple programs. It is vitally
important to understand this before attempting to write complex CGI programs.

1 This does not mean that it always needs to open a connection to the server 5 times. Nowadays, multiple
HTTP requests can be sent in a single connection.

92 CHAPTER 6 GRAPHICS AND THE WEB

SEE ALSO The documentation for the CGI module and Lincoln Stein’s web page on
CGI at http://stein.cshl.org/WWW/CGI/ can tell you everything you want
to know about the CGI module. The documentation section of http://
www.cgi-resources.com is a useful resource to learn how the CGI works.
The Apache Project web site at http://perl.apache.org/ contains informa-
tion about setting up an Apache web server with mod_perl or
mod_fastcgi to improve the performance of your Perl programs.

6.2 SUITABLE IMAGE FORMATS
The two most commonly used graphics formats on the web are GIF (Graphics Inter-
change Format) and JPEG. Normally, you will find the GIF format used in images
that contain large areas of the same color, and the JPEG format for photographic, or
real-world, images.

However, since the compression algorithm that makes GIF images so suitable for
the web is patented, and requires a license from the patent holders, it is likely that GIF
will slowly disappear. It is certain that there will be no freeware libraries or software
available that will create compressed GIF images. Many will probably continue to
import compressed GIF and write uncompressed GIF but in its uncompressed form
the GIF format is nothing special, and is, in fact, a very bad choice.

There is a superior graphics file format that can take over most of the application
area that GIF takes today: PNG. The most-used web browsers and graphics creation
packages already support PNG images,2 and we can expect more and better support
for them in the future.

The only thing that GIF does, and PNG doesn’t, is animation. For that we are still
dependent on GIF. MNG, the Multi Image Network Graphics format that is being
developed to fill that area, is based on PNG, and will allow much more sophisticated
animations than GIF allows. The animations will also generally be smaller in size.
Unfortunately, mainstream support for MNG is virtually non-existent thus far. Let’s
hope that changes quickly.

For the web, there are no other practical image formats widely supported by the
mainstream web browsers. There are all kinds of plug-ins available that allow you to view
almost any kind of image or graphic, but plug-ins are generally only available for a lim-
ited number of platforms. If possible, avoid anything that needs an external plug-in.

6.2.1 Web safe color palettes

Most computers now have graphics cards and drivers that allow them to display at
least 16 million colors. There are, however, still a few out there that only support 256
colors (I often use an X terminal at work that only uses 256 colors). There are also
some design houses and employers who insist on making all graphics that are to be
displayed in a web page conform to the standard 216 color palette. Most graphic

2 In fact, the GD module no longer creates GIF images, but PNG images instead.

SUITABLE IMAGE FORMATS 93

designers have stopped worrying about this, and it won’t take long until few will even
remember why this particular palette was important. This section exists in part to
insure that people won’t forget about it, and won’t automatically assume that all
browsers and all platforms are equally capable.

The mainstream web browsers (Netscape Navigator and Microsoft IE) pre-allocate
a certain set of colors which will be used to render pages. When running on a 256 color
display, they will start dithering other colors to fit within this palette. This can produce
surprisingly ugly results. For example: if a GIF image with 256 unique colors needs to
be displayed in Netscape on a 256-color display, 40 colors will be dropped, and
approximated with dithering techniques. If any of those dropped colors are widely
used in the image, the end result can be far from the intended one.

To prevent dithering, a web designer can make certain that an image does not con-
tain any colors but the ones that fall in the standard palette. This will guarantee that
the image will be displayed correctly, and as intended, on the target browsers. The
browsers mentioned earlier normally use a 6×6×6 color cube, which means that they
use a palette with 216 colors with the red, green and blue components spread evenly.

Web safe colors with GD

The following subroutine allocates a color cube of size $n for a GD::Image object.
The default $n is 6, which will allocate a web safe color palette:

sub allocate_web_palette
{
 my $gd = shift;
 my $n = shift || 6;

 my $step = 255/($n - 1);
 my @range = map
 { sprintf "%.0f", $_ * $step } 0 .. $n - 1;

 for my $r (@range)
 {
 for my $g (@range)
 {
 for my $b (@range)
 {
 $gd->colorAllocate($r, $g, $b);
 }
 }
 }
}

This loops over the red component of the desired color in steps that will allocate
black (0,0,0) as the first color, and white (255,255,255) as the last. The colors are all
more or less evenly spaced over the possible spectrum of colors in 8 bits per channel
RGB. The steps used and the number of colors allocated are shown in table 6.1.

94 CHAPTER 6 GRAPHICS AND THE WEB

Notice that the step sizes aren’t always even
integral values—some colors in the palette will
be slightly farther apart than others. To con-
form to the generally accepted color cubes with
sides 5 and 3, the @range array in the subrou-
tine is produced by rounding up the value to
the nearest integer. If we didn’t explicitly round
it up ourselves, the floating values would be
truncated to an integer, resulting in slightly dif-
ferent colors from the intended ones.
If you start drawing on this GD::Image object,

use the colorClosest() method, so that you are guaranteed to use a color in the
standard color map.

$gd = GD::Image->new(200,200);
allocate_web_palette($gd);
$greenish = $gd->colorClosest(10, 127, 10);
$orange = $gd->colorClosest(255, 165, 0);

Web safe colors with Image::Magick

Image::Magick provides a special built-in image type that contains the palette
described previously. Together with the Map()method, any image can be converted
to use that palette. Suppose that you have an Image::Magick object $image, you may
convert it as follows:

$map = Image::Magick->new();
$map->Read('netscape:');
$image->Map(image => $map, dither => 1);

The Quantize() method allows you to reduce the colors in an image in other ways.
You cannot specify which colors will be used, but the color reduction algorithms used
by Image::Magick are very good at making certain the choice is optimal.

6.3 CGI AND DYNAMICALLY GENERATED GRAPHICS
Writing a CGI program that returns image data is very similar to writing one that
returns HTML, text, or any other data. The main difference is the Content-type
header that must be returned to the browser, and we are dealing with binary data
instead of text. The programming logic remains the same.

There is one other difference, and that is the way in which these CGI programs are
called. Since these programs return data that is typically embedded in an HTML page,
they are called in an HTML IMG tag:

Table 6.1 The numbers of colors and

the step size between the colors for

various color cubes making up a color

palette. Of these, the 5- and 6-sided

cubes are used most often.

 cube size colors step size

6 x 6 x 6 216 51

5 x 5 x 5 125 63.75

4 x 4 x 4 64 85

3 x 3 x 3 27 127.5

CGI AND DYNAMICALLY GENERATED GRAPHICS 95

Of course, the script is unaware whether it has been called from within an IMG tag or
directly as a link, and the programmer does not need to take any extra measures or
use any techniques that are different from any other CGI program.

As an example, we will write a CGI program that can be used to display a clock on
an HTML page that shows the current time. We’ll use the modules developed in
chapter 10 for this. Since those modules already do all the hard work of creating a
clock, all we are concerned with is the CGI specific code and the code that interfaces
with the module.

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);
use Canvas::Polar::GD;
use Clock;

my $size = param('size') || 90;

my $canvas = Canvas::Polar::GD->new(
 $size, $size, '#ffffff');
my $clock = Clock->new(radius => $size/2);
$clock->draw($canvas, $size/2, $size/2);

binmode STDOUT;
print header(-type => 'image/png',
 -expires => '+1m');
print $canvas->gd->png;

This is a small, fairly standard CGI program for Perl. It runs with the -w and -T flags
to Perl enabled, and uses the strict pragma. None of these three are absolutely neces-
sary for the correct functioning of the program, but they can be valuable for debugging
programs and for security in an environment in which user input needs to be tightly
controlled. Furthermore, it uses the CGI module, which is the standard for any CGI
work in Perl. It might be considered overkill for something as simple as this script, but
I would still recommend the use of it (see also the introduction to this chapter).

 b The two other modules that are included are Canvas::Polar::GD from section 10.1
“Interface design,” on page 176, and the Clock module from section 10.2 “An OO
implementation of a clock,” on page 186. All you need to know about these modules
right now is that they provide this program with the capability of drawing a clock on
a GD canvas.

c The only parameter this example script will look for is size, which is the width and
height of the clock. If no size parameter is given, a default of 90 pixels is assumed.

d A GD canvas is then created, and a clock object is created and drawn on the canvas.
The dimensions used to create the GD object are the given size. The radius of the
clock is half that, since the middle of the clock should be in the middle of the canvas.

b Include the needed
modules

c Get the size parameter

d Create a Canvas::GD::Polar
object and draw a clock

e Write the image
to the client

96 CHAPTER 6 GRAPHICS AND THE WEB

e Once all the drawing work is done, we need to output the image to the client. First, we
tell the browser that we are returning data of the type image/png, which is the MIME
type for PNG data, and we add an expiration time of 1 minute from now.3 We then
prepare the file handle we are going to print to with binmode() and print the data.

We can now include a clock in an HTML page with something like:

As you can see, there is nothing special about this sample script, compared to other
programs that use the CGI. The handling of input parameters is the same as for any
program that uses the CGI module, and nothing special needs to be done, apart
from being aware that PNG data is binary, and therefore STDOUT should be prepared
with binmode().

6.4 FORMS AND ENCAPSULATED GRAPHICS

The example from the previous section is a minor one, because there is no interactive
input to the program that creates the graphic. More often, there will be the requirement
for some user input, and an HTML page as output with the graphic somewhere on it.
As an example we will take the program that generates a chart of the Southern Oscil-
lation index and rainfall from section 5.1.7 “Mixed charts,” on page 72, and fashion
that into an interactive Web application that combines a few select boxes and a dis-
play of a graph, as shown in figure 6.1. The only user input will be the start and end
dates for the graph, which can be selected from 4 pop up menus at the top of the
page. The output is the same form, with the pop-ups initialized to the selected values
or to some default, if nothing was selected yet. If values have been submitted, then
the HTML page will also contain a chart with the SOI and monthly rainfall plotted
over the period indicated.

The program that provides this functionality is surprisingly simple, mainly thanks
to the use of the CGI module. Let’s have a look at how it works.

#!/usr/bin/perl -wT
use strict;
use CGI qw(:standard);
use CGI::Carp qw(fatalsToBrowser);
use GD::Graph::mixed;
use GD::Graph::Data;

use vars qw($data $start_date $end_date @months @years);
@months =
 qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

@years = (1987 .. 1999);

3 The expiration time is here to make sure that well behaved browsers and proxies will refresh the image
at least once every minute.

b Include the needed
modules

FORMS AND ENCAPSULATED GRAPHICS 97

b We start with the most common standard header for CGI scripts: the -w and -T flag
for Perl, the strict pragma, and the CGI and CGI::Carp modules. The CGI::Carp
module can help a CGI programmer quite a bit during development by routing any
error messages from the program or Perl to the browser. Since the script must be able
to create a chart, we include GD::Graph::mixed, and since we want to store our data
somewhere, we’ll use GD::Graph::Data. After that, we declare some variables that we
want to be able to use globally, and which define the valid range of months and years
used to populate the popup menus.

Next, we’ll determine the input parameters, and read the relevant data from the data file:

if (param())
{
 $data = GD::Graph::Data->new();
 $start_date = param('start_month').'/'.param('start_year');
 $end_date = param('end_month').'/'.param('end_year');
 open(IN, '../Charts/SOI.data') or die "Can't read SOI.data:$!";
 while(<IN>)
 {
 next if /^#/;

Figure 6.1 A screen shot of the Southern Oscillation Index CGI program in ac-

tion. The interface allows the user to select a start and end date from a set of

drop-down menus and, on submission of the request, the result of the query

is shown in a chart.

c Only if parameters have
been submitted

98 CHAPTER 6 GRAPHICS AND THE WEB

 if (/^\Q$start_date/ .. /^\Q$end_date/)
 {
 chomp;
 my @d = map {$_ eq '' ? undef : $_} split /\t/;
 $data->add_point(@d);
 }
 }
 close(IN);
}

c The code in this block is executed only if any parameters have been submitted. It
reads in the data from the data file, the same way as the program in section 5.1.7
does, but with user-supplied start and end dates instead of hard coded ones.

d This data is placed into the GD::Graph::Data object only when it falls between the
start and end dates specified by the user. While storing the data, empty fields in the
data file are mapped to undef values, since GD::Graph requires that non-existing
data points be entered that way.

Note that in a real-life production script the input validation should probably be
more sophisticated. Rather than merely checking for the presence of any parameters,
the script should verify that the parameters it needs are present, and whether they
have valid values.

The following step is taken to determine whether we want to generate an HTML
form as output or a chart:

if (path_info() =~ /graph$/)
{
 make_graph();
}
else
{
 make_form();
}

For this example we distinguish between the two possible outputs by adding some
path information at the end of the script. This is an often overlooked aspect of the
CGI standard; the part of the path that comes after the script URL is passed to the
program in the environment variable PATH_INFO, which we can access with the
path_info() method from the CGI module. Suppose that the script is accessible as
http://www.foo.com/weather/SOI.cgi, then the chart will be generated from the URL
http://www.foo.com/weather/SOI.cgi/graph.

The code simply checks whether the return value of path_info() ends in the
string graph. If so, the subroutine make_graph() is executed; if not, make_form()
is executed.

Now let’s see how the real work is done:

d Only read data in the
wanted range

FORMS AND ENCAPSULATED GRAPHICS 99

sub make_form
{
 print header(-type => 'text/html;charset = ISO-8859-1'),
 start_html(-title => 'SOI and Rainfall', -bgcolor => '#ffffff'),
 start_form,
 'From: ',
 popup_menu(-name => 'start_month',
 -values => \@months),
 popup_menu(-name => 'start_year',
 -values => \@years),
 'To: ',
 popup_menu(-name => 'end_month',
 -values => \@months),
 popup_menu(-name => 'end_year',
 -values => \@years),
 submit,
 hr;

 if (defined $data)
 {
 my $img_url = script_name() . '/graph?' . query_string();
 print
 h4("$start_date to $end_date"),
 p,
 img {src => $img_url};
 }
 print end_html;
}

e This subroutine is responsible for returning the HTML to the browser that displays
the input form. It uses methods provided by the CGI module to generate HTML, and
to easily and conveniently create and populate the necessary form elements.

f It then checks whether $data is defined, which will be true only if the data file has
been read in by the code on page 98. If there is data, we construct a URL using the
extra path information /graph appended to the current script name, which will
instruct this script to generate an image instead of a form. We also append the current
parameters to the script as a query string. We then print a header and an IMG tag
with the constructed URL. When the browser loads this page, it will then hopefully
request the URL that prompts this script to generate a chart with the same parameters
that were submitted to this form processor. The subroutine that would carry out that
particular job is:

sub make_graph
{
 my $chart = new GD::Graph::mixed(500,300);
 $chart->set_legend(qw(Rain SOI));
 $chart->set(
 y1_label => 'Monthly rain fall (mm)',
 y2_label => 'SOI',

e
Populate the
popup menus

f
If data was read in,
embed a chart

O Create a chart object

100 CHAPTER 6 GRAPHICS AND THE WEB

 types => [qw(bars lines)],
 dclrs => [qw(blue lgreen)],
 line_width => 3,
 two_axes => 1,
 x_label_skip => 3,
 x_labels_vertical => 1,
 zero_axis => 1,
);

 binmode STDOUT;
 print header(-type => 'image/png');
 print $chart->plot($data)->png;
}

First, a new GD::Graph::mixed object is created and given a legend and values for
some attributes. The appropriate header is written to the client, STDOUT is prepared
for use with binary data, and the chart is printed, using a shorthand version of

my $gd = $chart->plot($data);
print $gd->png;

That concludes the program. As you can see, a lot of the work of maintaining state
(remembering which dates were selected between calls of the program) is performed
by the CGI module. For graphics generating applications on the web, (which almost
always need some transfer of state between the call to the script that generates the
HTML page and the call that generates the actual image) this module really is a must.

SEE ALSO The CGI module documentation and the GD::Graph documentation.

6.5 IMAGE COLLECTIONS AND THUMBNAILING

In the previous section we saw an example of a dynamic interface that responds to
user input, displaying exactly the chart that was requested. Programs such as this can
be quite a load on a web server, especially when they’re requested frequently. There
are several ways to decrease the demands on the CPU for this type data, the most
effective one being to remove the interactivity totally, wherever that is possible. For
example, financial company reports or log file statistics allow easy pregeneration of a
set of charts and the HTML that goes with it.

Another example of data that lends itself well for automatic pregeneration of
HTML and images is an image or photo directory. If you have a database of infor-
mation about images and, of course, the images themselves, you can provide a useful
interface to all this by writing an interactive application that queries the database and
displays thumbnailed versions of those files in a browser. For a searching interface,
this is a perfectly valid solution. For a browsing interface, in which a user just clicks
on a set of links to reach a list of images, it is preferable to create the HTML and
images in advance.

This section provides some alternative ways to present image directories or collec-
tions on the Web.

O Write chart
to client

IMAGE COLLECTIONS AND THUMBNAILING 101

6.5.1 Thumbnails with Image::Magick

In this section we’ll look at a small program that can be used to create thumbnails of
a uniform size of a collection of images. It will create a directory (by default called
icons) and put in thumbnail representations of all the images passed on the com-
mand line. You can call this program this way:

prompt> make_thumbnail -dir thumb *.gif *.jpg ../*.tiff

This will cause a new directory called thumb to be created in the current directory,
and in it thumbnail images will be placed of all the GIF and JPEG images in the cur-
rent directory, and all the TIFF images in the parent directory. The file names of the
thumbnails will be the same as the image file names, but with .png appended.
#!/usr/local/bin/perl -w
use strict;
use Image::Magick;
use Getopt::Long;
use File::Basename;

my $out_dir = 'icons';
my $geometry = '120x120';

GetOptions(
 'geometry=s' => \$geometry,
 'directory=s' => \$out_dir,
);

mkdir $out_dir, 0777 or
 die "Cannot create $out_dir: $!" unless -d $out_dir;

foreach my $img (@ARGV)
{
 my $rc;
 my $im = Image::Magick->new();
 $rc = $im->Read($img);
 warn($rc), next if $rc;
 $rc = $im->Scale(geometry => $geometry);
 warn($rc), next if $rc;
 my $basename = basename $img;
 $basename =~ s/\.\w+$//;
 $rc = $im->Write("PNG:$out_dir/$basename.png");
 warn($rc) if $rc;
}

The program uses Image::Magick to manipulate the images and the standard Perl
module Getopt::Long to process the command-line options. The options we look for
are the geometry specification for the scaling (see “Geometry,” on page 277 for a full
explanation of possible values), and the directory into which the thumbnail images
should go. If the directory does not yet exist, the program attempts to create it.

After processing the options, the program will loop over the remaining command-
line arguments, treating each as a file name. It attempts to read these files, and if that
fails (i.e., $rc has a true value) it prints a warning and continues with the next file.

O The default output
directory and
thumbnail size

O
Make sure the output
directory exists

O Read the original image

O Resize the image

O Get the file name, and
remove the extension

O Write the
thumbnail

102 CHAPTER 6 GRAPHICS AND THE WEB

If successful, it transforms the image according to the geometry specification, gets the
basename of the file,4 and saves the scaled image as a PNG file in the directory speci-
fied. Of course it is possible to make this program more flexible, for example, by allow-
ing the file type of the saved thumbnails to be specified as an argument.

6.5.2 Thumbnails with GD

Even though GD doesn’t directly provide any methods to resize an image, it can still
be used to create thumbnails, thanks to its copyResized() method. Because of the
limitations of GD compared to Image::Magick,5 the program in this section will be
less flexible, and the resulting thumbnails will generally be of a lower quality. How-
ever, since these are merely thumbnails, that might very well be acceptable. Since GD
seems to be installed on a larger number of systems than Image::Magick, the following
program is likely to be more widely usable than the one from the previous section:

#!/usr/local/bin/perl -w
use strict;
use GD;
use Getopt::Long;
use File::Basename;

my $out_dir = 'icons';
my ($width, $height) = (120, 120);

GetOptions(
 'width=i' => \$width,
 'height=i' => \$height,
 'directory=s' => \$out_dir,
);

mkdir $out_dir, 0777 or
 die "Cannot create $out_dir: $!" unless -d $out_dir;

foreach my $img (@ARGV)
{
 my $im = GD::Image->new($img) or
 warn("Can't open $img"), next;
 my ($w, $h) = $im->getBounds();

 my ($w_scale, $h_scale) = ($width/$w, $height/$h);
 my $scale = $w_scale < $h_scale ? $w_scale : $h_scale;
 my ($w_out, $h_out) =
 map int, ($scale * $w, $scale * $h);

 my $im_out = GD::Image->new($w_out, $h_out);
 $im_out->copyResized($im, 0, 0, 0, 0,
 $w_out, $h_out, $w, $h);

4 In this case that is the full name of the file without any leading directory components and stripped of
the file name extension.

5 GD only works with 256 colors per image, it cannot deal with as many image formats as Image::Magick
does, and it does not recognize the geometry specification.

O The default output
directory and
thumbnail size

b
Read the original
image and get its size

c

Calculate the
size for the
thumbnail
and resize

IMAGE COLLECTIONS AND THUMBNAILING 103

 my $basename = basename $img;
 $basename =~ s/\.\w+$//;
 open(OUT, ">$out_dir/$basename.png") or
 warn("Can't open $out_dir/$basename.png: $!"), next;
 binmode OUT;
 print OUT $im_out->png;
 close OUT;
}

The main difference between this program’s interface and the previous one is that this
one does not accept a geometry, but a width and height instead. These dimensions
define the upper limits of the thumbnail’s size, within which the aspect ratio of the
original image will be preserved.

b The images specified on the command line are read in one by one, using the auto-
matic detection of file formats in GD 1.30 and newer, and the size of the images is
determined.

c We need to calculate the horizontal and vertical sizing scales separately, and we have
to use the smallest of the two to resize the image. Once the dimensions of the thumb-
nail are known, a new image can be created according to those specifications, and
copyResized() used to copy the original image on to the thumbnail-sized one. All
that is left then is to save the image to a file.

6.5.3 Contact sheets with Image::Magick’s
visual directory

Another way to provide a thumbnail view of a set of images is through contact sheets.
A contact sheet is a single image which contains thumbnails of a set of other images.
The name comes from the photography world, wherein it is customary to make a
print of a set of negatives by placing them directly on photographic paper, and expos-
ing that to light. Because the negatives are in contact with the photographic paper
(which is not normally the case) this is known as a contact sheet.

Contact sheets can be handy if you need to send a set of samples or a directory of
images directly to someone, for example by email. Image::Magick provides two ways
to generate a contact sheet for a set of files.

If all your images are in a single directory and the highest quality is not required,
then the visual directory input mode for Image::Magick might be sufficient.

use Image::Magick;

my $rc;
my $im = Image::Magick->new();
$im->Set(size => '45x45', label => '%f');
$rc = $im->Read('vid:*.{jpeg,jpg,png}');
die $rc if $rc;
$rc = $im->Write('contact.miff');
die $rc if $rc;

O Write
the
thumb
nail

104 CHAPTER 6 GRAPHICS AND THE WEB

The built-in image type vid takes as its argument a shell wildcard expression (glob
pattern), and creates as many contact sheets as necessary, with thumbnails of all the
images matching the wildcard expression. Each of the thumbnails has the image
name, pixel size and byte size printed below it. As of version 5.2.4, it is possible to
control the size of the thumbnails with the size parameter, and the text printed
under the images with the label attribute (see “String formatting,” on page 280).

6.5.4 Contact sheets with Image::Magick::Montage

If you need more flexibility, look at the Montage() method. As well as greater con-
trol over the appearance of the output, this method also provides more and easier
control in choosing which images to display. First, all the images you are interested in
can be imported with the Read() or BlobToImage() methods, after which the
Montage() method is called on the resulting object to create a new object that con-
tains the sheets with thumbnail images.

use Image::Magick;

my $im = Image::Magick->new();
Read all the images you want with the Read()
or BlobToImage() methods into $im

my $montage = $im->Montage(
 geometry => '90x60+10+10', # tile size and border
 tile => '4x3',
 frame => '2x2',
 shadow => 1,
 label => '%f %wx%h',
);

$montage->Write('montage.miff');

The Montage() method takes a number of optional arguments, which are explained
in the manual page of the montage command-line tool and enumerated on page 266.
You can read in images in several ways. The Read() method accepts full glob
patterns, so that you can do things such as $im->Read('*.gif') or $im-
>Read('*.{gif,png}). It also accepts a list of file names, so you can build your
own list of names and pass it in, such as $im->Read(@filename) or even, if you
prefer Perl’s internal globbing, $im->Read(<*.png>).

The geometry attribute controls the size of the tiles (width and height) and the
borders (offsets) around the tiles (see also the explanation on page 277). In the above
example code, the tiles will be 90 pixels wide, 60 pixels high, and there will be a vertical
and horizontal 10 pixel gap between the tiles. If an image is smaller than the 90 by
60 pixels it will be scaled up. If you wish to avoid that, use a right angle bracket at the
end of the geometry specification: '90x60+10+10>'.

You control the number of tiles per sheet with the tile attribute. For this example
we request 4 columns of 3 tiles. In other words, we have a total of 12 tiles per sheet,
4 horizontal and 3 vertical. There are a few options that control the appearance of the

IMAGE COLLECTIONS AND THUMBNAILING 105

tiles. The frame attribute puts each thumbnail in a frame, and the shadow attribute
creates a drop shadow below each thumbnail.

The label attribute controls which text will be printed below each thumbnail. The
string value of this attribute can contain escapes that each start with a percent sign. A
full list of the possible escapes can be found in the manual page for the montage com-
mand-line tool, but I’ll list a few of the more common ones here (also see page 266).

If you want a tile to be empty, you can read in the special NULL file type, which is a
special built-in Image::Magick file type:

$im->Read('NULL:');

Keep in mind when creating these contact sheets that their size (in bytes) can become
unwieldy, causing users of your web site to sit and wait for some time before your
images appear. A technique based on individual thumbnails is likely to be more
appropriate and load faster. It also allows you to easily insert links to other pages,
maybe with more description or other information. We will have a look at an applica-
tion that does exactly that in the next section.

6.5.5 An example application: A web photo album

In this section we’ll walk through an application that I wrote a while ago that creates
a photo album, given a set of images and an XML file describing said images. I use it
to keep my daughter’s photo album on the web up to date, without having to actually
do much HTML editing. I wanted an application that took some information from a
database, together with the original scanned images, and would then generate a tree
of HTML files and images that I could pack up and send to relatives, or deploy on a
web server.

The photo album consists of a set of indexes, which allow one to group certain pho-
tos together. Each of the indexes displays a certain set of thumbnail images, which the
user can click on to view a full-sized version of a photo (see figures 6.2 and 6.3).

%b file size (bytes)

%f file name

%h height in pixels

%w width in pixels

%m file type (magick)

106 CHAPTER 6 GRAPHICS AND THE WEB

There is one master index with all the sections closed, and there is a single index page
for each section. Selecting one of the arrows opens or closes the selected section by
loading a different HTML document.

I had already created a set of HTML files with a prototype of this idea, which con-
vinced me even more that I did not want to manually maintain this HTML. Each time
I had to add a photo, or wanted to start a new series of photos, I had to resize and scale
various images to the correct size, put them in the right location, and then edit several
HTML documents, making certain to get all the names of these files correct.

Figure 6.2

One of the index pages of a

web photo album. The user

can select any of the headers

next to the little arrows to be

taken to another index page,

or they can select one of the

thumbnail pictures to see the

full-size photo with a longer

description.

Figure 6.3

A single page of the web photo

album, showing a full-size pic-

ture, plus an optional description

of the picture.

Maxine’s first
official
photo

IMAGE COLLECTIONS AND THUMBNAILING 107

6.5.6 Designing the data

The first decision to be made is how to maintain the data: which text goes with which
image, and in which section does a picture appear. In this case, we’ll use an XML file.
This allows the combination of the data to be maintained together with processing
instructions (I’ll discuss that later), which is something that cannot be done as easily with
a database-driven application. The XML file that drives the whole process looks like this:

<index title="Maxine's pictures">

<option name="source_dir" value="/spare/pictures" />
<option name="out_dir" value="OUT" />

<list description="The first eight weeks">
 <picture name="newborn"
 label="Maxine at 18 hours of age.">
 <text>Maxine's first official photo.</text>
 </picture>
 <picture name="no_hand"
 label="With Daddy, 7 days old." />
</list>

<!-- More lists go here -->

</index>

The XML document’s top node is the index node. This index consists of list nodes,
and each list contains a set of picture nodes. Each picture node can contain text which
will be displayed next to the full-sized version of the photo. Each of these elements
can have several attributes set, which are fairly self-explanatory. The index has a title,
which is used as the title of the HTML index pages. Each list can have a description,
which is printed in the index as the section header (see figure 6.2). Each picture has a
name and a label. The name is mandatory, and should be the first part of the name of
the image you wish to include. The label is printed next to the thumbnail in the
index pages.

In addition to the information pertaining to sections and pictures, the XML file
can also contain option elements. These elements set various options in the program,
and can appear anywhere in the document. For example, the source_dir option is
set to a particular directory at the top of the document. This directory contains the
original versions of the images you want to display, probably still in TIFF format, and
at a much higher resolution than is appropriate for the web pages. If the next section
has its source images somewhere else, a new option element can be included, and from
then on the program will find its source images in that new directory.

Designing the application and data flow

Now that we have defined the data we need and how it is formatted, we can design a
rough outline of an application and the data streams that go with it. Figure 6.4 con-
tains a schematic drawing of the various elements of the application we need to build.

108 CHAPTER 6 GRAPHICS AND THE WEB

The main application reads the XML file, and constructs an in-memory representa-
tion of the indexes, lists, and pictures that need to be created, which will be repre-
sented by Perl classes. Each of these classes will create a part of the output needed for
the photo album. The Picture::Index class is responsible for managing the lists and
creating the output for the indexes, with the help of the other classes. The Pic-
ture::List class is responsible for managing the individual photos and their order. The
Picture class represents a single picture with all its associated information, and is
responsible for the creation of the HTML pages that display a single photo, as well as
the creation of the web versions of the photos from the source images.

Parsing the XML

Let’s have a look at the program that parses the XML data file, and that builds the rel-
evant data structures.

#!/usr/local/bin/perl -w
use strict;
use Picture;
use XML::Parser;

my $DATABASE = $ARGV[0] or
 die "Usage: $0 picture_data.xml\n";

my $xml = XML::Parser->new(
 Handlers => {
 Start => \&xml_start,
 End => \&xml_end,
 Char => \&xml_char
 },
);

my $picture_index = Picture::Index->new();
$xml->parsefile($DATABASE);
$picture_index->generate_output;

The program uses XML::Parser, since we don’t want to do all the XML parsing our-
selves. It also uses the Picture module, which contains the code for the Picture,
Picture::List and Picture::Index classes. It is not available from CPAN, but it will be

Figure 6.4

A high-level application diagram for

the Web photo album generator,

showing the inputs and outputs of the

program and the main operative parts

and data structures.

b

Read the name
of the XML
database file

c
And generate all
HTML and images

IMAGE COLLECTIONS AND THUMBNAILING 109

discussed later in this section. It takes care of all the handling of the images and
HTML. The main program only parses the XML, and passes the information to the
code in Picture.

b The program expects as its first argument on the command line the name of an XML file
of the format discussed on page 155. It instantiates an XML::Parser object, and tells it
which subroutines to call when it encounters the start or end of a tag or some text data.
Following that, a Picture::Index object is created, which is defined in the Picture module.
This is the data structure used to store all the information contained in the XML file.

c Next, the XML file is parsed, and the $picture_index object’s generate_output()
method is called, which actually generates all pictures, thumbnails and HTML files.

That is all the work that occurs in the main program. Of course, there is a lot more code
to write—in particular, the subroutines that the XML parser object is to call. The first of
these is the subroutine that will be called when a start tag has been encountered in the
input file:

my $in_picture = 0;
my $in_text = 0;

sub xml_start
{
 shift;
 my $element = shift;
 my %attrs = @_;

 for ($element)
 {
 /^index$/ and
 $picture_index->set_option(%attrs);

 /^option$/ and
 $picture_index->set_option($attrs{name},
 $attrs{value});

 /^list$/ and
 $picture_index->add_list(%attrs);

 /^picture$/ and do
 {
 $picture_index->add_picture(%attrs);
 $in_picture = 1;
 };

 /^text$/ and
 $in_text = 1;
 }
}

d Declare state
variables

e The name of the element
and any attributes

110 CHAPTER 6 GRAPHICS AND THE WEB

d Two state variables are declared that will be used to track whether we are currently inside
a picture tag or a text tag. We need to keep track of this so that in the text handler,
xml_char(), we know whether we need to store the text fragments that are detected.

e The xml_start() subroutine is invoked each time an opening XML tag is detected,
and the attributes of that tag are passed in as arguments. When the top node element
is read, the attributes are merely passed on to the $picture_index object, which
was defined in the main body of the program. When an <option> tag is encoun-
tered, its name and value attributes are also passed on as options to the
$picture_index object. When a <list> or <picture> is seen, the correspond-
ing method is called. The two state variables are set to certify that we can keep track
of whether we’re actually processing a picture or text at the moment. This allows us to
ignore any textual data that isn’t part of a text block in a picture tag.

The subroutines that are called when an XML end tag or character data are encoun-
tered are called xml_end() and xml_char(), and are defined as follows:

sub xml_end
{
 shift;
 my $element = shift;

 for ($element)
 {
 /^picture$/ and $in_picture = 0;
 /^text$/ and $in_text = 0;
 }
}

sub xml_char
{
 my $parser = shift;
 my $string = shift;

 if ($in_picture && $in_text)
 {
 $picture_index->add_text($string);
 }
}

All that needs to be done in xml_end() is to reset the two state variables, and all that
the xml_char() subroutine needs to do is to call the add_text() method if both
the state variables are true.

This concludes the program that parses the XML file. It is now time to have a look
at the Picture module. It contains code for three classes, Picture::Index, Picture::List,
and Picture. The names of these three packages makes it clear that they reflect the data
structure in the XML document.

O
Only if we’re processing a
picture’s text tag

IMAGE COLLECTIONS AND THUMBNAILING 111

The Picture::Index class

The Picture::Index class is responsible for the creation of the index pages, and the man-
agement of photo lists. It also contains convenient methods that forward information
to the lists that are managed. Let’s have a look at how Picture::Index is implemented:

package Picture::Index;
use strict;
use CGI qw(-no_debug);

our %options = (
 out_dir => '.',
);

sub new
{
 my $proto = shift;
 my %attrs = @_;
 my $class = ref($proto) || $proto;
 my $self = {%options, %attrs, _lists => []};
 bless $self => $class;
}

b The Picture::Index class includes the CGI module, for generating HTML. That way
we don’t have to worry as much about correctly opening and closing tags, and can let
a thoroughly debugged module do all the hard work for us.

c A package-wide %options hash is declared, which is used to initialize objects that are
instantiated from this class. This can be seen in the new() method, which is defined
next. The objects of the class are all instantiated with the contents of the %options
hash, overridden with the arguments (stored in %attrs) and have a reference to an
empty array added to the store picture lists. This array will be used to store the con-
tained photo lists, which are implemented as Picture::List objects, discussed later.

The set_option() method can be used to set individual attributes for the class
as a whole, or for individual objects.

sub set_option
{
 my $proto = shift;
 my %attrs = @_;

 Picture->set_option(@_);

 if (ref($proto))
 {
 $proto->{$_} = $attrs{$_} for keys %attrs;
 }
 else
 {
 %options = (%options, %attrs);
 }
}

b For HTML output

c Default options

O
Pass arguments on to
the Picture class

O Is this an object?

112 CHAPTER 6 GRAPHICS AND THE WEB

In any case, the call is forwarded to the Picture class, so that all attributes set in this
subroutine become class defaults. If the method is called on an object reference, the
object’s options are changed, otherwise the class options are changed.

The add_list() method is used to create a new list in the index. This is accom-
plished by instantiating a new Picture::List object (discussed later), and pushing that
onto the end of the array that contains all lists. At this time a file name is also assigned
to this particular list, which will be used for the output phase.

sub add_list
{
 my $self = shift;
 my %attrs = @_;
 my $list = Picture::List->new(%attrs);
 my $num = push(@{$self->{_lists}}, $list);
 $self->last_list->{filename} = "index$num.html";
}

sub last_list
{
 my $self = shift;

 $self->{_lists}->[-1];
}

The last_list() method can be used to get a reference to the last list added.
The add_picture() and add_text() methods just add a picture to the current

list, or text to the current picture.

sub add_picture
{
 my $self = shift;
 $self->last_list->add_picture(@_);
}

sub add_text
{
 my $self = shift;
 $self->last_list->last_picture->add_text(@_);
}

This is done by forwarding the call to the current Picture::List or Picture object,
which can be obtained through the method last_list() in Picture::List and the
last_picture() method in Picture, which will be discussed later. There should
be no surprises in this way of delegating work for anyone who is familiar with OO
programming.

The only code left to write for this package is the code that actually generates the
output files from the information provided:

sub generate_output
{
 my $self = shift;
 local(*OUT);

IMAGE COLLECTIONS AND THUMBNAILING 113

 mkdir($self->{out_dir}) or
 die "Cannot create dir $self->{out_dir}"
 unless -d $self->{out_dir};

 foreach my $li (-1 .. $#{$self->{_lists}})
 {
 my $fn = "$self->{out_dir}/";
 $fn .= ($li == -1) ?
 'index.html' :
 $self->{_lists}->[$li]->{filename};

 my $h = CGI->new();
 open(OUT, ">$fn") or
 die "Cannot open $fn: $!";
 print OUT
 $h->start_html(
 -title => $self->{title} || '',
 -bgcolor => '#ffffe7'
),
 $h->start_table(
 {-cellpadding => 10, -bgcolor => '#ffffe7'});

 foreach my $lj (0 .. $#{$self->{_lists}})
 {
 my $list = $self->{_lists}->[$lj];
 print OUT $list->index_entry($li == $lj);
 }

 print OUT
 $h->end_table,
 $h->end_html;
 }
}

d After making sure the output directory exists, a loop is set up over all the lists that
were added, and for each list, the name of the output file is determined.

e There is actually one extra run of the loop for element –1. Its purpose is to create the
main index, i.e., the index that has only the headers of the sections, with all sections
closed (see figure 6.2). This inclusion is also the reason that the code creating the file
name looks complex. If the loop index is –1, then the file name becomes index.html,
otherwise the file name becomes whatever it was set to in the add_list() method
discussed earlier.

The outermost loop creates all of the index documents. Each index document needs
to have information about all the lists in it. Inside this loop, we need to loop again
over all the lists, and ask each list to generate the HTML for its own entry by calling
the index_entry() method. We will discuss this method in full later. The only
argument it expects is a boolean value that tells it whether to generate only a header,
or a full set of thumbnails. It needs to generate thumbnail lists only when the docu-
ment we are currently generating is the index for the list in question; in other words,
when $li == $lj.

d
Make sure the output
directory exists

e A special case for the
master index

O Create an HTML
file for the index
of this list

O Get the index
entry for the
contained list

114 CHAPTER 6 GRAPHICS AND THE WEB

The Picture::List class

We will now look at the code that manages the Picture::List objects. These objects
represent individual lists of photos that belong together, and manage the order of
these photos, as well as how they should look in an index entry.

package Picture::List;
use strict;
use CGI qw(-no_debug);

sub new
{
 my $proto = shift;
 my %attrs = @_;
 my $class = ref($proto) || $proto;
 my $self = {%attrs, _pictures => []};
 bless $self => $class;
}

There is nothing surprising in the package header or its constructor. We use the CGI
module again for the creation of the HTML involved, to save work and debugging. A
new object gets initialized by using the arguments passed into the constructor, and a
reference to an empty array is added. This array will be used to store all the pictures in
this list.

To add those pictures, the method add_picture() is provided. The
add_picture() method instantiates a new Picture object and pushes that onto the
end of the discussed array.

sub add_picture
{
 my $self = shift;
 my $picture = Picture->new(@_);
 push @{$self->{_pictures}}, $picture;
}

sub last_picture
{
 my $self = shift;
 $self->{_pictures}->[-1];
}

The method last_picture() is provided to get a reference to the current picture,
so that outside code can easily obtain this information.

In the generate_output() method of the Picture::Index class, we discussed ask-
ing the Picture::List objects to generate the HTML for themselves. This is accom-
plished in the following code:

sub index_entry
{
 my $self = shift;
 my $selected = shift;
 my $h = CGI->new();

IMAGE COLLECTIONS AND THUMBNAILING 115

 if ($selected)
 {
 my $return =
 $h->Tr({-valign => 'top'},
 $h->td({-align => 'center', -width => 70},
 $h->a({-href => 'index.html'},
 $h->img({
 -src => 'deselect.gif',
 -width => 70,
 -height => 20,
 -border => 0,
 -alt => '-',
 }),
),
),
 $h->td({-bgcolor => '#ffd7d7', -width => '100%'},
 $h->tt($h->big($h->b($self->{description}))),
),
);
 for my $picture (@{$self->{_pictures}})
 {
 $picture->generate_output;
 $return .= $picture->index_entry;
 }
 return $return;
 }
 else
 {
 return
 $h->Tr({-valign => 'top'},
 $h->td({-align => 'center', -width => 70},
 $h->a({-href => $self->{filename}},
 $h->img({
 -src => 'select.gif',
 -width => 70,
 -height => 20,
 -border => 0,
 -alt => '+',
 }),
),
),
 $h->td({-bgcolor => '#ffd7d7', -width => '100%'},
 $h->tt($h->big($h->b(
 $h->a({-href => $self->{filename}},
 $self->{description}
),
))),
),
),
 }
}

O Need to generate HTML
for a selected list

O Need to generate HTML
for an unselected list

116 CHAPTER 6 GRAPHICS AND THE WEB

There are two main branches in this subroutine: b one to generate HTML for a
selected index entry, and c one branch to generate HTML for an unselected index
entry (see figure 6.2). The code in each of these branches is almost identical, and gen-
erates HTML for a table row representing the index entry for this picture list, with a
little arrow picture in the left table cell, and the description of the list in the right.

If the list is currently selected, thumbnails of the photos in the list need to be
printed, together with a short description. This is done by setting up a loop which calls
the generate_output() method for each picture, and adds the result of that call
to the current output. In this way, the Picture::List class delegates part of the work to
the Picture class.

The Picture class

We will now have a look at the last package, which is responsible for all the image
handling in this program.

package Picture;
use strict;

use CGI qw(-no_debug);
use Image::Magick;

our %options = (
 pic_size => 400,
 thumb_size => 70,
 source_dir => '.',
 out_dir => '.',
 thumb_dir => 'thumbs',
 pic_dir => 'pics',
 overwrite => 0,
);

sub new
{
 my $proto = shift;
 my %attrs = @_;
 my $class = ref($proto) || $proto;
 my $self = {%options, %attrs, text => ''};
 $self->{html_name} = "$self->{name}.html";
 $self->{thumb_name} = "$self->{thumb_dir}/$self->{name}.jpg";
 $self->{pic_name} = "$self->{pic_dir}/$self->{name}.jpg";
 bless $self => $class;
}

f The Picture class uses the CGI module for the HTML output, but it also needs
Image::Magick to be able to read the source images, and write the resized and refor-
matted images for the web photo album and the thumbnails.

g As in the Picture::Index package, there is a %option hash that is used to provide
defaults for the various attributes of the pictures. The attributes specify what the size
of the images will be for the single pages (they will fit inside a 400 by 400 pixel

f
The Image::Magick module is
needed for image sizing

g Default options
for the photos

IMAGE COLLECTIONS AND THUMBNAILING 117

square), and for the thumbnails (70 by 70 square maximum). The source images will
be sought in the directory specified by source_dir, and there are three attributes
that control the output directories: out_dir, thumb_dir and pic_dir. All of the
HTML files will be written in out_dir, all full-size pictures in out_dir/pic_dir
and all thumbnail pictures that are displayed in the indexes will be put in out_dir/
thumb_dir. The overwrite attribute controls whether already existing images will
be overwritten or left alone. Each of these attributes can be overridden by specifying
an appropriate <option> tag in the XML file. The constructor for this class initial-
izes an object with defaults copied from the %option hash, and sets up the file names
of the various output files for this particular photo.

All these options can be changed per object, or for the whole class with the
set_option() method:

sub set_option
{
 my $proto = shift;
 my %attrs = @_;

 if (ref $proto)
 {
 $proto->{$_} = $attrs{$_} for keys %attrs;
 }
 else
 {
 %options = (%options, %attrs);
 }
}

All pictures, except for full-sized images and thumbnail images, can also have text
associated with them. This text is added with the add_text() method:

sub add_text
{
 my $self = shift;
 $self->{text} .= shift;
}

Each photo can appear as an entry on an index page. The Picture::List class calls the
index_entry() method to get the HTML when that is necessary, and that method
is implemented as follows:

sub index_entry
{
 my $self = shift;
 my $h = CGI->new();

 return
 $h->Tr({-valign => 'top'},
 $h->td({-align => 'center', -bgcolor => '#ffd7d7'},

O Set options for
the object...

O ...or the whole class

118 CHAPTER 6 GRAPHICS AND THE WEB

 $h->a({-href => $self->{html_name}},
 $h->img({
 -src => $self->{thumb_name},
 -width => $self->{thumb_width},
 -height => $self->{thumb_height},
 -alt => '',
 -border => 0,
 }),
),
),
 $h->td({-width => '100%'},
 $h->tt($self->{label}),
),
)
}

This method generates HTML for a single table row with two cells. The left cell con-
tains the image tag for the thumbnail, and the right side contains the picture label.
Remember that this method was called from the index_entry() method in the
Picture::List object, just after a call to generate_output() (see the code on
page 114). The order of those two calls is important, because generate_output()
is actually responsible for calling the method that sets the size of the thumbnail image:

sub generate_output
{
 my $self = shift;
 local(*OUT);

 my $pic_dir = "$self->{out_dir}/$self->{pic_dir}";
 my $thumb_dir = "$self->{out_dir}/$self->{thumb_dir}";

 mkdir($pic_dir) or die "Cannot mkdir $pic_dir: $!"
 unless -d "$pic_dir";
 mkdir($thumb_dir) or die "Cannot mkdir $thumb_dir: $!"
 unless -d "$thumb_dir";

 $self->generate_images;

 $self->{text} =~ s#\n\s*\n#</p><p>#g;

 my $h = CGI->new();
 my $html_name =
 "$self->{out_dir}/$self->{html_name}";
 open(OUT, ">$html_name") or
 die "Cannot open $html_name: $!";
 print OUT
 $h->start_html(
 -title => $self->{title} || $self->{name},
 -bgcolor => '#ffffe7'
),
 $h->table({-cellpadding => 20,
 -bgcolor => '#ffffe7'},
 $h->Tr({-valign => 'top'},

O Generate all images

O Empty lines are
paragraph separators

O Create the HTML
file for this photo

IMAGE COLLECTIONS AND THUMBNAILING 119

 $h->td({-bgcolor => '#ffd7d7',
 -valign => 'center'},
 $h->img({src => $self->{pic_name},
 width => $self->{width},
 height => $self->{height}}),
),
 $h->td({-width => '100%'},
 $h->tt($h->p($self->{text})),
),
),
),
 $h->end_html();
}

This method creates the single picture pages (see figure 6.3) for the photo album.
Before doing this, the code first checks that the necessary output directories exist, cre-
ating them where necessary. Then the generate_images() method is called,
which is responsible for making certain that the full-size picture and the thumbnail
exist, and for reading in their dimensions. Since the rest of the code in this method is
almost self-explanatory, we’ll jump right ahead and have a look at gener-
ate_images():

sub generate_images
{
 my $self = shift;
 my $rc;
 my $im = Image::Magick->new();

 my $pic_name = "$self->{out_dir}/$self->{pic_name}";

 if (-f $pic_name && !$self->{overwrite})
 {
 warn "Won't overwrite $pic_name\n";
 $rc = $im->Read($pic_name);
 warn $rc if $rc;
 }
 else
 {
 foreach my $ext qw(tif tiff png jpg jpeg gif)
 {
 $rc = $im->Read(
 "$self->{source_dir}/$self->{name}.$ext");
 last unless $rc;
 }
 warn($rc), return if $rc;

 $im->Scale(geometry =>
 "$self->{pic_size}x$self->{pic_size}");
 $im->Set(filename => $pic_name);
 $rc = $im->Write();
 warn $rc if $rc;
 }

O Put in the
image tag

O And write the text

O
The image
already exists

h
Find a
source
image

O Create a web-
ready resized
version of image

120 CHAPTER 6 GRAPHICS AND THE WEB

 $self->{width} = $im->Get('width');
 $self->{height} = $im->Get('height');

 my $thumb;
 my $thumb_name = "$self->{out_dir}/$self->{thumb_name}";

 if (-f $thumb_name && !$self->{overwrite})
 {
 warn "Won't overwrite $thumb_name\n";
 $thumb = Image::Magick->new();
 $rc = $thumb->Read($thumb_name);
 warn $rc if $rc;
 }
 else
 {
 $thumb = $im->Clone();
 $thumb->Scale(geometry =>
 "$self->{thumb_size}x$self->{thumb_size}");
 $thumb->Set(filename => $thumb_name);
 $rc = $thumb->Write();
 warn $rc if $rc;
 }
 $self->{thumb_width} = $thumb->Get('width');
 $self->{thumb_height} = $thumb->Get('height');
}

This is where all the image manipulation takes place. This subroutine checks whether
the output image already exists, and if so, it is read into the $im Image::Magick
object. Reading in the image has to be done in order to create a thumbnail version of
it, and we need to know its dimensions to generate decent HTML.

h If the image doesn’t yet exist, the source_dir directory is checked for images with
the same base name and one of the extensions from a predefined list. If no matching
source images can be found, a warning is emitted and the subroutine is terminated. If
a source image can be found, it is read into the Image::Magick object, resized to fit
inside a square of pic_size pixels, and written to the output image location. Once
we are certain that we have an image loaded in $im, we store the image dimensions so
that they can be used to generate correct HTML image tags for it.

i If a thumbnail image already exists on disk, it is loaded into the $thumb Image::Mag-
ick object. If no thumbnail image exists, one is created by making a copy of the $im
object which contains the full-size image, resizing that copy, and writing it to disk.
Once we are certain a thumbnail exists, its dimensions are stored for future reference
while building the HTML.

To finish off the module, we need to return a true value.

"This is the end of Picture.pm";

O Memorize
dimensions of
image

i The thumbnail
image already
exists

O Create a
thumbnail
from current
image

O Memorize
dimensions of
thumbnail

SUMMARY 121

Limitations of the program

In the current incarnation of this program, all the pictures need a unique name. This
can be easily solved by prefixing the names of the resulting images with some man-
gled string that is based on the source directory from which the image was read.

The HTML for output is hard-coded in the Picture module. It would probably be
more flexible to use template files, or to allow callbacks that actually create the HTML.
However, to be fully flexible there, complicated code needs to be created. I judged it
easier to just create new modules if I needed a different look and feel. Instead of cre-
ating fully new modules, it is often enough to use the classes presented here as parent
classes, and to override only the parts of the code that need to be changed, i.e., the
generate_output() and index_entry() methods. The general layout idea
remains the same for all child classes, however. If a totally different layout is wanted,
a totally new piece of code needs to be written.

The design of the three classes isn’t as neatly organized and cleanly separated as it
could be.

6.6 SUMMARY

In this chapter we’ve had a look at dynamically creating graphical content for the
web. We have also discussed the (currently) most appropriate graphical formats for
the web. And finally, we’ve had a look at some ways to automatically create static con-
tent—in this particular case, image directories, for display on a web site.

122

C H A P T E R 7

Animations for the Web
7.1 Animation file formats 123
7.2 GIF animations 125
7.3 Perl and animations 126
7.4 Repeatedly applying a filter 127

7.5 Animated text 131
7.6 Animated charts 132
7.7 Animations with the Gimp 134
7.8 Summary 137

Animations come in many sizes and shapes. Nowadays, most people immediately
think of multi-frame GIF when the subject of animation is mentioned in the context
of image manipulation or computer graphics, and only a few people think also of
video formats, such as AVI, MPEG and QuickTime. There is a good reason for this:
the video formats normally require quite a bit of knowledge of video compression,
color spaces, frame rates, bit rates and other more obscure parameters. In other
words: it isn’t easy to work with video formats, and it has therefore become the
domain of a small group of specialists with video editing tools. Video formats also
have a limited application: they’re meant for video, and not for general purpose ani-
mations. There exists no ideal tool to work with these formats aside from Perl, thus,
this section will limit itself to animation for the web, which at the moment is the only
other most widespread use of moving computer graphics.1

Animations on web pages are seldom useful. They’re eye-candy, and are often an
eye-sore. Many animations are created and published on the Web simply because it

1 Of course, there are computer generated animations which are created for film or TV, but they gener-
ally don’t get stored in a GIF format, or anything resembling that.

ANIMATION FILE FORMATS 123

can be done. Some animations are created because the designers of the site treat the
Web as an extension of television. In certain quarters it is believed that a Web site isn’t
up to par until it has something on it that moves gratuitously.

However, one thing that animations excel at is catching the attention of visitors to
your web site. The human eye naturally gravitates toward anything that moves; thus,
if you do put an animation to your web site, it should highlight the parts on which
you want viewers to focus, over and above the rest of the page. Your company logo
probably doesn’t fall into this category. It also means that you should limit the number
of animations on a page to the barest minimum to avoid sensory overload. If you’ve
ever tried to read text on a page that has more than three animations in view, you’ll
know what I mean. Even subtle animations make it hard for people to concentrate on
the content displayed in the midst of all the movement.

Then of course there is the area of advertising on the Web. We are all, by now, famil-
iar with the banners, buttons, boxes, and other advertising material that we have to
download to reach the content we are actually seeking. I’m probably not too far off the
mark in believing that some 90 percent of animations on the Web are related to adver-
tising. Because the goal of this advertising is to attract your attention and convince you
to follow the link they represent, they are almost always intrusive and distracting. For
this same reason, animation is perfectly suited to advertisements on web pages.

What exactly is an animation? In its simplest form, an animation is a sequence of
images, displayed in succession to provide an illusion of movement or change. Video
formats accomplish this by replacing the image with an entirely new one (although
some compression formats actually avoid duplicating pixels or lines that are identical
in the two images). Other animation formats allow you to position smaller images on
top of a previous larger one, or even combine them. Yet other formats allow you to
specify drawing primitives which are drawn and rendered on the fly, and can be moved
around and transformed.

Let’s have a look at the various file formats that can be used to present animations
on web pages.

7.1 ANIMATION FILE FORMATS
Most of the animated illustrations served on Web pages are GIF format animations.
The use of Macromedia Shockwave and Flash is increasing, because people are look-
ing for ways to get around the limitations of the GIF format. There are, however,
some other contenders that hopefully soon will gain a significant share in the ani-
mated web content. In this section we’ll take a look at the most widely used anima-
tion file formats.

7.1.1 GIF

The GIF image format allows the creation of animations in a fairly simple and straight-
forward manner. The acceptance of GIF by the leading web browsers also attributed sig-
nificantly to the widespread use of GIF animations. Ever since the introduction of

124 CHAPTER 7 ANIMATIONS FOR THE WEB

animated GIF support in one of the earlier Netscape browsers, the use of this format has
virtually exploded. Since the GIF format is the most widely used format, we’ll be spend-
ing the bulk of this chapter on the creation of GIF animations.

There is, however, only so much that can be accomplished within the limits of the
GIF specification. It was never meant to cover the sort of elaborate animations for which
it is currrently used, thus resulting in large, inefficient blobs of data shuffled over the
Internet so someone can present you with a banner slightly more eye-catching than
their competitor’s banners. Add to that the fact that everyone in the world now has to
pay royalties whenever they create a GIF image and compress it (see section 2.1.1, on
page 17), and it’s no wonder that people have started looking for other solutions.

Unfortunately, the GIF format will be around for some time yet, mainly due to the
fact that mainstream browsers are very slow in accepting the alternative formats dis-
cussed in this chapter and elsewhere. For several years to come there will be a legacy
of obsolete browsers that cannot deal correctly with PNG and MNG formats but that
perfectly parse and render images stored as GIF.

7.1.2 MNG

The Multi-image Network Graphics format (see section 2.1.4, “MNG,” on page 19)
addresses these issues. It is an open, nonproprietary format that has been specifically
designed to support efficient, well compressed animations, using techniques and for-
mats from both the PNG and JPEG standards. At this time the MNG standard is still
in development, although some applications (notably ImageMagick) already support
it. It avoids the application domain of formats that currently cover video compres-
sion, and is therefore unlikely to ever include sound. MNG support in web browsers
is still very limited and relies on users finding and installing a plug-in.

SEE ALSO Plug-ins to support MNG for Netscape Navigator (Linux, Win32) and In-
ternet Explorer (Win32) are listed on http//www.libmng.com/plugins/.

7.1.3 Macromedia Flash

Macromedia Flash animations are slightly different from GIF animations. They are
internally formatted differently, and support all kinds of interesting operations geared
toward creating animated and interactive content. A Flash application is actually
much more than mere animation, although it is often used only for that. The format
is proprietary, and, although the players are free, a license fee is required for software
that creates the animations. There is no decent way to work with the Macromedia
formats from within Perl,2 so we won’t spend any more time on it.

2 Since this was written, several projects have been started to make this possible, and these projects are
in various stages of development. If you do a search on http://www.google.com/ for the keywords flash
and perl, you will find several of them.

GIF ANIMATIONS 125

7.1.4 SVG

For animations that should not be implemented as bitmapped frames, the Scalable
Vector Graphics format (see section 2.1.5, “SVG,” on page 19) will prove to be an
important player. Many GIF animations can be better implemented as Macromedia
Flash animations, and in many places where Flash animations are now used, the SVG
format will be an appropriate, nonproprietary replacement. Support for the SVG for-
mat can be expected in the next release of the major browsers since it has been adopted
by the World Wide Web Consortium as a candidate recommendation for a standard.

Apart from these four formats there really isn’t much available that is widely sup-
ported, or looks like it might be widely supported in the near future. Many graphics pack-
ages use their own format to store animations (such as ImageMagick’s MIFF format), but
it is unlikely that support for these will ever be available in mainstream web browsers.

7.2 GIF ANIMATIONS
Because at this moment GIF is the only widely supported animated image format that
can be created from within Perl, we’ll discuss it in more depth. There are several
parameters that are important for animated GIFs, which you will encounter in exam-
ples in this chapter.

GIF animations are built up from a sequence of images that can be of a different
size, as long as they’re smaller than the first image. The GIF format supports a few
options which can be set per image or frame, and one global-only option. The follow-
ing provides gives a short description of each:

loop

First there is the loop parameter, which is really a Netscape extension. This global
parameter controls how often an animated sequence is played. If this is set to 0, the
animation will loop forever.

delay

This parameter can be set for the whole sequence at once, and for each individual
frame. It expresses how long to wait (in hundredths of a second) before displaying the
next image in the sequence. It can have a value between 0 and 65,535, which is just
under 11 minutes. If this is set to 0, the animation will be displayed as fast as possible,
and will be at different speeds depending on the client and its environment.

dispose

The GIF format defines a disposal method, which is one of the following:

0 No method specified.

1 Do not dispose; the graphic is left as is.

2 Restore to background color. The area used by the graphic is restored
to the background color.

3 Restore to previous. The area used by the graphic is restored to what
it was before displaying this graphic.

126 CHAPTER 7 ANIMATIONS FOR THE WEB

Method 3 is not implemented in all clients out there; notably, some older versions of
Netscape will not be able to deal with this correctly.

transparency

While this last one is a general GIF attribute and not limited to animations, it is still
important, because it can exert an influence over how the frames in a GIF animation
are combined. Unfortunately, this is dependent on the program used to display the
animation.

Each frame in a GIF animation can have its own size, offset and color palette. The
first frame has to be the largest one in the sequence, and none of the other frames is
allowed to extend past the borders of this initial frame. That means that if the canvas
size for your animation is 200 by 300 pixels, the initial image should have that size,
and all of the other images should be less than or equal to that size. If any of the fol-
lowing images has an offset, it should be smaller than the first image by at least the
magnitude of the offset. Many applications will actually allow violations of these rules
but, strictly speaking, they should be obeyed in any case.

7.3 PERL AND ANIMATIONS
Creating animations is a highly specific task, and most animations need to be created
manually, because you have to shift pixels, adjust timing, and generally fiddle around
until everything is as it should be. There are very few animation tasks that can be
automated, but nonetheless, you will occasionally find yourself in a situation in
which you want to automatically generate animated graphics. The various sections in
this chapter offer a short indication of how you can achieve that task, using Perl and
its modules.

Even if you don’t directly create the animations from within Perl, you can still use
it to prepare the images from which you are going to build the animation. Instead of
translating, blurring, or resizing 20 times manually, let Perl take care of that: you
import the result into an image editor that can work with the animation file format,
and you fine-tune it.

To create animations in Perl, the options are fairly limited. The only two packages
I know of that can be used to create animations are the Image::Magick and Gimp
modules, both of which are capable of creating GIF and MNG output. There is no
Perl module to create SVG, let alone SVG animations. Image::Magick can read SVG,
but it cannot output it. Since SVG is an XML-based text format, however, it isn’t dif-
ficult to create an SVG file from within a Perl program. All that’s needed is a detailed
knowledge of the file format, but that is not really a Perl issue. An example of how to
create SVG output, albeit not animated in this case, can be found in appendix C.

There are some tasks that you will find yourself facing regularly when creating ani-
mations. The next few sections will discuss some of these tasks, and provide suggestions

REPEATEDLY APPLYING A FILTER 127

on how to automate them. Few of the upcoming examples are likely to be full anima-
tions that one would use on their own, but they could conceivably be players in a larger
project. For example, you could make a company logo pop up on top of a chart that
shows how successful it has been over the last quarter. Or you could make it disappear
if the results weren’t that great.

7.4 REPEATEDLY APPLYING A FILTER
Interesting effects in animations can be achieved by repeatedly applying the same fil-
ter, such as a blur, shear, resize or translation. Repeating these effects can make objects
appear out of thin air, rotate into view, or zoom into existence. All of these involve
using the same base image and transforming or moving it according to some rules.
Each application of these rules results in a frame or part of a frame being incorporated
into a larger animation. When the image size changes, for example with a shear, resize,
or crop, the resulting frames will have boundaries that are different from the preced-
ing images. In this case, you might need to adjust some of the frame-positioning
parameters to make certain the resulting images overlap in the way you intended. We
will see more on that in section 7.4.2.

First, we will look at how to repeatedly apply a filter to slowly increase the visual
effect that a single pass of that filter would have. Stringing together the resulting
images into an animation can provide some interesting effects.

7.4.1 Example: making objects appear

Sometimes you will want to make it look like an object in your animation appears
out of nothing. This can be achieved by starting with an image that you want to be
the end result, and repeatedly applying a blurring type of filter to it. If, at the same
time you also adjust the brightness, you’ll find that it looks like your image slowly dis-
appears, or dissolves into nothing. All you need to do now to create the illusion that
the object is appearing is reverse all the frames of the sequence you just created. The
following program uses Image::Magick to do exactly that:

use Image::Magick;

my $frames = 10;

my $im = Image::Magick->new();
my $rc = $im->Read('logo.png');
die $rc if $rc;

my $frame = $im->Clone();
for (1 .. $frames)
{
 $frame->Spread(amount => 5);
 $frame->Blur(order => 3);
 $frame->Modulate(
 brightness => 100 + 75/$frames);
 unshift @$im, $frame->Clone(); c
}

b
Set the number of
output frames

c Copy the input image, and
create the frames

d Modify the
next frame

128 CHAPTER 7 ANIMATIONS FOR THE WEB

$rc = $im->Quantize(colors => 256,
 dither => 1,
 global_colormap => 1);
warn $rc if $rc;
$im->Set(delay => 10, loop => 1);
$rc = $im->Write('logo-spread.gif');
die $rc if $rc;

b The program starts by setting $frames to the total number of animation frames. We
will work backward through the animation, and put the frames that are generated at the
start of the image sequence. The last frame is the image itself, which is read from disk.

c A copy of the image object is made, and this copy is subjected to three filtering oper-
ations for each frame that is needed. At the end of each loop, a copy of the frame is
pushed to the front of the current animation with unshift, thus creating a reverse
sequence of frames that are progressively changed by the three filters.

d The filters chosen to do this job are Spread(), Blur() and Modulate() to adjust
the brightness. The first two will spread and smear out the pixels of the original
image, making it look more and more blurred after each pass. At the same time, the
brightness of the image is increased by a certain factor to make it more vague and
lighter. I’ve found that for most images a total amount, over all frames, of about 75
percent is a good value, but for darker images you might need to adjust that.

e Since this animation is destined for the Web we’ll optimize it slightly and make sure
that all frames in the animation use the same color map by calling Quantize().

f We set the delay time of each frame to 1/10th of a second, make sure that we only go
through the animation once (since it makes no sense to repeat it), and save it to a file.
The result of all of this can be seen in figure 7.1.

Instead of the three filters used in this example, you can use any of the special
effects mentioned in appendix A, as long as they don’t change the size of the image
they operate on. If you do need to change the size of the image, some extra steps
will be required to align everything properly. We will see an example of this in the
next section.

e Reduce the
palette size

f Set GIF parameters,
and save the
animation

Figure 7.1

An animation that repeat-

edly applies a blur, spread

and brightness change to

an image to achieve a re-

verse dissolution effect.

This effect makes it look

as if the subject of the im-

age slowly appears out of

nothing.

REPEATEDLY APPLYING A FILTER 129

To make this a more usable program, you could consider parsing the command
line arguments, and allowing the user to specify the number of frames, the total
amount of brightness change and the amount of spread and blur applied. It could also
show you a preview with the Animate() function, if requested.

7.4.2 Example: zooming in on an object

The GIF format specifies that the first image in a multi-frame animation determines
the bounding box of the animation, and that none of the following frames are
allowed to go beyond that border. If your software doesn’t automatically clip these
frames, you will have to remember to do it yourself. In the case of Image::Magick, the
clipping happens automatically, but you are still responsible for making certain that
the first image indicates the desired size of the total animation. Of course, when
images are smaller than the background, you also need to position them correctly,
unless you want them all to appear in the top left corner.

Suppose you want to create an animation in which you zoom in on the same image
used in the previous example. If you merely apply the same program as above, and
replace the three filters with a call to Resize() or Scale(), you’ll find that the result
will be an animation that does not work. This would be because the first frame in the
animation is also the smallest, resulting in a bounding box that can’t accommodate the
later images. Depending on the software used to create and display this animation, the
result can be surprising, and it might even cause a crash.

The following program is very similar to the one presented before, but adds all the
necessary code to control the size and layout of different sized frames in an animation.

use Image::Magick;

my $frames = 10;

my $im = Image::Magick->new();
my $rc = $im->Read('logo.png');
die $rc if $rc;
my ($im_width, $im_height) =
 $im->Get('width', 'height');

my $background = $im->Clone();
$background->Colorize(fill => '#ffffff',
 opacity => 100);
warn $rc if $rc;

b First, the image that will become the last frame is read in, and its width and height are
determined.

c This image is cloned and the clone is filled with a white color. This copy will become
the background, i.e., the first frame, of the animation.

my $frame = $im->Clone();
for (1 .. $frames)
{

b Read the image, and get
its width and height

c Create a background
image for the
animation

d Copy the image

130 CHAPTER 7 ANIMATIONS FOR THE WEB

 $frame->Resize(geometry => '75%');
 my ($frame_width, $frame_height) =
 $frame->Get('width', 'height');
 my $offset_x = ($im_width - $frame_width)/2;
 my $offset_y = ($im_height - $frame_height)/2;
 $rc = $frame->Set(page => "+$offset_x+$offset_y");
 warn $rc if $rc;
 unshift @$im, $frame->Clone();
}

unshift @$im, $background;

d The image is cloned again, as in the last example, to create the individual frames of
the animation.

e For each iteration, the image is resized to 75 percent of its current size, and the width
and height of the result are determined. These dimensions are used to calculate the off-
sets needed to center this frame with respect to the background, and the page image
attribute is set accordingly. Then the frame is added to the start of the $im object.

f The last frame to be added (to the start) is the image background that was created
earlier.

$rc = $im->Quantize(dispose => 1,
 colors => 256,
 dither => 1,
 global_colormap => 1);
warn $rc if $rc;
$im->Set(delay => 10, loop => 1);
$im->[0]->Set(delay => 0);
$im->[$#$im]->Set(page => '+0+0');

g As in the previous example, we quantize the color palette of the animation, so that all
frames use a global palette, and we set the delay of all frames to 1/10th of a second.
The first frame does not need to be displayed for any amount of time, so its delay is
reset to 0.

h The last frame, which is the original image, does not yet have a page offset, so we set
that now, before saving the image. If we didn’t explicitly set it, it would end up with
the same offset as the frame before it, which is of course not what we want.3

The result of this program can be seen in figure 7.2.

e Modify the
copied image

f
Add the background
as the first image

g Reduce the color
palette size

h
Set the offset for the
last frame

3 This might be a bug in ImageMagick, and is possibly going to be fixed in a future release.

ANIMATED TEXT 131

If you want to save this zooming animation in a format that doesn’t support frame
offsets, such as MPEG, you will find that you end up with a corrupt video. This is
because Image::Magick will not automatically attempt to correct for features that are
not present in the output format because it assumes that you know what you are
doing, and you intend to do exactly that. Since we do know what we are doing, we
can solve the problem by using the Coalesce() method on the image sequence
before we save it.4

my $im2 = $im->Coalesce();
warn $im2 unless ref $im2;
$rc = $im2->Write('logo-zoom.mpg');
warn $rc if $rc;

7.5 ANIMATED TEXT
Often you’ll find yourself playing with text on animated graphics. There are many,
many ways that text can be displayed in an animation or part of an animation. The
techniques in the previous sections can be used, of course, but text has the unique qual-
ity that it is made up of individual words and letters. Animations can make use of that.

The following program will take a string, and display the letters one by one in the
same spot, spelling out the full contents of the string.

use Image::Magick;

my $string = "Hello World";
my $img = Image::Magick->new();

my $letter_img = Image::Magick->new(size => '40x40');
$letter_img->Read('xc:white');

4 At least, this is how it is supposed to work. However, in Image::Magick 5.2.3 and 5.2.4 this is broken.
Hopefully it will be fixed for the next release.

Figure 7.2

An animation created by

repeatedly resizing an

image, and positioning it

in such a way that it ap-

pears centered on the

canvas. This creates an

effect similar to a camera

zooming in on the subject

of an image.

b

Create a
template
for a single
letter

132 CHAPTER 7 ANIMATIONS FOR THE WEB

foreach my $letter (split //, $string)
{
 push @{$img}, $letter_img->Clone();
 $img->[$#$img]->Annotate(
 text => $letter,
 font => '-*-arial-bold-r-*-*-36-*-*-*-*-*-*-*',
 gravity => 'Center',
 fill => 'red',
);
}

$img->Set(loop => 0, delay => 20, dispose => 2);
$img->[$#$img]->Set(delay => 200);
$img->Transparent('white');

$img->Write('spell.gif');

The program is initialized by including Image::Magick, setting a string, and creating
an object that will hold the animation frames. Next, a template image for a letter is
created and given a white background.

c The string is split into its individual letters, and for each letter, the template image is
cloned. This clone is added to the overall image array, and Annotate() is used to
put some text on the image.5

d After all letters have been written to a frame, the loop parameter is set to 0 (for an
ever-repeating animation), and the general image delay is set to 20/100 of a second.
For the final frame, the delay is set to 2 seconds.

This is not a very useful animation on its own, but it could be used as part of a larger
project. It can also be made more interesting with some special fonts, such as Gallau-
det, for which the characters consist of little people. You could make them walk, sit or
jump, simply by passing in the correct string.

7.6 ANIMATED CHARTS
You might occasionally wish to show the evolution of a certain set of data over time,
or you may want to add some life to a lackluster pie chart. One way to do that is by
animating them. We’ll show a simple example that builds a set of pie charts with
GD::Graph::pie, each of them slightly rotated. It uses Image::Magick to string all those
pie charts together in an animated GIF.

c Process the
individual letters

d Set the
animation
options and
save it

5 Note that the font string in the example is an X font string. ImageMagick supports the use of X fonts,
TrueType fonts (with the help of the freetype library) and PostScript fonts (with the help of Ghost-
script). Also see the description on page 278 in appendix A. Note that on plastforms where you don’t
have an X server available, you might need to use a font name such as “Arial-Bold” and an explicit point
size of 36.

ANIMATED CHARTS 133

#!/usr/bin/perl -w
use strict;
use GD::Graph::pie;
use GD::Graph::Data;
use Image::Magick;

my $ani = Image::Magick->new();

my $data = GD::Graph::Data->new();
$data->read(file => 'pie.dat', delimiter => ',')
 or die $data->error;

for (my $angle = 0; $angle < 360; $angle += 20)
{
 my $chart = GD::Graph::pie->new(200, 200);
 $chart->set(start_angle => $angle);
 my $gd = $chart->plot($data) or die $chart->error;
 $ani->BlobToImage($gd->png);
}

$ani->Set(loop => 20);
$ani->Set(delay => 50);
$ani->Write('pie-im.gif');

First of all we create an Image::Magick object, $ani, that will be used to store the
individual frames of the animation.

b Then we read in the data for our GD::Graph chart into a GD::Graph::Data object. It
is read from a file of the following form:

Sydney,165
Adelaide,98
Perth,114
Melbourne,148
Brisbane,119

c We set up a loop that increments an angle from 0 to 340 degrees in 20 degree steps.
Inside this loop we create a GD::Graph::pie object,6 and set its start_angle
attribute. We plot the pie, and add the PNG output to the $ani image object with
the BlobToImage() method.

d When all the pies have been created, we set some attributes for the animation, and
save it as a GIF. The result is a pie chart that slowly rotates clockwise. A few of the
frames are shown in figure 7.3.

b Get the data for
this chart

c

Create the
frames, using a
different start
angle for the
pie

d Set the animation
options and save it

6 In the current implementation of GD::Graph, an object cannot be reused, so we need to create a new
object for each pie chart.

134 CHAPTER 7 ANIMATIONS FOR THE WEB

Of course, this is just an example, and not a particularly impressive one, but if you
have a series of data that evolves over time, animating that in a sequence of charts can
be quite illustrative.

7.7 ANIMATIONS WITH THE GIMP
It is also possible to create animations with the Gimp modules, the Perl interface to
the Gimp image manipulation program. If you have ever worked with the Gimp, or
with PhotoShop, you’ll have no trouble following the flow of the program. If you
don’t know how the Gimp works, it would be worthwhile to obtain a copy and start
familiarizing yourself with it.

SEE ALSO To fully explain the complete Gimp interface is outside of the scope of this
book, and I suggest reading Grokking the Gimp [23] to learn more about how
the Gimp works, and checking out the Gimp Developers FAQ at http://
www.rru.com/meo/gimp/faq-dev.html for more on general programming
for the Gimp. You can find lots of documentation on the Gimp at http://
www.gimp.org/docs.html. There is also a tutorial available for Perl Gimp
users at http://imagic.weizmann.ac.il/ dov/gimp/perl-tut.html.

The following program creates an animation which is very much like the one pre-
sented in the previous section. It also interfaces with GD::Graph to create an anima-
tion of a rotating pie chart:

Figure 7.3

Four frames out of an

animation created by a

succession of calls to the

GD::Graph::pie module.

For each call the rotation

of the pie is specified

slightly higher, which

creates an animation of a

rotating pie.

ANIMATIONS WITH THE GIMP 135

#!/usr/bin/perl -w
use strict;
use GD::Graph::pie;
use GD::Graph::Data;
use Gimp qw(:auto);
use Gimp::Fu;

my $data = GD::Graph::Data->new();
$data->read(file => 'pie.dat', delimiter => ',')
 or die $data->error;

register
 "rotating_pie",
 "Rotating Pie",
 "This creates a rotating pie",
 "Martien Verbruggen",
 "Martien Verbruggen (c) 2000",
 "2000-02-21",
 "<Toolbox>/Xtns/Perl-Fu/rotating pie",
 "*",
 [
 [PF_INT32, "width", "Width", 200],
 [PF_INT32, "height", "Height", 200],
 [PF_INT32, "start", "Start Angle", 0],
 [PF_INT32, "end", "End Angle", 360],
 [PF_INT32, "step", "step angle", 20]
],
 \&chart_animation;

exit main();

The program starts off, as usual, by including the modules it needs. This time we need
to use both the Gimp and Gimp::Fu modules to be able to interact with the Gimp.

b Before being able to interact with the Gimp, or to be called from the Gimp, a pro-
gram needs to register itself. The first eight arguments to the register() function
define how the function will appear in the Gimp’s plug-in registry and in the menus
of the program.

c The ninth argument is an array reference, whose contents define a few controls that
will pop up on a dialog box when a user selects the plug-in from within the user inter-
face, and some default values for the variables set therein.

d These variables will be passed in as arguments to the subroutine given as the last
argument.

e After the registration is finished, the main() function is called. This function is defined
by the Gimp plug-ins, and will call the subroutine chart_animation() when this
program is run from the command line, as opposed to from within the Gimp. The pro-
gram exits with the same status as that returned by the main() subroutine.

b Register the
program

c Define some
controls for
the program

d
Define the subroutine
to be called

e Call the Gimp

136 CHAPTER 7 ANIMATIONS FOR THE WEB

A Gimp drawing is built up of layers. When exporting a Gimp image as a GIF, each
layer becomes a frame in the resulting animation. The parameters for each frame in
the animation are read from the name of the layer, as will be explained shortly. The
following subroutines create these layers, and combine them in a single image:

sub chart_animation
{
 my ($width, $height, $start, $end, $step) = @_;
 my $img = Image->new($width, $height, RGB);

 for (my $angle = $start; $angle < $end; $angle += $step)
 {
 my $chart = chart_img(
 $width, $height, $angle);
 $chart->selection_all();
 $chart->get_active_layer->edit_copy();

 my $lyr = Layer->new($img, $img->width, $img->height,
 RGB, "Pie (100ms) (combine)", 100, NORMAL_MODE);
 $lyr->add_layer(-1);
 my $sel = $img->active_drawable->edit_paste(0);

 $sel->floating_sel_anchor();
 $img->selection_none();
 }

 return $img;
}

f The chart_animation() subroutine accepts the five parameters set up in the reg-
istry as arguments, and creates a new Gimp image of the specified height and width.
As in the previous program that used Image::Magick, a loop is set up for the angles of
the rotating pie chart.

g For each angle to be plotted, a new chart is created with the chart_img() subrou-
tine, which we will define momentarily. This subroutine returns a Gimp image
object, of which we make a copy into the selection buffer.

h We create a new layer. The GIF animation parameters are stored in the name of the
layer, as that is where the GIF export plug-in expects to find them. The layer is added
to the top of the layer stack, and the current selection (which contains a copy of the
chart) is pasted onto the layer. Since a paste in the Gimp always results in a floating
selection, we make sure to anchor it to the layer. To prevent accidental problems, we
also make certain that nothing else in the overall image is selected, before continuing
with the next iteration of the loop.

The chart_img() function is responsible for creating a single chart in the anima-
tion sequence.

sub chart_img
{
 my ($w, $h, $angle) = @_;

f

Read the
arguments
and create a
new image

g Create a new chart
and put it in the
selection buffer

Add a new layer and
paste the selection

buffer into it

h

SUMMARY 137

 my $chart = GD::Graph::pie->new($w, $h);
 $chart->set(start_angle => $angle);
 my $gd = $chart->plot($data) or die $chart->error;

 my $file = "/tmp/pie.$$";
 open(TMP, ">$file") or die $!;
 print TMP $gd->png;
 close TMP;

 my $img = file_png_load(RUN_NONINTERACTIVE, $file, $file);

 unlink $file;
 return $img;
}

It does this by changing the start angle for the start between successive calls. Since
there is no way to pass image data to the Gimp via a scalar, a temporary file is used to
store the result of the GD::Graph::plot call, which is loaded with one of the Gimp’s
built-in functions: file_png_load(). The resulting image object is returned to the
caller, who is responsible for adding it to another image, or performing any other
work with it as needed.

This program can be used to create charts from within the Gimp. To make it more
usable, one would need to allow for many more options to be passed into it—where
to find the data would be an important one.

7.8 SUMMARY

In this chapter we’ve had a look at some ways in which GIF animations can be created
from within Perl, and what issues are involved. It shouldn’t be too difficult to com-
bine pieces of information from this chapter into larger programs that create anima-
tions. Generally speaking, you will create most animations in an interactive program,
but you might find it useful to be able to programmatically create the frames for a
larger animated project. The files created by the short programs presented can be
imported into a larger animation, and positioned correctly from within an interactive
program. It will at least save you the trouble of having to manually create 20 or more
frames by repeatedly applying the same set of filters and rules. That’s the sort of work
computers do best.

138

C H A P T E R 8

Resizing and
combining images
8.1 Scaling and cropping an image 139
8.2 Combining Images 140
8.3 Summary 151

Images are not always available exactly the way you want them. Often you have to
sharpen, blur, enlarge or shrink them, or apply special effects to make them fit in with
another set of images. Perhaps you want to assert your copyright on a picture by add-
ing a watermark. There is likely a set of business rules to apply to images to prepare
them for publication on your web site or any other medium you use, or you might
decide to combine multiple images to form a composite image.

There are several ways in which you can manipulate the contents of an image, or
multiple images, with Perl modules. Some modules provide standard functionality,
such as scaling, cropping and filtering, all at a high level. Examples of modules that
do this include Image::Magick and, to a lesser degree, GD. When you need functions
that fall outside of the scope of these modules’ standard operations, you can write your
own code that deals with the individual pixels of the image.

This chapter provides a description of the modules and their methods usable in
manipulating the contents of a single image, or in combining multiple existing images.
If you need to implement a certain functionality that the modules don’t directly pro-
vide, look at the methods for working with individual pixels, described in chapter 12.

SCALING AND CROPPING AN IMAGE 139

8.1 SCALING AND CROPPING AN IMAGE

Image::Magick is really the only module that provides direct scaling and resizing func-
tionality, and it does this in a most flexible and accessible way. It provides several
methods for resizing images, each with a slightly different application domain:

• Scale(). scales an image by calculating the average color of the source pixels
that contribute to a destination pixel. (See also page 272.)

• Zoom(). does the same as Scale(), but additionally applies a filter, and
optionally blurs the resulting image. (See also page 276.)

• Sample(). resizes an image using pixel sampling, giving the resulting pixel the
color of the most applicable source pixel. Essentially, no new colors will be intro-
duced in the resized image. If you are working with images that have a fixed pal-
ette you want to preserve, this is the method to use. (See also page 271.)

• Magnify(). doubles the size of an image. This is equivalent to Scale() with a
geometry of 200 percent. (See also page 264.)

• Minify(). halves the size of an image. This is equivalent to Scale() with a
geometry of 50 percent. (See also page 265.)

• Transform(). does the same as Scale(), but instead of acting on the current
image, it returns the result as a new image. In addition to scaling, this method
can crop and apply a filter to the returned image, which often results in signifi-
cantly more attractive results. (See also page 275.)

8.1.1 Image::Magick geometry specification

Most of these methods, except Minify() and Magnify(), accept a geometry param-
eter which expresses the desired size to which the image should be scaled. This geome-
try string is quite flexible, and can be used to achieve various scaling effects. A full
explanation can be found in “Geometry” section of appendix A, on page 277, but
we’ll have a look at some typical applications here:
Resize an image to fit within 300 by 300 pixels
$im->Scale(geometry => '300x300');

Resize an image to 300 by 300 pixels exactly
$im->Scale(geometry => '300x300!');

Resize an image to twice its size
$im->Scale(geometry => '200%');
or
$im->Magnify();

Resize an image to twice its horizontal size, and half
its vertical size
$im->Scale(geometry => '200%x50%');

Create a new image which is half the size of the old one
$im2 = $im->Transform(geometry => '50%');

140 CHAPTER 8 RESIZING AND COMBINING IMAGES

Resize the image to half size, but keep the current
set of colors
$im->Sample(geometry => '50%');

8.1.2 Cropping an image

To crop an image, the Crop() and Transform() methods can be used. Crop()
acts upon the object on which it was invoked, while Transform() returns a new
image object based on the current one:

Crop the current image to 100 by 100 pixels, starting
at an offset of 20 pixels horizontally, and 30 vertically
$im->Crop(geometry => '100x100+20+30');

Do the same, but create a new image
$im2 = $im->Transform(crop => '100x100+20+30');

Other image deformation methods

There are several other methods that displace an image’s pixels (e.g., Rotate(),
Shear() and Roll()). Section A.5 on page 250 contains a reference to all
Image::Magick methods, and it is a advisable to at least become familiar with them.

SEE ALSO Section 6.5 on page 100 contains some code for creating thumbnail ver-
sions of images using both GD and Image::Magick.

8.2 COMBINING IMAGES

Some of the reasons for combining images include: Watermarking your artistic prop-
erty, applying borders, or shaping an image by cutting out a part based on another
image. There are many ways that a creative mind can devise to combine images. This
section deals with a few methods for doing this using Perl modules.

8.2.1 Combining GD images

GD offers only a few methods to combine images, and they all simply overlay one
image on top of another. To combine two GD::Image objects, the following methods
are available:

$image->copy($src_image, $x_dst, $y_dst, $x_src, $y_src, $width, $height)

Copy a rectangle from $src_image onto $image. The rectangle is defined by the
coordinate of the upper-left corner ($x_src, $y_src), and the dimensions $width
and $height. The upper-left corner of the copy will be located at the destination
image coordinates ($x_dst, $y_dst).

$image->copyMerge($src_image, $x_dst, $y_dst,
 $x_src, $y_src, $width, $height, $opacity)

This method does the same things as copy(), but allows the specification of the
amount of transparency in the overlay image. The parameter $opacity can be a value

COMBINING IMAGES 141

between 0 and 100, where 0 means fully transparent (which has the same effect as not
doing anything), and 100 means fully opaque (which has the same effect as copy()).

$image->copyMergeGray($src_image, $x_dst, $y_dst,
 $x_src, $y_src, $width, $height, $opacity)

This is identical to copyMerge(), except that it converts the pixels in the destina-
tion rectangle to grayscale before performing the merge.

$image->copyResized($src_image, $x_dst, $y_dst,
 $x_src, $y_src, $dst_width, $dst_height, $src_width, $src_height)

If you need to resize the rectangle to be copied, you can use this method. It takes the
same parameters as copy(), but allows you to specify the width and height of the des-
tination rectangle. The source rectangle will be resized to fit these new dimensions.

Figure 8.1 shows an example of what can be done with each of these operations.

The code used to produce this image is:

use GD;

150x150 grayscale image of a jigsaw pattern
open(IN, 'jigsaw.png') or die "jigsaw.png: $!";
my $dst = GD::Image->newFromPng(*IN) or
 die "jigsaw.png is not a PNG file";
close(IN);

64x64 RGB image of a frog
open(IN, 'logo.png') or die "logo.png: $!";
my $src = GD::Image->newFromPng(*IN) or
 die "logo.png is not a PNG file";
close(IN);

my ($dst_width, $dst_height) = $dst->getBounds();
my ($src_width, $src_height) = $src->getBounds();

my $x_offset = $dst_width - $src_width;
my $y_offset = $dst_height - $src_height;
my $scale = 0.75;
my $opacity = 50; # percent

Figure 8.1 Overlaying images with GD methods copy() (top left), copyResized()

(bottom right), copyMerge() (top right) and copyMergeGray() (bottom left).

142 CHAPTER 8 RESIZING AND COMBINING IMAGES

$dst->copy($src, 0, 0, 0, 0,
 $src_width, $src_height);
$dst->copyMerge($src, $x_offset, 0, 0, 0,
 $src_width, $src_height, $opacity);
$dst->copyMergeGray($src, 0, $y_offset, 0, 0,
 $src_width, $src_height, $opacity);
$dst->copyResized($src, $x_offset, $y_offset, 0, 0,
 $scale * $src_width, $scale * $src_height, $src_width, $src_height);

open(OUT, '>jigsaw-logo.png') or
 die "Cannot open jigsaw-logo.png for write: $!";
binmode OUT;
print OUT $dst->png;
close(OUT);

In each instance the whole source image is copied onto the destination image. In the
case of the merge methods, an opacity of 50 percent is specified, and for copyRe-
sized() the image is scaled by a factor of 0.75 ($scale) in both directions. The
variables $x_offset and $y_offset are used to determine coordinates that will
leave enough room for the destination rectangle to fall inside of the image.

8.2.2 Combining Image::Magick images

With Image::Magick there are additional possibilities for combining images, using the
Composite() method (see page 255). The compose parameter can take the values
shown in table 8.1.1

Table 8.1 Image::Magick’s composition operators in action. The left column is the result of the

application of the given composition operator to the left original, with the right original as the

composite. The right column displays the result of the reverse. Note that the two images have

a different size.

Originals

In Out

Atop Xor

Continued on next page

1 The value of the image argument is called the composite, and the image that the Composite() meth-
od works on is, logically, called the image.

COMBINING IMAGES 143

• Over. The composite obscures the portions of the image that are overlapped. If
the composite has an alpha channel, the pixels of the image will be proportion-
ally obscured.

• In. The composite replaces the pixels of the image, which will be removed.
The alpha channel of the composite is preserved only if the image also has an
alpha channel.

• Out. The shape of the composite is cut out from the image, leaving nothing.

• Atop. The composite obscures portions of the image that are overlapped.
Alpha channels are not used.

• Xor. The result is the exclusive or of the two images. Alpha channels can pro-
duce quite interesting results.

• Plus. The result is the sum of the individual channels of the two images, with
overflows cropped to the maximum allowable value for a pixel (255 for each
component). The alpha channel is ignored.

• Minus. The result is the subtraction of the individual channels of the compos-
ite from those of the image, with underflows cropped to 0. The alpha channel is
ignored.

• Add. The result is the sum of the individual channels of the two images,
modulo 256.

• Subtract. The result is the subtraction of the individual channels of the com-
posite from those of the image, modulo 256.

• Difference. The absolute value of image subtracted from composite.

• Bumpmap. Apply a shading filter to image, using the composite as a bump map.

Plus Minus

Add Subtract

Difference Over

Table 8.1 Image::Magick’s composition operators in action. The left column is the result of the

application of the given composition operator to the left original, with the right original as the

composite. The right column displays the result of the reverse. Note that the two images have

a different size. (continued)

144 CHAPTER 8 RESIZING AND COMBINING IMAGES

• Replace. Replace the pixels of the image with the pixels of the composite where
the two overlap. Ignore and discard alpha channel information.

• ReplaceRed, ReplaceGreen, ReplaceBlue. Replace a specific color channel in the
image with the same channel in the composite image. The other channels are
left untouched.

• ReplaceMatte. Replace the matte channel of the image with that of the com-
posite. If the composite is a grayscale image or bitmap without a matte channel,
the image will be used as the matte channel. For examples of the use of this
operator, see sections 8.2.3 and 12.4.2, “Transparency and Image::Magick,” on
page 230.

The Replace operators have been removed from Image::Magick 5.2.9, and a
set of new operators has taken their place: Copy, CopyRed, CopyGreen, Copy-
Blue and CopyMatte.

• Blend. Blend the two images with the specified opacity. The opacity defaults to
0 (fully transparent).

$image->Composite(
 compose => 'Blend',
 image => $composite,
 opacity => 75,
);

This operator does not work correctly from Image::Magick 5.2.3 onward, and
has been removed from 5.2.9.

• Displace. Use the composite as a displacement map for image. The values of
the pixels in the composite image determine how far the pixels in the image will
be displaced to the left or right. A fully black pixel in the displacement map will
cause a maximum displacement in the positive direction, and a white pixel a
maximum displacement in the negative direction. A neutral gray will not dis-
place the pixel.

The geometry parameter can be used to specify a horizontal and vertical dis-
placement scale, as HORxVER. If unspecified, these default to 20x20.

• Modulate. Modulate the brightness and saturation of the original image with
the values of the composite image. A base saturation and brightness can be spec-
ified with a geometry parameter, as BRIGHTNESSxSATURATION in percent.2

$image->Composite(
 image => $composite,
 compose => 'Modulate',
 geometry => '32.5x48.3',
);

2 The saturation component is ignored in all versions of Image::Magick before 5.2.4.

COMBINING IMAGES 145

There is, of course, nothing stopping you from using both Image::Magick and GD to
combine images. You can easily read an image in with one module, do some work on
it, and then transport it to the other module for further manipulation or drawing. See
section 4.3, “Combining GD and Image::Magick,” on page 53 for methods to do this.

8.2.3 Adding a watermark to an image

Adding a watermark to an image can be accomplished in two ways: visibly and invis-
ibly. Adding a visible watermark is normally done to assert ownership of the copy-
right on an image in a clear way, and when compromising the visual integrity of the
image does not present a problem.

Watermarks with GD

To add a visual watermark to an image, you can overlay your company logo or some
text onto the image. The GD copyMerge() method (see page 140) provides a good
way to overlay an image which is mostly transparent onto another image. We will dis-
cuss how a small program takes a logo file and an image file, and produces an image
with the logo overlaid. The program starts as follows:

#!/usr/local/bin/perl -w
use strict;
use GD;
use Getopt::Long;

sub usage
{
<<EOF;
Usage : $0 [options] logo image output_file
Options:
 --opacity N specify opacity of logo in percent.
 --gravity SPEC specify where the logo should end up.
 One of North, NorthEast, NorthWest,
 South, SouthEast, SouthWest, East,
 West, or Center.
EOF
}

my $gravity = 'SouthEast';
my $opacity = 50;

GetOptions(
 'gravity=s' => \$gravity,
 'opacity=i' => \$opacity,
) or die usage();

die usage() unless @ARGV >= 3;

As the usage() subroutine specifies, this program takes the name of an input logo
file, the name of the image on which to overlay the logo, and the name of an output
file. It pastes the logo on top of the image, using the opacity and gravity specified.

O Set some
defaults

146 CHAPTER 8 RESIZING AND COMBINING IMAGES

my $watermark_file = shift;
my $image_file = shift;
my $out_file = shift;

my $image = GD::Image->new($image_file) or
 die "GD cannot read $image_file: ",
 $! ? "$!\n" : "unknown error\n";
my $watermark = GD::Image->new($watermark_file) or
 die "GD cannot read $watermark_file: ",
 $! ? "$!\n" : "unknown error\n";

my ($x, $y) = calculate_coords($gravity,
 $image, $watermark);

$image->copyMerge($watermark, $x, $y,
 0, 0, $watermark->getBounds(), $opacity);

open(IM, ">$out_file") or die "$out_file: $!";
binmode(IM);
print IM $image->png;
close(IM);

b This program uses the internals of GD to autodetect the image format3 instead of
opening the files itself, which makes it necessary to distinguish between two cases of
errors that might cause GD::Image->new() to fail: the errors that set the $! vari-
able, and those that don’t. If $! is not set when an error occurs, the string unknown
error is appended to the error message. While this is hardly enlightening, it is slightly
more elegant than having no error message at all.

c The coordinates where the watermark image should be placed are determined with a
call to calculate_coords(), which is covered later.

d For this simple program, the logo is always copied as a whole onto the image. This is
accomplished by using the call to $watermark->getBounds() to specify the
width and height of the rectangle to copy. For a program such as this it is hardly use-
ful to allow these parameters to specify anything other than the whole logo, so we
don’t provide any command-line switches for them.
sub calculate_coords
{
 my ($grav, $dst, $src) = @_;
 my ($dst_width, $dst_height) = $dst->getBounds();
 my ($src_width, $src_height) = $src->getBounds();

 my $x = ($dst_width - $src_width)/2;
 my $y = ($dst_height - $src_height)/2;

 for ($grav)
 {
 /^North/i and $y = 0;
 /^South/i and $y = $dst_height - $src_height;

b Read the
input
images

c Calculate destination
coordinates of watermark

d Merge the two
images

O Save the
resulting image

3 Using the GD::Image::new() method to autodetect the image format requires GD version 1.30 or newer.

O Default to Center

COMBINING IMAGES 147

 /West$/i and $x = 0;
 /East$/i and $x = $dst_width - $src_width;
 }
 return ($x, $y);
}

The destination coordinates $x and $y are calculated from the gravity specification
by the calculate_coords() subroutine. The gravity specification has been delib-
erately chosen to match that of Image::Magick, which makes it easier to replace GD
with Image::Magick, should the need arise, and it provides us with a fairly consistent
interface. There are no explicit checks in place to verify that the gravity specification
is a valid one, since all invalid specifications will cause the logo to be centered on the
output image.

The result of this program can be seen in figure 8.2.

Watermarks with Image::Magick

We will now look at an equivalent program, but with a few more options, e.g., using
Image::Magick. This program has more options because there are more possibilities
for watermarking images with Image::Magick.

#!/usr/local/bin/perl -w
use strict;
use Image::Magick;
use Getopt::Long;

sub usage
{
<<EOF;
Usage : $0 [options] logo image output_file
Options:
 --opacity N specify opacity of logo in percent.
 --gravity SPEC specify where the logo should end up.
 One of North, NorthEast, NorthWest,
 South, SouthEast, SouthWest, East,

Figure 8.2

Watermarks added to an

image by overlaying a logo

using GD and Image::Magick.

Both images were generated

with the opacity set to 60

percent, and all other

command line parameters

left at the default value.

148 CHAPTER 8 RESIZING AND COMBINING IMAGES

 West, or Center.
 --emboss Create an 'embossed' watermark.
 --tile Tile the watermark all over the image.
EOF
}

my $gravity = 'SouthEast';
my $compose = 'Over';
my $opacity = 50;
my %opts = ();
my $rc;

GetOptions(
 'emboss' => sub{ $compose = 'Modulate' },
 'opacity=f' => \$opacity,
 'gravity=s' => \$gravity,
 'tile' => sub{ $opts{'tile'} = 1 },
) or die usage();

die usage() unless (@ARGV >= 3);
my ($wm_file, $in_file, $out_file) = @ARGV;
my $watermark = Image::Magick->new();

$rc = $watermark->Read($wm_file);
die $rc if $rc;
my $image = Image::Magick->new();
$rc = $image->Read($in_file);
die $rc if $rc;

b The main variable in this code fragment is $compose, which will be used to identify
what sort of watermark we want to create. If the emboss option is specified, the pro-
gram will create watermarks that look as if they are stamped into the image; otherwise
it will create the watermark by simply overlaying the second image. The value this
variable has is the value of the compose attribute that we’ll be passing to the Compos-
ite() method later on in the program.

c After the options have been read, and the necessary variables have been declared, the
source and watermark images are read from disk. Then, depending on whether the
emboss option was specified, the real work can begin:
if ($compose eq 'Over')
{
 my ($w, $h) = $watermark->Get("width", "height");
 my $mask = Image::Magick->new(size => "${w}x${h}");
 my $g = 255 - $opacity/100 * 255;
 my $color = sprintf "#%02x%02x%02x", $g, $g, $g;
 $mask->Read("xc:$color");
 my $cur_mask = $watermark->Clone();
 $cur_mask->Channel('Matte');
 $rc = $mask->Composite(
 image => $cur_mask,
 compose => 'Plus');
 warn $rc if $rc;
 $rc = $watermark->Composite(

b Set some defaults

c Read the
input images

d Create a normal watermark

COMBINING IMAGES 149

 image => $mask,
 compose => 'ReplaceMatte');
 warn $rc if $rc;
}
elsif ($compose eq 'Modulate')
{
 $rc = $watermark->Shade(azimuth => 30, elevation => 30);
 warn $rc if $rc;
 $opts{'geometry'} = $opacity,
}

d Surprisingly, in Image::Magick we need to do quite a bit of work to achieve the same
effect as with the presented methods for GD.4 First of all, we need to create a new
image, which will be used as a transparency mask to add the desired opacity to the
watermark (see also section 12.4.2, “Transparency and Image::Magick,” on page 230).
This image is created the same size as the watermark, and filled with a uniform gray
calculated from the specified opacity. The matte channel from the original watermark
is then extracted, and combined with the mask. This ensures that wherever the original
watermark had a higher transparency (lower opacity) the original values are preserved.
Finally, the new alpha mask is added back into the original watermark.

e If, instead, the emboss option was specified, and therefore the composition method is
Modulate,5 the job becomes a lot easier. The original watermark is embossed with the
Shade() filter, which ensures that areas with a uniform color become a medium gray.
This embossed watermark is then used to modulate the pixels in the original image.
Wherever the watermark has a neutral gray, the original pixels remain the same. The
more the colors of the pixels in the watermark deviate from middle gray, the more the
colors of the original image will be influenced. Figure 8.3 shows what can be done
with this option, and what the intermediate embossed watermark looks like.

Now that we have created the watermark image, and prepared all the options that are
needed to call Composite(), we combine the images, and save the result to disk:

$rc = $image->Composite(
 image => $watermark,
 compose => $compose,
 gravity => $gravity,
 %opts);
warn $rc if $rc;

$rc = $image->Write($out_file);
die $rc if $rc;

e
Create an embossed
watermark

4 In versions of ImageMagick before 5.2.4, the Blend operation for the Compose() method could be
used to merge images. However, this has been broken since 5.2.4 and removed from 5.2.9. The meth-
od here is more elaborate, but probably works in more versions.

5 See the description on 144. This composition operator, as well as the tile option, requires Image::Magick
5.2.3 or later.

f Combine the image
with the watermark

g Output the result to disk

150 CHAPTER 8 RESIZING AND COMBINING IMAGES

f The Composite() method is called on the original image, with the modified water-
mark image as a composite. All the other options have been set earlier in the program.

g Because we use the Write() method from Image::Magick, it is possible to specify any
image format and file name that the module can understand. You can use the special
file name '-' to output the result to STDOUT, or just specify a file name with a
known extension to save the output in that format.

The result of this program without the emboss option can be seen in figure 8.2, next
to an image produced with the earlier presented GD program. As you can see, the
output is fairly similar. The output of this program with the emboss option can be
seen in figure 8.3.

Occasionally, putting a logo in the corner of an image is not enough to assert owner-
ship, and you want to ensure that the image is useless when copied, but that the gen-
eral idea of the picture is still visible. For this purpose, you can tile a logo all over the
image, with a very low opacity.

Hiding information in an image

If altering the visual appearance of an image is not an option, an invisible watermark
can be added with a technique called steganography. Steganography is the general tech-
nique (some people would say art) of hiding information in other data in such a way
that a third party cannot, or is very unlikely to, detect this information. Apart from all
the illicit applications that come to mind, it can also be used to hide digital watermarks
in graphics. PerlMagick conveniently provides a very simple means to do this:

$image = Image::Magick->new();
$image->Read('leopard.tif');

$watermark = Image::Magick->new();
$watermark->Read('logo.png');
$image->SteganoImage(image => $watermark, offset => 14);
$image->Write('png:leopard-st.png');

Figure 8.3

Watermarks added to an

image by modulating it

with an embossed logo

(far left), using Image:-

:Magick. The image in the

middle was produced with

the opacity set to 60 per-

cent and the gravity to

NorthWest, and the one on

the right was produced

with an opacity of 25 per-

cent and the tile option.

SUMMARY 151

Read in the image in an Image::Magick object (in real code you would check for
errors), read in the watermark image, and call the Stegano() method. Then write
the image to disk in a suitable nonlossy format.

Later, if you want to check whether an image that is yours contains the watermark,
you need to know the original size of the watermark, and the offset you used.6

$hidden = Image::Magick->new(size => "64x64+14");
$hidden->Read('stegano:leopard-st.png');
$hidden->Write('png:logo-st.png');

An example of an image treated this way can be seen in figure 8.4.

The image itself looks untouched, but it does contain the watermark. Note that this
method of steganography does not actually store all the information of the original
watermark in the image, but a simplified grayscale version of it.

Unfortunately, Image::Magick’s steganographic method is not especially robust. It
will withstand some blurring and such of the image, but cropping or conversion to a
lossy image format such as jpeg or gif might make the watermark irretrievable, which
may not be a problem with the way this is implemented in Image::Magick, but more
a deficiency in the steganography method itself. To protect your images from thievery,
you would be better off using other means, such as good copyright statements and
legal advice. Steganography is too easy to beat.

8.3 SUMMARY

In this chapter we have seen the most commonly used ways in which images are
transformed, from adding a watermark to resizing images. With these methods as a
base you should be able to achieve most effects you want. In chapter 12 we’ll be
looking at more customized ways to manipulate images.

6 Reading of stegano images was broken in versions 5.2.7 and 5.2.9 of ImageMagick. If you want to run
this example, either use 5.2.6 or before, or 5.3.0 and later.

Figure 8.4

This picture contains a steganography water-

mark, which is invisible. The little frog on the

top right is the original image hidden in the

photo, and the little frog on the bottom right

is the extracted image.

152 CHAPTER 8 RESIZING AND COMBINING IMAGES

One area of image manipulation that was not described, but that might be of inter-
est, is the application of special effects. Of course, many special effects can be achieved
through convolution filters, and this is often the way they are implemented in image
manipulation software (see also chapter 12). Appendix A contains a list of all the
methods available through Image::Magick, including the special effect filters that it
provides. It also includes example figures illustrating each effect. If you need to apply
a blurring or solarizing filter, I suggest you take a look at that appendix.

153

C H A P T E R 9

Three-dimensional
graphics
9.1 OpenGL 154
9.2 RenderMan 164
9.3 Summary 172

The title of this chapter is a bit of a misnomer, since it is actually about the creation
of two-dimensional images of three-dimensional scenes. People in the 3D business
tend to use the term computer graphics1 as if only 3D rendering matters, but that is
too narrow. There are, after all, many computer graphics applications that have noth-
ing to do with three-dimensional objects and projections, as can be seen in the other
chapters in this book.

Even in the field of 3D computer graphics, there are vastly different areas with dif-
ferent requirements. On the one end of the scale there are the photo-realistic rendering
engines attempting to create images of 3D scenes that look as realistic as possible.
Many inventive and sophisticated algorithms are used to add a touch more realism to
the texture of an object, the focus of a virtual camera lens, or the way light diffracts
and diffuses in air. These rendering engines generally take a great number of CPU
cycles (and sometimes memory) to render a single frame, and many frames are neces-
sary to create animated films such as Jurassic Park, Toy Story, or Shrek.

1 Something else to note is that the computer graphics business often uses the acronym CGI for Com-
puter Graphics and Imaging. This has, of course, nothing to do with the Common Gateway Interface
as discussed in chapter 6.

154 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

On the other end of the scale, one can find high-speed three-dimensional game
engines. These engines tend to emphasize speed over realism, and employ many algo-
rithms that produce a reasonable looking effect in the least amount of computing time.
Often you’ll find the implementations of these algorithms in hardware, for example
on the graphics card in your computer, to speed up the process to its limits. Most
applications that use engines similar to these are interactive applications, such as
games, 3D model viewers, or architectural programs that allow you to walk through
the design of your new house.

In this chapter we’ll discuss how to use some Perl interfaces to the 3D rendering
libraries, OpenGL and RenderMan. These two libraries represent the two ends of the
scale of realism versus speed, and between the two of them they cover almost any need
you might have in the area of three-dimensional computer graphics. Unfortunately,
there are no modules for Perl that allow working with 3D vector graphics, so we won’t
discuss that subject.

In discussing the modules, we will mainly touch on how to use them, what the
differences between these modules and their C counterparts are, and what the Perl-
specific gotchas are. This will allow you to pick up any documentation that has been
written for the C APIs (and there is quite a bit of that), and translate that to the equiv-
alent Perl code, with this chapter as a guide.

We won’t see any implementations of 3D algorithms here, because, frankly, I don’t
believe this should be done in Perl, yet. This is one area of computing where Perl is
just too bulky and slow to be really useful. It is much wiser to delegate the hard work
of three-dimensional rendering to lower-level code, as provided by the RenderMan and
OpenGL modules.

To be able to comfortably work with these packages, you will need to have some
trigonometry, and especially vector and matrix algebra knowledge. While it may be
possible to create a three-dimensional scene by trial and error, it is definitely a big help
to understand what the various translations, rotations and shears mean and what they
do to your carefully constructed objects.

9.1 OPENGL
OpenGL is an API created and developed by Silicon Graphics Inc. (SGI), initially
only for their hardware. It offers programmers a transparent interface to the render-
ing capabilities of the graphics hardware in a computer, and allows them to use the
faster routines there instead of ones implemented in software. Many graphics cards
support OpenGL nowadays, and libraries are available for many platforms. Apart
from the commercial SGI OpenGL version, the Mesa 3D library is an excellent and
free Open Source implementation. If you are running an operating system that
doesn’t have an OpenGL implementation installed, you can obtain the Mesa 3D
libraries from http://www.mesa3d.org/.

The main goal of the OpenGL libraries is to provide quick access to hardware-
driven graphics rendering. This makes it particularly useful for people who have to

OPENGL 155

create complex real-time animations, such as those used in computer games and view-
ers for three-dimensional objects such as architectural plans. OpenGL can be used to
create reasonably realistic scenes, but the emphasis is on speed.

In addition to the core OpenGL library, the OpenGL module also provides access
to the libraries which have become, more or less, standard companions of OpenGL:
GLUT, GLU and GLX. GLUT is a platform-independent interface to window man-
agement, menus, and other windowing tools. It is limited, but allows one to write por-
table code for the various windowing environments in use. GLU is a library built on
top of OpenGL that provides some higher order functionality using the primitives of
OpenGL, so that you don’t have to write too much code to create a ball every single
time. GLX is the OpenGL extension to the X window interface, and is therefore useful
only if you’re working with an X11 server.

SEE ALSO Another alternative, if you’re looking for a windowing environment for
your application that is portable and works well with OpenGL, is the Sim-
ple DirectMedia Layer (SDL) library, available as a set of Perl modules.
Look for the SDL::sdlpl or SDL::OpenGL modules, or for the distribution
SDL-sdlpl on your nearest CPAN mirror.

The OpenGL library was originally written in C, and C APIs don’t always translate
nicely and directly into Perl. Let’s have a look at how the C API is made available to
Perl callers. Before reading on, it might be a good idea to get a copy of the OpenGL
specification and API from http://www.opengl.org/ (see references [24,25]).

9.1.1 OpenGL library functions in Perl

Almost all OpenGL library functions can be translated directly into Perl subroutines
that are callable from your program. The name of the C OpenGL function is avail-
able as a Perl function, and works the same way. However, there are some exceptions
to this, and this section deals with those exceptions.

Functions that use array arguments in the C API to return values, such as glGet-
Integerv() and glGetFloatv(), have a counterpart in the Perl API with a _p suf-
fix, and they return the values in the more usual Perl way. For example, to attain the
dimensions of the current viewport in OpenGL, the C code would look like:

#include <GL/gl.h>
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);

after which the x and y coordinates and the width and height are available in that
order in the viewport array. In Perl, this code becomes

use OpenGL;
my ($x, $y, $width, $height) = glGetIntegerv_p(GL_VIEWPORT);

As you can see, this looks much closer to the way functions normally operate in Perl.

156 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

Functions that take pointers to strings to be filled as the result of the API call are
available under several names: first of all, there is the function name with a _c suffix,
for which an OpenGL::Array object must be supplied in place of the pointer argument.
The second way to call these functions is with an _s suffix, in which case it takes a
Perl string argument in place of the pointer. The function name with no arguments
is, in most cases, an alias to the function name with the _s suffix, but it’s safer to just
call the one you mean. For example, to read the pixels from the current viewport, using
the variables from the preceding code:

my $rgba;
glReadPixels_s($x, $y, $width, $height, GL_RGBA, GL_UNSIGNED_BYTE, $rgba);

NOTE In versions before 0.52 of the OpenGL modules, it was necessary to pre-
allocate the string that you passed off to these functions, because the mod-
ule failed to allocate memory for them on its own. This has been fixed in
newer versions, and I strongly suggest that you get one if at all possible (see
section 3.2.10, “OpenGL,” on page 32, for more information on where to
get newer versions). If, for some reason, you can’t install a newer version
of the module, you will need to do something like:

my $rgba = "X" x ($width * $height * 4 * 1);
glReadPixels_s($x, $y, $width, $height, GL_RGBA,
 GL_UNSIGNED_BYTE, $rgba);

Needless to say, this tends to be error-prone, because you have to take into
account what GL_RGBA and GL_UNSIGNED_BYTE mean for the number
of bytes to allocate, and you have to maintain this code. Perl programmers
are just not used to having to allocate their memory, and they shouldn’t
have to.

The OpenGL library and the associated utility libraries (GLX, GLU and GLUT) have
undergone periodic changes. The OpenGL module supports most of the old versions,
and several support libraries for OpenGL. Exactly what gets exported to your name
space is, as usual, controlled by the arguments to the import function for OpenGL.
Here are some alternatives:

• use OpenGL;

• use OpenGL qw(:constants :functions);

• use OpenGL qw(:constants glReadPixels);

• use OpenGL qw(:all);

The module allows export of all the functions and constants defined in the OpenGL
API, as well as their special Perl adaptations, and it defines a set of tags that can be
used to export groups of them. The tags are listed in table 9.1.

OPENGL 157

If no labels are specified, the default exported functions are the same as if the :old
label were specified. Note that if you specify another label and still want the old func-
tions and constants available, you have to also specify :old explicitly. If you don’t use
:old, then none of the functions that start with glp are available. To import abso-
lutely everything into your name space, use the following:

use OpenGL qw(:all :old);

9.1.2 Capturing your OpenGL output

Due to the way OpenGL was designed—as an interface to hardware for high speed
graphical rendering—every OpenGL application requires a window or screen for its
output. The drawing doesn’t occur in some memory buffer in the OpenGL libraries,
but the commands are sent, where possible, directly to the hardware responsible for
its display.

This is all well and good if you’re writing a game or a three-dimensional walk-
through viewer for an architectural program, but less handy when you are trying to
produce a copy of your rendering to keep on file, perhaps for printing in a book such
as this one. Because this is an area often overlooked in discussions on the OpenGL
library, and because it places this section more closely within the range of the rest of
the book, I’ll discuss how to read your screen buffer and create an image on disk.

To capture an image you have to read the pixels of the window displayed by the
OpenGL client. Luckily, they needn’t be read one by one; instead you can make a

Table 9.1 The OpenGL import tags. The default tag (if nothing is

specified) is :old. Note that some of these tags are combinations of

some of the others.

:all All the current API functions and constants.

:old All the old, original API functions and constants.

:glconstants All the constants from the OpenGL library.

:gluconstants All the constants from the GLU library.

:glutconstants All the constants from the GLUT library.

:glxconstants All the constants from the GLX library.

:oldconstants All the old, original API constants.

:constants All the current API constants.

:glfunctions All the current functions from the OpenGL library.

:glufunctions All the functions from the GLU library.

:glutfunctions All the functions from the GLUT library.

:glxfunctions All the functions from the GLX library.

:oldfunctions All the old, original API functions.

:functions All the current API functions.

158 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

single call to a function provided by the OpenGL library: glReadPixels().2 Before
doing so, however, you need to make a decision on which channels interest you and
tell the OpenGL library how you want it to convert the pixels into values. Before dis-
cussing the particulars, let’s look at a subroutine that can be used to capture any part
of the currently displayed window to an image file. We use the Image::Magick module
to translate the raw information that comes from the call to glReadPixels(), and
to save the file to disk.

use OpenGL qw(:all);
use Image::Magick;

sub gltIMCapture
{
 my $file = shift;
 my $rgba;
 my ($x, $y, $width, $height) =
 @_ == 4 ? @_ : glGetIntegerv_p(GL_VIEWPORT);

 glFinish();
 glPushClientAttrib(GL_CLIENT_PIXEL_STORE_BIT);

 glPixelStorei(GL_PACK_ROW_LENGTH, $width);
 glPixelStorei(GL_PACK_ALIGNMENT, 1);

 glReadPixels_s($x, $y, $width, $height,
 GL_RGBA, GL_UNSIGNED_BYTE, $rgba);

 glPopClientAttrib();

 my $im = Image::Magick->new(
 size => "${width}x$height",
 magick => 'RGBA');
 my $rc = $im->BlobToImage($rgba);
 warn($rc), return if $rc;
 $im->Write($file) if $file;
 return $im;
}

b If the user has passed in four arguments that define the rectangle to be captured, these
arguments are used. Otherwise, the dimensions of the current window are requested
and used.

c The first thing we do is call glFinish(), to make sure that the OpenGL drawing
functions are all completed. If we don’t do that, we run the risk of reading out pix-
els from a frame buffer that is only half complete. This is followed by a call to
glPushClientAttrib() to save all the current pixel settings, after which we can
change them to our liking with glPixelStorei(). Once we have read the pixels
into $rgba we reset the settings by calling glPopClientAttrib().

2 Also see the note on page 156 for some information on glReadPixels().

b Get size of window
to save

c Save the
current state

d Get the
pixels

e Create an
Image::Magick object
from the pixels

OPENGL 159

d e The pixels are read into a long string of bytes with values for the red, green, blue and
alpha channel, which can be read directly into an Image::Magick object with the
BlobToImage() method. All we need to do then is save the image. To allow the user
to postprocess the image, we return a reference to the Image::Magick object.

This routine can be very handy to have around when you are writing OpenGL appli-
cations that need to be able to take snapshots of the rendered scenes. The example
program in section 9.1.3 uses this routine to allow the user to save a snapshot of the
current window on screen. We will put it in a library of OpenGL tools, which we can
expand in the future, and write a little application that uses it to create two images:3

#!/usr/local/bin/perl -w
use strict;
use OpenGL qw(:all :old);
require "OpenGLTools.pl";

sub triangle
{
 glBegin (GL_TRIANGLES);
 glColor3f (0.0, 0.0, 0.0);
 glVertex2f(0.0, 0.0);
 glColor3f (0.5, 0.5, 0.5);
 glVertex2f(30.0, 0.0);
 glColor3f (1.0, 1.0, 1.0);
 glVertex2f(0.0, 30.0);
 glEnd ();
}

glpOpenWindow (width => 250, height => 250);
glLoadIdentity();
gluOrtho2D (0.0, 30.0, 0.0, 30.0);
glClearColor (1.0, 1.0, 1.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT);

triangle();

gltIMCapture("OpenGLcap1.png", 50, 50, 100, 100);
gltIMCapture("OpenGLcap2.png");

This is a basic OpenGL application that draws a triangle, filled with a smooth gray-
scale gradient. Once the drawing is finished, it captures part of the window, and the
whole window with the previously discussed gltIMCapture() function, and saves
these captures to files which can be seen in figure 9.1.

You might have noticed that the program presented contains floating point values
everywhere, while Perl doesn’t really care about these sorts of things. The truth is that
integer values would have worked just as well, but I like to be explicit. It also comes

3 In case you noticed the odd spacing in this code: I often vertically align the brackets around the argu-
ments to OpenGL function calls, because I find it slightly more legible. Some people think it’s awful.

160 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

in handy when I decide that parts of these programs need to be ported to C, in which
case there is less work to do if all the constants are already in the correct format.

9.1.3 Example: a planetary system

OpenGL is normally used for more complex tasks than what we’ve seen up until now.
We’ll discuss an interactive application that is a very simplistic simulation of a small
ball orbiting another ball, while being orbited by an even smaller ball. The result of
this application can be seen in figure 9.2.

No effort has been made to accurately implement the laws of physics, so don’t assume
that we are really discussing the movement of three planets. The following applica-
tion may not appear useful as is, but it can serve as a skeleton for virtually any
OpenGL application, because it includes nearly everything such an application needs.
The only thing that you need to add are real functionality and possibly menus and
such. All those additions fit in the main structure of this program.

We start by including the OpenGL module and the tool library we talked about in
the previous sections. Since we measure time in our fictitious solar system in days, we
create a variable for that, and set it to the beginning of time. We also store the default
name of a file to which we send viewport captures. We then write our main program,
using the GLUT library functions to do most of the work for us:

Figure 9.1

Result of capturing an OpenGL window and

part of the same window with the gltIM-
Capture() function, which is a convenient

wrapper around the glReadPixels()

OpenGL function.

Figure 9.2 Output of an OpenGL program emulating the movement

of three balls around each other in a vaguely planet-like configura-

tion. The first picture shows the initial display, and the second picture

shows the display after 255 virtual days.

OPENGL 161

#!/usr/local/bin/perl -w
use strict;
use OpenGL qw(:all);
require "OpenGLTools.pl";

my $day = 0;
my $filename = "capture.png";

glutInitDisplayMode (GLUT_SINGLE|GLUT_RGBA|GLUT_DEPTH);
glutInitWindowPosition(0, 0);
glutInitWindowSize (500, 250);
glutCreateWindow ($0);
init ();
glutReshapeFunc (\&reshape);
glutKeyboardFunc (\&key_pressed);
glutSpecialFunc (\&key_pressed);
glutDisplayFunc (\&display);
glutMainLoop (); d

b The display is initialized to a single buffer window that can hold RGBA pixels, and
the depth buffer is enabled, since we want to make sure that objects that should be in
front of each other actually appear that way. We then initialize and create a window,
and set up all of the default variables in the init() subroutine.

c GLUT works by running through an event loop and calling user-defined callback
functions whenever something interesting happens. We tell the library which callback
functions we want to use when a window is resized, a key is pressed, or we need to
draw our planets.

NOTE We need to register two functions to be called when a key gets pressed: one
for normal keys, and one for special keys. This is because in C these two
events can’t easily be handled by the same function, since normal keys are
passed as unsigned characters and special keys as integers. In Perl that dis-
tinction doesn’t exist, so we can register the same function twice. There is
nothing stopping you from writing two separate functions to deal with
these separate sets of keys, which might make rewriting your application as
a C program slightly easier.

d Once the application is properly set up and initialized, we enter the GLUT main
event loop, and start running.

The init() function sets up all the default values for this application, such as the
lighting, texture of the materials, and shading.

sub init
{
 glMaterialfv_p(GL_FRONT, GL_SPECULAR, 1, 1, 1, 1);
 glMaterialfv_p(GL_FRONT, GL_SHININESS, 50);
 glLightfv_p (GL_LIGHT0, GL_POSITION, 1, 1, 1, 0);
 glShadeModel (GL_SMOOTH);
 glEnable (GL_DEPTH_TEST);

b

c

162 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

 glEnable (GL_LIGHTING);
 glEnable (GL_LIGHT0);
 glClearColor (1.0, 1.0, 1.0, 0.0);
}

A default material is created with glMaterialfv(), and a light is set up. The depth
testing routines are enabled, without which we would not know which planet was in
front and which in the back. The lights are switched on, and the default background
color is set with glClearColor().

The reshape() subroutine is called by the GLUT main loop immediately after
the window is created, and every time it is resized. It is responsible for setting up any
variables and OpenGL parameters that depend on the window size:

sub reshape
{
 my ($w, $h) = @_;

 glViewport (0, 0, $w, $h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(35.0, $w/$h, 1.0, 20.0);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

This subroutine is passed the new width and height of the window as its arguments.
These arguments are used to set up a viewport and perspective, in such a way that the
objects in the window will be scaled in the same way the window was scaled, without
distorting the aspect ratio.

Immediately after reshape() is called, the subroutine that does the actual draw-
ing, display(), is invoked.

sub display
{
 my $rot_planet_axis = (360 * $day) % 360;
 my $rot_moon = (360 * $day/28) % 360;
 my $rot_planet = (360 * $day/365) % 360;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glColor3f (1.0, 1.0, 0.8);
 glutSolidSphere(1.0, 20, 20);
 glRotatef ($rot_planet, 0.0, 1.0, 0.0);
 glTranslatef (2.0, 0.0, 0.0);
 glPushMatrix ();
 glRotatef ($rot_moon, 0.0, 1.0, 0.0);
 glTranslatef (0.5, 0.0, 0.0);
 glColor3f (0.5, 0.5, 0.5);
 glutSolidSphere(0.05, 10, 10);
 glPopMatrix ();

O Draw the sun

O Draw the little
moon

OPENGL 163

 glRotatef ($rot_planet_axis, 0.0, 1.0, 0.0);
 glColor3f (0.0, 0.0, 0.8);
 glutSolidSphere(0.2, 15, 15);
 glPopMatrix();
}

This subroutine doesn’t get any arguments, so it relies on global variables that have
been set. In this particular case, there is only one variable we depend on, and that is
the time, which is stored in $day. This time is used to calculate rotations for the
planet itself ($rot_planet_axis), the planet around the sun ($rot_planet), and
the moon around the planet ($rot_moon). In OpenGL, all rotations and transla-
tions are relative to the current coordinate system.

In this subroutine, glPushMatrix() is used to save the state of the coordinate
system each time, before it is changed for one of the planets. It is then restored with
glPopMatrix() once a planet has been drawn. The first call to glRotatef()
applies to both the little moon and the planet, but the second call to glRotatef()
only applies to the little moon, since it falls between a glPushMatrix() and glPop-
Matrix() call. This is the normal way in which relative transformations are handled
in OpenGL, so it’s a good idea to be familiar with this technique.

This application would not be very interesting if we had no way to change what
is displayed, so we’ll write the subroutine that gets called when a key is pressed:

sub key_pressed
{
 my ($key, $x, $y) = @_;

 $key == GLUT_KEY_LEFT and $day -= 7;
 $key == GLUT_KEY_RIGHT and $day += 7;
 $key == GLUT_KEY_UP and $day++;
 $key == GLUT_KEY_DOWN and $day--;
 $key == 27 and exit(0); #ESCAPE

 $key == ord('s') and save_snapshot();
 $key == ord('n') and set_filename();

 glutPostRedisplay();
}

The numerical value of the key that was pressed is passed in as the first argument, and
the coordinates of where the pointer was at the moment that the key was pressed get
passed as the second and third arguments. The last two in this application are of less
concern, so we’ll disregard them. Whenever the left or right arrow keys are pressed,
we increment or decrement $day by 7, and whenever the up or down arrows are
pressed, we increment or decrement by 1. This allows the user to move our solar sys-
tem forward and backward in time, in steps of a day or a week. When the escape key
is pressed, we exit from the program.

When the s key is pressed, we save a snapshot of the current screen to disk, and
when the n key is pressed, we prompt the user for a new filename for saving the next

O Draw the planet

164 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

snapshot. The definition of the two subroutines that get called when the s or n key
are pressed are as follows:

sub set_filename
{
 print "Enter a new file name for output: ";
 chomp($filename = <STDIN>);
 $filename .= ".png" unless $filename =~ /\./;
}

sub save_snapshot
{
 print "Saving to $filename\n";
 gltIMCapture($filename);
}

The subroutine set_filename() is called when the n key is pressed, and it
prompts for a new filename on standard input. In a real application this would prob-
ably be replaced by code that would pop up a dialog box, and accept input that way,
but for the sake of simplicity we will forgo that here. The subroutine
save_snapshot() is invoked when the s key is pressed, and it calls the previously
discussed gltIMCapture() to save the whole window to a file.

9.1.4 OpenGL summary

In this section we’ve had a look at how the OpenGL module works, how to create a
three-dimensional interactive application with it, and how to save the contents of
OpenGL windows to files with the help of Image::Magick. Of course, OpenGL can
also be used to create two-dimensional graphics, but its strength is the rendering of
three-dimensional scenes.

SEE ALSO You should now be able to take a good book on OpenGL (like the Red
Book [26] or the Blue Book [27]) and use this section to translate all the C
code into Perl. Also, you can find a great deal of information on the
OpenGL site at http://www.opengl.org/. These books can tell you about all
the other possibilities OpenGL offers, and how to implement them.

9.2 RENDERMAN

The RenderMan module is intended as an interface to the Blue Moon Rendering
Tools (BMRT), which is a combination of a RenderMan compliant library and a
rendering engine. The RenderMan Interface Standard was developed by Pixar Ani-
mation Studios for their own internal use, and has become something of a stan-
dard in the 3D computer graphics world. Pixar published the interface, and several
programs now implement a RenderMan-compliant interface. Some call Render-
Man the PostScript of the 3D computer graphics world. PostScript is a device-
independent description language for two-dimensional graphics, and RenderMan

RENDERMAN 165

is the same for three-dimensional graphics primitives. In my opinion that is where
most of the analogy ends.

The device-independence of the RenderMan standard means that it does not pre-
scribe how to render the scene it describes. It only delineates what is to be rendered, and
leaves it up to the engine to pick a method and algorithm to do this. It is free to use ray
tracing or scan lines or any other rendering method it chooses, as long as it renders the
whole scene. It mainly prescribes a set of instructions that can be used to define where
objects are in a scene, what material they’re made of, what sort of lighting there is, how
to move and transform objects, what sort of camera should be emulated, and so forth.

Perhaps the largest part of creating satisfactory and realistic renderings is the def-
inition of the shaders, which define the textures of almost everything in the Render-
Man world. In other words, the shaders define how something will look: they make
objects look metallic or plastic, for example. If you want your objects to look bumpy,
rusty, shiny or transparent, or you want your company logo to appear on one of your
objects, you create a shader for it.

Knowing the RenderMan API isn’t going to net you any spectacular results by
itself. There is a lot of knowledge to attain before you’ll be able to create great anima-
tions or renderings. This chapter will not teach you how to use the RenderMan API
or the shader language that performs all those neat little tricks you’ve seen in films.
That would require a whole book on its own, and in fact such books have been written.
Two good books about RenderMan are The RenderMan Companion [28] and
Advanced RenderMan [29]. While the former has been around for awhile, it’s still a
good introduction to the whole concept behind RenderMan. The latter goes some-
what farther and shows some advanced usage of the API. I strongly recommend at least
one of these books if you seriously want to use the RenderMan module.

In the example in this chapter we will avoid using any of the advanced features of
RenderMan, simply because they would distract too much from the purpose of this
section, which is to show you that the module is there, and how to use it. If you read
one of the above-mentioned books, you’ll realize just how easy it is to translate what
is in there into Perl code using the RenderMan module.

It is probably a good idea to keep a copy of the RenderMan interface specification
handy while reading through this section. The official version can be found on Pixar’s
website [30], and the RenderMan FAQ [31] has some more useful pointers.

9.2.1 How to use the module and the BMRT

The Blue Moon Rendering Tools are a collection of programs and a library that ren-
ders three-dimensional scenes described by the RenderMan Interface specification.
Some of the tools are meant to render or preview scenes, and some are meant to com-
pile shaders or preprocess images to be used as texture maps. The documentation that
comes with the BMRT adequately explains these tools, but I’ll offer a short summary
here, mainly because the RenderMan module refers to them as output methods.

166 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

The RenderMan module can be used to directly invoke the BMRT previewer or the
rendering engine to produce graphics output, but it can also be used to create a RIB
(RenderMan Interface Bytestream) file. This file can then be fed to another rendering
engine, such as Pixar’s Photorealistic RenderMan. The content of this file will resem-
ble your program code quite closely, and is almost a direct translation of all the calls
that can be made to the RenderMan API. To select which of the output methods you
want, you specify either rgl, rendrib, or a file name to the Begin() method. If
nothing is specified to the Begin() method, the RIB output will be printed to STD-
OUT, and you can pipe it directly into a tool that will read it. Some of these tools come
with the BMRT and we’ll have a short look at them.

To preview a RIB file, you can use the rgl program, which displays your drawing
primitives as simple shapes and uses Gouraud shading instead of full rendering. This
can provide a quick and handy check as to whether your animation is running as it
should, and whether the movements are correct before you spend vast amounts of
computing power on rendering the full scenes.

To actually render the scenes in all their glory, use the rendrib program. This pro-
duces high-quality images that are either displayed on your screen or written to a file,
depending on the settings contained in the bytestream it is rendering. It uses ray trac-
ing and radiosity to render the scenes, and produces surprisingly good looking images.

9.2.2 The RenderMan language binding for Perl

The Perl implementation for the RenderMan API follows the C implementation very
closely, but there are, of course, a few differences. First, all function names in the C
library start with the string Ri, such as RiBegin() and RiEnd(). The Perl equiva-
lents do not use this prefix, but use instead the same names as in the RIB files. All
types in the C version start with Ri, but since we don’t need to worry about types in
Perl, that will not concern us. The constants in the C library all begin with RI_, and
this is the same for the Perl module.

The arguments to the Perl functions can be passed much more conveniently than
the arguments to their C equivalents. All parameter lists are passed as hash references
in the Perl functions, while in the C API they need to be passed in as separate argu-
ments, which all have to be pointers, terminated by the constant RI_NULL. For exam-
ple, the function to set up a light source is defined as

RtLightHandle
 RiLightSource(shadername, parameterlist)
 RtToken shadername;

or, for the RIB binding

LightSource name sequencenumber parameterlist

The C version returns a handle to a light source, which can be used for further opera-
tions later on. In the RIB version the equivalent of that handle is the sequence num-
ber. The Perl version of this function will follow the C API most closely, meaning that

RENDERMAN 167

it returns a handle to a light source, and it takes two arguments: a shader name and
an optional hash reference containing the parameters to this shader.

In C you would have to call RiLightSource() in the following manner:

RtLightHandle alight;
RtFloat intensity = 0.5;
alight = RiLightSource("ambientlight",
 "intensity", &intensity, RI_NULL);

In Perl, you call it in this way:

$alight = LightSource("ambientlight", {intensity => 0.5});

which, at least to me, seems much more readable and convenient. For completeness,
this is the equivalent RIB call:

LightSource "ambientlight" 1 "intensity" [0.5]

One further point to note is that all arrays, matrices, and other types are imple-
mented as one-dimensional arrays of doubles in the Perl module. The elements of a
two-dimensional matrix in this one-dimensional array are organized row by row. In
other words, all the elements of the first row come first, then all the elements of the
second row, and so on. This is important to know if you plan to create vectors and
matrices for use by the RenderMan module.

9.2.3 Example: A rotating cube of cubes

As always, an example program is the best way to show how the RenderMan module
can be used, so in this section we’ll be writing a program that creates an animation of
a rotating group of objects. You will probably want to keep a copy of the RenderMan
API specification (see [30]) around, so you can look up what some of the functions
do, and what their arguments mean.

This program is loosely based on one of the example programs that comes with the
BMRT distribution. It creates a cube of (by default) 3 by 3 by 3 smaller cubes, and
rotates this whole structure around. Optionally, the individual objects can rotate in the
opposite direction. As an extra, to demonstrate how seamlessly BMRT joins solid bod-
ies together, these small cubes will intersect with a slightly larger sphere to form a sin-
gle solid body. And while the whole structure is rotating, the individual small objects
will shrink until they have disappeared in the last frame.

We’ll start with the modules used by this program, and its help message:

#!/usr/local/bin/perl -w
use strict;
use RenderMan;
use Getopt::Long;

sub usage
{
<<EOF;
Usage : $0 [options] [rendrib | rgl | RIB filename]

168 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

Options:
 --number N the number of objects per side
 --frames N the number of frames
 --rotation F the amount to rotate per frame
 --nocubes don't draw the cubes
 --nospheres don't draw the spheres
 --reverse reverse the rotation on the small objects
 --basename the base of the filename to save the
 individual frames
EOF
}

All of this speaks sufficiently for itself. The options in the usage() subroutine are all
given defaults, which are then potentially overwritten by processing the command
line arguments to the program with the GetOptions() function from the standard
Getopt::Long module:

my $nframes = 50;
my $number = 3;
my $rotation = 10.0;

my $cubes = 1;
my $spheres = 1;
my $basename = "frame";
my $reverse = 0;

GetOptions (
 "frames:i" => \$nframes,
 "number:i" => \$number,
 "rotation:f" => \$rotation,
 "cubes!" => \$cubes,
 "spheres!" => \$spheres,
 "reverse!" => \$reverse,
 "basename:s" => \$basename,
) or die usage();

By default, the program will generate 50 frames, wherein the cube is rotated 10
degrees between frames. Thus, the cube will rotate slightly less than one and a half
times over the whole animation. The program defaults to drawing both the little
cubes and the spheres (controlled by the variables $cubes and $spheres), which
will rotate in the direction of the large cube. If the --reverse argument is specified,
they will rotate in the opposite direction, which means that from the camera’s point
of view, they will not rotate at all. Run the program if you want to see how that looks,
or see figure 9.3.

Now that we have gathered all the information we need from the user, it is time
to start the actual output.

Begin(shift or ());

for my $frame (1 .. $nframes)
{
 my $filename = sprintf "$basename%03d.tif", $frame;

b Begin RenderMan output

RENDERMAN 169

 FrameBegin($frame);
 Display($filename, RI_FILE, RI_RGBA);
 Format(512, 384, 1);
 Imager("background", {"background" => [1, 1, 1]});
 ShadingRate(1.0);

 Projection("perspective");
 Translate(0.0, 0.0, 1.5);
 Rotate(40.0, -1.0, 1.0, 0.0);

 WorldBegin();
 LightSource("ambientlight", {intensity => 0.5});
 LightSource("distantlight", {intensity => 0.5});
 Surface("plastic");

 my $rot = $rotation * $frame;
 my $scale = ($nframes - ($frame - 1))/$nframes;
 Rotate($rot, 0.0, 0.0, 1);
 render_objects($number, $scale, $reverse * -$rot);
 WorldEnd();
 FrameEnd();
}

End();

b We pass the first remaining argument from the command line to the Begin()
method, or, if there was no argument, the empty list.4 We need to perform this check
to avoid warnings from Perl about uninitialized variables being used. Then we set up
a loop to create the number of frames that are to be rendered.

c The output of the rendering program should go to the file names specified by the
Display() method. Instead of RI_FILE we could have used RI_FRAMEBUFFER to
indicate that the output should be sent to a screen. The size of the output file is set to
512 by 384 pixels, with a pixel aspect ratio of 1; and the background color of the
image is set to white with the Imager() call. We then set up Phong shading by spec-
ifying a shading rate of at least once per pixel.

d We proceed by setting up our viewpoint and perspective by rotating and translating
the global coordinates around, after which we can start with the definition of the
world in which we will be working. The first items to be defined in our world are the
lights and the default material.

E After that is completed, we set up some variables and call render_objects(),
which is a subroutine that is responsible for drawing the spheres and cubes on the
grid that was specified by the arguments.
sub render_objects
{
 my ($n, $s, $r) = @_;

c Specify
output
parameters

d Set up our
viewpoint

O Set up lights
and default
material

E Render
the cubes

4 On some platforms the presented code does not work correctly, even though it should. You may have
to replace this line with something like Begin(shift or “output.rib”).

f Initialize the arguments

170 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

 return unless $n > 0;

 AttributeBegin();
 Translate(-0.5, -0.5, -0.5);
 Scale(1/$n, 1/$n, 1/$n);
 for my $x (1 .. $n)
 {
 for my $y (1 .. $n)
 {
 for my $z (1 .. $n)
 {
 my @color = map { $_/$n } ($x, $y, $z);
 Color(@color);
 TransformBegin();
 Translate($x - 0.5, $y - 0.5, $z - 0.5);
 Rotate($r, 0, 0, 1);
 Scale($s, $s, $s);
 cube(0.8) if $cubes;
 Sphere(0.5, -0.5, 0.5, 360) if $spheres;
 TransformEnd();
 }
 }
 }
 AttributeEnd();
}

f The subroutine takes as its arguments the number of objects to render, and the scale
and angle at which to render them. We return immediately if the number of
requested objects is smaller than or equal to zero.

g We push the current state of the attributes onto the attribute stack with Attribute-
Begin(). All the changes we make to attributes, such as the coordinate system, are
local until the corresponding call to AttributeEnd(). After we have saved the cur-
rent state, we change it by modifying the translation and scaling. We then set up three
nested loops; one for each side of the large cube we’re drawing.

h Inside the innermost loop we set the color of the object we’re going to draw, based on
the coordinates of the object we’re drawing. This means that the color over the cube
as a whole will gradually change between objects.

i We save the state of the current transformation matrix with TransformBegin(),
and change the coordinate system to draw a single small object, which can be made
up of a cube, a sphere, or a combination of both, depending on the variables $cubes
and $spheres.

j We draw the cube and the sphere with Sphere(), which is a function provided by
the RenderMan library, and cube(), a function we provide ourselves. Once that is
accomplished, we restore the transformation matrix to the value it had before we
drew this small object. All that is left for us to do now is to provide the code that
actually draws a solid cube, or rectangle.

g Transform the
coordinate system

h
Set the color of the
object

i Transform the
coordinate system

j Draw the
object

RENDERMAN 171

my @cube_sides; 1) Array to hold cube vertices
BEGIN
{
 @cube_sides = (
 [-1,-1, 1, -1,-1,-1, 1,-1,-1, 1,-1, 1], # bottom
 [-1,-1, 1, -1, 1, 1, -1, 1,-1, -1,-1,-1], # left
 [1, 1,-1, -1, 1,-1, -1, 1, 1, 1, 1, 1], # top
 [1, 1,-1, 1, 1, 1, 1,-1, 1, 1,-1,-1], # right
 [1,-1, 1, 1, 1, 1, -1, 1, 1, -1,-1, 1], # back
 [-1, 1,-1, 1, 1,-1, 1,-1,-1, -1,-1,-1]); # front
}

sub cube
{
 my $sx = shift || 1;
 my $sy = shift || $sx;
 my $sz = shift || $sy;

 TransformBegin();
 Scale($sx/2, $sy/2, $sz/2);
 Polygon(4, { "P" => $_ }) for (@cube_sides);
 TransformEnd();
}

1) The array @cube_sides holds the coordinates that define the six sides of a cube
with sides of length 2 centered around the origin. These coordinates have to be
defined in a certain order to make sure that the normal of each of the sides points in
the correct direction. We simply define a cube with sides of length 2 here, and scale it
appropriately in each direction to create a smaller or larger cube, or stretch it when we
want rectangular sides.

1! The subroutine cube() takes three optional arguments, which are the scaling factors
in the x, y and z directions. If the scaling in the z direction isn’t specified, it defaults to
the scaling factor in the y direction. If that isn’t specified, it defaults to the scaling fac-
tor in the x direction, and if that isn’t specified, it defaults to 1. So, if only one argu-
ment is given, the cube is scaled uniformly in all three directions, according to that
argument. If no argument is given, a cube with side 1 will be drawn.

1@ The coordinate system is scaled according to the arguments. Notice that we divide
the arguments by 2, to account for the fact that the cube defined by @cube_sides
has sides of length two. By dividing each scaling factor by 2, we ensure that we are
working on a cube with sides 1. Once the coordinate system is set up, we draw our six
polygons that define the six sides of the cube. The Polygon method takes as its first
argument the number of vertices, and as its second argument a parameter list. In this
case the only parameter is P, which defines a list of points, and its value is a reference
to an array holding the coordinates of these points.

Figure 9.3 shows a few frames out of the animations created with this program, using
the default settings and with the --reverse flag specified.

1! The scaling parameters in all
three directions

1@ Scale and draw
the cube

172 CHAPTER 9 THREE-DIMENSIONAL GRAPHICS

As you can see, for the default program the cube as a whole rotates and the smaller
objects rotate identically, as if they’re fixed inside of the larger cube; and as time
progresses, the objects get smaller. When the --reverse argument is specified to the
program, the small objects no longer rotate relative to the camera viewpoint, but they
now seem to rotate inside of the larger cube.

In this section it has been demonstrated that it is perfectly feasible to write a Ren-
derMan program in Perl. All the hard work is done during the rendering phase, so
there is really no reason, performancewise, not to use Perl for this. However, this
doesn’t mean that you can get by with less than serious computing power to render
scenes more complex than this. Photorealistic rendering is very CPU intensive, and if
you are serious about it, you want to get your hands on some fast hardware.

9.3 SUMMARY

In this chapter we have seen how to use the Perl interfaces to OpenGL and Render-
Man. We have noted that OpenGL may be used for renderings that require high
speed or real-time response, and that RenderMan is the one to use when the output
must be as realistic as possible.

Figure 9.3 Output of the RenderMan example program discussed in the text, run once with

no arguments, and once with the --reverse argument specified. When the --reverse argu-

ment is specified, the smaller cubes will rotate in the opposite direction of the whole block of

cubes, which means that they don’t rotate at all, relative to the camera point of view.

P A R T

Special topics
In the following chapters you will find topics that require more thought about
graphics programming, and programming in general. We get closer to the basics of
graphics manipulation and creation, and will discuss some techniques that can be
used to build your own set of tools for graphics programming in Perl.

Chapter 10 features thoughts about how to design and write your own graphics
modules, and what to be aware of while doing this.

Chapter 11 provides a discussion of text placement and the calculations that go
with the tasks of text alignment and wrapping.

Finally, the manipulation of individual pixels and channels in an image is discussed
in chapter 12. Also in this chapter you will find techniques to use C from within Perl
to make these operations go faster than can be achieved in pure Perl.

3

175

C H A P T E R 1 0

Writing your own
graphics modules
10.1 Interface design 176
10.2 An OO implementation of a clock 186
10.3 Summary 188

When you find yourself writing or copying the same code over and over again, it’s a
good time to think about creating your own libraries. This can be done simply by
taking some of the subroutines out of the scripts and putting them in a generally
accessible library file. To make sure that the subroutines in those library files don’t
interfere with the names in your script, put them in their own name space or package.
And if you name and install your library file appropriately, you have a module,
because as the perlmod documentation tells us: A module is just a package that is
defined in a library file of the same name, and is designed to be reusable.1

For example, the code for the Image::Size package lives in the file Size.pm in the
directory Image, somewhere in the path that Perl searches for library files. The code
was designed to be reusable, and thus, it is a module.

1 Actually, this is not the whole story; you can have multiple packages in a module, and you can have a
single package spread out over several source files. You can even add to packages in your main program.
But when you start doing that, you are moving away from what a module is for.

176 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

Another reason to group code in a package and put it in a module, is that you plan
on writing an object-oriented interface to that code. Perl’s OO functionality is tightly
linked with packages, and cannot exist without them. A class in Perl is just a package
that contains subroutines that expect an object reference or class name as their first
argument, and an object reference is just a reference blessed into the current class.

You might even write a group of modules that all work together, like the GDText-
Utils package, wherein each class performs a distinct function, and all classes work
together. Or you could write a set of related classes that are all originally designed as
utilities for another class. For example, the DBI database interface uses as its drivers
for each different database type a class in the DBD:: name space.

All of this is, of course, true in general for sensible Perl software design. The most
important reasons for a discussion of these topics are, first, that many graphics appli-
cations are particularly well suited to an object-oriented model, and therefore benefit
substantially from being written that way, as they become easier to understand, main-
tain and use. Second, there is also the more practical observation that there are many
different Perl modules available for working with graphics. Each of these modules has
its own interface, which is often terribly different from any other interface. Writing
your own modules that provide a unifying front end to each interface can be very ben-
eficial, especially if you have to write code that works with several modules or inter-
faces. We will see in the following section how to deal with that.

10.1 INTERFACE DESIGN
Suppose you need to write a program that draws a clock to display a time in an attrac-
tive manner. You look around the CPAN, and decide that the Image::Magick module
is exactly what you need to do this. You write the prototype program shown in
listing 10.1 on page 178, and it works to your satisfaction. Since you are writing this
for Image::Magick version 5.2, which has a different interface from the previous ver-
sions, you include the version number on the use line to prevent runtime errors
when people try to use it with an older version.

You make a CGI program out of this code (see chapter 6, “Graphics and the Web,”
to find out how to do this), and install it on the company web server. After a few weeks
your webmaster informs you that your application takes up too much CPU time. You
decide to rewrite it using GD, because that is lighter on the CPU 2 than Image::Magick.
After a bit of coding, you come up with the prototype in listing 10.2 on page 179.

As can be seen in figure 10.1, the result is very similar to the Image::Magick version
of the clock.

2 A benchmark shows a difference of a factor 10 for the clock examples in listings 10.1 and 10.2 for ver-
sions of Image::Magick before 5.2.5. Newer versions will be much less CPU hungry.

INTERFACE DESIGN 177

You can now create your clock almost 20 times faster, but it cost you a good deal of
coding effort because of the interface differences between the two modules.

One week later, your employer wants you to draw the clock in a perspective and
apply some filters to it to make it look more attractive, which is something that cannot
be directly done in GD. Thus you have to rewrite it, using Image::Magick again, and
of course you need to incorporate the changes that you made in the meantime. By this
time, you start to wish that both packages had the same interface.

Then, to top it off, your marketing department wants a printable version, one that
scales nicely. And this is the point at which you fully understand why having one draw-
ing interface with a set of pluggable drivers for the various output formats would be
a big help.

The presented listings are for the two versions of the clock drawing program are
similar in many places, but different enough to make rewriting them for another
graphics module quite a bit of work and susceptible to the introduction of bugs. This
chapter will look at how to separate the similarities and differences, and to place those
two parts of the code in independent reusable libraries.

Figure 10.1

Two clocks, the left one is drawn

with Image::Magick, and the right

one with GD.

178 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

use Image::Magick '5.2';
use constant PI => 4 * atan2(1,1);
my $R = 60;
my $xc = my $yc = $R;

my $clock = Image::Magick->new(size => (2*$R+1).'x'.(2*$R+1));
my $rc = $clock->Read('xc:white');
die $rc if $rc;
$clock->Draw(primitive => 'Circle', fill => '#dfdfdf',
 stroke => '#dfdfdf',points => "$xc,$yc $xc,0");

Draw the hour markers
for (my $angle = 0; $angle < 2 * PI; $angle += 2 * PI/12)
{
 my $x1 = $xc + $R * cos($angle);
 my $y1 = $yc + $R * sin($angle);
 my $x2 = $xc + 0.8 * $R * cos($angle);
 my $y2 = $yc + 0.8 * $R * sin($angle);
 $clock->Draw(primitive => 'Line', stroke => '#00007f',
 points => "$x1,$y1 $x2,$y2");
}

Get the hour and minute
my ($min, $hour) = (localtime())[1,2];
$hour %= 12; # go from 24 hour time to 12 hour time
my $min_angle = 2 * PI * $min/60 - PI/2;
my $hour_angle = 2 * PI * ($hour/12 + $min/(12*60)) - PI/2;

my $xmin = $xc + $R * cos($min_angle);
my $ymin = $yc + $R * sin($min_angle);
my $xhour = $xc + 0.75 * $R * cos($hour_angle);
my $yhour = $yc + 0.75 * $R * sin($hour_angle);

Draw the hands
$clock->Draw(primitive => 'Line', stroke => '#000000',
 linewidth => 2, points => "$xc,$yc $xmin,$ymin");
$clock->Draw(primitive => 'Line', stroke => '#000000',
 linewidth => 2, points => "$xc,$yc $xhour,$yhour");

And put some decoration on the clock
$clock->Draw(primitive => 'Circle', fill => '#ff0000',
 points => "$xc,$yc $xc,".($xc - $R * 0.1));

$rc = $clock->Write($ARGV[0]);
die "Cannot write $ARGV[0]: $rc" if $rc;

Listing 10.1 Drawing a clock, using Image::Magick

INTERFACE DESIGN 179

use GD;
use constant PI => 4 * atan2(1,1);
my $R = 60;
my $xc = my $yc = $R;

my $clock = GD::Image->new(2 * $R + 1, 2 * $R + 1);
my $white = $clock->colorAllocate(255, 255, 255);
my $grey = $clock->colorAllocate(223, 223, 223);
my $red = $clock->colorAllocate(255, 0, 0);
my $blue = $clock->colorAllocate(0, 0, 127);

$clock->arc($xc, $yc, 2 * $R, 2 * $R, 0, 360, $grey);
$clock->fillToBorder($R, $R, $grey, $grey);

Draw the hour markers
for (my $angle = 0; $angle < 2 * PI; $angle += 2 * PI/12)
{
 my $x1 = $xc + $R * cos($angle);
 my $y1 = $yc + $R * sin($angle);
 my $x2 = $xc + 0.8 * $R * cos($angle);
 my $y2 = $yc + 0.8 * $R * sin($angle);
 $clock->line($x1, $y1, $x2, $y2, $blue);
}

Get the hour and minute
my ($min, $hour) = (localtime())[1,2];
$hour %= 12; # go from 24 hour time to 12 hour time
my $min_angle = 2 * PI * $min/60 - PI/2;
my $hour_angle = 2 * PI * ($hour/12 + $min/(12*60)) - PI/2;

my $xmin = $xc + $R * cos($min_angle);
my $ymin = $yc + $R * sin($min_angle);
my $xhour = $xc + 0.75 * $R * cos($hour_angle);
my $yhour = $yc + 0.75 * $R * sin($hour_angle);

Draw the hands
my $brush = GD::Image->new(2, 2);
$brush->colorAllocate(0, 0, 0);
$clock->setBrush($brush);

$clock->line($xc, $yc, $xmin , $ymin , gdBrushed);
$clock->line($xc, $yc, $xhour, $yhour, gdBrushed);

And put some decoration on the clock
$clock->arc($xc, $yc, 0.2 * $R, 0.2 * $R, 0, 360, $red);
$clock->fillToBorder($R, $R, $red, $red);

open(OUT, ">$ARGV[0]") or die "open $ARGV[0]: $!";
print OUT $clock->png();
close(OUT);

Listing 10.2 Drawing a clock, using GD

180 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

10.1.1 Coordinate transformation

One point that is immediately obvious in the discussed programs is that the standard
Cartesian coordinate system is not very convenient for drawing a clock. We are con-
stantly calculating x and y coordinates from the more natural lengths and angles that we
really want to work with, and we often need to translate things to the center of the
image. What we really want to be able to do is have a coordinate system that fits the task:
one that has its origin in the center of the image, or any other place we like, and that
works with angles and radii. However, the drawing routines for the libraries we use, GD
and Image::Magick, use Cartesian coordinates. Therefore. we will need to be capable of
transforming Cartesian coordinates into polar ones and back (see figure 10.2).

For this purpose we will write the Coordinate module, which is just a small collection
of handy subroutines and constants.
package Coordinate;
require Exporter;
@Coordinate::ISA = qw(Exporter);
@Coordinate::EXPORT =
 qw(PI set_origin get_origin polar2cart cart2polar);

use constant PI => 4 * atan2(1,1);

my $xc = 0;
my $yc = 0;

sub set_origin { ($xc, $yc) = @_ }
sub get_origin { ($xc, $yc) }

sub polar2cart
{
 my ($r, $angle) = @_;
 return ($xc + $r * cos($angle),
 $yc + $r * sin($angle))

}

sub cart2polar
{
 my ($x, $y) = @_;

Figure 10.2

The relationship between the Cartesian and

polar coordinates as used by the Coordinate

module. This module transforms a given

Cartesian coordinate pair into its polar

equivalent, or the reverse. Optionally, the origin

can automatically be translated.

O Set or get the Cartesian
coordinates of the origin

O Translate polar
to Cartesian

O Translate Cartesian to polar

INTERFACE DESIGN 181

 return (sqrt(($x - $xc)**2 + ($y - $yc)**2),
 atan2($y - $yc, $x - $xc))
}

1;

If a program uses this module it automatically imports all of the defined subroutines
and constants into its namespace:

use Coordinate;

set_origin(100, 100);
my ($radius, $angle) = cart2polar(30, 20);
my ($x, $y) = polar2cart(25, 4 * PI / 3);

In addition to a conversion from polar to Cartesian coordinates and vice versa, these
subroutines also perform translations of the origin. This means that the polar coordi-
nates don’t necessarily have the same origin as the Cartesian coordinates. Note that
this particular version of this module only allows one coordinate base for your whole
program. The origin coordinates are not set per call, but program-wide.

10.1.2 Choosing your drawing primitives

Now that we have a module that allows us to easily convert between Cartesian and
polar coordinates, it is time to have a good look at the code to see what sort of objects
we need to be able to draw, and what the parameters are that each object needs.

Breaking the clock down into its constituent parts, we derive the following list:

• Face. The face of the clock is a filled circle of a specific color around the image
center. The size is specified by the radius of the circle.

• Hands. The hands of the clock are lines that start at the center, and have the
attributes length, width, angle and color.

• Hour markers. The hour markers are lines that start at a distance from the cen-
ter, and have a certain length, width, angle and color.

• Decoration. The decoration at the center is a filled circle, like the face of the clock.

This means we need one drawing primitive for a circle, and two different ones for
lines. However, if we look again at the two line types, we can see that the lines that
start at the center of the clock are really just a special case of the lines that start at a
certain offset, namely for an offset of 0. So now we have two drawing primitives that
can be defined as follows:

• filled_circle(radius, color). Draw a filled circle around the center with the speci-
fied radius and color.

• line(start, stop, angle, color, width). Draw a line along an angle between start
and stop distances from the center, with attributes color and width. For the pur-
pose of ease of use, the width attribute is optional, and will default to something
useful, depending on the driver.

182 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

We decide that angles should be specified in radians, and colors are specified as strings
starting with a ‘#’, and containing 3 pairs of two characters with a hexadecimal value
between 00 and FF. This color specification is like the one used for SVG and for HTML.

We will put the class of modules that implement this interface in the Canvas::Polar
name space. This name space is generic enough that it isn’t tied to the clock alone, but
could be extended with methods for drawing pie charts or anything else that works
nicely in polar coordinates. In the next sections we’ll develop this interface for GD and
Image::Magick. Appendix C contains code examples for other output.

10.1.3 Implementing the interface

Apart from providing the drawing primitives described in section 10.1.2, a good
driver should be reusable, and as flexible as possible. There are several ways in which
this can be done, and we’ll discuss a few standard Object Oriented programming
techniques.

Inheriting from Image::Magick

One way of writing a driver that reimplements a drawing interface for a particular
drawing package is by inheritance, a so-called is-a relationship. The class that is the
driver is basically just the same as the original class, but with a few extra methods,
possibly overriding some of the parent methods. Let’s have a look at how this could
be done for the Image::Magick implementation of this driver:

package Canvas::Polar::ImageMagick;
use Image::Magick '5.2';
use Coordinate;
use strict;
@Canvas::Polar::ImageMagick::ISA = qw(Image::Magick);

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my ($width, $height, $bgcolor) = @_;
 my $self = $class->SUPER::new(size => "${width}x$height");
 $self->Read("xc:$bgcolor");
 return bless $self, $class;
}

We give the package a name, include the Coordinate and Image::Magick modules, and
set up inheritance with the @ISA array. The new() method shows that we simply
instantiate an Image::Magick object through the built-in SUPER pseudo class. We use
the standard Read() method that comes with Image::Magick to initialize an image
that is filled with the specified background color. The reference contained in $self
is, of course, an Image::Magick object, so we rebless it into our current class before
returning it to the caller.

INTERFACE DESIGN 183

The methods that actually do the drawing are, as determined by the design in the
previous section, line() and fill_circle():
sub line
{
 my $self = shift;
 my ($r1, $r2, $angle, $color, $width) = @_;
 my ($x1, $y1) = polar2cart($r1, $angle);
 my ($x2, $y2) = polar2cart($r2, $angle);

 $self->Draw(primitive => 'Line',
 stroke => $color,
 linewidth => $width || 1,
 points => "$x1,$y1 $x2,$y2");
}

sub fill_circle
{
 my $self = shift;
 my ($radius, $color) = @_;
 my ($xc, $yc) = get_origin();
 my $yr = $yc - $radius;

 $self->Draw(primitive => 'Circle',
 fill => $color,
 stroke => $color,
 points => "$xc,$yc $xc,$yr");
}

1;

These two methods translate the polar coordinates to Cartesian ones, using the func-
tions provided by the Coordinate module discussed in section 10.1.1, and call the
appropriate Image::Magick methods with these calculated coordinates.

The implementation of the previous class basically means that the returned canvas
object is an Image::Magick object, with all the attributes and methods of that class.
That might not be desirable. It is conceivable that we want none of the functionality
of the underlying driver to be exposed to the user of the canvas object, maybe to pre-
vent the user from directly drawing on it, or applying filters to it. Another reason to
avoid this sort of inheritance is to prevent naming conflicts between the driver and
interface class you’re writing.

Incorporating a GD::Image object

To avoid these problems, you can use a has-a relationship, by making the driver
object a contained attribute of the canvas interface. GD is a good example for this,
because it already defines a method with the name line(). If we don’t want to over-
load that name,3 we can do something akin to the following:

3 It is not impossible to overload line(), or any other method for that matter, it just isn’t always the
most appropriate action to take.

184 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

package Canvas::Polar::GD;
use GD;
use Coordinate;
use strict;

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my ($width, $height, $bgcolor) = @_;
 my $self = {canvas => GD::Image->new($width, $height)};
 bless $self, $class;
 $self->_set_color($bgcolor);
 return $self;
}

sub gd
{
 my $self = shift;
 $self->{canvas};
}

This object is implemented, traditionally, as a hash reference. One of the attributes
that we store is the canvas attribute, which contains a reference to a GD::Image object.
If an object is contained this way, it can be a good idea to provide methods that offer
the user access to this object’s functionality, unless of course, you definitely do not
want this. For this module we’ve chosen the easy way out, by providing a method that
simply returns that contained object. For an example on how this could be used, see
the next section.

Next, we need to define a few helper methods that will be used internally to trans-
late the color notation into something palatable by GD, and to be able to draw lines
with various widths using a GD::Image brush.

sub _rgb { map hex, unpack "x A2 A2 A2", shift }

sub _set_color
{
 my $self = shift;
 my $color = shift;
 # Check to see if the color already exists
 my $index = $self->{canvas}->colorExact(_rgb($color));
 return $index unless $index == -1;
 # If not, allocate it
 return $self->{canvas}->colorAllocate(_rgb($color));
}

sub _set_pen
{
 my $self = shift;
 my ($color, $width) = @_;

 return $self->_set_color($color) unless $width;

INTERFACE DESIGN 185

 my $brush = GD::Image->new($width, $width);
 $brush->colorAllocate(_rgb($color));
 $self->{brush} = $brush;
 $self->{canvas}->setBrush($brush);
 return gdBrushed;
}

These methods are only meant to be called internally in this module, and by certain
modules that inherit from it. Therefore, by convention, their names start with an
underscore. The _rgb() subroutine returns a list of the three color components
contained in the string that we are using as a color specification. This list is needed
for the various color allocation methods in GD. The _set_color() method is
used to select a color from the current GD palette, or to allocate a new one if it
doesn’t already exist. The _set_pen() method is used to emulate line thickness in
GD, since it natively only draws in one thickness. This is performed by setting the
drawing brush to a square image of the specified color, and designating that brush as
the active drawing pen, instead of a plain color.

All that is left now is the implementation of the methods that form our drawing
interface, i.e., the line() and fill_circle() methods.

sub line
{
 my $self = shift;
 my ($r1, $r2, $angle, $color, $width) = @_;
 my ($x1, $y1) = polar2cart($r1, $angle);
 my ($x2, $y2) = polar2cart($r2, $angle);

 my $gd_color = $self->_set_pen($color, $width);
 $self->{canvas}->line($x1, $y1, $x2, $y2, $gd_color);
}

sub fill_circle
{
 my $self = shift;
 my ($radius, $color) = @_;
 my $gd_color = $self->_set_color($color);
 my ($xc, $yc) = get_origin();

 $self->{canvas}->arc($xc, $yc,
 2 * $radius, 2 * $radius, 0, 360, $gd_color);
 $self->{canvas}->fillToBorder(
 $xc, $yc, $gd_color, $gd_color);
}

1;

It now has become fairly easy to write a clock-drawing program, using virtually any
driver that implements the interface discussed.4 Some drivers (for example, text-based

4 Implementations of this driver for the SVG format and for PostScript are presented in appendix C.

186 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

displays or drivers that work with inches and centimeters instead of pixels) would
require some extra functionality that translates the clock sizes into more appropriate
sizes for their particular type of display. This could be done by introducing a resolu-
tion attribute in your interface. Some drivers might not have an OO interface, but
that needn’t present a problem either. As long as the Canvas class provides the two
described methods, the clock will happily draw itself. The details of how that happens
are now neatly hidden behind our interface specification.

10.2 AN OO IMPLEMENTATION OF A CLOCK
Now that we have an abstract drawing interface with all the primitives needed to
draw a clock, we can rewrite the programs from section 10.1 using the driver imple-
mentations for GD and Image::Magick. But we still will have quite a bit of code in
each program. What this abstraction step has given us is the possibility to switch from
driver to driver without altering our main program.

Suppose that we need to maintain two programs: one that creates a PNG image
of a clock for a web page, and one that needs to import a variety of images to draw a
clock on that. The interface to GD is the logical choice for the first one. Because of
its speed and its flexibility in the number of image formats it can handle, Image::Magick
is the logical choice for the second one. But we don’t want to have to write all the code
for the actual drawing of the clock twice. Instead, we want to be able to use a code
fragment such as:

use Clock;
use Canvas::Polar::GD;

my $canvas = Canvas::Polar::GD->new(121, 121, '#ffffff');

my $clock = Clock->new(
 radius => 60,
 hand_color => '#000000',
 face_color => '#dfdfdf',
 marker_color => '#00007f',
 center_color => '#ff0000',
);
$clock->draw($canvas, 60, 60);

open(OUT, ">GDclock2.png") or die $!;
binmode(OUT);
print OUT $canvas->gd->png;
close(OUT);

In this example, the code that deals with the drawing of the clock is independent of
the actual object we draw on.5 The only information we need to pass in is which can-
vas to use. What we have actually done with that canvas, and what we will do with it

5 ...apart from the units, which are in pixels for both. Even this can be dealt with by allowing for a res-
olution attribute in the driver modules if other units are wanted

AN OO IMPLEMENTATION OF A CLOCK 187

outside of the drawing code for the clock, is of no concern to the clock. Nor should it
be. All the clock needs to know is that the canvas driver passed to it has all the meth-
ods needed to draw a clock.

Let’s have a look at a possible implementation of this magical Clock class:

package Clock;
use Coordinate;

my %defaults = (
 face_color => '#FFFFFF',
 hand_color => '#000000',
 marker_color => '#00007F',
 center_color => '#7F0000',
 radius => 50,
 when => time(),
);

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;

 my $self = { %defaults, @_ };
 bless $self => $class;
 return $self;
}

The constructor creates a hash reference and initializes it with the values from the
hash %defaults, followed by whatever it gets passed as arguments. This ensures that
any arguments passed in will override the defaults. By default, our clock will take the
current time as the time to display, but the user can override this in the arguments.

The module contains only one further method that does all the hard work.6

sub draw
{
 my $self = shift;
 my ($canvas, $x, $y) = @_;
 set_origin($x, $y);

 my $R = $self->{radius};

 $canvas->fill_circle($R, $self->{face_color});

 for (my $angle = 0; $angle < 2*PI; $angle += 2*PI/12)
 {
 $canvas->line($R, 0.8 * $R, $angle,
 $self->{marker_color});
 }

6 A real-life production implementation of this class could have many other methods; a method to set
the time being the most obvious one.

O
Draw the face
of the clock

O Draw the hour
markers

188 CHAPTER 10 WRITING YOUR OWN GRAPHICS MODULES

 my ($min, $hour) = (localtime($self->{when}))[1,2];
 $hour %= 12;
 my $min_angle = 2*PI * $min/60 - PI/2;
 my $hour_angle =
 2*PI * ($hour/12 + $min/(12 * 60)) - PI/2;

 $canvas->line(0, $R, $min_angle, $self->{hand_color}, 2);
 $canvas->line(0, 0.75 * $R, $hour_angle,
 $self->{hand_color}, 2);

 $canvas->fill_circle(0.1 * $R, $self->{center_color});
}

1;

This method does much the same work as the code in the two programs in
section 10.1, but in fewer lines and with less complexity. The main reason for the
decrease in complexity is that we have provided it with a driver that can draw the
graphical elements in terms that are natural to the problem. The good news is that we
don’t need to clutter the code with conversions between angles and coordinates.

The result of all this can be seen in figure 10.3.

10.3 SUMMARY

Hopefully, it has been made clear that good software design and abstraction are not
only matters of elegance, or limited to pedantic discussions on Usenet and at univer-
sities. The object-oriented code presented is much more maintainable and reusable
than the two previous examples. More importantly, especially for graphics program-
ming, it is much harder to create bugs and definitely easier to track them down,
because each code fragment is aimed only at solving a very small part of the overall
problem and is stated in the terms best suited to the problem at hand.

Another point that I hope has been sufficiently conveyed is how naturally OO fits
in with programming graphics interfaces. Not only does the world of graphics pro-
gramming translate well into an OO model, but, more practically, these techniques
provide us with a means of hiding the specific ways in which the low-level graphics
primitives are implemented for the various drivers like GD and Image::Magick or the
various output formats like SVG or PostScript.

O Convert from 24 hour
time to 12 hour time

O Put some
decoration on
the clock

Figure 10.3

Two clocks, drawn with the two different

drivers for the Clock module. The left image

was produced with a driver based on the Im-

age::Magick module, and the right image

with one based on the GD module.

SUMMARY 189

SEE ALSO The perlsub, perlmod, perlmodlib, perltoot, perlobj and perlbot
manual pages explain in more detail how Perl’s OO model works. Damian
Conway [32] has written an excellent book on object oriented program-
ming in Perl.

190

C H A P T E R 1 1

Controlling text placement

11.1 Determining text size 191
11.2 Aligning text in graphics 194
11.3 Wrapping text 197
11.4 Summary 209

Most drawing primitives in graphics manipulation are fairly straightforward: you
determine the size of the object you want to draw, decide where you want it to
appear, and draw it. The number of parameters and the difficulty in positioning these
objects is limited, because of the simplicity of their shape and the predictability of
their size. You draw a circle with a certain radius around a center, and you automati-
cally know what the bounding box of this circle is going to be. When you draw a
polygon, it is easy enough, with some basic geometric mathematics, to determine
what its bounding box is going to be.

Text objects have slightly more demanding requirements, at least when you start
working with proportional typefaces. You cannot easily predict the size of the text
object you will be drawing, because the way proportional typefaces are rendered and
spaced is quite complex. If you fix the point size of the text, the height is known, but
the width depends on the text, the individual characters, the spacing of these charac-
ters, and the potential kerning that occurs. If your drawing package allows you to fix
the width of the box in which the text appears, then you cannot easily predict the
resulting height.

If you knew the internal parameters of all characters in the font you are working
with, and all the parameters that go with the font and the particular rendering engine,

DETERMINING TEXT SIZE 191

then you could, in theory, predict the outcome. However, the result is so sensitive to
such an array of parameters, that this is hardly ever successful. The Font::TTF modules
could theoretically be used to make these sorts of predictions, but not without a lot
of work, and not with great accuracy.

Most of the time, or almost always, you are not interested in the precise details of
the text rendering that goes on behind the scenes, and you certainly don’t want to have
to do all the calculations that go with the positioning of proportional characters. What
concerns you is the size of the box you are going to draw, which you’d like to know
before actually drawing. The reasons for needing to know these things include wanting
to be able to center the box accurately on some point in your graphic, or to organize
multiple text boxes in a rather precise way.

The rest of this chapter talks about how to determine these sizes and parameters,
and how to use this information to make text go precisely where you want it to. Align-
ment, spacing and sizing of text strings in the two most popular drawing packages for
Perl, GD and Image::Magick, will be discussed and demonstrated.

SEE ALSO For basic instructions on how to produce text with GD, see section 4.1.3,
“Drawing text with GD.” and for Image::Magick see section 4.2.5, “Drawing
text with Image::Magick.”

11.1 DETERMINING TEXT SIZE

In order to correctly position a string on an image it is important that you understand
how the specific graphics package in use renders the font on the page. The parameters
you need to know are the horizontal and vertical size of the string in pixels, and the
handle on the bounding box.

11.1.1 Text sizes in GD

The GD module can draw text in two ways: with a limited set of built-in fonts, and
with TrueType fonts from a user-specified file. These two types of fonts have different
API calls, and wildly different metrics; dealing with alignments of strings drawn with
the different fonts is not even similar.

The metrics for a string drawn with the built-in fonts and one with a TrueType
font are shown in figure 11.1.

Figure 11.1 The size parameters and handles for strings with GD. For fixed-width fonts, the

only parameters of importance are the width and height of the single characters and the handle

is located at the upper- left corner of the string. For TrueType fonts, the parameters of impor-

tance consist of the coordinates of the bounding box around the whole string to be drawn, and

the handle is located at the baseline of the font.

192 CHAPTER 11 CONTROLLING TEXT PLACEMENT

 The handle for a string drawn with a built-in font is the top left corner of the bound-
ing box for the text, the size of the bounding box is the height of a single character, and
the width is the width of a single character multiplied by the number of characters:
$text_width = gdGiantFont->width * length($string);
$text_height = gdGiantFont->height;
or
$text_width = GD::Font->Giant->width * length($string);
$text_height = GD::Font->Giant->height;

For TrueType fonts, the situation is slightly more complex. The handle on the bound-
ing box is the baseline of the font. The letters will be drawn on a (normally horizontal)
line through this point, the resulting string will have a part above and a part below the
handle. If invoked as an object method, the stringTTF() method will draw a string
on a GD canvas, and return the coordinates of the bounding box of the complete
string. If this method is invoked as a class method, i.e., as GD::Image->stringTTF,
it will return the bounding box of the text, but without actually drawing it. In this
way, you can obtain the size of the text before you draw it.

So, to calculate the size of a TrueType font string, you can do something such as:
$string = 'Some Text';
@bounds = GD::Image->stringTTF(0, '/usr/share/fonts/ttfonts/arialbd.ttf',
 14, 0, 0, 0, $string);
die $@ unless @bounds;
$text_width = $bounds[2] - $bounds[0];
$text_height = $bounds[1] - $bounds[7];

See section 11.2, “Aligning text in graphics.” for an example on how to use this infor-
mation to correctly align strings with GD.

11.1.2 Text sizes in Image::Magick

There is no documented method for Image::Magick to predict the size of a text
string,1 but it can be obtained by making use of Image::Magick’s built-in LABEL file
type. Since the Image::Magick object is implemented as a reference to an array con-
taining separate images, we can do something like the following:
$im = Image::Magick->new();
...
$im->Set(
 font => '@/usr/share/fonts/ttfonts/arialbd.ttf',
 pointsize => 12
);
Create a new image in the object
$rc = $im->Read("label:$string");
if (!$rc)
{

1 For versions of Image::Magick 5.2.6 and before, there was no such method. Version 5.3.9 of Im-
age::Magick provides the user with the QueryFontMetrics() and QueryFont() methods, Unfortu-
nately, this addition arrived too late to allow changes to this chapter before publication.

DETERMINING TEXT SIZE 193

 $text_width = $im->[$#$im]->Get('width');
 $text_height = $im->[$#$im]->Get('height');
}
else
{
 warn $rc;
}
Get rid of the temporary image
pop @$im;

It would be helpful if Image::Magick provided a rapid access method for this sort of
information, because the method outlined above is a spectacular 100 times slower
than the stringTTF() method in GD, and is not exactly elegant either.

Even though Image::Magick does not provide a direct method to obtain the size of
a text fragment, we can write our own, and insert it into the Image::Magick namespace:

sub Image::Magick::TextSize
{
 my $im = shift or return;
 my $str = shift or return ();

 my $rc = $im->Read("label:$str");
 return () if $rc;
 my $l = pop @$im;
 return $l->Get('width', 'height');
}

$im = Image::Magick->new();
$im->Set(
 font => '@arialbd.ttf',
 pointsize => 12
);
($text_width, $text_height) = $im->TextSize($string);

This extends the Image::Magick class with the capability of providing you with width
and height information about a string to be drawn, much as the stringTTF()
method does for GD. We still do not have as much information as stringTTF()
provides, nor is the information as accurate. We are also lacking a reliable position
with regard to the baseline of the font, which is needed to draw lines of text word by
word. We’ll be seeing more about this in section 11.2.

NOTE One can argue over whether adding a method to a class at runtime is
wise or not. There is the risk of trampling on symbols in a namespace
which isn’t really yours; you could accidentally redeclare a method that
already exists; or you could change the value of a package variable. Of
course, if you run Perl with the -w option it will warn you about re-
declaration of subroutines; and if you make sure to scope your variables
with my, you don’t change anything but that which is lexically local to
your subroutine.

194 CHAPTER 11 CONTROLLING TEXT PLACEMENT

However, it is probably preferable, in most cases, to create a subclass of Image::Magick,
and add the methods you need to that class. Of course, you have to rewrite all your
code to create objects of your subclass instead of Image::Magick, but normally that
shouldn’t be too much work.

package myImage::Magick;
use Image::Magick;
@myImage::Magick::ISA = qw(Image::Magick);

sub TextSize
{
 my $im = shift or return;
 my $str = shift or return ();

 my $rc = $im->Read("label:$str");
 return () if $rc;
 my $l = pop @$im;
 return $l->Get('width', 'height');
}

package main;

$string = 'Some Text';
$im = myImage::Magick->new();
$im->Read('gradation:white-black');
$im->Set(
 font => '@/usr/share/fonts/ttfonts/arialbd.ttf',
 pointsize => 12
);
($text_width, $text_height) = $im->TextSize($string);

If the amount of extra functionality you need is reasonably large and complex (say
more than a few subroutines), then writing a subclass for use in your code is probably
the preferred way to go. If all you want to do is to add a little bit of functionality for
reuse in one program, then it is easier to just insert a method in the namespace of the
class you are working with.

11.2 ALIGNING TEXT IN GRAPHICS

Aligning text to a center point or left or right margin is one of the most frequent
operations you will find yourself performing with text objects. Apart from the hori-
zontal alignment, there is also vertical alignment. You might like to put some text in
the upper right corner of a box you drew, or a copyright notice on the bottom right
corner of a photograph. This section discusses how to achieve alignment of text with
the help of the modules under discussion, and a little bit of work on your own part.

11.2.1 Aligning text with GD

The GD module doesn’t provide built-in functionality to position text centered on or
with its right side aligned to a point. It is, however, possible to write something our-
selves, with the help of the techniques described in section 11.1.

ALIGNING TEXT IN GRAPHICS 195

In order to have full control over text positioning, at least a minimal set of posi-
tional parameters is required: a horizontal left, center or right alignment and a vertical
top, center or bottom alignment. The following code presents a subroutine that can
draw text aligned in all sorts of ways, using the GD module:

sub alignStringTTF
{
 my $gd = shift;
 my ($valign, $halign) = splice @_, 7, 2;
 my @bb = GD::Image->stringTTF(@_) or return;
 my ($x, $y) = @_[4,5];

 SWITCH: for ($halign || 'left')
 {
 /^right/i and $x -= ($bb[2] - $bb[0]),
 last SWITCH;
 /^center/i and $x -= ($bb[2] - $bb[0])/2,
 last SWITCH;
 }
 SWITCH: for ($valign || 'baseline')
 {
 /^top/i and $y -= ($bb[7] - $y),
 last SWITCH;
 /^center/i and $y -= ($bb[1] + $bb[7])/2 - $y,
 last SWITCH;
 /^bottom/i and $y -= ($bb[1] - $y),
 last SWITCH;
 }

 return $gd->stringTTF(@_[0..3], $x, $y, $_[6]);
}

This subroutine takes a GD::Image object as its first argument. It then takes argu-
ments 7 and 8, as the vertical and horizontal alignment parameters. There should
now be 7 arguments left, which should be exactly the same as the arguments to the
stringTTF() method in the GD module, meaning that this method has the same
calling signature as the stringTTF() method, except that it optionally accepts the
two alignment parameters at the end of the list.

When the arguments have been processed, the bounding box of the text is deter-
mined and, based on the given alignment parameters and the bounding box, new x
and y coordinates for the call to stringTTF() are calculated. Once that is done, the
standard stringTTF() method gets called with the same parameters that were given
to this method, except that the x and y coordinates have been replaced with ones that
align the bounding box differently. The logical ORs in the SWITCH lines are there
because both alignment parameters might be undefined; for example, because they
were not specified. We don’t want warnings when that happens, so we provide a
default value. This default value can be anything, but in this case we use it to docu-
ment what stringTTF() does by default.

196 CHAPTER 11 CONTROLLING TEXT PLACEMENT

The following code demonstrates how this subroutine can be used to align and
position text to produce figure:
use GD;
my $gd = GD::Image->new(300, 60);
my $white = $gd->colorAllocate(255,255,255);
my $black = $gd->colorAllocate(0, 0, 0);
my $green = $gd->colorAllocate(0,255, 0);
my $gray = $gd->colorAllocate(127,127,127);
$gd->line(0, 30, 300, 30, $gray);
$gd->line(150, 0, 150, 60, $gray);

my @args = ('/usr/share/fonts/ttfonts/arialbd.ttf', 24,
 0, 150, 30, 'A string');
alignStringTTF($gd, $black, @args, 'bottom', 'right');
alignStringTTF($gd, $green, @args, 'top', 'right');
alignStringTTF($gd, $green, @args, 'bottom');
alignStringTTF($gd, $black, @args, 'top');

Having a fairly simple subroutine like alignStringTTF() around saves you a lot of
work in calculating where your text goes, and it makes your program more elegant
and readable as well. Because we wrote the subroutine in such a way that it accepts a
GD::Image object as the first argument, you could even consider putting it in the
GD::Image name space, which would make it available as a normal method for a
GD::Image object. As written, it should behave identically to the standard
stringTTF() method, except that it accepts these extra alignment parameters. To
make it more robust, you could consider subjecting the argument list to a more rigor-
ous inspection.

Later in this chapter, in section 11.2.2, we will see more on abstracting this sort
of work out into reusable subroutines.

11.2.2 Aligning text with Image::Magick

Image::Magick provides some rough alignment functionality for text, through the use
of the gravity parameter (see also section A.6, “Common method arguments,” on
page 276) in the Annotate() method.2 The best way to illustrate the use of these
parameters is with some code:

Figure 11.2 Text alignment with GD.

The four True-Type font strings were

aligned in four different ways to the cen-

ter point of the image by determination

of the bounding box of the string to be

drawn, and an appropriate repositioning

of the drawing handle.

2 The gravity parameter for text with the Draw method is somewhat unreliable, at least in version 5.2.3.

WRAPPING TEXT 197

use Image::Magick;
my $im = Image::Magick->new(size => '400x50');

Set image defaults
$im->Set(stroke => 'red',
 fill => 'red',
 font => 'Helvetica',
 pointsize => 24);
$im->Read('xc:white');

Draw some lines
$im->Draw(primitive => 'line',
 stroke => 'blue',
 points => '0,25 400,25');
$im->Draw(primitive => 'line',
 stroke => 'blue',
 points => '200,0 200,50');

$im->Annotate(text => 'Align NorthEast',
 geometry => '+200+25',
 gravity => 'NorthEast');
$im->Annotate(text => 'Align NorthWest',
 geometry => '+200+25',
 gravity => 'NorthWest');
$im->Annotate(text => 'Align South',
 geometry => '+200+25',
 gravity => 'South');

which produces the image in figure 11.3.

Image::Magick always approximately aligns the baseline of the string to the coordi-
nates given, if the gravity is of a North type. Because it isn’t possible to obtain the
coordinates of the bounding box of a string with (older versions of) Image::Magick,
more customized positioning of text, as in the GD examples in the previous section,
cannot be achieved. There is no way to calculate how far the text sticks out above or
below the baseline. The only retrievable information is the approximate size of the
string to be drawn, and that is simply not sufficient for precise text positioning. In
newer versions of Image::Magick the QueryFontMetrics() method could be used
to obtain the necessary information.

11.3 WRAPPING TEXT
You will sometimes find yourself in a situation in which you need to place a large string
on an image which is longer than your image is wide. You can, of course, manually break
up the string and draw individual strings, but every time the text changes it has to be done
again. It would be terribly handy if you had some code that did line wrapping for you.

Figure 11.3 Text alignment with

Image::Magick. The strings were aligned

with the gravity parameter set to NorthEast,

NorthWest and South respectively.

198 CHAPTER 11 CONTROLLING TEXT PLACEMENT

While correct typesetting of text is a nontrivial matter and requires a full knowl-
edge of the typeface with which you are working, an adequate approximation can be
achieved even by a relative novice. You break the string up into words,3 and put the
individual words on the canvas, all the time keeping track of the number of pixels left
in this line. The number of parameters needed to do all this is quite large: the font
name, font size, spacing between the lines, left and right border, top, color, alignment
parameters, and others if you need more flexibility. That means that if you implement
this as a single subroutine, the call to it would look something like:

wrap_text($gd_image, $fontname, $fontsize, $line_space,
 $color, $left, $right, $top, $text);

This looks fairly nasty, and each time you add a new capability to your subroutine,
the interface to that subroutine changes slightly. It can be made a bit less rigid by
allowing the arguments to come in as a hash:

wrap_text($gd_image,
 font => $fontname,
 font_size => $fontsize,

 color => $color,
 line_space => $line_space,
 left => $left,
 right => $right,
 top => $top,
 text => $text
);

This is already a major improvement, since it doesn’t require the user of the interface
to remember exactly what the order of arguments is, and it allows easier provision of
defaults. It is still limited by the single subroutine call, and the only interaction possi-
ble is to call it. There is no feedback regarding the size the box will be, for example.
Of course, you can provide yet another function to create that information.

A better way to provide an interface to your text wrapping code is to put all this
functionality in a class of its own (see also chapter 10). It is possible for us to subclass
GD::Image, but that isn’t very convenient. One reason is that GD::Image is imple-
mented as a reference to a scalar, which doesn’t allow us to easily store object-specific
information that we want to use. Another reason is that, even though this example will
only use GD, the idea is not really entirely specific to GD. With some effort it could
be rewritten for any graphics package that provides the basic information we will need
for this module.

To produce a picture like the one shown in figure 11.4, we would rather not write
code that does all the calculations for each box and word separately, and repeat that

3 ...or tokens, split up by spacing

WRAPPING TEXT 199

each time we need to create a text box. Instead we would like to be able to write some-
thing approximating the following:

use GD;
use GDTextWrap;

my $gd = GD::Image->new(450,170);
my $white = $gd->colorAllocate(255,255,255);
my $black = $gd->colorAllocate(0, 0, 0);
my $blue = $gd->colorAllocate(127,127,255);

my $text = <<EOSTR;

Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat.
EOSTR

my $wp = GDTextWrap->new($gd,
 font => '/usr/share/fonts/ttfonts/Arialn.ttf',
 font_size => 10,
 top => 10,
 line_space => 4,
 color => $black,
 text => $text,
);

$wp->set(align => 'left', left => 10, right => 140);
$gd->rectangle($wp->get_bounds, $blue);
$wp->draw();
$wp->set(align => 'justified', left => 160, right => 290);
$gd->rectangle($wp->get_bounds, $blue);
$wp->draw();
$wp->set(align => 'right', left => 310, right => 440);
$gd->rectangle($wp->get_bounds, $blue);
$wp->draw();
$wp->set(align => 'center', left => 40, right => 410,
 font => '/usr/share/fonts/ttfonts/Arialnb.ttf',
 font_size => 12, top => 110);
$gd->rectangle($wp->get_bounds, $blue);
$wp->draw();

Figure 11.4 Examples of text wrapping and justification with the GD

module. All the necessary calculations were done with the GDTextWrap

module presented in the text.

b Create a
GD::Image
object

Create a
GDTextWrap

object c

d Draw a
box with
text

200 CHAPTER 11 CONTROLLING TEXT PLACEMENT

b This code starts by including GD and our hypothetical module GDTextWrap. Next,
a GD::Image object is created and some colors are allocated for it. A variable $text
is declared and some standard pseudo Latin text to be used in the text boxes is
assigned to it.

c Then, a GDTextWrap object is created, and the GD::Image object is associated with it
by passing it to the constructor as the first argument. The drawing color of the object
is set to one of the earlier allocated colors, the font and font size to something agree-
able, the text to the Latin phrase, the top boundary to 10, and a line spacing is chosen.

d Now it is time to start drawing some boxes. First, the alignment and left and right
bounding parameters are set. Then, a blue rectangle the size of the bounding box is
drawn by using a postulated method called get_bounds() that gives us coordinates
exactly in the manner that the rectangle() method wants. Finally, the draw()
method is called. This is repeated for three more boxes to produce figure 11.4.

All of the above looks like approximately the amount of code we would like to write
to produce text boxes. Unfortunately, the hypothetical module GDTextWrap does not
exist,4 so we will have to write it ourselves. We start by creating the main module file
GDTextWrap.pm. In this file we put the code for the class GDTextWrap. In Perl, a
class is not much more than a package, so:

package GDTextWrap;
$GDTextWrap::VERSION = 0.10;
use strict;
use GD;
use Carp;

As good module developers, we put a version number in the module file, and because
we don’t want to spend too much time debugging, we include the strict pragma. We
also include the standard Carp module so that errors from within our class are dealt
with in a slightly more elegant manner.

We have a good idea of the parameters we’ll need, so we define some default values
which we can use in the constructor.
my %attribs = (
 left => 0,
 right => undef,
 top => 0,
 line_space => 2,
 font => '/usr/share/fonts/ttfonts/arialbd.ttf',
 font_size => 12,
 color => undef,
 align => 'justified',
 text => undef,
);

4 or at least, it didn’t when this was written. See section 11.3.1 for more information.

WRAPPING TEXT 201

The reason that some of these are present but undefined is that this hash will not only
be used for the default values of the attributes, but also, as we will see later, in the set
method to check for the validity of the attribute names.

Next we define a constructor, an initialization method and a set method:

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $gd = shift;
 ref($gd) and $gd->isa('GD::Image')
 or croak "Not a GD::Image object";
 my $self = { gd => $gd };
 bless $self => $class;
 $self->_init();
 $self->set(@_);
 return $self
}

sub _init
{
 my $self = shift;
 $self->{$_} = $attribs{$_} foreach keys %attribs;
 $self->{color} = $self->{gd}->colorsTotal - 1;
 $self->{right} = ($self->{gd}->getBounds())[0] - 1;
}

sub set
{
 my $self = shift;
 my %args = @_;
 foreach (keys %args)
 {
 exists $attribs{$_} or
 do { carp "No attribute $_"; next };
 $self->{$_} = $args{$_};
 }
}

b The constructor won’t be much of a surprise to anyone familiar with Perl’s OO
model. It uses an anonymous hash as the base for an object. We shift off the first
argument (which is really the bit before the arrow in the call), and make sure that we
know which class we belong in. We then take the second argument and make sure
that it is a GD::Image object. We create an anonymous hash reference containing a
reference to that object, bless it into the current class and continue by calling the
_init()5 method and the set() method with the remaining arguments.

b The constructor

c The initializer

d The set() method

5 Following the normal conventions, we start the names of methods that are not part of the public inter-
face with an underscore.

202 CHAPTER 11 CONTROLLING TEXT PLACEMENT

c The _init() method sets the attributes of the object to the default values which
were stored in the hash %attributes, and computes some valid values for the
color and right attributes from the GD::Image object passed to the constructor: It
sets the color to be used to the last color in the object’s palette, and the right bound-
ary equal to the image width, less one pixel.

d All that the set method does is treat its arguments as a hash of attribute names and
values and, checking that each one is valid, assigns them to the object’s attributes.
The other two public methods are defined as follows:

my $dry_run = 0;

sub get_bounds
{
 my $self = shift;
 $dry_run = 1;
 return $self->draw(@_);
}

sub draw f Draw the text
{
 my $self = shift;
 $self->_set_font_params();

 my $y = $self->{top} + $self->{font_up};
 my @line = ();
 foreach my $word (split(' ', $self->{text}))
 {
 my $len =
 $self->_get_width(join(' ', @line, $word));
 if ($len > $self->{right} - $self->{left} && @line)
 {
 $self->_draw_line($y, 0, @line) unless $dry_run;
 @line = ();
 $y += $self->{font_height} + $self->{line_space};
 }
 push @line, $word;
 }

 $self->_draw_line($y, 1, @line) unless $dry_run; g Draw a line

 $dry_run = 0;

 $self->{bottom} = $y + $self->{font_down};
 return (
 $self->{left}, $self->{top},
 $self->{right}, $self->{bottom}
)
}

e Variable to allow
simulation of drawing

h Return the
bounding box
coordinates

WRAPPING TEXT 203

e The lexically scoped variable $dry_run controls whether the draw routines actually
draw, or only do the calculations necessary for the drawing. This is important if we
want to be able to determine how large the box to be drawn will be before actually
drawing it. The get_bounds() method does provide us with that possibility. It sets
$dry_run to a true value, and then calls the draw() method to do the real work.

f The draw() method calls _set_font_params() which, as the name suggests, sets
up some parameters for the font we will use, such as how many pixels this font
extends above and below the baseline (font_up and font_down), and the total
height of the font (font_height). Once those are known, the y coordinate for the
first baseline is set up, and we start looping over each word in the text to draw. In the
loop, we calculate the length that a line would be if we added the current word with
the call to join(). If that length is larger than the width of the box, and there is
already a word in the line,6 we draw the current line (see later for a description of
_draw_line()), but only if this is not a dry run. We empty the current line and
increment the y coordinate with the height of the font and the line space. If the
length is not larger than the width of the box, we simply add the current word to the
current line.

g When we run out of words, we still have the current line in the buffer @line, so we
need to draw that.

h To finish off, we reset the $dry_run variable to 0, and calculate the bottom of the
box we’ve just drawn by adding the number of pixels that the font sticks out below
the baseline to the y coordinate. We then return the coordinate pairs of the top left
and bottom right corner of the box.

To figure out the required font parameters, we need to do quite a bit of work:

my ($test_string, $space_string, $n_spaces);

BEGIN
{
 $test_string .= chr($_) for (0x21 .. 0x7e);
 $space_string = $test_string;
 $n_spaces = $space_string =~ s/(.{5})(.{5})/$1 $2/g;
}

sub _set_font_params
{
 my $self = shift;
 my @bb1 = GD::Image->stringTTF(0,
 $self->{font}, $self->{font_size}, 0, 0, 0,
 $test_string);
 my @bb2 = GD::Image->stringTTF(0,
 $self->{font}, $self->{font_size}, 0, 0, 0,

6 We need to check this in case the current word we’re adding is longer than the box is wide.

i
Set up the font
parameters

204 CHAPTER 11 CONTROLLING TEXT PLACEMENT

 $space_string);
 # Height of font above and below the baseline
 $self->{font_up} = -$bb1[7];
 $self->{font_down} = $bb1[1];
 # Height of font in total
 $self->{font_height} =
 $self->{font_up} + $self->{font_down};
 # width of a space
 $self->{space} =
 (($bb2[2]-$bb2[0]) - ($bb1[2]-$bb1[0]))/$n_spaces;
}

i The _set_font_params() method is responsible for establishing some font met-
rics, like the maximum height of the font above and below the baseline, and the aver-
age width of a space character. It does this by getting the bounding boxes for a string
($text_string) which contains the standard printable characters (the characters
with an ordinal value between 33 and 126), and the same string with a number of
spaces inserted ($space_string).7 These strings are calculated at compile time in
the BEGIN block shown.

Since GD draws TrueType fonts on the baseline, the top and bottom of the bounding
box give us the first two wanted parameters, namely the values for the font_up and
font_down attributes. The difference in width between the first and second bound-
ing boxes gives us the width of all spaces in the second string, which we divide by the
number of spaces to obtain the average width of a space.

The method used in draw() to calculate the width of a text line is defined as follows:

sub _get_width
{
 my $self = shift;
 my $string = shift;
 my @bb = GD::Image->stringTTF(0,
 $self->{font}, $self->{font_size}, 0, 0, 0, $string);
 return @bb ? ($bb[2] - $bb[0]) : 0;
}

This method returns the width in pixels of a string when drawn with the current font
and font size. It is also used in the following, rather drawn out, method:

sub _draw_line
{
 my $self = shift;
 my $y = shift;
 my $last = shift;

7 This will work for most regular fonts, and for many of the fancier fonts. It might work less reliably for
nonwestern font encodings and character sets. Note that simply getting the bounding box of a string
containing only a single space does not work.

O Needed for justified lines

WRAPPING TEXT 205

 SWITCH: for ($self->{align})
 {
 /^just/i and !$last and do
 {
 $self->_draw_justified_line($y, @_);
 last SWITCH;
 };

 my $line = join(' ', @_);
 my $len = $self->_get_width($line);

 /^right/i and do
 {
 my $x = $self->{right} - $len;
 $self->{gd}->stringTTF($self->{color},
 $self->{font}, $self->{font_size},
 0, $x, $y, $line);
 last SWITCH;
 };
 /^center/i and do
 {
 my $x = ($self->{left} + $self->{right})/2 -
 $len/2;
 $self->{gd}->stringTTF($self->{color},
 $self->{font}, $self->{font_size},
 0, $x, $y, $line);
 last SWITCH;
 };

 my $x = $self->{left};
 $self->{gd}->stringTTF($self->{color},
 $self->{font}, $self->{font_size},
 0, $x, $y, $line);
 }
}

The _draw_line() method draws a single line of text. The first argument is the y
coordinate of the baseline of the current line. The second argument is a flag that tells
us whether this is the last line in a box. We need to know this for justified paragraphs,
for which the last line is normally placed flush left. The other arguments are the
words to be positioned on the line.

We determine what sort of alignment we need for the current line by checking the
align attribute and the passed in $last argument. We can draw the line quite simply
for left, right, and centered alignment: calculate the x coordinate, and draw the string.
For right alignment the x coordinate is simply the length of the line to the left of the
right side of the box. For centered text it’s slightly more complex: The middle (average)
of the left and right sides of the box, minus half the length of the line. Left aligned text
starts at the left side of the box.

The case for justified text is a bit more difficult, which is why we use a separate
method for it—which is the last method in this module:

O The default
action is left
justification

206 CHAPTER 11 CONTROLLING TEXT PLACEMENT

sub _draw_justified_line
{
 my $self = shift;
 my $y = shift;
 my $x = $self->{left};

 my @lengths = ();
 my $length = 0;

 foreach my $word (@_)
 {
 my $len = $self->_get_width($word);
 push @lengths, $len;
 $length += $len;
 }

 my $space =
 ($self->{right} - $self->{left} - $length)/($#_ || 1);

 for (my $i = 0; $i < $#_; $i++)
 {
 $self->{gd}->stringTTF($self->{color},
 $self->{font}, $self->{font_size},
 0, $x, $y, $_[$i]);
 $x += $lengths[$i] + $space;
 }

 $x = $self->{right} - $lengths[-1];
 $self->{gd}->stringTTF($self->{color},
 $self->{font}, $self->{font_size},
 0, $x, $y, $_[-1]);
}

$GDTextWrap::VERSION;

 j To draw a justified line, we need to calculate what the total amount of space on a line
is. The only way to find that out is by adding up the lengths of the individual words,
and subtracting the sum from the width of the box. The first loop does that and
more: apart from determining the total width taken up by words, it also stores the
individual length of each word in an array. This we do in order to avoid recalculating
these while drawing the words in the second loop.

1) Once we know the amount of space needed for the words, we determine the total amount
of whitespace left on the line and divide that by one less than the number of words to get
the length of a single space. The actual expression we divide by is ($#_ || 1) which is
one less than the number of words, or 1 if there is only one word. This prevents division
by zero.

1! Next, we draw the words starting at the left margin. After each word we move the
width of that word plus the amount of calculated whitespace to the right to draw the
next word. We do this for all the words except the last one. To ensure that the last
word neatly aligns with the right of the box, that is exactly where we draw it: we set

j Calculate length
of individual
words

1)
Calculate average
space between words

1! Draw all
words except
the last one

O Draw the last word

1@ Every module should return a true value

WRAPPING TEXT 207

the x coordinate as many pixels left of the right margin as the word is long, and draw
the word. This avoids any rounding errors that might have crept in during the previ-
ous calculations.

1@ And of course, since a module needs to return a true value, we return one, in this case
the contents of the $VERSION variable.

11.3.1 The GD::Text modules

The code presented in the previous sections, in a cleaned up and much more robust
version, has been released to CPAN under the name GDTextUtils. So why did we
spend so much time on this, you ask?

The previous sections are useful if you ever need to do the same sort of work for
a different module. Sure, for GD all the hard work is done, but what if a new module
is released two weeks after this book hits the shelves? Or what if Image::Magick sud-
denly starts providing enough information about its string placement to be able to do
all this?8 When that happens, you should be able to get the code from the previous
sections to work with some minor changes. At least you will (hopefully) understand
the principles that underlie the positioning of text.

The GDTextUtils package currently contains three modules: GD::Text, which
provides information about all fonts that GD can deal with, without worrying about
whether it is a TrueType or built-in font, and which GD method to call. It is also the
base class for GD::Text::Align, which lets you draw text. The interface to the drawing
routines are again independent of the underlying font, except that some of the func-
tionality will be missing for built-in fonts, e.g., built-in fonts don’t rotate. The
GD::Text::Wrap module allows you to define a left and right margin between which
you want a string to be wrapped, justified in the various ways.

The GD::Text modules can draw strings in any specified font that is valid in GD.
They will pick up TrueType fonts from a directory you specify, either with an envi-
ronment variable TTF_FONT_PATH, or though the use of the method font_path().
You can create a GD::Text object that tries out a few fonts in a specified order, and
picks the first one that matches. This allows you to have best case and worst case
behavior, without running the risk of failure, because you can always specify a built-
in font as the last one. You needn’t even specify the extension of the TrueType font
files, as long as it is .ttf.

The usage of the modules and objects is quite straightforward and well docu-
mented, so I’ll conclude this discussion with an example of the use of GD::Text::Align
and GD::Text::Wrap that generates figure 11.5.

8 This has actually happened. Just after this book reached the stage where it became too much to change
the version of Image::Magick used in it, the methods QueryFont() and QueryFontMetrics() were
added to the API. With the help of these functions it should be possible to replicate the functionality
of the GD::Text utilities for Image::Magick.

208 CHAPTER 11 CONTROLLING TEXT PLACEMENT

use GD;
use GD::Text::Align;
use GD::Text::Wrap;
use constant PI => 4 * atan2(1, 1);

GD::Text->font_path('/fonts:/usr/share/fonts/ttfonts');

my $gd = GD::Image->new(300, 150);
my $white = $gd->colorAllocate(255, 255, 255);
my $black = $gd->colorAllocate(0, 0, 0);
my $red = $gd->colorAllocate(255, 0, 0);

my $gdta = GD::Text::Align->new($gd,
 color => $black,
 valign => 'bottom',
 halign => 'center')
 or die GD::Text::Align->error;
$gdta->set_font(
 ['verdanab', 'arialbd', gdMediumBoldFont], 24)
 or die $gdta->error;
$gdta->set_text("GD::Text::Align");

$gdta->draw(149, 74, PI/12) or die $gdta->error;

$gdta->set(color => $red);
$gdta->draw(149, 74, 13 * PI/12)
 or die $gdta->error;

my $gdtw = GD::Text::Wrap->new($gd,
 color => $black,
 align => 'left',
 width => 80,
 text => "Here is some text in a tiny font, wrapped")
 or die GD::Text::Wrap->error;
$gdtw->set_font(['verdana', 'arial', gdMediumBoldFont], 8)
 or die $gdtw->error;

$gdtw->draw(10, 5) or die $gdtw->error;

These modules clearly make dealing with strings and aligning them a lot easier. No
more calculations of bounding boxes, translations, rotations and such, or at least a lot
less. You simply come up with the coordinate that you want the string to align to,

Figure 11.5

Text rendered with GD::Text::Align,

demonstrating rotation and bot-

tom-centered alignment, and

GD::Text::Wrap, demonstrating the

automatic wrapping of text in a

small box.

O

Set the
class-wide
font path

O Create a canvas and
allocate some colors

O Create a
GD:Text::Align
object

O
Draw the text,
at an angle

O draw it at a different
angle, in red

O Create a
GD::Text::Wrap
object

SUMMARY 209

specify how you want it aligned, and the modules do the rest. You don’t even really
have to worry any more whether a certain font is available, or whether you’re using a
built-in or a TrueType font from disk. All you do need to be aware of is that, even
with these modules, the built-in GD fonts do not rotate. They are rendered horizon-
tally, or at 90 degrees only.

11.4 SUMMARY

We have concentrated in this chapter on how to properly align text if the drawing
package doesn’t do it for you. While most of the code in this chapter dealt with the
GD module, it can be easily translated to any drawing package that provides enough
information about the width and height of the text bounding box, relative to the han-
dle where it will draw the characters. With more recent versions of Image::Magick
this should now be possible.

210

C H A P T E R 1 2

Manipulating pixels and
transparency
12.1 GD and pixels 211
12.2 Image::Magick and pixels 213
12.3 Convolution 215

12.4 Alpha channels and transparency 229
12.5 Fast manipulation of image pixels 233
12.6 Summary 238

There may be times when you need to manipulate each pixel of an image individu-
ally, according to a set of rules; or something needs to be done with an image that
cannot be achieved by using functionality provided by any of the modules that are
available for Perl. In order to do this, it is essential that you know how to read the val-
ues of the individual pixels, and how to set their values to something else. Both GD
and Image::Magick provide methods for this.

Before we have a look at this, a word of caution is needed: image manipulation is
a very CPU-intensive process. The number of pixels in an image grows quadratically
with its height or width,1 so you may quickly find that you have to do the same oper-
ation thousands or even millions of times. Perl is not always the best choice for this
sort of operation. There is a good reason that both GD and Image::Magick are imple-
mented in C, and that there are no pure Perl modules for image manipulation. Perl
should only be used for pixel-by-pixel image manipulation for jobs wherein the vast
quantity of memory and CPU cycles needed are not going to present a problem.

1 ...linearly with its area

GD AND PIXELS 211

That said, in this chapter we’ll look at how to gain the information pertaining to
individual image pixels, and how to change these values. We’ll start the slow way, by
using the Perl interfaces of standard modules. Once we’ve established how to do that,
we will look at how it can be done much more quickly than with Perl alone.

12.1 GD AND PIXELS
GD offers the getPixel(x,y) and setPixel(x,y,index) methods to access the
color properties of individual pixels. The getPixel() method returns the color pal-
ette index of the pixel at the given coordinate, after which the rgb() method can be
used to get a list of the red, green, and blue components of that color. The set-
Pixel() method is available to set the color palette index of the pixel at the given coor-
dinates to a certain value. You use one of the colorAllocate(), colorClosest(),
colorExact() or colorResolve() to actually put a certain color in the palette.

12.1.1 Example: rotating RGB values

The following code rotates the red, green, and blue components of the colors of each
pixel:

use GD;
Read in the image
open(PNG, 'logo.png') or die "<logo.png: $!";
my $gd = GD::Image->newFromPng(*PNG) or die "newFromPNG";
close PNG;
Get the dimensions
my ($width, $height) = $gd->getBounds();
Loop over the individual pixels
for (my $y = 0; $y < $height; $y++)
{
 for (my $x = 0; $x < $width; $x++)
 {
 my $index = $gd->getPixel($x, $y);

Table 12.1 Methods to manipulate individual pixels and color palette entries for GD. The top

part of the table shows the methods that can be used to work with individual pixels, and the

bottom part shows the methods that can be used to work with color palette entries.

getPixel(x,y) Get the color index of the pixel at coordinates x,y

setPixel(x,y,index) Set the color of the pixel at coordinates x,y to the color specified by index

rgb(index) Get the RGB values of the color at the specified index as a list

colorAllocate(r,g,b) Allocate an index entry for the color specified

colorDeallocate(index) Remove the specified color from the index

colorClosest(r,g,b) Find the color in the index that most closely matches the specification

colorExact(r,g,b) Find this exact color in the index

colorResolve(r,g,b) First try a colorExact(), and if that fails, a colorAllocate()

colorsTotal() Get the number of colors allocated

212 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

 my ($r, $g, $b) = $gd->rgb($index);
 $index = $gd->colorResolve($b, $r, $g);
 $gd->setPixel($x, $y, $index);
 }
}
Save the image
open(PNG, '>logo-rgbrot.png') or die ">logo-rgbrot.png: $!";
binmode PNG;
print PNG $gd->png;
close PNG;

The above example is quite useless as is, in that it doesn’t actually do anything that
you’ll likely need, but it does show how to get the color value of each pixel and how
to change it. If you don’t want to rotate the color components, but wish to do some-
thing else, then all you need is to change the code in the innermost loop to do what
you want. For example, to change each pixel to a grayscale value with a brightness
that is the average of the values of the three color components, the code in the inner-
most loop could be changed to something like the following:

 my $index = $gd->getPixel($x, $y);

 my ($r, $g, $b) = $gd->rgb($index);
 my $grey = int(($r + $g + $b)/3);
 $index = $gd->colorResolve($grey, $grey, $grey);
 $gd->setPixel($x, $y, $index);

12.1.2 Removing duplicate color palette entries

Because the number of colors in a GD::Image object is limited to 256,2 we need to
make sure we never try to allocate more than that. To minimize the number of entries
in the color table it is possible to clean up any colors that are no longer in use and to
consolidate duplicates:

my (%seen, @indexes);
my ($width, $height) = $gd->getBounds();

for (my $y = 0; $y < $height; $y++)
{
 for (my $x = 0; $x < $width; $x++)
 {
 my $index = $gd->getPixel($x, $y);
 my $key = join '-', $gd->rgb($index);
 if (exists $seen{$key})
 {
 next if $index == $seen{$key};
 $gd->setPixel($x, $y, $seen{$key});
 }
 else
 {

2 ...something that will change in the (hopefully near) future now that GD is no longer tied to the GIF
format, which traditionally has been limited to 256 colors.

IMAGE::MAGICK AND PIXELS 213

 $seen{$key} = $index;
 $indexes[$index] = 1;
 }
 }
}

foreach my $index (0 .. 255)
{
 $gd->colorDeallocate($index) unless $indexes[$index];
}

The %seen hash is used to store the RGB values of the colors that have already been
seen. For each pixel we first check whether its color has already been seen, and
whether that color is set by the same index number. If not, we reset the current pixel’s
color index to the already seen value. This way we are able to rid the color table of
duplicate entries.

When we notice a color that has been seen before, we store the RGB value as a key
in %seen and set the index value in @indexes to a true value. Once we have looked
at all pixels, we check for each possible index value (0 to 255) to determine whether
there was at least one pixel that referred to it. If not, we deallocate the color.

Even though this can be used to postprocess a GD image in which we have just
changed many colors, it doesn’t solve the problem that in both examples in the previous
section we will likely need twice as many colors to work with as were initially in the
image. It is, after all, very unlikely that the new colors we allocate are already in exist-
ence in the image. One way to ensure that this will work is to use Image::Magick’s
Quantize() method, which allows you to limit the number of colors in an image to
128, thereby leaving 128 more to be allocated during the process.

It might be easier to just use Image::Magick for the whole process, and not worry
about limitations in the numbers of colors.

12.2 IMAGE::MAGICK AND PIXELS
When using Image::Magick, the individual pixels are accessible with the Get() and
Set() methods, using the attribute pixel[x,y], where x and y are the coordinates
of the point you are interested in. The Get() method returns a string, with a
comma-separated list of the red, green, and blue values, as well as the opacity of the
pixel, and the Set() method takes any of the valid color strings discussed in
section A.6, “Common method arguments” on page 276.3

($x, $y) = (120, 240);
$im->Set("pixel[$x,$y]"), "#7f3ca200";
($red, $green, $blue, $opacity) = split /,/, $im->Get("pixel[$x,$y]");

3 Note that if you compile ImageMagick with 16-bit color support, this code will actually set the color
to #7f7f3c3ca2a20000. I, personally, consider this to be a bad behavior.

214 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

Since these manipulations require a lot of stringification of pixel coordinates and
splitting and joining of color triplets or quadruplets, this can be quite costly in CPU
load. That’s not to say avoid it at all costs, but it is something to keep in mind when
you decide to loop over all the pixels of an Image::Magick object.

12.2.1 Rotating RGB values

The following code does the same thing as the example on page 211, but with
Image::Magick instead of GD.

use Image::Magick;
my $rc;

Read in the image
my $im = Image::Magick->new();
$rc = $im->Read('logo.png');
die $rc if $rc;

Get the dimensions
my ($width, $height) = $im->Get('width', 'height');
Loop over the individual pixels
for (my $y = 0; $y < $height; $y++)
{
 for (my $x = 0; $x < $width; $x++)
 {
 my ($r, $g, $b, $o) =
 split /,/, $im->Get("pixel[$x,$y]");
 $im->Set("pixel[$x,$y]" =>
 sprintf "%d,%d,%d,%d", $b, $r, $g, $o);
 }
}

Save the image
$rc = $im->Write("png:logo-im-rgbrot.png");
die $rc if $rc;

There are a few differences from the equivalent GD code, apart from the function
calls, and they’re related to the way color manipulation works.

The first difference is that here we have four elements in a color instead of three: the
red, green and blue values, and the opacity. The opacity is, like the RGB values, an inte-
ger between 0 and 255 (65536 for 16-bit ImageMagick) and expresses how opaque (or
transparent) this particular pixel is.

The second difference is the way color specifications are handled by Image::Magick
(also see the discussion on Image::Magick color specification on “Colors” on
page 278). The $im->Get("pixel[$x,$y]") call returns the color as a single
string containing the above-mentioned values separated by commas. The value of that
same argument in the Set() method can be formatted in various ways, but for this
example the format is the same as that which came out of Get(). This introduces the
necessity to manipulate strings inside a tight loop, which is CPU-intensive.

CONVOLUTION 215

Versions of Image::Magick before 5.2.4 could also return a color name as the result
of $im->Get("pixel[$x,$y]"). This introduces the need to resolve the color
name to a comma-separated string with QueryColor(). If you still have an older ver-
sion around, you might like to use this subroutine instead of the direct call to
split() in the above code:

sub IMget_color
{
 my $im = shift;
 my ($x, $y) = @_;
 my $color = $im->Get("pixel[$x,$y]");
 $color = Image::Magick->QueryColor($color)
 unless $color =~ /\d+,\d+,\d+/;
 return split /,/, $color;
}

and call it this way:

my $im = Image::Magick->new();
Time passes ...
my ($r, $g, $b, $o) = IMget_color($im, $x, $y);

All in all, Image::Magick is not the best tool to use when you require access to each
individual pixel of an image. The manipulation of strings for both the coordinates
and the color values is just too expensive in a loop that is going to be executed so
often. However, if you need to have more than 256 colors in an image, you won’t be
able to fall back on GD. In section 12.5 we’ll see a way around this problem.

12.3 CONVOLUTION

One of the standard operations in image manipulation is the application of a convo-
lution filter. Convolution is a mathematical technique that expresses the amount of
overlap between two functions as one is being shifted; in a way this blends the two
functions. This mathematical technique can be used in a discrete form (using sums
instead of integrals) to work with the data in an image.

When convolution is applied to images, a window of a certain size is scanned across
the image (see figure 12.1). The input to the operation are all the pixels that are cov-
ered by the window. The output value is the weighted sum of the input pixels, in
which the weights are the values of each cell in the window. This window, together
with its weights, can be expressed as a matrix, and is called the convolution kernel.

216 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

One issue that arises when you consider this for a while is: what happens at the edges
of the image? Parts of the window will jut out over the edge, and there will be no
input for the kernel there. There is no single correct answer to this question, but sev-
eral alternative solutions are in use (see figure 12.2):

1 Every value outside the image is a constant, most frequently zero or some aver-
age value.

2 The edge values of the picture extend infinitely. Any “virtual” pixel outside the
image is assigned the same value as the pixel at the edge closest to it.

3 The image is extended periodically or tiled. The values wrap around the edges
of the image.

4 The image is mirrored at its boundaries.

Another question that might arise is: what happens if the convolution kernel has an
even number of rows or columns? In this case there is no exact center cell for the win-
dow, which means that it cannot be centered on a certain pixel. Solutions to this
problem can be provided by using interpolation between the cells of the kernel, or by
allowing the output image to have different dimensions than the input image. In the
following, however, we will assume that a convolution kernel has an odd number of
rows and columns, so that there is always a clearly defined center.

Figure 12.1

The convolution kernel. The current pixel is at the

center of the matrix, and gets a weight of 10. The

pixels immediately surrounding it, horizontally

and vertically get a weight of 3, the ones diagonal-

ly closest get a weight of 2, etc. The current pixel

gets the value of the sum of all weighted cells.

Figure 12.2

The four ways in which

images can be extended

beyond their border: 1. as-

sume a constant value, 2.

assume the same value as

the edge, 3. tile the image,

4. mirror the image.

CONVOLUTION 217

12.3.1 Convolution with Image::Magick

We will now have a look at a program that implements a convolution filter algorithm
using Image::Magick. The program provides a command-line interface to set the
appropriate parameters. Since this is a full program, we’ll start by declaring all the
things we need:

#!/usr/bin/perl -w
use strict;
use Image::Magick;
use Getopt::Long;

my ($width, $height);
my (@kernel, $divider, $bias);
my ($x_offset, $y_offset);
$bias = 0;
my $kernel_file;
my $output_type;
my $preserve_matte = 0;

GetOptions(
 "kernel-file=s" => \$kernel_file,
 "output-type=s" => \$output_type,
 "divider=i" => \$divider,
 "bias=i" => \$bias,
 "preserve-matte!" => \$preserve_matte,
);

At the top of the program all the needed modules are imported; Image::Magick to
do the graphics manipulation, and the standard Getopt::Long module to process
command-line arguments.

b We declare all global variables we will need in the program. The width and height of
the image operated on are stored in $width and $height. The matrix that makes up
the convolution kernel will be stored in the array @kernel, and the command-line
parameter --kernel-file, can be used to tell the program where to find it. The
variable $preserve_matte controls whether the alpha channel of the original image
will be copied, and can be set with the command-line option of --preserve-matte.

The variables $divider and $bias merit more explanation. In most cases you will
want the output image to be, on average, as light or dark as the input image. To
achieve this you should normalize the convolution kernel, i.e., the sum of the cells of
the matrix should be exactly 1. In practice it is a lot easier to just write a matrix, and let
the program worry about normalization. The variable $divider will contain the sum
of the matrix cells, and will be used to normalize the output. For even greater flexibil-
ity, you can override this with a command-line option --divider. The bias is simply
a number that gets added to the output after the convolution kernel has been applied.
This allows you to make the image as a whole lighter or darker.

b Declare and initialize
variables and options

218 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

The variables $x_offset and $y_offset are used to center the window on each
pixel. They express the number of cells to the left and above the center of the kernel.

read_kernel($kernel_file);
die "Divider cannot be zero\n" unless $divider;

my ($in_file, $out_file) = @ARGV;
$in_file = '-' unless $in_file;
$out_file = '-' unless $out_file;

c The first action of the program is to read in the kernel by calling the
read_kernel() function, which we will see later. This subroutine also sets up
$divider, $x_offset and $y_offset, and it makes sure the kernel is well-
formed.

d Next, the input and output file names are set up. The special Image::Magick file name
'-' is used, which signifies reading from STDIN or writing to STDOUT.4 If there are
no input files or output files given on the command line, this program will act as a fil-
ter; it will take its input from the standard input stream, and write its output to the
standard output stream. This allows one to use it as part of a set of commands linked
with pipes.

my $im_in = Image::Magick->new();
my $rc = $im_in->Read($in_file);
die $rc if $rc;
($width, $height) = $im_in->Get('width', 'height');

my $im_out = Image::Magick->new(
 size => "${width}x$height");
$rc = $im_out->Read('xc:white');
die $rc if $rc;
$im_out->Set('magick' => $im_in->Get('magick'));

e Two Image::Magick images are created, one for input and one for output. The input
image is read in, and its width and height are extracted.

f The output image is initialized as a blank white canvas, the same size as the input
image. This is necessary to make sure that the Image::Magick object contains at least
one frame. The image format (the magick attribute) of the output image is initial-
ized to be the same as that of the input image. Later, on output, this will be overrid-
den by the value of $output_type, provided it was set.

The image can now be processed, pixel by pixel:

for (my $y = 0; $y < $height; $y++)
{
 for (my $x = 0; $x < $width; $x++)
 {

c Read the convolution kernel

d Initialize input and output
file names

4 Note that binmode has not been called on either STDIN or STDOUT. Image::Magick will make sure
that any file handles that are used will be in the correct state.

e Read the input
image

f Set up the
output image

CONVOLUTION 219

 my @rgb = average_color($im_in, $x, $y);
 $im_out->Set("pixel[$x,$y]" => color_hex(@rgb));
 }
}

g A loop is set up over all the pixels in the source image. For each pixel, the subroutine
average_color() is called with the current image and the x and y coordinates as
arguments. This subroutine returns a list of the red, green, and blue components after
application of the weighted kernel.5 The color of the corresponding pixel in the out-
put image is then set to the calculated values.

After all pixels have been processed, the output image is almost ready to save. But
prior to that, we need to make sure we copy back the alpha channel if that was
requested:6

if ($preserve_matte)
{
 $im_in->Layer(layer => 'Matte');
 $rc = $im_out->Composite(compose => 'ReplaceMatte',
 image => $im_in);
 die $rc if $rc;
}

$out_file = "$output_type:$out_file" if $output_type;
$rc = $im_out->Write($out_file);
die $rc if $rc;

h Now that the transparency is set to what it should be, the image can be written. If an
output type was specified on the command line, it is prepended here. If an output
type was not specifically set, the output format of the image will be deduced from the
extension of the output file name. If that is not possible, because, for example, we are
writing to standard output, the value of the magick attribute determines the image
format, which we earlier initialized to be the same as that of the input image.

This concludes the main outline of the program, and it is time to look deeper into the
components that we skipped before: we need to define the subroutines that were used
in the program.

First, we will have a look at the subroutine used to read in the kernel. It expects
the name of a file that contains the rows of a matrix on each line, with the columns
separated by whitespace. The kernel has to have an odd number of rows and an odd

g Apply the
convolution
kernel to
each pixel

5 The opacity component of the source image is discarded (see the get_color_safe() subroutine later
in the program). It is not customary to apply convolution filters to alpha channels at the same time
they are applied to the color layers. It isn’t difficult to adapt the program so that it works on the opacity
component as well.

6 If you have an Image::Magick version between 5.2.2 and 5.2.4, you will need to Negate() the alpha
mask before applying it. Also see section 12.3.2.

O Restore the alpha channel

h Write the output image

220 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

number of columns,7 but the number of rows and columns can be different. If no
input file has been given, the special Perl file handle DATA will be used, which will read
from the input source file, starting at the token __DATA__. The source file contains
this at the end:

__DATA__
This is the default kernel for this program
The number of rows and columns should be odd

1 1 1
1 12 1
1 1 1

which also illustrates the format a kernel data file can take. The code to read this file is:

sub read_kernel
{
 my $file = shift;
 local(*DATA) if $file;
 open(DATA, $file) or die "$file: $!\n" if $file;

 while(<DATA>)
 {
 chomp;
 next if /^#/ || /^\s*$/;
 push @kernel, [split];
 }

 for my $row (1 .. $#kernel)
 {
 die "Kernel row $row has wrong size\n"
 if @{$kernel[$row]} != @{$kernel[0]};
 }
 die "Kernel must be odd-sized\n"
 unless @kernel % 2 && @{$kernel[0]} % 2;

 unless ($divider)
 {
 foreach my $row (@kernel)
 {
 foreach my $col (@{$row})
 {
 $divider += $col;
 }
 }
 }

 $x_offset = $#kernel / 2;
 $y_offset = $#{$kernel[0]} / 2;
}

7 Remember that the current pixel has to be placed at the center of the kernel. Only a matrix with an
odd number of rows and columns will have a center element.

i Split and store the current row

j
Check that the
kernel is well-formed

1) Initialize divider to
sum of the kernel
elements

CONVOLUTION 221

This subroutine checks whether a file name has been passed in, and if so, it localizes
the *DATA glob (to make sure the file handle gets closed on exiting the subroutine)
and reopens the DATA file handle to the file name passed in. If no file name was
passed in, DATA is left in its original state, which will cause it to be opened to the
source file, just after the __DATA__ token.

i The file is read in, line by line, skipping any lines that are empty or that start with a
hash mark. This allows the file to contain comments and to be more “human read-
able.” The elements of the matrix are stored in a global array (@kernel) of array ref-
erences, in which each element in the array constitutes a row.

j Once the file has been read, the resulting matrix is checked to make sure that all the
rows are of the same length, and that the number of rows and the number of columns
are odd. This last check will also fail when a matrix is empty.

1) If the divider hasn’t been set as a command-line option, it is initialized here to the
sum of all the kernel elements. Finally, the x and y offset are set.
The average_color() subroutine is defined as follows:

sub average_color
{
 my ($im, $x, $y) = @_;

 my @sum_rgb;

 for my $row_i (0 .. $#kernel)
 {
 for my $col_i (0 .. $#{$kernel[0]})
 {
 my @rgb = get_color_safe($im,
 $x + $row_i - $x_offset,
 $y + $col_i - $y_offset);

 for my $ci (0 .. $#rgb)
 {
 $sum_rgb[$ci] +=
 $kernel[$row_i][$col_i] * $rgb[$ci];
 }
 }
 }

 return map {
 $_ = int($_/$divider) + $bias;
 $_ = 0 if $_ < 0;
 $_ = 255 if $_ > 255;
 $_
 } @sum_rgb;
}

This is where all the real work is carried out. This subroutine accepts an Image::Magick
object and the coordinates of the pixel which is at the center of the window. It
then iterates over all the elements of the kernel, calculating the appropriate x and y

222 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

coordinates of the pixel that are covered by that particular cell, and getting the val-
ues for the three color components. We can’t merely use the calculated x and y coor-
dinates directly, because of edge effects. The get_color_safe() function is used
to implement one of the methods discussed earlier (see figure 12.2).

For each color component, we add the value of the current pixel, multiplied by the
value of the kernel element, to the relevant element of @sum_rgb. Thus, at the end
of the outermost loop, the array @sum_rgb contains three elements, each representing
one color component, and each value will be the sum of the respective color compo-
nents of the pixels covered by the kernel, multiplied by the numbers in the corre-
sponding elements of the kernel.

Before these values are returned, they are first checked to make sure they fall in
the valid range between 0 and 255, and then divided by $divider and increased
with $bias.

We will now return to the edge effects. When calculating the weighted average of
one of the pixels close to the edge of the image, the kernel sticks out over the edge.
There are several ways to deal with that (see figure 12.2). This program implements
only one of them: it is assumed that pixels outside the boundaries of the image have
the same value as the edge pixels.

sub get_color_safe
{
 my ($im, $x, $y) = @_;

 $x = 0 if $x < 0;
 $y = 0 if $y < 0;
 $x = $width - 1 if $x >= $width;
 $y = $height - 1 if $y >= $height;

 return (split /,/, $im->Get("pixel[$x,$y]"))[0, 1, 2];
}

This subroutine will simply return the red, green, and blue values of the pixel at the
given coordinates, except when those coordinates fall outside the boundaries of the
image, in which case it will return the RGB values for the pixel on the closest edge of
the image.

This leaves only the definition of the color_hex() method, which is used only
to translate a triplet of red, green, and blue values to a string of the shape #3a3a2b.
This might be a familiar notation to anyone who has ever worked with colors in
HTML. Each pair of hexadecimal digits after the hash mark encodes one of the red,
green or blue color values, respectively.

sub color_hex
{
 return sprintf("#%02x%02x%02x", @_);
}

O Edge conditions

O

Discard
opacity
component (3)

CONVOLUTION 223

There are several ways in which this program could be improved. First, you could
accept an option that controls which of the three color components the filter acts on.
A second improvement could be to implement more ways of dealing with edge con-
ditions, and allowing the user to select which of these he wants to use. Another

Table 12.2 Some results of applying convolution filters. The top row of the table shows the

input images, the following rows show the result of a kernel and divider:bias combination (see

the text for their meaning and the related command line options to the programs presented). A

divider value of sum means that the sum of the kernel has been used, which is the default.

Originals

Smooth
1
1
1

1
12
1

1
1
1

sum: 0

Blur

1
1
1
1
1

1
0
0
0
1

1
0
0
0
1

1
0
0
0
1

1
1
1
1
1

sum: 0

Edge
Detect

–1
–1
–1

–1
–8
–1

–1
–1
–1

1:255

Sharpen
–2
–2
–2

–2
48
–2

–2
–2
–2

sum: 0

Emboss
0
1
2

–1
0
1

–2
–1
0

1;127

Shadow
4
3
0

3
1
–3

0
–3
–4

sum:
255

224 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

improvement could be to preserve the transparency mask of the image, either by
copying the original image’s mask, or by applying the filter (separately) to an
extracted mask, and inserting that into the output image.

One disadvantage of the program presented is that it is slow, terribly slow. There
is little we can do about the algorithm to speed things up, but we can affect the way
it is implemented. To avoid the need for checking the coordinates for each single pixel
that we look at (in the get_color_safe() subroutine), we could make sure that
there is always a value. Before doing any work, we’d increase the size of the image on
the left and right by $x_offset pixels, and on the top and bottom by $y_offset
pixels. The convolution would now run over only the pixels that were part of the orig-
inal image, but wherever the window emerges over the edges of the old image, there
are now the new pixels we put there. We would not have to call that subroutine for
each single pixel, but we’d have to do the preparation work (allocating a new image,
copying the current image to the correct spot in that new image, filling the pixels on
the outside), and some new calculations. The speed improvement would be largest for
larger images. For smaller images the situation could actually turn out to be worse.

12.3.2 Using Image::Magick's Convolve() method

There is, for newer versions of Image::Magick, a faster way to apply convolution filters
to images. As of version 5.2.0, Image::Magick includes a Convolve() method. The
program presented in the previous section should probably never be used in a real
production sense, but it can be valuable as an illustration to demonstrate how the
individual pixels of an image can be manipulated with this module. Also, there are
some limitations to the Convolve() method that do not exist in the preceding code,
that might necessitate the use of a slower explicit method. I will discuss these later.

A program using the Convolve() method doesn’t have to do nearly as much work
as the code presented earlier in this section, and can therefore be a lot simpler:

#!/usr/bin/perl -w
use strict;
use Getopt::Long;
use Image::Magick;

my $matrix_file;
my $output_type;
my $bias;
GetOptions(
 "matrix-file=s" => \$matrix_file,
 "output-type=s" => \$output_type,
 "bias=i" => \$bias,
);

my $kernel = read_kernel($matrix_file);

my ($in_file, $out_file) = @ARGV;
$in_file = '-' unless $in_file;
$out_file = '-' unless $out_file;

O Read the kernel image

CONVOLUTION 225

my $im = Image::Magick->new();
my $rc = $im->Read($in_file);
die $rc if $rc;

$rc = $im->Convolve(coefficients => $kernel);
die $rc if $rc;

if ($bias)
{
 my $mask = $im->Clone();
 my $color = sprintf("#%02x%02x%02x", ($bias) x 3);
 $rc = $mask->Colorize(fill => $color, opacity => 100);
 warn $rc if $rc;
 $rc = $im->Composite(image => $mask, compose => 'Plus');
 warn $rc if $rc;
}

$out_file = "$output_type:$out_file" if $output_type;
$rc = $im->Write($out_file);
die $rc if $rc;

sub read_kernel
{
 my $file = shift;
 local(*DATA) if $file;
 open(DATA, $file) or die "$file: $!\n" if $file;
 my @kernel;
 my $cols;

 while(<DATA>)
 {
 chomp;
 next if /^#/ || /^\s*$/;
 push @kernel, split;
 $cols = scalar @kernel unless $cols;
 die "Illegal row length\n" if @kernel % $cols;
 }
 die "Not a square matrix\n"
 unless @kernel == $cols * $cols;
 return \@kernel;
}

__DATA__
1 1 1
1 12 1
1 1 1

If you compare this program to the previous one, you’ll notice immediately that the
command line option --divider is not present. The reason for this is that the Con-
volve() method performs its own normalization on the kernel that you provide.
Any divisions or multiplications on the cells of the kernel will result in no effect at all.

Another absentee is the --preserve-matte command-line option. By default,
this program will preserve the matte channel, so no extra work needs to be performed.

O Read the
source image

O Apply the convolution

O Apply the requested bias

226 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

If you want to add this option to the program, then all that’s needed is to set the matte
attribute of $im to a false value when the alpha channel should not be preserved.

The read_kernel method is responsible for reading a matrix of the same shape
as accepted by the previous programs, and transforming it into a flat array of coeffi-
cients, which is what the Convolve() method expects (see page 256). Reading this
subroutine also shows another limitation of the Convolve() method: the kernel
must be square instead of rectangular.

12.3.3 Convolution with PDL

If you are really looking for speed, and are willing to spend some time learning new
techniques and data structures, you could consider doing most of the work with the
Perl Data Language, PDL. We will duplicate the functionality of the program dis-
cussed before as much as possible, but this time using the PDL modules.

Again, we start by declaring all the modules and variables we will need in the pro-
gram, and process the options:

#!/usr/local/bin/perl -w
use strict;
use Getopt::Long;
use PDL;
use PDL::IO::Pic;
use PDL::Image2D;
my ($divider, $bias);

my $matrix_file;
my $output_type;
GetOptions(
 "matrix-file=s" => \$matrix_file,
 "output-type=s" => \$output_type,
 "divider=i" => \$divider,
 "bias=i" => \$bias,
);

die "Usage: $0 [options] --matrix-file file src dest\n"
 unless @ARGV >= 2;

my $kernel = read_kernel($matrix_file);

Getopt::Long is used again to process any command-line options, and we include those
parts of the PDL libraries that we need: PDL itself, of course, PDL::IO::Pic to read and
write images, with the help of the NetPBM package, and PDL::Image2d for some
image manipulation functions. For a discussion of the variables, please see page 217.

Unfortunately, the PDL::IO::Pic interface is somewhat limited, and, unless we’re
willing to do a lot of work with temporary files, we cannot use the same sort of func-
tionality as was available with Image::Magick in the programs in the previous sections.
Since that would only serve to make this listing more difficult to follow, no attempt
will be made to fully duplicate the interface. Instead, this program will simply require
two file names as its last arguments.

CONVOLUTION 227

Another argument that is mandatory for this simple program is the name of a
matrix file. Why this is so will be explained when the read_kernel() subroutine is
discussed later in this section.

my $im = rpic($ARGV[0]);
$im = $im->convert(double);
my @dims = $im->dims;

The source image is read from disk with the help of the rpic() subroutine from
PDL::IO::Pic, and the values of the pixels are converted to a double type. This is a pre-
caution to avoid rounding errors and overflow problems while performing the convo-
lution calculations.

The piddle (PDL object) returned by rpic() is of a different dimensionality
depending on whether the image read is a monochrome, grayscale, or RGB image.8 For
monochrome or grayscale images, the piddle will have the dimensions (width, height),
and for RGB images (3, width, height). The dims() method returns a list of dimension
sizes of a piddle. The number of elements in @dims can be used to distinguish between
these two cases:

if(@dims == 2)
{
 $im = $im->conv2d($kernel, {Boundary => 'Reflect'});
 $im += $bias if $bias;
}
else
{
 for my $i (0 .. 2)
 {
 my $channel = $im->slice("($i),:,:");
 $channel .= $channel->conv2d($kernel, {Boundary => 'Reflect'});
 $channel += $bias if $bias;
 }
}

b If the image is a grayscale image, we can simply apply the convolution kernel to the
image, using the conv2d() function from PDL::Image2d. This function accepts an
option9 named Boundary with the possible values of (see also figure 12.2)

• Default. Assume periodic boundary conditions
• Reflect. Reflect the image at the boundaries
• Truncate. Truncate the image at the boundaries.

8 The documentation is not explicit about this, but since all I/O through PDL::IO::Pic uses the PNM
family of file formats, the only possibilities are grayscale, monochrome and RGB. Alpha channels are
not supported at this time.

b
Monochrome or
grayscale image

c RGB image

9 The standard method in which options are passed to PDL functions is through a reference to a hash,
with the keys being the option names, and the values being the corresponding option parameters.

228 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

After the convolution, the $bias parameter is added to the final result, as in the ear-
lier program.

c If the source is an RGB image, the three color channels will have to be processed sep-
arately. PDL provides, among other indexing functions, the generic slice()
method. This can be used to create a new piddle which contains part of the dimen-
sions of the original, or, as in this case, part of the dimensionality.

The parameter to slice() is "($i),:,:", which means: for the first dimension,
only give me element $i, but don’t include it in the output. The second and third
dimensions should be included in the output as a whole.10 This neatly gives us a pid-
dle with the dimensions (width, height), one for each color channel in turn, which
can be used with the conv2d() function.

Note that there is no code to put the values of the $channel piddle back into $im;
nor is it necessary. The slice() method, as with most PDL indexing functions, does
not make an actual copy of the original data, but rather provides a window onto it.
Changing the values in $channel actually changes the values in the original corre-
sponding elements of $im.11

$im = $im->clip(0, 255)->convert(byte);
$im->wpic($ARGV[1]);

To ensure that the calculated values fit in the allowed range, we clip() them (set-
ting all values below 0 to 0, and all values above 255 to 255) and convert the resulting
piddle back to a byte type before saving the image.

All that is left now is the definition of the subroutine that reads the convolution
kernel:
sub read_kernel
{
 my $file = shift || die "Need a matrix file name\n";
 local(*KERNEL);
 open(KERNEL, $file) or die "$file: $!\n";

 my @cols = rcols *KERNEL, {EXCLUDE => '/(^#)|(^\s*$)/'};
 die "Matrix file has no values" unless @cols;
 my $kernel = cat(@cols)->xchg(0,1);

 $divider = $kernel->sum unless $divider;
 die "Divider cannot be zero\n" unless $divider;
 $kernel /= $divider;

 return $kernel;
}

The reading of the matrix that makes up the convolution kernel is accomplished with
the help of the rcols() function. This function will read space-separated columns

10 See the PDL::Indexing documentation for more explanation.
11 If you don’t want that, you can use the sever() or copy() methods on the resulting piddle.

d Normalize
the kernel

ALPHA CHANNELS AND TRANSPARENCY 229

from a file (or file handle) and return a list of piddles, one for each column. Unfortu-
nately, it isn’t possible to make rcols read from the internal DATA file handle as we
did in the read_matrix() subroutine in the previous section, so we will have to be
satisfied without a default matrix for this program.

To create a kernel matrix out of the separate columns, they are concatenated
together with cat(). However, the resulting matrix has its rows and columns
swapped, which can be remedied by using xchg() to exchange the first and second
dimensions.

d The variable $divider is computed as the sum of all the kernel elements, unless it
was given as a command-line option, and the kernel is adapted by dividing its ele-
ments by this number. Of course, care is taken not to divide by zero.

Apart from providing the conv2d() method, PDL can be tremendously useful in
other areas of image manipulation. It can be difficult to understand, partly because of
the data structures with which it deals, and partly because the documentation is still
rudimentary. If you plan on doing a lot of image manipulation that falls outside of
the application domain of GD or Image::Magick, you would be well advised to give
the Perl Data Language a chance.

12.4 ALPHA CHANNELS AND TRANSPARENCY

Many image formats support some form of transparency, but only a few support full
alpha channels. An alpha channel is an extra layer in your image that defines the
amount of transparency or opacity for each pixel. Typically this is expressed as an
integer value between 0 and 255, although floating point values between 0 and 1 are
also fairly common (see, for example, the SVG format). Alpha channels normally
express the amount of opacity, with a value of 0 denoting a fully transparent pixel,
and a value of 255 (or 1) a fully opaque one.

Transparency can also be specified without a full alpha channel, for image formats
that use a color palette. For example, the GIF format allows you to mark one of the
colors in the palette as fully transparent, and the PNG format allows associating an
opacity value with each palette entry separately.

Both of the main image manipulation packages for Perl, Image::Magick and GD,
support transparency, but in very different ways. GD only allows you to mark a single
color in its palette as transparent, while Image::Magick supports a full alpha channel
model. Thus, if you want to do any serious transparency work, your only real option
is Image::Magick.

12.4.1 Transparency and the GD module

As stated, the GD module only supports transparency in a very limited manner. This
is due to the fact that all colors in GD are stored in an index, and only one of those
index entries can be marked as transparent. This in turn is most likely inherited from
the GIF format, wherein transparency is implemented in much the same way.

230 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

transparent() is the method to call for making a color transparent, and is used
in the following manner:

use GD;

my $gd = GD::Image->new(200, 100);
my $white = $gd->colorAllocate(255, 255, 255);
my $black = $gd->colorAllocate(0, 0, 0);

Draw a black ellipse, centered
$gd->arc(99, 49, 150, 75, 0, 360, $black);

Make the ellipse transparent
$gd->transparent($black);
I changed my mind. Make the background transparent
$gd->transparent($white);

That’s all there is to it. Note that this transparency will only be stored in image formats
that can support it. If you save your GD object as a JPEG image, the transparency is lost.12

12.4.2 Transparency and Image::Magick

Image::Magick supports a full alpha channel, but it also supports simple palette-based
transparency as described in the section on GD. The choice between them depends
on whether you’re working with an indexed image or a full color image, and in which
format you are saving your results. In Image::Magick, the alpha channel is called the
matte layer,13 and the opacity is generally referred to as the matte value. A matte value
of 0 indicates that a pixel is fully transparent, while a matte value of 255 indicates full
opacity. Whenever an image has an active matte channel, the matte attribute for the
image object should have a true value. If you want to add transparency to an image,
you need to set matte to a true value.

Methods that can be used to directly influence the matte value of pixels are Matte-
FloodFill(), Draw() with the matte primitive, Transparent(), and Set()
with the pixel[$x,$y] attribute. The matte layer as a whole can be inspected using
the Layer() method with the argument 'Matte', and the value of individual pixels
can be read with Get() and the pixel[$x,$y] argument See appendix A for an in-
depth discussion of these methods.

Replacing the whole alpha channel

The most flexible and easy way to add an alpha channel to your image is by directly
inserting a grayscale image as the matte layer. The lighter the pixels in the grayscale

12 GD also has trouble reading PNG images that contain more transparency information than it can han-
dle internally. When you attempt to read a PNG image with a full alpha channel, an error message will
be printed, and the alpha channel will be ignored.

13 Although the terminology in the latest versions of Image::Magick is slowly changing towards channels,
as opposed to layers.

ALPHA CHANNELS AND TRANSPARENCY 231

mask, the more transparent the image will become; white becomes fully transparent,
and black fully opaque.

You can insert a grayscale image mask as the alpha channel (or indeed, any other
channel) with the Composite() method:

#!/usr/local/bin/perl -w
use strict;
use Image::Magick;

die "Usage: $0 mask_image in_image out_image\n"
 unless @ARGV > 2;
my ($mask_file, $in_file, $out_file) = @ARGV;

my $rc;
my $mask = Image::Magick->new();
$rc = $mask->Read($mask_file);
die $rc if $rc;
my $im = Image::Magick->new();
$rc = $im->Read($in_file);
die $rc if $rc;

$rc = $mask->Quantize(colorspace => 'Gray');
die $rc if $rc;

$rc = $im->Composite(compose => 'ReplaceMatte',
 image => $mask,
 tile => 1);
die $rc if $rc;

$rc = $im->Write($out_file);
die $rc if $rc;

This program requires three file names, one of an image to use as a transparency
mask, one of an image to which to apply the mask, and one to write the result. It
transforms the $mask image into a grayscale map, which is then tiled and inserted as

Figure 12.3 Using a mask to insert an alpha channel into an image. The grayscale

image in the middle was inserted into the alpha channel of the image on the left,

producing the image on the right.

232 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

the matte layer into $im with the Composite() method. Since the images aren’t
necessarily the same size, the mask is tiled under the original image. Of course, you
are free to choose any other alignment of the two images.

The method described above can be used to create any arbitrary alpha channel,
even if you don’t have an image with the mask you want. You can simply create a gray-
scale image with the desired characteristics. By replacing the ReplaceMatte in the
code with one of the other replacement operations, this can be done for each individ-
ual color channel, which can generate some really interesting effects.

Replacing the alpha value per pixel

But, suppose you have good reasons to work directly with each pixel’s matte value,
perhaps because you would like to create a new value based on the old value and some
other parameters, or because you are very short on RAM, and can only afford to keep
one image in memory at a time. The following program shows how this can be done:

#!/usr/local/bin/perl -w
use strict;

use Image::Magick;
my ($width, $height);

die "Usage: $0 in_image out_image\n" unless @ARGV > 1;
my ($in_file, $out_file) = @ARGV;

my $rc;
my $im = Image::Magick->new();
$rc = $im->Read($in_file);
die $rc if $rc;

($width, $height) = $im->Get('width', 'height');
$rc = $im->Set(matte => 1);
die $rc if $rc;

for my $x (0 .. $width)
{
 for my $y (0 .. $height)
 {
 my ($r, $g, $b, $o) =
 split /,/, $im->Get("pixel[$x,$y]");
 $o = new_opacity($x, $y, $o);
 $im->Set("pixel[$x,$y]" =>
 sprintf("#%02x%02x%02x%02x", $r, $g, $b, $o));
 }
}

$rc = $im->Write($out_file);
die $rc if $rc;

sub new_opacity
{
 my ($x, $y, $old_o) = @_;
 my $o = (abs($x/$width - 0.5) +
 abs($y/$height - 0.5))**3 * 255;

FAST MANIPULATION OF IMAGE PIXELS 233

 $o = 255 if $o > 255;
 return $o;
}

This program is only marginally more complex than the one in section 12.2, and
shouldn’t be surprising. All you need to do is replace the new_opacity() subrou-
tine with one that does exactly what you want it to do, and pass it all the information
it needs.

12.4.3 How to view partially transparent images

X11 displays can work only with fully transparent or fully opaque pixels. It isn’t
always easy to preview your image and see the transparency correctly with the Dis-
play() method, or even using the display command line tool that ImageMagick
provides. Unless you have another graphics viewer that renders transparency correctly,
you might just have to guess what the end result will look like while you are develop-
ing a program. Luckily, Image::Magick can solve the problem. You just combine the
image that has an alpha channel with a background (I tend to choose a plain yellow
for most applications), and view it:

sub show_trans
{
 my $im = shift;
 my $background = shift || "yellow";
 my ($w, $h) = $im->Get('width', 'height');
 my $bg = Image::Magick->new(size => "${w}x$h");
 $bg->Read("xc:$background");
 $bg->Composite(image => $im);
 $bg->Display;
 return $bg;
}

Inclusion of this little subroutine in your code while you are debugging can shorten
your development cycle quite a bit. It eliminates the need to switch between your code
editor, your command line, and your graphics viewer. The subroutine accepts two argu-
ments: an Image::Magick object, and a background color to use wherever the image is
transparent. The background color defaults to yellow, because that is a color that con-
trasts nicely with the majority of images with which I work. It also returns the newly
created Image::Magick object, so that the caller can do anything he wishes with it.

12.5 FAST MANIPULATION OF IMAGE PIXELS
Perl is fast for the type of language it is. However, image manipulation is one of the
areas in computer programming in which fast is just not fast enough; it needs to be as
fast as possible. The fastest way of working with image data is to write the code that
deals with the pixels in a language that can be compiled into machine code. As men-
tioned in the introduction to this chapter: there is a good reason that most image
manipulation code is implemented in C, and not in Perl.

234 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

Perl has several facilities for extending Perl with C code, the two major ones being
XS (eXternal Subroutines) and SWIG (Simplified Wrapper and Interface Generator).
Both of these are difficult to learn,14 even if you are proficient in both Perl and C.
Recently, however, a new way of integrating Perl and C code has become available,
through Brian Ingerson’s Inline module. This module allows Perl programmers to
integrate other programming languages directly into their own programs and mod-
ules. One can now have the speed of C in a Perl program without too much effort,
and just when it is needed.

12.5.1 Using Inline::C

Let’s see how we can use Inline::C together with Image::Magick to work directly with
image pixels, and to do so almost as fast as if we’d written everything in C. We’ll write
a basic program that uses Image::Magick to read an image from disk, Inline::C to do
the actual pixel manipulation, and Image::Magick again to save the image.

The Inline modules can, if instructed to do so, read their code from Perl’s special
DATA file handle, which starts input just after the current source file’s __END__ or
__DATA__ token. We will use this mechanism to include the C code that rotates the
red, green, and blue channels of an image. The actual C code will be discussed later
in this section, but we’ll look at the Perl aspect first.

#!/usr/local/bin/perl -w
use strict;
use Image::Magick;
use Inline C => 'DATA';

die "Usage: $0 src_image dest_image\n" unless @ARGV >= 2;
my ($in_file, $out_file) = @ARGV;

The program takes a source and destination image file on the command line. The
destination image will get the source image’s red, green and blue channels as its green,
blue and red channels, respectively, ignoring the alpha channel. The specified source
image is read from disk by Image::Magick and the RGB data is extracted as a string
from this image:

my $im = Image::Magick->new();
my $rc = $im->Read($in_file);
die $rc if $rc;
my ($width, $height) = $im->Get('width', 'height');

$im->Set(magick => "RGB", depth => 8);
my $rgb = $im->ImageToBlob();

b The RGB data that Image::Magick exports is a sequence of bytes. Each byte has a
value between 0 and 255, because we force the image’s color depth to 8 bits per

14 The writing of XS has become significantly easier recently, but the changes have not been documented
yet, so only very few people know how easy it actually is, and how to do things.

b Get the Image data as
raw RGB pixels

FAST MANIPULATION OF IMAGE PIXELS 235

channel, per pixel. If you want to work with 16-bit pixels, you’ll have to change that,
and make sure that the C code later in the program can deal with this correctly.

The order of the bytes is straightforward: the red, green, and blue bytes are grouped
together in sets of three. The groups of bytes are ordered by rows first, then by col-
umns. The first row of the image appears in the first three times the image width
bytes of the string, the second row in the second three times the image width bytes,
and so forth. Later, when we cover the C part of this program, we’ll discuss this to a
greater extent.

Now that we have the image’s raw information, we pass this off to the
rotate_rgb() subroutine, which is actually a C function that we will soon define.

$rgb = rotate_rgb($width, $height, $rgb);
die "Couldn't do it" unless $rgb;

$im = Image::Magick->new(
 size => "${width}x$height",
 magick => 'RGB',
 depth => 8);

$rc = $im->BlobToImage($rgb);
die $rc if $rc;
$rc = $im->Write($out_file);
die $rc if $rc;

c The return value of that subroutine is another string of raw RGB information of the
same size, so we create a new Image::Magick object, pass it the returned data, and save
it with the specified file name. You’ll notice that the variables $rgb and $im are
reused in the program as soon as they are no longer needed. Normally I’d advocate
against that, but in this particular case there is a good reason to do this: images are
often large, and require a good deal of memory. If we didn’t reuse the variables, then
we would have four copies of the image in our program: the image object that was
read in, its raw RGB data, the output of rotate_rgb(), and the image object cre-
ated from that. Reusing these variable will, hopefully, reduce that number to two
instead of four.

d We need to presize the $im object, because the raw RGB stream does not contain size
information. To make sure that this code works when Image::Magick is compiled for
16-bit pixels, the depth attribute is explicitly set to 8.

This concludes the Perl part of the program. We’ll now have a look at the C code that
does the actual work behind the rotate_rgb() subroutine. As mentioned before,
the C code is given, in this particular program, after the __DATA__ token, where the
Inline module will pick it up, compile it, and save the result.15

c Rotate the RGB channels

d Create the output
image, and save it

15 See the documentation for Inline to read more about how and where your compiled C code gets cached.

236 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

The C code in this program has been written with an eye to future extensions. Pres-
ently, the task at hand is quite trivial: rotate the input red, green, and blue channels
for the output image; but in the future we might want to extend this to take the alpha
channel into account, so that we would work with four channels instead of three, and
we might like to add other functions that work in similar ways. We might even con-
sider making this into a separate module, once the number of functions has become
large enough to start reusing them in other programs.

We’ll start by defining some macros. The NCHANNELS macro defines how many
channels we expect from the Perl code. In more mature code this probably would be
a global variable or an argument to the defined functions. For the sake of simplicity,
it is a simple macro here. The OFFSET macro calculates the offset for a byte in the RGB
string, given the current x and y coordinates, the width of the image, and the channel
we’re interested in. The typedef defines the type of function that we will use as a call-
back for the main function that actually loops over the image’s pixels: do_pixels().

__DATA__
__C__
#define NCHANNELS 3
#define OFFSET(x,y,w,c) \
 (y * w * NCHANNELS + x * NCHANNELS + c)

typedef char (*pixel_func)
 (int, int, int, int, int, char *, void *);

static SV *
do_pixels(int width, int height, char *rgba,
 pixel_func fn, void *data)
{
 char *buf;
 int bufsiz = width * height * NCHANNELS;
 int x, y, chan;

 if (!(buf = malloc(bufsiz + 1)))
 return &PL_sv_undef;
 buf[bufsiz] = '\0';

 for (chan = 0; chan < NCHANNELS; chan++)
 for (x = 0; x < width; x++)
 for (y = 0; y < height; y++)
 buf[OFFSET(x,y,width,chan)] =
 fn(x, y, chan, width, height, rgba, data);

 return newSVpv(buf, bufsiz);
}

The function do_pixels() accepts as arguments the image’s width, height and
pixel data as raw red, green, and blue bytes, and a callback function to invoke to cre-
ate the individual bytes for the destination buffer. It allocates enough space to create
this buffer, and then loops over each channel, each row and each column of this out-
put buffer, and calls the specified callback for each of these coordinates.

FAST MANIPULATION OF IMAGE PIXELS 237

The callback is responsible for calculating the value for the specified channel for
the specified pixel. To do this it gets the current coordinates and channel, the original
image’s width, height and content, as well as a pointer to some data that can be any-
thing the programmer wants it to be. The only restriction that this particular scheme
imposes is that the destination image and source image need to be the same size. This
function is not meant to be called from Perl; instead, wrapper functions should be
written that do any extra work, such as setting up the data to pass around, initializing
variables, preprocessing the image data, post-processing the image data, or anything
else that is specific to that function, before calling do_pixels. The functions that this
program uses are defined as follows:

static char
rotate_rgb_pixel(int x, int y, int chan,
 int width, int height, char *src)
{
 int src_chan = (chan == 3) ? 3 : (chan + 1) % 3;
 return src[OFFSET(x,y,width,src_chan)];
}

SV *
rotate_rgb(int width, int height, char *rgba)
{
 return do_pixels(width, height, rgba,
 &rotate_rgb_pixel, NULL);
}

As you can see, they are fairly trivial. The rotate_rgb() function directly calls the
do_pixels() function, specifying rotate_rgb_pixel() as the callback with no
user data. The work performed in rotate_rgb_pixel() is also quite minimal. It
calculates the channel one higher than the current channel, and returns the value of
the current byte in that channel. To make sure that the resulting channel number is
valid (0, 1 or 2), the result is taken modulus three. If the current channel is the alpha
channel (number 3), it is used directly. One notable fact is that this function already
takes into account that there might be four channels in an image, in which case it
leaves the alpha channel unchanged. If you want to use this code, or something simi-
lar to it, it would be wise to adopt the same strategy when you write your callbacks. It
will save you a lot of time when you change that NCHANNELS macro at the top of
the C code, and the magick attribute for the source image to RGBA.

All of the glue work that we’d normally have to provide with XS or SWIG has been
taken care of by the Inline module. The C code that is included in the presented program
is almost entirely standard C, apart from a few macros which are part of the Perl API.

238 CHAPTER 12 MANIPULATING PIXELS AND TRANSPARENCY

SEE ALSO Even Inline can’t do all the work for you, and if you get serious about writ-
ing plug-in C code for Perl, you will have to read up on the Perl API and
understand how Perl’s internals work. The documentation contained in
the perlguts, perlxs, and perlxstut manual pages should move
you a long way in the right direction. The new and upcoming book about
using Perl and C [33] promises to be a valuable source of information for
programmers interested in this area.

The strategic implementation of time-critical code as C, with the help of Inline::C,
can allow a programmer to have all the power of Perl and its modules available, and at
the same time be able to achieve the speed and performance that can make the differ-
ence between a failed and successful project.

12.6 SUMMARY

In this chapter we have seen how we can access and manipulate the values of individ-
ual pixels in an image. We’ve discussed some techniques for which this can be useful,
and noticed that Perl is, by itself, not always fast enough to implement algorithms
that require modification of individual pixels. However, with a smattering of C
knowledge and the Inline modules, this problem can be solved.

P A R T

Appendices
As is often the case with technical books such as this, the appendices contain vari-
ous bits and pieces that wouldn’t easily fit into any chapters without being in the way
of textual flow, or in some cases simply don’t belong in any specific part of the book.
This is not to say that the material covered herein isn’t useful; it is expected that many
programmers will find the first appendix to be a very valuable resource.

Appendix A contains a fairly complete reference for the Image::Magick module.
This includes a summary of all the image attributes and all the methods available to
the user of the module, as well as deeper explanations of some of the more esoteric fea-
tures of Image::Magick.

Appendix B contains some Perl implementations of algorithms to convert between
RGB, HSV and HLS color spaces.

The last appendix includes code for a few more modules in the Canvas::Polar
namespace, as introduced in chapter 10.

4

241

A P P E N D I X A

Image::Magick
introduction & reference
A.1 Basic Image::Magick operations 242
A.2 Error handling 243
A.3 Dealing with API changes between

versions 245

A.4 Image attributes 246
A.5 Methods 250
A.6 Common method arguments 276
A.7 The path drawing primitive 281

Image::Magick, aka PerlMagick, doesn’t actually come with sufficient online docu-
mentation that can be accessed with perldoc. Instead you are referred to the
ImageMagick documentation on the web at http://www.wizards.dupont.com/cristy/
www/perl.html or http://www.imagemagick.org/www/perl.html. These same HTML
pages arrive bundled with the ImageMagick distribution, and I advise anyone who is
going to use Image::Magick on a regular basis to keep it handy, because it will be
needed. Even the complete documentation for Image::Magick does not always make
everything perfectly clear, and often you’ll find yourself reading the manual pages for
the command line utilities convert, mogrify and combine to glean information
which is missing from the Image::Magick pages. Plus, you will still have to experiment
a bit, now and again, to determine the exact behavior of certain functions. The main
reason for the incompleteness of the documentation is that ImageMagick is a work in
progress. Many of the features are implemented with no documentation written for
them. The Perl interface, Image::Magick is not always precisely synchronized with the
command-line tools or the C API, and it needs some separate work, which often
occurs at a later stage or not at all.

242 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

In addition to the examples scattered throughout this book, this appendix strives
to provide a reference to get you started with Image::Magick, and hopefully summa-
rizes the options and methods sufficiently. This appendix covers Image::Magick up to
version 5.4.4. The API of Image::Magick hasn’t always been entirely stable because of
major changes to functionality, and name changes to reflect the actual intent or oper-
ations better than before. Most of the code in the book was written for Image::Magick
version 5.2.6, and should run fine against that version. Between versions 5.2.6 and
5.4.4 some API changes were introduced that broke some of the code in this book.
Where possible the text in this book has been adapted to reflect those changes.

The ImageMagick developers have agreed to provide as much backward compat-
ibility with the code in this book as possible, and have in fact, reversed some API
changes in version 5.4.4 to make that work, but they can, of course, guarantee noth-
ing. This means that you should be able to trust the code in this book and the docu-
mentation in this appendix up to a certain point, but that you should consult the
Image::Magick documentation when things don’t seem to work as described herein.

In short, you should make sure that you have Image::Magick version 5.4.4–5 or
later to ensure that the code and documentation in this book match the actual imple-
mentation best.

A.1 BASIC IMAGE::MAGICK OPERATIONS

To create an Image::Magick object, use the new() constructor, which takes any of the
arguments that the Set() method accepts (see the Image::Magick documentation,
and later sections in this appendix).

use Image::Magick;
$im = Image::Magick->new();
$im2 = Image::Magick->new(size => '200x400',
 background => 'PeachPuff');

or, if you prefer the indirect syntax (which I do not):

$im3 = new Image::Magick;

Image::Magick objects are implemented as a blessed reference to an array. This means
that any standard Perl array operations can be used to work with the object. The ele-
ments of the array are the individual images, and every method can be called on each
image separately. You remove an image from an Image::Magick array by undefining it
(or by using the Perl built-in splice). To wipe out all images, assign an empty list to
the array to which it refers.

Create a new object, and read two image files
$im1 = Image::Magick->new();
$im1->Read($file1);
$im1->Read('*.png');

Get rid of the third image (but keep the slot)
$im1->[2] = undef;

ERROR HANDLING 243

Clone only the fifth image in $im1 into $im2
$im2 = $im1->[4]->Clone();

Add the first image from $im1 as the last of $im2
push @{$im2}, $im1->[0];

Add all the images of $im2 to $im1
push @$im1, @$im2;

Get rid of the first and last image in $im1
shift @$im1;
pop @$im1;

Remove all images from $im1
@{$im1} = ();

The following does the same, but is semantically unattracive.
@{$im1} = undef;

Initially, an Image::Magick object is empty, i.e., it contains no images. To create an
image in the array, use the Read() method:

$im->Read('logo.png');
$im->Read('logo.png', 'foo.jpeg');
$im->Read(@filenames, '*.png');
$im->Read('xc:white');
$im->Read('label:Just some text');
$im->Read('gradation:lavender-chartreuse');
$im->Read('graphics/vr/*.jpg');

The arguments to Read() consist of an optional format specification and, in most
instances, a file name. If the format specification has not been included, Image::Mag-
ick will try to determine the format from the file headers. For a partial list of sup-
ported file formats see table 2.1 on page 24, and for a list of the special internal
formats see table 2.2 on page 25.

If you have already read an image in, or you have image data from, for example,
GD that you would like to transfer to an Image::Magick object, you can use the
BlobToImage() method:

$gd is a GD::Image object
$im->BlobToImage($gd->png);

$jpg contains JPEG data read from a file
$im->BlobToImage($jpg);

A.2 ERROR HANDLING

From the perspective of error handling, there are two sorts of Image::Magick operations:
Those that return an object, and those that don’t. In case of a failure, the returned value
is a string containing the error, with an error number embedded in it. In the case of
success, the returned scalar is either the reference to an object, or it is undefined.

The methods that return an object, such as new(), Clone() and Montage(),
should be checked by making sure that the returned value is indeed a reference to an object:

244 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

my $im = Image::Magick->new();
die "Image::Magick->new failed: $im" unless ref $im;

my $copy = $im->Clone();
die "Cannot clone: $copy" unless ref $copy;

Other code omitted ...

my $montage = $im->Montage();
if (ref $montage)
{
 # do what is necessary with the montage
}
else
{
 warn "Couldn't create montage: $montage";
}

It’s a good practice to check for errors on any of the read-and-write operations, and
you do yourself a great service if you also check for errors on all the other calls. It will
be a big help in identifying typos in attributes:

$rc = $im->Read($filename);
die "Cannot read $filename: $rc\n" if $rc;

$rc = $im->Set(attribute => 'value');
warn $rc if $rc;

$rc = $im->Solarize();
warn "Cannot Solarize image ($rc), continuing\n" if $rc;

Note the 'and', instead of a more customary 'or'
$rc = $im->Frame(geometry => '20x20+13+7') and
 warn "Frame: $rc";

Error numbers below 400 indicate a warning, meaning that the requested command
did not succeed, but that no damage has been done. Conversely, an error above 400
means that something internal in the Image::Magick object is irreversibly wrong, due
to acute memory shortage or other serious errors. Hence, an error code of 400 and
above means that you should probably give up trying to do anything more with the
object. Note that a failure to read an image because the file doesn’t exist results in an
error code of 330, which in Image::Magick’s view is not fatal. It might, however, be
regarded as fatal from the perspective of the application, if all it does is read.

$rc = $im->Read('file.jpg');
if ($rc)
{
 my ($errno) = $rc =~ /(\d+)/;
 ($errno >= 400) ? die "Fatal error: $rc" :warn "Error: $rc";
}

Once you have some images in the array, the Image::Magick methods can be applied
to all images in the array or to a single image:

DEALING WITH API CHANGES BETWEEN VERSIONS 245

Set the color space for all images
$im->Quantize(colorspace => 'Gray');

Annotate the 3rd image
$im->[2]->Annotate(text => 'Annotation', x => 10, y => 20);

To write an image to disk, the Write() method is available. ImageToBlob() can
be used to get the image data directly, for example to print it to an already open file
handle, or to store it in a database.

Write all the images to a MNG file
$rc = $im->Write('mng:file.mng') and warn $rc;

Write the second image to a PNG file
$rc = $im->[1]->Write('png:file.png') and warn $rc;

Print the image data for the third file to STDOUT
binmode STDOUT;
print STDOUT $im->[3]->ImageToBlob();

It should never be necessary, in well-written, modularized, correctly scoped programs,
to explicitly destroy an Image::Magick object. That will automatically happen when
the last reference to it goes out of scope. However, in real life we almost never have
code that is so squeaky clean that every reference to each object and variable goes out
of scope exactly when you want it to, freeing up the memory that is associated with it.
If you are working with Image::Magick objects that contain images of 8,000 by
24,000 pixels, then you might very well want to reclaim the memory as soon as you
can. In cases such as this, simply undefine the reference to the object:

my $im = Image::Magick->new();
Do things with $im
undef $im;

A.3 DEALING WITH API CHANGES BETWEEN VERSIONS

One problematic aspect about the PerlMagick interface to ImageMagick is that it is
very changeable. Commands appear and disappear, options change or disappear, and
calling conventions evolve. You can’t protect your source code from all these changes,
but you can (after you discover a method name is no longer the same) do something
about some problems.

One example of a changed method name is the evolution of Layer() to
Channel() in version 5.2.9, although the Layer() method returned in version 5.4.4.
Suppose that you have an elaborate program that calls Layer() several times, and that
has to run on versions after and before the change. You could put something such as this
at the start of your program:1

1 Warnings are temporarily disabled in this block, because otherwise Perl will complain about either the
name Layer or the name Channel being used only once.

246 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

use Image::Magick;

BEGIN
{
 no warnings;
 *Image::Magick::Layer = *Image::Magick::Channel
 if ($Image::Magick::VERSION ge "5.29" and
 $Image::Magick::VERSION It "5.44")
}

This will insert an entry with the name Layer in the symbol table for the Image::Magick
package that is identical to the entry for the Channel() method. So, what you have
just done is create an alias with the old function name for the new function name,
effectively giving you back access via the old name. Then, when you have been able to
change all calls to Layer() in your program to Channel(), you can change the
BEGIN block above to:

BEGIN
{
 no warnings;
 *Image::Magick::Channel = *Image::Magick::Layer
 if ($Image::Magick::VERSION lt "5.29")
}

and hopefully, some time in the future, you can remove that code altogether.
Of course, if the interface changes, or arguments disappear, there is not a lot that

can be easily done. One possibility would be to write wrapper functions that conduct
translations between the calling conventions for the various versions. This can quickly
get out of hand.

A.4 IMAGE ATTRIBUTES

Image::Magick images have many attributes that can be set or altered with the Set()
method, and even more that can be read with the Get() method. Many of these
attributes can be overridden in method calls.

A.4.1 Read-write attributes

The following list shows the Image::Magick image attributes that can be set as well as
read, and the type value for each attribute.

• adjoin true/false. Join images into a single multi-image file. If this is set to a
false value, a multi-image object will be saved as multiple files. The default
behavior depends on the file format in which you are saving the object.

• antialias true/false. Remove pixel aliasing. This will remove the ragged
edges when you work with, for example, Draw() or Annotate().

• background color spec. The image background color. This color is used for
any operation that creates background space. It also can influence how transpar-
ency ends up in certain file formats.

IMAGE ATTRIBUTES 247

• blue_primary x-value, y-value. Chromaticity blue primary point. Don’t
worry about it if you are unfamiliar with it.

• bordercolor color spec. Set the border color of the image.

• cache_threshold integer. Image::Magick will use memory to store and
manipulate images up to this value (default 80 MB). If it needs more memory,
it will use the disk. Specify the size as an integer number of Megabytes.

• colormap[i] color spec. The color in the palette at position i.

• colors integer. The number of unique colors in the image. If this is set, the
actual number of colors in the image will be no greater than this number. It
takes effect only when Quantize() is called.

• colorspace. The color space to work in when reducing colors. Valid values
are GRAY, OHTA, RGB, Transparent, XYZ, YCbCr, YIQ, YPbPr, YUV and
CMYK. The Transparent color space is also known as RGBA, i.e., RGB with an
alpha channel. This option is only useful when the Quantize() method is
called on the image.

• compress. The type of image compression to use. This has an effect only if the
image format you are using supports the compression method requested. Valid val-
ues are None, BZip, Fax, Group4, JPEG, LZW, RunLengthEncoded and Zip.

• delay integer. This parameter specifies the delay between frames in an ani-
mation in hundredths of a second.

• depth integer. The bit depth of the image, one of 8 or 16.

• dispose integer. The GIF disposal method. Valid values are

• display. The X server to contact.

• dither true/false. Apply Floyd/Steinberg error diffusion for colors that don’t
exactly match those in the color palette. Note that this attribute requires a call
to Quantize() to take effect.

• file filehandle. Set the file handle to use for the Read() and Write()
methods.

• filename string. The file name of the image. The default is the name of the
file from which the image was read in.

• fill color. The fill color to use.

0 Unspecified.

1 Don’t dispose between frames.

2 Restore the background color.

3 Restore the previous frame.

248 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

• font font spec. The font to use for text operations, such as Annotate() (also
see the pointsize attribute). A full description of valid font specifications can
be found on page 278.

• fuzz integer. For algorithms that search for a target color, all colors within
this distance (in RGB space) will be considered equal.

• green_primary. See blue_primary.

• interlace. The type of interlacing to use. Valid values are None, Line,
Plane or Partition. Not every image format supports any or all of these interlac-
ing schemes.

• iterations integer. See loop.

• loop integer. Add the Netscape loop extension to a GIF animation. A value of
0 means loop forever, any other value indicates the number of repeats.

• magick string. Set the image format. Valid values are any of the supported
formats (see table 2.1 on page 24).

• matte true/false. This is true if the image has transparency.

• mattecolor color spec. The color that should be made transparent for this
image.

• monochrome true/false. The image is black and white.

• page. The preferred canvas size and location. Valid values are Letter, Tabloid,
Ledger, Legal, Statement, Executive, A3, A4, A5, B4, B5, Folio, Quarto, 10x14
or a geometry specification. You also use this to position individual scenes in an
animation at different offsets.

• pen color spec. The foreground color, or pen color to be used when drawing
objects or text. This is deprecated in favor of the fill and stroke attributes.

• pixel[x,y] color spec. The color of the pixel at coordinates (x, y). The
Get() method with this attribute returns the Red, Green, Blue, and Alpha val-
ues as a string of four comma-separated decimal numbers, e.g.,
73,23,128,255. The Set() method with this attribute expects any of the
color specifications described on page 278.

• pointsize integer. The point size of a TrueType or PostScript font (also see
the font attribute).

• preview. The type of preview for an image. One of Rotate, Shear, Roll, Hue,
Saturation, Brightness, Gamma, Spiff, Dull, Grayscale, Quantize, Despeckle,
ReduceNoise, AddNoise, Sharpen, Blur, Threshold, Edge Detect, Spread, Shade,
Raise, Segment, Solarize, Swirl, Implode, Wave, OilPaint, CharcoalDrawing or
JPEG. The default is JPEG. This takes effect only when an image is written in
preview mode, e.g., $im->Write('preview:view.jpg').

IMAGE ATTRIBUTES 249

• quality integer. The compression level. This is valid only for certain image
types, such as JPEG, PNG and MIFF.

• red_primary. See blue_primary.

• rendering_intent. The type of rendering intent. Valid values are Unde-
fined, Saturation, Perceptual, Absolute and Relative.

• scene integer. The number of the image as a scene in a sequence.

• server. See display.

• size geometry. The width and height of an image.

• stroke color. The stroke color to use when drawing.

• subimage integer. The number of the image as a subimage.

• subrange integer. The number of images relative to the base image.

• tile string. The name of the tile.

• texture filename. The name of the image file used as a texture tile for the
background of the image.

• units. The units of image resolution (also see the density attribute). Valid
values are Undefined, PixelsPerInch and PixelsPerCentimeter.

• verbose true/false. Print detailed information about the image.

• view string. FlashPix viewing parameters.

• white_point. Chromaticity white point (see also blue_primary).

A.1.2 Read-only attributes

The following list shows the Image::Magick image attributes that are read-only, and
the type value for each attribute.

• base_columns integer. The image width before any applied transformations.

• base_filename filename. The original file name of the image.

• base_rows integer. The image height before any applied transformations.

• class. The class of the image, one of Direct or Pseudo. An image of class Direct
has its colors stored per pixel, while a Pseudo class image uses a color palette.

• columns integer. The number of columns, i.e., width, in an image.

• comment string. The image comment. While this is a read-only attribute, the
image comment can be set with the Comment() method.

• density geometry. The vertical and horizontal resolution of an image in ppi
(pixels per inch), but also see the units attribute. The default is 72×72.

• filesize integer. The size of the image on disk, in bytes.

250 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

• filter filter type. The filter used by methods that require one, such as
Transform(). Should be one of Point, Box, Triangle, Hermite, Hanning,
Hamming, Blackman, Gaussian, Quadratic, Cubic, Catrom, Mitchell, Lanczos,
Bessel, or Sinc.

• format integer. A string describing the image format (also see the magick
attribute).

• gamma double. The gamma level of the image.

• height integer. The height of the image in pixels.

• label string. The image label.

• mean double. The mean error per pixel that was introduced by a color reduc-
tion. This is set on a call to Quantize() with measure_error set to a true value
(see page 268).

• normalized_max double. The normalized maximum error per pixel that was
introduced by a color reduction. This is set on a call to Quantize() with
measure_error set to a true value (see page 268).

• normalized_mean double. The normalized mean error per pixel that was
introduced by a color reduction. This is set on a call to Quantize() with
measure_error set to a true value (see page 268).

• pipe integer. True when the image was read from a pipe as opposed to a file.

• rows integer. The number of rows, i.e. height, in an image.

• signature string. The signature associated with the image. For older ver-
sions of Image::Magick this is an MD5 sum, in more recent versions, a SHA1-
256 signature. Also see the Signature() method.

• tainted true/false. True if the image has been modified, false if not.

• type. The image type, one of Bilevel, Grayscale, Palette, TrueColor, Matte or
ColorSeparation.

• width integer. The width of the image in pixels.

• x_resolution integer. The resolution of the image in the X direction (also
see density and units).

• y_resolution integer. The resolution of the image in the Y direction (also
see density and units).

A.5 METHODS

Image::Magick provides many methods for manipulating, enhancing or otherwise
working with images. This section provides an overview and short description of the

METHODS 251

methods. Almost all methods2 can be called by the name specified here, as well as by
that name with Image appended. Thus, Read() can also be called as ReadImage(),
Annotate() as AnnotateImage() and Quantize() as QuantizeImage(). Some
methods can be called by even more names; in those cases I have added the aliases to
the description of its preferred name.

Many methods can be called with a single argument, instead of the name-value
pairs specified in this chapter. It is normally a good idea to use the longer version to
specify arguments, because that documents exactly what it is you’re doing, instead of
relying on the reader of the code to know what that particular single argument does.
In less complicated cases, such as Scale() or Blur() the chances of confusion are
slight. However, for the more complex methods that allow shortcuts, such as
Modulate(), I would strongly advise getting in the habit of using the longer form.

Some arguments that are common to many methods are discussed in section A.6,
to prevent repetition of their explanation in the following. The radius argument to
many methods has been available since version 5.2.4. Before that version, this attribute
was called order.

AddNoise()

Add noise to an image.

$im->AddNoise(noise => noise)

This method adds some random noise to an image. The parameter noise can be one
of Uniform, Gaussian, Multiplicative, Impulse, Laplacian, or Poisson.

Animate()

Animate an image sequence to a display.

$im->Animate(arguments)

Animate() can take any argument that is a settable attribute. Can also be called with
the aliases animate() and animateimage(). This only works for X11 displays.

2 Exceptions are BlobToImage(), ImageToBlob(), Mogrify(), MogrifyRegion(), and Query-
Color().

Figure A.1

The AddNoise (a),

Blur (b) and

Charcoal (c) filters.
(a) (b) (c)

252 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Annotate()

Annotate an image with text.
$im->Annotate(text => string,
 font => string,
 pointsize => integer,
 x => integer,
 y => integer,
 stroke => color,
 fill => color,
 density => integer,
 box => color,
 geometry => geometry,
 gravity => gravity,
 translate => "float,float",
 scale => "float,float",
 rotate => float,
 skewX => float,
 skewY => float)

This method can be used to place text on an image. If the value of the text argument
starts with an @, the string will be read from the file with the filename following the @.3

The font attribute is described on page 278, the gravity parameter on page 281,
and the color values for stroke and fill on page 278. The geometry parameter can be
used as a shortcut for the x and y arguments. If the box argument is given, a filled box
of that color will be drawn with the text on top of it. The translate, scale,
rotate, skewX and skewY arguments can be used to transform and warp the text.
Also see Draw() on page 257.

Append()

Append a set of images.

$new_im = $im->Append(stack => boolean)

The sequence of images in $im will be joined together into a single image. All the
images must have either the same height, in which case they will be joined horizon-
tally, or the same width, which means they will be joined vertically. The stack
attribute can be used to force a stacking order if, for example, all your images have the
same height and the same width. A value of 'False' will force a horizontal stack,
and a value of 'True' a vertical one. Append() returns a new image, and can also
be called by the aliases append() and appendimage().

Average()

Take the average of a set of images.

$new_im = $im->Average()

3 Make sure the file exists. Some versions of ImageMagick crash if it doesn’t.

METHODS 253

The Average() method will return a new image which is the average of all the images
in $im. Other valid names for this method are average(), and averageimage().

BlobToImage()

Read an image from a scalar.
$im->BlobToImage($Image_data)

This method reads image data from a Perl scalar variable. This allows the reading of
images from sources with which Image::Magick cannot deal directly, e.g., database
fields or images fetched directly from an HTTP server. Also see ImageToBlob().
Aliases for this method are blobtoimage(), and blobto().

Blur()
Blur an image.
$im->Blur(radius => integer)

Blur an image by applying a convolution kernel. The parameter is the order of the
convolution kernel: the larger the radius, the larger the kernel. The kernel must
always be smaller than the image, so be sure to pick one that is low enough. Good
values are odd numbers between 3 and 31. Also see GaussianBlur() and
Convolve().

Border()
Draw a border around an image.
$im->Border(geometry => geometry,
 fill => color)
$im->Border(width => integer,
 height => integer,
 fill => color)

Put a border around an image. The depth of the left and right border are specified by
width, and the depth of the top and bottom one with height. The geometry parameter
provides a shortcut notation for width × height. Also see Frame().

Channel()

Extract a channel from an image. See the description of Layer().
$im->Channel(channel => channel name)

This method is the new name for the Layer() method since version 5.2.9.

Charcoal()

Apply a charcoal filter.
$im->Charcoal(radius => integer)

This method makes an image look more or less as if it has been drawn with charcoal
sticks. The larger radius is, the rougher the effect will look.

254 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Chop()

Remove part of an image.

$im->Chop(geometry => geometry)
$im->Chop(x => integer,
 y => integer,
 width => integer,
 height => integer)

Removes the part of the image specified by the geometry parameter, or by the x, y,
width and height parameters. Also see Crop().

Coalesce()

Merge a sequence of images.

$new_im = $im->Coalesce()

This method can be used to apply the effects of an animation. This is useful when
you have an animation in which all frames are not the same size or do not have the
same offset. If you want to export this animation to another format, such as MPEG,
which doesn’t allow different frame sizes, you can use Coalesce() to ensure that all
the frames are of the same size. In effect, this method runs the animation, and takes a
snapshot of each resulting frame with the size of the first image.

 Image::Magick 5.2.2 and before change the current image, later versions return a
new image reference. In some versions of Image::Magick, the Coalesce() method
doesn’t work correctly.

ColorFloodfill()

Fill parts of an image with a color.

$im->ColorFloodfill(geometry => geometry,
 x => integer,
 y => integer,
 fill => color,
 bordercolor => color)

Change the color of all neighboring pixels that match the color of the pixel at coordi-
nates (x, y) to the color specified by the fill argument. If the bordercolor argument is
present, the color value is changed for any neighboring pixel that is not that border
color. The image attribute fuzz influences which colors will be seen as the same as the
specified colors. See also MatteFloodfill().

Colorize()

Colorize an image.

$im->Colorize(fill => color,
 opacity => string)

METHODS 255

This method colorizes the image with the color specified by the fill argument. The
opacity parameter expresses the amount of colorization as a percentage. If you want to
apply separate colorization values to the individual channels of an image, provide a
string with list of values for each channel, separated with slashes, e.g., "10/50/25".

Comment()

Add a comment to your image.

$im->Comment(comment => string)

Use this method if you want to add a comment to your image. Most image formats
support comments in files. See page 280 for the format of the string. Also see Label().

Composite()

Combine one image with another.

$im->Composite(image => image object,
 compose => operator,
 geometry => geometry,

 x => integer,
 y => integer,
 gravity => gravity,
 opacity => percent,
 tile => boolean)

The Composite() method combines the pixels of two images with the operator
specified by the compose parameter. If it is not specified, the pixels in $im will be
replaced by the pixels in the image specified by the image parameter. The values for
compose can be Over, In, Out, Atop, Xor, Plus, Minus, Add, Subtract,
Difference, Bumpmap, Replace, ReplaceRed, ReplaceGreen, ReplaceBlue,
ReplaceMatte, Blend, Displace, Annotate, or Modulate.4 For a description
of what they do, see section 8.2.2, page 142. The opacity parameter is only used for
Blend, and specifies how opaque the composite image should be. When tile is set to a
true value, the composite image will be tiled repeatedly on the image.

Contrast()

Change the image contrast.

$im->Contrast(sharpen => boolean)

This method changes the contrast of an image. Use a true value for the sharpen
attribute for contrast enhancement, and a false value for reduction.

4 This is the list for Image::Magick 5.2.6. For later versions, Blend has disappeared, and the various Re-
place operators have been renamed to Copy. For a definitive list, see the current documentation for
your installation.

256 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Convolve()

Apply a convolution kernel to an image.

$im->Convolve(coefficients => array reference)

The array reference should refer to an array of n2 elements, in which n is the order of
the convolution kernel.5 To specify a convolution kernel of order 3, with coefficients

the following code can be used:

@kernel = (4, 3, 2,
 3, 2, 1,
 2, 1, 0);
$im->Convolve(coefficients => \@kernel);

Also see section 12.3, on page 215 for a more general discussion on convolution.

Copy() or Clone()

Make a copy of an image object.

$new_im = $im->Copy()
$new_im = $im->Clone()

Other names for this method are copy(), copyimage(), clone(), and clone-
image().

Crop()

Crop an image.

$im->Crop(geometry => geometry)
$im->Crop(x => integer,
 y => integer,
 width => integer,
 height => integer)

Removes the part of the image outside of the area specified by the geometry parameter,
or by the x, y, width and height parameters. See also Chop() and Transform().

CycleColorMap()

Displace an image’s color map.

$im->CycleColorMap(amount => integer)

This method changes the color map (palette) by moving each entry down by the number
of places specified by the parameter, rotating the ones that fall off the end to the start.

5 Convolution kernels for Image::Magick are always square.

METHODS 257

Deconstruct()
Break up an image sequence.

$im->Deconstruct()

This method breaks down an image sequence into its constituent parts, and can be
used for GIF or MNG animations.

Despeckle()
Reduce speckles and noise in an image.

$im->Despeckle()

This filter attempts to remove speckles and spots from your images. Also see
ReduceNoise().

Display()
Display an image on screen.

$im->Display(arguments)

Display takes any argument that is a settable image attribute. Aliases for this method
are display() and displayimage(). This works only on X11 displays.

Draw()

Draw on an image.

$im->Draw(primitive => shape identifier,
 points => string,
 method => method,
 stroke => color,
 fill => color,
 tile => image object,
 linewidth => float,
 bordercolor => color,
 translate => float,
 scale => "float,float",
 rotate => float,
 x => float,
 y => float,
 skewX => float,
 skewY => float,
 gravity => gravity)

This method allows you to draw on an image, using one of the drawing primitives
point, line, rectangle, roundRectangle, arc, ellipse, circle, polyline, polygon, bezier, path,
color, matte, text, or image.

The coordinates and dimensions of the points, angles and lines involved in the
drawing are given as a single string to the points argument. The contents of the string
are always a space-separated list of pairs of numbers, separated by an optional comma,
e.g., "12,56" or "34,56 67,23 45,0".

258 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

The scale, rotate, skewX and skewY attributes can be used to transform the element that
you are drawing. The stroke and fill attributes give the stroke and fill color, respectively.

Not all combinations of attributes make sense. Some can be used with all primi-
tives, some only with one. Some attributes provide a shorthand for others, or act dif-
ferently in the presence of others. The possibility of combinations is so great, that I’ll
leave it to your inquiring nature to discover how to tweak each of them.

A more detailed description of each of the primitives follows:

point

Simply draw a point at the specified coordinate. To draw a single red pixel at coordi-
nates (23,45):

$im->Draw(primitive => 'point',
 stroke => 'red',
 points => '23,45');

line

Draw a line between two points. To draw a green line from (12,34) to (23,45):

$im->Draw(primitive => 'line',
 stroke => 'green',
 points => '12,34 23,45');

rectangle

Draw a rectangle with the specified upper-left and bottom-right corners. Use stroke to
draw the rectangle, and fill to fill it. To draw a green rectangle with red fill:

$im->Draw(primitive => 'rectangle',
 stroke => 'green',
 fill => 'red',
 points => '12,34 23,45');

roundRectangle

Unfortunately, the coordinates for this primitive differ greatly from the ones for rect-
angle. The roundRectangle primitive requires three pairs of coordinates: the center of
the rectangle, the width and height, and the horizontal and vertical number of pixels
used to round the corners. To draw a rectangle of width 50 and height 30, centered
around the point (65,75), with rounded corners that take 12 pixels from the hori-
zontal edge, and 6 from the vertical:

$im->Draw(primitive => 'roundRectangle',
 stroke => 'green',
 fill => 'red',
 points => '65,75 50,30 6,3');

The size of the rounded corners should be less than or equal to the height or width of
the rectangle. If they are both equal to half, the resulting figure will be an ellipse. For
example, the coordinate string "30,30 40,20 20,10" will result in an ellipse cen-
tered on the point (30,30), with a horizontal axis of 40, and a vertical axis of 20 pixels.

METHODS 259

circle

Circle requires the coordinate of the center and a coordinate of a point on the edge.
To draw a circle around (50,50) with a radius of 35:

$im->Draw(primitive => 'circle',
 stroke => 'green',
 fill => 'red',
 points => '50,50 50,85');

ellipse

This can be used to draw an ellipse, or part of an ellipse. The coordinates required are
the center of the ellipse, the width and height, and the start and end angle. To draw a
full ellipse around (50,50) with a horizontal axis of 25, and a vertical axis of 40:

$im->Draw(primitive => 'ellipse',
 stroke => 'green',
 fill => 'red',
 points => '50,50 25,40 0,360');

Note that angles go clockwise for this method, and start at the right side. Also note
that using a fill with a partial ellipse does not likely net you the result you were seek-
ing. Use arc instead.

arc

This primitive also describes a part of an ellipse, but requires a different set of coordi-
nates. The first and second coordinates describe the bounding box of the ellipse, i.e.,
the upper-left and bottom-right corner of the rectangle that enclose the ellipse. The
third coordinate expresses the start and end angles of the part of the ellipse. To draw
the left half of an ellipse bounded by the rectangle with corners (0,0) and (100,50):

$im->Draw(primitive => 'arc',
 stroke => 'green',
 fill => 'red',
 points => '0,0 100,50 90,270');

For arc angles are counted counter-clockwise, as they should be.

polyline and polygon

Define 3 or more points that will be joined by a line of color stroke. The area sur-
rounded by that line will be filled with the color specified by fill. In the case of poly-
gon, the last point will be connected with the first point, though for a polyline this
will not be done. The fill will be the same for both. Draw a (less than perfect) star:

$im->Draw(primitive => 'polygon',
 stroke => 'green',
 fill => 'red',
 points => '20,20 70,20 30,70 45,0 50,70');

260 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

bezier

Draw a bezier curve, defined by three or more points.

$im->Draw(primitive => 'bezier',
 stroke => 'green',
 fill => 'red',
 points => '0,100 100,100 200,0 0,0');

Also see the discussion of bezier curves for the path primitive on page 282.

path

This primitive allows you to draw a generic shape which is defined by a set of move-
ment operators. This is the only method that directly allows you to create shapes that
have holes in them, as well as other complex multipart shapes. Paths are defined in
the same way as they are in the Scalable Vector Graphics (SVG) format (also see
page 19 and reference entries [22] and [16]). See page 281 for a description of the
format of the points strings that this primitive takes.

color

This primitive can be used to perform a number of different functions, depending on
the value of the method attribute.

point

The target pixel will receive the color set by stroke.

replace

Each pixel that matches the color of the target pixel will get the color set by stroke.

floodfill

All neighboring pixels matching the color of the target pixel are set to the color
denoted by fill.

filltoborder

All neighboring pixels of the target pixel are set to the fill color, until pixels that
have the border color are encountered (see bordercolor on page 246).

reset

All image pixels are reset to the stroke color.

Set point (20,20) to green
$im->Draw(primitive => 'color',
 stroke => 'green',
 method => 'point',
 points => '20,20');
Fill all neighbors of (20,20) of the same color
$im->Draw(primitive => 'color',

METHODS 261

 fill => 'red',
 method => 'floodfill',
 points => '20,20');

Also see ColorFloodfill() and the fuzz attribute on page 248.

matte

This primitive acts the same way as color, except that it sets each pixel’s matte value to
transparent. Also see MatteFloodfill().

text

Put text on an image, using the current settings of the image attributes font and point-
size, and the color specified by fill. One coordinate needs to be specified: the left side
of the baseline of the string. The text to be drawn should be given as part of the points
argument. To draw the text, Some text, in the current font and size, with the current
fill color on the image:

$im->Draw(primitive => 'text',
 points => '40,40 "Some text"');

See “String formatting” on page 280 for a description of special escapes in the string,
and the Annotate() method for a more convenient way to do this.

image

Superimpose another image on this one. See Composite() for a much better way to
accomplish this.

Edge()

Detect edges in an image.

$im->Edge(radius => integer)

Apply a convolution kernel to detect edges in an image. Good values for radius are
odd numbers between 3 and 31. See also Convolve().

Emboss()

Emboss an image.

$im->Emboss(radius => integer)

(b) (c)(a)

Figure A.2

The Edge (a),

Emboss (b) and

Frame (c) filters.

262 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Apply a convolution kernel to emboss an image. Good values for radii are odd num-
bers between 3 and 31. Also see Convolve() and Shade().

Enhance()

Enhance an image.

$im->Enhance()

This filter reduces noise in an image by replacing each pixel with a weighted average
of a 5 by 5 cell around it. Only pixels that are within a certain distance in the RGB
color space are taken into account.

Equalize()

Apply histogram equalization to an image. Also see Normalize.

$im->Equalize()

Flip()

Mirror an image vertically.

$im->Flip()

Flop()

Mirror an image horizontally.

$im->Flop()

Frame()

Draw a frame around an image.

$im->Frame(geometry => geometry,
 fill => color)
$im->Frame(width => integer,
 height => integer,
 inner => integer,
 outer => integer,
 fill => color)

Draw a frame around an image of the specified width (left and right borders), height
(top and bottom borders), with a three-dimensional inner and outer edge. The geom-
etry specification is a shortcut notation for 'width x height + outer +

inner'. Also see Border().

Gamma()

Gamma correction.

$im->Gamma(gamma => double)
$im->Gamma(red => double,
 green => double,
 blue => double)

METHODS 263

Adjust the gamma for the whole image at once, or for each color channel separately.
See the color space FAQ [6] for an explanation of gamma.

GaussianBlur()

Apply a gaussian blur filter.
$im->GaussianBlur(width => double,
 sigma => double)
$im->GaussianBlur(geometry => geometry)

This filter blurs an image by applying a gaussian blur with a width and standard devi-
ation as specified by the parameters width and sigma. Alternatively, the geometry
parameter might be used to specify these as a string of the form "width x sigma".
Also see Blur().

Get()

Get image attribute values.
@values = $im->Get(attribute, attribute, ...)

Get the value of an image attribute or multiple attributes. Aliases for this method are:
GetAttribute(), GetAttributes(), and the lowercase variants. See section A.4,
on page 246, for a list of attributes and the Set() method.

ImageToBlob()

Write an image to a scalar.
$image_data = $im->ImageToBlob(arguments)

Write the image data to a Perl scalar variable. This can be used to write images to stor-
age media that Image::Magick cannot deal with directly, e.g., database fields. Also see
BlobToImage(). Valid arguments are any settable image attributes. Aliases for this
method include: ImageToBlob(), imagetoblob(), toblob(), and blob().

Implode()

Implode or explode an image.
$im->Implode(factor => percentage)

Implode (factor is positive) or explode (factor is negative) the image pixels toward or
away from the center of the image.

Figure A.3

The GaussianBlur (a)

and Implode (b) filters.(b)(a)

264 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Label()

Label an image.

$im->Label(label => string)

This method assigns a label to an image. Not all image formats will store this. If the
first character of the string is @, the label will be read from the file specified by the rest
of the string. See page 280 for more on the format of the string. Also see Comment().

Layer()

Extract a layer from an image.

$im->Layer(layer => Red, Green, Blue, Matte)

This method replaces the current image with a grayscale image that contains the values
of the specified channel. This method has been supplanted by Channel() in
Image::Magick version 5.2.9.

Magnify()

Double the image size.

$im->Magnify()

Also see Minify(), Sample(), Scale(), Resize(), and Transform().

Map()

Set the color map for an image.

$im->Map(image => image object,
 dither => boolean)

Set the color map of an image to the color map of the image specified by the argu-
ment, optionally dithering the result. This can be used to specifically set the color
palette of an image, or set of images, to a particular one; for example, the Netscape
color palette in use for web browsers. Also see Quantize().

MatteFloodfill()

Make parts of an image transparent.

$im->MatteFloodfill(geometry => geometry,
 x => integer,
 y => integer,
 matte => integer,
 bordercolor => color)

Change the matte value of all neighboring pixels that match the color of the pixel at
coordinates (x, y) to the value specified by the matte argument. If the bordercolor
argument is present, the color value is changed for any neighboring pixel that is not
that border color. Also see ColorFloodfill().

METHODS 265

MedianFilter()

Apply a median filter to an image.

$im->MedianFilter(radius => integer)

Replace each pixel with the median value of the pixels around it. The argument spec-
ifies the order of a square convolution kernel.

Minify()

Halve the size of an image.

$im->Minify()

Also see Magnify(), Sample(), Scale(), Resize(), and Transform().

Modulate()

Change HSV values of an image.

$im->Modulate(hue => double,
 saturation => double,
 brightness => double)
$im->Modulate(string)

Change the hue, saturation and brightness of an image. Specify the amount you want
each parameter changed as a percentage, larger than 100 for an increase, and between
0 and 100 for a decrease. The three parameters can also be specified as a single string.
This string should contain the hue, saturation and brightness as comma-separated
values in that order. To make an image 20 percent darker, and leave the hue and satu-
ration unchanged, you specify ’80,100,10’ and to only change the saturation by
30 percent you use ’100,100,130’.

Mogrify() and MogrifyRegion()

Apply any operation to an image.

$im->Mogrify(method, parameters)
$im->MogrifyRegion(geometry, method, parameters)

Apply any of the other discussed methods to an image, or part of an image. This
method is really a wrapper that gets used internally by Image::Magick to invoke many
of the other methods discussed in this section. You should never really need to call
Mogrify() directly, but MogrifyRegion() can be used to achieve effects that can-
not be attained otherwise. Suppose you only want to apply the charcoal filter to the left
half of an image; for example, to see what the effect will be, you can try the following:

my ($w, $h) = $im->Get('width', 'height');
$w /= 2;
$im->MogrifyRegion("${w}x$h+0+0", 'Charcoal', radius => 11);

Methods that cannot be called through Mogrify() are generally the methods that
return another image object, class methods, or methods that affect the number of

266 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

images in the object: Append(), Average(), BlobToImage(), Coalesce(),
Copy(), Display(), Get(), ImageToBlob(), Montage(), Morph(), Ping(),
QueryColor(), Read(), Remote(), Set(), Transform(), Write().

Montage()

Create an image which is a composite of two images.

$new_image = $im->Montage(background => color,
 bordercolor => color,
 borderwidth => integer,
 compose => operator,
 filename => file name,
 fill => color,
 font => font,
 frame => geometry,
 geometry => geometry,
 gravity => gravity,
 label => string,
 mattecolor => color,
 mode => frame option,
 stroke => color,
 pointsize => integer,
 shadow => boolean,
 texture => file name,
 tile => geometry,
 title => string,
 transparent => color)

This is a powerful way to create thumbnail sheets of sets of images. To use it, you first
read all the images into an Image::Magick object, after which you call the Montage()
method with the attributes you wish to apply.

Most arguments are self-explanatory, or are explained in the discussions on the meth-
ods to which they apply. For example, for the frame attribute, read about Frame(), for
label, check Label(); and for compose, see the section on Composite(). The mode
attribute is a shortcut parameter for a few others. It specifies the framing mode for the
tiles, and should be one of Frame, Unframe or Concatenate. The default is
Unframe. The tile attribute should be set to a string that contains the number of rows
and columns of images that is wanted, e.g., "4x5". The geometry parameter specifies the
preferred tile size and border widths, for each tile on the sheet.

The images will automatically be scaled to fit the tiles, however, if you don’t have
a lot of memory, you might want to consider scaling the images to the appropriate size
before invoking Montage(). If you have more images than will fit in the rows and
columns specified, more than one sheet will be created and the object that is returned
will contain multiple images.

Montage() can also be called by the aliases montage() and montageimage().

METHODS 267

Morph()

Morph a set of images.
$im->Morph(frames => integer)

This method will create an animation sequence, filling in frames intermediate mor-
phed images between each of the images in $im. Morph() can also be called by its
name in lowercase.

Negate()

Negate an image.
$im->Negate(gray => boolean)

Each pixel in the image will be replaced by its complementary color, changing an
image to its negative. The filter will only apply to grayscale pixels if the argument has
a true value.

Normalize()

Normalize an image.
$im->Normalize()

This filter enhances the appearance and contrast of an image by making sure that its
colors span the full possible range of values. See also Equalize().

OilPaint()

Apply an oil paint filter.
$im->OilPaint(radius => integer)

This filter changes the color of each pixel to the most frequent color inside the radius spec-
ified. Unless you have a large image, you probably want to keep the value of radius low.

Opaque()

Change a color.
$im->Opaque(color => color,
 fill => color)

Change all pixels that have the color specified by color to the color specified by fill.
Also see ColorFloodfill().

Figure A.4

The Negate (a),

OilPaint (b) and

Raise (c) filters.(c)(b)(a)

268 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Profile()

Manipulate an image profile.

$im->Profile(filename => file name,
 profile => ICM, IPTC)

This method allows the addition or removal of an ICM or IPTC profile to an image,
which will be loaded from the specified file.

Ping()

Get image information.

@img_info = Image::Magick->Ping(file name)
@img_info = Image::Magick->Ping(file => file handle glob)
@img_info = Image::Magick->Ping(blob => image data)

This method allows the retrieval of some basic information about an image without
having to read in the complete image as an Image::Magick object. This information
can be obtained from a file name, a file handle or from a blob of image data stored in
a scalar. The returned list contains the width, height, size and image format, in that
order. Aliases for this method are ping() and pingimage().

In older versions of Image::Magick, Ping() returns a single comma-separated
string with the above-mentioned information in the same order.

Quantize()

Set the number of colors in an image.

$im->Quantize(colors => integer,
 colorspace => color space,
 treedepth => integer,
 dither => boolean,
 measure_error => boolean,
 global_colormap => boolean)

The Quantize() method sets the number of colors in an image to the number spec-
ified by the colors attribute. If that number is larger than the actual number, and the
color space specified can contain all the current colors, no action is performed. If the
number of colors specified is smaller than the current number of colors, the color
map will be intelligently resized to the new number. The color space is one of RGB,
Gray, Transparent, OHTA, XYZ, YCbCr, YIQ, YPbPr, YUV, or CMYK. If the argument
global_colormap is set to a true value, then all images in the object will share the same
color palette.

If measure_error is set to a true value, then the image’s mean, normalized_max and
normalized_mean attributes will be set to values that can be used to judge how much
information was lost.

METHODS 269

For a more detailed explanation of color quantization as done by Image::Magick,
see the documentation.6 Also see Map().

QueryColor()

Get color information.

@colors = Image::Magick->QueryColor()
@color_info = Image::Magick->QueryColor(color specification)

This method returns a list of all known color names when called with no arguments,
or a list of the red, green, blue and opacity values of the specified color when called
with an argument. See the discussion on “Colors” on page 278 for more information.

QueryFont()

Get font information.

@fonts = Image::Magick->QueryFont()
@font_info = Image::Magick->QueryFont(font specification)

This method returns a list of all known fonts when called with no parameters, and a
list of information about a font when called with a font name or specification. The
returned list in this case contains the following elements: font name, description,
family, style, stretch, weight, encoding, foundry, format, metrics, and glyphs values.

QueryFont() first appeared in Image::Magick version 5.3.7.

QueryFontMetrics()

Get information on the size of a text string.

@text_info = Image::Magick->QueryFontMetrics(parameters)

This method accepts the same parameters as the Annotate() method, and can be
used to obtain information on a string that you want to draw, without actually draw-
ing it. This allows you to make more informed decisions on where to position the
string. QueryFontMetrics() returns a list of the following information about the
string and font used: character width, character height, ascender, descender, text
width, text height and maximum horizontal advance.

QueryFontMetrics() first appeared in Image::Magick version 5.2.6.

Raise()

Create a 3D button edge.

$im->Raise(geometry => geometry,
 raise => boolean)
$im->Raise(width => integer,
 height => integer,

6 ... if you’re on Unix, the manual page quantize(9); otherwise, refer to the HTML documentation.

270 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

 x => integer,
 y => integer,
 raise => boolean)

Create a three-dimensional border that makes the image look like it’s a button. If raise
is true, the image will look raised, otherwise it will look sunken. See Frame() for an
explanation of the other parameters.

Read()

Read one or more images.

$im->Read(file specification)

See the discussion on page 242 for more information. This method is also available as
read() or readimage().

ReduceNoise()

Reduce noise.

$im->ReduceNoise(radius => integer)

Reduce noise in an image with a noise peak elimination filter. Also see AddNoise(),
Enhance() and Despeckle().

Resize()

Resize an image.

$im->Resize(geometry => geometry,
 filter => filter,
 blur => double)
$im->Resize(width => integer,
 height => integer,
 filter => filter,
 blur => double)

Resize an image to the size specified by width and height, or to the more flexible sizing
parameters specified with the geometry parameter (see “Geometry” on page 277).
Optionally apply a filter while doing this. The filter is one of Point, Box, Triangle,
Hermite, Hanning, Hamming, Blackman, Gaussian, Quadratic, Cubic, Catrom,
Mitchell, Lanczos, Bessel, or Sinc. The blur parameter can be larger than 1 for blur,
and smaller than 1 for sharpening. Also see Sample(), Scale(), and
Transform(). In older versions of Image::Magick (before version 5.2.3) this method
was called Zoom().

METHODS 271

Roll()

Roll an image.

$im->Roll(x => integer,
 y => integer)
$im->Roll(geometry => geometry)

Move the pixels of an image, wrapping them around the edge of the image. The
image will be rolled horizontally by the number of pixels specified by x and vertically
by the number of pixels specified by y. The geometry parameter can be used as a short-
cut for x and y.

Rotate()

Rotate an image.

$im->Rotate(degrees => double,
 crop => boolean,
 sharpen => boolean)

Rotate an image clockwise by the amount specified by the degrees argument, option-
ally sharpening the resulting image. If crop is true, the image will be cropped to its
original size, otherwise the resulting size will be as large as is necessary to fit all of the
rotated pixels. Any newly created area in the resulting image will be filled with the
current background color of the image.

Sample()

Resize an image.

$im->Sample(width => integer,
 height => integer)
$im->Sample(geometry => geometry)

Resize an image, using pixel sampling. This method will not introduce any new col-
ors into the resized image. See the discussion of the geometry parameter on page 277
for a description. Also see Scale(), Resize(), and Transform().

Figure A.5

The Roll (a),

Rotate (b) and

Shade (c) filters.

272 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Scale()

Resize an image.

$im->Scale(width => integer,
 height => integer)
$im->Scale(geometry => geometry)

The first version scales the image so that width and height become exactly the speci-
fied number of pixels. If either of the two is unspecified, the current size is used. The
second form uses the full flexibility of the geometry parameter as discussed on
page 277. Also see Sample(), Resize(), and Transform().

Segment()

Segment an image.

$im->Segment(colorspace => color space,
 verbose => boolean,
 cluster => double,
 smooth => double)

Segment an image by analyzing the histograms of the color channels and identifying
units that are homogeneous.

The cluster threshold specifies the minimum number of pixels considered to be a
valid cluster. The smooth parameter controls the amount of noise allowed to exist in the
histogram’s derivatives (default 1.5). The color space is one of RGB, Gray, Transparent,
OHTA, XYZ, YCbCr, YCC, YIQ, YPbPr, YUV, or CMYK. For more information, please
read the documentation for the command line tool convert, section Image Segmentation.

Set()

Set image attribute values.

$im->Set(attribute => value, attribute => value, ...)

Set the value of an image attribute or multiple attributes. Aliases for this method are:
SetAttribute(), SetAttributes(), and the lowercase variants. See section A.4
for a list of attributes and Get().

Figure A.6

The Shear (a) and

Solarize (b) filters.
(a) (b)

METHODS 273

Shade()

Apply a shading filter.

$im->Shade(geometry => geometry,
 color => boolean)
$im->Shade(azimuth => double,
 elevation => double,
 color => boolean)

The image will be taken as a relief map, and shaded as if a distant light were aimed at
it. Under normal circumstances this will result in a grayscale image, but if the param-
eter color has a true value, the resulting image will preserve some of the original color-
ing. The geometry parameter can be used as a shortcut for azimuth and elevation. Also
see Emboss().

Sharpen()

Sharpen an image.

$im->Sharpen(radius => integer)

Apply a convolution kernel to sharpen an image. Also see UnsharpMask() and
Convolve().

Shear()

Shear an image.

$im->Shear(geometry => geometry,
 crop => boolean)
$im->Shear(x => double,
 y => double,
 crop => boolean)

Shear an image along the x or y axis, by the number of degrees specified. If crop is
true, the image will be cropped to its original size; otherwise the resulting size will be
as large as is necessary to fit all of the pixels. Any newly created area in the resulting
image will be filled with the current background color of the image. The geometry
parameter can be used as a shortcut for the x and y parameters.

Signature()

Generate a signature for an image.

$im->Signature()

This method generates a signature for an image which can be used to verify the data
integrity of the image after it has been stored on disk or transported elsewhere. This
signature is stored in the image file, whenever the format allows it. In older versions
of Image::Magick, the signature was an MD5 sum, but in later versions an SHA1-256
signature is generated.

274 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

Solarize()

Solarize an image.

$im->Solarize(factor => percentage)

Apply a solarization filter to an image, which negates all pixels above the specified
threshold. This produces a similar effect to exposing a photographic film to light dur-
ing the development process.

Spread()

Spread pixels in an image.

$im->Spread(amount => integer)

Randomly displace pixels in an image by (up to) the specified amount.

Stereo()

Create a stereographic image from two images.

$im->Stereo(image => image object)

This method takes two images (the image operated on, and the one specified as the
argument), and produces a single stereographic image (stereo anaglyph). The left side
is saved as the red channel and the right side as the green channel. You’ll need the
proper type of stereo glasses to view the image.

Stegano()

Hide one image in another.

$im->Stegano(image => image object,
 offset => integer)

This method invisibly hides (a grayscale version of) the image specified as the argument
in the current image. See “Hiding information in an image” on page 150 for an example.

Swirl()

Swirl an image about the center.

$im->Swirl(degrees => double)

Swirls an image’s pixels about the center by the number of degrees specified.

Figure A.7

The Spread (a),

Swirl (b) and

Wave (c) filters.

METHODS 275

Texture()

Add a texture to an image.

$im->Texture(image => image object)

The image specified will be used as a tile on the background of the current image,
instead of the background color.

Threshold()

Apply a threshold filter.

$im->Threshold(threshold => integer)

This method applies a threshold filter to the image, which results in an image with
only two colors. Any pixel that falls above the threshold value will be set to the high-
est intensity value in the image, and the others will be set to the lowest.

Transform()

Scale or crop an image, applying a sharpening filter.

$new_im = $im->Transform(geometry => geometry,
 crop => geometry,
 filter => filter)

This method scales and crops the image according to the geometry specification (see
page 277). The filter argument indicates an interpolation algorithm, and is one of
Point, Box, Triangle, Hermite, Hanning, Hamming, Blackman, Gaussian, Quadratic,
Cubic, Catrom, Mitchell, Lanczos, Bessel, or Sinc. If filter is unspecified, Lanczos will
be used. Using Transform() instead of Scale() will often yield a better result,
especially when scaling to a larger size. Also see Crop(), Scale(),and Resize().

Transparent()

Make a color transparent in an image.

$im->Transparent(color => color)

This method marks all the pixels that have the specified color as fully transparent.
Also see MatteFloodfill() and Draw() with the matte primitive.

Trim()

Trim edges from an image.

$im->Trim()

A call to this method will remove any background color pixels at the edges of the image.

276 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

UnsharpMask()

Sharpen an image.

$im->UnsharpMask(geometry => geometry,
 amount => double,
 threshold => double)

$im->UnsharpMask(radius => double,
 sigma => double,
 amount => double,
 threshold => double)

Sharpen an image using the unsharp mask algorithm. The geometry parameter is a
shortcut for radius and sigma. Also see Sharpen().

Wave()

Apply a sine wave filter to an image.

$im->Wave(amplitude => double,
 wavelength => double)
$im->Wave(geometry => geometry)

Displace the pixels in an image according to the sine specified by amplitude and
wavelength. The parameter geometry can be specified as a shortcut for amplitude and
wavelength.

Write()

Write an image to disk.

$im->Write(file specification)

Write() takes any arguments that are settable image attributes. See the discussion on
page 244 for more information. Write() can also be called with its lowercase name.

Zoom()

This is an alias for Resize()

$im->Zoom(geometry => geometry,
 filter => filter,
 blur => double)
$im->Zoom(width => integer,
 height => integer,
 filter => filter,
 blur => double)

A.6 COMMON METHOD ARGUMENTS

Many Image::Magick methods take arguments with the same name, and often the
same meaning. This section explains the arguments and values for these arguments,
common to many of these methods.

COMMON METHOD ARGUMENTS 277

Geometry

Many operations on Image::Magick objects take a geometry parameter. Depending on
the operation you are performing, various parts of the geometry specification are
important or useful. For many methods a geometry parameter can be specified that
really has nothing to do with a geometry per se, but is merely a convenient shorthand
for other parameters. We will not discuss that category elaborately here; instead, see
the entries for the various methods for the possible interpretations of this argument.

The geometry specification for Image::Magick is derived from the standard X win-
dows geometry specification, but has some extras beyond that. A full specification can
be found in the documentation for the command-line tool convert:

<width>x<height>{+-}<x offset>{+-}<y offset>{%}{!}{<}{>}

The interpretation of these values specified depends partly on the operation in effect.
The width and height are normally maximum values, and the aspect ratio of the

image will be maintained within these constraints. If only the width is specified, the
height assumes the same value as the width. To scale an image to 300x300 pixels, the
following are equivalent:

$im->Scale(geometry => '300');
$im->Scale(geometry => '300x300');

The x and y offsets should only be specified when needed. For example, to crop a 50
by 35 pixel area at horizontal and vertical offsets of 10 and 20:

$im->Crop(geometry => '50x35+10+20');

The offset parameters normally have the effect you would expect, but in some meth-
ods they take on a slightly different meaning. For example, in the Frame() method
the offset parameters are used to specify the width of the inner and outer bevels on
the border, and the width and height of the geometry string specify the width of the
vertical and the height of the horizontal borders, respectively. To draw a border
around an image, 12 pixels wide on the left and right, 10 pixels on top and bottom,
and with a 3 pixel outer bevel and a 4 pixel inner bevel, the following specification
should be used:

$im->Frame(geometry => "12x10+3+4");

If the current aspect ratio does not need to be preserved, but the size has to become
exactly what is specified, an exclamation mark can be used in the specification:

$im->Scale(geometry => '300x300!');

You can also use relative sizes with the percent sign:

$im->Scale(geometry => '120%');
$im->Scale(geometry => '120%x150%'); # or 120x150%

The left and right angle brackets are conditional operators for the geometry specifica-
tion. If the specification ends in a left angle bracket, the resizing will be done only if the

278 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

current dimensions are less than the ones specified. The right angle bracket means that
resizing only happens when the current dimensions are larger than the specified ones.

resize only if smaller than 320x200
$im->Scale(geometry => '320x200<');

resize only if larger than than 640x480
$im->Scale(geometry => '640x480>');

resize to exactly 800x600, only if currently smaller
$im->Scale(geometry => '800x600<!');

Fonts

Image::Magick can work with various font sources:

• An X font specification. ("-*-times-medium-r-*-*-12-*-*-*-p-*-*-*") when work-
ing on a platform with an X server,

• a path to a TrueType font file, preceded by @. ("@/usr/share/fonts/Arial.ttf") if
the FreeType library has been linked in, or

• a PostScript font name (“Helvetica”). in the presence of Ghostscript.

In the latter two cases the attribute pointsize can be used to control the size of the
characters. To specify a search path for TrueType font files in versions prior to 5.4.3,
you can set the environment variable TTF_FONT_PATH to a colon-separated list of
directories to search. In later versions you can specify a single search directory in the
environment variable MAGICK_FONT_PATH (although this has not always been suc-
cessful for me). In all versions you can specify a search path when compiling
ImageMagick.

Colors

Colors in Image::Magick can be specified in several ways. The first is by using an X11
color name. There is a list of color names compiled in,7 and the local X11 server will be
consulted, or a database on disk will be read if there is no X server available. X11 color
names are more or less standardized, and have names such as red, green, blue, orange,
Blanched Almond, gray74, LavenderBlush2 or burlywood1. To see a full list of the col-
ors your X server knows of, use the showrgb command. For the more exotic colors it is
probably more convenient to use a numerical specification. The special color name
none can be used to set a fully transparent color with RGB values of (0,0,0). To create a
fully transparent canvas on which you may draw, use something akin to the following:

7 There might be some variation in what Image::Magick thinks a color should look like, and what your X
system thinks. For example, the color with the name green is different in version 5.2.6 (0,0.5,0) from the
more common notion (0,1,0), which was also used in version 5.2.5 and before. From version 5.2.6 on-
wards, Image::Magick uses the color names as they are defined by the SVG and HTML specifications, in-
stead of the X specification. To prevent these confusions, it is probably better to specify colors numerically.

COMMON METHOD ARGUMENTS 279

$im = Image::Magick->new(size => '300x200');
$rc = $im->Read('xc:none');
die $rc if $rc;
$rc = $im->Set(matte => 1);
warn $rc if $rc;

The second way to assign a color is by using the same sort of color specification as is
common in HTML: a hash mark followed by a set of hexadecimal numbers; one for
each of the color components. Image::Magick is a bit more flexible than HTML in this
regard. Whereas a color specification in HTML requires three color components to be
specified as a two-character hexadecimal value between 00 and FF, Image::Magick’s col-
ors can be given in the form of any of the following strings:
#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB
#RGBA
#RRGGBBAA
#RRRRGGGGBBBBAAAA

where R, G, and B are placeholders for the red, green and blue components of the
color, given as a hexadecimal value, and A is a placeholder for the opacity (or alpha)
value.8 Image::Magick can be compiled to support 8-bit or 16-bit colors. Whichever
you chose when you installed the package, the color specifications given above will all
be scaled appropriately for the color precision in use.

NOTE When ImageMagick (version 5.4.4) is compiled for 16-bit pixels, the color
RGB values returned for a Get("pixel[x,y]") request are not always
correct, or at least they can be unexpected. For example, if you set the color
to #3c7f2b, you will read out the color #3c3c7f7f2b2b, instead of the
more intuitive #3c007f002b00. However, if you set the color to the
same value above, and then read that value from a pixel that is using 16-bit
pixels (instead of the 8 assumed above), the color returned is the more in-
tuitive one. This behavior is probably a bug, since it is inconsistent, and will
hopefully be fixed in a future release.

A third way in which colors might be specified is with a string of the form rgb(R,G,B)
or rgb(R G B) in which the R, G and B are decimal numbers denoting the compo-
nents of the color. The first three characters (rgb) of the string are case insensitive.

Here are some examples of valid color specifications:

$im->Set(stroke => 'red',
 bordercolor => '#3f4ce5',
 mattecolor => 'rgb(127,12,213)',
 fill => '#e3ff4ce5a34f',
 background => 'RGB(255 255 127)',

8 Note the absence of the string #RRRGGGBBBAAA from the list.

280 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

As a special case, the pixel[x,y] argument to the Set() method accepts a string
of four comma-separated decimal values, to match the output of the Get() method.
This allows one to do the following:

$im1->Set("pixel[$x1,$y1]" => $im2->Get("pixel[$x2,$y2]"));

without having to convert from or to the different formats. A side effect of this is that
you cannot use the rgb(R,G,B) specification as the value to a pixel[x,y] argu-
ment, although you still can use rgb(R G B).

Versions of Image::Magick before 5.2.5 could also return a color name as the result
of $im->Get("pixel[$x,$y]"). This introduces the need to resolve the color name
to a comma-separated string with QueryColor(). If you still have an older version
around, you might like to use this subroutine instead of the direct call to split() in
the above code:

sub IMget_color
{
 my $im = shift;
 my ($x, $y) = @_;
 my $color = $im->Get("pixel[$x,$y]");
 $color = Image::Magick->QueryColor($color)
 unless $color =~ /\d+,\d+,\d+/;
 return split /,/, $color;
}

and call it this way:

my $im = Image::Magick->new();
Time passes ...
my ($r, $g, $b, $o) = IMget_color($im, $x, $y);

String formatting

Some Image::Magick methods accept an argument that requires a string, which can
contain escapes that will be replaced by information about the image before they are
rendered (see, for example, Comment() and the text argument to Annotate()).
The most important escapes are:

• %b—the file size in bytes

• %d—the directory that contains the image

• %e—the file name extension of the image

• %f—the file name of the image

• %w—the image width

• %h—the image height

• %m—the image format (the value of the Magick attribute)

• %s—the scene number of the image

• %t—the file name of the image, without extension.

THE PATH DRAWING PRIMITIVE 281

See the Image::Magick HTML documentation or the manual page for the command
line tool convert for a more complete list.

Gravity

The direction in which an object gravitates. One of NorthWest, North, NorthEast,
West, Center, East, SouthWest, South, or SouthEast. The default is NorthWest.

A.7 THE PATH DRAWING PRIMITIVE

Versions of Image::Magick more recent than 5.2.4 can draw paths, as specified by the
Scalable Vector Graphics format. This section provides a short description of what
these paths are, and how to use them. For an in-depth discussion, please see the on-
line documentation of the SVG format at http://www.w3c.org/Graphics/SVG/ or
Definitive SVG by Kelvin Lawrence, et al. [16].

Paths are built up of a set of simple commands or instructions that draw the outline
of a shape. This is done in the way that turtle programs often work: a pen is moved,
drawing the outline of a shape.

Almost all of the other drawing primitives can be drawn with a path, but it’s prob-
ably best to use the most fitting primitive when appropriate.

A path can be built up from multiple subpaths, each starting with a moveto com-
mand. All commands are expressed as a single character, followed by the coordinates
and other data needed for the particular movement. The notation of a string of com-
mands is fairly free-form, e.g., much of the spacing is optional, embedded new lines
are allowed, and spaces between coordinates can be replaced by a comma. For many
of the commands, multiple coordinate sets can be specified without repeating the
command letter. The following are all valid and equivalent:

M 100,100 L 200,100 L 300,200
M 100 100 L 200 100 L 300 200
M 100 100 L 200 100 300 200
M100,100L200,100L300,200

The reason for this flexibility is that this notation is inherited from the SVG format,
and for that format it is important to save space, and to end up with files as small as
possible. When you specify paths in your Image::Magick programs, you probably
should code for clarity rather than conciseness.

Each command has a version that works with absolute coordinates (expressed as an
uppercase letter) and a version that works with coordinates relative to the current pen
position (expressed as the same letter in lower case). If a relative command is used, the
coordinates can be negative, to indicate a different direction. Positive relative coordinates
move the pen right and downward, while negative coordinates move left and upward.

282 APPENDIX A IMAGE::MAGICK INTRODUCTION & REFERENCE

moveto

This starts a new subpath, and locates the pen at the given coordinates. No line will
be drawn from the current point (if there is one) to the specified coordinates. A path
always starts with a moveto command or an arc command.

M x,y moves to the coordinates specified by x and y; while m x,y moves x pixels to
the right, and y down. If m is the first command, then it is treated as if M were specified.

lineto

Draw a straight line. The end point of the line becomes the new current point.
L x,y and l x,y draw a line from the current point to the point specified by x and

y, or from the current point to the location, x pixels to the right, and y down.
H x and h x draw a horizontal line to the specified x coordinate, or horizontally x

pixels away.
V y and v y draw a vertical line to the specified y coordinate, or vertically y pixels away.

closepath

Close the current path by drawing a line from the current point to the starting point
of the current path. The commands to do this are Z or z, both with the same effect.

bezier curve

Draw a bezier curve. It is possible to draw cubic and quadratic bezier curves in sev-
eral ways.

C x1,y1 x2,y2 x,y and c x1,y1 x2,y2 x,y draw a cubic bezier curve from the current
point to x,y. The coordinates x1,y1 and x2,y2 specify the control points at the current
point and the end point, respectively.

S x2,y2 x,y and s x2,y2 x,y are shorthand for C and c. The coordinates of the first
control point, x1,y1, are assumed to be the reflection of the second control point of
the previous command. If the previous command had no control point, then it is
assumed to be the current point.

Q x1,y1 x,y and q x1,y1 x,y draw a quadratic bezier curve from the current point
to x,y. The control point is specified by x1,y1.

T x,y and t x,y are shorthand for Q and q. The control point of this curve is assumed
to be the reflection of the control point of the previous command. Again, if there is
no previous control point, it is assumed to coincide with the current point.

Figure A.8

A cubic and a quadratic bez-

ier curve, with their control

points. Each curve consists

of two parts, where the sec-

ond part uses the mirrored

control point of the previ-

ous curve.

THE PATH DRAWING PRIMITIVE 283

arc

Draw an arc, part of an ellipse or circle, with the commands A or a. Both these com-
mands take a rather large list of arguments: rx,ry x-axis-rotation large-arc-flag sweep-
flag x,y. The command will draw an arc through the current point and the point
indicated by x,y. The center of the arc will be calculated from the other arguments
given; rx,ry are the radii of the two axes of the ellipse.

x-axis-rotation expresses the number of degrees that the ellipse will be rotated.
large-arc-flag and sweep-flag are used to determine in which direction the arc should

be drawn.
x,y is the second point through which to draw this arc. The first point is the current

location.

If only the current point, the radii and the destination point are given, there are still
(generally) four possible ways to draw an arc. The large-arc-flag and sweep-flag argu-
ments determine which of these four will be chosen. There are four different possibil-
ities because two different ellipses can be drawn, and on these two ellipses, the short
path around can be chosen, or the long one. When the large-arc flag is 1, the larger of
two possible paths will be chosen, and when the sweep flag is 1, the arc is drawn in the
clockwise direction. Figure A.9 shows the effect of these two flags.

Figure A.9

The effect of the large-arc and sweep

flags for the arc commands.

284

A P P E N D I X B

Color space conversion
algorithms
B.1 RGB to HSV 284
B.2 HSV to RGB 285
B.3 RGB to HLS 286
B.4 HLS to RGB 287

 This appendix shows the implementation of various algorithms for the conversion of
colors between some color spaces. For more information on color spaces and their
relation, see section 1.3, “Color spaces and palettes,” on page 7.

B.1 RGB TO HSV

The value component of HSV is defined as max(R,G,B), and saturation is simply
[max(R,G,B) - min(R,G,B)]/max(R,G,B). Both are easy to compute. Where
the conversion becomes nonlinear is the determination of the hue component. Its
computation depends on which of the three RGB components is the largest:

sub max
{
 my $max = shift;
 for (@_) { $max = $_ if $max < $_ }
 return $max
}
sub min

HSV TO RGB 285

{
 my $min = shift;
 for (@_) { $min = $_ if $min > $_ }
 return $min
}

sub rgb_to_hsv
{
 my ($r, $g, $b) = @_;
 my ($h, $s, $v);

 my $max = max($r, $g, $b);
 my $min = min($r, $g, $b);
 $v = $max;
 $s = ($max) ? ($max - $min)/$max : 0;

 return (0, $s, $v) if $s == 0;

 if ($r == $max)
 {
 $h = ($g - $b)/($max - $min);
 }
 elsif ($g == $max)
 {
 $h = 2 + ($b - $r)/($max - $min);
 }
 else # ($b == $max)
 {
 $h = 4 + ($r - $g)/($max - $min);
 }
 $h *= 60;
 $h += 360 if $h < 0;

 return ($h, $s, $v);
}

The last two statements adjust the hue to a value between 0 and 360, so that it is
expressed as degrees on the color circle instead of a number between 0 and 6.

B.2 HSV TO RGB

Conversion back from HSV to RGB may look quite complex but isn’t really that dif-
ficult to follow.

sub hsv_to_rgb
{
 my ($h, $s, $v) = @_;

 return ($v, $v, $v) if $s == 0;

 $h = 0 if $h == 360;
 $h /= 60;
 my $f = $h - int($h);
 my $p = $v * (1 - $s);
 my $q = $v * (1 - $s * $f);

286 APPENDIX B COLOR SPACE CONVERSION ALGORITHMS

 my $t = $v * (1 - $s * (1 - $f));

 for my $sw (int($h))
 {
 ($sw == 0) && return ($v, $t, $p);
 ($sw == 1) && return ($q, $v, $p);
 ($sw == 2) && return ($p, $v, $t);
 ($sw == 3) && return ($p, $q, $v);
 ($sw == 4) && return ($t, $p, $v);
 ($sw == 5) && return ($v, $p, $q);
 }
}

As a first shortcut, we can safely return a grayscale point if the saturation is 0. If it
isn’t, the hue is recalculated (from degrees) to indicate into which of the six 60 degree
arcs of the color circle the color falls. Then $f (for fraction) is calculated, which
expresses the position of the color inside this particular arc, and int($h) tells us
which of the six arcs is involved. Three values are calculated that can be used to
express parts of the coordinates in RGB space. To determine which part they repre-
sent, we need to know which of the six arcs the color falls in. The for statement
takes care of that.

B.3 RGB TO HLS

Conversion of RGB to HLS is similar, but not entirely identical to conversion to HSV
space.

sub rgb_to_hls
{
 my ($r, $g, $b) = @_;
 my ($h, $l, $s);

 my $max = max($r, $g, $b);
 my $min = min($r, $g, $b);
 $l = ($max + $min)/2;

 return (0, $l, 0) if ($max == $min);

 $s = ($l < 0.5) ?
 ($max - $min)/($max + $min) :
 ($max - $min)/(2 - $max - $min);

 if ($r == $max)
 {
 $h = ($g - $b)/($max - $min);
 }
 elsif ($g == $max)
 {
 $h = 2 + ($b - $r)/($max - $min);
 }
 else # ($b == $max)
 {

HLS TO RGB 287

 $h = 4 + ($r - $g)/($max - $min);
 }
 $h *= 60;
 $h += 360 if $h < 0;

 return ($h, $l, $s);
}

Lightness is defined as [max(R,G,B) + min(R,G,B)]/2, and is calculated first,
closely followed by the calculation of the saturation, which in this color model
depends on the value of the lightness. The calculation of hue is identical to the RGB
to HSV conversion method.

B.4 HLS TO RGB

The conversion back to RGB can be implemented with the following two subroutines:

sub hls_value
{
 my ($q1, $q2, $h) = @_;

 $h -= 360 if ($h > 360);
 $h += 360 if ($h < 0);

 ($h < 60) && return $q1 + ($q2 - $q1) * $h/60;
 ($h < 180) && return $q2;
 ($h < 240) && return $q1 + ($q2 - $q1) * (240 - $h)/60;
 return $q1;
}

sub hls_to_rgb
{
 my ($h, $l, $s) = @_;
 my ($p1, $p2);

 return ($l, $l, $l) if $s == 0;

 $p2 = ($l < 0.5) ?
 $l * (1 + $s) :
 $l + $s - ($l * $s);
 $p1 = 2 * $l - $p2;

 return (hls_value($p1, $p2, $h + 120),
 hls_value($p1, $p2, $h),
 hls_value($p1, $p2, $h - 120));
}

288

A P P E N D I X C

Module code

C.1 Canvas::Polar::SVG 288
C.2 Canvas::Polar::PostScript 290

This appendix contains example module code that was referred to, but not covered,
in chapter 10.

C.1 CANVAS::POLAR::SVG

Canvas::Polar::SVG is a driver for the Scalable Vector Graphics format (SVG, see
http://www.w3.org/Graphics/SVG/).

package Canvas::Polar::SVG;
use XML::Grove;
use XML::Grove::AsCanonXML;
use Coordinate;
use strict;

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my ($width, $height, $bgcolor) = @_;

 my $self = {};
 $self->{canvas} = XML::Grove::Element->new(
 Name => 'svg',

CANVAS::POLAR::SVG 289

 Attributes => {width => $width,
 height => $height});

 bless $self, $class;
}

sub line
{
 my $self = shift;
 my ($r1, $r2, $angle, $color, $width) = @_;
 my ($x1, $y1) = map int, polar2cart($r1, $angle);
 my ($x2, $y2) = map int, polar2cart($r2, $angle);

 my $style = "stroke:$color";
 $style .= "; stroke-width:$width" if $width;

 push @{$self->{canvas}->{Contents}},
 XML::Grove::Element->new(
 Name => 'line',
 Attributes => {x1 => $x1, y1 => $y1,
 x2 => $x2, y2 => $y2,
 style => $style}
);
}

sub fill_circle
{
 my $self = shift;
 my ($radius, $color) = @_;
 my ($cx, $cy) = get_origin();

 push @{$self->{canvas}->{Contents}},
 XML::Grove::Element->new(
 Name => 'circle',
 Attributes => {r => $radius,
 cx => $cx,
 cy => $cy,
 style => "fill:$color;stroke:$color"}
);
}

sub svg
{
 my $self = shift;
 $self->{canvas}->as_canon_xml;
}
1;

The module creates an SVG fragment that can either be used stand-alone, or as part
of a larger SVG document. The program that produced figure C.1a is:

use Clock;
use Canvas::Polar::SVG;

my $canvas = Canvas::Polar::SVG->new(121, 121, '#ffffff');

290 APPENDIX C MODULE CODE

my $clock = Clock->new(
 radius => 60,
 hand_color => '#000000',
 face_color => '#dfdfdf',
 marker_color => '#00007f',
 center_color => '#ff0000',
);
$clock->draw($canvas, 60, 60);

open(OUT, ">SVGclock.svg") or die $!;
print OUT $canvas->svg;
close(OUT);

Now all you need to do is to find a good rendering engine for SVG, and you can
enjoy the way it looks. The clock in figure C.1(a) was rendered by Image::Magick to
an image. It would look a lot better if it was rendered at much higher resolution.

C.2 CANVAS::POLAR::POSTSCRIPT

This section shows a driver module for the clock examples of chapter 10.

package Canvas::Polar::PostScript;
use Coordinate;
use strict;

my $RES = 1.0;

sub new
{
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my ($width, $height, $bgcolor) = @_;
 my $self = { res => $RES, canvas => "" };
 bless $self, $class;
}

sub set_resolution
{
 my $proto = shift;
 my $res = shift or return;
 (ref $proto ? $proto->{res} : $RES) = $res;
}

sub _add_commands
{

Figure C.1

The clock from section 10.2, drawn

with the Canvas::Polar::SVG and

Canvas::Polar::PostScript modules.(a) (b)

CANVAS::POLAR::POSTSCRIPT 291

 my $self = shift;
 local $" = "\n";
 $self->{canvas} .= "@_\n";
}

sub _ps_color
{
 my @rgb = map {hex($_)/255}
 unpack "x a2 a2 a2", shift;
 wantarray ? @rgb : join(' ', @rgb);
}

sub line
{
 my $self = shift;
 my ($r1, $r2, $angle, $color, $width) = @_;
 my ($x1, $y1) =
 map int, polar2cart($r1, 2 * PI - $angle);
 my ($x2, $y2) =
 map int, polar2cart($r2, 2 * PI - $angle);

 $self->_add_commands(
 "$x1 $y1 moveto",
 "$x2 $y2 lineto",
 "currentlinewidth",
 ($width ? "$width setlinewidth" : ()),
 _ps_color($color) . " setrgbcolor",
 "stroke",
 "setlinewidth",
);
}

sub fill_circle
{
 my $self = shift;
 my ($radius, $color) = @_;
 my ($xc, $yc) = get_origin();

 $self->_add_commands(
 "$xc $yc $radius 0 360 arc",
 _ps_color($color) . " setrgbcolor",
 "fill",
);
}

sub postscript
{
 my $self = shift;
 my $x = shift || 0;
 my $y = shift || 0;
 return <<EOPS;
gsave
$self->{res} $self->{res} scale
$x $y translate

292 APPENDIX C MODULE CODE

$self->{canvas}
grestore
EOPS
}

1;

The module exports a PostScript fragment that should be included in another docu-
ment, or encapsulated. The program that produced figure C.1b just creates an encap-
sulated PostScript file from the output of Canvas::Polar::PostScript by adding the
appropriate header and trailer information:

use Clock;
use Canvas::Polar::PostScript;

my $canvas = Canvas::Polar::PostScript->new(121, 121, '#ffffff');

my $clock = Clock->new(
 radius => 60,
 hand_color => '#000000',
 face_color => '#dfdfdf',
 marker_color => '#00007f',

 center_color => '#ff0000',
);
 $clock->draw($canvas, 60, 60);

my $c_date = localtime;

open(OUT, ">PSclock.eps") or die $!;
print OUT <<EOPSH;
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 120 120
%%Creator: ($0)
%%Title: (PSclock.eps)
%%CreationDate: ($c_date)
%%LanguageLevel: 2
%%EndComments

@{[$canvas->postscript]}

%%Trailer
%%EOF
EOPSH
close(OUT);

The PostScript output of this module is quite naive, and doesn’t make use of the full
functionality of PostScript. If this module were destined to be taken up in production,
it would probably have a class method that would generate PostScript for the prologue
defining a few named procedures that map exactly to the objects that you need to
draw. Then, when the time comes to draw them, all you need to do is print the param-
eters, and the name of the defined procedure. This makes the module slightly easier to
read, but more importantly, it makes your PostScript file much smaller.

293

references

[1] Shawn P. Wallace. Programming Web Graphics with Perl and GNU Software. O'Reilly &
Associates, Inc., first edition, March 1999.

[2] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O'Reilly &
Associates, Inc., third edition, July 2000.

[3] Andrew L. Johnson. Elements of Programming with Perl. Manning Publications Co.,
October 1999.

[4] Randal L. Schwartz and Tom Christiansen. Learning Perl. O'Reilly & Associates, Inc.,
second edition, July 1997.

[5] Ray Kurzweil. The Age of Spiritual Machines. Penguin USA, January 2000.

[6] David Bourgin. The color space FAQ. http://www.neuro.sfc.keio.ac.jp/~aly/
polygon/info/color-space-faq.html or news:comp.graphics.

[7] Charles Poynton. The color FAQ. http://www.inforamp.net/~poynton/
ColorFAQ.html.

[8] CICA graphics list image file formats. http://www.cica.indiana.edu/graphics/
image.formats.html.

[9] NCSA FTP directory of graphics formats. ftp://ftp.ncsa.uiuc.edu/misc/file.formats/
graphics.formats/.

[10] Computer graphics on the net. http://ls7-www.cs.uni-dortmund.de/html/englisch/
servers.html/.

[11] James D. Murray. The graphics file format FAQ. http://www.dcs.ed.ac.uk/~mxr/gfx/
faqs/FileFormats.faq.

[12] Martin Reddy. The graphics file format page. http://www.dcs.ed.ac.uk/~mxr/gfx/.

[13] Paul Oliver. The programmer's file format collection. http://www.wotsit.org/.

[14] Greg Roelofs. PNG (Portable Network Graphics) home site. http://www.cdrom.com/
pub/png/.

294 REFERENCES

[15] Greg Roelofs and Glenn Randers-Pehrson. MNG (Multi-image Network Graphics)
home page. http://www.cdrom.com/pub/mng/.

[16] Kelvin Lawrence, Philip Mansfield and Darryl Fuller. Definitive SVG. Manning
Publications Co., to be published Winter 2002.

[17] John Cristy. The ImageMagick home page. http://www.imagemagick.org/.

[18] The Gnuplot home page. http://www.cs.dartmouth.edu/gnuplot_info.html.

[19] Peter Mattis and Spencer Kimball. The GIMP home page. http://www.gimp.org/.

[20] Tim Pearson. Pgplot graphics subroutine library. http://astro.caltech.edu/~tjp/pgplot/.

[21] Adobe Systems Incorporated. PostScript(R) Language Reference. Addison-Wesley
Publishing Company, third edition, February 1999.

[22] World Wide Web Consortium. W3C scalable vector graphics (SVG). http://
www.w3.org/Graphics/SVG/.

[23] Carey Bunks. Grokking the Gimp. New Riders Publishing, first edition, February 2000.
Also see http://gimp-savvy.com/.

[24] Mark Segal and Kurt Akeley. The OpenGL specification 1.2. ftp://ftp.sgi.com/opengl/
doc/opengl1.2/opengl1.2.1.pdf.

[25] “The OpenGL API specifications.” http://www.opengl.org/developers/
documentation/specs.html.

[26] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL programming guide;
The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Publishing
Company, third edition, August 1999.

[27] Dave Shreiner(Editor) and Opengl Architecture Review Board. OpenGL reference
manual; The Official Reference Document to OpenGL, Version 1.2. Addison-Wesley
Publishing Company, third edition, December 1999.

[28] Steve Upstill. The RenderMan Companion. Addison-Wesley Publishing Company,
July 1989.

[29] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: Creating CGI for Motion
Pictures. Morgan Kaufmann Publishers, December 1999.

[30] “The RenderMan interface specification.” http://www.pixar.com/products/
renderman/toolkit/RISpec/.

[31] “The RenderMan FAQ.” http://www.faqs.org/faqs/graphics/renderman-faq/.

[32] Damian Conway. Object Oriented Perl. Manning Publications Co., August 1999.

[33] Simon Cozens and Tim Jenness. Extending and Embedding Perl.
Manning Publications Co., July 2002.

[34] Tom Christiansen and Nathan Torkington. Perl Cookbook. O'Reilly & Associates, Inc.,
first (minor corrections) edition, September 1998.

295

index

Symbols

__DATA__ token 220, 234

Numerics

3D graphics 153
3D rendering 33

A

ActivePerl
installing modules 28

AddNoise() 251
Adobe Photoshop 24
Adobe Systems Incorporated 19
Albanowski, Kenneth 32
aligning text 194

with GD 194
with Image::Magick 196

alpha channel 219, 229
mask 149, 231
replacing 230

Animate() 251
Annotate() 252
Anopheles

freeborni 61
quadrimaculatus 61

anti-alias and fuzz 47
Apache 91–92
Append() 252
applications

data flow 107
designing 107

arc 283
astronomers 32, 76
astronomic charts 76
Average() 252
AVI 122

B

bar and area charts 68–70
bezier curve 282
BlobToImage() 253
Blue Moon Rendering Tools 33,

165
Blue Moon Rendering Tools. See

also BMRT xix
Blur() 253
BMP 24
BMRT xix, 33, 165–166

rendrib 166
rgl 166
version used in this book 33

Bonds, Steve 63
Bonner, David 29, 74
Border() 253
Boutell, Thomas 29, 40, 63
brightness 13
business charts 61, 63, 89

C

C in Perl 234
canvas 6

Canvas::Polar 182
GD 95, 183
ImageMagick 182
PostScript 290
SVG 288–290

capturing OpenGL
output 157–160
windows 157

CGI 90–91, 95–96
CGI::Fast 91
CGI::Lite 91
CGM 24
Channel() 253
Charcoal() 253
chart modules 29
Chart::* modules 29
Chart::PNGgraph 30

plot() 67
plot_to_png() 67

charts 61
area 68–70
bar 68–70
business 61, 89
contour plot 81–83
cumulative 69
design 65
dynamic 62, 96
lines 70
Lines, Points and

LinesPoints 70
mixed 72–74

296 INDEX

charts (continued)
Pareto 75
points 70
saving to file 66–67
scatter 70
scientific 61, 89
selecting a module 61

choosing a charting module 61
Chop() 254
Clark, Peter 29, 74
class 176
CLI xv
clock 95, 176, 188

GD 179
Image::Magick 178
PostScript 290–292
SVG 288

Clone() 256
closepath 282
CMY 8

and CMYK 8
to RGB 8

CMYK 8, 24, 247
to RGB 9

Coalesce() 254
color 278–280

brightness 13
duplicating 212
hue 9
lightness 11, 13
luminance 12–13
saturation 10
value 11
value (HSV) 13

color conversion
CMY to RGB 8
CMYK to RGB 9
HLS to RGB 9, 287
HSV to RGB 9, 285
RGB to CMY 8
RGB to CMYK 9
RGB to grayscale 13
RGB to HLS 9, 286
RGB to HSV 9, 284
RGB to YCbCr 12

RGB to YIQ 12
RGB to YUV 12
YCbCr to RGB 12
YIQ to RGB 12
YUV to RGB 12

color distance 13
color palette 13, 92

web-safe 14
color reduction 17
color space 7

CMY 8
CMYK 8, 247
coordinates 8
grayscale 13, 247
HLS 9
HSV 9
indexed colors 13
RGB 7, 247
RGBA 247
YCbCr 12, 247
YIQ 12, 247
YPbPr 247
YUV 12, 247

ColorFloodfill() 254
Colorize() 254
colors

reducing number of 13–14
combining GD images 140
combining Image::Magick

images 142–145
Comment() 255
Common 276
Composite() 255
Compuserve 17
computer games 154
computer graphics

color 7
contact sheets 103–104
contact sheets with

Montage() 104–105
contour plot 81
Contrast() 255
convolution 215

edge effects 216, 222
kernel normalization 217

convolution kernel 215–216
convolution with

Image::Magick 217
convolution with PDL 226–229
Convolve() 256
coordinate

transformation 180–181
Copy() 256
CPAN 28
Cristy, John 31
Crop() 256
cropping images 140
cumulative charts 69
cumulative effects 69–70
CycleColorMap() 256

D

Darwin 72
data

designing 107–108
flow 107

DATA file handle 220, 234
data sets

preparing for GD::Graph 63
DBI 64
Deconstruct() 257
designing applications and data

flow 107
designing data 107–108
Despeckle() 257
Display() 257
distance in color space 13
do it yourself 22–23
Draw() 257
drawing 46–47
drawing by combining

images 48–50
drawing primitives 38

choosing 181–182
drawing text with GD 43–44
drawing text with

Image::Magick 51–52
drawing tools 6
drawing with paths 50–51
drawing, example 40–42

INDEX 297

duct tape 5
duplicating colors 212
dynamic charts 62, 96

E

Edge() 261
effects

cumulative 69–70
El Niño 72
elements in graphics

programming 5
Emboss() 261
Enhance() 262
EPS 24
Equalize() 262
Example 167
Exluna Inc. xix, 33

F

file signature 25
filling objects 42–43
Flip() 262
Flop() 262
Font::TTF 191
fonts 278

GD 46
GD built-in 44–45
GD::Graph 65–66
Image::Magick 51–52

FORTRAN 32
frame of reference 6
Frame() 262
free images xix

G

galaxy plot 84
Gamma() 262
GaussianBlur() 263
GD 29–30, 63

arc() 40, 42
built-in fonts 44
char() 44
charUp() 44
color table cleanup 213

colorAllocate() 40, 42, 44,
53, 93

colorClosest() 53, 94
colorDeallocate() 42
colorResolve() 42
combining with

Image::Magick 53–55
copy() 140
copyMerge() 140, 145
copyMergeGray() 141
copyResized() 141
detecting supported output

formats 67
fill() 42
filledPolygon() 40
filledRectangle() 40, 53
filling objects 42
fillToBorder() 40, 42
gd() 66
gd2() 66
getBounds() 53, 145–146
getPixel() 211–212
gif() 66
jpeg() 66
line() 40, 42
new() 40, 44, 53, 145
newFromPng() 42
number of colors 212
png() 40, 42, 53, 66, 145
polygon() 40
rectangle() 40, 53
rgb() 211
setPixel() 211–212
string() 44
stringTTF() 45, 53, 199
stringUp() 44
thumbnailing 102
transparent() 230
TrueType fonts 45
version used in this book 30
watermarking 145
wbmp() 66
web safe colors 93

GD::Font 65
height() 45

nchars() 45
offset() 45
width() 45

GD::Graph 30, 62, 74, 96, 132
area charts 68
bar charts 68
data sets 63
determining output

formats 67
export_format() 67
FONT_PATH 65
fonts 65–66, 68
gd() 66
get() 65
line charts 70
markers 71
mixed charts 72
multiple data sets 68
new() 70–71, 73
plot() 66, 68
point charts 70
saving output 66
set() 65, 68, 70–71, 73
set_label_font() 65
set_legend() 70–71, 73
set_legend_font() 65
set_title_font() 65, 68
set_value_font() 65
set_x_axis_font() 65, 68
set_x_label_font() 65
set_y_axis_font() 65, 68
set_y_label_font() 65
version used in book 30

GD::Graph and fonts 65–66
GD::Graph::area 70
GD::Graph::bars 68
GD::Graph::Data 63, 73, 96,

132, 134
add_point() 64, 70, 73
new() 64, 70, 73

GD::Graph::linespoints 71
GD::Graph::mixed 73
GD::Graph::pie 132, 134, 136
GD::Image object

incorporating 183

298 INDEX

GD::Polygon 40
addpt() 40
new() 40

GD::Text 30, 65, 207
FONT_PATH 65
version used in this book 30

GD::Text modules 207
GD::Text::Align 30
GD::Text::Wrap 30
GD’s built-in fonts 44
geometry 277–278

Image::Magick 139, 277
Get() 263
Getopt::Long 167

GetOptions() 101–102, 145,
147, 217, 224, 226

Ghostscript 132, 278, 304
GIF 17, 24, 29, 67, 92,

122–124, 229
animation 125

GIFgraph 30, 62, 74
plot() 67
plot_to_gif() 67

Gimp 17, 22, 30, 134
add_layer() 136
edit_copy() 136
edit_paste() 136
file format 23
file_png_load() 136
floating_sel_anchor() 136
get_active_layer() 136
register 134
selection_all() 136
selection_none() 136
XCF 23

Gimp XCF format 23–24
Gimp::Fu 30, 134
Gimp::Image 136
Gimp::Layer 136
Glazebrook, Karl 32, 76
glue 4
gnuplot 10, 29, 55, 85–89

version used in this book 29
Google xix
gradient 26

graphics formats 16
Graphics Interchange Format.

See GIF
graphics manipulation

cause of growth 3
color 7
programming components 5

graphics objects 6
graphs 61

business 61, 89
cumulative 69
dynamic 62, 96
lines 70
points 70
scatter 70
scientific 61, 89
selecting a module 61

gravity 281
grayscale 12
Gritz, Larry xix, 33
growth in graphics

manipulation 3
GUI xv, 3

H

hiding information in image 150
HLS 9

from RGB 286
to RGB 9, 287

HSV 9
from RGB 284
to RGB 9, 285

HTML 24, 91
HTTP 91
HTTP and CGI 91
hue 9, 284–285, 287

I

IETF 19
Image 139
image

adding watermarks 145–151
image deformation methods 140
image formats 16
image size 20

Image::Magick 21, 30, 63, 158,
164, 217, 241
AddNoise() 251
Animate() 129, 251
Annotate() 52, 131, 252
anti-alias 46–47
Append() 252
attributes 246, 250
Average() 252
bezier curves 260, 282
BlobToImage() 53, 132,

158, 243, 253
Blur() 127, 253
Border() 253
Channel() 245, 253
Charcoal() 253
Chop() 254
Clone() 127, 129, 131, 148,

224, 256
Coalesce() 131, 254
color reduction 94, 268
ColorFloodfill() 254
Colorize() 129, 224, 254
colors 278
Comment() 255
Composite() 48–49, 142,

148–149, 219, 224, 231,
233, 255

Contrast() 255
Convolve() 224, 256
Copy() 256
Crop() 256
CycleColorMap() 256
Deconstruct() 257
Despeckle() 257
Display() 233, 257
Draw() 46, 48–49, 51–52,

230, 257
Edge() 261
Emboss() 261
Enhance() 262
Equalize() 262
error handling 243
file formats 25
Flip() 262

INDEX 299

Image::Magick (continued)
Flop() 262
fonts 51, 278
Frame() 262
fuzz 46–47
Gamma() 262
GaussianBlur() 263
geometry 139, 277
Get() 129, 148, 222, 263
gradient 26
gravity 281
ImageToBlob() 53, 245, 263
Implode() 263
interface changes 31, 242,

245
internal formats 25
Label() 264
Layer() 148, 219, 230, 245,

264
Magnify() 139, 264
Map() 14, 94, 264
MatteFloodfill() 230, 264
MedianFilter() 265
Minify() 139, 265
Modulate() 127, 265
Mogrify() 265
MogrifyRegion() 265
Montage() 104, 266
Morph() 267
Negate() 267
new() 46, 48–49, 51, 53, 94,

104, 147–148, 218, 224
Normalize() 267
OilPaint() 267
opacity 214
Opaque() 267
path 50–51, 260, 281
Ping() 21, 268
pixel[x,y] 222
Profile() 268
Quantize() 53–54, 127, 130,

213, 231, 268
QueryColor() 215, 269
Raise() 269
Read() 25, 46, 48–49,

51–52, 94, 127, 147, 218,
224, 243, 270

ReduceNoise() 270
ReplaceMatte() 231
Resize() 129, 270
retrieving RGB data 235
Roll() 271
Rotate() 26, 271
Sample() 139, 271
Scale() 139, 272
Segment() 272
Set() 25, 46, 51, 127, 129,

218, 272
Shade() 148, 273
Sharpen() 273
Shear() 273
Signature() 273
Solarize() 274
Spread() 127, 274
Stegano() 150, 274
Stereo() 274
string formatting 280
Swirl() 274
Texture() 275
Threshold() 275
thumbnailing 101
to GD 53
Transform() 139, 275
transparency 230
Transparent() 48, 131, 230,

275
Trim() 275
UnsharpMask() 276
version used in this book 31,

242
visual directory 103
watermarking 147
Wave() 53, 276
web safe colors 94
Write() 25, 46, 51, 104, 127,

149–150, 219, 224, 245,
276

Zoom() 139, 276
Image::Size 20, 31

attr_imgsize() 21

html_imgsize() 21
imgsize() 20
version used in this book 31

images
combining 140, 142–151
combining GD 140
cropping 140
free xix
hiding information in 150
viewing transparent 233

ImageToBlob() 263
implementing interface 182–186
Implode() 263
indexed color 13
information on graphics file

formats 17
Ingerson, Brian 32, 234
inheriting from

Image::Magick 182
Inline 31, 234
Inline::C 32, 234–238
integrating C and Perl 234
interface

implementing 182–186
Internet Engineering Task

Force 19

J

JFIF 18
Joint Photographics Experts

Group. See JPEG
JPEG 17–18, 24, 29, 92
JPEG File Interchange

Format 18
JPEG, JFIF 18
Jurassic Park 153

K

kernel normalization 217
Knowles, Alex 31

L

Label() 264
Layer() 264
lightness 13, 287

300 INDEX

line charts 70
lineto 282
Linux 304
lossless file formats 17
lossy file formats 17
luminance 12–13
LZW compression 18–19, 247

M

M51 xix, 84
MacPerl 28
Macromedia Flash 124
Magnify() 264
malaria 61
managing graphics files 15
Map() 264
masking a channel 149, 231
matrix algebra 154
matte channel 229
MatteFloodfill() 264
Maxine xix, 105, 147, 151
MedianFilter() 265
Mesa 3D 32, 154

version used in this book 32
Microsoft

Internet Explorer 93, 124
MIFF 24
Minify() 265
mixed charts 72
MNG 19, 24, 92, 124
mod_perl 90–91
Modulate() 265
module 175
Mogrify() and

MogrifyRegion() 265
montage 104
Montage() 266

contact sheets 104–105
Morph() 267
mosquito 61
moveto 282
MPEG 122
multiple images per file 17

N

Negate() 267
nematode worm 75
Netscape 125, 248

color palette 14, 264
Navigator 93, 124, 126

Normalize() 267
number crunching 4

O

objects
filling 42–43
making them appear 127
zooming in 129–131

OilPaint() 267
opacity 229
Opaque() 267
OpenGL 32, 154, 164

a planetary system 160–164
capturing a window 157
GL_CLIENT_PIXEL_STORE_

BIT 158
GL_COLOR_BUFFER_BIT 1

59, 162
GL_DEPTH_BUFFER_BIT 1

62
GL_DEPTH_TEST 161
GL_FRONT 161
GL_LEQUAL 161
GL_LIGHT0 161
GL_LIGHTING 161
GL_MODELVIEW 162
GL_PACK_ALIGNMENT

158
GL_PACK_ROW_LENGTH

158
GL_POSITION 161
GL_PROJECTION 162
GL_RGBA 158
GL_SHININESS 161
GL_SMOOTH 161
GL_SPECULAR 161
GL_TRIANGLES 159
GL_UNSIGNED_BYTE 158

GL_VIEWPORT 158
glBegin() 159
glClear() 159, 162
glClearColor() 159, 161
glColor3f() 159, 162
glEnable() 161
glEnd() 159
glFinish() 158
glGetIntegerv() 155, 158
glLightfv() 161
glLoadIdentity() 159, 162
glMaterialfv() 161
glMatrixMode() 162
glOpenWindow() 159
glPixelStore() 158
glPopClientAttrib() 158
glPopMatrix() 162
glPushClientAttrib() 158
glPushMatrix() 162
glReadPixels() 156, 158
glRotatef() 162
glShadeModel() 161
glTranslatef() 162
GLU library 155
gluOrtho2D() 159
gluPerspective() 162
GLUT library 155
GLUT_DEPTH 160
GLUT_KEY_DOWN 163
GLUT_KEY_LEFT 163
GLUT_KEY_RIGHT 163
GLUT_KEY_UP 163
GLUT_RGBA 160
GLUT_SINGLE 160
glutCreateWindow() 160
glutDisplayFunc() 160
glutInitDisplayMode() 160
glutInitWindowPosition()

160
glutInitWindowSize() 160
glutKeyboardFunc() 160
glutMainLoop() 160
glutPostRedisplay() 163
glutReshapeFunc() 160
glutSolidSphere() 162

INDEX 301

OpenGL (continued)
glutSpecialFunc() 160
glVertex2f() 159
glViewport() 162
GLX library 155
import tags 157
version used in this book 32

OpenGL library functions in
Perl 155

OpenGL output
capturing 157–160

P

Pareto charts 75
Pareto, Vilfredo 75
parsing XML 108
PATH_INFO 98
paths

drawing 50–51
PBM 24
PDL 76, 226

clip() 226
conv2d() 226
convert() 226
convolution 226
dims() 226
slice() 226

PDL::Image2D 226
PDL::IO::Pic 226

rpic() 226
Pearson, Tim 32, 76
Perl interface to C libraries 5
PerlTk xv
PGPLOT xix, 32, 76, 85

bitmap display 84
contour plot 81, 84
device specification 76
labeling axes 85
markers 76
pgarro() 81
pgbeg() 78
pgbox() 79
pgclos() 81, 83–84
pgconl() 83
pgcons() 84

pgcont() 82
pgend() 81
pgenv() 78–79, 82
pgerry() 79
pgfunx() 80
pggray() 84–85
pglabel() 84
pgopen() 77–78, 82, 84
pgpt() or pgpoint() 79
pgptxt() 81
pgsch() 78, 82
pgslw() 78, 82–84
pgswin() 79
pgtbox() 84
pgwedg() 84
pgwnad() 84
plotting a galaxy 84
simple X-Y plot 77–81
version used in this book 33
viewport coordinates 79
world coordinates 79
XY plot 78

PGPLOT devices 76
photo album 105

web 105–106
photorealistic rendering 153
Photoshop 17, 24, 30
Picture class 116–120
Picture::Index class 111
Picture::List class 114
pie chart

animated 132, 134
Ping() 268
Pixar Animation Studios 33,

165
pixel

replacing alpha value 232
pixel manipulation 210
pixel sampling 139
plots 61

dynamic 62, 96
selecting a module 61

plotting a galaxy 84
PNG 18, 22, 24, 29, 54, 67, 92
png_size() 22

PNGgraph 62, 74
point charts 70
Portable Network Graphics. See

PNG
PostScript 58–59, 77–78, 186,

290
fonts 51, 55, 132, 248, 278

ppm 28
preparing data sets for

GD::Graph 63
primary colors 7
Profile() 268

Q

Quantize() 268
QueryColor() 269
QuickTime 122

R

Raise() 269
Ray, Randy 31
Read() 270
read-only attributes 249
read-write attributes 246
ReduceNoise() 270
reducing number of

colors 13–14
removing duplicate colors 212
rendering

photorealistic 153
RenderMan 33, 164

AttributeBegin() 169
AttributeEnd() 169
Begin() 166, 168
Color() 169
creating a cube 170
Display() 168
End() 168
Format() 168
FrameBegin() 168
FrameEnd() 168
Imager() 168
language binding 166–167
LightSource() 168

302 INDEX

RenderMan (continued)
Polygon() 170
Projection() 168
RI_FRAMEBUFFER 168
RI_RGBA 168
Rotate() 168
Scale() 169–170
ShadingRate() 168
Sphere() 169
Surface() 168
TransformBegin() 169–170
TransformEnd() 169–170
Translate() 168–169
version used in this book 33
WorldBegin() 168
WorldEnd() 168

RenderMan and the BMRT 165
replacing alpha channel 230
replacing alpha value per pixel 232
representing data visually 61
Resize() 270
RGB 7, 247

coordinates 8
from HLS 287
from HSV 285
retrieving image data 235
RGB cube 8
to CMY 8
to CMYK 9
to grayscale 13
to HLS 9, 286
to HSV 9, 284
to YCbCr 12
to YIQ 12
to YUV 12

RGB data
retrieving 235

RGB values
rotating 211–212

RGBA 247
RIB 166
Roll() 271
Rotate() 271
rotating RGB values 211–212,

214

S

Sample() 271
saturation 10, 284, 286–287
scalability of graphics 16
Scale() 272
scaling 139
scatter graphs 70
Schroeder, Hassan 4
scientific graphs 61, 89
SDL::sdlpl 155
Segment() 272
Seitner, Patrick xix, 84
selecting a charting module 61
Set() 272
Shade() 273
Sharpen() 273
Shear() 273
Shrek 153
Signature() 273
Silicon Graphics

Incorporated 32, 154
simple X-Y plot 77–81
Solaris 304
Solarize() 274
Southern Oscillation Index 61,

72, 96
Spread() 274
STDOUT 150
Stegano() 274
steganography 150
Stein, Lincoln 29, 40, 63, 90, 92
Stereo() 274
string formatting 280
SVG 19, 50, 58–59, 125, 186,

281, 288
SWIG 234
Swirl() 274
Sydney, Australia 73

T

Tag Image File Format. See TIFF
Tahiti 72
Term::Gnuplot 33, 55

change_term() 55

justify_text() 56
linetype() 56, 58
linewidth() 56
move() 56, 58
plot_outfile_set() 55
put_text() 56
reset() 55
set_options() 55
term_end_plot() 55
term_init() 55
term_start_plot() 55
vector() 56, 58
version used in this book 33

text
alignment 194
drawing 51–52
drawing with GD 43–44
size 191
wrapping 197, 207–209

text sizes in GD 191
text sizes in Image::Magick 192
Texture() 275
TGA 24
Threshold() 275
thumbnailing 100, 103–104

GD 102–103
Image::Magick 101

thumbnails
Image::Magick 101

TIFF 17, 19, 24
Tong, Andrew 31
Toy Story 153
Transform() 275
transformation, coordinates 180
transparency 126, 229

GD module 229–230
Image::Magick 230

transparent images
viewing 233

Transparent() 275
trigonometry 154
Trim() 275
TrueType 45, 51, 65, 132, 192,

204, 207, 248, 278
TrueType fonts and GD 45

INDEX 303

U

Unisys 18
UNIVERSAL::can() 67
Unix 28, 30
unpack 23, 85
UnsharpMask() 276
Using 224
using a mask as alpha

channel 149, 231

V

value (HSV) 13
vector algebra 154
vector graphics 16
video formats 122
visualizing data and

relationships 61

W

W3C 19
Wall, Larry xvi, xix

watch xix, 150
watermarks 145–151
watermarks with GD 145
watermarks with

Image::Magick 147
Wave() 276
web

forms 96
web page design 123
web photo album 105–106
web safe colors 14, 92

GD 93
Image::Magick 94

Win32 28
World Wide Web 90
wrapping text 197, 207–209
Write() 276
WWW Consortium 19

X

XBM 29
XCF 23

xcf_size() 23
XML 105

parsing 108
XS 234
XY plot 78

Y

YCbCr 12, 247
to RGB 12

YIQ 12, 247
to RGB 12

YPbPr 247
YUV 12, 247

to RGB 12
YUV, YIQ and YCbCR 12

Z

Zakharevich, Ilya 32–33, 56
Zoom() 276
zooming in on object 129–131

Colophon

This book was written with the use of LaTeX, vim,
GNU make, Ghostscript, and other standard

open source tools running on Linux and Solaris

All vector illustrations presented within the chapters of
this book were created with tgif

All images were created with the Gimp,
ImageMagick, BMRT and the Perl modules and

programs presented

Final typesetting was done in Adobe FrameMaker

Object Oriented Perl

Damian Conway
Softbound, 512 pages, $42.95
ISBN 1-884777-79-1

Ebook Edition
PDF files 5.1 MB
Ebook edition available only from publisher’s site:
www.manning.com/conway

Designed to provide anyone familiar with the basics of regular
Perl programming with a complete introduction to the object-
oriented features of Perl and how to use them to create robust,
reusable, maintainable code, even in large applications. It is writ-
ten by Damian Conway, the three-time winner of the annual
Larry Wall Award for Practical Utility and a sought-after lecturer.
The book also includes fundamentals of object orientation, popu-
lar helper modules such as Class::Structure and Class::Methodmaker,
ties, operator overloading, multiple dispatch, and a refresher on
Perl basics for both novices and experienced Perl programmers.

Data Munging with Perl

David Cross
Softbound, 304 pages, $36.95
ISBN 1-930110-00-6

Ebook Edition
PDF files 8.5 MB
Ebook edition available only from publisher’s site:
www.manning.com/cross

How to massage data on its way from one computer system to
another. A collection of techniques for parsing and manipulat-
ing all manner of data—text and binary, HTML and XML,
structured and unstructured.

More Manning Perl Books

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit www.manning.com

Elements of Programming with Perl

Andrew L. Johnson
Softbound, 368 pages, $34.95
ISBN 1-884777-80-5

A complete introduction to programming, taught through Perl.
Teaches beginners the fundamentals of programming together
with good programming practices. Includes everything from how
to format and comment code to fundamentals of data structures,
regular expressions, debugging, modules, and basics of object-
orientation.

Web Development with Apache & Perl

Theo Petersen
Softbound, 428 pages, $44.95
ISBN 1-930110-06-5

Ebook Edition
PDF files
Ebook edition available only from publisher’s site:
www.manning.com/petersen

How to build and maintain a web site using high-quality Open
Source tools such as Apache, Perl, mod_perl and OpenSSL. Covers
security, scalability, performance, Perl modules, CGI scripts, and
embedded Perl.

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit www.manning.com

	1.1 Perl and Graphics
	CHAPTER 2 - Overview of graphics file formats
	CHAPTER 3 - Overview of tools and modules
	PART 2 - Creating graphics
	CHAPTER 4 - Drawing
	4.4 Drawing with TERM::GNUPLOT
	CHAPTER 5 - Creating charts
	5.1 GD::Graph and Friends
	5.1.1 Preparing your data sets for GD::Graph
	5.1.2 Controlling the look of your chart
	5.1.3 GD::Graph and fonts
	5.1.4 Saving your chart to a file
	5.1.5 Bar and area Charts
	5.1.6 Lines, Points and LinesPoints charts
	5.1.7 Mixed charts
	5.2 The Chart Distribution
	5.2.1 Pareto charts
	5.3 PGPLOT
	5.3.1 PGPLOT devices
	5.3.2 Example: A simple X-Y plot
	5.3.3 Example: A contour plot
	5.3.4 Example: Plotting a galaxy
	5.4 INTERFACING WITH GNUPLOT
	5.5 SUMMARY
	CHAPTER 6 - Graphics and the Web
	7.6 ANIMATED CHARTS
	8.2 COMBINING IMAGES
	8.2.3 Adding a watermark to an image
	CHAPTER 9 - Three-dimensional graphics
	APPENDIX A - Image::Magick introduction & reference

