
Gaurav Vaish

 High Performance

iOS Apps
OPTIMIZE YOUR CODE FOR BETTER APPS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Gaurav Vaish

High Performance iOS Apps

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-91100-6

[LSI]

High Performance iOS Apps
by Gaurav Vaish

Copyright © 2016 Gaurav Vaish. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Courtney Allen
Acquisitions Editor: Brian Anderson
Production Editor: Nicole Shelby
Copyeditor: Jasmine Kwityn
Proofreader: Rachel Head

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-06-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491911006 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance iOS Apps, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491911006
http://www.allitebooks.org

This book is dedicated to Agryav Vaish, my son.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. xiii

Part I. Getting Started

1. Performance in Mobile Apps. 3
Defining Performance 3
Performance Metrics 4

Memory 4
Power Consumption 4
Initialization Time 4
Execution Speed 5
Responsiveness 5
Local Storage 6
Interoperability 7
Network Condition 8
Bandwidth 9
Data Refresh 9
Multiuser Support 9
Single Sign-on 11
Security 11
Crashes 11

App Profiling 12
Sampling 12
Instrumentation 12

Measurement 12
Project and Code Setup 13
Crash Reporting Setup 14

v

www.allitebooks.com

http://www.allitebooks.org

Instrumenting Your App 15
Logging 20

Summary 23

Part II. Core Optimizations

2. Memory Management. 27
Memory Consumption 28

Stack Size 28
Heap Size 29

Memory Management Model 32
Autoreleasing Objects 34
Autorelease Pool Blocks 35
Automatic Reference Counting 39

Rules of ARC 41
Reference Types 42

Variable Qualifiers 43
Property Qualifiers 44

Getting Your Hands Dirty 45
Photo Model 45
Storyboard Update 46
Method Implementations 47
Output Analysis 49

Zombies 50
Rules of Memory Management 51
Retain Cycles 52

Rules to Avoid Retain Cycles 53
Common Scenarios for Retain Cycles 54
Observers 67
Returning Errors 70

Weak Type: id 71
Solution to the Problem 72

Object Longevity and Leaks 74
Singletons 74
Finding Mystery Retains 77
Best Practices 78
Memory Usage in Production 79
Summary 80

3. Energy. 81
CPU 81

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Network 83
Location Manager and GPS 87

Optimal Initialization 89
Turn Off Inessential Features 90
Use Network Only If Essential 92
Background Location Services 92
NSTimers, NSThreads, and Location Services 93
Restart After App Kill 93

Screen 94
Animation 94
Video Play 94
Multiple Screens 94

Other Hardware 99
Battery Level and State-Aware Code 100
Profiling for Energy Use 102
Best Practices 103
Summary 106

4. Concurrent Programming. 107
Threads 107
The Cost of Threads 108

Kernel Data Structures 108
Stack Size 108
Creation Time 109

GCD 109
Operations and Queues 110
Thread-Safe Code 112

Atomic Properties 112
Synchronized Blocks 113
Locks 115
Use Reader–Writer Locks for Concurrent Reads and Writes 121
Use Immutable Entities 123
Have a Central State Updater Service 128
State Observers and Notifications 134
Prefer Async over Sync 139

Summary 141

Part III. iOS Performance

5. Application Lifecycle. 145
App Delegate 145

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Application Launch 147
First Launch 150
Cold Start 158
Warm Launch 166
Launch After Upgrade 169

Push Notifications 169
Remote Notifications 169
Local Notifications 173

Background Fetch 174
Summary 177

6. User Interface. 179
View Controller 181

View Load 183
View Hierarchy 184
View Visibility 187

View 189
UILabel 191
UIButton 192
UIImageView 194
UITableView 195
UIWebView 199
Custom Views 203

Auto Layout 210
Size Classes 212
New Interaction Features in iOS 8 217

Interactive Notifications 217
App Extensions 218

Summary 222

7. Network. 223
Metrics and Measurement 223

DNS Lookup Time 224
SSL Handshake Time 226
Network Type 227
Latency 234
Networking API 237

App Deployment 238
Servers 238
Request 239
Data Format 240

Tools 241

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Network Link Conditioner 241
AT&T Application Resource Optimizer 243
Charles 245

Summary 248

8. Data Sharing. 251
Deep Linking 252
Pasteboards 258
Sharing Content 261

Document Interaction 262
Activities 271

iOS 8 Extensions 274
Configuration for Action and Share Extensions 276
Action Extensions 277
Share Extensions 278
Document Provider Extension 281
App Groups 287

Summary 289

9. Security. 291
App Access 292

Anonymous Access 292
Authenticated Access 294

Network Security 299
Use HTTPS 299
Use Certificate Pinning 300

Local Storage 305
Data Sharing 312
Security and App Performance 312
Checklist 313
Summary 315

Part IV. Beyond Code

10. Testing and Release. 319
Test Types 319
Definitions 320
Unit Testing 321

Setup 321
Writing Unit Tests 323
Code Coverage 325

Table of Contents | ix

Asynchronous Operations 330
Xcode 6 Bonus: Performance Unit Tests 331
Dependency Mocking 333
Other Frameworks 337

Functional Testing 338
Setup 339
Writing Functional Tests 341
Project Structure 344

Dependency Isolation 345
Testing and Component Design 347
Continuous Integration and Automation 349
Best Practices 351

Performance Testing 352
Summary 355

11. Tools. 357
Accessibility Inspector 358

Xcode Accessibility Inspector 359
iOS Accessibility Inspector 360

Instruments 363
Using Instruments 364
Activity Monitor 367
Allocations 369
Leaks 372
Network 374
Time Profiler 374

Xcode View Debugger 375
PonyDebugger 377
Charles 382
Summary 388

12. Instrumentation and Analytics. 389
Vocabulary 390
Instrumentation 391

Planning 392
Implementation 395
Deployment 398

Analytics 398
Real User Monitoring 399

Analytics Versus Real User Monitoring 399
Using RUM 399

Summary 400

x | Table of Contents

Part V. iOS 9

13. iOS 9. 403
Application Lifecycle 403

Universal Links 404
Search 407
Search Best Practices 412

User Interface 414
UIKit Framework 414
Safari Services Framework 418

Extensions 421
Content Blocker Extension 422
Spotlight Index Extension 426

App Thinning 426
Slicing 427
On Demand Resources 427
Bitcode 431

Summary 432

Index. 433

Table of Contents | xi

Preface

You may already have an amazing iOS app, or be developing one. Everything looks
great except for some kinks that prohibit users from giving the app that final fifth star
or prevent you from releasing it.

Issues like a jitter when the user goes to the nth item in table view or the app hogging
the network or consuming a lot battery are some of the visible symptoms that the
user will be aware of. However, the problems lie somewhere deeper.

Tuning an app for performance is a never-ending task, especially with new app fea‐
tures, OS versions, third-party libraries, and device configurations. These are only
some of the things that keep developers on their toes about app performance.

According to a study, about a quarter of users abandon an app if it does not load
within 3 seconds, and about a third of users will tell others about their poor experi‐
ence.

Users want apps that are fast, responsive, and do not hog resources. This book takes a
look at various aspects that negatively impact use and outlines how you can tune your
app for performance.

Who Should Read This Book
If you have been writing iOS apps and publishing them to the App Store, you have an
implicit goal to make them better, faster, and more fluid—not to mention loved by
your users. And if you are continuously looking for ways to achieve that goal, then
this book is just for you.

You should already have working knowledge of Objective-C and iOS. This book is
not about jump-starting with Objective-C or iOS, though the fundamentals will be
revisited for completeness when necessary.

xiii

Why I Wrote This Book
iPhone OS 1 and iPhone 1 were launched in June 2007. During their early releases,
developers were busy flushing out code and releasing apps for a wider audience. As
the hardware, OS, networks, and overall ecosystem advanced over time—and as new
user interface (UI) and engineering design patterns emerged—apps matured in func‐
tionality, stability, and performance.

More often than not, performance is an afterthought. And I can, to some degree,
agree with that approach. After all, it is important to first get the functionality right,
rather than worrying about performance. Thinking about optimizing early in the
development lifecycle is more commonly referred to as premature optimization. But
when poor performance hits, it hits hard.

The primary goal of this book is to show you how to write optimal code from an
engineering perspective.

This book is not about theoretical computer science, data structures, and algorithms
for faster execution of a task. You can find tons of literature on those topics. It covers
best practices for implementing an app in such a manner that even in non-ideal con‐
ditions (low storage space, poor network, low battery, etc.), users still can use your
app effectively and love using it. Generally, it will not be possible to optimize across
all the parameters, but you’ll be able to achieve the best trade-off considering the
available options.

Navigating This Book
This book is organized in five parts. Each part is comprised of one or more chapters
that detail the theme of the particular part. Each chapter begins with a brief abstract
outlining the topics that will be covered.

Part I provides an overview of how to measure performance. Chapter 1 discusses the
aspects that we want to optimize and outlines the parameters we want to measure as
part of tracking app performance.

Part II reviews the key optimizations that are core to any app. Chapter 2 addresses
memory management. It describes the memory management model and object refer‐
ence types. It also discusses best practices for design patterns that impact memory
consumption, namely singleton and dependency injection.

Chapter 3 covers energy and techniques for minimizing consumption. Chapter 4 pro‐
vides an overview of concurrent programming. It describes the various options avail‐
able and gives a comparative analysis.

xiv | Preface

Part III covers performance optimization techniques specific to iOS app develop‐
ment. Chapter 5 provides in-depth coverage of the application lifecycle. It details how
lifecycle events can be utilized to ensure resources are used effectively.

Chapter 6 reviews optimization techniques specifically for the user interface. Chap‐
ter 7 and Chapter 8 deal with networking and data sharing, respectively. Chapter 9
provides an in-depth review of security. It describes how enhanced security can slow
down an app and discusses what can be done for an effective trade-off.

Part IV reviews the non-code aspects of performance. Chapter 10 covers testing, and
performance testing in particular. It also discusses continuous integration and auto‐
mation.

Chapter 11 provides an overview of the tools you can use to measure performance
during development. Chapter 12 discusses instrumentation and analytics, and how it
can be used to collect performance-related data from apps in production.

Part V focuses on iOS 9. Chapter 13 provides an outline of the changes in this release
and how they impact the code you write from the perspective of performance.

Code snippets are provided throughout the book where applicable. Several of these
snippets can be used either as is or with minimal modifications in your app. Other
snippets may need to be further adapted to suit your app.

Each chapter also provides a set of best practices associated with the topic. It may not
always be possible to follow all of the best practices in a single app. The decisions of
which ones you want to trade off against others will be based on your app’s require‐
ments.

Online Resources
This book refers to several online blogs, articles, tutorials, and other references. The
links to those references are provided where applicable. Should you feel any reference
has been missed out accidentally, feel free to contact the publisher or the author.

This book also references screenshots from several apps. The apps are copyright of
their respective owners. The screenshots have been added for educational and illus‐
trative purposes only.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xv

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user. It also
highlights new code in program listings as compared to an earlier example that
may have been shown.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a general note.

This icon signifies a tip or suggestion.

This icon indicates a warning or a caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/gvaish/high-performance-ios-apps.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

xvi | Preface

https://github.com/gvaish/high-performance-ios-apps

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance iOS Apps by
Gaurav Vaish (O’Reilly). Copyright 2016 Gaurav Vaish, 978-1-491-91100-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hp-ios-apps.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

Preface | xvii

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/hp-ios-apps
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Even though it might seem so at times, nobody writes a book alone.

I am grateful to have worked closely with Daryl Low, Distinguished Architect at
Yahoo!, in developing the monetization SDK from the ground up. He provided guid‐
ance on several sections in the book. It has always been fun and exciting to work with
him on prototypical apps just to test performance extremes or identify the root cause
of an error.

I would like to thank Walter Pezzini, who heads mobile DevOps engineering at
Yahoo. He provided key insights on my understanding of continuous integration and
a delivery pipeline, and what it takes to build a high-quality system.

As an author, it is easy to assume a few things to be known by the reader that may not
always be the case. A big thanks goes to Chris Devers, Laura Savino, and Niklas Saers
for their reviews, which identified areas that I needed to clarify. Thanks for also pro‐
viding feedback that helped elevate overall content quality.

I would like to acknowledge Renu Chandel, my wife, for her continuous push to force
me to complete this book. It would not have been finished if not for her. Thanks for
all the coffee!

Last, but not the least, thanks to O’Reilly Media for publishing this book.

This book would not have been complete without collective efforts from all of you.
Thanks, team.

xviii | Preface

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Getting Started

In the opening part, we define performance for mobile apps and identify the perfor‐
mance metrics—the factors that impact the overall user experience and your app’s rat‐
ing. We also identify the app-measurable counters that should be monitored and
improved upon over time.

1 Hewlett Packard Enterprise Software Solutions, “3 keys to a 5-star mobile experience”.

CHAPTER 1

Performance in Mobile Apps

This book assumes that you are an iOS developer and have been writing native iOS
apps for a substantial amount of time—and that you now want to take the leap from
being yet another iOS developer to the top of the league.

Consider the following statistics:1

• 79% of users retry an app only once or twice if it failed to work the first time.
• 25% of users abandon an app if it does not load in 3 seconds.
• 31% of users will tell others about their bad experience.

These numbers reemphasize the importance of optimizing your app for performance.
Getting your app recognized in the users’ view is not just about the functionality. It is
about providing a smooth experience all throughout the interaction with the app.

For any particular task, there might be several apps available in the App Store to
accomplish it. But users will stick to the one that is either indispensable or has no
glitches and stands out from others in terms of performance.

Performance is impacted by many factors, including memory consumption, network
bandwidth efficiency, and user interface responsiveness. We will first outline different
types of performance characteristics, before moving on to ways of measuring them.

Defining Performance
From a technical standpoint, performance is, strictly speaking, a very vague term.
When someone identifies an app as being a high-performing one, we don’t necessar‐

3

http://bit.ly/3-keys-mobile

ily know what that means. Does the app use less memory? Does it save money on net‐
work usage? Or does it allow you to work fluidly? The meaning can be multifaceted,
and the implications abundant.

Performance can be related to one or more of the considerations that we discuss next.
One part of these considerations is performance metrics (what we want to measure
and monitor) while the other is about measurement (actually collecting the data).

We explore the measurement process in great depth in Chapter 11. Improving the
usage of the engineering parameters is the crux of Part II and Part III of the book.

Performance Metrics
Performance metrics are the user-facing attributes. Each attribute may be a factor of
one or more engineering parameters that can be measured.

Memory
Memory refers to the minimum RAM that the app requires to run, and the average
and maximum memory that it consumes. Minimum memory puts a strong con‐
straint on the hardware, whereas higher average or peak memory means more back‐
ground apps are likely be killed.

Also, you must ensure that you do not leak memory. A gradual increase in memory
consumption over time results in a higher likelihood of app crashes due to out-of-
memory exceptions.

Memory is covered in depth in Chapter 2.

Power Consumption
This is an extremely important factor to tackle when writing performant code. Your
data structures and algorithms must be efficient in terms of execution time and CPU
resources, but you also need to take into account various other factors. If your app
drains battery, rest assured that no one will appreciate it.

Power consumption is not just about calculating CPU cycles—it also involves using
the hardware effectively. It is therefore important to not only minimize power con‐
sumption but also ensure that the user experience is not degraded.

We cover this topic in Chapter 3.

Initialization Time
An app should perform just enough tasks at the launch to initialize itself so that the
user can work with it. Time taken to perform these tasks is the initialization time of

4 | Chapter 1: Performance in Mobile Apps

the app. Just enough is an open-ended term—finding the right balance is dependent
on your app’s needs.

One option is to defer object creation and initialization until the app’s first usage (i.e.,
until the object is needed). This is known as lazy initialization. This is a good strategy,
but the user should not be kept waiting each time any subsequent task is performed.

The following list outlines some of the actions you may want to execute during your
app’s initialization, in no particular order:

• Check if the app is being launched for the first time.
• Check if the user is logged in.
• If the user is logged in, load previous state, if applicable.
• Connect to the server for the latest changes.
• Check if the app was launched with a deep link. If so, load the UI and state for the

deep link.
• Check if there are pending tasks from the last time the app was launched.

Resume them if need be.
• Initialize object and thread pools that you want to use later.
• Initialize dependencies (e.g., object-relational mapping, crash reporting system,

and cache).

The list can grow pretty quickly, and it can be difficult to decide what to keep at
launch time and what to defer to the next few milliseconds.

We cover this topic in Chapter 5.

Execution Speed
Once the user opens an app, the expectation is for it to work as quickly as possible.
Any necessary processing should be handled in as little time as possible.

Consider a photo app, for example. A live preview is ideal for simple effects like
changing brightness or contrast where the processing needs to happen within milli‐
seconds.

This may require parallel processing for local computation or the ability to offload to
the server for complex tasks. We will touch on this topic in Chapter 4, Chapter 6, and
Chapter 7. Chapter 11 covers various related tools.

Responsiveness
Your app should be fast to respond to user interaction. Responsiveness is the result of
all the optimizations and trade-offs that you have made in your app.

Performance Metrics | 5

There may be multiple apps in the App Store to accomplish similar or related tasks.
Given an array of options, the user will ultimately choose the app that is most respon‐
sive.

Parallel processing for optimal local execution is covered in Chapter 4. Best practices
for implementing fluid interactions in your app are covered in Chapter 5 and Chap‐
ter 6. We explore testing your app in Chapter 10.

Local Storage
Any app that stores data on a server and/or has to refresh its data from an external
source must plan for local storage for offline viewing capabilities.

For example, a mail app will be expected to at least show previously downloaded mes‐
sages if the network is not present or the device is in offline mode.

Similarly, a news app should be able to show recently updated news for offline mode
as well as an indicator showing which articles are new and unread.

However, loading from local storage and syncing the data should be painless and fast.
This may require selecting not only the data to be cached locally but also the structure
of the data, choosing from a host of options, as well as the frequency of sync.

If your app uses local storage, you should provide an option to clean it. Unfortu‐
nately, most of the apps in the market do not do so. What is more worrisome is that
some of these apps consume storage in the hundreds of megabytes. Users frequently
uninstall these apps to reclaim local storage. This results in a bad user experience,
thereby threatening the app’s success.

Looking at Figure 1-1, you will see that over 12 GB of space has been used and the
user is left with only 950 MB. A large part of the data can be safely deleted from local
storage. The app should provide an option for cache cleanup.

6 | Chapter 1: Performance in Mobile Apps

Figure 1-1. Disk usage

Always give the end user an option to clean up the local cache.
If the user has iCloud backup enabled, the app data will consume
the user’s storage quota. Use it prudently.

The topics that impact local storage are covered in Chapters 7, 8, and 9.

Interoperability
Users may use multiple apps to accomplish a task, which requires interoperability
across them. For example, a photo album may be best viewed in a slideshow app but
might require another app for editing it. The viewer app should be able to send a
photo to the editor and receive the edited photo.

iOS provides multiple options for interoperability and sharing data across apps.
UIActivityViewController, deep linking, and the MultipeerConnectivity frame‐
work are some of the options available on iOS.

Defining good URL structure for deep linking is as important as writing good code to
parse it. Similarly, for sharing data using the share sheet, it is important to identify the
exact content to be shared as well as to take care of security concerns that arise from
processing content from an untrusted source.

It would be a really bad user experience if your app took a long time just to prepare
data to be shared with a nearby device.

We discuss this in Chapter 8.

Performance Metrics | 7

Network Condition
Mobile devices are used in varying network conditions. To ensure the best user expe‐
rience, your app must work in all of the following scenarios:

• High bandwidth and persistent network
• Low bandwidth but persistent network
• High bandwidth but sporadic network
• Low bandwidth and sporadic network
• No network

It is acceptable to present the user with a progress indicator or an error message, but
it is not acceptable to block indefinitely or let the app crash.

The screenshots in Figure 1-2 show different ways in which you can convey the mes‐
sage to the end user. The TuneIn app shows how much of the streaming content it has
been able to buffer. This conveys to the user the expected wait time before the music
can start. Other apps, such as the MoneyControl and Bank of America apps, just pro‐
vide an indefinite progress bar, a more common style for non-streaming apps.

Figure 1-2. Different indicator types for poor network conditions or large data

We cover this topic in Chapter 7.

8 | Chapter 1: Performance in Mobile Apps

Bandwidth
People use their mobile devices on various network types with speeds ranging from
hundreds of kilobits per second to tens of megabits per second.

As such, optimal use of bandwidth is another key parameter that defines your pro‐
duct’s quality. In addition, if you have been developing your app using low-
bandwidth conditions, running it in high-bandwidth conditions can produce
different results.

In around 2010, my team and I were developing an app in India. In low-bandwidth
conditions, the app’s local initialization would happen long before initial responses
from the server were available, and we tuned the app for those conditions.

However, the app was focused on the South Korean market, and when we tested it
there, the results were extremely different. None of our optimizations worked, and we
had to rewrite a large chunk of code that could have resulted in resource and data
contention.

Planning for high performance does not always result in optimizations, but can result
in trade-offs as well.

Chapter 7 covers best practices for optimally using bandwidth.

Data Refresh
Even if you do not have any offline viewing capabilities, you may still refresh periodi‐
cally with data from the server. The rate at which you refresh and the amount of data
transferred will affect overall data consumption. If the number of total bytes transfer‐
red is large, the user is bound to exhaust his data plan quickly. And if that value is
large enough, you may have just lost a user.

In iOS 6.x and below, if your app is in the background, the app cannot refresh data. In
iOS 7 onward, the app can use background app refresh for periodic refreshes. For live
chat apps, a persistent HTTP or raw TCP connection may be more useful.

This is covered in Chapter 5 and Chapter 7.

Multiuser Support
A family might share a mobile device, or a user may have multiple accounts for the
same application. For example, two siblings might share the same iPad for games. As
another example, a family may want to configure one device to check each person’s
emails during vacation to minimize roaming costs, particularly during international
travel. Similarly, one person may have multiple email accounts to be configured.

Performance Metrics | 9

Whether you want to support multiple simultaneous users will be dependent on your
product. But if you do decide to offer this feature, make sure to follow these guide‐
lines:

• Adding a new user should be efficient.
• Updates across the users should be efficient.
• Switching between users should be efficient.
• User-data boundaries should be neat and without any bugs.

Figure 1-3 shows examples of two apps with multiuser support. The left shows the
account selector for Google apps while the right shows the one for Yahoo apps.

Figure 1-3. The Google and Yahoo apps both offer multiuser support

You will learn how to make your application secure for multiuser support and more
in Chapter 9.

10 | Chapter 1: Performance in Mobile Apps

www.allitebooks.com

http://www.allitebooks.org

Single Sign-on
If you have created multiple apps that allow or require sign-in, it is always a good idea
to support single sign-on (SSO). If a user logs in to one of your apps, it should be
one-click sign-in to your other apps.

This process requires more than just sharing data across apps—you’ll also need to
share state, synchronize across your apps, and more. For example, if the user signs
out using one of the apps, signout should also occur in all other apps where the user
signed in using SSO.

In addition, the synchronization across the apps must be secure.

This is covered in Chapter 9.

Security
Security is paramount in a mobile app, particularly because sensitive information
might be shared across apps. It is important to secure all communications, as well as
both local and shared data.

Implementing security requires additional computation, memory, or storage, which is
at odds with your end goal of striving for maximum speed and minimum memory
and storage requirements.

As a result, you’ll need to trade off between security and other factors.

Adding multiple layers of security degrades performance and may have a perceivable
negative impact on user experience. Where you draw the line with security is app-
and user demographics–determined. In addition, the hardware plays an important
role: the options chosen will vary based on the computing capabilities of the device.

Security is covered in depth in Chapter 9.

Crashes
Apps can and do crash. Extreme optimizations can lead to crashes. Likewise, using
native C code can lead to crashes.

A high-performing app will try to not only secure itself from crashes but also recover
gracefully if a crash actually happens, particularly if it was in middle of an operation
when the crash occurred.

Crash reporting, instrumentation, and analytics are covered in depth in Chapter 12.

Performance Metrics | 11

App Profiling
There are two ways to profile your app to measure the parameters that we have dis‐
cussed: sampling and instrumentation. Let’s take a look at each.

Sampling
Sampling (or probe-based profiling), as the name implies, requires sampling the state
at periodic intervals, generally with the help of tools. We explore these tools in
“Instruments” on page 363. Sampling provides a great overall picture of the app, as it
does not interfere with its execution. The downside of sampling is that it does not
return 100% accurate details. If the sampling frequency is 10 ms, you will not know
what happens for the 9.999 ms between the probes.

Use sampling for initial performance explorations and to track
CPU and memory utilization.

Instrumentation
Instrumentation—that is, modifying the code to log detailed information—provides
more accurate results than sampling. This can be done proactively for critical sec‐
tions, but can also be done reactively to troubleshoot problems found during profil‐
ing or through user feedback. We will discuss this process in more depth in
“Instrumenting Your App” on page 15.

Because instrumentation involves injecting extra code, it does
impact app performance—it can take a toll on memory or speed
(or both).

Measurement
Now that we have established the parameters we would like to measure and explored
the types of profiling for measurement, let’s run through the steps to implement it.

By measuring performance and identifying where you truly have problems, you can
avoid the pitfall of premature optimization described by Donald Knuth:

12 | Chapter 1: Performance in Mobile Apps

2 Donald Knuth, “Computer Programming as an Art”.
3 At the time of writing, most of the objects released as CocoaPods are written in Objective-C. After all, Swift is

relatively new compared to Objective-C.

The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming.2

Project and Code Setup
In the following sections, we will set up a project to be able to measure the parame‐
ters we’ve identified during development as well as production. There are three sets of
tasks for project configuration, setup, and code implementation:

Build and release
Ensure that it is easy to build and release the app.

Testability
Ensure that your code works with both mock and real data, including isolated
replication of real-world scenarios.

Traceability
Ensure that you can resolve errors by identifying where the problem happened
and what the code was trying to do at that stage.

The following subsections take a look at each of these options.

Build and release
Until recently, build and release was an afterthought. But thankfully, with the urge to
go nimble and agile, systems and tools have evolved. They are now sped up to pull in
dependencies, to build and release the product for testing or for enterprise distribu‐
tion, and/or to upload to iTunes Connect for public release.

In a blog post published by Joel Spolsky in 2000, he asks the question, “Can you build
your app in one click (from the source)?” The question still stands today. And the
answer may define how quickly you can respond to improving quality and perfor‐
mance after defects or bottlenecks have been identified.

CocoaPods, written in Ruby, is the de facto dependency manager for Objective-C and
Swift projects.3 It integrates with Xcode command-line utilities for build and release.

Measurement | 13

http://bit.ly/knuth-art
http://bit.ly/1U5NCJP
https://cocoapods.org

Testability
All apps have multiple components that work together. A well-designed system sup‐
ports loose coupling and tight cohesion, allowing you to replace any or all of a compo‐
nent’s dependencies.

You should test each component in isolation by mocking out the dependencies. In
general, there are two types of tests:

Unit tests
Validate the operation of an individual unit of code in isolation. This is typically
done in an environment that repeatedly calls methods with a variety of input data
to assess how the code performs.

Functional tests
Validate the operation of a component in the final integrated setup, either in the
final shippable version of the software or in a reference app built specifically for
test purposes.

We explore testing in detail in Chapter 10.

Traceability
During development, instrumentation allows us to prioritize performance optimiza‐
tions, improve resilience, and provide debug information. Crash reporting focuses on
collecting debug information from the production version of the software.

Crash Reporting Setup
Crash reporting systems collect debug logs for analysis. There are dozens of crash
reporters available on the market. With no particular bias, Flurry has been used in
this book. The primary reason I chose Flurry is that crash reporting and instrumenta‐
tion can be set up using one SDK. We discuss instrumentation in depth in Chap‐
ter 12.

To use Flurry, you’ll need to set up an account at www.flurry.com, get an API key,
then download and set up the Flurry SDK. Example 1-1 shows the code for the initi‐
alization.

Example 1-1. Configuring crash reporting in the app delegate

#import "Flurry.h"

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 [Flurry setCrashReportingEnabled:YES];

14 | Chapter 1: Performance in Mobile Apps

http://www.flurry.com

 [Flurry startSession:@"API_KEY"];
}

Replace API_KEY with the one associated with your account (you’ll find this in the
Flurry dashboard).

The crash reporting systems (CRS) will set the global exception
handler using the NSSetUncaughtExceptionHandler method. If
you have been using a custom handler, it will be lost.
If you want to keep your exception handler, set it after initializing
the CRS. You can get the handler set by the CRS using the
NSGetUncaughtExceptionHandler method.

Instrumenting Your App
Instrumenting your app is a very important step in understanding user behavior, but
also—and more importantly for our purpose here—in identifying critical paths of the
app. Injecting deliberate code to record key metrics is a good step toward improving
app performance.

It is a good idea to abstract and encapsulate any dependencies. This
allows you to do a last-minute switch or even work with multiple
systems simultaneously before making a final decision. It is espe‐
cially useful in scenarios where there are multiple options available
and you are in the evaluation phase.

As shown in Example 1-2, we will add a class called HPInstrumentation to encapsu‐
late instrumentation. For now, we log in to the console using NSLog and send out the
details to the server as well.

Example 1-2. Class HPInstrumentation wrapper for underlying instrumentation SDK

//HPInstrumentation.h
@interface HPInstrumentation : NSObject

+(void)logEvent:(NSString *)name;
+(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters;

@end

//HPInstrumentation.m
@implementation HPInstrumentation

+(void)logEvent:(NSString *)name
{
 NSLog(@"%@", name);

Measurement | 15

 [Flurry logEvent:name];
}

+(void)logEvent:(NSString *)name withParameters:(NSDictionary *)parameters
{
 NSLog(@"%@ -> %@", name, params);
 [Flurry logEvent:name withParameters:parameters];
}

@end

We start with instrumenting three critical stages of our app lifecycle (see
Example 1-3):

• Whenever the app comes to the foreground, indicated by a call to application
DidBecomeActive:

• Whenever the app goes into the background, indicated by a call to application
DidEnterBackground:

• If and when the app receives a low-memory warning, indicated by a call to appli
cationDidReceiveMemoryWarning:

And just for fun, we add a button in the HPFirstViewController that will cause the
app to crash when clicked.

Example 1-3. Basic instrumentation in the app delegate

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 [HPInstrumentation logEvent:@"App Activated"];
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 [HPInstrumentation logEvent:@"App Backgrounded"];
}

- (void)applicationDidReceiveMemoryWarning:(UIApplication *)application
{
 [HPInstrumentation logEvent:@"App Memory Warning"];
}

App Activated, App Backgrounded, and App Memory Warning are unique names that
we have given to these events. You can choose any names that you are comfortable
with. Numeric values are also fine.

16 | Chapter 1: Performance in Mobile Apps

Instrumentation should not be used as a logging alternative. Log‐
ging can be very verbose. Because it consumes the network’s
resources when reporting to the server, you should instrument only
the bare minimum.
It is important that you instrument only the events that you and
other members of the engineering or product teams are interested
in (with enough data to support important reports).
The line between instrumentation and overinstrumentation is thin.
Start with instrumenting for a few reports and increase the cover‐
age over time.

Next, let’s add a UI control so that we can generate a crash and then look at the crash
report.

Figure 1-4 shows the UI for the crash button. Example 1-4 shows the code to link the
Touch Up Inside event to the method crashButtonWasClicked:

Figure 1-4. Add Generate Crash button in the storyboard

Measurement | 17

Example 1-4. Raising exception to generate a crash

- (IBAction)crashButtonWasClicked:(id)sender
{
 [NSException raise:@"Crash Button Was Clicked" format:@""];
}

Let’s interact with the app to generate some events:

1. Install and launch the app.
2. Background the app.
3. Foreground it.
4. Repeat steps 2 and 3 a few times.
5. Tap the Generate Crash button. This will cause the app to crash.
6. Launch the app again. It is only now that the crash report will actually be sent to

the server.

The first set of instrumentation events and crash reports can take a little while to be
sent to the server and processed. You may have to wait for some time for the reports
to appear on the Flurry dashboard. Then, go to the dashboard and take a look at these
events and the crash report. You should see reports similar to the ones shown in the
following screenshots, which were taken from the dashboard for my app.

Figure 1-5 shows the user sessions—that is, how many users opened the app at least
once per day. Multiple launches may or may not be considered as part of the same
session depending on the time elapsed between those launches.

Figure 1-5. Report of user sessions

Figure 1-6 shows a detailed breakdown of each event instrumented. This report is
more useful because it provides insights into the app usage (i.e., it pinpoints which
parts of the app were more frequently used as compared to the others).

18 | Chapter 1: Performance in Mobile Apps

Figure 1-6. Events—a more important report

If you look at the crash report in Figure 1-7, you will notice a “download” link for
downloading the crash log. Go ahead and click that to download the log. Looks famil‐
iar, right?

Figure 1-7. The crash report—this is the most important report you’ll work with

Viewing Crash Reports on iTunes Connect
Apple provides a service that allows you to download crash reports for the most
recent app versions and builds that you distribute using TestFlight or the App Store.
In theory, this should allow you to forgo using third-party crash reporting tools.

Measurement | 19

There is, however, a catch. Crash logs are not sent to Apple unless the user agrees to
share crash data with app developers. TestFlight users automatically agree to share the
crash data. However, for production apps (distributed via the App Store), sharing
must be enabled by the user.

To do that, users must go into the Settings app, navigate to Privacy → Diagnostics &
Usage, and select the Automatically Send option (see Figure 1-8).

Figure 1-8. Device settings to send crash reports

There are two problems with this. First, users cannot set this option within your app
—they need to go to the Settings app and then navigate to the specific setting. Second,
and more importantly, this setting applies to all apps: users cannot choose specific
apps to send crash reports for.

Using a third-party crash reporting tool ensures that you control the overall experi‐
ence and user settings to send crash reports to the server.

Logging
Logging is an invaluable tool to know what is going on with an app.

There may only be subtle differences between logging and instrumentation. Instru‐
mentation can be considered a subset of logging. Anything that is instrumented must
also be logged.

20 | Chapter 1: Performance in Mobile Apps

Whereas instrumentation entails publishing key performance data for aggregated
analysis, logging provides detailed information for tracing app behavior at various
levels, such as debug, verbose, info, warning, and error. While logging typically
runs throughout an app’s execution lifecycle, instrumentation is added to particular
sections of development interest.

Instrumentation data is sent to the server, whereas logging is local to the device.

For logging, we will use CocoaLumberjack, which is available via CocoaPods.

Example 1-5 shows the line to add to your Podfile to include the library. After making
the change, run pod update to update the Xcode workspace.

Example 1-5. Podfile configuration for CocoaLumberjack

pod 'CocoaLumberjack', '~> 2.0'

CocoaLumberjack is an extensible framework that comes bundled with built-in log‐
gers that can emit messages to various destinations. For example, use DDASLLogger to
log to the Apple System Log (ASL)—the default location used by the NSLog method.
Similarly, use DDFileLogger to log to a file. The loggers can be configured during app
launch.

The macros DDLog<Level> can be used to log at a specific level. The higher the level,
the more severe the message. The highest level is Error, while the lowest is Verbose.
The minimum level for which the messages should actually be logged can be config‐
ured at a per-file level, per-Xcode-configuration level, per-logger level, or global level.

The following macros are available:

DDLogError

Indicates an unrecoverable error

DDLogWarn

Indicates a recoverable error.

DDLogInfo

Indicates non-error information.

DDLogDebug

Indicates data mostly useful for debugging.

DDLogVerbose

Provides absolutely all details, predominantly to trace control flow during
execution

Measurement | 21

The macros have the same signature as that of NSLog. This means that you can just
replace NSLog with the appropriate DDLog<Level> call.

Example 1-6 shows representative code that configures and uses the library.

Example 1-6. Configuring and using CocoaLumberjack

//Setup
-(void)setupLogger {

#if _DEBUG
 [DDLog addLogger:[DDASLLogger sharedInstance]];
#endif

 DDFileLogger fileLogger = [[DDFileLogger alloc] init];
 fileLogger.rollingFrequency = 60 * 60 * 24;
 fileLogger.logFileManager.maximumNumberOfLogFiles = 7;

 [DDLog addLogger:fileLogger];
}

//Using logger in some file

#if _DEBUG
 static const DDLogLevel ddLogLevel = DDLogLevelVerbose;
#elsif MY_INTERNAL_RELEASE
 static const DDLogLevel ddLogLevel = DDLogLevelDebug;
#else
 static const DDLogLevel ddLogLevel = DDLogLevelWarn;
#end

-(void)someMethod {
 DDVerbose(@"someMethod has started execution");
 //...
 DDError(@"Ouch! Error state. Don't know what to do");
 //...
 DDVerbose(@"someMethod has reached its end state");
}

The most likely place to call this method is application:didFinishLaunchingWi
thOptions:.

Log to ASL only in debug mode, when connected to Xcode. You do not want
these logs to be available on the device in production.

The file logger, configured to create a new file every 24 hours (rollingFre
quency) with a maximum of 7 files (maximumNumberOfLogFiles).

Register the logger.

22 | Chapter 1: Performance in Mobile Apps

Configure the log level (ddLogLevel) to an appropriate value. Here, we set up for
maximum verbosity during development, less verbose (debug level) logging for
internal releases (MY_INTERNAL_RELEASE is a custom flag), and only error logging
for distribution builds.

Log some messages. For the level DDLogLevelVerbose, all messages will be log‐
ged, whereas for DDLogLevelWarn, only the error messages will be logged.

The app delegate’s application:didFinishLaunchingWithOp

tions: callback is the recommended method to set up the logger.

Summary
In this chapter, we established the factors that contribute to app performance. One
part of performance concerns user perception, while a larger chunk is actually mak‐
ing an app highly performant.

We looked at some of the key attributes that constitute and affect app performance. In
the metrics involving measurement and tracking, these attributes are referred to as
key performance indicators.

We looked at the concept of profiling and explored two broad categories of profiling
techniques: sampling and instrumentation. We also looked at some code changes
required to instrument our app. We then played around with the instrumented app,
causing the events to be generated.

Finally, we added some boilerplate code for classes that will help in instrumentation
and logging.

The chapters in the next part are focused on individual attributes that define perfor‐
mance. Each chapter begins by defining and reviewing the attribute, and then moves
on to discuss potential problems and how to get them solved with actual code.

Summary | 23

PART II

Core Optimizations

We will now explore the core optimizations for writing efficient apps using Objective-
C. These optimizations form the foundation of any app, and they must go every‐
where. It does not depend on what API you use, which tier of the app you are writing
at, or what exactly you are trying to achieve—these optimizations run application-
wide.

The optimizations we will discuss include the following:

• Memory management
• Energy
• Concurrent programming

1 iOS Developer Library, “Technical Note TN2151: Understanding and Analyzing iOS Application Crash
Reports”.

CHAPTER 2

Memory Management

iPhone and iPad devices are resource-constrained on memory. An app may be termi‐
nated by the operating system if it crosses the established per-process limit.1 As such,
successfully managing memory plays a central role in implementing an iOS app.

At WWDC 2011, Apple revealed that about 90% of device crashes happened due to
issues pertaining to memory management. And of these, the biggest causes are either
bad memory access or memory leaks due to retain cycles.

Unlike the Java runtime (which uses garbage collection), iOS runtimes for Objective-
C and Swift use reference counting. The downsides of using reference counting
include possible overrelease of memory and cyclic references if the developer is not
careful.

As such, it is important to understand how memory is managed in iOS.

In this chapter, we study the following:

• Memory consumption (i.e., how an app consumes memory)
• The memory management model (i.e., how the iOS runtime manages memory)
• Language constructs—we’ll take a look at Objective-C constructs and the avail‐

able features you can use
• Best practices for minimizing memory usage without degrading the user experi‐

ence

27

http://apple.co/1YrGlHt
http://apple.co/1YrGlHt

Memory Consumption
Memory consumption refers to the RAM that an app consumes.

The iOS virtual memory model does not include swap memory, which means that,
unlike with desktop apps, the disk cannot be used to page memory. The end result is
that the apps are restricted to available RAM, which is used not only by the app in the
foreground but also by the operating system services and potentially also by back‐
ground tasks being run by other apps.

There are two parts to memory consumption in an app: stack size and heap size. The
following subsections take a closer look at each.

Stack Size
Each new thread in an app receives its own stack space consisting of both reserved
and initially committed memory. The stack is freed when the thread exits. The maxi‐
mum stack size for a thread is small, and among other things, it limits the following:

Maximum number of methods that can be called recursively
Each method has its own stack frame and contributes to the overall stack space
consumed. For instance, as shown in Example 2-1, if you call main, which in turn
calls method1 (which subsequently calls method2), there are three stack frames
contributing a few bytes each. Figure 2-1 shows how a thread stack looks like
over time.

Example 2-1. Call tree

main() {
 method1();
}

method1() {
 method2();
}

Maximum number of variables that you can use within a method
All variables are loaded on the method stack frame, and hence contribute to the
stack space consumed.

Maximum number of views that you can nest in the view hierarchy
Rendering a composite will invoke layoutSubViews and drawRect recursively
across the complete hierarchy tree. If the hierarchy is deep, it may result in a
stack overflow.

28 | Chapter 2: Memory Management

2 Stack Overflow, “iOS Equivalent to Increasing Heap Size”.

Figure 2-1. Stack with stack frame of each method

Heap Size
All threads of one process share the same heap. The total heap size available for an
app is generally much lower than the device RAM. For example, an iPhone 5S may
have 1 GB of RAM, but the maximum heap size allocated to an app may be 512 MB
or even less. The app cannot control the heap allocated for it. It is managed by the
operating system.2

Processes such as NSString, loading images, creating or consuming JSON/XML data,
and using views will consume a lot of heap memory. If your app is an image-heavy
one (something along the lines of the Flickr and Instagram apps), you will need to
take special care to minimize average and peak memory usage.

Figure 2-2 shows a typical heap that may exist at some time in an app.

In Figure 2-2, the main thread started by the main method creates UIApplication.
We assume that at some point in time the window comprises a UITableView that uses
a UITableViewDataSource whose method tableView:cellForRowAtIndex: is called
when a row must be rendered.

The data source has a reference to all the photos to be shown in a property named
photos of type NSArray. If not implemented properly, this array can be huge, result‐
ing in high peak memory usage. One solution is to always store a fixed number of
images in the array and swap in and out as the user scrolls the view. This fixed num‐
ber will determine your app’s average memory usage.

Memory Consumption | 29

http://stackoverflow.com/a/25369670

Figure 2-2. Heap demonstrating use of a model HPPhoto in a UITableViewDataSource

Each item in the array is of type HPPhoto, which represents a photo. HPPhoto stores
data associated with the object—for example, image size, date of creation, owner, tags,
web URL associated with the photo (not shown in the image), reference to local cache
(not shown in the image), and so on.

All data related to objects created from classes is stored on the heap.

The class may have properties or instance variables (iVars) of value types such as int,
char, or struct, but because the objects are created on the heap, they will consume
only heap memory.

When objects are created and values assigned, they may be copied from stack to heap.
Similarly, when values are used within a method, they may be copied from heap to
stack. This may be an expensive operation. Example 2-2 highlights when the copy
from stack to heap and vice versa happens.

Example 2-2. Heap versus stack

@interface AClass

@property (nonatomic, assign) NSInteger anInteger;
@property (nonatomic, copy) NSString *aString;

@end

//some other class

30 | Chapter 2: Memory Management

www.allitebooks.com

http://www.allitebooks.org

-(AClass *) createAClassWithInteger:(NSInteger)i
 string:(NSString *)s {

 AClass *result = [AClass new];
 result.anInteger = i;
 result.aString = s;
}

-(void) someMethod:(NSArray *)items {
 NSInteger total = 0;
 NSMutableString *finalValue = [NSMutableString string];

 for(AClass *obj in items) {
 total += obj.anInteger;
 [finalValue appendString:obj.aString];
 }
}

The class AClass has two properties.

anInteger is of type NSInteger, which is passed by value.

aString is of type NSString *, which is passed by reference.

The createAClassWithInteger:string: method (in some class that is not of
relevance here) instantiates AClass. This method is provided with the values
required to create the object.

The value for i is on the stack. However, when assigned to the property, it must
be copied to the heap because that is where result is stored.

Although NSString * is passed by reference, the property is marked copy, which
means that the value must be duplicated or cloned, depending on how the
method [-NSCopying copyWithZone:] is implemented.

someMethod: processes an array of AClass objects.

When anInteger is used, its value must be copied to the stack before it can be
processed. In this example, the value is added to total.

When aString is used, it is passed by reference. In this example, appendString:
uses the reference to the aString object.

Memory Consumption | 31

3 The term assigned is used loosely here. We will explore it later.

It is a good idea to keep your memory requirements to not more
than a percentage of available RAM. Though there is no hard rule
to it, it is recommended to not use more than 80%–85%, leaving
the remainder for core OS services.
Do not ignore didReceiveMemoryWarning signals.

Memory Management Model
In this section, we study how the iOS runtime manages memory and the effect it has
on the code.

The memory management model is based on the concept of ownership. As long as an
object is owned, the memory it uses cannot be reclaimed.

Whenever an object is created in a method, the method is said to own the object. If
this object is returned from the method, then the caller is said to claim the ownership.
The value can be assigned3 to another variable, and the corresponding variable is like‐
wise said to have claimed the ownership.

Once the task with the object is completed, you relinquish ownership. This process
does not transfer ownership, but increases or decreases the number of owners,
respectively. When the number of owners goes down to zero, the object is deallocated
and the memory is released.

This ownership count is more formally referred to as the reference count. When you
manage it yourself, it is called manual reference counting (MRC). Although it is rarely
used today, MRC is useful to understand. Modern-day apps use automatic reference
counting (ARC), which we discuss in “Automatic Reference Counting” on page 39.

Example 2-3 demonstrates the basic structure of manual memory management using
reference counting.

Example 2-3. Reference counting with manual memory management

NSString *message = @"Objective-C is a verbose yet awesome language";
NSString *messageRetained = [message retain];
[messageRetained release];
[message release];
NSLog(@"Value of message: %@", message);

Object created, ownership claimed by message, reference count of 1.

Ownership claimed by messageRetained, reference count increases to 2.

32 | Chapter 2: Memory Management

http://bit.ly/nsobject-dealloc

Ownership relinquished by messageRetained, reference count decreases to 1.

Ownership relinquished by message, reference count decreases to 0.

The value of message, strictly speaking, is undetermined. You may still get the
same value as before because the memory may not have been reused or reset.

Example 2-4 demonstrates how methods affect the reference count.

Example 2-4. Reference count in methods

//part of a class Person
-(NSString *) address {
 NSString *result = [[NSString alloc]
 initWithFormat:@"%@\n%@\n%@, %@",
 self.line1, self.line2, self.city, self.state];
 return result;
}

-(void) showPerson:(Person *) p {
 NSString *paddress = [p address];

 NSLog(@"Person's Address: %@", paddress);

 [paddress release];
}

Object first created; reference count of memory pointed to by result is 1.

Reference count of memory referenced via paddress (referring to result) is still
1. The method showPerson: is the owner of the object it creates using the
address button. It should not retain.

Renounce the ownership; reference count goes down to 0.

If you look at Example 2-4, showPerson: does not know if address creates a new
object or reuses one. However, it does know that the object would have been returned
to it after incrementing the reference count by 1. As such, it does not retain the
address. Once the job is completed, it releases it. If the object had a reference count
of 1, it will become 0 and object will be dealloced.

Official Apple and LLVM documentation prefers the term ownership. The terms own‐
ership and reference count are used interchangeably in the book.

Memory Management Model | 33

Autoreleasing Objects
Autoreleasing objects allows you to relinquish the ownership of an object but defer its
destruction. It is useful in scenarios in which you create an object in a method and
want to return it. It helps in the management of an object’s life in MRC.

In the strict sense of naming conventions of Objective-C, in Example 2-4, there is
nothing to denote that the address method owns the returned string. The caller, show
Person:, therefore has no reason to release the returned string, resulting in a poten‐
tial memory leak. [paddress release] is a piece of code that has been added for
illustrative purposes.

So, what is the correct code for the method address?

There are two possibilities:

• Do not use alloc or associated methods.
• Return an object with a deferred release message.

The first fix is easy to implement when working with NSString. The updated code is
shown in Example 2-5.

Example 2-5. Fixed code for reference count in methods

-(NSString *) address {
 NSString *result = [NSString
 stringWithFormat:@"%@\n%@\n%@, %@",
 self.line1, self.line2, self.city, self.state];
 return result;
}

-(void) showPerson:(Person *) p {
 NSString *paddress = [p address];

 NSLog(@"Person's Address: %@", paddress);

}

Do not use the alloc method.

Do not use the release method within the showPerson: method that does not
create the entity.

However, this fix is not easy to apply when not working with NSString, as it is gener‐
ally difficult to find the appropriate method that will serve the need. For example,
when working with a third-party library or with a class that has multiple methods to
create an object, it may not always be clear which method retains the ownership.

34 | Chapter 2: Memory Management

And this is where deferred destruction comes into play.

The NSObject protocol defines the message autorelease that can be used for
deferred release. Use it when returning an object from a method.

The updated code using autorelease is given in Example 2-6.

Example 2-6. Reference counting using autorelease

-(NSString *) address
{
 NSString *result = [[[NSString alloc]
 initWithFormat:@"%@\n%@\n%@, %@",
 self.line1, self.line2, self.city, self.state]
 autorelease];
 return result;
}

The code can be analyzed as follows:

1. You own the object (NSString, in this case) returned by the alloc method.
2. To ensure no memory leak, you must relinquish the ownership before losing the

reference.
3. However, if you use release, the object will be dealloced before return and the

method, as a result, will return an invalid reference.
4. autorelease signifies that you want to relinquish ownership but at the same time

allow the caller of the method to use the returned object before it is dealloced.

Use autorelease when creating an object and returning from a
non-alloc method. It ensures that the object will be released and,
if applicable, memory reclaimed once the caller method is done
working with it.

Autorelease Pool Blocks
The autorelease pool block is a tool that allows you to relinquish ownership of an
object but avoid it being dealloced immediately. This is a very useful feature when
returning objects from a method.

It also ensures that the objects created within the block are dealloced as may be
needed once the block is complete. This is useful when you need to create several
objects. Local blocks can be created to dealloc the objects as early as possible and
keep the memory footprint low.

Autorelease Pool Blocks | 35

An autorelease pool block is marked using @autoreleasepool.

If you open the main.m file in the sample project, you will notice the code shown in
Example 2-7.

Example 2-7. @autoreleasepool block in main.m

int main(int argc, char * argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([HPAppDelegate class]));
 }
}

All objects that were sent an autorelease message within the block will be sent a
release message at the end of the autoreleasepool block. More importantly, a
release message will be sent for each autorelease call. This means that if an object
was sent an autorelease message more than once, the release message will be sent
more than once. This is good, as it will keep the reference count of the object down to
the same as it was before the autoreleasepool block. If the count is 0, the object will
be dealloced, keeping a low memory footprint.

If you look at the code in the main method, you’ll see that the entire app is within the
autoreleasepool block. This means that any autorelease object will be dealloced
at the end, resulting in no memory leak.

Like other code blocks, autoreleasepool blocks can be nested, as shown in
Example 2-8.

Example 2-8. Nested autoreleasepool blocks

@autoreleasepool {
 // some code
 @autoreleasepool {
 // some more code
 }
}

Because control passes from one method to another, it is uncommon to use nested
autoreleasepool blocks in the same method. However, the called method may have
its own autoreleasepool block for early object deallocations.

36 | Chapter 2: Memory Management

Autorelease Pool Blocks Are Omnipresent
The Cocoa framework expects code execution within an autoreleasepool block, or
else autorelease objects are not released and the app starts leaking memory.

The AppKit and UIKit frameworks process each event-loop iteration within an autor
eleasepool block. As a result, there is generally no need to create one yourself.

There are some occasions where you will likely want to create autoreleasepool
blocks of your own. For example:

When you have a loop that creates lot of temporary objects
Use an autoreleasepool block within the loop to deallocate the memory for
each iteration. Although the eventual memory use before and after the iteration
may still be the same, the maximum memory requirement for your app may be
reduced by a large factor.

Example 2-9 provides examples of bad as well as good code to write when using
autoreleasepool blocks.

When you create a thread
Each thread will have its own autoreleasepool block stack. The main thread
starts with its own autoreleasepool because it comes from the generated code.
However, for any custom thread, you have to create your own autoreleasepool.

See Example 2-10 for sample code.

Example 2-9. Autorelease pool block in a loop

//Bad code
{
 @autoreleasepool {
 NSUInteger *userCount = userDatabase.userCount;

 for(NSUInteger *i = 0; i < userCount; i++) {
 Person *p = [userDatabase userAtIndex:i];

 NSString *fname = p.fname;
 if(fname == nil) {
 fname = [self askUserForFirstName];
 }

 NSString *lname = p.lname;
 if(lname == nil) {
 lname = [self askUserForLastName];
 }

Autorelease Pool Blocks | 37

 //...
 [userDatabase updateUser:p];
 }
 }
}

//Good code
{
 @autoreleasepool {
 NSUInteger *userCount = userDatabase.userCount;

 for(NSUInteger *i = 0; i < userCount; i++) {

 @autoreleasepool {
 Person *p = [userDatabase userAtIndex:i];

 NSString *fname = p.fname;
 if(fname == nil) {
 fname = [self askUserForFirstName];
 }

 NSString *lname = p.lname;
 if(lname == nil) {
 lname = [self askUserForLastName];
 }
 //...
 [userDatabase updateUser:p];
 }
 }
 }
}

This code is bad because there is only one autoreleasepool and the memory
cleanup happens after all the iterations of the loop are complete.

In this case, there are two autoreleasepools. The inner autoreleasepool
ensures that the memory cleanup happens after each iteration. This results in less
memory requirements.

Example 2-10. Autorelease pool block in custom thread

-(void)myThreadStart:(id)obj {
 @autoreleasepool {
 //New thread's code
 }
}

//Somewhere else
{
 NSThread *myThread = [[NSThread alloc] initWithTarget:self

38 | Chapter 2: Memory Management

4 The complete specification on Automatic Reference Counting is available on the LLVM site.

 selector:@selector(myThreadStart:)
 object:nil];

 [myThread start];
}

Automatic Reference Counting
Keeping track of retain, release, and autorelease is not easy. What is even more
puzzling is determining where, when, and to whom to send these messages.

Apple introduced Automatic Reference Counting (ARC) at WWDC 2011 as a solu‐
tion to this problem. Swift, the new language for iOS apps, also uses ARC. Unlike
Objective-C, Swift does not support MRC.

ARC is a compiler feature.4 It evaluates the lifetime requirements of the objects in the
code and automatically injects appropriate memory management calls at compile
time. The compiler also generates appropriate dealloc methods. This means that
most of the difficulties related to keeping track of memory usage (e.g., ensuring that it
is deallocated when not required) are eliminated.

Figure 2-3 demonstrates the relative development time with MRC versus ARC.
Development with ARC is faster because of reduced code.

Figure 2-3. ARC reduces development time and prevents headaches

You’ll need to ensure that ARC is enabled in the Xcode project settings, which is the
default starting with Xcode 5 (see Figure 2-4).

Automatic Reference Counting | 39

http://bit.ly/obj-c-arc

Figure 2-4. Project settings for ARC in Xcode

Working with Non-ARC Dependencies
It may be very difficult to find a dependency that does not use ARC or does not have
an alternative solution.

But if you do happen to find such a dependency, you will need to disable ARC on one
or more files.

To disable ARC, go to Targets → Build Phases → Compile Sources, select the files
where ARC must be disabled, and add the compiler flag -fno-objc-arc, as shown in
Figure 2-5.

Figure 2-5. Disabling ARC on one file

The same option can be used to create a mixed-mode class where a category can be
introduced for MRC code. The code in the category can be written in its own file and
ARC can be disabled for that file.

40 | Chapter 2: Memory Management

5 iOS Developer Library, “Transitioning to ARC Release Notes”.

Rules of ARC
ARC enforces a few rules that you must follow when writing your code. The intention
of these rules is to provide a reliable memory management model. In some cases,
they just enforce best practice, while in others they simplify the code or are direct
corollaries of you not having to work directly with memory management.5 These
rules are enforced by the compiler, resulting in a compile-time error rather than a
runtime crash. These are the compiler rules when working with ARC:

• You cannot implement or invoke retain, release, autorelease, or retainCount
methods. This restriction is not only limited to working with objects but also
with selectors. So, [obj release] or @selector(retain) are compile-time
errors.

• You can implement dealloc methods but cannot invoke them. This restriction
extends not only to other objects but also to the superclass when implementing
one. [super dealloc] is a compile-time error.
You can still use CFRetain, CFRelease, and related methods with Core Founda‐
tion–syle objects.

• You cannot use NSAllocateObject or NSDeallocateObject. Use alloc for creat‐
ing objects. The runtime takes care of deallocation.

• You cannot use object pointers in C structs.
• There is no casual casting between id and void *. If necessary, you must do an

explicit cast.
• You cannot use NSAutoreleasePool. Use anautoreleasepool block instead.
• You cannot use NSZone memory zones.
• You cannot have a property accessor name starting with new, to ensure interoper‐

ability with MRC. This is demonstrated in Example 2-11.
• Though something to avoid in general, you still can mix ARC and MRC code (we

discussed this in “Working with Non-ARC Dependencies” on page 40).

Example 2-11. Accessor name with ARC enabled

//Not allowed
@property NSString * newTitle;

//Allowed
@property (getter=getNewTitle) NSString * newTitle;

Automatic Reference Counting | 41

http://apple.co/1KfifW3

Keeping these rules in mind, we can update Example 2-5. The resultant code is shown
in Example 2-12.

Example 2-12. Updated code with ARC enabled

-(NSString *) address
{
 NSString *result = [[NSString alloc] initWithFormat:@"%@\n%@\n%@, %@",
 self.line1, self.line2, self.city, self.state];
 return result;
}

-(void) showPerson:(Person *) p
{
 NSString *paddress = [p address];

 NSLog(@"Person's Address: %@", paddress);

}

There is no need for autorelease. You cannot call autorelease or retain on the
object result.

You cannot call release on paddress.

Reference Types
ARC introduced a new reference type: weak references. Understanding the available
reference types is important to memory management. The supported types are:

Strong references
A strong reference is the default reference created. Memory referred to by a
strong reference cannot be relinquished. A strong reference increases the refer‐
ence count by 1, resulting in extension of the object’s lifetime.

Weak references
A weak reference is a special reference that does not increase the reference count
(and hence does not extend the object’s lifetime). Weak references are a very
important part of ARC-enabled Objective-C programming, as we explore later.

Other Types of References
Objective-C does not currently support other types of references. However, you may
be interested in exploring the following other types:

42 | Chapter 2: Memory Management

Soft references
A soft reference is exactly like a weak reference, except that it is less eager to
throw away the object to which it refers. An object that is only weakly reachable
will be discarded at the next garbage collection cycle, but an object that is softly
reachable will generally stick around for a while.

Phantom references
These are the weakest references in terms of strength, and are the first ones to be
cleaned up. A phantomly referenced object is similar to a dealloced object, but
without the memory actually being reclaimed.

These reference types do not have signifance in a reference count–based system. They
are more suited for a garbage collector.

Variable Qualifiers
ARC also introduced four lifetime qualifiers for variables:

__strong

This is the default qualifier and does not need explicit mention. An object is kept
in memory as long as there is a strong pointer to it. Consider it ARC’s version of
the retain call.

__weak

This indicates that the reference does not keep the referenced object alive. A
weak reference is set to nil when there are no strong references to the object.
Consider it ARC’s version of an assignment operator, except with the added
safety that the pointer is automatically set to nil when the object is dealloced.

__unsafe_unretained

This is similar to __weak except that the reference is not set to nil when there are
no strong references to the object. Consider it ARC’s version of an assignment
operator.

__autoreleasing

Used for message arguments passed by reference using id *. It is expected that
the method autorelease will have been called in the method where the argu‐
ment is passed.

The syntax for using these qualifiers is as follows:

TypeName * qualifier variable;

The code in Example 2-13 shows these qualifiers in use.

Reference Types | 43

Example 2-13. Using variable qualifiers

Person * __strong p1 = [[Person alloc] init];
Person * __weak p2 = [[Person alloc] init];
Person * __unsafe_unretained p3 = [[Person alloc] init];
Person * __autoreleasing p4 = [[Person alloc] init];

Object created has a reference count of 1 and will not be dealloced until the
point p1 is last referenced.

Object created has a reference count of 0, will be immediately dealloced and p2
will be set to nil.

Object created has a reference count of 1, will be immediately dealloced but p3
will not be set to nil.

Object created has a reference count of 1 and will be automatically released once
the method returns.

Property Qualifiers
Two new ownership qualifiers have been introduced for property declaration: strong
and weak. In addition, the semantics of the assign qualifier have been updated. In all,
there are now six qualifiers:

strong

Default, indicates a __strong relationship.

weak

Indicates a __weak relationship.

assign

This is not a new qualifier, but the meaning has now changed. Before ARC,
assign was the default ownership qualifier. With ARC enabled, assign now
implies __unsafe_unretained.

copy

Implies a __strong relationship. Additionally, it implies the usual behavior of
copy semantics on the setter.

retain

Implies a __strong relationship.

unsafe_unretained

Implies an __unsafe_unretained relationship.

44 | Chapter 2: Memory Management

http://bit.ly/nsobject-copy

Example 2-14 shows these qualifiers in action. Because assign and unsafe_unre
tained only copy over the value without any sanity check, they should only be used
for value types (BOOL, NSInteger, NSUInteger, etc.). They must be avoided for refer‐
ence types, specifically pointers such as NSString * and UIView *.

Example 2-14. Using property qualifiers

@property (nonatomic, strong) IBOutlet UILabel *titleView;
@property (nonatomic, weak) id<UIApplicationDelegate> appDelegate;
@property (nonatomic, assign) UIView *danglingReference;
@property (nonatomic, assign) BOOL selected;
@property (nonatomic, copy) NSString *name;
@property (nonatomic, retain) HPPhoto *photo;
@property (nonatomic, unsafe_unretained) UIView *danglingReference;

Wrong usage of assign with a pointer.

Correct usage of assign with a value.

retain is a relic from the pre-ARC era and is rarely used in modern code. It is
added here for completeness.

Getting Your Hands Dirty
OK, now that we have learned a bit about the new lifetime qualifiers for variables and
properties, let’s put them to use, update our project, and see the effects.

Photo Model
Let’s create a class called HPPhoto that represents a photo in an album. A photo has a
title, a url, and a list of comments. We also override the method dealloc to see
what’s going on behind the scenes.

Start by adding a new Objective-C class:

File → New → iOS → Cocoa Touch → Objective-C class

A typical declaration of the class is given in Example 2-15.

Example 2-15. Class HPPhoto

//HPPhoto.h
@interface HPPhoto : NSObject

@property (nonatomic, strong) HPAlbum *album;
@property (nonatomic, strong) NSURL *url;
@property (nonatomic, copy) NSString *title;

Getting Your Hands Dirty | 45

@property (nonatomic, strong) NSArray *comments;

@end

//HPPhoto.m
@implementation HPPhoto

-(void) dealloc
{
 DDLogVerbose(@"HPPhoto dealloc-ed");
}

@end

Storyboard Update
Add a label and four buttons to the view of the First View Controller in the story‐
board. The buttons will trigger creation of these variables while the label will be used
to display the result. The final UI should look similar to that shown in Figure 2-6.

Figure 2-6. Updated view of First View Controller

We also add appropriate IBOutlet and IBAction references in the code, as shown in
Example 2-16.

46 | Chapter 2: Memory Management

Example 2-16. Reference updates in HPFirstViewController.h

@interface HPFirstViewController : UIViewController

@property (nonatomic, strong) IBOutlet UILabel *resultLabel;

-(IBAction)createStrongPhoto:(id)sender;
-(IBAction)createStrongToWeakPhoto:(id)sender;
-(IBAction)createWeakPhoto:(id)sender;
-(IBAction)createUnsafeUnretainedPhoto:(id)sender;

@end

Method Implementations
For each method, we will do the following:

1. Create an instance of HPPhoto and assign it to a local reference.
2. Set the title of the photo.
3. In the resultLabel, display whether the reference is nil or not. If it is not nil,

display the title as well.

Let’s now look at the code for each method (Example 2-17 through Example 2-20).
The implementation is largely the same for each of them, the only difference being
the type of reference created. Note that we will not create a method to return the ref‐
erence. We explore the reference within the method where the memory was allocated
and the reference created. We also make ample use of NSLog to track the order of life‐
cycle events.

In addition, we cover a special case where a strong reference is assigned to a weak
reference in order to see what happens to the object.

The results from the code are covered in “Output Analysis” on page 49.

Example 2-17. Implementation for createStrongPhoto:

-(IBAction)createStrongPhoto:(id)sender
{
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 HPPhoto * __strong photo = [[HPPhoto alloc] init];
 DDLogDebug(@"Strong Photo: %@", photo);
 photo.title = @"Strong Photo";

 NSMutableString *ms = [[NSMutableString alloc] init];
 [ms appendString:(photo == nil ? @"Photo is nil" : @"Photo is not nil")];
 [ms appendString:@"\n"];
 if(photo != nil) {
 [ms appendString:photo.title];

Getting Your Hands Dirty | 47

 }
 self.resultLabel.text = ms;
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

Example 2-18. Implementation for createWeakPhoto:

-(IBAction)createWeakPhoto:(id)sender
{
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 HPPhoto * __weak wphoto = [[HPPhoto alloc] init];
 DDLogDebug(@"Weak Photo: %@", wphoto);
 wphoto.title = @"Weak Photo";

 NSMutableString *ms = [[NSMutableString alloc] init];
 [ms appendString:(wphoto == nil ? @"Photo is nil" : @"Photo is not nil")];
 [ms appendString:@"\n"];
 if(wphoto != nil) {
 [ms appendString:wphoto.title];
 }
 self.resultLabel.text = ms;
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

Example 2-19. Implementation for createStrongToWeakPhoto:

-(void)createStrongToWeakPhoto:(id)sender
{
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 HPPhoto * sphoto = [[HPPhoto alloc] init];
 DDLogDebug(@"Strong Photo: %@", sphoto);
 sphoto.title = @"Strong Photo, Assigned to Weak";

 HPPhoto * __weak wphoto = sphoto;
 DDLogDebug(@"Weak Photo: %@", wphoto);

 NSMutableString *ms = [[NSMutableString alloc] init];
 [ms appendString:(wphoto == nil ? @"Photo is nil" : @"Photo is not nil")];
 [ms appendString:@"\n"];
 if(wphoto != nil) {
 [ms appendString:wphoto.title];
 }
 self.resultLabel.text = ms;
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

Example 2-20. Implementation for createUnsafeUnretainedPhoto:

-(void)createUnsafeUnretainedPhoto:(id)sender
{
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);

48 | Chapter 2: Memory Management

 HPPhoto * __unsafe_unretained wphoto = [[HPPhoto alloc] init];
 DDLogDebug(@"Unsafe Unretained Photo: %@", wphoto);
 wphoto.title = @"Strong Photo";

 NSMutableString *ms = [[NSMutableString alloc] init];
 [ms appendString:(wphoto == nil ? @"Photo is nil" : @"Photo is not nil")];
 [ms appendString:@"\n"];
 if(wphoto != nil) {
 [ms appendString:wphoto.title];
 }
 self.resultLabel.text = ms;
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

Output Analysis
The output is shown in Figure 2-7.

Figure 2-7. Lifetime qualifiers for variables

It’s mostly self-explanatory, with some interesting observations:

1. A __strong reference (method createStrongPhoto:) ensures that the object is
not destroyed until it goes out of scope. The object was dealloced only after the
method completed.

2. A __weak reference (method createWeakPhoto:) does not contribute to the ref‐
erence count. Because the memory was allocated in the method and pointed to a
__weak reference, the reference count was 0 and the object was immediately deal
loced, even before it could be used in the very next statement.

Getting Your Hands Dirty | 49

3. In the method createStrongToWeakPhoto:, even though the __weak reference
does not increase the reference count, the __strong reference created earlier
ensures that the object is not released before the method ends.

4. The results of the method createUnsafeUnretainedPhoto: are more interesting.
Notice that the object was dealloced immediately, but because the memory was
still not reclaimed, the reference was usable and did not result in an error.

5. However, when we call the method again, we see not only that the object has
been dealloced but also that the memory has been reclaimed and repurposed.
As such, using the reference resulted in an illegal access, causing the app to crash
with a signal of SIGABRT. This is possible if the memory is reclaimed at a later
time (after the object deallocation but before the object access).
Looking at Figure 2-8, you will notice that the memory was reclaimed just before
the title property was set, resulting in an unrecognized selector sent to instance
error because the memory is gone and may be now used by some other object.

Figure 2-8. __unsafe_unretained crash

Zombies
Zombie objects are a debugging feature to help catch memory errors.

Normally when an object’s reference count drops to 0 it is freed immediately, but that
makes debugging difficult. If zombie objects are enabled, instead of the object’s mem‐
ory being instantly freed, it’s just marked as a zombie. Any further attempts to use it
will be logged, and you can track down where in the code the object was used past its
lifetime.

NSZombieEnabled is an environment variable that controls whether the Core Founda‐
tion runtime will use zombies. NSZombieEnabled should not be left in place perma‐
nently, as by default no objects will ever be truly deallocated, which will cause your
app to use tremendous amounts of memory. Specifically, remember to disable NSZom
bieEnabled for archived release builds.

50 | Chapter 2: Memory Management

To set the NSZombieEnabled environment variable, navigate to Product → Scheme →
Edit Scheme. Choose the Run section on the left, and the Diagnostics tab on the right.
Select the Enable Zombie Objects entry, as shown in Figure 2-9.

Figure 2-9. Xcode settings to enable zombies

Rules of Memory Management
Now that we know the details of these lifetime qualifiers, it is important to review
some basic rules of memory management.

As per Apple’s official documentation, there are four basic rules of memory manage‐
ment:

• You own any object you create, using, for example, new, alloc, copy, or mutable
Copy.

• You can take ownership of any object using retain in MRC or a __strong refer‐
ence in ARC.

• You must relinquish ownership of an owned object when you no longer need it
using release in MRC. It’s not necessary to do anything special in ARC. The

Rules of Memory Management | 51

ownership will be relinquished after the last reference to the owned object (i.e.,
the last line in a method).

• You must not relinquish ownership of any object that you do not own.

To help avoid memory leaks or app crashes, you should keep these rules handy when
writing Objective-C code.

Retain Cycles
One of the biggest gotchas with reference counting is that it cannot handle cyclic ref‐
erences, or what are known as retain cycles in Objective-C. In this section, we look at
common scenarios where retain cycles may be introduced and best practices to avoid
them.

If you closely look at the rules described in the previous section, you’ll see that they
are nothing more than the implementation of reference counting. A claim of owner‐
ship increments the reference count, whereas relinquishing ownership decrements
the reference count. When the reference count goes down to zero, the object is deal
loced and the memory is released.

In our app, the HPAlbum entity may have a coverPhoto and an array of photos to rep‐
resent the album’s cover photo and other photos associated with it. Similarly, HPPhoto
may represent a photo that belongs to an album, apart from having other attributes
(e.g., the URL, title, comments, etc.). Example 2-21 shows representative code for the
entity definitions.

Example 2-21. Retain cycle

@class HPPhoto;

@interface HPAlbum : NSObject

@property (nonatomic, copy) NSString *name;
@property (nonatomic, strong) NSDate *creationTime;
@property (nonatomic, copy) HPPhoto *coverPhoto;
@property (nonatomic, copy) NSArray *photos;

@end

@interface HPPhoto : NSObject

@property (nonatomic, strong) HPAlbum *album;
@property (nonatomic, strong) NSURL *url;
@property (nonatomic, copy) NSString *title;
@property (nonatomic, copy) NSArray *comments;

52 | Chapter 2: Memory Management

@end

HPAlbum has a strong reference to the coverPhoto, of the type HPPhoto.

It also has references to several other HPPhoto objects within the photos array.

HPPhoto has a strong reference to the album to which it belongs.

Let’s take a simple scenario of one album with two photos: p1 (the cover photo) and
p2. The reference count is as follows:

• p1 has strong references in photos and coverPhoto. The reference count is 2.
• p2 has a strong reference in photos. The reference count is 1.
• album has strong references in both p1 and p2. The reference count is 2.

We discussed strong references earlier, in “Reference Types” on page 42.

To start with, let’s also say that these objects are created in some method named crea
teAlbum. Even if the objects are never used after a certain point, the memory will not
be released because the reference count never goes down to 0. Figure 2-10 demon‐
strates this relationship.

Figure 2-10. Album and photo references

Rules to Avoid Retain Cycles
The previous section demonstrated where retain cycles may be introduced. In this
section, we review the rules for writing code that avoids retain cycles:

• An object should not have a strong reference to (retain) its parent. Use weak ref‐
erences to refer to the parent (see “Reference Types” on page 42).
In the previous scenario, a photo is contained in an album, and we can consider
the photo as the child. As such, the reference from a photo to its album should be
weak. A weak reference does not contribute toward reference count.
The updated reference count becomes:

Retain Cycles | 53

1. p1 has strong references in photos and coverPhoto. The reference count is 2.
2. p2 has a strong reference in photos. The reference count is 1.
3. album does not have any strong references. The reference count is 0.

As such, when the album object is no longer used, it is dealloced. Once the
album is freed, the reference counts of p1 and p2 drop to 0 and they are deal
loced.

• As a corollary, a hierarchical child object should retain an ancestor.
• Connection objects should not retain their target. The target should be regarded

as the owner. Connection objects include:

1. Objects that use delegates. The delegate should be considered to be the target,
and hence, the owner.

2. As a corollary of the previous guideline, objects with a target and an action. An
example would be a UIButton; it invokes the action method on its target. The
button should not retain its target.

3. Observed items in the observer pattern. The observer is the owner and
observes changes on the observed item.

• Use definitive destroy methods to terminate the cycles.
In the case of a doubly linked list, there will be retain cycles by definition. Simi‐
larly, retain cycles will exist in a circular linked list.
In such cases, when you know that the object will never be used (when the head
of the list is about to go out of scope), write code to break the links in the list.
Create a method (say, delink) that unlinks itself from the next item in the list. Do
this recursively using a visitor pattern to avoid infinite recursion.

Common Scenarios for Retain Cycles
There are more than a handful of common scenarios that can result in retain cycles.
For example, using threads, timers, simple blocks, or delegates might result in retain
cycles. Let’s explore each of these scenarios and the steps that need to be taken to pre‐
vent the retain cycles.

Delegates
Delegates are probably the most common place for introducing retain cycles. At app
start, it’s common to retrieve the latest data from the server and update the UI. A sim‐
ilar refresh may be triggered when, for example, the user taps the refresh button.

54 | Chapter 2: Memory Management

Consider this specific scenario: a view controller that shows a list of records and has a
refresh button that refreshes the list upon tap.

For the implementation, let there be two classes: HPDataListViewController for the
UI and HPDataUpdateOp to simulate the network call. Example 2-22 shows the code
for the view controller, and Example 2-23 shows the code for the update operation.

Example 2-22. App refresh invocation

//HPDataListViewController.h
@interface HPDataListViewController : UIViewController

@property (nonatomic, strong) HPDataUpdateOp *updateOp;
@property (nonatomic, strong) BOOL refreshing;

- (IBAction)onRefreshClick:(id)sender;

@end

//HPDataListViewController.m
@implementation HPDataListViewController

//Code of viewDidLoad omitted for brevity

- (IBAction)onRefreshClicked:(id)sender {
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 if([self.refreshing == NO]) {
 self.refreshing = YES;
 if(self.updateOp == nil) {
 [self.updateOp = [[HPDataUpdateOp new];
 }
 [self.updateOp startWithDelegate:self
 withSelector:@selector(onDataAvailable:)];
 }
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

- (void)onDataAvailable:(NSArray *)records {
 //Update UI using latest records
 self.refreshing = NO;
 self.updateOp = nil;
}

@end

HPDataListViewController shows data in a list.

updateOp is the network operation that fetches the records.

The method called when the user taps the refreshButton.

Retain Cycles | 55

Log to monitor the execution sequence.

The updateOp method can invoke a callback when the results are available.

onDataAvailable is the callback method. It updates the view controller state
and UI.

Example 2-23. Update operation

//HPDataUpdateOp.m
@implementation HPDataUpdateOp

-(void)startWithDelegate:(id)delegate withSelector:(SEL)selector {
 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 //perform some operation
 dispatch_async(dispatch_get_main_queue(), ^{
 if([delegate respondsToSelector:selector]) {
 [delegate performSelector:selector
 withObject:[NSArray arrayWithObjects:nil];
 }
 });
 });
}

-(void)dealloc {
 DDLogDebug(@"%s called", __PRETTY_FUNCTION__);
}

@end

All long-running tasks should be done outside of the main thread.

Let’s say it took 2 seconds for the operation.

Once results are available, switch the context back to the main thread, and…

… invoke the selector.

If you look at the method onRefreshClicked, it passes self to updateOp. At the same
time, HPDataListViewController holds a reference to updateOp. This is where the
cyclic reference is created.

For the solution, one option is to not have updateOp as a property but instead to cre‐
ate an instance of HPDataUpdateOp in the onRefreshClicked: method, so that upda
teOp holds a reference to the HPDataListViewController object, but not vice versa.
The updated code is shown in Example 2-24.

56 | Chapter 2: Memory Management

Example 2-24. App refresh without property

- (IBAction)onRefreshClicked:(id)sender {
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 if(self.refreshing == NO) {
 self.refreshing = YES;
 HPDataUpdateOp *updateOp = [[HPDataUpdateOp new];
 [updateOp startWithDelegate:self withSelector:@selector(onDataAvailable:)];
 }
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

Create a local variable so that it is not retained.

This does solve the problem of introducing a retain cycle, but it presents another
problem. The updateOp object is never referenced elsewhere, and as a result, the
moment control exits the onRefreshClicked: method, its reference count goes down
to 0 and it may be dealloced immediately. The output is shown in Figure 2-11.

Figure 2-11. Result using local variable

HPDataUpdateOp, as demonstrated here, is simplistic. Typically, the app will have a
network queue on which the update operation will be queued for execution. And it is
possible that by the time the operation is complete, the user may have moved to a dif‐
ferent view controller. If that is the case, ideally the view controller should be deal
loced immediately, but because it is being used by the operation, it will not be. Now
imagine this being true for several view controllers being retained by these operations
on the queue. This does not create retain cycles, but does increase peak memory
requirements. And this is also a definite bug, because if there is no view controller,
the operation should ideally release the object.

So, strictly speaking, this doesn’t work either. What’s the cause? The issue is the strong
reference to the HPDataListViewController object being held by the HPDataUpda
teOp. But it cannot be weak either, because then there may be no link between these
objects at all.

The solution is to have a strong reference to the operation in the delegate (which is
the view controller in our case) and a weak reference to the delegate in the operation.

Retain Cycles | 57

When the operation is ready to invoke the callback method, it should get the strong
reference to the delegate.

Additionally, we should introduce a cancel method in HPDataUpdateOp that can be
called when the view controller is about to be dealloced. Example 2-25 shows the
updated code to this effect.

Example 2-25. Final HPDataListViewController and HPDataUpdateOp

//HPDataListViewController
-(IBAction)onRefreshClicked:(id)sender {
 DDLogDebug(@"%s enter", __PRETTY_FUNCTION__);
 self.updateOp = [[HPDataUpdateOp new];
 [self.updateOp startUsingDelegate:self
 withSelector:@selector(onDataAvailable:)];
 DDLogDebug(@"%s exit", __PRETTY_FUNCTION__);
}

-(void)onDataAvailable:(NSArray *)records {
 DDLogDebug(@"%s called", __PRETTY_FUNCTION__);
 self.resultLabel.text = @"[- onDataAvailable] called";
 self.updateOp = nil;
}

-(void)dealloc {
 DDLogDebug(@"%s called", __PRETTY_FUNCTION__);
 if(self.updateOp != nil) {
 [self.updateOp cancel];
 }
}

//HPDataUpdateOp.h
@protocol HPDataUpdateOpDelegate <NSObject>

-(void)onDataAvailable:(NSArray *)records;

@end

@interface HPDataUpdateOp

@property (nonatomic, weak) id<HPDataUpdateOpDelegate> delegate;

-(void)startUpdate;
-(void)cancel;

@end

//HPDataUpdateOp.m
@implementation HPDataUpdateOp
-(void)startUpdate {
 dispatch_async(

58 | Chapter 2: Memory Management

 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 //perform network call, and then report the result
 //NSArray *records = ...
 dispatch_async(dispatch_get_main_queue(), ^{
 id<HPDataUpdateOpDelegate> delegate = self.delegate;
 if(!delegate) {
 return;
 } else {
 [delegate onDataAvailable:records];
 }
 });
 });
}

-(void)cancel {
 //cancel inflight network request
 self.delegate = nil;
}

Use property for the operation. Operation is owned by the view controller.

Set property to nil once job is done. Enables deallocation of the operation object.

Cancel operation if view controller is about to be dealloced.

Operation keeps a weak reference to the callback delegate.

Try to get a strong reference for the delegate.

If the original object is still around…

… use that to report onDataAvailable.

The cancel operation explicitly calls for the callback objects to be dereferenced.

In essence, we implemented the first rule of “Rules to Avoid Retain Cycles” on page
53. HPDataListViewController is the owner, while HPDataUpdateOp is the object
owned (i.e., the child in the ownership hierarchy).

Figure 2-12 shows the result when the response is ready before the user navigates
back. Figure 2-13 shows the output when the user navigates back before the response
is available.

Retain Cycles | 59

Figure 2-12. Result using updated code with view controller available after operation
completes

Figure 2-13. Result using updated code with view controller deallocated before operation
completes

Although this might seem straightforward, it becomes more complicated as the exe‐
cution goes through various layers and results in a complex object graph. It is very
important to ensure that you do not retain the references in the lowest layers of net‐
working, database, and storage that are used by the higher layers of the user interface
(i.e., the layers whose usage creates objects).

Blocks
Similar to the problem that arises out of improper use of delegate objects is that of
capturing outer variables when using blocks.

Consider the simple code in Example 2-26.

Example 2-26. Variable capturing using blocks

-(void)someMethod {
 SomeViewController *vc = [[SomeViewController alloc] init];
 [self presentViewController:vc animated:YES
 completion:^{
 self.data = vc.data;
 [self dismissViewControllerAnimated:YES completion:nil];
 }];
}

60 | Chapter 2: Memory Management

Unfortunately, this again results in long-lived objects—the child view controller will
not die off because it is shown to the user, and the parent view controller will not
clean up because it is captured in the completion block. In a scenario where SomeView
Controller may perform long-running tasks such as image processing or complex
view rendering, with the parent view controller memory not cleared, the application
may run the risk of low memory.

The solution, shown in Example 2-27, is similar to what we discussed in the previous
section.

Example 2-27. Variable capturing using blocks

-(void)someMethod {
 SomeViewController *vc = [[SomeViewController alloc] init];

 __weak typeof(self) weakSelf = self;

 [self presentViewController:vc animated:YES
 completion:^{
 typeof(self) theSelf = weakSelf;

 if(theSelf != nil) {
 theSelf.data = vc.data;
 [theSelf dismissViewControllerAnimated:YES completion:nil];
 }
 }];
}

Grab a weak reference.

Grab the strong reference from the weak. Note that __strong is implicit. It
increases the reference count…

…but only if it was not already nil. If so…

…proceed with subsequent operations.

Threads and timers

Inappropriate use of NSThread and NSTimer objects can also result in retain cycles.
Some common ways of running async operations include the following:

• Using dispatch_async on the global queue, unless you write advanced code to
manage custom queues

• Using NSThread to spin off async executions whenever and wherever you want

Retain Cycles | 61

• Using NSTimer to execute a piece of code periodically

Consider a news app with a UI that shows the newsfeed of the logged-in user and
autorefreshes it every 2 minutes.

Example 2-28 presents some commonly used code for performing a periodic update.

Example 2-28. Using NSTimer

@implementation HPNewsFeedViewController

-(void)startCountdown {
 self.timer = [NSTimer scheduledTimerWithTimeInterval:120
 target:self
 selector:@selector(updateFeed:)
 userInfo:nil repeats:YES];
}

-(void)dealloc {
 [self.timer invalidate];
}

@end

The retain cycle in Example 2-28 is obvious—the object retains the timer and the
timer retains the object. Similar to the case of Example 2-22, we cannot solve the
problem by not having a property. In fact, we will need the property so that it can be
invalidated later.

For our code, the run loop will also retain the timer and will not release it until
invalidate is called.

This creates a secondary retained reference to the timer object, resulting in a retain
cycle even without an explicit reference in our code.

NSTimer objects result in indirect references held by the runtime.
These are strong references, resulting in the reference count of the
target going up not by 1 but by 2. You must invalidate the timer
to remove the reference.

For a moment, assume that the code in Example 2-28 belongs to a view controller and
the view controller is created several times in the app because of user interaction.
Imagine the amount of memory leaked.

And don’t get excited if you use NSThread. Exactly the same problem happens here as
well. There are two solutions to the problem:

62 | Chapter 2: Memory Management

http://bit.ly/objc-run-loop

• Include a deterministic call to invalidate.
• Split the code into separate classes.

Let’s explore both.

Do not rely on dealloc to clean up these objects. Why? If a retain cycle has been
established, dealloc will never be called and the timers will never be invalidated.
Because the run loop keeps track of live timers and threads, they are never destroyed
by just niling their references in the code. To solve this, you can create a custom
method that will perform this cleanup in a more deterministic manner.

For the case of a view controller, a good place to call this method is when the user
moves away from the view controller, either by pressing the Back button or by taking
any other action (the point is that the class knows when this happens). Let’s call this
method cleanup. An implementation is provided in Example 2-29.

Example 2-29. Cleaning up NSTimer

-(void)didMoveToParentViewController:(UIViewController *) parent {
 if(parent == nil) {
 [self cleanup];
 }
}

-(void)cleanup {
 [self.timer invalidate];
}

didMoveToParentViewController is called whenever the view controller moves
into or out of the parent view controller.

In Example 2-29, we do the cleanup when the user navigates out from this view con‐
troller into its parent by overriding the didMoveToParentViewController: method.
This call is far more deterministic than the dealloc call.

The other way out is to change the target of the Back button, as shown in
Example 2-30.

Example 2-30. Cleaning up by intercepting the Back button

-(id)init {
 if(self = [super init]) {
 self.navigationItem.backBarButtonItem.target = self;
 self.navigationItem.backBarButtonItem.action
 = @selector(backButtonPressDetected:);
 }
 return self;

Retain Cycles | 63

}

-(void)backButtonPressDetected:(id)sender {
 [self cleanup];
 [self.navigationController popViewControllerAnimated:TRUE];
}

Intercept the Back button press of the navigation controller.

Clean up before popping up the view controller.

The next, cleaner option is to split the task ownership into multiple classes—a task
class that actually performs the action, and the owner class that executes the task.

The latter option is preferred because:

• It is cleaner and has well-defined ownership of responsibilities.
• The task can be reused across multiple owners whenever needed.

We can break the previous code into two classes: HPNewsFeedViewController shows
the latest feed, and HPNewsFeedUpdateTask runs periodically and checks for the latest
feed that is fed into the view controller.

To this effect, the refactored code will now be as shown in Example 2-31.

Example 2-31. Refactored code for using timers

//HPNewsFeedUpdateTask.h
@interface HPNewsFeedUpdateTask

@property (nonatomic, weak) id target;
@property (nonatomic, assign) SEL selector;

@end

//HPNewsFeedUpdateTask.m
@implementation HPNewsFeedUpdateTask

-(void)initWithTimeInterval:(NSTimeInterval)interval
 target:(id)target selector:(SEL)selector {

 if(self = [super init]) {
 self.target = target;
 self.selector = selector;

 self.timer = [NSTimer scheduledTimerWithTimeInterval:interval
 target:self selector:@selector(fetchAndUpdate:)
 userInfo:nil repeats:YES];
 }

64 | Chapter 2: Memory Management

 return self;
}

-(void)fetchAndUpdate:(NSTimer *)timer {
 //Retrieve feed
 HPNewsFeed *feed = [self getFromServerAndCreateModel];
 __weak typeof(self) weakSelf = self;

 dispatch_async(dispatch_get_main_queue(), ^{
 __strong typeof(self) sself = weakSelf;
 if(!sself) {
 return;
 }

 if(sself.target == nil) {
 return;
 }

 id target = sself.target;
 SEL selector = sself.selector;

 if([target respondsToSelector:selector]) {
 [target performSelector:selector withObject:feed];
 }
 });
}

-(void)shutdown {
 [self.timer invalidate];
 self.timer = nil;
}
@end

//HPNewsFeedViewController.m
@implement HPNewsFeedViewController

-(void)viewDidLoad {
 self.updateTask = [HPNewsFeedUpdateTask initWithTimeInterval:120
 target:self selector:@selector(updateUsingFeed:)];
}

-(void)updateUsingFeed:(HPNewsFeed *)feed {
 //update the UI
}

-(void)dealloc {
 [self.updateTask shutdown];
}
@end

Let’s take a look at a detailed analysis of HPNewsFeedUpdateTask:

Retain Cycles | 65

1. The target property is weakly referenced. It is the target that instantiates the
task here and owns it.

2. initWithTimeInterval: is the preferred method to be used. It takes the neces‐
sary inputs and starts the timer.

3. The fetchAndUpdate: method is executed periodically.
4. When using async blocks, we must ensure that we do not introduce a retain

cycle. We have a __weak reference to be used inside the block.
5. In the method fetchAndUpdate: , the local variables for the target and the

selector are created before calling respondsToSelector: and performing the
operation.
This is done to avoid a race condition arising during the following possible
sequence of execution:
a. Invoking [target respondsToSelector:selector] in some thread A.
b. Changing either target or selector in some thread B.
c. Invoking [target performSelector:selector withObject:feed] in thread

A. With this code, even if either target or selector is changed, performSe
lector will be called on the correct target and selector.

6. The shutdown method invalidates the timer. The run loop deferences it,
resulting in it being the only reference held by the task object.

On the usage side, HPNewsFeedViewController uses HPNewsFeedUpdateTask. The
controller is not referenced by any object other than its parent controller. So, when
the user navigates out of the controller (say, when the Back button is pressed), the ref‐
erence count goes down to zero and it is dealloced. This in turn causes the update
task to be shut down, which causes the timer to be invalidated, triggering the deal
loc chain across all the associated objects (including the timer and the updateTask).

Let’s now look at an analysis of the HPNewsFeedViewController code in
Example 2-31:

1. In the viewDidLoad method , the task is initialized, which internally triggers the
timer.

2. The updateUsingFeed: method is the callback invoked periodically by the
HPNewsFeedUpdateTask object.

3. dealloc is responsible for invoking the shutdown method on the task, which
internally invalidates the timer. Note that dealloc is deterministic here because
the object is not referenced anywhere else.

66 | Chapter 2: Memory Management

When using NSTimer and NSThread, always use a layer of indirec‐
tion with deterministic invalidation. The indirection layer ensures
a weak link, causing the owner object to be dealloced when not
used in the app.

Observers
Apart from using delegates and callbacks for subscribing to changes for more com‐
plex data, there are two built-in options available for listening to changes in the sys‐
tem. They are termed built-in because the observee does not keep track of observers
by writing any custom code—the runtime provides support to manage them. These
options are:

• Key-value observing
• The notification center

Key-value observing

Objective-C allows adding observers on any NSObject subclassed object using the
method addObserver:forKeyPath:options:context:. The observer gets a notifica‐
tion in the method observeValueForKeyPath:ofObject:change:context:. The
method removeObserver:forKeyPath:context: can be used to unregister or remove
the observer. This is known as key-value observing (KVO).

This is an extremely useful feature, especially for the purposes of debugging, to keep
track of an object that may be shared across various sections of your app (e.g., user
interface, business logic, persistence, and networking).

An example of such an object may be a custom class that keeps the details of the cur‐
rent state of the app—for example, whether the identity of the user is logged in or not,
the user that is logged in, items in the shopping cart in an ecommerce app, or the user
to whom the last message was sent in a messaging app. For debugging, you may add
an observer to this object to keep track of any changes or updates.

KVO is also useful in bidirectional data binding. The views allow attaching delegates
to respond to user interactions that can result in model updates. KVO can be used for
the reverse binding to update the UI whenever the model is updated.

From the official documentation:

The key-value observing addObserver:forKeyPath:options:context: method does
not maintain strong references to the observing object, the observed objects, or the
context. You should ensure that you maintain strong references to the observing, and
observed, objects, and the context as necessary.

Retain Cycles | 67

http://apple.co/1IBd0lC

This means that the observer must live long enough to continue to monitor the
changes. You should take extra care in deciding where you would like the observer to
be dereferenced last for memory relinquishment.

Example 2-32 implements KVO using a central ObserverManager class that returns
an ObserverObserveeHandle that can be referred to by the owner. When the observa‐
tion initiator (the view controller in the example) needs to observe a keyPath, it
invokes the addObserverToObject:forKey: method and stores the ObserverObser
veeHandle, which is dealloced when the view controller is. The handle removes the
observer during deallocation.

Essentially, we are trying to solve a similar problem of reference routing as that
encountered in the case of NSTimer. However, there is a weak reference established,
and as such the observer may be dealloced prematurely if not handled appropriately.

Example 2-32. Key-value observer

@interface ObserverObserveeHandle

@property (nonatomic, strong) MyObserver *observer;
@property (nonatomic, strong) NSObject *obj;
@property (nonatomic, copy) NSString *keyPath;

-(id)initWithObserver:(MyObserver *)observer
 target:(NSObject *)obj
 keyPath:(NSString *)keyPath;

@end

@implementation ObserverObserveeHandle

-(id)initWithObserver:(MyObserver *)observer
 target:(NSObject *)obj
 keyPath:(NSString *)keyPath {
 //Omitted for brevity
}

-(void)removeObserver {
 [self.obj removeObserver:self forKeyPath:self.keyPath context:nil];
 self.obj = nil;
}

-(void)dealloc {
 [self removeObserver];
}
@end

@interface ObserverManager
//Omitted for brevity

68 | Chapter 2: Memory Management

@end

@implementation ObserverManager
NSMutableArray *observers;

+(ObserverObserveeHandle)addObserverToObject:(NSObject *)obj
 forKey:(NSString *)keyPath {
 MyObserver *observer = [[MyObserver alloc] init];
 [obj addObserver:observer forKeyPath:keyPath
 options:(NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld)
 context:NULL];

 ObserverObserveeHandle *details = [[ObserverObserveeHandle alloc]
 initWithObserver:observer target:obj keyPath:keyPath];
 [observers addObject:details];

 return details;
}

@interface SomeViewController

@property (nonatomic, strong) IBOutlet UILabel *resultLabel;
@property (nonatomic, strong) ObserverObserveeHandle *resultLabelMonitor;

@end

@implementation SomeViewController

-(void)viewDidLoad {
 self.resultLabelMonitor = [ObserverManager
 addObserverToObject:self.nameTextField
 forKey:@"text"];
}

@end

Whenever you add a key-value observer to a target, the target must
have a life at least as long as that of the observer because it should
be possible to remove the observer from the target. This can result
in the target having a longer life than originally intended, and is
something to watch out for.

Example 2-32 seems to provide a great solution because it takes away the burden of
cleanup by utilizing well-written code that is bound not to fail. There is, however, still
a gotcha. The catch with this code is that for all notifications to the observer, the exact
same piece of code executes (i.e., the code defined in the MyObserver class).

Retain Cycles | 69

How can we solve this problem? Think about it. Hint: use blocks. And in the block, if
you need to invoke a method that uses self, do not forget to create a weak reference
to self before referring to it internally in the block.

As such, the code for registering the observer may be updated to that shown in
Example 2-33.

Example 2-33. Key-value observer with block

@implementation SomeViewController

-(void)viewDidLoad
{
 __weak typeof(self) weakSelf = self;
 self.resultLabelMonitor = [ObserverManager
 addObserverToObject:self.nameTextField
 forKey:@"text" block:^(NSDictionary *changes) {

 typeof(self) sSelf = weakSelf;
 if(sself) {
 NSLog(@"Text changed to %@",
 [changes objectForKey:NSKeyValueChangeNewKey]);

 //use sSelf if need be
 sSelf.resultLabel.text = @"Name changed";
 }
 }];
}

@end

Notification center
The second option is to use the notification center. An object can register as an
observer with the notification center (an NSNotificationCenter object) and receive
NSNotification objects. Similar to the key-value observer, the notification center
does not keep a strong reference to the observer. This means that we are not responsi‐
ble for ensuring that the observer is not dealloced earlier or later than intended.

The solution pattern is similar to what we discussed in the previous subsection.

Returning Errors
When working with methods that take NSError ** parameters and fill in the error
variable if there is one, always use the __autoreleasing qualifier. The most common
place to use this pattern is when you need to process an input and return a value with
a possibility of error.

A typical method will have a signature similar to that shown in Example 2-34.

70 | Chapter 2: Memory Management

6 iOS 9 introduces lightweight generics for Objective-C collections for interoperability with Swift. See iOS
Developer Library, “Lightweight Generics”.

Example 2-34. Returning errors

-(Matrix *)transposeMatrix:(Matrix *)matrix error:(NSError * __autoreleasing *) error
{
 //process
 //if error
 *error = [[NSError alloc] initWithDomain:@"transpose" code:123 userInfo:nil];
}

Pay close attention to the syntax. The keyword __autoreleasing is squeezed between
the two asterisks. Always remember this:

NSError * __autoreleasing *error;

As you will notice, the variable and property qualifiers play an important role in help‐
ing with the life cycle management of an object and ensuring the object’s precise life‐
time—neither too short nor too long. Whenever in doubt, go back to the drawing
board, get back to the basics, and define your properties and variables accordingly. At
times, you may need to create properties with strong references and lengthen the life,
while at other times you may need to use weak references and ensure appropriate
memory usage and no memory leaks.

Weak Type: id
There are several cases where we use the type id. It is not uncommon to see this used
in the Cocoa framework itself. For example, in the Xcode-generated code, the IBAc
tion methods have a parameter of type id to denote the sender.

Another scenario is working with objects in an NSArray.6 Consider the code in
Example 2-35.

Example 2-35. Using an object in an NSArray

@interface HPDataListViewController
 : UITableViewController <UITableViewDataSource, UITableViewDelegate>

@property (nonatomic, copy) NSArray *input;

@end

@implementation HPDataListViewController

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

Weak Type: id | 71

http://apple.co/1Otxtuh

{
 NSUInteger value = [self.input objectAtIndex:indexPath.row].someProperty;
 //proceed
}

@end

In the method tableView:didSelectRowAtIndexPath:, we expect the array input to
consist of objects of some type—let’s call it ClassX—that has a property someProp
erty.

This code looks great, and if you try it out, you will most likely get the correct result.
We know that as long as the object at the corresponding index responds to the some
Property selector, this code will work as intended. But if the object does not respond
to the selector it may result in an app crash.

It is assumed that the compiler does not need to know the type information, because
the runtime will know which object and method to invoke. But the fact is that the
compiler does require a fair bit of detail—specifically, it must know the sizes of all the
parameters and the type of the return value so that it can have correct instruction sets
for pushing and popping the values on to and off of the stack. For example, if the
method takes two parameters of type int, 8 bytes need to be pushed to the stack.

Normally, we do not need to take any steps for this to happen, though. The compiler
obtains the parameter information by looking at the name of the method we are try‐
ing to invoke, searching through the included headers for methods matching the
invoked method name, and then getting the parameter lengths from the first match‐
ing method it finds.

The good part is that this works most of the time. It fails when there are multiple
classes that have exactly the same method signature (i.e., name and parameters).

Consider a scenario in which, at compile time, the compiler zeros in not on the
ClassX class but say, for example, the ClassY object. The method may not return an
NSUInteger, but maybe an NSInteger or even an NSString. In another scenario
where we expect an NSUInteger, it may return a reference to an object that we are
supposed to invalidate or cleanup ourselves (e.g., CGColor or CGContext), resulting
in a memory leak.

Solution to the Problem
Why does the type mismatch happen? How can the compiler be so naïve? It does the
hard work of resolving the object for the message to be sent. The compiler is respon‐
sible for generating accurate instructions (i.e., the correct values to pass to the
objc_msgSend method).

72 | Chapter 2: Memory Management

Fortunately, it is not hard to solve the problem of incorrect type matching by the
compiler. There are two parts to the solution.

First, we must configure the compiler to report an error if it finds multiple matches
for selectors on id objects. This is controlled by the Strict Selector Matching setting,
which is turned off by default. It corresponds to the -Wstrict-selector-match flag
passed to the compiler. Turn it on to generate warnings when the compiler finds two
selectors that have different parameter or return types.

Figure 2-14 shows the project settings in Xcode.

Figure 2-14. Xcode settings for strict selector matching

There are a few issues related to the use of this option:

• Built-in frameworks will result in several warnings, even though the majority of
them will never cause you any trouble.

• You will still not be able to catch issues when working with a class rather than an
object.

• It will not help if you did not import the header with the correct definition.

That brings us to the second part of the solution: give enough information to the
compiler to generate messages against correct types. You can do that by using a
strong type (ClassX in our case). Example 2-36 shows the changes to be made to the
code.

Example 2-36. Using strong types

-(void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{
 ClassX *item = (ClassX *) [self.input objectAtIndex:indexPath.row];
 NSUInteger value = item.someProperty;
 //Proceed
}

Weak Type: id | 73

In a nutshell, when working with methods that are commonly named, be sure to
avoid using id. Use a specific class instead.

Object Longevity and Leaks
The longer the objects live in memory, the higher are the chances of memory never
being cleaned up. Avoid long-lived objects as much as possible. Of course, you will
need references to key operations all over your code, and you will not want to waste
time re-creating them each time. Due diligence must be done on their usage.

One of the most common scenarios of long-lived objects is singletons. Loggers are a
good example of this—they are created once but never destroyed. We discuss these
kinds of scenarios in depth in the next section.

Another scenario is using global variables. Global variables are dreaded in program‐
ming.

For a variable to qualify as global, it must meet the following
criteria:

• It is not owned by another object.
• It is not a constant.
• There is exactly one in the entire app, not just per app

component.

If a variable does not meet these requirements, it should not be
made into a global variable.

Complex object graphs provide fewer opportunities for reclaiming memory, and
hence increase the risk of crashes due to memory exhaustion. App responsiveness can
suffer if the main execution thread is forced to wait for subthread operations such as
network or database access.

Singletons
The singleton pattern is a design pattern that restricts the instantiation of a class to
one object. In practice, the instantiation occurs near the start of the app and the
object never dies.

Having an object that has a very long life compared to the overall life of the app is
never a good idea. And if the object becomes the source of other objects (more like a
service locator), there is risk of memory buildup if the locator is not correctly imple‐
mented.

74 | Chapter 2: Memory Management

Singletons are necessary—there is no doubt about it. But how they are implemented
plays an important role in determining how they will be used.

Before we fully discuss the problems that singletons introduce, let’s take a step back to
better understand what singletons are and why we really need them.

Singletons are useful when exactly one object is needed to coordinate actions across
the system. We need singletons in several scenarios:

• Queuing operations (e.g., logging and instrumentation)
• Shared resource access (e.g., cache)
• Pooling constrained resources (e.g., thread pool or connection pool)

Singletons, once built up and ready to use, continue to live until the app is shut down.
Loggers, instrumentation services, and the cache are good examples of singletons.

More importantly, these singletons are generally initialized at app startup, as other
components that intend to use them get them ready. This increases the app load time.

What is the way out? There is no one solution that can be used. The memory con‐
straints become visible as you start integrating more and more off-the-shelf solutions,
especially if you do not have their source code.

Here are some guidelines that you can use:

• Avoid singletons as much as possible.
• Identify the sections that need memory—for example, an in-memory-buffer for

instrumentation (used before flushing to the server).
Look for ways to minimize the memory overhead. Note that you will have to
trade off with something else. If you keep the buffer smaller, you will have to
make more frequent server trips.

• Avoid object-level properties as much as possible, as they will stay with the object
forever. Try to use local variables.

Dependency Injection
Singletons may not be avoidable, but it is at least possible to avoid using them directly.

You should avoid writing code like that shown in Example 2-37.

Example 2-37. Improper use of dependencies

-(void)someMethod {

 XXSomeClass *obj = [XXSomeClass sharedInstance];
 NSString *someValue = [obj operation:@"some parameter"];

Singletons | 75

 //proceed
}

someMethod uses XXSomeClass for the operation method.

In Example 2-37, someMethod depends on an external class XXSomeClass that it does
not control to manage app settings. It works great, but it poses a few problems:

• If the class XXSomeClass needs some initialization, someMethod assumes that it is
already done. However, the fact that it uses XXSomeClass is not known to the
upstream methods using someMethod, which may leave XXSomeClass uninitial‐
ized.

• If the class XXSomeClass holds on to some resources, it will continue to do so
even when the sharedInstance is no longer used anywhere else.

To avoid such pitfalls, use dependency injection (DI), which in essence is about pass‐
ing down the dependencies wherever needed. Depending on the scope of the depend‐
ency, it can be injected using a custom initializer or by invoking a method.

If the dependency object is used in several places in the dependent class, the best
place to inject is a custom initializer. If it is required in only a couple of operations
and it is OK to possibly provide different instances for the operations, inject per-
method.

The updated code in Example 2-38 illustrates both options for injecting the depen‐
dencies: it uses Typhoon and Objection, two popular and actively developed DI
frameworks.

Example 2-38. Updated code using dependency injection

@interface MyClass

-(instancetype)initWithSomeClass:(XXSomeClass *)someClass;

-(void)someMethod;

-(void)anotherMethodWithAnotherClass:(AnotherClass *)anotherClass;

@end

@interface MyClass ()

@property (nonatomic, strong) XXSomeClass *someClass;

@end

@implementation MyClass

-(instancetype)initWithSomeClass:(XXSomeClass *)someClass {
 if(self = [super init]) {

76 | Chapter 2: Memory Management

http://typhoonframework.org
http://objection-framework.org

 self.someClass = someClass;
 }
 return self;
}

-(void)someMethod {
 NSString *someValue = [self.someClass operation:@"some parameter"];
 //proceed
}

-(void)anotherMethodWithAnotherClass:(AnotherClass *)anotherClass {
 NSString *someValue = [self.someClass operation:@"some parameter"];
 NSString *anotherValue = [anotherClass anotherOp:@"another parameter"];
 //proceed
}

@end

Custom initializer that requires an XXSomeClass object to be passed.

anotherMethodWithAnotherClass uses the AnotherClass object, and requires it
to be passed as a parameter.

someMethod now uses the property someClass to invoke the method operation.

anotherMethodWithAnotherClass can now use someClass as well as another
object of type AnotherClass to complete its task.

Finding Mystery Retains
A class may have been well designed, and the objects well retained, and there may or
may not be memory leaks. It may, however, be a good idea to be able to get the refer‐
ence graph. This brings us to the question, is it possible to find all the retains on an
object?

The answer lies in the pre-ARC method retain. All we have to do is get the count of
the method invocation. ARC does not allow you to override or call it, but you can
temporarily disable ARC for the project (see Figure 2-15 for the details).

Finding Mystery Retains | 77

Figure 2-15. Disabling ARC in a project

Then, add the code given in Example 2-39 to all your custom classes. The code not
only logs the call to the retain method but also prints the call stack so that you can
get details of where exactly it has been invoked, and not only how many times.

Example 2-39. Use retain to get the reference count

#if !__has_feature(objc_arc)
-(id) retain
{
 DDLogInfo(@"%s %@", __PRETTY_FUNCTION__, [NSThread callStackSymbols]);
 return [super retain];
}
#endif

Best Practices
By following these best practices, you will largely avoid any trouble with memory
leaks, retain cycles, and large memory requirements (you may want to print out a
copy of this section to hang in your workstation for quick reference):

• Avoid huge singletons. Specifically, do not have God objects (i.e., objects that do
too much or have too much state information). This is an antipattern, a common
solution pattern that gets counterproductive sooner rather than later.
Helper singletons like loggers, instrumentation services, and task queues are good,
but global state objects are bad.

• Use __strong references to child objects.

78 | Chapter 2: Memory Management

• Use __weak references to parent objects.
• Use __weak references to off-the-graph objects such as delegates.
• For scalar properties (NSInteger, SEL, CGFloat, etc.), use the assign qualifier.
• For block properties, use the copy qualifier.
• When declaring methods with NSError ** parameters, use __autoreleasing

with the correct syntax: NSError* __autoreleasing *.
• Avoid directly referencing outer variables in a block. weakify them outside the

block and then strongify them inside the block. See the libextobjc library for
helper macros @weakify and @strongify.

• Follow these guidelines for deterministic cleanup:
— Invalidate timers.
— Remove observers (specifically, unregister for notifications).
— Unlink callbacks (specifically, nil any strong delegates).

Memory Usage in Production
Note that whatever setup you do to your Xcode, it will work only when debugging the
app on a device. You really do not know what additional variations may arise until the
app has gone live and been used by tens of thousands of users, if not millions.

To be able to profile your app in varying scenarios, use instrumentation. Send peri‐
odic information about your app to the server—memory consumed, especially if it
grows beyond a threshold, along with a breadcrumb navigation trail is a great option.

As an example, if the memory consumption is beyond 40 MB, you may want to send
the details of what screens the user navigated to and key operations performed.
Another option is to keep track of memory consumption and log it locally at periodic
intervals, and then upload the data to the server. You can use the code in
Example 2-40 to find the memory used as well as the available memory.

Instrument your app to include the memory used, as well as other
statistics, on low-memory warnings, and send this information to
the server on app relaunch. Use this data to identify common sce‐
narios and/or corner cases where the app runs out of memory.

Example 2-40. Track available memory and memory used

//HPMemoryAnalyzer.m

#import <mach/mach.h>

Memory Usage in Production | 79

https://github.com/jspahrsummers/libextobjc

vm_size_t getUsedMemory() {
 task_basic_info_data_t info;
 mach_msg_type_number_t size = sizeof(info);
 kern_return_t kerr = task_info(mach_task_self(), TASK_BASIC_INFO,
 (task_info_t) &info, &size);

 if(kerr == KERN_SUCCESS) {
 return info.resident_size;
 } else {
 return 0;
 }
}

vm_size_t getFreeMemory() {
 mach_port_t host = mach_host_self();
 mach_msg_type_number_t size = sizeof(vm_statistics_data_t) / sizeof(integer_t);
 vm_size_t pagesize;
 vm_statistics_data_t vmstat;

 host_page_size(host, &pagesize);
 host_statistics(host, HOST_VM_INFO, (host_info_t) &vmstat, &size);

 return vmstat.free_count * pagesize;
}

Memory Profiling Using Instruments
You can use the Xcode Instruments tool to profile your app’s memory usage. The
Instruments tool is covered in greater depth in “Instruments” on page 363. We are
specifically interested in the Allocations (see “Allocations” on page 369) and Leaks
(“Leaks” on page 372) instruments.

Summary
Now that you have a deeper understanding of how memory is managed by the iOS
runtime and the basic rules to avoid retain cycles (the single largest source of mem‐
ory leaks), you can now minimize your app’s memory consumption and lower its
average and peak memory requirements.

You can use zombies to keep track of overreleased objects, which are one of the most
common sources of app crashes.

The code in this chapter can be used to track memory usage in production, not just in
the test lab.

80 | Chapter 2: Memory Management

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Energy

With mobile devices becoming ubiquitous, battery life has become an important fac‐
tor influencing which devices consumers ultimately purchase. Similarly, power con‐
sumption is an important factor that influences the decision of whether to install an
app.

Each hardware component on the device consumes power. The primary consumer of
power is the CPU, but that is only one side of the system. A well-written app is vigi‐
lant about using energy sparingly. Apps that drain the battery quickly tend to get
deleted by users.

Aside from the CPU, noteworthy hardware components that consume battery life
include network hardware, Bluetooth, GPS, and the microphone, accelerometer,
camera, speaker, and screen.

In this chapter, we focus on key areas that contribute to power consumption and how
we can minimize the consumption. We will learn how to write an app that is aware of
the battery level of the device and its charging state. We will also learn how to analyze
power, CPU, and resource usage in an iOS app.

CPU
The central processing unit (CPU) is the primary hardware used by an app, either
when it is directly being used by the user or indirectly, during background operations
and when processing push notifications.

The processors used for the iPhone (5, 5S, and 6) and iPad (3, 4, and Air) are either
dual-core or tri-core. See Table 3-1 for the complete list. The Geekbench scores reflect
the relative computing speed of the processors on these popular and recent iOS
devices.

81

Table 3-1. iOS device and processor

Device Processor Cores Address size CPU clock Geekbench single-core Geekbench multi-corea

iPhone 5 A6 2 32 bit 1.3 GHz 569 950

iPhone 5S A7 2 64 bit 1.3–1.4 GHz 1400 2524

iPhone 5C A6 2 32 bit 1.3 GHz 689 1243

iPhone 6 A8 2 64 bit 1.4 Ghz 1621 2899

iPhone 6 Plus A8 2 64 bit 1.4 Ghz 1619 2902

iPhone 6S A9 2 64 bit 1.8 Ghz 2487 4327

iPhone 6S Plus A9 2 64 bit 1.8 Ghz 2478 4330

iPad 3 A5X 2 32 bit 1 Ghz 261 495

iPad 4 A6X 2 32 bit 1.4 Ghz 781 1422

iPad Air A7 2 64 bit 1.4 Ghz 1462 2636

iPad Air 2 A8X 3 64 bit 1.5 Ghz 1815 4502

a https://browser.primatelabs.com/ios-benchmarks

The more the app computes, the more energy it consumes. The older-generation
devices consume more power for the same set of operations. The quantum of compu‐
tation depends on various factors:

• Processing to be done on the data (e.g., applying formatting to the text)
• Size of data to be processed—larger displays allow your software to present more

information in a single view, which in turn means more data to be handled
• Algorithms and data structures used to process the data
• Number of times an update is to be performed, particularly if the data update

results in the app state or UI updating (push notifications received by the app
may also result in a data update, and if the user has the app open, you may need
to update the UI as well)

There is no single rule to reduce the execution on the device. A lot depends on the
nature of the operation. The following are a few best practices that you can adapt to
your app:

Use the optimal algorithm for the scenario
For example, when sorting, prefer insertion sort over merge sort when the list has
less than 43 entries, but use quicksort for more than 286 entries. Prefer dual-
pivot quicksort over traditional single-pivot quicksort.

If the app receives data from the server, minimize the need for processing on the client
side

For example, if a piece of text needs to be rendered on the client side, cleanse the
data on the server.

82 | Chapter 3: Energy

https://browser.primatelabs.com/ios-benchmarks

In one project I worked on, the server returned text that contained HTML tags
because the service was implemented primarily for desktop use. Instead of strip‐
ping down the HTML tags on the client, we implemented that on the server,
thereby reducing the processing time and computation needs on the device.

In another project, we realized that if there was a considerable gap between each
time a user opened the app, the number of records that needed synchronization
on the device would be fairly high. Instead of the server sending updates as
would happen in normal app usage, we configured it to send a binary database
file that would replace the existing one on the device. This not only ensured opti‐
mal network usage but also minimized the computation needed to merge records
on the local device.

Optimize ahead-of-time (AOT) processing
The disadvantage of just-in-time (JIT) processing is that it may force the user to
wait for an operation. But aggressive AOT processing may result in wasted com‐
putations. The exact quantum of AOT processing required is very app- and
device-dependent.

For example, when rendering a list of records in a UITableView, it is not advisa‐
ble to process all the records when loading the list. Based on the cell height, if the
device can render N records, 3N or 4N may be an appropriate calculation to use
for the number of records to be loaded. Similarly, if the user scrolls down fast, do
not load the records immediately—instead, delay until the scrolling speed goes
below a threshold. The exact threshold value will be determined by the process‐
ing time required for each cell and the complexity of the cell UI (e.g., if it has
multiple images or has video).

Profile energy consumption
Measure energy consumed (see “Profiling for Energy Use” on page 102) across all
devices of your target audience. Identify the areas where more energy is con‐
sumed and find options to reduce it.

Network
Intelligent management of network access makes your app more responsive and
helps conserve battery life. If no network connection is available, you should defer
further attempts to access the network until a connection has been restored.

In addition, avoid bandwidth-heavy operations, such as video streaming, unless a
WiFi connection is available because cellular radio systems (LTE, 4G, 3G, etc.) are
known to consume more battery than WiFi radio. This is because LTE devices use
multi-input, multi-output (MIMO) technology that uses multiple concurrent signals
and can maintain two LTE links. Similarly, all cellular data connections periodically
scan for stronger signals.

Network | 83

We therefore need to:

• Check if an appropriate network connection is available before any network
operation.

• Continually monitor network availability and respond appropriately when the
connection status changes.

Apple has provided sample code to check and monitor changes to network status. If
your project uses CocoaPods, use Tony Million’s Reachability pod.

Example 3-1 demonstrates adding a simple method (isAPIServerAvailable) to your
code and using it before actually making a call.

Example 3-1. Check for network status

//Helper API
-(BOOL)isAPIServerReachable {
 Reachability *r = [Reachability reachabilityWithHostname:@"api.yourdomain.com"];

 return r.isReachable;
}

//Actual networking operation
-(void)performNetworkOperation:(NSDictionary *)params
 completion:(void (^)(NSError *, id)) completion {

if(!self.isAPIServerReachable) {
 [self enqueueRequest:params completion:completion];

 NSError *err = [[NSError alloc] initWithDomain:@"network"
 code:kErrorCodeNetworkUnreachable userInfo:nil];
 completion(err, nil);
 } else {
 [self doNetworkOperation:params completion:completion];
 }
}

Check the reachability of your server domain.

Feel free to use isReachableViaWiFi or isReachableViaWWAN (3G, 4G, EDGE,
etc.) for further optimization.

The completion callback is provided with the result of type id (operation-
specific) or an error of type NSError *.

Enqueue the operation. The implementation of the queue method is not shown
here.

84 | Chapter 3: Energy

http://apple.co/1Q3gRKL
https://github.com/tonymillion/Reachability

kErrorCodeNetworkUnreachable is a constant defined somewhere in your app.

If the network is available, fire the request immediately.

Similarly, to implement the second step (monitoring the network status and execut‐
ing the queue when available), you can use the code given in Example 3-2.

Example 3-2. Monitor for network and process queue

//HPNetworkOps.h
@property (nonatomic, readonly) BOOL isAPIServerReachable;

//HPNetworkOps.m

@property (nonatomic, strong) Reachability *reachability;
@property (nonatomic, strong) NSOperationQueue *networkOperationQueue;

-(id)init {
 if(self = [super init]) {
 self.reachability = [Reachability
 reachabilityWithHostname:@"api.yourdomain.com"];
 self.reachability.reachableOnWWAN = NO;

 self.networkOperationQueue = [[NSOperationQueue alloc] init];
 self.networkOperationQueue.maxConcurrentOperationCount = 1;

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(networkStatusChanged:)
 name:kReachabilityChangedNotification object:nil];
 }
 return self;
}

-(void)networkStatusChanged:(Reachability *)reachability {
 if(!reachability.isReachableViaWiFi) {
 self.networkOperationQueue.suspended = YES;
 } else {
 self.networkOperationQueue.suspended = NO;
 }
}

-(BOOL)isAPIServerReachable {
 return self.reachability.isReachableWiFi;
}

-(void)performNetworkOperation:(NSDictionary *)params
 completion:(void (^)(NSError *, id)) completion {
 [self enqueueRequest:params completion:completion];
}

Network | 85

-(void)enqueueRequest:(NSDictionary *)params
 completion:(void (^)(NSError *, id)) completion
{
 NSURLRequest *req = ...;
 AFHTTPRequestOperation *op =
 [[AFHTTPRequestOperation alloc] initWithRequest:req];

 [op setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *op, id res){
 completion(nil, res);
 } failure:^(AFHTTPRequestOperation *operation, NSError *error) {
 completion(error, nil);
 }];

 [self.networkOperationQueue addOperation:op]
}

The code in Example 3-2 can be analyzed as follows:

• The class HPNetworkOps has a property isAPIServerReachable that can be used
to check if the network is available or not.
Depending on the app, the state of the app, and the task, you may use this flag to
proceed or block app interaction using a heads-up display (HUD).

• The class has private properties reachability and networkOperationQueue.
— reachability is used to monitor the status. It is configured to track changes

for WiFi networks only.
— networkOperationQueue keeps operations in the queue. The queue is config‐

ured to execute only one operation at a time.
• The notification receiver (networkStatusChanged) suspends or resumes the

queue based on the network availability.
• The performNetworkOperation implementation has been updated to always

route network operations to the queue.
• The method enqueueRequest:completion: actually enqueues the network oper‐

ation.
In this example, the AFHTTPRequestOperation operation from the AFNetworking
pod has been used. Feel free to use any other operation or create your own.

In the previous code, NSOperationQueue has been used for demonstration. You may
use a more sophisticated queue for additional control. As an extreme, you may want
to persist pending network operations so that you can sync the changes with the
server whenever the network is available later.

86 | Chapter 3: Energy

https://github.com/AFNetworking/AFNetworking
https://github.com/AFNetworking/AFNetworking

Note that NSOperationQueue does not pause or suspend any executing operation. A
suspended queue merely means that the subsequent operations will not be executed
until the queue is resumed. As the Apple Developer Docs state:

Operations are removed from the queue only when they finish executing. However, in
order to finish executing, an operation must first be started. Because a suspended
queue does not start any new operations, it does not remove any operations (including
cancelled operations) that are currently queued and not executing.

Use queue-based networking requests so as to not bombard your
server with multiple simultaneous requests. Use at least two
queues: one for heavy image downloads, which generally are non‐
critical, and another for critical data calls. See “Operations and
Queues” on page 110 for more details on working with operations.
Additionally, as a good citizen, you should update the network
activity indicator—turn it on after adding the operation to the
queue and turn it off when the response is available. Use the
method setNetworkActivityIndicatorVisible: defined in the
UIApplication class.

Location Manager and GPS
It is important to understand that location services including both the GPS (or GLO‐
NASS) and the WiFi hardware, requires significant battery power.

Calculating location using GPS requires determination of two pieces of information:

Time lock
Each GPS satellite broadcasts a unique 1,023-bit pseudorandom number every
millisecond, for a data rate of 1.024 Mbps. The GPS receiver chip must align to
the correct slot to lock time with the satellite.

Frequency lock
The GPS receiver must calculate any signal skew from Doppler shift due to the
relative motion between the satellite and the receiver.

Locking on to a satellite typically takes up to 30 seconds, and locks must be obtained
for each satellite in range of the receiver. The more satellites that can be fixed, the
more accurately location can be determined.

Calculating position in this manner requires constant use of the CPU and GPS hard‐
ware, which together can rapidly run down the battery.

Location Manager and GPS | 87

GPS Precision Code
The precision code for each satellite, better known as the P-code, is actually 6.1871 ×
10^12 bits long, which is about 720 GB. It is transmitted at 10.23 Mbps and repeats
once a week.

More interestingly, this P-code is only a subset of a master P-code that is approxi‐
mately 2.34 × 10^14 bits long, which is about a whopping 26.7 TB.

Now that you understand the complex nature of GPS locking, you’ll see that the need
to use it with caution cannot be emphasized enough, particularly if your app relies
heavily on maps.

Let’s look at basic best practices to follow for minimizing power usage (your users will
appreciate that your app has been optimized for this).

Example 3-3 shows typical code for initializing CLLocationManager and receiving
location updates efficiently.

Example 3-3. Using location manager

//HPLocationViewController.h
@interface HPLocationViewController : UIViewController <CLLocationManagerDelegate>

@property (nonatomic, strong) CLLocationManager *manager;

@end

//HPLocationViewController.m
@implementation HPLocationViewController

-(void)viewDidLoad
{
 self.manager = [[CLLocationManager alloc] init];
 self.manager.delegate = self;
}

-(IBAction)enableLocationButtonTapped:(id)sender
{
 self.manager.distanceFilter = kCLDistanceFilterNone;
 self.manager.desiredAccuracy = kCLLocationAccuracyBest;

 if(isIOS8()) {
 [self.manager requestWhenInUseAuthorization];
 }

 [self.manager startUpdatingLocation];

88 | Chapter 3: Energy

}

-(void)locationManager:(CLLocationManager *)manager
 didUpdateLocations:(NSArray *)locations
{
 CLLocation *loc = [locations lastObject];
 //work with the location
}

@end

We’re not using dependency injection, but here the manager is not only owned by
the view controller but also managed and configured.

Initialize the manager for all distance changes.

Initialize the manager for maximum accuracy.

isIOS8 is a helper method omitted here for brevity. It returns true when the app
runs on iOS 8 and above.

This is an iOS 8–specific API to request permissions to use location services only
when the app is in use.

Optimal Initialization
As you may have noticed in Example 3-3, there are two parameters that play an
important role before you call the startUpdatingLocation method:

distanceFilter

The distance filter will cause the manager to notify the delegate about location
Manager:didUpdateLocations: events only if the device has moved by the mini‐
mum distance. The distance is in SI units (meters).

This does not help reduce GPS receiver usage but does impact the processing that
your app will do, and hence indirectly reduces CPU usage.

desiredAccuracy

The accuracy parameter has a direct impact on the number of antennas to be
used, and hence the battery consumption. Choose the accuracy level based on the
specific needs of the app. The accuracy, in decreasing order of precision, is
defined by these constants:

kCLLocationAccuracyBestForNavigation

Best accuracy level for navigation use.

Location Manager and GPS | 89

kCLLocationAccuracyBest

Finest accuracy level possible for the device.

kCLLocationAccuracyNearestTenMeters

Accurate to the nearest 10 meters. Use this when you are not interested in
every meter that a person walks (comes in handy when you want to measure
block distances, for example).

kCLLocationAccuracyHundredMeters

Accurate to the nearest 100 meters (when computing distances, the value
may be in multiples of 100 m).

kCLLocationAccuracyKilometer

Accurate to the nearest kilometer. Useful when there is a need to calculate
rough distance between two points of interest that may be hundreds of kilo‐
meters apart (e.g., if the computed distance from your home in San Fran‐
cisco to Disneyland in Anaheim is off by a few hundred meters, it would not
be much of an issue).

kCLLocationAccuracyThreeKilometers

Accurate to the nearest 3 kilometers. Use this for really long distances (it
should not cause much trouble if the distance computed between your home
in London, England, and the Taj Mahal in India is off by a few kilometers).

The distance filter is a software-layer filter, while accuracy level
impacts the physical antennas being used.
Having a higher distance filter will only impact the interval when
the locationManager:didUpdateLocations: callback of the del‐
gate is invoked. On the other hand, a finer accuracy level means
more active antennas, which results in higher energy consumption.

Turn Off Inessential Features
Decide when you need to track location changes. Invoke startUpdatingLocation
when you need to track and stopUpdatingLocation when you do not.

Consider a messaging app where the user may have enabled sharing her location with
friends. If your app intends to send only the name of the city, you should get the loca‐
tion once and then turn location tracking off by calling stopUpdatingLocation. You
should turn it on again after an interval. This can be a fixed interval (e.g., 60 seconds
or even 5 minutes), or a dynamically computed interval (i.e., compute the approxi‐
mate time it would take to cross the city limits using the previously obtained coordi‐
nates and speed).

90 | Chapter 3: Energy

Location tracking should also be turned off if the app is in the background or the user
is not chatting with anyone—say, while exploring the media gallery, browsing the
friend list, or changing the settings in the app.

An even better solution is to give the end user an option to turn off inessential fea‐
tures. As an example, the Waze app provides the option of turning off all activities
from the app (see Figure 3-1).

Figure 3-1. Waze with location tracking turned off

Location Manager and GPS | 91

Use Network Only If Essential
For energy efficiency, iOS keeps the wireless network hardware turned off as much as
possible. When an app needs to make a network connection, iOS will use this oppor‐
tunity to allow background apps to share this network session, so that low-priority
events such as push notifications, retrieving email, and so on can be processed.

The upshot is that whenever your app makes a network connection, the network
hardware will remain active for several seconds after your app is finished with the
connection. Each of these bursts of network traffic can consume a full percentage
point of battery life.

To minimize this problem, your software needs to make sparing use of the network. It
should attempt to process network access in periodic bursts rather than a continually
active data stream so that the network hardware can be turned back off.

Background Location Services
CLLocationManager provides an alternative method for listening to location updates.
startMonitoringSignificantLocationChanges helps you track movement for
longer distances. The exact value is internally determined and is independent of the
distanceFilter.

Use this mode to track movement when your app enters the background (unless it’s a
navigation app and you want fine details even when the screen is locked). A typical
behavior will be to startMonitoringSignificantLocationChanges when the app is
backgrounded and to startUpdatingLocation when foregrounded. Example 3-4
presents sample code that you can use in your app.

Example 3-4. Monitoring versus significant change monitoring

//App delegate
- (void)applicationDidEnterBackground:(UIApplication *)application
{
 [self.locationManager stopUpdatingLocation];
 [self.locationManager startMonitoringSignificantLocationChanges];
}

- (void)willEnterForeground:(UIApplication *)application
{
 [self.locationManager stopMonitoringSignificantLocationChanges];
 [self.locationManager startUpdatingLocation];
}

92 | Chapter 3: Energy

Using Location When Backgrounded in iOS 8
In iOS 8, you need explicit permission to continue to use the location manager when
the app is backgrounded. The following steps must be completed in order to get per‐
mission from the user:

1. Update the app’s Info.plist file, adding an NSLocationAlwaysUsageDescription
entry of type String. The value is the message presented to the user when
requesting permissions to use location tracking when the app is in the back‐
ground or in the foreground. The key NSLocationWhenInUseUsageDescription
is used for permissions to use location tracking when the app is in the fore‐
ground only.

2. Call the method requestAlwaysAuthorization for foreground and background
permissions (the method requestWhenInUseAuthorization is for foreground
use only).

Unlike in iOS 7, the method startUpdatingLocation no longer
requests the user’s permission to use location data in iOS 8. You
must use requestWhenInUseAuthorization and/or requestAlway
sAuthorization.

NSTimers, NSThreads, and Location Services
Any timers or threads are suspended when an app is backgrounded. But if you have
requested location updates when your app is backgrounded, the app will be woken
for an infinitesimal duration each time the updates are sent to it. And for that dura‐
tion, the threads and timers will also come to life again.

The killer here is if you happen to do any network operations during that time, as this
will turn on all data-related antennas (i.e., WiFi, LTE/4G/3G).

It is always tricky to control this situation. The best option is to use the NSURLSession
class. We discuss this further in “Networking API” on page 237.

Restart After App Kill
Last but not least, your app may be killed if it is backgrounded and another app needs
resources. If that is the case, whenever a location change happens, the app will be
restarted but you will need to reinitiate monitoring. The options in application:did
FinishLaunchingWithOptions: have an entry corresponding to the key UIApplica
tionLaunchOptionsLocationKey if this happens. See Example 3-5 for sample code.

Location Manager and GPS | 93

Example 3-5. Reinitiate monitoring if app is killed

-(void)application:(UIApplication *)app
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 if(launchOptions[UIApplicationLaunchOptionsLocationKey]) {
 [self.manager startMonitoringSignificantLocationChanges];
 }
}

Detect if the app was restarted due to location changes after it was killed for lack
of resources.

If so, start monitoring for location changes. Otherwise, start monitoring at a later
appropriate time.

Screen
The screen is a big power hog. The larger the screen, the greater the power consump‐
tion. Of course, if your app is in the foreground and the user interacts with it, there is
bound to be screen and battery use.

However, there are options for optimizing the screen use.

Animation
Wise use of animation is a beaten-down concept. Nevertheless, it is mentioned here
for completeness.

One simple rule to follow: animate when the app is in the foreground, and pause your
animations whenever the app goes to the background. In general, you can listen to
UIApplicationWillResignActiveNotification or UIApplicationDidEnterBack

groundNotification notification events to pause or stop your animations and UIAp
plicationDidBecomeActiveNotification notification events to resume animations.

Video Play
During video play, it is a good idea to force the screen to be awake. To do so, use the
property idleTimerDisabled on the UIApplication object. Once set to YES, it will
prevent the screen going to sleep, which is exactly what you want.

As with animations, you can respond to the app notifications to release and obtain
locks.

Multiple Screens
There is more to utilizing the screen than wake-lock or animation pause/resume.

94 | Chapter 3: Energy

What if the device is connected to an external display (using AirPlay or an HDMI
connector)? Most apps usually just allow it to be default-handled by the OS, which
does nothing more than mirror the device on the external display.

But more can be done. If you are playing a movie or running some animations, you
can move that out of the device screen on to the external screen and just leave basic
controls on the device screen. This will help reduce screen updates on the device,
thereby preserving battery life. The Apple developer website provides a simple exam‐
ple on using an external display. It is not uncommon to connect an iPhone or iPad to
a car’s display screen using a cable or to an AppleTV using AirPlay.

Typical code for handling this scenario would involve the following steps:

1. During launch, detect the number of screens.
If the count is more than one, switch.

2. Listen to screen connect and disconnect notifications.
If a new screen has been added, switch.
If all external screens have been removed, revert to default display.

Example 3-6 shows how you can use multiple screens to your benefit.

Example 3-6. Using multiple screens

//HPMultiScreenViewController.m
@interface HPMultiScreenViewController ()

@property (nonatomic, strong) UIWindow *secondWindow;

@end

@implementation HPMultiScreenViewController

-(void)viewDidLoad
{
 [super viewDidLoad];
 [self registerNotifications];
}

-(void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [self updateScreens];
}

-(void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];

Screen | 95

http://apple.co/1jauUnu

 [self disconnectFromScreen];
}

-(void)disconnectFromScreen
{
 if(self.secondWindow != nil) {
 //Disconnect links and set up for memory relinquishment
 self.secondWindow.rootViewController = nil;
 self.secondWindow.hidden = YES;
 self.secondWindow = nil;
 }
}

-(void)updateScreens
{
 NSArray *screens = [UIScreen screens];
 if(screens.count > 1) {
 UIScreen *secondScreen = (UIScreen *)[screens objectAtIndex:1];
 CGRect rect = secondScreen.bounds;
 if(self.secondWindow == nil) {
 self.secondWindow = [[UIWindow alloc] initWithFrame:rect];
 self.secondWindow.screen = secondScreen;

 HPScreen2ViewController *svc = [[HPScreen2ViewController alloc] init];
 //Set other properties of svc to initialize it completely
 svc.parent = self;
 self.secondWindow.rootViewController = svc;
 }
 self.secondWindow.hidden = NO;
 } else {
 [self disconnectFromScreen];
 }
}

-(void)dealloc
{
 [self unregisterNotifications];
}

-(void)screensChanged:(NSNotification *)notification
{
 [self updateScreens];
}

-(void)registerNotifications
{
 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
 [nc addObserver:self
 selector:@selector(screensChanged:)
 name:UIScreenDidConnectNotification object:nil];
 [nc addObserver:self
 selector:@selector(screensChanged:)

96 | Chapter 3: Energy

 name:UIScreenDidDisconnectNotification object:nil];
}

-(void)unregisterNotifications
{
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

@end

In Example 3-6, the HPMultiScreenViewController is the view controller with the
video or animation UI.

In this example, we use another helper view controller, HPScreen2ViewController,
that can communicate with its parent view controller and send appropriate messages
upon user interaction. A detailed description of each method is given next:

viewDidLoad

Because this method is called once and only once in the lifecycle of the view con‐
troller, this is the best place to register the observers to the UIScreenDidConnect
Notification (screen connected) and UIScreenDidDisconnectNotification
(screen disconnected) notifications.

Whenever a new screen is added or an existing one removed, we call the method
screensChanged:, where we update the UI.

viewDidAppear:

Because the view can appear or disappear several times—or, to be more specific, a
user can move into or move out the view controller multiple times—we use this
method to update the screens.

The first time a user enters into the view controller, the UI is adjusted, looking at
the number of screens currently available. Similarly, if the user moves out of this
view controller into some other view controller and then returns to it, the num‐
ber of screens may have changed. As such, they may require adjustments.

viewDidDisappear:

When the user moves out of this view controller, you may want to update the UI
on another screen as well. Use this method to do so.

In our case, we remove the secondWindow from the screen (via the disconnect
FromScreen method).

In a more sophisticated app, you may continue playing the video on the external
screen while the user is free to perform more complex operations, such as reor‐
dering the playlist or performing a media search, on the device screen.

Figure 3-2 shows a mock UI of how such an app will look when in use.

Screen | 97

Figure 3-2. Multiple-screen UI

disconnectFromScreen

We call this method to remove the secondWindow from the screen.

updateScreens

This is where the real magic happens, although the example has been kept very
simple for the purpose of demonstration.

In this method, we check the total number of screens, and if it is greater than 1,
we attach a new window to the second screen. In the real world, you can scan
through all the screens and decide what to do on each—it can be as simple as rep‐
licating the UI on all of them.

If the number of screens is 1, we invoke disconnectFromScreen.

dealloc

Called once when view controller is about to be destroyed, we use this method to
unregister for the screen notifications.

screensChanged:

This method calls updateScreens whenever the app gets a notification about a
screen being disconnected.

registerNotifications

This method adds observers to the UIScreenDidConnectNotification and UIS
creenDidDisconnectNotification notifications.

unregisterNotifications

This method removes observers.

98 | Chapter 3: Energy

In a real-world app, the HPScreen2ViewController will consist of the UI that a user
can interact with to control, for example, the movie player. You will also switch the
controllers between the screens. Example 3-7 shows how you can achieve this.

Example 3-7. Swap UI across screens

-(void)swapScreens(UIWindow *)currentWindow newWindow:(UIWindow *)newWindow
{
 NSArray *screens = [UIScreen screens];

 UIScreen *deviceScreen = [screens objectAdIndex:0];
 UIScreen *extScreen = [screens objectAdIndex:1];

 //Optionally, you can set the bounds appropriately
 currentWindow.screen = extScreen;
 newWindow.screen = deviceScreen;
}

It may be a little awkward to have controls on one screen and dis‐
play on the other, but it allows for the display to be uninterrupted,
and if the controls are standard buttons (for play, pause, resume,
stop, etc.), it is not such a bad experience.
Of course, you do not want to use this approach in an interactive
game where the touch controls are on the game screen. If you do,
the users will be very unhappy, as it will be practically impossible to
control the game dynamics from a blank screen.

Other Hardware
When the app is backgrounded, release any locks obtained on the hardware:

• Bluetooth
• Camera
• Speaker, unless the app is a music app
• Microphone

The specifics of these hardware options are not covered here, but the rules remain the
same—start interaction with the hardware only when the app is in the foreground
and stop the interaction when it goes to the background.

The exceptions here may be the speaker and Bluetooth radio. If you are working on a
music, radio, or other audio-related app, continue to use the speaker even if the app
goes to the background. Do not keep the screen on for audio-only purposes. Simi‐

Other Hardware | 99

larly, continue to use Bluetooth radio if the app has an unfinished transaction, such as
file transfer with another device.

Battery Level and State-Aware Code
A smart app will take into consideration the battery level and its state to determine if
it should actually be doing a resource-intensive operation. Another value of interest is
the charging status, indicating whether or not the device is charging.

Use the UIDevice instance to retrieve the batteryLevel and batteryState (the
charging status). You can use the code in Example 3-8 directly in your app. The
method shouldProceedWithMinLevel: takes a minimum battery level that is
required to proceed with a given operation that you intend to perform. The level is a
floating-point number in the range of 0–100 (100 signifies a full battery).

Example 3-8. Conditional processing using battery level and charging status

-(BOOL)shouldProceedWithMinLevel:(NSUInteger)minLevel
{
 UIDevice *device = [UIDevice currentDevice];
 device.batteryMonitoringEnabled = YES;

 UIDeviceBatteryState state = device.batteryState;
 if(state == UIDeviceBatteryStateCharging ||
 state == UIDeviceBatteryStateFull) {
 return YES;
 }

 NSUInteger batteryLevel = (NSUInteger) (device.batteryLevel * 100);
 if(batteryLevel >= minLevel) {
 return YES;
 }
 return NO;
}

Any operation can be performed during charging or when the device is fully
charged.

The batteryLevel returned by UIDevice is in the range 0.00–1.00.

Similarly, you can also retrieve the CPU utilized by your app. It’s probably not useful
information when your app is running, but for completeness, the code is given in
Example 3-9.

100 | Chapter 3: Energy

Example 3-9. CPU used by the app

-(float)appCPUUsage {
 kern_return_t kr;
 task_info_data_t info;
 mach_msg_type_number_t infoCount = TASK_INFO_MAX;

 kr = task_info(mach_task_self(), TASK_BASIC_INFO,
 (task_info_t)info, &infoCount);
 if (kr != KERN_SUCCESS) {
 return -1;
 }

 thread_array_t thread_list;
 mach_msg_type_number_t thread_count;
 thread_info_data_t thinfo;
 mach_msg_type_number_t thread_info_count;
 thread_basic_info_t basic_info_th;

 kr = task_threads(mach_task_self(), &thread_list, &thread_count);
 if (kr != KERN_SUCCESS) {
 return -1;
 }

 float tot_cpu = 0;
 int j;

 for (j = 0; j < thread_count; j++) {
 thread_info_count = THREAD_INFO_MAX;
 kr = thread_info(thread_list[j], THREAD_BASIC_INFO,
 (thread_info_t)thinfo, &thread_info_count);
 if (kr != KERN_SUCCESS) {
 return -1;
 }

 basic_info_th = (thread_basic_info_t)thinfo;

 if (!(basic_info_th->flags & TH_FLAGS_IDLE)) {
 tot_cpu += basic_info_th->cpu_usage /
 (float)TH_USAGE_SCALE * 100.0;
 }
 }

 vm_deallocate(mach_task_self(), (vm_offset_t)thread_list,
 thread_count * sizeof(thread_t));
 return tot_cpu;
}

Battery Level and State-Aware Code | 101

Alert the user if the battery level is low, and request the user’s per‐
mission to execute battery-intensive operations—only proceed if
the user agrees.
Always use an indicator to show the progress of a long-running
task, whether it is about computation being done on the device or
merely downloading some content. Providing users with an esti‐
mate of how long the task will take to complete helps them decide
whether it’s necessary to continue charging the device.

Profiling for Energy Use
Use Xcode Instruments to track CPU usage of your app during development. The
tool is discussed in greater depth in Chapter 11. The template that will be of interest is
Activity Monitor (see “Activity Monitor” on page 367). It gives a fairly good measure
of relative energy consumption, as the CPU is the primary consumer of power.

To get a real sense of how much energy your app uses, use Monsoon Solutions’s
Power Monitor. The steps to use this tool are as follows:

1. Open the case of the iOS device and find the power pins behind the battery.
2. Attach the pins from the Power Monitor device.
3. Run the app.
4. Measure the power consumption.

Figure 3-3 shows the Power Monitor tool connected with an iPhone’s battery pins.

Figure 3-3. Power Monitor connected to iPhone 5S (image courtesey of Bottle of Code)

102 | Chapter 3: Energy

https://www.msoon.com/LabEquipment/PowerMonitor
http://bit.ly/1FW7RXk

The Power Monitor tool comes with software that can track the power usage over
time. The data is presented visually as a graph, as illustrated in Figure 3-4.

Figure 3-4. Power Monitor software

Best Practices
There are some best practices for ensuring prudent use of power. Follow these guide‐
lines for an energy-efficient app:

• Minimize hardware use—in other words, start interaction with the hardware as
late as possible and stop once the task is complete.

• Check the battery level and charging status before starting intensive tasks.
• If the battery level is low, prompt the user to determine whether the task should

really be executed, and proceed only if the user agrees.
• Alternatively, include a setting to let the user define a threshold battery level

below which the app should prompt the user before executing intensive opera‐
tions.

Example 3-10 shows sample code for using the threshold battery level to prompt the
user. The configuration for the threshold values is given in Figure 3-5.

Example 3-10. Prompt before intensive operation if battery level is low

-(IBAction)onIntensiveOperationButtonClick:(id)sender {

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 BOOL prompt = [defaults boolForKey:@"promptForBattery"];
 int minLevel = [defaults integerForKey:@"minBatteryLevel"];

Best Practices | 103

 BOOL canAutoProceed = [self shouldProceedWithMinLevel:minLevel];
 if(canAutoProceed) {
 [self executeIntensiveOperation];
 } else {
 if(prompt) {
 UIAlertView *view = [[UIAlertView alloc] initWithTitle:@"Proceed"
 message:@"Battery level below minimum required. Proceed?"
 delegate:self cancelButtonTitle:@"No"
 otherButtonTitles:@"Yes", nil];
 [view show];
 } else {
 [self queueIntensiveOperation];
 }
 }
}

- (void)alertView:(UIAlertView *)alertView
 clickedButtonAtIndex:(NSInteger)buttonIndex {

 if(buttonIndex == 0) {
 [self queueIntensiveOperation];
 } else {
 [self executeIntensiveOperation];
 }
}

The code in Example 3-10 can be explained as follows:

• The onIntensiveOperationButtonClick: method is executed on the tap of a
button (or by any other logic). This method is supposed to fire the intensive
operation.

• The settings consist of two entries: promptForBattery (which may be a toggle
switch in the app settings indicating whether or not to prompt in case of low bat‐
tery conditions) and minBatteryLevel (which may be a slider ranging from 0 to
100, indicating the minimum battery level—in this case, user-selectable). See
Figure 3-5 for the app settings UI.

104 | Chapter 3: Energy

Figure 3-5. App settings for threshold battery level and prompt options

In a real-world app, the threshold will be a predetermined value set by the app
developer based on the complexity and intensity of the operations. Different
intensive operations may have different minimum battery level requirements.

• Before you actually execute the intensive operation, check whether the current
level is good enough and/or the phone is charging. That is my logic to determine
if we can proceed or not, as given in Example 3-8. You may have a different var‐
iant—minimum level and also charging.

• If we are good to proceed, we execute immediately (here, by calling some execu
teIntensiveOperation method in the class).

• Otherwise, if the user has opted to promptForBattery, he is prompted.
Or, if the user has not opted to be prompted, we queue the intensive operation
for later execution (here, calling some queueIntensiveOperation method in the
class).

Best Practices | 105

• On the prompt, if user selects Ok, we invoke executeIntensiveOperation. We
invoke queueIntensiveOperation otherwise.

Summary
With users carrying their mobile devices with them most of the time, it is important
to write code that minimizes power consumption. It is not always possible to find a
socket for the mobile device charger, and not all users carry a portable charger.

When it is not possible to reduce the complexity of the task that needs to be executed
(e.g., processing an image or drawing a chart), having an option that is sensitive to
the battery level and appropriately prompts the user will make the user feel good
about the app. Your users will appreciate it.

In the next chapter, we discuss options and best practices for executing multiple tasks
concurrently. The work we did in this chapter to optimize memory use and minimize
power consumption will provide inputs to subsequent topics as we further develop
those options.

106 | Chapter 3: Energy

CHAPTER 4

Concurrent Programming

iOS devices have two or three CPU cores (see Table 3-1). This means, even if the
main thread (the UI thread) is busy updating the screen, the app can still be doing
more computations in the background without the need for any context switch.

In this chapter, we explore various options for making the best use of the available
CPU cores, and we’ll learn how to optimize performance using concurrent program‐
ming. We will discuss the following topics:

• Creating and managing threads
• The Great Central Dispatch (GCD) abstraction
• Operations and queues

We will cover best practices and techniques for writing thread-safe, highly perform‐
ant code.

Threads
A thread is a sequence of instructions that can be executed by a runtime.

Each process has at least one thread. In iOS, the primary thread on which the process
is started is commonly referred to as the main thread. This is the thread in which all
UI elements are created and managed. All interrupts related to user interaction are
ultimately dispatched to the UI thread where the handler code is written—your IBAc
tion methods are all executed in the main thread.

Cocoa programming does not allow updating UI elements from other threads. This
means that whenever the app executes background threads for long operations such
as network or other processing, the code must perform a context switch to the main

107

1 iOS Developer Library, “Thread Costs”.

thread to update the UI—for example, the progress bar indicating the task progress
or the label indicating the outcome of the process.

The Cost of Threads
However great it may look to have several threads in the app, each thread has a cost
associated with it that impacts app performance. Each thread not only takes some
time during creation but also uses up memory in the kernel as well as the app’s mem‐
ory space.1

Kernel Data Structures
Each thread consumes approximately 1 KB of memory in kernel space. The memory
is used to store the data structures and attributes pertaining to the thread. This is
wired memory and cannot be paged.

Stack Size
The main thread stack size is 1 MB and cannot be changed. Any secondary thread is
allocated 512 KB of stack space by default. Note that the full stack is not immediately
created. The actual stack size grows with use. So, even if the main thread has a stack
size of 1 MB, at some point in time, the actual stack size may be much smaller.

Before a thread starts, the stack size can be changed. The minimum allowed stack size
is 16 KB, and the size must be a multiple of 4 KB. The sample code in Example 4-1
shows how you can configure the stack size before starting a thread.

Example 4-1. Change thread stack size

+(NSThread *)createThreadWithTarget:(id)target selector:(SEL)selector
 object:(id)argument stackSize:(NSUInteger)size {

 if((size % 4096) != 0) {
 return nil;
 }
 NSThread *t = [[NSThread alloc] initWithTarget:target
 selector:selector object:argument];
 t.stackSize = size;

 return t;
}

108 | Chapter 4: Concurrent Programming

http://apple.co/1EukJhy

Creation Time
A quick test on an iPhone 6 Plus running iOS 8.4 showed average thread creation
time (not including the start time) ranged between 4,000–5,000 µs, which is about 4–
5 ms.

The time taken to actually start a thread after creation ranged from anywhere
between 5 ms to well over 100 ms, averaging about 29 ms. That can be a lot of time,
especially if you start multiple threads during app launch.

The elongated time for thread start can be attributed to several context switches that
have overheads.

For brevity, the code for these computations has been omitted here. For details, see
the computeThreadCreationTime method in the code on GitHub. Figure 4-1 shows
the output from that code.

Figure 4-1. Thread creation time

GCD
The Grand Central Dispatch (GCD) API is comprised of core language features, run‐
time libraries, and system enhancements for concurrent code execution.

We will not get into the fundamentals of using GCD, as that is not the purpose of this
book. You most likely already have a fair background working with GCD constructs,
but if you need a review of GCD fundamentals, check out Ray Wenderlich’s “Multi‐
threading and Great Central Dispatch on iOS for Beginners Tutorial”.

However, for completeness, we will run through a quick list of what GCD provides:

GCD | 109

http://bit.ly/1OmXgWU
http://bit.ly/apple-gcd
http://bit.ly/1VG7JNE
http://bit.ly/1VG7JNE

2 Stack Overflow, “Number of Threads Created by GCD?”.
3 Stack Overflow, “Workaround on the Threads Limit in Grand Central Dispatch?”.
4 Stack Overflow, “GCD Dispatch Concurrent Queue Freeze with ‘Dispatch Thread Soft Limit Reached: 64’ in

Crash Log”.

• Task or dispatch queues, which allow execution on the main thread, concurrent
execution, and serial execution

• Dispatch groups, which allow tracking execution of a group of tasks, irrespective
of the underlying queue they are submitted on

• Semaphores
• Barriers, which allow creating synchronization points in a concurrent dispatch

queue
• Dispatch object and source management, which allow low-level management and

monitoring
• Asynchronous I/O, using either file descriptors or channels

GCD handles thread creation and management well. It also helps you to keep the
total number of threads in your app under control and not cause any leaks.

While most apps will generally perform well using GCD alone,
there are specific cases when you should consider using NSThread
or NSOperationQueue. In the scenarios where your app has multi‐
ple long-running tasks to be executed concurrently, it is better to
take control of the thread creation. If your code takes longer to
complete, you may soon hit the limit of 64,2,3 the maximum GCD
thread pool size.
Be wary about using dispatch_async and dispatch_sync lavishly
too, as it can lead to app crashes.4 Although 64 threads might look
like a reasonably high number for a mobile app, the app may hit
the limit sooner than later.

Operations and Queues
The next set of abstractions available for managing tasks in iOS programming is
operations and operation queues.

NSOperation encapsulates a task and its associated data and code, whereas
NSOperationQueue controls execution of one or more of such tasks in a FIFO order.

NSOperation and NSOperationQueue both provide control over the number of
threads that get created. You control the number of queues formed. You also control

110 | Chapter 4: Concurrent Programming

http://bit.ly/1hsGU1S
http://bit.ly/1FZUKEN
http://bit.ly/1N1VHvY
http://bit.ly/1N1VHvY

the number of threads in each queue, using the maxConcurrentOperationCount
property.

These two options sit somewhere in between using NSThread (where it is left to the
developer to manage all concurrency) and GCD (where the OS manages concur‐
rency).

Here’s a quick comparison of the NSThread, NSOperationQueue, and GCD APIs:

GCD
• Highest abstraction.
• Two queues are available out of the box: main and global.
• Can create more queues (using dispatch_queue_create).
• Can request exclusive access (using dispatch_barrier_sync and dispatch_bar
rier_async).

• Manages underlying threads.
• Hard limit on 64 threads created.

NSOperationQueue

• No default queues.
• App manages the queues it creates.
• Queues are priority queues.
• Operations can have different priorities (use the queuePriority property).
• Operations can be cancelled using the cancel message. Note that cancel is

merely a flag. If an operation is under execution, it may continue to execute.
• Can wait for an operation to complete (use the waitUntilFinished message).

NSThread

• Lowest-level construct, gives maximum control.
• App creates and manages threads.
• App creates and manages thread pools.
• App starts the threads.
• Threads can have priority. OS uses this for scheduling their execution.
• No direct API to wait for a thread to complete. Use a mutex (e.g., NSLock) and

custom code.

Operations and Queues | 111

5 Stack Overflow, “What Is an Invariant?”.

NSOperationQueue is multicore-safe. It is safe to use a shared queue
and submit tasks from multiple threads without having to worry
about queue corruption.

Thread-Safe Code
All throughout our software engineering lives, we are told to always write thread-safe
code—meaning that if multiple threads execute the same instruction sets concur‐
rently, there should not be any negative side effects.

There are two broad techniques for achieving this:

• Do not have a modifiable shared state.
• If you cannot avoid using a modifiable shared state, make your code thread-safe.

These techniques are easier said than done. There are a number of choices available
to accomplish them.

Because an app will have a modifiable shared state, we need to establish best practices
for application state management and modifications.

One basic rule that drives these best practices is “Preserve invariants in the code.”5

Atomic Properties
Atomic properties are a great start to making your application state thread-safe. If a
property is atomic, the modification or retrieval is guaranteed to be atomic.

This is important because it prevents two threads from simultaneously updating a
value, which otherwise could result in a corrupted state. The thread that is modifying
the property must complete before the other thread can proceed.

All properties are atomic by default. As a best practice, use atomic explicitly where
this is appropriate. To mark a property otherwise, use the nonatomic attribute.
Example 4-2 demonstrates both atomic and nonatomic properties.

Example 4-2. Atomic and nonatomic properties

@property (atomic) NSString *firstName;
@property (nonatomic) NSString *department;

112 | Chapter 4: Concurrent Programming

http://bit.ly/1NtKQgI

Atomic property

Nonatomic property

Because atomic properties have overheads, it is advisable not to overuse them. For
example, when it can be guaranteed that a property will never be accessed from more
than one thread at any time, it is better to mark it nonatomic.

One such scenario is working with IBOutlets. @property (nonatomic, readwrite,
strong) IBOutlet UILabel *nameLabel should be preferred over @property
(atomic, readwrite, strong) IBOutlet UILabel *nameLabel because we know
that UIKit allows manipulating UI elements from only the main thread. Because
access will be in one designated thread, marking the property atomic will only add
overhead without bringing any value.

Synchronized Blocks
Even if the properties are marked atomic, the eventual code using them may not be
thread-safe. An atomic property only prohibits concurrent modification. Assuming
that we have an entity HPUser that can be updated using an operation HPOperation,
let’s have a look at Example 4-3.

Example 4-3. Using atomic properties across threads

//An entity (partial definition)
@interface HPUser

@property (atomic, copy) NSString *firstName;
@property (atomic, copy) NSString *lastName;

@end

//A service class (declaration omitted for brevity)
@implementation HPUpdaterService

-(void)updateUser:(HPUser *)user properties:(NSDictionary *)properties {
 NSString *fn = [properties objectForKey:@"firstName"];
 if(fn != nil) {
 user.firstName = fn;
 }
 NSString *ln = [properties objectForKey:@"lastName"];
 if(ln != nil) {
 user.lastName = ln;
 }
}

Thread-Safe Code | 113

@end

Let’s consider that the updateUser:properties: method is called whenever the user
pulls down to refresh and data is available from the server. It may also be called by a
sync task that executes periodically.

So, at some point in time, there is a possibility that multiple responses will attempt to
update the user profile concurrently—maybe on two cores or just using time-slicing.

Consider the scenario where two responses in different threads try to update the user
with the names “Bob Taylor” and “Alice Darji.” Without atomic updates on the prop‐
erties firstName and lastName, the order of execution is not guaranteed and the final
result can be any combination, including “Alice Taylor” and “Bob Darji.”

This example is only demonstrative but enforces the point that atomic properties are
not enough to make code thread-safe.

This brings us to the next best practice: all related state updates should be batched in
a single transaction.

Use the @synchronized directive to create a mutex and enter a critical section, which
can only be executed by one thread at any point in time. The code may be updated as
shown in Example 4-4.

Example 4-4. Thread-safe blocks

@implementation HPUpdaterService

-(void)updateUser:(HPUser *)user properties:(NSDictionary *)properties {
 @synchronized(user) {
 NSString *fn = [properties objectForKey:@"firstName"];
 if(fn != nil) {
 user.firstName = fn;
 }
 NSString *ln = [properties objectForKey:@"lastName"];
 if(ln != nil) {
 user.lastName = ln;
 }
 }
}

@end

Acquire a lock against the user object. All related changes are now handled
together with no possibility of race conditions.

114 | Chapter 4: Concurrent Programming

With this change, the final name of the user will be either “Bob Taylor” or “Alice
Darji.”

Note that overuse of the @synchronized directive can slow down
your app, as only one thread can execute within the critical section
at any time.

For our case, we chose user as the object to acquire a lock on. Thus, the upda
teUser:properties: method can be called from multiple threads for as many users
as necessary, and it will execute with high concurrency as long as the user objects are
not the same. The result is code implemented for high-concurrency use with guards
against data corruption.

The object on which the lock is acquired is key to well-defined crit‐
ical sections. As a rule of thumb, select the object whose state will
be accessed or modified as the reference for the mutex.

So far, so good. But what should the strategy be for reading the properties? What if
you needed to display the full name of the HPUser object while it is being modified?

Locks
Locks are the basic building blocks to enter a critical section. atomic properties and
@synchronized blocks are higher-level abstractions available for easy use.

There are three kinds of locks available:

NSLock

This is a low-level lock. Once a lock is acquired, the execution enters the critical
section and no more than one thread can execute concurrently. Release the lock
to mark the end of the critical section.

Example 4-5 shows an example of using NSLock.

Example 4-5. Using NSLock

@interface ThreadSafeClass () {
 NSLock *lock;
}
@end

-(instancetype)init {

Thread-Safe Code | 115

 if(self = [super init]) {
 self->lock = [NSLock new];
 }
 return self;
}

-(void)safeMethod {
 [self->lock lock];

 //Thread-safe code

 [self->lock unlock];
}

The lock is declared as a private field. Another option is to make it a prop‐
erty.

Initialize the lock.

Acquire the lock to enter the critical section.

In the critical section, a maximum of one thread can execute at any time.

Release the lock to mark the end of the critical section. Another thread can
now acquire the lock.

NSLock must be unlocked from the same thread where it was locked.

NSRecursiveLock

NSLock does not allow lock to be called more than once without first calling
unlock. NSRecursiveLock, as the name indicates, does allow lock to be called
more than once before it is unlocked. Each lock call must be matched with an
equal number of unlock calls before the lock can be considered released for
another thread to acquire.

NSRecursiveLock is useful when you have a class with multiple methods that use
the same lock to synchronize and one method invokes the other. Example 4-6
shows an example of using it.

Example 4-6. Using NSRecursiveLock

@interface ThreadSafeClass () {
 NSRecursiveLock *lock;
}
@end

-(instancetype)init {

116 | Chapter 4: Concurrent Programming

 if(self = [super init]) {
 self->lock = [NSRecursiveLock new];
 }
 return self;
}

-(void)safeMethod1 {
 [self->lock lock];

 [self safeMethod2];

 [self->lock unlock];
}

-(void)safeMethod2 {
 [self->lock lock];

 //Thread-safe code

 [self->lock unlock];
}

The NSRecursiveLock object.

safeMethod1 acquires the lock.

It calls method safeMethod2.

safeMethod2 acquires a lock on the already-acquired lock.

safeMethod2 releases the lock.

safeMethod1 releases the lock. Because each lock call is now matched with a
corresponding unlock, the lock is now released and ready to be acquired by
another thread.

NSCondition

There are cases when there is a need to coordinate execution across threads. For
example, a thread may want to wait until another thread has results ready. NSCon
dition can be used to atomically release a lock and let it be obtained by another
waiting thread, while the original thread waits.

A thread can wait on a condition that releases the lock. Another thread can sig
nal the condition by releasing the same lock and awakening the waiting thread.

Thread-Safe Code | 117

The standard producer–consumer problem can be solved using NSCondition.
Example 4-7 shows the code to implement the solution to this problem.

Example 4-7. Using NSCondition

@implementation Producer

-(instancetype)initWithCondition:(NSCondition *)condition
 collector:(NSMutableArray *)collector {
 if(self = [super init]) {
 self.condition = condition;
 self.collector = collector;
 self.shouldProduce = NO;
 self.item = nil;
 }
 return self;
}

-(void)produce {
 self.shouldProduce = YES;
 while(self.shouldProduce) {
 [self.condition lock];
 if(self.collector.count > 0) {
 [self.condition wait];
 }
 [self.collector addObject:[self nextItem]];
 [self.condition signal];
 [self.condition unlock];
 }
}
@end

@implementation Consumer

-(instancetype)initWithCondition:(NSCondition *)condition
 collector:(NSMutableArray *)collector {
 if(self = [super init]) {
 self.condition = condition;
 self.collector = collector;
 self.shouldConsume = NO;
 self.item = nil;
 }
 return self;
}

-(void)consume {
 self.shouldConsume = YES;
 while(self.shouldConsume) {
 [self.condition lock];

118 | Chapter 4: Concurrent Programming

 if(self.collector.count == 0) {
 [self.condition wait];
 }
 id item = [self.collector objectAtIndex:0];
 //process item
 [self.collector removeItemAtIndex:0];
 [self.condition signal];
 [self.condition unlock];
 }
}
@end

@implementation Coordinator

-(void)start {
 NSMutableArray *pipeline = [NSMutableArray array];
 NSCondition *condition = [NSCondition new];
 Producer *p = [Producer initWithCondition:condition
 collector:pipeline];
 Consumer *c = [Consumer initWithCondition:condition
 collector:pipeline];
 [[NSThread initWithTarget:self selector:@SEL(startProducer)
 object:p] start];
 [[NSThread initWithTarget:self selector:@SEL(startCollector)
 object:c] start];
 //once done
 p.shouldProduce = NO;
 c.shouldConsume = NO;
 [condition broadcst];
}

@end

The initializer for the producer needs the NSCondition object to coordinate
with and a collector to push produced items to. It is initially set to not pro‐
duce (shouldProduce = NO).

The producer will produce while shouldProduce is YES. Another thread
should set it to NO for the producer to stop producing.

Obtain the lock on the condition to enter the critical section.

If the collector already has some not-consumed items, wait, which blocks
the current thread until the condition is signaled.

Add the produced nextItem to the collector for it to be consumed.

Thread-Safe Code | 119

signal another waiting thread, if any. This is an indicator that an item has
been produced, and added to the collector, and is available to be con‐
sumed.

Release the lock.

The initializer for the consumer needs the NSCondition object to coordinate
with and a collector to push produced items to. It is initially set to not con‐
sume (shouldConsume = NO).

The consumer will consume while shouldConsume is YES. Another thread
should set it to NO for the consumer to stop consuming.

Obtain the lock on the condition to enter the critical section.

If the collector has no items, wait.

Consume the next item in the collector. Ensure that it is removed from the
collector.

signal another waiting thread, if any. This is an indicator that an item has
been consumed and removed from the collector.

Release the lock.

The Coordinator class readies the input data for the producer and consumer
(specifically, the collector and the condition).

Set up the producer and consumer.

Start production and consumption tasks in different threads.

Once completed, set the producer and consumer to stop producing and con‐
suming, respectively.

Because the producer and consumer threads may be waiting, broadcast,
which is essentially signaling all waiting threads, unlike signal, which
affects only one of the waiting threads.

120 | Chapter 4: Concurrent Programming

Use Reader–Writer Locks for Concurrent Reads and Writes
We started this section with two choices for achieving thread safety. We discuss best
practices to safeguard against concurrent writes in this section and talk about immut‐
able entities in the next section.

We already learned that atomic properties safeguard against inconsistent updates and
are overcautious about it. If multiple threads attempt to read a property, the synthe‐
sized code allows access to only one thread at a time. Having an atomic property will
therefore slow down the app.

This can be a big bottleneck, especially if the state is shared across various compo‐
nents and may need to be accessed from multiple threads. An example of this is a
cookie or access token after login. It can change periodically but will be required by all
network calls made to the server.

Another use case for such a scenario is the cache. A cache entry can be used anywhere
in the app and may be updated upon specific user actions or otherwise.

Essentially, we need a mechanism for concurrent reads but exclusive writes. That
brings us to the topic of reader–writer locks. They are also known as multiple readers/
single-writer or multireader locks.

A reader–writer lock allows concurrent access for read-only operations, while write
operations require exclusive access. This means that multiple threads can read the
data in parallel but an exclusive lock is needed to modify the data.

GCD barriers allow creating a synchronization point within a concurrent dispatch
queue. When GCD encounters a barrier, the corresponding queue delays the execu‐
tion of the block until all blocks submitted before the barrier are finished executing.
And then, the block submitted via a barrier executes exclusively. We shall call this
block a barrier block. Subsequently, the queue continues with its normal execution
behavior.

Figure 4-2 demonstrates the effect that barriers have on execution in a multithreaded
environment. Blocks 1 through 6 can execute concurrently across multiple threads in
the app. However, the barrier block executes exclusively. The only constraint that
must be satisfied is that all executions must happen on the same concurrent queue.

Thread-Safe Code | 121

Figure 4-2. Dispatch blocks and barriers

To implement this behavior, we need to follow these steps:

1. Create a concurrent queue.
2. Execute all reads using dispatch_sync on this queue.
3. Execute all writes using dispatch_barrier_sync on the same queue.

You can use the code in Example 4-8 to implement a high-throughput thread-safe
model.

Example 4-8. Thread-safe, high-throughput model

//HPCache.h
@interface HPCache

+(HPCache *)sharedInstance;

-(id)objectForKey:(id) key;
-(void)setObject:(id)object forKey:(id)key;

@end

//HPCache.m
@interface HPCache ()

@property (nonatomic, readonly) NSMutableDictionary *cacheObjects;
@property (nonatomic, readonly) dispatch_queue_t queue;

@end

@implementation HPCache

-(instancetype)init {
 if(self = [super init]) {
 _cacheObjects = [NSMutableDictionary dictionary];
 _queue = dispatch_queue_create(kCacheQueueName,
 DISPATCH_QUEUE_CONCURRENT);
 }
 return self;

122 | Chapter 4: Concurrent Programming

}

+(HPCache *)sharedInstance {
 static HPCache *instance = nil;

 static dispatch_once_t onceToken;
 dispatch_once(&onceToken, ^{
 instance = [[HPCache alloc] init];
 });
 return instance;
}

-(id)objectForKey:(id<NSCopying>)key {
 __block id rv = nil;

 dispatch_sync(self.queue, ^{
 rv = [self.cacheObjects objectForKey:key];
 });

 return rv;
}

-(void)setObject:(id)object forKey:(id<NSCopying>)key {
 dispatch_barrier_async(self.queue, ^{
 [self.cacheObjects setObject:object forKey:key];
 });
}

@end

Create a custom DISPATCH_QUEUE_CONCURRENT queue.

Use dispatch_sync (or dispatch_async) for operations that do not modify state.

Use dispatch_barrier_sync (or dispatch_barrier_async) for operations that
may modify state.

Notice that the properties have been marked nonatomic because there is custom code
to manage thread safety using a custom queue and barrier.

Use Immutable Entities
This all looks great. But what if there is a need to access state while it is being
modified?

For example, what if the cache is being purged but part of the state needs to be used
immediately because the user performed an interaction? What if there were a more

Thread-Safe Code | 123

effective mechanism for state management than multiple components trying to
update it simultaneously?

Your team should follow these best practices:

• Use immutable entities.
• Support them with an updater subsystem.
• Allow observers to receive notifications on data changes.

This creates a decoupled, scalable system to manage application state. Let’s go
through one of the several possible ways to implement this.

The first step is to clearly define the models. For our case study, we define the follow‐
ing three entities:

HPUser

Represents a user in the system. A user has a unique id, name broken down into
firstName and lastName, gender, and dateOfBirth.

HPAlbum

Represents a photo album. A user may have zero or more albums. An album has
a unique id, owner, name, creationTime, description, link to coverPhoto (the
cover photo of the album), and likes (users that liked the album).

HPPhoto

Represents a photo in an album. An album may have zero or more photos. A
photo has a unique id, album to which it belongs, user (the person who uploaded
the photo), caption, url, and size (width and height).

Example 4-9 shows the code for the entity definitions.

Example 4-9. Entities for the case study, representing a user, an album, and a photo

@interface HPUser

@property (nonatomic, copy) NSString *userId;
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, copy) NSString *gender;
@property (nonatomic, copy) NSDate *dateOfBirth;
@property (nonatomic, strong) NSArray *albums;

@end

@class HPPhoto;

@interface HPAlbum

124 | Chapter 4: Concurrent Programming

@property (nonatomic, copy) NSString *albumId;
@property (nonatomic, strong) HPUser *owner;
@property (nonatomic, copy) NSString *name;
@property (nonatomic, copy) NSString *description;
@property (nonatomic, copy) NSDate *creationTime;
@property (nonatomic, copy) HPPhoto *coverPhoto;

@end

@interface HPPhoto

@property (nonatomic, copy) NSString *photoId;
@property (nonatomic, strong) HPAlbum *album
@property (nonatomic, strong) HPUser *user;
@property (nonatomic, copy) NSString *caption;
@property (nonatomic, strong) NSURL *url;
@property (nonatomic, copy) CGSize size;

@end

There are multiple ways to define the model and mechanisms to populate the data.
Two of the more common options are:

• Using a custom initializer
• Using a builder pattern

Each option has its advantages.

Using a custom initializer may mean a long method name, which can result in a nasty
call. Think about the method initWithId:firstName:lastName:gender:birthday:.
And this is when we have used only a few of the available attributes in our model. The
initializer bloats if five more attributes were added.

Custom initializers also pose backward compatibility problems. A newer model with
more attributes will never be backward compatible. However, this also ensures that
the app using the updated version of the model knows right at compile time that
things have changed.

Using a builder means managing an extra class for it. It will only have setter methods.
The builder will also need parallel storage (properties or otherwise) to store all the
data needed by the model. The builder will, eventually, use an initializer.

Any update to the model will require a corresponding change to the builder and its
backing properties.

The builder pattern is preferred, as it enables backward compatibility and does not
break the app even if there are more attributes added to the model. The extra
attributes in the later versions of the model will continue to have their default values.

Thread-Safe Code | 125

Using the second option, the code looks similar to that given in Example 4-10. This is
code adapted from Klaas Pieter’s idea of implementing the builder pattern using
blocks.

Example 4-10. Immutable entity using builder

//HPUser.h
@interface HPUserBuilder

@property (nonatomic, copy) NSString *userId;
@property (nonatomic, copy) NSString *firstName;
@property (nonatomic, copy) NSString *lastName;
@property (nonatomic, copy) NSString *gender;
@property (nonatomic, copy) NSDate *dateOfBirth;
@property (nonatomic, strong) NSArray *albums;

-(HPUser *)build;

@end

@interface HPUser

//properties

+(instancetype) userWithBlock:(void (^)(HPUserBuilder *))block;

@end

@interface HPUser ()

-(instancetype) initWithBuilder:(HPUserBuilder *)builder;

@end

@implementation HPUserBuilder

-(HPUser *) build {
 return [[HPUser alloc] initWithBuilder:self];
}

@end

@implementation HPUser
-(instancetype) initWithBuilder:(HPUserBuilder *)builder {

 if(self = [super init]) {
 self.userId = builder.userId;
 self.firstName = builder.firstName;
 self.lastName = builder.lastName;
 self.gender = builder.gender;

126 | Chapter 4: Concurrent Programming

http://www.annema.me/the-builder-pattern-in-objective-c
http://www.annema.me/the-builder-pattern-in-objective-c

 self.dateOfBirth = builder.dateOfBirth;
 self.albums = [NSArray arrayWithArray:albums];
 }
 return self;
}

+(instancetype) userWithBlock:(void (^)(HPUserBuilder *))block {
 HPUserBuilder *builder = [[HPUserBuilder alloc] init];
 block(builder);
 return [builder build];
}

@end

//Building the object, an example
-(HPUser *) createUser {
 HPUser *rv = [HPUser userWithBlock:^(HPUserBuilder *builder) {
 builder.userId = @"id001";
 builder.firstName = @"Alice";
 builder.lastName = @"Darji";
 builder.gender = @"F";

 NSCalendar *cal = [NSCalendar currentCalendar];
 NSDateComponents *components = [[NSDateComponents alloc] init];
 [components setYear:1980];
 [components setMonth:1];
 [components setDay:1];
 builder.dateOfBirth = [cal dateFromComponents:components];

 builder.albums = [NSArray array];
 }];

 return rv;
}

The builder.

The model with the class method userWithBlock:. Example 4-9 has all the prop‐
erties declared.

Private extension to the model—the custom initializer.

Implementation of the build method.

Implementation of the custom initializer of the model.

Implementation of the userWithBlock: method.

Thread-Safe Code | 127

A sample use of the builder to create the object.

Note that the preceding code has a few advantages:

• The model is always backward compatible. A new version of the model-builder
with extra attributes will not break the createUser code.

• The builder can be created directly. The consumer of the model can instantiate
the builder and call the build method to create the model object.

• The builder creation and handling can be left to the core. The consumer of the
model can use the class method userWithBlock: and does not need to either
instantiate or call the build method by itself.

Have a Central State Updater Service
The next thing that we need an updater service to update is the client state. The
updater service may require connecting to the server, validating the update before
performing a local update—for example, adding or updating a record, confirming a
friend request, or uploading a photo. From the UI perspective, in the interim, you
may show a progress bar or some other indicator to keep the user informed about the
status of the change of the state.

For our case, let’s have HPUserService, HPAlbumService, and HPPhotoService classes
for servicing HPUser, HPAlbum, and HPPhoto objects, respectively.

Updating state is tricky because it is immutable. Paradoxical, isn’t it? One option is to
let the state builder take an input state that can be subsequently modified.

To do that for HPUser, we can create a helper initializer on HPUserBuilder that takes
an input object.

The code in Example 4-11 shows an updated HPUserBuilder class to support modifi‐
cations to an earlier created HPUser object, and an HPUserService class to retrieve
and update the objects. Similar infrastructure will exist for HPAlbum and HPPhoto enti‐
ties. This code demonstrates the services for user and album entities for the following
two scenarios:

• Retrieving data from the server resulting in an update to local state
• Updating local and remote states, for example, upon a user interaction

Example 4-11. Services for user and album objects

//HPUserBuilder.h
@interface HPUserBuilder

128 | Chapter 4: Concurrent Programming

-(instancetype) initWithUser:(HPUser *)user;

@end

@interface HPUserBuilder

-(instancetype) initWithUser:(HPUser *)user {
 if(self = [super init]) {
 self.userId = builder.userId;
 self.firstName = user.firstName;
 self.lastName = user.lastName;
 self.gender = user.gender;
 self.dateOfBirth = user.dateOfBirth;
 self.albums = user.albums;
 }
 return self;
}

@end

//HPUserService.h
@interface HPUserService

+(instancetype)sharedInstance;
-(void)userWithId:(NSString *)id completion:(void (^)(HPUser *))completion;
-(void)updateUser:(HPUser *)user completion:(void (^)(HPUser *))completion;

@end

//HPUserService.m
@interface HPUserService

@property (nonatomic, strong) NSMutableDictionary *userCache;

@end

@implementation HPUserService

-(instancetype) init {
 if(self = [super init]) {
 self.userCache = [NSMutableDictionary dictionary];
 }
 return self;
}

-(void)userWithId:(NSString *)id completion:(void (^)(HPUser *))completion {
 //Check in local cache or fetch from server
 HPUser *user = (HPUser *)[self.userCache objectForKey:id];
 if(user) {
 completion(user);
 }

Thread-Safe Code | 129

 [[HPSyncService sharedInstance] fetchType:@"user"
 withId:id completion:^(NSDictionary *data) {
 //Use HPUserBuilder, parse data and build
 HPUser *userFromServer = [builder build];
 [self.userCache setObject:userFromServer forKey:userFromServer.userId];
 callback(userFromServer);
 }];
}

-(void)updateUser:(HPUser *)user completion:(void (^)(HPUser *))completion {
 //May require update to server
 [[HPSyncService sharedInstance] updateType:@"user"
 //Use HPUserBuilder, parse data and build
 HPUser *updatedUser = [builder build];

 [self.userCache setObject:updatedUser forKey:updatedUser.userId];
 [HPAlbumService updateAlbums:updatedUser.albums];
 completion(updatedUser);
 }];
}

@end

HPUserBuilder now has another custom initializer. It takes an HPUser object as a
parameter and initializes itself with the values from the user object. The state can
be modified using property setters and a new object can finally be built using the
build method. Note that although the state has been modified, the old object has
not been modified. This also means that if the old object is being used in another
entity (e.g., a view controller), it has to be replaced. We will explore state change
notifications in the next section.

HPUserService follows a singleton pattern here and is available using sharedIn
stance. The code has been omitted for brevity, but we know how to implement
good and safe singletons. It is not advisable to use a singleton entity or service
levels, as it results in tight coupling and also interferes with mocking frameworks.
A configurable factory is preferred over using singletons. The factory may create
a disposable singleton. We will revisit this topic in Chapter 10.

As a quick prototype, the service also holds on to the cache of user objects cre‐
ated. However, it is definitely not a good idea to mix state with the cache logic.
Always keep the state separate from any other intelligent code. You want to keep
the models as dumb as possible.

The HPUserService initializer has been overridden to initialize the cache. This is
a stopgap solution, as the focus of our discussion is about how immutable objects
can serve better than mutable objects whose state can be changed from different

130 | Chapter 4: Concurrent Programming

6 You may want to explore other formats, such as Protobuf, Thrift, or Avro.
7 Stack Overflow, “How to Design an Immutable Object with Complex Initialization”.

parts of the app. In a real-world app, the service object will have access to the
state, which can be used as input for any processing or be updated, and to under‐
lying network operations to keep the server in sync.

A user with a given id can be retrieved using userWithId:completion:. If the
object exists in the local state, it is returned. Otherwise, it may contact the server
and retrieve the details. Once ready, the completion callback is used to notify the
caller that the object is available.

Availability of a sync service, HPSyncService, is assumed here. The service
retrieves data from the server. It is also assumed that the server sends a JSON
object6 that is deserialized into an NSDictionary. The code for extracting proper‐
ties and populating the builder has been omitted. Once the data is available, we
also update the local cache so that further server trips can be avoided.

User state can be updated using the updateUser:completion: method.

Updating local state may require syncing changes to the server.

Once the server has been notified, the local cache is updated. Because the user
object holds albums, the album service is used to update the related albums as
well. Specifically, the associated owner object must now point to the updated user
object. The old user object must be up for dealloc. Note that the solution pre‐
sented here is not scalable: what if other entities also need to update themselves?
We will fix this problem momentarily.

One of the points to note in the entities is their cross-references. The user has a list of
albums, and each album has an owner. Similarly, an album has a list of photos, and
each photo has its container album. And we have not even modeled the comments on
a photo, which may comprise when the comment was made, the content, and the user
who wrote it.

Regardless of whether they are strong or weak, creating immutable objects with such
cross-references has been purposefully omitted here. We need the user object to be
ready before the album can be created, and vice versa. It is a catch-22 situation.

The way out is to keep the objects mutable unless specifically marked immutable.
This is known as popsicle immutability.7 For this, you may have a special method, say,

Thread-Safe Code | 131

http://bit.ly/1FuVRGI

freeze or markImmutable. To be able to use this structure, you will need custom set‐
ters that will first check if the object is immutable before allowing any changes.

We can now solve the deadlock. We allow HPAlbum to be modifiable until we set its
owner. We create the HPUser object and set the owner of the HPAlbum object. Subse‐
quently, we call the method freeze on the HPAlbum object. After all albums are cre‐
ated, we assign them to albums property of the HPUser object. Finally, we call the
method freeze on the HPUser object.

Code to this effect is shown in Example 4-12. HPUser has been updated to have read/
write properties and be mutable until it is marked immutable. And guess what—for
most common use cases, you will probably never need a builder because the proper‐
ties are read/write.

Example 4-12. Popsicle-immutable entities

//HPUser.h
@interface HPUser

@property (nonatomic, copy) NSString *userId;
@property (nonatomic, copy) NSString *firstName;
-(void) freeze;

@end

//HPUser.m
@interface HPUser ()

@property (nonatomic, copy) BOOL frozen;

@end

@implementation HPUser

@synthesize userId = _userId;
@synthesize firstName = _firstName;

-(void) freeze {
 self.frozen = YES;
}

-(void) setUserId:(NSString *)userId {
 if(!self.frozen) {
 self->_userId = userId;
 }
}

-(void) setFirstName:(NSString *)firstName {
 if(!self.frozen) {
 self->_firstName = firstName;

132 | Chapter 4: Concurrent Programming

 }
}

//... Other setters omitted

@end

//Creating objects
-(HPUser *)sampleUser {
 HPUser *user = [[HPUser alloc] init];
 user.userId = @"user-1";
 user.firstName = @"Bob";
 user.lastName = @"Taylor";
 user.gender = @"M";

 HPAlbum *album1 = [[HPAlbum alloc] init];
 album1.owner = user;
 album1.name = @"Album 1";
 //... other properties
 [album1 freeze];

 HPAlbum *album2 = [[HPAlbum alloc] init];
 album2.owner = user;
 album2.name = @"Album 2";
 //... other properties
 [album2 freeze];

 user.albums = [NSArray arrayWithObjects:album1, album2, nil];
 [user freeze];

 return user;
}

The properties are no longer readonly. They are readwrite (implicit).

We add the method freeze, which marks an object immutable. Objects are
mutable by default.

A flag to track the immutability state of the object.

Because we are going write custom setters, we need to @synthesize and tell the
compiler about the backing iVar to use.

Implementation of the method freeze marks the object immutable.

Custom setters. First, check if the object is mutable. If yes, update. If not, do not
update. You may want to throw an exception during development time to ensure
legitimate invocations and identify any bad code.

Thread-Safe Code | 133

8 The introduction to Reactive Programming you’ve been missing.

Sample code to demonstrate the use of the new API.

A user is assigned as the album’s owner. At this point, both objects are mutable.

HPAlbum object marked immutable.

HPUser object marked immutable. Notice how the line just before this can make
use of the immutable album objects.

Although the objects may be mutable for a while, we ensure that the mutability is
short-lived and restricted only to the thread that created an object. Before the objects
are pushed from the creation method to the shared app state, you must ensure that
they are marked immutable.

State Observers and Notifications
The previous section left us with an unanswered question: how do we update
dependents if an object is updated? Or, put differently, what are the best options to
track state changes?

To track changes, you have the following options:

• KVO
• The notification center
• A custom solution

We looked at the first two options briefly in Chapter 2. KVO is great for tracking
changes in object properties. But using our approach, this does not work because the
objects are immutable and we replace the entire object. As such, the observer will
never receive any callbacks.

The notification center is a great option. It serves a useful purpose and would suffice
for most of the parts. But the challenge is scaling for the complex scenarios that an
app will eventually have—for example, filtering update notifications by album ID or
bubbling up the changes to the UI directly if possible.

That’s where a custom solution is needed. And to make that happen, we will switch
our style to reactive programming.

Reactive Programming is programming with asynchronous data streams.8 Streams
are cheap and ubiquitous, anything can be a stream: variables, user inputs, properties,
caches, data structures, etc.

134 | Chapter 4: Concurrent Programming

http://bit.ly/1U1VBd8

The ReactiveCocoa library enables reactive programming in Objective-C. It not only
allows observers on arbitrary state but also has advanced category extensions for bub‐
bling them all the way up to UI elements (UILabel, for example) or responding to
interactive views (UIButton, for example).

Functional Reactive Programming and ReactiveCocoa
An app generally consumes, generates, and updates data. Reactive programming is a
programming paradigm that enables expressing data flows without having to worry
about side effects or impact on other tasks under execution in parallel.

The core idea behind reactive programming is representation of a value over a period
of time. Data flows that use these dynamic values will result in values that change over
time.

Functional reactive programming (FRP) is enabling reactive programming using the
building blocks of functional programming like map, reduce, filter, merge, etc.

ReactiveCocoa is inspired by FRP. Because various components of an app work in
cohesion, there is a strong relationship between the state that they work with and
update. As such, creating a decoupled cohesive reactive system is very important.

We will use ReactiveCocoa to notify observers about any model changes. The observ‐
ers can be created anywhere.

For illustrative purposes, we will add a notification during each user creation and
update operation. We will also add an observer in the album service to monitor any
changes to the owner (user) and, for completeness, in the UI to monitor changes to
the albums list for a user. Example 4-13 shows the relevant parts of the code.

Example 4-13. Observers and notifications

//HPUserService.m
-(RACSignal *)signalForUserWithId:(NSString *)id {
 @weakify(self);
 return [RACSignal
 createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
 @strongify(self);
 HPUser *userFromCache = [self.userCache objectForKey:id];
 if(userFromCache) {
 [subscriber sendNext:userFromCache];
 [subscriber sendCompleted];
 } else {
 //Assuming HPSyncService also follows FRP style
 [[[HPSyncService sharedInstance]
 loadType:@"user" withId:id]
 subscribeNext:^(HPUser *userFromServer) {

Thread-Safe Code | 135

http://bit.ly/reactive-cocoa

 //Also update local cache and notify
 [subscriber sendNext:userFromServer];
 [subscriber sendCompleted];
 } error: ^(NSError *error) {
 [subscriber sendError:error];
 }];
 }

 return nil;
 }]
}

-(RACSignal *)signalForUpdateUser:(HPUser *)user {
 @weakify(self);
 return [RACSignal
 createSignal:^RACDisposable *(id<RACSubscriber> subscriber) {
 //Update the server
 [[[HPSyncService sharedInstance]
 updateType:@"user" withId:user.userId value:user]
 subscribeNext:^(NSDictionary *data) {
 //Use HPUserBuilder, parse data and build
 HPUser *updatedUser = [builder build];

 @strongify(self);
 var oldUser = [self.userCache objectForKey:updatedUser.userId];
 [self.userCache setObject:updatedUser forKey:updatedUser.userId];
 [subscriber sendNext:updatedUser];
 [subscriber sendCompleted];
 [self notifyCacheUpdatedWithUser:updatedUser old:oldUser];
 } error: ^(NSError *error) {
 [subscriber sendError:error];
 }];
 }];
}

-(void)notifyCacheUpdatedWithUser:(HPUser *)user old:(HPUser *)oldUser {
 NSDictionary *tuple = {
 @"old": oldUser,
 @"new": user
 };
 [NSNotificationCenter.defaultCenter
 postNotificationName:@"userUpdated" object:tuple];
}

-(RACSignal *)signalForUserUpdates:(id)object {
 return [[NSNotificationCenter.defaultCenter
 rac_addObserverForName:@"userUpdated" object:object]
 flattenMap:^(NSNotification *note) {
 return note.object;
 }];
}

136 | Chapter 4: Concurrent Programming

//At some other place in app
-(void)retrieveAUser:(NSString *)userId {
 [[[HPUserService sharedInstance]
 signalForUserWithId:userId]
 subscribeNext:^(HPUser *user) {
 //process user, maybe update UI
 } error:^(NSError *) {
 //show error to user
 }];
}

-(void)updateAUser:(HPUser *)user {
 [[[HPUserService sharedInstance]
 signalForUpdateUser:user]
 subscribeNext:^(HPUser *user) {
 //process user, maybe update UI
 } error:^(NSError *) {
 //show error to user
 }];
}

//Listening for user updates
-watchForUserUpdates {
 [[[HPUserService sharedInstance]
 signalForUserUpdates:self]
 subcribeNext:^(NSDictionary *tuple) {
 //Do something with the values
 HPUser *oldUser objectForKey:@"old";
 HPUser *newUser objectForKey:@"new";
 }];
}

The method signalForUserWithId does not take in a block as a parameter but
returns a promise that can be chained. The @weakify and @strongify macros
that were first introduced in “Best Practices” on page 78 have been used here.

The code for the signal is pretty much the same as the original code in userWi
thId: but this time using RACSubscriber and a promise.

It is assumed that the method loadType:withId in the class HPSyncService also
returns a promise, an RACSignal.

The method signalForUpdateUser: updates an HPUser object.

This creates the RACSignal.

When the user is updated, you need to not only inform the immediate subscriber,
but also notify observers about updates to the cache.

Thread-Safe Code | 137

notifyCacheUpdatedWithUser:old: broadcasts about user object changes.

NSNotificationCenter has been used here for simplicity. This method may not
be exposed to the HPUserService users. It is an extension method.

The method published (in the HPUserService.h file) is signalForUserUpdates:.

It uses the rac_addObserverForName category extension provided by the Reacti‐
veCocoa framework to subscribe to userUpdated notifications. It also extracts the
actual NSDictionary, comprised of the old and new user objects from the under‐
lying NSNotification object.

The retrieveAUser: method demonstrates sample code to retrieve a user.

The subscribeNext: block is where the user object is received.

The updateAUser: method demonstrates sample code to update a user.

The subscribeNext: block is where the user object is received.

The watchForUserUpdates: method shows sample code to watch for changes in
the user cache.

It uses the method signalForUserUpdates: to listen to notifications about
changes to the user cache.

The subscribeNext: block is given the NSDictionary of old and new objects.

The advantage is that if in the future the implementation of signalForUserUp
dates: changes to not use NSNotificationCenter, it will not result in changes
all the way up to watchForUserUpdates:.

The primary motive for using this library is that it already has what we need to imple‐
ment a decoupled, scalable, self-contained, general-purpose system for observing for
changes. More importantly, it provides promises for chaining (using RACSignal) that
allow us to write code in a style that is more understandable and maintainable. It also
provides simpler solutions for interacting with the UI elements—something that we
will use as we continue to build on these concepts in upcoming chapters. In a nut‐

138 | Chapter 4: Concurrent Programming

9 Facebook, “Making News Feed Nearly 50% Faster on iOS”.
10 “Facebook’s iOS Architecture - @Scale 2014 - Mobile”.

shell, it provides a lot of boilerplate code that we would otherwise have had to write
ourselves, and a lot more.

Making Facebook’s News Feed 50% Faster on iOS
In 2012, Facebook migrated its News Feed from HTML5 to a native iOS app to opti‐
mize performance. But over time, as other sections—including Groups, Pages, and
Timeline—were moved to native, the News Feed degraded in performance. Instru‐
mentation showed that the root cause was the data layer.9

The model layer was thus rewritten based on three principles:

• Immutability
• Denormalized storage
• Asynchronous, opt-in consistency

This also meant moving away from the Core Data framework, which guarantees
strong data consistency but comes at the cost of performance.10

Prefer Async over Sync
In the previous section, we learned that we should prefer promises. This section pro‐
vides some deeper discussion of asynchronous code.

There is a big and more impactful reason to always prefer async over sync. And it has
to do with synchronization. In “Use Reader–Writer Locks for Concurrent Reads and
Writes” on page 121, we discussed using dispatch barriers and learned about how dis
patch_sync can be used for concurrent reads.

Let’s briefly analyze the code in Example 4-14.

Example 4-14. Using dispatch-sync in the real world

//Case A
dispatch_sync(queue, ^() {
 dispatch_sync(queue, ^() {
 NSLog(@"nested sync call");
 });
});

//Case B

Thread-Safe Code | 139

http://bit.ly/faster-fb-ios
http://bit.ly/fb-ios-arch

11 dispatch_get_current_queue, Developer Tools Manual Page.

-(void) methodA1 {
 dispatch_sync(queue1, ^() {
 [objB methodB];
 });
}

-(void)methodA2 {
 dispatch_sync(queue1, ^() {
 NSLog(@"indirect nested dispatch_sync");
 });
}

-(void) methodB {
 [objA methodA2];
}

In Example 4-14, Case A demonstrates a hypothetical scenario in which a nested dis
patch_sync is invoked using the same dispatch queue. This results in a deadlock. The
nested dispatch_sync cannot dispatch into the queue because the current thread is
already on the queue and will not release the lock.

Case B demonstrates a more likely scenario. A class has two methods (methodA1 and
methodA2) that use the same queue. The former method calls a methodB on some
object, which in turns calls the latter. The end result is a deadlock. The otherwise use‐
ful method dispatch_get_current_queue has long since been deprecated.11

One option is to use the dispatch_queue_set_specific and dispatch_get_spe
cific methods, but you will realize that the code gets murky pretty soon.

For thread-safe, deadlock-free, and maintainable code, using an async style is highly
recommended. And there is nothing better than using promises. ReactiveCocoa (see
“Functional Reactive Programming and ReactiveCocoa” on page 135) introduces the
FRP style in Objective-C. dispatch_async does not suffer from this behavior.

PromiseKit
PromiseKit is another library that supports using promises. And it does that even bet‐
ter because it helps you avoid the rightward drift.

Compare the code in Examples 4-15 and 4-16.

Example 4-15. Promise with rightward drift

[[[[
 [[HPNetworkService sharedInstance] promise:rq1]

140 | Chapter 4: Concurrent Programming

http://apple.co/1RPh8SH
http://bit.ly/1NOj8fo
http://bit.ly/1NOj8fo
https://github.com/mxcl/PromiseKit

 subcribeNext:^(id data1) {
 return [[HPNetworkService sharedInstance] promise:rq2];
 }]
 subscribeNext:^(id data2) {
 return [[HPNetworkService sharedInstance] promise:rq3];
 }]
 subscribeNext:^(id data3) {
 // three indents deep here
 // look at the opening brackets '[[[['
 }]
}];

Example 4-16. Promise with no rightward drift

[NSURLConnection promise:rq1].then(^(id data1){
 return [NSURLConnection promise:rq2];
}).then(^(id data2){
 return [NSURLConnection promise:rq3];
}).then(^(id data3){
 // yay! the code looks consecutive!
});

Notice that in Example 4-15, if multiple promises need to be chained, there’s a chain
of opening brackets ([), and if you are a one bracket per indentation per line pro‐
grammer, the code suddenly looks to have too much right drift. On the other hand, in
Example 4-16, it is always indented on the first column.

PromiseKit also provides elegant error handling. Exploring PromiseKit is highly rec‐
ommended.

Summary
It is impossible to envision any app without concurrent programming. Operations as
simple as animation require multitasking. All long-running tasks (such as networking
and I/O) must always be done in a background thread.

With an in-depth analysis on various available options (namely threads, GCD, and
operations and queues) in hand, you should now be able to select the one that works
best in your specific scenario.

Choosing the right option to make your code thread-safe is key to the correctness of
the app’s state. Using mutexes to synchronize access to code blocks is as important as
creating high-throughput reads with protected writes using reader–writer locks.

Now that you are familiar with the core optimization techniques for memory man‐
agement, energy use, and concurrent programming discussed in this part of the book,
you should be able to optimize the model and business logic layers of your app.

Summary | 141

PART III

iOS Performance

Part II built up the foundation for creating a performant app—an app that is cogni‐
zant of resource utilization and that follows key best practices for optimization.
Although our discussion was centered on iOS app development, the general princi‐
ples apply to any Objective-C app.

The chapters in this part take a closer look at the options and techniques that are spe‐
cific to iOS app development. We will explore the following topics:

• Application lifecycle
• User interface
• Networking
• Data sharing
• Security

CHAPTER 5

Application Lifecycle

An iOS app starts with a call to the UIApplicationMain method, with a reference to
the UIApplicationDelegate class. The delegate receives application scope events and
has a definitive lifecycle with the application:didFinishLaunchingWithOptions:
method indicating the application startup. It is in this method that initialization of
key components such as crash reporting, network, logging, and instrumentation hap‐
pen. In addition, there may be one-time initialization during the first launch or
restoring of previous state for subsequent launches.

The app window has a rootViewController that drives the user interface presented
to the user. The corresponding UIViewController object also has a definitive
lifecycle.

A flurry of activities during application startup has an impact on initial load time,
which must be minimized for a better user experience. However, the tasks should not
be removed to the extent that operations after app launch take much longer, as this
will only further annoy users.

This chapter takes a deep dive into the application lifecycle. We will compare what
app developers use an event callback for versus its primary intent and its impact on
app performance. We also review some techniques, tips, and tricks that we can use to
keep our users happy.

We will explore the UIViewController lifecycle in Chapter 6.

App Delegate
The app delegate will, generally, be the first object to be created in your app. It is this
class that gets inputs from the environment into the app, including app launch details,
remote notifications, deep links, and more.

145

If you need to refresh your understanding of app structure and execution state, check
out http://apple.co/1IV94sL.

Figure 5-1 shows the application delegate callbacks during execution state transitions.

Figure 5-1. App delegate callback invocations

146 | Chapter 5: Application Lifecycle

http://apple.co/1IV94sL

While it may appear complex, there shouldn’t be any surprises in Figure 5-1, except
perhaps for the methods application:didDecodeRestorableStateWithCoder: and
application:willEncodeRestorableStateWithCoder:, which are rarely handled.
Apps generally have their own local application state management and restore from
there. These methods have been added for completeness.

The diagram does not enlist several other event callbacks. Specifically, callbacks
related to push notifications have been omitted. They will be explored later, in “Push
Notifications” on page 169.

What we will do is take one callback at a time, dissect it, review code commonly writ‐
ten in the callback, and determine if there is a better way to approach it.

Application Launch
The (in)famous application:didFinishLaunchingWithOptions: method is where
your app’s startup brain lies. You cannot go wrong with it—absolutely no crashes are
expected here, lest the app become unusable until the next upgrade, which the user
may rarely do unless the app is indispensable.

It is in this method where you load all dependencies and initialize your app core. And
it is in this method where you want to spend the minimum time during startup—you
do not want the user to be waiting for the UI to come up. You do not want your app
to be labeled clumsy, bulky, or slow, and you definitely don’t want it to receive bad
ratings in the App Store.

There are four types of application launches possible:

First launch
The first app start after installation. During this, there is no previous state to be
used. There is no local cache.

This means one of two things—either there is no content to load (and thus, there
is a reduced load time), or the initial data needs to be download from the server
(which could potentially involve a long load time).

Upon first launch of the app, you may choose to provide an app walkthrough
summarizing the app’s capabilities and its usage. Figure 5-2 shows the Dropbox
walkthrough as an example.

Application Launch | 147

Figure 5-2. Dropbox walkthrough

Cold start
This is a subsequent app start. During this, there may be old state to restore from
—for example, highest achieved level in a game, chat log in a messaging app, last
synchronized articles in a news app, credentials for a previously logged-in user,
or just the flag that the user has already taken the walkthrough.

Figure 5-3 shows the Facebook app at cold start. Notice how it quickly loads the
cached posts while it synchronizes with the server for updates.

Warm (re)start
This is when the user switches to the app after it was backgrounded but not sus‐
pended or killed. In this scenario, it does not go through the launch callbacks but
rather goes directly to the applicationDidBecomeActive: callback (or option‐
ally, application:openURL:source:annotation:) when the user taps on the
icon or returns to the app through a deep link (see “Deep Linking” on page 252).

Generally, this case is no different from a continued execution of the app, except
it may or may not get some additional events to the view controller—something
that we will explore later in this chapter.

148 | Chapter 5: Application Lifecycle

Figure 5-3. Facebook app at cold start

Launch after upgrade
This is when the user launches the app after an upgrade. Generally, launching
after an upgrade is no different from a cold start. However, the semantics change
the moment there are changes to local storage—schema, content, or pending syn‐
chronization from the previous version, or even when the internal API/depend‐
ency defaults change.

Application Launch | 149

First Launch
In general, the app may perform multiple tasks during the first launch:

• Load application defaults (NSUserDefaults, bundled config, etc.)
• Check for private/beta releases
• Initialize app identifiers, including but not limited to the Identifier for Vendor

(IDFV) for anonymous users, Identifier for Advertiser (IDFA), and so on
• Initialize crash reporting system
• Set up A/B testing
• Set up analytics
• Set up networking using operations or GCD
• Set up UI infrastructure (navigation, themes, initial UI)
• Show login prompt or load latest content and other updates from the server
• Set up in-memory cache (e.g., image cache)

These tasks are only indicative of what an app may do on first launch. Some of these
tasks may be executed on subsequent launches as well. The point is that these tasks
can quickly add up, which will in turn slow down the app launch.

If we were to introduce these tasks in our app, the code might look similar to that
given in Example 5-1.

Example 5-1. App startup code

-(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 NSString *deviceId = [[[UIDevice currentDevice]
 identifierForVendor] UUIDString];

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 BOOL firstLaunch = ![defaults boolForKey:@"appLaunched"];
 if(firstLaunch) {
 [defaults setBool:YES forKey:@"appLaunched"];
 [defaults synchronize];

 //Register device to the server
 }

 //set up A/B testing using device ID

 //... more setup
 [Flurry startSession:@"API_KEY"];
 [[NSURLCache sharedURLCache] setMemoryCapacity:(8 * 1024 * 1024)];

150 | Chapter 5: Application Lifecycle

 [[NSURLCache sharedURLCache] setDiskCapacity:(50 * 1024 * 1024)];
 [SDImageCache sharedImageCache].maxCacheSize = 8 * 1024 * 1024;

 NSString *accessToken = nil;
 if(!firstLaunch) {
 accessToken = [defaults stringForKey:@"accessToken"];
 }
 if(accessToken) {
 //user is logged in
 } else {
 if(firstLaunch) {
 //first launch
 } else {
 //user not logged in
 }
 }

 return YES;
}

-(BOOL)applicationDidBecomeActive:(UIApplication *)application {

#ifdef RELEASE_BETA
 [[BITHockeyManager sharedHockeyManager]
 configureWithIdentifier:@"API_KEY"];
 [[BITHockeyManager sharedHockeyManager] startManager];
#endif
}

The application:didFinishLaunchingWithOptions: callback, called once per
app start.

Grab the IDFV to uniquely track this device.

Determine whether this is the first launch or if the app was launched earlier.

Set the flag indicating that the app has already been launched earlier.

You can send the ID to the server for anonymous registration or for tracking
what is generally referred to as the unique users or devices count.

Some subsystems may require the ID—for example, for A/B testing.

A lot more setup: analytics, network cache, image cache, etc.

Access token used to track the user login.

Application Launch | 151

If the access token is set, the user was already logged in. If the user changed the
password or logged out remotely from another device, the token needs to be
refreshed. The code is omitted for brevity.

If the access token is not available, it may be that this is the first launch of the
app, for which you may want to bring up the app walkthrough, or that the user
did not log in during the previous app session.

If the user did not log in but it is not the first launch, you may want to bring up
the login form directly.

Some of the configuration can be delayed until the app comes to the foreground
(is active).

Note, however, that this callback is invoked each time the app returns from the
background, not just during launch. As such, ensure that you do not introduce
repetitive delays by running animations that might annoy the user.

RELEASE_BETA is not a standard flag. It is a custom flag that has been introduced
here to differentiate between App Store builds versus private launches. Multiple
configurations/targets may need to be created for this to work, as shown in
Figure 5-4.

In this example, HockeyKit setup has been done. Your app may do different
tasks.

Note that this is not an exhaustive list by any means. Other tasks such as initializa‐
tions related to ads, logging, app-install attributions, single sign-on, and so on have
not been shown here. A lot depends on app requirements and structure.

Although each subsystem may be individually performant, their
performance may drop when used together. For example, if multi‐
ple components attempt to simultaneously read from the filesys‐
tem, it will result in an overall sluggishness.

152 | Chapter 5: Application Lifecycle

http://hockeyapp.net

Figure 5-4. Multiple configurations

This brings us to the scenario posed earlier—these subsystem initializations can take
substantial time and may have dependencies on one another. For example, themes
may depend on A/B tests or data sync may depend on token validation (a.k.a. login).

How can we optimize the performance if these (possibly mandatory) initializations add
up to a long initialization time?

There is no definite answer to this. The approach is to take a step back, identify what
is the bare minimum required to show the app UI, and proceed from there.

You’ll need to follow these concrete steps to split down the task list for more effective
performance:

1. Identify what must be executed before the UI can be shown.
If the app is being launched for the first time, there is no need to load any user
preferences such as theme, refresh interval, cache size, and so on. There will be

Application Launch | 153

no custom values. It is OK to let the initial cache grow wild, as we know that it
will not grow beyond a fraction of the final intended limit.
The crash reporting system should be the first one to be initialized.

2. Order the tasks.
Ordering is very important—not only because the tasks may have interdependen‐
cies but also because it may save you precious user time.
For example, if you trigger access token validation early, other tasks may execute
in parallel because the validation process will require making a network call. As
such, the clock time taken to complete the overall process may be less as com‐
pared to when the validation is done later and the app has to wait for the
response.

3. Split the tasks into two categories—tasks that must execute in the main thread
only and tasks that can execute in other threads—and execute them accordingly.
It is possible to further split the tasks that can be executed in a non-main thread
into those that can be executed concurrently and those that cannot be.

4. Other tasks can either be executed after the UI is loaded or may be fired asyn‐
chronously.
Delay initialization of other subsystems, such as loggers and analytics. It may be
possible to queue operations (e.g., writing log messages or tracking events) until
these subsystems are completely initialized, which may happen late in the app’s
life.

As you may notice, there is no fixed solution. A lot depends on what control you have
over these subsystems. With a bunch of third-party solutions available for these sub‐
systems—crash reporting, A/B testing, instrumentation and analytics, networking,
image cache—the exact answer to the question of how best to optimize load time
depends on what options you choose and the amount of leeway you have with them.

For your app dependencies, if you have the code and you know the
fix, provide a patch. By contributing to the community, you will
help others who have faced similar issues.
If you purchased the license, be proactive and reach out to the
company—you should receive a response. If not, do not hesitate to
drop it and seek out an alternative. In the end, it is your app that
the user interacts with. Third-party SDKs do not count in the eyes
of the user.

As an example, if you find that the analytics SDK needs to capture a lot of data (e.g.,
OS version, app version, device info, etc.) or load some config from the local cache,
you may want to look for an option to initialize it asynchronously off the main

154 | Chapter 5: Application Lifecycle

thread, enqueue all the events in a queue (this can be as simple as an NSMutable
Array), and dump them all once initialized.

If you have the code, it is easy to patch. If not, you may have to maintain your own
queue. The only catch is that some of the events may have incorrect timestamps and
locations. Depending on your particular case, it might be OK for timestamps to be off
by a few milliseconds or locations by a few meters. If the exact timestamp or location
precision is crucial (i.e., if the SDK will not perform well in the event of inaccuracy),
it might be time to look for an alternative.

The code in Example 5-2 shows one of the possible strategies for minimizing the load
time. The example provides the necessary steps to initialize the analytics SDK asyn‐
chronously when the code is not available.

Some SDKs may require initialization in the main thread. Keep an eye on that, as it
directly impacts your app load time.

Example 5-2. App load time optimization

//HPInstrumentation.m

@interface HPInstrumentation ()

@property (nonatomic, copy) BOOL initialized;
@property (nonatomic, strong) NSMutableArray *events;
@property (nonatomic, strong) dispatch_queue_t queue;

-(void)markInitialized;
+(void)logEventImpl:(NSString *)name;

@end

static HPInstrumentation *_instance;

@implementation HPInstrumentation

+(HPInstrumentation *)sharedInstance {
 return _instance;
}

+(void)setSharedInstance:(HPInstrumentation *)instance {
 _instance = instance;
}

+(void)logEvent:(NSString *)name {
 [[HPInstrumentation sharedInstance] logEventImpl:name];
}

-(instancetype)initWithAPIKey:(NSString *)apiKey {
 if(self = [super init]) {

Application Launch | 155

 self.initialized = NO;
 self.events = [NSMutableArray array];
 self.queue = dispatch_queue_create("com.m10v.queue.analytics",
 DISPATCH_QUEUE_CONCURRENT);

 dispatch_async(
 dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
 [Flurry startSession:apiKey];
 dispatch_sync_barrier(self.queue, ^{
 for(NSDictionary *name in self.events) {
 [Flurry logEvent:name];
 }
 self.events = nil;
 self.initialized = YES;
 });
 });
 }
 return self;
}

-(void)logEventImpl:(NSString *)name {
 dispatch_sync(self.queue, ^{
 if(self.initialized) {
 [Flurry logEvent:name withParameters:params];
 } else {
 [self.events addObject:name];
 }
 });
}

@end

//HPAppDelegate.m
-(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 HPInstrumentation *analytics = [[HPInstrumentation alloc]
 initWithAPIKey:@"API_KEY"];

 [HPInstrumentation setSharedInstance:analytics];
 [HPInstrumentation logEvent:@"App Launched"];
}

HPInstrumentation is a wrapper on the underlying instrumentation API. It
keeps events in memory until the underlying SDK, in this case Flurry, is initial‐
ized.

156 | Chapter 5: Application Lifecycle

1 The singleton pattern is about having one instance of the entity. There can be multiple ways to implement it.
Application-wide nonresettable singletons, as we discussed in Chapter 2, should be avoided as much as possi‐
ble.

2 Implicit assumption—the SDK can initialize in a non-main thread.
3 Another implicit assumption—rate of generation of new events is much lower than the speed of flushing

events. If not, you are probably using analytics for the wrong purpose. Think again.

Because we now need some coordination from initialization until the underlying
SDK is ready, a pseudo-singleton model is preferred. The _instance is the single‐
ton instance, which can be set or reset.1

The getter for the shared/single instance. This is a public method (declared in
the .h file).

The setter for the shared/single instance. This is also a public method.

Note that by making the setter available for any code to use, you leave it open to
abuse. As such, this must be done with caution.

The public class method to set log events does not change, making the update
backward compatible.

As for the implementation, it uses a non-public instance method, logEventImpl.

Custom initializer for the class.

Apart from initializing the state, it calls dispatch_async to initialize the underly‐
ing SDK2 (the Flurry SDK, in this case).

Once the underlying SDK has been initialized, flush all the queued events.3 Use a
queue to obtain a write lock to ensure that while the events list is being flushed,
no other events can be added to the list.

Free up the memory.

The implementation method logEventImpl.

Use the same queue as in step 8. Obtain a read lock to allow concurrent writes.

Add to the events list if the SDK has not been initialized, or else log directly to
the underlying SDK.

HPInstrumentation is instantiated once, in the app delegate.

Application Launch | 157

Set the shared instance.

To log, use the class method logEvent. No changes are required here.

Note that the implementation in Example 5-2 is only one of various available options.

A better option is to use a delegate approach. The initial delegate adds to the list while
the other uses the actual SDK. Example 5-3 provides sample code that might be used
for initialization and the switch.

The implementation follows the state design pattern. The advantage of this approach
is that it makes it easy to manage the underlying implementations.

Example 5-3. Initialization using delegate

-(instancetype)initWithAPIKey:(NSString *)apiKey {
 //... same code for setup

 self.delegate = [[HPInstrumentationUseList alloc] init];

 //Code below is for after initialization
 dispatch_sync_barrier(self.queue, ^{
 for(NSDictionary *name in self.delegate.events) {
 [Flurry logEvent:name];
 }
 self.delegate = [[HPInstrumentationUseSDK alloc] init];
 });
}

-(void)logEventImpl:(NSString *)name {
 dispatch_sync(self.queue, ^{
 [self.delegate logEvent:name];
 });
}

To start with, delegate points to an object that enqueues events in a list.

Once ready, flush the enqueued events…

… and change the delegate to point to an object that uses the analytics SDK.

logEventImpl is simpler—it logs using the delegate. It does not need to make
any decision on what the current state is (initialized or not).

Cold Start
We have had a glimpse of the tasks to execute during app launch. The tasks executed
during cold start change only slightly, but this may have a huge impact.

158 | Chapter 5: Application Lifecycle

4 J. O’Dell, VentureBeat, “This Is Why Users Think Your Mobile App Sucks: A 3-Second Response Time”.

One of the more important tasks to execute is loading from previous state. In our app,
the first screen shown to the user (after login) is the feed. If the user logged in on a
previous launch and data was synced, we may want to load the previously cached
user’s feed.

We will discuss local cache options in depth in Chapters 7 and 8. Here it is assumed
that we choose some option that can perform basic CRUD operations on the records.
In this section, we discuss how to put that option to good use.

To accomplish the task of showing the user’s feed, one would fire a request to the
server for recent updates and concurrently load from the local cache. This is a no-
brainer. However, it’s important to know the following:

• Minimum number (min) of entries required to show a usable and meaningful UI
• Time it takes to load M entries from local cache (let’s call it tl)
• Time it takes to get latest M entries from remote server (let’s call it tr)
• Maximum number (max) of entries you will ever keep in memory at any given

point in time for speedier access, especially during fast swipes and scrolls

If we cannot load M entries in 3 seconds, the user experience
degrades significantly.4

These values will help define a concrete strategy for data retrieval during app startup.

Consider the following few scenarios:

1. tl = 3 seconds, tr = 1 second
2. tl = 1.5 seconds, tr = 1.5 seconds
3. tl = 1 second, tr = 3 seconds

Let min = 5 and max = 20. We will discuss varying values of M for these timings.

In our case study, our view hierarchy is as shown in Figure 5-5, and we will measure
time against the same.

Application Launch | 159

http://bit.ly/1Br2yID

Figure 5-5. View controller structure

Note that the actual container hierarchy is window. HPMainTabBarViewController,
the root view controller, contains three child controllers: HPChapterViewController,
HPDebugLogViewController, and HPSettingsViewController. Figure 5-5 only shows
the currently visible view controller. The children are present, just not visible.

Scenario 1
In the case where the time to sync from the remote server is orders of magnitude
faster than loading from the local cache, you should trigger the sync task as early as
possible. In the typical MVC style that Cocoa promotes, the corresponding UIView
Controller will be responsible for the trigger because it is the view controller that
knows what data it needs to plumb into the UI. It is very likely that the service will be
set up in the app delegate and injected into the view controller, but it is the view con‐
troller that will, in general, trigger the service. However, to save those extra millisec‐
onds, there is no harm in triggering the sync from the app delegate. Setting up the
view controller and loading even the shell UI can take some time.

This may not be too complex to implement, especially with the ReactiveCocoa frame‐
work. We can create a signal and pass it on to the view controller, which can pass it

160 | Chapter 5: Application Lifecycle

downstream if needed. The view controller will be notified once the data is available.
Additionally, there is no need to worry about using the local cache except for the spe‐
cial case when there is no network available.

In the first subscenario, it is assumed that the time corresponds to retrieving a large
number of entries, equal to or exceeding the minimum required to give a good user
experience. What this means is that we are sure that there is no further juggling
required once the data is available. It can be directly pushed into the app and a refresh
can happen.

Example 5-4 demonstrates how we can make use of a promise that is started in the
app delegate but made use of in the view controller. This approach seems to violate
the MVC principle, so many people disagree with it. Taking a different outlook, it is
merely a dependency injection. The promise is the data source injected into the view
controller.

Example 5-4. View controller with data source injection

//HPAppDelegate.m
-(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 //validate access token, user login, etc.
 RACSignal *feedSignal = [[[HPSyncService sharedInstance]
 fetchType:@"feed"]] replay];

 HPUserFeedViewController *viewController =
 (HPUserFeedViewController *) self.window.rootViewController;

 viewController.feedSignal = feedSignal;
}

//HPUserFeedViewController.m
-(void)viewDidLoad {
 @weakfily(self);
 [[self.feedSignal
 deliverOn:[RACScheduler mainThreadScheduler]]
 subscribeNext:^(HPUserFeed *feed) {
 @strongify(self);
 [self updateWithFeed:feed];
 self.feedSignal = nil;
 } error:^(NSError *) {
 //handle error
 }];
}

Create the signal.

Application Launch | 161

Assuming that the rootViewController is HPUserFeedViewController and that
there is a property feedSignal, set it to the signal obtained earlier.

The controller attaches the subscriber to the signal. Because this operation is
done in viewDidLoad, it is guaranteed to be executed only once.

A helper call for the response to be delivered on the main thread.

Trigger a UI update.

Free the feedSignal. This will reduce the reference count by one and eventually
help get it dealloced.

In the other subscenario, where the number of entries obtained is not enough to pro‐
vide a good user experience, pick one of the alternatives:

• Make your service more performant in order to return enough entries.
• If you are, for some reason, stuck with a service not under your control, you will

need to think outside the box. See if the same content can be rendered in a man‐
ner that takes up more space, so that you can reduce the number of entries to be
fetched. You do not need to add padding to create more whitespace.
For example, if there is an image shown as a small thumbnail, it can be shown
larger to give a better summary view. Keep in mind that these new designs can, in
fact, result in a better user experience. Figure 5-6 shows screenshots from Face‐
book and Yahoo Finance. Compare the older screenshots on the left to the ones
taken from the newer versions of the apps on the right. Notice how in the more
recent images a single entry not only takes up more space (the information is less
dense) but also provides better visual appeal.

162 | Chapter 5: Application Lifecycle

Figure 5-6. Facebook and Yahoo Finance, then and now

Application Launch | 163

Scenario 2
In the case where the time to load from the local cache is comparable to the time
taken to retrieve from the server, it’s advisable to trigger both the operations simulta‐
neously.

As an example, a mail app may be opened after a substantially long period. In addi‐
tion to loading from the local cache, it also must synchronize with the server. The
time it takes to load messages locally will likely be comparable to the time needed for
retrieving new messages.

As before, the fetch should be triggered as early as possible. Inject the signals into the
view controller and let it pick up the values from there. The view controller will need
to synchronize the update. It should also discard the local cache if values are available
from the server—after all, they will be more recent.

With these changes, the view controller code will be similar to that shown in
Example 5-5.

Example 5-5. View controller with multiple data source injections

@interface HPUserFeedViewController ()

@property (nonatomic, copy) BOOL updatedFromServer;

@end

@implementation HPUserFeedViewController

-(void)viewDidLoad {
 self.updatedFromServer = NO;

 @weakify(self);
 [[self.cacheFeedSignal
 deliverOn: [RACScheduler mainThreadScheduler]
 subscribeNext:^(HPUserFeed *feed) {
 @strongify(self);
 [self updateWithFeed:feed fromServer:NO];
 self.cacheFeedSignal = nil;
 } error:^(NSError *error) {
 //handle error
 }];

 [[self.serverFeedSignal
 deliverOn: [RACScheduler mainThreadScheduler]
 subscribeNext:^(HPUserFeed *feed) {
 @strongify(self);
 [self updateWithFeed:feed fromServer:YES];
 self.cacheFeedSignal = nil;
 } error:^(NSError *error) {

164 | Chapter 5: Application Lifecycle

 //handle error
 }];
}

-(void)updateWithFeed:(HPUserFeed *)feed
 fromServer:(BOOL)fromServer {

 if(self.updatedFromServer) {
 return;
 }
 //proceed with UI refresh
 self.updatedFromServer = fromServer;
}

@end

updatedFromServer is a private property to track whether the update that hap‐
pened used data from the remote server.

Add a subscription to the cacheFeedSignal, which will receive data from the
local cache.

Add a subscription to the serverFeedSignal, which will receive data from the
remote server.

The method to update the UI now takes an extra parameter—a flag that specifies
whether the source of the data is the remote server or not.

If the UI has already received updates from the server, there is no need for fur‐
ther updates. This may happen when the server response is available faster than
loading from the local cache.

Once the refresh is done, set the updatedFromServer flag indicating whether the
refresh was using data from the server.

In the subscenario where the entries from an individual source are not enough to
provide a good user experience, it may be preferable to combine the results from the
two sources and present the final result. After all, the time taken to retrieve results is
comparable, and the merging of the results will be transparent to the user.

Scenario 3
The most common scenario is when the time taken to load data from the local cache
is orders of magnitude faster than the time taken to retrieve the latest data from the
server. In this case, the stale data should be loaded and updated once the latest data is
available.

Application Launch | 165

From an implementation perspective, the solution will be similar to what we saw in
scenario 2—two data sources injected into the view controller. The only difference is
that the probability of the condition if(self.updatedFromServer) being executed in
updateWithFeed:fromServer: is almost zero.

Warm Launch
Warm launch is about switching to an already-running app. The app may have
become inactive because the user swiped down the status bar, or it may have been
backgrounded because the user either pressed the home button or switched to
another app.

There are two scenarios for warm launch:

• User taps the icon
• App receives a deep link

App relaunch
When the user taps the app icon, generally there is nothing special to be done.

In cases where the app is either very secure or runs heavy animations, it may monitor
background and foreground notifications. In the former case, the app may show a
login each time it comes into the foreground, while in the latter case, animations or
game state may have been suspended and require a resume. Figure 5-7 illustrates how
the apps Temple Run and Intuit Mint handle this scenario.

Other than that, it is mostly no different than the user continuing to interact with the
app.

166 | Chapter 5: Application Lifecycle

Figure 5-7. App warm relaunch—TempleRun and Mint (TempleRun pauses the game
and expects the user to resume it while Mint secures the access with a passcode)

Deep links

When your app receives a call to application:openURL:sourceApplication:annota
tion:, the expectation is that the user will be taken to the specific screen in the app
that completes his original intent. However, the target app may already be loaded in a
specific state.

If the deep link requires fetching data from the server, you can either show stale state
associated with the deep link or show only a progress bar while it refreshes with the
latest data from the server.

To help the user complete his intent, you can follow these best practices:

• Support deep links by providing an option to “go back” to the source app. The
simplest way to do this is to accept a parameter in the incoming URL that will be
the destination URL once the action in this app is complete.

Application Launch | 167

As an example, the Facebook app allows you to deep link into the Messenger app
with an option to return to the Facebook app once you are done messaging.

• Prefer implementing the app as a simplified finite state machine. This allows you
to push the new screen and pop it once the interaction is completed.
Using the previous example, if you open the Messenger app, there is no “back”
button to take you to the Facebook app. The state is “pushed” onto the app if you
deep link into the Messenger app.
Here, the intent is to “chat with a friend.” Once the intent is complete, there is
nothing better than providing an option to go back to where the user started.
Note that for this communication, both apps must support deep links.

iPhones still do not have a hardware Back button, which means that the app must
accommodate the UI itself. Figure 5-8 shows examples of two more apps: the Chrome
browser and Google Maps. Notice that the UI to take the user back into the original
app is very different in each and highly tied to that of the destination app.

Figure 5-8. Deep links with “Back” navigation support

168 | Chapter 5: Application Lifecycle

Launch After Upgrade
An app’s first launch after upgrade will follow one of the following scenarios:

• There is no local cache, or the app discards it completely.
• The local cache can be used, either as is or migrated, by the upgraded version of

the app.

If there is no local cache or the app decides to discard it (e.g., if the data is unusable or
if synchronizing from the server is faster), no special processing is required.

Inform the user about what is about to happen to the local data. The following best
practices can be applied to keep the user happy:

• When the local cache can be used, inform the user about it. Do not inform the
user if there is no migration required because then the use of the local cache is
implicit.

• If the data must be migrated and the process may take several minutes, give an
option to postpone it.

• When the local cache must be discarded because it is easier and faster to retrieve
data from the server, inform the user about it.
A case in hand is when migrating several records, say in a mail app, to the upda‐
ted schema in the newer version of the app may be more complex than retrieving
them from the server.

Push Notifications
Notifications are an integral part of a content-driven app. The content may be curated
like news or user-generated like email. It is assumed that you are aware of the call‐
backs application:didReceiveRemoteNotification: and application:didRecei
veLocalNotification: in the app delegate.

It is important to know the order in which the methods are called and how the user
interaction drives other method calls. It impacts the sequence of initialization that
your app follows and what subcomponent initialization you can place in specific call‐
backs to minimize resource utilization and maximize the quantum of tasks to be
accomplished.

Remote Notifications
Figure 5-9 shows the delegate callbacks received for notifications.

Push Notifications | 169

Figure 5-9. App delegate complete lifecycle for notifications

The lifecycle on iOS 8 can be described as follows:

• If the app is active, it receives the notification via the didReceiveRemoteNotifica
tion callback.
No other callbacks are invoked. No UI is presented to the user to avoid any dis‐
traction.

• If the app is backgrounded or stopped, only the silent push notification callbacks
are triggered.
Based on the notification settings, non-silent push notifications may appear in
the notification center or as alerts and/or update the app icon’s badge counter.

• When the user opens a notification by interacting with it using the notification
center or an alert, one of the following may happen:
— If the app was backgrounded, the notification callback method is invoked.
— If the app was stopped, the notification object (NSDictionary) is available in

the launchOptions parameter to the method application:didFinishLaun
chingWithOptions:.

As you might have noticed, the lifecycle is not very clean and is highly dependent on
the application state, which forces you to have handler blocks at multiple places in
your code.

A typical outline for handling notifications is similar to the one given in Example 5-6.

Example 5-6. Handling notifications

-(void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo {
 //See the next method
}

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo
 fetchCompletionHandler:(void (^)(UIBackgroundFetchResult))completionHandler {
 //process remote notification - app running

170 | Chapter 5: Application Lifecycle

 if(application.applicationState == UIApplicationStateInactive) {
 //user tapped the notification in notification center or the alert
 [self processRemoteNotification:userInfo];
 } else if(application.applicationState == UIApplicationStateBackground) {
 //App in background, no user interaction - just fetch data
 } else {
 //app is already active - show in-app update
 }
}

-(void)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 id notification = [launchOptions
 objectForKey:UIApplicationLaunchOptionsRemoteNotificationKey];

 if(notification != nil) {
 NSDictionary *userInfo = (NSDictionary *)notification;
 [self processRemoteNotification:userInfo];
 }
}

-(void)processRemoteNotification:(NSDictionary *)userInfo {
}

iOS 7 callback.

iOS 8 callback. If implemented, this is called instead of the method applica
tion:didReceiveRemoteNotification.

The callback is called if and only if the app is running. The callback will not be
invoked if the app is not running.

If the app is active, it is preferred to not immediately switch the UI—a subtle
indicator (e.g., in-app banner) in the app should be preferred. If backgrounded,
this callback was invoked because the user tapped on the notification—feel free to
switch the UI.

This is where all the magic happens.

When the user checks for the presence of the key UIApplicationLaunchOptions
RemoteNotificationKey.

If present, this is where the remote notification data is available. Process it.

Central place to process notification.

Let’s look at some of the best practices that you can follow to manage this lifecycle so
that your app will provide the best user experience possible:

Push Notifications | 171

• When the app receives a notification in the active state, either discard it or show
subtle feedback. For example:
— In case of a mail app, if the notification is about a new mail, update the badge

for the folder that the mail belongs to. If the notification is about a new mail
in the thread that is currently open, a better option may be to update the
thread and show an indicator that a new mail is available. Similarly, if the new
message is for a different chat session, you can perhaps show an in-app ban‐
ner, such as the one shown in Figure 5-10. The banner placement should be
such that it does not obstruct the user from completing the current task.

— In the case of a messaging app, if the notification is about a new message in
the currently open chat session, show the message inline, updating the thread.
(It is not a good idea to use push notifications for all messages, because deliv‐
ery is not 100% guaranteed.)

Figure 5-10. WhatsApp showing in-app banner for a new message in a different
chat session

172 | Chapter 5: Application Lifecycle

5 Stack Overflow, “didReceiveRemoteNotification:fetchCompletionHandler Not Being Called When App Is in
Background and Not Connected to Xcode”.

• When the app receives a notification in the inactive state, it is because the user
tapped on the notification. But because the user was already in the middle of
doing something else, you may want to push the new UI with support to “go
back” to the previous UI. The exact semantics of the user experience will depend
on the app and the action.
For example, in the case of a financial app, if the current screen being shown is
the account summary and the notification is about the transaction just comple‐
ted, show the user the corresponding details with the “back” navigation taking
the user back to the account summary.

• When the app receives details about the notification object in the applica
tion:didFinishLaunchingWithOptions: callback, take the user directly to the
UI related to the notification.

Note that application:didReceiveRemoteNotification: is called only when an app
is in the foreground, whereas application:didReceiveRemoteNotification:fetch
CompletionHandler:, if implemented, can be called even if the app is in the back‐
ground and can even start the app if it is not already running. Such notifications are
known as silent push notifications.

It is also important to note that the latter method may be called twice:

• First when the notification is received and the payload contains the key content-
available with value 15

• Second when the user interacts with the notification, either in the notification
center or an alert

To distinguish between the two, use the application state, as illustrated in
Example 5-6.

Notifications should be meaningful. The payload should have appropriate text to be
shown to the user and also data to be used in the callback to decide whether a back‐
ground fetch should be triggered.

Local Notifications
Unlike remote notifications, local notifications will not show any UI when the app is
in use.

Great. So the question are as follows:

Push Notifications | 173

http://stackoverflow.com/a/20851481/332210
http://stackoverflow.com/a/20851481/332210

• If the app is in use, why would you show a local notification?
• And if the app is not in use, it is suspended—in which case, how can you show a

local notification?

The answer lies in silent remote notifications. If the remote notification payload has
the property content-available set to a value of 1, it tells the OS that the remote
notification should not be shown to the user but must be directly passed on to the
app. Like a regular push notification, it may wake up the app, if need be.

The app can then process the data, trigger a remote fetch if needed, and create a local
notification. The advantage of this approach is that by the time the user interacts with
the notification, the data may have already been downloaded, processed, and made
available in a usable form. As such, the response time to show the details about the
notification is short and the user feels happy about the fast and responsive app.

The application:didReceiveRemoteNotification:fetchCompletionHandler: app
delegate callback (or the application:didReceiveLocalNotification: callback, if
that is not implemented) is called when the app is in the foreground or when the user
taps on the notification when the app is in the background, whereas the applica
tion:handleActionWithIdentifier:forRemoteNotification:completionHandler:

callback is called when the user uses the custom action in the notification.

Use local notifications in conjunction with silent push notifications
to make the app responsive and usable faster on the next launch.

Background Fetch
Background fetch was introduced in iOS 7 and is a great option to periodically sync
data from the server. There are three basic steps to enable background fetch:

1. Enable the capability in your project settings.
2. Set the refresh interval, preferably in application:didFinishLaunchingWithOp

tions. Use the -UIApplication setMinimumBackgroundFetchInterval:

method to request that the refresh be done at the specified frequency.
3. Implement the application:performFetchWithCompletionHandler: app dele‐

gate method. If the task is not complete within 30 seconds, the OS will schedule
the method execution less frequently.

174 | Chapter 5: Application Lifecycle

6 iOS Developer Library, “UIApplicationDelegate”.

On a practical note, the typical time that the app may get is much smaller, gener‐
ally in the range of 2–4 seconds. The Apple developer website lists 30 seconds as
the upper-bound limit.6

Background fetch and push notifications can be used to create amazing and delightful
experiences for the user. Let’s look at some guidelines that you can follow to make a
great impression:

• Use background fetch to periodically sync data with the server. Consider it like
batch operations that you want to perform.

• Do not overly rely on the regularity of the execution of the background task. The
OS will schedule it at periodic, though not regular, intervals.
During daytime hours, this interval will generally be in the range of 10–20
minutes (see Figure 5-11). The number varies based on how often the app com‐
pletes the response with UIBackgroundFetchResultNoData or UIBackgroundFet
chResultNewData, the average time it takes to complete the operation, network
conditions, estimated available bandwidth, CPU and memory available, and
more. The interval may increase to well over a few hours in the evening.

Figure 5-11. Background fetch interval tracker (highlighted in red)

• Use push notifications to wake up or start the app.
• Use content-available = 1 in the payload so that the notification handler

method can also synchronize data with the server.
Try to keep this synchronization only for the items related to the notification
item rather than a complete resync.

Background Fetch | 175

http://apple.co/1eMyYY0

Because the background fetch takes your app out of the suspended
state, any suspended queues may resume. If the other layers of the
app are not made aware of the fact that the task queues may soon
be paused again, it can lead to a catastrophic crash.
Use NSNotifications to notify different components of the app to
terminate any ongoing operations, because the app has been awak‐
ened for a background fetch operation and will soon be suspended
again (30 seconds being upper limit).
It will be of added benefit to use NSURLSession with an NSURLSes
sionConfiguration object configured using backgroundSession
ConfigurationWithIdentifier. This allows out-of-process
execution of such long-running tasks, managed by an OS-level dae‐
mon. In a case where the app is killed or crashes, such background
network sessions will continue.
For non-networking operations, you will have to implement such a
system on your own.

Smart Silent Notifications
One of the apps I worked with in the past had strong security requirements. Specifi‐
cally, the access token generated after a successful login had an expiration period of
24 hours. The app could auto-login without requiring the user to reenter credentials,
but after 24 hours, the session would expire and need to be re-created—needless to
say, this did not make for a very good user experience.

To resolve this problem, we used background fetch, which did nothing more than
refresh the session.

However, we realized that when we added this feature, there were more frequent app
crashes. Investigation revealed that the suspended operation queues were resuming,
not knowing that the app would soon be suspended again. One of these operations
was to synchronize data with the server, but because the sync could not complete,
strange things happened—the connection timed out because of no activity; the server
rarely received complete data; and if the server responded with the data, the client
would rarely process the complete data, leaving the app in an inconsistent state.

We had to fix the app-sync layer so that it could be made aware of the application
state before firing the sync operation.

We quickly switched to silent notifications. The server would send a silent push noti‐
fication during the evening. This would wake up the app, which would in turn check
whether the device was on WiFi and if it had enough battery (or, if not, whether it
was in the process of charging). If so, it would do a preemptive session refresh.

176 | Chapter 5: Application Lifecycle

As such, the following day, whenever the user would interact with the app, there
would not be unexpected latencies.

Summary
Knowing about the application lifecycle and how it impacts the user’s perception of
your app is key to creating apps that users love.

At times, actual performance may be less important than the perceived performance.
Using silent notifications and background fetches to warm up the app to keep it ready
for the next use is a smart way to achieve a positive perception of your app.

Now that we’ve covered optimization techniques for various scenarios, including first
launch, cold start, warm start, and launch after upgrade, you should be able to mini‐
mize the startup time and make your app usable as quickly as possible.

Summary | 177

CHAPTER 6

User Interface

Only the baker knows what went wrong with the cake.
—Anonymous

Most users first notice performance issues when interacting with the user interface.
An app might be termed sluggish if it takes a long time to synchronize data and
refresh, or when the user interaction is jittery.

Factors such as power consumption, network usage, local storage, and the like are
mostly invisible to the user. Although these factors do contribute to performance
issues, it is the user interface that is the gateway to the app, and its sluggishness
directly impacts user feedback.

There are external factors that you cannot control. Examples of external factors
include:

Network
Poor network conditions increases the time taken to synchronize.

Hardware
Better hardware makes for better performance—newer iPhones running newer
versions of the OS will see faster execution as compared to older iPhones. The
app may run on CPUs varying from 32-bit 1.3 GHz to 64-bit 1.8 GHz, or RAM
ranging from 1 GB to 2 GB.

Storage
The app may run on devices with varying storage ranging from 16 GB to 128 GB,
which limits the offline cache that your app can store.

The app, however, can make decisions based on the conditions under which it is exe‐
cuted to keep the user interaction fluid.

179

In this chapter, we discuss ways to minimize the time taken to update the user inter‐
face. At the end of this chapter, you should be able to find ways to tune your app to be
able to run at 60 frames per second (fps). That means the app has 16.666 milliseconds
(ms) to do all the processing it needs to complete the next frame of the transition.
And if it takes 1×10-9 seconds to execute one instruction, the app can essentially exe‐
cute about 10 million instructions in that time. On a different scale, if it takes ~30
nanoseconds (ns) to invoke a simple no-op method (including time to set up the
stack frame, push parameters, execute, and finally clean it up), there is enough time
to execute over half a million methods. And that is a lot of methods that can be exe‐
cuted.

Frame Rate
The human eye and its brain interface, the human visual system, can process 10 to 12
separate images per second, perceiving them individually. The threshold of human
visual perception varies depending on what is being measured.

When looking at a lighted display, people begin to notice a brief interruption of dark‐
ness if it lasts about 16 ms or longer.

There are ways to optimize the frame rate, depending on the device’s capabilities. For
example, when running on a device with less RAM, load less data in memory. As
another example, minimize use of animations on a slower CPU.

In this chapter, we look at the following components:

• The view controller and its lifecycle
• View rendering
• Custom views
• Layouts
• App extensions (widgets)
• Animations
• Interactive notifications

We study insights into these components, ways to optimize the execution, and tricks
to have a better perceived experience if there is nothing more we can do to optimize
execution.

180 | Chapter 6: User Interface

View Controller
The view controller serves as the glue between data services and the view. Data serv‐
ices may not only provide access to in-memory data but also request updates from or
post updates to the server or a local database.

The lifecycle of a view controller is tied to its view property—it determines when the
view is created, shown, removed, and destroyed. Figure 6-1 shows the view controller
lifecycle.

Figure 6-1. View controller lifecycle

View Controller | 181

App development generally starts with a lean view controller, which is good. But over
time, these view controllers slowly turn into the dumping ground for all business
logic and grow to several thousand lines of code. Although the total “volume” of logic
may be unavoidable, there will always be a good case to refactor the code into smaller,
reusable methods. This not only provides decoupling but also helps you uncover
unused or duplicate code.

Let’s begin with basic best practices to follow when structuring view controllers:

• Keep the view controller lightweight. In an MVC app, the controller is only glue.
This is not where the entire business logic lies. It does not even belong to the
model. The business logic belongs to the service or business logic component.
Keep it there.
The view controller should bind the service component to the views by means of
what can be termed action delegates or service providers, which should preferably
be injected into the controller (see “Dependency Injection” on page 75).

• Do not write animation logic in the view controller. This may be in an independ‐
ent animation class that accepts views to apply animations on. View controllers
attach the animations to the views or transitions.
Special-purpose views may own their own animations. For example, a custom
spinner controller will have its own animation.

• Use data source and delegate protocols to separate the code pertaining to data
retrieval, update, and other business logic. View controllers are restricted to pick‐
ing correct views and connecting them to the feeders.

• View controllers respond to events from the views—for example, button click or
table cell selection—and connect them back into data sinks.

• View controllers respond to UI-related events from the OS—for example, orien‐
tation changes or low-memory warnings. This may trigger relayout of the views.

• Do not write custom init code. Why? Well, what if your view controller is repur‐
posed to an XIB or storyboard? The init method will never be called.

• Do not handcraft the UI in the view controller using code. Do not implement all
UI, view creation, and view layout logic in the view controller. Use nibs or story‐
boards.
Handcrafted code does not last long, especially as the app grows and designs
change. It is faster to redesign using Interface Builder than to hand code pixel
coordinates.
In addition, the app may run on devices with different sizes and form factors. It is
difficult to scale custom code to work with all form factors, handle rotation dur‐
ing orientation changes, and keep pace with new design paradigms that evolve
every couple of years or so.

182 | Chapter 6: User Interface

Also, when you have the design separated out in independent nibs and story‐
boards, you will have the flexibility to run A/B testing where it is easy to choose
between different layouts.

• Prefer creating a base view controller with common setup and have other view
controllers inherit from this.
This technique is not always possible, because there may be a need to inherit
from different view controllers at different parts of the app. For example, you
should use UITableViewController for the contacts list and UIViewController
for the user profile.
However, if you have multiple places where you need to show content in a UIWeb
View, a base view controller will work well. If you need to display the privacy pol‐
icy URL or terms and conditions page, you do not need to subclass. However, if
you need to show an image or video that a user shares (in a messaging app), you
can create subclasses that can define custom chrome or control overlays.

• Use categories for creating reusable code across view controllers. In case a parent
view controller does not suffice (for example, because you need different types of
view controllers in your app), create categories and add your custom methods or
properties there.
That way, you are not restricted to using a predefined base class and still get the
benefit of reusability.

Now that we are aware of some best practices for writing view controllers, let’s
explore what to do and what not to do as far as the UIViewController lifecycle meth‐
ods are concerned.

View Load
Two methods that participate in view initialization are loadView and viewDidLoad.

If you recollect the template code generated by Xcode when you add a new view con‐
troller, it has only the viewDidLoad method. loadView is called by the view controller
when its view is requested, but is nil because it has not been created yet.

There are three ways in which the view can be loaded:

• From the nibs
• Using a storyboard (using UIStoryboardSegue)
• Using custom code to create the user interface

If you create a custom UI by overriding the loadView method, keep the following in
mind:

View Controller | 183

• Do set the view property to the root of the view hierarchy.
• Ensure that the views are now shared with any other view controllers.
• Do not call [super loadView].

Use this method to change the view states, specifically if they were loaded from the
nib files. We focus our discussion on viewDidLoad.

viewDidLoad is called exactly once, after the view hierarchy is ready but before the
view is presented to the user. This is the place to do one-time initialization.

Common tasks that should be done in the viewDidLoad method include:

• Configuring data sources to populate data.
• Binding data to views.

This is a debatable item. Depending on the use case, you may bind data once and
have a refresh button, or bind each time viewWillAppear is called. The upside of
doing the latter is that the UI always has the latest data. The downside is that if
the data does not update frequently (e.g., in a news app), the user may see an
unnecessary refresh each time (say, when the UITableView rebinds).

• Binding view event handlers, data source delegates, and other callbacks.
• Registering observers on data.

Depending on where you bind data to the views, observers on data may also
change.

• Monitoring for notifications from the notification center.
• Initializing animations.

During execution, time spent in the viewDidLoad method should be as minimal as
possible. Specifically, the data to be rendered should either be already available or be
loaded in another thread. Any delay in completion of viewDidLoad will result in
delayed presentation of the UI associated with the view controller. The user will be
stuck at app launch or with the previous view controller.

View Hierarchy
The UI presented is comprised of hierarchical views nested in a tree structure and
positioned using constraints when using Auto Layout or programmatically otherwise.
View construction and rendering involves the following steps:

1. Construct subviews.
2. Compute and apply constraints.

184 | Chapter 6: User Interface

3. Perform steps 1 and 2 recursively for the subviews.
4. Render recursively.

As the view hierarchy gets complex, it takes longer to construct and render the view.
Consider a simplistic flat hierarchy:

• UILabel

• Custom view
• UIImageView

• UILabel

On an iPhone 6 using iOS 8.1, the time taken from view controller load (initWith
Coder:) to just before render (viewWillAppear:) is about 15 ms on average. And this
does not take into account the one-time cost of loading the layout from the disk
(storyboard/nib file). The method viewDidAppear: is called after about 300 ms but
that is because of the transition animation.

Figures 6-2 and 6-3 show the UI for the view hierarchy and logged times, respectively.

The simple UI shown in Figure 6-2 took about 15 ms to load, leaving about 1.6 ms for
other operations in order to achieve 60 fps rendering. As the UI grows in complexity
and requires more data processing, it becomes even more important to optimize for
execution.

If this simplistic example can take that long to load (not render) the UI, leaving you
with just about 1 ms to do all the other operations, one can extrapolate the amount of
effort needed to contain all execution within 16.66 ms for 60 fps rendering.

Frame Rate Versus Dropped Frames
Because there is very little that you can do about initial nib/storyboard load and view
construction times, you’ll need to go back to the drawing board and determine what
makes users unhappy. Is it because the app cannot run at 60 fps or because it has jit‐
ter?

If the app drops 1 frame every second and runs at 59 fps, it will still be smooth. How‐
ever, if it runs at 60 fps for 5 seconds and then drops 5 frames in the 6th second, that
is where the user notices the jitter.

Although it’s a few years old and mostly about Android, it’s still worthwhile to have a
bedtime reading of Andrew Munn’s “Follow up to ‘Android Graphics True Facts,’ or
The Reason Android is Laggy”.

View Controller | 185

http://bit.ly/1ABwcgB
http://bit.ly/1ABwcgB

Figure 6-2. View hierarchy

Figure 6-3. Logged times

Our focus now will be not only to get as much as possible of the main thread execu‐
tion done within 16 ms, but also to minimize the number of frames dropped (or bulk
drop of frames, to be more explicit).

186 | Chapter 6: User Interface

View Visibility
The view controller provides four lifecycle methods to be notified about view
visibility:

viewWillAppear:

This method is called when the view hierarchy is ready and the view is about to
be brought into the viewport. This happens when the view controller is about to
be presented or the earlier pushed (modal or otherwise) view controller has
popped out.

The transition animation is yet to start at this point in time and the view is not
yet visible to the end user. Do not start any view animations—they will be of no
use.

viewDidAppear:

This method is called after the view has been presented to the viewport and after
the transition animation is complete.

Because the animation can take about 300 ms, expect a big time difference
between viewDidAppear: and viewWillAppear: as compared to viewWillAp
pear: and viewDidLoad:.

Start or resume any view animations that you want to present to the end user
here.

viewWillDisappear:

This is an indication that the view is about to be hidden from the screen. This
may be because another view controller is trying to take over the screen or
because this view controller is about to be popped out.

As you may notice, when the method is called, there is no direct way to know if
the current view controller is about to be popped out or another view controller
has pushed in.

The only way to distinguish is to scan the viewControllers property of the navi
gationController for the current view controller. Example 6-1 provides skele‐
ton code for this.

Example 6-1. Detect view controller push versus pop

-(void)viewWillDisappear:(BOOL)animated {
 NSInteger index = [self.navigationController.viewControllers
 indexOfObject:self];
 if(index == NSNotFound) {
 //about to be popped out, tear down
 } else {

View Controller | 187

1 iOS Developer Library, “Technical Note TN2298: Using Unwind Segues”.

 //just save state, pause
 }
 [super viewWillDisappear:animated];
}

Using unwind segues is the preferred option when using segues and storyboards.
Technical Note TN2298 from Apple1 provides a good overview of using unwind
segues.

viewDidDisappear:

This method is called after the transition animation to the previous/next view
controller is complete. As with viewDidAppear:, there is about a 300 ms gap
from the viewWillDisappear: event.

Remember the lifecycle diagram presented in Figure 6-1? Flip back and you will
notice that these lifecycle methods can be called multiple times, and depending upon
the user interaction, there may be an infinite cycle of these events.

The lifecycle methods related to view visibility are not called when
the app is backgrounded or foregrounded, which is notified to
UIAppDelegate. View controller lifecycle methods are called only
when the app is active, not even during any transitions.
Register for UIApplicationDidBecomeActiveNotification, UIAp
plicationWillResignActiveNotification, and UIApplication
WillEnterForegroundNotification notifications in the view
controller in combination with the view visibility callbacks. And do
not forget to unregister in dealloc.

Some best practices for effectively using these lifecycle events are given next:

• Do not override loadView. Enough said.
• Use viewDidLoad as the last checkpoint to see if the data from data sources is

available. If so, update the UI elements.
• Use viewWillAppear: to update the UI elements—but only if you really want to

always show the latest details.
For example, in a messaging app, if the user returns to the message list in the chat
session after watching a shared video, you would want to refresh it with the latest
messages.
However, in a news app, you may not want to immediately refresh the list with all
the new articles, lest the user lose the context. In the latter case, the table view

188 | Chapter 6: User Interface

http://apple.co/1Hk6LP5

view controller will generally listen to the events from the data source and prefer
to make subtle and infrequent updates to the list of new articles.

• Use viewDidAppear: to start animations. If you have streaming content such as
video, play that. Subscribe to application events to detect if the animation/video
or any other processing that continuously updates the video should continue or
not.
It is not advisable to update the UI here with the latest data. If you do so, the final
effect will be that the user transitions into an old UI followed by an update after
the transition animation is complete, which may not be a great experience.
Having said that, there may still be use cases that force you to perform UI
updates in viewDidAppear:. If the user experience is acceptable, go ahead with it.

• Use viewWillDisappear: to pause or stop animations. Again, do nothing more.
• Use viewDidDisappear: to tear down any complex data structures that you may

have held in memory.
This is also a good time to unregister for any notifications from the data sources
that the view controller may be bound to and also with the notification center for
the app events that will have been connected to animations, data sources, or
other UI updates.

If all other steps to optimize load time fail, add a subtle animation
to your app. It may just give you the additional tens of milliseconds
you need to complete the tasks without a noticeable delay when
using the app. Note that prolonged animations will, not surpris‐
ingly, irritate the users, and you may end up losing them perma‐
nently. This should therefore be used as a last resort and with
caution.

View
The most challenging part of optimizing views is that there are very few techniques
that can be applied universally to all the views. Each view has its unique purpose, and
most of the optimization techniques are bound to the specific view and the API it
exposes.

But before we discuss them individually, let’s review some basic rules to follow:

• Minimize work done in the main thread. Any extra code to be executed means
higher chances of dropping a frame. Too many frames dropped will introduce jit‐
ter.

View | 189

2 iOS Developer Library, “Resource Programming Guide: Nib Files”.
3 Twitter Blog, “Simple Strategies for Smooth Animation on the iPhone”.

• Avoid fat nibs or storyboards. Storyboards are great, but the entire XML must be
loaded (I/O) and parsed (XML processing) before it can really be used. Minimize
the number of units that go into storyboards.
If needed, create multiple storyboards or nib files. This will ensure that all the
screens are not loaded in one go during app launch, but are loaded as needed.
This not only helps the app start-up time but also keeps the overall memory
requirement lower:

When a nib file is loaded into memory, the nib-loading code takes several steps to
ensure the objects in the nib file are created and initialized properly.
When you load a nib file that contains references to image or sound resources, the
nib-loading code reads the actual image or sound file into memory and caches it.
… In iOS, only image resources are stored in named caches.2

• Avoid multiple layers of nesting in the view hierarchy. Try to keep it as flat as
possible. Nesting is a necessary evil, but still an evil.
Each time a view is added anywhere in the hierarchy, its ancestor tree receives a
setNeedsLayout: with a value of YES that causes layoutSubviews: to be invoked
when the event queue is processed. This is an expensive call because the view has
to recompute the positions of the subviews using the constraints, and it happens
for each level in the ancestor tree.
The Twitter team posted that for a tweet, instead of using a composite view com‐
prising a UIImageView and a few UILabel elements, they created a custom view
and preferred to have a simplistic and optimized implementation of drawRect:.3

• Lazy-load the views and reuse them wherever possible. The more views you have,
the longer it takes to not only load but also render them, which impacts both
memory and CPU usage.
If needed, create your own view cache. This may be over and above the cell-reuse
support already provided in UITableView and UICollectionView. These con‐
tainers will let the view be dealloced when not in the viewport. If the view con‐
struction is complex and takes time, implementing a custom view cache is
advisable.
What if you use UIScrollView? Definitely lazy-load. Load only the views
required for scroll position 0, and then mimic UITableView behavior by building
your own view cache. Use delegate’s scrollViewDidScroll: in conjunction
with the contentOffset (scroll position) property to know which views are to be
rendered.

190 | Chapter 6: User Interface

http://bit.ly/1CwoRy5
http://bit.ly/1M74uh6

4 Required size computation has to be done in the main thread.

As a general practice, render elements up to the screen height beyond the view‐
port to avoid any jitter during scroll since they need to be rendered in quick suc‐
cession as the scrolling starts.
And keep this at the back of your mind: UITableView inherits from UIScroll
View, which means if UITableView can do smart view caching, so can your cus‐
tom code.

• Prefer custom drawing for complex UIs. It results in one view to be drawn
instead of multiple subviews, and avoids costly layoutSubviews and drawRect:
calls.
In addition, you avoid the cost of using general-purpose, feature-rich compo‐
nents by using optimized views for optimized direct drawing.
For example, if you need to display plain text, you do not need the heavy lifting
of UILabel (see Figure 6-4 later).

Now that we’ve covered these basic foundational rules, let’s explore some of the more
common views and take a deep dive into performance tips associated with each.

UILabel
This is probably the most common view used on iOS. However simple it may seem,
rendering it is not trivial. There are a few complex steps involved:

1. Using the font family, font style, and text to be rendered, compute the number of
pixels it requires. This is an extremely costly process and it should be done as
sparingly as possible.4

2. Check against the width of the available frame to render.
3. Check against the numberOfLines to compute the number of lines to show.
4. Was sizeToFit called? If so, compute the height.
5. If sizeToFit was not called, check if content can be shown for the given height

of the frame.
6. If the frame is not sufficient, use lineBreakMode to determine the wrap or trun‐

cation location.
7. Take care of other configuration options, as seen in Figure 6-4 (e.g., if it is plain

text or attributed, shadows, alignment, autoshrink, etc.).
8. Finally, use the font, style, and color to render the final text to be shown.

View | 191

Figure 6-4. UILabel options

Specifying each UILabel is a lot of work. With fewer labels, the efforts are managea‐
ble, but with many labels, be careful of how you create, configure, and reuse them.

If you dynamically compute the width of a label as a fraction of the container’s width,
ensure that the width is evenly divisible by that percentage. For example, if two labels
each occupy 50% of the width of the container, let the width of the container be even.
Avoid calls like width/2. If the width is a fraction, everything will work great except
that the rendering requires anti-aliasing, which is an expensive operation.

UIButton
Buttons are almost everywhere—the navigation items in a navigation controller, the
“Send” button in a messaging app or in custom forms, and so on. So, unless your app
has only animations and custom rendering, there will be a button somewhere in the
app.

192 | Chapter 6: User Interface

There are four ways to render a button:

• Default rendering with custom text
• Button with full-sized assets
• Resizable assets
• Using CALayer and Bézier paths for custom drawing

We will not go into the details of what goes into each but will primarily focus on the
advantages and disadvantages of each option. The first option is very straightforward
and the remaining are discussed in “Designing for iOS: Taming UIButton”.

Table 6-1 presents the pros and cons of working with each option for rendering a but‐
ton.

Table 6-1. Button rendering options

Option Advantages Drawbacks
Custom text • Simplest, uncomplicated, and most

straightforward to use
• Generally dull, unfancy buttons

Full-size assets • Customizable backgrounds

• No-code implementation possible

• A/B testing possible—images can be
downloaded when running
experiments

• Images are bundled with the
app, resulting in a larger bundle
size

Resizable-size assets • Customizable backgrounds

• No-code implementation possible

• A/B testing possible—images can be
downloaded when running
experiments

• Relatively less increase in bundle size

• Any change in an asset may
require recomputing/resetting
the UIEdgeInsets values

Custom drawing using CALayer/Bézier path • Total custom drawing • Any change or upgrade in format
may require an update to the
app

You will need to weigh the pros and cons of these options, and choose the one that
suits your needs. A button is an otherwise simple component to render—it will rarely
need any performance boost. However, if you intend to make it more beautiful, color‐
ful, and fancy, you will need to explore the many other available options.

View | 193

http://bit.ly/1NE5yXs

UIImageView
No app is complete without images—they’re what make apps beautiful.

However, images are one of the most expensive UI elements to be rendered. And they
are mostly dumb—once created, they cannot be changed. To show an image varia‐
tion, another image has to be loaded. Animated GIFs are still not natively supported
on iOS. You will have to create an array of animationImages that are subsequently
animated. Other options include writing custom code or using a third-party library
such as ImageMagick or AnimatedGIFImageSerialization.

Follow these best practices to maximize performance when working with UIImage
and UIImageView:

• For known images, use the imageNamed: method to load the images. It ensures
that the content is loaded in memory only once and repurposed across multiple
UIImage objects.

• Use an asset catalog for loading bundled images with the imageNamed: method.
This is especially useful if the app has a bunch of icons, each one of which may be
small in size. Feel free to create multiple catalogs of related images (i.e., images
that are generally used together).
When iOS loads from the disk, there is an optimal buffer size that can be used to
load multiple images in a single read. Also, opening multiple I/O streams has
overheads as compared to opening one stream and reading multiple images from
there. It is generally faster to read one combo file that is 32 KB in size than 16
files that are each 2 KB in size.
However, if you want to load a large image that will be used only once, or at best
very sparingly, consider using imageWithContentsOfFile: instead of using an
asset catalog and the imageNamed: method, because the asset catalog caches the
images (which is not needed in this case).
In an app that I worked on, the team saw a reduction of about 300 ms in initial
load time by choosing to bundle the images for the initial two screens in one
asset catalog.

• For other images, use a high-performing image cache library. AFNetworking and
SDWebImage are great libraries to use.
When working with an in-memory image cache, be sure to configure memory
usage parameters correctly. Do not hardcode. Make it adaptive—a percentage of
available RAM is a good way to configure it.

• Load the image of the same size as the UIImageView to be rendered. You get the
maximum performance when the dimensions of the image parsed and of the

194 | Chapter 6: User Interface

http://www.imagemagick.org/
https://github.com/mattt/AnimatedGIFImageSerialization
http://bit.ly/imageWithContentsOfFile

UIImageView are the same—resizing images is an expensive operation, and it is
even costlier if the image view is contained in a UIScrollView.
If the image is downloaded from the network, try to download the image that
matches the view size. If that option is not available, preprocess the image to
resize it appropriately.

• If there is a need to apply effects like blur or shades, create a copy of the image
contents, apply the effects, and use the final bitmap to create the final UIImage.
That way, the effects are only applied once and the original image can be used for
other displays if needed.

• Whatever technique you use to load the images, execute it off the main thread,
preferably in a dedicated queue.
Specifically, decompress JPG/PNG images off the main thread.

• Last but not the least, determine whether you really need the images. If you were
to show a rating bar, you might be better off with a custom view with direct
drawing than using multiple images with transparency and overlays.

UITableView
UITableView is the most common view used to show data, whether it is for a news
app, a mail app, a photo feed, or anything else. UITableView provides a great option
to show a list of entries that can be either homogeneous or heterogeneous.

UITableView binds with two protocols:

UITableViewDataSource

The dataSource property must be configured to the data source. The data
source, as the name says, is the source of the data to be fed into the table cells.

UITableViewDelegate

The delegate property must be configured to the delegate that receives the call‐
backs when the user interacts with the table or its cells.

A partial logical relationship between these protocols and UITableView is shown in
Figure 6-5.

View | 195

http://stackoverflow.com/questions/27600288/rating-bar-like-android-in-codename-one

Figure 6-5. UITableView, UITableViewDataSource, and UITableViewDelegate

Here are some best practices to keep in mind when working with UITableView:

• In the dataSource method tableView:cellForRowAtIndexPath:, use table
View:dequeueReusableCellWithIdentifier: or tableView:dequeueReusable
CellWithIdentifier:forIndexPath: to reuse cells instead of creating new cells
each time.
Cell creation has a performance cost. The cost grows multifold if several cells
have to be created in a short span of time—for example, when the user scrolls the
table view. Also, as cells go out of scope, they are dealloced, resulting in a double
whammy. Reusing cells means the only overhead will be to render the cells.

• Avoid dynamic-height cells as much as possible. Fixed, predetermined heights
means less computation. With dynamically configured content, not only must
the height be computed when required, but the cell contents have to flow and lay‐
out must be performed each time the view is rendered. That can be a big perfor‐
mance hit.
Figure 6-6 shows examples of UITableView with fixed- and variable-height cells.
If you intend to use variable-height cells, taller cells may prove to be beneficial
because the heights will have to be computed for fewer cells, reducing the com‐
putation.

196 | Chapter 6: User Interface

Figure 6-6. UITableView (left with fixed-height and right with variable-height cells)

• If you really need dynamic-height cells, define a rule to mark the cells dirty. If a
cell is dirty, compute the height and cache it. Continue to return the cached
height in the tableView:heightForRowAtIndexPath: callback of the delegate
until the cell is not dirty.
If the model to render is immutable, a simple rule that can be used is to check if
the model currently being rendered is the same as the one at the corresponding
indexPath. If so, the same values will be rendered and hence it requires no fur‐
ther processing. If not, recompute the values and attach the new object (model)
to the cell.

• When reusing the cells using custom views, avoid laying them out each time by
calling layoutIfNeeded it is requested.
Even if a cell is fixed-height, it is possible that the individual elements within the
cell may still be configurable to be of varying height—for example, UILabel sup‐
ports multiline content and UIImageView can work with varying-sized images.
Avoid that. Fix the size of each element. This ensures minimal time needed to
render the cells.

View | 197

• Avoid nonopaque cell subviews. Whenever you create a UITableViewCell, try to
only have opaque elements in it. Translucent or transparent elements (views with
alpha less than 1.0) may look great but have a performance hit.
For aesthetic reasons, you may still want to have alpha set to a value less than 1.0.
If that is case, be aware of the costs.

• Consider using shell interfaces when fast-scrolling (see Figure 6-7). When the
user fast-scrolls the table view, it is possible that even with all your optimizations,
the view reuse and rendering will still take well over 16 ms and there will be occa‐
sional frame drops that may result in a jittery experience.

Figure 6-7. Using shell interfaces

A good option in these situations is to use a shell interface, which can be defined
as a predefined interface whose only purpose is to indicate to the end user that
there is some data to be shown. As the scrolling velocity drops down below a
threshold, flush in the final view and populate it with the data.
You can get the velocity using the panGestureRecognizer property associated
with the table view (see Example 6-2).

198 | Chapter 6: User Interface

Example 6-2. UITableView velocity

-(void)scrollViewDidScroll:(UIScrollView *)scrollView {
 CGPoint velocity = [tableView.panGestureRecognizer
 velocityInView:self.view];
 self.velocity = velocity;
}

-(UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 if(fabs(self.velocity.y) > 2000) {
 //return shell cell
 } else {
 //return real cell
 }
}

• Avoid gradients, image scaling, and any offscreen drawing. These effects are a
drain on the CPU as well as the graphics processing unit (GPU).

UIWebView
UIWebView is the most common view used to render unknown or dynamic content.
Typically, you would have either some embedded HTML or a web URL and point the
web view to it.

The following are some common scenarios where you would invariably use UIWeb
View even if your app is all native otherwise:

• In any app, for user login. Apps such as Spotify, Mint, and LinkedIn use the
native UI to render the login form. However, this has constraints.
For example, if you want to screen for spam robots by using a CAPTCHA, you
need to either build support for all formats and bundle it into the app or point
the user to the web-login URL and let the server generate any complex UI as
needed.

• In any app, for showing the privacy policy or terms of use. Because these change
over time and require a lot of formatting (text styles, numbered lists, cross-
references to other content), using native views is not an option.

• In a news or article reader, because most of the articles are created for the Web
and hence are in HTML.

• In a mail app—for example, to render a message or thread and to compose a
reply when the initial mail is in HTML.

View | 199

http://bit.ly/google-capt

If you have minimal rich content to be shown, use NSAttributed
String with UILabel.
There is no CSS or JavaScript support. It is a string with associated
sets of attributes (e.g., font and kerning) that apply to individual
characters or ranges of characters in the string.

The following are some best practices to keep in mind while working with UIWebView
(note that because there is very little to be done about it, not all of these concern per‐
formance; instead, the focus here is on presenting the HTML content in the most
appropriate manner):

• UIWebView can be bulky and sluggish. Reuse web view objects as much as possi‐
ble. UIWebView is also known to leak memory. So, one instance per app should be
good enough.
Whenever you want to present a new URL to the user, reset the content to empty
HTML. This ensures that the web view does not show previous content to the
end user. Use loadHTMLString:baseURL: followed by loadRequest: to accom‐
plish this.

• Attach a custom UIWebViewDelegate. Implement the webView:shouldStartLoad
WithRequest:navigationType: method. Watch out for the URL scheme. If it is
anything other than http or https, beware: your app knows how to handle it or
warn the user that the site is trying to let her out of the app.
This is a great option not only to ensure that the user does not abruptly land in
another app, but also for safeguarding against malicious content, especially if you
happen to show content from an unknown URL—say, in a mail or messaging
app.

• You can create an app-to-JavaScript bridge by using the stringByEvaluatingJa
vaScriptFromString: method to execute JavaScript in the currently loaded web
page. To call a method into a native app, use custom URL schemes and refer to
the preceding bullet point on how to handle them.

• Implement the method webView:didFailLoadWithError: of the delegate to keep
a close track of any and all errors that may occur.

• Implement the webView:didFailLoadWithError: method to handle specific
errors, as shown in Example 6-3. The NSError object has meaningful insights if
the domain equals NSURLErrorDomain.

Example 6-3. Handling errors with UIWebView

-(void)webView:(UIWebView *)webView
 didFailLoadWithError:(NSError *)error {

200 | Chapter 6: User Interface

 if([NSURLErrorDomain isEqualToString:error.domain]) {
 switch(error.code) {
 case NSURLErrorBadURL:
 //handle bad URL
 break;
 case NSURLErrorTimedOut:
 //handle timeout
 break;
 //... etc.
 }
 }
}

• UIWebView will not notify of any HTTP protocol errors like a 404 or 500
response. As shown in Example 6-4, you will have to make a double call, first
using a custom NSURLConnection call and then by the web view. Provide a dele‐
gate to the NSURLConnection and implement connection:didReceiveResponse:
to get response details.

Example 6-4. UIWebView and HTTP errors

@interface HPWebViewController() <UIWebViewDelegate,
 NSURLConnectionDataDelegate>

@property (nonatomic, assign) BOOL shouldValidate;

@end

@implementation HPWebViewController

-(BOOL)webView:(UIWebView *)webView
 shouldStartLoadWithRequest:(NSURLRequest *)request
 navigationType:(UIWebViewNavigationType) navigationType {

 if(self.shouldValidate) {
 [NSURLConnection connectionWithRequest:request delegate:self];
 return NO;
 }

 return YES;
}

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {

 NSInteger status = [(NSHTTPURLResponse *)response statusCode];
 if(status >= 400) {
 //Bingo! An error.

View | 201

5 Disclaimer: I do not endorse this app.

 //Show alert or hide web view - don't show bad page.
 } else {
 self.shouldValidate = NO;
 [self.webView loadRequest:connection.originalRequest];
 }
 [connection cancel];
}

@end

Because this technique requires a double loading of the web page, it is not recom‐
mended. It is OK for the web view to show an error when loading the page. After
all, the user requested it, perhaps by tapping on a link in a message he received.

• The container where you embed the UIWebView should provide the following:
— Navigation buttons (back and forward)
— Reload button
— Cancel button to cancel the page currently being loaded
— UILabel to show the title of the page
— Close button to move out from the web view, unless that is the only UI that

you have in your app—for example, in a hybrid app

Hybrid apps are HTML apps embedded within UIKit—specifically,
UIWebView or the new WKWebView. This book does not discuss the
performance of hybrid apps (that would be another book in itself).

New in iOS 8: WebKit
iOS 8 features WebKit, which is more performant than UIWebView. If you are writing
a new app from the ground up, prefer using WKWebView over UIWebView. However, if
you choose to use WKWebView, remember that you will need a fallback to UIWebView
for iOS 7 devices.

The basic rules for using WKWebView are the same as those for UIWebView, which we
discussed earlier. As a side note, there is an app that you can download to test the
difference between the two.5

202 | Chapter 6: User Interface

http://bit.ly/ios-dev-webkit
http://bit.ly/wk-webview

6 Twitter Blog, “Simple Strategies for Smooth Animation on the iPhone”.

Custom Views
Writing custom views from the ground up is not common in a non-gaming or non-
animation-centric app. The more commonly used option is to create composite views
using Interface Builder and custom nib files.

Although this is a great preliminary technique, once you create a more complex UI or
use these composite views in table views, you will begin to notice performance degra‐
dation.

The Twitter team ran into this problem early in the development of their app and
moved from using a composite view to one with direct drawing, thus minimizing the
overall compositing required to render the view.6

Figure 6-8 shows the UI rendered for a tweet.

Figure 6-8. Tweet to render

A basic implementation of the UI might include the following elements (see
Figure 6-9):

1. UIImageView for the avatar image
2. UILabel with NSAttributedText for the username
3. UITextView with detectorType = UIDataDetectorTypeLink for the tweet con‐

tent, because it may have links
4. UILabel for the date

View | 203

http://bit.ly/1M74uh6

Figure 6-9. Naïve tweet view

Each view burdens Core Animation with extra compositing. In addition, creating a
nested hierarchy results in layoutSubviews being called multiple times as the content
of each subview changes.

To optimize performance, the team created a custom view wherein a single dra
wRect: draws everything, as shown in Figure 6-10.

Figure 6-10. Custom tweet view—direct drawing

Suppose we have a mail app and for the inbox, we need to show a summary of the
mails with the following details:

• Sender’s name/email ID
• Date or time it was sent
• Subject
• Snippet of the body (a few leading characters)
• An indicator of whether the mail is new, has been read, or has been replied to
• A selector (maybe just a checkbox) to select multiple mails
• An indicator whether the mail has any attachments

The final layout should something like Figure 6-11.

204 | Chapter 6: User Interface

7 Stack Overflow, “When Should I Set layer.shouldRasterize to YES?”.

Figure 6-11. Mail summary

We’ll create this view in both styles (composite and custom views) and measure the
performance of both views (the time it takes to create one cell and the time it takes to
render). We will also analyze other pros and cons of working with each style.

Composite view
Creating a composite view is straightforward. You simply need to create a new view
class that inherits from UITableViewCell.

These are the steps you’ll need to follow:

1. Navigate to File→New→File.
2. Select iOS→Source→Cocoa Custom Touch.
3. The class name is HPMailCompositeCell and it is a subclass of UITableViewCell.
4. Select the option “Also create XIB file.”
5. Click Finish.

Add four UILabel, two UIImage, and one UIButton element, and arrange them so
that the final structure matches what is shown in Figure 6-12.

For a complex view, use view rasterization during animations,
including but not limited to scrolling.
If the view layout does not change, which will generally be the case
during scrolling, set the value of the UIView’s layer’s property
shouldRasterize to YES during animation and to NO after the ani‐
mation completes.7

View | 205

http://stackoverflow.com/a/19408290

Figure 6-12. Composite view—layout (A) and individual (B) views

Direct drawing
For creating a custom view with direct drawing, we again create a new class that
inherits from UITableViewCell, except that we do not select the option to create an
XIB file.

We name this class HPMailDirectDrawCell.

We will need properties to support the details, as discussed earlier. And finally, we
will override the method drawRect: to custom-render the elements.

Example 6-5 shows representative code to render all the elements.

Example 6-5. Custom view with direct drawing

//HPMailDirectDrawCell.h
typedef NS_ENUM(NSInteger, HPMailDirectDrawCellStatus) {
 HPMailDirectDrawCellStatusUnread,
 HPMailDirectDrawCellStatusRead,
 HPMailDirectDrawCellStatusReplied
};

@interface HPMailDirectDrawCell : UITableViewCell

206 | Chapter 6: User Interface

@property (nonatomic, copy) NSString *email;
@property (nonatomic, copy) NSString *subject;
@property (nonatomic, copy) NSString *date;
@property (nonatomic, copy) NSString *snippet;
@property (nonatomic, assign) HPMailDirectDrawCellStatus mailStatus;
@property (nonatomic, assign) BOOL hasAttachment;
@property (nonatomic, assign) BOOL isMailSelected;

@end

@implementation HPMailDirectDrawCell
//Override all initializers - omitted for brevity

//Override drawRect method
-(void)drawRect:(CGRect)rect {
 {
 UIImage *statusImage = nil;
 switch(self.mailStatus) {
 case HPMailDirectDrawCellStatusRead:
 statusImage = [UIImage imageNamed:@"mail_read"];
 break;
 case HPMailDirectDrawCellStatusReplied:
 statusImage = [UIImage imageNamed:@"mail_replied"];
 break;
 case HPMailDirectDrawCellStatusUnread:
 default:
 statusImage = [UIImage imageNamed:@"mail_new"];
 break;
 }

 CGRect statusRect = CGRectMake(8, 4, 12, 12);
 [statusImage drawInRect:statusRect];
 }

 {
 UIImage *attachmentImage = nil;
 if(self.hasAttachment) {
 attachmentImage = [UIImage imageNamed:@"mail_attachment"];
 CGRect attachmentRect = CGRectMake(8, 20, 12, 12);
 [attachmentImage drawInRect:attachmentRect];
 }
 }

 {
 UIImage *selectedImage = [UIImage imageNamed:
 (self.isMailSelected ? @"mail_selected": @"mail_unselected")];
 CGRect selectedRect = CGRectMake(8, 36, 12, 12);
 [selectedImage drawInRect:selectedRect];

 //Alternatively, can use Core Graphics to draw vector images
 }

View | 207

 CGFloat fontSize = 13;
 CGFloat width = rect.size.width;
 CGFloat remainderWidth = width - 28;
 {
 CGFloat emailWidth = remainderWidth - 72;
 UIFont *emailFont=[UIFont boldSystemFontOfSize:fontSize];
 NSDictionary *attrs = @{ NSFontAttributeName: emailFont };

 [self.email drawInRect:CGRectMake(28, 4, emailWidth, 16)
 withAttributes:attrs];
 }

 {
 UIFont *stdFont = [UIFont systemFontOfSize:fontSize];
 NSDictionary *attrs = @{ NSFontAttributeName: stdFont };
 [self.subject drawInRect:CGRectMake(28, 24, remainderWidth, 16)
 withAttributes:attrs];
 [self.snippet drawInRect:CGRectMake(28, 44, remainderWidth, 16)
 withAttributes:attrs];
 }

 {
 UIFont *verdana = [UIFont fontWithName:@"Verdana" size:10];
 NSDictionary *attrs = @{ NSFontAttributeName: verdana };
 [self.date drawInRect:CGRectMake(width - 60, 4, 60, 16)
 withAttributes:attrs];
 }
}
@end

There are two aspects to compare now: runtime performance and code maintenance.

The runtime performance, as can be expected, is better in a custom view with direct
draw. What is the difference? Well, let’s look at the numbers in Figure 6-13.

208 | Chapter 6: User Interface

Figure 6-13. Composite view versus direct drawing—comparing initialization and reuse

Table 6-2 summarizes the times by tasks for composite view and direct draw for the
code given in Example 6-5.

Table 6-2. Comparision by numbers

Task Composite view Direct draw
First init 17.6 ms 0.36 ms

Subsequent inits 1.8–1.9 ms 0.1–0.2 ms

First init after scroll 6.6 ms 0.3 ms

Second init after scroll 9.6 ms 0.13 ms

Reuse 0.08–0.13 ms 0.03–0.08 ms

As you may notice, there is a staggering performance difference of a factor of 2x–20x.
The initial load is blazingly 50x faster when using direct draw.

And that is when the code for direct draw is not even optimized.

Thus, from a performance perspective, direct drawing should offer better perfor‐
mance at times—orders of magnitude better than composite views.

View | 209

8 Florian Kugler, “Auto Layout Performance on iOS”.

However, from a maintenance perspective, the code can be difficult to maintain and
evolve. Once you have stabilized the app, there will be a definitive case to move away
from a composite UI to direct drawing.

Additionally, if you create a view comprised of only standard controls, it is easier to
do A/B testing by sending a new nib file across to the device and loading the UI from
there. That way, you can play around with different layouts without releasing a newer
version of the app.

Auto Layout
iOS 6 introduced Auto Layout, which alleviates the headache of aligning elements in a
fairly complex screen. Auto Layout lets you describe the positions of views relative to
each other and the container and the sizes through what is known as constraints.
Constraints can describe an element’s distance (horizontal or vertical) from another
element, its size (width or height), or its alignment with another element (horizontal
or vertical).

It is assumed that you have working knowledge of Auto Layout. If not, you should
review the official reference in the iOS Developer Library or Matthijs Hollemans’s
“Beginning Auto Layout Tutorial in iOS 7: Part 1”.

Though Auto Layout is a great option, allowing you to leave the element positioning
and sizing to the core engine rather than doing it all in your code, it comes with per‐
formance overhead. Implementing Auto Layout involves solving linear equations that
satisfy the constraints. It uses the Cassowary constraint solver toolkit. And as is the
case with any generic equation solver, the complexity is O(N), where N is the number
of constraints and not the number of elements. This means that in general, there may
be about 4N equations to be solved to determine the position and size of all the ele‐
ments in the view, and also that the time taken to solve the equations increases dis‐
proportionally with the number of elements and constraints involved.

In a test done by Florian Kugler,8 if the number of views grows to a few hundred,
Auto Layout can take over tens of seconds or more, while directly setting frames can
be done in milliseconds. In general, directly setting the frames is around 1,000x faster
than using Auto Layout. The result of Kugler’s test is shown in Figure 6-14. The
source code of the app on which the test was done is available on Github.

210 | Chapter 6: User Interface

http://bit.ly/1EPflLq
http://apple.co/1Qt4FlD
http://bit.ly/rw-autolayout
http://bit.ly/casso-cocoa
https://github.com/floriankugler/AutoLayoutProfiling

Figure 6-14. Auto Layout performance

It is interesting to note here that Auto Layout using local constraints (i.e., elements
positioned relative to each other) is faster than using global constraints, where the ele‐
ments are positioned relative to the superview.

Any custom code will have specialized knowledge of the view, and as such the render‐
ing will be faster than using a generic equation solver to place and size the views.

Having said that, when Kugler measured the numbers for a more real-world app,
even though Auto Layout was slower, it was not slower by a factor of 10x or 100x, as
in the test app. For an app such as that shown in Figure 6-15, Auto Layout took about
180 ms while custom code took about 120 ms. So, even though Auto Layout takes
about 50% more time, it is still not that bad a choice.

Auto Layout | 211

Figure 6-15. Real-world app for testing Auto Layout

What is the final verdict on Auto Layout? Use your discretion. Do measure the time it
takes to bring up the view and render it. If it is beyond a threshold, explore the option
of using custom code. The threshold is very much specific to the app. Keep in mind
that when using Auto Layout, there is always room to improve the layout and render‐
ing performance.

With custom code, there is always the burden of carrying and testing the custom code
each time the layout is updated. This also means that you may be forgoing the possi‐
bility of running A/B tests using custom templates.

Size Classes
Until the iPhone 4S, app development was straightforward—there was only one size
and resolution to develop for. The iPhone 5 and 5S came with increased vertical size.
The iPhone 6 and 6 Plus added more pixels horizontally as well as vertically. In the
iPad series, the iPad 4 doubled the resolution of the previous generation. The pixels
per inch (ppi) increased by 3x, and as a result, app designers and developers have
twice as many images to bundle (which makes the bundle heavier to download), not
to mention the greater number of pixels to worry about when direct drawing.

212 | Chapter 6: User Interface

Table 6-3. iOS devices—screen resolution and densitiesa

Device Screen resolution Pixel density (ppi)
iPhone 3G 320x480 163

iPhone 4 640x960 326

iPhone 4S 640x960 326

iPhone 5 640x1136 326

iPhone 5S 640x1136 326

iPhone 6 750x1334 326

iPhone 6 Plus 1080x1920* 401

iPad 2 1024x768 132

iPad (3rd Gen) 2048x1536 264

iPad (4th Gen) 2048x1536 264

iPad Air 2048x1536 264

iPad Air 2 2048x1536 264

iPad Mini 1024x768 163

iPad Mini (Retina) 2048x1536 325

a The hardware pixels. The software pixels are actually 1242x2208 at 461 ppi.

iOS rendering features the concept of points, which is the density-independent reso‐
lution. Note that ppi is not a point-to-pixel ratio. Consider point as a scale factor
given by iOS so that you do not have to worry about scaling per se. So, a 10 pt view
may correspond to 10 px on the iPhone 3G, 20 px on the iPhone 4 and 5S, and 30 px
on the iPhone 6 Plus. When you define the constraints, they are in points, as shown
in Figure 6-16. The font sizes are also in points.

Figure 6-16. View constraints

When creating custom views with direct drawing, the drawRect: method gives the
scaled CGRect dimensions. For the custom cell that we created earlier, notice that the
size presented is 320x64 on the iPhone 5S as well as iPhone 6.

Size Classes | 213

http://bit.ly/curious-case-iphone6

Instead of exposing exact pixel dimensions to the developer, Apple has done a great
job of abstracting out the configurations through what it calls size classes. A size class
identifies a relative amount of display space for the height and for the width.

The size class available for a view controller is based on the following three factors:

• Screen size
• Device orientation
• Part of the screen available to the view controller (note that when using a split

view controller to display master and detail controllers, none of the controllers
has access to the entire screen)

When designing a view controller in interface builder, use the size class controller near
the layout toolbar at the bottom to select a class, as shown in Figure 6-17.

Figure 6-17. Size class selection

214 | Chapter 6: User Interface

iOS defines two size classes: compact and regular. The compact size class kicks in
when using constrained space, whereas regular is used for expansive space. As illustra‐
ted in Figure 6-17, you choose a horizontal and a vertical size class to configure the
final UI.

The iOS Developer Library article “iOS Human Interface Guidelines” provides details
of which class is selected for different device and orientation combinations.
Figure 6-18 maps the devices and orientations to the size classes.

Figure 6-18. Size class to device/orientation mapping

For any view, you will be able to change all parameters that affect its final position
and size. These include constraints in all views as well as font size wherever applica‐
ble. Figure 6-19 shows how you can add constraints for a specific size class.

Size Classes | 215

http://bit.ly/ios-adaptivity-and-layout

Figure 6-19. Configuring size class–specific parameters

Size classes provide a segmented approach to classify the UI without having to create
independent layouts for simplistic scenarios such as orientations. Use them wherever
possible—the whole reason the infrastructure has been created is to ease develop‐
ment.

From a performance perspective, there is minimal impact when loading the story‐
board or the XIB file. The good part is that the total contribution of these class-based
constraints to the final XIB file is a small fraction. In addition, if the app supports
multiple orientations, the XIB file is loaded only once, giving a big leg-up for the app
when the orientation change occurs. And note that loading the XIB file is a one-time
cost when running the app.

216 | Chapter 6: User Interface

Size classes require Auto Layout. If you choose not to use Auto
Layout for performance reasons, you will not be able to use size
classes.

New Interaction Features in iOS 8
iOS 8 introduced two fantastic features for letting the user interact with an app:

• Interactive notifications
• App extensions

The following two subsections explore these options. We will begin by looking at the
basic setup for each of these features, and then look at how can they be used to pro‐
vide the best user experience possible.

Interactive Notifications
You can use interactive notifications to allow the user to provide a quick response to
an input.

Up to iOS 7, a user tapping on a notification (or swiping on the lock screen) would
only result in the app being launched. Subsequent actions were required to be per‐
formed in the app. Starting in iOS 8, developers can give users the ability to perform
predefined actions from notifications.

You determine what to do in the app based on which notification the user swiped by
using the value from launchOptions when application:didFinishLaunchingWi
thOptions: is called.

This works great, except when a notification expects a user to respond and there is
more than one possible response option available, or if the response can be obtained
faster than launching the app and taking the user to a specific view controller—which
is a very cumbersome and time-consuming process for the user.

With iOS 8, it’s possible to add a category to a notification, which can have one or
more actions associated with it. The user can take one of the available actions.

Here are a few examples of possible actions when using interactive notifications:

• Mail: reply, mark spam
• Messaging: remind, reply
• Comment to your post in a social app: reply to comment, like the comment
• Tasks and reminders: snooze, mark complete

New Interaction Features in iOS 8 | 217

Figure 6-20 shows an example of providing a fast-action interface to respond using
interactive notifications. The example here is a reminder notification. When swiped
left, the user is presented with two action options: Snooze and Complete. If the user
selects Snooze, the reminder will pop up again after a while. If the user selects Com‐
plete, the task is marked complete.

Figure 6-20. Interactive notification—task reminder

The benefit is that the user does not need to open the app to take further action. The
notification is handled by the application:handleActionWithIdentifier:forLocal
Notification: callback in the UIAppDelegate protocol implementation class.

The user can also respond to the notification when logged into the device using the
pull-down banner. The UI is slightly different, as shown in Figure 6-21.

Figure 6-21. Interactive notification banner

App Extensions
The Apple developer website describes app extensions as follows:

218 | Chapter 6: User Interface

https://developer.apple.com/app-extensions

App extensions give users access to your app’s functionality and content throughout
iOS 8 and OS X Yosemite. For example, your app can now appear as a widget on the
Today screen, add new buttons in the Action sheet, offer photo filters within the iOS
Photos app, or display a new system-wide custom keyboard. Use extensions to place
the power of your app wherever your users need it most.

iOS 8 introduced app extensions that can be added to an app. Figure 6-22 shows the
Xcode menu for adding new extensions to the host app.

Figure 6-22. Xcode menu to add app extensions

The app extensions available in iOS 8 are:

Today (more commonly referred to as Widget)
Helps you get a quick update or perform a quick task in the Today view of Notifi‐
cation Center (see Figure 6-23 for an example).

New Interaction Features in iOS 8 | 219

Figure 6-23. Widget from Yahoo Weather app

Custom Keyboard
Allows you to use your favorite keyboard in any and all apps, including Search
(see Figure 6-24). It is great to finally have the freedom to replace the iOS system
keyboard with a custom keyboard for use in all apps.

220 | Chapter 6: User Interface

Figure 6-24. Custom keyboards

Share
Allows sharing data across apps in a more seamless manner. Deep linking also
allows sharing data, but the user is forced to change the context to the target app.

Action
Helps the user to view or transform content that originates in a host app. For
example, you may want to view video in your favorite media player rather than
the mail/messaging app where you actually received it.

Photo Editing
Allows users to edit a photo or video within the Photos app. So, you can now
download an app such as Adobe Photoshop Express and use it to edit all your
photos, without needing to manually open the photo to be edited in that app; you
can now launch the editor from within Photos.

Document Provider
Allows other apps to access the documents managed by your app. The document
provider acts as a local repository for a particular type of document, letting the
user gather all those documents into one place.

New Interaction Features in iOS 8 | 221

These extensions are bundled as subbundles within the host app and are governed by
the same lifecycle and rules of app development.

The extension-specific best practices are still evolving. It may take two full cycles of
app releases before patterns and best practices merge. Right now, most of these are
general guidelines no different than those for any iOS app.

Summary
With an understanding of the view controller lifecycle, you can now tune the per‐
ceived performance of your app. A user may know that the app caches data for faster
load times or is great on network consumption, but all that is secondary if the final
user interface is poorly implemented.

Choosing between a declarative or programmatic UI is a decision that should be
based on performance as well as extensibility. This chapter’s in-depth analysis of com‐
mon views should empower you to use them wisely, while the alternatives for custom
views give you options to choose from for a given scenario in your app.

Note that when rendering or updating UI elements and performing animations (e.g.,
scrolling or otherwise) at 60 fps, you have about 16 ms available to perform all the
required operations. This may include network or disk I/O, view content updating,
layout, and final rendering. Divide the tasks into subtasks in such a manner that they
consume minimal cumulative time on the main thread in one event cycle.

222 | Chapter 6: User Interface

CHAPTER 7

Network

With the necessity to use networking in an app and with limited choices for minimiz‐
ing latency (e.g., using CDNs or edge servers or using smaller payload formats like
Protobuf or data compressions), everything gets down to best utilizing the available
network conditions and planning ahead for varying scenarios.

In this chapter, we look at the factors that impact the overall latency and how you can
make best use of the information available to maximize performance.

Metrics and Measurement
Most of the work done in networking is outside of your control, so it is important to
identify the metrics to measure. We will discuss some of the more important
performance-related metrics in this chapter. Note that this is not intended to be a
comprehensive list, but just to point out the more important ones to measure in rela‐
tion to optimizing performance.

Figure 7-1 shows a bird’s-eye view of a typical request over the network.

Figure 7-1. Network—device to server

223

The general structure of the discussions that follow is a description of the metric of
concern, one or a couple of examples, followed by best practices.

DNS Lookup Time
The first step to initiating a connection is DNS lookup. If your app is network heavy,
DNS lookup times can slow it down. In a rigorous statistical sample of two locations,
DNS lookup time to the host www.google.com from Sunnyvale, California, took 2,846
ms while it took 34 ms from New Delhi, India (see Figure 7-2).

The lookup time is a function of the performance of the primary DNS server config‐
ured. The final connection time is a function of the route traced to the destination IP
address.

Using content delivery networks (CDNs) to minimize latency is a common practice.
You will notice in Figure 7-2 that the IP address resolved for the domain www.goo‐
gle.com is different in the two sites—the one resolved to in Sunnyvale is a server in
the United States while the one resolved to in New Delhi is in India. But because DNS
lookup is done for every unique subdomain, having multiple CDN hostnames can
result in slowdown of the app.

224 | Chapter 7: Network

Figure 7-2. DNS lookup times for www.google.com from Sunnyvale, CA (top) and New
Delhi, India (bottom)

To minimize the latencies that arise from DNS lookup times, follow these best
practices:

• Minimize the number of unique domains the app uses. Multiple domains are
unavoidable because of the way routing works in general. Most likely, you will
need one each for the following:

Metrics and Measurement | 225

1. Identity management (login, logout, profile)
2. Data serving (API endpoints)
3. CDN (images and other static artifacts)

There may be a need for other domains (e.g., for serving video, uploading
instrumentation data, subcomponent-specific data serving, serving ads, or
even country-specific geolocalization). If the number of subdomains goes up
to double digits, that can be cause for worry.

• Connection to all domains may not be required at app startup. During app
launch, identity management and data for the initial screen might be all that the
app requires. For subsequent subdomains, try to have preemptive DNS resolu‐
tion, a.k.a. DNS prefetch. There are two options for accomplishing this.
If you have subdomains and hosting under your control, you can configure a
predetermined URL to return a HTTP 204 status code with no content and make
an early connection to this URL.
The second option is to use gethostbyname to perform an explicit DNS lookup.
However, the host may resolve to a different IP for different protocols, such as
one address for HTTP requests and another for HTTPS requests. Though not
very common, Layer 7 routing can resolve the IP address based on the actual
request—for example, one address for images and another for video. For these
reasons, resolving DNS before connecting is often unhelpful and a dummy call to
the host is more effective.

SSL Handshake Time
For reasons of security, it can be assumed that all the connections in your app are
over TLS/SSL (using HTTPS). HTTPS calls start with an SSL handshake, which
involves validating the server certificate and sharing a randomly generated key for
communication. While this might sound simple, it is a multistep process and can take
a lot of time (see Figure 7-3).

226 | Chapter 7: Network

Figure 7-3. SSL handshake

You should adhere to the following best practices:

• Minimize the number of connections that the app makes. As a corollary to this,
minimize the number of unique hostnames the app connects to.

• Do not close HTTP/S connections after the request is complete.
Add the header Connection: keep-alive for all HTTPS calls. This ensures that
the same connection can be reused for the next request.

• Use domain sharding. This allows you to use the same socket even if the connec‐
tions are for multiple hostnames, as long as they resolve to the same IP and the
same certificates can be used (e.g., in wildcard domains).
Domain sharding is available in SPDY or its successor, HTTP/2. You will need a
networking library that supports either of the two formats.

iOS 9 has native support for HTTP/2.
For iOS 8 and earlier, you will need a third-party library such as
CocoaSPDY from Twitter. This is available on GitHub. You can use
it by including the CocoaPod CocoaSPDY.

Network Type
As users drifted from desktop devices, they gave up always-connected, high-speed
broadband networks for either similar-quality WiFi networks or intermittently con‐
nected, varying-bandwidth mobile networks. Even more challenging is the scenario
where the user is mobile—the network and quality change as the device switches
between mobile towers. A device can go from an LTE network to GPRS or a no-signal

Metrics and Measurement | 227

https://http2.github.io
https://github.com/twitter/CocoaSPDY

zone at any time, and there is absolutely nothing that either you or the user can do
about it.

Reachability to a Host
You can use Apple’s Reachability library or Tony Million’s drop-in-replacement of the
same with additional support of callback invocation whenever the reachability status
to a host changes.

If the device is idle for more than a few seconds (the exact value is
nonndeterministic, but those few seconds can turn into minutes as
well), the network radio could have been turned off, resulting in an
extra Radio Resource Controller (RRC) latency that can run into
the hundreds or thousands of milliseconds.
Ensure that your app is ready to handle such scenarios by first
determining the host’s reachability.

In general, iPhones and iPads can use any of the following networks to connect to the
Internet:

WiFi
If the WiFi network is a private network (e.g., your home or office connection),
you can expect to have good, continuous connectivity to the Internet.

However, being on a WiFi network does not guarantee Internet connection. For
example, if the device is connected to a public hotspot (e.g., in a hotel or shop‐
ping mall), it will not have Internet access if the user fails to provide appropriate
credentials.

And even if the device is connected to the Internet, there might be restrictions
regarding which domains and/or ports it can connect to. As an example, the
www.google.com or www.yahoo.com domains might be allowed, but not mail.goo‐
gle.com or mail.yahoo.com.

4G: LTE, HSPA+ (the high-speed data networks)
These are the latest-generation data networks. Typical latency overheads range
from 100 ms to 600 ms before the first real business-related byte may be sent
over. These networks allocate radio-related resources dynamically in sub-
millisecond intervals and send bursts of data.

Theoretically, speeds vary from 100 Mbps for high-mobility communication such
as from cars and trains to 1 Gbps for low-mobility communication, such as by
pedestrians or stationary users.

228 | Chapter 7: Network

http://bit.ly/apple-reachability
https://github.com/tonymillion/Reachability

3G: HSDPA, HSUPA, UMTS, CDMA2000 (the medium-speed data networks)
These are the previous generation of data networks, but may be used more fre‐
quently than LTE.

Speeds on 3G can vary from 200 Kbps to well over 50 Mbps. The speeds may not
be symmetric. HSDPA has high download speeds while HSUPA has high upload
speeds.

2G: EDGE, GPRS (the low-speed data networks)
The network of the ’90s still refuses to die. These were the initial digital networks
(1G networks used analog signals) and provide low bandwidths. EDGE has a the‐
oretical limit of 500 Kbps while GPRS can only go up to 50 Kbps.

The Reachability library can give you details of which network the host is reachable
from. Use that information to determine the type of content to transfer (e.g., text ver‐
sus image versus video), batch size for multiple items to transfer, and so on.

0.2% Data Transfer; 46% Power Consumption!
In 2011, the University of Michigan and AT&T published “Profiling Resource Usage
for Mobile Applications”, a research paper that analyzes mobile apps for network use
and power consumption efficiency.

The paper discusses Pandora, which serves as a great case study for the inefficiency of
intermittent network transfers on mobile networks. Although the problem has since
been fixed, the case study is still worthwhile reading.

Whenever the app plays a song, it downloads the song in its entirety, which is the cor‐
rect behavior: burst as much data as possible and let the radio be turned off for as
long as possible.

However, after the transfer, the app would send periodic instrumentation events every
60 seconds. These events accounted for just 0.2% of the total transferred bytes but a
whopping 46% of the app’s total power consumption.

The event data is generally minimal, but because the radio was kept active for signifi‐
cantly longer, it ended up nearly doubling the app’s battery consumption.

By batching this data into fewer requests or sending it when the radio is already
active, the unnecessary energy tails can be eliminated and high power efficiency can
be achieved.

To ensure that your app is not part of a similar case study, follow these best practices
when developing network-centric apps:

• Design for variable network availability. The only aspect that is consistent in
mobile networks is variance in network availability. For media streaming, prefer

Metrics and Measurement | 229

http://bit.ly/usage-mobile-app
http://bit.ly/usage-mobile-app

HTTP Live Streaming (HLS) or any of the available adaptive bitrate streaming
technologies, as these will allow dynamic switching across the best streaming
quality for the available bandwidth at the moment, resulting in smooth video
play.
For non-streaming content, you will need to implement strategies on how much
data should be downloaded in a single fetch—and this has to be adaptive. For
example, you may not want to fetch all 200 new emails since the last update in
one go. It may be prudent to start by downloading the first 50 emails and then
progressively download more.
Similarly, do not turn on the video autoplay on low-speed networks or those that
may cost a lot of money for the user.
For custom non-streaming data fetch, keep intelligence on the server. Let the cli‐
ent send network characteristics and the server decide the number of records to
return. This will allow you to make adaptive changes without having to release a
new version of the app.

• In case of failures, retry after a random and exponentially growing delay.
For example, after the first failure, the app might retry after 1 second. On the sec‐
ond failure, it would then retry after 2 seconds, followed by a 4-second delay. Do
not forget to have a maximum automatic retry count per session.

• Establish a minimum time between forced refreshes. When the user asks for
explicit refresh, do not fire off the request immediately. Instead, check if either a
request is already pending or the time gap from the last attempt is less than a
threshold. If so, do not send the request.

• Use reachability to discover any changes to the network state. As shown in
Figure 7-4, use indicators to show any unavailability to the user. After all, it is not
your fault that the device does not have Internet access. By letting users know
about potential connection issues, you will avoid blame being placed on your
app.

230 | Chapter 7: Network

Figure 7-4. Spotify, Facebook, and TOI apps with offline network status indicators

• Do not cache the network state. Always use the latest value for network-sensitive
tasks, either through a callback to know when to trigger a request or an explicit
check before a request is made.

• Download content based on the network type. If you have an image to show, do
not always download the original, high-quality image. Always download the
image that is suitable for the device—the image size requirements for an iPhone
4S can be very different from those of an iPad 3rd Generation.
If your app has video content, it is a good idea to have a preview image associated
with it. If the app supports an autoplay feature, use the preview image to be
shown on non-WiFi networks, as they are known to cost a lot of money to the
user.
In addition, include an option for turning off autodownload and/or autoplay of
heavy content such as images, audio, and video. Figure 7-5 shows an example of
such a setting in the WhatsApp app.

Metrics and Measurement | 231

Figure 7-5. WhatsApp settings to selectively download image, audio, and video con‐
tent

• Prefetch optimistically. When on a WiFi network, prefetch content that you think
the user will need after some time. Use this cached content subsequently. Prefer
downloading in bursts and let the network radio be shut down after use. This will
help save battery.

Prefetch will always be a point of contention. There is always a
tug-of-war between downloading minimal data and prefetch‐
ing all content that may be needed in the near future.
There is no golden rule to follow. A lot depends on the median
data size, number of downloads to perform, expected usage
pattern, and network conditions. If the network is choppy and
you need to perform minimal data transfers, see if you can
batch the requests.

232 | Chapter 7: Network

• If applicable, support offline storage with sync when the network is available.
More often than not, the network cache should suffice. But if you need more
structured data, using local files or Core Data is always a preferred option.
For a game, cache the last level-up details. For a mail app, storing a few of the
latest emails with attachments is a great option.
Depending on the app, you may allow users to create new content offline that can
be synchronized with the server when network connectivity is available. Exam‐
ples include composing a new email or responding to one in a mail app, updating
a profile photo in a social app, and capturing photos or videos to be uploaded
later.
Always decouple networking and communication from the user interface. If the
app can perform operations offline, notify the user that it can. Otherwise, notify
the user that it cannot. Do not let the user start an interaction with the app and
then lead to a point of no return—this is a poor user experience.

Do not add an option for making offline transactions in a
financial, banking, or stock trading app, or any app that
requires syncing with the server—the updated data may not be
available in offline mode.

Figure 7-6 shows the Facebook and E*Trade apps working in offline mode. The
Facebook app notifies the user about network unavailability, but allows posting
comments or status updates. These are synchronized later, when the network is
available. The E*Trade app, on the other hand, also allows users to interact with
the app, but they reach a dead end when searching for a stock quote, resulting in
a poor user experience.

Metrics and Measurement | 233

Figure 7-6. Apps in offline mode—Facebook (left) and E*Trade (right)

Note that network conditions will always be beyond the app’s control, but the user
experience you provide within those constraints is always controlled by the app.
Make the best of the available options, including offline storage, network reachability,
and network type, to perform (or not perform) networking operation, and notify (or
do not notify) the user about them.

Latency
Latency is the extra time spent in the network transmission when requesting a
resource from the server. It is important to set up a system for measuring network
latency.

Network latency can be measured by subtracting the time spent on the server (in
computation and serving the response) from the total time spent during the request:

Round-Trip Time = (Timestamp of Response - Timestamp of Request)
Network Latency = Round-Trip Time - Time Spent on Server

234 | Chapter 7: Network

The time spent on server can be computed by the server. The round-trip time is accu‐
rately available to the client. The server can send the time spent in a custom header in
the response that can then be used on the client side to compute the latency.

Example 7-1 shows sample code for computing latency. The code assumes the
response includes a custom header X-Server-Time that contains the time spent on
the server in milliseconds.

Example 7-1. Computing network latency

//server - NodeJS
app.post("/some/path", function(req, res) {
 var startTime = new Date().getTime();
 //process
 var body = processRequest(req);
 var endTime = new Date().getTime();
 var serverTime = endTime - startTime;
 res.header("X-Server-Time", String(serverTime));
 res.send(body);
});

//client - iOS app
-(void)fireRequestWithLatency:(NSURLRequest *)request {

 NSDate *startTime = nil;
 AFHTTPRequestOperation *op =
 [[AFHTTPRequestOperation alloc] initWithRequest:request];
 [op setCompletionBlockWithSuccess:^(AFHTTPRequestOperation *op, id res) {

 NSDate *endTime = [NSDate date];
 NSTimeInterval roundTrip = [endTime timeIntervalSinceDate:startTime];
 long roundTripMillis = (long)(roundTrip * 1000);

 NSHTTPURLResponse *res = op.response;
 NSString *serverTime = [res.allHeaderFields objectForKey:@"X-Server-Time"];
 long serverTimeMillis = [serverTime longLongValue];

 long latencyMillis = roundTripMillis - serverTimeMillis;

 } failure:^(AFHTTPRequestOperation *op, NSError *error) {
 //Process error. Present error to the user, if need be.
 }];

 startTime = [NSDate date];
 [op start];
}

The code presented in Example 7-1 is mostly accurate about network latency, except
that it includes the time taken to flush the data to the wire on the server side and the

Metrics and Measurement | 235

time to parse the response on the client side. If that can be separated out, it will pro‐
vide the true network latency time, including any device overheads.

While you have the data to analyze any patterns in latency, additionally keep track of
the following data:

Connection timeouts
It’s important to keep track of how many times the connection timed out. This
metric will provide you details of geographic distribution categorized by network
quality—either poor infrastructure or lower capacity—which in turn will help
you plan sync-time spread. For example, instead of syncing at a specific time
across a time zone, the sync can be spread over a short duration of time, say, a
few minutes.

Response timeouts
Capture the number of times the connection succeeded but the response timed
out. This will help you plan datacenter capacity based on geographic location and
times of the day and year.

Payload size
The request as well as the response size can be measured completely on the
server side. Use this data to identify any peaks that can slow down your network
operations and determine options for either reducing the total data footprint by
selecting appropriate serialization format (JSON, CSV, Protobuf, etc.) or splitting
the data and using incremental syncs (e.g., by using smaller batch sizes or send‐
ing partial data in multiple chunks).

Maximizing the Capacity of a Bad Network
I once worked on a fantasy sports app where the engineering team were noticing
longer latencies and more timeouts (connection as well as response timeouts). We
also realized that the server would typically send over 200 KB of compressed JSON
data for initial consumption—and we had to do this within about 20 minutes of
match commencement.

On a match night, it was typical for there to be well over 10,000 users connecting to
one cell tower, for a total of 50,000–80,000 users overall, causing a mobile data net‐
work choke.

Although we could not do anything to improve connectivity, we used some tricks to
improve the experience. To start with, we sent push notifications to the devices. The
first push notification, which asked users if they were going to the match or not, was
sent a few hours before it began. Not all of the users responded, but a fairly large
number did (we used gamification to incentivize). That gave us data about not only
estimated traffic but, more importantly, which users would require notifications.

236 | Chapter 7: Network

1 For tips on usage, see Ken Toh’s “NSURLSession Tutorial: Getting Started”.

The second push notification was sent only to users who indicated that they would be
going to the match. This push notification was sent out in batches during the first 20
minutes of the match. If there were 1,000 users in the stadium, 100 of them would
receive the notification during the initial two minutes, the next 100 in the following
two minutes, and so on.

The notificaton would wake the app, which would use geolocation to decide whether
or not to get the data. Now, instead of 1,000 people connecting simultaneously, con‐
nections would be made in groups of 100 users at a time.

For obvious reasons, you cannot expect each user to open the app immediately, but
that one push notification would serve to wake up the app and have it sync data. Any
further interaction with the app was then much smoother.

Networking API
While performing any network operation, what becomes important is the API that
you choose.

Earlier versions of iOS provided NSURLConnection to execute network requests. It
was the app developer’s job to manage connection pools and deal with app back‐
grounding, suspension, and resumption of the requests.

NSURLSession was introduced in iOS 7 and should now be the de facto choice for
performing any network operation. Let’s take a look at some of the advantages of
using NSURLSession:1

• NSURLSession is a configurable container for putting related requests into. As an
example, all calls to your servers can be configured to always include an access
token.

• You get all the benefits of background networking. This helps with battery life,
supports UIKit multitasking, and uses the same delegate model as in-process
transfers.

• Any networking task can be paused, stopped, and restarted. Unlike with NSURL
Connection, there is no need for NSOperation subclasses.

• You can subclass NSURLSession to configure a session to use private storage
(cache, cookie jar, etc.) on a per-session basis.

• When using NSURLConnection, if an authentication challenge was issued, the
challenge would come back for an arbitrary request and you wouldn’t know

Metrics and Measurement | 237

http://www.raywenderlich.com/51127/nsurlsession-tutorial

exactly what request was getting the challenge. With NSURLSession, the delegate
handles authentication.

• NSURLConnection has some asynchronous block–based methods, but a delegate
cannot be used with them. When a request is made, it either succeeds or fails,
even if authentication was needed.
With NSURLSession, you can take a hybrid approach—that is, you can use the
asynchronous block–based methods and also set up a delegate to handle authen‐
tication.

App Deployment
With the statistics for these metrics, you can better plan app deployment. That
includes not only the servers, their locations, and their capacities, but also the clients
and how to get the best in a given scenario.

In this section, we look at important components of our end-to-end app from a net‐
working perspective—the components that are under our control.

Servers
As we look at geographical distribution of network latencies, we can use this informa‐
tion to select an appropriate location for the datacenters. If you use a hosted datacen‐
ter provider, select one that has multiple locations, such as Amazon AWS or
Rackspace Cloud. If you own the datacenters, you should ensure that they are geo‐
graphically spread out.

It is a no-brainer that your servers should be situated in multiple locations so that you
can better serve content locally.

Here are some best practices that you should follow:

• Use multiple datacenters, so that your servers are spread out geographically, closer
to your users.

• Use CDNs to serve static content such as images, JavaScript, CSS, fonts, and so
on.

• Use edge servers in proximity to serve dynamic content.
• Avoid multiple domains (DNS lookup times can be long and diminish the user

experience).

Note that the second and fourth points are competing requirements—you will need
to make a trade-off. For information on minimizing DNS lookup times when using
CDNs, see the best practices discussed in “DNS Lookup Time” on page 224.

238 | Chapter 7: Network

http://serverfault.com/a/67489

Request
In order to properly set up networking, it’s important to correctly configure your
HTTP/S requests. You should follow these best practices:

• Instead of making one request for each unit of operation, make batch requests.
Even if you have to implement multiple backend subsystems to do so, consolidat‐
ing batches of requests provide enough of a performance gain that it’s usually
worthwhile.
The client can post a multiplexed request with data for multiple backends and the
server can respond with a multipart/mixed response. The client will have to
demultiplex the response. Figure 7-7 shows an outline of how this can be
achieved.

Figure 7-7. Request demux system

• Use persistent HTTP connections, also known as HTTP keep-alive. They help
minimize TCP and SSL handshake overheads, and reduce network congestion.
Alternatively, use WebSockets. Libraries like SocketRocket from Square can help
you get started with using WebSockets on iOS.

• Use HTTP/2 whenever available. HTTP/2 supports true multiplexing of HTTP
requests over a single connection, coalescing requests across multiple sub-
domains into one if they resolve to one IP address, header compression, and
much more. The benefits of using HTTP/2 are enormous. And the best part is
that the protocol remains unchanged as far as the message structure is con‐
cerned, which continues to be comprised of headers and body.

App Deployment | 239

https://github.com/square/SocketRocket
https://http2.github.io/

• Use HTTP cache headers for the correct level of caching. For standard images that
you intend to download (e.g., theme backgrounds or emoticons), the content can
have an expiry date far ahead in the future. This ensures not only that the net‐
working library caches them locally, but also that other devices benefit from
intermediary servers (ISP servers or proxies) caching them locally. The response
headers that affect HTTP caching are Last-Modified, Expires, ETag, and Cache-
Control.

Data Format
Choosing the correct data format is as important as choosing the network parame‐
ters. A choice as simple as PNG versus WEBP for lossless image compression can
make a big difference to the app’s performance.

If your app is data oriented, choosing the proper format for its transfer is key. There
are additional protocol-supported features that can also help you with it.

Note that there can be security concerns even if you use SSL.

You should follow these best practices when choosing a data format:

• Use data compression. This is particularly important when transferring text con‐
tent such as JSON or XML. NSURLRequest automatically adds the header Accept-
Encoding: gzip, deflate so that you do not have to do that yourself. But this
also means that the server should acknowledge the header and send the data
using the appropriate Transfer-Encoding.

• Choose the correct data format. It is a no-brainer that verbose, human-readable
formats such as JSON and XML are resource intensive—serialization, transport,
and deserialization takes much longer than using a custom-crafted, binary,
machine-friendly format. We will not discuss media compression (i.e., image
compression and video codecs), but rather focus on text data formats.
The most commonly chosen data formats for native apps happen to be JSON and
XML. And the only reason is that the web services/APIs were written for the Web
and repurposed for mobile.
However, if you aren’t already, you need to start thinking mobile first. The previ‐
ously mentioned formats are handy to handcraft but resource intensive for
machine operations. Prefer a more optimized format from both a size and a seri‐
alization/deserialization perspective.
The most popular binary format to transport records is Protocol Buffers, a.k.a.
Protobuf. Other protocols include Apache Thrift and Apache Avro. In general,
Protobuf is known to outperform the others, but a lot can depend on the type of
data being used. If the data is largely strings, you should find ways to optimize

240 | Chapter 7: Network

their loading, as they are not compressed by any of these formats. Compress the
data using deflate, gzip, or any lossless compression algorithm.

Tools
With the basic foundation laid correctly, you will need a little support from some
tools to levitate the execution.

Network Link Conditioner
The Network Link Conditioner is available on iOS devices as well as the Simulator.
You can access it via the Developer menu in the Settings app. Figure 7-8 shows how
to get to the Network Link Conditioner and the settings.

You can either choose one of the predefined profiles or create a new profile. The Net‐
work Link Conditioner allows you to simulate varying network conditions by con‐
trolling important parameters:

Inbound traffic
Bandwidth, packet loss, and delay (the response latency)

Outbound traffic
Bandwidth, packet loss, and delay

DNS
Lookup latency

Protocol
IPv4, IPv6, or both

Interface
WiFi, cellular, or both

You should use the Network Link Conditioner to test how your app behaves in
extreme scenarios. You may not do these tests on a regular basis, but you should do
them at least once before every new release.

Tools | 241

Figure 7-8. Network Link Conditioner settings

242 | Chapter 7: Network

AT&T Application Resource Optimizer
Although the official documentation states that the AT&T Application Resource
Optimizer (ARO) tool allows you to optimize the performance of mobile web applica‐
tions, it can be used for native apps as well.

To use the tool, you will need to configure your iPhone/iPad development and debug‐
ging (using Xcode) so that you can see the Developer menu that we discussed earlier,
and you need administrative privileges on the Mac machine.

You can enable the Developer menu by following these steps:

1. Connect the iOS device to the Mac OS X device.
2. Open Xcode.
3. Navigate to Window → Devices.
4. Select the iOS device and select “Use for Development.”

The ARO tool comprises two steps: data collection and data analysis. To collect data,
follow these steps:

1. Navigate to Menu Bar → Data Collector → Start Collector.
2. Run the app on the device.
3. Navigate to Menu Bar → Data Collector → Stop Collector.

The Data Analyzer evaluates the data collected from your app against a set of Best
Practices tests. Results are presented in a summary screen (Figure 7-9).

Tools | 243

http://bit.ly/att-docs
http://developer.att.com/campaigns/application-resource-optimizer
http://developer.att.com/campaigns/application-resource-optimizer

Figure 7-9. ARO Data Analyzer: summary

The tool collects the data in ~/AROTraceIOS/{name}/. In the overall statistics collec‐
ted, the following are of importance:

• Device details (model, OS version, screen dimensions, etc.)
• Traffic details via pcap interface
• Battery consumption

Figure 7-10 shows the network analysis summary graph in the ARO tool.

Figure 7-10. ARO Data Analyzer: network usage diagnostics

244 | Chapter 7: Network

This analysis is presented in an easy-to-understand manner, but the raw data can be
analyzed programmatically for more detailed reports, and more importantly, histori‐
cal data can be used to analyze the performance changes over time.

Charles
Charles is a very powerful web debugging proxy. You can configure it to do the fol‐
lowing:

Monitor HTTP requests
You can monitor HTTP traffic, including request and response data and HTTP
headers. Figure 7-11 shows a sample request from the Facebook app. Figure 7-12
shows the response to the same request. The response is JSON content and can
be formatted without using any external tool.

Figure 7-11. Charles: request details

Tools | 245

http://www.charlesproxy.com

Figure 7-12. Charles: response details

Monitor HTTPS requests
This requires setting up a certificate. You can either create your own self-signed
certificate or use the default available from the website, as seen in Figure 7-13.
Install the certificate on the device, and you can now watch HTTPS requests as
well.

Figure 7-13. Charles: SSL settings

246 | Chapter 7: Network

http://charlesproxy.com/charles.crt

Use the keys from the website only on test devices. Both the
private and the public key are in the public domain. If you use
them on your personal device, you are subject to a big risk—all
communications can be monitored.

Send a custom response
This is a very useful feature to test various possible scenarios without disturbing
the production servers. To test performance, send a large volume of data. To test
stability, send a large volume of data as well as invalid inputs.

You can go to Tools → Rewrite → Enable Rewrite → Add, as shown in
Figure 7-14, and configure the response against a URL, as in Figure 7-15.

Figure 7-14. Charles: enable custom response

Tools | 247

Figure 7-15. Charles: set up custom response

From a development, debugging, and testing perspective, keep in mind that the ses‐
sion log can be saved and distributed to the team for analysis.

Summary
An understanding of the important metrics related to networking and techniques for
measuring them will empower you to develop apps that can be optimized to mini‐
mize any resource utilization for a better user experience.

More often than not, you’ll need to make trade-offs, as the requirements to optimize
against multiple parameters will be competing and there will be a need to strike a bal‐
ance. Examples include using SSL for security versus memory utilization and execu‐
tion speed, CDNs for cacheable static content for speed versus a single hostname for
speed, and so on.

248 | Chapter 7: Network

Do not rely on the network state, as it can change at any time. The best you can do is
ensure that your networking tier is adaptive to the network type and state. Specifi‐
cally, for media streaming, use adaptive multibitrate HLS. For non-media content,
perform batch operations and try to prefetch as much as possible. It’s critical that you
serve data suitable for the device—you’ll need to take device capability, size, and form
factor into account.

Tools should help you test your app in varying network conditions and with different
data responses. Use these tools to test various corner cases related to networking,
requests, and responses to harden the app.

Summary | 249

CHAPTER 8

Data Sharing

At times, you will want to share data with another app or get access to shared data
from another app installed on the device. For example, a few use cases for sharing
data include the following:

• Integrating with other apps (e.g., giving users the ability to sign into your app
using their Facebook login)

• Releasing a suite of complementary apps such as those offered by Google (i.e.,
Gmail, Google Calendar, Google Hangouts, and Google+)

• Moving user data from a unified app to multiple special-purpose apps, detecting
their presence and transferring controls when required (e.g., the Facebook app
splits into Messenger, Pages, and Groups apps for messaging, pages management,
and groups management, respectively)

• Opening a document in the best available viewer (e.g., opening a PDF file for
viewing in a native viewer or a photo for editing in Photoshop Express)

Each technique for sharing data has specific constraints on what can be shared. As an
example, using the clipboard may consume a lot of RAM, whereas document sharing
uses device storage (both RAM and device storage must be cleared after use). Simi‐
larly, using deep linking has overheads of data serialization and parsing.

In this chapter, we discuss various data sharing options from a performance perspec‐
tive and identify best practices when working with a specific option.

251

1 On Android, if multiple apps respond to a scheme, the OS prompts the user to select one. A similar feature
will hopefully be introduced in iOS in the future.

Deep Linking
In the context of the mobile apps, deep linking consists of using a uniform resource
identifier (URI) that links to a specific location within a mobile app rather than sim‐
ply launching the app.

Deep linking provides a decoupled solution to sharing data across apps. Similar to
HTTP URLs to access websites, deep linking in iOS is available through what is
known as a custom URL scheme. You can configure your app to respond to a unique
scheme and the OS will ensure that whenever that scheme is used, it is handled by
your app. The app can respond to any number of schemes.

There is a reserved list of URL schemes that an app cannot respond to:

http, https
Standard schemes for browsing the Web; handled by Safari. An exception is for
YouTube links, which are opened by the YouTube app, if installed (this is due to a
partnership with Google formed before Apple created its own video player).

mailto

Scheme to send emails; handled by the Mail app. Example:
mailto:email@domain.com.

itms, itms-apps
Used to take a user to an app install screen; handled by the App Store application.
These were the only options available until Store Kit was introduced in iOS 6.

tel

Used to call a phone number; handled by the Phone app. Example: tel://
1234567890.

app-settings

New in iOS 8, this scheme takes you to the Settings app and directly into the app
settings.

Choosing Unique Schemes
The URL scheme that you choose must be unique across all the apps installed, or else
the behavior is undefined.1

You can use one or more of the following approaches to create unique schemes:

252 | Chapter 8: Data Sharing

http://bit.ly/ios-store-kit

Reverse DNS notation
For example, com.yourdomain.appname if you own the domain yourdomain.com.

Bundle ID
Because the bundle ID must be unique across all the apps submitted to the App
Store, you can use this ID.

Prefixed app ID
Each app is given a unique numeric ID on the App Store. You can prefix it with a
few characters, and you should come up with a fairly unique ID. For example, if
your app ID is 1234567890, you can choose the scheme ios1234567890 or
app1234567890.

Whatever option(s) you use, you can only hope there is not another app with the
same scheme, which may go undetected. Any mischievous app can use the same
scheme, and unless you know that such an app exists, it may continue to intercept
links meant for your app.

And unless you choose a scheme that you can argue to be owned by you, you may
find it difficult to file a complaint with Apple Support. So, choose a scheme that you
can defend. Using a scheme such as com.yourdomain.appname is a better, more defen‐
sible choice than mail or song.

iOS 9 introduces universal links to allow handling http or https by
the app that can verify the domain ownership. We discuss this in
“Universal Links” on page 404.

There are three steps that drive the life of a deep link:

1. Detect if the scheme can be handled. The -[UIApplication canOpenURL:]

method allows you to check if a specific scheme can be handled by at least one of
the apps installed on the device. Choosing a unique scheme can help you detect if
a specific app is installed or not.

Deep Linking | 253

Custom URL schemes can be used to detect if an app is
installed or not by using the uniqueness of the scheme. You
can use version suffixes to detect if a particular version is
installed or not.
For that, the app can support multiple schemes. For example,
Yelp uses three schemes, yelp5.3, yelp4, and yelp, for app
versions 5.3.0 or later, 4.0.0 or later, and 2.0.0 or later, respec‐
tively. So, if canOpenURL: returns YES for yelp4, you know that
version 4.0.0 or higher is installed on the device, and this can
help you choose different URLs for a better user experience.
Similarly, you may choose to use com.yourdmain.appname+v1
and com.yourdomain.appname+v2 with versions 1 and 2 of
your app, respectively.

2. Open the URL into the app. Once the app’s presence has been detected, the next
step is to create the final URL and open the app, using the -[UIApplication
openURL] method to launch it.

URL Format
There is no standard or even a convention on how the URL should be formatted.
Apps have used various styles. A general URL format is scheme://host/path?
query#fragment, where path can have forward slashes to represent a nested
path.
A few styles that are used are:

Path-only URLs
The idea is to use only the path for all the details needed to process the data.
Examples include fb://profile/{id}, used by the Facebook app to show a
user’s profile.
It has the advantage of being simple and mostly human-readable.

Path and query-based URLs
This is the more generalized and widely used format. Examples include
yelp:///search?term=burritos, used by the Yelp app to search for a spe‐
cific term.
x-callback-url proposed a standard to use URLs of the format
{scheme}://{host}/{action}?{x-callback parameters}&{action param

eters}, with host always being x-callback-url. Tumblr, Google Maps,
Google Chrome, and a few other apps support this format.
It has the advantage of programmatic simplicity of creation and parsing.
Standards like RFC 6874, RFC 3986, and RFC 1738 exist for generalized

254 | Chapter 8: Data Sharing

https://www.yelp.com/developers/documentation/v2/iphone
http://x-callback-url.com/
http://x-callback-url.com/apps/
http://bit.ly/rfc-6874
http://bit.ly/rfc-uri
http://bit.ly/rfc-1738

URL formats. Standard parsers exist to parse more complex query strings
that may have escape sequences.

3. Handle links in the target app. When the app receives the URL, the UIAppDele
gate gets a notification via the callback method -[UIAppDelegate applica
tion:openURL:sourceApplication:annotation:]. Parse the incoming URL,
extract the parameters/values, process, and proceed.

Responding to a deep link can take the user to another section of
the app, so you should include an option for the user to go back to
the previous section in the app. A good option for implementing
this is to use a finite state machine.

Example 8-1 shows an example of deep linking—the source and the target.

Example 8-1. Deep linking

//Source application - some view controller
-(void)openTargetApp {
 NSURL *url = [NSURL URLWithString:
 @"com.yourdomain.app://x-callback-url/quote?ticker=GOOG\
 &start=2014-01-01&end=2014-12-31"];
 UIApplication *app = [UIApplication sharedApplication];
 if([app canOpenURL:url]) {
 [app openURL:url];
 }
 //else show error
}

//Target application - app delegate
-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url
 sourceApplication:(NSString *)sourceApplication
 annotation:(id)annotation {

 NSString *host = url.host;
 NSString *path = url.path;
 NSDictionary *params = [self parseQuery:url.query];
 if([@"x-callback-url" isEqualToString:host]) {
 if([@"quote" isEqualToString:path]) {
 [self processQuoteUsingParameters:params];
 }
 }
 return YES;
}

Deep Linking | 255

-(NSDictionary *)parseQuery:(NSString *)query {
 NSMutableDictionary *dict = [NSMutableDictionary new];
 if(query) {
 //parse with '&' and '=' as delimiters
 NSArray *pairs = [query componentsSeparatedByString:@"&"];

 for(NSString *pair in pairs) {
 NSArray *kv = [pair componentsSeparatedByString:@"="];
 NSString *key = [kv.firstObject stringByRemovingPercentEncoding];
 NSString *value = [kv.lastObject stringByRemovingPercentEncoding];
 }

 [dict setObject:value forKey:key];
 }
 return [NSDictionary dictionaryWithDictionary:dict];
}

-(void)processQuoteUsingParameters:(NSDictionary *)params {
 NSString *ticker = [dict objectForKey:@"ticker"];
 NSDate *startDate = [dict objectForKey:@"start"];
 NSDate *endDate = [dict objectForKey:@"end"];
 //validate and process
}

Construct the URL.

Check if the app is installed.

Launch the target app.

The delegate callback in the target app that receives the URL.

Extract the necessary details from the URL, including host, path, and query.

Process the URL—check for the host and path in this example.

In this example, process the quotes.

Query string parsing. This code is not optimized, as it does double parsing of the
string.

Process the values extracted. Do not forget to validate.

Deep linking will probably be the most often used option for sharing data to and
from your app, and it is important to optimize the creation and parsing time. The fol‐
lowing list covers some of the best practices you can follow to achieve optimum per‐
formance:

256 | Chapter 8: Data Sharing

• Prefer shorter URLs, as they are faster to construct and faster to parse.
• Avoid regular expression–based patterns.

If you use the Button Deep Link SDK, it uses path-based URLs and regular
expressions based on that. For example, the path pattern {scheme}//

say/:title/:message requires two regular expressions—one for the slash-
delimiter and one for extracting parameter names.

• Prefer query-based URLs for standard parsing. Parsing using character-based
delimiters is faster than using regular expressions.

• Support deep-linking callbacks in your URLs to help the user complete the
intent. A good idea is to support three options: success, failure, and cancel.
For example, if you have a photo editor app, it will be great to let the user go back
to the photo app with the edited photo. As another example, if your app is used
for authentication, provide an option to take the user back to the source app with
details of whether the login was successful, was cancelled, or failed.
The x-callback-url specification provides support for these callbacks.

• Prefer deep-linking continuation in your URLs to help the user define a work‐
flow that may require coordination across multiple apps.
For example, the user may want to accomplish the following:

1. Capture a photo.
2. Edit the photo.
3. Mail the updated photo to family and friends.
4. Share the updated photo on social media.
5. And finally, return to the photo app to capture the next photo.

The first app can define the list of apps to deep link into and a final done deep
link to be called after the entire process is complete.

• Do not put any sensitive data in the URLs. Specifically, do not use any auth
tokens. These tokens could be hijacked by an unknown app.

• Do not trust any incoming data. Always validate the URLs. As an additional
measure, it may be a good idea to expect the app to sign the data before passing it
on and to validate the signature before processing. However, for this to happen
securely, the private key must be kept on the server, and as such it requires net‐
work connectivity.

• Use sourceApplication to identify the source. This is very useful in the event
that you have a whitelist of apps from which you can always trust the data. Use of

Deep Linking | 257

http://www.usebutton.com/sdk/deep-links/
http://bit.ly/ex-button-config
http://bit.ly/ex-button-config

2 iOS Developer Library, “Pasteboard”.

sourceApplication is not orthogonal to signature validation. This can be the
first step before URL processing commences.

Pasteboards
The official documentation describes pasteboards as follows:

A pasteboard is a secure and standardized mechanism for the exchange of data within
or between applications. Many operations depend on the pasteboard, [notably] copy-
cut-paste. … But you can also use pasteboards in other situations where sharing data
between applications is desirable.2

Pasteboards are available through the UIPasteBoard class, which accesses a shared
repository where a writer and a reader object meet for data exchange. The writer is
also known as the pasteboard owner and deposits the data on a pasteboard instance.
The reader accesses the pasteboard to copy the data into its address space.

Pasteboards can be either public or private. Each pasteboard must have a unique
name.

A pasteboard can hold one or more entities, which are known as pasteboard items.
Each item can have multiple representations.

Figure 8-1 shows a pasteboard with two items, each with multiple formats:

• A text item that has content in two standard formats (RTF and plain text)
• An image item that has image content in two standard formats (JPG and PNG)

and one private format (com.yourdomain.app.type), known privately to specific
apps

258 | Chapter 8: Data Sharing

http://bit.ly/ios-dev-uipb

Figure 8-1. Pasteboard item representations

Example 8-2 shows sample code to share the data.

Example 8-2. Using a pasteboard to share data

//Sharing to public pasteboard
-(void)shareToPublicRTFData:(NSData *)rtfData text:(NSString *)text {
 [[UIPasteboard generalPasteboard] setData:rtfData forPasteboardType:kUTTypeRTF];

 [[UIPasteboard generalPasteboard] setData:text forPasteboardType:kUTTypePlainText];
 [UIPasteboard generalPasteboard].string = text;
 [UIPasteboard generalPasteboard].strings = @[text];
}

//Data assumed to be of UTI type "com.yourdomain.app.type"
-(void)shareToPublicCustomData:(NSData *)data {
 [[UIPasteboard generalPasteboard]
 setData:data
 forPasteboardType:@"com.yourdomain.app.type"];
}

//Sharing to custom named pasteboard
-(void)sharePrivatelyCustomData:(NSData *)data {
 UIPasteboard *appPasteboard = [UIPasteboard
 pasteboardWithName:@"myApp"
 create:YES];

 [appPasteboard
 setData:data
 forPasteboardType:@"com.yourdomain.app.type"];
}

//Reading from public pasteboard

Pasteboards | 259

-(NSArray *)readSharedStrings {
 return [UIPasteboard generalPasteboard].strings;
}

//Reading from named pasteboard
-(NSData *)readPrivateData {
 UIPasteboard *appPasteboard = [UIPasteboard
 pasteboardWithName:@"myApp"
 create:YES];

 return [appPasteboard
 dataForPasteboardType:@"com.yourdomain.app.type"];
}

Set binary data for a known type kUTTypeRTF.

Plain text string can be set for type kUTTypePlainText as well as using string
property. It can also be made available using strings property which is an array
of NSString objects.

Set binary data for a custom type.

Get a pasteboard with the given name. Create one if none exists.

Set the data for the custom pasteboard.

Retrieve array of strings stored in the strings property.

Retrieve data for custom type in a custom pasteboard (non-public).

A pasteboard has the following benefits over deep linking:

• It has the capability to support complex data like images.
• It has support to represent data in multiple forms which can be used based on the

target’s app capabilities. For example, a messaging app can use plain-text format,
whereas a mail app can use rich-text format from the same pasteboard item.

• The pasteboard content can persist even after app shutdown.

However, compared to deep linking, one big drawback of using a pasteboard is that
the format of the data shared is not in any standard format. As such, it cannot be used
for general-purpose sharing without being able to define the data contract between
the two applications.

Also, as shown in Example 8-2, plain-text data can be shared using multiple options;
at times, it may get confusing as to which format to use.

260 | Chapter 8: Data Sharing

3 Stack Overflow, “How to Disable Copy, Cut, Select, Select All in UITextView”.

In addition, unlike deep linking, a pasteboard cannot be used to detect if the target
application is installed or not. This information helps create a better user experience
—for example, by prompting the user to install the app if it is not already installed.

Furthermore, unlike deep links, a pasteboard can be accessed by any application, so it
comes with deep security concerns.

When working with pasteboards, you should follow these best practices:

• A pasteboard is essentially an interprocess communication mediated by the pas‐
teboard service. All security rules of IPC apply (i.e., do not send any secure data,
do not trust any incoming data).

• Because you do not control which app accesses the pasteboard, using it is always
insecure unless the data is encrypted.

• Do not use large amounts of data in a pasteboard. Although pasteboards have
support for exchanging images and for multiple formats, keep in mind that each
entry not only consumes memory but also takes extra time to write and read.

• Clear the pasteboard when the app is about to enter the background by using
either a UIApplicationDidEnterBackgroundNotification notification or a UIAp
plicationWillResignActiveNotification notification. Better still, you could
implement the corresponding callback methods of UIApplicationDelegate.
You can clear the pasteboard by setting the items to nil, as shown here:

myPasteboard.items = nil;

• To prevent any kind of copy/paste, subclass UITextView and return NO for the
copy: action in canPerformAction.3

Sharing Content
The first two options that we explored—custom URL schemes and pasteboards—are
completely machine driven and are not human controlled. The end user cannot
choose which app to go into and/or which app to make use of the data with.

To fill this gap, iOS provides several options for sharing documents with a specific
app. The source app produces the data to be shared and the user chooses the app to
consume the data in. Figure 8-2 shows the WhatsApp and Photos apps using docu‐
ment sharing options. The list of apps available depends on the option chosen, as we
will explore next.

Sharing Content | 261

http://stackoverflow.com/a/1429320

Figure 8-2. WhatsApp and Photos sharing a message and a photo, respectively

Document Interaction
The UIDocumentInteractionController class, available since iOS 3.2, allows apps to
open documents in other apps installed on the device. It also supports previewing,
printing, emailing, and copying of documents.

UIDocumentInteractionController is not a subclass of UIView
Controller. You have to configure a view controller to use to pre‐
view the document.

There are two sides to using the controller: the publisher and the consumer.

As a publisher, your app publishes the document to be viewed. It is the controller’s
responsibility to load the target app, make the content available to the consumer app,

262 | Chapter 8: Data Sharing

and finally take the user back to the host app. The following subsection presents rep‐
resentative code for the publisher.

As a consumer, your app’s responsibility includes processing the document (and ren‐
dering the result). It is also responsible for performing some cleanup, as shown in
“Consumer” on page 267.

Figure 8-3 illustrates the steps that occur during document sharing.

Figure 8-3. The complete document sharing process

Publisher

As a publisher, the app can either preview or open a document. The UIDocument
InteractionController operates via a UIDocumentInteractionController

Delegate delegate for the host app to specify the parent view controller to show the
preview window in. The view controller also requires the path to the document and
the uniform type identifier associated with the document type.

Uniform Type Identifier
A uniform type identifier (UTI) is a text string used to uniquely identify the type of
an item. There are built-in UTIs to identify common system objects. Examples
include public.document for documents, public.jpeg for JPEG images, and
public.plain-text for plain text.

There is also a provision to allow third-party developers to add their own UTIs for
app-specific or proprietary uses. Examples include com.adobe.pdf for PDF docu‐
ments and com.apple.keynote.key for Apple Keynote documents.

The delegate gets a callback to determine if a specific action can be performed. The
actions include copy:, print:, and saveToCameraRoll: by default. It also gets a call‐

Sharing Content | 263

back before the preview/open UI is about to be presented and after it has been pre‐
sented.

Example 8-3 shows sample code for sharing a document for preview and open.

Example 8-3. Document interaction—publisher

#import <MobileCoreServices/MobileCoreServices.h>

@interface HPDocumentViewerViewController
 <UIDocumentInteractionControllerDelegate>

@property (nonatomic, strong) UIDocumentInteractionController *docController;

@end

@implementation HPDocumentViewerViewController

-(UIViewController *)documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *) controller {
 return self;
}

-(NSURL *)fileInDocsDirectory:(NSString *)filename {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);
 NSString *docsDir = [paths firstObject];
 NSString *fullPath = [docsDir stringByAppendingPathComponent:filename];

 return [NSURL fileURLWithPath:fullPath];
}

-(void)configureDIControllerWithURL:(NSURL *)url
 uti:(NSString *)uti {

 UIDocumentInteractionController controller = [UIDocumentInteractionController
 interactionControllerWithURL:url];
 controller.delegate = self;
 controller.UTI = uti;
 self.docController = controller;
}

-(IBAction)previewDocument {
 NSURL *fileURL = [self fileInDocsDirectory:@"sample.pdf"];

 if(fileURL) {
 [self configureDIControllerWithURL:fileURL uti:kUTTypePDF];
 [self.docController presentPreviewAnimated:YES];
 }
}

264 | Chapter 8: Data Sharing

-(IBAction)openDocument {
 NSURL *fileURL = [self fileInDocsDirectory:@"sample.pdf"];

 if(fileURL) {
 [self configureDIControllerWithURL:fileURL uti:kUTTypePDF];

 [self.docController presentOpenInMenuFromRect:self.view.frame
 inView:self.view animated:YES];
 }
}
@end

The UIDocumentInteractionController class and related types and constants
are defined in MobileCoreServices.

The controller needs the UIDocumentInteractionControllerDelegate. Let the
view controller implement the protocol.

Although all the methods are options, you must implement the method documen
tInteractionControllerViewControllerForPreview:—this provides the
UIViewController on which the child view controller is presented.

Helper method to configure the controller with the content URL and UTI type.

Get a reference to the controller referring to the URL.

Specify the delegate and UTI type.

Set a strong reference to the controller, which ensures that the controller is not
dealloced prematurely.

Note that the URL referenced by the UIDocumentInteractionController object
must be reachable by the OS. It is a good idea to download the contents of the
file, if need be, and refer to it using the local (file) URL.

Use presentPreviewAnimated: to preview the document. Figure 8-4 shows the
view controller in animation when being presented in our app.

Use presentOpenInMenuFromRect:inView:animated: to show the “Open in…”
menu and let the user choose the app to open the document. Figure 8-5 shows
the menu from within our app.

Sharing Content | 265

Figure 8-4. Preview a PDF document (view controller being presented)

266 | Chapter 8: Data Sharing

Figure 8-5. “Open in…” menu for a PDF document

UIDocumentInteractionController requires an NSURL to read
contents and it must refer to a local file using the file scheme. Any
other scheme will cause an exception to be raised, which can ulti‐
mately result in an app crash.

Consumer
Being a consumer requires two basic steps: registering file types supported by the app,
and then processing the document content. You can either support one or more of

Sharing Content | 267

4 For the full list, see the iOS Developer Library.

the system-defined types in iOS or register a new type, which is useful for sharing
within a suite of apps from the same company or otherwise.

To register a file type supported by your app, the following details must be configured
in the Document Types section of your app’s Info.plist:

Name
The human-readable name that you want to give.

Types
One of the standard uniform type identifiers4 (e.g., com.adobe.pdf), or a custom
UTI.

Icon
An icon associated with the document, if different from the app icon.

Properties
Optionally, you can configure additional document type properties.

Figure 8-6 shows the Document Types section filled in for our app. Notice that Types
has been set to com.adobe.pdf, a predefined type. Feel free to choose a custom name
to share custom types within the suite of your apps. The same value must be used as
the UTI property of the UIDocumentInteractionController object.

Figure 8-6. Configure Document Types to handle PDF documents

With this setting, if you open the https://bitcoin.org/bitcoin.pdf URL in Safari and tap
on the “Open in…” menu, it shows our app (see Figure 8-7).

268 | Chapter 8: Data Sharing

http://bit.ly/ios-uti
https://bitcoin.org/bitcoin.pdf

Figure 8-7. “Open in…” menu in Safari when viewing a PDF document

Now, we must handle the application:openURL:sourceApplication:annotation:
app delegate callback. As noted in Figure 8-3, the shared document is copied into the
app’s Inbox folder. The url passed to the callback is a file URL referring to the file. If
a user shares the same document multiple times with the same app, the OS creates
multiple copies of the document and a new URL is made available each time.
Example 8-4 shows representative code to process the document.

Sharing Content | 269

Example 8-4. Document interaction—consumer

@implement HPAppDelegate

-(BOOL)application:(UIApplication *)application
 openURL:(NSURL *)url sourceApplication:(NSString *)src
 annotation:(id)annotation {

 DDLogDebug("%s src: %@, url: %@", __PRETTY_FUNCTION__, src, url);
 return YES;

}

@end

If you look at the logs from the app delegate in Figure 8-8, you will notice that even
though the same document is opened in the same app, the url is different each time.

Figure 8-8. App delegate callback debug log

270 | Chapter 8: Data Sharing

Sharing documents using UIDocumentInteractionController should follow similar
best practices as the previous sharing options that we have discussed so far. Addition‐
ally, there is one more concern at hand.

As mentioned, using UIDocumentInteractionController results in the document
being copied into the app’s Inbox folder. It is thereafter the app’s responsibility to
delete the file and clean up the folder. The resultant file is owned by the consumer
app. Don’t forget to delete the file once you are done.

Activities
UTIs have worked well in the past. However, the rise of cloud services and social
media has prioritized remote entities over local files. As such, a tension exists
between UTIs and remote URLs.

UIActivityViewController provides a unified services interface to share and per‐
form actions on data within an app. It was introduced in iOS 6.

Using UIActivityViewController is easier and more flexible than using UIDocument
InteractionController. Unlike with UIDocumentInteractionController, which
allows only file URLs, using UIActivityViewController you can share one or more
of the following types:

NSString

Any string can be shared.

NSAttributedString

Useful to share formatted or rich text.

NSURL

Any URL can be shared. It is up to the target app to make use of the URL. Mail or
messaging apps may choose to share the URL as is, whereas a reader or a cloud
service app may attempt to fetch the contents and process them.

UIImage

An image, if provided, can also be saved to Camera Roll, assigned to a contact, or
printed.

ALAsset

This represents a photo or video managed by the Photos app, which can be
shared with the target app.

UIActivityItemSource

Any object that conforms to this protocol can be shared. This helps in creating
custom objects that can be shared across apps.

Sharing Content | 271

To save a UIImage to Camera Roll or work with an ALAsset, the
app needs permission to access Photos. If the app has never asked
before, the user will be prompted to grant permissions. If the user
has denied or granted access earlier, the permission prompt will
never appear.

There are two types of activities: actions and shares (see Figure 8-9). Shares bring up
the UI from third-party apps (e.g., Facebook, Twitter, Vimeo, etc.), whereas actions
are mostly about built-in apps (Photos, printer, clipboard/copy, Safari, Contacts, etc.).
In addition, there is AirDrop support for images. A complete list of built-in action
types is available on the Apple developer website.

Figure 8-9. Using UIActivityViewController—action and share activities

Example 8-5 shows representative code for enabling the activity view controller in an
app. You have the option to exclude one or more activities. In addition, you can let the

272 | Chapter 8: Data Sharing

http://bit.ly/ios-activity-types

user share content into the same app by having a custom implementation of UIActiv
ity, an abstract class that must be subclassed.

Example 8-5. Using UIActivityViewController to share data

-(void)shareSomeContent {
 NSString *text = @"Text to share";
 NSURL *url = [NSURL URLWithString:@"http://github.com"];
 UIImage *image = [UIImage imageNamed:"blah"];

 NSArray *items = @[text, url, image];
 UIActivityViewController *ctrl = [[UIActivityViewController alloc]
 initWithActivityItems:items
 applicationActivities:nil];

 ctrl.excludedActivityTypes = @[UIActivityTypePostToFacebook];
 [self presentViewController:ctrl animated:YES completed:nil];
}

A few items to share—a string, a URL, and an image.

Instantiate UIActivityViewController with activity items. In this example,
there are no applicationActivities configured. If you need them, they must be
UIActivity subclassed objects.

Exclude disallowed activity types—here, posting to Facebook has been excluded.

Finally, present the view controller, either modally (as demonstrated here) or
using navigationController.

Activities are a very flexible, extensible, and powerful option for sharing content with
another app. The performance and security concerns here are a union of the concerns
that we have discussed with other data sharing options so far.

Shared Keychain
A shared keychain is another option for sharing data among your apps securely. Only
the apps that belong to the same group ID and are signed using the same certificates
can share the data.

The only way to implement single sign-on across all your apps is using a shared key‐
chain.

This is also the only option for sharing data across apps from the same publisher
(same signing certificate) that does not require invoking another app from the one
being used by the user.

Sharing Content | 273

Because the data is encrypted, it should be the place to store secure information such
as credentials, credit card number (though without CVV), and so on. Avoid flushing
in a lot of generic, nonsecure data because the access is slower than to non-encrypted
data.

iOS 8 Extensions
iOS 8 introduced four new options for sharing content across apps under the broader
category of what is known as application extensions (described briefly in Chapter 6).

If you open the project and click the plus icon (+) to add a target (see Figure 8-10),
you should find a new Application Extension entry under iOS, which should present
you with the options shown in Figure 8-11.

Figure 8-10. Xcode → Project → Add Target

274 | Chapter 8: Data Sharing

Figure 8-11. Select iOS → Application Extension

Of all these options, the following are of interest for the purpose of sharing data:

• Action extension
• Share extension
• Document Provider extension
• App groups

From an implementation perspective, they are not really new to us. We have already
discussed sharing via actions and shares using UIActivityViewController and shar‐
ing documents using UIDocumentInteractionController, in the previous section.

Most of the newness lies in the overall plumbing, the ease of implementation, and the
options made available to the end user.

But before we explore these extensions for sharing data, let’s explore some new classes
that were added in iOS 8:

NSExtensionContext

Represents the host app context from which the extension is invoked. It provides
an array of inputItems (i.e., the data shared to the app).

iOS 8 Extensions | 275

http://apple.co/1HejEzB

NSExtensionItem

Represents an item from the array of inputItems. An NSExtensionItem object is
an immutable collection of values representing different aspects of the item,
available via the attachments property.

NSItemProvider

Represents a data object that can be found in an NSExtensionItem object’s
attachments property, such as text, images, and URLs. Use the method hasItem
ConformingToTypeIdentifier: to check the UTI type it represents. To retrieve
the data for the corresponding type, use the method loadItemForTypeIdenti
fier:options:completionHandler:. The callback method can be invoked in any
thread—do not forget to switch context to the main thread to make any UI
changes.

Configuration for Action and Share Extensions
For Action and Share extensions, apart from specific artifacts, these two are common
for all templates:

Metadata (Info.plist)
The two most important entries are the bundle display name, which is the name
that appears next to the item, and NSExtensionItem, which provides metadata of
when to show this action in the list. Xcode sets the value of NSExtension → NSEx
tensionAttributes → NSExtensionActivationRule to TRUEPREDICATE (type
String), which essentially indicates that the action is always available. You can
change it to type Dictionary and provide more fine-grained control, using the
keys listed in Table 8-1.

Table 8-1. App extension keys
Key Description

NSExtensionActivationSupportsText App supports text (NSString or
NSAttributedString values)

NSExtensionActivationSupportsFileWithMaxCount App supports handling of any file (NSURL
with file scheme)

NSExtensionActivationSupportsWebURLWithMaxCount App supports web URLs (NSURL with
http or https scheme)

NSExtensionActivationSupportsWebPageWithMaxCount App supports web pages

NSExtensionActivationSupportsImageWithMaxCount App supports images (UIImage value)

NSExtensionActivationSupportsMovieWithMaxCount App supports videos

NSExtensionActivationSupportsAttachmentsWithMin
Count

Minimum number of attachments required
for the extension to be activated (defaults
to 1)

276 | Chapter 8: Data Sharing

http://apple.co/1BFpuls
http://apple.co/1ECgC4H

Key Description

NSExtensionActivationSupportsAttachmentsWithMax
Count

Maximum number of attachments the
extension supports (defaults to long max
value)

A positive value indicates the maximum number of entries that can be shared for
the specific type. For example, a value of 2 for NSExtensionActivationSupport
sImageWithMaxCount means that a maximum of two images can be shared. A
missing key or zero value means that the extension does not support that specific
type. To declare a more complex definition, you can use an NSPredicate-
compilable structure. See the section “Declaring Supported Data Types for a
Share or Action Extension” in the App Extension Programming Guide.

Target product name
A new target is created with the name as provided in the Product Name field
when creating a new extension.

Action Extensions
Action extensions allow you to add your view controller to be added to the action
section when using UIActivityViewController. While iOS 7 came bundled with a
predefined list of actions from other apps and there was no way to add more, this
changed in iOS 8.

When you create an Action extension, Xcode will create the following additional arti‐
facts:

Storyboard MainInterface
The storyboard UI to be shown when the user selects the action.

Class ActionViewController
The view controller class backing the storyboard.

Being a view controller, it goes through the usual lifecycle (recall Figure 6-1,
which we studied earlier).

Example 8-6 shows typical code for rendering the image shared by the source app.

Example 8-6. Action—render image from shared data

- (void)viewDidLoad {
 [super viewDidLoad];
 BOOL imageFound = NO;
 for(NSExtensionItem *item in self.extensionContext.inputItems) {
 for(NSItemProvider *itemProvider in item.attachments) {
 if([itemProvider
 hasItemConformingToTypeIdentifier:(NSString *)kUTTypeImage]) {

iOS 8 Extensions | 277

http://apple.co/1LDgW9X

5 iOS Developer Library, “Share”.

 [self processItem:itemProvider];
 imageFound = YES;
 break;
 }
 }
 if(imageFound) {
 break;
 }
 }
}

-(void)processItem:(NSItemProvider *)itemProvider {
 UIImageView __weak *imageView = self.imageView;
 [itemProvider loadItemForTypeIdentifier:(NSString *)kUTTypeImage
 options:nil
 completionHandler:^(UIImage *image, NSError *error) {
 if(image) {
 [[NSOperationQueue mainQueue] addOperationWithBlock:^{
 [imageView setImage:image];
 }];
 }
 }];
}

Scan through all the extension items.

For each item, scan through all the attachments.

Check if the attachment is of type image.

If so, retrieve the content.

Because the retrieval callback can be called on a non-main thread, switch the
context to update the UIImageView with the UIImage content.

Share Extensions
A share extension is slightly different from a share activity in that it is a system-
provided UI and cannot be customized by the receiving app:

Users get access to Share extensions in the system-provided UI. In iOS, users tap the
Share button and choose a Share extension from the sharing area of the activity view
controller that appears.5

When you create a Share extension, Xcode will create the following additional arti‐
facts:

278 | Chapter 8: Data Sharing

http://bit.ly/ios-share

Storyboard MainInterface
This is of no significance, at least until iOS 8.2. In the future, Apple might decide
to allow apps to provide a custom UI.

Class ShareViewController
This is a subclass of SLComposeServiceViewController introduced in iOS 8.
Although it is a view controller, the UI configured by the controller is completely
ignored.

The class provides hooks to the following lifecycle events:

Content validation
The first method called is isContentValid. Validate the incoming values (see
Example 8-6) using NSExtensionContext and return YES if the data is valid or NO
if it is invalid. The activity will always be shown, irrespective of the value, but the
Post button will be disabled if the content is invalid (Figure 8-12).

Figure 8-12. Share activity, with valid content (left) and with invalid content (right)

viewDidLoad

Called after initial content validation, after the view is loaded. Use the textView
property to get access to the UITextView editor to make changes to the text, if
need be.

Get configuration items
After the view load, the method configurationItems is called to retrieve any con‐
figuration items. It returns an array of zero or more SLComposeSheetConfigura
tionItem (subclassed) entries.

The SLComposeSheetConfigurationItem object provides a title and value to
be displayed beneath the share editor (see Figure 8-12) using a standard UITable
View.

iOS 8 Extensions | 279

The SLComposeSheetConfigurationItem object also provides a tapHandler,
which is called when the user taps on the configuration item. The tapHandler
can push a view controller that can show options to change the value. For exam‐
ple, the Facebook app allows changing album, location, and privacy values for an
image (see Figure 8-13).

Figure 8-13. Facebook share—activity (left) and album configuration (right)

View controller lifecycle methods
The methods viewWillAppear and viewDidAppear are called subsequently.

Content validation
The last leg of content validation is performed immediately after the view is
shown.

Content validation on change
Whenever the user changes the content in the editor, isContentValid is called.
The extension can call the validateContent method to trigger revalidation or
the reloadConfigurationItems method to reload configuration items. It can
also implement the charactersRemaining method to return a nonnegative value
indicating the number of characters remaining (Figure 8-14 shows a Twitter
share showing the value).

280 | Chapter 8: Data Sharing

Figure 8-14. Twitter share, with number of characters remaining

Cancel notification
The method didSelectCancel is called if the user taps the Cancel button.

Post notification
The method didSelectPost is called if the user taps the Post button.

Here are some important points to keep in mind when working
with a Share extension:

• All of these methods are called after the user selects the activ‐
ity.

• For cancel and post notifications, call the NSExtensionItem
method completeRequestReturningItems:completionHan

dler: to indicate that the activity’s interaction is complete.
Otherwise, you will leave the source app in an unusable state.

• As a best practice, build your app against iOS 8 or later. When
you want to use an activity in the app, detect if the app is run‐
ning on iOS 7 or earlier. If so, use a custom activity view con‐
troller. If not, let the OS choose the activities for you.

Document Provider Extension
Document providers are an iOS 8 extension version of the document interaction API.
To read the contents of a shared document, use UIDocumentPickerViewController.

iOS 8 Extensions | 281

To present a UI to share a document, UIDocumentPickerExtensionViewController
should be subclassed.

Working with a document provider requires iCloud entitlements. Go to Project →
App Target → iCloud and select iCloud Documents, as shown in Figure 8-15.

Figure 8-15. App manifest—iCloud entitlements

Open/import document

UIDocumentPickerViewController (which is often referred to as the document
picker) provides a hook to interface with other document providers installed on the
device. The document picker can work in either open/import mode or export mode.

The approach is similar to that of the document interaction provider except that this
is from the other end of the “Open in…” menu. As a result, instead of now going into
the apps that are the source of the document (e.g., browser, Google Drive, Dropbox,
etc.), the user can be in the app of interest and import documents and proceed.

Figure 8-16 shows the changes in steps to edit a document using document interac‐
tion versus the document picker.

282 | Chapter 8: Data Sharing

Figure 8-16. Editing a document using activity or document interaction (left) and using
document picker (right)

A UIDocumentPickerViewController object needs to be configured with:

Document types
The UTI types that the editor app can support.

Mode
Must be configured to Open or Import.

Delegate
The delegate, of type UIDocumentPickerDelegate, responds when the user
selects a document. It may additionally (optionally) respond when the user can‐
cels the selection.

Example 8-7 shows representative code for opening/importing a document from
another document provider.

Example 8-7. Document provider—open/import

@interface HPDocumentEditorViewController
 : UIViewController <UIDocumentPickerDelegate>
@end

@implementation HPDocumentEditorViewController
-(IBAction)openButtonWasClicked:(id)sender {
 NSArray *types = @[
 (NSString *)kUTTypeImage
];

iOS 8 Extensions | 283

 UIDocumentPickerViewController *dpvc =
 [[UIDocumentPickerViewController alloc]
 initWithDocumentTypes:types
 inMode:UIDocumentPickerModeImport];
 dpvc.delegate = self;
 [self.navigationController presentViewController:dpvc
 animated:YES completion:nil];
}

-(void)documentPicker:(UIDocumentPickerViewController *)controller
 didPickDocumentAtURL:(NSURL *)url {
 NSData *data = [NSData dataWithContentsOfURL:url];
 //process data, render in editor, let user edit
}

-(void)documentPickerWasCancelled:(UIDocumentPickerViewController *)controller {
 //maybe show a message that the user did not select a document
}

@end

The editor app’s view controller conforms to the UIDocumentPickerDelegate
protocol.

The UTI types the editor can handle.

The UIDocumentPickerViewController object is configured using the UTI types
and in UIDocumentPickerModeImport mode.

Specify the delegate (this is a mandatory step).

Present the view controller.

The delegate callback method invoked when the user selects a document.

The url is a local file URL. The contents of the document are copied in your
app’s tmp/DocumentPickerIncoming folder.

The delegate callback method invoked when the user cancels selection of a docu‐
ment.

The user navigation when using the document picker is as shown in Figure 8-17.

284 | Chapter 8: Data Sharing

Figure 8-17. User navigation for document import: (1) iCloud opens by default—select
Locations to select a provider; (2) select a provider; (3) select a document; (4) process the
document in the editor app

Provide document
To act as a data source to provide a document, you need to:

1. Create the UI to help the user select the document.
2. Pass on the contents of the document to the editor app.

To create the UI, the view controller must be a subclass of UIDocumentPickerExten
sionViewController. The UI presented by this view controller is made available in
the editor app when the user selects this app as the location (refer to Figure 8-17).

iOS 8 Extensions | 285

When the user selects the document to use, the view controller must download the
contents from the server if needed and make the document available to the editor app
as a file URL. Example 8-8 shows representative code for a picker extension.

Example 8-8. Picker extension—view controller

@interface HPDocumentPickerViewController
 : UIDocumentPickerExtensionViewController

@end

@interface HPEntry
@property (nonatomic, copy) NSString *filename;
@property (nonatomic, copy) NSString *serverPath;
@property (nonatomic, assign) NSUInteger *size;
@property (nonatomic, copy) NSString *uti;
@property (nonatomic, copy) NSURL *iconURL;
@end

@implementation HPDocumentPickerViewController

-(void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 //retrieve the files' metadata from server and update
 //UITableView is a good option
}

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 HPEntry *selected = [self.allFiles objectAtIndex:indexPath.row];
 //download the contents from server, if needed

 NSURL* localFileURL = [self.documentStorageURL
 URLByAppendingPathComponent:selected.filename];
 [self dismissGrantingAccessToURL:localFileURL];
}

@end

View controller class, a subclass of UIDocumentPickerExtensionViewControl
ler; provides list of available documents and destinations to the user.

Model class representing a remote file entry.

Retrieve list of files from the server, update UI, wait for the user to respond, show
a loading indicator or progress bar in the interim—all the fancy stuff of the UI.

286 | Chapter 8: Data Sharing

Assuming that UITableView was used, the delegate callback when the user selects
a file.

The file contents, if on the server, must be downloaded by the app extension. The
final contents must be from a local file URL.

Save the contents into the folder self.documentStorageURL, which is appropri‐
ately set when using a file provider.

OK—everything is good to go. Notify the OS that the editor app must be given
permissions to work with the file. The OS copies the file into the editor app’s cor‐
responding folder. The document picker (mediator) in the editor app is notified.
We have already discussed the other side of the story, in Example 8-7.

App Groups
App extensions are a very interesting feature. Though an extension is always bundled
with the app, it runs in its own process and has its own data sandbox.

In a typical scenario, the host app will connect with the app extension, which can
connect with the container app, as shown in Figure 8-18.

Figure 8-18. Communication between host app, app extension, and containing app
(original image courtesy of Apple)

All the options that we have discussed so far have been for sharing data across multi‐
ple apps. However, because an app extension runs in its own sandbox, it cannot
directly access data (user defaults, documents folder, cache folder, Core Data, SQLite,
etc.) that is stored by the container app directly. The sandbox structure is similar to
that shown in Figure 8-19.

iOS 8 Extensions | 287

Figure 8-19. App versus app extension container (original image courtesy of Apple)

The app groups feature, introduced in iOS 7, allows creating a shared sandbox that
can be accessed by the container app as well as the app extensions. Additionally, app
groups support sharing data across multiple apps—however, similar to with a shared
keychain, the apps must be signed using the same certificate.

The app group must be configured for not only the container app
but also bundled all app extensions that need a shared container.
Multiple app groups can be configured for appropriate data isola‐
tion.

To set up an app group, go to the project manifest, select the target, and under Capa‐
bilities, set the App Groups option to ON (Figure 8-20). Finally, add one or more
group IDs that you want to use.

Figure 8-20. Xcode settings to enable app groups

288 | Chapter 8: Data Sharing

You can now use NSUserDefaults or NSFileManager to work with shared data, as
shown in Example 8-9.

Example 8-9. Sharing data using app groups

-(void)sharedDataUsingAppGroups {
 NSString *sharedGroupId = @"group.com.m10v.hperf";

 NSUserDefaults *defs = [[NSUserDefaults alloc]
 initWithSuiteName:sharedGroupId];

 NSFileManager *fileMgr = [NSFileManager defaultManager];
 NSURL *groupFolder = [fileMgr
 containerURLForSecurityApplicationGroupIdentifier:sharedGroupId];
}

The group ID; must match that provided in the manifest (see Figure 8-20).

NSUserDefaults; use initWithSuiteName: initializer.

NSFileManager; get shared folder using containerURLForSecurityApplication
GroupIdentifier: method.

If you need to access the network, use NSURLSession so that the
container app as well as the app extension can access the transfer‐
red data and shared network preferences, specifically the cookie jar.

Summary
In this chapter, we explored several options for sharing data across apps. Of all the
available options, the custom URL scheme is the only one that allows sharing data
from the Web (via the Safari browser or an embedded UIWebView) to native apps.
Others, however, provide a richer UI. Activities present a share sheet and let users
choose their favorite app to process the data—a very useful option for social sharing.

We also noted that a shared keychain is a powerful option for sharing data within
apps from the same company, signed using the same certificate.

Toward the end of the chapter, we looked at the app extensions introduced in iOS 8
and how they help extend document interaction and activities across apps. App
groups allow easy access to shared data across the app and extensions.

Summary | 289

CHAPTER 9

Security

With your app running in an unknown execution environment and exchanging data
over unknown transmission networks, it is important to always keep security as one
of your top priorities so that you can protect users’ as well as the app’s sensitive data.

Risks exist on jailbroken as well as regular devices. For example, a YouTube video
from JosiahsTech demonstrates how simple it can be to modify the popular game
Temple Run.

Security: Enough Is Not Enough
Security is a vast area, and a few pages in a book definitely do not suffice to do the
topic any justice. For a deeper study, you may prefer more specialized literature:

• Hacking and Securing iOS Applications: Stealing Data, Hijacking Software, and
How to Prevent It by Jonathan Zdziarski (O’Reilly)

• iOS Hacker’s Handbook by Charlie Miller et al. (Wiley)
• iOS Application Security: The Definitive Guide for Hackers and Developers by

David Thiel (No Starch Press)

Each additional layer of security causes app slowdown, either through code execution
(e.g., moving from 1,024-bit DSA key encryption keys to 2,048-bit RSA encryption
keys), or through user intervention (e.g., introducing two-factor authentication or an
app PIN). There will therefore be a trade-off required as to how many layers of secu‐
rity you wish to add vis-à-vis delay introduced in letting users complete their intent.

291

https://youtu.be/1NTpi4NjkCE
https://youtu.be/1NTpi4NjkCE
http://amzn.to/1bnf44K
http://amzn.to/1bnf44K
http://amzn.to/1BnavNd
http://amzn.to/1Hq15sc

In this chapter, we explore key aspects of security in the app. We will not do a deep
dive on pen testing. We take a categorical approach to security, looking at it from the
following perspectives:

App access
How to make access to your app secure, how to manage identity, and other
related topics.

Network security
This includes everything that you do talking to the servers.

Local storage
All about data on the device.

Data sharing
Getting data into and out of your app from and to other apps.

App Access
Your app may or may not implement authentication. For most games, news, utility,
and other similar apps, there may not be any need for authentication.

This section discusses options for identifying a device, a user, multiple users on the
same device, or the same user across multiple apps on the same or multiple devices.

Anonymous Access
Your app may or may not require authentication. As an example, a news app that
does not require subscription may never require authentication. To allow personal‐
ized news or ads, however, as in the Yahoo! Digest News app, there will be a need to
have a unique identifier for the device.

There are two options available for identifying a device: Identifier for Vendor (IDFV)
or Identifier for Advertiser (IDFA). Let’s take a closer look at each of these.

The IDFV is a persistent unique identifier for each app on a device that identifies the
device to the app’s vendor. A part of the app’s bundle ID is used to generate the IDFV,
so even if the apps are from the same company, the IDFV can be different.

Use the -[UIDevice identifierForVendor] method to get the IDFV. It may be nil if
the user has not unlocked the device after a restart but the app has been woken up
during background task execution or on a push notification. Try again after a delay, if
that is the case. Example 9-1 shows some simple code for retrieving the IDFV. Do not
execute this on the main thread as is.

292 | Chapter 9: Security

http://apple.co/1xxe8oK

Example 9-1. Retrieving the IDFV

-(NSString *)idfv {
 UIDevice *device = [UIDevice currentDevice];
 NSUUID *rv = device.identifierForVendor;
 while(!rv) {
 [Thread sleepForTimeInterval:0.005];
 rv = device.identifierForVendor;
 }
 return rv.UUIDString;
}

In iOS 6, the IDFV is created from the first two parts of the bundle ID. So, for the
bundle ID com.bundle.id.app1, only com.bundle will be used.

In iOS 7, there was a bug where it was found that two apps with bundle IDs com.bun
dle.id.app1 and com.bundle.id.app2 could have different IDFVs even if they were
from the same vendor (using the same certificate to sign the apps). Instead of fixing
the bug, Apple updated its documentation.

In iOS 7 and later, the entire bundle ID except for the last part is used to generate the
IDFV. As a result, the table for IDFV generation is as given in Table 9-1.

Table 9-1. Part of bundle ID used in IDFV generation

Bundle ID iOS 6 iOS 7 or later
com.bundle.id.app1 com.bundle com.bundle.id

com.bundle.id.app2 com.bundle com.bundle.id

com.bundle.id.suite.app1 com.bundle com.bundle.id.suite

com.bundle.id.suite.app2 com.bundle com.bundle.id.suite

simpleida simpleid simpleid

a Not a recommended bundle ID.

The change in iOS 7 means that you now have two options for keeping a unique
device ID and tracking across multiple apps. One option is to keep the bundle IDs
unique except for the last part. But if that is not possible, you can use the second
option, which is to share the key obtained by the first installed app using a shared
keychain.

The IDFV is reset when all apps from the same vendor are uninstalled from the
device. So, if you have only one app, uninstalling and reinstalling it multiple times
will generate different IDs.

If you cannot use a shared keychain or the same bundle ID up to the last part, you
have no way to identify the device uniquely across multiple apps.

App Access | 293

The IDFA is a resettable identifier that is unique across all the apps on the device.
Because it is unique across apps, it is a truly unique ID. However, it is resettable by the
user. In addition, Apple places a restriction on its use and you must vouch for using it
when submitting your app to iTunes Connect for review. This ID should only be used
by the ad serving system. It also comes with a flag indicating whether the user wants
this ID to be used. Per the documentation, if the flag is not enabled, the IDFA can
only be used for frequency capping, attribution, conversion events, estimating the num‐
ber of unique users, advertising fraud detection, and debugging.

That is, you can use it to estimate the number of unique users of your app but not to
identify a particular user. Example 9-2 shows sample code to retrieve the IDFA. Do
not call the API on the main thread because the value returned may be nil, resulting
in the need to retry. As with the IDFV, this can happen, for example, if the device has
been restarted but the user has not yet unlocked the device.

Example 9-2. Retrieving the IDFA

-(NSString *)idfa {
 ASIdentifierManager *mgr = [ASIdentifierManager sharedManager];
 if(mgr.isAdvertisingTrackingEnabled) {
 UUID *rv = mgr.advertisingIdentifier;
 while(!rv) {
 [Thread sleepForTimeInterval:0.005];
 rv = mgr.advertisingIdentifier;
 }
 return rv.UUIDString;
 }
 return nil;
}

Still Using UDID?

The unique device identifier (UDID) is now deprecated (as of iOS
6). If you haven’t already done so, you should remove any refer‐
ences to it.

Authenticated Access
When you need to identify a user, you need authenticated access. That does not mean
that the authentication has to be done within your app. Some of the available options
for authentication include:

App passcode
Also known as the app PIN, this is the local credentials that you may want to add
to your app irrespective of whether there is a set of credentials to log in to the
app. Essentially, it is a password that is stored only locally on the device. For

294 | Chapter 9: Security

http://apple.co/1OyHGYa

example, an expense management app may never store any data on the server but
still want to protect access on the device. On the other hand, a medical records
app may use a passcode as a second layer of security. So, the user first logs in with
the required credentials (typically, username/email and password), and local
security is added as an additional layer.

Figure 9-1 shows two apps, one with only local credentials and the other using
the app PIN as a secondary security measure.

Figure 9-1. Expense report app without remote credentials (left) and the Credit
Karma app with remote credentials using app PIN as a second layer of security
(right)

Store the password locally using a keychain. Do not store it
unencrypted in a file or database.

Game Center
This option is available exclusively for games. Use GameKit to connect with the
Game Center, which will take care of authenticating the users using their creden‐

App Access | 295

tials. Game Center has access to the user profile, personal records, and more, but
shares only what is required to uniquely identify the user (i.e., the user ID).

Example 9-3 show template code to get the user’s identity after Game Center
login.

Example 9-3. Using Game Center to log in

#include <GameKit/GameKit.h>

@implementation HPLoginViewController

-(void)authWithGameCenter {
 GKLocalPlayer __weak *player = [GKLocalPlayer localPlayer];
 if(!player.authenticated) {
 player.authenticateHandler = ^(UIViewController *vc,
 NSError *error) {
 if(error) {
 //handle error
 } else if(vc) {
 [self presentViewController:vc animated:YES completion:^{
 //verify again if the user is now authenticated
 }];
 } else {
 GKLocalPlayer *lp = player;
 if(lp) {
 [self verifyLocalPlayer:lp];
 }
 }
 };
 } else {
 [self verifyLocalPlayer:lp];
 }
}

-(void)verifyLocalPlayer:(GKLoalPlayer *)player {
 [player generateIdentityVerificationSignatureWithCompletionHandler:
 ^(NSURL *publicKeyURL, NSData *signature,
 NSData *salt, uint64_t timestamp,
 NSError *error) {

 if(error) {
 //handle error!
 } else {
 //player id = player.playerID
 //verify using the data
 }

 }];

296 | Chapter 9: Security

}

@end

Include GameKit headers. Do not forget to link with GameKit.framework.

GKLocalPlayer represents the authenticated player running the game. At any
given time, only one player may be authenticated on the device.

Check if the player is authenticated.

Setting the authenticateHandler property will trigger the authorization.

If the user had not earlier authorized connecting with GameKit, the view
controller returned in the callback method must be shown.

If there is no view controller and no error, it’s all good. But some more work
needs to be done to get the user’s details.

Use the generateIdentityVerificationSignatureWithCompletionHan

dler: method to get the signature to authenticate the local player.

The actual task of verification should happen on your servers, as described
next.

For local player verification (server side), follow these steps:

1. Use the publicKeyURL to get an X.509 certificate. The URL must be an
apple.com domain https URL. This key must be signed by Apple.

2. Concatenate player.playerID, the app’s bundle ID, the timestamp in big-
endian UInt 64 format, and the salt, in that order.

3. Generate the SHA-1 hash of the concatenated data.
4. Verify the signature against this hash using the public key downloaded in

step 1.
5. If they match, all is good. The user did authenticate and the player.play

erID is OK to use.

Third-party authentication
The semantics are similar to Game Center authentication in that you own the
user and login experience. Specific SDKs are not covered here, but feel free to
explore the ones from Facebook, Google+, or Twitter.

App Access | 297

http://bit.ly/ios-gk-player-id
https://developers.facebook.com/docs/ios
http://bit.ly/gp-signin
https://dev.twitter.com/twitter-kit/ios/twitter-login

Your own authentication
Most apps choose to retain full control of the registration and login process,
which requires a custom authentication mechanism. Using an email/username
with a password as the credentials is the most popular mechanism for authenti‐
cating. We briefly discuss key measures to take when implementing this:

• Enforce strong passwords, at least six characters long with a mix of upper-
and lowercase characters (if applicable, like in the Roman alphabet), num‐
bers, and special characters.
Some apps set limits on the maximum length, but this is not a good idea. It is
like saying to your user, “Hey! Sorry, but we cannot allow more security than
that.”
In addition, it is important to note that longer but easy-to-remember pass‐
words may be harder to crack than shorter and obfuscated passwords. How‐
ever, because it is tedious to key in longer passwords on mobile devices,
shorter and more complex passwords are typically preferred.

• Provide a list of active sessions and allow users to invalidate any existing ses‐
sion on another device or location.

• Support two-factor authentication (2FA) and use it whenever you encounter
unusual behavior. Examples include login from a new location or from a new
device at an unusual time.

• For financial or money-related apps, enable session timeouts (i.e., if the app
is in the background for a certain amount of time—say, longer than 5 or 10
minutes—it’s appropriate to invalidate the session). This is similar to ena‐
bling the Remember Me option on websites.

• Optionally, use a shorter app PIN for local authentication while the user is
perpetually logged in with a nonexpiring access token. Figure 9-1 shows the
Credit Karma app with a local app PIN.

• For perpetual login, ensure that the access token (akin to cookies in a
browser) is stored in the keychain locally.

• Enable CAPTCHA (you may choose to use this in a limited way—for exam‐
ple, you might enable it after 3 or 5 invalid attempts in a row).

• Optionally, use local authentication to integrate Touch ID with a keychain
for passwordless login.

• Follow the best practices discussed in “Network Security” on page 299 and
“Local Storage” on page 305.

298 | Chapter 9: Security

Use of cryptographic options such as a keychain or Touch ID adds
overheads, causing a delayed response to the user.
Touch ID has been found to be slow and unreliable even with latest
updates. In particular, it can result in nonrecognition of the finger‐
print, resulting in multiple retries.

Network Security
An in-depth discussion of the network was provided in Chapter 7. In this section, we
discuss security best practices in any communication with a remote device, be it a
server or a peer.

Use HTTPS
Assuming that you use HTTP as the underlying messaging protocol (TCP being the
transport-layer protocol), you must use it over TLS/SSL—that is, you should always
use HTTPS. However, there are a few concerns with using HTTPS. If these potential
risks are not addressed, HTTPS may be compromised.

CRIME attacks
Do not use SSL/TLS compression. If you use it now, turn it off immediately before
proceeeding. You are at a big risk. With TLS compression (gzip, deflate, or any
other format), any request is subject to a CRIME (Compression Ratio Info-leak Made
Easy) attack. The risk can be mitigated by turning off TLS compression and sending
an anti-CRIME cookie, which can simply be a unique random cookie, with every
response.

BREACH attacks

If you use request/response body compression (Transfer-Encoding = gzip or
deflate), your communication is subject to BREACH (Browser Reconnaissance and
Exfiltration via Adaptive Compression of Hypertext) attacks, a type of attack first
noted in September 2012. The risk applies when the following criteria are satisfied:

• The app uses HTTP compression.
• The response reflects user input.
• The response reflects a secret.

There is no single way to mitigate this risk. The Breach Attack website lists the fol‐
lowing approaches, in order of effectiveness:

• Disable HTTP compression. This increases the amount of data to be transported,
and may not be a practical solution.

Network Security | 299

http://www.breachattack.com

• Separate secrets from user input. Keep authorization codes away from the request
body.

• Randomize secrets per request. But, because the secrets are randomized per
request, multiple parallel requests may no longer be possible.

• Mask secrets. Do not send them raw.
• Protect vulnerable HTML pages with CSRF. On mobile native apps, there is no

need for CSRF unless using mobile web.
• Hide length. A good way to do that is to use chunked transfer encoding in HTTP

responses.
• Rate-limit the requests (this should only be used as a last resort).

Use Certificate Pinning
HTTPS is not a cure-all—adopting it will not magically make all your communica‐
tions secure. The basis of HTTPS is the trust in the public key that is used to encrypt
the initial message (during the SSL handshake). A man-in-the-middle (MITM) attack
involves being able to capture the key used to encrypt the messages.

Figure 9-2 shows an outline of a MITM attack where the mediator (say, the WiFi hot‐
spot that your device is connected to or the proxy server being used) intercepts the
requests from the device. When the device sends a request for the server’s certificate,
the mediator sends the request on to the server and captures its reply. Then, instead
of returning that key to the device, it returns its own key. This is the same technique
used by the Charles proxy server (see “Charles” on page 245).

Figure 9-2. Man-in-the-middle attack

All that is required for the request not to be invalidated is the trust that the network
library puts in the certificate received. The certificates are nothing but signed public
keys. So, if the network library trusts the signer, it trusts the public key provided by
the host. A hacker supplying a fake root certificate is all that is needed for all security
measures to fall apart.

300 | Chapter 9: Security

1 Adapted from OWASP.

It is not uncommon to find personal devices that are used for
development and have the Charles certificate installed. And
because both the private key and the certificate are available in the
public domain, it is not uncommon to use this certificate as the
starting point for an attack.
How many of the secondhand devices available in the market can
really be trusted? It is fairly easy to jailbreak an iOS device.

The solution to this problem is what is known as certificate pinning. The way this
works is that the app creates a custom trust level by trusting only one or a few certifi‐
cates that can be the root certificates for your app. This allows trusting only the certif‐
icates from a whitelist, which ensures that an unknown certificate that would allow
network monitoring cannot be installed on the device.

When working with NSURLConnection, you can provide an NSURLConnection
Delegate that can perform the certificate validation.

Example 9-4 shows representative code1 that you can use to implement certificate
pinning in your app.

Example 9-4. Certificate pinning

typedef void(^HPResponseHandler)(NSURLResponse *, NSError *error);

@interface HPPinnedRequestExecutor

@property (nonatomic, readonly) NSURLRequest *request;
@property (nonatomic, copy) HPResponseHandler handler;

@end

@interface HPPinnedRequestExecutor () <NSURLConnectionDelegate>

@property (nonatomic, readwrite) NSURLRequest *request;

@end

@implementation HPPinnedRequestExecutor

-(instancetype)initWithRequest:(NSURLRequest *)request {
 if(self = [super init]) {
 self.request = request;
 }
 return self;
}

Network Security | 301

http://bit.ly/cert-key
http://bit.ly/cert-plan

-(void)executeWithHandler:(HPResponseHandler)handler {
 self.handler = handler;
 [[NSURLConnection alloc] initWithRequest:self.request delegate:self];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 //Do regular stuff, send result using handler
}

-(BOOL)connection:(NSURLConnection *)connection
 canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace*)space {
 return [NSURLAuthenticationMethodServerTrust
 isEqualToString:space.authenticationMethod];
}

- (void)connection:(NSURLConnection *)connection
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge {

 void (^cancel)() = ^{
 [challenge.sender cancelAuthenticationChallenge:challenge];
 };

 if([NSURLAuthenticationMethodServerTrust
 isEqualToString:challenge.protectionSpace.authenticationMethod]) {

 SecTrustRef serverTrust = challenge.protectionSpace.serverTrust;
 if(serverTrust == nil) {
 cancel();
 return;
 }

 OSStatus status = SecTrustEvaluate(serverTrust, NULL);
 if(status != errSecSuccess) {
 cancel();
 return;
 }

 SecCertificateRef svrCert = SecTrustGetCertificateAtIndex(serverTrust, 0);
 if(svrCert == nil) {
 cancel();
 return;
 }

 CFDataRef svrCertData = SecCertificateCopyData(svrCert);
 if(svrCertData == nil) {
 cancel();
 return;
 }

 const UInt8* const data = CFDataGetBytePtr(svrCertData);

302 | Chapter 9: Security

 const CFIndex size = CFDataGetLength(serverCertificateData);
 NSData* cert1 = [NSData dataWithBytes:data length:(NSUInteger)size];

 if(cert1 == nil) {
 cancel();
 return;
 }

 NSString *file = [[NSBundle mainBundle]
 pathForResource:@"pinned-key"
 ofType:@"der"];
 NSData* cert2 = [NSData dataWithContentsOfFile:file];

 if(cert2 == nil) {
 cancel();
 return;
 }

 if(![cert1 isEqualToData:cert2]) {
 cancel();
 return;
 }

 [challenge.sender
 useCredential:[NSURLCredential credentialForTrust:serverTrust]
 forAuthenticationChallenge:challenge];
 }
}

@end

Implement the NSURLConnectionDelegate protocol.

The connection:canAuthenticateAgainstProtectionSpace: method checks
whether the delegate is able to respond to a protection space’s form of authentica‐
tion. We return YES for SSL (server trust).

The connection:didReceiveAuthenticationChallenge: method processes the
challenge and can either cancel the authentication (invalidate) or use the cre‐
dentials (validate).

Invalidate the certificate if anything fails, like when no certificate is found or
when it does not match against the bundled key.

Validate the certificate if everything succeeds.

Network Security | 303

2 iOS Developer Library, “Authentication Challenges and TLS Chain Validation”.
3 For example, Eric Allam’s “AFNetworking SSL Pinning with Self-Signed Certificates”.

Notes for iOS 8 and Later
The delegate callback methods connection:canAuthenticateAgainstProtection
Space: and connection:didReceiveAuthenticationChallenge: are deprecated in
iOS 8 in favor of the connection:willSendRequestForAuthenticationChallenge:
callback.

Depending on the validation result, the delegate is expected to call one of the follow‐
ing on the NSURLAuthenticationChallengeSender protocol (use the chal

lenge.sender object):

useCredential:forAuthenticationChallenge:

Validation succeeded. Use the certificate.

cancelAuthenticationChallenge:

Validation failed. Cancel the request.

continueWithoutCredentialForAuthenticationChallenge:

Proceed without the certificate (never do this).

performDefaultHandlingForAuthenticationChallenge:

Let the request proceed through the default route provided by the system.

rejectProtectionSpaceAndContinueWithChallenge:

Reject the currently supplied protection space. Very rarely, if at all, used for SSL
certificate validation.

A similar approach can be implemented for an NSURLSession object.2 This allows
control at the session scope without having to worry about each request that the app
creates.

You do not have to maintain the hefty code. Libraries like RNPinned
CertValidator can help you reduce the code to a few lines.
If you use the AFNetworking library, you may have to write differ‐
ent code. There are, however, tutorials available on the Internet3 to
help you out with that.

304 | Chapter 9: Security

http://apple.co/1ElV6Ud
http://bit.ly/afn-certpin
https://github.com/rnapier/RNPinnedCertValidator
https://github.com/rnapier/RNPinnedCertValidator
http://robnapier.net/pinning-your-ssl-certs

Local Storage
Similar to the data that is exchanged over the network, the data that is stored on the
device is not tamper-proof, and an intruder can either read or modify the data if it is
not handled carefully. The following are a few points to keep in mind and best practi‐
ces to follow to safeguard local storage:

Local storage is not secure
It is very easy to get into the local storage on a jailbroken device. If you watched
the video that was referenced at the start of this chapter, you will notice that the
files can be replaced or modified with ready-to-use tools.

“That is only one device and the data tampered with is for the user on that
device,” you may say. And I agree. But knowing the side effects in the overall app
ecosystem because of that type of tampering is important.

For example, in a mail app, the device may be injected with the data for sending
mails, resulting in a very easy way to send mass mails using the app. Even if the
user is blacklisted or blocked later, the damage may already have been done.
Servers should implement additional security, rate-limiting techniques, and
enhanced DDoS protection solutions to safeguard.

Encrypt local storage
Local storage can be encrypted by the OS through the data protection capability.

To enable data protection, go to Xcode and select the target. Under the Capabili‐
ties tab, look for Data Protection and turn it ON (see Figure 9-3). This will add
the data protection entitlement to the app ID.

Figure 9-3. Enabling data protection in Xcode

By default, when data protection is enabled, all local storage used by the app is
encrypted using the device passcode. This means that the data is inaccessible
until the device is unlocked.

You can configure the security level on the Apple Developer portal by navigating
to Certificates, Identifiers & Profiles → Identifiers. Go to the App IDs subsection
and select the app ID to configure. You should notice that data protection is
enabled (see Figure 9-4).

Local Storage | 305

Figure 9-4. Apple Developer → App Capabilities Configuration → Data Protection

Clicking the Edit button will allow you to configure the capabilities. Figure 9-5
shows the security levels data protection capability.

Figure 9-5. Security levels for data protection

The sharing and permissions options are as follows:

• Complete Protection: This requires the device to be unlocked anytime the
file must be accessed for reading or writing. Shortly after the device is locked
(after 10 seconds if the Require Password setting is set to Immediately), the
encryption keys are discarded, resulting in all data being inaccessible until
the device is unlocked again.

306 | Chapter 9: Security

• Protected Unless Open: This requires the device to be unlocked when creat‐
ing a handle to the file, but once the handle is available, the contents can be
written even when the device is locked. This is useful when the app needs
write capabilities to the file even when the device is locked. For example,
downloading an attachment in a mail app can be triggered by the user when
the device is unlocked, and the app can trigger a background operation to
continue downloading it long after the device is locked.

• Protected Until First User Authentication: This requires the device to be
unlocked once after reboot. After the first unlock, the app can access all files
without any restrictions.
Note that whatever the security level is, once data protection is enabled, the
files cannot be accessed immediately after a reboot—the user must unlock
the device at least once. This also means that if an app receives a push notifi‐
cation and tries to read/write a file, it will result in an error if the device was
never unlocked after reboot.
For per-file protection, you can use the method -[NSData writeTo

File:options:error:] with options set to NSDataWritingFileProtection
Complete for complete protection,
NSDataWritingFileProtectionCompleteUnlessOpen for protected unless
open, or NSDataWritingFileProtectionCompleteUntilFirstUserAuthenti
cation for protected until first user authentication. Note that if data protec‐
tion is enabled at the app level, the default value is as set on the Developer
Portal.
Alternatively, you can use the method -[NSFileManager createFileAt

Path:contents:attributes:] with the attributes dictionary set to @{NSFi
leProtectionKey: <required-level>} (along with other attributes if
needed), where the required-level can be NSFileProtectionComplete,
NSFileProtectionCompleteUnlessOpen, or NSFileProtectionCompleteUn
tilFirstUserAuthentication.
In addition, use the property -[UIApplication protectedDataAvailable]
to determine if the protected files can be accessed. The value is set to YES if
the device is unlocked or if data protection is not enabled. When the value of
this property is NO, files with the NSFileProtectionComplete or NSFilePro
tectionCompleteUnlessOpen attribute cannot be accessed until the device is
unlocked, and files with the NSDataWritingFileProtectionCompleteUntil
FirstUserAuthentication attribute cannot be accessed until the device is
rebooted and unlocked.

Local Storage | 307

4 Prateek Gianchandani, InfoSec Institute, “iOS Application Security Part 20 - Local Data Storage (NSUser‐
Defaults, CoreData, Sqlite, Plist Files)”.

User defaults (NSUserDefaults) are not safe
More often than not, we treat user defaults as being kept in a safe place. In fact,
they are simple. plist files kept alongside other app files.4

App Bundle (NSBundle) values are not safe either
Ouch! The app bundle settings are considered to be bundled with the app and
never modified. This is only partially correct, because the .plist file that contains
the values can actually be tampered with.

Don’t completely rely on the keychain
The keychain’s security can be broken. Attackers will definitely be unable to
access critical information while the device is locked. However, it is important to
not rely overly on the keychain. The reason is that the encryption key is gener‐
ated by a predetermined formula using the device passcode, which is merely four
digits long. This provides a maximum of 10,000 combinations—and we know
that when it comes to security, 10,000 combinations is not a great deal of security
at all. Taking into consideration that an iOS device will not allow a login attempt
for one minute after six wrong attempts, running 10,000 combinations manually
can be done in a few hours.

However, generally speaking, the attacker does not have to go so far. As per a
report published a few years back, the top 10 passcodes represent 15% of all
passcodes in use.

Thankfully, recent versions of iOS do have an option for enabling stronger pass‐
words. You can go to Settings → Touch ID & Passcode, and you will notice that
the Simple Passcode option is selected (Figure 9-6).

308 | Chapter 9: Security

http://bit.ly/1HdOp4y
http://bit.ly/1HdOp4y
https://support.apple.com/en-us/HT204306
http://bit.ly/iphone-pws
http://bit.ly/iphone-pws

Figure 9-6. Simple passcode

As simple passcode is comprised of exactly four digits, whereas a non-simple
passcode can be arbitrarily long and can include alphanumeric characters as well
as special characters. As illustrated in Figure 9-7, the keyboards for each of these
options are different. Though using an alphanumeric passcode is a great option,
the total number of users that will have this option enabled is very small, so you
can’t rely on it.

Local Storage | 309

5 Technically, this is not data storage. But device logs are akin to data stores, automatic and perpetual.

Figure 9-7. A simple passcode uses four digits (left), whereas a complex passcode
allows for alphanumeric and special characters (right)

As a practice, encrypt the data stored in the keystore and store only minimal
data. The keys may be generated per device and stored locally. Again, note that
the best that you can do is make it a little harder for an attacker to locate and
decrypt the data. If the attacker has physical access to the device, there is only so
much that you can do.

Be careful what you log
It is very common to log using the built-in NSLog function because that’s the way
the developers are taught.5 The official documentation states that the function
“Logs an error message to the Apple System Log facility.” It is not console log‐
ging. There is no iOS device console. The logs can be seen even days after they
are actually logged.

From Xcode, navigate to Window → Devices—you should see a list of connected
devices and simulators, as shown in Figure 9-8.

310 | Chapter 9: Security

http://bit.ly/ios-nslog

Figure 9-8. Devices summary

If you click the View Device Logs button, you should be able to see all the logs, as
shown in Figure 9-9. This includes the output from NSLog.

Figure 9-9. Device logs

As a best practice, do not use NSLog in non-debug builds at all. A good way to do
that is to use a wrapper function and a macro as demonstrated in Example 9-5.
An even better option is to use a third-party library like CocoaLumberjack. We
discussed logging in depth in “Logging” on page 20.

Local Storage | 311

Example 9-5. Logging using NSLog

@implementation HPLogger

+(void)log:(NSString *)format, ... {

#ifdef _DEBUG
 va_list args;
 va_start(args, format);
 NSLogv(format, args);
 va_end(args);
#endif

}

Emit the logs only in debug mode. Feel free to use some other condition
(rather than the #ifdef _DEBUG used here), as suitable to your app.

The bottom line is, if someone has the device and it is unlocked, all data is accessible.
Even if it is locked, most (or probably all) of the data can be accessed.

It is a race between the police and the thief. One can only expect the tools to get more
advanced and smarter on both sides, but the race to supremacy will never end. It all
comes down to who leads and who plays the catch-up role.

Data Sharing
One simple, basic rule to follow when sharing data and processing incoming data is
this: do not trust the other side.

When receiving data, always validate. The only assumption that the app should make
about the data is that it may be invalid and wrong. For additional security, ask for the
data to be signed.

Similarly, because you do not know which app will process it, never send out sensitive
data. If you really need to share sensitive data, deliver a token and then ask the other
app to request the data from your app (or server).

Security and App Performance
Every extra layer of encryption or safety measures that you add counts toward the
overall memory consumed and processing time. There is no way that you can opti‐
mize across all dimensions. You will have to make some trade-offs.

312 | Chapter 9: Security

6 Note that using cryptography makes the approval process for the app to go live in the App Store longer since
there may be export restrictions to the API that you use.

At times, using a 2,048-bit RSA key may not be what you require. A 1,024-bit DSA
key may be good enough. At other times, a symmetric encryption algorithm like
Rijndael is all that may be needed to secure the data.6

Retrieving initial values from the keychain can lead to prolonged load time. You
should be prudent and cautious.

Certificate pinning has its own cost and can slow down all your network operations.

Creating and validating data signatures requires computing the content hash, which
means one additional pass over the content. This can take a lot of time depending
upon the content size, not to mention the additional time taken to compute and vali‐
date the digital signature.

All of these steps add up pretty quickly. You may have the safest and most secure app
in the world, but if it takes 30 minutes just to load, no one will be interested in using
it. For that matter, even 5 seconds may negatively impact the user experience and you
may lose the users forever, particularly if there are other apps that fulfill the same
need.

Checklist
The list of malicious attacks and other areas of concern that you need to safeguard
your app against is possibly endless. When testing your iOS app for security, you
should run through the checklist in Table 9-2.

Table 9-2. Security checklist

Description Status
Static Code Analysis

Is NSLog used? Yes/No

If so, NSLog is used only in debug builds Yes/No

All URLs are HTTPS Yes/No

Paths to local files are not hardcoded Yes/No

Dependencies are checked for the latest versions and patches Yes/No

No private APIs are used Yes/No

No private keys or secrets are embedded in the code Yes/No

No private keys or secrets are embedded in the resources Yes/No

There is no unreachable or dead code Yes/No

Entitlements are correct (none missing, none extra) Yes/No

Checklist | 313

Description Status

If using the connection:willSendRequestForAuthenticationChallenge: method, there is no
direct branch (without any code) to useCredential:forAuthenticationChallenge:

Yes/No

App uses IDFV Yes/No

App uses IDFA Yes/No

Correct provisioning profile/certificate is configured for app signing Yes/No

There are checks against SQL injection Yes/No

Runtime Analysis—Log

Logging is done only to file Yes/No

Log files are deleted periodically Yes/No

Log rotation is implemented Yes/No

There are no secrets or sensitive information in the log Yes/No

No sensitive information is logged when stack trace is printeda Yes/No

Runtime Analysis—Network

Only HTTPS URLs are used Yes/No

Server has implementation against CRIME attack Yes/No

Server and client app have implementation against BREACH attack Yes/No

Client app uses certificate pinning Yes/No

Correct caching policy is set up Yes/No

Runtime Analysis—Authentication

App uses third-party authentication Yes/No

App uses custom authentication Yes/No

Third-party auth SDK is well audited against the remainder of this checklist Yes/No

Login UI masks password Yes/No

Password is not copyable Yes/No

Access token is stored in keychain Yes/No

App implements passcode Yes/No

Passcode is stored in keychain Yes/No

It is possible to change authentication workflow through a server configb Yes/No

Runtime Analysis—Local Storage

App uses local storage Yes/No

Any sensitive information is encrypted Yes/No

Storage is cleaned up periodically Yes/No

Runtime Analysis—Data Sharing

App uses shared keystore to keep common settings Yes/No

Deep link URLs are validated Yes/No

Any incoming data is validated Yes/No

No sensitive data is shared to an unknown app Yes/No

314 | Chapter 9: Security

Description Status
Correct group IDs are configured when using the app extensions Yes/No

a When handling exceptions or otherwise.
b If the login process is breached, it should be possible to change the authentication flow—for example, trigger a 2FA, add a
CAPTCHA, or, in an extreme case, switch to web login from the native login UI.

This checklist has been compiled from working on security in the past and from the
following sources:

1. iOS Security by Apple
2. OWASP Mobile Security Project - Security Testing Guide
3. OWASP iOS Application Security Testing Cheat Sheet
4. OWASP iOS Developer Cheat Sheet
5. Stack Overflow, “Security Analysis Tools for iOS 6”
6. Penetration Testing of iPhone Applications: Part 1 and Part 2

Summary
Reading a single chapter will never be sufficient to fully understand security. This
chapter presented a brief summary of key security aspects from a few perspectives.
We looked at what it takes to implement security measures and how that impacts the
overall experience of the app.

The checklist at the end of this chapter should be followed to ensure that the com‐
monly found security loopholes are closed and at least well-defined measures are
implemented—in the app, on the server, and in the layer between the two.

Summary | 315

http://apple.co/1I6xVi1
http://bit.ly/1MrVEwp
http://bit.ly/1HZr3mw
http://bit.ly/1alk6P5
http://bit.ly/1BLbHLr
http://bit.ly/19uvlDJ
http://bit.ly/1CG7j4h

PART IV

Beyond Code

Il meglio è l’inimico del bene.
Perfect is the enemy of good.

—Anonymous

Having investigated the app in depth from within, it is time to think out of the box.
Literally.

In this part of the book, we cover application testing, tools, and monitoring the app in
the wild. We’ll discuss how to make use of the data that we get or the instrumentation
data that the app generates to track app performance and improve subsequent
releases.

CHAPTER 10

Testing and Release

Testing a feature, a component, or an app is as important as implementing it.

The development team writes code to cover various scenarios, and the quality assur‐
ance team asserts that the code works as intended. Frequently, there is overlap
between the quality assurance team and the development team—for example, in
startups and smaller companies, development and quality assurance tasks are often
performed by the same person or people.

In this chapter, we study the fundamentals of test cases, various test case types, testing
frameworks to support them, test automation, and continuous integration.

It can be assumed that the team follows some development methodology, which can
even be cowboy coding, and you indeed need to write test cases to formally test the
app.

Test Types
A test’s type refers to the categorical purpose of what it intends to do. For example, if
the purpose is to test a method, a class, or a component, it may be a unit test. Simi‐
larly, if the purpose is to test the app from installation or deployment to all the func‐
tions, it may be classified as an acceptance or end-to-end test.

Instead of presenting all of the dozen or more different test types, we focus our dis‐
cussion on the following broad categories that are critical to any user-facing app in
general and an iOS app in particular:

Unit testing
Testing an isolated method in a simulated environment to ensure validity

319

Functional testing
Testing a method in a real-world scenario for accuracy

Performance testing
Testing a method, a module, or a complete app for performance

Definitions
The following definitions will come in handy as we discuss testing:

Test case
A scenario that needs to be tested. It includes a condition under which a method,
feature, or application will execute; a set of inputs, as required in the scenario
being tested; and an expected behavior, including an output and/or changes to
the system.

Test fixture
Represents the preparation needed and any associated cleanup to be done to per‐
form one or more test cases. This may involve object creation, dependency setup,
database configuration, and more.

Test suite
A collection of test fixtures with the test cases, test suites, or both. It is used to
aggregate tests that should execute together.

Test runner
A system that executes the tests and provides the results. For our purposes,
Xcode is the graphical test runner. The command-line utilities also enable a CLI
that is useful in test automation.

Test report
The summary of which tests executed successfully and which failed, along with
the error messages if available.

Test coverage
Measures the amount of testing performed by a test suite and is useful to find
untested parts of the app. When testing at code level, a test coverage report sum‐
mary comprises a percentage result indicating how many lines of code have been
tested (see Figure 10-1). A detailed report may indicate which parts of the code
are untested.

320 | Chapter 10: Testing and Release

Figure 10-1. Test coverage report

TDD
Test-driven development is a software development process that uses a repetitive
but very short development cycle. The steps include writing automated test
case(s), writing minimal code to pass these tests, and refactoring the code to
acceptable standards and quality.

Unit Testing
Unit testing checks individual methods, or sets of one or more modules, together
with associated data in isolation for validity. To achieve isolation, the dependencies
are mocked to provide the desired behavior for the scenario being testing.

Although it can be tedious to test all the methods (including the property getters or
setters), it is worthwhile—if a call fails, you’ll know exactly which one failed, and the
developer will probably know what might have gone wrong.

Xcode comes with built-in support for the XCTest unit testing framework.

Setup
Unit testing requires a test target to be set up. If your project does not yet have a test
target, you’ll need to create one by following these steps:

1. Open the test navigator.
2. Click on the + sign.
3. Select the New Test Target option.
4. Type in the details for the new target, as shown in Figure 10-2.

Unit Testing | 321

http://apple.co/1PlWsUa

Figure 10-2. Adding the test target

Xcode should have configured the project in a few places.

First, verify that it has created a new target in the project (see Figure 10-3).

Figure 10-3. Verifying the test target

322 | Chapter 10: Testing and Release

Second, if you open the project’s scheme in Xcode (by navigating to Product →
Scheme → Manage Schemes → Select project → Edit), you should notice that under
Test → Test there is an entry with the name that was provided as the Product Name
when creating the test target earlier (HighPerformanceTests, in our case; see
Figure 10-4).

Figure 10-4. Test setup on the product scheme

Writing Unit Tests
With the target set up, we are ready to write our first unit test.

XCTest requires creating a subclass of XCTestCase to represent a test fixture (it’s not a
test case per se), and in that subclass you write the test cases. The test suite (all test
fixtures) execution invokes the methods in a particular order:

+[setUp]

This is the test fixture setup method and is called before any test case in the class
executes. All common initializations for the test fixture go here. Note that this is
a class method.

-[setUp]

This is the test case setup method and is called before each test case executes. All
common initializations for each test case go here. This is an instance method.

Unit Testing | 323

1 iOS Developer Library, “Assertions Listed by Category”.

-[testXXX]

All the instance methods of the test fixture whose names start with test and that
do not take any parameters are the test cases that get executed.

-[tearDown]

This is the test case cleanup method and is called after each test case executes.
This is an instance method.

+[tearDown]

This is the test fixture cleanup method and is called after all test cases in the class
execute. This is a class method.

A test case is successful if there is no error or exception when executing the test
method. You can also check for more complex scenarios such as testing for nil, test‐
ing for equality, and so on using assertion macros provided in the SDK. The macros
are named XCTAssert<AssertionType>1 (e.g., XCTAssertEqual for testing equality of
two values or objects).

Figure 10-5 shows a visual representation of the execution lifecycle. Note that the
instance methods -[setUp] and -[tearDown] can be called multiple times.

Figure 10-5. Test execution lifecycle

As an example, let’s write some tests for the class HPAlbum that we introduced earlier,
in Example 4-9.

324 | Chapter 10: Testing and Release

http://apple.co/1N2sS6g

Example 10-1. Unit tests for HPAlbum

@implementation HPAlbumTest
- (void)testInitializer {
 HPAlbum *album = [[HPAlbum alloc] init];
 XCTAssert(album, @"Album alloc-init failed");
}

- (void)testPropertyGetters {
 HPAlbum *album = [[HPAlbum alloc] init];
 album.name = @"Album-1";
 NSDate *ctime = [NSDate date];
 album.creationTime = ctime;

 HPPhoto *coverPhoto = [[HPPhoto alloc] init];
 coverPhoto.album = album;

 album.coverPhoto = coverPhoto;
 NSArray *photos = @[coverPhoto];
 album.photos = photos;

 XCTAssertEqualObjects(@"Album-1", album.name);
 XCTAssertEqualObjects(ctime, album.creationTime);
 XCTAssertEqualObjects(coverPhoto, album.coverPhoto);
 XCTAssertEqualObjects(photos, album.photos);
}

@end

The test fixture. General convention is to name the test class as ClassNameTest.

The test case is an instance method with its name prefixed by test. Name the
method to indicate what it actually tests.

XCTAssert method to assert that the object is not nil.

Another test case, to test the property getters. Do not test multiple methods in
one test case.

Object setup and code to be executed before testing the state.

Assertions to test object equality. If the assertion fails, the test case fails. There is
a bug and the code must be fixed.

Code Coverage
Writing unit tests is important. But at the end of the day, how do we know what part
of the code has been tested and what remains untested? Code coverage refers to the
percentage of code tested, using automated unit or functional tests.

Unit Testing | 325

The code coverage files can be generated directly using the Apple LLVM code genera‐
tor, and you can set that option from within Xcode. There are two ways to do that—
one allows report visualization from within Xcode and the other generates XML/
HTML-based reports.

Integrated coverage report
A developer can run the test cases and visualize the reports from within Xcode itself.

To see code coverage reports from within Xcode, enable test coverage data on the
main target. Go to the menu entry Product → Scheme → Edit Scheme (⌘ <). In the
scheme editor dialog, go to the Test entry on the left and select “Gather coverage
data,” as shown in Figure 10-6. To save your changes, click Done.

Figure 10-6. Xcode settings to enable coverage data collection

Run the test cases. With these settings, Xcode will collect coverage details when exe‐
cuting the test cases. To see the coverage report, follow these steps:

1. Go to Report Navigator in the Navigator pane (see Figure 10-7).

Figure 10-7. Report Navigator

2. Select the latest Test run.
3. Go to the Coverage tab.

326 | Chapter 10: Testing and Release

You should see the coverage report as shown in Figure 10-8.

Figure 10-8. Xcode integrated test coverage report

If you tap on the little right arrow next to any method (see Figure 10-8), it will take
you to the source code, where you can see the exact lines that have been tested (cov‐
ered) or are left to be tested (not covered) in the test run (see Figure 10-9).

Figure 10-9. Xcode—coverage report integration with source code

External coverage report
You can also generate reports in XML or HTML formats. This is useful when you use
continuous integration and tests run on a non-developer machine, or when you want
to preserve the reports for later.

To generate the files that will contain coverage data, turn on the following flags:

Unit Testing | 327

Generate Debug Symbols
Will emit the debug symbols in the compiled binary

Generate Test Coverage Files
Will generate the binary files that contain the coverage data

Instrument Program Flow
Will instrument the app as the test cases execute

It is recommended to create a custom build configuration to isolate the coverage
from regular builds, as the former can be slow for regular testing. Figure 10-10 shows
where you can find these settings.

Figure 10-10. Xcode settings for code coverage setup

This will generate the .gcno and .gcda files in the derived data folder of the project.
The .gcno file has details to reconstruct the basic block graphs and assign source line
numbers to blocks. The .gcda file contains the ARC transition count.

The next step is to use these files to generate the report that can be exported to either
XML or HTML format.

For us, the following two tools are useful:

lcov

Lets us collect coverage data from multiple files into a unified file known as the
INFOFILE.

328 | Chapter 10: Testing and Release

genhtml

Generates the HTML report using the INFOFILE generated by the lcov tool.

These tools are not installed on Mac OS X by default, nor do they come bundled with
the Xcode command-line tools. Use MacPorts or Homebrew to install the lcov pack‐
age.

To generate the report, add a New Run Script Phase in the build phases in Xcode with
the code shown in Example 10-2.

Example 10-2. Code coverage report generation from within Xcode

lcov --directory "${OBJECT_FILE_DIR_normal}/${CURRENT_ARCH}"
 --capture
 --output-file "${PROJECT_DIR}/${PROJECT_NAME}.info"

genhtml --output-directory "${PROJECT_DIR}/${PROJECT_NAME}-coverage"
 "${PROJECT_DIR}/${PROJECT_NAME}.info"

Build the project. You should see the coverage report in the folder named
<your_project_name>-coverage in the project folder. If you open the main file,
index.html, you should see a report similar to the one shown in Figure 10-11.

Figure 10-11. HTML coverage report

Unit Testing | 329

https://www.macports.org
http://brew.sh

Asynchronous Operations
Suppose we want to test the HPSyncService class. It has methods that perform asyn‐
chronous network operations, and responses may not be available immediately. We
need more elaborate techniques to test such methods.

The XCTestCase class comes with built-in support for testing asynchronous methods,
so you do not need to write fancy code just for asynchronous operations.

The steps to test an asynchronous method are as follows:

1. Use the expectationWithDescription: method to get an XCTestExpectation
instance. It also configures XCTestCase in what can be termed a manual mode. In
this mode, the completion of the test method does not mark the success of the
test case.

2. Use the waitForExpectationsWithTimeout:handler: method to wait for the
operation to be complete. If the test case was not completed, the handler block
will be invoked.

3. Use the XCTestExpectation object’s method fulfill to indicate that the opera‐
tion is complete and the wait can stop. This is the manual mode referred to in the
first step.

Example 10-3 provides concrete code to test async operations.

Example 10-3. Testing async operations

@implementation HPSyncServiceTest

-(void)testFetchType_WithId_Completion {

 HPSyncService *svc = [HPSyncService sharedInstance];

 XCTestExpectation *expectation
 = [self expectationWithDescription:@"Test Fetch Type"];

 [svc fetchType:@"user" withId:@"id1"
 completion:^(NSDictionary *) {

 //... validate data, apply assertions
 [expectation fulfill];

 }];

 [self waitForExpectationsWithTimeout:1 handler:^{
 [svc cancelAllPendingRequests];
 }];
}

330 | Chapter 10: Testing and Release

@end

Get an expectation to be fulfilled. We are now in the manual mode of test case
validation.

Execute the method to test, with appropriate setup and parameter values.

As earlier, validate the data using XCTAssertXXX macros.

Once done, mark the expectation to be fulfilled.

Wait for the expectation fulfillment. In this case, wait for 1 second.

If the expectation was not fulfilled, perform cleanup. In this case, cancel any
pending operations.

Xcode 6 Bonus: Performance Unit Tests
You can also run performance tests within the gambit of unit tests.

The XCTestCase class provides a method measureBlock that can be used to measure
the performance of a block of code.

Example 10-4 shows a test case using measureBlock to test performance.

Example 10-4. Performance in unit tests

-(void)testObjectForKey_Performance {
 HPCache *cache = [HPCache sharedInstance];

 [self measureBlock:^{
 id obj = [cache objectForKey:@"key-does-not-exist"];
 XCTAssertNil(obj);
 }];
}

Figure 10-12 shows output when the test in Example 10-4 is executed.

Unit Testing | 331

http://apple.co/1SHL41A

Figure 10-12. Output of the performance unit test

Xcode emits the average time for execution as well as the standard deviation. You can
also set a baseline to test variations against.

To do so, just click on the tick-box next to the line that has the measureBlock class, as
shown in Figure 10-13.

Figure 10-13. Configure baseline for performance unit tests

Once the baseline is set, the output will show not just the average and standard devia‐
tion but also the worst performance against the baseline, as shown in Figure 10-14.

332 | Chapter 10: Testing and Release

Figure 10-14. Measurements against the baseline

Dependency Mocking
The class that we put to test earlier, HPAlbum, is one of the simplest classes in our app
to test. It does not have dependencies on any other subsystems like networking or
persistence. In general, there are a whole bunch of questions that a test writer has in
mind.

What if we wanted to test the HPUserService class (see Example 4-11), and specifi‐
cally the method userWithId:completion:? It interacts with the class HPSyncSer
vice, wherein the method fetchType:withId:completion: makes a network call to
fetch the data from the server. Questions to consider include:

1. Should the app really make a network call?
2. How do we tell the server what response to send, if we want to test out various

scenarios?
3. Should we set up another server with fake responses? If so, how can the network‐

ing layer be made configurable to talk to various servers depending on the envi‐
ronment it is being used in (i.e., production versus test)?
Even if we make it configurable, how do we ensure that configuration does not
make its way into the production app, even accidentally?

There are more questions that you may have. This is where we need a system that
should be able to mock the dependencies. This is how a test case with dependency
mocking would work:

1. Configure the dependency to work in a prescribed manner, return a specific
value, or change to a specific state when provided a particular input.

Unit Testing | 333

2 See Martin Fowler, “Mocks Aren’t Stubs”.

2. Execute the test case.
3. Reset the dependency to work normally.

The -[setUp] method is where dependencies will be configured, while they will be
reset in the -[tearDown] method of the test fixture.

Vocabulary
Let’s look at some vocabulary before we proceed further into concrete frameworks
and code:

Dummy/double
A general term for a fake test object. There are four types of doubles:

Stub
Provides canned answers to calls made during the test. It does not interact
with other parts of the app or make changes to other states. Stubs are useful
when the components have been designed for dependency injection. When
testing, the stubbed dependency, configured to work in a specific manner,
can be injected into the component.

Spy
Captures and makes available parameter and state information. It keeps track
of the methods invoked with their parameters and helps verify correct
method invocations. When testing, obtain the original object and create a spy
for it that will monitor the method invocations. At the end, verify the behav‐
ior.

Mock
Mimics the behavior of a real object in a controlled manner. A mock object is
configured for only the methods that a test case interacts with.

Fake
Works identically to the original object, except that it fakes out the underly‐
ing implementation.2. An example of this is a fake database that may store
data in memory and perform lame searches rather than using an actual data‐
base engine.

BDD
Behavior-driven development, developed by Dan North, is an extension of TDD.
Like TDD, BDD tests a specific functionality, but it also verifies underlying
behavior.

334 | Chapter 10: Testing and Release

http://martinfowler.com/articles/mocksArentStubs.html

For example, you may want to check login functionality that tests against a set of
credentials. Given correct credentials, the function should succeed, and it should
fail otherwise. A TDD approach will help you test this, but if you want to verify
the behavior (i.e., that the component actually makes calls to a database or web
service), BDD kicks in. Dummy objects that can mimic or fake the underlying
behavior and be used to verify it are a key part of BDD.

Mocking framework
A framework that allows creation of dummies. This includes provision for cre‐
ation of mock objects at the least, but it is usually expected to provide spy objects
as well.

OCMock is a great mocking framework that supports both mock and spy objects.
Without getting into deeper discussion, let’s look into key aspects of using the frame‐
work:

Create mock object
Use the OCMClassMock macro to create a mock instance of a class.

Create spy object
Use the OCMPartialMock macro to create a spy or partial mock of an object.

Stub functionality
Use the OCMStub macro to stub the function to either do nothing or return a
value.

Verify behavior
Use the OCMVerify macro to verify if an underlying subsystem was interacted
with in a specific manner (i.e., whether a specific method was called with particu‐
lar parameters).

Example 10-5 shows a sample test case using the OCMock framework.

Unit Testing | 335

http://ocmock.org

Example 10-5. Using OCMock to write an advanced test case

#include <OCMock/OCMock.h>
#include <OCMock/NSInvocation+OCMAdditions.h>

@implementation HPUserServiceTest

-(void)testUserWithId_Completion {
 id syncService = OCMClassMock([HPSyncService class]);
 OCMStub([syncService sharedInstance]).andReturn(syncService);

 NSString *userId = @"user-id";
 NSString *fname = @"fn-user-id",
 *lname = @"ln-user-id",
 *gender = @"gender-x";
 NSDate *dob = [NSDate date];

 data = @{
 @"id": userId,
 @"fname": fname,
 @"lname": lname,
 @"gender": gender,
 @"dateOfBirth": dob
 };

 [OCMStub([ssvc fetchType:OCMOCK_ANY
 withId:OCMOCK_ANY
 completion:OCMOCK_ANY
]) andDo:^(NSInvocation *invocation) {

 id cb = [pinvocation getArgumentAtIndexAsObject:4];
 void (^callback)(NSDictionary *) = cb;
 callback(data);
 }];

 HPUserService *svc = [HPUserService sharedInstance];
 [svc userWithId:userId completion:^(HPUser *user) {
 XCTAssert(user);
 XCTAssertEqualObjects(userId, user.userId);
 XCTAssertEqualObjects(fname, user.firstName);
 //... other state validations
 }];

 OCMVerify([ssvc sharedInstance]);
 OCMVerify([ssvc fetchType:@"user" withId:userId completion:[OCMArg any]]);
}

@end

336 | Chapter 10: Testing and Release

3 Source: Mattt Thompson, “Unit Testing”.

OCMock.h is the main header file to include. We use NSInvocation+OCMAddi‐
tions.h because we need specific functionality to implement.

Mock an object of the HPSyncService class.

Stub the class method sharedInstance to return the mock object obtained ear‐
lier.

Input for the test case.

Stub the instance method fetchType:withId:completion: to behave in a partic‐
ular manner.

For the test case, we do not make any network calls or perform database searches
or cache lookups—instead, we execute code based on input data.

After all the setup, the actual method to be tested, userWithId:completion:, is
now invoked.

Validate the state after execution.

Verify that the methods were called with specific parameter values.

The concept behind unit tests is to treat the method to be tested as a black box. Test‐
ing it includes providing it with required input and validating actual output against
an expected output without knowing the implementation of the function. This is
achieved in step 8 in Example 10-5, and is the concept behind test-driven develop‐
ment.

Step 9 is getting deeper into the method to test and verify if it interacts with its
dependencies in a specific manner (i.e., invokes the functions with specific parameter
values). This is what constitutes a behavior and is key to behavior-driven development.

Other Frameworks
OCMock is just one of the several frameworks available. Table 10-1 shows a summary
of other popular frameworks that you can choose from.3

Unit Testing | 337

http://nshipster.com/unit-testing/

Table 10-1. Unit testing frameworks for iOS

Framework type Name Maintainer GitHub URL

Mock objectsa OCMock Erik Doernenburg https://github.com/erikdoe/
ocmock

OCMockito Jon Reid https://github.com/jonreid/
OCMockito

Matchersb Expectac Peter Jihoon Kim https://github.com/specta/
expecta

OCHamcrest Jon Reid https://github.com/hamcrest/
OCHamcrest

TDD/BDD frameworks Specta Peter Jihoon Kim https://github.com/specta/
specta

Kiwi Allen Ding https://github.com/kiwi-bdd/
Kiwi

Cedar Pivotal Labs https://github.com/pivotal/
cedar

Calabash Xamarin http://calaba.sh

a For creating mock objects.
b For creating match rules declaratively.
c Think expect(album.name).to.equal(@"Album-1") rather than
XCTAssertEqualObjects(@"Album-1", album.name).

Functional Testing
Unit tests are great in that they help test individual methods. However, because we
test these methods in isolation, setting up a clean configuration before each test case
execution, they do not really help test the app as whole.

And that is where functional test comes into the picture. As the name implies, this
involves making sure the app functions as expected. Here, we are not talking about
units of technical operations but units of human operations. For example, instead of
saying “test the authenticateWithCredentials: method,” we prefer to say “test the
authentication functionality,” which may involve data input, network operation, UI
updates, and other component interactions.

Functional testing is more about UI testing, and we treat the app as a black box.
There is no mocking, no stubs or spies or mock objects—this is the real app in action.

Instruments provides support for functional testing through UI automation, which is
the abbreviated name for automated UI testing.

338 | Chapter 10: Testing and Release

https://github.com/erikdoe/ocmock
https://github.com/erikdoe/ocmock
https://github.com/jonreid/OCMockito
https://github.com/jonreid/OCMockito
https://github.com/specta/expecta
https://github.com/specta/expecta
https://github.com/hamcrest/OCHamcrest
https://github.com/hamcrest/OCHamcrest
https://github.com/specta/specta
https://github.com/specta/specta
https://github.com/kiwi-bdd/Kiwi
https://github.com/kiwi-bdd/Kiwi
https://github.com/pivotal/cedar
https://github.com/pivotal/cedar
http://calaba.sh

Setup
Instruments provides a profiling template named Automation that can be used to cre‐
ate new functional tests (or import existing tests).

From Xcode, launch Instruments by navigating to Xcode → Open Developer Tool →
Instruments. Select Automation and click Choose (see Figure 10-15).

Figure 10-16 shows the Instruments window for UI Automation. Configure the fol‐
lowing (see Figure 10-16 for reference):

1. Select your app on the device or the simulation. As mentioned earlier, this is
about running the actual app rather than mock or isolated code as in unit tests.

2. Switch to Display Settings.
3. Rename the test to something more meaningful. For example, if we intend to test

our code of composite custom views, we may want to name it Test_Custom
Views_Composite.

Figure 10-15. Instruments—Automation

Functional Testing | 339

Figure 10-16. UI Automation—Setup

The next step is to enable it on the device. By default, for security reasons, UI Auto‐
mation is disabled on the real devices. To enable it, navigate to Settings app → Devel‐
oper → UI Automation → Enable UI Automation. Figure 10-17 shows you where to
locate the setting.

340 | Chapter 10: Testing and Release

Figure 10-17. Enable UI Automation on device

With these steps completed, we are ready to write our functional tests.

Writing Functional Tests
There are two options for writing functional tests. The first option is to write all of
the code by hand. Alternatively, you can generate code using the recorder and then
customize it, which is the option we’ll use here.

To start recording, click the Record button (see step 4 in Figure 10-16). This will start
the app on the target device/simulator.

Run your app through the scenario you want to test. Once done, click the Stop but‐
ton.

Try creating a test script for the following scenario:

1. Launch the sample app.

Functional Testing | 341

2. In the Chapters section, tap Threads.
3. Enter “1000” for the number of iterations.
4. Tap anywhere to hide the keyboard.
5. Tap on the Compute Thread Creation Time button.
6. Verify the result. It should be of the format “Average Creation: <time> µsec”.
7. Extract and log the creation time.

The UI Automation test cases are written in JavaScript, so you’ll
need to become familiar with it if you aren’t already. The API refer‐
ence is available under the topic “UI Automation JavaScript Refer‐
ence for iOS” in the iOS Developer Library.

The autogenerated code looks similar to that shown in Example 10-6.

Example 10-6. UI Automation—default code using recorder

var target = UIATarget.localTarget();

target.frontMostApp().mainWindow()
 .tableViews()[0].tapWithOptions({tapOffset:{x:0.45, y:0.62}});
target.frontMostApp().mainWindow()
 .textFields()[0].tap();
target.frontMostApp().keyboard()
 .typeString("1000");
target.tap({x:111.50, y:308.50});
target.frontMostApp().mainWindow()
 .buttons()["Compute Thread Creation Time"].tap();

Grab the target, which is either a device or a simulator.

Tap the corresponding cell.

Enter the iteration count.

Tap anywhere to hide the keyboard.

Tap the corresponding button.

Great, we now have working code that we can further enhance. Let’s update the code
as follows:

• Instead of the table view being tapped using x/y coordinates, we want it to be
more deterministic and tap on a specific cell. For our specific case, we tap on the

342 | Chapter 10: Testing and Release

http://apple.co/1KhVvXa
http://apple.co/1KhVvXa

seventh cell. We’ll use the cells() method of the UIATableView object to get all
the cells, and tap the one at row 7 (index 6).

• We need to verify the results and log creation time. To do this, we’ll use UIALog
ger, which logs messages and tracks successes and failures.

Without diving deep into the API, the updated code is provided in Example 10-7.

Example 10-7. UI Automation—updated code with deterministic taps and result
validation

var target = UIATarget.localTarget();

target.frontMostApp().mainWindow()
 .tableViews()[0].cells()[6].tap();
target.frontMostApp().mainWindow()
 .textFields()[0].tap();
target.frontMostApp().keyboard().typeString("1000");
target.frontMostApp().mainWindow()
 .buttons()["Compute Thread Creation Time"].tap();

var msg = target.frontMostApp().mainWindow()
 .staticTexts()[0].label();

var l = msg.length;
if(msg.indexOf("Average Creation: ") != 0) {
 UIALogger.logFail("Did not find average creation at the start");
} else if(msg.indexOf(" µsec") != (l - 5)) {
 UIALogger.logFail("Did not find µsec at the end");
} else {
 var t = msg.substring(18, l - 5);
 UIALogger.logMessage("Thread creation took " + t + " µsec");
 UIALogger.logPass("Hurray! Success.");
}

Tap the cell at index=6.

Grab the label of the first of the static texts. You can use accessibilityLabel
instead of index for a more complex UI.

Validate the value of the label.

Log a failure if the label does not look right.

If all good, log the computation time, and…

… mark the test case a success/pass.

Functional Testing | 343

Stop the app. Run the test case. Look at the Editor Log section (see Figure 10-18). It
should report all the steps executed and the log messages, including the final failure/
pass.

Figure 10-18. UI Automation—Editor Log

Project Structure
As you may have noticed, you can end up with either one huge JavaScript file or sev‐
eral of them, each for a particular scenario. The preferred approach is to use one sce‐
nario per file. However, keep in mind that only one file can be executed by
Instruments at a time. This means that if you have to run multiple scenarios, you may
end up launching the app several times.

An ideal way to manage all the test cases is to:

1. Create a folder called tests to store all the test cases.
2. In the folder, have just one file. Let’s name it allTests.js.

This file has no code of its own. It just does an #import on other files.
3. Create subfolders for scenario groups.

Have one file per scenario in these folders.
4. Invoke allTests.js from Instruments.

Instruments provides a command-line interface to execute functional tests. It is very
useful in the continuous integration and automated build pipeline that we briefly dis‐
cuss in “Continuous Integration and Automation” on page 349. A typical execution
command will be similar to that shown in Example 10-8.

Example 10-8. Instruments—command-line interface

$ instruments
 -t '/Applications/Xcode.app/Contents/Applications/Instruments.app/Contents/
 PlugIns/AutomationInstrument.xrplugin/Contents/Resources/
 Automation.tracetemplate'

344 | Chapter 10: Testing and Release

 -w '{device-uuid}'
 -e UIASCRIPT '/path/to/project/tests/allTests.js'
 -e UIARESULTPATH '/path/to/projet/test-results/'

Path to Automation template.

Device UUID or simulator identifier. Execute instruments -s to get a list of
simulators.

Path to the UI Automation JavaScript file.

Folder where the test results will be saved.

Dependency Isolation
When running unit tests, it is always advisable to isolate and mock the dependencies.
This lets your tests get away with any variations related to the dependencies.

When running functional tests, OCMock is not available. As such, you cannot use the
usual mocking frameworks. When running functional or performance tests, you will
need to make those subsystems pluggable to be able to reset the state before each test
and to isolate any variations due to networking, Core Data operations, and so on.

We introduced an HPSyncService, earlier (in Example 4-11) that was central to sync‐
ing data with the server. All we need to do now is to make it configurable so that
sharedInstance returns an object that returns the results for a given scenario.

There are two approaches to this:

• Create a subclass that returns appropriate data for the scenario under test. Then,
either use method swizzling or create a method setSharedInstance to direct all
operations to an object of this subclass.
The advantage of this approach is that all operations happen in-process and
everything is under your control.

• Create a server that returns data for a specific scenario. Let’s call it the scenario
server. Before running the test case, configure the server against the scenario to
be tested.
The advantage of this approach is that it requires only a minimal configuration
change to the app, namely the hostname/IP address to connect to.
Note that the server can be an embedded in-process server. For an embedded
HTTP server, you may want to use CocoaHttpServer.

Both these approaches require a custom binary using a build target or scheme. In the
former case, there will be a lot of custom code for various scenarios and a need for a

Dependency Isolation | 345

https://github.com/robbiehanson/CocoaHTTPServer

custom scheme that builds using extra code and data for individual scenarios. In the
latter case, the server’s IP address needs to be configured appropriately, which can be
set for debug builds using simple preprocessor macros.

Additionally, the UI Automation runtime does not have an API to talk to the scenario
server. This is where you will need higher-level frameworks like Appium or Calabash.

Calabash uses Ruby. If you plan to use it, learn Ruby. It also
requires a custom target that runs the Calabash server.
Appium, however, can work with a variety of languages and also
does not require a custom target. It uses the WebDriver protocol to
talk to the app.

Example 10-9 shows representative code that you can use to configure the scenario
server based on the build configuration and execute your test cases.

Example 10-9. Using a scenario server to serve scenario-driven responses

//HPSyncService.m

#define MACRO_STRING_(msg) #msg
#define MACRO_STRING(msg) MACRO_STRING_(msg)

#ifndef HP_CUSTOM_REMOTE_SERVER
NSString *host = @"https://my-real-server.com";
#else
NSString *host = @MACRO_STRING(HP_CUSTOM_REMOTE_SERVER);
#endif

//someTest.js for Appium - using Chai/Mocha style
describe("login", function() {
 before(function() {
 //configure the WebDriver
 });

 after(function() {
 //shut down the WebDriver
 });

 it("should succeed with valid credentials", function() {
 http.get('scenario-server.com/setup?scenario_id=valid_login'
 + '&client_id=some-unique-id');
 driver.elementByName('username').text('testuser');
 driver.elementByName('password').text('testpass');
 driver.elementByName('Login').click();

 driver.waitForElementByName('profileImage').should.be.ok;

346 | Chapter 10: Testing and Release

http://appium.io
http://calaba.sh
http://bit.ly/appium-lang

 });
});

A helper macro to concatenate literals.

Check if a remote server has been defined.

If no remote server has been defined, use the default (production).

If a remote server has been defined, use that.

Functional test using Appium and JavaScript.

The test suite. This suite tests all login scenarios.

The before and after methods for the suite are called once per suite. Use befor
eEach and afterEach to configure before and reset after each test case.

it defines one test case, and one scenario.

Configure the scenario server to respond using a specific scenario. http is the
HTTP module. The URL to the server is only indicative, but you get the idea.

Set up the app’s UI. The elementByName method searches for a UIView object
with the given accessibilityIdentifier.

Verify that the profileImage has been loaded.

Example 10-9 is only representative code, but it should help you speed up writing
functional test cases.

Testing and Component Design
Testing and the testing framework may impact component design.

As an example, the instrumentation subsystem may be a singleton and will have
abstracted out several configuration steps. And rightly so. However, when you want
to test, you will want it to be customized to use a test-app ID rather than mess up
production app analytics. Also, for unit testing, you may want to reset all initializa‐
tion, which in a real app is done only once. As such, you want your component to be
resettable.

For other components, like the sync service, you may want to configure them using a
different host. For each request that goes out to the scenario server, you may want to
attach a scenario ID so that the server can respond appropriately (the scenario ID can

Testing and Component Design | 347

http://apple.co/1At24WP

be added by using a custom header, say, X-Test-Scenario-ID, or modifying the
request itself).

One option is to use mocks or method swizzling. However, this requires knowing the
component internals. Also, as more methods require mocking or swizzling based on
the scenarios, this approach can soon get bloated and unmanageable.

That brings us to the second option for making all components configurable: prefer
to use resettable components or the builder pattern with dependency injection (DI).

A resettable component means that either the component is not singleton, so that it
can be created multiple times without any side effects, or, if it is a singleton, along
with the sharedInstance method there is either a setSharedInstance or a tearDown
method that can be called after each test case to reset the shared state. This method
may be declared in a private header file that is not distributed to the developers using
the class or the SDK.

If the component has a few dependencies, it should not use them directly by creating
an instance or using a singleton but should instead provide a custom initializer or use
the builder pattern where the dependencies can be injected.

For instance, instead of writing code like that shown in Example 10-10, prefer using
code similar to what is given in Example 10-11.

Example 10-10. Dependency without injection

-(instancetype) init {
 if(self = [super init]) {
 self.logger = [Logger sharedInstance];
 self.instrumentation = [Flurry sharedInstance];
 }
 return self;
}

Example 10-11. Dependency with injection

-(instancetype) initWithLogger:(Logger *)logger
 instrumentation:(Flurry *)flurry {
 if(self = [super init]) {
 self.logger = logger;
 self.instrumentation = flurry;
 }
 return self;
}

If you have dependencies on other systems, you may want to create wrappers. This
helps in completely mocking out the dependencies during testing. It may also help
you in creating replaceable dependencies. For example, instead of taking Flurry as a

348 | Chapter 10: Testing and Release

dependency (as shown previously), define a protocol (say, Instrumentation) with
appropriate methods. In production, you may create an implementation for Flurry
named FlurryInstrumentation. Tomorrow, if you switch to MixPanel, you can cre‐
ate another implementation, MixPanelInstrumentation.

The protocol Instrumentation may be defined as follows:

@protocol Instrumentation <NSObject>

-(void)logEvent:(NSString *)eventName params:(NSDictionary *)params;

@end

In short, when you want to make your code and app testable and want more automa‐
ted test cases than manual, you need to think about the component design ahead of
time. It is possible that the app and component designs may be impacted by the
choice of testing framework you intend to use, so choose carefully and plan well in
advance.

Continuous Integration and Automation
Continuous integration (CI) is all about keeping the code sane and making sure that
builds are up to date.

A typical development cycle (see Figure 10-19) involves developers writing code that
is pushed to a version control system (e.g., Git or Mercurial). Each commit triggers
the build pipeline, followed by all tests (unit, functional, performance, integration,
etc.). The functional tests may run on a simulator or a variety of devices. For example,
when testing a memory- and CPU-intensive game, you want to not only test it on an
iPhone 6 Plus running iOS 8.x but also an iPhone 4S running iOS 7.x. A successful
execution of all tests will result in the binary being distributed internally for manual
testing of the cases that could not be automated. If everything is good, the QA team
may certify the build for release/publishing to the App Store.

Continuous Integration and Automation | 349

Figure 10-19. Continuous integration

In addition to automated unit tests and integration tests, CI will run on build servers
and execute processes that run additional static and dynamic code analysis, measure
and profile performance, create documentation from the source code, and facilitate
manual QA processes.

There are several open source, commercial, and hosted solutions that will help you to
implement CI for your app. Of the available options, I recommend using Travis or
Jenkins.

Travis is a commercial solution with a free plan for open source projects hosted on
GitHub. Setup is a breeze—all you have to do is add a Travis configuration file with
references to the workspace/project file, scheme, and iOS version, and point the
Travis build engine to the repo.

Travis uses xctool to build the project and execute tests, and provides integration for
CocoaPods for project dependencies.

The downside of using Travis is that it may not provide the complete matrix of device
and OS combinations. At the time of writing, for real devices, it provides support
only for iOS 8.1.

Jenkins, on the other hand, is an open source, general-purpose job execution pipeline
with a primary focus on building and testing software projects continuously and
monitoring execution of externally run jobs such as cron, procmail, and so on. You
will need the Xcode plug-in to build iOS apps.

The upside of using Jenkins is that you are in total control of the pipeline. You can
choose to use the instruments command-line interface or the more advanced
xctool. You can attach the machine you’re running Jenkins on to physical devices
and run the jobs.

350 | Chapter 10: Testing and Release

https://travis-ci.com
http://jenkins-ci.org
https://github.com/facebook/xctool

4 iOS Developer Library, “About Continuous Integration in Xcode”.
5 For further details, see Stack Overflow, “Generating gcda Files to View the Code-Coverage from XCTests in

iOS with Jenkins”.

Continuous integration is a large topic in itself and requires a separate discussion. For
more information on Jenkins, check out John Ferguson Smart’s Jenkins: The Definitive
Guide (O’Reilly).

You should also explore Xcode Server as an option for continuous integration.4

Because xcodebuild generates coverage and other intermediate
files in the derived data folder of the project and its information is
available only during build time, it needs extra steps to integrate
with the CI tool.
For Jenkins, you can do the following:5

1. In Xcode, add a build phase that will copy the derived data
path to a predetermined file.

2. In Jenkins, add a build step to use this folder to generate the
coverage. Use XML format.

Best Practices
As with everything else, unit testing also has a few best practices to follow. After all,
it’s code to test another piece of code (don’t ask who will test the test cases).

When writing unit tests, you should follow these best practices:

• Test all code, including all initializers.
• Test against all combinations of the parameter values.

For example, if a method accepts three parameters and each parameter can have
two variants in values (invalid and valid, for simplicity), you should have 2 × 2 ×
2 = 8 test cases in total. Well, there are 8 scenarios at the end.
You can get the data from a central database or generate random data to cover
various scenarios. Using this technique of a combination of human-crafted and
machine-generated data is more formally known as fuzzy testing.

• Do not test private methods. Consider the method being tested as a black box.
• Prefer to stub out any external dependencies. This ensures that you can drive var‐

ious scenarios easily.
• Set up the state before each test run and clear it after execution.

Best Practices | 351

http://apple.co/1Kt4iXu
http://bit.ly/gen-gcda
http://bit.ly/gen-gcda
http://bit.ly/jenkins-tdg
http://bit.ly/jenkins-tdg

Ensure that the outcome of one test case does not impact another.
• Each test case should be repeatable. Identical inputs should yield identical results.
• Each test case must have assertions to validate or invalidate the code being tested.
• Enable code coverage for the complete run. This gives you a glimpse of what code

has been tested and what has not, and which components have better coverage
and which need focus.

In addition to these guidelines, you should also not forget to apply all the other best
practices of writing code. Unit tests are code too.

Now apply the same best practices to functional testing as well. The only difference
here is that instead of testing a method in a class, you are now writing a test case to
test a business use case, a user scenario.

Additionally, for functional testing, you should test various device and OS combina‐
tions. For example, test an iPhone 5S running iOS 7 as well as an iPhone 4S with iOS
8.3 and an iPhone 6 with iOS 8. The more combinations you can test, the better
device coverage your functional tests will have, which will ultimately ensure that your
app has accounted for various hardware- and OS-related scenarios.

Performance Testing
In the pursuit of testing functional aspects of the code, we tend to forget testing its
qualitative aspects, especially performance.

Sadly, as of today, there is very little focus on app performance testing per se. Large
companies invest quite heavily in performance. There are a bunch of toolkits and
libraries available to test the server-side performance, but none for testing client-side
performance. A quick web search for the phrase “ios app performance testing” will
result in a lot of irrelevant ads.

Most companies create in-house tools to measure and improve performance. The
best tool you have for this is Instruments. Use it to do memory, CPU, and energy
profiling; identify memory leaks; and so on. But when you want to test performance
at the unit level, you will have to write custom code.

XCTest does provide the measureBlock method to do basic performance testing of
any block. But then, the reports from the test cases are only for pass/fail and coverage.
The report generators do not account for performance aspects of method execution.

Even if you do measure performance when running unit tests, you may or may not
get real numbers depending upon how the dependencies have been mocked.

In a nutshell, to test performance of your code, you will have to write custom code
specific to what you want to measure.

352 | Chapter 10: Testing and Release

To compute execution speed, you can use a simplistic timer. Example 10-12 provides
a timer that you can use to time execution. The timer supports nesting so as to be
able to identify bottlenecks in the call stack.

Example 10-12. Timer to track execution speed

@interface HPTimer

+(HPTimer *)startWithName:(NSString *)name;

@property (nonatomic, readonly, assign) uint64_t timeNanos;
@property (nonatomic, readonly, copy) NSString *name;

-(uint64_t)stop;
-(void)printTree;

@end

@interface HPTimer ()

@property (nonatomic, strong) HPTimer *parent;
@property (nonatomic, strong) NSMutableArray *children;
@property (nonatomic, assign) uint64_t startTime;
@property (nonatomic, assign) uint64_t stopTime;
@property (nonatomic, assign) BOOL stopped;
@property (nonatomic, copy) NSString *threadName;

@end

@implementation HPTimer

+(HPTimer *)startWithName:(NSString *)name {
 NSMutableDictionary *tls = [NSThread threadDictionary];
 HPTimer *top = [tls objectForKey:@"hp-timer-top";

 HPTimer *rv = [[HPTimer alloc] initWithParent:top name:name];
 [tls setObject:rv forKey:@"hp-timer-top"];

 rv.startTime = mach_absolute_time();
 return rv;
}

-(instancetype)initWithParent:(HPTimer *)parent
 name:(NSString *)name {
 if(self = [super init]) {
 self.parent = parent;
 self.name = name;
 self.stopped = NO;
 self.children = [NSMutableArray array];
 self.threadName = [NSThread currentThread].name;

Best Practices | 353

 if(parent) {
 [parent.children addObject:self];
 }
 }
 return self;
}

-(uint64_t)stop {
 self.stopTime = mach_absolute_time();
 self.stopped = YES;
 self.timeNanos = [HPUtils
 nanosUsingStart:self.startTime end:self.stopTime];

 NSMutableDictionary *tls = [NSThread threadDictionary];
 [tls setObject:self.parent forKey:@"hp-timer-top"];

 return self.timeNanos;
}

-(void)printTree {
 [self printTreeWithNode:self indent:@""];
}

+(void)printTreeWithNode:(HPTimer *)node
 indent:(NSMutableString *)indent {
 if(node) {
 DDLogDebug(@"%@[%@][%@] -> %lld", indent, self.threadName,
 self.name, self.timeNanos);
 NSArray *children = node.children;
 if(children.count > 0) {
 indent = [indent stringByAppendingString:@" "];
 for(NSUInteger i = 0; i < children.count; i++) {
 [self printTreeWithNode:[children objectAtIndex:i] indent];
 }
 }
 }
}

@end

//Usage
-(void)someMethodA {
 HPTimer *timer = [HPTimer startWithName:@"method-A"];
 [obj someMethodB];
 [timer stop];
 [timer printTree];
}

//in some other place
-(void)someMethodB {
 HPTimer *timer = [HPTimer startWithName:@"method-B"];
 //do stuff

354 | Chapter 10: Testing and Release

 [timer stop];
 //optionally, printTree
}

The public API of the class, HPTimer.

startWithName creates a marker, a new timer context.

The timer context is local to the thread. Once created, the timer can be stopped,
in our implementation, from any thread. The implementation can be changed to
not make the timer thread sensitive and/or to restrict the usage of the stop
method to the thread where the timer was created.

Initialization—this sets up the call hierarchy tree for visualization later.

We use the helper method that we created earlier to compute the time difference
in nanoseconds.

Pop the current timer from the thread-local storage (TLS).

Pretty-print the timer tree.

To use the timer, call the startWithName: method. Give the timer a meaningful
name.

After execution, call stop.

Print the time taken to execute, including any nested timers.

In a nested method call, create another timer.

Stop the timer, as before.

You may or may not print the nested call tree.

Summary
Testing your app is as important as implementing it. Unit testing helps you test at the
finest level, while functional testing monitors your app in a real execution environ‐
ment. Enabling code coverage is a recommended step, as this helps you keep a check
on what parts of the code have been left untested.

Continuous integration is an integral part of the overall release cycle today. Automa‐
ted testing eases the job of the engineering team, especially when integrated with the
CI process. This helps avoid any manual errors in application testing.

Summary | 355

With this background on testing and continuous integration, you are now ready to
make quality an integral part of your app development and build and release process.
Minimizing any human intervention cuts down on errors creeping in and frees up
the quality assurance team to perform other tasks.

356 | Chapter 10: Testing and Release

CHAPTER 11

Tools

Now that we have reviewed most of the important aspects of implementing efficient
and performant apps, in this chapter we explore a few tools to help analyze and debug
various issues.

In the previous chapter, we learned that the validity and isolated functional perfor‐
mance of the app can be tested using code. However, specialized tools are required to
analyze certain tasks. Some of these tasks include:

• Identifying and verifying accessibility tags
• Analyzing runtime execution performance of the app in terms of resource uti‐

lization
• Analyzing network and Core Data usage
• Analyzing rendering performance
• Performing user interactions through automated code
• Analyzing crash logs

There are many tools available, but we will focus on the following ones in this chap‐
ter:

• Apple’s Accessibility Inspector
• Apple’s Xcode Instruments
• Square’s PonyDebugger
• XK72’s Charles

Let’s start with Accessibility Inspectors.

357

Accessibility Inspector
To reach a larger audience and to win accolades, you should make your app accessi‐
ble. In addition, you might be legally required to make your app accessible. For exam‐
ple, in the United States, Section 508 may require your entire app (or certain parts of
it) to be accessible. In other cases, the target audience may dictate the requirements
(e.g., a travel or medical app should be accessible).

Each UIView (or its subclass) object can be provided an accessibilityLabel and
accessibilityHint, apart from several other attributes. These values control what is
provided to people with disabilities.

The accessibilityLabel provides the help text that is presented to the user. For
example, it may be read aloud when VoiceOver is enabled. The accessibilityHint
provides additional information about the UI element in case the accessibilityLa
bel does not suffice.

To analyze the app for the correct values, use an Accessibility Inspector.

Accessibility Inspectors provide accessibility information about each element in an
app. There are two inspectors available: the first is integrated with Xcode for Mac OS
X, and the second is available in the iOS Simulator.

To launch it from Xcode, navigate to Xcode → Developer Tools → Accessibility
Inspector. To start the inspector in the Simulator, launch the Settings app, go to Gen‐
eral → Accessibility, and turn on Accessibility Inspector (see Figure 11-1). Note that
in both cases, you can only test simulator.

358 | Chapter 11: Tools

1 This is a discrepancy in the tool vis-à-vis the documentation. It is documented as accessibilityLabel in
AppleKit. See the Mac Developer Library.

Figure 11-1. Starting the Accessibility Inspector in Xcode (left) and iOS Simulator (right)

Xcode Accessibility Inspector
The Accessibility Inspector built into Xcode is meant to provide accessibility details
for any app running on Mac OS X. However, for most of the common elements, it
works just as well with iOS Simulator. After all, Simulator is rendered natively on
OS X.

Figure 11-2 shows the Xcode Accessibility Inspector in action. In the figure, the high‐
lighted element is the button with label “Permissions (Tap to Request)”. Notice in the
Inspector that the accessibilityTitle1 property’s value is the same as that of the
UIButton’s titleLabel property. For a UILabel, it is the value of its text property.

A custom UI element must provide its own accessibilityLabel.

Accessibility Inspector | 359

http://apple.co/1MnmG46

Figure 11-2. Inspecting iOS Simulator using the Xcode Accessibility Inspector

iOS Accessibility Inspector
When you turn on the Accessibility Inspector in the iOS Simulator, you will see a
floating window (see Figure 11-3).

360 | Chapter 11: Tools

Figure 11-3. iOS Simulator—Accessibility Inspector: collapsed

If you tap the X icon and then tap on any UI element, the Inspector will show the
accessibility info of the element. If you look at Figure 11-4, after the button was tap‐
ped (part 1 in the figure), the Inspector shows the accessibilityLabel (shown as
Label in part 2) and the bounds. Along with this, it also shows the Traits value,
which indicates how the accessibility element behaves or should be treated. It is con‐
figured using the accessibilityTraits property.

Accessibility Inspector | 361

http://apple.co/1HLcHl1
http://apple.co/1JrQJb6

2 Use the elements property of any UIAElement object, specifically the UIAWindow object representing the main
window of the topmost app. See the iOS Developer Library.

Figure 11-4. iOS Simulator—Accessibility Inspector: expanded

The Accessibility Inspector helps you to perform a quick accessibil‐
ity analysis of the app.
Use UI Automation to automate testing for accessibility properties
associated with each element2 in the UI.

362 | Chapter 11: Tools

http://apple.co/1eQy25x

Instruments
Instruments is the de facto tool for most of the diagnosis, profiling, and analysis of
the app at runtime. We looked at this tool briefly when we explored functional testing
in the previous chapter.

It is now time to explore it in depth. Instruments can be launched from within Xcode
by navigating to Xcode → Open Developer Tool → Instruments, as shown in
Figure 11-5.

Figure 11-5. Launching Instruments from within Xcode

This will open a menu displaying a variety of templates that you can choose from, as
shown in Figure 11-6. The Instruments bundled with Xcode 6.3.2 comes with about
20 different trace templates that help diagnose apps and devices from various per‐
spectives.

Instruments | 363

Figure 11-6. Instruments—template chooser

After selecting a template, you can start profiling immediately by
pressing the Alt/Option key, which will change the Choose button
to Profile.

We will look into some of the more interesting and important templates here. For
details on each template, see the “Instruments User Guide” in the iOS Developer
Library.

Using Instruments
After opening a template, you will notice the Instruments window with appropriate
tracker(s) already configured. You may want to add more items to track. Any item is
formally known as an instrument.

This can be confusing. Instruments is the name of the tool. Instru‐
ment is the name for each item to be monitored. For example,
“CPU” is an instrument, and so is “network.” The name of the tool,
hence, is appropriately chosen to be Instruments.

Using Instruments to profile an app and improve its performance is comprised of the
following steps:

364 | Chapter 11: Tools

http://apple.co/1RO7a6b

1. Open a template. You can use a predefined template or start with a blank tem‐
plate.

2. Optionally, add instruments.
3. Profile the app. This may start the app if required.
4. Collect data.
5. Analyze the data.
6. Update the app, if necessary.
7. Repeat until satisfied with the app’s performance.

If you select the Blank template, you will see an empty Instruments window. Other‐
wise, there may be preselected instruments based on the template chosen.

Click the Library icon for the window that lists available instruments. You can then
select one or more instruments to track. See Figure 11-7 for the main window refer‐
ence; Figure 11-8 shows the instrument selector in the Library window.

Select the app to profile using the Target section. The Record button starts app profil‐
ing. Use the Pause/Resume button to pause or resume recording. Once complete,
press the Stop button.

The lower-right section of the main window is the Inspector pane, where you config‐
ure the record and display settings.

The lower-left part of the window, the Detail pane, shows the data related to the
instrument selected in the upper half.

Figure 11-7 shows the main window of the Instruments tool. Let’s take a closer look at
the various options shown in the screenshot:

1. Library icon (opens the instruments list, as shown in Figure 11-8)
2. Target selector (either select an individual app or the device; you can only select

an app installed using one of the developer profiles available on your host Mac
OS X device)

3. Record, Pause, Resume, and Stop buttons
4. Inspector pane
5. Inspectors: Record Settings, Display Settings, and Extended Detail
6. Instrument selector
7. Recording graph over time
8. Detail pane that shows details based on the instrument selected

Instruments | 365

Figure 11-7. Instruments main window

Figure 11-8. Instruments Library/instrument selector window

366 | Chapter 11: Tools

Activity Monitor
The Activity Monitor trace template monitors overall device activity (namely, CPU,
memory, disk, and network). Use this to identify any excessive use of these resources
in the app. Specifically, any surge for a long duration can be a cause of worry.

If a surge in use is found, it must be further diagnosed with other instruments.

This template can be used to collect a lot of device-level statistics. Before starting
profiling, select the Record Settings in the Inspector pane and select the statistics that
you are interested in collecting.

Figure 11-9 shows some of the available statistics. The section “Select statistics to list”
(at the bottom) shows all the items that can be monitored, while “System statistics”
(the second section from the top) displays the items that have been selected along
with legends for the graph.

At the end of profiling, you should see results similar to those shown in Figure 11-10.

The top section shows the statistics over time. In Figure 11-10, it shows the Total
Threads, % User Load, % Total Load, and % System Load statistics selected in
Figure 11-9.

Because the Activity Monitor works at device level, the pie chart and line graphs
shown in the Detail pane are snapshots. It shows four charts:

% CPU
Top 5 apps consuming maximum CPU.

CPU Time
Apps running for the longest duration. This section is generally worthless
because the system apps will take the top slots.

Real Memory Usage (pie chart)
Top 5 apps in terms of total memory usage. You do not want your app to be in
this list for an elongated duration.

Real Memory Usage (line graph)
This also visualizes the top 5 apps in terms of total memory usage, but in a line
chart format.

Instruments | 367

Figure 11-9. Activity Monitor statistics selector

368 | Chapter 11: Tools

Figure 11-10. Instruments—Activity Monitor

Allocations
The Allocations trace template helps identify abandoned memory in the app. Aban‐
doned memory is memory that has been allocated but is not needed anymore; it still
can be deallocated.

Technically, abandoned memory is still legal because it is referenced by some part of
the app—it’s just that it is never actually used. Essentially, this is a memory leak, and
you do not want that in the final release.

Allocating memory once and never using it may not be a big issue if the memory
usage is not high. However, if the allocation is repetitive, it will all add up, resulting in
memory hogging and leading to an app crash.

Examples include unfinished features that allocate memory for the feature object but
do not ever use it. This is a trivial example, and it is far more complex to identify such
scenarios in the real world.

Follow these steps to identify abandoned memory:

Instruments | 369

1. Choose the Allocations template to profile the app.
2. Identify an initial state to test.
3. Execute the steps that will take your app from the initial state to another and

back.
For example, the steps might be to log in, interact with the app, and then log out.
In the case of a news app, you might go to a specific category, read an article, and
then go back to the category screen.

4. Click the Mark Generation button in Display Settings (see Figure 11-11) to take a
heap snapshot.

Figure 11-11. Allocations—Mark Generation button

5. Repeat steps 3 and 4 multiple times.
6. Analyze the objects captured in the snapshots to locate the abandoned memory.

On completion, you will have data similar to that shown in Figure 11-12.

370 | Chapter 11: Tools

Figure 11-12. Allocations—summary

In Figure 11-12, the Allocations instrument shows a steady increase in memory usage
over time (see the graph on the top). When the Mark Generation button is tapped, it
creates snapshots that are available as Generations. The Details pane shows five gen‐
erations, Generation A through Generation E.

In this specific case, generations B through E show a steady increase of about 9.5 MB
each. On expanding Generation B, we can see that a strange <non-object> entry
takes up over 99% of the extra memory. In a typical memory analysis, this may be
hard to debug since its type is unknown and as such we may never know what to look
for.

Clicking the arrow next to the item shows the details of the <non-object> allocation
(see Figure 11-13).

Of all the <non-object> memory allocations, the one that we are interested is the one
that contributes significantly to the extra memory consumed. In Figure 11-13, the
data is sorted by Size in descending order. The first item shows that the memory was
allocated in the method -[TrashCan init], reflected in the Responsible Caller col‐
umn. The Extended Detail view in the Inspector pane on the right shows the com‐
plete stacktrace during the call, which reveals the call tree as given in Example 11-1.

Instruments | 371

Figure 11-13. Allocation—details

Example 11-1. Stacktrace

malloc_zone_malloc
malloc
-[__NSArrayM insertObject:atIndex:]
-[TrashCan init]
-[HPChapter17Tools_02AllocationsViewCon...]
-[UIApplication sendAction:to:from:forEvent:]

The stacktrace reveals that an event was intercepted in the app that called a method in
HPChapter17Tools_02AllocationsViewController that called the -[TrashCan

init] method.

This is very useful information that can now help us fix the app.

Leaks
The Leaks trace template helps analyze general memory usage and checks for mem‐
ory leaks—something that you will definitely want to safeguard your app against. It
also provides statistics on object allocations by class as well as memory address his‐
tories for all active allocations and leaked blocks.

372 | Chapter 11: Tools

The Leaks template is comprised of the Allocations and Leaks instruments. We stud‐
ied the Allocations instrument in the previous section.

The Leaks instrument finds memory references that are unreachable. Memory alloca‐
ted for the Objective-C classes is reported with their names, whereas other references,
like C structs, are reported as anonymous entities and appear in the report as
Malloc-size.

Using the Leaks template is pretty straightforward. Just start it and it will start collect‐
ing the data.

Figure 11-14 shows results from a run that shows several memory leaks in the app.

Figure 11-14. Leaks—objects and stacktrace

The Leaks instrument shows a few red bars at the top of the display. Those are the
moments when the leaks happened. The higher the bar, the larger the leak. The Detail
pane lists which objects leaked, with their total leak count and the size of the overall
memory leak. The Extended Detail view in the Inspector pane shows the stacktrace,
which is useful for debugging the app.

Instruments | 373

In a real-world app, catching memory leaks is a very tedious pro‐
cess and may require several hours of testing.
As a practice, continue to check for memory leaks for every update
to the code. Divide your app into logical sections and run Leaks on
each section.

Network
The Network trace template helps analyze network bandwidth connections made by
the app. Excessive use of network, connections to multiple domains, downloading
identical content multiple times, and using insecure connections are some of the con‐
cerns that, if found, must be addressed.

The template is comprised of the Connections instrument. Figure 11-15 shows results
from using the Network trace template. The Details pane provides the details that you
will need to debug network usage. It shows the remote address (hostname if reverse
DNS is available), amount of data transferred, average and minimum roundtrip time,
and other details.

Figure 11-15. Network—Connections

Time Profiler
The Time Profiler trace template captures stacktrace details at regular intervals (sam‐
pling). It is comprised of one instrument of the same name.

374 | Chapter 11: Tools

As you interact with the app, it can record the number of times a method was on top
of the stack. You can use this number to identify which methods are either being
invoked several times or taking up a lot of the execution time. If a particular method
was on the top in 100 out of 1,000 samples, it is fair to assume that it takes approxi‐
mately 10% of the overall execution.

If a method is found to be under execution for large part of the app, it may be a cause
of worry. The reasons may range from a need for continuous user interaction to
excessive processing being done by the app. Depending upon the app, it may be an
area of concern. For example, a gaming app may require continuous user interaction,
but a utility app may not. Similarly, a video or running animation may be expected to
perform excessive processing, but a mail app may not be.

Figure 11-16 shows data captured using the Time Profiler trace template.

Figure 11-16. Time Profiler

In Figure 11-16, the stacktrace reveals that -[HPMeasurableView layoutSubviews]
may be a possible culprit if the app is running slowly.

Xcode View Debugger
As more functionalities are added in an app and as the UI becomes more sophistica‐
ted, it not only adds complexities in design and implementation but also impacts ren‐
dering performance. As the rendered view hierarchy becomes more nested (or as the

Xcode View Debugger | 375

number of views in the hierarchy increases), the more time it takes to render, update,
or apply animations, including showing options for a UIPickerView or scrolling in a
UIScrollView or UITableView.

Xcode’s view debugger helps you look at the view hierarchy when the app is running.

The view debugger can be activated by clicking the Debug View Hierarchy button in
the Debug area toolbar. On clicking, the main thread is suspended and the primary
view area in Xcode shows the current snapshot of the view hierarchy. You can drag
around the snapshot to see a 3D perspective, as shown in Figure 11-17.

Figure 11-17. Xcode view debugger—view hierarchy

376 | Chapter 11: Tools

If you click on any UI element in the view hierarchy and open the Utilities area, you
should be able to get more details about the view (see Figure 11-18).

Figure 11-18. View Debugger—details

PonyDebugger
When using the Xcode view debugger, the main thread is suspended when the debug‐
ger is in action. As such, you cannot track the view hierarchy without pausing an
ongoing animation.

PonyDebugger is a remote debugging toolset from Square Inc. that solves this prob‐
lem. In addition, the device does not have to be physically connected to the develop‐
ment machine.

It is comprised of two components:

• A gateway server that forms the bridge between the app and the developer’s view
• A client that connects to the gateway server

The gateway server is written in Python and can be installed using the commands
given in Example 11-2.

PonyDebugger | 377

https://github.com/square/PonyDebugger

Example 11-2. Installing the PonyDebugger gateway server

$ curl -s \
https://cloud.github.com/downloads/square/PonyDebugger/bootstrap-ponyd.py | \
 python - --ponyd-symlink=/usr/local/bin/ponyd ~/Library/PonyDebugger
$ ponyd serve --listen-interface=192.168.0.1

Download and install the ponyd daemon.

Start the server. Use the IP address of your development machine. Configure the
port using the --listen-port argument. It binds to 127.0.0.1:9000 by default.

Browse to http://192.168.0.1:9000 to see the list of devices connected. You should see
output similar to Figure 11-19.

Figure 11-19. PonyDebugger—browsing the gateway server

The client API is available via CocoaPods for integration in the app. The name of the
Pod is PonyDebugger. Example 11-3 provides representative code to integrate it in the
app.

378 | Chapter 11: Tools

Example 11-3. PonyDebugger—client API

#import <PonyDebugger/PonyDebugger.h>

-(void)setupPonyDebugger {
 PDDebugger *debugger = [PDDebugger defaultInstance];
 [debugger connectToURL:
 [NSURL URLWithString:@"ws://192.168.0.1:9000"]];

 [debugger enableRemoteLogging];
 [debugger enableNetworkTrafficDebugging];
 //[debugger forwardAllNetworkTraffic];
 [debugger enableViewHierarchyDebugging];
 [debugger enableCoreDataDebugging];
}

Helper method to set up the client. Call this from the method application:did
FinishLaunchingWithOptions: before any network call happens.

PDDebugger is the object to configure.

The URL to connect to. Must be ws (WebSocket protocol).

Allows logs to be logged to the gateway. To enable logging, use the method PDLog
instead of NSLog.

Enables network logging, by swizzling NSURLConnectionDelegate classes.

To let PonyDebugger find all such classes, use this method.

Allows viewing the view hierarchy from the gateway.

Allows viewing Core Data objects from the gateway. At the time of writing, it
does not support updating records.

Because using PonyDebugger can leave your app open to all inter‐
ceptions, enable it only in development/debug builds.

Once connected to the device, the browser shows data for all sections that have been
enabled.

The Elements tab shows the view hierarchy. Expanding the tree and selecting a node
highlights the corresponding view in the app. Figure 11-20 shows a UITextField

PonyDebugger | 379

selected in the browser on the left and the corresponding view highlighted in the app
on the right.

Figure 11-20. PonyDebugger—view hierarchy

In Figure 11-21, you can see the Network tab, which shows the list of all network
requests in chronological order after app start. A few important things to keep in
mind:

• The different domains to which connections are made
• Time taken for individual responses
• Data transferred for individual requests

Note that because the tool intercepts NSURLConnection delegate callbacks, it can han‐
dle only http and https requests. If you have connections using raw sockets or other‐
wise, PonyDebugger does not intercept them.

You can click on a request in the Network tab and get details of the specific request,
similar to what is shown in Figure 11-22. You can see the request and response head‐
ers, response data, and any cookies sent and received. For POST or PUT requests, you
can also see the request body.

380 | Chapter 11: Tools

Figure 11-21. PonyDebugger—Network: viewing all requests

Figure 11-22. PonyDebugger—Network: debugging a single request

PonyDebugger | 381

The Console shows the messages logged using calls to the NSLog method (see
Figure 11-23). NSLog writes messages not only to the Xcode console during debug‐
ging, but also to the Apple System Logger (ASL). ASL calls are expensive because they
require interprocess communication (IPC). In addition, the data logged is available
through Xcode in non-debug builds, including when the app is installed from the
App Store. Logging sensitive information, such as private keys or passwords, can pose
security therats. Watch out for any such data in the log.

Figure 11-23. PonyDebugger—Console: remote logging

Using PonyDebugger’s gateway server to monitor and analyze data is fairly straight‐
forward. And because it is open source, you can update the code to hook into the
socket to analyze data to automate testing.

Charles
The Charles proxy server from XK72 is a tool to monitor and manage http and
https requests.

We briefly introduced this tool in “Charles” on page 245, but we will now discuss it in
more depth.

The tool can record all the requests under what it calls a session. So, a session can have
multiple requests. You can start or stop the recording by navigating to Proxy → Start
Recording or Proxy → Stop Recording, respectively.

Each session can be provided with an inclusion and/or exclusion list of URLs that can
be configured by navigating to Proxy → Recording Settings and selecting the Include
or Exclude tab, respectively, as shown in Figure 11-24. A URL will be included in the
session if either the Include list is empty or it is in that list but not in the Exclude list.

382 | Chapter 11: Tools

Figure 11-24. Charles—URL inclusion and exclusion lists

The URLs used in a session can be viewed in chronological order, as shown in
Figure 11-25, or in a structured format as a tree with the domain at the top and path-
separated child nodes, as shown in Figure 11-26. If you want to check the order of
requests, the first format is useful. If you want to debug requests from a specific
domain or path, the second format comes in handy.

Figure 11-25. Charles—session URLs in chronological order (Sequence)

Charles | 383

Figure 11-26. Charles—session URLs in a tree (Structure)

Using the structured format can give you a quick summary, as shown in Figure 11-26.
In addition, it is useful for the following debugging tasks:

• You can see all the requests within a domain or a specific subpath under the
domain in the Overview tab. http and https requests can be further drilled
down into. Figure 11-27 shows an overview comprised of the following:
— Requests (total requests made, completed and failed breakdown, server con‐

nects, and number of SSL handshakes)
— Total time spent, time spent on DNS resolution, time spent in making a con‐

nection to the host, and SSL handshake time (if applicable)
— Request (for POST and PUT requests) and response speeds in KBps
— Request and response sizes in KB

• For time, speed, and size data, details are available as total, minimum, maximum,
and average values, providing meaningful insights into the network requests
made by the app.

384 | Chapter 11: Tools

Figure 11-27. Charles—overview of requests and responses for a selected subpath

• The Summary tab provides the HTTP response code, content type (MIME type),
header size, body size, and time taken to complete the request for each URL
under the given subpath, as shown in Figure 11-28.

Figure 11-28. Charles—summary of all individual requests for a selected subpath

Charles | 385

• The Chart tab provides graphical insights into the data related to the timeline,
size, duration, and content type:

1. The Timeline subtab shows relative time when the individual requests were
made and how much time was spent making the connection, waiting for a
response, and receiving the response (counting from the first byte received).
This is shown in Figure 11-29. This data can be used to identify slow URLs or
domains that take a long time to connect or respond.

Figure 11-29. Charles—relative timeline of requests for a selected subpath

2. The Sizes subtab shows a histogram of the response sizes, sorted with the larg‐
est on top (Figure 11-30). This data can be used to optimize response sizes or
identify a need to increase server capacity or add edge servers for cached con‐
tent.

386 | Chapter 11: Tools

Figure 11-30. Charles—response sizes for the requests for a selected subpath

3. The Duration tab (Figure 11-31) provides response times for each request, sor‐
ted with the longest on top. This data can be used to identify slow requests/
URLs and optimize the server accordingly.

Figure 11-31. Charles—response times for the requests for a selected subpath

Charles | 387

Charles is an exhaustive tool for monitoring networking from the app. It not only
enables you to identify all the requests made, but also to drill down into individual
requests to identify any bottlenecks in terms of time and size.

Summary
Tools are a developer’s helping hand. When you use inline code to measure parame‐
ters such as memory and CPU usage, you may not get a true picture because the code
will also use resources. Tools provide a nonintrusive option for measuring various
aspects of performance.

With Apple’s Accessibilty inspector, you can test the correctness of the accessibility-
related attributes of the app.

With Instruments, you can monitor performance parameters such as memory used,
check for possible memory leaks, see the view hierarchy and its complexity, and
more. Any peak or trough in the related graphs should be an area of concern. Simi‐
larly, an ever-increasing memory-used graph is an indication of potential memory
leaks.

Use PonyDebugger when you want to monitor and debug the view hierarchy without
pausing the app execution. It can also help you monitor Core Data usage.

Network activities can be monitored extensively using Charles, especially when you
want to test various scenarios without being intrusive to the app code.

Using tools can slow down overall testing for performance because it involves a lot of
manual steps. Still, you should use them on a regular basis to keep the state of your
app healthy.

388 | Chapter 11: Tools

CHAPTER 12

Instrumentation and Analytics

When we develop an app, the initial set of optimizations are based on best practices,
guidelines, and the data collected from developer machines and/or the lab. However,
that is only the first set of data available for analysis.

It isn’t until the app is released that we begin collecting real data across devices and
geographies that will help identify usage patterns and various scenarios that need tun‐
ing.

In Chapter 1, we looked at the parameters that we want to measure and fine-tune the
app for, including the following:

• Memory usage
• Response time
• Network usage
• Local storage

Now that we have discussed various strategies for improving the user experience, and
identified specific ways to make apps more performant, it’s time to collect data from
real users, analyze app usage, identify any bottlenecks, provide fixes and updates, and
make users happier.

This chapter is about analyzing production data collected to identify app usage trends,
user behavior, areas for improvement and optimization through instrumentation,
analytics, and real user monitoring (RUM).

389

Vocabulary
Before we proceed further, let’s look at some vocabulary that will be useful as we pro‐
gress through this chapter:

Attribute
A parameter whose value needs to be captured. Examples include app version,
OS version, location, language, memory in use, and so on.

Event
Anything that happens in the app, whether it is triggered by the user or the app
itself.

Examples of user-initiated events include logging in, watching a video, and so on.
Examples of app-initiated events include cold start, background sync, fetching
mail, and so on.

An event is a collection of attributes comprising the OS Version, device type,
time taken to cold start the app, bytes transferred in background sync, memory
used in fetching mail, and so on.

Funnel
A tool to measure how users move through a series of events.

A funnel can be used to identify usage patterns and common places of task or
app abandonment.

Instrumentation
The ability to monitor or measure the level of performance and to diagnose
errors. In the context of apps, it refers to sending corresponding events to the
server for analysis.

Source code instrumentation
Injecting code into the app to enable instrumentation.

The injected code can be handcrafted by developers or generated automatically
using tools at compile time, or you can use method swizzling to enable monitor‐
ing at runtime.

To instrument an app in production running on a user’s mobile device, source
code instrumentation is the only option. Tools such as Instruments cannot be
used because the mobile device is not connected to the development machine.
Tools such as PonyDebugger or Charles cannot be used because the mobile
device may not be in the same network as the engineering team, or might be
behind a firewall or otherwise unreachable.

Analytics
Discovery and communication of meaningful patterns in data.

390 | Chapter 12: Instrumentation and Analytics

In the context of apps, data is collected through app instrumentation.

Cohort
A group of users who share a common characteristic over a certain period of
time.

Examples of cohorts include users of the same gender, users in the same city, and
users who start using the app on a given date.

Cohort analysis
Performing analytics on the data segmented by cohorts.

Attribution
Assigning credit for sales and conversions to touchpoints in conversion paths.

A user may have multiple options to start to make a purchase or perform a task.
The attribution model dictates what option or options will get the credit and
hence the share of money spent in an ad campaign.

Real user monitoring
A passive monitoring technology that records all user interaction with the app,
sends it to the servers, and helps monitor usage, trends, and any problems.

Instrumentation
There are several techniques available for instrumentation, including binary code
rewriting, and in-place, on-the-fly, link-time, and source code instrumentation.

For our discussion, we are interested in source code instrumentation. This can help
us perform app analysis, typically from user navigation and resource usage perspec‐
tives.

We first introduced instrumentation in Chapter 1. In Example 1-2, we created the
class HPInstrumentation, which allowed us to log events (defined as occurrence or
nonoccurrence of an expected behavior).

For example, if we want to track the performance of a cache component, in its
method to retrieve a cached object, we can log either a Cache Hit event or a Cache
Miss event.

Similarly, in the case of an ecommerce app, we might want to determine which
screens the user viewed, the products that were viewed, how much time was spent on
individual products, and so on.

Conceptually, instrumentation is no different from logging, except that with instru‐
mentation the intent is to persist this data on the server for a substantially longer
duration and use it for analysis, either later using offline batch processing jobs or in
real time.

Instrumentation | 391

Let’s now look into the three phases of instrumentation, namely planning, implemen‐
tation, and deployment.

Planning
Instrumentation requires deep planning. The first step to planning is deciding
whether to use a third-party library or to build one yourself.

When you’re first starting out, it may be prudent to choose a third-party option. As
the data, volume, and feature requirements grow, you can then invest in building
your own library in-house.

Some of the popular third-party analytics SDKs for iOS include the following:

Flurry
One of the more popular SDKs. Always free. Supports WatchKit.

Mixpanel
Supports more complex features, such as A/B testing, without writing code and
surveys. Free for up to 25,000 data points per month.

Appsee
Supports interaction heat maps (see Figure 12-1) and video recordings of the app
under use. No free setup.

Upsight
Supports attribution and cohort analytics. Has free and paid editions.

Google Analytics
Offers more features from the social and ecommerce perspectives. Free for up to
200,000 hits per user per day and 500 per session. These limits apply to the pre‐
mium account as well.

392 | Chapter 12: Instrumentation and Analytics

http://developer.yahoo.com/flurry
https://mixpanel.com
https://www.appsee.com
http://www.upsight.com/analytics
http://bit.ly/google-analytics-sdk-ios

Figure 12-1. Heat map of user interaction in a view controller (image courtesy of
Appsee)

There are several more in the market, but these serve as a good starter list.

These are some of the important features you will want in the analytics engine (it is
assumed that logging an event by its name is always available and that basic data such
as device info, locale, time zone, location, network/career, etc. can always be cap‐
tured):

Extended events
Be able to add custom parameters or dimensions to any event.

Instrumentation | 393

https://www.appsee.com/features/touch-heatmaps

Cohort analysis
Use dimensions from extended events, and be able to filter and analyze against
specific values.

Timed events
Be able to time events to capture the duration.

Log all page views
Be able to instrument show/hide of view controllers.

User
Be able to set a user. That will provide the ability to track anonymous versus
logged-in events.

Transaction
Be able to provide a monetary value for a transaction. Useful in ecommerce or
apps with in-app purchases.

A/B testing
Be able to conduct experiments or A/B tests and monitor user behavior.

Real-time data
Be able to capture data in real time or near real time. Depending on the app, the
acceptable delay in reporting the latest events may range from a few minutes to a
few hours.

Security
Be able to monitor security. How secure is communication with the server, and
how secure is data on the server?

Session playback
Be able to record videos and play them back for closer app-usage monitoring or
to better identify erroneous scenarios and fix them faster.

Use this feature with caution, as this may have privacy and
legal implications. The best place to use this feature is in pri‐
vate user study sessions.
If you intend to implement this option, make sure to include a
prominent indicator to inform the user about the recording.
In addition, you’ll need to obtain explicit permission from the
user before recording.

Heat maps
Be able to generate heat maps to identify hot spots and blind spots in the app.

394 | Chapter 12: Instrumentation and Analytics

Attribution
Be able to track click as well as app-install attributions.

Campaigns
Support managed versus self-directed campaigns. More useful for marketing
analytics.

Funnels
Be able to define funnels using event flows.

Raw events
Last but not the least, the icing on the cake will be if raw data is available for
more complex processing. This may be from an in-house solution.

Implementation
Once the instrumentation solution has been identified, the next step is the setup. For
app instrumentation, you will need to:

Identify metrics
This comes from a collaboration of product, marketing, and engineering teams.
The product manager will want user experience statistics, the marketing team
will be interested in app usage and sections of user interest, while the engineering
team will be eager to know about app performance.

Define events
Define the event names and related dimensions to support the key performance
indicators (KPIs).

If the engineering team wants to know about average and peak memory usage
data, the event (let’s call it Heap Size) should contain data about used memory,
free memory (recall the code from Example 2-40), and the time for which the
app has been up and running.

Similarly, as another example, when the product manager wants to know if the
new autocomplete feature has been well received, she may want not only the
event where it was used but also how many times changes were made after auto‐
completion was used to measure its effectiveness.

You may want support for timing events. For example, in a news app, it may be of
interest to note how much time a user spends on a particular news item or cate‐
gory listing. Depending upon the SDK that you use, you may have built-in sup‐

Instrumentation | 395

1 Flurry is one such SDK that supports timed events. See “Capture Event Duration” in the Flurry Developer
Docs.

port for timed events.1 If not, you may have to implement a watch and monitor
time yourself.

Write code
Once all the events have been identified and you have determined when each of
them will be invoked, you need to write code.

As a good practice, start by creating a class with all the methods necessary for
your app. Example 12-1 includes some of the common methods that your app
will need. Start with the baseline and add as required over time.

Example 12-1. Instrumentation class—the methods

@interface HPInstrumentation

+(void)logEvent:(NSString *)name params:(NSDictionary *)params;

+(void)startTimerForEvent:(NSString *)name params:(NSDictionary *)params;
+(void)endTimerForEvent:(NSString *)name params:(NSDictionary *)params;

+(void)logViewControllerDidAppear:(UIViewController *)vc;

+(void)setLocation:(CLLocation *)location;
+(void)setUserId:(NSString *)userId;

+(void)logError:(NSString *)name
 message:(NSString *)message
 exception:(NSException *)e;

+(void)setMinimumTimeBetweenSessions:(NSInterval)interval;

@end

Must-have method, logs generic event.

Log timed events.

Log that a view controller was viewed by the user.

Set location information for all subsequent events.

Set the user ID for all subsequent events. Useful for logged-in experience.

396 | Chapter 12: Instrumentation and Analytics

http://yhoo.it/1cTSpNL
http://yhoo.it/1cTSpNL

2 The Google Analytics API supports tracking transactional events.

Special-purpose event to log errors.

Special handling on how to count sessions, which impacts the daily active
users (DAU) count. Should putting the app in the background and then in
the foreground result in a new session, or should there be a minimum time
gap between the two?

You can use the Aspects CocoaPod to set up tracking common events transpar‐
ently. For example, if you want to track viewDidAppear: for all UIView
Controllers, you can use the code given in Example 12-2.

Example 12-2. Using the Aspects CocoaPod for transparent method tracing

[UIViewController aspect_hookSelector:@selector(viewDidAppear:)
 withOptions:AspectPositionAfter
 usingBlock:^(id<AspectInfo> info, BOOL animated) {
 NSDictionary *eventParams = @{
 @"ViewControllerClass": [info.instance class]
 };
 [HPInstrumentation logEvent:@"viewDidAppear"
 withParameters:eventParams];
} error:NULL];

Attach a hook to the method viewDidAppear: of the UIViewController
class.

The hook (the custom code) must be called after the original method is
invoked.

Implement the hook. The parameters to this block are id<AspectInfo>,
which provides the object in whose context the block has been called, and
the parameters to the original method (viewDidAppear:, in this case).

Set the parameters to the event being logged.

Log the event.

There can be more methods defined for special-purpose needs—for example,
methods that can describe transactional operations such as a purchase or a
refund.2

Instrumentation | 397

https://goo.gl/ibvYYt
https://github.com/steipete/Aspects

Verify
Do not forget to test before release. Test not only for correctness but also for
scale. Ensure that the third-party service that you are banking upon has enough
capacity to not melt down under load from your app’s events.

Deployment
The final stage is to deploy. It involves deploying servers to production (if using an
in-house solution) and releasing the app to the App Store.

Using data to generate reports and identify patterns and trends is not part of instru‐
mentation per se but is important in the analytics stage, which we discuss next.

Analytics
Analytics is about discovering and presenting meaningful patterns in data, and it gen‐
erally favors data visualization—mostly graphs, geographical maps, and heat maps—
to communicate the insights.

In the context of apps, analytics uses data from instrumentation events to work
toward presenting insights against the KPIs planned for.

Analytics solutions will generally process a part of the data to provide high-level
trends. The percentage sampling may be done either on the client side or on the
server side. If done on the client side, it is possible that out of all the events, only a few
of them are reported to the server. If done on the server side, the client may send all
the data, but the server may process only a fraction of available events.

Analytics is very useful to identify trends and work in distribution KPIs. You can use
it to identify average session duration or average transaction amount per user. But do
not use this to track, for example, how many times your app has been installed. There
are special-purpose APIs available for accurately tracking these statistics.

Top-Down Versus Bottom-Up Analytics
A top-down analytics system sits in the client app and actively monitors user behavior.
Monitored activites may include how deep (vertically) a user goes in a content stream,
the views that a user interacts with and the view controllers a user transitions across,
time spent with a segment of the app, and so on.

A bottom-up analytics system looks at correlating server-side information to recon‐
struct user behavior and experience. For example, you can use the API calls to iden‐
tify how may entries in a content stream were requested for a user and draw
conclusions about the stream depth the user went to.

Both approaches have their own caveats.

398 | Chapter 12: Instrumentation and Analytics

A top-down approach can result in high network usage and loss of data if the connec‐
tion is terminated or the network is unavailable, or increased local storage if a local
persistent buffer is used for batch processing.

A bottom-up approach will not have real data but will only be an asymptotic recon‐
struction of the user behavior. You may never know how much time was spent view‐
ing an item in a feed, but only know that the corresponding item was fetched.

Real User Monitoring
Real user monitoring is an approach to monitoring an app to capture and analyze
every transaction of every user. It relies on in-app (server or client) monitoring serv‐
ices that monitor components in action, their functionality, the app’s responsiveness,
overall resource usage, and various other parameters.

It is also known by various other names, including end-user monitoring (EUM), real-
user measurement, real-user metrics, and so on.

Analytics Versus Real User Monitoring
Analytics also provides these insights. Perhaps you’re wondering what the big deal is
about RUM. You might say, “It’s all about instrumenting the app and analyzing the
data.”

Fair enough. Good point. Analytics and RUM serve identical purposes—that is, they
both instrument the app, analyze data, and provide reports.

The big difference between analytics and RUM is that analytics works on partial data,
referred to as samples, to provide high-level trends.

Various products to help instrument and analyze your app brand themselves as ana‐
lytics rather than RUM products because they track only samples.

Using RUM
Because RUM is about tracking all events rather than samples, you should use it to
monitor mission-critical events. Some examples of these include the following:

• Any errors, including app crashes or invalid state
• Quality changes in the app after a new release
• Behavioral changes related to new features
• Tracking all steps in a transaction

Real User Monitoring | 399

Summary
App instrumentation is as important as functional implementation. It is the gateway
to insights into app quality, app health, user behavior, and more.

Use analytics tools to sift through enormous volumes of data to identify patterns to
those insights. You can create a sequence of segues through the app usage to study
user behavior, identifying common pain points or steps in the overall sequence where
the user drops off. This is particularly useful in steps that ultimately lead to a mone‐
tary transaction, as you will be especially interested to learn common reasons for the
drop-off in those cases.

RUM should be used to monitor mission-critical steps, including but not limited to
app quality and user behavior.

Again, remember not to overwhelm the app. Overuse of instrumentation can put
severe load not only on the client app on the device but also the server app trying to
handle and process that data.

Instrumentation is not a replacement for debugging. Use debugging tools on develop‐
ment devices only.

400 | Chapter 12: Instrumentation and Analytics

PART V

iOS 9

iOS 9, released on September 9, 2015, brings in changes that can help improve app
performance. This part discusses these changes and how you can use them effectively.

CHAPTER 13

iOS 9

iOS 9 includes some important changes that can impact how your app works.

Apart from improving the performance of standard components and the operating
system in general, several other features can boost your app’s performance.

In this chapter, we discuss the following:

Application lifecycle
New features have been introduced in iOS, and a few of the old features have
been overhauled in ways that impact performance techniques.

User interface
New views are available and may boost rendering performance. A completely
new way of showing websites is also available.

Extensions
Two new extensions have been introduced in iOS 9. If you implement them, you
will need to take care of their performance.

App thinning
You can now not only optimize your app manually, but also let Apple’s app opti‐
mizer do it for you for the device on which it will be installed—something to look
forward to.

A complete list of changes in iOS 9 is available on the Apple developer website.

Application Lifecycle
iOS 9 provides new options to start and activate an app, and also imposes restrictions
on existing ones.

403

http://apple.co/1Bn94oT

1 For example, privacy concerns were raised after Twitter launched its “app graph” feature that collected lists of
the apps installed on devices.

Universal links now replace custom URL schemes for general use. Custom URL
schemes are still available, but using the feature to detect the presence of an app is
now highly restricted. You can no longer invade users’ privacy to test hundreds of
apps for their presence on the device.

The new Spotlight-integrated in-app search provides new options for users to dis‐
cover your app, even if it is not installed on their device. This means incorporating
new features, writing new code, and making it work well.

Universal Links
In iOS 8, the only way to launch another app, specifically from the Web, was using
custom schemes (we discussed this in “Deep links” on page 167). This technique is
still available, but with strong restrictions.

Your app can still use canOpenURL: to detect availability of an app on the device.
However, to prevent abuse of this method,1 iOS 9 restricted the invocation of this
method to a maximum of 50 unique schemes only.

If you compiled your app against iOS 8 or lower, the first 50 unique
schemes will be tracked on the device. If you compiled your app
against iOS 9, you must include the full list of schemes (maximum
50) that the app will open in its lifecycle.

iOS 9 introduces univeral links, which allow your app to handle http or https links
that were previously available for launch only from Safari.

The general outline of the execution is:

1. Source app calls openURL: with an http or https URL.
2. OS detects if there is an app installed that can handle that specific URL:

• If yes, launch the app.
• If no, open the URL using Safari.

The advantage of this approach is that the URL can always be opened. Or in other
words, canOpenURL: for these links will always return YES, and you do not have to
worry about bifurcating the flow in your app.

404 | Chapter 13: iOS 9

http://bit.ly/twitter-appgraph

2 iOS Developer Library, “Promoting Apps with Smart App Banners”.

The mobile website can use Smart App Banners2 to incentivize users to download the
app.

To use this feature, you need to configure the following:

1. Add the com.apple.developer.associated-domains entitlement to the app, as
shown in Figure 13-1.

Figure 13-1. Associated domains entitlement

The value must be applinks:{domain-to-handle}. Wildcard subdomains are
not available. Each subdomain must be registered individually.

2. Add a signed JSON file apple-app-site-association with app and path associations
that the app can handle.
Use the same key as used to sign the app.

This establishes the trust between the app and the domain.

For example, for the entitlement applinks:ios.mydomain.com, and with the associa‐
tion file shown in Example 13-1, the app can handle http[s]://ios.mydomain.com/
mypath/ and http[s]://ios.mydomain.com/basepath/ and its subpaths.

Application Lifecycle | 405

http://apple.co/1TzDzxp

Example 13-1. Universal links: app site association file

{
 "applinks": {
 "details": {
 "ABCDEFGHIJ.com.mydomain.bundleid": {
 "paths": [
 "/mypath/",
 "/basepath/*"
]
 }
 }
 }
}

The service applinks. The same file is also used for activitycontinuation.

The details section—must be named as is.

The complete key for the app. The format is {team-id}.{app-bundle-id}.

List of paths; can be wildcard.

Use the openssl command-line tool to sign the file (see Example 13-2).

Example 13-2. Universal links: signing the site association file

cat content.json | openssl smime
 -sign
 -inkey app-signer-private.key
 -signer app-signer-certificate.pem
 -noattr
 -nodetach
 -outform DER
 > apple-app-site-association

To handle the URL, implement the application:continueUserActivity:restora
tionHandler: method of the UIApplicationDelegate protocol. Example 13-3 shows
an example of how to handle the link.

Example 13-3. Universal links: handling the link

- (BOOL)application:(UIApplication *)application
 continueUserActivity:(NSUserActivity *)userActivity
 restorationHandler:(void (^)(NSArray * restorableObjects))restorationHandler {

 NSURL *url = userActivity.webpageURL;
 //process URL

406 | Chapter 13: iOS 9

3 iOS Developer Library, “App Search Programming Guide”.

 return YES;
}

The app delegate callback.

Use the webpageURL property to get the URL.

Search
App Search3 provides new ways to search public information inside an app, even
when it is not installed on the device. All such information can be surfaced to the
users using Handoff, Siri Reminders, and Spotlight Search.

If the app is installed, it can be deep-linked into. If it is not installed, Safari can take
the user to the web page. Universal links ensure that you need to provide only one
URL.

Any content can be made available for indexing by Apple’s servers. Local, on-device
content is initially used during local searches only. As the content gains “popularity”
across devices, it is sent to Apple’s servers and indexed centrally to be made available
across devices.

You can use App Search to help users with app discovery when the app is not
installed and provide quick access to the contents when the app is installed. The user
will install the app if it is not installed. If the app is installed, the user may be able to
directly get to a specific result without you having to implement a custom search
(moreover, the user won’t need to go through a multistep navigation within the app,
which adds to the overall user experience).

Now, as you use one or more of the available options, you will need to take care of the
implementation performance within your app.

There are three ways in which the content can be surfaced:

• New methods and properties in the NSUserActivity class help you index items.
• The Core Spotlight framework helps add app-specific content to the on-device

index and enable deep links into your app.
• Web markup lets you make your related web content searchable.

Application Lifecycle | 407

http://apple.co/1RZA8RN

NSUserActivity

NSUserActivity has new methods in iOS 9 to add the app states to the local index.
The following new properties provide enhancements for local and public indexing:

• The property keywords can be used to link associated keywords.
• The property eligibleForSearch can be used to make the data available for local

search.
• The property eligibleForPublicIndexing can be used to make the data avail‐

able for public indexing (on Apple’s servers) so that it can be used for search
across devices.

Example 13-4 shows sample code to that effect.

Example 13-4. Adding to local index: NSUserActivity

NSUserActivity *activity = [[NSUserActivity alloc]
 initWithActivityType:@"com.mydomain.plist-activity-type"];

activity.title = @"iOS 9 Features";
activity.keywords = [NSSet setWithObjects:@"ios 9",
 @"new features", @"wwdc 2015", nil];
activity.userInfo = @{ ... };
activity.eligibleForSearch = YES;
activity.eligibleForPublicIndexing = YES;
[activity becomeCurrent];

Create an activity with a registered activity type.

Set the title, to appear in search results.

Keywords associated with the data.

Set an additional NSDictionary of data associated with the activity.

Make the activity eligible for search.

Mark the activity eligible for public indexing. The data will be sent to Apple’s
servers and indexed. It will appear in public Spotlight and Safari searches and be
ranked based on popularity index.

Mark the current state of the app (make the activity current). Once done, it is
automatically added to the universal index (CSSearchableIndex).

Here are some tips for performance:

408 | Chapter 13: iOS 9

4 iOS Developer Library, “Core Spotlight Framework”.

5 Compare this with NSUserActivity, where a unique ID is not required. The developer may add it in the user
Info dictionary, but it is optional.

• Provide enough keywords to make the content searchable, but do not use too
many keywords. Note that searches may be performed locally, and multiple key‐
words can not only dilute the ranking but also make search slower.

• userInfo can be used to store custom data associated with the activity. Because
this data will be stored outside of the app, keep it minimal. This data will be seri‐
alized when creating the index and deserialized when the user lands on the
search result. The more data there is, the longer it will take.

Core Spotlight
A new Core Spotlight4 framework has been introduced in iOS 9. It helps your app
participate in search by providing ways to index the content within your app and
manage the on-device index. The content can be app provided or user generated.

Core Spotlight provides an API to make content searchable using a unique ID
(unique per app) and perform update and delete operations. Once indexed, the data
can be searched using Spotlight and Safari searches. If the item has an NSUserActiv
ity associated with it, it can also be made available on the public index.

This framework provides more control over the structured data. Specifically, the
requirement for a unique app ID makes the ultimate search for content in the desig‐
nated app more streamlined.5

Example 13-5 shows sample code for using the Core Spotlight framework.

Example 13-5. Using Core Spotlight

//Adding content to index
#import <CoreSpotlight/CoreSpotlight.h>
#import <MobileCoreServices/MobileCoreServices.h>

-(void)addToIndex:(...) {
 CSSearchableItemAttributeSet *attrs = [[CSSearchableItemAttributeSet alloc]
 initWithItemContentType:(NSString *)kUTTypeText];

 attrs.title = @"Mango";
 attrs.contentDescription = @"King of Fruits";
 attrs.keywords = @["mango", "fruit", "vegetation"];

 CSSearchableItem *item = [[CSSearchableItem alloc]
 initWithUniqueIdentifier:@"mango"

Application Lifecycle | 409

http://apple.co/1QFKy5I

6 See the complete list on the Apple developer website.
7 We discussed document types in “Sharing Content” on page 261.

 domainIdentifier:@"com.mydomain.item-domain"
 attributeSet:attrs];

 [[CSSearchableIndex defaultSearchableIndex]
 indexSearchableItems:@[item]
 completionHandler:^(NSError *e) {
 if(e) {
 //handle error
 } else {
 //all is well
 }
 }];
}

//Handling search result link in AppDelegate
-(BOOL)application:(UIApplication *)application
 continueUserActivity:(NSUserActivity *)userActivity
 restorationHandler:(void (^)(NSArray *))restorationHandler {

 if([CSSearchableItemActionType isEqualToString:userActivity.activityType]) {
 NSDictionary *details = userActivity.userInfo;
 NSString *itemId = [details
 objectForKey:CSSearchableItemActivityIdentifier];

 //process using the unique ID
 }

 return YES;
}

The Core Spotlight API is available in the CoreSpotlight.h header file.

We will need the MobileCoreServices.h header file to use the UTI type constants.

In this example, we have added a helper method, addToIndex, to add content to the
index. The parameters to this method have been omitted for brevity.

The class CSSearchableItemAttributeSet can be used to define attributes related
to the content to be indexed. Important attributes are title and contentDescrip
tion, which define the output in search results. Figure 13-2 shows the search result in
Spotlight for the content in the example. Depending upon the entity type, you may
use one or more of the several other attributes available.6

In our example, we designate the content type of the item to be plain text .7

It is important to add a title and, optionally, contentDescription . They control
the visualization of the search result (see Figure 13-2).

410 | Chapter 13: iOS 9

http://apple.co/1SvhU5y

8 It can be merely metadata. It may also be used to further classify an item within the app so that the uniqueI
dentifier essentially is per-app per-domain. This will allow multiple SDKs/components to work seamlessly
within an app.

Once the attributes are configured, it is time to use these attributes to make the final
item, CSSearchableItem object, to be indexed . It requires a per-app uniqueIdenti
fier. The exact purpose of domainIdentifier is not known at the time of writing.8

CSSearchableIndex is the main class that helps in creating indexes. The default
SearchableIndex is the global index on the device.

The method indexSearchableItems:completionHandler: allows indexing multiple
items asynchronously.

The result of indexing is available in the completion handler provided. The com‐
pletion handler must not be nil.

On the other side, when the user taps on the search result from the app, the app dele‐
gate method application:continueUserActivity:restorationHandler: is
called.

The activityType in this case is always CSSearchableItemActionType.

 The userInfo dictionary always has at least one entry. That entry, with the key
CSSearchableItemActivityIdentifier, provides the unique identifier used ear‐
lier when creating the CSSearchableItem. Use this value to look up the entity in the
app and display the details.

You should follow these performance-related recommendations when using the Core
Spotlight API:

• Provide enough details in the title and description, but do not make them
overly long. In addition to the user not seeing the complete data, it also takes
time to serialize/deserialize them.

• Do not overuse keywords. In addition to the possibility of being penalized for
overuse, it may impact index creation and search performance.

• Minimize the content provided in the userInfo dictionary of the user activity.
Keep just enough data to be able to quickly reach a specific result.

Application Lifecycle | 411

9 iOS Developer Library, “Promoting Apps with Smart App Banners”.
10 iOS Developer Library, “Mark Up Web Content”.

Figure 13-2. Spotlight search (left) and search result shown in app (right; alert for demo)

Web markup
Since iOS 6, Smart App Banners9 have been the standard way to help increase app
downloads if the user visits an app’s website in Mobile Safari on iOS devices.

Apple has introduced new enhancements. Applebot will now crawl the web pages
looking for meta tags to feed data for the public indexes for searches in Spotlight and
Siri. In WWDC 2015, Apple mentioned that it will support standard meta tags,10

including but not limited to those defined at Schema.org and by the Open Graph pro‐
tocol. And in specific scenarios where these open standards do not suffice, new tags
have been provisioned by Apple.

For your app’s content to appear in searches, you can use these tags to provide specific
context of the page.

Search Best Practices
Universal links and search, though seemingly different, feed into each other. NSUser
Activity and Core Spotlight help build the index using local content, making it
available to the central Apple servers. Web markup helps Apple servers index (using
Applebot) web content when it can link into the app.

412 | Chapter 13: iOS 9

http://apple.co/1NnawJc
http://apple.co/1qMnZ7L
https://support.apple.com/en-us/HT204683

However, these results will only surface when they are popular enough, apart from sev‐
eral other factors. Most of these other factors are currently unknown, but as an app
developer, you must ensure that you provide enough information so as to enrich the
indexes. This will ensure that users are able to discover your app, discover content
within the app, and engage with it.

The following list includes some of my preliminary recommendations (note that this
list of best practices is not yet battle tested; it is by no means comprehensive, and it
will evolve as we get further into the adoption of the new techniques and study
instrumentation data):

• Use universal links. The web page and app should show the same content for the
same link.

• Use the same ID when providing content to index. This will ensure a higher
engagement ranking for the same content.

• Use description for a better user experience.
• If applicable, provide a thumbnail image.
• Use keywords, and use them wisely.

There is no reference available on how many keywords will result in a ranking
penalty, but there are enough reasons to guess that there will be penalties for
spamming with keywords.

• Implement your app as a finite state machine and ensure that the search results
leading into the app are handled gracefully.
The user may land into the same app multiple times with the same or different
items or universal links to be viewed.
As you can see in Figure 13-2, the righthand screenshot that displays the app
handling the result has a small Back to Search button that takes the user back to
Spotlight. However, the only notifications that you get are those of application
WillResignActive and subsequent events.
This means that, strictly speaking, you really do not know if the user got a call,
tapped the Home button, or pressed the Back to Search button.
This also means that you do not know what to do with the last search result or
universal link that was opened in the app once it is backgrounded. Should you
leave it open? Should you take the app back to the previous state that it was in
before opening the link?
The OS-provided Back button takes the user into the source app. The app gets an
applicationDidBecomeActive: callback but cannot distinguish between app
switching by the user and tapping of the Back button. As such, it is advisable to
provide a custom Back button in the app itself, so that when the user returns to

Application Lifecycle | 413

the app, the last result is still displayed but with an option to return to the previ‐
ous state.
The next complexity to handle will be to manage multiple results/links that the
app is linked into. The app may end up with several items to go Back from before
the user can finally see its original state.
It will be a product decision whether or not to support multiple items in what can
be called the back stack.
It will also be a product decision whether or not to provide a direct link to the
original application state when multiple items exist in the back stack.
And the engineering will have to support it.

User Interface
There are a bunch of updates for the user interface tier of the application in iOS 9.
Whether you decide to use them will impact your app’s performance. For the purpose
of discussion, they have been divided into two broad categories:

• UIKit framework changes
• Safari Services framework changes

Gaming frameworks—e.g., the GameplayKit, Model I/O, MetalKit, Metal, SceneKit,
and SpriteKit frameworks—are not discussed.

UIKit Framework
iOS 9 features a new container view, UIStackView, that helps with rendering views
horizontally or vertically.

In cases where you need to create a more form-like UI with well-defined horizontally
or vertically aligned views (which happens to be a more common case), UIStackView
provides an easier and faster way out.

If you recollect the mail view that we discussed earlier (Figure 6-11 in “Custom
Views” on page 203), it had seven subviews. Using Auto Layout meant multiple con‐
straints to be handcrafted carefully and runtime overheads when solving the linear
equations (refer to Figure 6-14 in “Auto Layout” on page 210).

414 | Chapter 13: iOS 9

http://apple.co/1Noq1jW

The overheads of using Auto Layout occur not only at runtime but also at design
time. Figure 6-11 has over 20 constraints. Crafting them to work across various
screen sizes of iPhones and iPads is never easy.

Borrowing from Android
UIStackView is a welcome, long-awaited feature.

Android has had LinearLayout since its early days. And it is good to see teams learn‐
ing from one another to the benefit of app developers and, ultimately, the end users.

At Yahoo, we implemented our own version of linear layout and saw great improve‐
ments. For a view with 10–12 UI elements, we saw runtime improvement of 19% in
view creation and layout time. As the views recycled in the UITableView, relayout also
saw improvement by well over 10%.

During development, a complex view that would take up to three days to design
across iPhones and iPads took only a few hours using the new component.

The Xcode 7 storyboard editor has support for pushing multiple views within a UIS
tackView. If you look at Figure 13-3, you will notice a new icon in its toolbar (bottom
right). Select multiple views and click this Stack icon. All the selected views will be
pushed inside a new UIStackView.

Figure 13-3. Storyboard—arranging views within a UIStackView

The following properties control the rendering of the arranged views of a UIStack
View:

User Interface | 415

http://bit.ly/1fYQUzK

axis

Defines the orientation of the layout. Can be UILayoutConstraintAxisHorizon
tal or UILayoutConstraintAxisVertical.

UILayoutConstraintAxisVertical indicates that the arranged views will be ren‐
dered vertically, with the view added later rendered beneath the view added pre‐
viously. UILayoutConstraintAxisHorizontal causes the arranged views to be
rendered horizontally, with the view added later rendered to the right of the view
added previously.

The default value is UILayoutConstraintAxisVertical.

alignment

Controls how the arranged views are aligned. The alignment is on the axis per‐
pendicular to the stack view’s axis. The default value is UIStackViewAlignment
Fill.

distribution

Distribution controls how the arranged views are sized. This affects the size and
positioning of the views along the stack view’s axis. The default value is UIStack
ViewDistributionFill.

spacing

Specifies the distance, in points, between the adjacent edges of the arranged
views. The default value is 0.

baselineRelativeArrangement

Controls whether the vertical spacing between the views is measured from their
baselines. If YES, the space is from the last baseline of a text-based view to the
first baseline of the view below it.

layoutMarginsRelativeArrangement

Determines whether the arranged views are laid out relative to the layout mar‐
gins or bounds. Default is NO, meaning it uses bounds.

Figure 13-4 shows the relevance of these properties for the horizontal axis. For the
vertical axis, rotate the relevance axis of these properties by 90 degrees.

416 | Chapter 13: iOS 9

Figure 13-4. UIStackView—properties and their relevance (for horizontal axis)

UIStackView is a subclass of UIView. However, it is a nonrendering
subclass. Unlike other UIView subclasses, it does not draw on the
canvas. So, if you were to override the drawRect: method, it would
not affect the final rendering. Nor would changing other properties
like backgroundColor.
UIStackView uses the concept of arrangedSubview+s for lay
out. Use the method +addArrangedSubview rather than addSub
view to add a view to the layout.
Alternatively, you can use insertArrangedSubview:atIndex: to
insert a view at a non-tail position.
To remove a view, use removeArrangedSubview: on UIStackView
as well as removeFromSuperview on the child view being removed.

Figure 13-5 shows the corresponding Xcode attribute editor for UIStackView.

For now, there are only a few best practices that can be associated with UIStackView:

• Use it whenever possible. It will not only reduce the time taken to design a view
but also improve runtime performance.

• Use the properties to control the final layout.
• If you are not satisfied with its performance, maybe because the view is just too

complex, use a custom layout.

User Interface | 417

Figure 13-5. UIStackView—Xcode attribute editor

Safari Services Framework
The Safari Services framework was added in iOS 7, and went mostly unnoticed
because the primary support provided by the API was to programmatically add URLs
to the user’s Safari reading list. iOS 9 adds the SFSafariViewController, which we’ll
look at in this section. In the past, apps have mostly used UIWebView (discussed in
“UIWebView” on page 199) to render web content. In iOS 8, a WebKit framework
was introduced that provided a better-performing WKWebView class, and several apps
migrated from UIWebView to WKWebView.

The performance improved, but a few problems still remained unsolved:

• The rendering engine was always based on a version of WebKit that was not the
latest, and at least a few releases behind the one used in the Safari browser on the
device. This meant that viewing the web content in Safari was always better than
viewing it in the inline browser using UIWebView or WKWebView.

• There was no way to share cookies. So, if the user had logged into a website using
the browser (Safari, Chrome, or any other), there was still a need to log in when
using the inline browser. There were only two options: either take the user out
from your app into Safari (or Chrome), or make the user log in again.
Figure 13-6 shows the app settings from the HipChat app, as an example.

418 | Chapter 13: iOS 9

https://www.webkit.org

Figure 13-6. HipChat—options to open links

SFSafariViewController attempts to solve these problems. Note that it is not a view
but a view controller. This means that you cannot control the UI chrome like the
address bar and actions at the bottom of the screen surrounding the HTML content,
as shown in Figure 13-7.

The view controller uses the cookies from the Safari browser and runs in a separate
process. This means that if the user logged in using Safari, browsing can continue
seamlessly.

The cookies from your app are not shared to the Safari view con‐
troller, which means if the user was logged in only in your app,
another login will be required.
Once the user logs in, either using the view controller or using the
Safari app, that session will continue.

Example 13-6 shows sample code for using the SFSafariViewController.

Example 13-6. Using SFSafariViewController

-(void)showURL:(NSURL *)url {
 SFSafariViewController *safari = [[SFSafariViewController alloc]
 initWithURL:url entersReaderIfAvailable:NO];

 safari.delegate = self;
 [self presentViewController:safari animated:YES completion:nil];
}

User Interface | 419

-(void)safariViewControllerDidFinish:(SFSafariViewController *)controller {
 //User tapped Done button
 [controller dismissViewControllerAnimated:YES completion:nil];
}

Figure 13-7 shows the Safari view controller in action.

Figure 13-7. Safari view controller

Note that the session from the Safari browser will not be carried over to the SFSafari
ViewController (see Figure 13-8).

420 | Chapter 13: iOS 9

Figure 13-8. Even if the user is logged in in the Safari app (left), he will not automati‐
cally be logged in with the native app using SFSafariViewController (right)

I recommend using SFSafariViewController. However, because it is available in iOS
9 only, you will still need to provide a fallback to WKWebView for iOS 8 users and/or
UIWebView for iOS 7 users.

Do not enable entersReaderIfAvailable when using the view controller. Let the
user decide when to enter the reader mode.

Extensions
iOS 9 introduces two new extension points (see Figure 13-9) that impact how a user
can engage with the app and what UI is shown to the user:

Content Blocker extension
Allows restricting content viewing when browsing in Safari and when using the
SFSafariViewController

Extensions | 421

Spotlight Index extension
Allows for updating the on-device index for App Search even when the app is not
running

Figure 13-9. iOS 9 extensions

Depending upon the app, you may implement one or both of these extensions.

For example, you may create an app to protect children’s privacy and restrict expo‐
sure to mature content when browsing. The Content Blocker extension is the option
to implement such a plug-in for the Safari browser on the device.

Similarly, it will be a good idea to allow indexed content to be updated even when not
being used for long. This will ensure that the outdated entries do not show up in the
Spotlight search. The Spotlight Index extension will help you accomplish this.

Content Blocker Extension
Have you been using Adblock Plus on your desktop machine to remove those nasty
ads? If so, you’ve probably wished it was available for mobile too. The Content
Blocker extension can help you with that.

This extension point integrates with Safari and allows filtering content viewed on a
website.

422 | Chapter 13: iOS 9

https://adblockplus.org
http://apple.co/1SvqjpG

If you go to Settings → Safari, you will notice a new entry called Content Blockers.
You can have one or more content blockers installed on the device and selectively
activate them.

The Content Blocker extension uses a JSON configuration file that controls what ele‐
ments will be visible and what will be blocked. The specification of the JSON content
is available on the WebKit website.

Example 13-7 shows an example of Content Blocker extension. It requires a class to
implement the NSExtensionRequestHandling protocol. It has just one method, begin
RequestWithExtensionContext:, which calls the method -[NSExtensionContext
completeRequestReturningItems:completionHandler:] with the filter definitions.

Example 13-7. Content Blocker extension

//Code
- (void)beginRequestWithExtensionContext:(NSExtensionContext *)context {

 NSURL *url = [[NSBundle mainBundle]
 URLForResource:@"blockerList" withExtension:@"json"];
 NSItemProvider *attachment = [[NSItemProvider alloc]
 initWithContentsOfURL:url];

 NSExtensionItem *item = [[NSExtensionItem alloc] init];
 item.attachments = @[attachment];

 [context completeRequestReturningItems:@[item] completionHandler:nil];
}

The URL to the filter definitions (JSON content).

Create an NSItemProvider. Here, we use the initWIthContentsOfURL initializer.

Create an NSExtensionItem object with the NSItemProvider attachments.

Last, filter the content by calling completeRequestReturningItems. See
Example 13-8 for a sample filter definition.

Example 13-8. Sample filter definition

[{
 "trigger": {
 "url-filter": "webkit.org/images/icon-gold.png"
 },
 "action": {
 "type": "block"
 }
}]

Extensions | 423

http://bit.ly/webkit-cb

The trigger (when the filter should kick in). Here, based on the URL being pro‐
cessed.

The action (what to do when the trigger criteria are satisfied). Here, block the
content. Do not show it.

Figure 13-10 shows how you can configure the content blocker.

Figure 13-10. Safari content blocker settings

Figure 13-11 shows how the content blocker can affect the visible content on a given
website (here, http://www.webkit.org). The screenshot on the left is when the content
blocker is turned on while the one on the right is with the content blocker turned off.
Notice that when the content blocker is turned on, it does not show the WebKit app
logo.

424 | Chapter 13: iOS 9

11 Sebastian Noack, “Adblock Plus and (a Little) More”.

Figure 13-11. WebKit website with content blocker turned on (left) and with content
blocked turned off (right)

Because this is the first time an extension has been made available to mobile Safari,
best practices from the real world are yet to evolve. Here are a few basic recommen‐
dations:

• Try loading the file from the local filesystem rather than syncing from the net‐
work each time it is activated or used.

• For dynamic filters (Adblock Plus, for example, may want to implement this and
update from the server11), use background fetch to periodically sync the file from
the server.

• Minimize the number of entries in the filter. This will in turn minimize the time
taken to parse and apply the filter on a complex web page.

Extensions | 425

http://bit.ly/1GULO0e

• Do not abuse it. It is highly recommended to publish the file on your website and
make it accessible from your app (hint: use openURL:).

Spotlight Index Extension
In general, you would update the indexes for Spotlight Search when the app is in use.
However, using the Spotlight Index extension, you can create an index-maintenance
extension that lets the OS coordinate with the app when it is not running and gives an
opportunity to update the index and/or verify the validity of an item (for example,
whether the item is still active and has not expired).

Working with the Spotlight Index extension requires a class that inherits from CSIn
dexExtensionRequestHandler with implementation of the following methods:

searchableIndex:reindexAllSearchableItemsWithAcknowledgementHandler:

Called to trigger indexing of all items on the device

searchableIndex:reindexSearchableItemsWithIdentifiers:acknowledgementHan

dler:

Called to trigger validation of specific items with the given uniqueIdentifiers

The best practices for implementing a Spotlight extension would be same as those for
search that we discussed under “Search Best Practices” on page 412.

App Thinning
Prior to iOS 9, when you needed a universal binary to support multiple devices (iPod,
iPhone, iPad, and now Apple Watch), you had to bundle all the resources together or
run the risk of upsetting users if you downloaded them on first launch.

The asset catalog (see “UIImageView” on page 194) proved to be a very useful feature
in that it not only optimized the image load but also helped organize different ver‐
sions of an image for various devices. But this made the final binary that the user
downloaded huge.

On the other hand, optimizing the use of resources (images, audio clips, and video
clips) meant splitting them into two categories. The ones that were always needed
were bundled with the app, while the ones that were only needed after some time
were fetched from the server. This approach reduced the binary size by a few notches
and avoid going heavy on network use.

However, this meant writing a lot of custom code, and maintaining your servers to
fetch the assets when needed. This was especially painful for apps that support multi‐
ple skins or themes, with games being most affected.

iOS 9 introduces three features to address resource distribution–related problems:

426 | Chapter 13: iOS 9

• Slicing
• On-demand resources
• Bitcode

Slicing
As the developer, you continue to upload the universal (fat) binary uploaded to
iTunes Connect, continuing executables and resources applicable for all devices. The
App Store is responsible for creating multiple bundles for download based on the
devices supported by the app.

This process, known as slicing, creates and delivers the variant of the app bundle
applicable for the target device where the app gets downloaded and installed.

The variant contains only the specific executable architecture and resources that are
needed for the target device:

• The executable downloaded is for the processor architecture.
• GPU resources are sliced based on device capabilities.
• Images are sliced based on device family and resolution.

The App Store sends the sliced bundle for devices running iOS 9
and later. For previous versions, the universal bundle is delivered.
For the images to be sliced, they must be in the asset catalog. Any
other images are not sliced.

On Demand Resources
On-demand resources are the app contents that are hosted on the App Store separately
from the downloaded app bundle.

Starting in iOS 9, you can tag certain resources, such as images and audio clips, and
then manage those resources by tags.

Specifically, you can configure:

• Resources to be bundled with the app
• Resources to be installed after first app launch
• Installing all resources against a keyword
• Removing all resources against a keyword

App Thinning | 427

http://apple.co/1YrrsmK

The resources may also be sliced. This ensures that you only have the resources that
are needed by the app and the app does not hog disk space. As a side effect of the
smaller bundle size and minimal assets on the device, the app load time is also
shorter.

For example, if your app has multiple skins or themes, the initial set of images bun‐
dled can just be the default theme. You may also choose to keep only a few of the
most recent themes on the device, or only the themes accessed in the previous hour.

Figure 13-12 shows the lifecycle of an on-demand resource from App Store to device.

Figure 13-12. Lifecycle of on-demand resources

You must first set up the project to enable on-demand resources, as shown in
Figure 13-13.

Figure 13-13. Xcode settings to enable on-demand resources

After on-demand resources have been enabled for the project, the next step is to
manage the tags and assets associated with them. In Xcode 7, the project settings page

428 | Chapter 13: iOS 9

now contains a new Resource Tags tab that can be used to do the tag management
(see Figure 13-14). You can use the Asset Catalog editor to associate tags with an
asset.

Figure 13-14. Xcode—Resource Tags tab

In Figure 13-14, there are three tags—namely, theme_default, theme_black, and
theme_blue. The theme_default tag has been added under Initial Install Tags, mean‐
ing that the resources will be part of the app binary downloaded. There are no tags
under Prefetched Tag Order, which contains the resources to be downloaded on first
app launch. And finally, the theme_black and theme_blue are under Download Only
On Demand, which indicates that those resources will not be downloaded until the
app specifically requests them.

Figure 13-15 shows how to associate the tags with a specific asset catalog item.

App Thinning | 429

Figure 13-15. Asset Catalog editor associate tags

Once this is configured, you are all set to go. Well, mostly. The last step is to manage
the on-demand tags.

Use the class NSBundleResourceRequest to manage the lifecycle of the on-demand
tagged resources. Example 13-9 shows sample code to download or end access to
these resources. Note that to use the resources, you will continue to use the same code
as before (using NSBundle or UIImage:imageNamed:).

Example 13-9. Managing on-demand resource tags

NSSet *tags = [NSSet setWithArray: @[@"theme_blue"]];
NSBundleResourceRequest *req = [[NSBundleResourceRequest alloc]
 initWithTags:tags];

[req beginAccessingResourcesWithCompletionHandler:^(NSError *e) {
 if(e) {
 //handle error
 } else {
 //process, for example
 UIImage *image = [UIImage imageNamed:@"settings"];
 }
}];

430 | Chapter 13: iOS 9

http://apple.co/1NuyYbs

[req conditionallyBeginAccessingResourcesWithCompletionHandler:^(BOOL available) {
 if(available) {
 //Great. The resources are already available. Proceed.
 } else {
 //Not available. May be never downloaded or purged. Download.
 }
}];

[req endAccessingResources];

Create an NSBundleResourceRequest object for tags the app is interested in
using.

Request to download. Handle the scenarios where an error occurs or the down‐
load was successful.

Check if the resources are already available on the device.

If they are available, great. Use them as earlier.

If they’re not available, use the beginAccessingResourcesWithCompletionHan
dler: method to enqueue download.

Inform the system that you are done using the resources for the given tags.

Bitcode
Bitcode is an intermediate representation of a compiled program.

An app uploaded to iTunes Connect can contain executables in a bitcode format that
are compiled to native format and linked with the final binaries in the App Store.

Using bitcode allows Apple to reoptimize the app binary in the future without any
need to resubmit a new version to the store.

Figure 13-16 shows Xcode project settings to enable bitcode. The default option for a
new Xcode 7 project is to enable bitcode.

App Thinning | 431

Figure 13-16. Xcode Project settings to enable bitcode

Bitcode is optional for iOS. However, it is required for watchOS.

Summary
iOS 9 has some really power-packed features that you should use to improve your
app’s lovability, real performance, and perceived performance. Use universal links to
provide one URL that is universally accessible and sharable—no more custom
schemes to manage nasty handoffs. Index the public contents of your app so that they
are available in Spotlight Search. SFSafariViewController should be the preferred
choice moving forward, but ensure that you provide a fallback for iOS 8 and older
devices. Finally, app thinning is a feature that you must enable: specifically the on-
demand resources if your application is resource heavy and you do not need all of
them right when the app is installed.

432 | Chapter 13: iOS 9

Index

Numbers
2G network, 229
3G network, 229
4G network, 228

A
A/B tests, 394
access tokens, 121
Accessibility Inspectors, 358-362
action activity, in activity view controller, 272
action extension, 221
Action extension, 276
Activity Monitor template, 102, 367-369
activity view controller, 271-274
ahead-of-time (AOT) processing, 83
algorithms, choosing, 82
Allocations template, 369-372
analytics, 390, 398-399
animation

during view loading, 189
logic for, location of, 182
power consumption by, 94

anonymous access to app, 292-294
AOT (ahead-of-time) processing, 83
Apache Avro, 240
Apache Thrift, 240
app bundle, 308
app delegate, 145-147
app extensions, 219-222, 274-289

Action extension, 276
adding to project, 274-275
app groups, 287
classes for, 275
content blocker extension, 421-426

document provider extension, 281-287
Share extension, 276
share extension, 278
spotlight index extension, 422, 426

app groups, 287
app ID, prefixed, 253
app passcode (PIN), 294-295
app profiling (see profiling)
App Search, 407-414
App Store

app ID from, 253
crash reports for apps in, 19
deployment to, 238-241, 398
on-demand resources hosted by, 427-431
slicing handled by, 427

app thinning, 426-432
bitcode, 431-432
on-demand resources, 427-431
slicing, 427

app-settings URL scheme, 252
Appium, 346
Applebot, 412
application lifecycle, 145-177

app delegate, 145-147
background fetch, 174-177
cold start, 148, 158-166
first launch, 147, 150-158
launch after upgrade, 149, 169
launch, types of, 147-149
push notifications, 169-174
warm launch, 148, 166-168

application state (see state management)
Appsee, 392
ARC (automatic reference counting), 32, 39-42

433

disabling, for non-ARC dependencies, 40
lifetime qualifiers for variables, 43, 45-50
ownership qualifiers for properties, 44-50
rules enforced by, 41
weak references, 42

Aspects CocoaPod, 397
asynchronous operations

compared to synchronous, 139-141
I/O, GCD handling, 110
testing, 330-331

AT&T Application Resource Optimizer (ARO),
243-245

atomic properties, 112-113, 121
attributes, 390
attribution, 391, 395
authenticated access to app, 294-299
Auto Layout, 210-212
automated UI testing, 338-345
automatic reference counting (see ARC)
autorelease objects, 34-35, 37
autorelease pool blocks, 35-39

B
background

location services in, 92-93
releasing hardware locks in, 99
syncing data in, 174-177
threads and timers in, 93

bandwidth, 8, 9, 241
barriers, 110, 121-123
battery, 4, 100-102

(see also power consumption)
BDD (behavior-driven development), 334, 337
best practices

App Search, 412-414
ARC, 41
CPU usage, 82
deep linking, 256-258
DNS lookup times, 225
HTTP/HTTPS requests, 239-240
location manager, 87-89
memory management, 78
network availability, 229-234
networking API, 237-238
pasteboard, 261
power consumption, 103-106
retain cycles, 53-54
security checklist, 313-315
SSL handshake times, 227

state management, 124
testing, 351-355
thread-safe code, 112
view controllers, 182-183
views, 189

bitcode, 431-432
blocks

autorelease pool blocks, 35-39
barrier blocks, 121-123
retain cycles caused by, 60-61
synchronized, 113-115

Bluetooth devices, 99
books and publications

Jenkins, 351
security, 291

bottom-up analytics, 398
BREACH attack, 299
build and release, 13
builder pattern, 125-128, 348
bundle ID, 253, 292-293, 308
buttons, 192-193

C
caches

for network state, 231
reader-writer locks for, 121
for views, 190

Calabash, 346
camera, 99
campaigns, 395
Cassowary toolkit, 210
categories

for notifications, 217
for view controllers, 183

CDMA2000 network, 229
CDN, 224-226
cellular data connection, 83
certificate pinning, 300-304
charging status, monitoring, 100-102
Charles, 245-248, 382-388
CI (continuous integration), 349-351
clipboard (see pasteboard)
CocoaPods, 13

Aspects, 397
CocoaLumberjack, 21-23
CocoaSPDY, 227
PonyDebugger, 378
Tony Million’s Reachability pod, 84, 228

code examples in this book, xvi

434 | Index

cohort, 391
cohort analysis, 391, 394
cold start, 148, 158-166
components

dependencies of (see dependencies)
design of, tests affecting, 347-349
resettable, 348

composite views, 205, 208-210
conditions, 117-120
connection objects, 54
connection timeouts, 236
constraints, in Auto Layout, 210
consumer, in document interaction controller,

267-271
content blocker extension, 421-426
continuous integration (CI), 349-351
conventions used in this book, xv
cookies, 121
Core Spotlight, 409-411
CPU, 4, 81-83

(see also power consumption)
cores in, 81-82, 107
profiling, 367

crash reporting system (see CRS)
crashes, 27

(see also errors)
background fetch leading to, 176
deallocated memory causing, 50
memory exhaustion causing, 74
recovery from, as performance metric, 11
thread pool limit causing, 110

CRIME attack, 299
CRS (crash reporting system)

crash reports from, 18-20
setup for, 14-15

custom initializers, 125
custom views, 203-210
cyclic references (see retain cycles)

D
data

compression of, 240
displaying in tables, 195-199
downloading, 230, 231
format of, 240-241
media streaming, 229, 231
prefetching, 232
processing on server instead of client, 82

sharing with another app, 221 (see intero‐
perability)

syncing, 6, 9, 174-177, 233
Data Protection feature, 305-307
data visualization, 398
data-source protocols, 182
datacenters, location of, 238
debugging

Charles for, 245-248
PonyDebugger for, 377-382
views, 375-377
zombie objects for, 50-51

deep linking, 167-168, 252-258, 260
delegate protocols, 182
delegates

for initialization, 158
retain cycles caused by, 54-60

dependencies
abstracting and encapsulating, 15
mocking, 333-337, 345-347
non-ARC, disabling ARC for, 40
patching, 154

dependency injection (DI)
preventing singletons, 75-77
for testing, 348

dependency manager (see CocoaPods)
deployment, 238-241, 398

(see also production environment)
design patterns

builder pattern, 125-128, 348
singleton, 74-77
State, 158

deterministic invalidation, 67
development cycle, 349-351
devices (see iOS devices)
DI (see dependency injection)
didReceiveMemoryWarning notification, 16, 32
direct drawing, 206-210
display (see screen)
DNS lookup time, 224
DNS notation, reverse, 253
document picker extension view controller,

285-287
document picker view controller, 281-285
document provider extension, 221, 281-287
documents, sharing, 261-274

Action extension, 276
activity view controller, 271-274
app groups, 287

Index | 435

document interaction controller, 262-271
document provider extension, 281-287
Share extension, 276
share extension, 278
shared keychain, 273

domain sharding, 227
double (dummy), for dependency mocking, 334
dropped frames, 185, 189
dummy (double), for dependency mocking, 334

E
EDGE network, 229
energy consumption (see power consumption)
errors, 8

(see also crashes; debugging)
levels of, 21
retain cycles indicated by, 70
traceability of, 13

events, 390, 393-395
execution speed, 5

(see also performance)
extended events, 393
external factors, 179

F
Facebook news feed, 139
fake, for dependency mocking, 334
fantasy sports app case study, 236
files, sharing (see documents, sharing)
finite state machine, 168, 255, 413
first launch, 147, 150-158
Flurry, 14-15, 18-20, 392
frame rate, 180, 185
frequency lock, for GPS, 87
FRP (functional reactive programming), 135
functional tests, 14, 320, 338-345

best practices for, 352
managing and running, 344-345
setup for, 339-341
writing, 341-344

funnel, 390

G
Game Center, 295-299
GCD (Grand Central Dispatch), 109-110
global variables, 74
GLONASS (see location services)
Google Analytics, 392

GPRS network, 229
GPS (see location services)
Grand Central Dispatch (see GCD)
groups, 110

H
hardware (see iOS devices)
heap

copying to and from stack, 30
size of, 29-32

heat map, 394
HLS (HTTP Live Streaming), 229
host reachability, 228
HSDPA network, 229
HSPA+ network, 228
HSUPA network, 229
HTTP Live Streaming (HLS), 229
HTTP/2, 227, 239
HTTP/HTTPS requests

configuring, 239-240
monitoring, 245-246, 380, 382-388

HTTP/HTTPS responses, customizing, 247
http/https URL scheme, 252
HTTPS (HTTP over TLS/SSL), 226-227,

299-300
hybrid apps, 202

I
id type mismatches, 71-74
IDFA (Identifier for Advertiser), 294
IDFV (Identifier for Vendor), 292-293
image views, 194-195
immutable entities, 123-128
initialization of app, 4, 153
initializers, custom, 125
instrumentation, 12, 15-20, 347, 389-398

compared to logging, 17, 20-21
deployment, 398
placement of, in app lifecycle, 16
planning, 392-395
setup for, 395-398
third-party tools for, 392-393

Instruments tool, 363
Activity Monitor template, 102, 367-369
Allocations template, 369-372
launching from Xcode, 363
Leaks template, 372-374
memory profiling using, 80
Network template, 374

436 | Index

templates in, 363-364
Time Profiler template, 374
UI automation, 338-345
using, 364-367

interactive notifications, 217-218
interoperability (data sharing)

Action extension, 276
activity view controller, 271-274
app groups, 287
deep linking, 252-258, 260
document interaction controller, 262-271
document provider extension, 281-287
pasteboard, 258-261
as performance metric, 7
security of, 312
Share extension, 276
share extension, 278
shared keychain, 273, 308
single sign-on, 11, 273
use cases for, 251

invalidation, deterministic, 67
iOS 6

Auto Layout, 210-212
IDFV, 293
NSURLConnection, 237-238
UDID deprecated, 294

iOS 7
background fetch, 174
background refresh, 9
callbacks, 171
IDFV, 293
location services permission, 93
NSURLSession, 237-238

iOS 8
app extensions, 219-222, 274-289
app-settings URL scheme, 252
application lifecycle, 170
callbacks, 171
certificate pinning callback methods, 304
determining if version is, 89
interactive notifications, 217-218
location services permission, 89, 93
SPDY, 227
thread creation time, 109
WebKit, 202

iOS 9
App Search, 407-414
app thinning, 426-432
Applebot, 412

bitcode, 431-432
content blocker extension, 421-426
Core Spotlight, 409-411
HTTP/2, 227
on-demand resources, 427-431
Safari view controller, 418-421
slicing, 427
spotlight index extension, 422, 426
stack view, 414-417
standard meta tags, 412
universal links, 253, 404-407, 412-414
user activity methods, 408

iOS Accessibility Inspector, 360-362
iOS apps

access to, security for, 292-299
debugging (see debugging)
deployment, 238-241, 398
hybrid apps, 202
launching (see launch of application)
lifecycle of (see application lifecycle)
testing (see tests)
version of, custom URL schemes detecting,

254
iOS devices

external displays attached to, 94-99
identifiers for, 292-294
memory in, 29, 179
processors used by, 81-82, 179
size classes, 212-217
storage space in, 179

iPad (see iOS devices)
iPhone (see iOS devices)
iPod (see iOS devices)
itms/itms-app URL scheme, 252
iTunes Connect

uploading bitcode to, 431
viewing crash reports on, 19

J
Jenkins, 350
JIT (just-in-time) processing, 83
JSON, 240

K
Keyboard extension, 220
KVO (key-value observing), 67-70, 134

Index | 437

L
labels, 191-192
latency, 234-236
launch of application

after upgrade, 149, 169
cold start, 148, 158-166
first launch, 147, 150-158
initializations, 4, 153
types of, 147-149
warm launch, 148, 166-168

lazy initialization, 5
lcov package, 329
Leaks template, 372-374
lifetime qualifiers for variables, 43, 45-50
local notifications, 173-174
local storage, 6

(see also memory)
cleaning, 6
security for, 305-312
syncing, 6, 9, 174-177, 233

location services
accuracy levels for, 89
app restarted when location changes, 93-94
distance changes tracked by, 89-90, 92-93
power consumption by, 87-94
threads and timers affected by, 93
turning off inessential features, 90-91
when app is backgrounded, 92-93

locks, 115-120
conditions, 117-120
reader-writer locks, 121-123
recursive locks, 116-117

logging, 20-23, 382
compared to instrumentation, 17, 20-21
page views, 394
security of, 310-312

logins, single (see single sign-on)
LTE network, 83, 228

M
mailto URL scheme, 252
manual reference counting (see MRC)
Matchers, 337
measurements (see profiling)
media streaming, 229, 231
memory, 4

(see also local storage)
amount used, recommendations for, 32
consumption of, 28-32

heap size, 29-32
as performance metric, 4
stack size, 28-29
threads using, 108
warnings regarding, 16, 32

memory management, 32-33, 51-52
autorelease objects, 34-35, 37
autorelease pool blocks, 35-39
best practices for, 78
errors in, crashes caused by, 27
errors in, zombie objects tracking, 50-51
long-lived objects causing leaks, 74
reference counting (ownership), 27, 32-33
type mismatches causing leaks, 71-74

memory profiling, 80, 367
abandoned memory, identifying, 369-372
memory leaks, finding, 372-374
in production environment, 79

method mocks, 348
method swizzling, 348
microphone, 99
Mixpanel, 392
Mock Objects, 337
mock, in dependency mocking, 334
mocking framework, 335-337
mocks

of dependencies, 333-337, 345
of methods, 348

modifiable shared state, 112
MRC (manual reference counting), 32-33, 39
multi-reader locks (see reader-writer locks)
multiple readers/single-writer locks (see reader-

writer locks)
multiuser support, 9-10
mutexes (see locks; synchronized blocks)

N
network connection

2G, 229
3G, 229
4G, 228
analyzing, tools for, 241-248
API for, 237-238
best practices for, 225, 227, 229-234,

237-238, 239-240
condition of, handling, 8, 179
condition of, monitoring, 84-87
condition of, simulating, 241
connection timeouts, 236

438 | Index

DNS lookup time, 224
host reachability, 228
latency, 234-236
metrics for, 223-238
payload size, 236
power consumption by, 83-87
profiling, 374
queue-based requests for, 85-87
requests, configuration of, 239-240
response timeouts, 236
security for, 299-304
servers, location of, 238
SSL handshake time, 226-227
types of, 227-234
using only when necessary, 92
WiFi, 83, 228

Network Link Conditioner, 241
Network template, 374
news feed, Facebook, 139
nibs, 182, 190
notification center, 70, 134
notifications

categories for, 217
didReceiveMemoryWarning, 16, 32
interactive notifications, 217-218
push notifications, 169-174
silent notifications, 173, 174, 176

O
objects

autorelease objects, 34-35, 37
connection objects, 54
long-lived, causing memory leaks, 74
Mock Objects, 337
ownership of (see reference counting)
reference types for, 42-43
retains for, determining, 77
zombie objects, 50-51

observers, 67-70, 124, 134
OCMock, 335-337
on-demand resources, 427-431
online resources

Android graphics, 185
CocoaSPDY, 227
code examples in this book, xvi
Flurry, 14
GCD tutorial, 109
iOS 9 changes, 403

operation queue, 84-87, 110-112

operations (see tasks)
optimizations, premature, 12
ownership of objects (see reference counting)
ownership qualifiers for properties, 44-50

P
P-code (precision code), for GPS, 88
page views, logging, 394
Pandora case study, 229
passcode

for app, 294-295
for device, 305, 308-310

pasteboard, 258-261
payload size, 236
performance, 3

(see also specific metrics)
external factors affecting, 179
importance of, 3
measuring (see profiling)
metrics for, 4-11, 223-238
optimizing, best practices for (see best prac‐

tices)
tests for, 320, 331-332, 352-355

phantom references, 43
photo editing extension, 221
pixel density, of iOS devices, 212-217
PonyDebugger, 377-382
popsicle immutability, 131
power consumption

altering based on battery level, 100-102
best practices for, 103-106
by CPU, 81-83
by location services, 87-94
by network connection, 83-87
as performance metric, 4
by screen, 94-99

Power Monitor tool, 102-103
precision code (P-code), for GPS, 88
prefixed app ID, 253
premature optimization, 12
processors (see CPU)
production environment

analytics for, 398-399
instrumentation for, 389-398
memory profiling in, 79
real user monitoring (RUM) for, 399

profiling, 12
(see also specific metrics)
crash reporting, 14-15, 18-20

Index | 439

instrumentation (see instrumentation)
logging (see logging)
metrics for, 4-11, 223-238
sampling, 12

(see also Instruments tool)
setup for, 13-23

PromiseKit library, 140-141
promises, 137-138, 140-141, 161
properties

atomic, 112-113, 121
ownership qualifiers for, 44-50

Protocol Buffers, 240
proxy server, for debugging, 245-248
publisher, in document interaction controller,

262-267
push notifications, 169-174

Q
queue, for operations, 84-87, 110-112

R
RAM (see memory)
raw events, 395
Reachability Pod, Tony Million’s, 84, 228
Reactive Cocoa library, 135-139
reactive programming, 134-139
reader-writer locks, 121-123
real time data, 394
real user monitoring (RUM), 391, 399
recursion, limits on, 28
recursive locks, 116-117
reference counting (ownership), 27, 32-33

automatic (see ARC)
autorelease objects, 34-35, 37
autorelease pool blocks, 35-39
claiming ownership, 32, 51
relinquishing ownership, 32, 51

reference types, 42-43
remote notifications, 169-173
requests (see HTTP/HTTPS requests)
resettable components, 348
resolution, of iOS devices, 212-217
response timeouts, 236
responsiveness, 5
retain cycles, 52

avoiding, 53-54
causes of, 54-67
observers preventing, 67-70
returning errors indicating, 70

retains for an object, determining, 77
reverse DNS notation, 253
RUM (real user monitoring), 391, 399

S
Safari view controller, 418-421
sampling, 12

(see also Instruments tool)
scenario server, 347
screen

multiple screens, handling, 94-99
power consumption by, 94
resolution of, 212-217

security
app access, 292-299
books about, 291
checklist for, 313-315
data sharing, 312
effects on performance, 291
local storage, 305-312
network connection, 299-304
performance affected by, 312-313
as performance metric, 11

servers, location of, 238
session playback, 394
share activity, in activity view controller, 272
share extension, 221, 278
Share extension, 276
shared keychain, 273, 308
shared repository, 258
sharing app with multiple users (see multiuser

support)
sharing data between apps (see interoperability)
silent notifications, 173, 174, 176
single sign-on, 11, 273

(see also interoperability)
singletons, 74-77
size classes, of iOS devices, 212-217
slicing, 427
Smart App Banners, 412
soft references, 43
sorting algorithms, 82
source code instrumentation, 390

(see also instrumentation)
SPDY, 227
speakers, 99
spotlight index extension, 422, 426
spy, for dependency mocking, 334
SSL handshake time, 226-227

440 | Index

stack
copying to and from heap, 30
size of, 28-29
threads using, 108

stack view, 414-417
stacktrace, sampling, 374
startup time (see initialization time)
State design pattern, 158
state management, 123-139
storyboards, 182, 190
strong references, 42
stub, for dependency mocking, 334
swizzling, of methods, 348
synchronized blocks, 113-115

T
table views, 195-199
tasks

groups of, 110
queues for, 84, 110-112
synchronized blocks of, 113-115

TDD (test-driven development), 321
TDD/BDD Frameworks, 337
tel URL scheme, 252
test-driven development (TDD), 321
testability, 14
TestFlight, crash reports from, 19
tests

A/B tests, 394
accessibility features, 358-362
best practices for, 351-355
component design affected by, 347-349
continuous integration with, 349-351
coverage of, 320, 325-329
dependency mocking for, 333-337, 345-347
functional tests, 14, 320, 338-345, 352
performance tests, 320, 331-332, 352-355
reports from, 320
test cases, 320, 323-325
test fixtures, 320, 323-325
test runner system, 320
test suites, 320
types of, 14, 319-320
unit tests, 14, 319, 321-337, 351

thread-safe code, 112-141
asynchronous operations, 139-141
atomic properties, 112-113
immutable entities, 123-128
locks, 115-120

notification center, 134
observers, 134
reactive programming, 134-139
reader-writer locks, 121
synchronized blocks, 113
updater service, 128-134

threads, 107-109
autorelease pool blocks for, 37
creation time of, 109
GCD handling, 110
heap used by, 29-32
main thread, 107, 189
memory used by, 108
retain cycles caused by, 61-67
stack size for, 108
stack used by, 28-29
when app is backgrounded, 93

time lock, for GPS, 87
Time Profiler template, 374
time, response, 5
timed events, 394
timers

retain cycles caused by, 61-67
when app is backgrounded, 93

Today extension, 219
Tony Million’s Reachability Pod, 84, 228
top-down analytics, 398
traceability, 13, 14
transactions, 394
Travis, 350
type mismatches, 71-74

U
UDID (unique device identifier), 294
UI (user interface)

app extensions, 219-222
Auto Layout, 210-212
interactive notifications, 217-218
main thread updating, 107
size classes of iOS devices, 212-217
testing (see functional tests)
view controllers (see view controllers)
views (see views)

UI automation, 338-345
UMTS network, 229
uniform resource identifier (URI), 252
uniform type identifier (UTI), 263, 268
unique device identifier (UDID), 294
unit tests, 14, 319, 321-337, 351

Index | 441

for asynchronous operations, 330-331
coverage of, 325-329
performance tests in, 331-332
setup for, 321-323
writing, 323-325

universal links, 253, 404-407, 412-414
updater service, 124, 128-134
upgrades

launch after, 169
upgrades, launch after, 149
Upsight, 392
URI (uniform resource identifier), 252
URL format, 254-255
URL schemes

custom, 252-253, 404
reserved, 252

user activity methods, 408
user interface (see UI)
users

cohort of, 391
frame rates perceived by, 180
perception of UI, 179
reactions to unsatisfactory app, 3

UTI (uniform type identifier), 263, 268

V
variables

global, 74
lifetime qualifiers for, 43, 45-50
within a method, limits on, 28

version of app, detecting, 254
version of iOS (see iOS 6 to iOS 9)
video play, power consumption by, 94
view cache, 190
view controllers, 181-189

base view controller for, 183
best practices for, 182-183
lifecycle of, 181
loading views, 183-184
notifications of view visibility, 187-189
rendering view hierarchy, 184-186
Safari view controller, 418-421

views, 189-191
best practices for, 189
buttons, 192-193

composite views, 205, 208-210
custom views, 203-210
debugging, 375-377
direct drawing in, 206-210
hierarchy of, 184-186, 190
image views, 194-195
labels, 191-192
lazy loading of, 190
loading, 183-184
nested, limits on, 28
profiling, 379
stack view, 414-417
table views, 195-199
visibility notifications, 187-189
web views, 199-202

W
warm launch, 148, 166-168
warnings (see notifications)
weak references, 42, 53
web views, 199-202
WebKit, 202
Widget, 219
WiFi connection, 83, 228
wrappers, for dependency mocking, 348

X
Xcode

code coverage reports, 326-329
continuous integration, 351
performance tests, 331-332
unit test setup, 321-323

Xcode Accessibility Inspector, 359-360
Xcode Instruments (see Instruments tool)
Xcode View Debugger, 375-377
XCTest

asynchronous operation tests, 330-331
performance tests, 331-332, 352
test cases, 323-325
test fixtures, 323-325

XML, 240

Z
zombie objects, 50-51

442 | Index

About the Author
Gaurav Vaish was introduced to GW-BASIC when he was 12 years old and fell in
love with its simplicity. Over 20 years later, he has programmed in most of the major
languages, on every popular operating system, and probably for every device popular
today.

He works in the Mobile and Emerging Products (MEP) group at Yahoo! headquarters
—specifically, in the Mobile SDK team, whose charter is to create optimized reusable
solutions that are incorporated across Yahoo mobile apps, run on dozens of types of
devices, and are used by hundreds of millions of users every month, performing over
a billion user interactions weekly and handling over a billion network connections
daily.

Gaurav started his career in 2002 with Adobe Systems India, working in the Engi‐
neering Solutions group. In 2005 he started his own company, Edujini Labs, focusing
on corporate training and collaborative learning.

Gaurav holds a B. Tech. in electrical engineering with a specialization in speech signal
processing from IIT Kanpur, India.

He is the author of the books Reflections by IITians and Getting Started with NoSQL.
He runs a personal blog at http://www.m10v.com.

Colophon
The animal on the cover of High Performance iOS Apps is a pomarine skua (Stercorar‐
ius pomarinus), a migrating seabird that can be found all over the world. It winters at
sea in tropical oceans, and then returns north to lay its eggs on the arctic tundra dur‐
ing the summer. Although the name is unrelated to the Baltic Sea region of Pomera‐
nia, Pomeranian skua is a commonly used misnomer for these birds.

Full-grown pomarine skuas can range from 18 to 26 inches in length and weigh close
to two pounds. Identification of this species of skua can be difficult due to its similari‐
ties to the parasitic jaeger (another kind of seabird) and the fact that adults are poly‐
morphic, or come in three different color patterns. All three patterns contain various
shades of brown, black, and white, often with white underbellies and a white wing
flash.

Pomarine skuas feed on fish, carrion, smaller birds, and even rodents. They have been
known to steal fish from gulls, terns, or gannets in mid-flight and are only preyed
upon by adult white-tailed and golden eagles. Once females have nested in the arctic,
they lay two to three olive brown eggs in grass nests on the ground. Skuas are known
for their fierce defense of these nests; though they cannot do much damage, it is cer‐

tainly a frightening experience to have an angry mother bird dive straight at your
head!

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Getting Started
	Chapter 1. Performance in Mobile Apps
	Defining Performance
	Performance Metrics
	Memory
	Power Consumption
	Initialization Time
	Execution Speed
	Responsiveness
	Local Storage
	Interoperability
	Network Condition
	Bandwidth
	Data Refresh
	Multiuser Support
	Single Sign-on
	Security
	Crashes

	App Profiling
	Sampling
	Instrumentation

	Measurement
	Project and Code Setup
	Crash Reporting Setup
	Instrumenting Your App
	Logging

	Summary

	Part II. Core Optimizations
	Chapter 2. Memory Management
	Memory Consumption
	Stack Size
	Heap Size

	Memory Management Model
	Autoreleasing Objects
	Autorelease Pool Blocks
	Automatic Reference Counting
	Rules of ARC

	Reference Types
	Variable Qualifiers
	Property Qualifiers

	Getting Your Hands Dirty
	Photo Model
	Storyboard Update
	Method Implementations
	Output Analysis

	Zombies
	Rules of Memory Management
	Retain Cycles
	Rules to Avoid Retain Cycles
	Common Scenarios for Retain Cycles
	Observers
	Returning Errors

	Weak Type: id
	Solution to the Problem

	Object Longevity and Leaks
	Singletons
	Finding Mystery Retains
	Best Practices
	Memory Usage in Production
	Summary

	Chapter 3. Energy
	CPU
	Network
	Location Manager and GPS
	Optimal Initialization
	Turn Off Inessential Features
	Use Network Only If Essential
	Background Location Services
	NSTimers, NSThreads, and Location Services
	Restart After App Kill

	Screen
	Animation
	Video Play
	Multiple Screens

	Other Hardware
	Battery Level and State-Aware Code
	Profiling for Energy Use
	Best Practices
	Summary

	Chapter 4. Concurrent Programming
	Threads
	The Cost of Threads
	Kernel Data Structures
	Stack Size
	Creation Time

	GCD
	Operations and Queues
	Thread-Safe Code
	Atomic Properties
	Synchronized Blocks
	Locks
	Use Reader–Writer Locks for Concurrent Reads and Writes
	Use Immutable Entities
	Have a Central State Updater Service
	State Observers and Notifications
	Prefer Async over Sync

	Summary

	Part III. iOS Performance
	Chapter 5. Application Lifecycle
	App Delegate
	Application Launch
	First Launch
	Cold Start
	Warm Launch
	Launch After Upgrade

	Push Notifications
	Remote Notifications
	Local Notifications

	Background Fetch
	Summary

	Chapter 6. User Interface
	View Controller
	View Load
	View Hierarchy
	View Visibility

	View
	UILabel
	UIButton
	UIImageView
	UITableView
	UIWebView
	Custom Views

	Auto Layout
	Size Classes
	New Interaction Features in iOS 8
	Interactive Notifications
	App Extensions

	Summary

	Chapter 7. Network
	Metrics and Measurement
	DNS Lookup Time
	SSL Handshake Time
	Network Type
	Latency
	Networking API

	App Deployment
	Servers
	Request
	Data Format

	Tools
	Network Link Conditioner
	AT&T Application Resource Optimizer
	Charles

	Summary

	Chapter 8. Data Sharing
	Deep Linking
	Pasteboards
	Sharing Content
	Document Interaction
	Activities

	iOS 8 Extensions
	Configuration for Action and Share Extensions
	Action Extensions
	Share Extensions
	Document Provider Extension
	App Groups

	Summary

	Chapter 9. Security
	App Access
	Anonymous Access
	Authenticated Access

	Network Security
	Use HTTPS
	Use Certificate Pinning

	Local Storage
	Data Sharing
	Security and App Performance
	Checklist
	Summary

	Part IV. Beyond Code
	Chapter 10. Testing and Release
	Test Types
	Definitions
	Unit Testing
	Setup
	Writing Unit Tests
	Code Coverage
	Asynchronous Operations
	Xcode 6 Bonus: Performance Unit Tests
	Dependency Mocking
	Other Frameworks

	Functional Testing
	Setup
	Writing Functional Tests
	Project Structure

	Dependency Isolation
	Testing and Component Design
	Continuous Integration and Automation
	Best Practices
	Performance Testing

	Summary

	Chapter 11. Tools
	Accessibility Inspector
	Xcode Accessibility Inspector
	iOS Accessibility Inspector

	Instruments
	Using Instruments
	Activity Monitor
	Allocations
	Leaks
	Network
	Time Profiler

	Xcode View Debugger
	PonyDebugger
	Charles
	Summary

	Chapter 12. Instrumentation and Analytics
	Vocabulary
	Instrumentation
	Planning
	Implementation
	Deployment

	Analytics
	Real User Monitoring
	Analytics Versus Real User Monitoring
	Using RUM

	Summary

	Part V. iOS 9
	Chapter 13. iOS 9
	Application Lifecycle
	Universal Links
	Search
	Search Best Practices

	User Interface
	UIKit Framework
	Safari Services Framework

	Extensions
	Content Blocker Extension
	Spotlight Index Extension

	App Thinning
	Slicing
	On Demand Resources
	Bitcode

	Summary

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

